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Abstract 

The current energy transition fosters the insertion of renewable energies and 

system decentralisation intending to achieve a more secure, sustainable and 

efficient energy market. The industry can play a key role in this transition due to the 

digitalization resulting from the industrial revolution 4.0 and the current revolution 

5.0, which encourages its renewal through resilient and human-centred solutions. 

Of all industrial entities, SMEs are particularly interesting as they consume more 

than 13% of global energy and find it more difficult than large companies to adopt 

new energy management strategies. Intending to favour energy transition and 

improve industrial competitiveness, this thesis addresses the energy situation of 

industrial SMEs to transform their consumer infrastructures into prosumer 

infrastructures capable of exchanging green energy with the utility grid, boosting 

also market decentralisation. 

To do so, the present thesis proposes a complete framework for the optimization of 

the investment in energy equipment to be made by industrial SMEs, aiming to 

improve their performance by adopting a prosumer role in the electricity market. 

This framework is based on the development of a methodology that includes the 

modelling of the energy infrastructure of the industrial plant, the modelling of 

quantitative and qualitative factors together with their uncertainties, and the 

solving of a two-stage optimization problem. This two-stage optimization problem 

analyses the costs and benefits of the investments, as well as the prosumer 

operation of the infrastructure over its expected lifetime. Uncertainties in both 

quantitative and qualitative parameters are also introduced into the problem and 

the risks faced by the industrial SME in upgrading its energy system are assessed 

and minimised. 

The proposed methodology has been applied to several case studies, the results of 

which show the benefits of transforming an industrial SME from a consumer to a 

prosumer. The optimization of the investment, considering quantitative and 

qualitative factors, risks, and the prosumer operation of the system throughout its 

lifetime, results in technically and financially robust solutions. Therefore, it has been 

possible to verify the usefulness of the proposed methodological framework to be 

applied to industrial SMEs, promoting their transformation into active entities in the 

energy markets and increasing their competitiveness. 

Keywords – Industrial SMEs, prosumer, investment optimization, quantitative-
qualitative, optimization considering risks  
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Resumen 

La actual transición energética fomenta la inserción de energías renovables y la 

descentralización del sistema con el objetivo de conseguir un mercado energético 

más seguro, sostenible y eficiente. La industria puede desempeñar un papel clave en 

esta transición debido a la digitalización resultante de la revolución industrial 4.0 y 

a la contemporánea revolución 5.0, que promueve su renovación mediante 

soluciones resilientes y centradas en el ser humano. De todas las entidades 

industriales, las PYMES son especialmente interesantes, ya que consumen más del 

13% de la energía mundial y tienen más dificultades que las grandes empresas para 

adoptar nuevas estrategias de gestión energética. Con la intención de favorecer la 

transición energética y mejorar la competitividad industrial, esta tesis aborda su 

situación energética para transformar las infraestructuras de consumo de las 

PYMES industriales en infraestructuras prosumidoras capaces de intercambiar 

energía verde con la red eléctrica, impulsando también la descentralización del 

mercado. 

Para ello, la presente tesis propone un marco completo para la optimización de la 

inversión en equipos energéticos que deben realizar las PYMES industriales, con el 

objetivo de mejorar su rendimiento adoptando un papel de prosumidor en el 

mercado eléctrico. Esta optimización se basa en el desarrollo de una metodología 

que incluye la modelización de la infraestructura energética de la planta industrial, 

la de los factores cuantitativos y cualitativos junto con sus incertidumbres, y la 

resolución de un problema de optimización de doble etapa. Este problema de 

optimización analiza los costes y beneficios de las inversiones, así como la operación 

prosumidora de la infraestructura a lo largo de su vida. También se introducen en el 

problema incertidumbres en los parámetros cuantitativos y cualitativos, y se 

evalúan y minimizan los riesgos a los que se enfrenta la PYME industrial al actualizar 

su sistema energético. 

La metodología propuesta se ha aplicado a varios casos de estudio, cuyos resultados 

han demostrado los beneficios de transformar una PYME industrial de consumidora 

a prosumidora. La optimización de la inversión, teniendo en cuenta los factores 

cuantitativos y cualitativos, los riesgos y el funcionamiento prosumidor del sistema 

a lo largo de su vida, da lugar a soluciones técnica y financieramente sólidas. De esta 

manera, se ha podido comprobar la utilidad del marco metodológico propuesto para 

ser aplicado a las PYMES industriales, promoviendo su transformación en entidades 

activas en los mercados energéticos y aumentando su competitividad. 

Palabras clave – PYMEs industriales, prosumidor, optimización de la inversión, 
cuantitativo-cualitativo, optimización considerando riesgos. 
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Abstract 

L'attuale transizione energetica sostiene l’introduzione di fonti rinnovabili e la 

decentralizzazione del sistema energetico con l'obiettivo di realizare un mercato più 

sicuro, sostenibile ed efficiente. L'industria può giocare un ruolo chiave in questa 

transizione grazie alla digitalizzazione derivante dalla rivoluzione industriale 4.0 e 

dall’attuale rivoluzione 5.0, che ne incoraggia il rinnovamento attraverso soluzioni 

resilienti e centrate sull'uomo. Tra tutte le entità industriali, le PMI sono 

particolarmente interessanti in quanto consumano oltre il 13% dell'energia globale 

ma hanno più difficoltà delle grandi aziende ad adottare nuove strategie di gestione 

energetica. Con l'intento di favorire la transizione energetica e migliorare la 

competitività industriale, questa tesi analizza situazione energetica delle PMI 

industriale per trasformare le loro infrastrutture di consumo in infrastrutture 

prosumer, in grado di scambiare energia green con la rete di distribuzione, 

favorendo in aggiunta il decentramento del mercato. 

Per fare ciò, questa tesi propone un quadro completo per l'ottimizzazione degli 

investimenti in attrezzature energetiche da parte delle PMI industriali, con 

l'obiettivo di migliorare le loro prestazioni adottando un ruolo di prosumer nel 

mercato elettrico. Questa ottimizzazione si basa sullo sviluppo di una metodologia 

che include la modellazione dell'infrastruttura energetica dell'impianto industriale, 

la modellazione di diversi fattori quantitativi e qualitativi e le loro rispettive 

incertezze, e la risoluzione di un problema di ottimizzazione in due fasi. 

L’ottimizzazione in due fasi analizza i costi e i benefici degli investimenti, nonché il 

funzionamento dell'infrastruttura nel corso della sua durata prevista. Vengono 

inoltre introdotte nel problema incertezze nei parametri quantitativi e qualitativi 

per valutare e minimizzare i rischi che la PMI industriale affronta 

nell'ammodernamento del proprio sistema energetico. 

La metodologia proposta è stata applicata a diversi casi di studio, i cui risultati 

mostrano i benefici della trasformazione di una PMI industriale da consumatore a 

prosumer. L'ottimizzazione dell'investimento, che tiene conto di fattori quantitativi 

e qualitativi, dei rischi e del funzionamento prosumer del sistema durante il suo ciclo 

di vita, porta a soluzioni tecnicamente e finanziariamente solide. Pertanto, è stato 

possibile verificare l'utilità del quadro metodologico proposto per la sua 

applicazione alle PMI industriali, promuovendo la loro trasformazione in entità 

attive nel mercato dell'energia e aumentandone la competitività. 

Parole chiave - PMI industriali, prosumer, ottimizzazione degli investimenti, 

quantitativo-qualitativo, ottimizzazione considerando i rischi. 
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1. Introduction 

This chapter settles the scope of the research, the problem addressed and the thesis 

objectives, together with the starting hypothesis that have guided the developments 

done. 

1.1. Research topic 

Climate change is a global phenomenon whose effects must be stopped or slowed 

down as far as possible to prevent further damage to the environment. The Paris 

Agreement, signed by 195 nations, specifically addresses the mitigation of 

Greenhouse Gas (GHG) emissions, calling for holding the increase in the global 

average temperature to well below 2°C above pre-industrial levels and pursuing 

efforts to limit the temperature increase to 1.5°C above pre-industrial levels [1]. For 

this to happen, a general change is needed. 

Among other technical and social approaches, solutions can be provided by the 

energy sector, which should undergo a transition towards zero CO2 emissions to 

assure system sustainability. Decarbonisation of the sector is achievable if clean 

renewable energy sources (RES) are further inserted, electrifying the market and 

increasing the efficiency of transmission and distribution systems [2]. Although this 

massive electrification can be achieved by the integration of RES, the current market 

structure presents barriers to their inclusion, as market mechanisms are based on 

high marginal costs and power dispatchability, whereas RES offer low marginal 

costs and are intermittent and nonprogrammable [3]. To overcome these and other 

barriers, a change of paradigm is required, switching from a centralised 

dispatchability-based energy market to a distributed and hybrid system in which 

small RES located at consumption points such as industries and households together 

with demand flexibility are key for success. To support this energy transition, 

governments around the world are enhancing the access of these distributed non-

large producers and active consumers of clean electricity to the grid and introducing 

financial incentives, disincentives and market mechanisms for decarbonisation by 

businesses, industry, transportation and consumers [4]. 

To support this change of paradigm from a centralised structure to a distributed one 

enhancing the inclusion of RES closer to consumption points and therefore system 

decarbonisation, the European Commission (EC) has created an energy planning 

framework based on six energy packages: “Energy Union Strategy” (2015), “Clean 

Energy for all Europeans” (2016), “European Green Deal” (2019), “Fit for 55” 

(2021)”, and “REPowerEU” (2022). These energy packages focus on the energy 

transition by encouraging and setting targets for the reduction of emissions through 

increasing system decentralisation, decreasing the use of fossil fuels, deploying 

renewable energies, increasing supply diversification, and generating alternative 

green fuels. RES represented 22.1% of total energy consumed in the EU in 2020, 2 
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percentage points above the target for that year [5]. Beyond 2020, new targets have 

been stated for 2030 and 2050. The main objective – decarbonisation -  has been set 

to a reduction of GHG emissions to at least 80% below 1990 levels for 2050 [6]. 

Renewable energy targets have been increasing over the years, being the current 

target the achievement of a share of 45% of renewables by 2030 [7]. As stated 

before, one crucial action to achieve these targets is the participation of consumers, 

both industrial and tertiary, in the market. This can be done through the 

incorporation of RES in their energy infrastructures or by adopting an active energy 

role purchasing energy and inserting surplus energy from RES into the market. 

Prosumers, who are these entities capable of managing energy systems to exchange 

energy with the external market, are therefore acquiring global importance as 

fundamental actors in the achievement of an energy market with high penetration 

of distributed energy sources [8]. 

Due to the industry’s energy characteristics, the digitalization impact of the Industry 

4.0 revolution [9], and the current Industry 5.0 revolution which tries to renew and 

transform them into more future-proof, resilient, sustainable and human-centred 

entities [10]; the industry has great potential for the incorporation of flexibility. For 

these reasons, it is a suitable actor to undergo a transition towards a prosumer 

model. However, for the adequate transformation of industrial entities into active 

energy actors it is required to assess both their energy operation strategy as well as 

the investment which may be required to align their energy infrastructure with 

market opportunities. Among the different industrial entities, small-and-medium 

enterprises (SMEs) are especially interesting due to their importance in energy-

related issues, as they consume more than 13% of total global energy and account 

for more than half the energy used in the industrial and commercial sectors [11]. 

However, industrial SMEs face more difficulties than larger enterprises in adopting 

novel energy management strategies [12], and programmes for the incorporation of 

RES and flexibility require further research [13]. Although some scientific research 

has been carried out into energy efficiency improvements in the SME sector such as 

[14], there are no publications on SMEs adopting prosumer behaviour and, as stated 

in [15], there is a need to adjust sustainable development practices to the SME 

framework. 

In this framework, the research topic of this thesis lies in the creation of suitable 

techniques and methodologies for the transformation of industrial SMEs into 

prosumers, addressing the operation of their energy equipment as well as the 

investment in new energy assets to improve their competitiveness and promote 

energy transition. 
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1.2. Research problem 

1.2.1. Prosumer industrial SMEs 

The conversion of industrial SMEs into active energy actors requires an upgrade of 

their energy strategy, including investment in new equipment and improving their 

energy flow management. Until now, energy monitoring and management in 

industries have focused on operational energy planning, energy audits, energy 

efficiency measures, energy accounting, measurements and development of reports 

[16]. However, with the rise of digitalization technologies related to Industry 4.0, 

energy management methods can change drastically. The growth of the virtual 

world with the development of the Internet of Things (IoT) facilitates the creation 

of a digital model that resembles the real world. With this model, which considers 

the energy consumption, energy generation and the situation of the external energy 

market and internal energy assets [17], it is possible to forecast future energy 

situations and take decisions to optimize the performance of the industrial plant. 

Until now, the Energy Hub (EH) concept, which models the energy infrastructure 

that connects inputs and outputs from different carriers directly or through 

conversion equipment, has been widely used to represent the energy infrastructure 

of industries. In recent years, the EH has been considered not only to manage energy 

carriers aiming to meet internal demand efficiently but also as a base to create 

flexibility and participate in Demand Response (DR) programs. A DR operation of 

the EH suppose a temporal change in consumer’s energy demand as a reaction to 

the market status. DR has as an objective the empowerment of consumers to adjust 

their demands at strategic times and promote the efficient use of energy resources 

[18]. Scientific publications have deeply analysed DR concepts and applications. [19] 

presents an optimization model for the scheduling of RES based on pricing 

notifications from the utility grid, and [20] exposes a system model aiming to 

optimize its performance based on day-ahead (DA) and real-time (RT) market 

status. From these studies, it can be concluded that the incorporation of EH 

structures in industrial SMEs with DR capabilities can increase the energy efficiency 

of the plant, diminishing energy use and operating costs by taking advantage of the 

tools provided by the market. 

Legislation is taking a step forward, opening up the possibility for EHs to not only 

adopt DR behaviour but also to insert energy into the grid, becoming prosumers. 

This allows a higher insertion of RES and an overall decrease in electricity prices, 

decongesting the distribution and transmission networks and improving energy 

efficiency. Thus, prosumers are likely to become major actors in the electricity 

market. The term prosumer was first introduced in [21] as a person or entity who 

consumes and produces a product. Translated into the electrical market, a prosumer 

demands electricity and has also the capability to sell it to the grid. In order to 

transform an industrial SME into a prosumer, smart management of energy flows is 
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required, evaluating the internal and external energy situation to perform optimal 

decisions regarding energy generation, consumption, and storage. 

The implementation of a prosumer, as that of DR capabilities, is commonly based on 

the EH model of the energy system. Figure 1 exposes an example of a potential 

energy infrastructure of a prosumer industrial SME, with a bidirectional flow with 

the electricity grid and an internal EH enhancing robustness and interconnectivity. 

The optimal management of energy lies in the knowledge of the costs and emissions 

of the system, the current state of the EH, and the future status regarding demand, 

RES availability, prices, and external utility grid energy mix. In recent literature, the 

implementation of prosumer capabilities in EHs has been a focus of interest. The 

first research dealt with energy management systems that enabled the sale of 

electricity to the grid in a short-term scheduling concept. [22] optimizes the 

operation of the EH considering an exchange of energy with the ancillary service 

market. [23] also presents short-term scheduling of small and medium-scale 

consumers under Time of Use (ToU) DR programs, where the energy assets of the 

EH are scheduled bearing in mind the possibility to sell electricity to the grid. 

Although these types of studies considered prosumer capabilities, they aimed 

mainly at the delivery of surplus energy without considering energy trading as a 

potential interest to be included in the business model of the consumer. 

 

Figure 1: Schematic of the potential infrastructure of a prosumer industrial SME. 
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In order to obtain maximum profit from being a prosumer, there is a 

need to consider energy trade as a potential benefit bearing in mind not 

only current variables but also future situations regarding both the 

internal and the external situation, creating a time-aware EH operation 

strategy. 

Also, prosumer EH optimizations such as [24], [25] evaluated home energy 

infrastructures, not considering industrial characteristics. Indeed, nearly all studies 

evaluating consumer capabilities to support the energy transition focus on the 

tertiary sector. In most cases, only electricity consumption is considered, 

overlooking the thermal side of the problem [26]. This can also be seen in [27], 

which considers only tertiary end-users that consume electricity. Although [28] 

describes the thermal side of the energy infrastructure for a tertiary building, only 

energy sources that provide electrical energy are included in the optimization 

problem. Thus, no interconnection is generated through the different energy 

carriers present in the system. Industrial SMEs have a strong thermal side [29] that 

cannot be overlooked when evaluating their prosumer potential, and, as described 

in [30], their demand pattern differs drastically from that of the tertiary sector. 

Although there have been developments in consumer EH to foster 

energy transition, most of them focus on the tertiary sector, which is 

radically different from the industrial sector. To convert industrial 

SMEs into prosumers, it is still required to create a tailored 

methodology for their optimal energy prosumer operation. 

1.2.2. Energy sizing optimization 

Despite the opportunities provided by the market, the industrial framework, and the 

available techniques, nowadays most industrial plants are still not equipped with 

RES or ESS. However, the potential benefits of the adoption of a prosumer behaviour 

incentive the investment in energy equipment to improve the profitability of 

actively managing energy flows. For this reason, there is a requirement to suitable 

design and size the energy assets of factories. SMEs select investments with short 

payback periods and favourable economic parameters; once the investment has 

been made, the infrastructure is maintained in operation until another relevant 

event occurs that requires new investment, thus exploiting the equipment for its 

whole lifetime [31]. Up to date, optimal energy equipment sizing studies in the 

literature focus mainly on considering islanded mode operation to support the 

energy transition by acting as independent entities to the market, thus not adopting 

a prosumer approach. In [27], an ESS is sized for an isolated grid to minimise total 

system cost. In [28], distributed energy resources are sized for a building 

considering islanded performance, and in [32], an isolated hybrid wind-hydrogen 

system is designed for a house. In this type of optimization, the infrastructures are 

not connected to the main grid, so the objective is to assure the security of supply. 
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There are also papers dealing with sizing strategies for non-islanded mode, such as 

[33], which assesses the sizing for a factory with the aim of minimising the energy 

purchased from the utility grid. In the cited study, ESS and buffer stocks are sized 

for a whole year although the cycles of energy prices in the external market are not 

considered. In [30], RES and ESS are sized for an industrial facility and a residential 

complex, with the possibility to deliver – but not commercialise – energy. This study 

considers seasonal characteristic days as representative time intervals for system 

operation. [34] employs a Genetic Algorithm (GA) to size the ESS in a microgrid to 

find the energy and power capacities to minimize the operation cost of the 

microgrid. A similar approach is found in [35], which presents a methodology for 

sizing a combined PV-wind RES to apply it to a power plant in an industrial area. 

This work considers load requirements, physical and geometric constraints for the 

installation, operation and maintenance cost and the possibility to deliver energy 

surplus to the grid. Although in these studies there is an exchange of energy with the 

grid, none of them evaluates the economic impact of energy exchange on the value 

of the investment and its return, which is crucial for investment decisions in SMEs. 

Therefore, it is required to create an optimization approach for the 

sizing of energy infrastructures in industrial SMEs considering a 

prosumer optimal operation that benefits from the exchanges with the 

external grid. 

In addition, the optimizations performed to date consider mainly a typical year 

represented by a set of characteristics days and do not evaluate the effect of weekly 

cycles into the operation nor the evolution over time of external and internal 

parameters. There are a few papers that consider this for some parameters in the 

sizing problem. In [36], different time scenarios are analysed, although a long-term 

horizon strategy is not implemented. Similarly, [37] addresses the potential 

variation of demand creating different outcomes for the problem. [38] presents an 

optimization model for long-term, multi-stage planning of a general decentralised 

multi-energy system. The optimal investment is addressed from a multi-stage 

perspective, i.e., distributing the investment over years and performing retrofitting, 

which could be suitable for urban planning applicable to large government entities 

or districts where buildings are added in multiple phases. SMEs, however, do not 

plan energy investments to take place gradually; rather, decisions are taken based 

on immediate investment return and maximisation of profit along the lifetime of the 

equipment. Also, although [38] evaluates multiple years to perform the investment 

at different time points, the cost of the energy carriers and the technology 

degradation are discretised and considered constant during entire years. This fact 

discerns from reality, as input parameters are subject to important seasonal and 

hourly variations [39]. This is especially true for the industrial sector, where the 

production is maintained constant during week-days and is diminished during 

weekends to perform minor activities such as adopting new plant configurations 

and maintenance [40], making it essential for industrial SMEs to consider the 
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continuous weekly operation to capture production and costs patterns and properly 

size their energy infrastructure. 

Free software tools are also available for sizing energy sources to meet specific 

design criteria. DER-CAM is a popular software solution for designing distributed 

energy resources for the tertiary sector. Users have access to several key features, 

in particular the possibility of varying their load and deciding based on economic 

and environmental criteria. To perform this optimization, DER-CAM considers three 

typical days per month over one year [41], leading to a simplified idealization of the 

decision-making process [42]. REopt is another software tool which serves as a 

technical-economic decision-support model for RES. REopt is focused on the tertiary 

sector, specifically on buildings, campuses and communities. It assesses the optimal 

mix of energy sources and the optimal dispatch of equipment separately, and only 

one year is modelled explicitly, which is assumed to repeat throughout the analysis 

[43]. However, neither of these tools accounts for the multiple years in the lifetime 

of the energy equipment or the evolution of market parameters, both of which are 

crucial factors when assessing the real value of an investment operation. In addition, 

the optimization horizon for energy equipment operation is daily and, as other 

research works, does not capture the characteristic industrial load and market 

weekly cycles. 

To adequately size the energy equipment of industrial SMEs, their long-

term performance should be evaluated, including the variation in 

external parameters as well as the degradation of internal equipment 

over years and considering relevant operative timeframes, in this case, 

weeks. 

This sizing optimization approach will allow industrial SMEs to decide on 

investments bearing in mind long-term perspectives. However, the inclusion of the 

variation over time of parameters supposes the uncertain assumption values, which 

create in turn uncertainty in the investment output. [44] performs an analysis 

considering investment trends in firms during the last years and raises the point 

that entities tend to intuitively invest less if the uncertainty in the energy market 

increases to avoid unexpected results. 

Therefore, as important expenses are to be performed in energy 

equipment investments, it is crucial to optimize not only the plant 

design and operation but also to analyse and evaluate the risk of these 

actions. 

To do so, it is essential to understand the risk in the design problem output and the 

inputs that cause it. When evaluating the optimal decision for an energy investment 

to be performed in an industrial SME, a complete Uncertainty Analysis (UA) has to 

be done to properly analyse the risk linked to the investment and its robustness, and 

Sensitivity Analysis (SA) is required to identify the parameters that cause this risk. 
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This identification allows SMEs to decide if they put an effort into better defining the 

most critical factors, thus reducing the epistemic uncertainty and the investment 

risk; and also provides them with a framework to identify the points in time at which 

the investment perspectives are better due to a clearer evolution of key parameters. 

To date, some studies have been presented addressing uncertainty for energy 

infrastructure design and operation. Most of them analyse uncertainty employing 

uniquely a basic SA to evaluate the variation of the output of the system according 

to a set of selected inputs. This is the case of [45], which optimizes an energy system 

for rural electrification and carries out a SA. In this study, the proposed SA 

methodology is not clear and the selection of the inputs’ uncertainties is subjective, 

not presenting their probability distributions. Similarly, [46] evaluates a set of pre-

defined system combinations and their sensitivity in front of different parameters, 

without providing details on the methodology. [47] optimizes a hybrid system 

employing commercial software and performs a SA. In this case, it is mentioned that 

the SA is carried out by changing only one parameter at a time once. This procedure 

is also followed in [48], in which appears an optimization of a trigeneration system 

considering the variation of load and energy carriers' prices through analysing 

potential occurrence scenarios. The one-at-a-time (OAT) strategy employed in these 

studies, where each input parameter is modified in an isolated manner while the 

others remain the same, is common in the literature due to its ease of 

implementation and logical analysis of results. The OAT approach has also been used 

in [49], which addresses the optimal design of a stand-alone hybrid energy system 

for a rural area. This study pre-states the configuration of the system and conducts 

a SA based on scenarios to appreciate the influence of environmental policy on the 

total system cost. Similarly, [50] exposes a techno-economic analysis of a standalone 

hybrid energy system and does a SA through OAT strategy to see the effects of costs 

of energy in the system's economic performance, [51] tests four hybrid power 

system scenarios for a household application and carries out a SA employing three 

wind speeds and solar radiation possibilities. The work in [52] presents a sizing 

energy model optimization considering yearly performance and proposes a SA. In 

contrast with other studies, in this work, the SA is carried out considering 3 different 

scenarios combining subjectively distinct values of the uncertain inputs. In none of 

these works, however, the probabilities of the analysed uncertain inputs are 

considered. Moreover, the performed SA strategies do not provide the required 

insights to properly evaluate the output statistically, as they only consider a small 

number of scenarios and the interrelation of different energy inputs is most of the 

time overlooked. A slightly different approach is presented in [53], which performs 

an OAT methodology employing several samples of a uniform distribution, 

improving the consideration of only a few scenarios. However, the use of uniform 

distributions is a simplification of reality, as it is common to have specific scenarios 

with a higher probability of occurrence rather than intervals where the probability 

of all values is equal [54]. Therefore, the employment of uniform distributions limits 
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the capacity of obtaining suitable insights into the investment problem faced by 

industrial SMEs. 

Few studies with improved SA strategies have been published, such as [55], where 

a SA is applied for zero/low energy buildings aiming to obtain the design parameters 

that affect the performance. In this case, the SA is formed in a two-stage approach, 

using global and local methods as the first and second stages, respectively. However, 

this analysis does not carry out a UA and thus despite sensitivity being addressed to 

evaluate the inputs that most affect the performance, the output uncertainty is not 

known. [56] performs both UA and SA for the optimal design of a distributed energy 

system to supply energy to a tertiary demand. The objective is the minimisation of 

total system cost while meeting CO2 emissions restrictions. The UA is performed 

using the Monte Carlo simulation while the SA consisted of a two-step global SA. 

Despite the existence of different market prognoses, the uncertainty linked to 

energy market costs is modelled as uniform, without considering the higher 

probability of some scenarios above others. Furthermore, in all the above studies 

the proposed optimization models employ only one year as a representative time 

frame, simplifying the decision-making process and not evaluating the time 

evolution of parameters. According to [57], the fact of solving this optimization 

problem using single “typical-year” approaches produces results that become 

suboptimal after a short time due to the changing framework where the energy 

systems are integrated. In the mentioned studies, the proposed inputs’ probability 

distribution functions are static, i.e., they do not vary with time, which does not 

allow for evaluation of the future costs probabilities and simplifies their 

consideration. This uncertainty handling is methodologically erroneous and does 

not enable obtaining a realistic framework for energy investment analysis. 

To evaluate the risk industrial SMEs are undertaking when performing 

an energy investment, it is required to carry out both UA and SA. These 

UA and SA should be based on a time-continuous probability 

distribution characterisation of the inputs and should be performed in 

a statistical approach considering the cross-influences of inputs in the 

output. 

Once the uncertainty of the investment is known, if it is significant it may be possible 

that the industrial SME requires to reduce it before investment. This can be done by 

incorporating the uncertainty spectrum in the optimization process. In most of the 

current studies dealing with energy investment, optimization is presented without 

considering uncertainties. As seen before, some papers analysed energy 

investment’s uncertainty after obtaining the solution, without optimising it 

concerning uncertainties. These approaches enable the investor to know the risk 

assumed when investing, although they do not propose an adaptation strategy for 

unacceptable risk levels nor incorporate the uncertainty analysis inside the 

optimization problem. 
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For further enhancement of energy equipment investment in situations 

with high uncertainty, it is useful to incorporate this uncertainty in the 

optimization problem. 

The literature on energy investment optimization that considers risks within the 

decision-making problem is scarce. [58] develops an optimization model for 

regional energy systems. The presented methodology includes degrees of fulfilment 

for the uncertain constraints, which provides decision-makers with alternatives 

under different violation parameters. [59] addresses an optimal energy system by 

minimizing total annual cost while limiting the average worst-case emissions. Both 

of the aforementioned studies do not consider risk as an optimization objective, but 

rather as a limitation, creating a strategy that is robust in front of uncertainties. 

Although robust optimizations provide a simple framework for dealing with 

uncertainty, they are conservative and trade off the performance of the system for 

its robustness [60]. Another strategy commonly employed in the literature for 

optimization under uncertainty is two-stage stochastic optimization, in which the 

decision parameters are selected in the first stage and all possible scenario 

realisations are considered in the second stage, optimising the mean resultant value. 

This is used in [61], which applies a two-stage stochastic model to a district energy 

system optimization under uncertainty on the demand side, and in [62], which 

employs a two-stage stochastic search for the optimal sizing and placement of 

energy storage. Even though two-stage stochastic methods incorporate uncertainty 

in the optimization problem, they do so from a risk-neutral perspective not 

providing a clear measure of the risk taken by the investor [63]. [64] presents an 

improved method including a risk-aversion strategy. In this study, the planning of 

an integrated energy system incorporates the Conditional-Value-at-Risk (CVaR) as 

part of the objective function. Following the same approach, [65] proposed a sizing 

methodology assessing risk through the computation of the mean-variance. In all 

the above works, the risk is expressed by employing quantitative-only approaches, 

focusing mainly on economic parameters. 

The energy equipment optimization should explicitly incorporate risk, 

evaluating and optimising them and thus improving robust and risk-

neutral strategies. 

Some of the studies mentioned in this section consider social and environmental 

objectives. When they are considered, quantitative parameters, such as emissions 

or job creation, are chosen to measure them. However, there are qualitative criteria 

of importance for industrial SMEs, i.e. social acceptance and alignment of the 

investment decision with the administration; that are usually not considered in 

energy optimization problems due to difficulty in their measurement. Also, the 

studies discussed above that include uncertainties within the optimization problem 

deal mainly with economic uncertainties, leaving aside the uncertainty associated 

with the measurement of environmental and social spectra. These economic and 
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quantitative-focused models are insufficient for the energy sizing problem as there 

are criteria and uncertainty dimensions that can only be addressed through 

qualitative approaches which can equal or dominate quantitative ones [66]. 

Therefore, it is essential to incorporate qualitative considerations in 

energy investment decision-making [67]. This will enhance a better 

evaluation of the suitability of the energy investment and of the 

uncertainties faced, improving the competitiveness of the enterprise 

and creating significant positive outcomes [68]. 

To date, qualitative parameters inside the decision-making process have been 

considered in the literature for non-energy optimization problems. In [69], a generic 

methodology for assets management decision-making considering quantitative and 

qualitative factors is presented where qualitative factors are crisply measured. In 

[70], country energy planning strategies are proposed where qualitative criteria are 

employed, although they are not optimized. [71] considers both quantitative and 

qualitative parameters for uncertainty assessment in the design of a building 

although qualitative attributes are set as crisp numerical values without considering 

judgemental vagueness. Even though these studies incorporate qualitative 

parameters, they do not account for the uncertainty linked to their subjectivity. 

Thus, currently, there is no study in which qualitative parameters are measured 

assessing also their uncertainty and thus transforming their abstract value and 

quantifying it so they can be incorporated into an optimization problem. 

To suitably include qualitative parameters in the optimization problem 

and minimise risks, their evaluation from a mathematical point of view 

and their uncertainty should be addressed considering their vague 

definition and subjectivity inherent to their measurement. 

The incorporation of both quantitative and qualitative parameters and their 

uncertainties in the optimization problem supposes a suitable framework for the 

energy investment decision-making of industrial SMEs, supporting them on their 

path to becoming an active part of the energy market. 

Therefore, research and developments in this thesis will be carried out in the fields 

of energy infrastructure modelling, prosumer operation optimization, uncertainty 

assessment and quantitative and qualitative factors measurement in order to 

elaborate a complete risk-informed energy investment optimization 

methodology suitable for transforming industrial SMEs into prosumers. Figure 2 

presents an overview of the exposed research problem. Energy equipment 

investments are evaluated by considering long-term perspectives and the effect of 

qualitative and quantitative parameters and uncertainties on the performance of the 

industrial SME as a prosumer. This prosumer operation is obtained through the 

optimization of energy flows, which is based on the EH model of the industry and 

considers current and future internal and external energy situations to decide when 
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to trade energy with the utility grid and which equipment to use. The assessment of 

these aspects in this thesis and their inclusion in a single strategy will enable the 

creation of a methodological framework that will support industrial SMEs in their 

transformation towards active players in the energy market, supporting energy 

transition while capturing the opportunities that it presents. 

 

 

 

 

Figure 2: Research problem overview. 
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1.3. Aim and objectives 

The aim of the proposed thesis is to progress the state of the art on energy 

management and equipment optimization in the new prosumer context for 

industrial SMEs. In this aspect, the basis of analysed approaches will be based on: 

energy modelling, internal energy flow and external exchange optimization, energy 

equipment investment optimization, and risks assessment and consideration in the 

investment problem. 

In order to achieve the thesis aim, the following objectives should be fulfilled: 

1. Modelling 

The modelling of the industrial energy infrastructure should be addressed, 

together with the model of input quantitative and qualitative parameters and 

their uncertainty. 

2. Optimization 

The optimization of the energy infrastructure of the industrial SME and of its 

operation should be carried out. The operation optimization has to consider 

prosumer behaviour whereas the optimization of the energy infrastructure 

should evaluate the lifetime suitability of energy equipment for the industrial 

SME to act as a prosumer. 

3. Risk-informed decision-making 

Uncertainties of qualitative and quantitative inputs parameters should be 

incorporated in the investment optimization and decision-making process of 

industrial SMEs, evaluating the risk associated with investment decisions 

and minimising it.  

1.4. Hypotheses 

The foundation of the identified research problem is represented by the following 

hypotheses: 

• The prosumer operation of an industrial energy infrastructure creates a 

benefit for the industry by decreasing the cost of energy, reducing emissions 

and improving social benefits. 

• The optimization of the energy investment considering the lifetime operation 

of the equipment enables to account for future external and internal 

situations, reaching a solution able to provide benefits over a long period. 
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• The incorporation of quantitative and qualitative parameters and criteria in 

industrial SMEs’ decision-making process improves the economic, 

environmental, and social benefits of the obtained solutions. 

• The final overall profit obtained by industries is more reliable if the risk is 
evaluated and incorporated into the industrial decision-making problem. 

1.5. Thesis outline 

This thesis is presented as a compendium of publications. Firstly, chapters 2, 3, and 

4 discuss the developments carried out and reproduce the thesis discursive line. 

Specifically, chapter 2 deals with the modelling and optimization of the operation of 

the industrial plant as a prosumer. Chapter 3 introduces the optimization of energy 

sizing and assesses the risk assumed by the company, and chapter 4 uses previous 

chapters’ developments to generate an investment optimization methodology 

considering quantitative and qualitative risks within the mathematical 

optimization. 

Each chapter includes an explanatory part exposing the techniques and 

methodologies used and a section where the publications that detail the 

developments are shown. Partial conclusions are also done for each of them. 

Chapter 5 is the compendium itself. The publications included are the following: 

• E. M. Urbano, V. Martinez-Viol, K. Kampouropoulos, and L. Romeral, “Future 

european energy markets and industry 4.0 potential in energy transition 

towards decarbonization,” Renew. Energy Power Qual. J., vol. 18, no. 18, pp. 

190–195, 2020. 

• E. M. Urbano, V. Martinez-Viol, K. Kampouropoulos, and L. Romeral, 

“Renewable energy source and storage systems sizing optimization for 

industrial prosumers,” in IEEE International Conference on Emerging 

Technologies and Factory Automation, ETFA, 2020, vol. 2020-Septe. 

• E. M. Urbano, V. Martinez-Viol, K. Kampouropoulos, and L. Romeral, “Energy 

equipment sizing and operation optimisation for prosumer industrial SMEs 

– A lifetime approach,” Appl. Energy, vol. 299, no. July, p. 117329, 2021. 

• E. M. Urbano, A. D. Gonzalez-Abreu, K. Kampouropoulos, and L. Romeral, 

“Uncertainty analysis for industries investing in energy equipment and 

renewable energy sources,” Renew. Energy Power Qual. J., vol. 19, no. 19, pp. 

126–130, 2021. 

• E. M. Urbano, V. Martinez-Viol, K. Kampouropoulos, and L. Romeral, “Risk 

assessment of energy investment in the industrial framework – Uncertainty 
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and Sensitivity analysis for energy design and operation optimisation,” 

Energy, vol. 239, p. 121943, 2021. 

• E. M. Urbano, V. Martinez-viol, K. Kampouropoulos, and L. Romeral, “Energy-

Investment Decision-Making for Industry : Quantitative and Qualitative Risks 

Integrated Analysis,” Sustainability, vol. 13, no. 6977, 2021. 

• E. M. Urbano, V. Martinez-viol, K. Kampouropoulos, and L. Romeral, 

“Quantitative and Qualitative Risk-informed energy investment for industrial 

companies,” Energy Reports, vol. 9 p. 3290-3304, 2023.  

In addition to these, Annex A exposes another publication which has not been 

included in the compendium but which is mentioned in chapters 2, 3, and 4 to 

support the understanding of the entire thesis work. This publication is: 

• E. M. Urbano, V. Martínez-Viol, and L. Romeral, “Optimization of industrial 

plants for exploiting energy assets and energy trading,” in IEEE International 

Conference on Emerging Technologies and Factory Automation, ETFA, 2019, 

vol. 2019-Septe. 

Chapter 5.7 then presents other research activities that support the main line of the 

thesis. The publication resulting from these activities, shown below, has also been 

included in Annex A:  

• E. M. Urbano, K. Kampouropoulos, and L. Romeral, “Energy crisis in Europe: 

the union objectives and countries’ policy trends: New transition paths?” 

Under review. 

Finally, Chapter 7 exposes the discussion and conclusions for all the developments 

carried out. 
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2. Modelling and operation optimization 

This chapter exposes the model of the industrial energy infrastructure and its 

operation as a prosumer, including also a section for the forecasting of relevant 

input parameters to consider current and future energy situations. 

2.1. Industrial energy infrastructure modelling 

Industrial energy infrastructures are characterized by the presence of different 

energy carriers and equipment to transform and store them in order to meet 

demand requirements. In the past, different energy systems with different energy 

carriers were planned and managed independently [72]. Nonetheless, to improve 

system efficiency and reliability it is required to model these energy infrastructures 

and their correlations as a whole. This multi-carrier energy system model can be 

obtained by applying the EH concept. The EH was first introduced in [73], [74] as an 

interface between consumers and producers which were connected directly or 

through conversion equipment that could handle one or more energy carriers. [75] 

defines the EH as a unit where multiple energy carriers can be converted, 

conditioned, and stored; and [76] considers it as a unit that provides the functions 

of input, output, conversion and storage of multiple energy carriers. Figure 3 and 

equation 1 depict the general EH concept, which relates inputs and outputs through 

a coupling matrix. 𝐿 represents the demand or output vector, 𝑃 the input vector of 

the system and 𝜂 the coupling matrix which can contain direct connectivity 

parameters, converters efficiency, and coefficients of performance of equipment 

(COP) [77]. The EH equation can also be written as appears in equation 2. 

 

 

Figure 3: EH concept. 

[
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(1) 

 

𝐿 = 𝜂 𝑃 (2) 
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To obtain the EH model of an industrial energy infrastructure it is required to obtain 

the coupling matrix relating inputs with outputs and also the operational 

constraints that apply to the system. This model can be obtained by applying the 

following rules that guide the development of an EH and that can be expanded for 

their application to diverse energy infrastructure types: 

• Relationship between a single input and single output of an energy converter 

The converter that transforms input energy 𝑃𝛼  into output 𝐿𝛽 is modelled as 

exposed in equation 3. The converter has a performance of 𝜂𝛽𝛼, which can be 

either efficiency or COP, depending on the specific equipment considered. 

𝐿𝛽 = 𝑃𝛼𝜂𝛽𝛼 (3) 

• Existence of energy converters in series 

In this case, called multi-stage conversion, all the output of one energy 

converter goes directly to another converter. The final output is therefore the 

transformation, through all the converters, of the initial inputs. This is 

expressed mathematically by multiplying the performance of the converters 

in the chain: 

𝐿𝜃 = 𝑃𝛼𝜂𝛽𝛼𝜂𝜃𝛽 (4) 

• Converters with more than one input and output 

Converters can be connected, either in the input, output or both, to one or 

more other sources, converters or demand points. Figure 4 exposes an 

example of this situation. 

 

Figure 4: Converter output connected to more than one converter. 

To assure the proper operation of the system, it is required that the inputs 

and outputs of the system are correctly distributed without exceeding the 

power transacted. This is done by introducing the dispatch factors, 𝑣𝑖 , which 

represents the fraction of an input or output that comes or is directed to 
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other converters, inputs or outputs. The formulation is here expressed taking 

as reference the nomenclature in Figure 4: 

𝐿𝛽 = 𝑃𝛼𝜂𝛽𝛼 
(5) 

𝐿𝛽 =∑𝐿𝛽𝑖

𝑛

𝑖=1

 
(6) 

𝐿𝛽1 = 𝐿𝛽𝑣1 (7) 

0 ≤ 𝑣𝑖 ≤ 1 (8) 

∑𝑣𝑖

𝑛

𝑖=1

= 1 
(9) 

• Equipment and transactions operational bounds 

Energy converters have operational bounds which have to be fulfilled to 

guarantee the correct functioning of the system. This can also happen for 

transactions where connexion lines are limited to a specified capacity. These 

bounds are expressed as inequalities: 

𝑙𝑏𝛼 ≤ 𝑃𝛼 ≤ 𝑢𝑏𝛼 (10) 

 

For the case of storage systems, operational bounds include the maximum 

and minimum power that can be introduced and extracted from the storage 

as well as the minimum and maximum energy stored. To compute the energy 

stored, the following time-dependent expression is employed: 

𝐸𝛽
𝑡 = 𝐸𝛽

𝑡−1 + ∆𝑡(𝑃𝛽 − 𝐿𝛽) (11) 

From the logic depicted in these rules, it is possible to infer the EH model of more 

complex energy systems. In order to assure the success of the process, the 

methodology presented in [78] has been considered and upgraded to adapt it to the 

prosumer problem:  

• Step 1: Identification of input and output port groups. 

Identification of input and outputs of the EH. Due to the prosumer nature of 

the infrastructure – and the bi-directional connectivity of the EH with the 

electricity grid – some inputs appear also as outputs of the system. 
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• Step 2: Identification of energy converters. 

Identification of energy converters and energy storage systems together with 

the energy carriers that they treat and convert. 

• Step 3: Determination of the energy flow inside the hub. 

In this step, the coupling matrix is defined by analysing the connectivity 

between all inputs, outputs and energy converters. 

• Step 4: Determination of the system’s restrictions. 

Determination of all system restrictions, including connectivity between 

converters, gathering and use of inputs, and generation of outputs. 

• Step 5: Determination and calculation of the converters’ operation bounds. 

Identification of bounds applicable to energy converters in the EH and 

determination of their formulation. 

This process enables to obtain the EH model of complex industrial SMEs’ energy 

infrastructures, which serves as a basis for its transformation into a prosumer. 

2.2. Forecast of the future energy situation 

The prosumer operation of an industrial SME should consider not only current 

parameters and variables but also future situations over a specified operational time 

horizon. For the industrial sector, these operational cycles are weeks, as production 

is maintained constant during week-days and diminished during weekends to 

perform other activities, e.g. maintenance [40]. Therefore, to obtain the optimal 

prosumer operation of the plant it is required to know the evolution of parameters 

that influence it considering a weekly time horizon. These parameters depend on 

the specific industrial SME analysed and can be, among others, solar irradiation, 

electricity price in the market, and demand. The forecast of some of them can be 

obtained from external sources. For example, market electricity prices can be 

gathered from market operators and solar irradiation from meteorological entities. 

Nonetheless, the prediction of internal demand depends uniquely on the industry’s 

characteristics and has therefore to be carried out internally to evaluate the 

operation of the plant. The industry is a sector where the demand can have irregular 

and infrequent behaviour depending on several conditions and that is constantly 

under improvement processes. For this reason, a method that enables periodically 

auto-adjustment and high accuracy is required. 

In recent times, artificial intelligence methods used for demand or load forecasting 

include mainly Artificial Neural Networks (ANN), expert systems and Support 

Vector Machines (SVM). An ANN approach for short-term load forecasting is 

introduced in [79], in which a Deep Neural Network (DNN) is developed. Its 

performance is compared with other algorithms commonly used for load 
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forecasting, specifically SVM, Random Forest (RF), Decision Tree (DT), Multilayer 

Perceptron (MLP) and Long Short-Term Memory network (LSTM), reaching the 

conclusion that the DNN developed has the lowest forecast error of the studied 

methods. Despite the suitability of ANN, nowadays researchers are focusing on 

developing hybrid methods combining ANN with other techniques. [80] proposes 

an extreme learning machine technique with the Levenberg-Marquardt method and 

[81] explores the possibility to use ANN to create a hybrid method with other 

techniques such as back propagation, fuzzy logic, Genetic Algorithm (GA) and 

Particle Swarm Optimization (PSO). [82] also presents a hybrid approach, in which 

a clustering method together with ANN and SVM is used for load forecasting. It is 

shown that the forecasted consumption has a lower error than in the case of using 

ANN and SVM alone. Nonetheless, it is suggested that the creation of a forecasting 

method with fuzzy methodology together with ANN will produce better and more 

accurate results. In this path, a fuzzy logic model for load forecasting was tested in 

[83]. This paper uses only fuzzy techniques intending to extract rules and predict 

energy demand. This methodology can be improved by combining ANN with fuzzy 

logic. Adaptive Neuro Fuzzy Inference System (ANFIS) is a forecasting technique 

which employs both ANN and fuzzy logic [84]. ANFIS aims at mapping input to 

output for highly non-linear processes and has been tested for general demand 

forecast applications [85], [86] and also for industrial predictions providing 

promising results [87]. Therefore, ANFIS is used here to forecast the demand of 

prosumer industrial SMEs. 

ANFIS is based on the combination of ANN and Takagi-Sugeno type fuzzy logic and 

was first presented in [88]. Figure 5 exposes the ANFIS architecture, which has 5 

layers. In the first layer, the fuzzification of the inputs takes place. To do so, 

membership functions are consulted and the degree of fulfilment of inputs is 

computed. The parameters that appear in this layer and that are required to carry 

out the fuzzification are called premise parameters. In the second layer, the neurons 

compute the fire strength rule by performing an AND operation of the incoming 

signals. Then, layer 3 normalises the received input and sends the result to layer 4, 

where the Takagi-Sugeno fuzzy reasoning method is applied employing the 

consequent parameters. Finally, layer 5 computes the single output by adding the 

inputs received. For the proper functioning of the ANFIS method, it is required to 

train it to adjust the premise and consequent parameters. Once it has been trained, 

it is possible to use it to forecast the energy vector of interest and employ the result 

as input for the prosumer operation optimization. 
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2.3. Prosumer operation 

The purpose of the EH industrial model and the forecast of the energy vectors is the 

optimization of the energetic operation of the plant considering a prosumer 

behaviour that can provide benefits both for the enterprise and for the electricity 

market. The optimization, which is carried out with a weekly time horizon to capture 

demand and market cycles, has to be performed considering internal and external 

parameters to decide the best energy management strategies, deciding on which 

equipment to use, when to buy and sell electricity from the utility grid and when to 

charge and discharge energy storage systems either to sell it to the utility grid or to 

use it to fulfil internal demand. The objective of this operation depends on the 

interests of the enterprise and can be, for example, the minimisation of energy costs 

and emissions. Generally, an optimization problem is defined mathematically as: 

Given:   𝑓: 𝐴 → ℜ (12) 

Find:   𝑥0 ∈ 𝐴  such that 𝑓(𝑥0) ≤ 𝑓(𝑥)  for all 𝑥 ∈ 𝐴 (13) 

Where 𝑓 is the objective or fitness function of the problem that can contain the cost 

of energy purchased from the utility grid, the benefit obtained when selling energy, 

the levelized cost of employing energy converters within the EH, and the emission 

Figure 5: ANFIS architecture. 
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caused by the use and conversion of specific energy carriers. 𝐴, in contrast, 

represents a subset of the real space which can be understood as the constraints 

that need to be achieved or fulfilled. It can be a group of equalities and inequalities, 

which in the framework of the prosumer optimization problem should contain 

internal EH restrictions as well as prosumer operation restrictions related to energy 

exchange with external entities. The parameters to optimize are represented as 𝑥, 

which are for the prosumer optimization problem the equipment set points and 

energy transactions of the EH with external grids. Considering that the prosumer 

optimization problem is represented as a minimisation over time, it can be 

formulated as: 

Minimise:  ∑ 𝑓𝑡(𝑥)𝑁
𝑡=1     (14) 

Subject to:   𝑔𝑡(𝑥) = 0 ∀ 𝑡  (15) 

ℎ𝑡(𝑥) ≤ 0 ∀ 𝑡 (16) 

Where 𝑔(𝑥) is the set of equality constraints and ℎ(𝑥) is the set of inequality 

constraints that have to be fulfilled at all times. For the studied problem, these 

constraints are: 

• Equality constraints: 

o EH equilibrium, which can be expressed employing the general EH 

formulation as: 

𝐿 − 𝜂 𝑃 = 0 (17) 

o Use of all energy to/from an energy converter or input by another 

energy converter or output, which is assured by the dispatch factors: 

∑𝑣𝑖

𝑛

𝑖=1

− 1 = 0 
(18) 

• Inequality constraints: 

o Equipment conversion upper and lower bounds. 

o Transaction restrictions, such as maximum energy that can be traded 

with external grids, which can be electricity, gas, or others.  

o Maximum and minimum energy stored in the storage systems. 
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The fitness function 𝑓 can be formed by one or more functions depending on the 

objectives pursued by the industrial SME. In the literature, most studies addressing 

energy optimizations have as a unique objective the economic profit maximisation, 

such as [89], although some of them also consider environmental and social 

implications. From these, the most common approach is to combine economic and 

environmental objectives, including emissions as a constraint or as an objective 

[90]. As the decisions taken by industrial SMEs have great environmental and social 

impacts, it is beneficial in the formulation of the optimization problem to consider 

the possibility to treat more than one objective. There are several ways to handle 

Multi-Objective Optimizations (MOO). MOO problems can be broadly divided into 

Multi-attribute Decision Making (MADM) and Multi-objective Decision Making 

(MODM) problems. MADM refers to optimization problems in which the 

optimization space is discrete and, before the optimization process begins, there 

exists a limited set of predefined criteria. MADM is often used in finite selection or 

choice problems [91]. In contrast, MODM is mostly used for solving engineering 

problems expressed mathematically and is therefore more suitable for the problem 

here presented. MODM are often classified according to the handling of the 

preferences for the different criteria considered [92]: 

• Methods with a priori articulation of preferences: In these methods, the 

preferences for the different criteria are computed before the search for 

the solution is performed, which makes it possible to obtain a single 

optimal solution. 

• Methods with a posterior articulation of preferences: In these methods, 

no preferences are specified and the algorithm performs the search for a 

set of solutions that are considered optimal for the optimization problem. 

Once the set of solutions is obtained, the decision-maker can evaluate it 

and perform the selection of the best alternative. 

• Methods with no articulation of preferences: This method usually 

considers setting the weights of all criterions equal to one or setting 

specific goals, so no preference for one over another is specified. 

The prosumer operation optimization problem searches for the best energy 

management strategy considering the enterprise's preferences. This problem has 

diverse optimal solutions where a trade-off between the different criteria exists. 

Nonetheless, this optimization is designed to be carried out repeatedly on an 

industrial SME to compute its operation and it is therefore unfeasible and 

unproductive for decision-makers or supervisors to continuously evaluate the best 

trade-off alternative. Thus, an MODM methodology with a prior articulation of 

preferences is preferred. Inside this category, the Weighted Sum Method (WSM) 

represents the core and most used approach for selecting weights to compose a 

unique objective function such as [93]: 
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𝑓 =∑𝑓𝑖𝑤𝑗  

𝑁

𝑗=1

 
(19) 

Being 𝑤𝑗  is the weight assigned to the 𝑗-ith objective. Since different objectives have 

different values and ranges, 𝑓𝑖 should have been previously normalised before being 

introduced into the final fitness function. The mathematical formulation of the 

optimization problem results in a multi-objective, multi-period problem, which may 

contain integer or continuous parameters depending on the case under analysis. In 

[94] Mixed-Integer Lineal Programming (MILP) and evolutionary algorithms are 

tested for multi-objective optimization of complex energy systems. The results show 

that MILP is suitable for generating a list of ordered solutions with short resolution 

time while evolutionary algorithms, such as GA, work with a population of potential 

solutions each representing a different trade-off between objectives and is 

particularly advantageous for multi-objective optimizations. [94] formulates the 

mixed integer nonlinear problem for a multi-objective scheduling of EV and solves 

it using a Benders decomposition and transforming the large-scale optimization 

problem into one master MILP problem and one non-linear problem. A similar 

problem exposes [95], which solves it using multi-objective evolutionary algorithms 

and MILP. The optimization technique used depends on the characteristics and 

complexity of the industrial SME analysed as well as on the computational 

resources; being GA and MILP or LP adequate techniques. 

2.4. Publications 

The techniques and methodologies exposed in this chapter have been presented and 

published in the articles detailed in this section. These articles, therefore, deal 

mainly with energy modelling, forecast, and operation optimization of industrial 

SMEs as prosumers. In all of them, case studies are presented to evaluate the 

suitability of the proposed techniques and methodologies for industrial SMEs and 

the advantages of becoming prosumers. A complete version of the second and third 

articles is available in section 5 whereas the full version of the first article can be 

consulted in Annex A. 

• E. M. Urbano, V. Martínez-Viol, and L. Romeral, “Optimization of industrial 

plants for exploiting energy assets and energy trading,” in IEEE International 

Conference on Emerging Technologies and Factory Automation, ETFA, 2019, 

vol. 2019-Septe. 

This article presents an overview of the energy and industrial framework 

which promotes the creation of prosumers from industrial entities. The 

article exposes the detailed EH model for a specific industrial site, the load 

forecast using ANFIS, and the optimization of the prosumer behaviour. 
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• E. M. Urbano, V. Martinez-Viol, K. Kampouropoulos, and L. Romeral, “Future 

european energy markets and industry 4.0 potential in energy transition 

towards decarbonization,” Renew. Energy Power Qual. J., vol. 18, no. 18, pp. 

190–195, 2020. 

The objective of this article is to establish the current and future 

frameworks for the energy market and industrial developments. The 

transformation to a prosumer is evaluated by analysing the economic 

benefit of operating as so. 

• E. M. Urbano, V. Martinez-Viol, K. Kampouropoulos, and L. Romeral, “Energy 

equipment sizing and operation optimisation for prosumer industrial SMEs 

– A lifetime approach,” Appl. Energy, vol. 299, no. July, p. 117329, 2021. 

Although this article already exposes developments that will be addressed in 

the next chapter of this thesis, it includes the development of the EH for the 

energy infrastructure of and industrial SME and the prosumer operation 

optimization considering weekly energy patterns. 

2.5. Conclusions 

This chapter has presented the modelling of the industrial energy infrastructure, the 

forecast of the energy vector, and the prosumer operation optimization problem. As 

commented in the previous section, to evaluate the suitability of the proposed 

techniques and methodologies, case studies have been defined and analysed; and 

the results published in the exposed articles. The case studies reflect standard SME 

plants with a bi-directional connection to the electrical utility grid and a connection 

to the gas grid. They have to fulfil electrical and thermal demands and account with 

the following energy equipment: PV generators, batteries, Combined Heat and 

Power (CHP) units, and boilers. Their energy infrastructure has been modelled and 

the forecast of both electrical and thermal demand has been carried out using ANFIS. 

The ANFIS methodology enables to obtain forecast error between 5.1% and 7.6% by 

employing as inputs the day of the week, the time of the day, the scheduled 

production, the external temperature, and the demand 1 day and 1 week before. 

With the EH model and the energy forecasts, the prosumer operation of the plant is 

optimized. The results expose that power from the renewable energy source is 

injected into the utility grid in the time intervals where generation is high and 

electricity costs in the external market are also high. In contrast, when costs in the 

market are low, this power is used for internal demand or to charge the battery. It 

has also been possible to appreciate that, due to the fact that gas is significantly 

cheaper than electricity, it is employed not only to fulfil thermal demand but also to 

operate the CHP unit and generate electricity to cover electrical demand. The 

optimization of a plant without electricity exchanging capabilities has also been 
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done for comparison purposes to evaluate the benefits of becoming a prosumer. The 

economic spectrum of the prosumer operation has been evaluated and savings 

between 7% and 20% have been observed. 

These developments demonstrate the feasibility of trading energy with the utility 

grid by controlling the operation points of energy equipment to benefit from the 

state of the external market, injecting green energy at high-cost periods. Due to the 

economic profitability of becoming a prosumer, the proposed energy management 

strategy is likely to be included in the current business models of industrial SMEs, 

promoting the decentralisation and flexibility of the energy system. 
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3. Infrastructure sizing and risk assessment 

This chapter addresses the energy sizing optimization problem and assesses the 

investment risk related to it. Firstly, the sizing problem itself is defined and the 

techniques and methodologies employed to solve it are presented. Secondly, the risk 

industrial SMEs undertake when performing the energy investment to upgrade their 

plant is addressed. 

3.1. Sizing optimization 

The purpose of this optimization is to obtain the sizes of energy equipment in which 

to invest. The objective of the optimization should be aligned with industrial 

interests and consider the lifetime performance of the new equipment. Currently, 

the interest of industrial enterprises lays mainly in the achievement of profitable 

economic outputs. Cost of Energy (COE) is an output often employed when optimally 

sizing energy equipment [96]. This parameter serves to analyse the cost of the 

energy generated considering the repeatability of the performance of the energy 

resources during their lifetime. However, to suitably address energy investment 

performance, variations according to external and internal changes that occur over 

the lifetime of the equipment should be addressed. For this reason, the Net Present 

Value (NPV) is a more suitable parameter for evaluating investments, as it considers 

the different cash inflows and outflows for different periods and transforms them 

into current value; evaluating lifetime profitability [97]. NPV can be computed as: 

𝑁𝑃𝑉 = −𝐶0 + ∑
𝐶𝑖

(1 − 𝑟)𝑖

𝑇

(𝑖=1)

 
(20) 

Where 𝐶0 is the initial investment cost, 𝐶𝑖 is the cash flow of year 𝑖, and 𝑟 is the hurdle 

rate used by the enterprise. A positive NPV announces that the obtained benefits are 

higher than the costs, resulting in a good investment option. To compute the NPV, it 

is required to obtain the costs and benefits of operating the energy equipment and 

thus to carry out the prosumer operation optimization introduced in section 2.3. 

Therefore, the sizing optimization problem can be formulated as a two-stage 

optimization problem in which equipment sizes are selected in the first-stage and 

their prosumer operation is evaluated in the second-stage. A similar approach is also 

used in [98], which proposes a two-stage optimization for the sizing of an ESS. In the 

first stage, the ESS capacity and inverter rating are selected, and in the second stage, 

the dispatch schedule is optimized. [99] follows this same strategy for the design 

and planning of a microgrid with a combined cooling, heat and power system, and 

[100] does so for the optimal sizing and operation of a CHP unit. For the sizing 

optimization problem of an industrial SME, the energy equipment to install are 

selected in the first stage while in the second stage the prosumer operation based 
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on weekly time horizons is computed. Figure 6 depicts the proposed methodology. 

First of all, relevant data is extracted from databases. This data can include, among 

others, meteorological information, market costs, internal demands, and equipment 

parameters. As the optimization is carried out for the complete lifetime of the 

investment and considering weekly operational periods, weeks are selected over 

the optimization horizon. Then, the operation of a reference plant is optimized. This 

reference plant represents a “Do-nothing” scenario in which the industrial SME 

Figure 6: Energy equipment sizing optimization methodology. 
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operates as a prosumer but does not modify its energy infrastructure. This 

optimization will be used for comparison purposes to evaluate the benefits of 

upgrading the industrial plant equipment. Once this step is performed, the algorithm 

continues to the two-stage optimization. In the first stage, candidate solutions are 

selected for evaluation. These candidate solutions are the possible sizes of energy 

equipment to install in the industrial SME. With these data, the EH model of the 

potential upgraded industrial plant is constructed and related constraints are 

generated. This model moves to the second stage of the optimization in which the 

prosumer optimal operation is obtained. This optimization is carried out by 

analysing selected weeks per year and considers long-term variations in external 

and internal parameters such as changes in the cost of energy carriers or industrial 

demand growth perspectives. The optimal operation is compared per year with that 

of the reference plant to evaluate the costs and benefits produced by upgrading the 

plant with the analysed candidate solutions. If NPV is used as a criterion, these costs 

and benefits represent the cash inflows and outflows. When the evaluation of the 

operation along the optimization horizon is completed, the chosen criteria that 

comprise lifetime performance are computed. At this point, the global optimizer 

checks whether the near-maximum global has been obtained or not through its 

stopping criteria, which deal with the result tolerance, number of iterations without 

improvement, time constraints, etc. If a near-maximum global has been reached, the 

algorithm finalizes its operation. Otherwise, new potential solutions are created and 

the process is repeated.  

To successfully carry out the proposed optimization, an important amount of data is 

required, which can include: 

• energy carriers' current and future costs, 

• feed-in tariff, 

• meteorological information such as solar irradiation and wind, 

• emissions cost, 

• internal demand, 

• industrial SME expected growth ratio, 

• equipment initial cost, 

• equipment operation and maintenance costs, 

• equipment degradation, 

• equipment efficiencies, and 

• investment restrictions such as maximum investment or payback period. 

The optimization problem formulated presents unconnected complex feasible 

areas, so gradient-based and local optimization algorithms are not suitable for its 



 
30 Infrastructure sizing and risk assessment 

resolution as they tend to reach local maximums close to the starting point. For this 

reason, the use of global optimization algorithms is in this case preferred, as they 

have a better chance of finding the global optimal and do not require information 

from the derivative of the objective function [101]. For the specific situation 

considered, the optimization problem is solved using Direct Search (DS), a 

derivative-free global optimization algorithm based on branching techniques that 

performs successfully in front of practical problems with complex search areas 

[102] and that provides global convergence as proven in [103]. The second-stage of 

the problem contains also an internal optimization procedure. This optimization is 

solved through LP to minimize computational cost and assure the achievement of 

the global operational optimum.  

3.2. Risk analysis 

The optimization problem addressed in the previous section requires employing 

data on current parameters and their evolution in upcoming years. This data is 

considered deterministic, assuming that their value is known and certain. However, 

the real values of these inputs are uncertain and so is their evolution. This creates 

uncertainty in the output of the optimization problem which represents a risk for 

the industrial SME performing the investment. To improve the investment 

perspectives of industrial SMEs, this section analyses the risk related to it. To do so, 

it is required to: 

• model the uncertainty of input parameters, 

• perform a UA to measure the uncertainty in the output and therefore the risk 

assumed by investors, and 

• perform a SA to identify where the risk is coming from. 

Figure 7 shows the methodology to carry out this risk analysis. First of all, the results 

from the sizing optimization are gathered and the model of the upgraded plant is 

obtained. The uncertainty in input parameters is then characterized and a UA 

analysis is performed to obtain the output uncertainty. Lastly, the SA is carried out 

to identify the most influential inputs in outputs’ uncertainties and rank them. 

3.2.1. Uncertainty characterization 

The inputs considered deterministic in the optimization stage are inherently 

uncertain. To evaluate the uncertainty of the optimization output, it is indispensable 

to consider the uncertainty in the input. Uncertain parameters that influence the 

investment decision can be characterized through different strategies, such as 

scenarios, numerical ranges or Probability Density Functions (PDF). The latter is 

more suitable for energy investment optimization problems, as it enables the 
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application of sophisticated  UA and SA methods that provide robust results [104]. 

To obtain the PDF of an uncertain input, a literature search is performed to gather 

the possible current and future values for the analysed parameter. Once data 

gathering is completed, several potential PDFs are tested on it and the one that fits 

better is chosen to characterize its uncertainty. In the case that the analysed 

parameter presents uncertainty in its current value and also in its evolution over 

time, the uncertain evolution is included in the problem by adapting the PDF to the 

changing trends. The goodness of the PDF fit is evaluated through the loglikelihood 

function, which evaluates the joint probability distribution of the random vector 

resulting from the PDF to be the provided input data sample. The distributions 

considered for characterizing the inputs are the BirnBaurn-Saunders, the 

exponential, the extreme value, the gamma, the generalized extreme value, the half-

normal, the inverse Gaussian, the Kernel, the logistic, the log-logistic, the lognormal, 

the Nakagami, the normal, the Weibull, and the uniform distributions. 

  

Figure 7: Risk analysis methodology. 
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3.2.2. Uncertainty Analysis 

With PDFs assigned to input parameters, a method that generates samples 

according to these PDFs is a suitable UA strategy that allows obtaining a reliable 

output for the energy infrastructure problem analysed [105]. Although Monte Carlo 

is a commonly used statistical sampling method [106], its high computational cost 

suggests the employment of quasi-random sampling methods such as the Latin 

Hypercube Sampling (LHS), which provides results efficiently at a low 

computational cost [107] and has been proved to perform well in energy models 

[108]. Therefore, in this thesis, LHS is used for UA. LHS divides the uncertainty 

spectrum into subsets of equal probability and draws samples randomly from each 

of the subsets [109]. Once N samples are obtained for each of the inputs’ PDFs, they 

are combined to obtain N uncertain scenarios to analyse [110]. The energy 

equipment in which to invest has already been selected during the deterministic 

optimization problem and in this UA the objective is to know the uncertainty in its 

performance. Although the equipment itself does not change, its operation can be 

modified to adapt to external and internal deviations. Therefore, for each uncertain 

scenario, the operation of the industrial SME is computed again. With this process, 

the output distribution is obtained, making it possible to evaluate the robustness of 

the deterministic problem solution in front of uncertainties and the expectable costs 

and benefits. 

3.2.3. Sensitivity Analysis 

Once the uncertainty in the output is known, the risk becomes more tangible for 

investors, although it is convenient to perform a SA to know the inputs that cause 

most of this uncertainty. Among other approaches, statistical global SA methods are 

the ones that provide the most model insights [104]. Due to the complexity of the 

optimization problem and its high computational cost, a two-stage SA methodology 

is considered for the study here presented. The first stage aims at reducing problem 

dimensionality, identifying and discarding less-influential inputs through a 

screening technique. The most widely used screening methodologies for energy 

models are Sequential Bifurcation, Nominal Range Sensitivity and, particularly, the 

Morris method [111], [112]. Among the different screening techniques for energy 

models, the Morris method is the most suitable one as it does not require hypotheses 

regarding the nature of the model and thus can be applied to a wide range of 

problems [113]. The second stage of the SA methodology is selected to be formed by 

a statistical variance-based global SA method, applicable to non-monotonic and non-

linear models [114]. Among the variance-based methods, Sobol, FAST and e-FAST 

have been widely used for energy systems, providing stable results. The Sobol 

method presents more robust results than FAST and e-FAST and allows for a 

suitable sample size to capture the behaviour of the problem [115]. Considering this 

robustness and that a previous screening stage is employed to reduce problem 



 
Infrastructure sizing and risk assessment 33 

dimensionality, the Sobol method is the one chosen as the second-stage for the SA. 

The combination of Morris and Sobol has already been used in the literature to 

assess complex uncertain problems, such as in [116]; and has been proved to 

provide results efficiently while quantifying the sensitivity effectively. 

3.2.3.1. Morris method 

The Morris method is a global approach that can be considered an extension of local 

OAT techniques which enables the discrimination of less influential inputs 

employing a small sample size and low computational cost [117]. The uncertainty 

range of all the inputs is divided into 𝑝 levels. Then, 𝑞 base vectors are obtained from 

sampling one random level per uncertain input. These base vectors are 

recommended to be between 4 and 10 [118] and serve as the starting point for the 

creation of trajectories, which enable the analysis of the influence of the inputs in 

the output. In each trajectory, the inputs’ values are consecutively increased or 

decreased a step ∆. The Elementary Effect (EE) of input 𝑥𝑖  in the trajectory can be 

computed as: 

𝐸𝐸𝑖 =
𝑓(𝑥1, … , 𝑥𝑖 + ∆,…𝑥𝑘) − 𝑓(𝑥1, … , 𝑥𝑖 , … 𝑥𝑘)

∆
 

(21) 

Where f represents the deterministic model. To ensure a desirable symmetric 

treatment of inputs [119], it is convenient to employ a value of p even and a step 

value of: 

∆=
𝑝

2(𝑝 − 1)
 

(22) 

With the EE obtained, it is possible to rank parameters through the index 𝜇𝑖
∗: 

𝜇𝑖
∗ =

1

𝑞
∑|𝐸𝐸𝑖|

𝑣

𝑗=1

 
(23) 

3.2.3.2. Sobol method 

Once the less influential inputs are discarded, the Sobol method is applied, which 

aims to calculate two metrics per parameter named first-order Sobol index and 

total-order Sobol index. These metrics indicate the portion of the output variance 

that is explained by a parameter alone and the portion of the output variance that is 

explained by a parameter and its interactions with others [56]. 

On the one hand, the first-order index of the parameter 𝑥𝑖  is defined as: 
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𝑆𝑖 =
𝑉𝑥𝑖 (𝐸𝑋∽𝑖(𝑌|𝑥𝑖))

𝑉(𝑌)
 

(24) 

Where 𝑌 is the output of the system, 𝑉(𝑌) is its total variance and 𝐸𝑋∽𝑖(𝑌|𝑥𝑖) is the 

mean value of Y considering the variation of all model inputs except 𝑥𝑖 , which 

remains fixed. This term is evaluated for all values of 𝑥𝑖 , and its variance computed, 

which is expressed by the term 𝑉𝑥𝑖 . On the other hand, the total-order index is 

defined as: 

𝑆𝑇𝑖 =
𝐸𝑋∽𝑖 (𝑉𝑥𝑖(𝑌|𝑥∽𝑖))

𝑉(𝑌)
 

(25) 

Where 𝑉𝑥𝑖(𝑌|𝑥∽𝑖) is the variance of the output over all the possible values of 𝑥𝑖  when 

the rest of the inputs are fixed. This variance is computed for all the values of the 

inputs, which is represented by the 𝐸𝑋∽𝑖  term. To compute the Sobol indices for 

complex energy problems considering the entire distribution of inputs, repeatedly 

running the model is required. To minimise the computational cost while 

maintaining the method's robustness, the best practices exposed in [120] are 

employed. These practices establish the use of two different sampling matrices A 

and B with rows equal to the number of simulations and columns equal to the 

number of considered uncertain inputs, the matrix 𝑨𝑩
(𝒊)

 is constructed for all factors 

with all the columns from A except the i-th column, which is obtained from B. Then, 

the numerical estimators of the sensitivity indices are computed as: 

𝑉𝑥𝑖 (𝐸𝑋∽𝑖(𝑌|𝑥𝑖)) =
1

𝑁
∑𝑓(𝑩)𝑗 (𝑓(𝑨𝑩

(𝒊)
)
𝑗
− 𝑓(𝑨)𝑗)

𝑁

𝑗=1

 
(26) 

𝐸𝑋∽𝑖 (𝑉𝑥𝑖(𝑌|𝑥∽𝑖)) =
1

2𝑁
∑(𝑓(𝑨)𝑗 − 𝑓(𝑨𝑩

(𝒊))
𝑗
)
2

𝑁

𝑗=1

 
(27) 

3.3. Publications 

This section exposes the publications done related to energy sizing optimization and 

risk assessment addressed in this chapter. The publications include case studies in 

which energy equipment is optimized and risks are evaluated to verify the 

suitability of the proposed techniques and methodologies. For each of the 

publications, a brief text is included with the objective to ease the consultation of 

the thesis’ developments. Chapter 5 includes the full version of all of them. 
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• E. M. Urbano, V. Martinez-Viol, K. Kampouropoulos, and L. Romeral, 

“Renewable energy source and storage systems sizing optimization for 

industrial prosumers,” in IEEE International Conference on Emerging 

Technologies and Factory Automation, ETFA, 2020, vol. 2020-Septe. 

This article optimizes the size of renewable energy and energy storage 

systems for an industrial plant considering a prosumer operation. It 

compares the performance of the industrial plant considering different 

energy equipment and operation scenarios and exposes the advantages of 

optimally sizing energy equipment for prosumer purposes. 

• E. M. Urbano, V. Martinez-Viol, K. Kampouropoulos, and L. Romeral, “Energy 

equipment sizing and operation optimisation for prosumer industrial SMEs 

– A lifetime approach,” Appl. Energy, vol. 299, no. July, p. 117329, 2021. 

This paper presents the detailed optimization methodology to adequately 

solve the energy equipment sizing problem for industrial SMEs. The 

energy and economic profiles of SMEs are analysed and the mathematical 

formulation of the two-stage optimization problem including sizing and 

operation is exposed in detail. 

• E. M. Urbano, A. D. Gonzalez-Abreu, K. Kampouropoulos, and L. Romeral, 

“Uncertainty analysis for industries investing in energy equipment and 

renewable energy sources,” Renew. Energy Power Qual. J., vol. 19, no. 19, pp. 

126–130, 2021. 

In this paper, the two-stage optimization of the energy investment is 

performed and the risk of the investment is analysed. Energy carriers’ 

uncertainty is characterized and investment risk is evaluated through an 

uncertainty analysis. 

• E. M. Urbano, V. Martinez-Viol, K. Kampouropoulos, and L. Romeral, “Risk 

assessment of energy investment in the industrial framework – Uncertainty 

and Sensitivity analysis for energy design and operation optimisation,” 

Energy, vol. 239, p. 121943, 2021. 

This article exposes in detail the deterministic two-stage energy 

investment optimization and the risk assessment, including uncertainty 

analysis and two-stage sensitivity analysis 
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3.4. Conclusions 

The current chapter has addressed the energy sizing optimization problem and the 

assessment of energy investment risks. The energy sizing or investment problem 

has been presented as a two-stage deterministic optimization, in which energy 

equipment is selected in the first-stage and the prosumer operation of the 

equipment over its lifetime is optimized in the second-stage. For risk assessment, a 

methodology based on uncertainty characterization of inputs, uncertainty analysis, 

and two-stage sensitivity analysis has been defined. These techniques and 

methodologies have been applied to different industrial case studies aiming to 

explore the benefits of optimally sizing the equipment and evaluate the uncertainty 

in the investment performance in front of inputs’ variabilities. These case studies 

and related results have been published in the articles mentioned in the last section: 

[121]–[124]. 

The obtained results show that optimally sizing energy equipment for prosumer 

purposes can produce energy-related savings of approximately 45% compared to a 

“Do-nothing” scenario in which no new equipment is included and the plant does 

not operate as a prosumer. Regarding the economic performance of the investment, 

the payback period for a prosumer lays between 4 and 8 years, which supposes a 

significant reduction compared to the self-consumption case, with a payback period 

between 10 and 11 years. It has also been possible to verify that, although the 

optimal investment for a prosumer can be higher as it is preferable to have, for 

example, more renewable energy capacity, this does not affect negatively the 

payback period as yearly returns are also higher and the investment is quickly 

recovered. 

The final value of the investment in the case studies analysed – measured through 

the NPV – multiply by 10 that of the initial cost, a fact that enhances the investment 

of industrial SMEs in new equipment and energy management strategies. Regarding 

the specific equipment selected in the investment optimization, the solutions are 

highly dependent on the plant demand type and the evolution of external 

parameters. Nonetheless, in all the studied cases an upgrade of the energy 

infrastructure improves the energy performance of factories and permits trading 

with the external utility grid as a prosumer, boosting the profitability of the 

investment and contributing to the decarbonisation of the energy sector. 

The results of the exposed deterministic energy sizing optimization have been 

improved by analysing also the risks related to the related investments. The UAs 

carried out in the different case studies expose that the variation of the economic 

output is moderate in front of current system uncertainties. For the case study 

analysed in [123], the final NPV value has a 68% chance of laying around 2.4% of 

the mean value and a 95% chance of lying around 4.8% of the mean. With the 

obtained values, it can be concluded that despite variations in the inputs of the 
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system, the optimization methodology to size energy infrastructures for prosumers 

is robust and the risk can be acceptable by enterprises. SA has also been performed, 

indicating that for the cases studied the inputs that most influence the performance 

of the investment is the uncertainty in the cost of energy carriers – electricity and 

gas – and their evolution. 

The proposed framework for energy sizing optimization and investment risk 

assessment is useful to the industrial sector and specifically to SMEs, enabling them 

to better analyse the energy and economic perspectives of the investment to 

perform.  



 
38 Risk-informed investment 

4. Risk-informed investment 

The current growing uncertainty in the energy markets [125], [126] advises not only 

to evaluate the risk of investing in energy equipment but also to incorporate 

uncertainty in input parameters – and especially uncertainty in the cost of energy 

carriers – in the energy investment optimization problem. Also, the Industry 5.0 

revolution is enhancing the renewal of industries to transform them into more 

value-driven, sustainable, and human-centred entities [127], making it 

indispensable to consider qualitative criteria and their uncertainty in the decision-

making process. 

For these reasons, this chapter exposes a risk-informed investment optimization 

approach that incorporates both quantitative and qualitative parameters and 

uncertainties in the energy sizing problem. Figure 8 shows an overview of the 

proposed methodology, which is based on the developments carried out in the 

previous chapters of this thesis. First of all, input data is selected and collected and 

quantitative and qualitative parameters and their uncertainties are modelled. The 

process to model quantitative inputs and their uncertainties has been exposed in 

section 3.2.1. This chapter deepens these previous considerations to expose how 

quantitative inputs and uncertainties are treated to be included in the optimization 

problem. Also, qualitative criteria values and uncertainties are analysed, modelled 

and incorporated into the problem. Once input data has been characterized, the two-

stage energy sizing optimization process takes place. This two-stage process is an 

extended version of that previously presented in section 3.1. In this case, the first 

and second stages of the optimization consider both quantitative and qualitative 

parameters, their uncertainties, and their effect on the perception of the energy 

equipment and on the operation of the prosumer industrial SME. The fitness 

function is also computed bearing in mind these parameters and the risk caused by 

the uncertainty in the inputs, as well as the preferences of the investor. 

The follow sections detail the process to model and incorporate quantitative and 

qualitative parameters and uncertainties in the investment problem as well as the 

extended two-stage optimization process to support industrial SMEs in adopting 

new energy equipment to become prosumers. 
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Figure 8: Risk-informed investment optimization methodology. 
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4.1. Input and uncertainty characterization 

Before carrying out the optimization of the energy investment, it is necessary to 

identify the risks influencing the investment and model them for their incorporation 

into the problem. As discussed above, these parameters and risks can be both 

qualitative and quantitative. 

4.1.1. Qualitative data 

Qualitative data are those required to take the decision but are not measurable in a 

quantitative manner. Qualitative parameters are used, as shown in Figure 8, both in 

the first and second stages of the energy investment optimization. In the first stage, 

qualitative parameters or criteria directly linked to the equipment analysed, such as 

social acceptance, alignment with the administration, or ecological influence; are 

evaluated. In the second stage, the qualitative cost of using specific technologies is 

included in the operation optimization to prioritize the use of technologies with 

favourable qualitative consequences. 

Due to the difficulty in their measurement, the value of qualitative parameters is 

commonly assigned by an expert or decision-maker based on their knowledge 

about, for example, the community where the industry is placed and the 

governmental framework [128]. To improve using single values to measure 

qualitative parameters, its consideration can be done by evaluating two parameters 

which enable addressing a value for the parameter itself and for its uncertainty. 

These two new parameters are impact and probability. Impact is the effect or the 

degree of fulfilment of a qualitative parameter and probability the likelihood that 

this impact occurs [129]. For the energy investment optimization in industrial SMEs, 

Table 1 exposes an example of the definition of impact and probability to measure 

the qualitative parameter “social acceptance”. 

Table 1: Qualitative parameter impact and probability definition example. 

Qualitative parameter Social acceptance 

Impact 
How strongly does the analysed solution affect the 
social acceptance of the industrial SME? 

Probability 
How likely is it that the mentioned impact occurs if the 
analysed solution is adopted by the industrial SME? 

To include qualitative parameters in the energy investment optimization problem, 

it is required to assign a numerical value to impact and probability. For the case of 

qualitative evaluation in the first stage of the energy investment optimization, 

impact and probability depend on the mix of technologies considered for upgrading 

the energy infrastructure as well as on their social, environmental and technical 

influences. Therefore, the values of impact and probability are different for each 
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candidate solution and decision-makers and experts have to estimate them for the 

whole continuous search space of possible solutions. These estimations are subject 

to a judgemental vagueness that generates uncertainty inherent to the definition 

process. To cope with this uncertainty, it is important to avoid considering 

qualitative parameters as crisp values not to lose relevant judgemental information. 

A suitable strategy to incorporate this vagueness in the energy investment 

optimization problem is the employment of fuzzy logic [130]. [131] explores the 

usefulness of the fuzzy set theory as a tool to express uncertainties inherently 

associated with human opinions and concludes that it can be successfully used 

together with multi-criteria optimization problems to get a more sensitive, concrete 

and realistic result. Therefore, in this thesis, a Fuzzy Inference System (FIS) is 

employed to consider the vagueness in the definition of the qualitative parameter 

and obtain a measure of it that encompasses its value and uncertainty dimensions. 

Two FIS are widely accepted and employed in the literature; the Mamdani and the 

Takagi-Sugeno [132]. Here, the Mamdani method is selected as it performs better in 

extracting experts’ opinions on risk factors and thus it is more suitable for decision-

making problems [133]. Figure 9 illustrates the functioning of a max-min 

Figure 9: Mamdani FIS reasoning example. 
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composition Mamdani FIS through an example in which there are two input 

parameters, one with value 0.5 which activates membership function (MF) x and the 

other with value 0.3 which activates MFs x and y. These input parameters generate 

therefore two sets of activated rules. For each one, if-then reasoning is used to obtain 

the fuzzy output. If-then rules are defined by decision-makers and reflect their 

judgemental knowledge to evaluate the system output [134]. Min implication 

process is then applied to account for the level of fulfilment of MFs by input 

parameters. Following, the fuzzy outputs of each of the activated rules are 

aggregated through a max process, and the final fuzzy set is obtained. To compute 

as an output a unique value, the fuzzy set is defuzzified. This defuzzification can be 

carried out by employing the centroid strategy, which provides solutions that 

naturally and smoothly respond to the created rules [135]. 

The Mamdani FIS is the base of the fuzzy system proposed in this thesis to evaluate 

qualitative parameters in the two-stage extended risk-informed energy investment 

optimization process. Figure 10 exposes the complete fuzzy system for the 

evaluation of qualitative parameters and their uncertainty in the first stage of the 

optimization problem. First of all, the capacities of the technologies selected to 

upgrade the infrastructure are fuzzified and MFs are assigned to them. Gaussian MFs 

are preferable as they describe the continuity of opinions better than other common 

types of MFs due to their smoothness and naturality [136]. MFs can be directly 

defined by decision-makers through their expertise in the field or obtained through 

opinion mining [137]. Probability and impact are then computed through two 

separate Mamdani FIS that consider the if-then rules reflecting the judgements of 

decision-makers. Impact and probability functions are then aggregated to obtain the 

qualitative perception fuzzy set which is defuzzified to obtain a single output value. 

The exposed analysis supports a non-only quantitative process that adjusts the 

solution to the enterprise’s interests by including qualitative parameters in the first-

stage of the optimization. Nonetheless, the socio-political framework is susceptible 

to changes and therefore these parameters have also to be included in the second-

stage of the problem to adapt the prosumer operation of the plant according to the 

qualitative preferences of the enterprise. To do so, decision-makers should analyse 

the potential socio-political changes and the eventual positive or negative influence 

that the employed technologies would have on investments’ performance 

considering the new context. This analysis reflects the alignment of the chosen 

technologies on the enterprise’s interest over time and can be translated to dynamic 

qualitative cost for its inclusion in the operation optimization, creating a qualitative-

aware operation strategy. As these dynamic costs are also subject to vagueness, 

fuzzy logic is also employed. Figure 11 expose the reasoning flow for this case. 

Technologies are evaluated in an isolated manner to compute the cost of employing 

them and therefore probability and impact can be directly assigned. Once probability 
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and impact are obtained, the qualitative dynamic cost is computed through the 

Mamdani FIS. 

4.1.2. Quantitative data 

Quantitative data are those that can be directly measured numerically and which 

are required to perform a technical and economic analysis of the solution. The model 

of quantitative data uncertainty has been exposed in section 3.2.1 for the evaluation 

of the quantitative risk assumed by the industrial SME when performing an 

investment. In this chapter of the thesis, however, this model is included in the 

optimization problem. 

As with qualitative parameters, quantitative parameters can be characterized 

through probability and impact. On the one hand, probability refers to the values the 

parameters can take and how likely they are. This probability is reflected in PDFs. 

Figure 10: FIS for the evaluation of qualitative parameters in the first stage of the optimization process. 
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On the other hand, impact refers to the influence that the different probable values 

have on the resultant performance of the investment – which is measured according 

to a set of criteria defined by the enterprise. To compute this impact, the enterprise’s 

criteria should be evaluated for the possible quantitative parameters’ values, using 

the samples of the PDFs obtained through the LHS method. Therefore, it is required 

to repeatedly run the optimization model that computes the performance of the 

investment for all the samples of input quantitative parameters to evaluate the 

impact that their potential variations have on the output of the system. This process 

enables to obtain a PDF for the quantitative criteria of interest for the enterprise. 

Once this output PDF is constructed, it is useful to extract risk measures for their 

inclusion in the final fitness function. [138] proposes the use of variance as a 

Figure 11: FIS for the evaluation of the qualitative cost of employing a technology 
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measure of risk for the optimal scheduling of a battery system. However, variance 

measures the dispersion of the output, without specifying in which direction this 

dispersion is occurring and therefore not identifying if uncertainty is producing a 

positive or a negative deviation from the mean value. In contrast, [139] considers 

the uses of Value-at-Risk (VaR) for the risk management of energy portfolios. VaR 

represents the worst expected case for a pre-defined confidence level. That is, VaR 

is the PDF point which presents a cumulative probability equal to the confidence 

level, which is normally 1%, 5% or 10%. VaR allows risk to be assessed by 

considering only the negative impact of uncertainty and is therefore a better risk 

measure than the variance. Even so, it is a frontier value that does not assess the 

distribution in the left tail, omitting information from the worst-case scenarios that 

could be relevant in the decision-making process. An improved risk measure index 

is the Conditional-Value-at-Risk (CVaR). CVaR computes the mean of the worst-case 

scenarios for a pre-defined confidence level, which avoids the selection of solutions 

with undesirable profit distributions [140]. CVaR is computed as: 

𝐶𝑉𝑎𝑅(𝑥) =
1

1 − 𝑉𝑎𝑅
∫ 𝑥𝑝(𝑥)𝑑𝑥
𝑉𝑎𝑅𝑙𝑒𝑣𝑒𝑙

−1

 (28) 

Where 𝑝(𝑥)𝑑𝑥 is the probability of the value 𝑥 according to the obtained PDF, and 

the VaR level is the confidence level for which the VaR and CVaR are computed. In 

this thesis, CVaR is proposed as a risk measure for quantitative parameters. Apart 

from this measure, the mean of the obtained output PDF is also considered to 

evaluate the statistically expected investment performance. 

4.2. Two-stage risk-informed optimization 

This section exposes the methodology for the optimization of the energy investment 

of industrial SMEs considering quantitative and qualitative parameters and 

uncertainties both in the first and second stages of the optimization procedure. This 

optimization is an extended and more complete approach of that developed for the 

deterministic energy sizing optimization presented in section 3.1. 

In the first stage of the optimization procedure, candidate solutions are selected for 

evaluation. The EH model and constraints are constructed and also qualitative 

parameters directly related to the equipment analysed are computed through the 

FIS exposed in section 4.1.1. These qualitative parameters can be, for example, the 

social acceptance of the technologies evaluated or the job creation potential. Then, 

the EH model moves to the second stage of the optimization where the prosumer 

operation of the plant is computed. This operation is affected by both quantitative 

and qualitative costs. Qualitative costs include in their value, which is computed 

through fuzzy logic, their uncertainty dimension. However, for the consideration of 

quantitative data uncertainty, it is required to repeatedly optimize the prosumer 

operation of the plant. Figure 12 illustrates this second stage process. Once the EH 

model is received and the qualitative costs of employing technologies computed, the 
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first uncertain scenario is selected for its analysis. Uncertain scenarios are 

generated from samples of input PDFs which are randomly combined. It is worth 

mentioning that both quantitative and qualitative parameters are dynamic from a 

time point of view and therefore change over the optimization horizon to better 

reflect the growing uncertainty in the energy situation as time passes. The prosumer 

Figure 12: Workflow for the second stage of the risk-informed optimization. 
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operation over the expected lifetime of the energy investment is optimized 

considering the possible quantitative data reflected in the evaluated scenario. At the 

end of the lifetime optimization, the quantitative criteria of interest for the 

enterprise, which can be, among others, NPV and emissions, are computed. Then, 

this operation optimization process is repeated for all the uncertain scenarios born 

from the PDFs’ samples. When all uncertain scenarios have been analysed, the 

results from their evaluations are put together and the PDF of the criteria is 

obtained. At this point, it is possible to compute the mean and the CVaR for each of 

the criteria. 

Once the second stage of the optimization is completed, it is time to assess the 

optimality of the candidate solution and decide if the optimal solution has been 

found or if the process is to be repeated from the first stage. This decision is reached 

based on the quantitative and qualitative criteria computed through the two stages 

of the optimization process, which have to be included in a single fitness function. 

The criteria’s union can be performed through aggregation or multiplication. In this 

case, it is better to employ aggregation as it considers positive and negative criteria 

and deals better with outliers, limiting their influence on the final function value. 

Qualitative criteria measured in the first stage of the optimization include their 

uncertain definition and risk in their value. In contrast, for quantitative criteria, 

there are two differentiated measures: expected value and CVaR. In this paper, these 

values are unified in a single measure by employing the VaR level which defines 

CVaR as: 

𝑋𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑤𝑖𝑡ℎ 𝑟𝑖𝑠𝑘 = 𝐸(𝑥) + 𝑉𝐴𝑅𝑙𝑒𝑣𝑒𝑙𝐶𝑉𝑎𝑅(𝑥) (29) 

The aggregation of quantitative and qualitative criteria requires the assignation of 

weights. In this extended two-stage risk-informed investment optimization, the 

computation of weights is improved to better reflect the opinion of decision-makers 

by employing an Analytic Hierarchy Process (AHP). AHP is a tool to 

methodologically determine the weights based on subjective decision-makers' 

preferences. It decomposes the problem into a hierarchy, having the goal on top and 

structuring the criteria and risks into levels. In classic AHP applications, the set of 

studied alternative solutions are included in the hierarchy, and they are analysed in 

a bottom-up perspective, from sub-criteria to criteria preceding them in the 

hierarchy until reaching the overall goal. In this thesis, as the evaluation of solutions 

is performed through a continuous optimization problem, the AHP is employed to 

select the weights which are later incorporated into the fitness function to optimize. 

The goal of the problem, located at the top of the hierarchy, is in this case the 

investment to upgrade the energy infrastructure and become a prosumer, 

improving the competitiveness of the enterprise. Immediately below the goal, a set 

of criteria appears which designate the aspects considered by the enterprise to 

reach the decision, such as economic and environmental aspects. Then, the next 

level details the criteria linked to these aspects and the relevant risks that apply. 
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After generating the hierarchy, each of the items in a level is compared to the rest in 

the same level and under the same hierarchy branch in a pairwise manner. This 

process is reflected in a paired comparison matrix, in which the element 𝑎𝑖𝑗 denotes 

the importance of parameter 𝑖 in front of parameter 𝑗 following the Saaty scale 

definition [141], exposed in Table 2. This matrix definition process is done for the 

upper or lower diagonal part, being the parameter in the opposite part, 𝑎𝑗𝑖 , equal to 

1/𝑎𝑖𝑗  . Based on this matrix, the weights can be computed using the geometric mean 

and multiplying the results of the matrix from the lower levels of the hierarchy until 

reaching the goal [142]. 

Table 2: Saaty fundamental AHP scale. 

Intensity of 
importance 

Definition 

1 i and j are equally important 

3 i is moderately more important than j  

5 i is strongly more important than j 

7 i is very strongly more important than j 

9 i is extremely more important than j 

2 , 4 , 6 , 8 
Intermediate values between two adjacent 
judgements employed when compromise is needed 

Therefore, following the AHP, quantitative and qualitative criteria are structured 

under the main decision-making criteria employed for investment evaluation. These 

criteria in enterprises are usually economic, social and environmental [143]. The 

main criteria are computed as the arithmetic means of the criteria under them. To 

avoid numerical illness, remove dimensions, and obtain a realistic measure of the 

criteria, all parameters are normalized previous to the balance. The mathematical 

formulation is, for the case of the economic criteria: 

𝑋𝑒𝑐 =
∑ 𝑋𝑒𝑐,𝑞𝑡,𝑛𝑜𝑟𝑚,𝑘
𝑛
𝑘=1 + ∑ 𝑋𝑒𝑐,𝑞𝑙,𝑛𝑜𝑟𝑚,𝑘

𝑚
𝑧=1

𝑚 + 𝑛
 (30) 

Where 𝑚 is the number of qualitative sub-criteria and 𝑛 is the number of 

quantitative sub-criteria. Main criteria are then incorporated into a single function 

reflecting the preferences of decision-makers. This fitness function can be 

formulated as: 
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𝑓 = 𝑤𝑒𝑐𝑋𝑒𝑐 + 𝑤𝑠𝑜𝑋𝑠𝑜 + 𝑤𝑒𝑛𝑋𝑒𝑛 (31) 

This fitness function is computed and the global optimizer checks its stopping 

criteria. If the optimal solution has been reached, the optimizer finalizes its 

operation. Otherwise, the result is returned to the first stage where new potential 

solutions are created and the process is repeated. 

4.3. Publications 

This section exhibits the publications related to the developments exposed in this 

chapter of the thesis, detailing the methodological framework for the optimization 

of the energy infrastructure considering risks and quantitative and qualitative 

factors. Chapter 5 includes the full version of all of them. 

• E. M. Urbano, V. Martinez-viol, K. Kampouropoulos, and L. Romeral, “Energy-

Investment Decision-Making for Industry : Quantitative and Qualitative Risks 

Integrated Analysis,” Sustainability, vol. 13, no. 6977, 2021. 

This article presents the risk-informed energy investment optimization 

problem and addresses both quantitative and qualitative parameters in an 

integrated approach. Qualitative parameters and uncertainties are 

incorporated in the first-stage of the optimization and evaluated employing 

fuzzy logic. Quantitative uncertainties are also considered in the prosumer 

operation by evaluating several possible scenarios and computing their 

mean and variance. 

• E. M. Urbano, V. Martinez-viol, K. Kampouropoulos, and L. Romeral, 

“Quantitative and Qualitative Risk-informed energy investment for industrial 

companies,” Energy Reports, vol. 9 p. 3290-3304, 2023. 

In this paper, the complete extended two-stage risk-informed energy 

investment optimization is addressed. Qualitative parameters and 

uncertainties are considered through fuzzy logic both in the first and 

second stages of the optimization. Quantitative parameters are modelled 

through PDF and sampled using LHS, and quantitative criteria are 

considered by computing their mean and CVaR. 
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4.4. Conclusions 

The risk-informed energy investment optimization has been developed and applied 

to case studies whose results have been reflected in the articles mentioned above: 

[144], [145]. These case studies deal with the energy investment optimization of 

industrial SMEs to become a prosumer under uncertainties on both quantitative and 

qualitative inputs and considering economy, technology, social and environmental 

parameters as decision criteria. In order to compare the benefits of incorporating 

the risks into the decision-making problem, baseline optimizations aiming at 

maximizing the economic return without considering risks have also been carried 

out. 

In the optimizations carried out, it has been verified that the selected investment 

depends on the parameters considered, among which the qualitative ones play an 

important role. Specifically, in the case studies analysed, the size of the CHP system 

is significantly affected by the incorporation or not of qualitative factors related to 

social acceptance, alignment with the administration, and ecological impact. The 

size of the CHP is larger when risks and qualitative parameters are not considered. 

On the other hand, when these are incorporated into the optimization problem, a 

more complete preconception of the CHP is achieved and its size is decreased. In the 

same way, the incorporation of qualitative costs in the optimization of the operation 

makes the use of the CHP more moderate, limiting it, while in the risk-free case the 

CHP is used to maximise mainly the economic benefit. Therefore, it can be concluded 

that the incorporation of quantitative, qualitative and risk parameters in the 

optimization process does indeed affect the resultant energy infrastructure. When 

these criteria are not considered, equipment which is economically feasible but with 

possible strong negative social and environmental impacts is selected for 

installation. However, when qualitative criteria and risks are considered, the 

equipment is selected considering a trade-off between different criteria and 

reaching an overall less qualitative risky solution. Therefore, the selection of criteria 

is crucial and affects drastically the resultant solution of the optimization problem. 

In terms of maximising investment performance, the case in which no risks are 

assessed presents better deterministic performance criteria. Even so, in these cases, 

the variability and risk assumed in order to achieve such performance are higher 

than in the case where risks are incorporated in the optimization problem, and thus 

the obtained solution is less robust. Taking a decision considering only the 

deterministic and risk-free criteria can lead to a situation with high exposure to 

strictly non-economic risks with great impacts on the enterprise. By incorporating 

risks in the evaluation of investment performance, it is possible to reduce the 

variability and CVaR of the criteria analysed, reaching a smarter initial investment 

that achieves an economic performance comparable to the obtained without 

analysing risks while minimizing negative risks and profiting from the positive ones. 
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The methodology presented in this chapter presents a large practical value as it 

opens the way to a new strategy for the energy investment decision-making process 

of industrial SMEs. It fits their requirements, considering diverse criteria 

intrinsically different and searches for long-lasting low-risk investments. The 

proposed methodology can be adopted by decision boards to analyse energy-

investment problems, enhancing the incorporation of criteria characterized by 

different natures in a single optimization function, and modifying the input 

parameters to adjust the solution to the requirements of the enterprise. The 

inclusion of this procedure into investment decision-making can lead to the 

achievement of more robust energy-investment decisions, enhancing the 

participation of consumers in the energy market and increasing their 

competitiveness. 
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5. Compendium of publications

5.1. Future European energy markets and Industry 4.0 

potential in energy transition towards decarbonization 

Reference: 

E. M. Urbano, V. Martinez-Viol, K. Kampouropoulos, and L. Romeral, “Future 
european energy markets and industry 4.0 potential in energy transition towards 
decarbonization,” Renew. Energy Power Qual. J., vol. 18, no. 18, pp. 190–195, 2020.

Available on: http://www.icrepq.com/icrepq20/268-20-urbano.pdf.

Publication framework: 

This article establishes the base for the study of industries as prosumers. It 

analyses the current energy situation and the potential changes that may occur 

due to the ongoing energy transition. It also reviews some of the most recent 

legislation and policies in the energy field and evaluates the possibility of the 

industry becoming a prosumer. The industry potential is then assessed by 

developing a prosumer operation optimization and the suitability of the 

industrial sector to actively participate in the energy transformation is verified. 

Main contributions: 

• Analysis of current and future energy market scenarios.

• Review of electricity market legislation.

• Analysis of the role of industrial entities in the energy transition.

• Prosumer operation optimization of industrial entities.

Key words: 

Electricity markets, flexibility options, renewable energy sources, smart factories. 

http://www.icrepq.com/icrepq20/268-20-urbano.pdf
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Abstract. Climate change, economic growth and fossil fuel 

price volatility are forcing governments and thus society to 

adopt economical and technical measures in the energy sector 

to reach sustainability. These actions can be seen as 

opportunities for the stakeholders that form the energy market 

and also for new actors that may enter as a consequence of the 

energy transition that is taking place. In this paper, a description 

of the energy targets and potential market scenarios in Europe 

is carried out, together with a review of the policies 

implemented to achieve these objectives. Within this 

framework, the possibility of the industry to adopt a crucial role 

in the development of the new energy market is also analysed. 

The potential tools for its achievement are also presented, 

together with some of the techniques and mechanisms that 

make it feasible. From this study, it can be concluded that the 

industrial sector will become a major distributed prosumer, 

providing services to the energy market and facilitating the 

energy transition.  

 

Key words. Electricity markets, flexibility options, 

renewable energy sources, smart factories. 
 

1. Introduction 

 
Climate change has become a critical issue with 

worldwide implications which is taking special attention 

by several governments around the globe. The effects of 

climate change have to be stopped before they cause 

irreversible impacts on the environment. Global energy 

use has been increasing along with economic growth. 

According to several studies, such as the one shown in 

[1], there is a strong relationship between energy 

consumption, energy prices and economic growth, 

concluding that economic growth tends to increase 

energy consumption and usually energy supply from 

other countries. In the European case, external energy 

supply is mainly based on fossil-fuels and the 

incrementation in its dependence will cause vulnerability 

of the energy market due to the price volatility of the 

fossil-fuel sector [2]. Intending to reach a more secure 

and sustainable energy system without scarifying 

economic growth, it is crucial to increase energy 

efficiency, decrease energy use and perform a 

decarbonization of the society. The increase in energy 

efficiency and the reduction of emissions coming from 

the energy sector will suppose a change in the 

deterioration trend of the environment and a step ahead 

towards the self-sufficiency of energy markets. 

 

The European Commission has already started the 

transition to a new energy market. Since 2000, several 

energy policies, subsidies and founds have been 

implemented to achieve the clean energy objectives 

stated for 2020. Regarding decarbonization, it has been 

possible to verify that economic growth and low-carbon 

transition are compatible, as it was concluded by the 

European Commission in [3]. The implementation of 

Renewable Energy Sources (RES) has also been a focus 

of attention during this period. In 2016, the consumption 

from RES represented 17% of the total consumption, 

approaching the 20% target for 2020. Beyond 2020, new 

targets have been stated for 2030 and 2050. The main 

objective, decarbonization, has been set to a reduction of 

greenhouse gas (GHG) emissions to 80-95% below 1990 

levels for 2050 [4]. The measures implemented until now 

are still showing their effects and will probably continue 

delivering benefits past 2020. However, their advantages 

will not be enough to achieve 2050 targets. For this 

reason, new energy strategies and potential scenarios are 

being studied, and the impact of several measures in the 

energy market are being further analysed. 

 

In this paper, a vision of these future energy markets is 

presented, together with an assessment of their different 

environmental implications. A review of the measures 

that are being applied or that will be available in the close 

future is also exposed and their real impact in the energy 

market studied. These measures englobe the use of RES, 

the energy efficiency of the system, the use of flexibility 
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sources and the improvement on the connectivity of the 

electrical market. Although these measures would 

provide clean energy, the market would probably need 

other technologies to support them, such as Energy 

Storage Systems (ESS) or enhanced use of nuclear 

energy. Furthermore, new technologies for Carbon 

Capture Storage (CCS) will also be studied. These 

measures must include the industrial sector, which 

nowadays accounts for more than 25% of total European 

energy consumption [5] and will probably become a key 

actor in the future energy market. Therefore, the potential 

benefits of creating new energy roles in the market from 

industrial sites are studied in this paper, considering them 

as a potential source of flexibility, introducing RES in the 

system, increasing internal and external system 

efficiency and becoming a distributed prosumer. 

 

This paper is structured as follows. Firstly, the possible 

main characteristics of the future energy market are 

drawn in Section 2. Secondly, in Section 3 the current 

legislation is studied together with the impacts that it 

causes in the energy transition. Furthermore, some 

solutions to the problems raised by these legislations are 

proposed in the same section. Thirdly, in Section 4, the 

potential of the industry is discussed, presented as a tool 

for the energy transition by applying several of the ideas 

shown in the previous sections. Fourthly, in Section 5 a 

use case is shown in which the possible behaviour of the 

Industry 4.0 in upcoming energy market is analysed. 

Lastly, in Section 6 the work’s conclusions are drawn. 

 

2. Future energy markets scenarios 
 

Several strategies and measures to reach 2020 sustainable 

scenario have already been implemented, expecting to 

keep providing results past this year. According to the 

last European Commission report [6], the 2020 

environmental and energy targets were already achieved 

or close to its objectives by 2016. However, these 

measures will not provide enough decarbonization to 

achieve 2050 targets, making fundamental the 

modernisation of the energy system. Similarly, actions 

related to the investment in realistic technological 

solutions, empowering citizens and aligning action in key 

areas such as the industry are necessary to reach the 

established goals [3]. The objective of 80-95% reduction 

in GHG emissions will only be possible if a major change 

in the market structure and the role of stakeholders and 

end-users is performed. Thus, the development and 

implementation of past-2020 strategies and measures are 

urgent. In [4], the potential decarbonisation scenarios that 

can take place in Europe during the next years are 

analysed. They include scenarios with high energy 

efficiency, diversified supply technologies, high 

implementation of RES, CCS and nuclear scenarios. The 

study concludes that the decarbonization scenario is 

achievable, reducing also the import dependency and 

thus the exposure to fossil-fuel price volatility, although 

their implications vary depending on the followed path. 

Despite this fact, it is necessary to define new legal and 

market instruments to practically deploy these new 

scenarios. 

 

The main implication and the one that is common in all 

the scenarios is that there will be a transition from high 

fuel operational costs to low fuel costs but high capital 

expenditure. This variation in the location of costs will 

force energy markets to adapt its pricing structure. It will 

also suppose an opportunity for industry and service 

providers to innovate in the generation, storage and 

consumption management technology. Another common 

implication is the electrification of the system, increasing 

the use of electricity despite the general decrease in 

carbon-based energy use. This is because electrical 

energy can be generated through RES on a high 

percentage and it will contribute to the decrease in 

emissions of other sectors, such as transport, heating and 

cooling. 

 

Apart from these implications, the final structure of the 

energy and specifically the electrical market will be 

different depending on the predominant scenario. Two of 

the strategies that have been considered to decrease GHG 

emissions are CCS and nuclear power. It is well known 

that by increasing the presence in the market of CCS and 

nuclear power, the GHG emissions can be significantly 

diminished. In fact, in [7] several benefits of the 

commercial deployment of this technology are exposed, 

presenting the capability of the net removal of CO2 from 

the atmosphere. However, both CCS and nuclear power 

have strong negative environmental impacts. In [8], the 

environmental impacts of the usage of nuclear power are 

identified, concluding that developments related to the 

ecological safety of the technology should be performed. 

Regarding CCS, in [9] it is shown that it can cause 

acidification and human toxicity, which contributes to 

global warming. Moreover, the future of CCS and 

nuclear power crucially depends on social acceptance 

and, especially in the case of CCS, its viability has to be 

demonstrated in large scale before a CO2 infrastructure, 

which does not currently exist, is developed. 

 

In the case that CCS and nuclear power become a 

restricted resource due to its collateral effects on the 

environment and society, the increase in the share of RES 

and energy efficiency of the system becomes not only 

advisable but essential. Storage technologies are key 

aspects for this to happen. However, storage is currently 

more expensive than other solutions such as gas backup 

generation. Although the need for energy efficiency 

solutions with renewable energy implementations is 

clear; the installation of ESS can be decreased if smart 

grids are implemented. With the inclusion of smart grids, 

the power system will change from a centralized structure 

to a decentralized and hybrid structure, allowing to 

decongest the transmission and distribution networks and 

minimize losses. A decentralized structure will only be 

possible if the adequate infrastructure for distribution, 

interconnection and long-distance transmission is 

performed, to effectively connect the flexibility 

resources, which includes demand management, ESS, 

Distributed Generation (DG) and prosumer entities. Up 

to date, the EU has targeted to eliminate electrical islands 

and to create a single integrated European energy market 

[10], pointing to an increase in the transmission capacity 

of all member countries to 10% of their internal power 
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generation capacity by 2020 [11]. However, measures 

should assess not only transmission capacity between 

member countries but also connectivity in local networks 

and smart grids [12]. 

 

The exposed scenarios and assumptions lead to the 

delimitation of a future energy market in which RES, 

energy efficiency and smart flexible resources play a 

significant role. Their impact in the market due to the 

change in the location of the capital has to be studied and 

changes in the pricing mechanism and market legislation 

will need to be adopted. 

 

3. Electricity market legislation 
 

The primary focus of the climate and renewable energy 

legislation in Europe is to reduce energy import 

dependence and decrease environmental harm caused by 

the energy sector. To do so, there is a will to decrease 

energy consumption, increase the share of RES and 

reduce GHG emissions. The measures implemented to 

achieve the previously stated targets will affect not only 

current producers and distributors but also consumers, 

including industries.  

 

The current energy market was designed, due to 

historical reasons, for a power system based on 

dispatchable energy sources. This market, which is being 

liberalized, is based on high positive marginal costs and 

dispatchability of power. The nature of RES supposes a 

challenge for the integration of low-carbon energy 

sources into the market due to its main characteristics: 

variability and uncertainty, which produce technical 

issue that still needs to be solved nowadays regarding 

grid balance and stability. There are also barriers 

regarding investment and cost management of RES 

installation. These types of installations suppose high 

capital and integration costs. However, the marginal 

costs of RES, which are the ones considered at the 

wholesale market, are usually close to zero [13]. These 

facts present an incompatibility between electricity 

liberalization and renewable policy, making high share of 

RES not possible due to the fact that owners of RES 

plants would be unable to earn and return on their 

investment with the current energy pricing mechanisms 

[14]. One of the main measures adopted by the EU to 

increase the use of RES and decrease GHG and energy 

use is to actuate on the energy costs. However, a 

modification of the energy price based on taxes or levies 

to enforce policies influences negatively the 

competitiveness of energy intensive sectors [15], which 

produces a contrary result to other targets of the EU. The 

legislation implemented to carry out the energy transition 

has to be carefully studied and analysed to avoid negative 

effects in the competitiveness, sustainability and security 

of supply of the system. It is crucial to stablish climate 

policy using market mechanisms instead of modifying 

the price of the energy, and for this to happen there is a 

requirement to redesign the market clearing mechanism 

to be able to accommodate RES. The redesign should lay 

in the modification of the pricing structure to better 

capture the full renewable cost structure, as well as the 

incorporation of higher time resolution and later gate 

closure time to fit RES behaviour [16].  

 

The previously mentioned measures would enable the 

incorporation of large-scale RES into the market, 

supporting business models for plant owners. However, 

a complete renewable energy scenario is not possible 

without accompanying RES with other capacity 

measures to solve intermittency issues. The electrical 

system should be able to adapt itself to the requirements 

imposed by the variability of RES, making flexibility a 

key requisite for a renewable based energy system [17]. 

This flexibility can mean flexible generation, storage, 

Demand Response (DR) and interconnection. The 

measures that are being studied for this point, such as the 

deployment of smart grids, Energy Hubs (EH), Virtual 

Power Plants (VPP) and of conveniently distributed 

generation together with a more active role of the 

Distribution System Operator (DSO), could help not only 

in creating flexibility but also in improving the efficiency 

of the transmission and distribution systems, enabling 

and overall energy use without compromising the 

competitiveness of the system. In this path, Europe is 

moving towards a market with multiple types of new 

actors and where interconnection and flexibility are key 

factors for the improvement in energy efficiency and 

decrease in harmful emissions. Prosumer aggregation 

policies are gaining interest by Member Countries, 

creating communities able to extract and introduce 

energy to and from the utility grid at specific time 

intervals, overcoming the challenges introduced by RES 

[18].  

 

The implemented legislation until now will need to be 

modified and adapted to the outlined trends, enabling the 

creation of smart grids, DG and prosumer entities without 

scarifying the competitiveness of the system. The basis 

for new energy trading mechanisms are also to be settled 

in order to enable an increase in the share of RES as well 

as the possibility of new actors to enter into the electrical 

market.  

 

4. Industry 4.0 in the energy transition 
 

The previous section described the modifications that 

will need to be performed in the electrical market to 

allocate RES, decrease GHG and improve energy 

efficiency. The presented trends together with recent 

scientific publications show that the main streams to 

achieve EU targets are the creation of Smart Grids, 

Energy Hubs (EH), Virtual Power Plants (VPP), DR 

capabilities and prosumer actors, who are able to produce 

and consume energy; creating flexibility in the demand 

side to increase the incorporated share of RESs, 

providing local generated energy to the distribution 

network to improve its efficiency and decreasing general 

energy cost in the electrical grid. Until now, the focus has 

been the tertiary sector, creating communities of small 

individuals and RES that can be aggregated to obtain a 

significant exchange of energy. However, in the EU 25% 

of the total energy consumption happens in the industrial 

sector, where programs for the incorporation of RESs, 
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DR and prosumers can also be implemented although 

they have still not been assessed. 

 

The potential of the Industry 4.0 to adopt efficiency 

measures and decrease their environmental impact on the 

society should be considered when stablishing the 

baselines for the future energy markets, as the energy 

consumption, energy equipment, ESS and RES present in 

industrial sites or communities enable the establishment 

of novel energy management strategies that could take 

into account the state of the external market to optimize 

their internal operation and interaction with utility grids. 

Several industrial facilities account with multi-carrier 

energy systems coupled between them. The integration 

and operation of the energy infrastructure can be done 

through the creation of an EH, a novel concept which 

optimally links the available energy sources in an energy 

infrastructure [19]. The implementation of an EH in a 

factory leads to an increase in energy efficiency which 

supposes direct economic and environmental benefits for 

the consumer [20]. This idea can be broadened 

considering the external market. The first approach 

historically contemplated has been to adopt DR 

capabilities, scheduling load according to the market 

needs and thus creating flexibility in the electrical 

network. DR is added to EH optimization through price 

signals send by the energy supplier and the results of this 

optimization show gains for the consumer and assistance 

to the electricity grid, leading to a flatter demand curve 

[21]. Although this strategy already demonstrates 

important benefits for both industry and electricity 

market, it does not implement the recent advances in 

legislation which enables the creation of self-

consumption communities and prosumer microgrids.  

 

Prosumer industrial sites can be created from single 

manufacturing plants or through the aggregation of 

several entities together with close-placed RES 

generation plants. The result of this aggregation would 

act as a single entity in front of external energy structures, 

creating a VPP able to introduce energy in the utility grid 

when required. An internal energy market could be 

settled for peer-to-peer energy trading and the bidding 

optimization with the utility grid could be performed by 

an aggregator, an actor who will potentially appear in 

upcoming years in the market [22], [23]. These new 

energy management strategies will lead to higher 

economic savings than in previous cases due to the 

exploitation of the internal energy assets against the 

external market [24]. The EU has recently opened the 

legislation path for this solution to be implemented and 

Member Countries are developing policies for the 

inclusion of these prosumer smart grids and VPP into the 

energy infrastructure established [25], [26]. 

  

5. Use case 
 

Industry 4.0 will be a powerful tool during the energy 

transition to achieve the targets that have been set by the 

EU. As seen in the previous section, industrial sites can 

integrate RES and support energy market adopting 

prosumer capabilities, either alone or aggregated. The 

objective of the use case developed in this section is to 

verify the economic viability of the creation of a 

prosumer entity out of an industrial plant, corroborating 

then the potential interest by manufacturing site owners 

to invest in the creation of VPPs, including energy 

management strategies into the existing business model. 

The use case shown here is based on an automotive 

manufacturing plant connected to the electrical and gas 

energy networks with a total amount of primary energy 

purchased of 9.5MWh per month. The demand can be 

divided into electrical and thermal, and the conversion 

equipment of the plant is formed by a boiler and a 

cogeneration plant, which interconnects the electrical and 

the thermal sides of the energy structure. With the aim of 

verifying the economic viability of the implementation of 

prosumer capabilities, two days of the year for this plant 

are studied in this section. To implement a smart energy 

management system able to decide when to share energy 

with the utility grid and when to store it, there is a 

requirement to implement RES and ESS systems. A 

Photovoltaic (PV) system is selected as the RES to be 

implemented in the factory, which will cover an available 

space of 15000m2, and the ESS is sized to supply energy 

to critical loads during a predefined interval of time. With 

this information, the comparison between electrical load 

and energy generated by the PV system for the studied 

days can be seen in Fig. 1 and Fig. 2. The electricity price 

at the wholesale energy market has ben added to the 

graphs to visualize the potential benefits of including the 

PV system together with an ESS.  

 
Fig. 1: Electricity cost and electrical load and generation for the 

8th of April. 

 

 
Fig. 2: Electricity cost and electrical load and generation for the 

20th of September. 
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It can be seen that in one of the cases, the energy 

generated by the PV system overcomes the electrical load 

of the system at some time intervals, although these do 

not necessary coincide with the time intervals at which 

the electricity cost is higher. Until now, the energy 

generated by the PV system in factories has been used 

internally or sold directly in its totality. However, with 

the arise of self-consumption legislations that enable 

prosumer capabilities, the energy management system 

can buy and sell electricity depending on their operation 

points and the state of the external market. An 

optimization is performed considering this last approach 

in which the installation, operation and maintenance cost 

of energy equipment is considered, together with the 

possibility to exchange energy with the utility grid. The 

results of the optimization can be seen in the following 

figures for the first day under study:  

 

 
Fig. 3: Optimization for the 8th of April showing the energy 

purchased. 

 
Fig. 4: Optimization for the 8th of April showing the energy 

sold. 

 

In Fig. 3 is possible to appreciate that between 10h and 

15h, when the energy cost is high, electrical energy is not 

being purchased. It is also detectable that gas is being 

bought at a higher rate than the needed to fulfil electrical 

demand due to the existence of a cogeneration plant 

which operates close to its maximum power capability 

and generates electricity to be consumed or stored at the 

electrical site of the factory. The prosumer behaviour of 

the factory can be seen in Fig. 4. Here it appears that what 

happened between 10h and 15h is that electricity is being 

sold taking profit from its high value. The same 

optimization is carried out for the second day under 

study, and the results can be observed in Fig. 5 and Fig. 

6. 

 

 
Fig. 5: Optimization for the 20th of September showing the 

energy purchased. 

 
Fig. 6: Optimization for the 20th of April showing the energy 

sold. 

 

The same type of behaviour can be seen in this case. 

During the hours of maximum price at the wholesale 

market, the optimal decision is to sell electricity to the 

utility grid instead of purchasing it. In Fig. 7 it appears 

that the electricity being sold is higher than the generated 

by the PV system during the time interval between 11h 

and 14h. This means that other source of electrical power, 

such as the cogeneration system and the ESS, are being 

used to fulfil the electrical demand and also to increase 

the amount of energy sold to the utility grid.  

 

In the previous figures, specially in those related to the 

energy inserted into the utility grid, it is significant that 

the moments at which the energy is being sold are 

relatively separated from the peak-electricity cost. For 

this optimization problem, the electrical battery was set 

to a predefined value at the beginning of each day and 

there is no thermal storage. For this reason, there seems 

to be an initial part of the day at which gas and electricity 

is purchased at higher rates than the rest of the day 

although the demand is at its minimum. This process 

seems to delay the reaction to the peak-electricity cost, 

probably due to capacity terms of ESS to fulfil the 

demand while at the same time preparing its state for high 

electricity price periods.    
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In the use case developed it has been possible to see that 

when there is a possibility to trade energy with the utility 

grid, the optimal operation points, under an economic 

point of view, of the energy equipment are modified to 

profit from the state of the external energy market, 

introduced green energy to the energy infrastructure 

when demand and electricity cost is high. Due to its 

economic viability, this energy management strategy can 

be added to the current existing business models of 

manufacturing plants, enabling the creation of a huge 

number of prosumer industrial sites promoting the 

decentralization of the electrical grid. 

 

 

6. Conclusions 
 

In this paper, the energy targets, potential market 

scenarios and energy legislation in Europe has been 

exposed showing a clear trend towards the inclusion of 

RES and flexibility sources. The policies implemented 

until now and the ones presented as a draft enable the 

possibility to create aggregated entities, smart grids, 

energy hubs and demand responsive consumers. Within 

this framework, the possibility of the industry to adopt a 

crucial role in the development of the new energy has 

been analysing by showing its ability to create prosumer 

aggregated entities exploiting its internal energy 

equipment for market purposes. The use case developed 

has shown the economic viability of this strategy as well 

as the benefit that the utility grid can obtain from the 

energy transactions performed. With this information it 

can be said that the energy prosumer will become a key 

actor during the energy transition and that industries are 

suitable to adopt this role as they present a complex and 

smart energy infrastructure with high energy transactions 

potential. 
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5.2. Renewable energy sources and storage systems sizing 

optimization for industrial prosumers 
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and storage systems sizing optimization for industrial prosumers,” in IEEE 
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ETFA, 2020, vol. 2020-Sept. Available on: https://ieeexplore.ieee.org/
document/9212007 

Publication framework: 

This article initiates the thesis research on the sizing of energy equipment for a 

prosumer industrial plant. It models the energy infrastructure of the industrial 

plant and optimizes its operation considering four different energy 

management strategies to evaluate the benefits of optimally sizing the 

energy equipment considering prosumer behaviour. 

Main contributions: 

• Energy equipment sizing considering a prosumer operation.

• Prosumer operation optimization considering weekly demand and energy

market patterns.

• Evaluation of the prosumer investments’ benefits compared to other energy

management strategies.

Key words: 

Prosumer, Decarbonisation, Sizing optimization, Genetic Algorithms 
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Abstract—In this paper, the size of the renewable 

energy sources and energy storage systems for an 

industrial plant will be optimized considering a 

prosumer behaviour that actively bids energy with the 

utility grid. The energy infrastructure of the industrial 

plant is modelled and the sizing optimization problem is 

mathematically defined and solved using Genetic 

Algorithms. Four scenarios are considered regarding 

energy management strategies: Do-nothing, self-

consumption, prosumer with non-optimal installation 

and prosumer with the optimal installation. Results show 

that the prosumer with optimal installation outperforms 

other scenarios achieving total energy savings of 47% 

and a payback period of 8 years, enhancing the 

participation of industry in the upcoming energy market 

where distributed energy sources and flexible active 

clients will have a significant role towards 

decarbonisation. 

Keywords—Prosumer, Decarbonisation, Sizing 

optimization, Genetic Algorithms  

 I.  INTRODUCTION  

Climate change is a worldwide issue whose effects 

are to be stopped or slowed down as much as 

possible to avoid further consequences in the 

environment that could put today’s society life 

quality at stake. Among other technical and social 

approaches to avoid global warming, solutions can 

be provided by the energy market, which should 

undergo a transition towards zero CO2 emissions to 

assure system sustainability. This decarbonisation 

of the sector will only be achievable if clean 

Renewable Energy Sources (RES) are further 

inserted and the efficiency of transmission and 

distribution systems is improved [1], [2]. However, 

the energy sector and its market mechanisms are 

based on high marginal costs and power 

dispatchability, while renewable technologies offer 

low marginal costs and are intermittent and 

nonprogrammable, inhibiting a high penetration of 

them into the market [3]. A key step to be performed 

by the market to allow for a better integration of 

variable RES is the creation of flexible resources 

such as flexible plants with demand response; as 

well as the decentralization of the energy sources 

[4]. 

Self-consumption is a current solution to integrate 

distributed energy sources and system’s 

flexibility, as well as to improve the economic 

competitiveness of energy market end-users. For 

consumers willing to include self-consumption in 

their energy structure, the installation of a RES is 

needed, having the option to consume energy 

directly from the on-site generation when it is 

available or purchasing it from the utility grid 

when the RES is not producing energy. The cost 

performance of the system can be improved when 

installing Energy Storage Systems (ESS), which 

provides the possibility to decide when to use 

energy generated on-site and when to purchase it 

from the grid according to an energy cost 

indicator [5]. This adaptation of the energy 

demand by end-users depending on the market 

situation does not only imply benefits for the end-

user but also for the whole electrical system, 

avoiding consumption when electricity cost is 

high, indicating high marginal cost and thus a 

major presence in the market of non-clean and 

fossil fuel energy sources. 

The inclusion of self-consumption is currently 

ongoing for the tertiary sector, providing promising 

results [6]. However, to increase the share of RES 

and the efficiency of the system, the existence of 
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 other flexible sources that inject energy in the 

market is needed. Prosumers are being presented 

worldwide as fundamental actors in the 

achievement of an energy market with high 

penetration of distributed energy sources [7], [8]. 

They can manage RES, ESS and energy systems to 

interact with the utility grid considering current and 

future market status, bidding with the wholesale 

market at the most interesting time intervals. There 

are already some studies that deal with the energy 

bidding optimization of prosumers with RES and 

ESS, such as [9], [10]. However, an issue that 

remains unexplored is the proper design of energy 

equipment installations to fit prosumer purposes for 

exploiting RES and ESS to supply power to internal 

demand and also to obtain and extra benefit from 

optimally bidding with the utility grid.  

Up to day and although self-consumption 
approaches are spreading rapidly, most energy end-
users are not considering the design of installations 
for its exploitation against external energy market 
opportunities. In most research papers dealing with 
energy optimal sizing, an islanded mode is 
considered, such as in [11], [12]. In this type of 
optimization, the smart grids where RES and ESS 
are applied are not connected to the main grid and 
thus the focus of the sizing is to assure the security 
of supply and grid stability. A sizing strategy for 
non-islanded mode is presented in [13], where the 
sizing for a factory is assessed having as objective 
the minimization of energy purchased from the 
utility grid. This approach can also be seen in other 
works such as [14], [15]. Although in some of these 
studies there is an exchange of energy with the grid, 
excess energy is directly delivered without 
considering active energy bidding as a potential 
economic benefit. It is also noticeable that most of 
research and applications for energy management 
systems are aimed at the tertiary sector. However, 
the industrial sector is the most energy-consuming 
sector worldwide with 54% of the total energy 
delivered [16]. Therefore, conversion from 
industrial consumers to industrial prosumers by 
incorporation of RES and ESS and adoption of 
energy active profiles requires further research [17].  

In this paper, the energy equipment sizing for an 
industry aiming to adopt a prosumer behaviour is 
assessed. To do so, the industrial energy 
infrastructure is modelled and the optimization 
problem defined considering different restrictions 
regarding plant operation and installation 
capabilities. The sizing problem is solved using a 
Genetic Algorithm (GA) approach, which enables 
the resolution of complex and non-smooth 
problems with multi-objective fitness functions. 
Four different scenarios for a typical industrial plant 
are analysed and compared between them to 

evaluate their economic benefits. The first scenario 
is the “Do-nothing”, which represents the current 
situation for most of the factories that do not have 
RES nor ESS. In the second scenario, the factory 
accounts with RES and ESS sized for a typical self-
consumption case, without the possibility to sell 
energy surpluses to the utility grid. The third 
scenario accounts with the same factory model as 
the previous one with the difference that in this 
case, the plant acts as a prosumer, contemplating an 
active exchange of energy with the utility grid and, 
lastly, in the fourth scenario the plant has a RES and 
ESS system optimally sized for prosumer purposes 
and acts as an active customer, exchanging energy 
with the utility grid. The payback periods and 
energy savings for each of the scenarios are 
obtained and compared to evaluate the suitability of 
the optimal energy infrastructure for industrial 
prosumers. 

The paper is structured as follows. First of all, in 

section II the legal and economic framework of the 

system will be exposed. Secondly, the problem will 

be defined in section III, where the energy model, 

optimization problem and methodology to follow 

will be defined. Thirdly, in section IV the use case 

will be presented and in section V the results of this 

exposed. Lastly, conclusions will be drawn in 

section VI. 

 II.  FUTURE ENERGY MARKET AND COSTS  

The energy market is undergoing a transition 

towards decarbonisation which is empowering 

consumers to adopt new roles and benefit from the 

changes that will take place in upcoming years. One 

of the main issues to assess during this period is the 

increasing share of RES and distributed energy 

sources in the electrical market that due to its 

intermittency, which forces the creation and 

incorporation of flexible energy actors. Up to day, 

the legislation and the costs of the energy 

equipment have been a barrier for the instauration 

of prosumer facilities that would lead to a 

decarbonisation of the energy sector.  

As the fight against climate change and reduction of 

CO2 emissions is a main commitment by 

governments around the globe, the barriers related 

to grid access, administrative procedures and 

techniques development are being progressively 

removed to facilitate the creation of a smart and 

flexible energy structure. As an example, nowadays 

the EU has updated its energy policy framework to 

facilitate a transition to clean energy. Specifically, 

the Clean Energy Package directive [18] stipulates 

the importance of:  
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• Granting demand side resources access 
to all markets at all timeframes. 

• Empowering the consumer to 
participate in DR without the consent of 
the supplier and to switch aggregation 
service provider without penalty.  

• Empowering independent aggregators 
by ensuring that they can enter the 
market without the consent of other 
actors and without compensating 
generator/supplier.  

This directive, which also encourages to analyse the 

regulatory framework to allow the entry of 

prosumers in the market, has already been adopted 

by several Member Countries such as Germany and 

Netherlands, where premium tariffs for energy 

insertion are available; and Portugal, where the 

remuneration for surplus energy is paid at 90% of 

market price [19]. 

The favourable legislation framework supports the 

incorporation of prosumers in the electrical grid, but 

it is also essential to assure the cost-competitiveness 

of the technological solutions to obtain feasible 

business strategies regarding energy management 

systems. Although the cost of energy equipment for 

adopting self-consumption and prosumer 

approaches was prohibitive until few years ago, it 

has been decreasing exponentially [20], achieving 

payback periods of 10 years [21]. A useful cost 

parameter to be used when computing the 

suitability of RES and ESS for an application is the 

Levelized Cost Of Energy (LCOE). This parameter 

considers not only capital cost, but also installation 

and operation costs and degradation of the ESS 

through its lifetime. It can be considered as the cost 

of using the energy equipment, taking into account 

its amortization and maintenance expenses. For 

Photovoltaics (PV), which is the most common 

RES installed in self-consumption facilities, the 

installation cost is around 1€/W, decreasing as the 

installed capacity increases; while the LCOE was 

0.08€/kWh in 2018, expecting a decrease to 

0.05€/kWh by 2030 [22]. For the case of ESS, the 

most mature technology is the Li-ion battery, whose 

current LCOE is $187/MWh, presenting a decrease 

of 76% compared to 2012 values [23] and which 

will continue dropping by 54-61% for years to 

come. Due to its expected mass production caused 

by an increase in electric vehicles, its LCOE is 

forecasted to reach a value of $70/MWh by 2030 

[24]. 

Apart from the increasing competitiveness of 

energy equipment, it is worth mentioning that the 

decarbonisation of the energy sector will 

undoubtedly lead to its electrification, which will 

increase the overall electrical energy demand. This 

will cause a rise in energy prices of at least a 30% 

by 2030 [25], achieving and average cost of 

$85/MWh and thus increasing the profit margin for 

energy actors willing to perform as prosumers.  

 III.  PROBLEM DEFINITION  

The objective of this paper is to study, develop and 

apply a design model to optimize the energy 

equipment of a factory to be used for meeting the 

internal demand and to exploit them against the 

external energy market. This exploitation consists 

on purchasing and selling electrical energy at 

strategic points in time that would create an extra 

benefit for the facility owner. In this section, a 

generic industrial plant model, used as a basis for 

further developments, is presented together with 

constraints regarding its operation, as well as its 

RES and ESS installation capacities. Then, the 

optimization problem and its characteristics are 

defined and finally the methodology for the 

resolution of the problem is shown.  

A. Industrial plant model 

The energy infrastructure of industries varies 

depending on its activity and size, being big and 

energy-intensive enterprises the primarily ones 

taking action towards a deep decarbonisation 

through the inclusion of RES and energy efficiency 

measures [26]. However, industrial SMEs, which 

represent the 99.2% of the total enterprises in the 

manufacturing sector [27], are slower in the 

adaptation to the new energy scenario. With the 

objective of enhancing decarbonisation procedures 

in SMEs and improving the energy infrastructure 

and economic benefits of this kind of 

manufacturing plants, in this paper the company 

profile considered resemble the energy 

infrastructure of a generic SME.  

The model, which represents the internal energy 

assets of the industrial plant and its connectivity, 

considers the existence of a RES and ESS, a 

specified power demand and a bi-directional 

connection with the utility grid. The inputs and 

outputs of the energy system are:  

• Inputs: Energy from the utility grid, 
energy produced by the RES and 
energy obtained from the ESS.  
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 • Energy outputs: Demand of the 
industrial plant, energy to be sold to the 
utility grid and energy to be stored in 
the ESS.  

The energy balance for this problem is represented 

in the following equation: 

ηg𝐼𝑒 + 𝜂𝑅𝐼𝑅 + 𝜂𝑑𝑏𝐼𝑏 = 𝜂𝑚𝐷𝑚 + 𝜂𝑐𝑏𝐷𝑏 + 𝜂𝑔𝐷𝑒  (1) 

Where 𝐼𝑒, 𝐼𝑅 and 𝐼𝑏 are energy inputs from the 

utility grid, the RES and the ESS respectively; 𝐷𝑚, 

𝐷𝑏 and 𝐷𝑒 𝑎re energy outputs to internal load, the 

ESS and the utility grid and 𝜂𝑔, 𝜂𝑅, 𝜂𝑑𝑏, 𝜂𝑚 and 𝜂𝑐𝑛 

are the efficiencies of the system for exchanging 

energy with the utility grid, discharging the battery. 

Equation (1) represents an ideal scenario and its 

direct application could cause working behaviour 

outside feasible areas for the equipment of the plant. 

In order to obtain a model that resembles real world, 

restrictions regarding energy flow should be 

considered. The first constraint applicable to the 

problem is the limitation of power exchange with 

the utility grid, provided by the contract with the 

energy supplier: 

0 ≤ 𝐼𝑒 , 𝐷𝑒 ≤ 𝑃𝑔𝑟𝑖𝑑,𝑚𝑎𝑥  (2) 

Where 𝑃𝑔𝑟𝑖𝑑,𝑚𝑎𝑥 , is the maximum power contracted 

by the prosumer. The other constraints of the 

problem deal with the maximum power transferred 

to and from the ESS and its capacity, which should 

be between specified thresholds at all time frames. 

This is represented by the following equations: 

0 ≤ 𝐷𝑏 ≤ 𝐶𝑐𝐶 (3) 

0 ≤ 𝐼𝑏 ≤ 𝐶𝐷𝐶 (4) 

𝐶𝑚𝑖𝑛 ≤ 𝐸𝑏
𝑡 ≤ 𝐶 (5) 

𝐸𝑏
𝑡 = 𝐸𝑏

𝑡−1 + ∆𝑡[𝐷𝑏
𝑡 − 𝐼𝑏

𝑡] (6) 

Where 𝐶 is the capacity of the battery and 𝐶𝐶 and 

𝐶𝐷 the charge and discharge ratio, respectively. 

𝐶𝑚𝑖𝑛 is the minimum capacity acceptable and 𝐸𝑏
𝑡  is 

the energy stored in the ESS at the moment 𝑡.  

Industrial plants offer limited space for the 

installation of RES and ESS. As the size of these 

equipment is unknown, it is important to consider a 

maximum size for its installation in a given 

manufacturing plant, which is represented by: 

0 ≤ 𝑅𝐸𝑆𝑠𝑖𝑧𝑒 ≤ 𝑅𝐸𝑆𝑚𝑎𝑥,𝑠𝑖𝑧𝑒 (7) 

0 ≤ 𝐸𝑆𝑆𝑠𝑖𝑧𝑒 ≤ 𝐸𝑆𝑆𝑚𝑎𝑥,𝑠𝑖𝑧𝑒 (8) 

There are also constraints regarding the 

impossibility to simultaneously buying and selling 

electricity to and from the utility grid and charging 

and discharging the ESS at the same time. The 

performance of these actions always lead to under-

optimal points of performance due to the fact that 

the selling price of energy is always lower than the 

buying price and that there is an inherent cost for 

using the battery. For these reasons, there is no need 

to add the mentioned constraints to the problem as 

the optimizer will not lay in these non-optimal 

areas.  

B. Optimization problem 

The aim of the proposed optimization problem is to 

size the RES and the ESS to transform an industrial 

plant into a prosumer, obtaining a benefit through 

energy bidding with the utility grid while meeting 

its internal demand. For the solution to be feasible 

and attractive to industry, it is crucial to assure a fast 

payback period and low operational costs of the 

energy system, which are the two objectives that 

will be considered in this problem. Thus, the 

objective function can be formulated as follows: 

𝑓 = 𝑤1𝑃𝐵
𝑡𝑟𝑎𝑛𝑠 +𝑤2𝑂𝐶

𝑡𝑟𝑎𝑛𝑠 (9) 

Where 𝑃𝐵𝑡𝑟𝑎𝑛𝑠 is the normalized payback period, 

𝑂𝐶𝑡𝑟𝑎𝑛𝑠 is the normalized cost of the energy system 

considering the cost of energy, the amortization of 

equipment and the maintenance operations; and 𝑤 

and 𝑤 are the weights assigned to each of the 

objectives. The normalization is performed in order 

to assure the independence of the objective function 

from the dimensions and numeric imbalance of the 

two criteria. To obtain these values, the following 

equations are used: 

𝑃𝐵𝑡𝑟𝑎𝑛𝑠 =
𝑃𝐵 − 𝑃𝐵0

𝑃𝐵𝑚𝑎𝑥 − 𝑃𝐵0
 (10) 

𝑂𝐶𝑡𝑟𝑎𝑛𝑠 =
𝑂𝐶 − 𝑂𝐶0

𝑂𝐶𝑚𝑎𝑥 − 𝑂𝐶0
 (11) 

Where the superscript 0 and 𝑚𝑎𝑥 represent the 

minimum and maximum values for the 

corresponding criteria. The value for the 𝑂𝐶 is 

computed analysing the current and future state of 
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the energy market, RES availability and internal 

demand with the aim of obtaining the energy 

purchased and sold and energy charged and 

discharged in the ESS along a predefined horizon. 

Its value comes from (12), which represents the cost 

of acting as an active consumer. In order to assure 

an optimal performance as a prosumer, this is 

solved using linear programming optimization 

techniques to decide ideal points to exchange 

energy with the grid. 

𝑂𝐶 = ∆𝑇∑𝐸𝑐 − 𝐸𝑏 + 𝑅𝐸𝑆𝑐 + 𝐸𝑆𝑆𝑐

𝑛

𝑡=1

 (12) 

𝐸𝑐 = 𝐶𝑏𝑒
𝑡 𝐼𝑒

𝑡 (13) 

𝐸𝑏 = 𝐶𝑠𝑒
𝑡 𝐷𝑒

𝑡 (14) 

𝑅𝐸𝑆𝑐 = 𝐶𝑅𝐸𝑆𝐼𝑅𝐸𝑆
𝑡  (15) 

𝐸𝑆𝑆𝑐 = 𝐶𝐸𝑆𝑆 × (𝐼𝑏
𝑡 +𝐷𝑏

𝑡) (16) 

Where 𝐶𝑏𝑒
𝑡  and 𝐶𝑠𝑒

𝑡  are the cost for buying and 

selling electricity at the time interval 𝑡 and 𝐶𝑅𝐸𝑆 and 

𝐶𝐸𝑆𝑆 are the LCOE of the RES and ESS, computed 

based on capital, installation and maintenance cost. 

The 𝑃𝐵 criteria is computed considering the initial 

investment needed for the RES and ESS and the 

economic savings resulting from the energy that is 

not being purchased from the utility grid and the 

benefits of selling energy at specific time intervals, 

being formulated as: 

𝑃𝐵 =
𝐶0

𝑆𝑃𝐶 −𝑁𝑃𝐶 + 𝑆𝐵
 (17) 

Being 𝐶0 the initial investment, 𝑆𝑃𝐶 the cost of 

purchasing energy in the Do-nothing scenario, 𝑁𝑃𝐶  

the cost of purchasing energy in the new scenario 

with RES and ESS and 𝑆𝐵 the benefit obtained from 

selling energy at the utility grid.  

This optimization problem is multi-objective and 

non-smooth, being not possible to assure the 

performance of derivative resolution methods. As 

the variables to optimize are the size of RES and 

ESS, it is possible to handle the optimization 

problem through an evolutionary algorithm, such as 

GA, that enables the surveillance of the different 

feasible areas without relaying in decreasing 

directions and is particularly advantageous for 

multi-objective optimizations. This methodology 

has been used in [28], [29] for the optimization of 

energy management systems. The GA optimization 

methodology creates a population of potential 

individual solutions which is tested against the 

problem to be solved, verifying the fulfilment of 

constraints and computing the fitness function for 

each of them. If the stopping criteria are not met, 

which deal with the result tolerance and the number 

of generations without improvement, a new 

generation is created and tested. This new 

generation is the result of selecting the individuals 

with best performance, keeping, crossing and 

mutating them to obtain a new population that could 

potentially outperform the previous one.  

C. Methodology  

To solve the aforementioned problem, the 

methodology shown in Fig. 1 is applied. The first 

step is to load historical information, which 

includes internal demand of the factory, 

meteorological parameters needed to compute RES 

energy production based on its size and electricity 

prices at the wholesale market. Once this is 

performed, the GA is initialized and the first 

individuals obtained. From this population, it is 

possible to compute the available RES. With this 

information, an optimization of the prosumer 

behaviour for each of the individuals is done, 
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Fig. 1: Methodology used to solve the optimization problem 
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 deciding when to purchase energy for consumption 

or storage and when to sell it according to internal 

and external market status with the aim to obtain 

maximum benefit. This optimal energy bidding 

strategy leads to the computation of operation cost 

of the energy assets, the energy cost and the benefits 

from selling electricity, obtaining also the payback 

period. The fitness function is then evaluated and 

this process is repeated with new populations while 

the stopping criteria are not met.  

 IV.  USE CASE  

In this section a use case is developed at which the 

optimization of energy equipment sizing for energy 

bidding as a prosumer is applied. In order to assure 

the general validity of the obtained results for a 

broad range of SMEs, data from an average real 

manufacturing plant has been used to create a use 

case that resembles the reality of industrial SMEs 

worldwide. 

A. Industrial plant under study  

The industrial plant under study is assumed to be a 

medium factory size with plastic transformation 

processes with a total consumption between 128 

kWh and 480 kWh per day and a maximum power 

exchange with the utility grid of 36kW. The 

electrical demand is higher in the summer period 

than in the winter period due to the existence of 

electric chillers, as can be seen in Fig. 2, and there 

is no consumption of thermal energy. It has a 

surface of 10000m2, 30% of which is available for 

the installation of PV panels and there is available 

space for a 1GWh Li-ion ESS. Its location, in 

Barcelona, Spain (41.488º, 1.919º), presents a solar 

irradiance profile over a year that shown in Fig. 3. 

Optimization is performed along the whole year, by 

taking four representative weeks of the seasons of 

the year that will be used to compute operation costs 

of energy equipment, energy use and payback 

periods. 

As said previously, four scenarios are considered. 

The first scenario is the “Do-nothing”, which 

represents the current situation for most of the 

factories that do not have RES nor ESS. This energy 

scenario presents the energy costs shown in Table I 

for the selected weeks. 

 

 

 

 

TABLE I: ECONOMIC COST FOR SCENARIO 1 

Season  Cost 

(€)  

Spring  263  

Summer  413  

Fall  335  

Winter  201  

In the second scenario the factory accounts with 

RES and ESS sized for a typical self-consumption 

case, without the possibility to sell energy surpluses 

to the utility grid. This sizing is easily provided 

through tools from enterprises selling self-

consumption approaches, such as [30], [31]. For the 

use case performed here, the self-consumption 

solution given by these tools consists of a PV 

installation of 2500m2 and a battery capacity of 

37kWh. The third scenario accounts with the same 

factory model as in the second scenario but with the 

difference now the plant acts as a prosumer 

contemplating an active exchange of energy with 

the utility grid. Lastly, in the fourth scenario the 

plant has a RES and ESS system optimally sized for 

  
 

Fig. 3: Annual profile of solar irradiance in Barcelona, Spain 
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prosumer purposes and acts as an active costumer 

exchanging energy with the utility grid. The energy 

price patterns correspond to those at the wholesale 

market in Spain and Portugal [32]. To account for 

energy cost increase, an average increment of 30% 

during the studied period has been considered 

according to [25]. The difference of the cost 

between buying and selling electricity at the 

wholesale market has also been considered of 30% 

in consonance with new legislations being 

developed by several countries [19]. The resultant 

energy purchasing cost is shown in Fig. 4.  

B. Optimization problem formulation  

In this section the optimization problem for the 

energy equipment sizing is applied to the use case 

defined above. In this case, the energy balance is 

represented by:  

𝜂𝑔𝐼𝑒 + 𝜂𝑅𝐼𝑅 + 𝜂𝑑𝑏𝐼𝑏

= 𝜂𝑚𝐷𝑚 + 𝜂𝑐𝑏𝐷𝑏 + 𝜂𝑔𝐷𝑒 
(18) 

The RES considered to be installed in the factory is 

a PV system, and its input can be expressed 

according to its size as: 

𝐼𝑅 =
𝐴𝑃𝑉𝑃𝑛𝑜𝑚𝐺

1000
 (19) 

Where 𝐴𝑃𝑉 is the area of the PV system, 𝑃𝑛𝑜𝑚 is the 

nominal power per area and 𝐺 is the solar 

irradiance. The constraints of the problem, defined 

in section III, are: 

0 ≤ 𝐼𝑒 , 𝐷𝑒 ≤ 36 𝑘𝑊 (20) 

0 ≤ 𝐷𝑏 ≤ 𝐶 (21) 

0 ≤ 𝐼𝑏 ≤ 𝐶 (22) 

0.1𝐶 ≤ 𝐸𝑏
𝑡 ≤ 𝐶 (23) 

0 ≤ 𝐴𝑃𝑉 ≤ 3000 𝑚
2 (24) 

0 ≤ 𝐶 ≤ 1000 𝑘𝑊ℎ (25) 

Considering that industry prioritizes a fast return on 

investment, the objective function is: 

𝑓 = 0.7𝑃𝐵𝑡𝑟𝑎𝑛𝑠 + 0.3𝐶𝑡𝑟𝑎𝑛𝑠 (26) 

V. RESULTS  

The results for the use case are exposed here. First 

of all, the results for scenarios 2, 3 and 4 are shown 

and then the comparison of the payback and the 

energy cost for each of them is analysed. 

A. Scenario 2 

In this scenario the industrial plant accounts with a 

PV installation of 2500m2 and a battery with 

37kWh of capacity. The behaviour of the plant and 

the charge cycles of the ESS for a spring 

representative week can be seen in Fig. 5 and Fig. 

6, while the operational cost and the savings in 

energy purchase are available in Table II. In this 

case, as it is not possible to sell energy to the utility 

grid, the energy from RES is consumed as it is 

generated and the excess is stored in the battery for 

its later use. 

TABLE II: ECONOMIC COST FOR SCENARIO 2  
Season  Operational 

cost(€)  
Energy 

purchase 

savings(€)  

Savings with 

respect to 

scenario 1  
Spring  228  107  40%  

Summer  327  183  44%  
Fall  285  113  34%  

Winter  184  52  26%  

B. Scenario 3  

With the same energy equipment as scenario 2, in 

this case there exist the possibility to obtain a 

Fig. 5: Plant performance in scenario 2 

Fig.4: Electricity price at the wholesale market 
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benefit from the energy sold to the utility grid. The 

behaviour of the plant and the charge-discharge 

cycles of the ESS for the spring representative week 

can be seen in Fig. 7 and Fig. 8. The economic 

benefits are available in Table III. As the PV energy 

is generated at the daily time intervals with highest 

energy cost at the wholesale market, this energy is 

most of the time used for self-consumption and 

export it to the utility grid. 

TABLE III: ECONOMIC COST FOR SCENARIO 3  
Season  Operational 

cost(€)  
Energy 

purchase 

savings(€)  

Savings with 

respect to 

scenario 1  
Spring  196  130  49%  

Summer  272  229  55%  
Fall  268  125  37%  

Winter  181  54  27%  

However, during a week the variation of the 

electricity price makes feasible to purchase energy 

for its direct storage to be sold at a latter point of 

time. It can also be seen that in this case the ESS 

effectuates less charge cycles, inducing a longer 

battery lifetime.  

C. Scenario 4  

In this scenario the energy equipment is optimized 

considering a prosumer behaviour. The result for 

the optimization can be seen in Table IV. The 

energy trading and the behaviour of the plant can be 

seen in Fig. 9 and Fig. 10, and the economic 

performance in Table V. The behaviour is similar to 

the one already exposed for scenario 3, as both of 

them are prosumers. However, in this case the 

energy exchange is higher, supposing lower 

operational costs and higher energy savings. 

TABLE IV: RESULTS OF THE SIZING OPTIMIZATION 
PV Size  ESS SIZE  

2670m2  45kWh  
 

TABLE V: ECONOMIC COST FOR SCENARIO 4  
Season  Operational 

cost(€)  
Energy 

purchase 

savings(€)  

Savings with 

respect to 

scenario 1  
Spring  193  143  54%  

Summer  262  245  59%  
Fall  263  136  41%  

Winter  179  60  30%  

D. Comparison and evaluation  

The comparison of the results for the 3 scenarios 

exposed above and the “Do-nothing” one is done 

here. To do so, the economic impact of the different 

solutions along the lifetime of the energy equipment 

system is studied, which is taken to be 25 years, a 

value easily achieved by PV systems [33]. 

Fig. 8: ESS charge profile in scenario 3 Fig. 6: ESS charge profile in scenario 2 

Fig. 7: Plant performance in scenario 3 Fig. 9: Plant performance in scenario 4 
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However, the lifetime of the ESS varies strongly 

depending on charging cycles, going from 10 to 20 

years [34]. According to the results, for scenario 2 

the ESS performs a charging cycle per day while for 

scenarios 3 and 4, the charging cycles are 12 per 

week. For this reason, it can be considered that 

during the expected lifetime of the installation, two 

ESS replacements should be done for scenario 2 and 

only 1 for scenarios 3 and 4. In Fig. 11 the 

accumulated value of the energy management 

system considering initial investment and 

replacements is shown. The payback period for 

scenario 2, which is the self-consumption approach, 

is 10.5 years, a common value for this type of 

installation as has been shown in section II. In 

contrast, scenarios 3 and 4 present an energy 

management system that allows for a payback 

period of 8 years. It is noticeable that although 

scenario 4 requires higher initial investment, the 

payback period is achieved at the same time as in 

scenario 3, leading to the fact that choosing optimal 

energy equipment size does not influence in the 

return of investment, a critical point to be 

considered for industrial enterprises. 

The total energy savings along the lifetime of the 

equipment are also computed for each of the 

analysed scenarios and can be seen in Table VI. The 

adoption of a self-consumption behaviour already 

represents a considerable saving, although it is 

clearly surpassed by the prosumer approach. It can 

be seen that through the sizing optimization of the 

RES and ESS, the energy savings represent almost 

half of the total energy use, improving also the 

prosumer behaviour of scenario 3 without 

influencing in the return of investment. 

TABLE VI: SCENARIO COMPARISON  
Scenario  Payback 

period  
Accumulated 

energy cost during 

system lifetime  

Energy 
savings along 

lifetime  
compared to 

“Do nothing”  
1  -  476099€  -  
2  10.5 

years  
297258€  38%  

3  8 years  264589€  44%  
4  8 years  250042€  47%  

VI. CONCLUSIONS  

In this paper, the energy equipment sizing for an 

industry aiming to adopt a prosumer behaviour has 

been assessed. To do so, a general SME industrial 

energy infrastructure has been modelled and the 

optimization problem defined and solved using a 

GA approach. Several scenarios have been 

considered representing different energy 

management strategies that are likely to be 

implemented in industrial plants. The self-

consumption is a well-known energy solution 

already accepted by the legislation which provides 

a high rate of energy savings and a payback period 

acceptable by industries. Based on this and 

considering social and governmental trends that 

enhance system flexibility, the prosumer is 

proposed as a key factor in the future energy 

market. The prosumer actively exchanges energy 

with the utility grid optimizing the energy bidding 

according to market status. In this paper, the 

suitability of optimizing the energy equipment to 

produce excess energy and storage capability to sell 

it to the utility grid at ideal moments has been 

shown. A methodology to suitable size RES and 

ESS for an industrial prosumers has been defined an 

applied to a use case. In this use case, the prosumer 

with optimal energy equipment size presents energy 

savings of 47% respect the “Do-nothing” scenario 

and also surpasses the performance of self-

consumption and prosumer with nonoptimal energy 

equipment. The payback periods obtained are also 

reduced, enabling and enhancing the adoption of 

these measures by SMEs willing to incorporate 

Fig. 10: ESS charge profile in scenario 4 

Fig. 11: Amortization and payback period 
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 smart energy management systems into their 

business models participating in the 

decarbonisation of the market. 
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5.3. Energy equipment sizing and operation optimisation for 

prosumer industrial SMEs – A lifetime approach 

Reference: E. M. Urbano, V. Martinez-Viol, K. Kampouropoulos, and L. Romeral, 

“Energy equipment sizing and operation optimisation for prosumer industrial 

SMEs – A lifetime approach,” Appl. Energy, vol. 299, no. July, p. 117329, 2021. © 
2021 Elsevier Ltd. All rights reserved. Available on: https://
doi.org/10.1016/j.apenergy.2021.117329

Publication framework: 

This article exposes the complete energy sizing methodology for industrial SMEs 

aiming to transform themselves into prosumers. The deterministic two-stage 

optimization approach is detailed. In the first stage, the potential equipment to 

install is analysed. In the second stage, the prosumer operation of the potential 

upgraded plant is optimized for the complete expected lifetime of the investment. 

Main contributions: 

• Continuous global optimization of energy equipment operation throughout

its lifetime, considering yearly, seasonal and hourly cost evolutions and
equipment degradation.

• Realistic one-week active energy bidding optimization to capture weekly

energy cost and production cycles.

Key words: 

Energy transition, prosumers, renewable energy sources, optimal sizing, industrial 

sector. 
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Abstract 

The market is searching for solutions to reduce emissions in the energy sector by increasing the consumer 

efficiency and flexibility and integrating renewable sources. Prosumers are suited to this role and are increasingly 

considered crucial to any such solution, being industries suitable to adopt this role. Small-and-medium enterprises 

(SMEs) that need to upgrade their energy infrastructure, due to equipment obsolescence or external pressures to 

adopt greener technologies, face difficulties in integrating new energy management strategies given the 

investment required and the payback periods. Industrial SMEs traditionally seek to make on-off investments with 

fast returns, exploiting the obtained equipment for its whole lifetime. Therefore, this paper presents a novel 

methodology to determine the optimal sizing and operation of the energy infrastructure for an industrial SME 

transitioning to a prosumer model to improve its economic perspectives, considering the exploitation of the 

infrastructure for its complete lifetime. The energy and economic profiles of SMEs are analysed and their energy 

infrastructure modelled in order to define the sizing and operation optimisation problem. Operation of the 

equipment is optimised considering weekly cycles along multiple years, obtaining the net present value of the 

investment. The proposed methodology, which employs direct search and linear programming techniques, enable 

industrial SMEs to undertake informed energy investment actions. A real manufacturing plant is described, 

characterized and used as the basis for a case study. The results show the economic feasibility of installing new 

energy equipment in SMEs, obtaining payback periods less than five years and final investment value of more than 

ten times the initial expense. 

Keywords 

Energy transition, prosumers, renewable energy sources, optimal sizing, industrial sector. 

1. Introduction 

Climate change is a global phenomenon whose effects 

must be stopped or slowed down as far as possible in 

order to prevent further damage to the environment. 

The Paris Agreement, signed by 195 nations in 

December 2015, specifically addresses the mitigation 

of greenhouse gas (GHG) emissions, calling for 

limiting the increase in global average temperature 

below 2 K above pre-industrial levels [1]. For this to 

happen, a general change is needed. Among other 

technical and social approaches, solutions can be 

provided by the energy market, which should 

undergo a transition towards zero CO2 emissions to 

assure system sustainability. Decarbonisation of the 

sector is only achievable if clean renewable energy 

sources (RES) are further inserted, performing an 

electrification of the market and increasing the 

efficiency of transmission and distribution systems 

[2]. Although this massive electrification can be 

achieved by the integration of RES, the current 

market structure presents barriers to their inclusion, 

as market mechanisms are based on high marginal 

costs and power dispatchability, whereas RES offer 

low marginal costs and are intermittent and 

nonprogrammable, inhibiting high penetration of 

them into the market [3]. To overcome these and 

other barriers, a change of paradigm is required, 

switching from a centralised dispatchability-based 

energy market to a distributed and hybrid system in 

which distributed small RES and consumer flexibility 

are key for success. To support this energy transition, 
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governments around the world are enhancing the 

access of distributed non-large producers of clean 

electricity to the grid and introducing financial 

incentives, disincentives and market mechanisms for 

decarbonization by business, industry, transportation 

and consumers [4]. In Europe, the transition to a new 

energy market has also started. Several energy 

policies, subsidies and funding routes have been 

implemented to achieve the clean energy objectives 

stated for 2020. RES represented 17% of total 

production in 2016, approaching the 20% target for 

2020. Beyond 2020, new targets have been set for 

2030 and 2050. The main objective – decarbonisation 

– has been set at a reduction of GHG emissions to 80-

95% below 1990 levels for 2050 [5]. One of the main 

focuses for achieving these targets is through the 

participation of small consumers in the market. 

Prosumers, who are capable of managing energy 

systems to exchange energy with the external market 

considering its current and future status, are 

acquiring global importance as fundamental actors in 

the achievement of an active energy market with high 

penetration of distributed energy sources [6]. 

Due to the industry’s energy consumption, energy 

infrastructure and the current Industry 4.0 revolution 

[7], the industry has great potential for the 

incorporation of flexibility through digitalisation and 

it is therefore suitable for the transition to a prosumer 

model. Among the different industrial entities, small-

and-medium enterprises (SMEs) are especially 

interesting due to their importance in energy-related 

issues, as they consume more than 13% of total global 

energy and account for more than half the energy 

used in the industrial and commercial sectors [8]. 

However, industrial SMEs face more difficulties than 

larger enterprises in adopting novel energy 

management strategies [9], and programmes for the 

incorporation of RES and flexibility require further 

research [10]. In this type of enterprise, most costs, 

especially those related to energy, are deemed 

necessary and are largely overlooked; as a result, little 

analysis is made of energy management and its 

impact on the company. Although some scientific 

research has been carried out into energy efficiency 

improvements in the SME sector such as [11], there 

are no publications on SMEs adopting prosumer 

behaviour and, as stated in [12], there is a need to 

adjust sustainable development practices to the SME 

framework. SMEs could face the problem of having to 

invest in energy infrastructure when their existing 

equipment becomes obsolete or governmental, social 

or market pressures require them to upgrade. This 

investment gives added value to industrial 

enterprises, supporting the achievement of their 

primary goal, which is to maintain or increase 

productivity. The investment process in industrial 

SMEs differs from that of larger enterprises due to the 

access to finance and the existent managerial system. 

Industrial SMEs selects investments with short 

payback periods and favourable economic 

parameters; once the investment has been made, the 

infrastructure is maintained in operation until 

another relevant event occurs that requires a new 

investment, thus exploiting the equipment for its 

whole lifetime [13]. When upgrading the energy 

infrastructure, it may be beneficial to evaluate the 

possibility of adopting smart energy management 

strategies such as prosumer behaviours. However, 

the intrinsic characteristics of industria l SMEs are 

not compatible with standard prosumer approaches 

and specific energy investment selection strategies 

are required for them, as addressed in this paper. 

Nearly all studies evaluating consumer capacity to 

support the energy transition focus on the tertiary 

sector. In most cases, only electricity consumption is 

considered, whereas thermal side is overlooked [14]. 

This can also be seen in studies focusing specifically 

on energy sizing, such as in [15], where only tertiary 

end-users which consume electricity are considered. 

Indeed, in [16], the thermal side of the energy 

infrastructure for a tertiary building is described but 

only energy sources providing electrical energy are 

optimized. Thus, no interconnection is generated 

through the different energy carriers present in the 

system. However, industrial SMEs have a strong 

thermal side [17] that cannot be overlooked when 

evaluating their prosumer potential, and, as 

described in [18], their demand pattern differs 

drastically from that of the tertiary sector. For these 

reasons, together with the specific investment 

characteristics of SMEs, a scientific approach must be 

taken to determine the optimal energy sizing strategy 

for the transition of SMEs to prosumers. 

Optimal energy equipment sizing studies are present 

in the literature. The mainstream considers operation 

in islanded mode to support the energy transition by 

acting as independent entities to the market. In [15], 

an energy storage system (ESS) is sized for an isolated 

grid with the objective of minimising the total system 

cost. In [16], distributed energy resources are sized 

for a building considering islanded performance, and 

in, [19] an isolated hybrid wind-hydrogen system is 

designed for a house. In this type of optimisation, the 

infrastructures are not connected to the main grid, so 

the objective is to assure the security of supply and 

grid stability. There are also papers dealing with 

sizing strategies for non-islanded mode, such as [20], 

where the sizing for a factory is assessed with the aim 

of minimising the energy purchased from the utility 

grid. In this study, energy storage systems and buffer 

stocks are sized for a whole year without considering 

the variation cycles of energy prices in the external 

market. In [18], the RES and ESS are sized for an 
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 industrial facility and a residential complex, to – but 

not commercialise – energy. In this paper, seasonal 

characteristic days are considered as representative 

time intervals for system operation. In [21], RES are 

sized for large industrial sites, considering the 

possibility of supplying energy to the grid without 

profit. The sizing is performed without evaluating the 

optimisation and operating costs of internal 

equipment. In [22], the operational optimisation of 

thermal and electrical equipment to supply energy to 

a residential complex is performed and the effects of 

uncertainty on the optimal system size are assessed. 

The optimisation accounts for environmental aspects 

but does not translate the emission of GHG into 

economic parameters, which are the primary 

consideration for enterprises. Although in these 

studies there is an exchange of energy with the grid, 

either the economic impact of this energy is not 

analysed or only a delimited time interval is 

considered. None of the studies evaluate the impact of 

energy exchange on the value of the investment and 

its return. In addition, the optimisations performed to 

date consider a typical year represented by a set of 

characteristics days and do not take into account the 

effect of weekly cycles into the operation 

optimisation nor the evolution over time of external 

and internal parameters. The few papers that 

consider the evolution of certain parameters include 

[23], where different time scenarios with different 

parameters are analysed, without implementing a 

long-term horizon strategy. Similarly, in [24], the 

potential variation of demand is addressed. However, 

none of these studies evaluates the cost evolution of 

energy parameters, and the methodologies are not 

suited to optimising an energy investment 

considering its value along lifetime. In [25], an 

optimisation model is presented for long-term, multi-

stage planning of a general decentralised multi-

energy systems. The optimal investment is addressed 

from a multi-stage perspective, i.e., distributing the 

investment along years and performing retrofitting, 

which could be suitable for urban planning applicable 

to large government entities or districts where 

buildings are added in multiple phases. SMEs, 

however, do not plan energy investments to take 

place gradually; rather, decisions are taken on the 

basis of immediate investment return and 

maximisation of profit along the lifetime of the 

equipment. Also, although multiple years are 

evaluated in [25] to perform the investment at 

different time points, the cost of the energy carriers 

and the technology degradation are discretised and 

considered constant during the year. This does not 

reflect reality and can lead to suboptimal decisions, as 

technology degrades continuously and external costs 

are subject to important seasonal and hourly 

variations [26], which should be taken into account in 

the investment analysis of SMEs. 

Free software tools are available for sizing energy 

sources to meet specific design criteria. DER-CAM is a 

popular software solution for designing distributed 

energy resources for the tertiary sector. Users have 

access to several key features, in particular the 

possibility of varying their load and deciding on the 

basis of economic and environmental criteria. To 

perform this optimisation, DER-CAM considers three 

typical days per month over the course of one year 

[27], leading to a simplified idealization of the 

decision-making process [28]. REopt is another 

software tool which serves as a technical-economic 

decision-support model for RES. REopt is also clearly 

focused on the tertiary sector, and specifically on 

buildings, campuses and communities. It assesses the 

optimal mix of energy sources and the optimal 

dispatch of equipment separately, and only one year 

is modelled explicitly, which is assumed to repeat 

over the period of analysis [29]. However, neither of 

these tools take into account the multiple years in the 

lifetime of the energy equipment or the evolution of 

market parameters, both of which are crucial factors 

when assessing the real value of an investment 

operation. In addition, the optimisation horizon for 

energy equipment operation is daily and does not 

capture the characteristic weekly energy cycles. 

Research has also been carried out into optimisation 

techniques for the sizing and operation of energy 

infrastructures. In [19], the sizing and dispatch 

problems are solved using a set of pre-defined rules 

that indicate where the energy should come from 

depending on the different situations that may arise. 

In [18], the sizing is performed through a parametric 

analysis considering the different options of 

component sizes, while in [30], different meta-

heuristic algorithms are employed. A robust 

optimisation framework is proposed in [31], together 

with hybrid modelling, which is used to develop a 

model based on historical data. Linear programming 

(LP) and mixed-integer linear programming (MILP) 

are also commonly applied to energy system sizing. In 

[20], a MILP algorithm is presented to improve the 

matching between energy source generation and 

flexible demand, and in [21] MILP is used to compute 

the optimal size of a RES. For problems in which 

optimal design and operation strategy are sought, the 

non-linear relationship between the equipment 

selection and capacity and their operating lifetime 

operation requires the use of simplification 

techniques to obtain a linear resolution. Simple 

energy systems such as the one presented in [15] 

apply MILP to sizing and hourly operation problems 

of an ESS. However, in the current state of the art, and 

for the evaluation of complex energy systems with 
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several time operation evaluations, a two-stage 

optimisation approach is also proposed in which the 

capacity and equipment variables and the operation 

variables remain unconnected during the resolution, 

the optimisation to be performed without 

simplification strategies. This two-stage methodology 

is employed in [16], where the dispatch problem is 

nested within the sizing problem of a RES for an 

islanded microgrid and solved using a combination of 

PSO and MILP. In [32], a two-stage stochastic 

optimisation problem is also proposed for ESS sizing. 

In the first stage, the ESS capacity and inverter rating 

are selected, and in the second stage, the dispatch 

schedule is optimised. This same strategy is also 

followed in [33], where a two-stage planning and 

design method is applied for a microgrid with a 

combined cooling, heat and power system, and in 

[34], where the optimal sizing and operation of a CHP 

system is studied. 

Bearing in mind the evolution of the energy market 

and the current situations of industrial SMEs, there is 

a need to develop a global vision on how to transform 

SMEs into prosumer entities through investment in 

energy equipment for smart energy management. 

Therefore, this paper aims to assess the optimal 

design of the energy infrastructure for an SME to 

enable an equipment upgrade, evaluating the 

possibility of exchanging energy with the external 

grid and the business opportunities that this presents. 

Considering the economic priorities and 

requirements of industrial enterprises, the analysis is 

carried out for the whole lifetime of the energy 

equipment, considering market time evolution, 

emission taxes and expected internal growth. Also, in 

order to capture the energy cost and production 

cycles, a weekly operation horizon is considered to 

maximise the bidding profits while the optimal size 

and the optimal operation of the equipment are 

assessed. This work makes the following 

contributions to the state of the art: 

• Continuous global optimisation of energy 

equipment operation along its lifetime, 

considering yearly, seasonal and hourly cost 

evolutions and equipment degradation. This 

procedure improves the single-year 

operation and extrapolation of results used 

until now in the literature and the 

consideration of fixed energy costs, 

increasing the robustness and accuracy of 

the results. 

• Realistic one-week active energy bidding 

optimisation to capture weekly energy cost 

and production cycles, which are 

determining factors of SMEs’ equipment 

operation, improving current single- or 

isolated-day methodologies. 

This problem is addressed through a two-stage global 

sizing optimisation adapted to the case of energy 

equipment for industrial prosumers, which differs 

from previous works as it addresses the entire energy 

infrastructure of the studied entity. Direct search (DS) 

is well suited to the first stage, which is characterised 

by few design variables and defined boundaries, 

while LP is employed in the second-stage, quickly 

reaching the operation that leads to the global 

minimum. The presented framework is applied to the 

novel field of industrial SMEs as prosumers. Active 

energy bidding of industrial SME energy 

infrastructures with the utility grid is considered, 

taking into account the latest legislation streams, 

which make provision for industry to participate in 

the electricity market and transition to a prosumer 

model. This approach can also be considered a 

contribution of this paper to the state of the art. 

The paper is organised as follows. Section 2 describes 

the energy framework and background, specifying 

the equipment, energy and emissions costs for 

prosumers over the coming years. Section 3 defines 

the problem and presents the mathematical 

formulation and the two-stage global DS-LP 

optimisation methodology for its resolution. Section 

4, presents a case study to verify the assumptions of 

this paper, while the results are discussed in detail in 

Section 5. Finally, Section 6 presents the conclusions 

of the study. 

2. Energy framework and background 

The energy infrastructure of industries varies 

depending on its activity and size, being big and 

energy-intensive enterprises, the primary ones taking 

action towards deep decarbonization through the 

inclusion of RES and energy efficiency measures [35]. 

However, industrial SMEs, which dominate the 

industrial landscape, are slower in the adaptation to 

the new energy paradigm. 

SMEs can be defined as enterprises with 10 to 249 

employees with sales not exceeding 50 million euros 

and an annual balance sheet lower than 43 million 

euros. As an example, the average SME in Europe 

employs 32 people and has a value-added of 1.418 

million € [36]. Its specific electricity consumption and 

final energy consumption are considered to be 1.449 

kJ/€ and 4.512 kJ/€ respect the value-added [37] 

with peak power ranging from dozens of kW to units 

of MW [38]. With these data, the annual final energy 

consumption of the average SME is 1.777 MWh, being 

the consumption of electricity 570MWh. 

Current SMEs base their energy behaviour in the 

direct purchase of electricity from the utility grid to 

satisfy their electrical load and the use of gas for 

combustion to cover the thermal load, although 
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 district heating is also employed when available [38]. 

Even though cogeneration is widely used in large-

industrial sites [39], it is not established for SMEs, 

which mainly use boilers for the combustion of 

natural gas [40]. 

Even though self-consumption is being widely 

applied to the tertiary sector as can be seen in several 

works, such as in [41], where the optimal sizing and 

power schedule of PV for household prosumers is 

analysed; it is not yet established in the industry. As 

the energy transition and the newest legislation to 

tackle it leads to a switching trend from self-

consumption to active consumers with prosumer 

capabilities, the industry is likely to incorporate 

energy equipment for prosumer purposes instead of 

for self-consumption. In fact, several countries 

around the world propose different strategies for 

enhancing the emergence of prosumer entities [42]. 

As an example, a review of policies implemented in 

several European countries is available in [43], 

including feed-in tariffs, premium tariffs and tax 

reduction when RES are utilized. 

These trends and the technological advances and cost 

reduction of energy equipment enable SMEs to 

expand their energy capacities through dimensioning 

and diversifying their internal energy infrastructure. 

The spreading use of RES, and Photovoltaic (PV) 

systems specifically, is leading to a drastic decrease in 

their costs. According to the study on the levelized 

cost of electricity from different sources developed by 

Fraunhofer ISE [44] and the PV status report by the 

European Union [45], the Levelized Cost of Energy 

(LCOE) for PV systems, from 0,0371 to 0,11€/kWh in 

2018, is forecasted to be reduced to 0,02-

0,065€/kWh in 2035. Regarding its investment cost, 

from 600-1.400 €/kWp in 2018, it is expected to be 

decreased to 350-815 €/kWp by 2035. The operation 

and maintenance cost of 9,5€/kW-year is also likely 

to be decreased by 50% to 2035, reaching a value of 

4,75€/kW-year. 

Electrochemical ESS will also lower their cost to due 

to their wide adoption as ESS in electric vehicles. The 

most mature application for energy storage is the Li-

ion battery. As exposed by the Fraunhofer ISE [44] 

and also considering the values obtained in the 

research article [46]the LCOE of electrochemical ESS 

was 0,05-0,2€/kWh in 2018, presenting a decrease of 

76% compared to 2012 values, and which will likely 

continue dropping by 50-60% until 2030. The capital 

cost of Li-ion batteries, 380-480€/kWh; and its 

operation and maintenance cost, 8,5-11,3€/kW-year; 

are also expected to be decreased at the same ratio by 

2030. 

Cogeneration, which has already been applied to large 

industrial sites, is being studied for its application in 

micro-sizes that will enable its integration in SMEs 

[47]. The cost of a Combined Heat and Power (CHP) 

equipment is very competitive, being its LCOE 0,018-

0,066€/kWeh [48]. However, its initial investment 

for small sizes is considerably large, between 

3.400€/kWe and 6.700€/kWe depending on the 

technology [49] and with operation and maintenance 

costs of approximately 35€/kWe-year [50]. CHP can 

be supplied by coal, natural gas or a gas mix including 

hydrogen. Still today, hydrogen technology is not 

ready in the market for its implementation [51]. 

Despite this, in this paper, a generic methodology is 

presented that will enable the incorporation of 

hydrogen in the future. 

Responding to the growing electrification trend in the 

market, which will enable the supply of green energy 

from renewables and avoid the combustion of fossil-

fuel energy, the incorporation of energy equipment to 

transform electrical power to thermal is required. 

Despite the vast variety of equipment available, heat 

pumps are gaining attention due to their high energy 

efficiency [52]. Their initial investment is 

approximately 700€/kWth with an operation and 

maintenance cost of 7€/kWth-year [53], having an 

already very competitive LCOE of 0,076€/kWh [54]. 

With the inclusion of energy transformer equipment 

that links the electrical side of the factory with the 

thermal side, it may be necessary to include thermal 

ESS for better synchronization between both sides of 

the factory. For the application in industrial sites, the 

most interesting types of thermal ESS are sensible 

heat storages, with stability under thermal cycling, 

chemical compatibility with different environments 

and low cost [55]. Sensible heat storages are already 

under application for large industrial sites in the form 

of solid storages such as packed-beds [56] or hot 

water tanks [57]. Its low initial investment, of 0,1-

10€/kWh [58], with maintenance and operation costs 

of 11€/kW-year and an LCOE of 0,027-0,07€/kWh 

[59], make it an interesting option to be considered 

for its installation in SMEs [60]. Of course, other 

systems using phase chase materials (PCM) or 

thermochemical energy storage materials (TCMs) 

could be considered for thermal energy storage, 

although further research is needed to improve 

reliability and efficiency over a large number of 

thermal cycles and to reduce investment costs before 

considering its industrial use. 

As one of the aims of this paper is to provide a solid 

base for investment in energy equipment with an 

expected lifetime of at least 15 years, electricity, gas 

and emission costs are also considered together with 

their evolution trend during the upcoming years. 

In the case of electricity, its current cost is forecasted 

to increase at least 30% by 2030 due to the intense 
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electrification of the energy system [61]. For final 

consumer electricity cost, it is required to account for 

taxes and levies. In 2019, these taxes represented the 

40,7% [62] of energy cost in Europe, although they 

are lowered for prosumers up to 50% depending on 

specific country legislation [63]. The price at which 

the electricity is sold is specified according to 

legislation and varies depending on the considered 

country [42]. 

The cost of gas is also expected to increase by 11 to 

25% by 2030 [64]. In this case, taxes and levies 

account for a lower fraction of the final energy cost, 

being the cost of the energy up to 80% of the total 

[65]. 

To enhance the electrification of the system and the 

support to the energy transition, the cost of emissions 

is also considered. Although the required emission 

costs to accomplish the Paris Agreement by 2020 

should lay between 40€/tCO2 and 80€/tCO2, in 2019 

most countries with implemented emission trading 

schemes dealt with costs below 25€/tCO2 [66]. This 

cost is forecasted to increase until 30-70€/tCO2 by 

2035 [44]. These values do not depend only on 

market conditions but also on governmental 

decisions and thus are likely to increment to reinforce 

the implementation of measures for GHG emissions 

reductions. 

3. Problem definition 

To perform the analytical study, a standard SME 

reference plant is considered, with direct purchase of 

electricity to satisfy electrical demand and a boiler to 

transform chemical energy in the gas mix to thermal 

energy. The incorporation of a RES system, PV in this 

case; electrochemical ESS, thermal ESS, cogeneration 

and electric to thermal equipment is considered. The 

infrastructure of the potential upgraded industrial 

plant is exposed in Figure 1, and the nomenclature 

employed is described in Table 1. The contents of this 

figure reflect the equipment to install, the data 

needed and the energy flows, which are explained in 

this section. The objective of the optimisation is to 

obtain the optimal sizes of energy equipment while 

also evaluating their optimal dispatch along the 

expected infrastructure lifetime. In this paper, a two-

stage optimisation approach is presented to solve this 

problem. 

In the first stage, the “here-and-now” variables, which 

are the energy equipment sizes, are computed. The 

constraints that apply can be related to the maximum 

investment specified by the SME and the maximum 

available space for the installation of RES and other 

energy equipment. For energy equipment selection, 

and considering that the current interest of industrial 

enterprises lays in economic parameters, the 

 

Figure 1: Potential upgraded plant: Data required for the optimisation and possible energy flows within the plant. 
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objective function should be related to the economic 

performance of the investment. cost of energy (COE) 

and net present cost (NPC) are often employed when 

optimally sizing energy equipment [67]. These 

parameters serve to analyse the present and annual 

cost of energy generated considering the 

repeatability of the analysed performance of the 

energy resources during its lifetime. However, the 

objective in this paper is to assess the optimal sizing 

considering the variation in the optimal operation 

according to external and internal changes that occur 

along the lifetime of the equipment. For this reason, 

the net present value (NPV) is a suitable parameter 

for projects and investments, as it considers the 

different cash inflows and outflows for every year 

analysed and transforms them into current value; 

evaluating the profitability of energy investments for 

their expected lifetime [68]. A positive NPV 

announces that the obtained benefits are higher than 

the costs, resulting in a good investment option. For 

computing the NPV, it is required to obtain the 

benefits and costs for the inclusion of the energy 

equipment along its expected lifetime, which is done 

with the information obtained from the second stage 

of the optimisation process. 

In the second stage, the optimal operation of the 

prosumer plant for the sizes under study is obtained 

and compared with that of the reference plant so the 

costs and benefits of the modifications can be 

evaluated. This optimal operation is computed for a 

variation cycle of energy prices, which can be 

captured in a one-week time horizon. In this stage, a 

mathematical model of the plant is built based on the 

equipment sizes obtained from the first stage. The 

plant is modelled and its operation optimised along 

the lifetime of the energy equipment. The energy hub 

(EH) is the basis for the development of an energy 

management system (EMS), which will be in charge of 

managing the energy flow in the real plant once the 

sizing problem is solved and the equipment is 

installed. The EMS will consider the available energy 

from the RES and the utility grid to attend the demand 

aiming at benefit maximisation. In this paper, as the 

objective is the sizing problem, the EMS is out of the 

scope and the focus lays in the EH model and 

operation optimisation while assuring the 

performance of the global system. 

The EH is formed by a set of connections, converters 

and storage devices that form an integrated structure 

which consumes various forms of energy at the input 

ports and provide different energy services at the 

output ports [69]. The plant considered in this paper 

is a multiple input and multiple output (MIMO) EH, 

where the energy inputs can be split among the 

different converters and managed to achieve a certain 

performance in the output of the system. The energy 

flows in the EH are optimised having as an objective 

the minimisation of the operation costs of the plant, 

including the costs related to the purchase of energy 

and the benefits obtained from the feed-in tariffs. The 

EH framework together with the information 

required to perform the optimisation can be seen in 

Figure 1. The external boxes represent the 

information required to obtain the optimal operation 

of the EH. Specifically, the “Data for internal 

equipment and hub operation” box represents the 

data related to the equipment itself while the “Data 

for energy input and framework" box refers to 

scenario information, which includes current and 

future data affecting the performance of the EH. The 

inputs of the system are formed by the energy 

generated by the on-site RES and the electricity and 

gas purchased to the grids. Inside the EH, the energy 

transformer equipment and the connexion hubs are 

depicted. It can be seen that there are two main hubs, 

one electrical and one thermal, each of them with a 

Table 1: Nomenclature employed in Figure 1. 

Symbol Description 

𝑃𝑃𝑉 Power generated by the PV system 
𝑃𝐶𝐸𝑆 Power at which the electrochemical storage is 

charged 
𝑃𝐷𝐸𝑆 Power at which the electrochemical storage is 

discharged 
𝑃𝐸𝐷 Electric power used by the electric to thermal 

equipment 
𝑃𝑈𝐺  Power purchased from the utility grid 
𝑃𝑈𝐺𝑆 Power inserted to the utility grid 
𝑃𝐶𝐻𝑃 Electric power from the cogeneration system 
𝑃𝐸𝑇 Electrical power used by the electrical to 

thermal equipment 
𝑉𝐶𝐻𝑃 Gas used by the cogeneration system 
𝑄𝐶𝐻𝑃 Thermal power from the cogeneration system 
𝑄𝐸𝑇 Thermal power from the electric to thermal 

equipment 
𝑄𝑇𝐿 Thermal load 
𝑉𝐵𝑂𝐼 Gas used by the boiler system 
𝑄𝐵𝑂𝐼 Output power from the boiler 
𝑄𝐶𝑇𝑆 Power at which the thermal storage is charged 
𝑄𝐷𝑇𝑆 Power at which the thermal storage is 

discharged 
𝜂𝑃𝑉 Efficiency of the connexion with the PV system 
𝜂𝐶𝐸𝑆 Charge efficiency of the electrochemical 

storage 
𝜂𝐷𝑆 Discharge efficiency of the electrochemical 

storage 
𝜂𝐸𝐷 Efficiency of the connexion with the electrical 

demand 
𝜂𝑈𝐺  Efficiency of the connexion with the utility grid 
𝜂𝐶𝐻𝑃𝑒 Cogeneration electrical efficiency 
𝜂𝐶𝐻𝑃𝑡ℎ Cogeneration thermal efficiency 
𝜂𝐸𝑇 Efficiency of the electrical to thermal 

equipment 
𝜂𝐵𝑂𝐼 Efficiency of the boiler 
𝜂𝐶𝑇𝑆 Charge efficiency of the thermal storage 
𝜂𝐷𝑇𝑆 Discharge efficiency of the thermal storage 
𝜂𝑇𝐿 Efficiency of the connexion with the thermal 

load 
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storage system. These two hubs are connected 

through two transformer equipment, enabling the 

exchange of energy between them. The outputs of the 

system are the energy delivered to internal demand, 

both electrical and thermal, and the electricity that is 

sold to the utility grid. 

The following sections describe the mathematical 

formulation of the objective function and the 

problem’s constraints. 

3.1. Mathematical formulation 

The aim of the sizing optimisation problem is the 

maximisation of the NPV over a time period 𝑇. This 

can be expressed mathematically following the 

indications provided in [70], where the different cash 

flows are considered together with the applicable 

discount rate. In the present case, for the sake of 

readability, the initial investment is kept out of the 

summation of cash flows arising from equipment’s 

operation. The NPV is then expressed as: 

 
NPV = −𝐶0 +∑

𝐶𝑖
(1 − 𝑟)𝑖

𝑇

𝑖=1

 (1) 

Where 𝐶0 is the investment performed, 𝐶𝑖  is the cash 

flow, or benefits minus cost, for the period 𝑖, and 𝑟 is 

the hurdle rate. The initial investment is computed as: 

 𝐶0 = 𝐴𝑃𝑉𝐶0,𝑃𝑉 + 𝐶𝑎𝑝𝐸𝑆𝐶0,𝐸𝑆

+ 𝐶𝑎𝑝𝑇𝑆𝐶0,𝑇𝑆

+ 𝑃𝐶𝐻𝑃,𝑚𝑎𝑥𝐶0,𝐶𝐻𝑃

+ 𝑄𝐸𝑇,𝑚𝑎𝑥𝐶0,𝐸𝑇 

(2) 

Where 𝐴𝑃𝑉 is the area of the PV system, 𝐶𝑎𝑝𝐸𝑆 and 

𝐶𝑎𝑝𝑇𝑆 are the capacity of the electrochemical and 

thermal storage, 𝑃𝐶𝐻𝑃,𝑚𝑎𝑥  the power capacity of the 

CHP system and 𝑄𝐸𝑇,𝑚𝑎𝑥   the power capacity of the 

electrical to thermal equipment. 𝐶0,𝑃𝑉 , 𝐶0,𝐸𝑆, 𝐶0,𝑇𝑆, 

𝐶0,𝐶𝐻𝑃 and 𝐶0,𝐸𝑇 are the initial costs of the PV system, 

electrochemical storage, thermal storage, 

cogeneration and electrical to thermal equipment, 

respectively. 

The cash flow is computed for each time period. The 

variable cash flow is adjusted seasonally by 

considering four representative weeks along the year 

and extrapolating these results to the whole year. To 

this value, the fix operation and maintenance costs of 

the energy equipment are added: 

 
𝐶𝑖 =

52

4
(𝐶𝑠𝑝𝑟𝑖𝑛𝑔,𝑖 + 𝐶𝑠𝑢𝑚𝑚𝑒𝑟,𝑖 + 𝐶𝑎𝑢𝑡𝑢𝑚𝑛,𝑖

+ 𝐶𝑤𝑖𝑛𝑡𝑒𝑟,𝑖)

− (𝐶𝑂&𝑀,𝐶𝐻𝑃𝑃𝐶𝐻𝑃,𝑚𝑎𝑥

+ 𝐶𝑂&𝑀,𝐸𝑇𝑄𝐸𝑇,𝑚𝑎𝑥

+ 𝐶𝑂&𝑀,𝐸𝑆𝐶𝑎𝑝𝐸𝑆

+ 𝐶𝑂&𝑀,𝑇𝑆𝐶𝑎𝑝𝑇𝑆

+ 𝐶𝑂&𝑀,𝑃𝑉𝐴𝑃𝑉𝑃𝑛𝑜𝑚) 

 

(3) 

Where 𝐶𝑠𝑝𝑟𝑖𝑛𝑔,𝑖 , 𝐶𝑠𝑢𝑚𝑚𝑒𝑟,𝑖 , 𝐶𝑎𝑢𝑡𝑢𝑚𝑛,𝑖 and 𝐶𝑤𝑖𝑛𝑡𝑒𝑟,𝑖  are 

the variable cash flow of the four representative 

weeks for the year 𝑖 and 𝐶𝑂&𝑀,𝐶𝐻𝑃, 𝐶𝑂&𝑀,𝐸𝑇 , 𝐶𝑂&𝑀,𝐸𝑆, 

𝐶𝑂&𝑀,𝑇𝑆 and 𝐶𝑂&𝑀,𝑃𝑉 are the yearly operation and 

maintenance costs per unit capacity of CHP, electrical 

to thermal equipment, electrochemical storage, 

thermal storage and PV system, respectively. 

For a given season, the cash flow is: 

 
𝐶𝑠𝑒𝑎𝑠𝑜𝑛,𝑖=∑𝑃𝑈𝐺𝑆,𝑗𝜂𝑈𝐺,𝑗𝐶𝑈𝐺𝑆,𝑖,𝑗

𝑁

𝑗=1

+ (𝑃𝑈𝐺,𝑟𝑒𝑓,𝑗 − 𝑃𝑈𝐺,𝑗)𝐶𝑈𝐺,𝑖

+ (𝑉𝐵𝑂𝐼,𝑟𝑒𝑓,𝑗 − 𝑉𝐶𝐻𝑃,𝑗

− 𝑉𝐵𝑂𝐼,𝑗)(𝐶𝐺,𝑖

+ 𝐹𝑔𝐺𝐻𝐺𝐶𝐺𝐻𝐺,𝑖) 

(4) 

Where 𝑗 represents the hour of the week considered, 

𝐹𝑔𝐺𝐻𝐺  is the emission factor of the gas and 𝐶𝑈𝐺𝑆, 𝐶𝑈𝐺 , 

𝐶𝐺  and 𝐶𝐺𝐻𝐺  are the benefit of selling energy to the 

utility grid, the costs of purchasing electricity, gas and 

the cost of emissions, respectively. The variables 

𝑃𝑈𝐺,𝑟𝑒𝑓 and 𝑉𝐵𝑂𝐼,𝑟𝑒𝑓 are the electrical energy 

purchased and the gas consumed by the boiler in a 

reference plant, which is used to evaluate the benefits 

of renovating the energy equipment and 

infrastructure. 

The behaviour of the reference and the upgraded 

plants is optimised aiming for minimising the costs, 

considering the LCOE of the energy equipment and 

the costs of energy and emissions for the 

corresponding point in time. The objective function of 

the optimisation problem is formulated as follows: 
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𝑓𝑤𝑒𝑒𝑘𝑙𝑦 =∑𝑃𝑃𝑉,𝑗𝐶𝑃𝑉 + 𝑃𝑈𝐺,𝑗𝐶𝑈𝐺,𝑖

𝑁

𝑗=1

+ 𝐶𝐸𝑆(𝑃𝐶𝐸𝑆,𝑗 + 𝑃𝐷𝐸𝑆,𝑗)

+ 𝑃𝐶𝐻𝑃,𝑗𝐶𝐶𝐻𝑃 + 𝑃𝐸𝑇,𝑗𝐶𝐸𝑇

+ 𝑄𝐵𝑂𝐼,𝑗𝐶𝐵𝑂𝐼

+ (𝑉𝐶𝐻𝑃,𝑗 + 𝑉𝐵𝑂𝐼,𝑗)(𝐶𝐺,𝑖

+ 𝐹𝑔𝐺𝐻𝐺𝐶𝐺𝐻𝐺,𝑖)

+ 𝐶𝑇𝑆(𝑄𝐶𝑇𝑆,𝑗 + 𝑄𝐷𝑇𝑆,𝑗)

− 𝑃𝑈𝐺𝑆,𝑗𝐶𝑈𝐺𝑆,𝑖  

(5) 

Where 𝐶𝑃𝑉 , 𝐶𝐸𝑆, 𝐶𝐶𝐻𝑃 , 𝐶𝐸𝑇 , 𝐶𝐵𝑂𝐼  and 𝐶𝑇𝑆 are the LCOE 

of the PV system, the electrochemical storage, the 

CHP, the electric to thermal equipment, the boiler and 

the thermal storage system. In the optimisation case 

of the reference plant, which does not include the new 

equipment under evaluation, the size of equipment 

that is not present is set to zero. 

The sizing problem is subject to restrictions related to 

maximum allowable space for the installation of RES, 

maximum space for the installation of internal energy 

equipment and maximum investment limit. These are 

expressed as: 

 𝐴𝑃𝑉 ≤ 𝐴𝑃𝑉,𝑚𝑎𝑥  (6) 

 𝐶𝑎𝑝𝐸𝑆
𝜌𝐸𝑆

+
𝐶𝑎𝑝𝑇𝑆
𝜌𝑇𝑆

+
𝑃𝐶𝐻𝑃,𝑚𝑎𝑥
𝜌𝐶𝐻𝑃

+
𝑄𝐸𝑇,𝑚𝑎𝑥
𝜌𝐸𝑇

≤ 𝐴𝑖𝑛𝑡,𝑚𝑎𝑥  
(7) 

 𝐶0 ≤ 𝐶0,𝑚𝑎𝑥  (8) 

Where 𝐴𝑃𝑉,𝑚𝑎𝑥  is the maximum area for the 

installation of PV; 𝜌𝐸𝑆 , 𝜌𝑇𝑆, 𝜌𝐶𝐻𝑃  and 𝜌𝐸𝑇  are the 

energy and power densities of the electrochemical 

storage, the thermal storage, the CHP and the electric 

to thermal equipment. 𝐴𝑖𝑛𝑡,𝑚𝑎𝑥  is the maximum area 

available for the installation of internal energy 

equipment and 𝐶0,𝑚𝑎𝑥  the maximum investment limit. 

The optimal behaviour of the plant for all the cases is 

also restricted. To model the energy infrastructure of 

the plant, the EH concept is used, according to which 

energy equilibrium in the electrical and thermal hubs 

have to be achieved, and equipment operation 

thresholds should be accomplished. These 

equilibriums assure the fulfilment of the demand at 

all times. As the optimisation is performed 

considering the time evolution of parameters, the 

demand is susceptible to change together with the 

production of the industrial plant. For this reason, a 

robust strategy is adopted at which a yearly growth 

rate of 1,5% [71]along the optimisation horizon is 

considered, increasing the demand of the system and 

assuring the capacity of supply against possible 

realization scenarios [72]. Also, to better reflect the 

energy situation of industrial SMEs, the degradation 

of equipment is considered. Specifically, for the case 

of the PV system, a continuous performance loss of 0,8 

% per year accumulated is implemented [73]. 

With this in mind the equilibrium for the electrical 

hub is stated as: 

 𝑃𝑃𝑉𝜂𝑃𝑉 + 𝑃𝑈𝐺𝜂𝑈𝐺 + 𝑃𝐶𝐻𝑃 + 𝑃𝐷𝐸𝑆𝜂𝐷𝐸𝑆

=
𝑃𝐸𝐷
𝜂𝐸𝐷

+ 𝑃𝑈𝐺𝑆 +
𝑃𝐶𝐸𝑆
𝜂𝐶𝐸𝑆

+ 𝑃𝐸𝑇  

(9) 

For the thermal hub, the equilibrium is stated as: 

 𝑄𝐶𝐻𝑃 + 𝑄𝐵𝑂𝐼 + 𝑄𝐷𝑇𝑆𝜂𝐷𝑇𝑆 + 𝑄𝐸𝑇

=
𝑄𝑇𝐿
𝜂𝑇𝐿

+
𝑄𝐶𝑇𝑆
𝜂𝐶𝑇𝑆

 
(10) 

The thermal power from the cogeneration and from 

the energy to thermal equipment are related to the 

parameters in the electrical hub as follows: 

 𝑄𝐶𝐻𝑃 = 𝑃𝐶𝐻𝑃
𝜂𝐶𝐻𝑃𝑡ℎ
𝜂𝐶𝐻𝑃𝑒

 (11) 

 𝑄𝐸𝑇 = 𝑃𝐸𝑇𝜂𝐸𝑇  (12) 

The restrictions related to power exchange with 

external grids are formulated as: 

 0 ≤ 𝑃𝑈𝐺 ≤ 𝐸𝑚𝑎𝑥  (13) 

 0 ≤ 𝑃𝑈𝐺𝑆 ≤ 𝐸𝑚𝑎𝑥  (14) 

 0 ≤ 𝑉𝐶𝐻𝑃 + 𝑉𝐵𝑂𝐼 ≤ 𝑉𝑔𝑚𝑎𝑥  (15) 

Where 𝐸𝑚𝑎𝑥  is the maximum exchange of power with 

the electrical grid and 𝑉𝑔𝑚𝑎𝑥  the maximum for the gas 

grid. 

The restrictions related to the power exchange with 

the energy equipment are: 

 0 ≤ 𝑃𝐶𝐸𝑆 ≤ 𝑅𝐶𝐸𝐶𝑎𝑝𝐸𝑆 (16) 

 0 ≤ 𝑃𝐷𝐸𝑆 ≤ 𝑅𝐷𝐸𝐶𝑎𝑝𝐸𝑆  (17) 

 0 ≤ 𝑃𝐶𝑇𝑆 ≤ 𝑅𝐶𝑇𝐶𝑎𝑝𝑇𝑆 (18) 

 0 ≤ 𝑃𝐷𝑇𝑆 ≤ 𝑅𝐷𝑇𝐶𝑎𝑝𝑇𝑆 (19) 

 0 ≤ 𝑄𝐵𝑂𝐼 ≤ 𝑄𝐵𝑂𝐼,𝑚𝑎𝑥  (20) 
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 0 ≤ 𝑃𝐶𝐻𝑃 ≤ 𝑃𝐶𝐻𝑃,𝑚𝑎𝑥  (21) 

 0 ≤ 𝑄𝐸𝑇 ≤ 𝑄𝐸𝑇,𝑚𝑎𝑥  (22) 

Where 𝑅𝐶𝐸  and 𝑅𝐷𝐸 are the charging and discharging 

ratio of the electrochemical storage and 𝑅𝐶𝑇 and 𝑅𝐷𝑇 

describe the ratios for the thermal storage. 

Last of all, the maximum and minimum energy stored 

in the electrochemical and thermal storage systems 

have to be between specified thresholds, described 

as: 

 𝐸𝐸𝑆
𝑡 = 𝐸𝐸𝑆

𝑡−1 + ∆𝑡(𝑃𝐶𝐸𝑆 − 𝑃𝐷𝐸𝑆) (23) 

 𝐶𝑎𝑝𝐸𝑆𝑚𝑖𝑛 ≤ 𝐸𝐸𝑆
𝑡 ≤ 𝐶𝑎𝑝𝐸𝑆 (24) 

 𝐸𝑇𝑆
𝑡 = 𝐸𝑇𝑆

𝑡−1 + ∆𝑡(𝑄𝐶𝑇𝑆 − 𝑄𝐷𝑇𝑆)

− 𝑆𝐷𝑇𝑆𝐸𝑇𝑆
𝑡−1 

(25) 

 𝐶𝑎𝑝𝑇𝑆𝑚𝑖𝑛 ≤ 𝐸𝑇𝑆
𝑡 ≤ 𝐶𝑎𝑝𝑇𝑆 (26) 

Where 𝐸𝑡 is the stored energy at the evaluated 

instant, 𝐸𝑡−1 describes the energy stored in the 

previous instant while ∆𝑡 is the time step. The 

subscripts ES and TS refer to the electrochemical and 

thermal storage, respectively and 𝐶𝑎𝑝𝐸𝑆𝑚𝑖𝑛 and 

𝐶𝑎𝑝𝑇𝑆𝑚𝑖𝑛 the minimum capacity of these storages. 

𝑆𝐷𝑇𝑆 is the self-discharge ratio, which is only applied 

to the thermal storage. Electrochemical energy 

storage systems, as PV systems, suffer an important 

degradation over time. In this case, however, the 

degradation appears in the form of loss of capacity 

instead of loss of efficiency. In this paper, continuous 

degradation of 6% per year accumulated has been 

applied to obtain a realistic result on the energy 

performance of the plant [74].  

3.2. Optimisation methodology 

An overview of the optimisation procedure is shown 

in Figure 2. First of all, data is extracted from 

databases, which include meteorological information, 

market costs, internal demands and equipment 

parameters. With this information, data for the 4 

representative weeks per year along the lifetime of 

the energy equipment, which is considered to be 15 

years, is obtained. Then, the operation of the 

reference plant is optimised, with the energy 

equipment already owned by the enterprise. This 

optimisation serves as a baseline to compute the 

performance improvement if new energy equipment 

is included in the energy infrastructure of the factory. 

Once this step is performed, the algorithm continues 

to the two-stage optimisation. 

 

Figure 2: Flowchart of the two-stage optimisation resolution. 

The optimisation algorithm is initialized for the first 

stage. The optimisation problem formulated presents 

unconnected complex feasible areas, so gradient-

based and local optimisation algorithms are not 

suitable for its resolution as they tend to reach local 

maximums close to the starting point. For this reason, 

the use of global optimisation algorithms is preferred 

in this case, as they have a better chance of finding the 

global optimal and do not require information from 

the derivative of the objective function [75]. For the 

specific situation considered, the optimisation 

problem is solved using DS, a derivative-free global 

optimisation algorithm based on branching 

techniques that performs successfully in front of 

practical problems with complex search areas [76] 

and that provides global convergence as proven in 

[77]. Once the global optimiser is initialized, the first 

candidates are obtained. These candidates are the 

equipment sizes to be evaluated in the second stage 

of the optimisation, which starts with the 

construction of the model of the upgraded plant. This 

plant is optimised through LP for one-week time 

horizon to obtain the dispatch set-points and energy 

transactions. The obtained behaviour is compared to 

that of the reference plant to obtain the benefits of 

including the energy equipment for the 

corresponding weeks and the results are extrapolated 

for the year under study. The process is repeated for 

the expected lifetime of the energy equipment. 

When the evaluation of the operation along the 

optimisation horizon is completed, the NPV is 
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 computed, which enables to evaluate the candidates' 

performance. At this point, the global optimiser 

checks whether the near-maximum global has been 

obtained or not through its stopping criteria, which 

deal with the result tolerance, number of iterations 

without improvement, time constraints, etc. If a near-

maximum global has been reached, the algorithm 

finalizes its operation. Otherwise, new potential 

solutions are created and the process is repeated. 

Robustness and near-maximum global are achieved 

through the proposed methodology, as it 

contemplates the main parameters that influence the 

design problem and consider their variation along the 

lifetime of the energy infrastructure. Moreover, the 

two different stages allow for a proper selection of 

equipment considering their optimal scheduling and 

operation, reaching the degree of precision suitable 

for the problem under study. 

4. Case study 

In this section, a case study based on a real 

manufacturing plant of the automotive sector, located 

in Catalonia, at the south-west of Europe, is exposed. 

Most industrial SMEs, have higher thermal 

consumption than electrical consumption [78] and 

are characterised by a diversity of processes and 

equipment that enable the incorporation of energy 

assets to interconnect the different sides of the 

industry, increasing the robustness of the energy 

system [79]. Especially, in the automotive industry, 

electricity consumption accounts for approximately 

22% of total primary energy used [80], and the 

determinant resource depends highly on the type of 

process performed, being natural gas the primary 

energy source for the industrial entity considered in 

this article. 

The demand that industrial plants fulfil is directly 

related with the production system adopted by the 

enterprise, existing a direct relationship between 

power consumption and productivity [80]. Generally, 

the load pattern in the industrial sector drastically 

differs from that of the tertiary sector, being the latter 

susceptible to working hours and human behaviour 

while the former presents a more constant evolution 

[18]. This is especially true in the case of the 

automotive sector, whose production is based on a 

just-in-time system without stocks where the 

manufacturing load is maintained constant to supply 

materials and components to other enterprises 

contributing in vehicle manufacturing [81]. 

The plant studied in this paper is aligned with the 

general trends of industrial automotive entities, and 

has a strong thermal side, being its annual thermal 

and electrical consumptions of 974,250 MWh and 

485,580 MWh, respectively. The energy equipment 

already owned by the industry is a boiler, which is 

used to supply power to thermal demand, while 

electric demand is directly fed from the utility grid. 

The maximum investment that the SME can perform 

is of 800.000€ and the maximum area to install the 

RES, in this case a PV system, is of 6.000 m2. 

To evaluate the optimal energy equipment to install 

for prosumer purposes, four representative weeks 

have been extracted for each of the differentiated 

seasons along the year, which can be seen in Figure 3. 

It is possible to appreciate that the thermal demand 

rises in extreme seasons, especially in winter, where 

it is used for space heating. In this season, the demand 

is higher during the first day of the week as the 

heating is off during the weekend, while for the rest of 

days the thermal inertia persists and the heating 

demand is lower. In contrast, the electrical demand 

does not present the same strong variations as the 

thermal one along the seasons. The electrical side of 

the factory also provides power to cooling demand, as 

it can be observed in the demand profile for the 

summer season, although the most driving factor for 

electric demand is the production of the plant, which 

is kept approximately constant during working days. 

Table 2: Costs and parameters considered in the evaluated 
scenarios. 

Cost Scenario 
1 

Scenario 
2 

Scenario 
3 

𝐶𝑃𝑉 (€/kWh) 0,07 0,0425 0,02 
𝐶0,𝑃𝑉 (€/kW) 950 582 350 

𝐶𝑂&𝑀,𝑃𝑉  (€/kW-y) 9,5 6,65 4,75 

𝐶𝐸𝑆 (€/kWh) 0,12 0,045 0,02 
𝐶0,𝐸𝑆(€/kWh) 430 342 152 

𝐶𝑂&𝑀,𝐸𝑆 (€/kW-y) 9,9 7,65 7,65 

𝐶𝐶𝐻𝑃 (€/kWeh) 0,042 0,042 0,066 
𝐶0,𝐶𝐻𝑃(€/kWe) 3.400 3.400 3.400 

𝐶𝑂&𝑀,𝐶𝐻𝑃(€/kWe-

y) 

35 35 35 

𝐶𝐻𝑃(€/kWh) 0,076 0,076 0,076€ 
𝐶0,𝐻𝑃 (€/kW) 700 700 700 

𝐶𝑂&𝑀,𝐻𝑃(€/kW-y) 7 7 7 

𝐶𝑇𝑆 (€/kWh) 0,0485 0,0485 0,027 
𝐶0,𝑇𝑆(€/kWh) 5 5 0,1 

𝐶𝑂&𝑀,𝑇𝑆(€/kW-y) 11 11 11 

Emission cost the 
starting year 
(€/tCO2) 

15 50 70 

Tax on electricity 
(% of total cost) 

25% 20% 15% 

Electricity sell 
price 

90% 
market 

cost 

90% 
market 

cost 

100% 
market 

cost 
Electricity price 
increase 

30% 30% 30% 

Gas cost increase 15% 25% 30% 
Gas cost tax (% of 
total cost) 

30% 35% 40% 
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The possibility to invest in energy equipment in the 

close-future is assessed, having 2020 as starting year 

for the optimisation. This situation is reflected in 

scenario 1. According to what has been shown in 

section 2, the costs of energy and equipment are likely 

to change significantly in upcoming years, increasing 

the profit margin for consumers who are willing to 

adopt a more active behaviour. To reflect the impact 

of these changes, the investment in energy equipment 

in 2035, once the lifetime of the previously installed 

equipment is over, is also studied. As the prices are 

uncertain, two possibilities are considered. The first 

one, represented in scenario 2, supposes a moderate 

evolution of prices of the energy and equipment costs 

that does not benefit the use of RES to trade energy. 

The other possibility, represented in scenario 3, 

shows a favourable situation, with costs that facilitate 

the inclusion of RES, ESS and the electrification of the 

system. An overview of the costs and parameters for 

these three scenarios is available in Table 2. 

5. Results and discussion 

In this section, the results for the use case are 

presented. First of all, individual outcomes from the 

optimisation of the three scenarios are shown and 

then a comparison between them is exposed and 

discussed. All the figures in this section show the 

behaviour of the plant for a characteristic summer 

week.  

5.1. Scenario 1 

The first scenario is the one corresponding to an 

investment performed in 2020, with current energy 

costs, taxes and energy equipment parameters. The 

optimal energy equipment resultant from the 

optimisation procedure is shown in Table 3. The 

selection of this infrastructure supposes an initial 

investment of 640.650 € and an NPV of 6.111.000€. 

Table 3: Energy equipment sizes obtained as results for 
Scenario 1 optimisation: 2020 energy framework. 

Equipment Size 

PV 6000m2 
Thermal storage 0kWh 
Electric storage 0kWh 
Cogeneration 156kWe 
Heat pump 0kWe 

The behaviour of the plant, acting as a prosumer with 

the energy infrastructure of Table 3 is presented in 

Figure 4 and Figure 5. Due to the high-peak-power 

 

Figure 3: Electrical and thermal demands of the case study plant for the first evaluated year. 
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 provided by the boiler, and for representation 

purposes, the output from this equipment 

corresponds to the right Y-axis. For this scenario, the 

optimisation procedure concludes that the PV system 

is installed in all the available area and a cogeneration 

system is employed to fulfil thermal demand and also 

to supply power to the electrical load. The boiler, 

which was already present in the factory as the main 

thermal energy provider, is now used as a back-up 

system to provide power during demand peaks. 

Regarding the electricity exchange with the utility 

grid, energy is being bought at intervals of relatively 

low cost and the system tries to sell the PV surplus at 

times of high cost, using this energy together with the 

one coming from the cogeneration to fulfil the 

internal electrical demand. 

 

Figure 4: Energy equipment behaviour for Scenario 1: 2020 
energy framework. 

 

Figure 5: Electricity exchange with the utility grid for 
Scenario 1: 2020 energy framework. 

5.2. Scenario 2 

With the insight of the evolution of the forecasted 

energy and equipment prices exposed in section 2, in 

this scenario, the investment to be performed in 2035 

is assessed considering a moderate evolution of 

prices of the energy and costs of the GHG emissions. 

The optimal energy equipment is shown in Table 4. 

The selection of this infrastructure supposes an initial 

investment of 577.640 € and an NPV of 9.126.800€. 

Table 4: Energy equipment sizes obtained as results for 
Scenario 2 optimisation: moderate evolution 2035 energy 
framework. 

Equipment Size 

PV 6000m2 
Thermal storage 16kWh 
Electric storage 0kWh 
Cogeneration 148kWe 
Heat pump 7kWe 

The RES-PV is also sized to cover all the available area 

for its installation. However, due to the increase in the 

cost of carbon emissions and also the increment of the 

revenue for the exchange of energy with the electrical 

utility grid, in this scenario, the resulting optimal 

plant has a cogeneration system smaller than in the 

previous one, while including thermal storage and 

heat pump. The behaviour of the equipment and the 

exchange of energy can be seen in Figure 6 and Figure 

7. The cogeneration system follows the same working 

principles as in the case of Scenario 1, providing 

power to thermal demand and also covering part of 

the electrical demand, especially at times where 

electricity is not being purchased from the utility grid 

due to high energy prices. The increase in the cost of 

energy in the market, both electrical and gas, justify 

the installation of the heat pump and the thermal 

storage system. The heat pump is used most of the 

time at its nominal power to supply energy to the 

thermal demand or the thermal storage, while the 

energy storage is used at strategic times permitting 

more flexibility in the use of the cogeneration system; 

to be able to respond more favourably in front of 

variations in electricity prices. In regards to the 

energy exchange with the utility grid, the bid amounts 

have been significantly increased compared to the 

previous scenario due to the rise of prices in the 

energy market. However, as the years go by, less 

energy is being traded with the utility grid due to the 

degradation of the PV system. 

 

Figure 6: Energy equipment behaviour for Scenario 2: 
moderate evolution 2035 energy framework. 



 

 

Compendium of publications 

 

85 

 

Figure 7: Electricity exchange with the utility grid for 
Scenario 2: moderate evolution 2035 energy framework. 

5.3. Scenario 3 

This scenario also considers the investment to take 

place in 2035, although in this case a favourable costs 

evolution for the electrification of the system and the 

reduction of emissions is considered. The optimal 

energy equipment is shown in Table 5. The initial 

investment and the NPV for this case are of 494.240€ 

and 7.494.000€. 

Table 5: Energy equipment sizes obtained as results for 
Scenario 3 optimisation: favourable evolution 2035 energy 
framework. 

Equipment Size 

PV 6000m2 
Thermal storage 45kWh 
Electric storage 0kWh 
Cogeneration 132kWe 
Heat pump 6kWe 

On the one hand, the increase in the cost of emissions, 

gas and of cogeneration systems has caused the 

cogeneration equipment to be smaller. For this 

reason, and to maintain the possibility to supply 

power to thermal and electrical demand through this 

system and increase the cogeneration flexibility, the 

size of the thermal storage is significantly increased. 

On the other hand, as the electrical energy has a cost 

much higher than gas, for this demand profile the size 

of the heat pump remains the same. The behaviour of 

the equipment and the energy exchange with the 

utility grid can be seen in Figure 8 and Figure 9, 

respectively. Despite the lower investment in energy 

equipment, the energy exchange follows the same 

pattern and the performed bids are comparable to 

those of scenario 2 due to the inclusion of higher 

storage capacity. 

 

Figure 8: Energy equipment behaviour for Scenario 3: 
favourable evolution 2035 energy framework. 

 

Figure 9: Electricity exchange with the utility grid for 
Scenario 3: favourable evolution 2035 energy framework. 

5.4. Comparison and discussion 

The results exposed in the previous section show the 

economic and technical viability of installing energy 

equipment to perform prosumer smart energy 

management considering market status in industrial 

SMEs. It is also possible to visualize that, in all the 

cases, the week-time is suitable as operation 

optimisation horizon to capture the dynamics of the 

internal demand and the external market. For 

scenario 1, which considers current energy costs and 

legislation, the results indicate the suitability of 

employing PV and cogeneration systems. The PV is 

used to generate electricity and sell it when possible 

if the electrical demand can be fulfilled by other 

means. The cogeneration is employed to optimise the 

overall efficiency of the energy infrastructure of the 

factory, coupling thermal and electrical sides and 

profiting from the characteristics of the demand 

profile present in this specific case study. Even though 

a boiler system is already installed in the factory and 

can be used to fulfil the thermal demand, it results 

advantageous to implement other energy equipment 

to improve the plant performance. This solution is 

aligned with current inversion trends in the industry, 
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 which is looking forward the installation of RES, 

especially PV, for covering daily baseload; and 

cogeneration systems, which are being offered by the 

market in various typologies and sizes to fit different 

consumptions patterns. 

With the forecasted evolution of energy prices and 

cost of emissions and equipment, either moderate or 

favourable to electrification as described in scenarios 

2 and 3, new energy equipment is likely to be included 

in the energy infrastructure of industrial SMEs. The 

implementation of these new equipment is already 

being studied nowadays, principally for energy-

intensive industries, and it will also be favourable for 

SMEs to increase their flexibility in front of costs 

variations from external markets. It is worth 

mentioning that despite the increase in the cost of 

emissions, the use of gas for the cogeneration system 

in processes with high thermal load is a determinant 

factor. As this is not likely to change in upcoming 

years, in front of a possible increase in the cost of 

carbon emissions from the administration to meet the 

Paris Agreement, the use of natural gas mixtures will 

be key for the transition to the new energy paradigm. 

Economically, the expense to be performed for the 

optimisation of the energy infrastructure of the 

factory does not reach the maximum threshold 

specified as a constraint. Figure 10 presents the NPV 

of the investment along the lifetime of the energy 

equipment for the three studied scenarios. The first 

scenario, with current energy parameters, presents 

the higher investment and payback time, resulting in 

a lower final benefit. Scenarios 2 and 3 improve the 

performance of scenario 1. However, for the specific 

case study considered in which the thermal side is 

dominant, the costs that favour the electrification of 

the system applied in scenario 3 reduce the economic 

benefits of the industry for the inclusion of new 

energy equipment. Despite this fact, the investment in 

systems for the energy optimisation of the industrial 

plant results advantageous even for the first scenario. 

Indeed, the earnings surpass those of several 

available financial products. 

 

Figure 10: NPV of the three scenarios studied. 

During the elaboration of this study, it was possible to 

appreciate that the results exposed and which are 

discussed here are highly dependent on the demand 

type of the industry and the constraints that apply to 

specific cases. To visualize it, the optimisation of the 

energy equipment for an SME with plastic processing 

facilities, which has lower demand load and consume 

mainly electrical energy is here considered. To 

perform the study, the electrical demand is half of the 

previous one considered and the thermal demand is 

lowered to minimums. For this case, the simulation 

results are exposed in Table 6: 

Table 6: Energy equipment sizes obtained as results for the 
optimisation of an electricity-based SME. 

Equipment Size 

PV 6000m2 
Thermal storage 0kWh 
Electric storage 0kWh 
Cogeneration 1kWe 
Heat pump 0kWe 

For this new scenario, the initial investment is 

41.364€ and the NPV 415.360€, and, equally to the 

cases that were already studied, the RES system 

covers all the available area. However, the heat pump 

and the thermal storage system are kept out of the 

infrastructure. The equipment behaviour and the 

energy exchange with the utility grid can be seen in 

Figure 11 and Figure 12. In this case, the right Y-axis 

corresponds to the energy generated by the PV 

system which is in charge of meeting electrical 

demand while the boiler and the cogeneration are in 

charge of fulfilling the thermal demand. It is worth 

mentioning that despite storage systems do not 

appear as part of the solution, this does not 

necessarily mean that their incorporation is not 

beneficial. In this paper, following SMEs investment 

characteristics and expectations, the NPV of the 

energy infrastructure is optimised to obtain the best 

economic performance. However, if other parameters 

are included in the objective function such as energy 

autonomy from the utility grid, the storage system 
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could appear as part of the solution to gain this 

independence while creating a profit, although of 

course this would be lower than in the case studied in 

this paper. 

 

Figure 11: Energy equipment behaviour for an electricity-
based SME. 

 

Figure 12: Electricity exchange with the utility grid for an 
electricity-based SME. 

Despite the differences of this solution with the ones 

obtained in the case study, the inclusion of energy 

equipment to increase the flexibility of the system in 

front of the electrical market is always advantageous. 

This flexibility is employed to shift energy purchase 

from high-cost time frames to low-cost time frames 

and to sell energy at high-cost time frames. As the 

energy cost in the market is directly related with the 

emissions associated with its generation, the 

prosumer behaviour of industrial SMEs does not only 

create an economic benefit for them but also an 

environmental benefit for the energy market. 

6. Conclusions 

This paper has assessed the benefits of converting 

industrial small and medium enterprises (SME) into 

active stakeholders in the energy market through the 

optimal sizing and operation of their energy 

equipment. The current energy framework and 

background have been presented, together with the 

projected evolution trends for the coming years, with 

the aim of helping consumers to switch from a passive 

to an active role as prosumers. To verify the 

suitability of industrial SMEs to be part of this change, 

a characteristic SME energy infrastructure has been 

modelled mathematically and a sizing and operation 

optimisation has been performed. The optimisation 

problem has been solved through a two-stage global 

approach employing the Direct Search and Linear 

Programming algorithms, which is an adapted 

strategy given the characteristics of the studied 

problem. The energy equipment has been optimised 

by analysing its operation in weekly cycles along its 

whole lifetime, making it possible to consider the 

characteristic patterns of production energy load and 

energy markets as well as the time evolution of costs. 

Using this methodology, it is possible to obtain a 

realistic net present value of the investment as well as 

the expected payback. A case study has been 

developed to evaluate the benefits of integrating 

renewable energy sources, energy storage systems 

and other equipment that link the electrical and the 

thermal sides of industrial energy infrastructure. 

Although the specific technological solutions are 

highly dependent on the plant demand type and the 

evolution of external parameters, an upgrade of 

energy infrastructure improves the energy 

performance of the factory and permits trading with 

the external utility grid as a prosumer while boosting 

the profitability of the investment and contributing to 

the decarbonisation of the energy sector. The 

proposed framework for energy investment decision-

making together with the obtained results are highly 

useful to the industrial sector and specifically to 

SMEs, enabling them to better analyse the energy and 

economic perspectives of the investment to perform. 

According to the analysis, industrial SMEs are likely to 

become important actors in the energy market, 

turning their energy systems into economic assets 

and integrating smart energy management into their 

business models while assuring the integration of 

renewable sources into their energy models. 
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5.4. Uncertainty analysis for industries investing in energy 

equipment and renewable energy sources 

Reference: E. M. Urbano, A. D. Gonzalez-Abreu, K. Kampouropoulos, and 
L. Romeral, “Uncertainty analysis for industries investing in energy 
equipment and renewable energy sources,” Renew. Energy Power Qual. J., vol. 
19, no. 19, pp. 126–130, 2021. Available on: https://www.icrepq.com/
icrepq21/234-21-urbano.pdf

Publication framework: 

This article analyses the uncertainty in the performance of the investment done by 

industrial entities to upgrade their energy infrastructure. It exposes 

the deterministic two-stage optimization and combines it with the 

characterization of inputs’ uncertainties to carry out a UA. 

Main contributions: 

• Design and operation optimization of the energy equipment to be installed in

an industrial enterprise with prosumer behaviour considering deterministic
parameters along the expected lifetime of the equipment.

• Uncertainty characterization of the relevant input parameters.

• UA of the energy investment NPV to quantify the risk related to the

investment decision.

Key words: 

Industry, Uncertainty Analysis, Renewable Energy, Prosumer, Net Present Value. 
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Abstract. This paper studies the optimal design and 

operation of new energy equipment including renewable energy 

sources for prosumer industries. In order to augment the interest 

of industries in performing energy actions, the economic 

parameters of the investment are analysed and the risk related 

to it considering the uncertainty in energy markets is evaluated. 

A two-stage optimization approach is proposed considering the 

whole lifetime of the energy equipment and an uncertainty 

analysis performed through the evaluation of the deterministic 

model under Latin Hypercube Samples of uncertain parameters. 

A case study based on a real industry is presented, whose results 

expose the robustness of the optimization methodology and the 

acceptable risk of investing in renewable energy sources and 

energy equipment for prosumer purposes. 

 

Keywords. Industry, Uncertainty Analysis, 

Renewable Energy, Prosumer, Net Present Value. 
 

1. Introduction 

 
The 4th industrial revolution that is taking place is 

positioning this sector as key for the achievement of a 

sustainable energy market through the adoption of smart 

energy management strategies. However, the energy use 

in industrial enterprises is under-researched [1], and the 

existing studies focus primarily on energy efficiency 

measures [2], not studying the possibility to adopt a 

prosumer behaviour. In order to support industrial 

entities in the inclusion of renewable energy sources to 

behave as prosumers, the required energy investment and 

equipment operation problem for them should be 

addressed. The energy equipment design and operation 

optimization problems analysed in the literature until 

now focus on microgrids, buildings or energy hubs to 

supply energy to the tertiary demand. Those studies do 

not reflect the investment reality in the industrial sector 

due to two main reasons: uncertainty is not considered or 

time evolution is omitted. 

 

Most of the research done up to date do not consider the 

uncertainty in the input parameters [3]. This approach 

leads to solutions that, translated into the real world with 

uncertain and non-deterministic parameters, may present 

an outcome different from the one obtained theoretically. 

This output uncertainty represents a risk for investors 

which has to be analysed. There is, in fact, a stream of 

research that evaluates the uncertainty in energy-related 

problems. In [4], the effect of the uncertainty in inputs 

parameter on the cost of energy is analysed for a hybrid 

renewable energy system. Similarly, in [5], the system 

behaviour uncertainty is studied, and in [6], the impact in 

the design parameters on the energy performance of a 

building is analysed. However, none of these works 

considers the evolution of parameters over time, and they 

do not evaluate the economic suitability of the energy 

infrastructures designed. In order to enhance industrial 

actors to take energy investment decisions, it is essential 

to study the whole expected lifetime of the energy 

infrastructure and analyse the uncertainty in its economic 

performance. 

 

Based on the above explanation, in this paper, the 

uncertainty is studied for an industrial enterprise aiming 

to invest in energy equipment including renewable 

energy sources to act as a prosumer. To do so, the 

following analysis, as exposed in Fig. 1, is performed: 
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1) Design and operation optimization of the 

energy equipment to be installed in an 

industrial enterprise with prosumer behaviour 

considering deterministic parameters along the 

expected lifetime of the equipment. 

2) Uncertainty characterization of the relevant 

input parameters. 

3) Uncertainty Analysis (UA) of the energy 

investment Net Present Value (NPV) to 

quantify the risk related to the investment 

decision. 

 

This paper is structured as follows. Firstly, the 

methodology applied to perform the optimization of the 

investment is presented in section 2 together with the 

uncertain inputs’ characterization and the UA strategy. 

Then, in section 3, this methodology is applied to a case 

study reflecting the real industrial situation. The results 

of this case study and their discussion are exposed in 

section 4 and, lastly, the conclusions of the study are 

presented in section 5. 

 

2. Methodology 

 
In this section, the methodology proposed to properly 

optimize the energy equipment and its operation 

considering the whole lifetime framework and assess the 

relevant uncertainties linked to its performance is 

exposed. The general workflow for the approach 

presented is shown in Fig. 1. First of all, the optimization 

of the energy infrastructure is performed considering the 

input parameters as deterministic along the expected 

lifetime of the equipment, which is taken to be 15 years. 

Then, the uncertain inputs are identified and their 

probability distributions characterized to be able to 

evaluate their influence on the output. Finally, the 

uncertainty in the economic performance of the decision 

is studied through a UA. 

 

A. Optimization of the energy equipment 

 

Considering industrial enterprises interest, the 

optimization of the energy equipment aims to maximize 

the final economic value of the energy infrastructure to 

install. In order to do so, a two-stage optimization 

approach is presented to maximize the NPV of the 

investment. The two-stage optimization strategy enables 

to obtain the design parameters in the first stage, formed 

by the equipment to install and their sizes while 

considering their operation in the second-stage. The 

flowchart of the approach can be seen in Fig. 2. 

 

First of all, information is gathered and the data required 

to perform the optimization along the lifetime of the 

equipment is computed. To capture the yearly behaviour 

of the plant along its lifetime with a feasible 

computational expense, a set of typical days are 

employed. According to [7,8], these days have to be 

distributed per season to correctly represent the different 

types of demands that occur along the year, being suitable 

the use of one day per season or one day per month. 

However, the industrial sector and the electricity market 

also present significative energy differences between 

week-days and weekend-days, requiring their 

consideration for the selection of typical days. Thus, for 

the problem under study, each of the years is analysed 

through 12 characteristic days, three per season, being 

two of them week-days and the other a weekend-day. 

 

In order to obtain the NPV of the investment, it is 

required to obtain its benefits compared to a baseline 

scenario. For this reason, a linear optimization of the 

baseline of the enterprise, with the current existent 

energy infrastructure, is performed. Then, the first stage 

of the optimization is initialized. For the problem under 

study here, the Direct Search (DS) optimizer is employed 

due to its capability to globally search the optimal value 

in an efficient manner for a limited set of variables with 

clearly defined boundaries. DS selects a set of candidates, 

which are evaluated in the second stage and their NPV 

computed. In the second stage, the operation of the 

energy infrastructure selected as candidates is evaluated 

for the whole lifetime through a Linear Programming 

(LP) approach, assuring the achievement of minimal 

costs. The restrictions regarding emissions and payback 

are verified and, if accomplished, the NPV of the 

investment is computed comparing the operation of the 

upgraded plant with that of the baseline. This procedure 

is repeated until the first-stage optimizer reaches an 

optimal value. 

Uncertainty Characterization

Study of the uncertainty linked to energy market cost 

trends and generation of probability density functions

2

Optimization
Optimal energy equipment for a prosumer behaviour 

according to time evolution of markets and costs

Optimal investment Emissions restrictions

Return on 

Investment
Net Present Value

1

Uncertainty Analysis (UA)
Quantification of the investment risk

Input 

uncertainty 

PDF sampling

Deterministi

c model run

Output 

uncertainty 

distribution

3

 

Fig. 1: Proposed methodology to assess the uncertainty in energy investment decisions 
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Fig. 2: Flowchart for the energy design optimization 

 

B. Uncertainty characterization 

 

The energy infrastructure of the industry as a prosumer 

has a performance linked to the costs of the energy 

carriers. As the energy transition will affect the energy 

markets and the cost of energy is forecasted to grow 

continuously in upcoming years, although at different 

rates depending on the forecasting approach adopted [9], 

it is essential to study how this evolution and its 

uncertainty affect the result of the investment performed 

by the industry. 

These uncertain parameters are considered by assigning 

a Probability Distribution Function (PDF) to each of 

them, which enables the application of methods that 

consider the probability of the occurrence of scenarios 

and provides robust results [10]. According to [9,11,12], 

the cost of electricity is forecasted to increase between 

25% and 110% by 2035; while the cost of gas is 

forecasted to increase between 11% and 33% [9,13]. 

These yearly percentage values are transformed into PDF 

fitting possible distribution functions and selecting the 

most suitable ones as evaluated by the likelihood 

function. The resultant distributions functions are 

exposed in Table I. 

 
Table I: PDF of the studied uncertain inputs 

 
Uncertain parameter PDF 

Electricity price yearly 

percentage increase 

Nakagami (µ=0.885; 

ω=10.14) 

Gas price yearly percentage 

increase 

Weibull  

(λ=1.44; k=3,11) 

 

C. Uncertainty Analysis 

 

Once the optimal design and operation of the plant is 

obtained and the uncertainty in the inputs is 

characterized, it is possible to perform a UA to evaluate 

the uncertainty in the output of the system which, in this 

case, is the NPV of the investment. 

 

A UA method that considers the PDFs of inputs to obtain 

the distribution in the output through sampling and 

repeatedly evaluating the deterministic model is a 

suitable strategy that provides robust results [14]. In this 

case, and given the complexity of the system, a quasi-

random sampling strategy is selected. This type of 

strategy improves the performance of commonly used 

techniques such as Monte Carlo [15], which requires a 

high computational effort. In this paper, the Latin 

Hypercube Sampling (LHS) technique is used [16]. LHS 

is a probabilistic technique that obtains samples by 

dividing the PDF into N intervals with equal probability 

and choosing randomly one sample per interval. 

Combining randomly the different samples, N scenarios 

are generated which are used to run N times the 

deterministic model, enabling to capture the uncertainty 

in the output. 

 

3. Case study 

 
A case study is developed based on a real manufacturing 

industrial plant with total electrical and thermal 

consumptions of 679,240 MWh and 1,127,600 MWh, 

respectively. The initial infrastructure of the plant 

consists of a boiler to transform natural gas into thermal 

energy, while the electrical demand is directly met with 

energy purchased at the utility grid. The enterprise is 

considering the possibility to install a PV system as well 

as cogeneration and energy storages. To account for the 

deterioration of the PV system along its expected 

lifetime, an efficiency loss of 0.8% per year has been 

considered [17]. The capital cost and the levelized cost of 

energy (LCOE) including operation and maintenance 

costs employed in the optimization process for each of 

the evaluated technologies can be seen in Table II. 

 
Table II: Cost of energy equipment 

 
Equipment Capital 

cost 

LCOE 

PV system 950 €/kW 0.07 €/kWh 

CHP 3,400 €/kWe 0.042 

€/kWh 

Electrochemical energy 

storage 

430 €/kWh 0.06 €/kWh 

 

The constraints considered by the studied enterprise 

regarding the investment and its performance are 

exposed in Table III. 

 

 

 

 
Table III: Applicable constraints for the case study 

 



 
96 Compendium of publications 

 Constraint Value for the case 

study 

Maximum investment 1,000,000€ 

Maximum area for the installation 

of PV 

12,000m2 

 

 

4. Results and discussion 

 
A. Deterministic optimization 

 

The optimal energy infrastructure to install is exposed in 

Table IV. The PV system is chosen to cover all the 

available space and the cogeneration is sized to optimally 

fulfil demand and interact with the utility grid obtaining 

the maximum profit. It can be seen that although there 

was the possibility to include energy storage, this has not 

been selected due to its high cost compared with the 

possible revenue obtained by trading its energy with the 

utility grid. The decision to upgrade the energy 

infrastructure with this equipment supposes an 

investment of 913,630€ with a payback period of 5 years 

and an NPV at the end of the lifetime of the equipment of 

6,788,400 €. 

 
Table IV: Optimal energy equipment to install in the industrial 

case study 

 
Energy equipment selected Size 

PA Area 12,000m2 

Cogeneration 200We 

 

The prosumer behaviour of the plant for a typical autumn 

week-day and a typical autumn weekend-day can be seen 

in Fig. 3 and Fig. 4, where the energy exchange with the 

utility grid is exposed in front of the energy cost at the 

wholesale market and the internal electrical demand. It is 

possible to see that, due to the existence of a renewable 

energy source, surplus energy can be injected into the 

utility grid when the cost is high while still fulfilling 

internal demand. Also, and due to the difference in costs 

between the electrical and gas energy carriers, the 

inclusion of a cogeneration system is favourable to 

support fulfilling electrical demand and thus not 

purchasing it directly from the electrical grid at high 

costs. 

 
Fig. 3: Prosumer energy exchange for an autumn weekday 

 

 
Fig. 4: Prosumer energy exchange for an autumn weekend 

 

B. Uncertainty Analysis 

 

Once the deterministic behaviour is obtained, in this 

section the results for the UA are exposed to evaluate the 

risk of performing the energy investment and the optimal 

operation selected in the previous stage. To perform the 

UA, the PDFs of the electricity and gas costs are sampled 

for each of the years to obtain realistic time evolution 

scenarios. A total number of 1000 is generated, which is 

a suitable value to obtain an accurate and representative 

result [6]. These samples are then randomly combined 

between them, creating the scenarios analysed, which are 

employed to repeatedly run the deterministic plant 

model, obtaining the final NPV distribution, which is 

exposed in Fig. 5. 

 

 
Fig. 5: Probability distribution of the NPV according to inputs' 

uncertainties 

 

In this figure, it is possible to appreciate the repeatability 

of the obtained NPV as well as the PDF that best fits the 

data, which in this case is an Inverse Gaussian with 

parameters (µ=6.792; λ=16,324). The standard deviation 

of the NPV is 138,500 €, which means that it is probable 

to have a final NPV 138,500 € lower or higher than the 

obtained in a deterministic manner due to the 

uncertainties in the energy markets. Although the 

standard deviation is by itself a considerable amount, the 

final deterministic NPV is 6,788,400 €, meaning that this 

value can vary due to the uncertainty present in the 

energy markets a 2%. 
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These results clarify the impact of energy market 

uncertainties in energy investment. With the obtained 

values in this case study, it is shown that despite the 

expected variations in the cost of energy carriers, the 

economic value for energy infrastructures adopting a 

prosumer behaviour is robust and the risk can be 

acceptable by enterprises. 

 

5. Conclusions 

 
The economic benefits of including renewable energy 

sources and new transformer equipment to adopt 

prosumer behaviour have been analysed in this paper. A 

workflow to study the energy investment characteristics 

and their uncertainties has been presented, including the 

optimal design and operation, the characterization of 

uncertainties of energy carrier prices, and the Uncertainty 

Analysis, performed through repeatedly evaluating the 

model under the uncertain scenarios obtained through 

Latin Hypercube Sampling. This methodology has been 

applied to a case study that represents a typical industry 

with electrical and thermal demand and the capability to 

install a PV system and transformer and storage 

equipment. For this case study, it is optimal to install the 

PV system in all the available space and incorporate a 

cogeneration system to link the electrical and thermal 

sides of the industry. The Net Present Value (NPV) of the 

investment multiplies by more than 7 the initial 

investment required and the payback period is of 5 years, 

making energy infrastructure upgrading an interesting 

option for industrial enterprises. This energy investment 

decision has been analysed under the uncertainty present 

in the energy markets, represented by the increase in the 

cost of energy carriers. With current uncertain values, the 

expectable NPV of the investment varies 2 % concerning 

its deterministic value, showing the robustness of the 

optimization procedure. These results are of high utility 

for the industrial sector, enhancing them to perform 

energy actions and providing a framework for industrial 

enterprises to evaluate their energy investment decisions. 
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5.5. Risk assessment of energy investment in the industrial 

framework – Uncertainty and Sensitivity analysis for 

energy design and operation optimisation 

Reference: E. M. Urbano, V. Martinez-Viol, K. Kampouropoulos, and L. Romeral, 

“Risk assessment of energy investment in the industrial framework – Uncertainty 

and Sensitivity analysis for energy design and operation optimisation,” Energy, vol. 

239, p. 121943, 2021. © 2021 Elsevier Ltd. All rights reserved. Available on: 
https://doi.org/10.1016/j.energy.2021.121943

Publication framework: 

This article exposes the complete risk assessment methodology to evaluate the risk 

in energy investments and its sources. Uncertainty characterization is carried out, 

evaluating the uncertainty in the current values of parameters as well as 

their evolution. UA is done employing the LHS method on inputs’ PDF and a two-

stage SA based on the Morris and Sobol methods is applied to identify the most 

influencing inputs. 

Main contributions: 

• Optimization of energy investments considering equipment operation over

its lifetime which evaluates the production and energy market weekly cost

cycles, hourly operation, and economic, environmental and social
implications.

• Continuous probabilistic uncertainty characterization of optimization’s

inputs over the expected lifetime of energy equipment.

• Energy system investment uncertainty quantification for risk

acknowledgement of the upgraded infrastructure over time.

• Identification of the main inputs that influence the output uncertainty in the

energy investment decisions through a complete sensitivity analysis.

Key words: 

Energy investment, Optimal design, Prosumer, Uncertainty Analysis, Sensitivity 

Analysis. 
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Abstract 

The industry is a crucial actor towards the energy transition with the possibility to adopt new energy strategies 

including a prosumer model. However, industries are struggling to adopt smart energy approaches, and initiatives 

supporting them should be improved. To enhance industrial participation in energy transition, it is required to 

assess the optimal energy infrastructure considering its economic advantages and associated risks. Up to date, the 

literature dealing with energy sizing optimisation does not consider the time evolution of parameters or the 

uncertainty linked to the energy framework. The objective of this paper is to fill this literature gap by proposing a 

novel complete methodology to optimise the design and operation of the energy infrastructure for its lifetime 

while assessing its uncertainty and risk through an uncertainty analysis, as well as to identify the inputs causing it 

by a two-stage sensitivity analysis. This framework is applied to a case study based on a real industrial 

manufacturing SME. The results indicate that the proposed methodology produces robust results in front of the 

present uncertainties, being energy price the one that causes most of it and thus the one more attention should be 

paid to when evaluating energy investment decisions. 

Keywords 

Energy investment, Optimal design, Prosumer, Uncertainty Analysis, Sensitivity Analysis 

1. Introduction 

1.1. Motivation 

The industry is gaining an increasingly important role 

in the energy sector due to its possibility to adopt 

smart energy management strategies that can 

improve their productivity while creating flexibility 

in the energy market. The energy consumption, 

energy infrastructure, and the current Industry 4.0 

revolution opportunities [1] place industrial entities 

as new actors in the energy market fundamental for 

market decarbonization [2]. Among industrial 

enterprises, SMEs represent more than 13% of total 

global energy consumption and account for more 

than half of the energy used in the industrial and 

commercial sectors, although they are under-

researched in terms of their energy use [3]. Some 

scientific publications deal with energy efficiency 

improvements in the SME sector such as [4], where a 

study is done on energy efficiency drivers for 

industrial SMEs, or [5], where an information 

platform is presented to promote the usage of energy 

efficiency technologies. However, these studies deal 

only with efficiency improvement and, following the 

energy transition changes. Therefore, it is required to 

adjust the latest trends and practices to SMEs 

framework [6], being the adoption of a prosumer 

model a key activity to incorporate in the sector. 

SMEs could face the problem of having to invest in 

energy infrastructure due to equipment obsolesce or 

the existence of governmental, social and market 

pressures. For an industrial entity, this investment 

gives added value to the enterprises, supporting the 

achievement of their primary goal, which is its 

productivity. Industrial SMEs tend to select 
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investments with short payback periods and 

favourable economic, environmental and social 

parameters and; once the investment has been made, 

the infrastructure is maintained in operation until 

another relevant event occurs that requires a new 

investment, thus exploiting the equipment for its 

whole lifetime [7]. When upgrading the energy 

infrastructure, it may be beneficial to evaluate the 

possibility of adopting smart energy management 

strategies such as a prosumer model. However, the 

intrinsic characteristics of industrial SMEs are not 

compatible with standard prosumer approaches, and 

specific investment selection strategies are required 

for them. Moreover, as exposed in the analysis 

performed in [8] considering investment trends in 

firms during the last years, entities tend to intuitively 

invest less if the uncertainty in the energy market 

increases. Therefore, as important expenses are to be 

performed, it is crucial to optimise not only the plant 

design and operation for the expected lifetime of the 

equipment but also to evaluate the risk of these 

actions according to the uncertain ranges and 

probabilities of the inputs. For this reason, the 

renovation of energy equipment has to consider the 

Nomenclature 
 
Abbreviation Full description 

General Abbreviations 

CHP Combined Heat and Power 

EE Elementary Effect 

ESS Energy Storage System 

HP Heat Pump 

JC Job Creation 

LHS Latin Hypercube Sampling 

NPV Net Present Value 

O&M Operation and Maintenance 

OAT One-At-a-Time 

PDF Probability Density Functions 

PPA Power Purchase Agreement 

PV Photovoltaic 

RES Renewable Energy Source 

ROI Return On Investment 

RTP Real-Time Pricing 

SA Sensitivity Analysis 

SME Small-and-Medium Enterprise 

UA Uncertainty Analysis 
 
Energy infrastructure sizing and operation parameters 
 
𝑃𝑃𝑉 Power generated by the PV system [kW] 

𝑃𝐶𝐸𝑆 Power at which the electrochemical 
storage is charged [kW] 

𝑃𝐷𝐸𝑆 Power at which the electrochemical 
storage is discharged [kW] 

𝑃𝐸𝐷 Electric power used by the electric to 
thermal equipment [kW] 

𝑃𝑈𝐺  Power purchased from the utility grid [kW] 

𝑃𝐹𝐼 Power injected to the utility grid [kW] 

𝑃𝐶𝐻𝑃 Electric power from the cogeneration 
system [kW] 

𝑃𝐻𝑃 Electrical power used by the heat pump 
equipment [kW] 

𝑉𝐶𝐻𝑃 Gas used by the cogeneration system [kW] 

𝑄𝐶𝐻𝑃 Thermal power from the cogeneration 
system [kW] 

𝑄𝐻𝑃 Thermal power from the heat pump [kW] 

𝑄𝑇𝐿 Thermal load [kW] 

𝑉𝐵𝑂𝐼 Gas power used by the boiler system [kW] 

𝑄𝐵𝑂𝐼 Output power from the boiler [kW] 

𝑄𝐶𝑇𝑆 Power at which the thermal storage is 
charged [kW] 

 

  

  

𝑄𝐷𝑇𝑆 Power at which the thermal storage is 
discharged [kW] 

𝜂𝑃𝑉 Efficiency of the connexion with the PV 
system [%] 

𝜂𝐶𝐸𝑆 Charge efficiency of the electrochemical 
storage [%] 

𝜂𝐷𝑆 Discharge efficiency of the 
electrochemical storage [%] 

𝜂𝐸𝐷 Efficiency of the connexion with the 
electrical demand [%] 

𝜂𝑈𝐺  Efficiency of the connexion with the 
utility grid [%] 

𝜂𝐶𝐻𝑃𝑒  Cogeneration electrical efficiency [%] 

𝜂𝐶𝐻𝑃𝑡ℎ Cogeneration thermal efficiency [%] 

𝜂𝐻𝑃 Efficiency of the heat pump [%] 

𝜂𝐵𝑂𝐼 Efficiency of the boiler [%] 

𝜂𝐶𝑇𝑆  Charge efficiency of the thermal storage 
[%] 

𝜂𝐷𝑇𝑆 Discharge efficiency of the thermal 
storage [%] 

𝜂𝑇𝐿 Efficiency of the connexion with the 
thermal load [%] 

𝐶𝑂&𝑀,𝑃𝑉  PV O&M costs [€/kW-year] 

𝐶𝑂&𝑀,𝐸𝑆 Electro-chemical ESS O&M costs [€/kW-
year] 

𝐶𝑂&𝑀,𝐶𝐻𝑃 CHP O&M costs [€/kW-year] 

𝐶𝑂&𝑀,𝑇𝐸𝑆 Thermal ESS O&M costs [€/kW-year] 

𝐶𝑂&𝑀,𝐻𝑃  Heat Pump O&M costs [€/kW-year] 

𝐶𝑈𝐺 Electricity price [€/kWh] 

𝐶𝐺 Gas price [€/kWh] 

𝐶𝐹𝐼 Feed-in tariff [€/kWh] 

𝐶𝐺𝐻𝐺 Emissions costs [€/tCO2] 

 
Uncertainty Analysis and Sensitivity Analysis parameters 
 
∆ Morris step 

𝐸 Expected value 

𝑝 Number of levels at which the PDF is 
divided in the Morris method 

𝑟 Number of trajectories created for the 
Morris method 

𝑆𝑖 First-order Sobol index for parameter 𝑖 

𝑆𝑇𝑖 Second-order Sobol index for parameter 
𝑖 

𝜇𝑖
∗ Morris index for parameter 𝑖 

𝑉 Variance 
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current and future feasibility of the decided energy 

solutions maximising the return of investment while 

evaluating the risk associated with the decision. 

The optimisation of the energy design and sizing has 

been treated extensively in the literature. Many 

energy infrastructure and equipment sizing studies, 

such as [9], focus on islanded mode. Few studies 

consider a connection with the utility grid. This is the 

case of [10], where a hybrid energy system is 

proposed for an industrial area performing the 

optimisation separately for each month of the year 

and without analysing prosumer capabilities. 

Following the same line, in [11] a grid-connected 

photovoltaic system is sized parametrically, while in 

[12] an approach to select the sizes and locations of 

energy sources is performed with the objective to 

evaluate possible future energy expansions. In all the 

mentioned studies, the energy equipment sizing is 

optimised for a single year, omitting the time 

evolution of parameters and without calculating the 

value of the investment along its lifetime. Also, all 

input variables are treated as deterministic, not 

evaluating the uncertainty created by them. 

Overlooking the time evolution of parameters and the 

uncertainty can lead to a suboptimal and unexpected 

result, representing a risk for entities performing the 

investment activity. Recently, a study has been 

published where an optimisation model for long-

term, multi-stage planning of a general decentralized 

multi-energy system is exposed without analysing 

uncertainties [13]. In this work, the optimal 

investment is addressed from a multi-stage point of 

view, distributing the investment over years and 

performing retrofitting. This strategy could be 

suitable for urban planning applicable to big 

governmental entities or districts where buildings are 

added in multiple phases but is not suitable for SMEs 

due to their investment characteristics. Also, despite 

multiple years are evaluated to perform the 

investment at different points in time, the considered 

parameters are discretized and considered constant 

during the year. This fact discerns from reality, as 

input parameters are subject to important seasonal 

and hourly variations [14]. This is especially true for 

the industrial sector, where the production is 

maintained constant during week-days and is 

diminished during weekends to perform minor 

activities such as adopting new plant configurations 

and maintenance [15], making it essential for 

industrial SMEs to consider continuous weekly 

operation to capture production and costs patterns 

and properly size their energy infrastructure. 

To evaluate the real risk related to energy 

investments, it is essential to understand the value of 

the investment, the uncertainty in the design problem 

output and the inputs that cause this uncertainty or 

risk, which is the objective of this paper. When 

evaluating the optimal decision for an energy 

investment to be performed in an industrial SME, the 

complete lifetime of the energy infrastructure should 

be analysed considering continuous costs and 

production patterns. A complete Uncertainty Analysis 

(UA) has to be done to properly analyse the risk 

linked to the investment and its robustness, and 

Sensitivity Analysis (SA) is required to identify the 

parameters that cause this risk. This identification 

allows SMEs to decide if they put an effort on better 

defining the most critical factors, thus reducing the 

epistemic uncertainty and the investment risk; and 

also provides them with a framework to identify the 

points in time at which the investment perspectives 

are better due to a clearer evolution of these key 

parameters. 

There are some studies in the literature that consider 

uncertainty inside the optimization problem through 

stochastic programming. This is the case of [16], 

where a two-stage stochastic recursive model is 

presented to design a distributed energy system 

under uncertainty. In this study, the first-stage 

decisions are computed considering discrete 

parameters and then all second-stage decisions 

possibilities are calculated and included in the 

optimization objective function to obtain its expected 

value. A different approach is exposed in [17], where 

an inexact optimization model for regional energy 

systems is developed. This methodology includes 

degrees of fulfilment for the uncertain constraints, 

which provides decision-makers with alternatives 

under different violation parameters. Despite the 

advantage of considering uncertainties in the energy 

optimisation problem, stochastic programming 

models grow very fast if there are a lot of scenarios 

and multiple stages to analyse, and represent a risk-

neutral solution not providing risk measures [18]. 

Given the problem studied in this paper, where 

multiple years and continuously changing probability 

distribution functions are employed, an analysis is 

required previous to the application of a stochastic 

programming approach in order to characterize the 

uncertainty of the problem and the risk faced by the 

investor. Although it may be beneficial for the 

industrial SME to carry out a stochastic programming 

optimization if the risk is not acceptable or another 

objective is searched for, stochastic programming is 

out of the scope of this study, whose objective is to 

evaluate the risk of the energy investment problem 

and identifying the inputs that cause it. 

Therefore, in this paper, a methodological framework 

is proposed to support SMEs in the optimisation of 

their energy infrastructure considering its whole 

lifetime together with weekly production and market 

operation cycles; as well as applying UA and SA. 
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 Considering the existing structure and investment 

strategies of industrial SMEs as well as the current 

changing market structure, the proposed 

methodology is a novelty in the decision-making 

process performed by these entities. 

1.2. Relevant literature discussion 

Up to date, some studies have been presented where 

uncertainty is addressed for energy infrastructures 

design and operation. In most of them, the 

uncertainty is analysed employing uniquely a basic SA 

to evaluate the variation of the output of the system 

according to a set of selected inputs. This is the case 

of [19], where an energy system for rural 

electrification is optimised and a SA is done. In this 

study, the proposed SA methodology is not clear and 

the inputs’ uncertainties studied are selected 

subjectively, not presenting their probability 

distributions. Similarly, in [20] a set of pre-defined 

system combinations are evaluated and their 

sensitivity in front of different parameters is 

performed, without providing details on the 

methodology. In [21], a hybrid system is optimized 

employing commercial software and a SA is done. In 

this case, it is mentioned that the SA is carried out 

changing only one parameter at a time once. This 

procedure is also followed in [22], where a 

trigeneration system is optimised considering the 

variation of load and energy carriers prices through 

analysing potential occurrence scenarios. The one-at-

a-time (OAT) strategy employed in these studies, 

where each input parameter is modified in an isolated 

manner while the others remain the same, is common 

in the literature due to its ease of implementation and 

logic analysis of results. The OAT approach has also 

been used in [23], where the optimal design of a 

stand-alone hybrid energy system for a rural area is 

addressed. In this study, the configuration of the 

system is pre-stated and a SA based on scenarios is 

conducted to appreciate the influence of 

environmental policy on the total system cost. 

Similarly, in [24] a techno-economic analysis of a 

standalone hybrid energy system is carried out and a 

SA through OAT strategy is conducted to see the 

effects of costs of energy in the system economic 

performance, while in [25] four hybrid power system 

scenarios for a household application are tested and a 

SA is done employing three wind speeds and solar 

radiation possibilities. In [26], an optimisation sizing 

energy model considering yearly performance is 

presented and a SA is proposed. In contrast with other 

studies, in this work the SA is carried out considering 

3 different scenarios combining subjectively distinct 

values of the uncertain inputs. In none of these works, 

however, the probabilities of the analysed uncertain 

inputs are considered. Moreover, the performed SA 

strategies do not provide the required insights to 

properly evaluate the output statistically, as they only 

consider a small number of scenarios and the 

interrelation of different energy inputs is most of the 

time overlooked. A slightly different approach is 

presented in [27], where an OAT methodology is 

carried out employing several samples performed on 

a uniform distribution, expanding the results of 

considering only few scenarios. However, the use of 

uniform distributions is a simplification of the reality, 

as it is common to have specific scenarios with higher 

probability of occurrence rather than intervals where 

the probability of all values is equal [28]. Therefore, 

the employment of uniform distributions limits the 

capacity of obtaining suitable insights for the 

investment problem faced by industrial SMEs. 

Few studies with improved SA strategies have been 

published, such as [29], where a SA is applied for 

zero/low energy buildings aiming to obtain the 

design parameters that affect the performance. In this 

case, the SA is formed by a two-stage approach, using 

global and local methods as the first and second stage, 

respectively. However, in this analysis a UA is not 

performed and thus despite sensitivity is addressed 

to evaluate the inputs that most affect the 

performance, the output uncertainty is not known. In 

[30], UA and SA are both performed for the optimal 

design of a distributed energy system to supply 

energy to a tertiary demand. The objective is the 

minimisation of total system cost while meeting CO2 

emissions restrictions. The UA is performed using the 

Monte Carlo simulation while the SA consisted of a 

two-step global SA. Despite the existence of different 

market prognosis, the uncertainty linked to energy 

market costs is modelled as uniform, without 

considering the higher probability of some scenarios 

above others. Furthermore, in all the above studies 

the proposed optimisation models employ only one 

year as a representative time frame, simplifying the 

decision-making process and not evaluating the time 

evolution of parameters. According to [31], the fact of 

solving this optimisation problem using single 

“typical-year” approaches produces results that 

become suboptimal after a short time due to the 

changing framework where the energy systems are 

integrated. In the mentioned studies, the proposed 

inputs’ probability distribution functions are static, 

i.e., they do not vary with time, which does not allow 

to evaluate the future costs probabilities and 

simplifies their consideration. This uncertainty 

handling is methodologically erroneous and does not 

enable to obtain a realistic framework for energy 

investment analysis. 

Therefore, there is a gap in the literature regarding 

the optimisation and analysis of energy investments 

over time and the uncertainty linked to it which is 



 

 

Compendium of publications 

 

103 

filled in this paper to support industrial SMEs in 

energy investment decisions. In the following 

paragraphs, suitable techniques employed for 

uncertainty assessment in other research fields are 

reviewed to be able to propose the most correct 

methodological framework for its application in the 

prosumer energy investment problem of industrial 

SMEs. 

The uncertain parameters that influence the 

investment decision can be characterized through 

different strategies, such as scenarios, numerical 

ranges or Probability Density Functions (PDF). The 

latter is more suitable for the problem presented 

here, as it enables the application of sophisticated 

methods that provide robust results [32]. To perform 

the UA, a method that generates samples according to 

these PDFs allows obtaining a reliable output for 

energy systems [33]. Although Monte Carlo is a 

commonly used statistical sampling method [34], its 

high computational cost suggests the employment of 

quasi-random sampling methods such as the Latin 

Hypercube Sampling (LHS), which provides results 

efficiently at a low computational cost [35] and has 

been proved to perform well in energy models [36]. 

Once the uncertainty in the output is known, the risk 

becomes more tangible for investors, although it is 

convenient to perform a SA to know the inputs that 

cause most of this uncertainty. Among other 

approaches, statistical global SA methods are the ones 

that provide the most model insights [32]. Due to the 

complexity of the optimisation problem and its high 

computational cost, a two-stage SA methodology is 

considered for the study here presented. The first 

stage aims at reducing problem dimensionality, 

identifying and discarding less influential inputs 

through a screening technique. Among the different 

screening techniques for energy models, the Morris 

method is the most suitable one as it does not require 

hypotheses regarding the nature of the model and 

thus can be applied to a wide range of problems [37]. 

The second stage of the SA methodology is selected to 

be formed by a statistical variance-based global SA 

method, applicable to non-monotonic and non-linear 

models [38]. Among the variance-based methods, the 

Sobol method presents robust results and allows for 

a suitable sample size to capture the behaviour of the 

problem [39]. The combination of Morris and Sobol 

has already been used in the literature to assess 

complex uncertain problems, such as in [40]; and has 

been proved to provide results efficiently while 

quantifying the sensitivity effectively. 

1.3. Contributions 

After analysing the literature and the most suitable 

tools for assessing the energy investment uncertainty, 

a design and operation optimisation methodology 

considering the lifetime of the equipment and 

performing a UA based on LHS and a two-stage SA 

formed by the Morris and Sobol methods is proposed 

in this paper, which is a novel framework proposed 

for the decision-making process of industrial SMEs. 

The outputs of the methodology, which is designed to 

suit the industrial SMEs requirements, have 

important implications, allowing smart energy 

investment decisions, providing risk awareness, and 

identifying hotspots related to the economic, 

environmental, and social activities of the enterprise. 

Given the current managerial system of industrial 

SMEs, the adoption of this methodology forms a 

suitable, robust and efficient framework and provides 

SMEs with a different point of view that enables 

better asset planning, resulting in a competitive 

advantage. 

The main contributions of this work to the state of the 

art can be summarized as: 

• Optimisation of energy investments 

considering equipment operation over its 

lifetime which evaluates the production and 

energy market weekly cost cycles, hourly 

operation, and economic, environmental and 

social implications. This evaluation is a 

novelty in the analysis of energy investments 

and is especially suited for industrial SMEs 

given their managerial, technical, and 

economic characteristics. 

• Continuous probabilistic uncertainty 

characterization of optimisation’s inputs 

over the expected lifetime of energy 

equipment. This uncertainty 

characterization improves uniform static 

probability distributions employed until now 

in the literature. 

• Energy system investment uncertainty 

quantification for risk acknowledgement of 

the upgraded infrastructure over time, which 

supposes a novelty in the field of energy 

investment analysis. 

• Identification of the main inputs that 

influence the output uncertainty in the 

energy investment decisions through a 

complete sensitivity analysis, which 

supposes a novelty in identifying risk sources 

in investment outcomes. 

The paper is organized as follows. First of all, the 

studied problem is presented in section 2. This 

problem definition section includes the explanation 

of the methodology and techniques employed, as well 

as the characterization of the uncertainty in the 

inputs. Secondly, in section 3, the case study at which 

the exposed methodology is applied is shown, which 

is based on a real remanufacturing industrial SME. 
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Then, the results of the optimisation, UA and SA are 

shown in section 4, where a discussion is also 

performed. Lastly, the conclusions of the study are 

presented in section 6. 

2. Problem definition 

The objectives of industrial SMEs willing to upgrade 

their energy infrastructure are the reduction of costs, 

the maximization of investment’s return, the 

compliance with the legislation, the support to the 

green transition and the contribution to the progress 

of the local community. The methodology that is 

applied in this paper to properly evaluate the 

investment performed by SMEs in energy equipment 

is depicted in Figure 1, which considers the 

performance of the upgraded infrastructure acting as 

a prosumer along the lifetime of the equipment as 

well as the assessment of risks and the identification 

of key inputs causing uncertainty. The first stage of 

this methodology, labelled in Figure 1 as box number 

1, is the deterministic optimisation of the investment 

to upgrade the energy infrastructure of the SME 

considering its benefits over time. In the literature, 

most studies addressing energy sizing optimisations 

including renewable energy sources (RES) have as 

unique objective economic profit maximisation or 

cost minimisation, such as [41], although some of 

them also consider environmental and social 

implications. From these, the most common approach 

is to combine economic objectives with 

environmental ones, including emissions either as a 

constraint or as an objective. This is the case of, for 

example, [42], where a small hybrid power system is 

sized minimising costs and the resultant emission 

factor from the generated energy. The incorporation 

of social criteria in these sizing studies is often 

overlooked due to the difficulty of their measurement 

[43] and the moderate implications that the resultant 

system has in the local community. However, the 

decisions taken by industrial SMEs have a great social 

impact since these entities are closer to the local 

community, both geographically and in a social 

proximity manner. For these reasons, it is beneficial 

in the long term for the SME to include social 

objectives in the energy investment optimisation 

problem. 

Given the characteristics of the studied problem, 

economic, environmental and social criteria are 

included in the optimisation function to reach a 

solution that is not only suitable from an economic 

profit point of view but that also contributes to the 

long-term continuity of the SME and the acceptance of 

the solution by the society. The economic parameter 

is represented through the maximisation of the Net 

Present Value (NPV), which is a measure employed 

when assessing the profitability of projects in 

enterprises [43]. Emissions are included in the 

objective function for its minimisation, and the social 

field is considered through the incorporation of the 

Renewable Factor (RF) and Job Creation (JC). RF 

measures the amount of load covered by RES [44] and 

enables to evaluate local community content with the 

energy solution, as it is common that the community 

accepts energy infrastructures where renewable 

sources cover the load [45], whereas JC is understood 

as the employment generated per equipment for their 

installation and maintenance services [46]. Also, 

restrictions such as maximum Return on Investment 

(ROI) specified by the investor and maximum 

emissions allowable are considered. 

This energy equipment sizing optimisation procedure 

performed in this first stage of the methodology 

provides the optimal energy equipment and 

capacities to install as well as their energy, economic 

and environmental performance. To evaluate the 

 

Figure 1: Workflow for investment optimisation and risk assessment 
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risks associated with the investment and the most 

influential parameters, UA and SA are performed. For 

this, and as exposed in the second box of the 

methodology shown in Figure 1, the uncertainty in 

the input is characterized. The parameters 

considered as uncertain are those not under the 

control of the enterprise or that can change 

unexpectedly within some range. In this case, these 

are electrical energy costs, gas energy cost, selling 

price of electricity, emissions costs and operation and 

maintenance costs of equipment. With a PDF assigned 

to each of them and the upgraded plant model, it is 

possible to perform the UA and SA. The UA, which has 

to be carried out before the SA, uses LHS simulations 

to obtain input samples and repeatedly runs the 

deterministic plant model. Although in this 

methodological stage the selected energy equipment 

does not change, its hypothetical operation varies 

considering the different evolution of input 

parameters obtained through LHS. Thus, in the 

deterministic model run under the UA, the operation 

of the equipment is computed again for the 

considered inputs. With this process, the output 

distribution is obtained, making it possible to 

evaluate the robustness of the solution and the 

minimum expectable profit. Then, the SA is done 

through a two-stage global system, which enables to 

identify and rank the inputs that influence the most 

the uncertainty of the output obtained through the 

UA. This provides information about where efforts 

should be focused on when seeking additional 

framework data if the robustness of the solution 

wants to be improved. 

The proposed methodological workflow is suitable 

for its application to industrial SMEs, with peak 

power ranging from dozens of kW to units of MW [47] 

and specific electricity and thermal consumption of 

1.449 kJ/€ and 4.512kJ/€, respectively, concerning 

the value-added [48]. In Figure 2, the energy 

infrastructure of a typical SME is exposed. In bold 

lines, the original plant or “reference plant” existent 

before the investment is exposed, which purchases 

electricity to satisfy electrical demand and has a 

boiler to fulfil thermal demand. For the optimisation 

procedure to upgrade the energy infrastructure of the 

SME, the inclusion of equipment undergoing growing 

adoption and reducing its costs as well as equipment 

enabling the interconnection of the thermal and the 

electrical sides is considered. This equipment is 

formed by RES, in this case, photovoltaic (PV); 

electrochemical Energy Storage System (ESS), 

thermal ESS, Combined Heat and Power (CHP) units 

and electrical to thermal equipment, such as Heat 

Pumps (HP). In this paper, the considered lifetime of 

the energy upgrade is of 15 years. 

In the following sections, details are provided 

regarding the optimisation procedure, the inputs’ 

uncertainty characterization and the UA and SA 

techniques employed. 

2.1. Energy sizing optimisation 

The optimisation aims to select the investment to 

upgrade the energy infrastructure of the SME for 

improving its competitiveness, considering economic, 

environmental and social parameters as well as the 

adoption of a prosumer energy behaviour. A 

deterministic model of the plant is constructed and a 

two-stage procedure is applied to optimize both the 

energy equipment and their operation over their 

Figure 2: Energy infrastructure of a typical industrial SME and potential upgrade 
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lifetime. This formulation requires the specification of 

two sets of constraints. On the one hand, constraints 

related to the design, which can include maximum 

equipment size, maximum emissions and maximum 

investment and time for ROI. On the other hand, 

operation constraints regarding the energy flow 

inside the resultant plant. These include electrical and 

thermal hub equilibriums, energy exchange 

constraints, storage constraints, and fulfilment of 

equipment power capacity thresholds. 

The flowchart of the optimisation procedure can be 

seen in Figure 3. First of all, SME parameters, 

investment constraints, and information of RES 

generation, energy market and demand are obtained. 

Four seasonal representative weeks per year are 

selected along the considered time horizon, which are 

used to obtain the expected costs and benefits per 

year. Once all the information is loaded, the optimal 

operation of the reference or starting plant before the 

investment is obtained, computing the total operation 

cost along the optimisation horizon, i.e. 15 years. This 

optimisation is solved through linear programming in 

an hourly format minimising the weekly cost. The 

total operating costs along the optimisation horizon 

are used as the reference value for plant sizing 

optimisation, which is solved in the next block. 

For the sizing optimisation, the operation of the 

energy infrastructure along time is also considered. 

This optimisation employs a Direct Search approach 

that works with a set of candidates and evaluates 

their suitability. The selected candidates, which are 

the equipment to install and their capacities, should 

fulfil the constraints regarding maximum investment 

and plant restrictions, such as maximum space 

available. If so, the energy flows are verified and the 

operation optimised. This operation optimisation is 

mathematically identical to that of the reference 

plant, although it is exposed separately in the diagram 

for the sake of readability. Once the operation 

optimisation is completed, ROI and emissions are 

computed and it is verified if their constraints are 

fulfilled. If so, the cost-benefit per year is obtained by 

comparing the performance of the upgraded plant 

with that of the reference plant and the NPV is 

computed. Then, bearing in mind the operation of the 

equipment, the RF is computed considering the total 

energy generated by the PV system and the load of the 

SME over the considered time horizon. JC is also 

 

Figure 3: Flowchart of the energy sizing optimisation process 
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evaluated following the guidelines provided in [49], 

using the total energy generated by renewable 

sources and transformer equipment and the capacity 

of storage systems to compute the full-time jobs 

created over the expected lifetime of the new energy 

infrastructure. Once all the economic, environmental 

and social criteria values are obtained, they are 

normalised and included in a single weighted 

objective function. After its computation, a new set of 

solution candidates are created until the sizing 

optimizer reaches the optimal value. 

This procedure enables to consider economic, energy, 

environmental, and social aspects in the investment 

and operation of the industrial plant and adjusts 

today’s decision considering the forecasted changes 

in the external market over the lifetime of the 

equipment. For details on the mathematical 

formulation of the optimisation problem, please refer 

to Appendix A. 

2.2. Uncertainty characterization 

The inputs considered as deterministic in the 

optimisation stage are inherently uncertain. To 

evaluate the uncertainty of the computed NPV, it is 

indispensable to consider this uncertainty. In this 

section, these inputs are analysed and their 

uncertainty is evaluated and characterized. To do so, 

a literature search has been performed to gather the 

possible values for these parameters. These values 

are exposed in upcoming pages together with the 

source from which they have been obtained. Once 

data gathering is completed, several possible PDFs 

are tested on it and the one with better fit is employed 

to characterize its uncertainty. The goodness of the fit 

is evaluated through the loglikelihood function, which 

evaluates the joint probability distribution of the 

random vector resulting from the PDF to be the 

provided input data sample. The potential 

distributions considered in this paper for 

representing these input uncertainties are the 

BirnBaurn-Saunders, the exponential, the extreme 

value, the gamma, the generalized extreme value, the 

half-normal, the inverse Gaussian, the Kernel, the 

logistic, the log-logistic, the lognormal, the Nakagami, 

the normal, the Weibull, and the uniform 

distributions. A summary of the obtained PDFs for 

each of the parameters can be seen in Table 1. 

2.2.1. Operation and maintenance of 

equipment 

The distribution of the Operation and Maintenance 

(O&M) costs is studied for the PV system, the CHP, the 

electrochemical ESS, the thermal ESS and the HP 

system. For the same maintenance services, the O&M 

costs can vary due to the existence of additional 

services which do not affect the maintenance itself or 

due to external market causes. In this paper, this 

initial uncertainty is considered to improve the 

accuracy of the obtained results.  

For the PV system, data collected from O&M contracts 

are obtained from [50]. The obtained data resembles 

a normal distribution with a positive skew, being the 

Nakagami distribution the one that shows better 

performance. In Figure 4, the histogram of the values 

and the Nakagami distribution are exposed. These 

values correspond to the year 2020 and are likely to 

decrease in upcoming years due to the growing 

practice and the economy of scale that the PV sector 

is experiencing. For this reason, PDFs are created for 

each year along the lifetime of the equipment, 

adjusting the initial distribution to the expected 

tendency exposed in studies [50–52], and decreasing 

the costs up to 30%. 

Uncertain parameter Symbol 2020 PDF 2035 PDF 

PV O&M costs 𝐶𝑂&𝑀,𝑃𝑉  Nakagami 
(16,53; 43,69) 

Nakagami 
(16,55; 21,39) 

Electro-chemical ESS O&M costs 𝐶𝑂&𝑀,𝐸𝑆 Weibull 
(9,07; 4,01) 

Weibull 
(5,14; 3,25) 

CHP O&M costs 𝐶𝑂&𝑀,𝐶𝐻𝑃 IG 
(36,6; 1.772) 

IG 
(36,6; 1.772) 

Thermal ESS O&M costs 𝐶𝑂&𝑀,𝑇𝐸𝑆 Normal 
(0,26; 0,52) 

Normal 
(0,26; 0,52) 

Heat Pump O&M costs 𝐶𝑂&𝑀,𝐻𝑃  IG 
(5,56; 12,36) 

IG 
(5,56; 12,36) 

Electricity price  𝐶𝑈𝐺 Nakagami 
(0,885; 10,14) 

Nakagami 
(0,885; 10,14) 

Gas price  𝐶𝐺 Weibull 
(1,44; 3,11) 

Weibull 
(1,44; 3,11) 

Feed-in tariff 𝐶𝐹𝐼 U 
(0,8𝐶𝑈𝐺; 0,9𝐶𝑈𝐺) 

U 
(0,8𝐶𝑈𝐺; 0,9𝐶𝑈𝐺) 

Emissions costs 𝐶𝐺𝐻𝐺 Nakagami 
(0,824; 20,03) 

Nakagami 
(0,824; 20,03) 

Table 1: Summary of PDFs for uncertain inputs 
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Figure 4: Histogram and PDF for the 2020 O&M cost of the 
PV system 

Electrochemical ESSs are also undergoing 

technological developments that will decrease their 

economic costs. Despite that for power system 

stability and high energy capacity storage lead 

batteries are being used nowadays [53], there is a 

trend to implement more efficient technologies such 

as the Li-ion battery for smart energy management 

applications. The current O&M costs of Li-ion 

batteries lay around 8€/kW-year [54–56], which is 

forecasted to be reduced between 40% and 50% in 

the upcoming years [57,58]. In this case, the Weibull 

distribution is the most suitable, which is modified 

along the years according to the specified decrease 

range. In Figure 5, the values obtained for the O&M 

and the fitted PDF for 2020 is exposed. 

 

Figure 5: Histogram and PDF for the 2020 O&M cost of the 
electrochemical ESS 

Regarding the rest of the systems, although they are 

still not widely included in smart grids, they have a 

considerable maturity level and their O&M costs are 

not likely to decrease in the near future [59]. Thus, 

their probability distribution will be kept constant 

along the considered time horizon. For CHP, O&M 

values are between 30€/kW-yr and 45€/kW-yr 

[60,61], and follow an Inverse Gaussian distribution, 

as exposed in Figure 6. In the case of the thermal ESS, 

sensible heat energy storage is considered due to its 

stability and its current use in industrial sites [62,63]. 

The O&M cost of these systems has a mean value of 

0,26€ct/kW and a small variance [64]. This 

uncertainty is represented as a Normal PDF, as shown 

in Figure 7. HPs O&M costs range from 2,5€/kW-yr to 

9€/kW-yr [14,65]. The Inverse Gaussian is the 

distribution function most suitable in this case. The 

histogram and the fitted PDF are shown in Figure 8. 

 

Figure 6: Histogram and PDF for the O&M cost of the CHP 
system 

 

Figure 7: Histogram and PDF for the O&M cost of the 
thermal ESS 

 

Figure 8: Histogram and PDF for the O&M costs of the HP 
system 
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2.2.2. Energy price 

In this section, the uncertainty associated with the 

cost of electricity and gas during the lifetime of the 

energy equipment is evaluated. 

In many countries, there are two main types of 

electrical tariffs: tariffs where the price is fixed and 

agreed with the supplier, and tariffs regulated by the 

energy market or governmental entities which 

include price variability. To enhance the employment 

of renewable energy sources, fixed price tariffs are 

increasingly reflected as power purchase agreements 

(PPAs) between energy consumers and renewable 

energy producers [66]. PPAs are performance-based 

contracts that aim to create a risk-controlled 

agreement for the purchase and sale of energy, and 

which typically last between 7 and 10 years. To 

enable the proliferation of PPAs, it is required to 

allocated RES at a considerable scale and therefore 

tendering schemes are being implemented. However, 

this strategy currently reduces the diversity of actors 

and presents a disadvantage for the participation of 

SMEs and private individuals in the renewable energy 

market [67], being big entities the ones primarily 

benefiting from these contracts. 

In [68], it is argued that to promote a competitive 

inclusion of smart energy management strategies 

including RES, the most efficient pricing strategy 

would be for the electricity price to vary in real-time 

and reflect wholesale market dynamism market. This 

is also defended in [69], where electricity supply 

dynamic pricing is presented as a key strategy to 

enhance the flexibility of consumers. The energy 

transition is currently opening the path to the 

purchase of electricity following dynamic cost 

patterns reflecting wholesale market behaviour [70]. 

In fact, the European Directive 2019/944 [71] 

developed in the framework of the Clean Energy 

Package defines the “dynamic electricity price 

contract” as an electricity supply contract between a 

supplier and a final customer that reflects the price at 

the spot market or at the day-ahead market at 

intervals at least equal to the market settlement 

frequency. These flexible tariffs are already been 

implemented and have been studied in the literature, 

evaluating also its suitability for prosumer SMEs. In 

[72], an industrial SME with a PV system is analysed 

in which a variable price tariff of two bands per day 

changing in a monthly manner is applied. A dynamic 

price strategy is also employed in [73] to surpass the 

technical and economic barriers that exist for SMEs 

applying novel energy management strategies, and a 

case study based on a bakery industrial SME is 

developed to check its suitability. Similarly, the 

economic benefits of installing new energy 

equipment in a medium-scale facility are studied in 

[74]. In this case, a real-time pricing (RTP) scheme is 

chosen based on the energy prices at the wholesale 

market. 

In this study, given the prosumer energy model that 

the industrial SME is transforming to and the ongoing 

green transition, as well as the impacts of the energy 

behaviour in the local community and environment, it 

is chosen to employ an RTP tariff, considering hourly 

changing electricity price according to the wholesale 

market while including the applicable taxes and levies 

as done in [74]. This electricity price is forecasted to 

increase yearly, on average, between 0,79% and 

4,82% until 2035 [30,75,76]. In Figure 9, the 

forecasted scenarios are exposed considering an 

average starting price of 47,68€/MWh [14]. 

 

Figure 9: Electricity price forecast up to 2035 

To capture the uncertainty of electricity price and 

obtain realistic time evolutions when sampling the 

PDFs, the energy price scenarios are translated into 

yearly percentage increases, allowing to obtain the 

electricity price based on previous year values. The 

most suitable distribution is the Nakagami one, which 

is exposed in Figure 10. 

 

Figure 10: PDF of the electricity price increase 

Regarding gas costs, tariffs do not differentiate the 

time of use and thus constant hourly prices are 

considered. The forecasting yearly increment of gas 
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 price lays between 0,65% and 1,81% until 2035 

[76,77]. The forecasted scenarios, with a starting 

price in 2019 of 30,8€/MWh [78], are exposed in 

Figure 11. As with electricity, a PDF is generated 

based on the yearly percentage increase. The most 

suitable distribution is the Weibull, which is exposed 

in Figure 12. 

 

Figure 11: Gas price forecast up to 2035 

 

Figure 12: PDF of the gas price increase 

The exposed energy costs and predictions do not 

consider the presence of taxes and levies. To obtain 

realistic final cost values, taxes of 40,7% and 20% are 

applied to electricity and gas price, respectively [79]. 

2.2.3. Feed-in tariff 

When an SME faces the decision of upgrading its 

energy infrastructure, it may be beneficial to consider 

the incorporation of new business models involving 

an active role in the energy market. For this reason, it 

is crucial to consider a feed-in tariff that enables the 

delivery of energy to the utility grid at a specified cost. 

There are three types of feed-in tariffs [80]. The first 

type is the percentage-based, which establishes the 

price of the energy sold as a percentage of the energy 

cost at the same moment in the wholesale market. 

The second type are the fixed price tariffs, where the 

price is stated by the government and remains 

independent from the market, and the third type are 

the premium tariffs, which offer a price above the 

electricity price at the market at the same time. For 

the case studied in this paper, the most suitable 

approach is the employment of a feed-in tariff with 

dynamic prices, being these prices a percentage of the 

ones at the wholesale market [81]. This enhances the 

generation of energy at peak times and the purchase 

of energy at valley times, helping to decongest the 

electrical grid while creating a profit for the 

consumer. This percentage can vary due to political 

reasons. In this paper, the range of 80% to 90% of the 

wholesale market price is considered [82], modelled 

through a uniform distribution. 

2.2.4. Emissions costs 

Emissions are growing in importance due to their 

influence on global warming. In 2019, most countries 

with implemented emission trading schemes dealt 

with costs below 30€/ tCO2 [83]. In this paper, the 

average European case is considered, with emission 

costs of 25€/ tCO2 in 2019. This cost is forecasted to 

yearly increase as depicted in Figure 13, being the 

values obtained from [58,84]. This distribution is also 

captured by evaluating the yearly percentage 

increases. The Nakagami distribution is employed, 

which can be seen in Figure 14. 

 

Figure 13: Emissions cost forecast up to 2035 

 

Figure 14: PDF of the emission cost at 2035 
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2.3. Uncertainty Analysis 

In order to obtain the output distribution and the risk 

associated with the selected investment, a UA is 

performed. To do so, N samples are generated for 

each of the PDFs presented in the previous section 

using the LHS technique, a probabilistic procedure 

that divides the variable range into intervals with 

equal probability and selects one random sample 

within each interval. Combining randomly the 

samples generated, N scenarios are obtained [85]. 

These are introduced into the deterministic plant 

model, where the optimal operation of the equipment 

is computed considering the evaluated inputs. Then, 

the output is calculated for each of the scenarios, 

obtaining its uncertainty. In this paper, 9 uncertain 

inputs are evaluated. Considering their variation over 

the studied horizon, a total of 135 PDFs have to be 

sampled. For complex energy systems like this, 1000 

samples per PDF is a suitable value to obtain an 

accurate and representative result that enables the 

study of the uncertainty in the output [29]. 

2.4. Sensitivity Analysis 

With the output uncertainty obtained, it is possible to 

evaluate the risk of the investment decision. Once this 

uncertainty has been assessed, a SA is performed to 

identify the inputs of the system that cause most of it. 

A two-stage methodology is applied in this paper. In 

the first stage, the Morris method is used to reduce 

the dimensionality while, in the second stage, the 

Sobol method is applied to obtain the parameters 

ranking. 

The Morris method is a global approach that can be 

considered as an extension of local OAT techniques 

which enables to discriminate the less influential 

inputs with a small sample size and low 

computational cost [86]. The uncertainty range of all 

the inputs is divided into 𝑝 levels. Then, 𝑟 base vectors 

are obtained from sampling one random level per 

uncertain input. These base vectors are 

recommended to be between 4 and 10 [87] and serve 

as the starting point for the creation of trajectories, 

which enable to analyse the influence of the inputs in 

the output. In this paper, each uncertain parameter is 

divided into 𝑝 = 11 levels; and 𝑟 = 10 trajectories are 

evaluated. In each trajectory, the inputs’ values are 

increased or decreased a step ∆ in a consecutive 

manner. The Elementary Effect (EE) of input 𝑥𝑖  in the 

trajectory can be computed as: 

 𝐸𝐸𝑖

=
𝑓(𝑥1, … , 𝑥𝑖 + ∆,… 𝑥𝑘) − 𝑓(𝑥1, … , 𝑥𝑖 , … 𝑥𝑘)

∆
 

(1) 

Where f represents the deterministic model. To 

ensure a desirable symmetric treatment of inputs 

[88], it is convenient to employ a value of p even and 

a step value of: 

 ∆=
𝑝

2(𝑝 − 1)
 (2) 

With the EE obtained, it is possible to rank 

parameters through the index 𝜇𝑖
∗: 

 
𝜇𝑖
∗ =

1

𝑟
∑|𝐸𝐸𝑖|

𝑟

𝑗=1

 (3) 

Following the procedure exposed, the total number of 

model evaluations is 380. 

Once the less influential inputs are discarded, the 

Sobol method is applied, which aims to calculate two 

metrics per parameter named first-order Sobol index 

and total-order Sobol index. These metrics indicate 

the portion of the output variance that is explained by 

a parameter alone and the portion of the output 

variance that is explained by a parameter and its 

interactions with others [30]. 

On the one hand, the first-order index of the 

parameter 𝑥𝑖  is defined as: 

 

𝑆𝑖 =
𝑉𝑥𝑖 (𝐸𝑋∽𝑖(𝑌|𝑥𝑖))

𝑉(𝑌)
 (4) 

Where 𝑌 is the output of the system, 𝑉(𝑌) is its total 

variance and 𝐸𝑋∽𝑖(𝑌|𝑥𝑖) is the mean value of Y 

considering the variation of all model inputs except 

𝑥𝑖 , which remains fixed. This term is evaluated for all 

values of 𝑥𝑖 , and its variance computed, which is 

expressed by the term 𝑉𝑥𝑖 . On the other hand, the 

total-order index is defined as: 

 

𝑆𝑇𝑖 =
𝐸𝑋∽𝑖 (𝑉𝑥𝑖(𝑌|𝑥∽𝑖))

𝑉(𝑌)
 (5) 
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 Where 𝑉𝑥𝑖(𝑌|𝑥∽𝑖) is the variance of the output over all 

the possible values of 𝑥𝑖  when the rest of the inputs 

are fixed. This variance is computed for all the values 

of the inputs, which is represented by the 𝐸𝑋∽𝑖  term. 

To compute the Sobol indices for complex energy 

problems considering the entire distribution of 

inputs, repeatedly running the model is required. To 

minimise the computational cost while maintaining 

the method robustness, the best practices exposed in 

[89] are employed, which are based on scenarios 

sampling and matrix combinations. In this paper, the 

number of primary scenarios created is 5.000, 

requiring a total number of model evaluations of 

30.000. An overview of this computation strategy can 

be consulted in Appendix B. 

3. Case study 

A case study based on a real SME of the automotive 

sector is presented. The data to develop this case 

study has been obtained from a real automotive 

industry located in Spain. The plant considered has an 

annual electrical and thermal demand of 386MWh 

and 779MWh, respectively. The sizing study is based 

on four seasonal representative weeks which are 

exposed in Figure 15. The total operation cost of the 

energy infrastructure of the plant during the 

considered time horizon is 23.116.000€. The 

industrial SME is considering to perform an energy 

upgrade in which it would be possible to install a PV 

system, thermal ESS, electrochemical ESS, CHP and 

HP. For the energy sizing optimisation, the 

deterministic inputs shown in Table 2 are employed, 

which are the expected values of the uncertain 

parameters exposed section 2.2. Apart from these 

values, constraints imposed by the enterprise are also 

considered and exposed in Table 3. Moreover, 

information used as input can be consulted in 

Appendix C. 

Input 2020 value 2035 value 

𝐶𝑂&𝑀,𝑃𝑉  (€/kW-yr) 6,56 4,70 

𝐶𝑂&𝑀,𝐸𝑆(€/kW-yr) 8,22 4,78 

𝐶𝑂&𝑀,𝐶𝐻𝑃(€/kW-yr) 36,6 36,6 

𝐶𝑂&𝑀,𝑇𝐸𝑆(c€/kW-yr) 0,26 0,26 

𝐶𝑂&𝑀,𝐻𝑃(€/kW-yr) 5,56 5,56 

𝐶𝑈𝐺(€/MWh) 47,68 70,0 

𝐶𝐺 (€/MWh) 30,8 36,9 

𝐶𝐹𝐼 (€/MWh) 40,5 59,5 

𝐶𝐺𝐻𝐺 (€/tCO2) 25,0 42,5 

Table 2: Deterministic inputs for the case study 

 

 
Figure 15: Electrical and thermal demands of the case study plant 
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Constraint Value 

Maximum investment 800.000€ 

Area to install PV 6.000m2 

Maximum payback time 6 years 

Maximum emissions at final year 300tCO2 

Table 3: Constraints specified by the enterprise 

4. Results and discussion 

4.1. Deterministic energy sizing 

The results of the deterministic energy sizing 

problem can be seen in Table 4. Through the 

proposed strategy, the equipment to include in the 

upgraded energy infrastructure of the industrial SME 

are a PV system, a thermal ESS and a CHP system. 

Although electrochemical ESS and HP were also 

considered for installation, the characteristics of the 

industrial load together with the cost, social and 

environmental parameters of the equipment led to an 

optimal solution in which these are not included. In 

Table 4, it is possible to observe that the initial 

investment is quickly recovered and its value is 

multiplied almost by 10, reaching a final NPV of 

5,078M€, which represents a 22% of the total 

operation cost of the initial plant, leading to a 

considerable energy saving and economic benefit. As 

the optimisation has been performed considering 

also environmental and social parameters, the 

resultant energy infrastructure represents a trade-off 

solution bearing in mind the different interests of the 

SME. Therefore, the energy investment does not only 

provide profit for the enterprise in economic terms 

but is also a good option considering the long-term 

strategy of the SME related to economic and social 

implications. It is worth mentioning that the optimal 

energy infrastructure found by the algorithm 

depends on the constraints specified by the 

enterprise. To exemplify this, the results of the 

optimisation for the same industrial plant but with a 

maximum investment of 400.000€ are exposed in 

Table 5. It can be seen that through forcing a smaller 

investment, the PV and the thermal storage are 

maintained, whereas the CHP size is reduced. This is 

due to the fact that PV positively affects all the criteria 

and the thermal storage has low costs, whereas CHP 

has a high capital cost and there already exist a boiler 

system in the industrial plant to fulfil thermal 

demand. Nonetheless, the installed capacity of the 

CHP and the thermal storage still enable an 

interconnection between the thermal and the 

electrical sides of the plant, enhancing a smart energy 

management strategy that improves the prosumer 

behaviour. 

Bearing in mind the demand of the industrial plant 

exposed in Figure 15 and the energy infrastructure 

optimally obtained and shown in Table 4, the 

operation of the resultant energy infrastructure as a 

prosumer is here analysed. The operation of the 

selected energy equipment is exposed in Figure 16 for 

the summer week and in Figure 17 for the winter 

week, both corresponding to the final evaluation year. 

It can be seen that, in the summer season, as thermal 

demand is generally lower than in winter season, the 

boiler system is used only as back-up for peak-power 

moments and the thermal ESS is employed to store 

excess thermal energy from the CHP system. In 

contrast, in the winter season the boiler has a more 

active role and thermal storage is rarely used as 

almost all power is employed to cover demand. 

Parameter Value 

Initial investment 400.000€ 

PV Area 6.000m2 

Thermal Storage Size 480kWh 

Cogeneration Size 64kWe 

NPV 4.964.400 € 

Payback time 4 years 

Emissions at the final year 210tCO2 

RF on electrical load 0,29 

Job Creation 4,43 full-time jobs 

Table 4: Optimisation results considering different economic 
constraints 

Parameter Value 

Initial investment 530.920€ 

PV Area 6.000m2 

Thermal Storage Size 465kWh 

Cogeneration Size 123kWe 

NPV 5.078.900 € 

Payback time 4 years 

Emissions at the final year 210tCO2 

RF on electrical load 0,43 

Job Creation 5,34 full-time jobs 

Table 5: Results of the deterministic optimisation 

 

Figure 16: Power operation and generation of the energy 
equipment selected for the summer week. 
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Figure 17: Power operation and generation of the energy 
equipment selected for the winter week. 

With this operation, the total energy generated and 

consumed in the electrical and thermal sides for 

summer and winter weeks are exposed in Figure 18, 

Figure 19, Figure 22 and Figure 23. In these figures it 

appears that the electrical demand is covered through 

a combination of the CHP and the PV system in both 

seasons, and that excess electrical energy is present 

in the system. For the thermal side, it is possible to 

appreciate that, in summer, almost all demand power 

is covered by the CHP system while in the winter, the 

CHP works most of the time at near maximum 

capacity and the boiler is employed to completely 

fulfil demand requirements. 

 

Figure 18: Electrical demand and generation for the 
summer week. 

 

Figure 19: Electrical demand and generation for the winter 
week 

 

Figure 20: Thermal demand and generation for the summer 
week 

 

Figure 21: Thermal demand and generation for the winter 
week 

The exposed energy equipment behaviour has been 

computed considering a prosumer model. The 

obtained energy exchange is shown for the two 

analysed seasons in Figure 22 and Figure 23. For the 

summer case, a combination of CHP, PV and 

electricity bought at low prices is employed to fulfil 

electrical demand. When the electricity price for feed-

in is high, electrical energy coming from both the PV 

and the CHP is injected into the utility grid. This 
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happens for example at hour 10. The decision of 

employing CHP electrical power to fulfil electrical 

demand and also to sell it to the utility grid is a 

consequence of the difference between energy 

carriers costs. Most of the time, the added cost of gas 

and emissions is lower than the cost of electricity 

making it profitable to burn gas and employ the 

electrical energy coming from the CHP to fulfil 

electrical demand and to sell it to the utility grid. As 

the thermal demand is considerably higher than the 

electrical demand, the CHP thermal power, linked to 

the CHP electrical power, is directly used to cover 

internal thermal load. If the desired CHP electrical 

operation and corresponding CHP thermal 

production exceed the required thermal power, 

thermal storage enters into action and absorbs the 

surpluses of thermal power to provide it at later times 

where thermal demand is higher. An example of this 

performance can be seen at hour 45, when the 

electricity price is high, electrical demand is also high, 

but PV generation is low. To reduce the electricity 

purchased from the utility grid, electrical demand 

from the CHP system is used. However, thermal 

demand is relatively low and thus more thermal 

power is generated than used. For this reason, the 

thermal ESS stores this surplus and delivers it later, in 

hour 55, where there is a small peak of thermal 

power. Where important thermal power peak occurs 

in this season, the boiler is also employed. 

In the winter season, the thermal demand is higher 

than in summer and the electrical demand is more 

stable and lower. For this reason, the CHP operates 

most working hours at maximum capacity. In this 

case, the boiler takes a more active role, as it is 

employed to support the CHP in meeting thermal 

demand. Regarding the electrical demand, it is 

fulfilled by the energy generated from the CHP and 

the PV system, minimising the energy purchase and 

selling the surpluses. In case of electricity costs being 

remarkably low, as happens on weekend days, the 

operation regime of the CHP is lowered down and 

electricity is purchased and employed to fulfil 

electrical demand, using the boilers to meet the 

thermal demand at that moment. 

 

Figure 22: Exchange of energy with the utility grid for the 
summer week. 

 

Figure 23: Exchange of energy with the utility grid for the 
winter week. 

4.2. Uncertainty Analysis 

The results of the UA showing the evolution of the 

uncertainty of the NPV are exposed in Figure 24 while 

the final NPV uncertainty is shown in Figure 25 

together with the fitted PDF, which in this case is an 

inverse Gaussian with parameters (5,08; 8.869). The 

mean final value is 5.082.200€, slightly higher than 

the obtained in the deterministic case due to the 

change in equipment operation. It can be seen that the 

uncertainty on the value of the investment increases 

with time following the same pattern as the exposed 

by the uncertainty in prices related to energy and 

emissions. For its final value, the NPV presents a 

standard deviation of 121.700€, which means that 

there is a 68% chance that the final realized value lays 

around 2,4% of the mean value and a 95% of 

probabilities that the final realized value lays around 

4,8% of the mean value. These results expose that, 

despite the uncertainty existent in the input 

parameters, the proposed optimisation methodology 

provides robust results which creates a benefit for the 

industrial enterprise with an acceptable risk level. 
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Figure 24: Uncertainty evolution of NPV along the lifetime of 
the energy equipment. 

 

Figure 25: Final NPV uncertainty and fitted PDF. 

4.3. Sensitivity Analysis 

4.3.1. First stage: Morris method 

As the objective of this first stage is to discard the less 

influential inputs, all the inputs exposed in section 2.2 

are considered. The results of the Morris SA are 

exposed in Figure 26. 

 

Figure 26: Morris SA results. 

It can be seen that five parameters have almost no 

influence on the output uncertainty, which endorse 

the methodology employed to perform this 

evaluation as they can be clearly identified and erased 

from further analysis. The O&M cost of the PV, ESS, 

TES and HP systems can be considered as 

deterministic as they are inconsequential in terms of 

output variance. The results also expose that 

emissions costs have a negligible influence. By 

eliminating the mentioned O&M costs and the cost of 

emissions at this point of the evaluation, the 

computational effort in the second stage of the SA is 

reduced 54% while maintaining the uncertain 

information intact. 

4.3.2. Second stage: Sobol method 

The results of the Sobol analysis are exposed in Figure 

27, in which the y-axis is presented on a logarithmic 

scale. 

 

Figure 27: Sobol SA parameter ranking results. 

It can be observed that the input that has the main 

influence in the final NPV uncertainty is the cost of 

electrical energy, being the influence of the cost of gas 

more than 10 times lower, and the influence of the 

feed-in tariff and the O&M costs negligible. 

The dependence of the performance of energy 

equipment on energy prices was also exposed in [30], 

where the sensitivity of the single-year economic 

performance of an energy system was studied and gas 

price was presented as primary uncertainty factor. 

Being the cost of energy carriers the inputs that cause 

most of the uncertainty, it is here shown that the 

demand profile together with the framework and 

boundary conditions applied determine which of 

them has a predominant role. Apart from claiming the 

importance of the energy price in the investment 

uncertainty, the results obtained here also justify 

mathematically the firms’ investment tendencies 

found in [8], in which it was appreciated through a 

statistical analysis based on historical information, 

that enterprises tend to invest less if the uncertainty 

in the energy market increases. 
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5. Conclusions 

This paper presents a novel methodology to optimise 

the investment in energy equipment for prosumer 

industrial SMEs. It considers SMEs’ operation along 

time and assesses the risk this action supposes 

together with the inputs that influence it the most to 

support SMEs in taking energy investment actions. 

The proposed methodology includes a design and 

operation optimisation evaluating the expected 

lifetime of the investment, as well as production and 

market weekly cost cycles. The optimisation 

procedure enables to compute the net present value 

of the investment as well as the environmental and 

social implications that the upgraded energy 

infrastructure has, providing industrial SMEs with the 

solution that best suits their interests. The risk linked 

to this energy investment is also evaluated to enrich 

the investment procedure typically followed by SMEs 

due to their managerial and financial characteristics. 

Considering the time characteristics of the 

investment and the existent market prognosis, 

continuous probability density functions of input 

parameters are employed to characterize the 

uncertain framework at which the industrial SME 

operates. To compute the investment risk, the 

upgraded energy infrastructure is analysed under 

uncertain scenarios through an Uncertainty Analysis 

(UA). This UA enables to obtain the statistical final 

expected value of the investment as well as its 

deviation, exposing the probability of the outcome to 

be within a certain range and thus the risk that the 

enterprise is facing. A Sensitivity Analysis (SA) is also 

performed to provide industrial SMEs with 

information regarding the inputs that influence the 

most the risks of the investment, being possible for 

them to better define these inputs and thus reduce the 

risk. A case study has been developed in which it is 

possible to appreciate the economic, social and 

environmental benefits of enterprises upgrading 

their energy infrastructure and adopting a prosumer 

model. The proposed methodology provides robust 

results and a risk analysis that allows a more 

informed investment by industrial SMEs. The results 

exposed in this paper are of high utility for industrial 

entities when upgrading their energy infrastructure, 

exposing their suitability to adopt a prosumer 

behaviour and providing a framework to further 

support their energy investment decision making 

process. 
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Appendix A. Energy optimisation problem formulation 

A.I Reference Plant performance optimisation 

- Constraints: 

• Electrical hub equilibrium: 

 
𝑃𝑈𝐺,𝑟𝑒𝑓𝜂𝑈𝐺 =

𝑃𝐸𝐿
𝜂𝐸𝐿

 (6) 

Where 𝑃𝑈𝐺,𝑟𝑒𝑓  is the energy purchased by the reference plant, 𝑃𝐸𝐿  the power required by the electrical demand 

and 𝜂𝑈𝐺  and 𝜂𝐸𝐿 the efficiencies of connexion with the utility grid and the demand. 

• Thermal hub equilibrium 

 
𝑉𝐵𝑂𝐼,𝑟𝑒𝑓𝜂𝐵𝑂𝐼 = 𝑄𝐵𝑂𝐼,𝑟𝑒𝑓 =

𝑄𝑇𝐿
𝜂𝑇𝐿

 (7) 

Where 𝑉𝐵𝑂𝐼,𝑟𝑒𝑓 is the gas consumption by the boiler at the reference plant, 𝑄𝐵𝑂𝐼,𝑟𝑒𝑓 the heat produced by the boiler, 

𝑄𝑇𝐿 the thermal demand, 𝜂𝐵𝑂𝐼  the boiler efficiency and 𝜂𝑇𝐿 the connexion efficiency with the thermal demand. 

• Energy exchange: 

 0 ≤ 𝑃𝑈𝐺,𝑟𝑒𝑓 ≤ 𝐸𝑚𝑎𝑥  (8) 

 0 ≤ 𝑉𝐵𝑂𝐼,𝑟𝑒𝑓 ≤ 𝑉𝑔𝑚𝑎𝑥  (9) 

 0 ≤ 𝑄𝐵𝑂𝐼,𝑟𝑒𝑓 ≤ 𝑄𝐵𝑂𝐼,𝑚𝑎𝑥  (10) 
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 Where 𝐸𝑚𝑎𝑥 , 𝑉𝑔𝑚𝑎𝑥  and 𝑄𝐵𝑂𝐼,𝑚𝑎𝑥  are the maximum power thresholds in the utility grid, gas grid and also in the 

boiler. 

- Objective function: 

 
𝑓𝑤𝑒𝑒𝑘𝑙𝑦,𝑟𝑒𝑓 = ∑𝑃𝑈𝐺,𝑟𝑒𝑓,𝑗𝐶𝑈𝐺,𝑖,𝑗 + 𝑄𝐵𝑂𝐼,𝑟𝑒𝑓,𝑗𝐶𝐵𝑂𝐼 + 𝑉𝐵𝑂𝐼,𝑟𝑒𝑓,𝑗(𝐶𝐺,𝑖 + 𝐹𝑔𝐺𝐻𝐺𝐶𝐺𝐻𝐺,𝑖)

𝑁

𝑗=1

 (11) 

Where j represents the hour considered and i the year under evaluation. This computation is performed for the 

different weeks along the yeas of the optimisation horizon. 𝐶𝑈𝐺  is the cost to purchase energy from the utility grid, 

𝐶𝐵𝑂𝐼  is the cost for using the boiler, 𝐶𝐺  is the cost to purchase gas, 𝐹𝑔𝐺𝐻𝐺  is the emission factor of the purchased gas 

and 𝐶𝐺𝐻𝐺  the cost of emissions. 

A.II Upgraded Plant performance optimisation 

- Constraints: 

• Electrical hub equilibrium: 

 
𝑃𝑃𝑉𝜂𝑃𝑉 + 𝑃𝑈𝐺𝜂𝑈𝐺 + 𝑃𝐶𝐻𝑃 + 𝑃𝐷𝐸𝑆𝜂𝐷𝐸𝑆 =

𝑃𝐸𝐷
𝜂𝐸𝐷

+ 𝑃𝐹𝐼 +
𝑃𝐶𝐸𝑆
𝜂𝐶𝐸𝑆

+ 𝑃𝐻𝑃  (12) 

Where 𝑃𝑃𝑉 , 𝑃𝑈𝐺 , 𝑃𝐶𝐻𝑃 , 𝑃𝐷𝐸𝑆 , 𝑃𝐹𝐼 , 𝑃𝐶𝐸𝑆 and 𝑃𝐻𝑃  are the power from the PV system, from the utility grid, from the CHP, 

from the electrochemical ESS, to the utility grid, to the electrochemical ESS and the HP. 𝜂𝑃𝑉 , 𝜂𝑈𝐺 , 𝜂𝐷𝐸𝑆, 𝜂𝐸𝐷 , 𝜂𝑈𝐺  and 

𝜂𝐶𝐸𝑆 are the efficiencies of the connection with the PV system, the utility grid, the efficiency for discharging the 

ESS, the efficiency of the connexion with the demand, the utility grid and the efficiency of charging the ESS, 

respectively. 

• Thermal hub equilibrium: 

 
𝑄𝐶𝐻𝑃 + 𝑄𝐵𝑂𝐼 + 𝑄𝐷𝑇𝑆𝜂𝐷𝑇𝑆 + 𝑃𝐻𝑃𝜂𝐻𝑃 =

𝑄𝑇𝐿
𝜂𝑇𝐿

+
𝑄𝐶𝑇𝑆
𝜂𝐶𝑇𝑆

 (13) 

Where 𝑄𝐶𝐻𝑃 , 𝑄𝐵𝑂𝐼 , 𝑄𝐷𝑇𝑆 and 𝑄𝐶𝑇𝑆  are the thermal power from the CHP, the boiler, the thermal ESS and the power 

to the thermal ESS. 𝜂𝑇𝐿is the efficiency of the connexion with the thermal load and 𝜂𝐷𝑇𝑆 and 𝜂𝐶𝑇𝑆 are the efficiencies 

of discharging and charging the thermal storage. 

• Energy exchange 

 0 ≤ 𝑃𝑈𝐺 ≤ 𝐸𝑚𝑎𝑥  (14) 

 0 ≤ 𝑃𝑈𝐺𝑆 ≤ 𝐸𝑚𝑎𝑥  (15) 

 0 ≤ 𝑉𝐶𝐻𝑃 + 𝑉𝐵𝑂𝐼 ≤ 𝑉𝑔𝑚𝑎𝑥  (16) 

Where 𝐸𝑚𝑎𝑥  is the maximum exchange of power with the electrical grid and 𝑉𝑔𝑚𝑎𝑥  the maximum for the gas grid. 

• Energy storage. 

The formulation is exposed for general energy storage, which is applied to both electrochemical and thermal 

storages. 

 0 ≤ 𝑃𝐶 ≤ 𝑅𝐶 × 𝐶𝑎𝑝 (17) 

 0 ≤ 𝑃𝐷 ≤ 𝑅𝐷 × 𝐶𝑎𝑝 (18) 

 𝐸𝑡 = 𝐸𝑡−1 + ∆𝑡(𝑄𝐶 − 𝑄𝐷) − 𝑆𝐷𝐸
𝑡  (19) 

 𝐶𝑎𝑝𝑚𝑖𝑛 ≤ 𝐸
𝑡 ≤ 𝐶𝑎𝑝 (20) 

Where 𝐶𝑎𝑝 is the capacity of the storage and 𝑅𝐶  and 𝑅𝐷 its charge and discharge ratios. 𝐸𝑡  is the stored energy at 

the evaluated instant, 𝐸𝑡−1 describes the energy stored in the previous instant while ∆𝑡 is the time step. SD is the 

self-discharge ratio. 

• Power capacity of energy equipment 

 0 ≤ 𝑄𝐵𝑂𝐼 ≤ 𝑄𝐵𝑂𝐼,𝑚𝑎𝑥  (21) 
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 0 ≤ 𝑃𝐶𝐻𝑃 ≤ 𝑃𝐶𝐻𝑃,𝑚𝑎𝑥  (22) 

 0 ≤ 𝑄𝐻𝑃 ≤ 𝑄𝐻𝑃,𝑚𝑎𝑥  (23) 

Where 𝑄𝐵𝑂𝐼,𝑚𝑎𝑥 , 𝑃𝐶𝐻𝑃,𝑚𝑎𝑥  and 𝑄𝐻𝑃,𝑚𝑎𝑥  are the maximum power thresholds for the boiler, the CHP and the HP. 

- Objective function: 

 
𝑓𝑤𝑒𝑒𝑘𝑙𝑦 =∑𝑃𝑃𝑉,𝑗𝐶𝑃𝑉 + 𝑃𝑈𝐺,𝑗𝐶𝑈𝐺,𝑖 + 𝐶𝐸𝑆(𝑃𝐶𝐸𝑆,𝑗 + 𝑃𝐷𝐸𝑆,𝑗) + 𝑃𝐶𝐻𝑃,𝑗𝐶𝐶𝐻𝑃 + 𝑃𝐻𝑃,𝑗𝐶𝐻𝑃

𝑁

𝑗=1

+ 𝑄𝐵𝑂𝐼,𝑗𝐶𝐵𝑂𝐼 + (𝑉𝐶𝐻𝑃,𝑗 + 𝑉𝐵𝑂𝐼,𝑗)(𝐶𝐺,𝑖 + 𝐹𝑔𝐺𝐻𝐺𝐶𝐺𝐻𝐺,𝑖)

+ 𝐶𝑇𝑆(𝑄𝐶𝑇𝑆,𝑗 + 𝑄𝐷𝑇𝑆,𝑗) − 𝑃𝐹𝐼,𝑗𝐶𝐹𝐼,𝑖  

(24) 

Where 𝐶𝑃𝑉 , 𝐶𝐸𝑆, 𝐶𝐶𝐻𝑃 , 𝐶𝐻𝑃, 𝐶𝐵𝑂𝐼  and 𝐶𝑇𝑆 are the LCOE of the PV system, the electrochemical storage, the CHP, the 

HP, the boiler and the thermal storage system. 

A.III Optimisation of energy equipment to install 

- Constraints: 

• Equipment size: 

 𝐴𝑃𝑉 ≤ 𝐴𝑃𝑉,𝑚𝑎𝑥  (25) 

 𝐶𝐸𝑆
𝜌𝐸𝑆

+
𝐶𝑇𝑆
𝜌𝑇𝑆

+
𝑃𝐶𝐻𝑃,𝑚𝑎𝑥
𝜌𝐶𝐻𝑃

+
𝑄𝐻𝑃,𝑚𝑎𝑥
𝜌𝐻𝑃

≤ 𝐴𝑖𝑛𝑡,𝑚𝑎𝑥  (26) 

Where 𝐴𝑃𝑉,𝑚𝑎𝑥  is the maximum area for the installation of PV; 𝜌𝐸𝑆 , 𝜌𝑇𝑆, 𝜌𝐶𝐻𝑃  and 𝜌𝐻𝑃  are the energy and power 

densities of the electrochemical storage, the thermal storage, the CHP and the HP. 𝐴𝑖𝑛𝑡,𝑚𝑎𝑥  is the maximum area 

available for the installation of internal energy equipment. 

• Initial investment 

 𝐶0 = 𝐴𝑃𝑉𝐶0,𝑃𝑉 + 𝐶𝐸𝑆𝐶0,𝐸𝑆 + 𝐶𝑇𝑆𝐶0,𝑇𝑆 + 𝑃𝐶𝐻𝑃,𝑚𝑎𝑥𝐶0,𝐶𝐻𝑃 + 𝑄𝐻𝑃,𝑚𝑎𝑥𝐶0,𝐻𝑃 ≤ 𝐶0,𝑚𝑎𝑥  (27) 

Where 𝐶0 is the initial investment and 𝐶0,𝑃𝑉 , 𝐶0,𝐸𝑆, 𝐶0,𝑇𝑆, 𝐶0,𝐶𝐻𝑃 and 𝐶0,𝐻𝑃 are the initial costs of the PV system, 

electrochemical storage, thermal storage, cogeneration and HP, respectively. 𝐶0,𝑚𝑎𝑥  the maximum investment 

limit. 

• Emissions: 

 

𝐺𝐻𝐺𝑇 =
52

4
(∑𝐺𝐻𝐺𝑇,𝑘

4

𝑘=1

) =
52

4
(∑∑𝐹𝑔𝐺𝐻𝐺𝐶𝐺𝐻𝐺,𝑇(𝑉𝐶𝐻𝑃𝑇,𝑘,𝑗 + 𝑉𝐵𝑂𝐼𝑇,𝑘,𝑗)

𝑁

𝑗=1

4

𝑘=1

)

< 𝐺𝐻𝐺𝑚𝑎𝑥,𝑇 

(28) 

Where 𝐺𝐻𝐺𝑇  are the total yearly greenhouse gas emissions for and 𝐺𝐻𝐺𝑚𝑎𝑥,𝑇  the maximum emissions limit. The 

factor 𝑘 represents the week of a year considered. 

• Payback 

 𝑃𝐵𝑡 ≡ {𝑖𝑃𝐵|(−𝐶0 + ∑ 𝐶(𝑖)
𝑖𝑃𝐵
𝑖=1 = 0)} (29) 

Where 𝑃𝐵𝑡 is the payback time and 𝑖 represents the years evaluated. 

- Objective: The objective function is composed by economic, environmental and social parameters 

included in a weighted and normalised manner. 

• Economic objective 

The economic objective is the maximisation of the Net Present Value, which is computed as: 

 
𝑁𝑃𝑉 = −𝐶0 +∑

𝐶𝑖
(1 − 𝑟)𝑖

𝑇

𝑖=1

 (30) 

Where 𝐶𝑖  is the cash flow, or benefits minus cost, for the period 𝑖, and 𝑟 is the hurdle rate. 
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 To obtain the NPV, the computation of costs and benefits per year is required. 

▪ Seasonal benefit minus cost (obtained through its representative week): 

 
𝐶𝑠𝑒𝑎𝑠𝑜𝑛,𝑖=∑𝑃𝐹𝐼,𝑗𝐶𝐹𝐼,𝑖 + (𝑃𝑈𝐺,𝑟𝑒𝑓,𝑗 − 𝑃𝑈𝐺,𝑗)𝐶𝑈𝐺,𝑖

𝑁

𝑗=1

+ (𝑉𝐵𝑂𝐼,𝑟𝑒𝑓,𝑗 − 𝑉𝐶𝐻𝑃,𝑗 − 𝑉𝐵𝑂𝐼,𝑗)(𝐶𝐺,𝑖 + 𝐹𝑔𝐺𝐻𝐺𝐶𝐺𝐻𝐺,𝑖) 

(31) 

▪ Benefits minus cost for the year i: 

 
𝐶𝑖 =

52

4
(𝐶𝑠𝑝𝑟𝑖𝑛𝑔,𝑖 + 𝐶𝑠𝑢𝑚𝑚𝑒𝑟,𝑖 + 𝐶𝑎𝑢𝑡𝑢𝑛𝑚,𝑖 + 𝐶𝑤𝑖𝑛𝑡𝑒𝑟,𝑖)

− (𝐶𝑂&𝑀,𝐶𝐻𝑃𝑃𝐶𝐻𝑃,𝑚𝑎𝑥 + 𝐶𝑂&𝑀,𝐻𝑃𝑄𝐻𝑃,𝑚𝑎𝑥 + 𝐶𝑂&𝑀,𝐸𝑆𝐶𝑎𝑝𝐸𝑆 + 𝐶𝑂&𝑀,𝑇𝑆𝐶𝑎𝑝𝑇𝑆

+ 𝐶𝑂&𝑀,𝑃𝑉𝐴𝑃𝑉𝑃𝑛𝑜𝑚) 

(32) 

Where 𝐶𝑠𝑝𝑟𝑖𝑛𝑔,𝑖 , 𝐶𝑠𝑢𝑚𝑚𝑒𝑟,𝑖 , 𝐶𝑎𝑢𝑡𝑢𝑚𝑛,𝑖 and 𝐶𝑤𝑖𝑛𝑡𝑒𝑟,𝑖  are the variable cash flow of the four 

representative weeks for the year 𝑖 and 𝐶𝑂&𝑀,𝐶𝐻𝑃, 𝐶𝑂&𝑀,𝐻𝑃 , 𝐶𝑂&𝑀,𝐸𝑆, 𝐶𝑂&𝑀,𝑇𝑆 and 𝐶𝑂&𝑀,𝑃𝑉 are the 

yearly operation and maintenance costs per unit capacity of CHP, HP, electrochemical storage, 

thermal storage and PV system, respectively. 

• Environmental objective 

Total emissions over the lifetime of the energy infrastructure. 

 

𝐺𝐻𝐺 =∑
52

4
(∑∑𝐹𝑔𝐺𝐻𝐺𝐶𝐺𝐻𝐺,𝑖(𝑉𝐶𝐻𝑃𝑖,𝑘,𝑗 + 𝑉𝐵𝑂𝐼𝑖,𝑘,𝑗)

𝑁

𝑗=1

4

𝑘=1

)

𝑇

𝑖=1

 (33) 

• Social objective 

The social objectives are represented by the RF and JC. 

▪ Renewable factor 

Ratio between the energy generated by the PV system and the total demand of the SME. 

 
𝑅𝐹 =

∑ ∑ ∑ 𝑃𝑃𝑉𝑖,𝑘,𝑗
𝑁
𝑗=1

4
𝑘=1

𝑇
𝑖=1

∑ ∑ ∑ (𝑃𝐸𝐷𝑖,𝑗,𝑘 + 𝑄𝑇𝐿𝑖,𝑗,𝑘)
𝑁
𝑗=1

4
𝑘=1

𝑇
𝑖=1

 (34) 

▪ Job Creation 

Full-time jobs created through the upgrade of the energy infrastructure over its lifetime. 

 
𝐽𝐶 = 𝑃𝑉𝐽𝐶∑

52

4
∑∑𝑃𝑃𝑉𝑖,𝑘,𝑗

𝑁

𝑗=1

4

𝑘=1

𝑇

𝑖=1

+ 𝐶𝐻𝑃𝐽𝐶∑
52

4
∑∑𝑃𝐶𝐻𝑃𝑖,𝑘,𝑗

𝑁

𝑗=1

4

𝑘=1

𝑇

𝑖=1

+𝐻𝑃𝐽𝐶∑
52

4
∑∑𝑃𝐻𝑃𝑖,𝑘,𝑗

𝑁

𝑗=1

4

𝑘=1

𝑇

𝑖=1

+ 𝐸𝑆𝐽𝐶𝐶𝐸𝑆𝑇 + 𝑇𝑆𝐽𝐶𝐶𝑇𝑆𝑇 

(35) 

Where 𝑃𝑉𝐽𝐶 , 𝐶𝐻𝑃𝐽𝐶 , 𝐻𝑃𝐽𝐶 , 𝐸𝑆𝐽𝐶 , and 𝑇𝑆𝐽𝐶  are the job creation for the PV, CHP, HP, ES, and 

TS equipment, each represented in the units exposed in Table C.1. 

• Multi-objective function 

The economic, environmental and social criteria are included in a single objective function: 

 
𝑓 = 𝑤𝑒𝑐𝑁𝑃𝑉

𝑡𝑟𝑎𝑛𝑠 + 𝑤𝑒𝑛𝐺𝐻𝐺𝑡𝑟𝑎𝑛𝑠 + 𝑤𝑠(𝑤𝑠1𝑅𝐹
𝑡𝑟𝑎𝑛𝑠 + 𝑤𝑠2𝐽𝐶

𝑡𝑟𝑎𝑛𝑠) 
(36) 

Where 𝑤𝑒𝑐 , 𝑤𝑒𝑛 , and 𝑤𝑠 are the economic, environmental and social weights respectively, and 𝑤𝑠1 

and 𝑤𝑠2 are the weights of the renewable factor and job creation inside the social dimension. As 

the criteria in the optimisation function present different units, their value is normalised to 

remove dimensions and balance magnitude differences [90]: 

 

𝑝𝑡𝑟𝑎𝑛𝑠 =
𝑝 − 𝑝0

𝑝𝑚𝑎𝑥 − 𝑝
0

 
(37) 

Where 𝑝𝑡𝑟𝑎𝑛𝑠 is the normalised parameter which lays between 0 and 1, 𝑝 is the measured value 

and 𝑝0 and 𝑝𝑚𝑎𝑥  are the minimum and maximum value achievable, respectively. 
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Appendix B. Sobol indices computation strategy 

Starting from two different sampling matrices A and B with rows equal to the number of simulations and columns 

equal to the number of considered uncertain inputs, the matrix 𝑨𝑩
(𝒊)

 is constructed for all factors with all the 

columns from A expect the i-th column, which is obtained from B. Then, the numerical estimators of the sensitivity 

indices are computed as: 

 
𝑉𝑥𝑖 (𝐸𝑋∽𝑖(𝑌|𝑥𝑖)) =

1

𝑁
∑𝑓(𝑩)𝑗 (𝑓(𝑨𝑩

(𝒊)
)
𝑗
− 𝑓(𝑨)𝑗)

𝑁

𝑗=1

 (38) 

 
𝐸𝑋∽𝑖 (𝑉𝑥𝑖(𝑌|𝑥∽𝑖)) =

1

2𝑁
∑(𝑓(𝑨)𝑗 − 𝑓(𝑨𝑩

(𝒊))
𝑗
)
2

𝑁

𝑗=1

 (39) 

Appendix C. Parameters employed for the optimisation 

The data exposed in this section has been obtained from [49,91–98]. 

Parameter Value 

PV  

Initial cost 950 €/kW 

LCOE 0.07 €/kWh 
PV connexion efficiency 99% 

Job creation 0.87 jobs/GWh 

Electrochemical storage  

Initial cost 430 €/kWh 

LCOE 0.06 €/kWh 
Charge efficiency 94% 

Discharge efficiency 94% 

Charge ratio 0.5C 

Discharge ratio 5C 

Job creation 0.01 jobs/MWh- capacity 
CHP  

Initial cost 3400 €/kWe 

LCOE 0.042 €/kWeh 

G2E efficiency 35% 

G2T efficiency 55% 
Job creation 0.31 jobs/GWh 

HP  

Initial cost 700 €/kW 

LCOE 0.076 €/kWh 

COP 4.5 
0.25 jobs/GWh 

Thermal storage  

Initial cost 5 €/kWh 

LCOE 0.0243 €/kWh 

Charge efficiency 92% 
Discharge efficiency 92% 

Self-discharge 1% 

Charge ratio 5C 

Discharge ratio 0.25C 

Job creation 0.01 jobs/MWh- capacity 
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Boiler  

LCOE 0.053 €/kWh 

Efficiency 90% 
Connexion efficiencies 99% 

Objective function weights  

𝑤𝑒𝑐  0.65 

𝑤𝑒𝑛 0.20 

𝑤𝑠 0.15 
𝑤𝑠1 0.75 

𝑤𝑠2 0.25 
Table C.1: Input values employed 
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5.6. Energy-Investment Decision-Making for Industry: 

Quantitative and Qualitative Risks Integrated Analysis 
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“Energy-Investment Decision-Making for Industry : Quantitative and Qualitative 

Risks Integrated Analysis,” Sustainability, vol. 13, no. 6977, 2021. Under a CC BY 
4.0 license. Available on: https://www.mdpi.com/2071-1050/13/12/6977.

Publication framework: 

This article exposes the methodology for the incorporation of quantitative 

and qualitative parameters and risks in the energy investment optimization 

problem of industrial SMEs. Quantitative parameters are addressed 

numerically through scenarios whereas qualitative parameters are evaluated 

through fuzzy logic to include in their value the vagueness existent in their 

subjective measurement. These parameters are incorporated in the two-stage 

optimization methodology, obtaining a resultant energy infrastructure that 

evaluates quantitative and qualitative criteria and minimizes risks. 

Main contributions: 

• Methodology to support industrial SMEs in the energy investment

optimization problem considering relevant factors and criteria to improve

their competitiveness and accounting for related risks that could affect their
performance.

• Optimization of the energy investment problem including equipment options

and their prosumer operation through a continuous time-optimization
strategy.

• Transformation of subjective criteria represented as qualitative risks into

fuzzy sets to account for judgmental vagueness.

• Evaluation of both qualitative and quantitative risks for energy investment

optimization in a unique function that considers uncertainty in the value of

input parameters and vagueness in the measurement of subjective criteria.

Key words: 

Decision-making, Risk assessment, Uncertainty, Optimal energy design, prosumer. 

https://www.mdpi.com/2071-1050/13/12/6977
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Abstract: Industrial SMEs may take the decision to invest in energy efficient equipment 

to reduce energy costs by replacing or upgrading their obsolete equipment or due to 

external socio-political and legislative pressures. When upgrading their energy 

equipment, it may be beneficial to consider the adoption of new energy strategies rising 

from the ongoing energy transition to support green transformation and decarbonisation. 

To face this energy-investment decision-making problem, a set of different criteria such 

as economic and environmental have to be evaluated together with their associated risks. 

Although energy-investment problems have been treated in the literature, the 

incorporation of both quantitative and qualitative risks for decision-making in SMEs has 

not been studied yet. In this paper, this research gap is addressed, creating a framework 

that considers non-risk criteria and quantitative and qualitative risks into energy-

investment decision-making problems. Both types of risks are evaluated according to 

their probability and impact on the company’s objectives and, additionally for qualitative 

risks, a fuzzy inference system is employed to account for judgmental subjectivity. All 

the criteria are incorporated into a single cost-benefit analysis function, which is 

optimised along the energy assets’ lifetime to reach the best long-term energy investment 

decisions. The proposed methodology is applied to a specific industrial SME as a case 

study, showing the benefits of considering these risks in the decision-making problem. 

Nonetheless, the methodology is expandable with minor changes to other entities facing 

the challenge to invest in energy equipment or, as well, other tangible assets. 

Keywords: decision-making; risk assessment; uncertainty; optimal energy design; 

prosumer 

 

1. Introduction 

The selection and management of assets are crucial for the achievement of 

enterprises’ objectives in the industrial sector. Among the company’s tangible 

assets, those related to energy generation and management have special interest 

due to their impact on production costs and thermal comfort. Currently, small-

and-medium enterprises (SMEs), and particularly those in the manufacturing 

sector, have a high environmental footprint and literature estimates that they 

contribute 60-70% of industrial pollution in Europe [1]. Therefore, equipment 

investment and operation of the SMEs are critical for the green transformation 

and can increase their growth performance [2]. However, the inclusion of new 

energy assets such as Renewable Energy Sources (RES) and other supporting 

equipment to improve the competitiveness of enterprises and reduce the 

environmental footprint has not been studied adequately [3], and industries, 

especially SMEs, are facing difficulties in incorporating them in their energy 

infrastructure [4]. Besides, the energy transition that is already taking place 

presents an opportunity for the industrial sector to adopt an active role in 
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transforming the energy market, for example becoming a prosumer. This active 

role implies the establishment of a smart energy management strategy that 

would make use of the industrial energy assets to meet internal demand while 

adapting their operation to external market conditions, generating a profit from 

this interaction and opening new business models in the industrial entity. To be 

able to incorporate these strategies, it could be necessary, among other solutions, 

to perform an investment for upgrading the energy equipment and 

infrastructure of the industry through its re-design and sizing to use it as a 

productive asset. Due to their limited financial capacity and managerial system, 

industrial SMEs investments occur in discrete points in time, not prolonging the 

investment in multiple phases as performed by other entities such as 

governmental organizations or large companies, which can modify the project 

according to the evolution of industrial, legal or social boundary conditions [5]. 

Instead, SMEs’ decisions are taken based on immediate investment return and 

maximization of profit along the lifetime of the equipment [6]. Therefore, 

industrial SMEs face the investment decision-making problem only with the 

current information and accepting the uncertainty related to the real situation 

evolution at which the upgraded infrastructure would operate. Moreover, some 

of the factors that are commonly employed as criteria in the decision-making 

process are hard to measure and its mere definition presents levels of venture 

and hazard, as, for example, social acceptance and legislation alignment. Thus, 

the required investment for industrial SMEs to upgrade their energy 

infrastructure is inherently linked to risks arising from both the uncertainty in 

the future situation, which can be represented as a quantitative risk, and the 

measurement or subjectivity of some of the possible decision criteria, reflected 

as a qualitative risk. To support industrial SMEs in performing these 

investments, the research objective of this paper is to create a framework that 

addresses risk-informed decision-making (RIDM) for their energy investment 

problem. The specific research questions that have to be answered and that are 

addressed here are: 

• Which risks and factors have to be treated for the energy investment RIDM 

problem in industrial SMEs and how can they be processed? 

• Which methodology is suitable to address this RIDM problem? 

• Which techniques and tools are convenient and how should be used for 

optimising the energy investment RIDM problem in industrial SMEs 

considering the previously addressed risks and factors? 

To created framework to answer these questions, in the following 

paragraphs a review of the state-of-the-art on methodologies and techniques 

applied to RIDM processes and energy investment decisions is exposed. 

Up to date, some RIDM approaches for general industrial applications have 

been presented in the literature. In [7], a methodology for decision-making 

considering quantitative and qualitative risk factors is presented with a focus on 

enterprises with serious health and environmental risk aspects such as mining, 

nuclear and aerospace industries. In this work, a set of alternatives exist and the 

decision is taken by deliberation. In [8], a Multi-Criteria Decision Analysis 

(MCDA) is presented for planning the energy generation network of a country, 

selecting the best option among the alternatives employing an Analytical 

Hierarchy Process (AHP). Although a Cost-Benefit Analysis (CBA) would have 

been suitable for this case, it is argued that qualitative attributes are difficult to 

transform and incorporate in the final functions. 

In CBA, advantages and disadvantages accounting for different criteria 

over the lifetime of investment alternatives are both assessed and incorporated 

in a single function [9], which can be optimised to reach either the best value of 

the investment or the best benefit to cost ratio. In [10], both quantitative and 

qualitative parameters are included in the CBA, although qualitative attributes 

are set as crisp numerical values without considering the vagueness of 
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 qualitative judgements. Also, the weight selection methodology is not clear, 

stating that the application of weights to compare qualitative and quantitative 

data is difficult and presents a barrier to the development of CBAs. This 

weighting issue is solved in [11], where an AHP is employed to weight the 

criteria and ease the selection of the best alternative through an MCDA. AHP 

enables to structure the decision-making problem according to a hierarchy of 

preferences from which each of the weight of the criteria, which can be of various 

natures and have different units, is obtained through the analysis performed by 

decision-makers [12]. All these RIDM problems presented until now deal with a 

discrete number of alternatives, and qualitative and quantitative risks 

considered are transformed to crisp and precise values. However, qualitative 

measurements are subject to judgmental vagueness and thus their consideration 

as crisp numbers cause loss of information. In the past, an alternative to deal 

with qualitative values’ vagueness for decision-making was presented based on 

a fuzzy approach, which transformed the linguistic risk appreciations into 

continuous numerical functions [13]. In this work, however, only qualitative 

fuzzy parameters were employed to assess the risk of construction projects, 

omitting quantitative information, which is by its own nature much more 

precise. Although the exposed RIDM approaches have addressed the investment 

problem for some industrial applications, a suitable framework for industrial 

SMEs’ RIDM energy investment and optimisation problem has not been 

developed yet. 

In the general field of energy investment including industrial, services and 

residential sectors, research has been performed focusing on energy design and 

planning without analysing the associated risks [14,15]. Although in some cases 

the uncertainty of the output is studied after performing the decision, RIDM is 

not carried out. This is the case of [16], where the performance of a hybrid energy 

system is analysed under uncertain events; and of [17], where the response of an 

energy system is studied according to fluctuations in system inputs’, such as the 

cost of energy. The literature on energy investments considering risks inside the 

decision-making problem is scarce, although risk analysis is a common tool for 

companies. In [18], a life cycle cost (LCC) analysis is performed for a building 

energy system considering the risk related to economic parameters through 

Monte Carlo simulation. In [19], the design is done evaluating through the same 

technique the risk related to quantitative costs and technological aspects, and in 

[20], energy carriers price and investment costs uncertainties are considered. In 

all of these works, the risk is expressed employing a quantitative probability 

approach, focusing on economic parameters. However, real-world industries 

decision-making problems include a mixture of criteria that are not easily 

quantifiable and have to deal with insufficient information, such as the 

contribution of the investment into social benefit or the future continuity of the 

enterprise, which makes it not possible to employ probabilistic methods [21]. 

This fact enhances the application of both quantitative and qualitative risk 

assessment techniques which have not been employed in the energy investment 

literature until now. Due to the investment characteristics and the inclusive 

growth role the SMEs play in society, as well as the requirements of energy assets 

to fulfil internal enterprise requirements over time and the possible adoption of 

an active energy role to open a new business models, it is required to create a 

methodology in which risks are correctly considered. 

In this paper, a methodology to properly address the RIDM energy 

equipment investment problem considering the mixture of criteria that exist for 

industrial SMEs is proposed with the aim of improving their competitiveness 

and allow them to play an active role in the energy market. In this new 

methodology, both quantitative and qualitative risk must be assessed 

accounting for the judgemental vagueness of decision-maker, while addressing 

the optimisation problem continuously over operation the time and space of 
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possible combined solutions of the equipment so use rather than analysing only 

a few subjectively chosen alternatives. As a basis for solving this problem, a CBA 

approach is employed, which is suitable for the application in enterprises assets 

management problems [22]. In order to deal with real-world situations where a 

mixture of criteria exists, the proposed CBA approach incorporates both 

quantitative and qualitative data, being the latter assessed through a fuzzy 

approach to account for judgemental vagueness. These risks, together with the 

non-risk criteria to make the decision, are unified into a single objective function 

employing an AHP weighting technique that represents a balanced trade-off of 

the different factors considered in the RIDM energy investment problem. The 

objective function is evaluated and optimised continuously over time and also 

over the continuous space of solutions, analysing all the alternatives and not 

relying on a pre-specification of them. This procedure enables to  reach an 

optimal decision considering the specifications and constraints provided by the 

industrial SME. 

Bearing in mind the state-of-the-art in RIDM and its application to the 

problem of energy investment for industrial SMEs, this paper presents the 

following main novelties and improvements: 

• Creation of a methodology to support industrial SMEs in the energy 

investment decision-making process considering relevant factors and 

criteria to improve their competitiveness and accounting for related risks 

that could affect their performance. 

• Optimisation of the RIDM energy investment problem including 

equipment options and its operation to attend internal demand and 

produce a profit from exchanges with the energy market. To do this, the 

continuous-time operation of the SME and all possible combinations and 

sizes of energy equipment are evaluated. 

• Evaluation of both qualitative and quantitative risks for energy-investment 

decision-making in a unique function to account for uncertain deployment 

scenario and face the difficulty in the measurement of subjective criteria. 

These novelties imply the adoption and usage of strategies, techniques and 

tools which have not been employed until now in RIDM for energy investment. 

These are considered as collateral paper contributions consequence of the 

previously stated ones, and are: 

• Transformation of subjective criteria represented as qualitative risks into 

fuzzy sets to account for judgmental vagueness of industrial SMEs’ 

decision-makers. 

• Incorporation of qualitative and quantitative measurements into a single 

function expressed as CBA through AHP weighting, properly reflecting the 

preferences of decision-makers. 

This paper is structured as follows. First of all, in section 2, the proposed 

methodology for energy-investment decision-making is further explained. 

Secondly, in section 3, a case study based on a real manufacturing industrial 

plant at which this methodology is applied is exposed. The results of this case 

study and their discussion are shown in section 4, and, lastly, conclusions are 

drawn in section 5. 

2. Energy-investment decision-making methodology 

In this section, the methodology to assess the RIDM for industrial SMEs 

aiming to invest in energy assets to upgrade their energy infrastructure and 

improve their competitiveness is presented. Industrial SMEs are characterised 

by performing investments in discrete points in time to maintain or increase the 
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 productivity of their plant. For the case of investment in energy assets, their 

selection influences the long-term continuity of the enterprise as it affects the 

efficiency at which the production load is met as well as its impact on local social 

welfare and corporate image. However, the information which industrial SMEs 

manage to perform these decisions present uncertainty both in the forecast of 

the future situation and in the measurement of qualitative decision-making 

criteria. These facts, together with decision-making difficulties involving access 

to financial sources, are challenges faced by SMEs worldwide [23]. Therefore, the 

proposed methodology to address and support SMEs’ RIDM in energy 

investment, which can be seen in Figure 1, has been defined to be expandable to 

SMEs around the globe. 

To implement this methodology, information regarding specific industrial 

SME framework and the variables and constraints that apply are required. On 

the one hand, the specific SME internal and context information include: 

• production and energy consumption profiles, 

• local energy and emissions costs and applicable legislation, 

• available energy solutions and technological maturity of the company for 

using them, and 

• Opinion and views of the local community on innovative energy 

infrastructures and equipment for renewable energy, who may have, for 

instance, different acceptance of photovoltaic and biomass due to their 

different landscaping and logistic impacts 

On the other hand, the constraints that apply for energy-investment 

problem in industrial SMEs and that should be considered are: 

• limited initial investment, 

• required payback period, 

• geographic constraints, and 

• legislation constraints. 

These parameters and variables must be locally analysed and stated to 

process them according to their uncertain nature. Then, they serve as input for 

the optimisation problem, where the potential energy infrastructures in which 

the SME can invest are analysed, evaluating the identified risks and criteria. This 

evaluation of possible energy infrastructures is performed through an iterative 

algorithm, which analyses the output for each of them and moves towards the 

solution most suited to the studied industrial SME, the priorities of which are 

specified by decision-makers and adequately incorporated in the optimisation 

problem to reach the best trade-off solution. 

In the following sections, each of the stages of the proposed methodology 

is exposed together with the techniques employed and their background. 
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Figure 1. Energy-investment decision-making methodology. 

2.1. Scope, context and criteria 

Industrial SMEs face the problem of investing equipment to upgrade their 

energy infrastructure and include RES due to the required replacement of 

outdated energy assets or the existence of a socio-political framework that forces 

or encourages them to do so. The current economic, environmental and technical 

context is also opening the path and promoting the inclusion of distributed 

energy resources and active energy actors to achieve a cleaner and sustainable 

energy system [24]. For industries, it is possible to be part of this change by 

adopting a prosumer role, being one way to do so the upgrade of their energy 

infrastructure. However, the uncertain future market situation and the energy 

price volatility supposes a financial risk that inhibits industries to perform these 

investments [25]. For this reason, the methodology presented in this paper 

considers the relevant criteria to take into account for choosing the most suitable 

energy-investment solution, and the risks related to them. 

The criteria represent the decision drivers to evaluate the potential energy-

investment solutions. These criteria can be related to risks or not, being possible 

the following situations, or a combination of them: 
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 • Non-risk criteria: Their value is computed objectively and it is not 

influenced by the uncertainty in the inputs of the system. In the RIDM 

energy investment optimisation problem, these non-risk criteria are 

selected according to the scope of the problem and can be, for example, the 

total emissions of the system if the emission factor is considered constant, 

which is a common approach in energy-investment optimisation problems 

[26]. 

• Criteria affected by inputs’ uncertainty: The value of the criteria depends 

on uncertain inputs. These uncertainties have to be identified as 

quantitative risks, and the variation of the affected criteria according to 

them have to be computed. This variation is then included in the decision-

making problem as an additional criterion aiming for its reduction, 

minimizing the risk at which the enterprise is exposed. For the case of 

energy investment problems in industrial SME, a common decision-making 

criterion is the net present value (NPV). The value of the NPV in the 

proposed energy infrastructure is influenced, among others, by the cost of 

energy carriers. As there is uncertainty in future energy costs that can be 

quantifiable, the variation of the NPV should be computed according to 

them and introduced in the optimisation problem. 

• Subjective criteria: These criteria are difficult to assess mathematically as 

they lay on subjective opinions and, consequently, their evaluation 

represents a risk by itself. To include them in the decision-making process, 

they are treated as qualitative risks employing a fuzzy methodology to 

account for judgemental vagueness. This is the case of criteria such as social 

acceptance, whose value relies on the knowledge about the local 

community where the SME is placed and the opinion based on the 

experience of decision-makers. 

In this paper, and to properly address the mixture of criteria and risks 

present in the energy investment RIDM problem of industrial SMEs, the 

combination of criteria with both quantitative and qualitative risks is 

considered. For this problem, the non-risk criteria are related to factors arising 

from the operation of the upgraded energy infrastructure and its economic and 

environmental impact, such as the obtained profit and emissions. To compute 

these parameters, the industrial plant is modelled mathematically and its 

operation optimised. Also, quantitative and qualitative risks related to the 

upgraded energy plant are evaluated following the indications of relevant 

research performed in the literature up to date, including the fuzzy treatment of 

qualitative measurements. 

The criteria and risks to decide the best trade-off energy-investment 

solution are selected according to specific enterprise interests and should 

include economic, environmental, technical and social aspects. A review of the 

criteria for energy investment evaluations commonly employed in the literature 

is available at [27], which can be modified and adapted to the specific problem 

treated. The scope of the energy-investment decision problem has also to be 

settled by the company, specifying the equipment considered for installation, 

the available space for installation and other limitations, the required risk detail, 

and any restriction that apply, such as maximum initial investment, payback 

time, etc. 

2.2. Risks analysis 

Once the SME decides the criteria which are relevant for consideration in 

the energy-investment problem, the risks that affect them have to be identified. 

In this section, the methodology to classify and treat these risks is assessed. 

2.2.1. Identification 
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The first stage in the risk analysis process is the identification of the risks 

present in the energy investment decision-making problem. Industrial SMEs are 

characterised by a management system where the owner of the enterprise acts, 

most of the time, as manager of the company, and there is a lack of a 

management body with suitable specialised knowledge for decision-making [6]. 

To successfully implement an energy-investment decision-making process, it is 

required to establish a decision-board either internally in the enterprise or 

resorting to external advisors. Once decision-makers have been established, the 

risk detection process has to be performed aiming to identify as many risks as 

possible according to the scope of the problem. The possibility of not identifying 

a risk due to a lack of knowledge or awareness is not assessed in this paper. 

As mentioned in the previous section, risks can be embedded in the criteria 

or can be the effect of quantitative inputs uncertainty in the criteria. To properly 

deal with them, their probability and impact on the enterprise’s objectives and 

criteria have to be addressed, reaching a risk evaluation measure [28]. The 

probability of a risk is the measure of how possible it is for an uncertain event to 

happen and the impact refers to the effect that this event would cause on the 

performance of the energy infrastructure and the SME’s objectives. In the 

following subsections, the definition strategy for both types of risks is exposed. 

2.2.1. Quantitative risks definition 

The steps to treat these risks in the decision-making process are exposed in 

Figure 2. 

 

Figure 2. Quantitative risks treatment. 

In the energy-investment decision-making problem for industrial SMEs, 

quantitative risks deal with the uncertainty related to the future energy 

situation, and include, among others, future energy carrier and emissions costs. 

Once the decision-board identifies all the applicable risks for the specific 

problem considered, the inputs’ uncertainties have to be expressed 

mathematically. The possible values that the uncertain inputs can take can be 

denoted as a set of discrete values with their corresponding probabilities[16], 

such as in the case of existent forecasting scenarios of future energy costs, or as 

continuous probability distribution functions [19] if a more detailed analysis is 

available. The type of expression depends on the nature of the risk and the 

information gathered. If a continuous probability distribution function is 

employed, this has to be transformed into a set of probability-based scenarios to 

be able to evaluate their impact on the criteria. This is done through the Monte 

Carlo sampling strategy, which is widely used and accepted in RIDM processes 

[29]. In the case that discrete values with probabilities are used, the scenarios to 

compute the impact are all the possible values with their associated probability. 

With these scenarios, it is possible to compute the impact of the risk on the 

affected criteria. Then, the risk is evaluated as the variation present in the criteria 

due to the different inputs’ uncertainties. This variation is the parameter that is 

incorporated into the CBA function as a cost. 

2.2.2. Qualitative risks definition 



 
136 Compendium of publications 

 The steps to consider qualitative risks in the decision-making process are 

exposed in Figure 3. 

 

Figure 3. Qualitative risks treatment. 

As commented previously, qualitative risks deal mainly with criteria that 

cannot be easily defined mathematically and that are approximated subjectively 

by decision-makers. This is the case of some social and environmental aspects 

which do not have clear measurement strategies, such as social welfare and local 

community perceptions. Once these risks are identified, it is required to evaluate 

and assign a numerical value to both their probability of occurrence and their 

impact on SME’s objectives if they occur. Although there are other manners to 

define qualitative risks, the employment of probability and impact values, which 

is also suitable for quantitative risks, is the most appropriate one to deal with 

qualitative ones in decision-making problems in the industrial sector [28]. The 

assessment of probability and impact of qualitative parameters is done 

considering the decision-board experience in the sector, knowledge on local 

society obtained through interviews, government surveys, etc.; and vary 

according to the equipment considered for installation and their size. In the 

proposed methodology, the optimisation of the energy investment RIDM 

problem is performed continuously evaluating all possible solutions, not 

existing a set of them pre-defined. Thus, it is required to implement a strategy 

for the specification of probability and impact of qualitative parameters based 

on decision-makers opinion for all possible solutions. This is done by the 

creation of a decision tree whose branches divide all the possible solutions in 

ranges of specific equipment and sizes at which the probability and impacts can 

be defined by decision-makers. This decision tree is resorted by the continuous 

optimisation algorithm to identify the applicable impact and probability values 

for the solution that are iteratively analysed. 

Although these probability and impact values can be defined as crisp 

values, they are unavoidably subject to judgemental vagueness. To avoid losing 

experts and decision-makers valuable opinions, these parameters should not be 

considered as crisp but as part of a continuous function. To do so, a set of fuzzy 

membership functions are defined, which serve as input for the Fuzzy Inference 

System (FIS) that computes the risk evaluation. Two FIS are widely accepted and 

employed in the literature; the Mamdani and the Takagi-Sugeno [30]. In this 

paper, the Mamdani method and the max-min inference are selected as they 

perform better in extracting expert’s opinion on risk factors and thus it is more 

suitable for RIDM problems [31]. In the Mamdani method, if-then rules and the 

implication method are used to obtain a fuzzy output which has to be 

defuzzified in a later stage for its treatment in further mathematical equations. 

The if-then rules are designed to follow the logic of an expert risk assessor 

through a qualitative risk matrix [32], and the defuzzification is performed 

employing the centroid strategy, which provides solutions that naturally and 

smoothly respond to the created rules [33]. 
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2.3. Criteria ranking 

In this stage, the criteria selected and the risks identified are ranked to 

reflect the preferences of industrial SME in the energy investment RIDM 

problem. To capture these preferences, an AHP is employed, which is a tool to 

methodologically determine the weights based on subjective preferences and 

which is suitable to incorporate various criteria of different nature [34], 

including non-risk, quantitative risks and qualitative risks. The AHP method 

decomposes the problem into a hierarchy, having the goal on top and structuring 

the criteria and risks into levels, as can be seen in Figure 4. In classic AHP 

applications, the set of studied alternative solutions are included in the 

hierarchy, and they are analysed in a bottom-up perspective, from sub-criteria 

to criteria preceding them in the hierarchy until reaching the overall goal. In this 

paper, as the evaluation of solutions is performed through a continuous 

optimisation problem, the AHP is employed to select the weights which are later 

incorporated in the CBA function. 

 

Figure 4. AHP hierarchy structure and pairwise comparison strategy. 

The goal of the problem, located at the top of the hierarchy, is in this case 

the energy upgrade to become a prosumer and improve the competitiveness of 

the enterprise. Immediately below the goal, a set of criteria appears which 

designate the main aspects considered by the enterprise to reach the decision, 

such as economic and environmental aspects. Then, the next level details the 

criteria linked to these aspects and the relevant risks that apply. In this case, the 

sublevel below the economic criteria can be formed by the NPV, the payback 

period, and their variation according to uncertain inputs, whereas the 

environmental field can include CO2 emissions or soil depletion. After 

generating the hierarchy, each of the items in a level is compared to the rest in 

the same level and under the same hierarchy branch in a pairwise manner [35]. 

This process is reflected in a paired comparison matrix, in which the element 𝑎𝑖𝑗  

denotes the importance of parameter i in front of parameter j following the Saaty 

scale definition [36], exposed in Table 1. This matrix definition process is done 

for the upper or lower diagonal part, being the parameter in the opposite part, 

𝑎𝑗𝑖 , equal to 1/𝑎𝑖𝑗 . Thus, the resultant matrix has the following structure: 

[

1 1/𝑎12 1/𝑎13
𝑎12 1 1/𝑎23
𝑎13 𝑎23 1

]  (1) 
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 Based on this matrix, the weights can be computed using the geometric 

mean and multiplying the results of the matrix from the lower levels of the 

hierarchy until reaching the goal [37]. 

Table 1. Saaty fundamental AHP scale. 

Intensity of 

importance 
Definition 

1 i and j are equally important 

3 i is moderately more important than j 

5 i is strongly more important than j 

7 i is very strongly more important than j 

9 i is extremely more important than j 

2,4,6,8 
Intermediate values between two adjacent judgements 

employed when compromise is needed 

2.4. Optimisation 

Once the criteria and risks have been identified and ranked, establishing the 

framework for selecting the best trade-off energy investment to upgrade the 

energy infrastructure of the plant, it is possible to enter the optimisation stage. 

In this stage, the possible energy infrastructures are evaluated iteratively to 

reach the optimal energy investment decision. This is done by incorporating all 

the criteria and risks into a CBA, which forms the optimisation’s objective 

function. In the CBA, the parameters that are beneficial and want to be 

maximised are included as benefits, such as the NPV of the investment and the 

social acceptance of the solution. In contrast, the parameters that represent a 

disadvantage or hazard are introduced as costs. This is the case, for example, of 

emissions and NPV variability. As these factors present different units, their 

value is normalised for its inclusion in a single function. This normalisation 

process is performed both to remove the dimensions and also to balance possible 

magnitude differences that exist between different criteria [38]. The 

transforming approach employed here, which is considered one of the most 

robust regardless of the original range of parameters [39], is: 

𝑝𝑡𝑟𝑎𝑛𝑠 =
𝑝 − 𝑝0

𝑝𝑚𝑎𝑥 − 𝑝0
 (2) 

Where 𝑝𝑡𝑟𝑎𝑛𝑠 is the normalised parameter which lays between 0 and 1, 𝑝 is 

the measured value and 𝑝0 and 𝑝𝑚𝑎𝑥  are the minimum and maximum value 

achievable, respectively. Once the parameters are normalised, they are included 

in the CBA function with the weights obtained in the AHP. 

Some of the parameters included in the CBA function are related to the 

performance of the energy infrastructure over time, and for this reason, it is 

required to compute the operation of the upgraded plant for the expected 

lifetime of the energy investment. This is performed modelling the plant 

employing the Energy Hub (EH) concept [40], which can be expressed 

mathematically as: 

𝐿 = 𝜂𝑃 (3) 

Where 𝐿 represents the demand of the plant or power output, 𝑃 the 

generation or power input, and 𝜂 the connectivity matrix, which includes the 

dispatch factors and the efficiency of the equipment. This model represents the 

power balance which has to be fulfilled at all times which, together with other 

restrictions such as power exchange thresholds with external grids and 

equipment operation bounds, serve as the basis to evaluate the operation of the 

plant and obtain relevant parameters which should be included in the CBA such 

as the NPV and payback period. 
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The CBA obtained from the different criteria is optimised aiming to reach 

as many benefits as possible with the least costs. To do so, a stochastic global 

algorithm is employed, which assures the surveillance of the entire search space 

and has better chances to find the global optimum compared to other 

optimisation methodologies [41]. In this paper, the Direct Search (DS) global 

optimizer is employed due to its capabilities to reach the global solution 

efficiently. Through this method, the search space surveillance is performed 

through the selection of a set of possible solutions or candidates, which are 

evaluated for the problem under study. The first set of candidates is computed 

based on an initial point provided by the decision-maker, which can be any point 

in the search space. The algorithm adds the unitary pattern vectors to the initial 

point, creating the first mesh. All the points in the mesh are possible energy-

investment solutions, whose CBA is evaluated. The results of these energy-

investment possibilities enable the algorithm to move in the search space, 

creating new meshes having as starting points those in the previous mesh that 

provided favourable results, approaching the global optimum efficiently. The 

calculations required to compute the CBA and optimize it depend on the specific 

case study considered and the criteria and risks identified. 

2.5. Methodology generalisation 

The exposed methodology has been designed for RIDM energy investment 

problems in industrial SMEs, addressing the challenges globally faced by these 

entities and creating a solid framework for the assessment of new energy 

equipment and management solutions. As can be inferred from previous 

paragraphs, this methodology can be divided into three different strata: 

1. Input information from enterprise characteristics and the framework at 

which it operates. 

2. Risks, factors and limitations applicable to the energy-investment problem. 

3. Mathematical strategies, techniques and tools for the proper incorporation 

of factors different in nature in an optimisable function. 

All these three points are directly applicable to worldwide SMEs that face 

the energy-investment decision-making problem. However, and although the 

proposed methodology has been especially designed for these entities in the 

energy-investment context, it is expandable to other decision-making problems. 

For instance, the current energy-investment problem faced nowadays by 

managers of buildings, communities or districts can also be assessed through the 

proposed methodology. In such case, the methodology should be modified to 

incorporate as input information the specific data and characteristics of tertiary 

and residential sectors, such as: 

• space occupation and energy consumption demand at different conditions, 

• consumers’ flexibility and load shifting behaviour, 

• compatibility of energy equipment with building/community/district 

purposes, and 

• integration with Smart City initiatives, etc. 

The constraints that apply to the energy investment itself may also differ, 

focusing more on operational benefits and allowing larger payback periods. 

Moreover, as in these entities the human factor is much stronger than in the 

industry, issues related to social welfare, environment and safety should be 

considered as determinant criteria, having economic criteria either in the same 

level or moved to the background. Despite these differences with the industrial 

SMEs’ problem treated in this paper, energy-investment problems deal with a 

similar mixture of criteria which have to be evaluated along the lifetime of the 
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 infrastructure. For this reason, the mathematical strategies, techniques and tools 

exposed for suitably address the energy-investment RIDM problem are 

applicable not only to industrial SMEs’ problems but also to other entities facing 

the challenge to perform an energy investment with minimum risks. 

Furthermore, if the energy investment is not performed by SMEs or 

individuals but by governmental entities or big corporations, the proposed 

methodology can be adapted to incorporate the possibility to carry out multiple-

phase investments and project expansions. In this case, the inputs of the system 

should incorporate the time frames at which investments are desired and the 

growing energy requirements to be fulfilled. 

Apart from its application to energy-investment problems from a wide 

point of view, the proposed methodology can also expand to suit other RIDM 

problems not directly related to energy issues but with other tangible assets, 

such as the placement and investment of distribution centres. For this case, the 

inputs should incorporate the expected products’ traffic, location of stakeholders 

and clients, earth-moving constraints, etc. Also, for distribution and logistics 

centres, the investment problem is not only economic, and constraints are closely 

related to the acceptance of the local community since it can strongly affect the 

structure of the environment and the communications infrastructure of the 

district and area in which it is placed, due to important visual impact for the 

community. Therefore, and in a similar way to the case of energy-investment in 

non-industrial entities, it is possible to use the proposed methodology, strategies 

and tools to evaluate the selected criteria and the qualitative and quantitative 

risks that should be considered to make the decision. 

Thus, it can be concluded that the proposed methodology can be applied to 

a vast number of decision-making problems in which quantitative and 

qualitative risks have to be evaluated. For these new applications, the general 

methodology and tools can be maintained while the inputs of the system should 

be modified to suit the specific problem to addressed as well as the application 

constraints. In this way, it is possible to employ the proposed strategies and tools 

to reach the balanced trade-off solution that best reflects the interests of the entity 

taking the decision. 

3. Case Study 

In this section, a case study for an industrial SME of the automotive sector 

is presented in which the methodology exposed in the previous section is 

applied. Industrial SMEs, in contrast with other entities in the tertiary and 

residential sector, have higher thermal consumption than electrical consumption 

[42–44] and are characterized by a diversity of processes and equipment that 

enable the incorporation of different energy assets to interconnect the different 

energy carriers present in the industry, increasing the robustness of the energy 

system [45]. Also, the load pattern of industrial SMEs is much more predictable 

than in other sectors as it is strongly affected by production and vary only 

slightly with daily human behaviour [46]. This is especially true for the case of 

industrial SMEs of the automotive sector, as they do not have stocks and produce 

in a just-in-time manner to supply materials and components to other 

enterprises for continuous vehicle manufacturing [47,48], thus presenting a 

much more stable load curve. 

The case study exposed in this section is based on a real industrial SME of 

the automotive sector and reflects the main characteristics exposed of overall 

industries and especially of those related to the automotive sector. The annual 

electrical and thermal demands of the industrial plant are 679,240 MWh and 

1,127,600 MWh, respectively; and an example of the demand pattern followed 

in one day can be seen in Figure 5. 
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Figure 5. Daily load demand for the case study industrial SME. 

In the following subsections, each of the stages of the proposed 

methodology are developed with the objective to achieve the best energy-

investment decision in accordance with the objectives and characteristics of 

industrial SMEs. 

3.1. Scope, context and criteria 

The considered industrial manufacturing plant wants to upgrade its energy 

infrastructure to improve its competitiveness. This can be done by incorporating 

RES and other equipment to enhance its efficiency and reduce its carbon 

footprint, and to explore the capacity of exchanging electricity with the utility 

grid by adopting an active prosumer model. 

Currently, the plant fulfils its electrical and thermal demands through the 

direct purchase of electricity and the combustion of natural gas in a boiler. The 

boiler equipment is foreseen to continue in operation for the next 15 years and 

thus its substitution is not evaluated. The enterprise has 12,000m2 of available 

space for the installation of a PV system, and it is also considering the inclusion 

of a Combined Heat and Power (CHP) unit, a Heat Pump (HP), Thermal Storage 

System (TSS) and an Electrochemical Storage System (ESS). However, the 

maximum investment is limited to 1,000,000€ and the payback period has to be 

lower than 6 years. With this context and scope, the combination of criteria 

proposed in this article to evaluate the best energy-investment decision is 

exposed in Table 2. 

Table 2. Criteria for the energy-investment decision-making problem case study. 

Criteria Sub-criteria Description 

Economy 

NPV 
Value of the investment at the end of its 

expected lifetime 

Business continuity 
Investment influence on supporting 

business continuity in the future 

Technology Innovation 
Competitive advantage through 

innovation 
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Maturity 

Feasibility of the technological solutions 

to be integrated into the SME 

Safety 
Safety of the solution for workers and 

local community  

Social 

Social benefits 
Contribution to the advancement of 

society 

Social acceptance 
Attitudes of users on the energy 

infrastructure upgrade 

 
Administration 

alignment 

Alignment of the solution with 

administrative and legislative energy 

trends 

Environment 

Pollutant emissions 
Emissions of greenhouse gases to the 

atmosphere 

Ecology influence 
Direct and indirect influences on 

ecosystem 

3.2. Risk identification and analysis 

Keeping in mind the criteria selected, the identified quantitative and 

qualitative risks that affect them for this case study are exposed in Table 3. In the 

following pages, each of these risks is characterized for its inclusion in the 

optimisation problem. 

Table 3. Risks identified for the energy-investment decision-making problem case 

study. 

Risk 

ID 
Risk description Criteria affected 

Risk 

type1 

1 Electricity cost market uncertainty NPV QT 

2 Gas cost market uncertainty NPV QT 

3 Feed-in tariff uncertainty NPV QT 

4 Emissions cost market uncertainty NPV QT 

5 PV O&M2 costs uncertainty NPV QT 

6 
Electrochemical storage O&M costs 

uncertainty 
NPV QT 

7 Business continuity subjectivity Business continuity QL 

8 Innovation subjectivity Innovation QL 

9 Maturity subjectivity Maturity QL 

10 Safety subjectivity Safety QL 

11 Ecology influence subjectivity Ecology influence QL 

12 Social benefit subjectivity Social benefit QL 

13 Social acceptance subjectivity Social acceptance QL 

14 Administrative alignment subjectivity 
Administrative 

alignment 
QL 

1 QT = Quantitative; QL = Qualitative. 2 O&M= Operation & Maintenance. 

3.2.1. Quantitative risk analysis 

Here, the quantitative risks are analysed and a numerical description 

assigned to them. 

• Risks 1-4 

These risks correspond to the uncertainty in the forecast of future market 

costs, including the price of electricity, gas and emissions as well as the feed-in 

tariff at which electricity is sold. The uncertainty of the increment ratio of energy 

and emissions costs creates different operation and financial scenarios for which 
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the studied solutions provide distinct results on the criteria. These uncertainties 

and criteria variation have to be evaluated as a risk in the decision-making 

process. To do so, the future scenarios represented as price increments 

possibilities obtained from the literature are analysed. These scenarios, which 

present an equal probability of occurrence, are exposed in Table 4. 

Table 4. Risks 1-4 numerical description. 

Risk 

ID 
Factor description Scenarios Source 

1 Electricity cost yearly percentage increase [1.40;4.06;4.82] [49] 

2 Gas cost yearly percentage increase [0.65;1.40] [50] 

3 
Percentage of the electricity cost at which 

electricity is sold 
[0.80;0.9] [51] 

4 Emissions cost yearly percentage increase [1.14;6.45] [52] 

• Risks 5-6 

These risks relate to the fact that PV and electrochemical energy storage 

systems are growing in adoption, decreasing their operation and maintenance 

(O&M) costs as a consequence of the economy of scale that the sectors are 

experiencing, although the cost evolution is not clear yet. To capture this 

uncertainty, the cost decrease expectation is extracted from the literature and the 

possible scenarios, also with equal probabilities and exposed in Table 5, are 

analysed under the point of view of its impact on the criteria for RIDM. 

Table 5. Risks 5-6 numerical description. 

Risk 

ID 
Factor description Scenarios Source 

5 PV O&M costs yearly percentage decrease [0.5;0.95;1.7] [53] 

6 
Electrochemical storage O&M costs yearly 

percentage decrease 
[3.3;3.7;4.5] [52,54] 

All these quantitative risks affect the NPV criteria. To evaluate this risk, the 

impact in the NPV is computed for all the risk scenarios combinations, obtaining, 

as a result, the variation of the NPV. This NPV variation is included in the CBA 

function aiming at its reduction for risk minimisation. 

3.2.2. Qualitative risk analysis 

Risks 7-14 are qualitative and thus they are defined based on the opinion of 

decision-makers and experts. To capture their knowledge, decision-makers 

perform an analysis of the probability of risks to happen and the impact these 

would have on the enterprise’s objectives depending on the energy 

infrastructures evaluated. As the energy investment RIDM is optimised 

continuously, all possible energy infrastructure that could be a solution have to 

be assessed. To do this analysis, decision-makers rely on their experience and 

knowledge of the local community, legislation trends and company 

environmental and social commitment, as well as initial enterprise’s constraints 

such as maximum investment. The probability and impact evaluations are 

reflected into decision trees allowing the optimisation algorithm to obtain these 

risks’ values for the evaluated energy-investment solutions. As probability and 

impact are not necessarily distributed in the same ranges of equipment, for each 

studied risk one decision tree is required for probability and another for impact. 

Therefore, in the case study presented here, a total of 16 decision trees are 
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 constructed. The resultant decision trees for the decision-making problem are 

subjective as they derive from the opinion of experts considering previous 

experience surveys performed to users and local social agents. An example of a 

decision tree is exposed in Figure 6. This decision tree serves to specify the 

impact of the solution on business continuity according to the equipment 

selected. A higher value means that the studied solution has a higher impact 

than other solutions, being a high impact desirable. In this case, the decision-

makers specify that business continuity shouldn't have a big CHP installation, 

whereas it is positive to include a PV system, although in a moderate manner. 

Of course, this assessment can change depending on the location of the 

company, the production sector, local trends and opinions about the industries, 

etc. 

 

Figure 6. Decision tree for Risk 7 impact, business continuity. 

The probability and impact values specified by decision-makers are 

influenced by vagueness, as one person can understand 0.7 to be a moderate 

impact whereas another one can understand it to be high. To avoid losing 

information regarding the true meaning behind the value specified by the 

decision-maker, a fuzzy strategy is employed in which probability and impact 

can correspond to one or more fuzzy membership functions that serve to 

compute the risk evaluation through the FIS. In Table 6, the membership 

functions employed for probability, impact, and risk evaluation are exposed. In 

this case study, the employed membership functions specified in the last column 

of Table 6 are trapezoidal. Their definition is performed in the (𝑎1, 𝑎2, 𝑎3, 𝑎4) 

form, which correspond to the specific function’s shape such that: 

𝑓(𝑥; 𝑎1, 𝑎2, 𝑎3, 𝑎4) =  

{
 
 

 
 
0, (𝑥 < 𝑎1) 𝑜𝑟 (𝑥 > 𝑎4)
𝑥 − 𝑎1
𝑎2 − 𝑎1

, 𝑎1 ≤ 𝑥 ≤ 𝑎2

1, 𝑎2 < 𝑥 < 𝑎3
𝑎4 − 𝑥

𝑎4 − 𝑎3
, 𝑎3 ≤ 𝑥 ≤ 𝑎4

 (4) 

Table 6. Fuzzy membership functions and linguistic description of risk impact, 

probability and evaluation. 

Risk aspect Linguistic definition Fuzzy number 

Probability 

High (0.6, 0.9, 1, 1) 

Medium (0.2, 0.4, 0.6, 0.8) 

Low (0, 0, 0.1, 0.4) 
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Impact 

Large (0.7, 0.9, 1, 1) 

Considerable (0.5, 0.7, 0.8, 0.9) 

Moderate (0.2, 0.4, 0.6, 0.8) 

Minor (0.1, 0.2, 0.3, 0.4) 

Negligible (0, 0, 0.1, 0.2) 

Evaluation 

High (0.6, 0.9, 1, 1) 

Medium (0.2, 0.4, 0.6, 0.8) 

Low (0, 0, 0.1, 0.4) 

The membership functions for risk impact, probability and evaluation can 

be seen graphically in Figure 7. 

Figure 7. Risk impact, probability and evaluation membership functions. 

Once the linguistic terms, fuzzy sets and decision trees for impact and 

probability assessment of candidate solutions are defined, the 15 required if-then 

rules for the Mamdani FIS are designed, which enable to compute the risk 

evaluation that has to be included in the CBA function. To support their creation, 

the qualitative risk matrix shown in Table 7 is generated, where the risk 

evaluation fuzzy set is identified based on the risk probability and impact 

specified by the decision-maker. 

Table 7. Qualitative risk matrix for the case study. 

               Impact 

  Large Considerable Moderate Minor Negligible 

P
ro

b
ab

il
it

y
 

High High High High Medium Medium 

Medium High High Medium Low Low 

Low Medium Medium Low Low Low 

From this matrix, the rules for the Mamdani FIS are generated. As an 

example, five of them are shown here: 

If (Probability is High) and (Impact is High), then risk is High 

If (Probability is High) and (Impact is Moderate), then risk is Moderate 

If (Probability is Medium) and (Impact is Considerable), then risk is High 

If (Probability is Medium) and (Impact is Moderate), then risk is Moderate 
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 If (Probability is Low) and (Impact is Minor), then risk is Minor 

Here, an example of the working behaviour of the developed FIS is exposed 

to assess the business continuity when analysing the possibility of installing 

6,000 m2 of PV, a CHP system of 180 kWe and an HP of 150 kW. According to the 

decision tree exposed previously, the impact of this solution on business 

continuity is 0.3. For the case of the probability of contributing to business 

continuity, the resultant value is 0.5, which has also been established following 

decision-makers judgments. With this information, the risk can be evaluated 

through the FIS as exposed in Figure 8. According to the fuzzy membership 

functions used, the probability parameter belongs only to one membership 

function. In contrast, the impact value belongs to two membership functions as 

it can express either a minor impact or a moderate impact. Thus, it is necessary 

to analyse two rules: one for medium probability and moderate impact and 

another for medium probability and minor impact. These two rules lead to two 

possible risk evaluations, which are combined to consider judgemental 

vagueness. 

In the first activated rule, the obtained risk is medium. As the value of the 

impact is 0.3, it belongs to the moderate impact membership function although 

it does not completely fulfil it. For this reason, the implication is performed 

through max-min composition to reduce the influence of this rule in the output 

according to the degree of fulfilment of input membership functions [55]. In the 

second activated rule, the obtained risk is low and the min operator is not 

activated as both membership functions are completely fulfilled. These two 

outputs are aggregated, obtaining the fuzzy risk evaluation, which is defuzzified 

through the centroid method. The centroid returns the centre of gravity in the x-

axis of the area under the membership function and is a consistent method 

suitable for one-dimensional output problems where no real-time 

implementation occurs, such as the one presented here [56]. In the example here 

shown, the defuzzification returns a final value of 0.3188, which is the measure 

of risk evaluation included in the CBA function. 
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Figure 8. FIS procedure for evaluating the business continuity of a candidate solution 

for the case study developed. 

3.3. AHP ranking 

Being the main goal of the energy upgrade of the company to improve the 

competitiveness, a hierarchy with all the criteria and risks identified is 

constructed, which can be seen in Figure 9. The first level is formed by the main 

decision criteria, which are economy, technology-based, social, and 

environmental criteria. Then, each of these criteria is sub-divided into several 

items that are those already exposed in previous sections, specifically in Table 2. 

To these items, the NPV variation is included as a sub-criterion arising from the 

consideration of quantitative risks. 

Once the structure is created, the criteria in the same level are compared in 

a pairwise manner using the Saaty fundamental scale, and the weights for this 

level are obtained. This process is performed by decision-makers considering the 

interests of the enterprise and the importance of each of the elements in terms of 

its predecessor in the hierarchy. These preferences are independent of the value 

that the criteria and risks take when evaluating possible energy infrastructure 

upgrades. Therefore, they are maintained constant, reflecting the preferences of 

the enterprise, and appear in the CBA function multiplying the value of criteria 

and risks, which change for every solution analysed, to assure a balanced trade-

off suitable for the industrial SME. 

As an example of the application of the Saaty fundamental scale, the 

comparison matrix and resultant weights for the first hierarchy level, where the 

main criteria are placed, are exposed in Table 8. The weights, as specified in 

Section 2.3, are obtained through the geometric mean, expressed as: 
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𝑊𝑖 = (∏𝑊𝑖𝑗

𝑛

𝑗=1

)

1
𝑛

 (5) 

Where 𝑊𝑖 is the obtained weight, 𝑊𝑖𝑗 represent the comparison performed 

between parameters in row 𝑖 and column 𝑗 , and 𝑛 is the total number of 

parameters in the same layer for comparison. Given that the Saaty scale and the 

geometric mean can produce weights greater than one, once all the weights in 

the same layer are obtained, these have to be normalised: 

𝑊𝑖,𝑛𝑜𝑟𝑚 =
𝑊𝑖

∑ 𝑊𝑖
𝑛
𝑖=1

 (6) 

Table 8. Pairwise comparison matrix for the second hierarchy level. 

 Economic Technology Social Environment Weights 

Economic 1 5 6 6 0.6324 

Technology 1/5 1 3 3 0.2 

Social 1/6 1/3 1 1 0.0838 

Environment 1/6 1/3 1 1 0.0838 

This process is repeated for all the sub-criteria, obtaining the weight 

hierarchy structure shown in Figure 9. 

Energy upgrade to improve 
competitiveness

Economic
0.6324

Technology
0.2

Social
0.0838

Environment
0.0838

NPV
0.6833

NPV 
variation

0.1998

Business 
continuity

0.1168

Maturity
0.2493

Innovation
0.1571

Safety
0.5936

Social 
benefits
0.1131

Social 
acceptance

0.2081

Administration 
alignment

0.6608

Pollutant 
emissions

0.75

Ecology 
influence

0.25  

Figure 9. Criteria hierarchy with their corresponding level weights for the case study. 

With this information, the global weights of the sub-criteria for their 

incorporation in the CBA function are computed through the multiplication of 

the resultant weights in a bottom-up perspective: 

𝑊𝑖,𝑔𝑙𝑜𝑏𝑎𝑙 = 𝑊𝑖,𝑛𝑜𝑟𝑚𝐿2 ×𝑊𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟,𝑛𝑜𝑟𝑚  (7) 

Where 𝑊𝑖,𝑔𝑙𝑜𝑏𝑎𝑙  represents the global weight of a parameter, 𝑊𝑖,𝑛𝑜𝑟𝑚𝐿2 the 

normalised weight obtained for the parameter in the second layer of the diagram 

through pairwise comparison, and 𝑊𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟,𝑛𝑜𝑟𝑚 the normalised weight of its 

predecessor in the hierarchy. 

The global weights for all the considered criteria and risks are exposed in 

Table 9, together with the symbols employed to express them in upcoming 

mathematical equations. 

Table 9. Global weights for the sub-criteria in the analysed case study. 
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Sub-Criteria Symbol Weight 

NPV 𝑁𝑃𝑉 0.4321 

NPV variation 𝑁𝑃𝑉𝑉 0.1264 

Business continuity 𝐵𝐶 0.0739 

Maturity 𝑀 0.0499 

Innovation 𝐼𝑁 0.0314 

Safety 𝑆𝐹 0.1187 

Social benefits 𝑆𝐵 0.0110 

Social acceptance 𝑆𝐴 0.0174 

Administration alignment 𝐴𝐴 0.0554 

Ecology influence 𝐸𝐼 0.0629 

Pollutant emissions 𝑃𝐸 0.0210 

3.4. Optimal energy-investment selection process: continuous CBA 

Once the criteria are selected and ranked, it is possible to proceed to the 

optimisation of the energy-investment RIDM for the industrial SME. The 

variables to optimise are the equipment to install and their sizes, whereas the 

constraints include the maximum investment that can be performed by the 

enterprise and the maximum allowable payback period. The objective function 

of the optimisation problem is the CBA function, where all the criteria and risks 

are considered either as a benefit or as a cost, including the quantitative and 

qualitative risks. This CBA function is maximised, aiming for an energy 

infrastructure that creates as many benefits as possible with low costs. The 

benefit criteria are those attributes included as positive terms and which wish to 

be maximised, while the cost criteria are those included as negative terms and 

that want to be kept as low as possible. For the present case study, bearing in 

mind the weights obtained through AHP, the resultant CBA function is: 

𝑓 = 0.4321𝑁𝑃𝑉 − 0.1265𝑁𝑃𝑉𝑉 + 0.0739𝐵𝐶 + 0.0499𝑀 + 0.0314𝐼𝑁

+ 0.1187𝑆𝐹 + 0.011𝑆𝐵 + 0.174𝑆𝐴 + 0.0554𝐴𝐴

− 0.0629𝐸𝐼 − 0.0210𝑃𝐸 

(8) 

It can be seen that almost all criteria are incorporated with a positive value, 

being the NPV variation, ecology influence and pollutant emissions the negative 

criteria which represent a cost that have to be kept low This CBA function has to 

be evaluated for all possible energy-investment solutions to upgrade the energy 

infrastructure of the plant, examined through the DS optimisation algorithm. 

The value of some of the criteria can be obtained directly from the selection of 

the energy infrastructure, the decision trees and the FIS exposed in previous 

sections. However, the NPV, NPV variation and pollutant emissions criteria 

require the computation of the infrastructure operation along the lifetime of the 

equipment and, in the case of the NPV, a comparison with the hypothetical 

situation of not performing any investment. For this reason, an analysis of the 

plant performance for the lifetime of the new equipment, which is considered to 

last for 15 years, is included inside the optimisation process. This analysis is 

carried out employing the EH concept. For the studied industrial plant, the EH 

equilibriums for the electrical and thermal sides are stated as: 

𝑃𝑃𝑉𝜂𝑃𝑉 + 𝑃𝑈𝐺𝜂𝑈𝐺 + 𝑃𝐶𝐻𝑃 + 𝑃𝐷𝐸𝑆𝜂𝐷𝐸𝑆 =
𝑃𝐸𝐷
𝜂𝐸𝐷

+ 𝑃𝑈𝐺𝑆 +
𝑃𝐶𝐸𝑆
𝜂𝐶𝐸𝑆

+ 𝑃𝐸𝑇  (9) 

𝑄𝐶𝐻𝑃 + 𝑄𝐵𝑂𝐼 + 𝑄𝐷𝑇𝑆𝜂𝐷𝑇𝑆 + 𝑄𝐸𝑇 =
𝑄𝑇𝐿
𝜂𝑇𝐿

+
𝑄𝐶𝑇𝑆
𝜂𝐶𝑇𝑆

 (10) 

Where 𝑃𝑃𝑉, 𝑃𝑈𝐺 , 𝑃𝐶𝐻𝑃 and 𝑃𝐷𝐸𝑆 are the electrical power coming from the PV 

system, the utility grid, the CHP system and the energy storage, respectively; 

𝑃𝐸𝐷 , 𝑃𝑈𝐺𝑆, 𝑃𝐶𝐸𝑆 and 𝑃𝐸𝑇 are the electrical power to the internal demand, the one 
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 injected back to the utility grid, the employed to charge the energy storage and 

the sent to the HP system, respectively; and 𝜂𝑃𝑉, 𝜂𝑈𝐺, 𝜂𝐸𝐷, 𝜂𝐷𝐸𝑆, and 𝜂𝐶𝐸𝑆 are the 

connectivity efficiencies with the PV system, the utility grid, the electrical 

demand and also de discharge and charge efficiencies of the energy storage. On 

the thermal side, 𝑄𝐶𝐻𝑃, 𝑄𝐵𝑂𝐼 , 𝑄𝐷𝑇𝑆 and 𝑄𝐸𝑇  are the thermal power generated by 

the CHP and the boiler and coming from the thermal storage and the HP; 𝑄𝑇𝐿 

and 𝑄𝐶𝑇𝑆 are the thermal power for thermal load and the one injected in the 

thermal storage; and 𝜂𝑇𝐿, 𝜂𝐷𝑇𝑆 and 𝜂𝐶𝑇𝑆 are the connectivity efficiencies with the 

load and the discharge and charge efficiencies of the thermal storage. 

These equilibrium equations are accompanied by restrictions that allow the 

EH to operate following the physical constraints existent in the real plant. These 

restrictions include equipment connectivity, power equipment operation 

bounds and external grid requirements. This mathematical model can be 

employed for the different energy infrastructures analysed and also for studying 

the operation of the current industrial plant, as it is possible to set equipment to 

any size including zero, maintaining the operationality of the infrastructure. 

With this model, the operation of the upgraded plant can be obtained through 

optimising its behaviour aiming at minimising costs, which serves for the 

computation of parameters that have to be included in the CBA function for 

assessing the suitability of the analysed energy infrastructure. 

Considering these aspects and the methodology exposed in Figure 1, the 

energy-investment RIDM optimisation flowchart is detailed for this specific case 

study in Figure 10. First of all, the industrial plant, market information, 

uncertainty scenarios and decision-makers judgements data are obtained. This 

information is employed, in part, to compute the scenarios at which the 

performance and operation of the industrial plant are analysed for the non-risk 

criteria and quantitative risk criteria. After obtaining the scenarios data, the 

operation of the reference plant is computed, which reflects the situation if no 

energy investment is performed and the currently existing energy infrastructure 

continues in operation for the next 15 years. This reference plant computation 

serves as a base for comparison and calculation of the NPV for the analysed 

energy investments. 

Once this first part of the process is performed, the optimisation starts, 

aiming to find the energy investment that provides the best trade-off solution 

considering the risks related to its selection. Employing the DS algorithm, the 

first mesh is created through the addition of pattern vectors to the initial point 

provided by the decision-maker. Each of the points in the mesh represents a 

candidate energy investment solution with a linked upgraded energy 

infrastructure, which is analysed for the non-risk criteria, quantitative risks, and 

qualitative risks. For the non-risk criteria, which are the NPV and pollutant 

emissions, the operation of the plant is computed for the whole expected 

lifetime. In the case of the quantitative risk, which is the variation of the NPV, 

the operation of the plant analysis process is repeated for all the considered 

uncertain scenarios. Then, for qualitative risks, the impact and probability are 

obtained through the decision trees and the risk evaluation is computed 

employing the designed FIS. The evaluation of all the criteria is included inside 

the CBA function, obtaining the expected benefits and costs and the suitability 

of the analysed solution. At this stage, the DS optimisation checks its finalisation 

constraints, which include, among others, the change tolerance in the CBA 

function and the achievement of a minimum step variation. If the algorithm has 

reached an optimal value, the process ends, obtaining the best energy 

investment for the enterprise and the upgraded energy infrastructure. If not, a 

new set of candidate solutions is generated by re-meshing the search space, 
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considering the results of the last set of candidate solutions to approach the 

global optimal. 

Figure 10. Optimisation flow chart for the case study. 

4. Results and discussion. 

The results of performing the energy investment RIDM optimisation in the 

studied SME to upgrade its energy infrastructure are presented in this section. 

In order to evaluate the benefits of incorporating the risks into the decision-

making problem, an optimisation considering only the non-risk criteria, which 

are the NPV and the emissions, has also been carried out. In Table 10, the initial 

investment and payback periods for both solutions, with and without risks, are 
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 exposed. Figure 11 depicts their NPV during the first 6 years, showing 

graphically the evolution of the investment and its return along time until the 

payback is achieved. The equipment selected by the optimiser for each of the 

alternatives is exposed in Table 11. As one of the investment solutions has been 

obtained through a without risks analysis whereas the other is the result of an 

optimisation accounting also with quantitative and qualitative risk factors, the 

energy infrastructure resulting from the different optimisation problems present 

also different consequences in terms of risk implications, which can vary the real 

outcome for the enterprise. To appreciate these implications, Table 12 has been 

created in which it is possible to see the value of all the criteria including risks 

for both optimisations. It is worth noting that for the without risks optimisation, 

risks have not been considered during the optimisation, but are computed at the 

end of the process for the sake of comparability. 

Table 10. Energy investment main characteristics. 

 With risks Without risks 

Initial investment 689,600 € 909,960 € 

Payback period 3.4 years 4.1 years 

 

Figure 11. NPV evolution during the first 6 years after investment. 

Table 11. Energy equipment selected and their sizes. 

Equipment 

Size 

Optimisation with 

risks 

Optimisation  

without risks 

PV energy source 12,000 m2 12,000 m2 

Thermal storage 140 kWh 135 kWh 

CHP system 140 kWe 200 kWe 

 

 

Table 12. Criteria evaluation for the two obtained solution. 

Criteria evaluation 

Value 

Risks included in 

the optimisation 

problem 

Risks not included in 

the optimisation 

problem 
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Non-risk criteria   

NPV 7,162,700 € 7,470,000 € 

Pollutant emissions (last year) 306.136 tCO2eq 307.4459 tCO2eq 

Quantitative risk criteria   

NPV range 
6,356,650 – 7,968,750 

€ 
6,616,350 – 8,323,650 € 

Qualitative risk criteria   

Business continuity 0.8470 0.3188 

Maturity 0.4071 0.5000 

Innovation 0.8470 0.5902 

Safety 0.5929 0.4071 

Social benefits 0.1372 0.1372 

Social acceptance 0.8470 0.8470 

Administration alignment 0.8470 0.5000 

Ecology influence 0.6263 0.6263 

First of all, it is possible to see that, for the without risks case, the required 

energy investment is higher and the payback period is larger. It should be 

pointed out that these parameters are considered as constraints in the 

optimisation problem, specified as maximum allowable values chosen by the 

enterprise, but are not optimised. Instead, the objective for the without risks case 

is mainly the NPV maximisation while, for the case with risk, the objective is the 

trade-off between NPV, emissions and quantitative and qualitative risks. 

Therefore, the NPV for the without risk case analysis results higher than for the 

with risk one as almost no other parameter is optimised. In Figure 11 appears 

that despite both initial investment and payback period are higher for the 

without risks case, its NPV line ascents at a higher grade, as exposed by the 

tangents of the graphs, obtaining more benefits per year and eventually 

surpassing the NPV for the case with risks. Although the final economic value 

is more favourable for the without risks case, this solution does not consider any 

risk and creates an illusion of the investment’s real profitability. Also, the NPV 

range, as exposed in Table 12, is higher for the without risks case, which reflects 

a less robust result where the final economic value is more uncertain and spans 

in a wider range which does, indeed, cover the NPV obtained for the with risks 

case. 

Regarding the equipment selected, in both alternatives it is chosen to cover 

completely all the available area for the installation of the PV system together 

with thermal storage and a CHP system. The PV system is always chosen at its 

maximum capacity due to its low costs and, when considering risks, its positive 

influence in most of the evaluated qualitative criteria. In contrast, 

electrochemical storage and heat pump, which were also considered during the 

optimisation, do not appear as part of the new energy infrastructure. This is a 

consequence of the relationship between the economic benefits obtained from 

the equipment and their costs for the resultant energy infrastructure, which is 

not high enough to justify their incorporation. Also, when evaluating the risks, 

the influence of these equipment on the favourable risk criteria is not enough to 

include them regardless of their economic disadvantage. Despite these 

similarities between both solutions, when optimising the energy investment 

without considering risks, the size of the CHP system is significantly higher, 

which is the cause of the higher initial investment and larger payback period 

discussed previously. 

Although the financial considerations exposed regarding the differences 

between the cases with and without risks are of importance for the SME, they 

only reflect a part of the global situation. In general, taking a decision 

considering only the non-risk criteria can lead to a situation with high exposure 
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 to strictly non-economic risks with great impacts on the enterprise. In this 

specific case study, not considering the risks leads to a solution that also 

compromises the qualitative risk criteria, having lower business continuity, 

safety and administration alignment, among others, as exposed in Table 12. For 

example, the solution obtained considering risks inside the optimisation 

decision-making problem evaluates that the contribution of the energy 

infrastructure to business continuity is 84.70%. In contrast, if this factor is not 

considered as criteria as happens in the without risks optimisation, the 

contribution of the resultant infrastructure to business continuity is only 31.88%, 

reflecting the possibility of not supporting the company in future challenges. 

This variation in some of the qualitative criteria in the evaluated case study is a 

consequence of the danger related to CHP operation and the fact that these 

systems have been lately a focus of interest by governments, reducing the 

maximum installed capacity to reach a sustainable energy system and thus 

inhibiting further investments on them [57]. 

Thus, incorporating risk analysis in the energy-investment RIDM process 

enables the achievement of a solution that represents a trade-off between the 

considered criteria, allowing a smarter initial investment. 

The energy investment obtained from considering all the risk and non-risk 

criteria enable the SME to upgrade its energy infrastructure and start acting as 

prosumer and, through the risk analysis performed, the operation of this energy 

infrastructure presents high reliability and robustness that supports the 

achievement of enterprise’s objectives. For the case study analysed in this paper, 

the operation of the energy equipment and the exchange of energy with the 

utility grid are exposed in Figure 12, Figure 13, and Figure 14. In Figure 12, it is 

possible to appreciate that electricity is being purchased when energy from the 

PV is not available, although at a smaller quantity than required by the internal 

demand. This is because part of this demand is fulfilled by electricity generated 

in the CHP system, which is employed both by the electrical side shown in 

Figure 12 and by the thermal one, shown in Figure 13. The energy exchange 

behaviour with the utility grid can be seen in Figure 14, where the electricity 

exchange with the utility grid is exposed together with the price of electricity in 

the wholesale market. It is possible to appreciate that, when the PV system is 

generating energy, this is employed for internal demand or to sell to the utility 

grid if the feed-in price is high enough and economic profit can be obtained. At 

the moments where electricity is sold, internal electrical demand is fulfilled by 

both the energy from the PV not injected into the utility grid and the electricity 

coming from the CHP system. To adopt this optimal working behaviour, it is 

required to have a great synchronization between the electrical and thermal 

sides of the industrial plant. For this reason, it is beneficial to include thermal 

storage to support the mismatches between electrical and thermal demand and 

allow an optimal operation energy flow. 
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Figure 12. Electrical side energy equipment behaviour for the optimal energy 

investment. 

 

Figure 13. Thermal side energy equipment behaviour for the optimal energy 

investment. 
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Figure 14. Energy exchange with the utility grid for the optimal energy investment. 

5. Conclusions 

This paper addresses the energy-investment optimisation problem to 

upgrade the energy infrastructure of an industrial SME to improve its 

competitiveness and support the green transformation by adopting an active 

role in the energy market. This energy investment optimisation problem is 

discussed considering all the relevant risks associated with the investment 

decision. A new methodology is proposed which incorporates the specification 

of the relevant criteria that apply for the industrial SME and the identification 

and characterization of quantitative and qualitative risks related to them. All 

these parameters are included in a single function through fuzzy logic and AHP 

weighting, performed with the support of experts and decision-makers. To reach 

the best-balanced trade-off solution for the SME, this function is optimized 

through Direct Search, a global optimisation algorithm that enables the 

surveillance of the continuous solution’s search space. The created 

methodology, although especially designed to fulfil the requirements of 

industrial SMEs in upgrading their energy infrastructure, is expandable to other 

energy investment RIDM problems and also to problems related to the 

investment in other tangible assets. In these problems, decisions should also be 

taken considering a mixture of criteria including quantitative and qualitative 

measures of economic, technical, social, and environmental parameters along 

the expected lifetime of the investment. The weights granted to the different 

criteria in the decision-making process depend on the specific problem and its 

influences in the surroundings, which have to be specified by decision-makers. 

For this reason, it is required for decision-makers to have a deep knowledge on 

the interests of the entity taking the decision as well as on social, technical, 

political, and environmental local framework. 

As a demonstration case, in this paper, the developed framework is applied 

to optimise the energy investment of an industrial SME based in a real 

manufacturing plant with the possibility to include a PV system, electric and 

thermal storage systems, a CHP system and an HP. Results show that employing 

a RIDM approach affects the optimal investment solution, reaching an energy 

infrastructure that represents a trade-off between the evaluated non-risk and 

risk criteria. Also, it is demonstrated that without incorporating the risk in the 



 

 

Compendium of publications 

 

157 

problem, industries would have to face the decision with incomplete 

information, reaching solutions that could be less beneficial and affect the future 

of the enterprise and trigger consequences on the surrounding community and 

environment. This conclusion can be transposed to other entities performing 

investment decisions, as the omission of risks in the decision-making problem 

leads to solutions that do not consider possible impacts on the future, such as 

environmental effects or social welfare. 

Thus, the methodology exposed in this paper presents a large practical 

value for both industrial SMEs and other entities where decision-making 

problems have to be addressed evaluating both quantitative and qualitative 

risks, as it can be modified and tailored to suit the specific problem addressed 

and its application constraints. This methodology can be adopted by decision-

boards to analyse energy-investment problems and investment decisions on 

other tangible assets, enhancing the incorporation of criteria characterized by 

different nature in a single optimisation function and adjusting the input 

parameters to decision-makers requirements. 
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5.7. Quantitative and qualitative risk-informed energy 

investment for industrial companies 

Reference: E. M. Urbano, V. Martinez-viol, K. Kampouropoulos, and L. Romeral, 

“Quantitative and qualitative risk-informed energy investment for 

industrial companies,” Energy Reports, vol. 9, p. 3290-3304, 2023. Under a CC BY-
NC-ND 4.0 license. Available on: https://doi.org/10.1016/j.egyr.2023.01.131.

Publication framework: 

This article further defines the methodology for the incorporation of quantitative 

and qualitative parameters and risks in the energy investment optimization 

problem of industrial SMEs. Quantitative parameters are addressed statistically 

and qualitative parameters are evaluated through fuzzy logic to include in their 

value the vagueness existent in their subjective measurement. These 

parameters are incorporated in the extended two-stage optimization 

methodology, which evaluates them both at the moment of taking the decision 

and over the investment lifetime considering a risk-averse strategy. 

Main contributions: 

• Handling of qualitative parameters and related uncertainty through a fuzzy

logic approach, enabling their measurement considering uncertainty and

improving crispy strategies.

• Inclusion of risk-averse factors for energy infrastructure optimisation, which

improves risk-neutral strategies.

• Investment optimisation considering combined quantitative and qualitative

parameters, contributing to the inclusion of qualitative parameters in the

energy problem and improving quantitative only approaches.

• Energy infrastructure operation optimisation considering dynamic

quantitative and qualitative parameters over time, improving static

approaches in which parameters and related uncertainty do not evolve over

time.

Key words: 

Energy investment, Risk-informed decision-making, qualitative criteria, fuzzy risk 

assessment.

https://doi.org/10.1016/j.egyr.2023.01.131
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Nomenclature 
 
Abbreviation Full description 

General Abbreviations 

AHP Analytical Hierarchy Process 

CHP Combined Heat and Power 

CVaR Conditional-Value-at-Risk 

DS Direct Search 

EES Electrochemical Energy Storage 

FIS Fuzzy Inference System 

HP Heat Pump 

JC Job Creation 

LHS Latin Hypercube Sampling 

MF Membership Function 

NPV Net Present Value 

O&M Operation and Maintenance 

PDF Probability Density Functions 

PV Photovoltaic 

RES Renewable Energy Source 

RF Renewable Factor 

SA Sensitivity Analysis 

SME Small-and-Medium Enterprise 

TES Thermal Energy Storage 

UA Uncertainty Analysis 

VaR Value at Risk 
 
Energy infrastructure sizing and operation parameters 
 
𝑃 Electrical power 

𝑄 Thermal power 

𝜂 Efficiency  

𝐶 Economic cost 

𝑄𝐶 Qualitative cost 

𝐶𝑎𝑝 Capacity of energy storage 

𝑅𝐶 Charge ratio of energy storage 

𝑅𝐷 Discharge ratio of energy storage 

𝑆𝐷 Self-discharge ratio of energy storage 

𝐸 Energy stored in energy storage system 

𝐼 Cash flow 

r Hurdle rate 

𝑊 Weeks per year analysed 

𝑊𝑌 Total weeks per year 

𝐴 Area 

𝑤 Weight assigned to a decision parameter 

𝑉𝐴𝑅𝑙𝑒𝑣𝑒𝑙   Probability level for computing the VaR 

𝐸(𝑥)  Expected value of x 
 

 
Subscripts and superscripts 
 
max Maximum capacity of equipment 

𝑚𝑖𝑛 Minimum capacity of equipment 

𝑗 Time instant considered for operation’s 
optimisation 

𝑖 Optimisation year 

0 Instant when decision is taken 

𝑇 Expected lifetime of energy infrastructure 

𝑃𝑉 PV system 

𝐸𝑆 Electrochemical energy storage 

𝐶𝐸𝑆 Charge EES 

𝐷𝐸𝑆 Discharge EES 

𝐸𝐷 Electrical demand 

𝑈𝐺 Utility Grid 

𝐹𝐼 Feed-in 

𝐶𝐻𝑃 Cogeneration system 

𝐶𝐻𝑃𝑒 Electrical side of the CHP system 

𝐶𝐻𝑃𝑡ℎ Thermal side of the CHP system 

𝑇𝐿 Thermal Load 

𝐵𝑂𝐼 Boiler 

TS Thermal energy storage 

𝐶𝑇𝑆 Charge TES 

𝐷𝑇𝑆 Discharge TES 

𝑔 Gas from the grid 

𝐺𝐻𝐺 Greenhouse gases 

𝑂&𝑀 Operation & Maintenance 

𝑟𝑒𝑓 Hypothetic case without investment 

𝐽𝐶 Job Creation 

𝑛𝑜𝑚 Nominal power 

𝑒𝑐 Economic parameter 

𝑞𝑙 Qualitative parameter 
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6. Other research activities: energy policy 

trends 

The developments carried out in the thesis focus on the creation of a methodology 

for suitably optimizing energy equipment investment and operation considering 

prosumer behaviour to enhance energy transition and improve industrial 

competitiveness. The proposed methodology considers a market that, although 

uncertain, is relatively stable. This may change in the future, with the possibility of 

sharp fluctuations in economic and administrative trends that could alter the 

expected investment outcome. 

At present, an energy crisis is shaking Europe which is changing immediate EU and 

Member States (MS) energy strategies. This chapter describes the activities that 

have been carried out in the thesis framework to analyse the impacts that this 

energy crisis could have, in this case on energy generation sources, and the possible 

alterations in the socio-economic landscape that might affect the investment 

decision of industrial SMEs. This analysis has been carried out on the basis of the 

knowledge gained during the stay at the Joint Research Centre, where the global 

European electricity market was analysed. 

The chapter is organised as follows. First of all, section 6.1 introduces the European 

energy crisis and the EU policy reaction to have an overview of the current energy 

situation in Europe. Section 6.2 evaluates MS’ electricity generation mixes and their 

position considering 2025 energy transition objectives, and section 6.3 addresses 

how these objectives and countries' energy strategies are being modified in light of 

recent geopolitical developments. Whereas these sections provide an overview of 

the research done, section 6.4 expose the publication in which the detailed analysis 

is presented, whose full version can be consulted in Annex A. Lastly, section 6.5 

depicts the conclusions of these research activities. 

6.1. European energy policy framework 

The current energy crisis is forcing the EU to adopt new measures to accelerate the 

transition towards a more secure and sustainable energy system independent from 

adverse external circumstances. The EU has faced an unprecedented increase in 

electricity prices mainly due to the Ukraine war, which caused a sudden decrease in 

the availability of Russian supplies [146]. Before the war, 43% of total natural gas 

imports came directly from Russia [147], a figure which had been increasing as EU 

countries switched from coal to natural gas for decarbonisation purposes [148]. In 

fact, the EU’s transition path did not foresee reducing natural gas in the system and 

understood it as a transition fuel [149]. However, the current situation is requiring 

the EU to move away from gas, thus gaining independence from Russia and bringing 

stability and security to energy markets. 
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Until now, the EU based its energy landscape and planning on four policy packages: 

“Energy Union Strategy” (2015), “Clean Energy for all Europeans” (2016), 

“European Green Deal” (2019) and “Fit for 55” (2021). These energy packages focus 

on the energy transition by encouraging the reduction of emissions through 

decreasing the use of fossil fuels, deploying renewable energies, and generating 

alternative green and bio fuels such as hydrogen and biogas. With the current energy 

crisis, a new policy package was announced in February 2022: the REPowerEU [7]. 

This package is a response to the disruption caused in the energy market by Russia’s 

invasion of Ukraine. It aims to diversify the energy supply, moving away from 

Russian dependence and modifying the transition path depicted before the energy 

crisis enhancing also a stronger deployment of alternative energy sources [150]. The 

main energy proposals that appear in REPower EU are: 

• Natural gas supply diversification 

Analyse the possibility to import more gas from other countries and 

evaluation of new gas alliances as well as coordinate with other gas buyers. 

• Boosting renewable energies 

New proposal for increasing the renewable energies target from 40% to 

45%. Special focus on solar PV to install new 320 GW by 2025, creating an EU 

Solar Strategy and a European Solar Rooftop Initiative. Also, the EC will study 

the declaration of ‘go-to’ areas for a fast permitting process for renewables 

deployment. 

• Hydrogen promotion 

Proposal for a target production of 10 million tonnes of domestic renewable 

hydrogen by 2030 and the creation of a European Hydrogen Bank. 

• Biomethane 

Initiative to boost sustainable biomethane production to 35 bcm by 2030. 

• Increase to 13% the binding target in the Energy Efficiency Directive. 

Already ongoing a study for the incorporation of short-term measures that 

could achieve a 5% reduction in gas demand. 

The application of this policy package will suppose an additional investment of €210 

billion between 2022 and 2027 compared to that to be performed for Fit for 55 

objectives [151]. Indeed, this latter policy package does not substitute previous ones 

but adds requirements and objectives to the decarbonisation and transition 

objectives stated before the energy crisis. The EC suggest that the MS integrate the 

REPowerEU policies into their existing recovery and resilience plans (RRPs) to 

accelerate energy transition [152]. Although the process for the modification of the 

RRPs has not been completed, MS are already taking measures and drafting a policy 
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line focused on the mitigation of the impact of the energy crisis. However, as 

previously stated targets for decarbonisation are still valid there are currently 

appearing contradictory objectives in some situations which require the 

achievement of trade-off solutions. 

6.2. Current situation and 2025 targets 

For analysing and understanding MS’ reactions arising from the energy crisis and 

the latest changes in European energy policy, it is required to first address their 

current situation in terms of energy generation and their position related to stated 

2025 objectives. The focus of this thesis is on the electricity market and therefore 

the electricity mix is analysed. The current capacity mix is assessed considering 

information from the Transparency Platform (TP), a platform created by ENTSO-e 

to share all available data on European power systems [153]. The generation 

technologies under study, according to their energy source, are: coal, oil, nuclear, 

wind, solar and hydro. These technologies account for 97% of the total generation 

capacity in the EU and thus their analysis is illustrative enough to elaborate a 

discussion on the general circumstances. The current situation, as obtained from the 

TP, is compared with the objectives gathered by the Ten Year Network Development 

Plan (TYNDP) [154] for 2025 considering environmental EC goals and National 

Energy and Climate Plans (NECPs). TYNDP evaluates also the installed capacity of 

batteries, pumped storage and demand-side response. However, these are not 

considered here as they are not generation technologies per se, but flexibility 

sources. 

6.3. Policy reaction to the energy crisis 

European countries are modifying and adapting their energy strategy in order to 

mitigate the impact of the energy crisis. To evaluate where these modifications are 

pointing to and whether countries’ new energy strategies are aligned with European 

energy packages, a per-country analysis is carried out. This is done by consulting the 

most recent legislation and policy drafts. Specifically, answers to the following 

questions are sought: 

• Are countries promoting energy independence from Russia by diversifying 

their energy supply? 

• Are countries' plans to shut-down fossil fuel-fired electricity generation 

facilities being modified? 

• Are countries generating a framework for the creation of green gases – such 

as hydrogen – markets and investing in generation facilities and management 

infrastructure? 

• Are plans related to the role of nuclear power in the country being altered? 
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• Are renewable energies – solar, wind, hydro – being increasingly incentivized 

to assure the achievement of more ambitious targets? 

6.4. Publications 

The analysis exposed in this chapter has been carried out and the results have been 

included in the paper below, which is currently under-review. A complete version 

of it can be consulted in Annex A. 

• E. M. Urbano, K. Kampouropoulos, and L. Romeral, “Energy crisis in Europe: 

the union objectives and countries’ policy trends: New transition paths?” 

Under review. 

This paper analyses the electricity mix situation of the six most significant 

EU countries in terms of generation capacity and their position with respect 

to 2025 energy transition targets. Legislative trends for these countries 

are also analysed and a discussion is presented about their alignment with 

EU objectives. 

6.5. Conclusions 

The energy framework and policy trends have been analysed in the paper 

mentioned in the previous section for the six most significant EU countries from the 

point of view of generation capacity, which are: Germany, France, Spain, Italy, 

Netherlands, and Poland. Regarding their current situation and the comparison with 

2025 energy transition objectives, it is possible to appreciate that despite efforts in 

progressing toward the achievement of secure and sustainable energy systems, 

their current energy mix is still considerably distant from EC and national plans’ 

objectives drafted in the pre-crisis stage. With the new crisis and more exigent 

targets regarding decarbonisation and independence, preferences have changed 

significantly, and countries are acting to prioritise energy independence even 

though this choice negatively affects decarbonisation targets. The policy trends that 

have appeared during the last months show a significant deviation from the path 

depicted before the crisis to reach a sustainable and secure energy system. 

Specifically, the following general conclusions regarding changes in energy 

transition paths can be obtained from the analysis: 

• The priority in EU countries is nowadays to gain independence from Russia’s 

supplies, even though achieving this causes negative effects on other 

decarbonisation objectives. 

• The prioritization of energy independence and security of supply is 

modifying the electricity mix foreseen before the energy crisis. 

• The accomplishment of decarbonisation objectives depends on the 

technologies promoted. 
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o The promotion of renewables together with nuclear power provides 

a suitable framework in which to reach a low-carbon economy in the 

short to medium term. 

o The promotion of renewables without nuclear power implies the 

current use of fossil fuel technologies since hydrogen, biogas and 

flexibility options are not implemented at a large-scale in the market. 

This makes it harder to achieve decarbonisation in the short-term. 

o Technological decisions based on day-to-day politics can affect how 

and when decarbonisation and energy independence goals are 

achieved. 

• The path selected by each country depends on its historical background and 

supply origin. 

o Countries with ease for the obtention of gas from different sources are 

more likely to still rely on this energy carrier. 

o Countries with a strong nuclear background are likely to continue 

with a nuclear strategy. 

This analysis provides an overview of the trends that are affecting European energy 

markets and that may alter their normal development through the sudden 

availability or unavailability of specific energy sources. Although the findings 

exposed are highly useful for industrial SMEs, it is important to follow the social and 

administrative developments to acquire a suitable overview of the situation and be 

able to incorporate these appreciations in the energy investment optimization 

problem.  
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7. Conclusions and future work 

This chapter sets out the general conclusions of the thesis as well as the lines of 

future work and research arising from it. 

7.1. General conclusions 

The present thesis aims to advance the state of the art for the optimization of energy 

equipment investment and management considering the new prosumer framework 

for industrial SMEs. To make this progress, modelling and optimization techniques 

have been analysed and the inclusion of relevant parameters in the problem such as 

quantitative, qualitative, and risk factors and their interrelations have been 

evaluated, which is a novelty in this research field. 

Firstly, the modelling of the industrial SME plant has been carried out using the EH 

concept, adapting it to represent a prosumer infrastructure, and the prediction of 

energy variables using ANFIS has also been addressed. Based on this model and 

these variables, the optimization of the operation of the industrial plant as a 

prosumer has been carried out. This operation considers the possibility of 

exchanging energy with the external electricity grid and also a weekly optimization 

horizon which enables to capture energy demand and electricity price patterns. 

Once the industrial plant has been modelled and the methodology for optimizing its 

operation has been established, the optimization of the energy equipment to be 

installed to improve the energy infrastructure of the industrial SME has been 

addressed. This equipment sizing optimization considers the full lifetime of the 

investment to be made, analysing its time value. Since this value is influenced by 

uncertain external parameters, uncertainty and sensitivity analyses have been 

carried out to evaluate the risk faced by industrial SMEs when making an energy 

investment of this type.  

Depending on the risk faced by these companies, it is beneficial not only to assess it 

but to include it as a further factor to be minimised in the optimization. Moreover, 

the latest social and administrative trends are driving the renewal of the industry 

by considering welfare and sustainability as a central axis, so it is essential to 

optimize not only quantitative values but also qualitative ones. In order to include 

quantitative and qualitative factors and related risks in the optimization, their 

values and uncertainties have to be modelled. Quantitative factors are tackled 

statistically, assigning PDFs to each of them to account for their uncertainty. In 

contrast, qualitative factors are measured using fuzzy logic, which evaluates their 

value as well as the uncertainty inherent in them due to their subjective definition. 

These values are included in a two-stage optimization, analysing quantitative and 

qualitative values and uncertainties both in the first stage, which sets the equipment 
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in which to invest, and in the second stage, which optimizes the prosumer operation 

over time. 

These developments have generated the following main contributions, directly 

linked to the hypothesis of this thesis: 

• A methodological approach for the operation optimization of the industrial 

SME considering EH modelling and prosumer energy exchange with the 

utility grid has been developed. This operation optimization considers 

weekly energy cycles capturing demand and electricity price patterns. By 

applying this methodology to the different case studies, it has been possible 

to verify the benefit of transforming the industrial energy infrastructure from 

a consumer to a prosumer, reducing energy costs and emissions, and 

increasing social benefits according to the preferences of the industrial SME. 

• The optimization of the equipment has been carried out considering their 

operation over their complete lifetime, which has improved the appreciation 

of the benefit by including the effect of variations of relevant parameters over 

time and has generated robust solutions, according to the results obtained in 

the case studies. 

• A sizing and operation optimization methodology has been generated that 

incorporates not only quantitative but also qualitative factors. It has been 

found that the incorporation of both types of factors improves the possibility 

of obtaining a more complete assessment of the equipment to be installed. 

• The optimization of the investment in energy equipment has been improved 

by also including uncertainties aiming to minimize the investment risk. By 

applying this comprehensive methodology to the case studies analysed, the 

results obtained are more robust in the face of increasing economic and 

administrative uncertainty, creating a suitable framework for investment 

decisions in industrial SMEs. 

7.2. Future work 

This section exposes future research lines that can be built based on the 

developments done in this thesis and that can complement it to create wider energy 

investment and management approaches to foster energy transition and industrial 

competitiveness. 

• This thesis has addressed the energy equipment investment and operation 

optimization for industrial SMEs as individual prosumers. Nowadays, there 

are initiatives in the administration to promote not only the active 

participation of individual consumers in the energy market but also their 

aggregation into energy communities, which would foster even more 

renewable energy integration and energy system decentralization [155]. 
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Therefore, to improve the benefits of acting as individual prosumers, the 

junction of several prosumers into an energy community could be evaluated. 

This junction can be performed through different strategies including peer-

to-peer trading, the creation of an internal energy market, or the 

management of the community assets by an aggregator. This energy problem 

can be tackled by adapting the methodology proposed in this thesis, 

expanding it to include several prosumers and creating an exchange module, 

while still incorporating quantitative and qualitative parameters and 

uncertainties. 

• The energy investment optimization methodology considers qualitative 

parameters and their uncertainties and assumes that decision-makers are 

capable to provide adequate values to them which are later introduced into 

the fuzzy system. Nonetheless, this field could be explored more in-depth to 

improve the initial measurement of qualitative parameters. Sentiment 

analysis strategies could be applied to mine the opinion of groups of people 

and improve the measurement of, for example, social-related qualitative 

criteria [156]. Also, the creation of decision boards could be addressed by 

profiling decision-makers and generating strategies for assembling different 

individual opinions.  

• The effects that drastic changes in the market and the socio-administrative 

landscape have on the energy investment and energy operation performance 

could be analysed. This would test the robustness of the proposed 

methodology and point out ways of improvement. Such ways could include, 

for example, the incorporation of discrete and disruptive events in the 

optimization problem that alter the considered continuous uncertainty of 

external parameters.  
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In this annex, other publications that serve to better understand the framework of 

the thesis and that have not been included in the compendium of publications, in the 

core document of the thesis, are exposed. These publications are: 

• E. M. Urbano, V. Martínez-Viol, and L. Romeral, “Optimization of industrial 

plants for exploiting energy assets and energy trading,” in IEEE International 

Conference on Emerging Technologies and Factory Automation, ETFA, 2019, 

vol. 2019-Septe. 

• E. M. Urbano, K. Kampouropoulos, and L. Romeral, “Energy crisis in Europe: 

the union objectives and countries’ policy trends: New transition paths?” 

Under review.  
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A.1. Optimization of industrial plants for exploiting energy

assets and energy trading

Reference: © 2019 IEEE. Reprinted, with permission, from: E. M. Urbano, V. 
Martínez-Viol, and L. Romeral, “Optimization of industrial plants for exploiting 
energy assets and energy trading,” in IEEE International Conference on Emerging 
Technologies and Factory Automation, ETFA, 2019, vol. 2019-Septe. Available on: 
https://doi.org/10.1109/ETFA.2019.8869176.

Publication framework: 

Initial article exposing a first approach to the operation optimization of an 

industrial plant acting as a prosumer. It exposes the EH model of the 

industrial energy infrastructure, the forecast of energy parameters, and daily 

prosumer operation optimization. 

Main contributions: 

• EH modelling of an industrial prosumer energy infrastructure.

• Forecast of the energy vector employing ANFIS.

• Prosumer operation optimization of the industrial EH.

Keywords: 

Virtual Power Plant, Energy Hub, Energy trading, Energy transition, Energy 

optimization. 

https://doi.org/10.1109/ETFA.2019.8869176


 
198 Annex A: Other publications 

 

 

 

 

 

 

 

 

 

 



 

 

Annex A: Other publications 

 

199 

 

 

 

 

 

 

 



 
200 Annex A: Other publications 

 

 

 

 

 

 

 



 

 

Annex A: Other publications 

 

201 

 

 

 

 

 

 

 



 
202 Annex A: Other publications 

 

 

 

 

 

 

 



 

 

Annex A: Other publications 

 

203 

 

 

 

 

 

 

 



 
204 Annex A: Other publications 

 

 

 

 

 

 

 



 

 

Annex A: Other publications 

 

205 

 

 



 
206 Annex A: Other publications 

 

A.2. Energy crisis in Europe: the union objectives and 

countries’ policy trends: New transition paths? 

Reference: 

E. M. Urbano, V. Martínez-Viol, and L. Romeral, “Energy crisis in Europe: the union 

objectives and countries’ policy trends,” Under review. 

Publication framework: 

Given the changing energy and socio-political framework in Europe, this article aims 

to analyse the current electricity mix situation in the six most significant EU 

countries in terms of generation capacity and their position concerning the energy 

transition targets set for 2025. It also reviews the latest legislative trends and 

discusses the alignment of countries' actions with EU objectives. This analysis 

enables to obtain a wide knowledge of the energy situation and potential 

administrative incentives and disincentives that could, although maybe not directly, 

affect industrial SMEs on their path to becoming active actors in the energy market. 

Main contributions: 

• Analysis of the current electricity mix situation, comparison with objectives 

stated before the energy crisis, and evaluation of actions to perform to meet 
the objectives. 

• Compilation and interpretation of the latest policies and initiatives rising 

from the energy crisis. 

• Identification of strategic paths and associated technologies for the 

fulfilment of countries’ objectives. 

• Evaluation of the chances to meet global decarbonisation and energy 

independence targets considering the new initiatives aiming to guarantee 

the security of supply. 

Keywords: 

Energy independence, decarbonisation, policy trends, policy support.
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Abstract 

In the context of the energy crisis that is shaking Europe, the EU has recently proposed a new legislative package that focuses on gaining gas 

independence from Russia, diversifying supplies, and increasing renewable energy deployment targets. In this situation, countries are acting 

swiftly to ensure energy security even at the cost of sacrificing or delaying some EU targets such as decarbonisation. This article analyses the 

electricity mix situation of the six most significant EU countries in terms of generation capacity and their position with respect to the energy 

transition targets set for 2025 before the crisis. Then, the latest legislative trends are analysed and a discussion is carried out about their 

alignment with the EU objectives. The paper concludes that EU members are currently prioritising maximising their gas independence from 

Russia by stepping back from decarbonisation and re-starting or extending the lifetime of coal-fired power plants. There is also an emerging 

trend towards the promotion of nuclear energy as a low-carbon source that can allow greater security of supply. All these changes are moving 

countries away from the energy transition path they had set out before the crisis and building new ones with different short and long-term 

perspectives. 

Keywords 

Energy independence, decarbonisation, policy trends, policy support. 

 

1. Introduction 

The current energy crisis in Europe is forcing the European Union 

(EU) to adopt new measures to accelerate the transition towards a 

more secure and sustainable energy system independent from 

adverse external circumstances. The EU has faced an unprecedented 

increase in electricity prices mainly due to the Ukraine war, which 

caused a sudden decrease in the availability of Russian supplies [1]. 

Before the war, 43% of total natural gas imports came directly from 

Russia [2], a figure which had been increasing as EU countries 

switched from coal to natural gas for decarbonisation purposes [3]. 

In fact, the EU’s transition path did not foresee reducing natural gas 

in the system and understood it as a transition fuel [4]. However, the 

current situation is requiring the EU to move away from gas, thus 

gaining independence from Russia and bringing stability and 

security to energy markets. 

The EU has added to its existing energy policy packages which foster 

energy transition and decarbonisation a new one, the REPowerEU 

[5]. REPowerEU came into force in mid-2022 and focuses on 

increasing energy independence, diversifying gas supply and 

enlarging renewable energy targets. Although EU Member States 

(MSs) have not officially adopted the package yet, the urgency of the 

situation is pushing them to take rapid actions and measures that 

may draw a new transition path towards more sustainable energy 

systems. Some of these measures are controversial and could cause 

a recession on the road to decarbonisation as foreseen in [6], where 

electricity markets are analysed from an economic point of view and 

the possibility of the return of coal is pointed out. The study 

presented in [7] also anticipates that the war and the resulting 

uncertainty around natural gas could lead to a change in the 

development of energy systems in Europe. Nonetheless, up to date, 

there is no study analysing specifically MS’ initiatives to evaluate 

with evidence if current policy trends could jeopardise energy 

transition and decarbonisation goals. This article provides a detailed 

analysis of the current situation and MS’ policy trends in the energy 

and particularly in the electricity sector in order to assess: (1) the 

path EU countries are taking; (2) its consequences on the framework 

objectives of the EU; (3) its effects on decarbonisation and energy 

independence goals. 

To appreciate if decarbonisation and energy independence can be 

achieved, it is crucial to understand not only the direction that MSs 

are taking but also their starting point. To do so, the current 

electricity mix of countries is analysed and compared to the 

decarbonisation objectives stated before the energy crisis. For 

obtaining a convenient overview of the European situation with 

adequate detail in the analysis per country, this paper considers the 

situation and trends of the most important EU countries from the 

point of view of generation capacity. From the comparison between 

the current situation and targets, it is possible to outline the actions 

that are required to achieve pre-crisis decarbonisation and 

transition objectives. Then, a detailed analysis of the new initiatives 

and policy trends in the studied countries is done to evaluate their 

alignment with the EC framework. Therefore, the main contributions 

of this paper are: 

• Analysis of the current electricity mix situation, 

comparison with objectives stated before the energy 

crisis, and evaluation of actions to perform to meet the 

objectives. 

• Compilation and interpretation of the latest policies 

initiatives rising from the energy crisis. 

• Identification of strategic paths and associated 

technologies for the fulfilment of countries’ objectives.  

• Evaluation of the chances to meet global decarbonisation 

and energy independence targets considering the new 

initiatives aiming to guarantee security of supply. 

The rest of the paper is organised as follows. Section 2 exposes the 

methodology followed in the paper to evaluate current and future 

energy trends. Section 3 depicts nowadays’ energy mix and 

decarbonisation targets, and section 4 presents an introduction to 

the energy crisis and its causes. Countries’ policy trends, actions and 

initiatives consequence of the crisis are detailed in section 5, and in 

section 6 carries out a discussion on how the latest policy changes 

modify the energy framework and whether this modification is 

aligned with decarbonisation and independence objectives. Lastly, 

section 7 expose the conclusions of this work. 

2. Methodology 

This paper considers the EU framework which is constituted of 27 

countries. From them, the ones that represent individually more 

than 5% of the total share of energy capacity in the EU are deeply 

analysed. Figure 1 illustrates this share of capacities. The ones with 
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more than 5% are Germany (DE), France (FR), Spain (ES), Italy (IT), 

Netherlands (NL) and Poland (PL). 

 

Figure 1: Share of generation capacity in the EU-27. 

The current capacity mix situation for all these countries is assessed 
considering information from the Transparency Platform (TP), a 
platform created by ENTSO-e to share all available data on European 
power systems [8]. The generation technologies under study, 
according to their energy source, are: coal, oil, nuclear, wind, solar 
and hydro. These technologies account for 97% of total generation 
capacity in the EU and thus their analysis is illustrative enough to 
elaborate a discussion on the general circumstances. The current 
situation, as obtained from the TP, is compared with the objectives 
gathered by the Ten Year Network Development Plan (TYNDP) [9] 

for 2025 considering environmental EC goals and National Energy 
and Climate Plans (NECPs). TYNDP evaluates also the installed 
capacity of batteries, pumped storage and demand-side response. 
However, these are not considered here as they are not generation 
technologies per se, but flexibility sources. After the comparison 
between the current situation and the TYNDP objectives, the most 
recent legislation and policy initiatives are considered and analysed, 
and a discussion is carried out to appreciate whether these 
initiatives will modify the previously foreseen energy infrastructure 
and market and if they will enable to achieve both decarbonisation 
and energy-independence objectives. 

3. Current situation and 2025 objectives 

Current generation capacities for each country are gathered from TP 

and capacity objectives for 2025 are obtained from the TYNDP 

National Trends scenario [10]. Table 1 shows these capacities and 

the percentual difference between both of them. This section depicts 

the relative positions of the countries in comparison with 2025 

targets. 

For gas generation, all countries have currently more gas capacity 

than the stated objective for 2025. The amount of gas plants that 

need to be decommissioned is significant, reaching 46% of them in 

Poland. Regarding coal, the situation is slightly different. Germany 

and France still need to decommission an important part of their coal 

power plants. France decided to close all of them whereas Germany 

still has to reduce its capacity by 69%. In contrast, Spain and Poland 

have almost reached their objectives and the Netherlands has 

already less coal generation capacity than initially stated. This is due 

to the Dutch government’s plan to phase out all coal power plants by 

2030, which was decided by the end of 2021 [11]. The oil case is 

more similar to the gas one, as most countries have to still 

decommission an important part or even all of their oil-burning 

Table 1: Generation capacities, current and TYNDP 2025 forecast. 

 
GERMANY FRANCE SPAIN ITALY NETHERLANDS POLAND 

G
A

S
 TP (MW) 30649 11379 29926 41961 18530 3705 

TYNDP (MW) 22359 7435 24498 34577 10992 2016 

Difference (%) -27 -35 -18 -18 -41 -46 

C
O

A
L

 TP (MW) 75396 1816 4641 8417 4492 26909 

TYNDP (MW) 23062 0 4317 6406 8002 25991 

Difference (%) -69 -100 -7 -24 78 -3 

O
IL

 

TP (MW) 3966 2754 669 1490 0 392 

TYNDP (MW) 1059 152 0 946 0 0 

Difference (%) -73 -94 -100 -37 0 -100 

N
U

C
L

E
A

R
 TP (MW) 4056 61370 7117 0 486 0 

TYNDP (MW) 0 61761 7126 0 486 0 

Difference (%) -100 1 0 0 0 0 

W
IN

D
 TP (MW) 63583 17191 27734 10658 11060 7886 

TYNDP (MW) 81315 29456 38956 12117 10900 7000 

Difference (%) 28 71 40 14 -1 -11 

S
O

L
A

R
 TP (MW) 56567 13861 14639 5137 16074 6035 

TYNDP (MW) 73549 23870 27584 26513 10900 3500 

Difference (%) 30 72 88 416 -32 -42 

H
Y

D
R

O
 TP (MW) 5151 19815 20341 14948 38 790 

TYNDP (MW) 5375 22017 10394 12509 43 734 

Difference (%) 4 11 -49 -16 13 -7 
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facilities. For nuclear generation, almost no change is foreseen for 

2025 in France, Italy, Netherlands, Poland, and Spain. However, 

Germany stated as an objective the decommissioning of all its 

nuclear power plants according to the amendment performed on its 

Atomic Energy Act on 30 June 2011 to phase out gradually nuclear 

power generation by the end of 2022 at the latest [12]. 

Regarding renewable energies, which include wind, solar and hydro 
generation, Germany and France need to increase significantly its 
generation capacity in all the technologies. Italy also requires 
installing more wind and solar power plants, increasing solar 
capacity by 416%. This figure depicts the deceleration in Italy’s 
renewable energy plans. The policy implemented before 2014 
placed it as the second EU country in the deployment of renewable 
capacity generation. However, there is currently a dismantling of the 
support scheme for renewable energies focused mainly on 
photovoltaics (PV) [13] which has caused the country to fall behind 
their objectives on solar energy. Italy’s position is however different 
for hydropower. Hydro generation has been historically important 
in the country and covers approximately 15% of total demand [14]. 
Therefore, Italy has continued to invest in this technology, creating 
172 new hydro implants between 2018 and 2020 [15], [16] and 
surpassing initial expectations. The Netherlands is more advanced in 
its renewable energy plans, with wind capacity already at the target 
level and more solar capacity than expected to balance the rapid 
phase-out of coal facilities. Indeed, the Netherlands’ solar market is 
rapidly growing, having deployed almost 3 GW of PV systems only 
during 2020 as a consequence of schemes such as the SDE+ 
(Stimulering Duramen Energieproductie), which is the main driver 
for planned and contracted PV capacity in the country [17], [18]. 
Poland is also in a favourable position regarding renewables, having 
surpassed stated objectives for all technologies. Actually, renewable 
energy sources’ capacity has increased by 31% only in 2021. The 
highest increase is in prosumer PV, which accounts for almost 80% 
of total PV installed capacity [19]. This increase is a consequence of 
strong regulatory support that includes subsidies, net metering, 
direct tax reduction and offset of personal income tax [20]. The case 
of Spain is more similar to the Italian one, with less generation 
capacity than foreseen in the wind and solar sectors and more in 
hydropower. Hydropower in Spain is also historically important 
given the country’s terrain and a large number of existent dams [21] 
although in 2021 more than 100 dams were demolished as part of 
the national strategy for the recovery of rivers, which doesn’t 
support the promotion of this type of installation in the country [22], 
[23]. Regarding solar and wind power generation, Spain was 
formerly a pioneer country in its adoption that has also carried out a 
dismantling of renewable energy policies, falling behind the 
objectives stated during the peak policy support period [24]. 

With this analysis it is possible to appreciate that although countries 

are doing an effort towards decarbonisation by dismantling fossil 

fuel-fired power plants and implementing renewable energy 

sources, most of them have still a long way to go, being necessary an 

increase in the pace of modifications to reach 2025 objectives, which 

were designed by countries to achieve, among others, Fit-for-55 

targets [25]. 

4. Energy crisis and policy reaction in Europe 

The beginning of the energy crisis in Europe can be placed in mid or 

late- 2021. By that time, global economies were recovering from the 

COVID-19 pandemic which caused a low demand, and therefore a 

drop in supply and energy prices. The fast economic recovery in 

countries created a rapid increase in energy demand that disrupted 

a supply side still not recovered from the pandemic. This crisis, 

which also generated supply chain disruptions and high volatility, 

affected mainly the oil and natural gas markets [26]. Simultaneously, 

France started to unexpectedly shut-down nuclear reactors due to 

security issues, which aggravated the energy crisis in Europe [27]. In 

late 2022, France still has 32 of its 56 nuclear reactors shut down due 

to corrosion, small cracks in cement works, or maintenance [28]. 

This situation already created stress in the electricity market in 

Europe, drastically increasing electricity prices and market 

uncertainty. The framework worsened at the beginning of 2022. In 

February 2022 Russia started to deploy troops toward the Ukraine 

border and several countries started negotiations to avoid a war 

situation. Nonetheless, negotiations did not solve the Russia-Ukraine 

crisis and the United States responded by imposing sanctions on the 

Nord Stream 2 gas pipeline, which connects directly Russia with 

Germany for natural gas supply [29]. On February 24, Putin 

announced the invasion of Ukraine and in March the United Nation 

Members voted to condemn Russia’s offensive [30]. As a response to 

Russia’s invasion of Ukraine, the EU adopted several packages of 

sanctions which included restrictions on economic relations, 

economic sanctions covering the finance, energy, transport and 

technology sectors, prohibition on transactions with the Russian 

Central Bank, prohibition on all transactions with state-owned 

enterprises, prohibition on new investments in the Russian energy 

sector, prohibition on import of coal, closure of ports to Russian 

vessels, etc. [31]. These sanctions affected directly the trading of 

natural gas between Russia and Europe. Before the sanctions, Russia 

supplied the EU with more than 40% of its total gas imports in 2021, 

and some countries, such as Slovakia, had a dependence of almost 

80% on oil imports from Russia. For this reason, the sanctions were 

likely to increase the consequences of the existing energy crisis [32]. 

The described situation did indeed cause an important impact on the 

electricity market, with a 500% increase in wholesale electricity 

prices from 2021 until mid-2022 [33]. 

Until now, the EU based its energy landscape and planning on four 

policy packages: “Energy Union Strategy” (2015), “Clean Energy for 

all Europeans” (2016), “European Green Deal” (2019) and “Fit for 

55” (2021). These energy packages focus on the energy transition by 

encouraging the reduction of emissions through decreasing the use 

of fossil fuels, deploying renewable energies, and generating 

alternative green and bio fuels such as hydrogen and biogas. With 

the current energy crisis, a new policy package was announced in 

February 2022: the REPowerEU [34]. This package is a response to 

the disruption caused in the energy market by Russia’s invasion of 

Ukraine. It aims at diversify the energy supply, moving away from 

Russian dependence and modifying the transition path depicted 

before the energy crisis enhancing also a stronger deployment of 

alternative energy sources [35]. The main energy proposals that 

appear in REPower EU are: 

• Natural gas supply diversification 

Analyse the possibility to import more gas from other 

countries and evaluation of new gas alliances as well as 

coordinate with other gas buyers. 

• Boosting renewable energies 

New proposal for increasing the renewable energies 

target from 40% to 45%. Special focus on solar PV to 

install new 320 GW by 2025, creating an EU Solar Strategy 

and a European Solar Rooftop Initiative. Also, the EC will 

study the declaration of ‘go-to’ areas for a fast permitting 

process for renewables deployment. 

• Hydrogen promotion 

Proposal for a target production of 10 million tonnes of 

domestic renewable hydrogen by 2030 and the creation 

of a European Hydrogen Bank. 

• Biomethane 

Initiative to boost sustainable biomethane production to 

35 bcm by 2030. 

• Increase to 13% the binding target in the Energy 

Efficiency Directive. 

Already ongoing study for the incorporation of short-term 

measures that could achieve a 5% reduction in gas 

demand. 

The application of this policy package will suppose an additional 

investment of €210 billion between 2022 and 2027 compared to that 

to be performed for Fit for 55 objectives [5]. Indeed, this latter policy 

package does not substitute previous ones, but adds requirements 

and objectives to the decarbonisation and transition objectives 

stated before the energy crisis. The EC suggest that the MS integrate 

the REPowerEU policies into their existing recovery and resilience 

plans (RRPs) to accelerate energy transition [36]. Although the 
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process for the modification of the RRPs has not been completed, MS 

are already taking measures and drafting a policy line focused on the 

mitigation ofthe impact of the energy crisis. However, as previously 

stated targets for decarbonisation are still valid, there are currently 

appearing contradictory objectives in some situations which require 

the achievement of trade-off solutions. 

5. Countries’ policy trends 

In this section, the current policy trends emerging in Germany, 

France, Spain, Italy, Netherlands, and Poland are analysed to 

evaluate whether these policies are likely to fulfil the new 

REPowerEU and previous decarbonisation objectives. 

5.1. Germany 

Germany has developed an important dependence on natural gas 

imports from Russia, which supplied 55% of total German natural 

gas imports in 2020 [37]. Germany has now settled the target to 

reduce natural gas imports from Russia to a maximum of 10% by 

2024 [38]. To do so, the country has recently approved a package to 

reduce the consumption of gas. This package includes measures such 

as the diversification of gas supply and the reactivation of coal-fired 

power plants [39]. In fact, some hard coal-fired power stations have 

already restarted operations in August 2022 and the German 

government is preparing a regulation to restart also lignite-fired 

power plants which have been shut down [40]. German’s energy 

policy is also considering the use of oil-fired power plants although 

it is currently not its main focus [41]. The debate is more intense in 

the field of nuclear power. As exposed in previous sections, Germany 

had the objective to decommission all nuclear power plants by the 

end of 2022. Nonetheless, the current energy crisis caused the 

government to announce at the beginning of September 2022 its 

plan to keep two of the three existing nuclear power plants online 

[42]. The lifetime extension of nuclear power plants is still uncertain, 

from April 2023 until the end of 2024 [42]. 

Regarding renewables, the government launched on April 2022 a 

comprehensive legislation package called the “Easter package” 

which revises the following acts aiming to accelerate the transition 

to renewables: the Renewable Energy Sources Act, the Offshore 

Wind Energy Act, the Industry Act, the Federal Requirements Plan 

Act, the Grid Expansion Acceleration Act, and further laws and 

ordinances in the field of energy legislation [43]. The “Easter 

package” sets as an objective the achievement of 80% renewable 

power in the mix by 2030 and 100% by 2035, with an onshore wind 

capacity of 115 GW and 215 GW of PV by 2030. The policies 

supporting the deployment of renewables include freeing up new 

land for green power production, speeding up permit procedures 

and grid connection, higher remuneration and subsidies for PV 

generation, new distance rules for onshore wind plants and 

reduction of financing needs for offshore wind [44]. The “Easter 

package” include also incentivisation measures for the production 

and use of biomethane in highly flexible plants although the use of 

biomass for power production will be superseded by its direct use in 

transport and industry. Although the policy regarding hydrogen and 

biogas enhancement has not been a special focus of interest in this 

last package, Germany is planning to import green gas from third 

countries such as Canada [4]. In addition, Germany has recently 

commissioned the biggest green hydrogen plant (8.75 MW) in the 

country[45]. 

Germany is doing an effort to phase-out gas although it is currently 

relying on other emitting energy sources such as coal with nuclear in 

the backstage. Policy support has been developed to deploy solar and 

wind generation which will probably grow in next years and 

alleviate the situation. 

5.2. France 

The French National Assembly has recently approved a package 

containing several measures focused on energy tariffs and energy 

security. The text proposes action in natural gas infrastructure 

investment by building new floating LNG import terminals to be 

commissioned in 2023 [46]. French government is also planning to 

re-activate abandoned pipelines to send natural gas to Germany and 

to strengthen the interconnection capabilities with other countries 

[47]. Also, regarding the operation of natural gas power plants, the 

state can order them to function under the orders of designated 

operators and is enhancing operators to fill gas storage and build 

security stocks [48]. For coal, the French government is planning to 

re-start a coal-fired power plant in north eastern France which was 

already closed. Nonetheless, the government claims that these 

modification in the decommissioning process of coal power plans 

will not affect the complete phase-out of coal-fired power plants 

expected by 2025 [49]. 

The energy crisis is also being tackled by a more intense use of the 

available nuclear power plants at the moment. In fact, the French 

Nuclear Safety Authority has granted a temporary waiver allowing 

five nuclear plants across the country to dispense more than 

authorized amounts of hot water into rivers, breaking the stablished 

environmental rules [50]. For the future, the government proposes 

to rapidly exit gas, coal and oil energy production by building new 

nuclear power plants. The latest proposal performed is the 

construction of six new nuclear reactors and the study for the 

possible development of another eight reactors [51]. The French 

Energy Ministry is also trying to persuade the EC to include nuclear 

among energy sources for the production of the so-called green 

hydrogen [52]. However, nowadays green hydrogen is defined as 

that derived from renewable sources other than biomass although it 

is also possible to label hydrogen as green if it is produced from 

electricity mixes containing more than 90% of renewables. Blue or 

low-carbon hydrogen is that derived from non-renewable sources 

such as nuclear power [53]. 

Concerning renewables, France is finding difficulties in their 

deployment, and investments are at risk due to inflation and higher 

commodity costs [54]. In [55] it is claimed that 13 GW of renewable 

energy projects may not go ahead because of the current economic 

environment. To address this issue, on August 2022 the French 

Energy Regulatory Commission published a modified version of all 

the specifications for two calls for tenders aiming to accelerate the 

commissioning of 6 GW of renewable production including wind, 

hydroelectric and self-consumption [56]. These modifications 

included the possibility for the new installations to sell electricity 

directly on the market for 18 months and that projects can increase 

their capacity by 40% before their completion. Nonetheless, these 

measures do not tackle general renewable deployment but only 

specific tenders and measures for the enhancement of renewables 

have not been announced during last months. The industrial 

network in France is also reacting with moderate enthusiasm to the 

proposal of defining ‘go-to areas’ from the EC, proclaiming that the 

idea is well-intentioned but drawing on a bad intuition and pointing 

out the difficulty of its implementation due to complex procedures 

related with the urban development law [57]. 

In summary, France is pushing hard towards the deployment of 

more nuclear power plants to reach decarbonisation while building 

a stronger gas infrastructure to exchange gas and future hydrogen 

with other countries, while the deployment of renewables is 

currently not a policy support focus. 

5.3. Spain 

Spain natural gas imports accounted in 2022 for 30% of total Europe 

liquified natural gas (LNG) imports, exporting 20% of what the 

country received directly to the EU [58]. This gas comes mainly from 

north Africa and the United States. The Iberian country also accounts 

with one third of the total storage and regassification capacity of 

Europe, although the interconnexion with the rest of the continent 

limits the usage of these resources [59]. For this reason, the Spanish 

government has settled up a plan to increase the export capacity 

with other EU countries [60]. This plans includes the restart of a 
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regasification plant in January 2023, the increase of the compression 

capacity on current pipelines to France, boosting supply to Italy 

through small LNG vessels and new gas pipelines to France and Italy 

[61]. Given the relatively favourable gas situation of Spain, no change 

in the Spanish policy is foreseen regarding the closure of gas-fired 

power plants neither of oil-fired plants, which will continue with the 

plan foreseen before the REPowerEU package. For coal, the Spanish 

government is modifying the decommissioning plan of one of its 

most important coal-fired power plant due to the energy situation, 

closing only 2 of the planned 4 generation groups [62]. A coal-fired 

plant of 589MW, which was also on its way to the definitive 

decommission, was put into activity to avoid a higher increase in the 

electricity price during 2022 [63]. Regarding nuclear power, Spain 

has currently 7 nuclear reactors. All of them are planned to be 

decommissioned between 2027 and 2035 [64]. Although there are 

voices in the government requesting to study an extension of the 

lifetime of the plants [65], the government reaffirms that the 

hypothesis of prolonging the operation of nuclear power plants is 

not on the table [66]. 

In terms of renewable energies, Spain approved in May 2022 a new 

package of measures to boost green energies including solar, wind 

and hydrogen technologies [67]. This package includes a new 

regulatory framework for floating PV, regulations for the renewable 

gases’ pipelines, the release of 10% of grid access capacity to absorb 

7 GW for renewables under self-consumption regime, and an 

accelerated temporary process until the end of 2024 to determine 

environmental approval of new wind and solar parks. Spain is also 

planning to prepare the network for the connection and integration 

of renewables to achieve 70% in 2026 and also to multiply the 

production of renewable gases by 4. These measures, which address 

not only solar and wind generation but also hydrogen and green 

gases, reflect the interest of Spain to build a gas infrastructure and 

become a hydrogen hub in the future [68]. In June 2022 a new royal 

decree-law was published in which a promotion of self-consumption 

including storage capacity appeared and where subsidies were 

defined for different types of consumers, from big enterprises to 

individuals and public administrations [69]. 

Regarding hydro power, Spanish government is drafting a regulatory 

plan to guarantee the existence of investments in hydro power plants 

at the end of the license awarded to current management enterprises 

to assure their continuity [70]. The strategy to foster energy 

transition focuses on the development of pumped storage facilities. 

However, these storage plants have to undergo a process restricted 

by the national plan for the recovery and maintenance of rivers and 

projects which suppose new obstacles to the water flow are being 

rejected [71]. Indeed, the national plan for the recovery of rivers will 

probably cause a decrease in the installed capacity of hydro power 

given the current trend of demolishing damns, in which Spain is in 

the European lead position [72]. 

These policy trends outline the interest of Spain to become a green 

gas hub in Europe, being able to generate green hydrogen from 

renewable energy sources and exporting them to the rest of Europe. 

The Spanish government is also strongly supporting again the 

deployment of renewables with new incentives including storage 

and pumped storage, which will allow to create the needed flexibility 

in the system.  

5.4. Italy 

Italy is a strong gas-burning country whose 45% of total gas imports 

came from Russia before the Ukraine conflict [73]. As a consequence 

of the crisis and the increasing electricity prices, the Italian 

government approved on February 2022 a decree to maximise the 

production of thermoelectric power plants with a capacity higher 

than 300 MW [74]. This plan supposes a 25% increase in the 

production of six coal and one oil power plant. Also, the extension of 

the lifetime of coal-fired power plants is currently under discussion 

[75]. Nonetheless, Enel, the biggest energy company in the country, 

is considering the possibility to convert coal-fired power plants to 

gas [76] and a new combined cycle power plant is planned for 

completion by 2025 which will be able to be fired with up to 30% of 

hydrogen [77]. This increase in the gas capacity would be possible 

thanks to the gas supply diversification effort that the government 

has been doing during the last months. There is already an 

agreement to increase the gas supply from Algeria, which will 

become the most main exporter to Italy, and also an agreement with 

Egypt to provide LNG [78]. 

Regarding nuclear energy, the situation in Italy is complex due to the 

historical opposition of the population to nuclear power. There was 

a strong anti-nuclear movement in the country in the 80s as a 

consequence of worldwide accidents [79]. A referendum was carried 

out in 1987 which resulted in the decommissioning of the five 

nuclear power plants that Italy had. Despite the nuclear debate was 

re-opened between 2005 and 2008, a new referendum in 2011 

rejected nuclear power with 94.9% of the votes [80]. Nonetheless, 

nuclear power is in the political plans of several parties [81] and, in 

fact, the coalition who recently won the elections has identified 14 

possible sites for the commissioning of new nuclear power plants 

[82]. 

For renewables, Italian’s RRP establishes as an objective the 

achievement of 70 GW of renewables for 2026 [83]. However, 

nowadays Italy’s renewable capacity is of 33 GW and has been 

growing the last six years at a rate of 0.85 GW per year [84]. The 2022 

budget for the country includes incentives for citizens for the energy 

re-qualification of buildings and also for the installation of 

renewable energies, being able to obtain a subsidy of up to 50% for 

rooftop PV [85]. The Italian government has also approved a 

renewable bonus for the installation of storage systems together 

with renewable energies, although the beneficiaries can only be 

individuals. Enterprises and energy communities can though benefit 

from a PV incentive promote the deployment of solar power 

generation [86]. The national strategy for hydrogen provides some 

guidelines for the deployment of this energy carrier, and exposes a 

2030 generation capacity target of 5 GW [87]. To reach this objective, 

the Official Gazette published in January 2022 a bidding procedure 

for projects for the production and distribution of green hydrogen 

[88] and in February 2022 the Italian government announced that it 

will execute a program agreement with the National Agency for New 

Technologies, Energy and Sustainable Development covering 

research and development activities on hydrogen through the RRP 

funds. 

According to these policy trends, Italy is currently employing other 

emitting energy sources to compensate the high price of gas, while it 

is approving measures for renewables, mainly focused on solar 

energy. Due to the recent change in the government, new measures 

can be expected which may include changes in the renewable 

energies’ treatment and in the consideration of nuclear power. 

5.5. Netherlands 

Netherlands has activated the early warning phase of its Gas 

Protection and Recovery Plan and has extended to 2024 the 

production of gas from the Groningen field, which was foreseen to 

stop activities in 2023 [89]. Netherlands is also putting an effort on 

the diversification of supply through the deployment of a new LNG 

terminal with official opening date in September 2022 which will 

suppose doubling the importing capacity of the country [90]. Despite 

these efforts in obtaining gas at a lower price, the Netherlands is also 

currently opting to increase the operation of its coal-fired power 

plants. The government has recently removed the 35% production 

cap on these plants [91] and is extending the lifetime of some coal-

fired power plants longer than planned [92]. Nonetheless, the 

government reaffirms that all coal-fired power plants will be shut 

down before 2030. For nuclear power, the Minister of Climate and 

Energy has recently announced plans for the construction of 2 new 

nuclear power stations [93] and for extending the lifetime of existing 

nuclear plants to 2033 [94]. These nuclear initiatives appear in the 
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country’s budget, were funds are being set aside for the construction 

of the new nuclear power plants [95]. 

Regarding renewables, the Dutch government accounts with 

aggressive renewable energies support strategies and is currently 

working towards having 21 GW of offshore wind energy operational 

by 2030 [96]. There are already project under construction off the 

coast which include 1.5 GW of wind, 1 MW of floating solar panels, 

and a platform to convert electricity to hydrogen [97]. Also, to 

promote individuals’ self-consumption, the VAT rate on residential 

solar panels has been lowered down to 0%. 

Hydrogen also appears as a strong energy vector in Dutch initiatives. 

The Netherland’s current objective on hydrogen production capacity 

is of 500 MW by 2025 and 3-4 GW by 2030 and, to reach it, the 

government is launching initiatives for the regulation of the 

hydrogen market, market development and infrastructure [98]. Also, 

some of the offshore wind capacity is directly planned to be used for 

large-scale green hydrogen production [99]. The Netherlands is 

working not only to produce hydrogen but also to import it and 

supply it to other European countries. Indeed, the country has 

already signed a memorandum of understanding to establish a green 

hydrogen supply chain between Ireland and Europe through the 

Amsterdam Port [100]. 

Therefore, the Netherlands is employing coal-fired power plants for 

the moment waiting for the deployment of new sources including 

nuclear power and renewable energies together with a hydrogen 

market and infrastructure. 

5.6. Poland 

At the beginning of the year, Poland was planning to double capacity 

of gas-fired power plants to stop its dependence on coal and 

construct a transition path before switching completely to nuclear 

and renewables [101]. Several gas turbines are being under 

construction [102], some of them to be commissioned in 2025 [103]. 

To assure gas supply, Poland has been increasing imports of LNG 

from Qatar and the United States and will soon open the Baltic Pipe, 

connecting the country directly to Norway [104]. However, during 

2022 coal-fired generation was cheaper than gas-fired generation, 

which resulted in an increase in the use of coal-fired capacity and the 

commission of a new unit of lignite-fired power plant [19]. 

Regarding nuclear power, Poland plans to build six nuclear energy 

reactors [105]. In order to accelerate the implementation of these 

nuclear power plants, the Council of Ministers has recently amended 

a law to ease nuclear energy investments [106]. 

For renewables, Poland has been Europe’s fastest growing solar PV 

market during recent years [107]. Nonetheless, the government 

implemented new regulations in April 2022 which make home 

installations more complex and financially less attractive and which 

has caused a decrease in the demand for solar panels [108]. New 

legislation was also formulated which complicated the construction 

of wind farms. However, the government is planning to develop the 

first offshore wind farm of the country in the Baltic coast. 

Specifically, a 1.2 GW offshore project is under construction at 23 km 

north of the coastline which will be commissioned in 2026 [109]. 

Hydroelectric power has also been a focus of interest during the last 

months. The Polish government announced investments to make 

existent hydroelectric plants in pumped storage facilities [110] and 

works have been resumed on what will be the largest hydroelectric 

plant of the country, which will also be reversible [111]. 

Apart from its reputation as coal-fired country, Poland is also the 3rd 

country in Europe and 5th in the world in the production of hydrogen, 

although it is nowadays not green. The Council of Ministers has 

recently adopted the “Polish Hydrogen Strategy until 2030 with 

Outlook until 2040”. As a consequence, plans and funds are set for 

the first hydrogen production plant [112]. The green hydrogen 

which could be produced in Poland is especially attractive since it 

can be one of the most competitive in Europe together with 

hydrogen from Sweden, Croatia, and Ireland [113]. The government 

is also introducing the hydrogen vector in the new gas-fired power 

plants of the country, being some of them planned to be able to run 

entirely on hydrogen in the future [104]. 

From these developments, it can be concluded that Poland has 

drawn a transition path which starts with gas-fired power plants and 

that will continue with nuclear and renewables, being the latter 

nowadays at a good deployment level in PV and progressing in wind 

and hydroelectric power. 

6. Discussion 

This section discusses the former described countries’ actions and 

legislation trends considering decarbonisation and energy 

independence objectives. The objectives of the EC relative to 

electricity sector supply which appear in its energy policy packages 

can be very briefly summarized as: 

• Reduction of emissions by decommissioning fossil fuel-

fired power plants. 

• Generation of green electricity through the deployment of 

renewable energies. 

• Generation of green fuel such as hydrogen and biogas to 

support the decarbonisation of different sectors, 

including the electric one. 

Table 3 expose a qualitative evaluation for each country and energy 

generation technology regarding whether policy trends on these 

technologies are aligned with EC energy packages or not. The last 

two rows of the table indicate the main objectives of the EC, 

decarbonisation and energy independence from Russia, and the 

evaluation on whether based on the trends for the rest of 

technologies these objectives are likely to be achieved or not. Table 

2 details the legend meaning. The legend is a categorical 

classification, grouping tendencies and initiatives in three different 

states to appreciate the alignment of countries’ paths with EC 

objectives. 

Table 2: Legend for the qualification of actions and initiatives 

 

Actions and initiatives are being carried out for the 
achievement of decarbonisation and energy 
independence. There is high probability that the 
objectives stated by the different packages of the EC are 
fulfilled.  

 

The actions and initiatives considered do not clearly 
contribute to all objectives and therefore the achievement 
of them is not sure. 

 
Actions and initiatives affect directly the non-fulfilment of 
some of the objectives of the energy packages. 

Also, and despite the EC does not defend a specific position regarding 

nuclear power, this technology has been included in the analysis 

adding a scale with the following meaning: 

1. Nuclear power is not supported, there is no nuclear power 

plant or a clear decommissioning is planned. No new 

nuclear power plants are foreseen. 
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2. There is no clear support to the nuclear power and 

decommissioning plans are set although there are 

dissident opinions which may cause an extension in 

changing social and political circumstances. 

3. Neutral opinion, maintenance or balance. Nuclear power 

is not supported but nuclear power plants life can be 

extended. No plans for the construction of new nuclear 

power plants. 

4. Nuclear power is supported or there are strong opinions 

for their extension and/or implementation. 

5. Nuclear power is supported and there are clear plans for 

the maintenance and/or commissioning of new nuclear 

power plants. 

Due to the energy situation and to the fact that gas supply has 

become a main issue in the EU, a clear conclusion that can be drafted 

from the policy analysis is that most countries are prioritizing to 

avoid burning gas even though the actions undertaken cause more 

emissions than the gas alternative. This is true for all countries 

analysed except for Poland. Germany, France, Spain, Italy and 

Netherlands are opting for an extension of the lifetime and 

maximisation of the generation of coal and lignite-fired power plants 

or are even re-activating mothballed units to employ this cheaper 

energy source. Poland, however, is currently commissioning new 

gas-fired power plants to avoid the use of coal. The country plans to 

obtain this gas from Qatar and Norway. Countries are diversifying 

gas supply and strengthening gas connectivity with others. This is 

especially true for France, Spain and the Netherlands, which are 

creating new LNG terminals and have plans for new gas pipes. 

Although these measures contribute to the objective of gaining 

energy independence, they suppose a threaten for decarbonisation 

objectives as more emissions are being generated by the use of 

energy sources more pollutant than gas. Bearing in mind the fossil 

fuel power plant’s decommissioning objectives collected in TYNDP, 

the current situation and nowadays policy initiatives; there is a 

considerable risk that the targets and specifically coal ones will not 

be fulfilled. 

Nuclear power has also suffered a change due to the current energy 

crisis. The objective for 2025 exposed in TYNDP was the 

maintenance of current nuclear power plants or the 

decommissioning of all of them. However, France, Netherlands and 

Poland are clearly planning the commissioning of new nuclear 

power plants and Germany is extending the lifetime of those already 

active in the country. The situation in Italy and Spain is more 

complex, since there are diversified opinions and the continuity or 

the commissioning of new nuclear power plants depends on the 

specific political situation of the moment. Despite the commissioning 

of this type of power plants require time and may not be completed 

by 2025, it is highly probable that the nuclear generation capacity of 

some countries will increase considerable by 2050. The elongation 

of the operation of nuclear power plants or the commissioning of 

new reactors will definitely decrease emissions and foster 

decarbonisation as nuclear is a low-carbon technology. This 

technology is also useful to supply power for base load, being a good 

complement to intermittent-renewable energy sources. 

Nonetheless, energy security and waste disposal are still an issue 

and the countries still have to work to reach nuclear power 

independence, as the employed fuel comes from third countries. In 

fact, although Spain has its own uranium reserves, it is currently 

importing all of it mainly from Russia, Canada, Niger and Kazakhstan 

[114].  

Regarding renewables, the approach followed by countries is more 

diversified. On the one hand, Netherlands and Germany have 

presented strong policy support during last years and will continue 

to do so in all renewable energy types. In fact, Netherlands has 

already achieved the 2025 target and with the current strategy is 

likely to keep the sector growing. Poland has also protagonized a 

strong increase in renewables and specially in solar PV. Nonetheless, 

the country has now decentivized solar PV investment and is trying 

to promote other type of renewables such as wind and hydroelectric 

generation. Spain, despite the deceleration of support policies wants 

to take action again and has proposed a wide package of measures to 

promote renewable energy deployment. In contrast, Italy which also 

suffered a deceleration in support policies, is carrying out some 

actions focused on solar energy although they migh not be enough to 

achieve the stated 2025 target. All these countries initiatives are 

aligned both with decarbonisation and energy dependency 

objectives and try to achieve the more exigent objectives of the 

REPowerEU package. However, it is still unclear whether the 

proposals performed will be more effective at accelerating 

decarbonisation compared to pre-existent plans and if the targets 

can be achieved through these measures [115]. On the other hand, 

despite France has implemented some measures to improve the 

situation of renewable investment, it has not presented a clear 

strategy on how to accelerate the implementation of renewables to 

achieve the targets and is in a situation where it might be difficult to 

do so. 

In this framework, it is likely that all countries gain energy 

independence from Russia in a short period due to the 

diversification of supply and the activation of other power plants. 

Table 3: Alignment evaluation of countries' policy trends and EC energy packages

 

 
GERMANY FRANCE SPAIN ITALY NETHERLANDS POLAND 

GAS PHASE-OUT       

COAL PHASE-OUT       

OIL PHASE-OUT       

NUCLEAR POWER 
PROMOTION [1-5] 

3 5 2 4 5 5 

WIND GENERATION        

SOLAR ENERGY       

HYDRO POWER       

HYDROGEN AND 
GREEN GASES 
ENHANCEMENT 

      

DECARBONISATION       

RUSSIA GAS 
INDEPENDECE       
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Nonetheless, decarbonisation objectives are more difficult to achieve 

and depend on the specific country strategy. Poland will probably 

reach decarbonisation later than stated by the EC due to its current 

movement towards gas as a bridge between its current coal situation 

and a future with renewables and nuclear. In contrast, France is 

basing its energy strategy on nuclear power which does not cause 

emissions and thus is closer to the achievement of decarbonisation. 

Germany and Spain are currently relying mainly on the deployment 

of renewables to achieve decarbonisation and are generating a 

strong policy support strategy to speed up their implementation. 

Nonetheless, they require the use of another energy source to 

maintain system stability. This can be achieved by the use of coal-

fired power plants, nuclear power plants, by implementing more 

hydroelectric power, through producing and using of green 

hydrogen or by creating system flexibility. The last two alternatives 

are still at an early maturity stage and thus their participation in the 

market will be feasible only in the medium to long-term [116], [117]. 

For Italy the achievement of decarbonisation objectives is harder 

than for other countries as it is not strongly supporting renewables 

nor another type of low-carbon energy source. This may be due to 

the difficult political situation in which the country has been 

immersed during an important part of 2022. The new government’s 

strategy towards decarbonisation is still to be drafted although it 

might include support to renewables, incorporation of nuclear 

power, and an important use of green hydrogen. Nonetheless, at the 

current pace, decarbonisation objectives for Italy may not be met. In 

contrast, the Netherlands is encouraging renewables with several 

incentives and is also planning the comissioning of nuclear power 

plants, and therefore may have a low-carbon economy soon enough 

to meet stated objectives. 

From the analysis on energy policies and the evaluation performed, 

the following general conclusions can be obtained: 

• The priority in EU countries is nowadays to gain 

independence from Russia’s supplies, even though 

achieving this causes negative effects on other objectives.  

• The priorization of energy independence and security of 

supply is modifying the electricity mix foreseen before the 

energy crisis. 

• The accomplishment of decarbonisation objectives 

depend on the technologies promoted. 

o The promotion of renewables together with 

nuclear power provides a suitable framework 

in which to reach a low-carbon economy in a 

short to medium term. 

o The promotion of renewables without nuclear 

power imply currently the use of fossil fuel 

technologies since hydrogen, biogas and 

flexibility options are not implemented at a 

large-scale in the market. This makes it harder 

to achieve decarbonisation in the short-term. 

o Technological decisions based on day-to-day 

politics can affect how and when 

decarbonisation and energy independence 

goals are achieved. 

• The path selected by each country depend on its historical 

background and supply procedences. 

o Countries with ease for the obtention of gas 

from different sources are more likely to still 

rely on this energy carrier. 

o Countries with a strong nuclear background 

are likely to continue with a nuclear strategy. 

7. Conclusions 

This paper has analysed Europe’s situation regarding the energy 

crisis. In addition to previous energy policies, and in response to the 

current geopolitical situation, the EU has published a new energy 

package called REPowerEU which fosters energy independence from 

Russian gas and increases renewable energy targets for upcoming 

years. However, the achievement of both energy independence and 

decarbonisation objectives causes contradictory situations which 

each MS has to address. The current specific situation of the six most 

significant MSs in the EU from a generation capacity point of view 

has been analysed. The analysis shows that despite efforts in 

progressing toward the achievement of a secure and sustainable 

energy systems, their current energy mix is still considerably distant 

from EC and national plans’ objectives drafted in the pre-crisis stage. 

With the new crisis and more exigent targets regarding 

decarbonisation and independence, preferences have changed 

significantly, and countries are acting to prioritise energy 

independence even though this choice negatively affects 

decarbonisation targets. The policy trends that have appeared 

during the last months show a significant deviation from the path 

depicted before the crisis to reach a sustainable and secure energy 

system. Coal-fired power plants are being brought back online and 

nuclear power is rising as an important asset favourable both to 

decarbonisation and autonomy which countries are including, now 

more than before, in their plans to reach a low-carbon economy. 

Although the duration of this situation is uncertain, an alternative to 

gas and coal has indeed to be found if decarbonisation targets want 

to be met. Hydrogen, biogas, and system flexibility can support the 

deployment of renewable energy sources, which are still being 

generally encouraged. However, their maturity does not allow them 

to support renewables nowadays but represents a medium to long-

term solution. For this reason, it is crucial to discuss and define a 

realistic energy mix for the short-term, promoting the desirable 

alternatives by creating the required market, infrastructure and 

legislation for its rapid deployment. 
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