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ABSTRACT 

 

Respiratory diseases, along with heart diseases, are the most prevalent in the world. The 

acquisition of lung samples, acquired through different procedures through 

bronchoscopy, is essential for a correct diagnosis of the disease. This sampling is 

relatively simple for central lesions of the bronchial trunk. However, for peripheral 

lesions it is not so easy to access the sample and ensure that it is taken at the point 

previously identified using medical imaging techniques. By measuring bioimpedance, 

which allows obtaining the passive electrical properties of biological tissue, it is intended 

to evaluate differences in lung tissue according to its state (cancerous, fibrotic, 

pneumonic, healthy or emphysematous) in order to confirm the appropriate location for 

taking pathological samples, such as performing a biopsy. In order to obtain the highest 

differentiation between the different states of the tissue, first of all a study is carried out 

on the measurement method that allows a greater differentiation between healthy tissue 

and bronchial tissue. The possibility of implementing the 3-electrode method to replace 

the 4-electrode method, used in preliminary measurements, is evaluated, since it provides 

practical advantages. Subsequently, due to the great dispersion of the measurements 

within the same type of tissue among the different patients, the implementation of a 

calibration method, already used for cardiac applications, is studied. This method consists 

of using a measurement made in the main bronchus to calibrate the measurements of the 

lung parenchyma, thus reducing the effect of geometric differences between patients. 

Next, the thesis presents the global study on the differentiation between the different types 

of lung tissue with a population of 102 patients on whom 116 measurements have been 

performed. Finally, the implementation of machine learning classification algorithms for 

the real-time classification of measurements is studied in a complementary way in order 

to help in the correct location of the bronchoscope to take samples of pathological tissue, 

thus improving the efficiency of bronchoscopy, with the limitations of the low number of 

measurements. The results of the different studies show that the 3-electrode 

measurements improve the differentiation and/or separation between tissues compared to 

the 4-electrode method. In turn, the calibration of the measurements using a sample taken 

from the bronchus decreases the intragroup dispersion and, consequently, increases the 

intergroup separation, which improves the differentiation capacity. On the other hand, the 

differentiation of the tissues (using the 3-electrode method and after the subsequent 



4 

 

calibration of the measurements) evaluating the two most discriminatory frequencies, 

shows significant differences between those pathologies that entail an increase in tissue 

density (neoplasm, fibrosis and pneumonia) and those tissues that carry a greater amount 

of air in the lungs compared to the previous ones and/or destruction of tissue (healthy, 

emphysema). Thus, significant differences are found in the four impedance parameters 

analyzed [module (|Z|), phase angle (PA), resistance (R) and reactance (Xc)] between: 

neoplasm and pneumonia (p < 0.05); neoplasm and healthy tissue (p < 0.001); neoplasm 

and emphysema (p < 0.001); fibrosis and healthy tissue (p < 0.001) and pneumonia and 

healthy tissue (p < 0.01). There are also significant differences in |Z|, R and Xc between 

fibrosis and emphysema (p < 0.05) and in |Z| and R between pneumonia and emphysema 

(p < 0.05). Finally, after the implementation of different classification algorithms, the 

results show great accuracy when it comes to classifying and detecting a sample of 

neoplasm tissue, and allow separating some pathologies not detected with classical 

statistical methods. In conclusion, the implementation of bioimpedance measurements 

through bronchoscopy can improve clinical diagnosis, since it is capable of discriminating 

between different types of tissue in a minimally invasive way. However, for the combined 

use with Artificial Intelligence techniques, the number of measures should be increased 

for a greater training of the algorithms and the possible implementation in the 

interventional pulmonology units of the departments of respiratory medicine. 
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RESUMEN 

 

Las enfermedades respiratorias, junto con las enfermedades cardíacas, son las más 

prevalentes en el mundo. La adquisición de muestras pulmonares, adquiridas mediante 

distintos procedimientos a través de broncoscopia, es esencial para un correcto 

diagnóstico de la enfermedad. Este muestreo es relativamente sencillo para lesiones 

centrales del tronco bronquial. Sin embargo, para las lesiones periféricas no es tan sencillo 

acceder a la muestra y asegurar que se toma en el punto previamente identificado 

mediante técnicas de imagen médica. Mediante la medición de bioimpedancia, que 

permite obtener las propiedades eléctricas pasivas del tejido biológico, se pretende 

evaluar diferencias en el tejido pulmonar de acuerdo con su estado (canceroso, fibrótico, 

neumónico, sano o enfisematoso) con la finalidad de confirmar la localización adecuada 

para la toma de muestras patológicas, tales como la realización de una biopsia. Con el fin 

de obtener la mayor diferenciación entre los distintos estados del tejido, en primer lugar 

se realiza un estudio sobre el método de medida que permite una mayor diferenciación 

entre tejido sano y tejido bronquial. Se evalúa la posibilidad de implementar el método 

de 3-electrodos para reemplazar al de 4-electrodos, utilizado en mediciones preliminares, 

ya que aporta ventajas de tipo práctico. Posteriormente, debido a la gran dispersión de las 

medidas dentro de un mismo tipo de tejido entre los distintos pacientes, se estudia la 

implementación de un método de calibración, ya usado para aplicaciones cardíacas. Este 

método consiste en la utilización de una medida realizada en el bronquio principal para 

calibrar las medidas del parénquima pulmonar, reduciendo así el efecto de las diferencias 

geométricas entre pacientes. A continuación, la tesis presenta el estudio global sobre la 

diferenciación entre los distintos tipos de tejido pulmonar con una población de 102 

pacientes sobre los que se han llevado a cabo 116 medidas. Finalmente, se estudia, de 

forma complementaria, la implementación de algoritmos de clasificación de machine 

learning para la clasificación en tiempo real de las medidas con el fin de ayudar en la 

correcta localización del broncoscopio para tomar muestras del tejido patológico, 

mejorando así la eficacia de la broncoscopia, con las limitaciones propias del bajo número 

de medidas. 

Los resultados de los distintos estudios muestran que las medidas a 3 electrodos mejoran 

la diferenciación y/o separación entre tejidos respecto al método de 4 electrodos. A su 

vez, la calibración de las medidas usando una muestra tomada en el bronquio disminuye 
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la dispersión intragrupo y, en consecuencia, aumenta la separación intergrupal, lo que 

mejora la capacidad de diferenciación. Por otro lado, la diferenciación de los tejidos, 

(empleando el método de 3 electrodos y tras la posterior calibración de las medidas) 

evaluando las dos frecuencias más discriminatorias, muestra diferencias significativas 

entre aquellas patologías que conllevan un aumento en la densidad del tejido (neoplasia, 

fibrosis y neumonía) y aquellos tejidos que conllevan una mayor cantidad de aire en los 

pulmones respecto a los anteriores y/o destrucción de tejido (sano, enfisema). De esta 

forma, se encuentran diferencias significativas en los cuatro parámetros de impedancia 

analizados [módulo (|Z|), fase (PA), resistencia (R) y reactancia (Xc)] entre: neoplasia y 

neumonía (p < 0.05); neoplasia y tejido sano (p < 0.001); neoplasia y enfisema (p < 

0.001); fibrosis y tejido sano (p < 0.001) y neumonía y tejido sano (p < 0.01).  También 

se encuentran diferencias significativas en |Z|, R y Xc entre fibrosis y enfisema (p < 0.05) 

y en |Z| y R entre neumonía y enfisema (p < 0.05). 

Por último, tras la implementación de diferentes algoritmos de clasificación, los 

resultados muestran una gran eficacia a la hora de clasificar y detectar una muestra de 

tejido neoplásico, y permiten separar algunas patologías no detectadas con métodos 

estadísticos clásicos. 

En conclusión, la implementación de mediciones de bioimpedancia mediante 

broncoscopia, puede mejorar el diagnóstico clínico, puesto que es capaz de discriminar 

entre distintos tipos de tejido de forma mínimamente invasiva. Sin embargo, para el uso 

combinado con técnicas de Inteligencia Artificial, se debe aumentar la muestra de las 

medidas para un mayor entrenamiento de los algoritmos y la posible implementación en 

las unidades de neumología intervencionista de los departamentos de medicina 

respiratoria. 
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RESUM 

 

Les malalties respiratòries, juntament amb les malalties cardíaques, són les més 

prevalents al món. L'adquisició de mostres pulmonars, adquirides mitjançant diferents 

procediments a través de broncoscòpia, és essencial per a un diagnòstic correcte de la 

malaltia. Aquest mostreig és relativament senzill per a lesions centrals del tronc 

bronquial. Tot i això, per a les lesions perifèriques no és tan senzill accedir a la mostra i 

assegurar que es pren en el punt prèviament identificat mitjançant tècniques d'imatge 

mèdica. Mitjançant la mesura de bioimpedància, que permet obtenir les propietats 

elèctriques passives del teixit biològic, es pretén avaluar diferències en el teixit pulmonar 

d'acord amb el seu estat (cancerós, fibròtic, pneumònic, sa o emfisematós) amb la finalitat 

de confirmar la localització adequada per a la presa de mostres patològiques, com ara la 

realització d'una biòpsia. Per tal d'obtenir la diferenciació més gran entre els diferents 

estats del teixit, en primer lloc es realitza un estudi sobre el mètode de mesura que permet 

una major diferenciació entre teixit sa i teixit bronquial. S'avalua la possibilitat 

d'implementar el mètode de 3-elèctrodes per reemplaçar el de 4-elèctrodes, utilitzat en 

mesures preliminars, ja que aporta avantatges de tipus pràctic. Posteriorment, a causa de 

la gran dispersió de les mesures dins un mateix tipus de teixit entre els diferents pacients, 

s'estudia la implementació d'un mètode de calibratge ja utilitzat per a aplicacions 

cardíaques. Aquest mètode consisteix en la utilització d'una mesura realitzada al bronqui 

principal per calibrar les mesures del parènquima pulmonar, reduint així l'efecte de les 

diferències geomètriques entre pacients. Tot seguit, la tesi presenta l'estudi global sobre 

la diferenciació entre els diferents tipus de teixit pulmonar amb una població de 102 

pacients sobre els quals s'han dut a terme 116 mesures. Finalment, s'estudia, de forma 

complementària, la implementació d'algoritmes de classificació de Machine Learning per 

a la classificació en temps real de les mesures per tal d'ajudar a la correcta localització del 

broncoscopi per prendre mostres del teixit patològic, millorant així l'eficàcia de la 

broncoscòpia, amb les limitacions pròpies del baix nombre de mesures. Els resultats dels 

diferents estudis mostren que les mesures a 3 elèctrodes milloren la diferenciació i/o 

separació entre teixits respecte al mètode de 4 elèctrodes. Alhora, el calibratge de les 

mesures utilitzant una mostra presa en el bronqui disminueix la dispersió intragrup i, en 

conseqüència, augmenta la separació intergrupal, cosa que millora la capacitat de 

diferenciació. D'altra banda, la diferenciació dels teixits, (utilitzant el mètode de 3 
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elèctrodes i després del calibratge posterior de les mesures) evaluant les dues freqüències 

més discriminatòries, mostra diferències significatives entre aquelles patologies que 

comporten un augment en la densitat del teixit (neoplàsia , fibrosi i pneumònia) i aquells 

teixits que comporten una major quantitat d'aire als pulmons respecte als anteriors i/o 

destrucció de teixit (sa, emfisema). D'aquesta manera, es troben diferències significatives 

als quatre paràmetres d'impedància analitzats [mòdul (|Z|), fase (PA), resistència (R) i 

reactància (Xc)] entre: neoplàsia i pneumònia (p < 0.05); neoplàsia i teixit sa (p < 0.001); 

neoplàsia i emfisema (p < 0.001); fibrosi i teixit sa (p < 0.001) i pneumònia i teixit sa (p 

< 0.01). També es troben diferències significatives a |Z|, R i Xc entre fibrosi i emfisema 

(p < 0.05) i a |Z| i R entre pneumònia i emfisema (p < 0.05). Per acabar, després de la 

implementació de diferents algoritmes de classificació, els resultats mostren una gran 

eficàcia a l'hora de classificar i detectar una mostra de teixit neoplàsic, i permeten separar 

algunes patologies no detectades amb mètodes estadístics clàssics. En conclusió, la 

implementació de mesures de bioimpedància mitjançant broncoscòpia pot millorar el 

diagnòstic clínic, ja que és capaç de discriminar entre diferents tipus de teixit de manera 

mínimament invasiva. No obstant això, per a l'ús combinat amb tècniques d'intel·ligència 

artificial, cal augmentar la mostra de les mesures per a un entrenament més gran dels 

algoritmes i la possible implementació en les unitats de pneumologia intervencionista dels 

departaments de medicina respiratòria. 
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CHAPTER 1: INTRODUCTION AND THEORETICAL 

BACKGROUND 

 

1. THESIS OVERVIEW 

 

1.1. Problem statement 
 

Respiratory diseases are among the most prevalent illnesses worldwide, along with heart 

complications. Moreover, each year an estimated 3 million people die due to respiratory 

disease complications, making respiratory diseases the third leading cause of death 

worldwide [1]. 

The diagnosis of lung diseases is performed through multiple approaches. Pulmonary 

function tests evaluate lung capacities and volumes in order to discriminate between 

obstructive and restrictive pulmonary diseases [2]. Medical images offer the possibility 

to observe structural and functional abnormalities [3].  

The most used imaging technique system is the radiography (X-ray). However, X-ray is 

a low contrast imaging technique [4], hindering the detection of abnormal anatomical 

structures [5]. Its low resolution and its 2D character limits the capacity to detect tumours 

or nodules, either benign or malign [6]. The diagnosis through X-ray imaging has been 

improved through high-resolution computed tomography (CT) used to evaluate 

abnormalities in the lung parenchyma [7]. This technique is considered to be the standard 

for the diagnostic of lung cancer [6] despite an increase of radiation dose to the patient. 

Moreover, the radiation necessary to be administrated in these types of images makes 

difficult the follow-up of a particular disorder [8]. Molecular images such as positron 

emission tomography (PET) gives metabolic information making possible a more 

accurate diagnostic [6]. Lung diseases often present identical or similar symptoms and 

the different pathologies are only differentiable when they are in an advanced stage. The 

problem arises when the objective is to differentiate between pathologies in an initial 

state, increasing the accuracy of the diagnostic.  The combination of positron emission 

tomography with computed tomography (PET/CT) allows a better nodule distinction.  
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The diagnosis through PET/CT often leads to false negative cases. In addition to the false 

negative cases, the metastasis propagation velocity can also be misinterpreted if, at the 

first moment, the tumour presents a low consumption rate of the radio tracer. In the same 

way that there is the possibility to make a diagnostic of false negatives there is also the 

possibility to make a diagnostic of false positives detecting infections and inflammations 

with a high glucose metabolic rate. These cases make necessary the need of a more 

accurate diagnostic [6]. 

Imaging techniques are complementary to a third method of diagnostic, bronchoscopies. 

Flexible bronchoscopies have limited value in the obtention of peripheral tissue lesions. 

With endobronchial involvement, the selection of the biopsy site is relatively simple. The 

necessity of confirmation that the biopsy location is correct in peripheral lesions leads to 

the development of other techniques such as virtual bronchoscopy (VB), radial 

endobronchial ultrasound (r-EBUS), electromagnetic navigation (EMN) and ultrathin 

bronchoscopes. However, the diagnostic using these techniques remains suboptimal [9], 

[10]. 

One possible strategy to improve lung disease diagnosis and tissue sample is through the 

measure of the lung tissue bioimpedance. Electric impedance tomography (EIT) is an 

imaging technique which consists on the mapping of the immittance distribution in a layer 

of tissue. The acquisition is performed through multiple skin surface electrodes in which 

current is successively injected through electrode pairs and the voltage between the other 

electrodes is recorded. However, it is a poor resolution imaging technique and therefore, 

not suitable for tumour detection [11].  

The hypothesis is that electrical impedance spectroscopy (EIS) obtained in-situ through 

a catheter introduced with a bronchoscope would be another possible way to differentiate 

lung tissue states among different pathologies. This technique could be used for tissue 

characterisation having the possibility to detect changes in the pulmonary structure 

minimally-invasively for the detection of abnormalities which would complement the 

actual diagnosis systems. 
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1.2. Objectives 
 

Motivated by the ideas exposed in the summary above, the main purpose of the thesis is 

to validate the abovementioned hypothesis by applying electrical impedance 

spectroscopy to obtain bioimpedance measurements of lung tissue to perform lung tissue 

differentiation based on the different tissue states (Article 3). The pathologies included 

are neoplasm, fibrosis, pneumonia and emphysema. In addition, healthy lung tissue is 

also included in the study. The bioimpedance measurements are acquired through a 

bronchoscopy process, introducing a catheter through the working channel of the 

bronchoscope. Prior to bronchoscopy, radiological images (CT or PET/CT) are acquired 

to confirm diagnosis and know the pathology location and diagnosis of lung neoplasm is 

confirmed by biopsy. 

Subsequently, in order to achieve the main objective of the thesis different goals are 

planned: 

1.  Find the best electrode configuration that allows a good tissue differentiation 

while maintaining the practicality of the technique for the clinicians (Article 1). A 

comparison of the ability to differentiate lung tissue by using the 4-electrode method and 

the 3-electrode method is conducted. 

2.  Study the implementation of a calibration method to reduce data variability and 

increase the tissue state separation capability. The calibration method, already used in 

cardiac applications, consists of using a measurement of bioimpedance performed in a 

known position in the bronchi to calibrate all the lung measurements. The objective of 

the calibration is to eliminate the geometrical differences among subjects and 

measurements (Article 2). 

Finally, in order to improve real-time diagnosis and help for a better sample location 

accuracy, the following additional objective is defined: 

1. Implement machine learning classification algorithms to perform tissue 

characterization through impedance measurements. (Non-published results). 
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1.3. Thesis framework and outline 

  

The present PhD thesis has been developed in the Electronic and Biomedical 

Instrumentation group, from the department of Electronic Engineering of the Polytechnic 

University of Catalonia of Barcelona together with the Interventional Pulmonology Unit 

of the Respiratory Medicine Department of the “Hospital de la Santa Creu i Sant Pau” of 

Barcelona.  

The study was initiated in the frame of the research project: Z-LUNG, “Biopsia 

electrónica de tejido pulmonar in-vivo basada en espectroscopia de impedancia eléctrica” 

(RTI2018-098116-B-C21). 

The theoretical background of the thesis is presented in Chapter 2 with a summary of the 

main concepts of lung physiology together with a description of the pathologies included 

in the study. Moreover, the procedures performed in bronchoscopy prior or after the 

acquisition of bioimpedance measures are also described. Furthermore, an introduction 

of the main concepts of bioimpedance analysis is also performed including a review of 

the studies already published regarding the use of electrical impedance spectroscopy, with 

emphasis in lung measurements, for clinical purposes. Finally, a brief description of the 

machine learning concept and the algorithms applied is also presented.  

In chapter 2 to 4 the three articles published during the development of the thesis are 

presented. The first article (Chapter 2) makes a comparison regarding the capacity to 

differentiate among different tissue states between the 4-electrode method and the 3-

electrode method to acquire bioimpedance data and perform tissue differentiation. Also, 

the advantages or disadvantages of using one method or another in the clinical process of 

bronchoscopy are discussed. In Chapter 3, the second article of the thesis analyzes the 

implementation of a calibration method for the bioimpedance measurements to increase 

tissue differentiation by reducing data variability among samples belonging to the same 

tissue group and increasing the differentiation capability among tissue states. The third 

article of the thesis presented in Chapter 4 performs tissue differentiation using electrical 

impedance spectroscopy measurements (frequency range: 1 kHz to 1MHz) among 

neoplasm, fibrosis, pneumonia, healthy lung tissue and emphysema by selecting the most 

discriminative frequencies. It also performs a discriminant analysis to complement the 

tissue differentiation statistics. In Chapter 5 the still non-published results regarding the 
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use of machine learning algorithms for tissue classification based on the minimally-

invasive electrical impedance spectroscopy measurements are presented. 

In Chapter 6 the discussion of the main results and conclusions of the thesis are presented. 

In addition, in the Annexes section, a list of the conference papers and articles directly or 

non-directly derived from the thesis but published during the development of the thesis is 

also presented. 

2. THEORETICAL BACKGROUND 
 

2.1. Anatomy and physiology of lungs 

 

The lungs are the principal organs involved in the respiratory process. While the right 

lung is divided into three lobules (upper, middle and lower) the left lung is only divided 

into upper and lower lobes. Each of the lobes are, in turn, divided into bronchopulmonary 

segments which are regions that are supplied by specific tertiary bronchus and arteries. 

The right lung has 10 bronchopulmonary segments while the left lung has only eight (Fig. 

1) [12]. 

 

Figure 1. Distribution of the bronchopulmonary segments [12]. 

The airways of the lungs, structured in a complex array of duct networks, allow the gas 

exchange process. They are constituted by the trachea, which divides into multiple 

bronchial generations that end up in the alveoli. At the end of the trachea the carina is 

found and divides into the left and right principal bronchi, being the left one larger than 
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the right. The right principal bronchi further divides into the upper and intermediate lobe 

bronchi while the left principal bronchus divides into the upper and lower lobe bronchus 

(Fig. 2) [12]. Bronchi divides further into the bronchioles, the terminal bronchioles, the 

respiratory bronchioles, the alveolar ducts and end in the alveolar ducts, after undergoing 

twenty-three divisions [13].  

What makes the difference between bronchi and bronchioles is that the first one presents 

a diameter of more than 0.1 cm while bronchioles have a diameter lower than that value. 

From trachea to terminal bronchioles is the region known as conducting airways while 

the respiratory bronchioles, alveolar ducts and alveolar sacs constitute the respiratory 

zone. The function of the conducting airways is to transport the air and protect the lung 

from the contaminant substances that are inhaled during the respiratory process. The 

respiratory zone is the place where the gas exchange occurs. Lungs can contain 300 

million alveoli and 140 m2 of gas exchange alveolar surface on average. The respiratory 

zone is divided in multiple acinus, which is an anatomic unit that consists on different 

respiratory bronchioles, alveolar ducts and alveoli, which are supplied by s single terminal 

bronchiole [13]. 

The airways are formed by different types of tissue. In contact to the lumen of the airways 

there is the mucosa and the submucosa, which are separated by a basement membrane. 

The mucosa is composed principally by epithelial cells. In the submucosa smooth muscle 

and connective tissue can be found. Finally, a fibrocartilaginous layer containing the 

cartilage rings (that have a support function of the airways) is found surrounding the 

submucosa [14]. The bronchial epithelium cells include pseudostratified ciliated 

columnar epithelial cells, interspersed globet cells, neuroendocrine cells and underlying 

basal cells. Globet cells are in charge of mucous secretion for trapping inhaled particles 

and ciliated cells guides the mucous and particles to the pharynx to be eliminated. Basal 

cells, present in bronchi are in charge of regenerating damaged bronchial mucosa. 

Neuroendocrine cells are in charge in the ventilation/perfusion regulation. In bronchioles, 

Clara cells replace globet cells which detoxify inhaled toxins and participate in the 

regeneration of bronchial epithelium which is damaged [13]. 



21 

 

 

Figure 2. Airway divisions [12]. 

Type I and II pneumocytes are present in the alveolar sacs. The first ones facilitate the 

gas exchange process. The second ones secrete surfactant which prevent alveoli from 

collapse  at low intra-alveolar pressures [13].  

Moreover, the lungs are vascularized organs in order to deliver deoxygenated blood to 

the alveoli for gas exchange process. The main pulmonary artery, originated at the right 

ventricle, divides into the left and right pulmonary arteries. In the same way as the 

bronchus splits into next generations, smaller generations of arteries are originated from 

the divisions of the left and right pulmonary arteries following the same paths as the 

bronchus and bronchioles. After the gas exchange process, the different capillaries join 

together to form the pulmonary veins [12].  

2.2. Lung diseases and diagnosis techniques 

 

The lungs are vulnerable to injury due to environmental factors causing multiple forms 

of cell damage that leads to lung disorders. Multiple disorders can be developed in lung 

tissue. However, pathologies not analyzed in this thesis will not be explained in this 

section. 

2.2.1. Emphysema 
 

Emphysema is a chronic obstructive pulmonary disease (COPD) together with chronic 

bronchitis developed as a result of a chronic inflammation and characterized by an airflow 
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limitation in a forced expiration [13]. COPD caused more than 3 million death in 2012 

worldwide which represented the 6% of the global deaths. Moreover, it is estimated that 

by 2030 the number of death due to COPD will rise to 4.5 million. Nowadays it is the 

third leading cause of death around the world. More specifically, it is estimated that in 

United States the percentage of population suffering from emphysema is between 4 and 

5% in males and between the 1 and 3% in females. 

Emphysema is characterized by an irreversible destruction of the alveolar walls and the 

terminal bronchioles. This destruction leads to an enlargement of the airspace (Fig. 3) 

producing an air accumulation due to the destruction of the elastic tissue. Emphysema is 

also characterized by a decreased gas exchange capacity [12], [15]. The major problem 

in emphysema is the loss of elastic recoil, thus decreasing the capacity of expelling the 

air in expiration [14], [15]. Progressive hypoxia and dyspnea are produced as a result of 

the loss of alveolar surface area and its capillary bed for the gas exchange process [15]. 

 

Figure 3. Tissue structure of emphysematous lung [12]. 

After the apparition of symptom related to COPD (chronic cough, sputum production and 

dyspnea), the diagnosis of emphysema begins with a detailed history of the patient with 

the focus on the exposition to toxic substances such as smoke. After that, spirometry is 

necessary to confirm the diagnosis in which the volume of air exhaled in the first second 

of expiration (FEV1) is compared to the total volume of exhaled air (force vital capacity, 

FVC) obtaining the ratio FEV1/FVC. A ratio lower than 0.7 is diagnostic of airflow 

obstruction [12]. After spirometry, pulmonary function tests evaluate the disease severity 

to guide therapy by measuring lung volumes. In COPD patients, an increase in the 

residual volume (RV) is sign of hyperinflation of the lungs. Moreover, the diffusion 
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capacity of carbon monoxide (DLCO) is used to evaluate the alveolar-capillary interface 

efficacy of gas exchange. DLCO is reduced in emphysema but is not altered in chronic 

bronchitis or asthma. Finally, chest radiographs and computed tomography imaging (CT) 

are also used for assessing the diagnosis of emphysema. Radiological findings include 

hyperinflation and hyperlucency while CT images reveal a bullae pattern [13]. The 

destruction of the alveolar tissue is irreversible. 

2.2.2. Lung neoplasm 
 

Lung neoplasm is the fourth most common cause of cancer being the second that produces 

more deaths. It represents the 20% of cancers in men and the 12% of cancers in women 

with an estimated incidence of 1.6 million cases worldwide.  

Lung neoplasm is characterized by abnormal cell growth (Fig. 4), losing the tissue 

architecture. Lung neoplasm is produced due to cellular function alterations that produce 

morphologic changes such as enlargement of the cells (hypertrophy), an increase in cell 

concentration due to much cell division (hyperplasia) or abnormal cell reprogramming to 

appear like different cell types (metaplasia). In addition of an excessive cell growth a 

reduction in the pressure of oxygen is produced thus secretion of angiogenic growth 

factors occur which leads to the proliferation of vascular structures into the neoplasm 

tissue for its nutrition and oxygenation [15].    

 

Figure 4. Tissue structure of lung neoplasm (Adenocarcinoma) [12]. 

There are different types of lung neoplasm which can be divided between non-small cell 

lung cancer (squamous cell carcinoma and adenocarcinoma) which represent the 85% of 
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lung neoplasms and small cell carcinoma. Squamous cell carcinomas are characterized 

for being more centrally located neoplasm while adenocarcinomas are commonly in the 

periphery of lungs although can occur more centrally. Adenocarcinomas can be found in 

association with fibrosis [13] and is the most frequent type of lung cancer. Small cell 

carcinomas are typically central and are characterized for being soft and necrotic with its 

cells having little cytoplasm.  

The squamous cell carcinomas represent the 30% of the non-small cell lung cancers and 

are highly related to cigarette smoking. This type of lung neoplasm normally grows more 

quickly than the other non-small cell lung cancers. However, it tends to produce 

metastasis later. Necrosis is common in this type of lung neoplasm and it can be 

surrounded by consolidations that reflect obstructive pneumonia. Small cells lung 

carcinomas represent the 12% of lung neoplasms and also show necrosis [13]. 

The diagnosis is performed through an imaging test (radiography or CT) of the thorax 

and abdomen that determines if there is an opacity that needs to be investigated and its 

exact location. Moreover, a positron emission tomography (PET-CT) is performed to 

determine the activity of the suspicious mass.  The diagnosis also requires sampling the 

abnormal tissue through a biopsy (explained in section 2.3.3) [12].  

2.2.3.  Fibrosis 

 

Fibrosis is considered a rare disease with a median survival between 3 and 4 years. In 

Europe, there are approximately 40,000 new cases per year [16]. 

Fibrosis leads to different structural changes in lungs. In general terms, fibrosis is 

characterized by a thickened alveolar wall due to collagen deposition [13] and an increase 

tissue stiffness due to the accumulation of inflammatory cells as well as extracellular 

matrix collagen-rich. Contrary to emphysema, fibrosis leads to an increased lung elastic 

recoil and oxygen diffusion and gas exchange impairment.   

Fibrosis can lead to the development of honeycomb cysts, visible in radiological images 

(Fig. 5) [15], which are characterized by the replacement of the alveolar architecture for 

cystic spaces surrounded by fibrous septa filled with mucous or air [13]. 
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Figure 5. CT image of fibrosis [15]. 

Pulmonary function tests are used to evaluate the severity of the disease as well as its 

progression and response to treatment. CT images are taken for diagnosis to confirm 

abnormalities of the tissue. Often, it is necessary to perform a bronchoalveolar lavage 

through bronchoscopy for further studies of the pathologic tissue [12], [17]. 

2.2.4.  Pneumonia 
 

Pneumonia is a very common disease affecting 450 million people per year and causing 

4 million death worldwide [14]. 

Pneumonia develops different patterns in lungs, depending on the pneumonia type. On 

one hand there are the pneumonias derived from infections, such as the mycoplasma 

pneumonia. This subtype of pneumonia is characterized by an infection and inflammation 

of the lung parenchyma in which fluid or pus (purulent material) fill the air sacs, 

appearing as dense consolidation (Fig. 6). The other group is characterized by the 

proliferation of fibroblastic tissue in the small airways and alveolar spaces [13] such as 

in the case of organized pneumonias. The major consequence of pneumonia is a decreased 

ventilation capacity of the affected areas [14].  
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Figure 6. Radiological image of a pneumonia [14]. 

The most useful tool for the diagnosis of pneumonia is the chest radiography, which 

confirms the presence of the disease and shows its extent and severity. Radiological 

findings characteristics for pneumonia are air spaces consolidations. Moreover, 

microscopic examination of sputum (obtained through bronchoscopy) is also necessary 

to guide treatment [14]. 

2.3. Bronchoscopy 

 

In complement to the different imaging techniques and pulmonary function tests, 

bronchoscopies (Fig. 7)  enable the extraction of secretion, lung parenchyma and nodules 

for the characterization of disorders [12].  

Bronchoscopy allows the visualization of the interior airways through the insertion of a 

flexible bronchoscope into the lungs with a camera at the tip of the bronchoscope that 

displays the images in a monitor screen [14]. The bioimpedance measurements obtained 

for this thesis have been acquired inserting a catheter trough the bronchoscope working 

channel. 

The flexible bronchoscope consists on three main components: the control section, the 

insertion tube and the universal cord. The control section is the part that is hold by the 

left hand of the bronchoscopist. For the bronchoscope steering management, the clinician 
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controls with the thumb a lever that can be moved up and down to control the angle of 

the distal tip. The insertion tube consists on a flexible catheter that enters the patient 

together with another plastic catheter travelling from the middle of the insertion tube, 

known as working channel, that is used for passing accessories for fluid and tissue 

sampling. As there is no light in the respiratory airways, two fiber-optic bundles along 

the catheter carry light from an external light source. Finally, the universal cord provides 

information and light to and from the control body, the light source and the video 

processor [18]. 

 

 

Figure 7. Bronchoscopy procedure during the acquisition of the bioimpedance 

measurements in “Hospital de la Santa Creu i Sant Pau”. 

During bronchoscopy, patients are placed in a supine position. Topical lidocaine is used 

to anesthetize the upper airways. Moreover, intravenous sedation with benzodiazepine is 

administrated two to three minutes before the procedure to help the patient to relax [12]. 

Bronchoscopy is performed in patients with abnormal chest radiograph or CT image. 

Images determine the bronchoscopic tests needed as well as the sample location and the 

quantity of specimen needed [18]. There are different tests that can be done through a 

bronchoscopy.  

2.3.1.  Bronchial washing  
 

Bronchial washing (BAS) is a technique that consists on the placement of the 

bronchoscope near the area to be sampled and the introduction of 5 to 50 mL of sterile 
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saline through the working channel of the bronchoscope for then aspirating the solution 

back to a specimen trap or syringe. Bronchial washing, although not enables cell 

differentiation, is useful for microbiological and cytological assessment when lesions are 

visible. Moreover, it is used for dislodging mucus plugs or clots. Bronchial washing 

should be performed prior to biopsies in order to avoid an excessive concentration of red 

blood cells in the specimen trap that sometimes difficults cytologic interpretation. In 

addition, bronchial washing increases the diagnostic yield if performed in conjunction of 

biopsies in endobronchial tumors from 93% biopsy alone to 96% [18]. It may be useful 

for the assessment of central airways secretions [19].  

2.3.2.  Bronchoalveolar lavage (BAL) 

 

BAL is a technique used to obtain cellular samples from the most distal airways and 

alveolar spaces. BAL is performed through the flooding of the pathological area to move 

the cellular alveolar material and the aspiration and acquisition of the biological material. 

Aliquots of 50 mL of sterile saline are introduced to the region before being aspired and 

recollected into a syringe or a specimen trap. It allows the differentiation between cellular 

specimens and is particular useful in the study of diffuse interstitial lung diseases [19]. 

2.3.3.  Biopsy 

 

Biopsies are used to obtain samples of biological tissue, where clinicians pass through the 

working channel of the bronchoscope the forceps (Fig. 8, left). The process consists on 

arriving to the visual lesion, opening the forceps and close the forceps in order to take a 

piece of the damaged tissue. Biopsies are usually employed for the diagnosis of lung 

cancer and also for the detection of granulomas with a sensitivity between 72 % and 100 

%. The most frequent complication when performing biopsies is the frequent minor 

bleeding of the tissue. For this reason, clinicians may take caution for vascularized lesions  

[19].  

2.3.4.  Bronchial brushing 

 

Bronchial brushing is similar to biopsies. Instead of forceps, a brush (Fig. 8, right) is 

passed through the working channel of the bronchoscope. After moving the brush back 

and forth to move the abnormal mucosa the brush is removed from the bronchoscope. 
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Although the process is similar to biopsy, the bronchial brushing is used when the lesion 

is not visible [12]. For this reason, brushing is performed for the diagnosis of 

endobronchial lesions and peripheral lung abnormalities. As it happens with biopsies, in 

brushing there is also the complication of minor bleeding [19].  

 

Figure 8. Biopsy forceps (left) and bronchial brush (right) [12]. 

2.3.5       Bronchoscopic techniques for diagnosis of lung neoplasm 

 

As seen in previous sections, there are different procedures performed during a 

bronchoscopy, each of which with its specific utility. This section aims to explain the 

procedures performed for a case of lung neoplasm diagnosis. The section aims to show 

that multiple procedures are performed during the bronchoscopy for a correct diagnosis.  

In bronchoscopy, there are two groups of lung neoplasm, the central nodules which are 

directly accessible through bronchoscope and the peripheral lung nodules which are not. 

Historically, the histologic diagnosis of central lung nodules has been done by using a 

combination of bronchial washing, bronchial brushing and biopsies. History has proved 

that, although each of the techniques individually offers a good diagnosis yield, the 

sensitivity of the procedures is higher when a combination of the techniques is used [20]. 

The first of the techniques, bronchial washing, offers enough material for a good 

diagnosis in the 68 % of the cases. However, the implementation of this technique for the 

diagnosis of central lung nodules is under controversy because it does not increase the 

diagnostic yield when using biopsy and brush in some studies [20]. 

The diagnostic yield for bronchial brushing itself is 72 %. However, the diagnostic yield 

for nodule diagnosis is higher when performed in combination with biopsies [20]. 
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Finally, endobronchial biopsies provide a diagnosis in the 80 % of the cases. The optimal 

number of biopsies is under discussion as some experts recommend a number of six 

biopsies although some studies recently have proven that it is enough with 3 to 4 samples 

[20].  

For peripheral lung cancer, bronchoscopy provides diagnostic in 69 % of the cases. 

Bronchial washing provides diagnosis only in the 28 % of the cases. Other techniques, 

such as bronchial brushing, when performed under fluoroscopy, provides diagnosis in the 

45 % of the cases. Finally, transbronchial biopsy, also performed under fluoroscopy 

guidance has a diagnosis sensitivity of the 52 % when 4 or less biopsies are collected. 

However, the diagnostic yield increases up to 70 % when more than four biopsies are 

obtained [20]. 

 

2.4. Bioimpedance 

 

Lung sampling is vital for the correct characterization of a particular disorder through the 

multiple methods presented above. With endobronchial involvement lung sampling is 

relatively simple. However, in peripheral nodules other techniques such as 

electromagnetic navigation bronchoscopy is needed. However, its high cost does not 

allow the possibility to have these devices in all the interventional pulmonology units. In 

order to improve lung sampling, bioimpedance measurements aim to be implemented. 

2.4.1.  Fundamentals of bioimpedance 

 

The electrical properties of biological tissue are complex. Biological tissue properties are 

categorized based on the source of the electricity (active or passive). Active properties 

originate in electrically active cells such as the ones originated in the heart or in the brain. 

Passive electrical properties should be excited with an external source of energy to be 

measured [21].  

2.4.1.1. Duality conductor – dielectric 
 

All the materials, biological or not, can be divided into two categories: conductors and 

dielectrics. In a conductive material, conductor charges move freely with the application 

of an electric field (which is the behavior of most of the biological tissues below the 100 
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kHz). On the contrary, charges in a dielectric material do not move and no net movement 

exist as charges are only reoriented. This reorientation of charges is a phenomenon known 

as polarization of the dielectric material. The process of polarization needs certain time 

to be produced, defined by the relaxation time (τ) [11], [22]. A dielectric material, as cell 

membranes behaves as, is capable of storing electrical energy.  

Two parameters characterize the conductive and dielectric properties of the materials, the 

conductivity (σ) and the permittivity (Ɛ). The conductivity describes the ability of the 

charges in a material to move with the application of an electric field. The second 

parameter, the permittivity, gives information about the ability of a material to store 

charges when an electric field is applied. The complex expression of permittivity is 

defined in Equation 1 with its real part being the dielectric constant and its imaginary 

part being the dielectric loss. Equation 2 relates the permittivity parameter with the 

conductivity. 

𝜀∗(𝜔) =  𝜀′(𝜔) − 𝑗𝜀′′(𝜔) 

 

(1) 

𝜎∗(𝜔) = 𝑗𝜔𝜀∗𝜀0 (2) 

 

Biological tissues present both, conductive and dielectric properties. The conductivity is 

produced due to the hydrated ions that are present in the intracellular and extracellular 

medium. On the other hand, the dielectric properties are related to the electrical double 

layers around the surface of the cell membranes [23].  

2.4.1.2. Duality relaxation – dispersion 
 

As it has been already introduced, the polarization of the dielectric materials (thus, the 

cell membranes) is characterized by a relaxation time. Equation 3 related this relaxation 

time with the permittivity parameter, where Ɛ∞ corresponds to the permittivity at high 

frequencies and Ɛs corresponds to the value of the permittivity at low frequencies.  

𝜀∗ =  𝜀∞ +
𝜀𝑠 − 𝜀∞

1 + 𝑗𝜔𝜏
 

 

(3) 
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The transition between low and high frequencies are called dispersions. In biological 

tissues there are three major dispersions (Fig. 9) [11], [24]. 

 

Figure 9. Dispersions of the biological tissue [25]. 

• Alpha dispersion: dispersion produced from millihertz to kilohertz frequencies 

caused by the sarcoplasmic reticulum, gap junctions and counterion relaxation. 

• Beta dispersion: dispersion produced from the tens of kHz to the tens of MHz and 

produced mainly by the cellular structures of the tissues and its poor conductive 

membranes that separate the extracellular from the intracellular medium. Other 

tissue structures such as the relaxation effects produced by the proteins and 

organelles inside the cells also contribute to the beta dispersion slightly. 

• Gamma dispersion: dispersion occurring above 1 GHz and produced by the 

polarization of the water molecules. 

In biological tissues the most important dispersion is the beta-dispersion, as it 

characterizes the behavior of the cell membranes and is of vital importance in the concept 

of electrical impedance spectroscopy. 

2.4.2.  Electrical impedance spectroscopy  
 

The dielectric properties of the biological tissue are frequency dependent. Therefore, for 

a complete characterization of the tissues the properties should be studied in a wide 
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frequency range, covering the band of the beta dispersion (polarization of the cell 

membranes). 

2.4.3.1. Bioimpedance 
 

The general definition of bioimpedance is stated as the ability of the biological tissue to 

oppose when electric current is applied [26]. The physical basis of bioimpedance is that 

biological tissue can be represented by an electric circuit model composed by a resistance 

(representing the extracellular medium) in parallel with a capacitor and resistance in 

series (representing the intracellular medium and the cell membrane) (Fig. 10). 

 

Figure 10. Circuit model of biological tissue [26]. 

When direct current is applied to the biological tissue the bioimpedance becomes purely 

resistive (R). However, the application of alternating current to the biological tissue 

makes the bioimpedance frequency dependent, thus the term is called Z [27]. The term Z 

is represented using complex numbers (Equation 4). The real part describes the resistive 

term (R) and denotes the behavior of both the extracellular and intracellular medium. The 

imaginary part is defined by the reactance (Xc) which describes the capacitive behavior 

of the cell membranes and is the term frequency dependent (Equation 5), where ꞷ=2πf. 

𝑍 = 𝑅 + 𝐽𝑋𝐶 

 

(4) 

𝑋𝑐 = −
𝑗

𝜔𝐶
 

(5) 
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From the combination of R and Xc the bioimpedance module (|Z|) defined as |𝑍| =

√𝑅2 + 𝑋𝑐2 and the phase angle (φ) defined as 𝜑 = tan−1(
𝑋𝐶

𝑅
) are derived. The phase 

angle is produced due to the lag of the current behind the voltage [26]. 

The Xc is produced due to the polarization of the cell membranes. This polarization can 

be endogenic, when is produced by the body, or exogenic due to an external agent. In 

bioimpedance measurements this polarization of the cell membranes is exogenic as 

energy is applied to polarize the biological tissue from outside the body [11]. 

2.4.3.2. Electrical impedance spectroscopy (EIS) 
 

EIS consists on the impedance measurement on a wide range of frequencies. In the study 

of the structure of biological tissues, this range goes from few kHz to MHz.  

Biological tissue and organs are very heterogeneous. Multiple types of cells can be part 

of the same type of tissue. The difference between the conductivity of blood from the 

blood vessels and the conductivity from the connective cells for mechanical stress 

endurance is large.  Then, from an electrical point of view the biological tissue is 

considered an heterogeneous material [11]. The basic principle of EIS in biological tissue 

is that at low frequencies the current flow only through the extracellular medium due to 

the high impedance of the cell membranes. The intracellular medium contributes to the 

current flow but to a small degree. At high frequencies the current is able to penetrate the 

cell membranes and current circulates through the intracellular and extracellular 

mediums, disappearing the membrane effects (Fig. 11). 
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Figure 11. Current flow at low frequencies (continuous line) and at high frequency 

(continuous and dashed lines) [28]. 

The impedance spectrum will thus depend on the ratio between the intra and extracellular 

volumes, and the cell size and homogeneity. This behaviour was modelled by Cole 

brothers [29]. 

According to this model, the variation in Z in the biological tissues in function of 

frequency can be represented following the Cole function (Equation 6), where R0 is the 

value of R at DC frequency, R∞ is the value of R at infinite frequency, τ is the relaxation 

time previously mentioned and α is the distribution of the time constant [26]. 

𝑍 = 𝑅∞ +
𝑅0 − 𝑅∞

1 + (𝑗𝜔𝜏)1−𝛼
 

 

(6) 

 

2.4.3.  Previous studies 
 

2.4.3.1. Previous clinical studies using EIS 
 

The use of the electrical impedance spectroscopy in biomedical applications is currently 

under research. Several authors are studying it in different medical fields with the aim of 

improving the tissue characterization as well as the efficiency of diagnostic trying to solve 

the drawbacks of the currently used methods. For years, researchers have been studying 

the use of the technique in different fields of the medicine, from a more general vision or 

study of the tissue characteristics to a more specific applications in the field of oncology 
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or cardiology. In this section a review of the existing research lines about the use of the 

technique is presented, with emphasis in lung applications. 

In the study of the tissue characteristics, Dean et al. [30] studied the properties of the 

electric impedance from 0.01 Hz to 1 MHz in different tissues in ex-vivo rats including 

the pulmonary tissue. They observe the changes in the impedance for both, the real and 

the imaginary parts, as a function of the frequency. They arrived to the conclusion that 

the data obtained and the changes in the impedance were consistent according to the basic 

principles of the bioimpedance (they showed a decrease in impedance module with the 

increase of frequency). Also, in rats, Heroux and Bordages [31] studied the evolution of 

the impedance from 200 Hz to 13 MHz in different tissues and organs such as the kidney, 

the heart and also the muscular tissue validating its implementation in biological research. 

In contrast to the previous commented study, measures were made in-vivo.  

Other studies such as da Silva et al. [32] investigated the possible use of the technique for 

the distinction of different types of tissue in 64 patients with a breast surgery prescribed. 

Specially, they focus on breast tissue to differentiate between cancerous (carcinoma, 

fibro-adenoma and mastopathy) and healthy tissue (connective tissue, adipose tissue and 

glandular tissue). They obtained 12 impedance measurements between the 488 Hz and 1 

MHz with an initial dataset of 120 impedance spectra collected. They used different 

indicators obtained from the impedance measures using the Cole-Cole plots and with the 

use of linear discriminant analysis they perfomed classification among the different 

tissues. They obtained an overall accuracy of 92% for breast tissue classification. 

Specially, they discriminate carcinoma with an accuracy higher than 86%. However, they 

concluded it could not be possible to distinguish between the other pathological breast 

tissues by using impedance parameters. Nonetheless they concluded that Electrical 

Impedance Spectroscopy could be clinically applied for breast cancer detection. 

Yoon et al. [33] used electrical impedance spectroscopy (101 frequencies between 0.1 

kHz to 10 MHz) to analyze the frequency response of normal and abnormal tissues of 

tendinitis in 26 rabbits by recording the resistance and the reactance of the left 

(pathological) and right (healthy) patellar tendons (both longitudinally and transversally) 

obtaining significant differences both in resistance and reactance between both 

measurement sites in the longitudinal direction. 
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E.Gersing [34] investigated the ischemia-induced phenomena both in heart and in liver in 

dogs and pigs. Impedance was measured between 0.1 Hz and 10 MHz. They studied the 

evolution in the impedance spectrum through the 100h duration of the experiment. 

Impedance measurements were taken between 5 and 20min during all the time duration. 

In the same research line, Mellert et al. [35] evaluated the bioimpedance response (at 1 

kHz, 10 kHz and 1 MHz) in resistance and phase angle in induced myocardial ischemia 

in six patients undergoing on-pump open heart surgery. Lately, Kun et al. [36] 

implemented an algorithm (an artificial neural network) for estimation of skeletal muscle 

ischemia in real time using parameters extracted from the electrical impedance spectra in 

the beta dispersion region (27 frequencies between 100 Hz and 1 MHz) in data from in 

vivo animal models (25 animals used with 102 ischemia episodes). They proved that the 

use of the electrical impedance spectroscopy for skeletal muscle ischemia estimation 

showed results comparable to the pH measurement technique, a technique clinically used 

despite its low precision.  

Previous studies regarding the use of EIS in the clinical practice can be found in oncology. 

Skourou et al. [37] evaluated the capacity of the impedance spectroscopy for its use in the 

detection of tumors (adenocarcinoma) in initial stage implanted intramuscularly in the 

center of the biceps femoris muscle in 8 mature male rats. A decrease in the area under 

the curve of the permittivity-resistivity plot of the adenocarcinoma respect to the control 

measurement was shown. They evaluated the sensibility of the impedance measures in 

front of the increase of tumor’s size and their morphology. They concluded that the 

technique allowed the detection of tumors that were not possible to detect with other 

conventional techniques such as computed tomography due to the reduced size.  

In prostate cancer, Halter et al. [38] studied the possibility of differentiation between 

carcinogenic tissue (adenocarcinoma) and healthy tissue using electrical impedance 

spectroscopy measurements (20 frequencies between 10 kHz and 1 MHz) in five patients 

with a total of 50 impedance spectra recorded. The analysis was performed through the 

use of electric properties such as the permittivity and the conductivity and through 

statistical tests. Statistically significant results showed an increase with the signal 

frequency in the difference between normal tissue and tumor. In contrast, permittivity 

differences between normal tissue and tumor were larger at lower frequencies.  
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Teixeira et al. [39] used electrical impedance spectroscopy measurements between 1 MHz 

and 100 MHz in cell suspensions to evaluate the possibility to differentiate between two 

types of prostate cancer cells, one metastatic and the other non-metastatic, PC-3 y DU-

145 respectively. The study found higher differences between both types of cells at higher 

cell numbers. Metastatic cells (PC-3) showed lower impedance magnitude values than 

non-metastatic cells (DU-145) at the same concentration. 

In uterine cancer, Homola et al. [40] studied the viability to implement electrical 

impedance spectroscopy in the gynecological setting in 143 women with a colposcopy 

prescribed by determining the diagnostic usefulness of the technique in complement to 

colposcopies to diagnose high-grade squamous intraepithelial lesions in those women 

with abnormal cytology findings. In addition, Tidy et al. [41] performed a similar study 

to evaluate the implantation of electrical impedance spectroscopy (14 frequencies 

between 76.3 kHz and 625 kHz) in complement to colposcopy in those women with 

abnormal cervical cytology to increase the accuracy of the diagnostic.  Both studies 

concluded that the impedance spectroscopy, used together with a colposcopy, allowed the 

detection of more uterine cancer cases, increasing the accuracy of the diagnostic, than 

when only using the second technique mentioned.  

As far as it seems, the research in cancer for the use of the electrical impedance 

spectroscopy is focused on a faster detection of tumors and the differentiation between 

healthy and carcinogenic tissue.  

Hillary et al. [42] analyzed the spectrum of the impedance obtained (using 14 frequencies 

between 76 Hz and 625 kHz) in 56 patients of different soft tissues located at the neck 

among which were adipose, parathyroid, thyroid, and muscle tissue in those patients with 

a thyroid and/or parathyroid surgery prescribed. The purpose of the study was the correct 

identification of the parathyroid tissue in order to preserve it to facilitate surgery of the 

parathyroid glands and reduce post-surgery hypoparathyroidism. Comparisons were 

made between the spectra of the different tissues in both in-vivo and ex-vivo. The study 

found significant differences in ratios of electrical impedance at low (152 Hz) to high 

(312 kHz) frequencies among thyroid, muscle and normal parathyroid tissue, concluding 

that changes in impedance over the frequencies appear to be different depending on the 

tissue. 
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In pneumology, Desai et al. [43] studied the ability of the EIS for the differentiation 

between carcinogenic and healthy cells. To perform the study, they extracted different 

cancer cells types and through pattern recognition techniques they evaluate the capacity 

of differentiation between both types of cells. They studied multiple cancer types among 

which was lung cancer. Gabriel et al. [44] proposed a model to predict dielectric data 

based on the data present in literature. They applied the model to different tissues and 

organs among which inflated lung was present in the study evaluating the permittivity 

and conductivity from 10 Hz to 100 GHz frequency range for all of the different tissues 

and organs.  

Regarding the specific studies of lung bioimpedance measurements, Toso et al. [45] 

applied bioelectric impedance vector analysis using an impedance plethysmograph 

emitting 50 kHz alternating current to evaluate difference in the R-Xc plane of impedance 

vectors between healthy subjects and subjects suffering from lung cancer (stages IIIb and 

IV). The study reported different impedance vector distribution in patients with lung 

cancer as compared with healthy patients. A reduced Xc and a smaller PA were found 

while R was preserved in patients with lung cancer. Nierman et al. [46] performed 

transthoracic bioelectrical impedance analysis to quantify extravascular lung water in a 

porcine endotoxemic model of acute lung injury. Finally, Orschulik et al. [47] used non-

invasive bioimpedance spectroscopy (256 frequencies between 4 kHz and 1 MHz) for the 

diagnosis of acute respiratory distress syndrome in an animal model. 

 

2.4.3.2. Thesis background 
 

Before exploring the idea of performing tissue differentiation in lungs, the research group 

had been applying electrical impedance spectroscopy in porcine hearts, in the Cardiology 

Department of “Hospital de la Santa Creu i Sant Pau” of Barcelona. Jorge et al. [48] 

characterized the systolic and diastolic changes in myocardial resistivity in healthy and 

ischemic heart tissue by defining three phases for the cardiac cycle: preejection, ejection 

and relaxation and finding changes in resistivity according to tissue state and depending 

on the cycle phase. Amorós et al. [49] continue with the prior study by analyzing phasic 

changes of myocardial resistivity in pigs with 1 month of healed myocardial infarction. 

In this study, they analyze changes in resistivity according to the quantity of fibrotic tissue 



40 

 

in the infarct scar. Finally, Amorós et al. [50] study the viability of electrical impedance 

spectroscopy measurements to differentiate healthy heart tissue from infarct scar in one 

month old cardiac infarction. Results from the study showed a decrease in impedance 

magnitude of 37% and a decrease in phase angle of 21% in scar tissue compared to healthy 

tissue. 

To the extent of our knowledge, the only literature found related to bioimpedance 

measures in lungs through electrical impedance spectroscopy are the previous studies 

developed by our research group. 

First, Sanchez et al. [51] described, characterized, calibrated and experimentally validated 

an EIS instrument for performing minimally-invasive bioimpedance measurements 

through bronchoscopy. Coll et al. [28]  performed tissue differentiation between healthy 

lung tissue, bronchi and pathological lung tissue obtaining statistical differences among 

the different groups. However, in that first study, pathologies were not differentiated from 

each other and all pathological tissues were put into the same group. Riu et. al [52] 

presented a preliminary artificial intelligence predictive algorithm that was able to 

discriminate between healthy lung tissue and pathological lung tissue automatically.  

 

2.5.  Machine learning 
 

The use of machine learning, a branch for data analysis of artificial intelligence, in the 

clinical field is raising importance in recent years, especially for patient monitoring, for 

the development of new diagnostics and for improving prognostics [53]. 

2.5.1.  The learning problem 
 

Machine learning algorithms can be classified into two main categories, unsupervised and 

supervised algorithms. The first ones are used for clustering problems, which consists on 

finding multiple groups in the data. The second groups are used for developing two tasks, 

classification and regression. The main difference between these two subgroups is that 

the output of the classification algorithm is a class (such as neoplasm, fibrosis or 

pneumonia) and the output of the regression algorithms are predicted numbers. The big 

differences between the unsupervised and the supervised algorithms is that in 
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unsupervised algorithms data is not labelled while in the supervised algorithms data is 

labelled and defined [54], [55]. 

In general terms, the principle of machine learning algorithms is the following: data is 

distributed in a way defined by a function (h) so the algorithm aims to find an approximate 

function (h’) such as the error between h and h’ is minimized. The process of finding h’ 

is called as training. The process of evaluation of the error is called testing. The process 

of training and testing is performed on the same dataset. For this reason, data is split into 

two sub-datasets, the training dataset and the testing dataset. By convention, normally 

training data is the 80% of the dataset while 20% is used for testing [54], [55]. 

The main problem of these algorithms is what is called overfitting. Overfitting is the 

condition in which the algorithm performs really well on the training data (training error 

low and accuracy high) but not in the test set (test error high and accuracy low), thus not 

being able to generalize.  

To avoid overfitting of the data, the optimization of the parameters that define the 

algorithms is important (Hyperparameter tuning) in order to detect the parameters with 

whom the classification accuracy is higher both, in the training and in the testing set.  

There are multiple machine learning algorithms, such as k-means for clustering, support 

vector machines (SVM) or logistic regression for binary classification and decision trees 

for multiple class classification. The selection of the algorithm will depend on the data 

characteristics and the learning problem [54], [55].  

In this project, the multi-class classification algorithms that have been applied to the 

bioimpedance data have been: Decision Tree, Random Forest, K-Nearest neighbors 

(KNN), Naïve Bayes and Gradient Boosting. In the following sections, the methodology 

of learning and classification of the algorithms is explained. 

2.5.2.  Decision Tree, Random Forest and Gradient Boosting 
 

The three algorithms (Decision Tree, Random Forest and Gradient Boosting) have been 

joined in the same section as their basic principle is the same. 

The principle of decision trees (Fig. 12(a)) consists on learning a hierarchy of if/else 

questions leading to a final decision. For this algorithm, all data starts in the same group 
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and a hierarchy is constructed until each data point is in different groups. The algorithm 

is widely used due to its simplicity and easy interpretation of the results. However, the 

algorithm is really prone to overfitting [54], [55]. 

To avoid overfitting, the hyperparameter “Maximum depth” can be controlled and 

indicates the maximum partitions that the algorithm will produce in the data when 

learning. 

Random Forest (Fig. 12(b)), which is accepted to be one of the best classification 

algorithms available, solves the overfitting problem of decision trees. Basically, random 

forest is an algorithm that consists on building multiple decision trees under the 

assumption that each tree is different from each other. A final decision is made based on 

the principle of “Majority voting” which consists on deciding the class based on the most 

repeated class in the multiple trees created [54], [55]. The parameter to optimize in the 

Random Forest algorithms is the number of trees to create.  

 

 

(a) (b) 

Figure 12. (a) Scheme of decision tree method algorithm and (b) scheme of random forest 

algorithm [56]. 

The last method, Gradient Boosting works similarly to Random Forest. However, in this 

algorithm, each tree tries to correct the errors produced by the previous tree. One 

parameter needed to be controlled is the learning rate, which is the strength to which each 

tree corrects the errors from the previous one. The other two parameters that can be 
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studied are, from the previous two algorithms, the maximum depth of each tree and the 

number of trees to be created [54]. 

2.5.3. KNN 
 

KNN algorithm makes predictions of each new data point based on the information of 

each K number of neighbors nearer to it. The parameter to select is the number of 

neighbors under which the classification of a new data point is made, which is the first 

step of the algorithm. Then, the algorithm selects the K nearest neighbors based on the 

calculation of the Euclidean distance between the new data point and the points of the 

dataset. After that, the algorithm, under the majority voting principle, assigns a class to 

the new point based on the classes of the K nearest neighbors calculated. 

 

Figure 13. Scheme of KNN algorithm [57]. 

An example of the KNN algorithm principle can be seen in Fig. 13. The new data point 

(red) has two “Class 2” nearest neighbors and 1 “Class one” when 3 neighbors are selected 

so the new data point will belong to the “Class 2”. On the contrary, if 9 nearest neighbors 

are selected, the new data point will belong to the “Class 1”.  

With the example of Fig. 13 it is demonstrated the importance of the optimum numbers 

of neighbors to be selected. 
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2.5.4. Naïve Bayes 

 

Naïve Bayes classifier is promoted to be a highly efficient algorithm. It works by learning 

looking individually at each of the features and make statistics of each of the classes. The 

are three types of classifiers: Gaussian, Bernoulli and Multinomial. The first type can be 

applied to any continuous data while the second type works for binary data and the last 

type assumes each feature to be count data. The statistics that Gaussian Naïve Bayes takes 

are the mean and the standard deviation while the Multinomial Naïve Bayes takes only 

into account the mean values. Differently, the Bernoulli Naïve Bayes, counts how often 

each feature of each class is positive (or not zero) [54]. 

To make a prediction of a new data point, the point is compared to the statistics of each 

of the classes [54].  

 

As it will be seen in the future chapters, the total number of patients measured is 102 

which is a relatively low value for the application of Machine Learning algorithms. For 

this reason, the main core of the thesis (Chapter 2, Chapter 3 and Chapter 4) has been 

done using classical statistical methods. In Chapter 5, preliminary results regarding the 

application of Machine Learning classification algorithms are presented. The following 

chapters show the three articles published as result of the thesis. 
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ABSTRACT This study proposes a calibration method and analyses the effect of this calibration in lung
measures, using minimally invasive electrical impedance spectroscopy with the 3-electrode method, for
tissue differentiation between healthy and neoplasm lung tissue. Tissue measurements were performed in
99 patients [54 healthy tissue and 15 neoplastic tissue samples obtained] with an indicated bronchoscopy.
Statistically significant difference (P < 0.001) were found between healthy lung tissue and neoplasm lung
tissue in bioimpedance parameters. The calibration of the bioimpedance measures with respect to a measure
performed in bronchi reduces the inter-patient dispersion, increasing the sensitivity, decreasing the specificity
and increasing the area below the ROC curve for three out of four impedance-derived estimators. Results
also show that there are no significant differences between healthy lung tissue among smoker, non-smoker
and ex-smoker samples, which was initially stated as a possible cause of EIS measurement dispersion in
lungs.

12 INDEX TERMS Bronchi, bronchoscopy, calibration, electrical impedance spectroscopy (EIS), lung.

I. INTRODUCTION13

Respiratory disorders have a big impact in the population14

worldwide. According to the European Respiratory Society,15

chronic obstructive pulmonary disease (COPD) is the third16

global cause of death in more developed countries. Moreover,17

The associate editor coordinating the review of this manuscript and

approving it for publication was Norbert Herencsar .

lung cancer is the leading cause of cancer death in the world. 18

Both are smoking-related conditions [1]. 19

In lung cancer, late detection in advance stages is common 20

and is related to poor prognosis [2]. Diagnostic of lung 21

peripheral and central nodules is increasing because of num- 22

ber of patients with indeterminate nodules are discovered in 23

CT screening and verified with other diagnostic options such 24

as minimally invasive bronchoscopic procedures to establish 25

final histological type. However, the diagnostic yield using 26
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virtual bronchoscopy (VB), radial endobronchial ultrasound27

(r-EBUS), electromagnetic navigation (EMN) and ultrathin28

bronchoscopes remains suboptimal [3], [4], and their high29

economic cost makes them unavailable in most centers.30

We aim to use Electrical Impedance Spectroscopy (EIS) to31

complement the actual methods of diagnosis of lung diseases32

as it could allow the differentiation between healthy lung33

tissue and neoplasm lung tissue and help in the choice of the34

specific sample location.35

EIS technique is one of the existing methods of impedance36

analysis. Impedance is defined as the opposition to the flow of37

an alternating electrical current which is dependent on the fre-38

quency of this current [5]. When the impedance is measured39

in biological tissue is named as bioimpedance (Z). It measures40

the passive electrical properties of the tissue after the intro-41

duction of a low amplitude alternating current to the organism42

[5], [6]. The bioimpedance is a complex number with a real43

part (the resistance, R) and an imaginary part (the reactance,44

Xc), both parts are dependent of the geometry of the mea-45

sured region, the location of electrodes and the tissue elec-46

trical passive properties [5]. The physiological fluids have47

low resistance and dominates the measured resistance, while48

cell membranes act as capacitors, having high impedance49

at low frequencies and low impedance at high frequencies50

and contributes mainly to the reactive part. Due to these51

behaviors, the electrical current introduced in the biological52

tissue divides into resistive and capacitive pathways and it53

changes with the frequency [6]. An alternative representation54

of the Bioimpedance, as a complex number, is the use of the55

modulus (Z) and the phase angle (PA). The PA represents56

the relative time lag between the injected current and the57

generated voltage [7]. Bioimpedance data can be obtained58

using single or multiple frequencies. When the bioimpedance59

data is obtained using a broad band of frequencies is known60

as bioimpedance spectroscopy [6]. The advantage of the EIS61

method, to measure and analyze bioimpedance data, is based62

on the fact that current at low frequency (lower than 10 kHz)63

flows through the extracellular medium while current at high64

frequencies (over 100 kHz) flows through both, intracellular65

and extracellular medium, giving more information about the66

structure of the tissue.67

There are previous studies about lung bioimpedance mea-68

surements. Toso et al. [8], through an impedance plethysmo-69

graph emitting 50 kHz alternating current, reported different70

impedance vector distribution in patients with lung cancer71

as compared with healthy patients. A reduced Xc and a72

smaller PA were found while R was preserved in patients73

with lung cancer. Nierman et al. [9] performed transthoracic74

bioelectrical impedance analysis to quantify extravascular75

lung water in animal models. Orschulik et al. [10] used76

non-invasive bioimpedance spectroscopy for the diagnosis of77

acute respiratory distress syndrome in an animal model.78

Some previous studies have been carried out by our79

research group. Sanchez et al. [11] performed minimally80

invasive lung bioimpedance measurements to study the char-81

acteristics of lung bioimpedance (calibration and linearity)82

and the differences between inflated and deflated lung. Later 83

Coll et al. [12] and Riu et al. [13] present studies demonstrat- 84

ing the potential for tissue differentiation through minimally 85

invasive electrical impedance spectroscopy in lung using the 86

4-electrode method. 87

This manuscript (2nd phase) is the continuation of the pre- 88

vious study (1st phase) entitled ‘‘Minimally invasive lung tis- 89

sue differentiation using electrical impedance spectroscopy: 90

a comparison of the 3- and 4- electrode methods’’ performed 91

by Company-Se et al. [14]. It compared the capacity of tissue 92

differentiation of the minimally invasive electrical impedance 93

spectroscopy in lungs using the 4-electrode method and the 94

3-electrode method. The results showed that both meth- 95

ods were adequate for tissue differentiation but 3-electrode 96

method was more feasible for its clinical use because of its 97

lower complexity, both in the catheter configuration (single 98

electrode) and in the measurement system architecture. This 99

previous study proposed for future works to increase the 100

sample size for the differentiation between healthy lung tissue 101

and neoplasm lung tissue using the 3-electrode method. 102

In this 2nd phase the measures performed in healthy lung 103

tissue and in neoplasm lung tissue showed high inter-patient 104

variability. This variability could hinder the tissue differenti- 105

ation in lungs. There are several causes for this variability: 106

1) The measured absolute values of the R and Xc spectra 107

are influenced by the tissue properties (the variable under 108

measurement) but also by the geometry of the measurement 109

(body shape of the patient and electrode positions). Geometri- 110

cal factors such as body mass index (BMI) has been reported 111

as one significant factor for changes in lung metrics [15]; 112

2) The breathing produces also impedance changes due to the 113

considerable air volume change from inspiration to expiration 114

and the influence of the non-conductive air contents in the 115

lung tissue. This phenomenon could increase the inter-patient 116

variability as depending on the patient, the breathing cycle 117

will be different; 3) In the 3-electrode method, the electrode 118

impedance of the catheter tip is measured and could increase 119

the intra- and inter-patient variability due to poor contact 120

of the catheter tip against the lung tissue and the liquids 121

accumulation in the airways; 4) Another potential cause for 122

inter-patient variability is cigarette consumption. It could 123

contribute to the increase of the inter-patient dispersion. 124

Smoking-induced epithelial abnormalities can serve both as 125

targets for abnormal inflammatory responses and as initia- 126

tors of deregulated inflammation. Cytokines, chemokines, 127

and growth factors released by alveolar macrophages, lym- 128

phocytes, neutrophils, endothelial cells, and fibroblasts 129

may act to promote epithelial dysfunction and malignant 130

progression [16], [17]. 131

While the ventilation-induced impedance modulation 132

effect can be reduced using averaging, the other potential 133

causes of variability need a calibration method capable to 134

reduce this variability in order to perform tissue differ- 135

entiation with success. For example, electrical impedance 136

measures using the 3-electrode method in cardiology uses 137

a floating measure within the heart (catheter completely 138
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FIGURE 1. Schematic representation of the bioimpedance acquisition system.

surrounded by blood) to calibrate the geometrical factors139

in the bioimpedance measures obtained in contact with the140

myocardial walls [18], and also, partially, the electrode141

impedance effect. In lungs, a floating measure completely142

surrounded by air to calibrate is not viable due to the143

non-conductive property of the air and it is not feasible to144

locate the catheter in a place where the tip electrode will be145

surrounded by a well-known tissue and which will be affected146

by geometrical factors similar to the ones that will affect147

the tissue impedance measurements for each patient. For this148

reason, we proposed to acquire a bioimpedance measure in149

principal bronchus and use it to calibrate the lung tissue150

bioimpedance measures.151

The aim of this study, by using minimally invasive elec-152

trical impedance spectroscopy with the 3-electrode method,153

is to propose a calibration method and to analyze the effect154

of this calibration in measures performed in the bronchi for155

tissue differentiation in different groups: healthy lung tissue156

(no radiological abnormalities in CT Thorax) and neoplasm157

lung tissue. Also, the possible differences in the impedance158

measurements in healthy tissue in smokers, non-smokers and159

ex-smokers will be verified to check if this factor would affect160

the ability to differentiate between healthy lung tissue and161

lung neoplasm.162

II. MATERIALS AND METHODS163

A. PARTICIPANTS164

Minimally invasive EIS measures were taken in 99 patients165

(Age: 65 ± 16 yr; Weight: 76.8 ± 15.6 kg; BMI: 27.7 ±166

5.5 kgm−2) with a bronchoscopy indicated during the period167

between November 2021 and February 2022 at the ‘‘Hos-168

pital de la Santa Creu i Sant Pau’’. All of them underwent169

bioimpedance measurement. However, 30 of them had other170

characteristics than healthy lung tissue or neoplasm lung171

tissue such as emphysema or fibrosis. For this reason, out172

of the 99 patients measured by bioimpedance, only 69 were173

considered for analysis (healthy: 54 and neoplastic: 15).174

The number of bioimpedance samples obtained in healthy175

lung tissue were 54 [(non-smokers: n= 22, Age: 59± 19 yr;176

Weight: 70.8 ± 16.6 kg; BMI: 26.7 ± 5.8 kgm−2); smokers:177

n = 9, Age: 66 ± 7 yr; Weight: 83.5 ± 11.9 kg; BMI:178

31.0 ± 4.3 kgm−2); (ex-smokers: n = 23, Age: 71 ± 12 yr; 179

Weight: 79.3 ± 13.8 kg; BMI: 27.5 ± 4.8 kgm−2; years 180

without smoking= 22± 11 yr)] while the number of samples 181

obtained from neoplasm lung tissue were 15 (Age: 70± 9 yr; 182

Weight: 75.3 ± 11.2 kg; BMI: 26.3 ± 4.1 kgm−2). 183

Ethics approval was obtained from the Hospital de la Santa 184

Creu i Sant Pau (CEIC-73/2020) according to principles 185

of the Declaration of Helsinki for experiments with human 186

beings. All patients proved signed informed consent. 187

B. MEASUREMENT SYSTEM 188

The acquisition of bioimpedance measures were performed 189

using a tetrapolar catheter (Medtronic 5F RFMarinr), 115 cm 190

long with a diameter of 1.65mm (5 F) and two skin electrodes 191

(Ambu BlueSensor VLC ref: VLC-00-s/10 and 3MCompany 192

ref: 9160F) placed on the right side of the patients at the level 193

of the ribs. Only the catheter tip electrode will be used in the 194

measurements. 195

The measurement system is made up of 3 devices (Fig. 1): 196

1) an optically insulated battery-powered patient interface 197

insulated front end (that includes the impedance front end); 198

2) a rugged PC platform based on a PXI system fromNational 199

Instruments; and 3) an analog-optical interface front-end 200

to connect the PXI with the insulated front end. An arbi- 201

trary waveform generator generates a multisine excitation 202

signal that is composed of 26 frequencies between 1 kHz 203

and 1 MHz. To ensure a current lower than the maximum 204

allowable patient auxiliary current stablished in the IEC 205

60601-1:2005 (<1mA rms measured with the circuit pro- 206

posed in the IEC 60601-1:2005) the front end includes an 207

AC-coupled current source that attenuates the low-frequency 208

components accordingly with the current limit pattern speci- 209

fied by this standard. The system was verified including the 210

26 frequency components (1 kHz – 1MHz) simultaneously. 211

The voltage (V(t)) and current (I(t)) are simultaneously 212

acquired. Then, with the optical-analog interface connected to 213

the PXI, the excitation is converted into an optical signal. The 214

optical signal is then converted back into an electrical signal 215

inside the front end. The voltage and current signals, opti- 216

cally transmitted from the front end to the optical-electrical 217

interface, are acquired with the digitizer card. The acquisition 218
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FIGURE 2. Right figure: Schematic representation of the 3-electrode method. In the 3-electrode method the LC and LP
electrodes are placed on the skin using skin surface electrodes. Left figure: dimensions of the catheter. Only the tip
electrode of the catheter is used to perform the measurements.

system takes simultaneous samples of voltage and current219

at 20 MSamples/s. From the acquired signals, 60 impedance220

spectra per second are obtained.221

Bioimpedance measures were obtained using the222

3-electrode method. To inject the current (HC) and detect the223

potential (HP) the electrode located at the tip of the catheter224

is used. The two skin electrodes are used as low current (LC)225

and loc potential (LP) electrodes (Fig. 2).226

C. MEASUREMENT PROTOCOL227

Bronchoscopy, a procedure used to inspect the airways, was228

performed to obtain the bioimpedance measures. As part of229

the diagnostic process, radiological imaging technique (CT230

or PET/CT) were performed in each patient before bron-231

choscopy procedure. To obtain the bioimpedance measures,232

the catheter was inserted through a port of the bronchoscope.233

During the bronchoscopy, patients are placed in a supine234

positionwith the upper airways anaesthetizedwith topical 2%235

lidocaine. Moreover, intravenous sedation is provided with236

midazolam, fentanyl and propofol. During the process, mea-237

sures in bronchial tissue, healthy lung tissue and neoplasm238

lung tissue, if applicable, were taken. The acquisition of the239

measures had a duration of 12 seconds.240

D. EIS MEASUREMENTS241

To obtain the EIS measurements the system applies a mul-242

tisine current signal and acquires the voltage and current243

signals. The Fast Fourier Transform (FFT) is used to obtain244

the ratio between the voltage and current coefficients of the 245

FFT corresponding to each injected frequency. 246

The acquisition takes 12 s at 60 spectra per second. The 3- 247

electrode measurements were calibrated with a measurement 248

over a known resistor (600 Ohms) connected to the catheter 249

tip and to the external electrode connectors. 250

E. CALIBRATION USING BRONCHUS 251

To remove the geometrical factors of the patients a multi- 252

plicative factor calibration of the bioimpedance of the lung 253

measures is proposed. The proposed method aims to calibrate 254

the lung measures with respect to a measure performed in 255

the bronchial tissue (principal bronchus) for each respec- 256

tive patient. A measurement in the bronchi is of no interest 257

in clinical practice, therefore, impedance measurement in 258

bronchial tissue offers the advantage of calibration while 259

not losing relevant clinical information. Moreover, because 260

of its low cell content, bronchial tissue should have a flat 261

impedance spectrum, thus being suitable as calibration refer- 262

ence [14]. The obtained impedance modulus (|Z|) of the lung 263

is divided by the mean value (mean value of impedance at 264

each frequency, during a time interval) of |Z| of the bronchial 265

tissue and then multiplied by a factor of 100 �, which is the 266

expected impedance magnitude value obtained in the bronchi 267

[12] (1). The PA calibrated of the lung measure is obtained by 268

subtracting the original value of the PA of the lung measure 269

minus the mean value of the PA obtained in the bronchi tissue 270
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sample (2).271

|Z (f , t)|calibrated272

= 100 ∗ |Z (f , t)|lung/mean(|Z (f , t)|bronchi) (1)273

PAcalibrated (f , t)274

= PAlung (f , t)− mean(PAbronchi (f , t)) (2)275

F. DATA ANALYSIS276

For tissue differentiation analysis among non-smoker, smoker277

and ex-smoker samples in healthy lung tissue samples as well278

as for tissue differentiation analysis between healthy lung279

tissue and neoplasm lung tissue the averaged spectra of the280

bioimpedance measurements, obtained using the 3-electrode281

method, throughout the acquisition time was used.282

The frequency range chosen to visualize and analyze283

the data was 15 kHz – 307 kHz. The values from fre-284

quencies higher and lower than this range were discarded285

due to electrode effects at low frequency and capacitive286

coupling errors at high frequency. For tissue differentia-287

tion analysis the frequency of 15 kHz for |Z| and R and288

the frequency of 307 kHz for PA and Xc were chosen.289

These frequencies were chosen based on the higher distance290

between the means of the groups used to perform the tissue291

differentiation.292

The normality of the distribution of the variables was293

determined by the Kolmogorv-Smirnov (healthy lung tissue294

samples) test and Shapiro-Wilk test (neoplasm lung tissue295

samples). The variables normally distributed are shown as the296

mean± standard deviation (SD) and 95% confidence interval297

(CI) for the mean (lower bound and upper bound). Non-298

normally distributed variables are shown as statistic median299

(interquartile range, IQR) and minimum - maximum. One-300

way analysis of variance (ANOVA) was used to determine301

statistically significant differences in the |Z|, PA, R and Xc302

values among smokers, non-smokers and ex-smoker samples303

in healthy lung tissue. Repeated measures t-test was used to304

determine statistically significant differences in the |Z|, PA,305

R and Xc values between non-calibrated data and calibrated306

data among smokers, non-smokers and ex-smoker healthy307

lung samples. One-way analysis of variance (ANOVA, para-308

metric data) andMann–Whitney U test (non-parametric data)309

was used to determine statistically significant differences in310

the |Z|, PA, R and Xc values between healthy lung tissue311

and neoplasm lung tissue. In addition, the area under the312

Receiver Operating Characteristic (ROC) curve was used to313

measure the discriminative capacity of the non-calibrated314

and calibrated measure of |Z|, PA, R and Xc according to315

tissue classification (1: healthy lung tissue; 2: neoplasm lung316

tissue) by biopsy. Following the ROC analysis area under317

curve (AUC) above 0.9 is considered a very good model318

and AUC above 0.97 it is considered as excellent. A value319

less than 0.5 indicates the model is no better than random320

prediction.321

The statistical software IBM R© SPSS R© version 28.0 (IBM322

Corp, Armonk, NY, United States) was used for data analysis.323

The level of statistical significance was set at P < 0.05.324

III. RESULTS 325

A. MULTI-FREQUENCY RESPONSE FOR MINIMALLY 326

INVASIVE HEALTHY LUNG TISSUE MEASUREMENTS 327

Fig. 3 shows the mean (continuous line) and SD (dashed 328

lines) values of |Z|, PA, R and Xc plotted along the fre- 329

quency range (15 kHz – 307 kHz) used for the measures 330

obtained in healthy lung tissue divided in smoker patients 331

(red), non-smokers patients (green) and ex-smoker patients 332

(blue) for non-calibrated (left) bioimpedance measures and 333

calibrated bioimpedance measures (right) showing an inter- 334

sample reduction of the dispersion and increasing data 335

homogeneity. 336

B. TISSUE DIFFERENTIATION AMONG NON-SMOKERS, 337

SMOKERS AND EX-SMOKERS PATIENTS IN CALIBRATED 338

AND NON-CALIBRATED DATA 339

Table 1 lists the descriptive parameters, specified as the mean 340

± SD, 95% confidence interval for mean (lower bound and 341

upper bound) of |Z|, PA, R and Xc and the results of the 342

one-way ANOVA including the Fisher coefficient (F) for 343

the minimally-invasive bioimpedance measures performed 344

in healthy lung tissue (non-smokers: n = 22; smokers: 345

n = 9; ex-smokers: n = 23) for the measures calibrated 346

and non-calibrated. No statistically significant differences 347

(P > 0.05) related to the smoking condition are found 348

among the three groups analyzed for both calibrated and non- 349

calibrated 350

data. 351

C. MULTI-FREQUENCY RESPONSE FOR MINIMALLY 352

INVASIVE HEALTHY LUNG TISSUE AND NEOPLASM LUNG 353

TISSUE MEASUREMENTS 354

Fig. 4 shows the mean (continuous line) and SD (dashed 355

lines) values of |Z|, PA, R and Xc plotted along the frequency 356

range (15 kHz – 307 kHz) used for the measures obtained in 357

healthy lung tissue (green) and neoplasm lung tissue (black) 358

before (left) and after (right) calibration respectively. Results 359

show an increase in the separation between tissues in |Z|, 360

R and Xc, especially the first two. 361

D. TISSUE DIFFERENTIATION BETWEEN HEALTHY LUNG 362

TISSUE AND NEOPLASM LUNG TISSUE 363

Table 2 lists the descriptive parameters, specified as the mean 364

± SD, 95% confidence interval for mean (lower bound and 365

upper bound) for normally distributed variables and specified 366

as statistic median (interquartile range, IQR) and minimum – 367

maximum for non-normally distributed variables of |Z|, PA, 368

R and Xc and the results of the one-way ANOVA including 369

the Fisher coefficient (F) and the Mann–Whitney U test 370

results including the U statistic (U) for the minimally invasive 371

bioimpedance measures performed in healthy lung tissue 372

(n = 54) and in neoplasm lung tissue (n = 15) for 373

the measures calibrated and non-calibrated. Statistically 374

significant differences (P < 0.001) are found between 375
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FIGURE 3. Results of the non-calibrated (left) and calibrated (right) mean (continuous line) and SD (dashed lines) parameters extracted
from the bioimpedance signal along the different frequencies analyzed (15 kHz – 307 kHz). In order, (a) Modulus, (b) Phase angle,
(c) Resistance and (d) Reactance of the bioimpedance of all the different measures taken in healthy lung tissue classified according to
cigarette consumption. Green: non-smoker; blue: ex-smokers; red: smokers.
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TABLE 1. Descriptions of bioimpedance measurements performed in healthy lung tissue for non-smokers, smokers and ex-smokers. The variables
normally distributed are shown as mean ± SD, 95% confidence interval for mean (lower bound and upper bound). In addition, the Fisher (F) coefficient
for variance analysis and the statistical significance (P) are also shown.

healthy and neoplasm lung tissue for both calibrated and376

non-calibrated data.377

E. EFFECTS OF CALIBRATION IN DATA VARIABILITY IN378

HEALTHY LUNG TISSUE AND IN NEOPLASM LUNG TISSUE379

Fig. 5 shows the effect of calibration in bioimpedance data380

variability for healthy lung tissue and neoplasm lung tissue381

respectively for |Z| and R at 15 kHz and for PA and Xc at382

307 kHz. Results show a decrease in data dispersion within383

the same tissue group, especially in |Z| and R parameters,384

after the calibration of the bioimpedance data. Fig. 6 shows385

the receiver operating characteristic (ROC) curves for |Z|, PA,386

R and Xc before and after calibration for healthy lung tissue387

and neoplasm lung tissue groups. Results show an increase388

of the area under curve (AUC) after the calibration of the389

bioimpedance data in |Z|, R and Xc (AUC > 0.96) and a390

decrease of the AUC in PA (AUC < 0.95).391

IV. DISCUSSION392

This project evaluates the need of the calibration of the393

minimally invasive EIS bioimpedance measures performed394

in lung tissue using a measure performed in bronchial tissue.395

Moreover, it evaluates the influence of cigarette smoking396

in healthy lung tissue bioimpedance measures as a possible397

cause of dispersion. Finally, it differentiates between healthy398

and neoplasm lung tissue and assesses the possible improve-399

ment of this differentiation using the calibration.400

Lungs are organs that belong to the respiratory system 401

whose principal function is to produce gas exchange. Struc- 402

tures from the respiratory system include trachea, bronchi and 403

terminal bronchioles. Each of these structures has its own 404

anatomical and histological characteristics [19]. Therefore, 405

differences in bioimpedance measurements can be expected 406

based not only on the type of tissue but also on its state. 407

This work reports the use of minimally invasive EIS in 408

lungs through a bronchoscopy process using the 3-electrode 409

method to differentiate among smoker, non-smokers and 410

ex-smoker healthy lung tissue samples, in order to analyze 411

its potential role in the measurements variability and to dif- 412

ferentiate between healthy lung tissue and neoplasm lung 413

tissue. Both tissue differentiations are used to evaluate the 414

inter-patient variability in the mentioned groups and to eval- 415

uate the utility of calibration using a bioimpedance measure 416

performed in a principal bronchus. This strategy of taking a 417

measure to calibrate the other measures has been previously 418

used in heart applications [18]. 419

The inflammatory response due to cigarette consumption 420

is not differentiable through bioimpedance EIS measures 421

neither with the non-calibrated measurements nor with the 422

calibrated measures. Therefore, the initial hypothesis that 423

the smoking condition could be a cause of dispersion in the 424

EIS-derived estimators can be discarded. According to Fig. 3 425

the |Z| and R show a decrease in their values when calibrating 426

with respect to a bronchi measurement while PA and Xc 427

increase their values (nearer to 0 than the non-calibrated 428
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FIGURE 4. The mean (continuous line) and SD (dashed lines) values from the bioimpedance signal along the different frequencies
analyzed before and after calibration. The (a) modulus, (b) phase angle, (c) resistance and (d) capacitive reactance. Green: healthy
lung tissue; black: neoplasm lung tissue.
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TABLE 2. Descriptions of minimally-invasive bioimpedance measurements for healthy lung tissue and neo-plasm lung tissue. The variables normally
distributed are shown as mean ± SD, 95% confidence interval for mean (lower bound and upper bound) while that non-normally distributed data are
shown as statistic median (interquartile range, IQR) and minimum-maximum. In addition, the statistic of the Mann Whitney U test (U), the Fisher
(F) coefficient for variance analysis and the statistical significance (P) are also shown.

data). The non-calibrated |Z| and R as well as the PA show429

slightly although non-significative higher values in those430

samples in which cigarette consumption is present. How-431

ever, Xc present lower values in smoker samples. When432

we calibrate the bioimpedance measurements we show an433

intra-sample variability reduction. This variability reduction434

specially affects |Z| and R due to the geometrical dependence435

of R and the high correlation between |Z| and R [5], [6].436

Emphasizing the importance of the analysis of R and437

Xc according to the theory of Lukaski et al. [6], [7],438

Piccoli et al. [20], and Lukaski et al. [21] we selected the439

frequencies (15 kHz and 307 kHz) to check the hypothetical440

differentiation among non-smokers, smokers and ex-smokers441

healthy lung tissue samples following the calculation of the442

maximum distance between means of the three groups. From443

the bioimpedance parameters, R describes the behavior of the444

medium through which the current flows while Xc describes445

the capacitive component of the cell membranes. The values446

of |Z| and PA are dependent of R and Xc [6], [7].447

The significance of the test was determined with the448

p-value which is the probability of obtaining test results at449

least as extreme as the result observed, assuming that the450

null hypothesis is correct. Therefore, considering the level of451

significance set, results will be statistically significant if a452

P < 0.05 is obtained in the test. Regarding tissue dif-453

ferentiation among non-smokers, smokers and ex-smokers454

healthy lung tissue samples, one-way ANOVA reported455

non-significant results (P > 0.05) for all variables (|Z|, PA,456

R and Xc) for both, the non-calibrated and the calibrated457

measures. No post-hoc test has been done as no significant458

results have been found. The Fisher coefficient parameter (F)459

represents the relationship between the inter-group variance460

and the intra-group variance. Therefore, a higher F coeffi-461

cient indicates a higher inter-group variance than intra-group462

variance [22]. According to the results obtained in Table 1,463

the F coefficient obtained in the non-calibrated data is higher464

in |Z|, R and Xc than in the calibrated data. In contrast,465

F coefficient in PA obtained in the calibrated data is higher466

than in the non-calibrated data. Therefore, the statistical467

results obtained show that the effect of cigarette consumption468

should not be considered to perform tissue differentiation469

through bioimpedance analysis. Moreover, results show an 470

intra-sample dispersion reduction with the effect of calibra- 471

tion, especially in |Z| and R, which depend on the geometrical 472

factors. 473

Regarding tissue differentiation between healthy lung tis- 474

sue and neoplasm lung tissue we have taken all the healthy 475

lung tissue samples without considering the tabaco habits as 476

it has been demonstrated that this factor is not significant 477

(P > 0.05). Lung cancer is a highly complex neoplasm and 478

comprise several histological types. The groups most fre- 479

quently are the non-small cell lung cancer (NSCLC) such as 480

adenocarcinoma and squamous carcinoma, followed by small 481

cell lung cancer (SCLC) [23]. Lung cancer are the results of 482

the accumulation of genetic and epigenetic changes, includ- 483

ing abnormalities of the inactivation of tumour-suppression 484

genes and the activation of oncogenes [24]. For the tissue 485

differentiation between healthy lung tissue and neoplasm 486

lung tissue all cancer types have been included in the same 487

group so we assume that the remaining dispersion in neo- 488

plasm lung tissue might be due to the differences within lung 489

cancer types. We have selected the frequencies (15 kHz and 490

307 kHz) that offered us a better discriminatory response 491

between healthy lung tissue and neoplasm by taking the 492

frequency with the maximum difference between the mean 493

of the healthy lung tissue and the mean of the neoplasm 494

lung tissue. We have also visualized the mean impedance 495

spectrum and SD of the healthy lung tissue samples and the 496

neoplasm lung tissue samples between the frequency range 497

analyzed (15 kHz – 307 kHz) with the data non-calibrated 498

and calibrated to show the effects of the calibration. Accord- 499

ing to the results obtained in Fig. 4 the calibration of the 500

bioimpedance measures with respect to a measure performed 501

in bronchi reduces the intra-group variability and, in con- 502

sequence, increases the inter-patient distance in both, the 503

healthy lung tissue and the neoplasm lung tissue, especially in 504

|Z| and R, which are the two parameters that are dependent on 505

geometrical factors (Fig. 5). Results obtained show a higher 506

|Z| and R and a lower PA and Xc in healthy lung tissue than 507

in neoplasm lung tissue. Moreover, |Z| and R show higher 508

difference between the lower frequencies and the higher fre- 509

quencies in healthy lung tissue than in neoplasm lung tissue. 510
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FIGURE 5. Boxplot of bioimpedance calibrated (C) and non-calibrated (NC) data of healthy lung tissue and neoplasm lung tissue for
(a) |Z| and (c) R at 15 kHz and for (b) PA and (d) Xc at 307 kHz. The central mark of each box indicates the median, and the bottom
and top edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points
that are not considered outliers. In addition, the bioimpedance data values for the calibrated (blue) and non-calibrated (orange)
measures. Vertical axis are different for the calibrated and non-calibrated data for better data visualization.
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FIGURE 6. Receiver operating characteristic (ROC) curves to assess the predictive ability of the different electrical impedance parameters before
and after calibration between healthy and neoplasm lung tissue. In (a) the results of the |Z| before calibration (NC) and after calibration (C) at
15 kHz. In (b) the results of the PA before calibration (NC) and after calibration (C) at 307 kHz. In (c) the results of the R before (NC) and after
(C) calibration at 15 kHz. In (d) the results of the Xc before (NC) and after (C) calibration at 307 kHz.

EIS assumes that current at low frequency flows through the511

extracellular space while current at high frequencies flows512

through both, intracellular and extracellular space. Moreover,513

healthy lung tissue is composed of alveolar epithelial and514

endothelial cells separated by a thin basement membrane515

and interstitial space. Interstitial space is a non-conductive516

medium, than the neoplasm lung tissue. These twomain char- 517

acteristics produce a higher |Z| and R in healthy lung tissue 518

than in neoplasm lung tissue. Lung cancer produce multi- 519

ples histological changes of the normal bronchial mucosa. 520

Proliferation of epithelial cells with abundant cytoplasm and 521

vesicular nuclei, intercellular bridging, thickening of alveolar 522
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septa and others pathological changes [25]. The morphologic523

features in neoplasm lung tissue seem to contribute to lose524

their capacitive behavior which is translated into a PA and525

Xcflatmean impedance spectrum, as compared to the healthy526

lung tissue mean impedance spectrum (Fig. 4). Regarding tis-527

sue differentiation between healthy lung tissue and neoplasm528

lung tissue, one-way ANOVA for the calibrated data and529

Mann–Whitney U test for the non-calibrated data (Table 2)530

show statistically significant differences between the two531

groups (healthy and neoplasm lung tissue, P < 0.001). These532

statistical differences are probably due to the histological533

differences between both groups by minimally-invasive EIS534

measurements. Focusing only in the calibrated data results535

in Table 2 show higher significance in |Z| and R than in536

PA and Xc as the F coefficient is higher in the first two537

parameters.538

The study has shown that there is an effect on the mea-539

surement when calibrating, reducing the dispersion of the540

measurements (Fig. 5). Calibration doesn’t change the out-541

come of the hypothesis test, showing a statistically significant542

difference in both cases, but the higher-F coefficient (Fisher543

coefficient from one-way ANOVA test, used for comparing544

the factors of the total deviation) than U (statistic from545

Mann–Whitney U test, used to assess whether two sampled546

groups are likely to derive from the same population) suggests547

stronger separation between the groups (Table 2), which is548

highly significant (P < 0.01) for both calibrated and non-549

calibratedmeasures. On the other hand, according to the ROC550

curve analysis, (Fig. 6) we have observed that the area under551

the curve (AUC) is equally excellent in all the variables (AUC552

> 0.9) both calibrating and not calibrating, although higher553

AUC values are observed when calibrating. After calibrating,554

the AUC is greater than 0.96 for all cases except in PA.555

The |Z|, R and Xc increase the sensitivity (true positive556

fraction) and decrease the specificity (false positive fraction)557

after calibration. Only PA showed a decrease in sensitivity558

maintaining its specificity (Fig. 6). Considering that PA has559

a trigonometric relationship between R and Xc and that these560

improve with calibration, the authors recommend perform-561

ing the calibration of the measurements with respect to the562

bronchi.563

In the previous study performed by Company-Se et al. [14]564

we performed tissue differentiation between healthy lung565

tissue and bronchi tissue. We proposed continuing with566

the study by including neoplasm lung tissue for lung567

tissue differentiation. Results obtained in Table 2 show568

that minimally invasive electrical impedance spectroscopy569

using the 3-electrode method is able to discriminate with570

both, calibrated data (not considering geometrical factors)571

and with non-calibrated data. In future studies we aim572

to include other lung pathologies with other histological573

characteristics.574

V. CONCLUSION575

In conclusion, results of the healthy lung tissue bioimpedance576

measurements show that there are no significant differences577

between healthy lung tissue among smoker, non-smoker and 578

ex-smoker measures, which was initially stated as a possible 579

cause of EIS measurement dispersion in lungs. Then, to per- 580

form tissue differentiation between healthy lung tissue and 581

neoplasm lung tissue the effect of tobacco habit will not be 582

considered. Also, this effect will not be considered in our 583

future studies. 584

On the other hand, we found that there is a statistically 585

significant difference in both calibrated and non-calibrated 586

measurements at 15 kHz (|Z| and R) and 307 kHz (Xc and 587

PA) between healthy and neoplasm lung tissue. This shows 588

that minimally invasive electrical impedance spectroscopy 589

measurements using the 3-electrode method are able to dis- 590

criminate between healthy lung and neoplasm both with and 591

without calibration. 592

Calibration has, however, been demonstrated to reduce 593

data variability and increase the tissue state separa- 594

tion capability, which will be useful in future studies 595

when including other pathologies with similar pathological 596

mechanisms. 597

Moreover, significant differences are found between cal- 598

ibrated and non-calibrated paired samples of smoker, non- 599

smoker ex-smoker and neoplasm lung tissue showing that 600

calibration is beneficial to reduce intra-sample variability. 601

The authors recommend calibrating the measures obtained 602

with respect to the bronchi given that it is demonstrated 603

that it increases the sensitivity of the 3-electrode mini- 604

mally invasive electrical impedance spectroscopy for tissue 605

differentiation. 606
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Differentiation using 
minimally-invasive bioimpedance 
measurements of healthy and 
pathological lung tissue through 
bronchoscopy
Georgina Company-Se 1, Lexa Nescolarde 1*, Virginia Pajares 2, 
Alfons Torrego 2, Pere J. Riu 1, Javier Rosell 1 and Ramon Bragós 1

1 Department of Electronic Engineering, Universitat Politècnica de Catalunya, Barcelona, Catalonia, 
Spain, 2 Department of Respiratory Medicine, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalonia, 
Spain

Purpose: To use minimally-invasive transcatheter electrical impedance 
spectroscopy measurements for tissue differentiation among healthy lung tissue 
and pathologic lung tissue from patients with different respiratory diseases 
(neoplasm, fibrosis, pneumonia and emphysema) to complement the diagnosis 
at real time during bronchoscopic procedures.

Methods: Multi-frequency bioimpedance measurements were performed in 102 
patients. The two most discriminative frequencies for impedance modulus (|Z|), 
phase angle (PA), resistance (R) and reactance (Xc) were selected based on the 
maximum mean pair-wise Euclidean distances between paired groups. One-
way ANOVA for parametric variables and Kruskal–Wallis for non-parametric data 
tests have been performed with post-hoc tests. Discriminant analysis has also 
been performed to find a linear combination of features to separate among tissue 
groups.

Results: We found statistically significant differences for all the parameters 
between: neoplasm and pneumonia (p < 0.05); neoplasm and healthy lung 
tissue (p < 0.001); neoplasm and emphysema (p < 0.001); fibrosis and healthy lung 
tissue (p ≤ 0.001) and pneumonia and healthy lung tissue (p < 0.01). For fibrosis 
and emphysema (p < 0.05) only in |Z|, R and Xc; and between pneumonia and 
emphysema (p < 0.05) only in |Z| and R. No statistically significant differences 
(p > 0.05) are found between neoplasm and fibrosis; fibrosis and pneumonia; and 
between healthy lung tissue and emphysema.

Conclusion: The application of minimally-invasive electrical impedance 
spectroscopy measurements in lung tissue have proven to be useful for tissue 
differentiation between those pathologies that leads increased tissue and 
inflammatory cells and those ones that contain more air and destruction of 
alveolar septa, which could help clinicians to improve diagnosis.

KEYWORDS

lung tissue differentiation, minimally-invasive bioimpedance, bronchoscopy, biopsy, 
respiratory disease
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1. Introduction

Adequate lung sampling is essential to obtain the diagnosis of lung 
diseases. Respiratory pathologies can affect the lung parenchyma in a 
diffuse or localized way. The indication of the most appropriate 
diagnostic method varies depending on the diagnostic possibilities 
and the distribution of the pathology. Therefore, the correct 
characterization of the lung tissue is essential in order to guide the 
collection of lung samples. Although different imaging methods are 
currently available (chest CT, PET CT or virtual bronchoscopy), these 
methods are performed prior to the procedure and do not allow real-
time guidance for sample collection. For this reason, advanced 
bronchoscopic techniques have been developed for a few years, such 
as the use of radial probe endobronchial ultrasound (radial EBUS) or 
electromagnetic navigation bronchoscopy (ENB), which allow 
samples to be obtained from the affected areas in real time (1, 2). 
However, these are high-cost techniques that are not widely available 
in Interventional Pulmonology units. The developed line of research 
aims to expand the diagnostic tools currently available in 
bronchoscopy with the application of an innovative technique based 
on the use of bioimpedance data to differentiate between tissue states.

The term bioimpedance (Z) is defined as the opposition offered 
by a biological tissue to an electrical flow. The bioimpedance is 
composed by two terms: the resistance (R), which describes the 
opposition to the electrical flow, mainly in the extracellular and 
intracellular fluids, of the biological tissue, and the reactance (Xc) 
which describes the opposition produced by the capacitive behavior 
of the cell membranes (3, 4). The Xc causes a delay between the voltage 
and the current causing a phase shift, represented by the phase angle 
(PA) defined as the tan-1 (Xc/R). Finally, the last parameter that can 
be  derived from the first two is the bioimpedance modulus (|Z|) 
defined as R Xc2 2+  (5). When the bioimpedance data is obtained 
using a broad band of frequencies it is called electrical impedance 
spectroscopy (EIS) and it is based on the assumption that at low 
frequencies the electric current flows through the extracellular 
medium while at high frequencies the electric current is able to flow 
through the intra and extracellular medium as it is able to penetrate 
the cell membranes. Hence, it produces a decrease in |Z|, PA, R 
and Xc (5).

The use of impedance analysis in studies related to medical field 
is widely extended, especially for studies of body composition. 
Previous authors have already applied impedance analysis in lung 
tissue. Toso et al. (6) compared bioimpedance measurements between 
healthy lung tissue and neoplasm lung tissue by using an impedance 
plethysmograph at 50 kHz of frequency obtaining a reduced value of 
Xc while R value was maintained in neoplasm lung tissue as compared 
to healthy lung tissue. Baarends et al. (7) studied the accuracy in the 
prediction of body-water compartments using EIS having the isotope 
dilution as a reference in patients with severe chronic obstructive 
pulmonary diseases. Orschulik et al. (8) presented a pilot animal study 
evaluating the possibility of using EIS to detect acute respiratory 
distress syndrome. Finally, Meroni et  al. (9) used bioimpedance 
measurements to differentiate among multiple tissues and organs, 
including lung.

To the extent of author’s knowledge, there are no studies regarding 
the application of minimally-invasive lung measurements through 
bronchoscopy to differentiate among different pathologies and healthy 
lung tissue apart from the previous studies performed by our research 

group. First, Sanchez et al. (10) described, characterized, calibrated 
and experimentally validated an EIS instrument for performing 
minimally-invasive bioimpedance measurements through 
bronchoscopy. Coll et al. (11) performed tissue differentiation between 
healthy lung tissue, bronchi and pathological lung tissue obtaining 
statistical differences among the different groups. However, in that 
first study, pathologies were not differentiated from each other and all 
pathological tissues were put into the same group. Riu et  al. (12) 
presented a preliminary artificial intelligence predictive algorithm that 
was able to discriminate between healthy lung tissue and pathological 
lung tissue automatically. The three studies carried out to date used 
the 4-electrode method to acquire the bioimpedance data. That 
method needed to place 4 electrodes in contact with the lung tissue 
during all the bioimpedance signal recording.

Occasionally, during bronchoscopy, the patient may have cough 
or movements that reduce the contact of the impedance catheter with 
the bronchial wall. To improve contact with the lung surface and 
decrease measurement time, the authors though that by using the 
3-electrode method the bioimpedance signals acquisitions would 
be more feasible for clinicians. For this reason, the authors performed 
a study, as presented in Company-Se et  al. (13), comparing the 
capacity to differentiate healthy lung tissue from bronchi using the 
4-electrode method and the 3-electrode method. In that study the 
authors concluded that both methods were able to differentiate 
between both types of tissue. However, the 3-electrode method had 
more advantages for the clinical practice, deciding to change the 
method of signal acquisition. Later, Company-Se et al. (14) presented 
a method, already used in bioimpedance measures performed in 
hearth (15), to calibrate the 3-electrode bioimpedance measurements 
in order to increase tissue differentiation capacity by reducing intra-
sample data variability. Moreover, in that study tissue differentiation 
between healthy lung tissue and neoplasm was performed with 
significant difference obtained. Finally, they studied bioimpedance 
differences in healthy lung tissue among smoker, ex-smoker and 
non-smoker patients, without significance among groups.

The aim of this study is to perform tissue differentiation among 
healthy lung tissue and pathologic lung tissue from patients with 
different respiratory diseases (neoplasm, fibrosis, pneumonia and 
emphysema) through minimally-invasive bioimpedance 
measurements obtained though bronchoscopy.

2. Materials and methods

2.1. Participants

Minimally-invasive EIS measures were performed in 102 patients 
(age: 66 ± 14 years; weight: 74.5 ± 17.2 kg; BMI: 26.8 ± 4.3 kgm−2) with 
a bronchoscopy prescribed between November 2021 and August 2022 
at the “Hospital de la Santa Creu i Sant Pau” in Barcelona.

2.2. EIS measurements

Electrical impedance spectroscopy measures were taken using 
the 3-electrode method. A complete description of the 
measurement system is detailed in Company-Se et al. (14). The 
lung bioimpedance results from the injection of a multisine 

https://doi.org/10.3389/fmed.2023.1108237
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current signal (26 frequencies ranging from 1 to 1,000 kHz) 
between the distal electrode of a tetrapolar catheter (Medtronic 
5F RF Marinr) and a skin electrode (3 M Company ref.: 9160F) 
placed at the level of the ribs. A voltage is induced by the injected 
current and measured between the distal catheter electrode and a 
second skin electrode (Ambu BlueSensor VLC ref.: VLC-00-s/10) 
placed next to the other one. The impedance measures were 
recorded during a period of 12 s with a sample frequency of 60 
spectra per second. Measures were calibrated using a measure of 
the same patient taken at the bronchi, according to Company-Se 
et  al. (14), to eliminate geometrical factors and reduce intra-
group variability.

2.3. Measurement protocol

The patients included were evaluated in Interventional 
Pulmonology Unit. All of them had a complete blood count with 
coagulation study and radiological evaluation (chest CT or/ and 
PET CT). A bronchoscopy was indicated to study of respiratory 
disease. For bronchoscopy, the upper airway was anaesthetized 
with topical 2% lidocaine; intravenous sedation was provided 
throughout the procedure with midazolam, fentanil and/or 
propofol. The acquisition of the bioimpedance data was carried out 
by inserting the catheter through a port of the bronchoscope. 
Depending on the respiratory disease, different diagnostic 
techniques were performed: bronchoaspiration, bronchoalveolar 
lavage, bronchial brushing, endobronchial or transbronchial biopsy 
and/or fine needle aspiration. The endoscopic exploration and 
diagnostic procedures were indicated accordance with 
the guidelines.

2.4. Data analysis

The averaged spectra of the minimally-invasive bioimpedance 
measured through the 12 s acquisition time was used for tissue 
differentiation among healthy lung tissue, neoplasm, fibrosis, 
pneumonia and emphysema. Data was obtained between 1 kHz and 
1 MHz. Low frequency values (below 15 kHz) were discarded due to 
electrode effects and high frequency values (above 307 kHz) were 
discarded due to capacitive coupling errors. To perform tissue 
differentiation the frequencies of 15 kHz for |Z| and R and 307 kHz for 
PA and Xc were chosen based on the calculation of the mean pair-wise 
Euclidean distance between tissue paired groups. Hence, 15 kHz for 
|Z| and R and 307 kHz for PA and Xc are the two most 
discriminative frequencies.

Shapiro–Wilk test was used to assess the distribution of 
normality of the variables (|Z|, PA, R, Xc and the difference between 
low and high mean bioimpedance values in |Z|, PA, R and Xc). 
Normally distributed variables are shown as mean ± standard 
deviation (SD) and 95% confidence interval (CI) of the mean (lower 
bound – upper bound). The variables non-normally distributed are 
shown as median (interquartile range, IQR) and minimum – 
maximum. One-way analysis of variance (ANOVA, normally-
distributed data) with Tamhane t2 post-hoc test was used to 
determine statistically significant differences in the |Z|, PA, R and 
the differences between low and high frequencies mean 

bioimpedance in |Z|, PA, R and Xc. For non-normally distributed 
data, Kruskal–Wallis test was used to determine significance in Xc 
among healthy lung tissue, neoplasm, fibrosis, pneumonia 
and emphysema.

Discriminant Function Analysis was used to find a linear 
combination of features that separates healthy lung tissue, neoplasm, 
fibrosis, pneumonia and emphysema bioimpedance values using the 
bioimpedance parameters of |Z| and R at 15 kHz and PA and Xc at 
307 kHz.

3. Results

The total number of bioimpedance samples obtained were 116 
(more than one sample was obtained in a few patients) divided 
according tissue states: 30 healthy lung (age: 62 ± 18 years; weight: 
77.7 ± 25.6 kg; BMI: 26.5 ± 4.4 kgm−2), 29 neoplasm (age: 69 ± 9 years; 
weight: 74.3 ± 13.9 kg; BMI: 26.4 ± 4.3 kgm−2), 23 emphysema (age: 
72 ± 9 years; weight: 72.5 ± 12.3 kg; BMI: 27.3 ± 4.8 kgm−2); 12 fibrosis 
(age: 73 ± 10 years; weight: 76.9 ± 10.7 kg; BMI: 28.4 ± 2.0 kgm−2) and 
22 pneumonia (age: 62 ± 16 years; weight: 68.9 ± 12.0 kg; BMI: 
25.8 ± 4.4 kgm−2).

3.1. Box plot

Figure 1 shows the median (central line of each box) and the 25 
and 75 percentiles (down and upper extremes of each box) for |Z| and 
R at 15 kHz and for PA and Xc at 307 kHz for each of the tissue states 
[neoplasm (6 small cell lung neoplasm and 23 non-small cell lung 
neoplasm), fibrosis, pneumonia, healthy lung tissue and emphysema]. 
Dashed lines represent the most extreme points not considered 
outliers (1.5 times bigger than the interquartile range). Results show 
an increase in the |Z| and R and a decrease in the PA and Xc as more 
air content is the tissue.

3.2. Tissue differentiation of 
minimally-invasive electrical impedance 
spectroscopy measurements among tissue 
states

Table 1 lists the descriptive parameters, specified as the mean ± SD, 
95% confidence interval for mean (lower bound and upper bound) for 
normally distributed variables and specified as statistic median 
(interquartile range, IQR) and minimum – maximum for 
non-normally distributed variables of |Z|, PA, R and Xc and the results 
of the one-way ANOVA including the Fisher coefficient (F) and the 
Kruskal–Wallis test results for the minimally-invasive bioimpedance 
measures performed in healthy lung tissue (n = 30), neoplasm lung 
tissue (n = 29), emphysema (n = 23), fibrosis (n = 12) and pneumonia 
(n = 22). Both tests show statistical significance (p < 0.001) in the |Z|, 
PA, R and Xc. Fisher coefficient shows higher values in |Z| and R 
than in PA.

Table 2 shows the Tamhane t2 test results for |Z| at 15 kHz, PA 
at 307 kHz and for R at 15 kHz. Statistical differences are found 
between: neoplasm and pneumonia, healthy lung tissue and 
emphysema; fibrosis and healthy lung tissue and emphysema; 
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pneumonia and healthy lung tissue and emphysema. No statistically 
significant differences are found between: healthy lung tissue and 
emphysema; fibrosis and neoplasm; fibrosis and pneumonia.

Table 3 shows the pair to pair comparison results for Xc at 307 kHz 
as Xc is not normally distributed. Statistically significant differences 
are found between healthy lung tissue and pneumonia, fibrosis and 
neoplasm, emphysema and fibrosis and neoplasm and between 
pneumonia and neoplasm.

3.3. Discriminant analysis of 
minimally-invasive electrical impedance 
spectroscopy measurements among tissue 
states

Table 4 shows the Fisher’s linear discriminant functions for lung 
neoplasm, fibrosis, pneumonia, healthy lung tissue and emphysema 
bioimpedance measurements and the canonical discriminant 

FIGURE 1

Boxplot of the bioimpedance parameters (|Z| and R at 15 kHz and PA and Xc at 307 kHz) for neoplasm, fibrosis, pneumonia, healthy lung tissue and 
emphysema tissue samples. The central line of each box represents the median of each group, low and upper box lines represent the 25 and 75 
percentiles, respectively, and dashed lines belong to the most extreme points which are not considered outliers.

TABLE 1  Descriptions of minimally-invasive bioimpedance measurements for healthy lung tissue, neoplasm, emphysema, fibrosis and pneumonia.

Healthy (n = 30) Neoplasm 
(n = 29)

Emphysema 
(n = 23)

Fibrosis (n = 12) Pneumonia 
(n = 22)

One way 
ANOVA test

F p

|Z| (Ω) 

15 kHz

356.29 ± 94.15 (296.47–

416.11)

114.53 ± 23.24 (99.77–

129.30)

340.54 ± 168.19 (233.68–

447.40)

149.17 ± 57.62 (112.56–

185.78)

199.12 ± 75.27 

(151.29–246.95)
30.80 <0.001

PA (°) 

307 kHz

−16.02 ± 4.48 

[−18.87 – (−13.18)]

−4.75 ± 4.35 

[−7.52 – (−1.99)]

−12.71 ± 6.46 

[−16.82 – (−8.61)]

−7.29 ± 3.77 

[−9.69 – (−4.89)]

−9.22 ± 4.52 

[−12.08 – (−6.35)]
20.52 <0.001

R (Ω) 

15 kHz

354.90 ± 93.28 (295.63–

414.17)

114.44 ± 23.14 (99.73–

129.14)

338.79 ± 166.02 (233.31–

444.27)

149.03 ± 57.58 (112.44–

185.61)

198.65 ± 75.11 

(150.93–246.37)
30.99 <0.001

Kruskal–Wallis test

p

Xc (Ω) 

307 kHz

−73.29 ± 29.42 

[−92.24 – (−54.86)]

−8.53 ± 7.46 

[−13.27 – (−3.79)]

−69.88 ± 52.51 

[−103.24 – (−36.51)]

−15.98 ± 9.30 

[−21.89 – (−10.07)]

−18.23 (39.35) 

[−56.63 – (−3.40)]
<0.001

The variables normally distributed are shown as mean ± SD, 95% confidence interval for mean (lower bound and upper bound) while that non-normally distributed data is shown as statistic 
median (interquartile range, IQR) and minimum-maximum. In addition, the statistic of the Fisher (F) coefficient for variance analysis and the statistical significance (p) are also shown.
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functions, by Discriminant Function Analysis of the bioimpedance 
parameters (|Z|, PA and Xc).

4. Discussion

This project developed by the Electronic and Biomedical 
Instrumentation research group from the Technical University of 
Catalonia (UPC) and the Interventional Pulmonology Unit from 
Hospital de la Santa Creu i Sant Pau of Barcelona aims to differentiate 
among different lung pathologies (neoplasm, fibrosis, pneumonia and 
emphysema) and healthy lung tissue through minimally-invasive 
bioimpedance measurements performed directly in lung tissue.

In general terms, in the healthy subject, the lung parenchyma is a 
histologically heterogeneous structure formed by a network of bronchi 
and bronchioles that present different subdivisions until generating 
the alveolar ducts and alveoli where gas exchange occurs. All these 
structures are surrounded by connective tissue with a reticular 

structure of collagen and elastic fibers, in which the lymphatic vessels 
and the capillary of the pulmonary circulation are distributed. In 
pulmonary pathologies there is an alteration of the pulmonary 
architecture. The structural changes in the tissues provide a 
differentiated electrical behavior that will vary according to the tissue 
involvement and, therefore, could allow differentiating 
respiratory diseases.

The bioimpedance parameters that can be directly obtained from 
the bioimpedance measures obtained are the R and the Xc. The first 
one denotes the behavior of the cellular medium while the second one 
related to the capacitive behavior of the cell membranes. Two more 
parameters that can be extracted from the first ones are the |Z| and the 
PA. While |Z| is highly correlated with the R, the PA is related to Xc 
(5). To perform tissue differentiation, in this study we have taken into 
account the four parameters mentioned and have selected the 
frequency of 15 kHz for |Z| and R and the frequency of 307 kHz for PA 
and Xc for being the two most discriminative frequencies according 
to the pair-wise Euclidean distances calculated between pairs of tissue 
samples. In COPD and specifically in emphysema, the increase in 
inflammatory cells and oxidative stress produce the secretion of 
proteases with the capacity to degrade components of the extracellular 
matrix, which produces direct damage to structural cells and promotes 
proteolytic degradation of tissues with destruction of alveolar walls 
(16, 17). The air content present in lungs in proportion to the tissue is 
higher in this pathology than in the others studied (neoplasm, fibrosis 
and pneumonia) and also is higher than in healthy lung tissue. In 
emphysema the data present higher variability and dispersion than in 
the other tissues studied. This is due to the fact that the sensibility of 
measure is 2 mm and depending the grade of emphysema the |Z| and 
R is higher (more air content) or lower. This fact leads to the no 
differentiation between healthy and emphysema lung tissue.

Considering the above-mentioned, results in Figure 1 show higher 
values of |Z| and R and lower values of PA and Xc at the tissue samples 
which have more air content (healthy lung tissue and emphysema). 
The increase in |Z| and R is due to the non-conductive character of air, 
as compared with the other tissue samples (neoplasm, fibrosis and 
pneumonia) in which the proportion of tissue is higher compared to 
the quantity of air. Related to that condition, the Xc and in 

TABLE 2  Tamhane t2 post-hoc test results for |Z| at 15 kHz, PA at 307 kHz and R at 15 kHz.

Post-hoc Tamhane t2 test

|Z| 15 kHz (Ω) R (Ω) 15 kHz PA (°) 307 kHz

p p p

Healthy

Neoplasm <0.001

Healthy

Neoplasm <0.001

Healthy

Neoplasm <0.001

Emphysema 1 Emphysema 1 Emphysema 0.17

Fibrosis <0.001 Fibrosis <0.001 Fibrosis <0.001

Pneumonia <0.001 Pneumonia <0.001 Pneumonia 0.008

Neoplasm

Emphysema <0.001

Neoplasm

Emphysema <0.001

Neoplasm

Emphysema <0.001

Fibrosis 0.247 Fibrosis 0.248 Fibrosis 0.33

Pneumonia 0.006 Pneumonia 0.006 Pneumonia 0.002

Emphysema
Fibrosis <0.001

Emphysema
Fibrosis <0.001

Emphysema
Fibrosis 0.096

Pneumonia 0.015 Pneumonia 0.014 Pneumonia 0.979

Fibrosis Pneumonia 0.64 Fibrosis Pneumonia 0.649 Fibrosis Pneumonia 0.618

TABLE 3  Pair to pair comparisons for Xc bioimpedance parameter with 
significance adjusted by Bonferroni method.

Pair–Pair Comparison Xc (Ω) 307 kHz

Statistic p Adjusted 
p

Healthy

Emphysema −8.31 0.373 1

Pneumonia −33.47 <0.001 0.004

Fibrosis −45.28 <0.001 0.001

Neoplasm −62.08 <0.001 0

Emphysema

Pneumonia −25.16 0.012 0.121

Fibrosis −36.98 0.002 0.02

Neoplasm 53.77 <0.001 0

Pneumonia
Fibrosis 11.81 0.328 1

Neoplasm 28.61 0.003 0.026

Fibrosis Neoplasm 16.80 0.146 1
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consequence the PA, denotes the additional resistance produced by 
the cell membranes.

The increase of the Xc values in those pathologies in which there 
is an increase of tissue denotes the increment of cells present in these 
tissues (neoplasm and fibrosis). In this way, in neoplasm is produced 
a proliferation of tumor cells and infiltration of lymphatic and blood 
vessels. The tumor cells have different histological characteristics and, 
in general, according to the morphology of the cells, lung cancer is 
classified in non-small cell lung carcinomas (NSCLCs): 
adenocarcinoma (ADC) and squamous cell carcinoma (SQCC) and 
small cell lung cancer (18). On the other hand, idiopathic pulmonary 
fibrosis belongs to the group of diffuse pulmonary diseases (ILD) that 
includes a heterogeneous classification of pathologies characterized by 
thickening of the alveolar septa, proliferation of fibroblasts, collagen 
deposition and, in advanced phases, of the disease, pulmonary 
fibrosis (19).

For tissue differentiation among neoplasm, fibrosis, pneumonia, 
healthy lung tissue and emphysema one-way ANOVA test for 
parametric parameters (|Z|, PA and R) and Kruskal–Wallis test for the 
non-parametric Xc have been performed. One-way ANOVA test 
determines differences among different groups means using their 
variances to determine if their means are equally distributed or not. 
Hence, a p > 0.05 concludes that the distributions of the different 
groups are equal based on their means. To determine which of the 
parameters (|Z|, PA or R) have more significance, Fisher coefficient 
(F) is used, which is defined as the ratio between the variance between 
samples and the variance within samples. Then, as larger the F, as 
higher the significance in that variable (20). Also, Kruskal–Wallis test 
determines differences among groups based on mean ranks (21). 
Then, according to the results obtained in Table 1, there are statistically 
significant differences (p < 0.001) among tissue samples in |Z|, PA, R 
and Xc. The significance obtained is higher in |Z| and R than in PA 
according to the value of the Fisher coefficient obtained. Therefore, a 
significance higher in |Z| and R means that the most important 
element for tissue differentiation among the tissue states studied seems 
to be the proportion of air present in the extracellular medium as 
compared to the amount of tissue.

Regarding the post-hoc tests results (Tables 2, 3), results show 
statistical significant differences between neoplasm and pneumonia 
(p < 0.05) in |Z|, PA, R and Xc; neoplasm and healthy lung tissue 
(p < 0.001) in |Z|, PA, R and Xc; neoplasm and emphysema (p < 0.001) 
in |Z|, PA, R and Xc; fibrosis and healthy lung tissue (p ≤ 0.001) in |Z|, 
PA, R and Xc; fibrosis and emphysema (p < 0.05) in |Z|, R and Xc; 
pneumonia and healthy lung tissue (p < 0.01) in |Z|, PA, R and Xc; and 
between pneumonia and emphysema (p < 0.05) in |Z| and R. No 
statistically significant differences (p > 0.05) are found between 
neoplasm and fibrosis; fibrosis and pneumonia; and between healthy 
lung tissue and emphysema.

In summary, as we  have described above, neoplasm is 
characterized by a cell growth and an increase of vascularization and 
fibrosis is characterized by an increase of tissue in the pathological 
region despite not being over-vascularized. This similitude of 
increment of tissue in the pathological region and, in consequence, a 
decrease in air proportion, lowers the bioimpedance |Z| and R and 
increases the Xc and PA (Figure  1; Table  1). Despite the over-
vascularization of the neoplasm tissue, which lowers slightly the |Z| 
and R and increases slightly the Xc and PA, the similitude in both 

pathologies regarding the increment of tissue and, in turn, cell 
concentration makes not possible to distinguish through minimally-
invasive bioimpedance measures between both pathologies. In 
pneumonia, the inflammatory response is initially characterized by a 
congestive phase with vascular hyperemia followed by an exudative 
phase in which the presence of neutrophils and fibrin increases, which 
can completely occupy the alveolar spaces (22) which decreases the 
impedance |Z| and R as compared to healthy lung tissue as the 
quantity of air decreases. However, pneumonia presents higher 
proportion of air than fibrosis which makes the |Z| and R higher in 
pneumonia than in fibrosis. Despite the differences between these two 
pathologies, the characteristic of lung condensation hinders the 
differentiation between both pathologies.

In complement to the statistical tests performed (one-way 
ANOVA and Kruskal–Wallis) and following with the tissue 
differentiation, we have performed a discriminant analysis among the 
different tissue states (neoplasm, fibrosis, pneumonia, healthy lung 
tissue and emphysema). Each tissue type obtains a Fisher’s linear 
discriminant function that aims to find a linear function that 
maximizes the distance between classes of the projected data means 
and minimizes the projected within-class variance. The generalization 
of Fisher’s discriminant function is the canonical discriminant 
function which have maximum discriminant power to classify among 
multiple groups. The canonical discriminant functions are vectors of 
canonical variables composed by linear combinations of the original 
variables (23). According to the results obtained in Table  4, the 
graphics of the individual tissue type distributions show an increase 
in the data dispersion as higher is the air proportion in lungs. 
Moreover, the results of the graphic where all the tissue types are 
represented show a higher separation between neoplasm and 
emphysema and neoplasm and healthy lung tissue (as in Figure 1). 
Moreover, discriminant analysis shows little distance between 
neoplasm and fibrosis and between fibrosis and pneumonia, which is 
in accordance to the results obtained in the statistical tests (Tables 2, 
3). Moreover, canonical discriminant functions show that in the first 
function the |Z| have more importance than the PA and the Xc while 
in the second function the variable which has more importance 
is the PA.

The differentiation among the different tissue states using the 
mean impedance values obtained from the 12 s duration of 
acquisition signals at 15 kHz for |Z| and R and at 307 kHz for PA and 
Xc have been proved to be useful for the differentiation between 
neoplasm and pneumonia, neoplasm and healthy lung tissue, 
neoplasm and emphysema, fibrosis and healthy lung tissue, fibrosis 
and emphysema, pneumonia and healthy lung tissue and pneumonia 
and emphysema. However, it has not been proved to be useful to 
differentiate between neoplasm and fibrosis, fibrosis and pneumonia 
and healthy lung tissue and emphysema. As discussed in Company-Se 
et  al. (13) the 3-electrode method was more suitable for the 
minimally-invasive lung tissue measurements than the 4-electrode 
method. Furthermore, as also stated in Company-Se et al. (13) the 
two-electrode method (the simplest method) that only uses the tip of 
the catheter and an external electrode was discarded because this last 
method has higher interpatient variability due to non-related lung 
tissue characteristics factors. Moreover, this last method depends on 
sweat regulation and skin hydration. Despite the reduction of the data 
variability through calibration, the data variability continues to 
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be high. This is due to the different respiratory patterns observed in 
the different patients. While some patients remain still during the 
signal acquisition, others produce apneas, cough or even movement, 
affecting the mean values of the signals. In future studies, 
bronchoscopy will be performed in patients which would undergo 
general anesthesia in order to study if it affects to the reduction of 
data variability.

4.1. Contribution

The minimally-invasive bioimpedance measurements is a 
complementary method to bronchoscopy procedure for real time 
diagnosis through tissue differentiation for respiratory diseases. 

The major contribution is the capability to differentiate between 
those pathologies that leads increased tissue and inflammatory 
cells and those ones that contain more air and destruction of 
alveolar septa.

4.2. Limitation

To validate minimally-invasive bioimpedance as a method for real 
time diagnosis through tissue differentiation for respiratory diseases, 
it is necessary to perform studies that compare standardized 
procedures that allow real-time localization of pulmonary lesions, 
such as electromagnetic navigation bronchoscopy (ENB) or 
radial EBUS.

TABLE 4  Fisher’s linear discriminant functions for neoplasm, fibrosis, pneumonia, healthy and emphysema lung bioimpedance samples and canonical 
discriminant functions for the bioimpedance parameters (|Z|, PA and Xc).

Fisher’s linear discriminant function

0.03% 0.15% 0.10% 3.22F Z PA XcNeoplasm = − + − 0.04% 0.29% 0.12% 4.36F Z PA XcFibrosis = − + − 0.04% 0.39% 0.12% 5.38F Z PA XcPneumonia = − + −

Fisher’s linear discriminant function

0.05% 0.36% 0.12% 9.59F Z PA XcHealthy = − + − 0.06% 0.06% 0.10% 8.37F Z PA XcEmphysema = − + −

(Continued)
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5. Conclusion

The use of minimally-invasive bioimpedance measurements have 
been proven to be  useful for tissue differentiation among lung 
pathologies and healthy lung tissue. Statistical differences have been 
found between groups by using the two most discriminative 
frequencies. Bioimpedance has proven to differentiate between those 
pathologies that leads increased tissue and inflammatory cells and 
those ones that contain more air and destruction of alveolar septa.
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ABSTRACT 

PURPOSE: to apply classification algorithms using minimally-invasive EIS measurements ob-

tained through bronchoscopy to perform multiple-class lung tissue classification among neoplasm, 

fibrosis, pneumonia, healthy lung tissue and emphysema. 

METHODS: Machine Learning classification algorithms (Decision Tree, Random Forest, KNN, 

Naïve Bayes and Gradient Boosting) were implemented using the mean averaged spectra of the bi-

oimpedance |Z| and PA obtained from 15 kHz to 307 kHz of neoplasm (n = 29), fibrosis (n = 12), 

pneumonia (n = 22), healthy lung tissue (n = 30) and emphysema (n = 23). Confusion matrix was 

used to visualize the results of the classification algorithm. Classification report was obtained to 

evaluate the metrics of each algorithm for each of the different output classes (neoplasm, fibrosis, 

pneumonia, healthy lung tissue and emphysema). 

RESULTS: Decision tree and Naïve Bayes algorithms obtained a classification accuracy higher than 

mailto:lexa.nescolarde@upc.edu
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60% with a recall of 86% and 100% for neoplasm class respectively. Healthy lung tissue and neoplas 

classes presented higher classification accuracy. 

CONCLUSION:  

The application of Machine Learning classification algorithms presents an opportunity to help min-

imally-invasively in the diagnosis of lung diseases for real-time tissue characterization. Promising 

results have been obtained by the possible classification and thus, differentiation, of neoplasm with 

respect to fibrosis (two pathologies with similar bioimpedance values).  

 

Keywords: classification, machine learning, minimally-invasive bioimpedance, bronchoscopy, 

respiratory disease. 
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1. INTRODUCTION 

The diagnosis of lung diseases requires tissue characterization and, in most occasions, it is necessary 

obtain lung samples to establish the correct final diagnosis. The actual imaging methods of diagnosis 

of lung diseases [Chest computed tomography (Chest-CT), Positron emission tomography combined 

with CT (PET/CT) or virtual bronchoscopy are adequate to guide the diagnosis but they have limited 

value as they do not allow real time guidance for the collection of lung tissue samples. 

In recent years, new bronchoscopic techniques have been developed for sampling characterization 

in real time such as the radial probe endobronchial ultrasound (radial EBUS) or the electromagnetic 

navigation bronchoscopy (ENB) [1], [2]. The high cost of these novel techniques hinders their avail-

ability in Interventional Pulmonology units. 

 To complement the actual methods of diagnosis, the combination of electrical impedance spectros-

copy (EIS) measurements with the application of artificial intelligence algorithms could help for the 

lung tissue differentiation. The bioimpedance (Z) is defined as the opposition of the tissue to the 

flow of an electrical current applied. When alternating current is applied, the bioimpedance is fre-

quency-dependent and when a wide-range of frequencies is used to measure bioimpedance then EIS 

is performed. The Z is composed by two terms, the resistance (R) and the reactance (Xc). R describes 

the behavior of the extracellular and intracellular medium while Xc describes the capacitive behavior 

of the cell membranes [3]–[5]. From R and Xc two more parameters are extracted: the impedance 

modulus (|Z|) defined as √𝑅2 + 𝑋𝑐2 and the phase angle (PA) defined as tan−1(
𝑋𝑐

𝑅
), that represents 

the lag of the current behind the voltage [3]. The principle of EIS is that at low frequencies the current 

circulates through the extracellular medium only and at high frequencies the current is able to pene-

trate the cell membranes, thus it circulates through the intra and extracellular medium [3].  

Previous studies evaluate the use of bioimpedance for tissue characterization in lungs.  Toso et al. 

[6] studied the differences between healthy and lung neoplasm.  Baarends et al. [7] predicted body 
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water compartments of patients with chronic obstruction pulmonary diseases. And Meroni et al. [8] 

studied bioimpedance differences among different organs, including lungs. 

To the extent of the authors knowledge, the are no studies regarding the application of minimally 

invasive EIS for lung tissue differentiation apart from the studies performed by our research group. 

Sanchez et al. [9] presented a feasibility study to validate an EIS measurement device evaluating the 

accuracy and calibration process for the instrument. Later, Coll et al. [10] performed tissue differen-

tiation using minimally-invasive EIS for the differentiation among healthy lung tissue, bronchi and 

pathological tissue (no pathologies differentiation) using the frequency of 11 kHz and 33 kHz and 

obtaining differences among groups. Riu et al. [11] introduced a Machine Learning classification 

algorithm to differentiate between healthy lung tissue and other lung tissue (grouping bronchi and 

pathological tissue) and obtained promising results. All of these studies were performed using the 4-

electrode method to acquire bioimpedance measurements. However, due to the limitation of ensuring 

the contact of the 4 electrodes during the signal acquisition in a trabecular structure, the authors 

evaluated the possibility to perform tissue differentiation and signal acquisition using the 3-electrode 

method. As evaluated in Company-Se et al. [12]. The capacity of tissue differentiation of both meth-

ods (4- and 3-electrode methods) was similar. However, the clinical feasibility of the 3-electrode 

method was greater. The authors changed to the 3-electrode method to acquire minimally-invasive 

bioimpedance measurements. Company-Se et al. [13] presented a calibration method using bronchi 

measures to reduce data variability and increase tissue state separation and differentiation capacity. 

The method was similar to the one used in Amorós-Figueras et al. [14]. Finally, Company-Se et al. 

[15] performed tissue differentiation among neoplasm, fibrosis, pneumonia, healthy lung tissue and 

emphysema using the two most discriminative frequencies (15 kHz for |Z| and R and 307 kHz for 

PA and Xc). They found statistically significant differences for all the parameters between: neoplasm 

and pneumonia; neoplasm and healthy lung tissue; neoplasm and emphysema; fibrosis and healthy 

lung tissue and pneumonia and healthy lung tissue. For fibrosis and emphysema only in |Z|, R and 
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Xc; and between pneumonia and emphysema only in |Z| and R. They did not find statistically statis-

tically significant differences between neoplasm and fibrosis; fibrosis and pneumonia; and between 

healthy lung tissue and emphysema. 

 

The application of Machine Learning algorithms presents an opportunity to predict outcomes and 

develop new methods of diagnostic as well as improve prognostics [16]. 

The use of artificial intelligence for clinical data analysis has raise importance in recent years. Raj 

V et al. [17] applied logistic regression to classify between control subjects and patients with tem-

poral lobe epilepsy. Cikes et al. [18] used K-means clustering algorithm to divide into groups pa-

tients having heart failure to identify responders to cardiac resynchronization therapy. Soujanya 

Chilla et al. [19] implemented multiple classification algorithms to identify schizophrenic subjects 

from healthy. Papp et al. [20] applied Random Forest to classify between low and high risk of pros-

tate cancer. Rastegar et al. [21] utilized multiple classification algorithms to distinguish between 

three groups of bone mineral loss (healthy, osteopenia and osteoporosis) using radiomics.  

To the best of the authors knowledge, this is the first study describing the application of Machine 

Learning classification algorithms to differentiate among lung tissue states by using electrical im-

pedance spectroscopy measurements. 

The aim of this study is to apply different Machine Learning algorithms (Decision Tree, Random 

Forest, K-Nearest Neighbours (KNN), Naïve Bayes and Gradient Boosting) to perform multiple-

class lung tissue classification among neoplasm, fibrosis, pneumonia, healthy lung tissue and em-

physema using minimally-invasive EIS measurements obtained through bronchoscopy. 

 

2. MATERIALS AND METHODS 

2.1 Participants 

Minimally invasive EIS measurements were performed between November 2021 and August 2022 

in 102 patients (Age: 66 ± 14 yr; Weight: 74.5 ± 17.2 kg; BMI: 26.8 ± 4.3 kgm-2) with a bronchos-

copy prescribed at the “Hospital de la Santa Creu i Sant Pau” of Barcelona. A total number of 116 
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samples were obtained divided in: 30 healthy lung, 29 neoplasm, 23 emphysema, 12 fibrosis and 22 

pneumonia. 

Ethics approval was obtained from the “Hospital de la Santa Creu i Sant Pau” (CEIC-73/2020) ac-

cording to principles of the Declaration of Helsinki for experiments with human being. All patients 

proved signed informed consent. 

2.2 EIS measurements  

Minimally-invasive EIS using the 3-electrode method bioimpedance measurements are obtained 

through the injection of a multisine current signal (from 1 kHz to 1000 kHz) between a distal tetrapo-

lar catheter electrode and a skin electrode. The voltage induced by the injected current is measured 

between the distal electrode and a second skin electrode. Impedance signal acquisition time was 12 

seconds using a sample frequency of 60 spectra per second. Measures were calibrated according to 

Company-Se et al. [13]. The complete description of the impedance device is at Company-Se et al. 

[13]. 

2.3 Measurement protocol 

Minimally-invasive EIS measurements were acquired though a bronchoscopy. Radiological images 

(CT or PET/CT) are taken in each patient before bronchoscopy following the diagnostic process. 

The catheter used to obtain the bioimpedance data is inserted through the working channel of the 

bronchoscope. Patients are placed in a supine position during the bioimpedance acquisition with the 

upper airways anaesthetized. Moreover, intravenous sedation is also provided. Biopsy was obtained 

to confirm the neoplasm diagnosis. 

2.4 Data analysis 

Decision Tree, Random Forest, KNN, Naïve Bayes and Gradient Boosting classification algorithms 

were implemented to the bioimpedance measurements. To apply the classification algorithm the 

mean averaged spectra of the bioimpedance |Z| and PA obtained from 15 kHz to 307 kHz of neo-

plasm, fibrosis, pneumonia, healthy lung tissue and emphysema were used. Frequencies below 15 

kHz and above 307 kHz were discarded due to electrode and capacitive coupling errors. The mean 
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impedance spectrum was plotted for data visualization. The dataset for algorithms implementation 

was divided using 75% for training and 25% for testing. 

Confusion matrix was used to evaluate visually the results of the classification algorithm. Finally, 

classification report was obtained to evaluate the metrics of each algorithm and for each of the dif-

ferent output classes (neoplasm, fibrosis, pneumonia, healthy lung tissue and emphysema). 

 

3. RESULTS 

3.1 Impedance |Z| and PA Mean Impedance Spectrum 

Figure 1 shows the mean impedance spectra of the modulus (a) and phase angle (b) for neoplasm 

(purple), fibrosis (orange), pneumonia (blue), healthy lung tissue (green) and emphysema (yellow) 

along all the frequencies (15 kHz to 307 kHz). The continuous line represents de mean while the dashed 

and pointed lines represent the ±SD. Tissues with higher air proportion (emphysema and healthy lung 

tissue) present higher values in bioimpedance modulus. Tissues with increased cell concentration (ne-

oplasm) present higher phase angle values. 

 

(a) 
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(b) 

Figure 1. Mean impedance spectrum of |Z| (a) and phase angle (b) for all the frequency range. Pur-

ple: neoplasm; Orange: fibrosis; Blue: pneumonia; Green: healthy lung tissue; Yellow: emphysema. 

3.2 Confusion matrix for multi-class classification results 

Figure 2 shows the confusion matrix for the predictions over the test set for the multiple classification 

algorithms implemented (Decision Tree, Random Forest, KNN, Naïve Bayes and Gradient Boosting). 

Vertical axis represents the true label while the horizontal label represents the predicted label. 

a) Decision Tree b) Random Forest 
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c) KNN d) Naïve Bayes 

 

e) Gradient Boosting 

 

 

Figure 2. Confusion matrix results for Decision Tree (a), Random Forest (b), KNN (c), Naïve Bayes 

(d) and Gradient Boosting (e) for lung tissue classification among neoplasm, fibrosis, pneumonia, 

healthy lung tissue and emphysema. 
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3.3 Classification reports for multi-class classification algorithms 

Table 1 shows the classification reports for the different Machine Learning classification algorithms 

implemented (Decision Tree, Random Forest, KNN, Naïve Bayes and Gradient Boosting). The num-

ber of samples used for training have been 87 (75% of the dataset) while the number of samples used 

for testing have been 29 (25% of the dataset) distributed by 6 samples of emphysema, 3 samples of 

fibrosis, 8 samples of healthy lung tissue, 7 samples of neoplasm and 5 samples of pneumonia. 

Table 1. Classification report for the different Machine Learning classification algorithms (Deci-

sion Tree, Random Forest, KNN, Naïve Bayes and Gradient Boosting). 

 Decision Tree Random Forest KNN 

 Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score 

Emphysema 1.00 0.50 0.67 0.33 0.33 0.33 0.27 0.50 0.35 

Fibrosis 0.67 0.67 0.67 0.50 0.33 0.40 0.00 0.00 0.00 

Healthy 0.60 0.75 0.67 0.56 0.62 0.59 0.25 0.12 0.17 

Neoplasm 0.89 0.86 0.86 0.71 0.71 0.71 0.62 0.71 0.67 

Pneumonia 0.33 0.40 0.36 0.20 0.20 0.20 0.33 0.20 0.25 

Accuracy training   1.00   0.98   0.70 

Accuracy testing   0.66   0.48   0.34 

 Naïve Bayes Gradient Boosting 

 Precision Recall F1-score Precision Recall F1-score 

Emphysema 0.50 0.33 0.40 0.50 0.50 0.50 

Fibrosis 0.50 0.33 0.40 0.00 0.00 0.00 

Healthy 0.55 0.75 0.63 0.50 0.38 0.43 

Neoplasm 0.78 1.00 0.88 0.60 0.43 0.50 

Pneumonia 0.67 0.40 0.50 0.33 0.80 0.47 

Accuracy training   0.62   0.84 

Accuracy testing   0.62   0.45 

 

 

4. DISCUSION 

This project evaluates the possible implementation of Machine Learning classification algorithms 

for classification of electrical impedance spectroscopy measures performed in lung tissue. Under 

normal conditions, the function of the lungs and structures of respiratory system is to facilitate gas 

exchange. Oxygen gets transported through the alveoli into the capillary network, where it can enter 

the arterial system. Different pathologies can affect to the respiratory system such as emphysema, 
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neoplasm, fibrosis or pneumonia. Each of these disorders have their own anatomical and histological 

changes, thus differences in bioimpedance values are expected (Fig. 1) [22]. 

In the previous studies [12], [13], [15], the authors discarded the frequencies below 15 kHz and 

above 307 kHz due to electrode and capacitive errors respectively. The electrode errors are produced 

due to the impedance of the electrode, which have a capacitive component. Given the unknown 

electrode impedance, the influence in the tissue is lower as higher is the value of the impedance 

parameter. The capacitive errors produced at high frequencies affect differently the tissues as the 

pathologic cells produce changes in the tissue, thus, varying the Xc of the tissue. The frequencies of 

15 kHz and 307 kHz were the most discriminative ones according to the pair-wise Euclidean distance 

among groups [15]. In this present study, all the frequencies between the frequency range of 15 kHz 

to 307 kHz have been used for the implementation of the classification algorithms. 

Results in Fig. 1 show an increase in the mean impedance values in those tissues with higher air 

content, such as healthy lung tissue or emphysema, with respect to those tissues with a decrease in 

air content, such as neoplasm or fibrosis. Emphysema is characterized by a destruction of the alveoli 

walls [23] that increases the volume of air and decreases the presence of tissue. These pathological 

changes increase the module impedance. On the other hand, neoplasm is characterized by an increase 

in cell concentration as well as tissue vascularization [23] which lowers the module impedance.  

For the application of the classification algorithms, the mean values of |Z| and PA for all the patients 

have been taken into consideration, discarding the resistance and reactance values to avoid depend-

ency of the data. The learning problem consist on dividing the data into a training set and a test set. 

The percentage of splitting is not fixed and although it is usually to use 80% for training and 20% 

for testing it is not any fixed rule for this partition. Due to the relatively small data available in this 

application, the percentage for training have been decreased slightly to 75%, then the percentage for 

testing have been 25%. With the training data the algorithm is trained and learns a model to classify 

the data. The test data is used to check if the algorithm is able to generalize with never seen data, 

and thus, adapts well to the objective of the task [24]. 
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To evaluate the performance of the algorithms implemented, the classification report for all the al-

gorithms have been obtained. In the classification report the precision, the recall and the F1-score 

metrics are visualized. Precision indicates how many of the samples predicted as positive are truly 

positive (for example, how many of the samples predicted as neoplasm are actually neoplasm). This 

metric is important specially when no false positives are desired. On the other hand, the recall metric 

measures how many of the positive samples are captured by the positive predictions. The recall is 

specially used for avoiding false negatives. In our case it is especially important as false negatives 

have a direct impact in the rapid and correct diagnosis of patients. To complement the precision and 

recall metrics, the F1-score is defined as 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 [24].  

The first algorithm implemented have been the Decision Tree. This algorithm is widely used due to 

its simplicity. It basically consists on learning a hierarchy of if/else questions that finally lead to a 

decision. The algorithm builds a hierarchical partition that is repeated until each of the classes are 

separated from each other. Although its easy implementation, this algorithm is prone to overfitting, 

a situation in which the algorithms adapts to the training set (high training set accuracy) but is not 

able to generalize (low training set accuracy) [24], [25]. This algorithm has a precision and a recall 

of 86% for neoplasm tissue and a recall of 75% for healthy samples. The accuracy of 100% for the 

training set and the accuracy of 66% for the test set may indicate the overfitting of the data (Table 

1). However, this difference in accuracies can not be concluded to be due to overfitting, as it could 

be also due to the small number of samples for the test set, especially for fibrosis (n=3). 

To address the possible condition of overfitting, and related to Decision Tree algorithm, Random 

Forest algorithm is also implemented. This algorithm consists on the implementation of multiple 

Decision Trees different one from the others that enables the creation of a more robust model than 

the Decision Tree algorithm. In addition, Random Forest is promoted to be one of the best classifi-

cation algorithms [24], [25]. The number of Decision Trees applied to the Random Forest algorithm 

has been optimized (n=10) in order to obtain the best training and test sets accuracy. The higher 

recall and precision metrics have been obtained in neoplasm samples (71%) followed by healthy 
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tissue samples with a recall of 62% and a precision of 56%. The overall accuracy of the test set for 

the Random Forest algorithm obtained has been 48% (Table 1). Although this algorithm is promoted 

to be one of the best classification algorithms, for our data Decision Tree is more accurate. This is 

possible due to the fact that the number of samples available for training is relatively small (n=87 

divided among neoplasm, fibrosis, pneumonia, healthy lung tissue and emphysema). Partitions of 

the training data into different groups, or different trees, may not be suitable for training the algo-

rithm. It should be necessary to increase the number of samples for the implementation of this algo-

rithm. 

KNN algorithm has also been implemented. This algorithm classifies new data points according to 

the information of the K nearest neighbors. Then, the number of neighbors has been optimized (n=3) 

in order to obtain the best test accuracy. This algorithm obtains a recall of 71% and a precision of 

62% for neoplasm samples. The overall accuracy of the test set obtained is 34% while in the training 

set the higher accuracy obtained have been 69% (Table 1). This algorithm seems not suitable for our 

data. 

The next classification algorithm implemented have been the Naïve Bayes algorithm. There are three 

types of Naïve Bayes classifier, the Bernoulli, the Multinomial and the Gaussian. The last one is the 

one used for our application as it is the one used for continuous data while Bernoulli assumes data 

to be binary and Multinomial Naïve Bayes assumes count data. The principle of the Gaussian Naïve 

Bayes algorithm is that it makes predictions comparing each data point against the statistics (mean 

and standard deviation) of each of the classes for the best matching [24]. This algorithm has obtained 

a recall of 100% and a precision of 78% for neoplasm samples. The overall accuracy of the algorithm 

is 62% both, for the training and the test sets (Table 1). 

Finally, the last algorithm implemented has been the Gradient Boosting. Similarly to the Random 

Forest algorithm, Gradient Boosting algorithm consists on building trees to a manner that each tree 

tries to solve the mistakes of the previous tree. The learning rate parameter, which controls how the 

tree corrects the mistakes of the previous tree, has been optimized (learning rate = 0.1) to obtain the 

higher accuracy in the test set while maintaining a high accuracy for the test set. The higher recall 
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obtained in this algorithm has been for pneumonia with an 80%. However, its precision has been 

33%. The accuracy of the test set obtained has been 45% while the obtained for the training set has 

been 84% (Table 1). 

In the previous study performed by Company-Se et al. [15] the authors did not find statistically 

significant differences between neoplasm and fibrosis. However, in this study, especially in the Na-

ïve Bayes and the Decision Tree algorithms, confusion matrices (Figure 2) show that neoplasm 

samples are correctly identified and classified. 

The sample size used for the application of the algorithms is 116, which is considered small for non-

medical applications. However, for clinical applications, the number of samples seems adequate as 

compared with previous author’s publications. In addition, the accuracy obtained is similar to previ-

ous clinical studies applying Machine Learning [17], [19]–[21].  

The results are promising and have high clinical importance. Neoplasm and fibrosis are not statisti-

cally significant different, due to their similarities in the bioimpedance parameters values [15]. How-

ever, by using Machine Learning classification algorithms, the results show that no neoplasm sample 

would be diagnosed as fibrosis. Moreover, neoplasm samples are correctly classified, specially using 

the Naïve Bayes (7 out of 7 samples correctly classified) and the Decision tree (6 out of 7 samples 

correctly classified) algorithms. However, it is necessary to continue increasing the number of sam-

ples, both for training and testing, for improving classification accuracy for all the tissue types. For 

the moment, it seems that the more suitable algorithms for our data could be the Naïve Bayes and 

the Decision Tree algorithms. 

 

CONTRIBUTION 

The application of Machine Learning classification algorithms to minimally-invasive bioimpedance 

data of lung tissue is a complementary method to bronchoscopy procedure for real time tissue char-

acterization through tissue classification. 

 

LIMITATION 
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To validate the application of Machine Learning algorithm in minimally-invasive bioimpedance lung 

measurements as a method for real time tissue characterization, it is necessary to increase the sample 

size to train the algorithm more efficiently. 

 

CONCLUSIONS 

The application of Machine Learning classification algorithms are promising tools for the future of 

the medicine. They present an opportunity to help minimally-invasively in the diagnosis of diseases 

and in the real-time tissue characterization. In this study, promising results have been obtained by 

the possible classification and thus, differentiation, of neoplasm with respect to fibrosis, two pair 

tissue samples with similar impedance parameters values which no statistically significant differ-

ences between them. The authors believe that with an increase of the sample size the accuracy of the 

overall test set and the accuracy of each class will increase. In future studies the authors aim to 

increase the sample size of the bioimpedance database as well as to implement multiple classification 

algorithms to increase the classification accuracy and to continue evaluating the implementation of 

classification Machine Learning algorithms for real-time tissue differentiation using bioimpedance 

parameters. 
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CHAPTER 6: DISCUSSION AND CONCLUSIONS 

 

This thesis, initiated in the frame of the research project: Z-LUNG (RTI2018-098116-B-

C21) aimed to study bioimpedance differences in lung tissue according to its state. Four 

pathologies, with different mechanisms from each other were included in the study: lung 

neoplasm, fibrosis, pneumonia and emphysema. In addition, healthy lung tissue was also 

included. 

Before performing all the measurements to accomplish the main objective of the thesis, a 

prior study was performed. Preliminary measurements were taken to study the most 

efficient way to acquire the EIS measurements; with the 4-electrode method or with the 

3-electrode method. The first method had been used in the previous studies performed by 

Sanchez et al. [51], Coll et al. [28] and Riu et. al [52] while the second had been used for 

cardiac applications by Amorós et al. [50] both methods with good tissue differentiation 

for their applications. The first article of the thesis (Chapter 2) shows the study of the 

comparison between the 4-electrode method and the 3-electrode method using minimally-

invasive lung bioimpedance measurements for the differentiation between healthy lung 

tissue and bronchi. Although both methods show high statistically significant differences 

between tissues (P < 0.001) the Fisher Coefficient showed higher values for |Z| and Xc in 

the 4-electrode method while the value in PA parameter was higher in the 3-electrode 

method. The value of the coefficient for R was similar between both methods. 

Furthermore, during bronchoscopy patients cough and move so the acquisition of the 

measurements using the 4-electrode method present higher difficulties than the 3-

electrode method. Due to the similarity in the tissue differentiation, the authors then 

decided to change from the 4-electrode method to the 3-electrode method for the EIS 

measurements acquisition. This also simplifies the operation and reduces the cost of the 

catheters.  

During the acquisition of the measurements, an intermediate study was performed with 

the objective of deciding if calibrating the data to reduce the patient geometry effects 

would increase tissue differentiation or not. In this study (Chapter 3) two analysis were 

performed: 1) Study if there were statistically significant differences between smoker, 

non-smoker and ex-smoker people and 2) study if calibration increase tissue 

differentiation by differentiating calibrated and non-calibrated data between healthy lung 
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tissue and neoplasm. No significant differences (P > 0.05) were found related to the 

smoking condition meaning that this condition should not influence the tissue 

differentiation. Regarding the tissue differentiation between healthy and neoplasm lung 

tissue statistically significant differences (P < 0.001) ere found in |Z|, PA, R and Xc both 

in the calibrated and the non-calibrated data. However, the statistic of the tests was higher 

in the calibrated data. Calibration demonstrated to reduce data variability and increase 

tissue state separation capability. For this reason, calibration has been implemented in the 

third study (Chapter 4) as more pathologies with similar mechanisms from each other 

have been included. 

In the third study (Chapter 4) the differentiation using bioimpedance measurements 

among neoplasm, fibrosis, pneumonia, healthy lung tissue and emphysema was 

performed. Data was acquired using the 3-electrode method according to Chapter 2 and 

calibrated according to Chapter 3. The two most discriminative frequencies (15 kHz for 

|Z| and R and 307 kHz for PA and Xc) were selected to perform the tissue differentiation. 

Statistically significant differences for all the parameters between: neoplasm and 

pneumonia (P < 0.05); neoplasm and healthy lung tissue (P < 0.001); neoplasm and 

emphysema (P < 0.001); fibrosis and healthy lung tissue (P ≤ 0.001) and pneumonia and 

healthy lung tissue (P < 0.01) were found. For fibrosis and emphysema (P < 0.05) only in 

|Z|, R and Xc; and between pneumonia and emphysema (P < 0.05) only in |Z| and R. No 

statistically significant differences (P > 0.05) were found between neoplasm and fibrosis; 

fibrosis and pneumonia; and between healthy lung tissue and emphysema. In general, the 

study showed differences between those pathologies that lead to tissue increase and 

inflammation of cells (neoplasm, fibrosis and pneumonia) and those pathologies that lead 

to destruction of alveolar septa (emphysema). 

Finally, in the last study (Chapter 5) different Machine Learning algorithms have been 

applied to the bioimpedance measurements for the classification amount the different 

types of tissue included in the studies. Despite taking into account that the main limitation 

for the application of the classification algorithms have been the small sample size 

(specially for fibrosis), the algorithms have been optimized through parameter tuning and 

grid search to obtain the best accuracy and also avoid as much as possible overfitting. 

Although some algorithms provide better performance than others (as discussed in 

Chapter 5), the most relevant result is that the classification capacity of the algorithms 
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por the neoplasm samples is high. With classic statistical methods, there was not statistical 

difference between neoplasm and fibrosis. However, using Machine Learning, the 

algorithms were capable of classify neoplasm samples with high accuracy. This could, 

with further validation and training of the algorithms, provide a real-time electronic 

biopsy to help clinicians in the correct sample location of biopsies during bronchoscopies. 

The different studies performed go towards the implementation of EIS measurements for 

real-time tissue characterization to complement the actual methods of diagnostic (chest 

CT, PET/CT or virtual bronchoscopy). Although the actual diagnosis method do not allow 

real time guidance for sample collection, advanced bronchoscopic techniques have been 

developed for a few years, such as the radial probe endobronchial ultrasound (radial 

EBUS) or electromagnetic navigation bronchoscopy (ENB). The high-cost of the new 

techniques makes its availability difficult in the Interventional Pulmonology units so EIS 

measurements could be a low economic cost alternative. 

Although positive results have been obtained in the study, it is also important to remark 

the limitations and difficulties encountered during the project. The main limitation, has 

been the pandemic of Covid-19. The study was initiated in January of 2020 and it was not 

possible to go to the hospital before the lockdown. After the lockdown we went for 2 

weeks to the hospital between Covid-19 waves and managed to performed the preliminary 

measurements from Chapter 2. It was not until November of 2021 when the measurement 

campaign started. Having started earlier, the sample size would be higher, specially those 

pathologies with lower incidence in the population such as fibrosis. However, we have 

managed to study tissue differences. With an increase in the sample size the algorithms 

of machine learning could be trained and tested better. 

Finally, it is important to comment that the title of the thesis is: “Temporal and frequency 

differentiation of healthy and pathological lung tissue through minimally invasive 

electrical impedance spectroscopy”. However, any temporal tool has been applied for the 

moment.  The initial hypothesis was that according to tissue state the amplitude of the 

EIS bioimpedance time signal would change due to respiratory modulation (as presented 

in the International Conference of Bioelectromagnetism, Electrical Bioimpedance and 

Electrical Impedance Tomography 2022 (Annex 2)). As also remarked in the Chapter 2, 

during bronchoscopy patients cough and move although some patients move more and 

some patients move less. The high movement artifacts and the higher differences in the 
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respiratory patterns (some patients cough, some produced apneas…) make not possible 

to implement temporal tools as differences in amplitude did not showed the real state of 

the tissue. For this reason, a second project has been initiated called ELUNG “Biopsia 

Pulmonar Electrónica Guiada por Broncoscopia de Navegación Electromagnética” 

(PID2021-128602OB-C21). During Electromagnetic navigation patients are 

anaesthetized so the movements produced during bronchoscopy will be eliminated and 

temporal analysis will be able to be performed. 

In conclusion, tissue differentiation has been performed with positive results. The 

implementation of this technique to complement the actual methods of diagnosis needs 

further validation by increasing the sample size and training the machine learning 

algorithms. However, EIS bioimpedance measurements performed with 3-electrode 

method and calibrated according to Chapter 3 have demonstrated to discriminate between 

several lung pathologies. 

 

 

 

 

  



115 

 

REFERENCES 

 

[1] S. M. Levine and D. D. Marciniuk, ‘Global Impact of Respiratory Disease’, Chest, 

vol. 161, no. 5, pp. 1153–1154, May 2022, doi: 10.1016/j.chest.2022.01.014. 

[2] T. M. Dempsey and P. D. Scanlon, ‘Pulmonary Function Tests for the Generalist: A 

Brief Review.’, Mayo Clin. Proc., vol. 93, no. 6, pp. 763–771, Jun. 2018, doi: 

10.1016/j.mayocp.2018.04.009. 

[3] M. Silva, G. Milanese, V. Seletti, A. Ariani, and N. Sverzellati, ‘Pulmonary 

quantitative CT imaging in focal and diffuse disease: current research and clinical 

applications.’, Br. J. Radiol., vol. 91, no. 1083, p. 20170644, Feb. 2018, doi: 

10.1259/bjr.20170644. 

[4] S. Candemir and S. Antani, ‘A review on lung boundary detection in chest X-rays.’, 

Int. J. Comput. Assist. Radiol. Surg., vol. 14, no. 4, pp. 563–576, Apr. 2019, doi: 

10.1007/s11548-019-01917-1. 

[5] A. Mouton, R. D. Pitcher, and T. S. Douglas, ‘Computer-aided detection of 

pulmonary pathology in pediatric chest radiographs.’, Med. Image Comput. Comput.-

Assist. Interv. MICCAI Int. Conf. Med. Image Comput. Comput.-Assist. Interv., vol. 

13, no. Pt 3, pp. 619–625, 2010, doi: 10.1007/978-3-642-15711-0_77. 

[6] J. Dimastromatteo, E. J. Charles, and V. E. Laubach, ‘Molecular imaging of 

pulmonary diseases.’, Respir. Res., vol. 19, no. 1, p. 17, Jan. 2018, doi: 

10.1186/s12931-018-0716-0. 

[7] E. A. Kazerooni, ‘High-Resolution CT of the Lungs’, Am. J. Roentgenol., vol. 177, 

no. 3, pp. 501–519, Sep. 2001, doi: 10.2214/ajr.177.3.1770501. 

[8] F. G. Meinel et al., ‘Diagnosing and Mapping Pulmonary Emphysema on X-Ray 

Projection Images: Incremental Value of Grating-Based X-Ray Dark-Field Imaging’, 

PLOS ONE, vol. 8, no. 3, pp. 1–9, Mar. 2013, doi: 10.1371/journal.pone.0059526. 

[9] D. E. Ost et al., ‘Diagnostic Yield and Complications of Bronchoscopy for Peripheral 

Lung Lesions. Results of the AQuIRE Registry.’, Am. J. Respir. Crit. Care Med., vol. 

193, no. 1, pp. 68–77, Jan. 2016, doi: 10.1164/rccm.201507-1332OC. 

[10] J. S. Wang Memoli, P. J. Nietert, and G. A. Silvestri, ‘Meta-analysis of guided 

bronchoscopy for the evaluation of the pulmonary nodule.’, Chest, vol. 142, no. 2, 

pp. 385–393, Aug. 2012, doi: 10.1378/chest.11-1764. 

[11] S. Grimnes, Bioimpedance and bioelectricity basics. Boston, MA: Elsevier, 2014. 



116 

 

[12] P. L. Shah, F. J. Herth, Y. G. Lee, and G. J. Criner, Essentials of Clinical 

Pulmonology. CRC Press, 2020. 

[13] D. S. Zander and C. F. Farver, Pulmonary Pathology: a volume in the series 

Foundations in diagnoistic pathology. Churchill Livingstone Elsevier. 

[14] S. E. Weinberger, B. A. Cockrill, and J. Mandel, Principles of pulmonary 

medicine, 7th ed. Elsevier, 2019. 

[15] G. D. Hammer and S. J. McPhee, Pathophysiology of disease, an introduction to 

clinical medicine, Eight. McGraw-Hill Education. 

[16] J. Sauleda, B. Núñez, E. Sala, and J. Soriano, ‘Idiopathic Pulmonary Fibrosis: 

Epidemiology, Natural History, Phenotypes’, Med. Sci., vol. 6, no. 4, p. 110, Nov. 

2018, doi: 10.3390/medsci6040110. 

[17] K. C. Meyer and S. D. Nathan, Eds., Idiopathic Pulmonary Fibrosis: A 

Comprehensive Clinical Guide. in Respiratory Medicine. Cham: Springer 

International Publishing, 2019. doi: 10.1007/978-3-319-99975-3. 

[18] Introduction to Bronchoscopy, 2nd ed. Cambridge University Press, 2017. doi: 

10.1017/9781316084182. 

[19] M. Mondoni et al., ‘Bronchoscopic sampling techniques in the era of 

technological bronchoscopy’, Pulmonology, vol. 28, no. 6, pp. 461–471, Nov. 2022, 

doi: 10.1016/j.pulmoe.2020.06.007. 

[20] P. Mazzone, P. Jain, A. C. Arroliga, and R. A. Matthay, ‘Bronchoscopy and needle 

biopsy techniques for diagnosis and staging of lung cancer’, Clin. Chest Med., vol. 

23, no. 1, pp. 137–158, Mar. 2002, doi: 10.1016/S0272-5231(03)00065-0. 

[21] S. Khalil, M. Mohktar, and F. Ibrahim, ‘The Theory and Fundamentals of 

Bioimpedance Analysis in Clinical Status Monitoring and Diagnosis of Diseases’, 

Sensors, vol. 14, no. 6, pp. 10895–10928, Jun. 2014, doi: 10.3390/s140610895. 

[22] G. Martinsen, S. Grimnes, and H. P. Schwan, ‘INTERFACE PHENOMENA 

AND DIELECTRIC PROPERTIES OF BIOLOGICAL TISSUE’, 2002. 

[23] R. Pethig and D. B. Kell, ‘The passive electrical properties of biological systems: 

their significance in physiology, biophysics and biotechnology’, Phys. Med. Biol., 

vol. 32, no. 8, pp. 933–970, Aug. 1987, doi: 10.1088/0031-9155/32/8/001. 

[24] H. P. Schwan, ‘Electrical properties of tissues and cell suspensions: mechanisms 

and models’, in Proceedings of 16th Annual International Conference of the IEEE 



117 

 

Engineering in Medicine and Biology Society, Baltimore, MD, USA: IEEE, 1994, pp. 

A70–A71. doi: 10.1109/IEMBS.1994.412155. 

[25] M. Ibrani, L. Ahma, and E. Hamiti, ‘The Age-Dependence of Microwave 

Dielectric Parameters of Biological Tissues’, in Microwave Materials 

Characterization, S. Costanzo, Ed., InTech, 2012. doi: 10.5772/51400. 

[26] H. C. Lukaski, ‘Biological indexes considered in the derivation of the bioelectrical 

impedance analysis’, Am. J. Clin. Nutr., vol. 64, no. 3, pp. 397S-404S, Sep. 1996, 

doi: 10.1093/ajcn/64.3.397S. 

[27] H. C. Lukaski, N. Vega Diaz, A. Talluri, and L. Nescolarde, ‘Classification of 

Hydration in Clinical Conditions: Indirect and Direct Approaches Using 

Bioimpedance’, Nutrients, vol. 11, no. 4, p. 809, Apr. 2019, doi: 

10.3390/nu11040809. 

[28] N. C. Guich, R. B. Bardia, A. M. Muñoz-Fernández, V. P. Ruiz, A. Torrego, and 

P. J. R. Costa, ‘Espectrometría de impedancia eléctrica en tejido pulmonar’, p. 4, 

2016. 

[29] K. S. Cole and R. H. Cole, ‘Dispersion and Absorption in Dielectrics I. Alternating 

Current Characteristics’, J. Chem. Phys., vol. 9, no. 4, pp. 341–351, Dec. 2004, doi: 

10.1063/1.1750906. 

[30] D. A. Dean, T. Ramanathan, D. Machado, and R. Sundararajan, ‘Electrical 

Impedance Spectroscopy Study of Biological Tissues.’, J. Electrost., vol. 66, no. 3–

4, pp. 165–177, Mar. 2008, doi: 10.1016/j.elstat.2007.11.005. 

[31] P. Héroux and M. Bourdages, ‘Monitoring living tissues by electrical impedance 

spectroscopy.’, Ann. Biomed. Eng., vol. 22, no. 3, pp. 328–337, Jun. 1994, doi: 

10.1007/BF02368239. 

[32] J. Estrela da Silva, J. P. Marques de Sá, and J. Jossinet, ‘Classification of breast 

tissue by electrical impedance spectroscopy’, Med. Biol. Eng. Comput., vol. 38, no. 

1, pp. 26–30, Jan. 2000, doi: 10.1007/BF02344684. 

[33] K. Yoon et al., ‘Electrical impedance spectroscopy and diagnosis of tendinitis.’, 

Physiol. Meas., vol. 31, no. 2, pp. 171–182, Feb. 2010, doi: 10.1088/0967-

3334/31/2/004. 

[34] E. Gersing, ‘Impedance spectroscopy on living tissue for determination of the 

state of organs’, Bioelectrochem. Bioenerg., vol. 45, no. 2, pp. 145–149, 1998, doi: 

https://doi.org/10.1016/S0302-4598(98)00079-8. 



118 

 

[35] F. Mellert et al., ‘Detection of (reversible) myocardial ischemic injury by means 

of electrical bioimpedance.’, IEEE Trans. Biomed. Eng., vol. 58, no. 6, pp. 1511–

1518, Jun. 2011, doi: 10.1109/TBME.2010.2054090. 

[36] S. Kun, B. Ristić, R. A. Peura, and R. M. Dunn, ‘Algorithm for tissue ischemia 

estimation based on electrical impedance spectroscopy.’, IEEE Trans. Biomed. Eng., 

vol. 50, no. 12, pp. 1352–1359, Dec. 2003, doi: 10.1109/TBME.2003.819846. 

[37] C. Skourou, P. J. Hoopes, R. R. Strawbridge, and K. D. Paulsen, ‘Feasibility 

studies of electrical impedance spectroscopy for early tumor detection in rats.’, 

Physiol. Meas., vol. 25, no. 1, pp. 335–346, Feb. 2004, doi: 10.1088/0967-

3334/25/1/037. 

[38] R. J. Halter, A. Hartov, J. A. Heaney, K. D. Paulsen, and A. R. Schned, ‘Electrical 

impedance spectroscopy of the human prostate.’, IEEE Trans. Biomed. Eng., vol. 54, 

no. 7, pp. 1321–1327, Jul. 2007, doi: 10.1109/TBME.2007.897331. 

[39] V. S. Teixeira, T. Barth, V. Labitzky, U. Schumacher, and W. Krautschneider, 

‘Electrical Impedance Spectroscopy for Characterization of Prostate PC-3 and DU 

145 Cancer Cells.’, Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. 

Soc. Annu. Int. Conf., vol. 2019, pp. 6485–6489, Jul. 2019, doi: 

10.1109/EMBC.2019.8856627. 

[40] W. Homola, T. Fuchs, P. Baranski, A. Zimmer, M. Zimmer, and M. Pomorski, 

‘Use of electrical impedance spectroscopy as an adjunct to colposcopy in a pathway 

of cervical intraepithelial neoplasia diagnostics.’, Ginekol. Pol., vol. 90, no. 11, pp. 

628–632, 2019, doi: 10.5603/GP.2019.0107. 

[41] J. A. Tidy et al., ‘Accuracy of detection of high-grade cervical intraepithelial 

neoplasia using electrical impedance spectroscopy with colposcopy.’, BJOG Int. J. 

Obstet. Gynaecol., vol. 120, no. 4, pp. 400–10; discussion 410-411, Mar. 2013, doi: 

10.1111/1471-0528.12096. 

[42] S. L. Hillary, B. H. Brown, N. J. Brown, and S. P. Balasubramanian, ‘Use of 

Electrical Impedance Spectroscopy for Intraoperative Tissue Differentiation During 

Thyroid and Parathyroid Surgery.’, World J. Surg., vol. 44, no. 2, pp. 479–485, Feb. 

2020, doi: 10.1007/s00268-019-05169-7. 

[43] S. P. Desai, A. Coston, and A. Berlin, ‘Micro-Electrical Impedance Spectroscopy 

and Identification of Patient-Derived, Dissociated Tumor Cells.’, IEEE Trans. 



119 

 

Nanobioscience, vol. 18, no. 3, pp. 369–372, Jul. 2019, doi: 

10.1109/TNB.2019.2920743. 

[44] S. Gabriel, R. W. Lau, and C. Gabriel, ‘The dielectric properties of biological 

tissues: III. Parametric models for the dielectric spectrum of tissues’, Phys. Med. 

Biol., vol. 41, no. 11, p. 2271, Nov. 1996, doi: 10.1088/0031-9155/41/11/003. 

[45] S. Toso et al., ‘Altered Tissue Electric Properties in Lung Cancer Patients as 

Detected by Bioelectric Impedance Vector Analysis’, p. 5. 

[46] D. M. Nierman, D. I. Eisen, E. D. Fein, E. Hannon, J. I. Mechanick, and E. 

Benjamin, ‘Transthoracic bioimpedance can measure extravascular lung water in 

acute lung injury.’, J. Surg. Res., vol. 65, no. 2, pp. 101–108, Oct. 1996, doi: 

10.1006/jsre.1996.0350. 

[47] J. Orschulik, N. Hochhausen, S. A. Santos, M. Czaplik, S. Leonhardt, and M. 

Walter, ‘Detection of Acute Respiratory Distress Syndrome using Sectoral 

Bioimpedance Spectroscopy – a Pilot Study’, p. 4, doi: 10.18154/RWTH-CONV-

224905. 

[48] E. Jorge, G. Amorós-Figueras, T. García-Sánchez, R. Bragós, J. Rosell-Ferrer, 

and J. Cinca, ‘Early detection of acute transmural myocardial ischemia by the phasic 

systolic-diastolic changes of local tissue electrical impedance’, Am. J. Physiol.-Heart 

Circ. Physiol., vol. 310, no. 3, pp. H436–H443, Feb. 2016, doi: 

10.1152/ajpheart.00754.2015. 

[49] G. Amorós-Figueras, E. Jorge, T. García-Sánchez, R. Bragós, J. Rosell-Ferrer, 

and J. Cinca, ‘Recognition of Fibrotic Infarct Density by the Pattern of Local Systolic-

Diastolic Myocardial Electrical Impedance’, Front. Physiol., vol. 7, Aug. 2016, doi: 

10.3389/fphys.2016.00389. 

[50] G. Amorós-Figueras et al., ‘Endocardial infarct scar recognition by myocardial 

electrical impedance is not influenced by changes in cardiac activation sequence’, 

Heart Rhythm, vol. 15, no. 4, pp. 589–596, Apr. 2018, doi: 

10.1016/j.hrthm.2017.11.031. 

[51] B. Sanchez et al., ‘In vivo electrical bioimpedance characterization of human lung 

tissue during the bronchoscopy procedure. A feasibility study’, Med. Eng. Phys., vol. 

35, no. 7, pp. 949–957, Jul. 2013, doi: 10.1016/j.medengphy.2012.09.004. 

[52] P. J. Riu, G. Company, R. Bragos, J. Rosell, V. Pajares, and A. Torrego, 

‘Minimally Invasive Real-Time Electrical Impedance Spectroscopy Diagnostic Tool 



120 

 

for Lung Parenchyma Pathologies’, in 2020 42nd Annual International Conference 

of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, 

Canada: IEEE, Jul. 2020, pp. 5077–5080. doi: 10.1109/EMBC44109.2020.9175860. 

[53] M. May, ‘Eight ways machine learning is assisting medicine’, Nat. Med., vol. 27, 

no. 1, pp. 2–3, Jan. 2021, doi: 10.1038/s41591-020-01197-2. 

[54] A. C. Müller and S. Guido, Introduction to Machine Learning with Python, A 

Guide for Data Scientists, First. United States of America: O’Reilly Media, 2017. 

[55] R. C. Deo, ‘Machine Learning in Medicine’, Circulation, vol. 132, no. 20, pp. 

1920–1930, Nov. 2015, doi: 10.1161/CIRCULATIONAHA.115.001593. 

[56] S. Dinç and R. S. Aygün, ‘Evaluation of Hyperspectral Image Classification Using 

Random Forest and Fukunaga-Koontz Transform’, in Machine Learning and Data 

Mining in Pattern Recognition, P. Perner, Ed., in Lecture Notes in Computer Science, 

vol. 7988. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 234–245. doi: 

10.1007/978-3-642-39712-7_18. 

[57] S. Zeadally, E. Adi, Z. Baig, and I. A. Khan, ‘Harnessing Artificial Intelligence 

Capabilities to Improve Cybersecurity’, IEEE Access, vol. 8, pp. 23817–23837, 2020, 

doi: 10.1109/ACCESS.2020.2968045. 

[58] G. Amorós-Figueras et al., ‘Electrophysiological and histological characterization 

of atrial scarring in a model of isolated atrial myocardial infarction.’, Front. Physiol., 

vol. 13, p. 1104327, 2022, doi: 10.3389/fphys.2022.1104327. 

[59] G. Amoros-Figueras et al., ‘A closed-chest model of selective atrial myocardial 

infarction for the study of induced electrophysiological and structural derangements’, 

Eur. Heart J., vol. 43, no. Supplement_2, Oct. 2022, doi: 

10.1093/eurheartj/ehac544.2907. 

[60] G. Amoros-Figueras et al., ‘Real-time electrophysiological characterization of 

acute and chronic radiofrequency ablation lesions’, Eur. Heart J., vol. 43, no. 

Supplement_2, Oct. 2022, doi: 10.1093/eurheartj/ehac544.2972. 

 

  



121 

 

ANNEX 1 

 

CONFERENCE PAPERS DERIVED FROM THE THESIS 

 

TITLE: “Aplicación de un algoritmo de inteligencia artificial en datos de espectroscopia 

de impedancia eléctrica para la clasificación de tejidos pulmonares”. 

AUTHORS: Albert Rafecas Codern, Georgina Company Se, Lexa Nescolarde, Virginia 

Pajares Ruiz, Alfons Torrego Fernández, Javier Rosell Ferrer, Pere J. Riu Costa, Ramon 

Bragós Bardia. 

CONFERENCE: 56° Congreso Nacional de la Sociedad Española de Neumología y 

Cirugía Torácica (SEPAR) 

YEAR: 2023 

 

TITLE: Relaxation differences using EIS through bronchoscopy of healthy and 

pathological lung tissue 

AUTHORS: Georgina Company-Se, Lexa Nescolarde, Virginia Pajares, Alfons Torrego, 

Albert Rafecas, Javier Rosell, Pere J. Riu, and Ramon Bragós 

CONFERENCE: 45th Annual International Conference of the IEEE Engineering in 

Medicine and Biology Society 

YEAR:2023 

 

TITLE: Using Temporal Electrical Impedance Spectroscopy Measures to Differentiate 

Lung Pathologies with the 3-Electrode Method 

AUTHORS: Georgina Company-Se, Lexa Nescolarde, Javier Rosell, Pere J. Riu, 

Virginia Pajares, Alfons Torrego and Ramon Bragós 

CONFERENCE: Proceedings of the International Conference of Bioelectromagnetism, 

Electrical Bioimpedance and Electrical Impedance Tomography. 

YEAR: 2022 



122 

 

WEBSITE: https://upcommons.upc.edu/handle/2117/372100 

 

TITLE: “Viabilidad de la Medición de la Impedáncia Eléctrica Pulmonar Mediante 

Broncoscopia”. 

AUTHORS: Albert Rafecas Codern, Georgina Company Se, Esther Palonés Femenia, 

Lexa Nescolarde Selva, Alfons Torrego Fernández, Javier Rosell Ferrer, Virginia Pajares 

Ruiz, Pere J. Riu Costa, Marta Navarro Colom, Ramon Bragós Bardia 

CONFERENCE: 55° Congreso Nacional de la Sociedad Española de Neumología y 

Cirugía Torácica (SEPAR) 

YEAR: 2022 

 

CONFERENCE PAPERS AND ARTICLES NON-DIRECTLY DERIVED 

FROM THE THESIS 

 

TITLE: Electrophysiological and histological characterization of atrial scarring in a 

model of isolated atrial myocardial infarction [58]. 

AUTHORS: Gerard Amorós-Figueras, Sergi Casabella-Ramon, Georgina Company-Se, 

Dabit Arzamendi, Esther Jorge, Alvaro Garcia-Osuna, Yolanda Macías, Damián 

Sánchez-Quintana, Javier Rosell-Ferrer, José M. Guerra and Juan Cinca 

JOURNAL: Frontiers in Physiology 

DOI: 10.3389/fphys.2022.1104327 

YEAR: 2022 

 

 

TITLE: A closed-chest model of selective atrial myocardial infarction for the study of 

induced electrophysiological and structural derangements [59]. 

AUTHORS: G. Amoros-Figueras, S. Casabella, G. Company, D. Arzamendi, Y. Macias, 

E. Jorge, D. Sanchez-Quintana, J. Rosell-Ferrer, J.M. Guerra, J. Cinca 



123 

 

JOURNAL: European Heart Journal 

DOI: https://doi.org/10.1093/eurheartj/ehac544.2907 

YEAR: 2022 

 

TITLE: Real-time electrophysiological characterization of acute and chronic 

radiofrequency ablation lesions [60] 

AUTHORS: G. Amoros-Figueras, S. Casabella, Z. Moreno-Weidmann, G. Company, E. 

Jorge, J. Rosell-Ferrer, J. Cinca, J.M. Guerra 

JOURNAL: European Heart Journal 

DOI: https://doi.org/10.1093/eurheartj/ehac544.2972 

YEAR: 2022 

 

TITLE: Minimally-Invasive Real-Time Electrical Impedance Spectroscopy Diagnostic 

Tool for Lung Parenchyma Pathologies [52]. 

AUTHORS: Pere J Riu, Georgina Company, Ramon Bragós, Javier Rosell, Virginia 

Pajares and Alfons Torrego 

CONFERENCE: 42nd Annual International Conference IEEE Engineering in Medicine 

and Biology Society  

DOI: 10.1109/EMBC44109.2020.9175860 

YEAR: 2020 

  



124 

 

  



125 

 

ANNEX 2:  Using temporal electrical impedance 

spectroscopy measures to differentiate lung 

pathologies with the 3-electrode method 
 

 

 

 

 

 

Title: Using temporal electrical impedance spectroscopy measures 

to differentiate lung pathologies with the 3-electrode method 

Authors: Georgina Company-Se, Lexa Nescolarde, Javier Rosell, 

Pere J. Riu, Virginia Pajares, Alfons Torrego and Ramon Bragós 

Congress: International Conference of Bioelectromagnetism, 

Electrical Bioimpedance, and Electrical Impedance Tomography 

2022 

  



126 

 

  



 

 

 

 

 

 

Proceedings of the International Conference of 

Bioelectromagnetism, Electrical Bioimpedance, and Electrical Impedance Tomography 

June 28 – July 1, 2022 / Kyung  Hee University, Seoul, Korea 
 

Using temporal electrical impedance spectroscopy measures to 

differentiate lung pathologies with the 3-electrode method 

Georgina Company-Se1, Lexa Nescolarde1, Javier Rosell1, Pere J. Riu1, Virginia Pajares2, Alfons 

Torrego2 and Ramon Bragós1 
1Department of electronic engineering, Universitat Politècnica de Catalunya, Barcelona, Spain 
2Department of Respiratory Medicine, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain 

Correspondence: Georgina Company-Se, e-mail: georgina.company@upc.edu  

This work was supported in part by the Spanish Ministry of Science and Innovation under Grant RTI2018-098116-B-

C21/C22, and in part by the Secretariat of Universities and Research of the Generalitat de Catalunya and the European 

Social Fund. 
 

Abstract− Minimally invasive lung bioimpedance measurements could serve in the future diagnosis of lung pathologies 

complementing biopsies and imaging techniques. Through the electrical impedance spectroscopy (EIS) technique using 

the 3-electrode method, distinction of lung pathologies could be possible depending on the state of the tissue. Since now, 

only averaged information has been used for the analysis of bioimpedance data in lungs. The aim of this study is to use 

temporal information to evaluate changes in the impedance signal due to the mechanism of ventilation and perfusion 

produced by the lungs. Preliminary results show: 1) correlation between ventilation and perfusion with the bioimpedance 

signal and 2) changes in the amplitude of the bioimpedance time signal depending on the pathology. As conclusion, 

together with cycled averaged data, temporal data could be useful for lung pathologies distinction. 

Keywords: lung; electrical impedance spectroscopy (EIS); modulation; bronchoscopy. 

1. Introduction 

Lung pathologies present different histological results. Some pathologies lead to an increase of cell concentration and 

extracellular matrix in lung tissue while others lead to the destruction of the lung parenchyma. Moreover, other lung 

pathologies lead to the increase of mucous that hinders the passage of air in the respiratory tract. Electrical impedance 

spectroscopy (EIS) offers an opportunity to differentiate lung disorders based on the different patterns associated with 

each of them. Moreover, changes in the blood perfusion and changes in the ventilatory movement of the tissue (two 

phenomena present during the acquisition of lung bioimpedance measures) may help to differentiate these lung 

pathologies. 

 In previous studies, Sanchez et al. observed the effect of the ventilation and the perfusion of the blood present 

in the alveoli in the EIS measurements taken using the 4-electrode method [2]. However, the 4-electrode method, as 

discussed in Company-Se et al. [1] when measuring lung tissue is more difficult for the clinicians than the measurement 

of bioimpedance data with the 3-electrode method due to the difficulty of ensuring the contact of the 4 electrodes with 

the tissue target. Also, the capacity of tissue differentiation is the same on both methods. For this reason, EIS lung 

measurements using the 3-electrode method are being taken in the current project during a bronchoscopy process.  

 The aim of this study is to demonstrate the effect of the ventilation and the perfusion mechanisms in the 

bioimpedance signal in preliminary measurements. 

2. Materials and methods 

Participants 

Minimally invasive EIS lung measurements are being taken in patients for whom a bronchoscopy is indicated at the 

“Hospital de la Santa Creu i Sant Pau” using the 3-electode method in bronchi, healthy lung tissue and in pathological 

tissue if applied (neoplasm, emphysema, pneumonia and fibrosis). Ethics approval has been obtained from the Ethics 



Committee of Hospital de la Santa Creu i Sant Pau (CEIC-73/2010) according to principles of the declaration of Helsinki. 

All patients participating in the study have provided signed informed consent. 

Measurement system 

To acquire the bioimpedance measures, a tetrapolar catheter, 115 cm long with a diameter of 1.65 mm (5 F) is being used 

(Medtronic 5F RF Marinr steerable catheter with electrode separation 2/5/2 mm). Also, two skin electrodes (Ambu 

BlueSensor VLC ref: VLC-00-s/10 and 3M Company ref: 9160F) placed on the right side of the patients at the level of 

the ribs are being used. 

The measurement system consists of an optically insulated battery powered patient interface (including the impedance 

front end), a rugged PC platform based on a National Instruments PXI system and an analog-optical interface to connect 

the PXI with the insulated front end. An arbitrary waveform generator generates a multisine excitation signal which is a 

broadband signal composed of 26 frequencies between 1 kHz and 1 MHz. 

To acquire the bioimpedance measurements, only the electrode located at the tip of the catheter is used to inject the 

current and to detect the potential while the low current and the low potential electrodes correspond to the two skin 

electrodes. A more detailed explanation of the measurement system is included in Company-Se et al. [1]. 

To acquire the ventilation and the ECG signals the polygraphy monitoring device Embletta MPR from Natus, with a 

thoracic inductive band, is used. 

Measurement protocol 

Records of 12 seconds of bioimpedance measurements (60 spectra/s) are obtained by inserting the catheter through the 

bronchoscope working channel. Patients are placed in a supine position during the process. Topical 2% lidocaine is used 

to anaesthetise the upper airway as well as intravenous sedation is provided through the procedure. Prior to bronchoscopy, 

computed tomography (CT) of the thorax was performed as part of the diagnostic process of respiratory diseases and to 

guide the bronchoscopy procedures. 

Data extraction 

To compare the effect of the ventilation and the perfusion on the bioimpedance signal a 30-points double-pass moving-

average filter is applied to the signal to extract the ventilatory modulation. The difference between the original signal and 

the signal filtered is supposed to be the modulation corresponding to the perfusion. 

3. Results 

Efect of the ventilatory and perfusion modulations in the bioimpedance signal 

Figure 1 shows the 12 seconds acquisition of the bioimpedance magnitude signal at 33 kHz, in blue, as well as the 

breathing, in black, and electrocardiographic (ECG), in red, signals. 

 

Figure 1.  Superposition of the 12 seconds impedance signal at 33 kHz with the ventilation and ECG signals in a healthy lung tissue 

location 

Figure 2 shows the power spectral density of the impedance signal (blue) after applying the 30-points double-pass moving-

average filter and the ventilation signal (orange).  



 

Figure 2. Power spectral density of the bioimpedance signal after applying a 30-points double-pass moving-average filter (blue, peak 

at 0.33 Hz) and power spectral density of the ventilation signal (orange, peak at 0.33 Hz). 

Figure 3 shows the power spectral density of the signal after making the difference between the original signal and the 

signal resulting of the application of the 30-points double-pass moving-average filter (blue), considered to be the perfusion 

signal, and the power spectral density of the ECG signal (orange).  

 

Figure 3. Power spectral density of the perfusion signal (blue, peak at 1.2 Hz) and ECG signal (orange, peak at 1.2 Hz). 

Changes in amplitude of the bioimpedance signal based on different states of the tissue 

Figure 4 shows amplitude changes due to ventilation depending on the state of the tissue measured at 33 kHz from 3 

different cases (healthy tissue, pneumonia and neoplasic tissue). Healthy tissue shows a higher breathing modulation than 

neoplasic lung tissue which, in turn, shows higher breathing modulation than the area of lung with pneumonia. Also, 

different ventilatory frequencies and shapes are visible.  



 

Figure 4. Amplitude changes in bioimpedance signals at 33 kHz from different patients and different tissue states. 

4. Discussion 

Electrical impedance spectroscopy can represent an opportunity to differentiate lung pathologies in order to complement 

the actual diagnostic processes. Together with averaged impedance results, temporal information could be useful to 

improve the tissue differentiation through changes in amplitude and shape of the signals acquired due to the effect of the 

ventilation and the perfusion.  

The effect of the modulation is easily observable while the effect of the perfusion is not (Figure 1). The comparison 

between the spectrum of the signal considered to be the breathing modulation and the spectrum of the breathing signal 

(Figure 2) show a high frequency component at the same frequency (between 0.3 and 0.4 Hz) validating the existing 

modulation due to the inhalation and exhalation of the patients during the acquisition of the measure. 

The effect of the perfusion is not so easily observable. This effect is demonstrated in the power spectrum of the two 

signals, the one representing the perfusion extracted from the bioimpedance signal and the ECG. In both cases there is a 

high frequency component in the 1.2 Hz corresponding to the cardiac rhythm.  

The presence or absence of these two modulations could be used in the future to distinguish between different tissue 

states. An absence of breathing modulation could represent that the tissue measured is rigid while a high modulation of 

perfusion could represent the presence of neoplasic tissue, due to the nature of this pathology. These changes have also 

been demonstrated on Figure 4 in which the amplitude of the neoplasic tissue due to breathing is lower than the amplitude 

for healthy tissue. This phenomenon is due to the higher concentration of cells in the neoplasic tissue and, in consequence, 

the lower concentration of air. We have also seen that the amplitude of the signal related to breathing in lung with 

pneumonia is lower than the amplitude of the neoplasic tissue signal. This phenomenon could be due to the excessive 

concentration of mucous, which hinders the air flowing through the ventilatory ways.  

5. Conclusions 

Ventilatory and perfusion modulations are present in the bioimpedance signal and could be a tool to distinguish between 

different lung pathologies.  
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Abstract— The use of electrical impedance spectroscopy for lung 

tissue differentiation is an opportunity for the improvement of 

clinical diagnosis. The aim of this work is to distinguish among 

different lung tissue states by evaluating the differences among 

impedance spectrum parameters between two separate frequencies 

(15 kHz and 307 kHz) in the beta dispersion region. In previous 

studies we have used single frequency measurements for tissue 

differentiation. Differences (P < 0.05) are found between those 

tissues that undergo an increase in tissue density (neoplasm and 

fibrosis) and those tissues that lead to tissue destruction 

(emphysema). Electrical impedance spectroscopy shows its utility 

for lung tissue differentiation for diagnosis improvement among 

pathologies with different tissue structure. Further studies are 

necessary for the differentiation among those tissue states that are 

more similar to each other. 

 
Clinical Relevance— Expand the diagnostic tools currently 

available in bronchoscopy by using minimally-invasive 

bioimpedance measurements to differentiate between lung patterns. 

 

I. INTRODUCTION 

The diagnosis of peripheral lung lesions in patients who are 
suspected of having lung cancer remains a challenge. The 
measurement of Electrical Impedance Spectroscopy (EIS) 
could allow the differentiation of pathological tissue and help 
in the choice of the specific sampling location and allow the 
selection of the biopsy area in real time.  
Bioimpedance (Z) is defined as the opposition that the tissue 
offers to the flow of an electrical current administrated. When 
the administrated current is alternating current the 
bioimpedance is frequency dependent. When several 
frequencies into a wide range of frequency is used to measure 
bioimpedance then EIS is performed. The Z has a resistance 
(R) component, which is the opposition produced by the 
extracellular and intracellular medium and a reactance (Xc) 
component, produced by the capacitive behavior of the cell 
membranes. From these two terms, the bioimpedance module 

(|Z|) defined as √𝑅2 + 𝑋𝑐2 and the bioimpedance phase angle 

(PA) described as tan−1(
𝑋𝑐

𝑅
) can be extracted. PA is produced 

because the capacitance causes a lag between the current and 
the voltage [1]–[3]. 
Due to the capacitive behavior of the cell membranes, between 
the tens of kHz and the tens of MHz the biological tissue 
produces a relaxation, called beta-dispersion [4]. Beta 
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dispersion produces a drop in the permittivity (Ɛ) with an 
associated increase in conductivity [5]. Moreover, depending 
on the tissue properties the beta dispersion produces variations 
[6]. 
The aim of this study is to differentiate among different lung 
tissue states (neoplasm, fibrosis, pneumonia, healthy lung 
tissue and emphysema) by evaluating differences among 
impedance parameters in the beta-dispersion region of each of 
the tissues through minimally-invasive EIS acquired through a 
bronchoscopy process. 
 

II. MATERIALS AND METHODS 

A.  Participants 

 Minimally invasive EIS measurements were carried out in 

a total number of 102 patients (Age: 66 ± 14 yr; Weight: 74.5 

± 17.2 kg; BMI: 26.8 ± 4.3 kgm-2) with a bronchoscopy 

prescribed between November 2021 and August 2022 at the 

“Hospital de la Santa Creu i Sant Pau” of Barcelona. The 

number of samples divided per classes obtained were: 30 

healthy lung, 29 neoplasm, 23 emphysema, 12 fibrosis and 22 

pneumonia. 

Ethics approval was obtained from the “Hospital de la 

Santa Creu i Sant Pau” (CEIC-73/2020) according to 

principles of the Declaration of Helsinki for experiments with 

human being. All patients proved signed informed consent. 

B.  EIS measurements 

Minimally-invasive EIS measurements acquired through 

the 3-electrode method were obtained by injecting a multisine 

current signal (from 1 kHz to 1000 kHz) between a distal 

tetrapolar catheter electrode and a skin electrode. The 

injection of current induces a voltage that is measured 

between the distal electrode and a second skin electrode. 

Impedance signal is acquired using a sample frequency of 60 

spectra per second during 12 seconds. A complete description 

of the impedance measurement system and of the calibration 

procedure can be found at Company-Se et al [7]. 

C. Measurement protocol 

Minimally-invasive EIS measurements were acquired 
though a bronchoscopy. Radiological evaluation (chest CT or/ 
and  PET CT) was performed before bronchoscopy. The upper 
airway was anaesthetized and intravenous sedation was 
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provided. The acquisition of the bioimpedance data was 
carried out by inserting the catheter through a port of the 
bronchoscope. Endoscopic exploration and diagnostic 
procedures were indicated accordance with the guidelines. 

D. Data analysis 

The averaged spectra of the minimally-invasive 
bioimpedance measured through the 12 seconds acquisition 
time was used for data visualization among healthy lung tissue, 
neoplasm, fibrosis, pneumonia and emphysema. Data was 
obtained between 1 kHz and 1 MHz although 15 kHz to 307 
kHz was the frequency range chosen to visualize the 
bioimpedance data. Low frequency values (below 15 kHz) and 
high frequency values (above 307 kHz) were discarded due to 
electrode effects and capacitive coupling induced errors 
respectively. 

While in Company-Se et al [7] absolute values of the 
impedance parameters were used to differentiate between 
tissue states, in the current study, to perform tissue 
differentiation the difference between low (15 kHz) and high 
(307 kHz) frequency mean bioimpedance values were 
calculated for |Z|, PA, R and Xc. 

Shapiro-Wilk test was used to assess the distribution of 
normality of the variables (the difference between low and 
high mean bioimpedance values in |Z|, PA, R and Xc). 
Normally distributed variables are shown as mean ± standard 
deviation (SD) and 95% confidence interval (CI) of the mean 
(lower bound – upper bound). One-way analysis of variance 
(ANOVA) with Tamhane t2 post-hoc test was used to 
determine statistically significant differences in the differences 
between low and high frequencies mean bioimpedance in |Z|, 
PA, R and Xc. 

III. RESULTS 

A. Multi-frequency response for minimally-invasive lung 

tissue measurements 

Fig.1 to Fig. 4 shows the mean impedance spectrum for 

bioimpedance |Z|, PA, R and Xc respectively for the 

frequency range of 15 kHz to 307 kHz for neoplasm (black), 

fibrosis (red), pneumonia (blue), healthy lung tissue (green) 

and emphysema (pink). Mean is represented by the 

continuous line and ±SD is represented by dashed lines. 

Impedance |Z|, PA, R and Xc show higher differences 

between low and high frequencies in healthy lung tissue and 

emphysema. 

 

 
Figure 1. Modulus mean impedance spectrum for neoplasm (black), 

fibrosis (red), pneumonia (blue), healthy lung tissue (green) and 

emphysema (pink). Mean is represented by the continuous line while ±SD 

is represented with dashed lines. 

 
Figure 2. Phase angle mean impedance spectrum for neoplasm (black), 

fibrosis (red), pneumonia (blue), healthy lung tissue (green) and 
emphysema (pink). Mean is represented by the continuous line while ±SD 

is represented with dashed lines. 

 
Figure 3. Resistance mean impedance spectrum for neoplasm (black), 

fibrosis (red), pneumonia (blue), healthy lung tissue (green) and 

emphysema (pink). Mean is represented by the continuous line while ±SD 

is represented with dashed lines. 

 
Figure 4. Reactance mean impedance spectrum for neoplasm (black), 

fibrosis (red), pneumonia (blue), healthy lung tissue (green) and 

emphysema (pink). Mean is represented by the continuous line while ±SD 

is represented with dashed lines. 

 

B. Differentiation of minimally-invasive electrical 

impedance spectroscopy bioimpedance measurements 

among tissue states from the differences between high and 

low frequency values  

 

Table 1 lists the descriptive parameters, specified as the 

mean ± SD, 95% confidence interval for mean (lower bound 



Table 1. Descriptions of minimally-invasive bioimpedance measurements for healthy lung tissue, neoplasm, emphysema, fibrosis and pneumonia. The 
variables normally distributed are shown as mean ± SD, 95% confidence interval for mean (lower bound and upper bound) while that non-normally distributed 

data is shown as statistic median (interquartile range, IQR) and minimum-maximum. In addition, the statistic of the Fisher (F) coefficient for variance analysis 

and the statistical significance (P) are also shown. 

 

and upper bound) of the difference between the mean values 

of |Z|, PA, R and Xc at 15 kHz and 307 kHz and the results of 

the one-way ANOVA including the Fisher coefficient (F) for 

healthy lung tissue (n = 30), neoplasm lung tissue (n = 29), 

emphysema (n = 23), fibrosis (n = 12) and pneumonia (n = 

22). One-way ANOVA test shows statistical significance (P 

< 0.001) for the four parameters. Higher Fisher coefficient is 

obtained in PA and Xc. 

Table 2 shows the Tamhane t2 test results for the multiple 

comparison test evaluating the difference in the mean values 

of |Z|, PA, R and Xc between the lowest frequency (15 kHz) 

and the highest frequency (307 kHz). Statistical differences 

are found between the following groups: healthy and 

neoplasm; healthy and fibrosis; healthy and pneumonia; 

emphysema and fibrosis; emphysema and pneumonia; 

neoplasm and emphysema; neoplasm and pneumonia. No 

statistical differences are found between healthy and 

emphysema; neoplasm and fibrosis and between fibrosis and 

pneumonia in any of the four parameters (|Z|, PA, R and Xc). 

 

IV. DISCUSSION 

This study aims to evaluate differences among different lung 

tissue states (neoplasm, fibrosis, pneumonia, healthy lung 

tissue and emphysema) through differences into the beta 

dispersion region. 

Beta dispersion, produced between tens of kHz and tens of 

MHz, is due to the interfacial polarization of cell membranes, 

that act as barriers for the passive transport of ions between 

the ionic solutions that are present inside and outside the cells 

[4], [8]. When current penetrates the cell membranes (when 

frequency increases) causes reactance and phase angle to 

increase and resistance and modulus to decrease [1] (Fig. 1 to 

Fig. 4). As also seen in Fig 1 to Fig 4, changes in cell 

membranes due to lung disorders produce changes in the 

mean impedance spectrum obtained producing different 

changes in the beta dispersions based on the tissue states. 

Neoplasm (black) and fibrosis (red) results in a flattened 

spectrum, as compared with healthy lung tissue (green) and 

emphysema (pink).  

The beta dispersion produces differences in mean 

impedance values between high and low frequencies, 

producing significant differences (P < 0.001) in |Z|, PA, R and 

Xc (Table 1). Tamhane t2 post-hoc test showed significant 

differences between: neoplasm and pneumonia (|Z|, R), 

healthy lung tissue (|Z|, PA, R and Xc) and emphysema (|Z|, 

PA, R and Xc); fibrosis and healthy lung tissue (|Z|, PA, R 

and Xc) and emphysema (PA and Xc); pneumonia and 

healthy lung tissue (PA, R and Xc) and emphysema (Xc). 

Non-significant differences were found (P > 0.05) between 

fibrosis and neoplasm; fibrosis and pneumonia and between 

healthy lung tissue and emphysema. Healthy lung tissue and 

emphysema have more air content than others patterns. In 

emphysema, the increase in inflammatory cells and oxidative 

stress produce the secretion of proteases which produces 

direct damage to structural cells and destruction of alveolar 

walls. The air content present in lungs in proportion to the 

tissue is higher compared to neoplasm, fibrosis and 

pneumonia. Neoplasm is characterized by a cell growth and 

an increase of vascularization and fibrosis is characterized by 

an increase of tissue non-over-vascularized. The similitude in 

both pathologies regarding the increment of tissue and, in 

turn, cell concentration makes not possible to distinguish 

through minimally-invasive bioimpedance measures between 

both pathologies. In pneumonia, the inflammatory response is 

initially characterized by a congestive phase with vascular 

hyperemia followed by an exudative phase in which the 

presence of neutrophils and fibrin increases, which can 

completely occupy the alveolar spaces. Despite the clinical 

differences between pneumonia and fibrosis, there are several 

pathological phases that could hide the differences. 

 Mean ± SD  

95% CI (lower bound – upper bound) 

  

 Healthy 

(n= 30) 

Neoplasm 

(n= 29) 

Emphysema 

(n= 23) 

Fibrosis 

(n= 12) 

Pneumonia 

(n= 22) 

F P 

Diff |Z| (Ω)  90.91 ± 55.82 

(55.44 – 126.37) 

17.84 ± 13.73 

(9.12 – 26.56) 

65.56 ± 63.15 

(25.44 – 105.68) 

27.91 ± 14.57 

(18.66 – 37.17) 

52.20 ± 29.69 

(33.34 – 71.06) 12.73 <.001 

Diff PA (°)  12.20 ± 3.05 

(10.26 – 14.14) 

4.37 ± 2.14 

(3.01 – 5.73) 

9.95 ± 2.99 

(8.06 – 11.85) 

5.42 ± 2.92 

(3.57 – 7.27) 

5.85 ± 4.43 

(3.03 – 8.66) 15.24 <.001 

Diff R (Ω)  100.69 ± 59.12 

(63.13 – 138.25) 

18.36 ± 14.14 

(9.37 – 27.34) 

74.13 ± 71.34 

(28.80 – 119.46) 

28.98 ± 15.30 

(19.26 – 38.71) 

54.55 ± 31.99 

(34.22 – 74.87) 13.47 <.001 

Diff Xc (Ω)  48.30 ± 27.85 

(30.60 – 65.99) 

6.83 ± 3.67 

(4.50 – 9.17) 

44.18 ± 24.53 

(28.60 – 59.77) 

10.58 ± 6.86 

(6.22 – 14.94) 

15.21 ± 15.12 

(5.60 – 24.81) 15.68 <.001 



  

 

Table 2. Tamhane t2 post-hoc test results for the difference between low and high frequency of the mean impedance parameters (|Z|, PA, R and Xc)

 

 

V. CONCLUSION

In conclusion, the study of differences in impedance 

parameters at separated frequencies into the beta dispersion 

region due to changes in lung tissue states can be used for the 

differentiation among different lung pathologies. The 

difference in the impedance parameters in the beta dispersion 

region is higher between those pathologies that lead to an 

increase of tissue (neoplasm and fibrosis) and those 

pathologies that lead to higher air content in lungs 

(emphysema). The use of minimally-invasive bioimpedance 

measurements to differentiate between lungs patterns aims to 

expand the diagnostic tools currently available in 

bronchoscopy. However, further studies are necessary for the 

differentiation among the lung disorders that are more similar 

to each other. 
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Post hoc Tamhane t2 test 

 P  P 

Diff |Z| (Ω) 

Healthy 

Neoplasm <.001 

Diff PA (°) 

Healthy 

Neoplasm <.001 

Emphysema 0.129 Emphysema 0.876 

Fibrosis <.001 Fibrosis <.001 

Pneumonia 0.063 Pneumonia 0.028 

Neoplasm 

Emphysema 0.025 

Neoplasm 

Emphysema <.001 

Fibrosis 0.161 Fibrosis 0.896 

Pneumonia 0.002 Pneumonia 0.296 

Emphysema 
Fibrosis 0.336 

Emphysema 
Fibrosis 0.023 

Pneumonia 1 Pneumonia 0.398 

Fibrosis Pneumonia 0.113 Fibrosis Pneumonia 0.99 

 P  P 

Diff R (Ω) 

Healthy 

Neoplasm <.001 

Diff Xc (Ω) 

Healthy 

Neoplasm <.001 

Emphysema 0.18 Emphysema 0.999 

Fibrosis <.001 Fibrosis <.001 

Pneumonia 0.038 Pneumonia 0.005 

Neoplasm 

Emphysema 0.015 

Neoplasm 

Emphysema <.001 

Fibrosis 0.159 Fibrosis 0.441 

Pneumonia 0.002 Pneumonia 0.091 

Emphysema 
Fibrosis 0.207 

Emphysema 
Fibrosis <.001 

Pneumonia 1 Pneumonia 0.012 

Fibrosis Pneumonia 0.106 Fibrosis Pneumonia 0.826 
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