
UNIVERSITAT POLITÈCNICA DE CATALUNYA

DOCTORAL THESIS

Unfitted finite element methods for explicit
boundary representations

Author:
Pere Antoni MARTORELL POL

Supervisors:
Prof. Santiago BADIA

Dr. Francesc VERDUGO

A thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy

in the

Doctorat en Enginyeria Civil

Escola Tècnica Superior d’Enginyeria de Camins, Canals i Ports de Barcelona

Barcelona, January 2024

http://www.upc.edu
https://research.monash.edu/en/persons/santiago-badia
https://www.francescverdugo.com/
http://camins.upc.edu/

To Ester, my family and friends.

iii

“Everything must be made as simple as possible. But not simpler.”

Albert Einstein

v

Abstract

This thesis covers the development of large-scale numerical methods for the simulations of
partial differential equations on arbitrarily complex geometries. The target application of this
thesis is the structural simulation of buildings and civil infrastructures, in which lightweight
and aesthetical demands usually increase the complexity of their geometries. In these appli-
cations, empirical experimentation is often not feasible during the design loop. Thus, we rely
on numerical simulations to predict the performance of these shapes under realistic loads, e.g.,
wind loads that increase the complexity with the sophistication of the geometry. Current sim-
ulation tools are based on unstructured body-fitted meshes. The generation of unstructured
meshes is time-consuming and involves human intervention. Furthermore, body-fitted meth-
ods cannot efficiently exploit modern high-performance computing resources.

The main goal of this thesis is to design novel simulation tools for rapid, accurate, and
automated solutions of partial differential equations on geometries described by computer-
aided design. Thus, we aim for a framework that combines (1) an automated pipeline from
computer-aided design to finite element analysis, (2) a novel space-time formulation for mov-
ing geometries, and (3) a scalable implementation for high-performance computing resources.
Our developments are accessible through open-source software within the Gridap ecosystem
and FEMPAR packages (written in Julia and Fortran, respectively).

The contributions of this thesis increase the functionality of state-of-the-art unfitted (or im-
mersed or embedded) finite element methods. These methods utilize structured background
meshes to solve partial differential equations on complex domains. In the literature, these do-
mains are implicitly represented by level sets. To address this limitation, (1) we developed a
robust algorithm that solves problems on domains described by linear boundary representa-
tions. This algorithm is based on robust polyhedra clipping algorithms. We have tested the
algorithm against all the analysis-ready geometries (STL files) in the Thingi10k dataset (almost
5,000). We have extended this algorithm to high-order boundary representations. In this exten-
sion, we utilize Bernstein-Bézier basis and multi-variate root-finding algorithms. We validate
the resulting method with analytical benchmarks and real-world geometries from computer-
aided design files.

Then, (2) we formulated an unfitted space-time finite element framework for moving ex-
plicit geometries. In this formulation, we utilized space-only meshes, circumventing the need
for 4D geometrical algorithms. In turn, we developed a transfer method for evaluating the
initial values at each time slab. The results matched with analytical analysis and external nu-
merical experiments. Furthermore, we have demonstrated the applicability of fluid problems
on rotating complex (2D and 3D) geometries.

Finally, (3) we proposed the acceleration of the methods of this thesis through highly scal-
able algorithms. These algorithms tackle the bottlenecks of parallelization of the intersection
algorithms. We have demonstrated the scalability of these algorithms over one billion cells and
12,000 cores. Furthermore, we can combine these algorithms with adaptive mesh refinement
techniques to reduce the computational cost further. These tools provide the means to signifi-
cantly accelerate the design-to-simulation pipeline while increasing the fidelity of the results.

vii

Resum
Aquesta tesi cobreix el desenvolupament de mètodes numèrics a gran escala per a la simu-

lació d’equacions amb derivades parcials en geometries arbitràriament complexes. L’aplicació
d’aquesta tesi està orientada a la simulació estructural d’edificis i infraestructures civils, en les
quals les demandes estètiques i de lleugeresa augmenten la complexitat de les geometries. En
aquestes aplicacions, l’experimentació empírica no és factible durant el procés de disseny. Per
tant, es confia en simulacions numèriques per a predir el comportament d’aquestes estructures
sotmeses a càrregues realistes, e.g., efectes del vent que es compliquen amb la sofisticació de
la geometria. Les eines de simulació actuals es basen en malles no estructurades adaptades a
la geometria. La creació de malles no estructurades és un procés demandant que requereix la
intervenció humana. A més, els mètodes de malles adaptades a la geometria no poden explotar
els recursos computacionals d’alt rendiment moderns de manera eficient.

L’objectiu principal d’aquesta tesi és el disseny de noves eines per a simular ràpidament,
acurada i automàtica equacions amb derivades parcials sobre geometries definides per disseny
assistit per ordinador. Per aquest motiu, es cerca un sistema que combina (1) un procés au-
tomàtic des del disseny assistit per ordinador fins a l’anàlisi d’elements finits, (2) una nova
formulació espai-temps per a geometries en moviment, i (3) una implementació escalable per
explotar recursos computacionals d’alt rendiment. Els desenvolupaments estan accessibles mit-
jançant programari de codi obert dins de l’ecosistema Gridap i del paquet FEMPAR (escrits en
Julia i Fortran, respectivament).

Les contribucions d’aquesta tesi incrementen la funcionalitat dels mètodes d’elements finits
embeguts ("immersed", "embeddedd" o "unfitted" en anglès) respecte a l’estat de l’art. Aquests
mètodes utilitzen malles de fons estructurades per resoldre equacions amb derivades parcials
en dominis complexos. En la literatura, aquests dominis es representen implícitament per con-
junts de nivell. Per a abordar aquesta limitació, (1) s’ha desenvolupat un algorisme robust
que resol problemes en dominis descrits per representacions de contorn lineals. Aquest al-
gorisme es basa en algorismes robustos per retallar poliedres. S’ha testejat l’algorisme amb
totes les geometries (fitxers STL) analitzables del recurs Thingi10k (gairebé 5.000). S’ha ampliat
l’algorisme per a representacions de contorn d’alt ordre. En aquesta extensió, es fan servir les
bases de Bernstein-Bézier i algorismes de cerca d’arrels multivariables. S’ha validat el mètode
mitjançant referències analítiques i geometries reals creades amb eines de disseny assistit per
ordinador.

A continuació, (2) s’ha formulat un marc d’elements finits embegut i espai-temps per a
geometries explícites que es mouen. En aquesta formulació, s’utilitzen malles espacials per a
evitar la necessitat d’algorismes geomètrics en 4D. En canvi, s’ha desenvolupat un mètode de
transferència de valors inicials a les llesques temporals. Els resultats coincideixen amb l’anàlisi
matemàtica i amb els experiments numèrics externs. Així mateix, s’ha demostrat l’aplicabilitat
a problemes de fluids amb geometries complexes (2D i 3D) en rotació.

Finalment, (3) s’ha proposat l’acceleració dels mètodes d’aquesta tesi a través d’algorismes
altament escalables. Aquests algorismes aborden colls d’ampolla de la paral·lelització dels al-
gorismes d’intersecció. S’ha demostrat l’escalabilitat d’aquests algorismes amb més de mil mi-
lions de cel·les i 12.000 processadors. Per afegiment, es poden combinar aquests algorismes
amb tècniques d’adaptació de malla per reduir, encara més, el cost computacional. Aquestes
eines proporcionen els mitjans per a accelerar el procés de disseny a simulació tot incrementant
la fidelitat dels resultats.

ix

Acknowledgements
I would like to gratefully acknowledge the guidance, advice, and support of my supervi-

sors, Santiago Badia and Francesc Verdugo. I am very grateful for your patience, availability,
and commitment despite the geographical distance during these years. I have been fortunate to
work with all the researchers at the Large Scale Scientific Computing group of CIMNE. Thank
you Àlex, for your motivation and for introducing me to the research group. I would like to
thank Alberto for selflessly sharing his deep knowledge and Javier for his kind support and
valuable advice.

I would like to thank my office mates Eric, Jesús, and Marc for the valuable advice, teach-
ings, and warm working environment. Every one of them has been an essential example
throughout the entire journey. I also thank the other members of the research group: Daniel,
Jerrad, Manuel, and Víctor, for the fruitful discussions and advice.

I would like to acknowledge the support from Universitat Politecnica de Catalunya and
Santander Bank for the PhD fellowship (FPI-UPC-2019). I would like to extend my gratitude
to the European Council, the Spanish Ministry, and the Australian Research Council for the
financial support through ExaQUte, AMBBOS, and Discovery projects, respectively. I want to
thank the CIMNE and UPC staff for their administrative support and availability. Thank you,
Silvia A., for your kind help.

I want to thank the members of the JIPI organization committee for their support in cross-
cutting research issues. I hope it will continue again. I also want to thank all the people who
warmly welcomed me in Melbourne during my stay at Monash University, especially Angelika,
John, and Ricardo. I am grateful to Alex, Connor, Hridya, Kishore, Wei, Jiahao, and Martin for
making a memorable stay through interesting discussions, amazing trips, and social events. I
would like to thank Asseem for his kind hospitality from the very first day.

I want to thank all the friends from my hometown, university, and Cranfield who have
always been there: Jaume, Joan Pere, Joan Toni, Pau, Robert, and the whole crew, Aura, Carles,
David, Edu, Eloi, Jordi C. A., Jordi C. J., Juan F., Leo, Manel, Marc, Robert, Sergi, Ulises, and
Xavi, Damien, Loïc and Xavier. Thank you for all the adventures and happy moments. I have
learned a lot from every one of you.

I am very grateful to my partner’s relatives for considering me part of their family: Jordi,
Llúcia, Laura, Miguel, and our joyful godson Sergi. Thank you, uncle Andreu, for your in-
spiration and scientific advice. I want to thank my brother for all we have shared and for his
inspiration in continuously learning. Thank you, Joana and wonderful little Guida, for being
part of my family. I thank my parents for teaching me the value of patience, perseverance,
knowledge, and love. Thank you for your blind trust and support. I want to express special
gratitude to my beloved Ester for her love, patience, and inspiration. You have enriched my
character in many dimensions. Thank you for being at my side, regardless of the circumstances.

xi

Contents

Abstract vii

Resum ix

Acknowledgements xi

List of Figures xvii

List of Tables xix

List of Abbreviations xxiii

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis objectives . 2
1.3 Document structure . 3
1.4 Research publications . 5
1.5 Conference talks . 5
1.6 Research stays . 6

2 Unfitted discretizations for linear explicit BREPs 7
2.1 Introduction . 7
2.2 Unfitted finite element discretisations . 11
2.3 Intersection algorithms . 14

2.3.1 Polyhedra and polygonal surface representations 15
2.3.2 Half-space representations . 17
2.3.3 Clipping a polyhedron with a plane 18
2.3.4 Intersecting a polyhedron with a surface 19
2.3.5 Robust computation of signed distances 25
2.3.6 Global intersection algorithm . 28

2.4 Numerical experiments . 31
2.4.1 Objectives . 31
2.4.2 Experimental setup . 32
2.4.3 Batch processing the STL models of the Thingi10K data-set 32
2.4.4 Robustness test . 35
2.4.5 Finite Element convergence test 37

xiii

2.5 Conclusions and future work . 39

3 High-order unfitted discretizations for explicit BREPs 43
3.1 Introduction . 43
3.2 Unfitted finite element method . 47

3.2.1 Unfitted finite element formulations 47
3.2.2 Geometrical ingredients for unfitted finite elements 49
3.2.3 Integration methods for cut cells 50

3.3 Intersection algorithm . 52
3.3.1 Intersection points . 53

Curve-plane intersection . 53
Surface-line intersection . 53
Critical points of the zero isosurface of a distance function 54

3.3.2 Nonlinear trimming surface . 54
3.3.3 Connection algorithm . 59
3.3.4 Surface partition . 62
3.3.5 Surface parametrization . 63
3.3.6 Cell intersection . 64
3.3.7 Global algorithm . 66

3.4 Numerical experiments . 68
3.4.1 Experimental setup . 68
3.4.2 Approximation and parametrization analysis 68
3.4.3 Robustness experiments . 69
3.4.4 Unfitted FE experiments . 70

3.5 Conclusions and future work . 73

4 Space-time unfitted FEM for moving explicit BREPs 75
4.1 Introduction . 75
4.2 Space time unfitted finite element method 77

4.2.1 Geometry description for moving domains 77
4.2.2 Space-time finite element spaces 79
4.2.3 Extension of the deformation map 80
4.2.4 Extended active mesh . 82

4.3 Variational formulation on a model problem 82
4.3.1 Weak formulation . 83
4.3.2 Inter-slab integration . 85

4.4 Intersection algorithm for time slab transfer 87
4.5 Numerical experiments . 88

4.5.1 Objectives . 88
4.5.2 Environment setup . 88
4.5.3 Space-time convergence tests . 89
4.5.4 Moving domains examples . 91

xiv

4.6 Conclusions and future work . 94

5 Distributed unfitted discretizations for explicit BREPs 95
5.1 Introduction . 95
5.2 Distributed unfitted finite element method 97
5.3 Distributed intersection algorithm . 99

5.3.1 Local intersection . 99
5.3.2 Local classification . 100
5.3.3 Global distributed algorithm . 100

5.4 Numerical experiments . 103
5.4.1 Experimental setup . 103
5.4.2 Parallel scalability . 103

5.5 Conclusions and future work . 105

6 Conclusions and future work 107
6.1 Conclusions . 107
6.2 Future work . 108

Bibliography 111

xv

List of Figures

2.1 Example of an embedded non-convex domain in 2D. 13
2.2 Example of Algorithm 1 that converts (a) a closed polyhedra into (b) an

open surface polyhedra. 17
2.3 Illustration of Algorithm 2. 20
2.4 Example of the application of Algorithm 4 to decomposes a cell polyhe-

dron K and a non-convex surface S into convex parts. 24
2.5 Illustration to explain Algorithm 5 for a 2D example. 25
2.6 Illustration of Algorithm 6, which intersects a convex volume P by a

convex surface S. 26
2.7 Simple 2D example to justify the choice of open and closed half-spaces

in Algorithm 4 and 10. 29
2.8 Illustration of Algorithm 6, i.e., (S, H) ∩ K, when calling line 7 of Algo-

rithm 10. 30
2.9 Illustration of Algorithm 10, which, given an STL B and a background

mesh T intersects each background cell K ∈ T with B. 31
2.10 Selection of 11 STL models from the Thingi10K database processed in

the numerical examples . 33
2.11 Generated volume sub-triangulation for the STL model with id 441708. . 34
2.12 Volume and surface error distributions. 35
2.13 Results of the robustness test. 36
2.14 FE approximation computed with AgFEM on top of three of the STL

models analysed in the experiments. 38
2.15 Results of the FE convergence test. 38
2.16 AgFEM approximations of two physical problems on both sides of the

Arc de Triomph STL. 40

3.1 Example of the embedded nonlinear domain in 2D. 48
3.2 Representation of the surface B .

= ∂Ω, its intersection Bcut
K

.
= B ∩ K for a

background cell K ∈ T , and the domain interior of the cell Kcut .
= K ∩Ω. 50

3.3 Definition of intersection points. 54
3.4 Refinement steps of Algorithm 11. 55
3.5 Representation of clipping algorithm F ∩ K. 59
3.6 Representation of Algorithm 14 for strictly increasing curves. 61
3.7 Example of iterative approximation of a curve. 64
3.8 Representation of the steps that generate (∂K)cut. 65

xvii

3.9 CAD geometry and the clipping steps for a background cell. 67
3.10 Surface and volume errors of the approximation and the reparametriza-

tion of a sphere. 69
3.11 Demonstration of robustnes concerning the relative position of B and T . 70
3.12 Convergence tests in AgFEM. 71
3.13 Realistic examples on CAD geometries. 72

4.1 Representation of the space-time domain Q embedded within an artifi-
cial space-time domain Qart. 78

4.2 Representation of the deformation map ϕϕϕn
h 79

4.3 Representation of the deformation map DDD and the extended map ϕϕϕn
h in

the time slab Jn = (tn, tn+1). 81
4.4 Mesh sequence for solution transfer between time slabs. 86
4.5 Mesh sequence for solution transfer between time slabs. 86
4.6 Scaling of the condition numbers of the mass and stiffness matrices in

the initial time slab. Convergence of the space-time DG norm error (e =
u− uh) in two and three-dimensional space domains. 90

4.7 Convergence of the L2(Ωn) and H1(Ωn) norms of the error (e = u− uh)
at the final time t = T in two and three-dimensional space domains. . . 90

4.8 Background spatial mesh T̄ bg around a prismatic gear B0. 91
4.9 Background spatial mesh T̄ bg around a wing B0. 92
4.10 Representation of the LIC filter of the viscous flow simulation a evolving

geometry in Figure 4.8. 92
4.11 LIC representation of the viscous flow around Figure 4.9. 93

5.1 Unfitted FE representation in a distributed-memory computation. 98
5.2 Representation of the two-level propagation algorithm. 101
5.3 Strong scaling of the creation of distributed embedded discretizations. . 104
5.4 Weak scaling of the creation of distributed embedded discretizations. . . 105

xviii

List of Tables

2.1 Main features of the test geometries considered displayed in Figure 2.10. 36

xix

List of Algorithms

1 pol(~Γ) . 17
2 (P, H) ∩ h . 21
3 walls(S, HS,S) . 22
4 convexify(C, (P, HSW,P), (S, HSW,S)), . 23
5 colouring(S, HS,S) . 23
6 (P, H) ∩ S→ (P, H) . 25
7 align_surface(HSK,KS)→ HS,KS . 27
8 align_planes(H)→ H . 28
9 merge(H)→ H . 28
10 T ∩ B → T cut,Bcut . 30
11 ref1: axis-aligned refinement of invariants 56
12 ref2: partition by connecting intersections 58
13 F ∩ K . 59
14 connect(F̂, γ̂ f) . 61
15 parametrize(T , D) . 65
16 ∂K ∩ int(Bcut

K)→ (∂K)cut . 66
17 T ∩ int(BCAD) . 67
18 T ∩ T− ∩ int(B) . 88
19 distributed_intersection(T bg

s , Kcoarse
s , Ωs) 102

xxi

List of Abbreviations

AA axis-alignedAxis-Aligned

AABB axis-aligned bounding boxAxis-Aligned Bounding Box

AgFE aggregated finite elementAggregated Finite Element

AgFEM aggregated finite element methodAggregated Finite Element Method

AMG Algebraic Multi-GridAlgebraic Multi-Grid

AMR adaptive mesh refinementAdaptive Mesh Refinement

ALE arbitrary Lagrangian-EulerianArbitrary Lagrangian-Eulerian

BDDC balancing domain decomposition by constraintsBalancing Domain Decompomposition by Constraints

BREP boundary representationBoundary REPresenentation

CAD computer-aided designComputer-Aided Design

CAE computer-aided engineeringComputer-Aided Engineering

CG continuous GalerkinContinuous Galerkin

CSG constructive solid geometryConstructive Solid Geometry

DG discontinuous GalerkinDiscontinuous Galerkin

DOF degree of freedomDegree Of Freedom

FE finite elementFinite Element

FEM finite element methodFinite Element Method

FSI fluid-structure interactionFluid-Structure Interaction

HPC high-performance computingHigh Performance Computing

IGA isogeometric analysisIsogeometric Analysis

JIT just-in-timeJust-In-Time

k-DOP discrete orientation polytopeDiscrete Orientation Polytope

xxiii

LIC line integral convolutionLine Integral Convolution

MPI message passing interfaceMessage Passing Interface

NURBS non-uniform rational basis splineNon-Uniform Rational Basis Spline

OBB oriented bounding boxOriented Bounding Box

OCCT Open CASCADE TechnologyOpen CASCADE Technology

PDE partial differential equationPartial Differential Equation

STEP standard for the exchange of product model dataStandard for the The Exchange of Product model data

STL StereolithographySTereoLithography

XFEM extended finite element methodeXtended Finite Element Method

xxiv

Chapter 1

Introduction

1.1 Motivation

Nowadays, lightweight structures and shape optimization processes aim to signifi-
cantly reduce costs via savings in construction materials on buildings and civil infras-
tructures. Complex structures can frequently be the product of esthetic demand. In all
these cases, those structures can be particularly sensitive to wind effects and prone to
related structural issues (e.g., reaching the limit stress of the material, large deflection of
flexible structures, possible oscillations, etc.). Moreover, complex structural shapes can
lead to possible side effects, such as complex wind flows in the surrounding area. De-
signing and validating these constructions through empirical experimentation is time-
consuming, expensive, and often not feasible.

Computational simulation tools are very convenient since they can predict those
behaviors early in the design process. A vast range of available techniques in the
computer-aided engineering (CAE) address these problems. These tools involve math-
ematical models to describe the physical behavior utilizing partial differential equa-
tions (PDEs). The solution of these equations is not analytical in general. Instead,
discretization techniques can approximate PDEs within a bounded domain. The ge-
ometry description generally derives from computer-aided design (CAD) tools. How-
ever, other techniques, e.g., topology optimization loops, 3D scanning, or analytical
functions, can generate the domain.

Traditionally, simulation techniques require the tesselation of the domain around
the target geometry. This step is not straightforward for complex geometries and of-
ten involves human intervention. Indeed, the mesh generation represents 80% of to-
tal simulation time in many industrial applications [63]. This task becomes especially
challenging when the geometries evolve in time, e.g., deflexion, oscillations, and rota-
tions caused by wind loads. The well-established arbitrary Lagrangian-Eulerian (ALE)
formulations address this problem for small deformations. However, the method re-
quires building new meshes during the simulation when the deformations are larger.
Remeshing is an obvious limitation for the simulation of multiphysics problems. This
limitation may have a backward effect on the design and quality of the final product.
These limitations are inherently linked to generating body-fitted meshes, i.e., meshes

1

2 Chapter 1. Introduction

that conform to the geometry. Therefore, bypassing this step is essential for a fully
automated simulation pipeline.

Furthermore, most of the available codes are based on serial algorithms that can-
not efficiently exploit the computational resources of modern parallel hardware such
as distributed-memory supercomputers. The efficient parallelization of the simulation
tools is a challenging task that involves the entire pipeline. Consequently, computer-
based simulations of complex phenomena are time-consuming, making analyzing real-
world problems very challenging. Only the combination of (a) novel geometrical tools
to bridge the gap between CAD and CAE, (b) robust formulations to simulate evolv-
ing geometries, and (c) highly scalable parallel algorithms will provide the means for
an automated, rapid, and accurate design-to-simulation pipeline. Implementing these
algorithms on modern (and imminent exascale) high-performance computing (HPC)
resources will generate a qualitative step forward in engineering design and analysis.

1.2 Thesis objectives

The main objective of the thesis is to address the computational challenges preventing
current simulation tools for the finite element (FE) simulation PDEs on complex geome-
tries from CAD to generate rapid, accurate, and automatic results. The achievement of
this objective breaks down into the following specific objectives:

O1: Address the gap between CAD and unfitted finite element methods to lead to
accurate and robust results.

Generating body-fitted meshes around CAD models requires human interven-
tion. Instead, unfitted (also known as embedded or immersed) FE methods em-
bed the domain in a simple background mesh, e.g., uniform or adaptive Carte-
sian grids. The background mesh contains the functional discretization. The ge-
ometrical discretization only integrates the interior of the background cells with
limited geometrical constraints (concerning body-fitted mesh generation). Gen-
erating integration meshes is straightforward with level-set defined geometries.
However, the state-of-the-art unfitted methods do not successfully address ge-
ometries described by CAD models. Therefore, we consider the generation of em-
bedded discretizations for linear CAD geometries, e.g., Stereolithography (STL)
models.

O2: Formulate an automatic and precise framework for high-order CAD geometries
with unfitted FE methods.

The CAD models are described by high-order geometrical representations, e.g.,
non-uniform rational basis spline (NURBS). Therefore, extending the previous
objective (O1) to high-order discretizations is a natural step. This discretization is
more involved since it requires non-linear operations and approximations of the

1.3. Document structure 3

intersections, see [52]. Despite the increased complexity, we use the knowledge
gained to develop the objective (O1). Furthermore, we consider tools to palli-
ate the increment of computational cost, e.g., utilizing moment fitting techniques
[107].

O3: Formulate and analyze a space-time method for moving explicit boundaries.

The flexibility of unfitted FE methods makes them very appealing for computa-
tions with moving geometries. However, they also pose significant challenges
which need to be addressed. One of the most well-known difficulties is that
degrees of freedom (DOFs) are activated and de-activated during the process,
which makes it difficult to define the initial time step value in time integration
schemes for the DOFs that are activated. The conventional way to circumvent
this problem is to define artificial initial conditions in the newly created DOFs,
but this might introduce spurious oscillations. For this reason, we explore space-
time unfitted methods when the initial geometry is described by a CAD model.

O4: Formulate a parallel framework for simulating PDEs on explicit boundary rep-
resentation on uniform and h-adaptivity meshes.

The solution of real-world problems can become excessively time-consuming. To
this end, we explore the parallelization of the tools developed during the thesis
(O1-3). Additionally, we exploit parallelism on background adaptive meshes,
e.g., octree meshes like p4est [37]. The development of parallel algorithms to
exploit available HPC resources, e.g., Marenostrum IV at Barcelona and Gadi at
Canberra, aims to increase the impact of this thesis.

O5: Develop and contribute to open source libraries to distribute the developed
methods.

As a transversal objective, we contribute to software tools available throughout
the scientific community. We provide notable contributions to the in-house codes.
Firstly, we develop code in FEMPAR [13], an object-oriented Fortran code that
provides a wide range of FE methods and parallel implementations. Secondly,
we contribute to Gridap [21] a Julia Language [27] package package for approx-
imating PDEs. Finally, we develop Julia packages for the specific developments
of this thesis. These open source packages enrich the Gridap ecosystem.

1.3 Document structure

The initial chapter of this thesis serves to introduce and provide a rationale for the
subject of our research, outlining the objectives pursued within this study. The contents
spanning from Chapter 2 to Chapter 4 encompass the principal contributions of this
thesis. Specifically, Chapter 2 corresponds to a publication detailed in the next section.
Chapters 3 and 4 are currently undergoing preparations for publication, while Chapter

4 Chapter 1. Introduction

5 has not been published yet but presented at a conference. Each of these chapters is
self-contained, preserving the structure of their respective associated papers, thereby
enabling independent reading. Therefore, each chapter may have specific notations
and repeated definitions.

In Chapter 2, we describe a novel algorithm to numerically integrate over geome-
tries bounded by explicit boundary representations, e.g., STL models. This work is
defined in the framework of unfitted FE methods. We motivate and present a state-of-
the-art review in Section 2.1. In Section 2.2, we present some unfitted FE methods and
their geometrical requirements. In Section 2.3, we provide the geometrical algorithm
that computes the intersection of background cells and oriented surface meshes. In Sec-
tion 2.4, we report a thorough numerical experimentation of the proposed algorithms
on almost 5,000 meshes in the Thingi10K database [123]. We show the remarkable ro-
bustness of the geometrical algorithm, providing very low geometrical error quantities
in all cases. The algorithms are combined with unfitted FE methods to approximate
PDEs on these complex geometries, showing the expected convergence orders of ac-
curacy. We also analyse the computational performance of the proposed framework
and provide details about the corresponding open source implementation [76]. Finally,
some conclusions and future work lines are drawn in Section 2.5.

Chapter 3 is devoted to high-order unfitted FE methods for geometries descdibed
by CAD models. After the introduction of Section 3.1, we introduce the unfitted FE
methods and their requirements for handling high-order boundary representations
(BREPs) in Section 3.2. Next, in Section 3.3, we provide the proposed geometric al-
gorithms for computing the nonlinear intersections between background cells and ori-
ented high-order BREPs, along with a surface parametrization method for integration
purposes. Then, in Section 3.4, we present the numerical results obtained from ap-
plying the proposed method, including accuracy and robustness of the intersections,
benchmark tests for validation of the unfitted FE pipeline, and simulations on CAD
geometries. Finally, in Section 3.5, we draw the main conclusions and future work
lines.

Chapter 4 we expose a space-time formulation for unfitted methods and explicit
geometries. Firstly, we motivate the topic with the available literature in Section 4.1.
Then, in Section 4.3, we present the variational formulation through a model problem.
We also define the integration measures and the inter-slab transfer mechanism. In Sec-
tion 4.4, we describe the intersection algorithm for time slab transfer. Then, in Section
4.5, we present numerical results for space and time convergence, condition number
tests, and a numerical example of a moving domain. Finally, in Section 4.6, we present
our conclusions and future work.

In Chapter 5, we present a parallel and fully distributed FE framework for the sim-
ulation of complex CAD geometries which may evolve over time. After the introduc-
tion in Section 5.1, we present the parallel unfitted FE methods used in this chapter
in Section 5.2. In Section 5.3, we introduce the distributed intersection algorithm. In

1.4. Research publications 5

Section 5.4, we present the numerical results on stability. Finally, in Section 5.5, we
summarize the main conclusions of this chapter.

1.4 Research publications

The advancements outlined in this thesis have led to a publication within an interna-
tional peer-reviewed journal, accompanied by two research papers prepared for im-
minent submission. Each of these publications directly aligns with a distinct chapter
within the thesis framework:
Chapter 2

[17] S. BADIA, P. A. MARTORELL AND F. VERDUGO, Geometrical discretisations for un-
fitted finite elements on explicit boundary representations, Journal of Computational
Physics, 460 (2022), p. 111162.

Chapter 3

[75] P. A. MARTORELL AND S. BADIA, High order unfitted finite element discretizations
for explicit boundary representations, submitted.

Chapter 4

S. BADIA, P. A. MARTORELL AND F. VERDUGO, Space-time unfitted finite elements
on moving explicit geometry representations, to be submitted.

1.5 Conference talks

Furthermore, the author has presented part of the contents of this thesis as a presenting
speaker, in the following international conferences. The presentation of on each confer-
ence corresponds to a distinct chapter.
Chapter 2

2021 P.A. MARTORELL, S. BADIA AND F. VERDUGO, From STLs to embedded integration
meshes via robust polyhedra clipping, IX International Conference on Computational
Methods for Coupled Problems in Science and Engineering. Sardinia, Italy.

Chapter 5

2019 P.A. MARTORELL, S. BADIA, F. VERDUGO , A Scalable Technique for Numerical
Integration in Cut Cells Based on 3D CAD Models , VII International Conference
on Computational Methods for Coupled Problems in Science and Engineering.
Sitges, Spain.

6 Chapter 1. Introduction

1.6 Research stays

Throughout the doctoral program, the author undertook a three-month research stay at
Monash University, under the supervision of Prof. Santiago Badia. The tasks executed
during this period significantly contributed to Chapter 3 and 4.

Chapter 2

Unfitted finite element
discretizations for linear explicit
boundary representations

The contents of this chapter correspond to the research publication

[17] S. BADIA, P. A. MARTORELL AND F. VERDUGO, Geometrical discretisations for un-
fitted finite elements on explicit boundary representations, Journal of Computational
Physics, 460 (2022), p. 111162.

Unfitted (also known as embedded or immersed) finite element approximations of
partial differential equations are very attractive because they have much lower geo-
metrical requirements than standard body-fitted formulations. These schemes do not
require body-fitted unstructured mesh generation. In turn, the numerical integration
becomes more involved, because one has to compute integrals on portions of cells (only
the interior part). In practice, these methods are restricted to level-set (implicit) ge-
ometrical representations, which drastically limit their application. Complex geome-
tries in industrial and scientific problems are usually determined by (explicit) bound-
ary representations. In this work, we propose an automatic computational framework
for the discretisation of partial differential equations on domains defined by oriented
boundary meshes. The geometrical kernel that connects functional and geometry rep-
resentations generates a two-level integration mesh and a refinement of the boundary
mesh that enables the straightforward numerical integration of all the terms in unfit-
ted finite elements. The proposed framework has been applied with success on all
analysis-suitable oriented boundary meshes (almost 5,000) in the Thingi10K database
and combined with an unfitted finite element formulation to discretise partial differen-
tial equations on the corresponding domains.

2.1 Introduction

Many industrial and scientific applications are modelled by PDEs posed on a non-
trivial bounded domain Ω. In these situations, Ω is described in terms of a BREP
model. These CAD models are 2-variate, i.e., they are not a parameterisation of Ω but

7

8 Chapter 2. Unfitted discretizations for linear explicit BREPs

its boundary ∂Ω; ∂Ω must be an oriented manifold and Ω is defined as its interior. On
the other hand, the numerical approximation of PDEs, e.g., using FE or finite volume
schemes, relies on a partition (mesh) of Ω. The traditional simulation pipeline involves
unstructured mesh generation algorithms [62, 101], which take as input the CAD rep-
resentation of ∂Ω and return a mesh covering Ω (introducing some approximation er-
ror). The creation of analysis-suitable CAD models and body-fitted mesh generation is
a non-automatic process that requires intensive human intervention and amounts for
most of the simulation time [63]. This weak interaction between (geometry representa-
tion) and CAE functional discretisation is arguably the most serious problem in CAE,
which has motivated the isogeometric analysis paradigm [63]. Isogeometric analysis has
been one of the most active research topic in computational engineering for the last
two decades. While this paradigm is sound for PDEs on manifolds (CAD representa-
tions are 2-variate), it does not solve the most ubiquitous situation in practice, i.e., 3D
simulations of PDEs in the bulk of the domain Ω.

Besides, in order to exploit supercomputing resources for unstructured mesh sim-
ulations, mesh partitioning strategies must be used, which rely on graph partition-
ing techniques. Such algorithms are intrinsically sequential and have huge memory
requirements [65]. The mesh partitioning step can easily become the bottleneck (if
not a showstopper) of the simulation pipeline for parallel computations on distributed
memory machines. Furthermore, the use of such framework in adaptive mesh refine-
ment (AMR) codes with dynamic load-balancing is not an acceptable option in terms
of performance, preventing the use of AMR in practical large-scale applications with
non-trivial geometries. The geometrical discretisation is even more challenging in ap-
plications with geometries that evolve in time (like additive manufacturing) or free
boundary problems [86], since they require 4D geometrical models (space and time).
The generation of body-fitted meshes for complex 3D geometries is still an open prob-
lem, and to expect 4D body-fitted generators in a mid term is not reasonable.

In order to solve the current limitations, one could consider unfitted discretisations
[81]. A background mesh is used for the discretisation (instead of a body-fitted one)
and the geometrical discretisation only requires to generate meshes suitable for integra-
tion in the interior defined by ∂Ω (drastically reducing mesh constraints). An unfitted
approach can use tree-based background meshes and exploit scalable and dimension-
agnostic mesh generators and partitioners [10]. Octree-based meshes can be efficiently
generated and load-balanced using space-filling curve techniques [6]; see, e.g., the
highly scalable p4est framework [37] for handling forests of octrees on hundreds of
thousands of processors. The extension to a space-time immersed boundaries is feasi-
ble since tree-based meshes and marching algorithms are dimension-agnostic.

Unfitted discretisations may lead to unstable and severe ill-conditioned discrete
problems [43] unless a specific technique mitigates the problem. The intersection of a
background cell with the physical domain can be arbitrarily small and with unbounded
aspect ratio. Despite vast literature on the topic, unfitted finite element formulations

2.1. Introduction 9

that solve these issues are quite recent. Stabilised formulations based on the so-called
ghost penalty were originally proposed in [33] for Lagrangian continuous FEs, and has
been widely used since [34]. The so-called cell aggregation or cell agglomeration tech-
niques are an alternative way to ensure robustness with respect to cut location. This
approach is very natural in discontinuous Galerkin (DG) methods, as they can be eas-
ily formulated on agglomerated meshes [84]. These techniques have been extended to
C0 Lagrangian finite elements in [22] and to mixed methods in [14]; the method was
coined aggregated finite element method (AgFEM). These unfitted formulations enjoy
good numerical properties, such as stability, condition number bounds, optimal con-
vergence, and continuity with respect to data. Distributed implementations for large
scale problems have been designed [117] and error-driven h-adaptivity and parallel
tree-based meshes have also been exploited [10].

Even though unfitted discretisation are motivated by their geometrical flexibility,
the current state-of-the-art in unfitted finite elements falls short with respect to the com-
plexity of the geometrics being treated in these publications. The core of the problem
is the design of algorithms for the numerical integration in the interior of background
mesh cells only. The vast majority of numerical frameworks rely on implicit level-set
descriptions of geometries and marching cubes (or tetrahedra) algorithms, thus limit-
ing their application. We refer the to [53] for a state-of-the-art review of geometrical
discretisation techniques for level-set representations. Geometrical algorithms have
also been developed for the intersection of 3D tetrahedral meshes for the unfitted dis-
cretisation of interface problems (see [64, 80] and references therein).

The main motivation of this work is to provide a new geometrical framework that
covers all the needs of unfitted techniques and is amenable to arbitrarily complex 3D
geometries represented by STL meshes, i.e., oriented faceted linear surface represen-
tations. This is one of the most common situations in CAE, in which STL meshes are
used to define complex objects. In particular, the starting point of the algorithm, as in
unstructured mesh generation, is a boundary mesh for ∂Ω. We design an algorithm for
computing the intersection of each cell in a background mesh and the interior of the
boundary mesh. The number of faces in the boundary mesh intersecting a background
cell can be in the order of hundreds or even thousands for very complex geometri-
cal representations. As a result, the proposed algorithm must be resilient to rounding
errors and provide answers accurate up to machine precision in all cases. With this al-
gorithm, we complete an automatic simulation framework that takes a standard CAD
representation, an STL mesh, and returns the PDE solution obtained from an unfitted
discretisation. The procedure is fully automatic and allows us to exploit all the ben-
efits of unfitted formulations described above on complex geometries defined by STL
representations. On the other hand, with the proposed formulation, the geometrical
error (determined by the boundary mesh) and the functional error (determined by the
background mesh) are completely decoupled. This remarkable property is not shared
by FEs on unstructured meshes (both geometry and functional discretisation rely on

10 Chapter 2. Unfitted discretizations for linear explicit BREPs

the same geometrical discretisation) or standard level-set approaches with marching
algorithms on background cells (the geometrical approximation is determined by the
background mesh). We note that the geometrical framework proposed in this work can
readily be applied to other numerical techniques that can be posed on general poly-
topal meshes, e.g., hybridised formulations on agglomerated meshes [8] or mollified
FEs [48].

The first key ingredient of the proposed framework is a robust clipping algorithm
for convex polytopes. A popular method for clipping is the one by Sutherland and
Hodgman in [109] (see also [106]). Recent implementations and improvements of these
algorithms can be found in [72] and an extension to non-convex polyhedra can be found
in [73]. These methods require accuracy checks and the handling of all degenerate
branches. Instead, the approach proposed by Sugihara and co-workers, called combi-
natorial abstraction, is an example of a numerically robust scheme for the intersection
of convex polyhedra [108]. An implementation of this algorithm has been proposed
in [93] for intersecting a tetrahedron and a background Cartesian mesh. Still, Sugihara’s
method relies on assumptions that are not true in general and current implementations
are not designed to deal with a large number of clipping planes or non-convex geome-
tries. In this work, we build on [93, 108] to design a robust algorithm and an efficient
implementation for the clipping of a polyhedron and a plane that can naturally handle
with degenerate possibly non-connected and non-convex outputs and is suitable for
our specific target.

Since the boundary representation is not convex in general, the second key ingredi-
ent is a convex decomposition algorithm that transform a non-convex intersection into
a set of convex ones. Different algorithms have been proposed for the convex decom-
position of non-convex polyhedra [39, 58]. In this work, we use polyhedron decompo-
sition ideas for the intersection problem at hand. The original intersection problem is
decomposed into a set of convex clipping problems for which one can use our convex
clipping strategy.

Finally, it is essential to design mechanisms that provide robustness of the algo-
rithm with respect to rounding errors. The main problem is the potentially huge num-
ber of clipping planes to be processed. Our methods are based on a discrete level-set
representation of planes (instead of a more traditional parametric representation) and a
specifically oriented graph representations of polyhedra. The motivation for this choice
is to maximise symbolic computations and define geometrical operations that are nu-
merically robust under rounding errors. We also provide techniques that identify and
merge quasi-aligned planes.

The outcomes of this chapter are the following:

• A robust and efficient intersection algorithm for computing the interior of cells
given a boundary mesh representation;

2.2. Unfitted finite element discretisations 11

• The combination of the intersection algorithm with unfitted finite element meth-
ods (FEMs) for a body-fitted mesh free computational framework that is appli-
cable to the discretisation of PDEs on explicit representations of complex geome-
tries;

• A detailed robustness analysis of the geometrical algorithms on the Thingi10K
database with about 5,000 surface meshes [123];

• The numerical experimentation of an unfitted FE solver that relies on the pro-
posed geometrical intersection engine;

• A performance analysis of the proposed framework and an open-source imple-
mentation [76].

The outline of this chapter is as follows. In Section 2.2, we present some unfitted
FE methods and their geometrical requirements. In Section 2.3, we provide the ge-
ometrical algorithm that computes the intersection of background cells and oriented
surface meshes. In Section 2.4, we report a thorough numerical experimentation of
the proposed algorithms on almost 5,000 meshes in the Thingi10K database [123]. We
show the remarkable robustness of the geometrical algorithm, providing very low ge-
ometrical error quantities in all cases. The algorithms are combined with unfitted FE
methods to approximate PDEs on these complex geometries, showing the expected
convergence orders of accuracy. We also analyse the computational performance of
the proposed framework and provide details about the corresponding open source
implementation [76]. Finally, some conclusions and future work lines are drawn in
Section 2.5.

2.2 Unfitted finite element discretisations

Let us consider an open Lipschitz domain Ω ⊂ R3 (the 2D case is an obvious restric-
tion) in which we want to approximate a system of PDEs. In this work, we are inter-
ested in domains that are described as the interior of an oriented surface polygonal
mesh B of ∂Ω. PDEs usually involve Dirichlet boundary conditions on ΓD and Neu-
mann boundary conditions on ΓN , where ΓD and ΓN are a partition of ∂Ω. Such par-
tition must be respected by the geometrical representation, e.g., the STL model. Thus,
we consider that BD and BN are geometrical discretisations of ΓD and ΓN , resp., and
B .
= BD ∪ BN .

Our motivation in this work is to enable the use of grid-based unfitted numerical
schemes that are automatically generated from B, due to its industrial and scientific
relevance. Embedded discretisation techniques alleviate geometrical constraints, be-
cause they do not rely on body-fitted meshes. Instead, these techniques make use of
a background partition T bg of an arbitrary artificial domain Ωart such that Ω ⊂ Ωart.
The artificial domain can be trivial, e.g., it can be a bounding box of Ω. Thus, the

12 Chapter 2. Unfitted discretizations for linear explicit BREPs

computation of T bg is much simpler (and cheaper) than a body-fitted partition of Ω.
In this work, we consider a Cartesian mesh T bg for simplicity in the exposition, even
though the proposed approach could readily be extended, e.g., to a tetrahedral struc-
tured background mesh obtained after simplex decomposition.

The abstract exposition of unfitted formulations considered in this work is gen-
eral and accommodates different unfitted FE techniques that have been proposed in
the literature, e.g. the extended finite element method (XFEM) [26] (for unfitted in-
terface problems), the cutFEM method [34] based on ghost penalty stabilisation, the
AgFEM [22], the finite cell method [95] and DG methods with cell aggregation [84], to
mention a few.

In order to define a FE space on unfitted meshes, we do the following cell classifi-
cation. The cells in the background partition with null intersection with Ω are exterior
cells. The set of exterior cells in T bg is denoted by T out is not considered in the func-
tional discretisation and can be discarded. T .

= T bg \ T out is the active mesh (see
Figure 2.1(a)). The above mentioned techniques make use of standard FE spaces on T
to define the finite-dimensional space V in which to seek the solution and also test the
weak form of the PDE. The unfitted problem reads as follows: find u ∈ V such that

a(u, v) = `(v), ∀v ∈ V ,

where
a(u, v) =

∫
Ω

LΩ(u, v)dΩ +
∫

ΓD
LD(u, v)dΓ +

∫
F

Lsk(u, v)dΓ,

and
`(v) =

∫
Ω

FΩ(v)dΩ +
∫

ΓN
FN(v)dΓ +

∫
ΓD

FD(v)dΓ.

The bulk terms LΩ and FΩ include the differential operator (in weak sense), the source
term and possibly some other numerical stabilisation terms. The operators LD and FD

integrated on ΓD represent the terms related to the weak imposition of Dirichlet bound-
ary conditions, e.g., the so-called Nitsche’s method, which is commonly used in unfit-
ted formulations. The term FN on ΓN represents the Neumann boundary conditions of
the problem at hand. We denote with F the skeleton of the active mesh, i.e., the set of
interior faces of T . The term Lsk collects additional penalty terms that include weak
imposition of continuity in DG methods or ghost penalty stabilisation techniques.

Since FE methods are piecewise polynomials, the integration of all this terms rely
on a cell-wise decomposition (of bulk and surface terms). However, in order to respect
the geometry and solve the PDE on the right domain, one must perform these integrals
on domain interiors. In particular, we have∫

Ω
(·)dΩ = ∑

K∈T

∫
K∩Ω

(·)dΩ.

2.2. Unfitted finite element discretisations 13

∈ T ∈ B

(a)

∈ T cut ∈ Bcut

(b)

Figure 2.1: Example of an embedded non-convex domain in 2D. Left hand side
figure (a) shows an active mesh T and an oriented skin mesh B. The two-level
meshes in (b), namely T cut and Bcut, are computed using the techniques proposed
in this work to integrate unfitted formulations. Cut cells in T are split into a set of
convex polytopes in T cut. We note that T cut is not conforming across cells in 3D

in general (only in 2D).

As commented above, the surface mesh B in which we aim to integrate the bound-
ary terms and the background mesh that defines the cell-wise polynomial FE functions
are not connected, i.e., one is not the boundary restriction of the other. Thus, the inte-
gration of boundary terms must be computed cell-wise as follows:∫

Γ∗
(·)dΓ = ∑

K∈T
∑

F∈B∗

∫
F∩K

(·)dΓ, ∗ ∈ {D, N}.

We note that, even though it does not represent any problem for the machinery we
want to propose here, skeleton terms (common in ghost penalty and DG methods) can
still be integrated on the whole skeleton faces, and there is no need in general to reduce
these integrals to the domain interior.

As a result, the only geometrical complication of unfitted finite element schemes is
the integral over K ∩Ω and K ∩ B (or more specifically, BN and BD). Such operations
(and specially the first one) are hard for ∂Ω representing a complex shape explicitly
determined by an STL model and will be the target of the next section. Let us stress
the fact that the tools described below are only used for integration purposes. The func-
tional spaces are defined in the background mesh, which provides lots of flexibility
(no inter-cell consistency or shape regularity requirements) compared to unstructured
mesh generation.

In particular, the geometrical queries that are required by unfitted formulations can
be solved as follows. First, the intersection of the surface cells in B against all back-
ground cells in T produces a new surface mesh Bcut that is a refinement of B that de-
scribes the same geometry (up to machine precision). It can be indexed as a two-level
mesh, in which first one computes its portion for a cell K ∈ T , Bcut

K
.
= {S ∩ K : S ∈ B}

14 Chapter 2. Unfitted discretizations for linear explicit BREPs

and Bcut .
=
⋃

K∈T Bcut
K . Thus, Bcut can readily be used for the integration of the bound-

ary terms in (2.2); we can analogously use BD (resp., BN) to produce Bcut
D (resp., Bcut

N).
In any case, Bcut preserves global conformity in 3D and can also be understood as a
standard one-level polytopal mesh. Second, for each cell K ∈ T , we want to com-
pute a sub-mesh TK (composed of convex polyhedra) of the interior of the cell, i.e.,
K ∩Ω. We represent with T cut .

= {TK : K ∈ T } the resulting two-level mesh such that⋃
K∈T

⋃
L∈TK

L = Ω (up to machine precision). This two-level integration mesh can read-
ily be used to compute the integrals in (2.2). T cut is not conforming across background
cells, since this mesh is is only needed for the numerical integration. Since the result of
this algorithm is a set of meshes TK composed of general convex polytopes, we can now
use numerical quadratures for the integration on these polytopes. For these purposes,
one can use quadrature rules on general polytopes (see, e.g., [40]) or a straightforward
simplex decomposition and standard quadrature rules on triangles/tetrahedra. Fig-
ure 2.1 illustrates the construction of Bcut and T cut.

2.3 Intersection algorithms

In this section, we provide an algorithm that given the background mesh T and the
oriented surface polygonal mesh B (resp., BD and BN), it returns T cut and Bcut (resp.,
Bcut

D and Bcut
N). The problem when computing these meshes is the fact that the geomet-

rical intersection and parametric distance computation algorithms are in general not
robust for these purposes, due to inexact arithmetic. In this work, we aim at design-
ing an algorithm that is robust and can be readily applied to any surface mesh with a
well-defined interior. In order to attain such level of robustness, we work at different
levels:

• First, we provide in Section 2.3.1 and Section 2.3.2 a computer representation of
polyhedra (or surfaces) and planes, resp., that are suitable for intersection algo-
rithms with inexact arithmetic.

• Second, in Section 2.3.3 we discuss a novel algorithm for the intersection of poly-
hedra and half-spaces. The algorithm is inspired by Sugihara’s intersection algo-
rithm [108] and Powell and Abell implementation in [93], but departs from these
algorithms to make it suitable for our specific purposes. We provide the complete
algorithm (up to minor implementation details) for the intersection of a convex
polyhedron and a plane.

• Third, in Section 2.3.4 we consider the intersection of a convex polyhedron against
a non-convex surface. In order to do that, we need to define a recursive convex de-
composition algorithm that re-states the original intersection problem as a set of
intersections between convex polyhedra and surfaces, for which we can use the
algorithms in Section 2.3.3.

2.3. Intersection algorithms 15

• Fourth, in order to have a robust algorithm, it is not enough with the proposed
representation of polyhedra and planes and the proposed intersection algorithms.
A common problem that appears in inexact arithmetic is the case of multiple
planes that are quasi-aligned (conceptually, aligned up to machine precision). It
has been proven that merging (enforcing the planes to be exactly aligned) dra-
matically improves the robustness of the overall algorithm. The approach we
propose to merge planes is presented in Section 2.3.5.

• Finally, with all these ingredients, we can design the global intersection algorithm
in Section 2.3.6, which returns Bcut and T cut explained above.

2.3.1 Polyhedra and polygonal surface representations

In this work, we have to deal with hundreds (or even thousands in some limit cases)
of planes clipping a cell. This situation makes robustness essential, which prevents us
from using methods that require accuracy checks and the handling of all degenerate
branches. For this reason, our starting point is Sugihara’s method [108] and its imple-
mentation in [93]. However, the objective in [93] is to intersect a tetrahedron and a
Cartesian mesh and thus restricted to a convex surface mesh and polyhedron. We pro-
pose below an algorithm that keeps robustness for a large number of clipping planes
and non-convex situations.

Sugihara’s method relies on the following assumption. A convex polyhedron in-
tersected by a plane must produce two connected polyhedrons. As Sugihara pointed
out in his seminal work, this is not the case in inexact arithmetic. In order to expose
the problem, let us consider a polyhedron face with more than three vertices. In exact
arithmetic, all these points belong to the same plane. However, this is not true in nu-
merical computations, co-planarity is only true up to machine precision. (Below, we use the
prefix quasi- to indicate a geometrical concept that is true for exact arithmetic but only
approximate in finite precision.) Next, let us consider an oriented plane that is quasi-
coplanar to the face up to machine precision. The classification of a vertex as interior,
exterior, or on the plane is completely determined by rounding errors, thus unreliable.
E.g., it can lead to a non-connected partition of the polyhedron that is impossible in
exact arithmetic. In singular cases, Sugihara proposes an algorithm to re-classify the
vertices on the two sides of the cutting plane based on logical arguments.

Despite Sugihara’s method, we do not consider any re-classification of vertices to
satisfy Sugihara’s assumption in [108]. We consider an algorithm for the clipping of
a polyhedron and a plane that can naturally handle possibly non-connected and non-
convex outputs. In any case, the loss of convexity can only produce rounding errors
and the resulting polyhedron is quasi-convex.

Let us start introducing some basic notation about graphs. Given a graph G, we
denote with vert(G) the set of vertices of the graph and with adj(G) the adjacencies.
The adjacency of a vertex α ∈ vert(G), i.e., the set of vertices connected to α by an edge

16 Chapter 2. Unfitted discretizations for linear explicit BREPs

of the graph G, is denoted by adj(G)(α). We can extract the set of connected components
(or sub-graphs) comp(G) of a graph G.

A graph can readily be constructed from a set of vertices V and the vertices adja-
cencies E; we represent this construction with graph(V, E). We can also make use of a
constructor graph(V, C), where C is a condition that determines whether two vertices
α, β ∈ V are connected (C(α, β) is true) or not. This construction allows us to define
both directed and undirected graphs, for symmetric or non-symmetric conditions, re-
spectively.

In order to represent polyhedra, we need to make use of rotation systems, i.e., a sub-
type of graphs in which the adjacency of each vertex is a cyclic order. In a rotation
system R, given a vertex α ∈ vert(R) and β ∈ adj(R)(α), there is a well-defined
previous and next in adj(R)(α), defined by the cyclic ordering. Thus, we can define
next(α; β) as the vertex after β in the cyclic ordering adj(R)(α).

Definition 2.3.1 (Polyhedron representation). The boundary of a polyhedron P is an ori-
ented closed surface made of polygons in which the edges around a vertex admit a cyclic ordering
that encodes the surface orientation. The cyclic ordering of the adjacency (neighbours) of a ver-
tex α ∈ vert(P) is determined by the clockwise ordering of edges as observed when positioned
outside of P on α. Thus, a polyhedron P can be represented as a rotation system whose vertices
are points in R3. This description of a polyhedron has been exploited in [93]. Figure 2.3 at step
(i) shows a cube representation as a rotation system with clockwise ordering of neighbours.

We can define a specific traversal of the polyhedron vertices using the definition of
next defined by the cyclic ordering above. Given an edge (α0, α1) of the polyhedron,
subsequent vertices repeatedly applying αi+1 ← next(αi; αi−1). The faces of the poly-
hedron are the closed paths determined by this graph traversal, i.e., a face is defined by
α0, α1 and the iteration αi+1 ← next(αi; αi−1) till the result is α0; the face is a 2D polygon
itself. We represent the set of faces in a polyhedron with faces(P).

An open polygonal oriented surface ~Γ can also be represented as the polyhedron
plus information about which vertices lie on the boundary, which are represented with
bou(~Γ). It is convenient to close these open surfaces. We define the concept of open
vertex o. Conceptually, o is a vertex at infinite distance of the surface and exterior to
all the faces of the surface mesh~Γ. Algorithm 1 receives a surface mesh~Γ and returns
a polyhedron by modifying the surface graph by appending the artificial open node
to the adjacency of boundary vertices (line 3). As we want closed paths to represent
polyhedron faces, we need a mechanism to avoid vertices in bou(~Γ) to define a closed
path; open vertices break this path. This construction is illustrated in Figure 2.2.

2.3. Intersection algorithms 17

Algorithm 1 pol(~Γ)

1: V ← vert(~Γ), E← adj(~Γ), ∂V ← bou(~Γ), V ← V ∪ {o}
2: for v ∈ ∂V do
3: E(v)← (E(v), o)
4: end for
5: return graph(V, E)

v3

v2

v1

v4

(a) Closed polyhedra

o

o

o v4

v3

v2

v1

(b) Open polyhedra

Figure 2.2: Example of Algorithm 1 that converts (a) a closed polyhedra into
(b) an open surface polyhedra by adding open nodes to the boundary vertices
∂V = {v2, v3, v4}. The boundary vertices represent a graph cycle in (a), i.e., a
polyhedron face. However, that cycle is broken in (b) because of the edges to open
node, o. Hence, the polyhedron is open in (b) and represents a surface, as intended.

2.3.2 Half-space representations

Given an oriented plane ~π, i.e., determined by a face of the polyhedron, one can define
its corresponding open half-space as the set of points in the interior side of the plane.
We use the following discrete representation of this space for a given set of vertices.

Definition 2.3.2 (Half-space representation). We represent the half-space corresponding to
an oriented plane ~π using a discrete level-set h with respect to a set of vertices V, i.e., the
set of signed distances of the vertices in V to the plane ~π. h can be represented as an array of
real numbers of length |V| . We use the convention that a negative sign means interior point
(positive for exterior points). We assume that half-spaces are open and define their closure as
h. We note that the only difference between the open and closed half-spaces is the definition of
∈; vertices with zero distance belong to the closed half-space but not to the open one. Let us
represent the plane with inverted orientation as −~π. Given the half-space h of ~π, we define the
one for −~π as −h. The complement of h is −h, i.e., h⊕−h = R3.

The discrete level-set representation of a plane with respect to a set of vertices V
can be determined by computing all the signed distances between vertices in V and

18 Chapter 2. Unfitted discretizations for linear explicit BREPs

the plane. Let us consider a set S of planes. We represent the corresponding set of half-
spaces as a signed distance matrix H in which the rows are half-spaces (the first index is
the plane in S) and the columns are signed distances to all planes for a given vertex in
V (the second index is the vertex). We also need to use block partitions of the matrix.
E.g, if S = X ∪ Y and V = W ∪ Q, we use the notation HXY,WQ for the whole matrix
while the blocks are represented using specific subscripts, e.g., the matrix block for
planes X and vertices W is HX,W . We abuse of notation when dealing with polyhedra
and distance matrices. E.g., given a polyhedron S, we use HS,∗ instead of Hfaces(S),∗ (or
more accurately, the planes that contain faces(S)) and H∗,S instead of H∗,vert(S); the
symbol ∗means all indices in that dimension.

2.3.3 Clipping a polyhedron with a plane

We are in position to provide Algorithm 2, in which we compute the clipping of a
convex polytope P against a half-space h ∈ rows(H). The result of this algorithm is (i)
the new polytope obtained after clipping P with h and (ii) the new set of half-spaces
H after eliminating h, eliminating distances to vertices that are not in P anymore and
adding distances to newly created vertices. The half-space h can be open or closed; it
does not affect H, since the same distances are required in both cases. The main steps
in Algorithm 2 are illustrated in Figure 2.3, in which a cube is clipped by a plane.

Let us assume that h is open. The algorithm iterates over interior vertices (lines 2-3).
At each vertex α ∈ h, we look for vertices in the adjacency of α that are exterior (4-5).1

If we find an exterior vertex β in the adjacency of α. We have found an edge (α, β) that
intersects the plane related to the half-space. In line 6, we compute the coordinates of
the intersection vertex δ computing its coordinates as:

xδ
.
= ξαδxα + ξβδxβ

.
=
−hβ

hα − hβ
xα +

hα

hα − hβ
xβ.

This computation has also been used in [93] because it is much more robust than using
an intersection algorithm between planes and edges in parametric form. The denomi-
nator is always positive, ξαδ and ξβδ are non-negative by construction and the resulting
vertex δ always lies between α and β. Furthermore, the computation of the signed dis-
tance between the new vertex δ and any half-space h′ ∈ H can readily be computed
as:

h′δ = ξαδh′α + ξβδh′β.

In order to illustrate the robustness of this approach, let us discuss what happens in
the singular case in which a vertex is exactly on the intersecting plane. Using the def-
inition above for an open half-space, this vertex is exterior. Any edge that connects
it to an interior node will be intersected and a new vertex will be inserted. The new

1In line 4, we use the notation enum over an iterator to describe a new iterator that yields a tuple (i, a)
in which i is a counter starting at 1 and a is the i-th value from the given iterator.

2.3. Intersection algorithms 19

vertex distance to the planes (and coordinates) will have exactly the same coordinates
as the vertex on the boundary, due to the expression in (2.3.3). In line 7 we create the
adjacency (cyclic order) for δ with α in the first position and two additional positions
not defined yet. On the other side, we replace the intersected edge (α, β) with (α, δ).

After this loop, we have identified all intersected edges, computed the new vertices
after the intersection and modified the adjacencies. The adjacencies of the new vertices
are not yet complete because we have not included the edges on the new face created
after clipping; the edges of this face only include new vertices. We perform a new
loop over new vertices in line 12. For each new vertex α, we start a graph traversal
(lines 13-16) till we find another new vertex β. Then, we put β in the second position of
adj(P)(α) and α in the third position of adj(P)(β). When this loop finishes, we have
the complete adjacencies of the new vertices.

It only remains to add to the polytope the new vertices (and their adjacencies) and
to eliminate the exterior vertices (line 19-20). We also compute the signed distances
of new vertices to half-spaces in H and eliminate the ones related to exterior vertices
(inserting/removing rows to this matrix in line 21). The distance to any half-space are
computed using (2.3.3). Since P has been clipped with h, it is eliminated from H.

The most salient property of this algorithm is that most computations are symbolic,
with the only exception of the new vertex coordinates in line 6 and new distances in
line 21. However, the computation of these quantities has already been designed in
such a way that they are well-posed in finite precision, using the expressions (2.3.3)-
(2.3.3) discussed above.

We have considered the intersection with one half-space. But we can recursively use
the algorithm to intersect with multiple planes, since we do not assume any specific
topology of the initial quasi-convex polyhedron. With minor modifications, one can
also extract not only the interior but also the exterior graph at the same time, reusing
computations.

2.3.4 Intersecting a polyhedron with a surface

If the surface S we want to intersect with the polyhedron P is also convex, one can sim-
ply use Algorithm 2 for all the half-spaces corresponding to the faces of S. However,
S is not convex for general geometries. In the final algorithm, we want to intersect an
open oriented surface~Γ (or its corresponding polyhedron representation S← poly(~Γ))
and a background mesh cell K. We note that, for non-convex geometries, it is not pos-
sible to avoid the appearance of cells intersected with non-convex surfaces by using
standard refinement strategies.

In order to deal with general geometries, we perform a basic decomposition of the
surface and the polyhedron into convex pieces [39]. First, we split the surface mesh

20 Chapter 2. Unfitted discretizations for linear explicit BREPs

3 4

8
9

10

11

12
13

3 4

8
9

10

11

12
13

3 4

8
9

10

11

12
13

3 4

89

10

11

12
13

3 4

8
9

10

11

12
13

1 2

3 4

5 6

7 8

1 2

3 4

7 8
9

10

11

12
13

3 4

8
9

10

11

12
13

5 6

(i) (ii)

(iii) (iv)

(v) (vi)

(vii) (viii)

(a) Oriented graphs

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

11

12

13
9

10

3

4

8

11

12

13
9

10
3

4

8

11

12

13
9

10

3

4

8

11

12

13
9

10
3

4

8

11

12

13
9

10

3

4

8

11

12

13
9

10
3

4

8

11

12

13
9

10

(i) (ii)

(iii) (iv)

(v) (vi)

(vii) (viii)

(b) Polyhedra representations

Figure 2.3: Illustration of Algorithm 2 for an example in which we intersect a poly-
hedron, step (i), by a half-space plane. On the left-hand side figure (a), we show the
polyhedron as a rotation system and how the intersection algorithm modifies this
graph during different steps of the algorithm. On the right-hand side figure (b),
we show the geometrical representation of the same steps. First, the polyhedron
of step (i) is defined as a rotation system as described in line 1 of the algorithm. Its
edges are intersected by the half-space in step (ii) and the intersection points are
computed (see line 6). Those new vertices are connected to the inside endpoints
of the cut edges in step (iii) as indicated in line 7. In steps (v) to (viii), which cor-
respond to the loop in line 12, the new vertices are connected to each other (see
line 17) following an anti-clockwise path. The resulting polyhedron in step (viii)
is represented with a new rotation system with all vertices inside the half-space.

2.3. Intersection algorithms 21

Algorithm 2 (P, H) ∩ h

1: VP ← vert(P), EP ← adj(P); Vnew
P ← ∅

2: for α ∈ VP do
3: if α ∈ h then
4: for (i, β) ∈ enum(EP(α)) do
5: if β 6∈ h then
6: δ← ~αβ ∩ h
7: Vnew

P ← Vnew
P ∪ {δ}; EP ← EP ∪ {(δ, (α,∅,∅))}; EP(α)[i]← δ

8: end if
9: end for

10: end if
11: end for
12: for α ∈ Vnew

P do
13: (β, δ)← (α, EP(α)[1])
14: while δ 6∈ Vnew

P do
15: (β, δ)← (δ, next(δ; β))
16: end while
17: EP(α)[2]← δ, EP(δ)[3]← α
18: end for
19: Vout ← {α ∈ VP : α 6∈ h}; VP ← VP ∪Vnew

P \Vout
P ; EP ← {EP(α) : α ∈ VP}

20: P← graph(VP, EP)
21: H← insert(H, Vnew

P); H← remove(H, Vout); H← H \ h
22: return (P, H)

S into quasi-convex patches. In Algorithm 3 we compute a set of half-spaces that de-
fine such decomposition. If S is already a quasi-convex surface, the polytope is quasi-
convex too, and we can proceed with the convex intersection as indicated above. Other-
wise, we identify cells intersected by non-convex surfaces by identifying the reflex edges
of the surfaces. A reflex edge is the one that connects faces that are not quasi-convex.
They are determined by a dihedral angle larger than π. Using the half-space represen-
tation, the reflex edges can be simply determined by the signed distance matrix block
HS,S, i.e., the distance of vert(S) to the planes containing faces(S). In line 2 we iterate
over all edges and extract the faces that share each edge in line 3. An edge is reflex if the
vertices of one face are exterior to the plane determined by the other face. We use this
criterion to determine reflex edges in line 4. For quasi-coplanar faces, this definition
can depend on the face being used to determine the plane. Besides, vertices of one face
can lie on both sides of the plane, due to inexact arithmetic. In any case, these situations
are not problematic when using the representations and algorithms discussed above.
When two faces are quasi-aligned, considering the edge as reflex or not produces an
error on the order of the machine precision. Besides, as discussed below, we consider a
merging strategy to make quasi-aligned planes aligned in inexact arithmetic.

Standard methods to convexify (i.e., split a non-convex polyhedron into convex
parts) rely on vertical reflex walls, i.e., vertical planes that contain the reflex edge. This
algorithm is also denoted as vertical decomposition. See [58] for the application of this

22 Chapter 2. Unfitted discretizations for linear explicit BREPs

method to polyhedra. In Algorithm 3, we do not consider a vertical wall. The definition
of the plane without using information of the surface mesh is not a good choice in our
case. We aim at reducing the intersections of the surface itself against these reflex walls
and try to avoid quasi-aligned planes. Therefore, we consider the bisector of the two
planes containing the faces sharing the reflex edge as the reflex wall (a bisection wall).
Thus, we compute this plane for each reflex edge in line 5 of Algorithm 3. The result of
this process for a surface S (in polyhedral form) is represented with walls(S, HS,S).

Algorithm 3 walls(S, HS,S)

1: R← ∅
2: for e ∈ edges(S) do
3: (T, U)← faces(e)
4: if ¬ (vert(U) ⊂ HT,S ∧ vert(T) ⊂ HU,S) then
5: R← R ∪ bisector(T, U)
6: end if
7: end for
8: return R

In Algorithm 4 we decompose the surface S and the polyhedron P at hand into con-
vex parts via the recursive splitting of these by the bisection walls of S, i.e., walls(S).
In order to perform this algorithm, we need to compute first the signed matrix dis-
tance HSW,P. The first index S stands for faces(S) planes while W for walls(S) planes.
The second index P stands for vert(P) while S stands for vert(S). We start the algo-
rithm with (∅, (K, HSW,K), (S, HSW,S)), where K is a cell in the background mesh and S
the part of the whole surface mesh in touch with K. The recursivity in Algorithm 4 is
illustrated in Figure 2.4, where the decomposition of both surface S and K by the cor-
responding walls lead to a tree of pairs of convex surface and polyhedra components.

Algorithm 4 recursively intersects a polyhedron P and surface S against the walls
and returns pairs of convex polytopes and surfaces after these intersections. If in the
call to this recursive function there are still walls to be processed, we recursively convex-
ify P and S against each wall in lines 7-8. Note that we use closed half-space definitions
for these intersections and that we convexify both sides after the intersection since both
sides are of interest. We note that we can use either open or closed half-spaces in the
intersections in lines 7-8.

If the function is invoked with no walls, we stop the process, since we have reached
the leafs of the tree. The surface component S that has been generated at this stage can
still be disconnected, but what can be proved is that the connected components of S
are convex. If S has disconnected components, we have to colour the surface into parts
provide well-defined interiors of P. We do that in Algorithm 5. The reasoning behind
this colouring is illustrated in Figure 2.5. We use these parts to colour S in line 3. We
return tuples of P and each colour restriction of the surface S in line 4. By construction,
the interior of P with respect to S in each tuple is convex.

2.3. Intersection algorithms 23

Algorithm 4 convexify(C, (P, HSW,P), (S, HSW,S)),

1: HR,PS ← [HR,P, HR,S]
2: if HR,PS = ∅ then
3: S← colouring(S, HS,S)
4: return C ← C ∪ {((P, HT,P), T) : T ∈ colours(S)}
5: else
6: for h ∈ HR,PS do
7: C+ ← convexify(C, (P, HSW,P) ∩ hP, (S, HSW,S) ∩ hS)
8: C− ← convexify(C, (P, HSW,P) ∩−hP, (S, HSW,S) ∩−hS)
9: C ← C ∪ C+ ∪ C−

10: end for
11: end if

Algorithm 5 colouring(S, HS,S)

1: ~G ← graph(comp(S), (T, U)→ vert(T) ⊂ HU,S)
2: F ← graph(comp(S), (T, U)→ vert(U) ⊂ HT,S ∧ vert(T) ⊂ HU,S)

3: V ← vert(~G)
4: W ← ∅
5: while V 6= ∅ do
6: v← V[1], NF ← v ∪ adj(F)(v), DG ← V \ (v ∪ adj(~G)(v))
7: C ← NF \ adj(F)(DG), D ← V \ C
8: W ←W ∪ {C}, V ← D
9: end while

10: S← colour(S, W)
11: return S

24 Chapter 2. Unfitted discretizations for linear explicit BREPs

1 2

5 6

7 8

3 4

9

11

10

12

2

6

8

4

2

6

8

4

9

11

10

12

1

5

7

3

9

11

10

12
16

14

13

15

9

11

10

12

9

10

16

14

13

15

1

5

7

3

11

12

14

13

15

16

(a) Oriented graphs

1 2

3 4

5 6

7
8

9

10

11

12

1

3

5

7

9

10

11

12

2

4

6

8

8

10

11

12

13

15

16

14

8

10

13

15

16

14

1

3

5

7

11

12

13

15

16

14

2

4

6

8

9

10

10

12

(b) Polyhedra representations

Figure 2.4: Example of the application of Algorithm 4 to decomposes a cell polyhe-
dron K and a non-convex surface S into convex parts. Both K and S are recursively
split by the walls of S using Algorithm 2. The clipping of S is particularly simple
since no extra vertex is introduced. Each row corresponds to a call of the algo-
rithm. Recursion is introduced in line 7-8 of the algorithm. The result is the leaves
of the tree-like decomposition, which are processed in line 3-4. In each leaf, a piece

of K is associated with a convex piece of S.

2.3. Intersection algorithms 25

S2S1

S3

S4 S5

(a) comp(S)

S2S1

S4 S5

S3

(b) ~G (F: bi-directed edges)

S1 S2

S3
P1

P2

S4 S5

(c) Colours

Figure 2.5: Illustration to explain Algorithm 5 for a 2D example, which is called
in line 3 of Algorithm 4. Given a surface S with disconnected convex parts in
(a), we build a directed graph G (see (b)). Si is connected to Sj if Si is inside Sj.
Mutually connected components produce an undirected graph F. Let us discuss
the first iteration of the while loop in line 5 for, e.g., v being component S1 of
S. We find mutually connected components NF to S1 (including S1) in line 6.
NF = {S1, S2, S3, S5} are the components that are in the interior of S1 and S1 is in
their interior. In the same line, we find the components DG for which S1 is outside.
We get DG = {S4}. We extract the mutually connected components to these ones,
i.e., adj(F)(DG) and extract them from NF in line 7. We get S5 and extract if from
NF to get the set C = {S1, S2, S3} that defines a convex polytope (have the same
colour). We run the algorithm for the unprocessed components D = {S4, S5} in
the next iteration, which turn out to have the same colour. In this example, the
algorithm returns two colours, namely W = {(S1, S2, S3), (S4, S5)}, which define

two convex domains P1 and P2. We colour the graph S with W in line 10.

After Algorithm 4, we have a set of pairs of convex polyhedra and surfaces (P, S).
We can now use Algorithm 2 for intersecting P against all the half-spaces related to the
faces of S. We do this in Algorithm 6. H must include the signed distance between ver-
tices in P and the half-spaces in S. The definition of open or close half-spaces depends
on the definition of S (as closed set, open set, or a mixed situation). At each leaf of the
tree in Figure 2.4, Algorithm 6 intersects P as in Figure 2.6.

Algorithm 6 (P, H) ∩ S→ (P, H)

1: for h ∈ HS do
2: (P, H)← (P, H) ∩ h
3: end for
4: return (P, H)

2.3.5 Robust computation of signed distances

The main problem when running the previous algorithms in inexact arithmetic is the
computation of the signed distance matrices when multiple planes are quasi-aligned.
For complex geometries, the number of surface mesh faces intersecting a background
cell can still be large. There is a chance that some of these faces and the respective walls
will be quasi-aligned. Even though this is not an issue in exact arithmetic, it can be
problematic in inexact arithmetic. In this section, we provide mechanisms to enforce

26 Chapter 2. Unfitted discretizations for linear explicit BREPs

2

6

8

4

9

11

10

12

2

6

8

4

9

11

10

12

2

4

9

10

2

4

9

10

13

14

1516

17 13

14

15
16

17

6
18

19

20

13

16

17

18

19

20

(i) (ii) (iii) (iv)

(a) Oriented graphs

2

4
6

8

9

10

11

12

2

4
6

8

9

10

11

12

16

15

17

13

14

2

4

9

16

17

13

20

18

19

2

4
6

9

16

15

17

13

14

20

18

19

10 10

(i) (ii) (iii) (iv)

(b) Polyhedra representations

Figure 2.6: Illustration of Algorithm 6, which intersects a convex volume P by a
convex surface S. The input of step (i) represents one of the leafs of Figure 2.4.
In steps (ii) and (iii) the volume polyhedra P is intersected by the half-spaces de-
termined by faces(S) as in the loop of line 1. The result in (iv) is the portion of
P inside S. If this process is repeated for each leaf of Figure 2.4, the result is the

portion of P in the interior defined by S, which is P ∩ B.

quasi-aligned half-spaces to be exactly aligned. Since we only make use of the signed
distance matrix in our algorithms, the objective is to enforce the same entries for rows
in H related to quasi-identical planes (with the same orientation) or times -1 for quasi-
complimentary planes.

In a first step, we execute an algorithm dist(Π, V) that returns the the signed dis-
tance matrix H after computing the plane to vertex signed distances using parametric
representations. In this method, the distances are snapped distances. We define a snap
tolerance εsn (e.g., 100 times the machine precision) and any distance within this tol-
erance is enforced to be zero. Geometrically, vertices extremely close to a plane are
enforced to be on the plane in the half-space representation. It can happen that a node
is snapped to multiple planes. We note that the snapping only affects the half-space
representations; we do not perturb the vertices positions.

In order to make the algorithm more robust, we additionally provide a mechanism
to identify half-spaces that are quasi-identical or quasi-complimentary and to make
them exactly aligned in the discrete representation. Algorithm 7 merges (aligns) dis-
crete level-set representations of half-spaces S (that represent surface faces) to the ones
of a cell K of the background mesh if they are quasi-aligned. The S half-spaces, i.e., HS,
can be perturbed in this process, but not the ones in K. Besides, the algorithm has been
designed in such a way that the alignment of a half-space hS against a half-space hK

2.3. Intersection algorithms 27

of K is consistent among all cells containing hK. In line 4 we check whether a K half-
space and an S half-space are quasi-aligned. A surface half-space hS is aligned with a
cell half-space hK if the absolute value of their distance to all the surface vertices in S
(in their discrete level-set representation) are below a given tolerance εhs. The absolute
value is used to align not only two half-spaces that are quasi-coplanar but also the ones
that are quasi-complementary. If the spaces are quasi-aligned, we run line 5. Given
two quasi-aligned planes hi and hj, sign(hi, hj) returns +1 if they are quasi-coplanar
and -1 if they are quasi-complementary. We note that this computation is numerically
well-posed, e.g., comparing the sign of the distance to the furthest point in the dis-
crete representation of the half-spaces. Finally, the S half-space is replaced by the K
half-space times the sign, in order to keep consistency among cells.

Algorithm 7 align_surface(HSK,KS)→ HS,KS

1: for FK ∈ faces(K) do
2: for FS ∈ faces(S) do
3: hi ← HFK ,S : hj ← HFS,S

4: if min(|max.(hi − hj)|, |max.(hi + hj)|) ≤ εhs then
5: HFS,KS ← sign(hi, hj) ·HFK ,KS
6: end if
7: end for
8: end for
9: return HS,KS

Once we have aligned the surface half-spaces with the cell half-spaces, modifying
HS,KS, we are in position to run the cell-wise intersection algorithms. But we still need
to check whether wall and surface planes are quasi-aligned. In Algorithm 8 we provide
an algorithm that aligns planes given a general signed distance matrix H. First, the al-
gorithm creates in line 1 a graph of half-spaces in which two half-spaces are connected
if they are quasi-aligned, using the same condition as in Algorithm 7 but for all vertices
in the discrete representation of the half-spaces. We extract the components of these
graphs in line 2. Half-spaces in a component are considered to be all quasi-aligned
and we enforce all their distances to be the same (times -1 for quasi-complementary
half-spaces). The value of the distances that we have used is provided in Algorithm 9.
In this algorithm, vertices that belong to one of the half-spaces in a component belong
to the half-space after alignment, i.e., the distance is 0 (line 7). For other vertices, we
just pick the signed distance from one of the half-spaces in line 8 (with the right sign,
computed in line 4). In any case, as soon as the merge is performed, other reason-
able choices could also be considered without affecting the robustness of the overall
algorithm. After this process, all quasi-aligned components are exactly aligned.

28 Chapter 2. Unfitted discretizations for linear explicit BREPs

Algorithm 8 align_planes(H)→ H

1: G ← graph(H, (hi, hj)→ min(|max.(hi − hj)|, |max.(hi + hj)|) ≤ εhs)
2: C ← comp(G)
3: for T ∈ C do
4: merge(HT,∗)
5: end for
6: return H

Algorithm 9 merge(H)→ H

1: h0 ← H[1, :]
2: s← zeros(dims(H)[1])
3: for (i, h) ∈ enum(rows(H)) do
4: s[i]← sign(h, h0)
5: end for
6: for c ∈ columns(H) do
7: (min(abs.(c)) = 0) ? d← 0 : d← c[1]
8: c← d · s
9: end for

10: return H

2.3.6 Global intersection algorithm

We are in position to define Algorithm 10, the global algorithm we propose to intersects
a background mesh T and a boundary mesh B. The results is a partition of each cell in
both meshes into sub-cells, denoted with T cut, Bcut. Figure 2.9 illustrates all the steps
being performed in this algorithm to intersect a cell K ∈ T with the boundary mesh B.

First, we perform a background cell-wise intersection (see line 3). In general, the
surface mesh can have a large number of cells but a background cell usually intersects
a very small portion of these surface cells. For computational efficiency and robustness
of the algorithm, it is essential to reduce the polyhedron clipping to the portion of the
surface B that can be in touch with the cell. This step is denoted with restrict in
line 3. It makes use of cheap geometrical predicates, since the result does not need to
be precise; false positives do not pose any problem. In fact, in order to capture cells
that are quasi-aligned to faces in the background cell K, we need to enlarge K at least
a distance equal to εhs. Since these predicates are quite standard in computational
geometry and can be found in computational geometry libraries like CGAL [112], they
are not included here for the sake of conciseness.

After the restriction, we transform the portion of the surface mesh into a polyhedron
in line 4, using Algorithm 1. In line 5, we compute the signed distance matrix between
the vertices in vert(K) ∪ vert(S) and the planes in faces(K) ∪ faces(S) ∪ walls(S)
using standard algorithms.

The signed (snapped) distance matrix for all faces of K and S, and walls of S, and
vertices in K and S is computed in line 5. Next, we align the surface half-spaces to the
ones of the cell boundaries in a consistent way using Algorithm 7 in line 6.

2.3. Intersection algorithms 29

Given the rectangular cell K = [x−, x+] × [y−, y+] × [z−, z+], we define K◦• =

(x−, x+] × (y−, y+] × (z−, z+]. In order to perform the surface mesh cell-wise inter-
section, we precisely use K◦•, not K, in line 7 using Algorithm 6. Otherwise, faces that
lie on background cell boundaries would be processed twice. The result of this surface-
cell intersection (line 8) for all cells returns a refinement of B, denoted with Bcut. Such
intersection is illustrated in Figure 2.8.2 We can readily use BD and BN instead, to
compute Bcut

D and Bcut
N .

S1

S2

W

(a)

P−

P+

S−1

S−2
S+2

S+1

(b)

P−

P+

(c)

Figure 2.7: Simple 2D example to justify the choice of open and closed half-spaces
in Algorithm 4 and 10. In (a) S1 and S2, surface faces are aligned with the wall W.
When decomposing by W with closed half-spaces, i.e., −hW and hW in lines 7-8 of
Algorithm 4, S1 and S2 are repeated in both sides as it is shown in (b). However,
when intersecting P ∩ S, since hS is open in line 11 of Algorithm 10, S+

1 (resp., S−2)
does not belong to the open half-space hS1 (resp., hS2) and thus eliminated after the
intersection. The resulting polyhedra after clipping are shown in (c). This specific
choice is required in the case in which one wants to extract the boundary surface

from the clipped polytopes, i.e., Bcut ← ∂T cut.

In this intersection, since the half-spaces related to faces(K) are processed, they are
eliminated from H (see Algorithm 2). Finally, we merge quasi-aligned surface and wall
half-spaces using Algorithm 8. With the resulting signed distance matrix, we run the
convex decomposition in Algorithm 4 in line 10, starting with the polyhedron K and
surface S. We note that this line is doing nothing if there are no walls, i.e., if the poly-
tope is already quasi-convex. The resulting convex polyhedron-surface components
are intersected using Algorithm 2 and added to the sub-mesh for K that represent its
interior part in line 11.

2We note that one could also extract the surface mesh as the surface of the clipped polytopes obtained
after intersecting again half-spaces in faces(S) in line 12. This is the reason why we use K•◦ in line 7 (to
process surface faces aligned with background cells faces only once), closed spaces in lines 7-8 of Algo-
rithm 4 (not to lose any surface face after splitting with wall half-spaces) and intersection against open
half-spaces related to the surfaces in line 11 (to discard zero volume components after this decomposition
and count surface faces on walls only once). A simple example in which we can encounter this situation
is illustrated in Figure 2.7. In any case, these choices of open/closed half-spaces are not required when
extracting the surface mesh as in line 8. The connection between the interior partition T cut and Bcut is not
important for the unfitted scheme being used later on because Dirichlet boundary conditions are weakly
imposed. In any case, it could be useful for other embedded methods that would make use of a strong
imposition of Dirichlet data.

30 Chapter 2. Unfitted discretizations for linear explicit BREPs

Algorithm 10 T ∩ B → T cut,Bcut

1: T cut ← ∅; Bcut ← ∅,
2: for K ∈ T do
3: B← restrict(B, K)
4: S← pol(B)
5: HKSW,KS ← dist([faces(K), faces(S), walls(S)], [vert(K), vert(S)])
6: HS,KS ← align_surface(HS,KS, HK,KS)
7: (S, HS,KS)← (S, HKS,KS) ∩ K◦•
8: Bcut ← Bcut ∪ S
9: HSW,KS ← align_planes(HSW,KS)

10: C ← convexify(∅, (K, HSW,K), (S, HSW,S))
11: TK ← {P ∩ S : ((P, HS,P), S) ∈ C} ; T cut ← T cut ∪ TK
12: end for
13: return T cut, Bcut

1

2

3 4

6

7 8 9
10 11

5

2

7 8 9

12 13 14 15

17

20

18

19

21 16

10 11 7 8 9 10

13 14

17

19

18

21

22

23

19

8 9 10

13 14

18

21

22

23

24

25

26

19

8 9 10

13 14

22

23

24

26

25

2

3 4

7 8 9

12 13 14 15
5
16

10
11

(i) (ii)

(iv)

(vi)(v)

(iii)

(a) Oriented graphs

1

2 3 4

67
8 9 10

5

11

12

13 14

2

7
8 9 10

17

20

18

19
21

15 16

11
13 14

7
8 9 10

17

20

18

19

21

22

23

h5

13 14

8 9 10
18

19
21

23

24

25

26

22

13 14

8 9 10

23

24

25
26

22

7
8 9 10

11

12

13 14

15
2 3 4

5
16

(i) (ii)

(iv)

(v)

(iii)

(vi)

h4

h1

h2

h6

(b) Polyhedra representations

Figure 2.8: Illustration of Algorithm 6, i.e., (S, H) ∩ K, when calling line 7 of Al-
gorithm 10. We consider S and K from step (i) in Figure 2.9. In this process, step
(i) to (v), S is intersected by each half-space hi ∈ HS,K related to faces(K) using
Algorithm 2, which is called in the loop of line 1 of Algorithm 6. Note that h3 (bot-
tom plane) is excluded from the figure because the intersection is meaningless.
The result, step (vi), is a new surface S inside K, which is introduced in step (ii) of

Figure 2.9.

2.4. Numerical experiments 31

(a) STL and cell sample

(i)

(iii) (iv)

(ii)

(b) Main local steps

Figure 2.9: Illustration of Algorithm 10, which, given an STL B and a background
mesh T (see (a)) intersects each background cell K ∈ T with B. The steps de-
scribed in (b) represent the loop in line 2. First, B is restricted to the faces touching
K in (i) (line 3) and defined as a polyhedron S (line 4). Next, S is intersected by the
half-spaces bounding K performed in step (ii) (see line 7). As the surface S may be
non-convex, it is decomposed into convex parts in step (iii), as described in line 10,
together with K. Finally, in line 11, each convex component P of K is intersected
by the corresponding part of S. The result in step (iv) is K ∩Ω described as the
union of convex polyhedra, represented as in Definition 2.3.1. Steps (ii), (iii) and

(iv) are further detailed in Figure 2.8, Figure 2.4 and Figure 2.6 respectively.

Even though we have presented the algorithm the interior component only, i..e,
K ∪ Ω, it is computationally efficient to compute the convex decomposition of both
interior and exterior at the same time when the latter is needed, e.g., in interface prob-
lems. We also note that the definition of interior, exterior and boundary vertices is a
straightforward side-result of the algorithm. The interior (resp., exterior) is determined
in line 11 for cut cells and propagated globally to other interior (resp., exterior) cells.

Some algorithms, e.g., the numerical integration, could require a simplex decompo-
sition of the polyhedra that define the interior or exterior. A convex decomposition of
a convex polytope is straightforward and can be computed symbolically (see [93] for
details). In any case, this step is optional. Even for numerical computations, one can
use quadrature rules for general polytopes that do not require this step [40].

2.4 Numerical experiments

2.4.1 Objectives

In the numerical examples below, we analyse the algorithmic and computational per-
formance of the intersection algorithm proposed in this chapter. In particular, we study
the accuracy of the intersection method, its robustness, the scaling of CPU times with
respect to the number of cells in the background mesh and the faces of the STL and its

32 Chapter 2. Unfitted discretizations for linear explicit BREPs

usage in unfitted FE simulations. We consider three different numerical experiments.
In the first one (Section 2.4.3), we run the intersection algorithm in a large set of geome-
tries taken form the Thingi10K [123] collection of STL models. We apply the method
to all models in this data-set that fulfil the input requirements of the intersection al-
gorithm in order to evaluate its ability to deal with complex and arbitrary inputs. In
the second experiment (Section 2.4.4), we analyse the robustness of the method with
respect to perturbations in the background mesh, either with translations or rotations.
And finally (Section 2.4.5), we apply the proposed intersection method to generate inte-
gration cells in an unfitted FE method to analyse the influence of the cutting algorithm
in the quality of the FE solution. We have performed the simplex decomposition step
in all experiments.

2.4.2 Experimental setup

The numerical experiments have been performed on TITANI, a medium size cluster at
the Universitat Politècnica de Catalunya (Barcelona, Spain) and on Gadi, a high-end
supercomputer at the NCI (Australia) with 3024 nodes, each one powered by a 2 x 24
core Intel Xeon Platinum 8274 (Cascade Lake) at 3.2 GHz and 192GB RAM. The tim-
ing experiments have been performed on Gadi exclusively, whereas TITANI has been
considered for non-performance critical runs. In order to reduce the influence of ex-
ternal factors on the CPU timings, each time measure reported in the experiments is
computed as the minimum of 5 runs in the same Julia session, i.e., one run for Julia
just-in-time (JIT) compilation and four runs to measure run-time performance. The in-
tersection algorithms have been implemented using the Julia programming language
[27] and are freely available in the STLCutters.jl package [76]. The unfitted FE compu-
tations have been performed using the Julia FE library Gridap.jl [21] version 0.16.3 and
the extension package for unfitted methods GridapEmbedded.jl [118] version 0.7. In
order to parse the STL files, we have used the MeshIO.jl [41] Julia package version 0.4.

2.4.3 Batch processing the STL models of the Thingi10K data-set

We start the numerical experiments by processing a large number of real-world STL
models to show the capacity of the proposed intersection algorithm to deal with com-
plex and arbitrary data automatically. To this end, we consider the Thingi10K [123]
data-base, which contains ten thousand 3D STL models, from simple to very complex,
used mainly for real-world 3D printing purposes. Our goal is to show that our in-
tersection algorithms are able to handle these geometries automatically and directly
without any manual pre-process as a demonstration of the robustness and generality
of the proposed algorithm.

Among all models within the Thingi10k set, we process the ones that fulfil the re-
quirements of our method. In particular, we need closed surfaces that define a volume.

2.4. Numerical experiments 33

Not all geometries in the database fulfil this condition and, thus, we extract valid ge-
ometries by considering the ones tagged as is closed and is manifold. E.g., one can recover
these geometries by typing “is closed, is manifold” in the search field of the Thingi10k
web page. This results in a subset of 4963 models. Among them, we have found 211
cases that could not be processed either due to broken download links or corrupt STL
files (i.e., the parser was not able to read the model into memory) and 20 cases that are
not a manifold up to machine precision. By discarding these pathological cases, we
recovered the 4732 geometries that have been processed in this test. As an example,
Figure 2.10 shows some of the processed STL models, which illustrates the diversity of
cases analysed in this experiment.

441708 352696

551021

252119

37881

293137

65904

96457

47076

37266

550964

35269

Figure 2.10: Selection of 11 STL models from the Thingi10K database processed in
the numerical examples. They are displayed with their corresponding model id

provided by the Thingi10K database.

Each of the considered models is processed automatically as follows. First, we parse
the downloaded STL file and compute its bounding box extreme points pmin

stl and pmax
stl .

Then, we generate a 3D background Cartesian mesh, which covers a box approximately
40% larger in each direction than the bounding box of the STL. We generate the Carte-
sian mesh with at least nmax = 100 cells in the largest axis and nmin = 10 in the shortest.
The element size h and the bounding box points of the background Cartesian mesh,
pmin

msh and pmax
msh, are respectively computed as

h = 1.4 min

{
max

(
pmax

stl − pmin
stl

nmax

)
, min

(
pmax

stl − pmin
stl

nmin

)}
,

34 Chapter 2. Unfitted discretizations for linear explicit BREPs

and

pmin
msh

.
= pmin

stl − 0.2
(
pmax

stl − pmin
stl
)

, pmax
msh

.
= pmin

msh +

⌈
1.4
(
pmax

stl − pmin
stl

)
h

⌉
h.

(a) (b)

Figure 2.11: Generated volume sub-triangulation for the STL model with id
441708: (a) shows the original STL geometry, while (b) shows a clipped portion
of the volume sub-triangulation (red cells) with a detail of the cut cells near the

STL faces defining the boundary (blue faces).

In a next step, the background mesh is intersected with the STL surface mesh using
Algorithm 10. See, e.g., in Figure 2.11 a detail of the resulting volume sub-triangulation
for one of the considered geometries. The intersection algorithm is applied with snap
tolerance εsn = `max

B 102eps and quasi co-planar tolerance εhs = `max
B 103eps, being `max

B
the length of the largest axis of the STL bounding box and eps the machine precision
associated with 64-bit floating point numbers. The final step is to compute some in-
dicators of the quality of the generated sub-triangulations. On the one hand, we mea-
sure Γst, the area of the boundary sub-triangulation and compare it with ΓSTL, the area
of the original STL mesh. From these values, we compute the relative surface error
εΓ = |ΓSTL − Γst|/ΓSTL. As the input geometries are represented by surfaces, the origi-
nal interior volume is unknown. Thus, we quantify the volume error by comparing the
inside and outside volumes of the bulk sub-triangulation, Vin and Vout respectively,
and compare it with the volume of the bounding box, Vbox, leading to the relative vol-
ume error εV =

∣∣Vin + Vout −Vbox
∣∣ /Vbox.

Figure 2.12 reports the computed errors εΓ and εV for all processed geometries.
Note that the intersection algorithm is able to successfully finish in all cases with rel-
ative volume and surface errors below 10−11 and 10−12 respectively, which confirms
that the method is able to capture the given STL models accurately. Note also that the
computed errors do not depend on the number of STL faces, even for geometries with
millions of faces (see Figure 2.12(a) and 2.12(b)). In addition, the volume and surface
errors εΓ and εV are below 10−15 for the virtual majority of cases (see Figure 2.12(c) and

2.4. Numerical experiments 35

101 102 103 104 105 106

STL facets

10-16

10-15

10-14

10-13

10-12

10-11

V
ol

u
m

e
er

ro
r

(ε
V
)

(a)

101 102 103 104 105 106

STL facets

10-16

10-15

10-14

10-13

10-12

10-11

S
u
rf

ac
e

er
ro

r
(ε

Γ
)

(b)

10-1710-1610-1510-1410-1310-1210-11

Volume error (εV)

0

25

50

75

100

A
cc

u
m

u
la

te
d
 p

er
ce

n
ta

ge
 [
%

]

(c)

10-1710-1610-1510-1410-1310-1210-11

Surface error (εΓ)

0

25

50

75

100

A
cc

u
m

u
la

te
d
 p

er
ce

n
ta

ge
 [
%

]

(d)

Figure 2.12: Volume and surface error distributions: (a) and (b) shows volume and
surface errors vs the number of STL faces. Each single dot represents a geometry.
The cumulative frequency of the volume and surface errors are represented in (c)

and (d) respectively.

2.12(d)), which demonstrates that the algorithms are able to capture the given STL ge-
ometries exactly up to the tolerances as expected. Taking into account the large number
and variety of STL models considered, the results of this experiment clearly show that
the proposed intersection Algorithm 10 is able to deal with complex and arbitrary data
automatically and provide volume and surface triangulation that capture the input STL
exactly up to tolerances and close to machine precision.

2.4.4 Robustness test

In this second experiment, we study a sub-set of the models in the Thingi10K database
in more detail to assess the robustness of the proposed method with respect to per-
turbations in the background mesh. We consider the STL geometries displayed in
Figure 2.10 plus a toy STL model of a cube that will serve as a reference. These STL
geometries are specifically chosen to cover a large range of shapes and model sizes,
while keeping the number of considered cases relatively small in order to make feasi-
ble the computation of this example with the computational resources we have at hand.
Table 2.1 contains a summary of the main features of the analysed geometries.

The setup of this experiment is as follows. For each STL model, we generate dif-
ferent background meshes by perturbing an initial grid, either using translations or
rotations. The initial (unperturbed) mesh for a given STL is generated as in previous
experiment, but now taking nmax = 112. This value is chosen to stress the algorithm
for the reference cube geometry since it leads to faces of the background mesh to be
exactly aligned with the faces of the STL model. In this scenario, small perturbations
of the background mesh lead to volume sub-triangulations with arbitrary small cells,
which is a challenging degenerated case. In this regards, we want to analyse how
the method behaves, when the perturbation magnitude approaches the machine preci-
sion. The first perturbation strategy is to apply a prescribed translation in all directions
with magnitude (pmax

msh − pmin
msh)∆x, where ∆x is the perturbation coefficient computed

36 Chapter 2. Unfitted discretizations for linear explicit BREPs

Model id Num faces Num vertices Box Size Surface

252119 49950 24979 (65.06, 37.371, 111.76) 12439.27
293137 292 148 (108.12, 86.625, 107.26) 29490.72
35269 40246 20125 (92.951, 93.426, 33.648) 8849.629
37266 29472 14738 (56.527, 52.541, 53.059) 13112.22
37881 3400 1700 (33.504, 33.688, 18.5) 3992.616

441708 112402 56203 (107.75, 87.802, 107.89) 29684.95
47076 1532 768 (93.095, 93.095, 42.0) 21864.75

550964 6156 3072 (20.0, 20.0, 45.0) 1715.988
551021 348128 174066 (38.365, 25.963, 37.438) 7282.98
65904 157726 78869 (532.5, 552.51, 490.47) 773637.9
96457 1634 813 (195.64, 120.13, 20.549) 21396.49
cube 12 8 (1.0, 1.0, 1.0) 6.0

Table 2.1: Main features of the test geometries considered displayed in Figure 2.10.

as ∆x = 10−α with α = 1, . . . , 17. The second perturbation strategy is an imposed rota-
tion composed by three individual rotations of angle ∆θ , one over each Cartesian axis,
taking the STL bounding box barycentre as the origin.

The perturbation angle is ∆θ = 10−α with α = 1, . . . , 17. As a result, we consider
34 different background meshes (17 translated + 17 rotated) for each of the STL models
considered in this example. Finally, we run the intersection Algorithm 10 and compute
the resulting volume and surface errors with respect to the non perturbed state εΓ0 and
εV0 , which are defined as εΓ0 = |Γ − Γ0|/Γ0 and εV0 = |V − V0|/V0, where Γ and V
are the respective surface at each point, and Γ0 and V0 are the respective surface and
volume computed with the unperturbed mesh. In contrast to Figure 2.12, here we can
take advantage a reference volume.

10-15 10-12 10-9 10-6 10-3

Translation (∆x)

10-16

10-15

10-14

10-13

10-12

V
ol

u
m

e
er

ro
r

(ε
V

0
)

(a)

10-15 10-12 10-9 10-6 10-3

Rotation (∆θ) [rads]

10-16

10-15

10-14

10-13

10-12

V
ol

u
m

e
er

ro
r

(ε
V

0
)

(b)

10-15 10-12 10-9 10-6 10-3

Translation (∆x)

10-16

10-15

10-14

10-13

10-12

S
u
rf

ac
e

er
ro

r
(ε

Γ
0
)

(c)

10-15 10-12 10-9 10-6 10-3

Rotation (∆θ) [rads]

10-16

10-15

10-14

10-13

10-12

S
u
rf

ac
e

er
ro

r
(ε

Γ
0
)

(d)

Figure 2.13: Results of the robustness test: Volume and surface errors εΓ0 and εV0
in function of the perturbation coefficients ∆x and ∆θ for all the geometries of

Figure 2.10.

As displayed in Figure 2.13, the volume and surface errors εΓ0 and εV0 are nearly
independent on the perturbation coefficients and are below 10−15 in almost all cases.

2.4. Numerical experiments 37

Some outliers show some influence on the perturbation coefficients but the maximum
volume and surface errors are below 10−13, which is still close to the machine precision
and can be attributed to propagation of round-off errors an the value of the tolerance
εhs. Note that the errors for the cube geometry are always below 10−15 even though
this test has been explicitly designed to render very pathological cases, when the per-
turbation coefficients tend to zero. At the view of these results, one can conclude that
the quality of the computed sub-meshes is nearly independent to the location of the
background mesh and, thus, the method is robust to perturbations.

2.4.5 Finite Element convergence test

In this last experiment, we explore the capacity of the proposed intersection algorithm
to be coupled with unfitted FE methods in order to simulate complex geometries de-
scribed by STL models without generating conforming unstructured grids. The main
goal of this experiment is to check that the intersection algorithm does not introduce
any spurious numerical artifacts that destroy the optimal convergence of the FE solver.
We will also leverage this convergence test to evaluate the performance of the intersec-
tion method by studying the scaling of CPU times with respect to the number of cells
in the background mesh.

For the FE computation, we consider a Poisson equation with pure Dirichlet bound-
ary conditions as the model problem. A numerical approximation uh ≈ u is computed
with the AgFEM method described in [22] for exactly the same model problem. In
particular, the interpolation spaces are defined with continuous tri-linear Lagrangian
shape functions. As an example, see in Figure 2.14, FE approximations computed on a
sub-set of the studied STL models.

For the convergence test, the forcing term and Dirichlet boundary condition are de-
fined such that the manufactured function u(x, y, z) = x2 + y2− z2 is the exact solution
of the problem. Since this function is smooth and does not belong to the interpola-
tion space, we expect that the H1 and L2 norms of the discretisation error eh

.
= u− uh,

namely

‖eh‖2
L2(Ω)

.
=
∫

Ω
e2

h dΩ and ‖eh‖2
H1(Ω)

.
=
∫

Ω
e2

h +∇eh · ∇eh dΩ,

converge with the optimal convergence rate. Our goal is to compute these error norms
for different mesh sizes and confirm that they converge with the optimal slopes.

We build a family of background meshes for each STL model in Figure 2.10. Each
mesh is generated by using a different value of nmax, leading to several refinement
levels. In particular, we use nmax = nmax

0 2β with nmax
0 = 14 and β = 0, . . . , 5. The finest

meshes generated in this way (β = 5) have 448 cells in the largest axis. In order to
be able to solve the underlying system of linear algebraic equations for such problem
sizes, we consider a conjugate gradient solver preconditioned with the Algebraic Multi-
Grid (AMG) method in the Preconditioners.jl package version 0.3 [110]. We declare

38 Chapter 2. Unfitted discretizations for linear explicit BREPs

-3 -2 -1 0 1 2 3

(a) 35269 (b) 55094 (c) 551021

Figure 2.14: FE approximation computed with AgFEM on top of three of the STL
models analysed in the experiments. Here, the underlying Poisson equation is
defined using the manufactured solution u(x, y, z) = sin(a 2π

T x) + sin(b 2π
T y) +

sin(c 2π
T z) with T = 10h, (a, b, c) = (1, 1

2 , 1
4), h = 1.4

nmax max(pmax
stl − pmin

stl) and
nmax = 100.

convergence of the conjugate gradient solver, when the relative energy norm is below
10−10.

2 4 8 16 32

Cell size (h0/h)

10-6

10-5

10-4

10-3

10-2

10-1

L
2
 e

rr
or

 n
or

m
 (
ε L

2
)

(a)

2 4 8 16 32

Cell size (h0/h)

10-6

10-5

10-4

10-3

10-2

10-1

H
1
 e

rr
or

 n
o
rm

 (
ε H

1
)

(b)

103 104 105 106 107 108

background cells

100

101

102

103

C
u
tt

er
 t

im
e

[s
ec

s.
]

(c)

100 101 102 103

faces / # cut cells

10-3

10-2

10-1

100

C
u
tt

er
 t

im
e

/
#

 c
u
t

ce
ll
s

[s
ec

s.
]

(d)

Figure 2.15: Results of the FE convergence test: (a), (b), and (c) show the L2, and
H1 error norms, and CPU times in Algorithm 10 vs relative cell size for all STL
models in Figure 2.10. (c) shows the scaling of CPU times vs number of STL faces

per cut cell in the background mesh.

The results of the convergence test are displayed in Figure 2.15. The L2 and H1 error
norms converge with the expected slopes for all the considered STL geometries, which
confirms that the intersection algorithm is not affecting the quality of the FE solver.
On the other hand, we measure the CPU time elapsed in the computation of the inter-
section Algorithm 10. Figure 2.15(c) shows the scaling of the CPU time with respect
to the number of cells in the background mesh. The scaling tends to be linear as the

2.5. Conclusions and future work 39

mesh is refined in all cases. The linear regime is reached at different speeds depending
on the considered STL models. For the cube, which is the simplest geometry studied
here, the linear regime is reached before the other ones, whereas the model with more
STL faces (the Arc de Triomphe geometry with id 551021) is the latest one to achieve the
linear regime. Note that the CPU times converge to similar values for all geometries,
when the mesh is refined. This is because, in the limit, the cut algorithm only needs
to intersect each cut background cell with a single plane independently of the num-
ber of faces in the STL. This suggest that the number of STL planes per cut cell in the
background mesh is closely related with the performance of the method. To analyse
the interplay between these two quantities, Figure 2.15(d) displays the scaling of CPU
time with respect to the number of STL faces both averaged by the number of cut cell
in the background mesh. Due to the nature of the algorithm, which involves searches
between the STL and the background mesh, one can expect a superlinear scaling. This
is indeed what is observed in Figure 2.15(d), but, in any case, the scaling is clearly not
quadratic since the searches are efficiently computed using a tree partition. In partic-
ular, this allowed us to compute sub-triangulations of complex STL geometries with
hundreds of thousands of STL faces in this example and even millions of STL faces in
previous examples in Section 2.4.3.

The proposed geometrical treatment can readily be applied to other unfitted FEs
methods and PDEs. In Figure 2.16, we solve a linear elasticity problem in the Arc
de Triomphe geometry and an incompressible flow problem surrounding it. For linear
elasticity, we used the formulation in [85]. The unfitted method for incompressible
flows can be found in [14]. One can also observe in these two examples that we can
readily use the meshes on both sides of the boundary representation.

2.5 Conclusions and future work

In this work, we have designed a fully automatic simulation pipeline for the numerical
approximation of PDEs on general domains described by a boundary mesh. The algo-
rithm makes use of a structured background mesh and an unfitted FE formulation on
this mesh. The main complication of these methods is the numerical computation of
integrals in the interior of the domain for background cells cutting the domain bound-
ary. Boundary meshes for complex geometries can involve a huge number of faces
intersecting background cells and the geometries are not convex in general.

We have designed a general clipping algorithm for cut cells that can deal with gen-
eral surface meshes. They are based on convex decomposition algorithms, robust clip-
ping of convex polyhedra, a graph-based representation of polyhedra, discrete level-set
representation of planes and some merging techniques to reduce rounding error effects.
The result of this algorithm is a refinement of the boundary mesh that can readily be
used to integrate boundary terms and a two-level integration mesh. The two-level mesh

40 Chapter 2. Unfitted discretizations for linear explicit BREPs

(a) (b)

Figure 2.16: We show the AgFEM approximations of two physical problems on
both sides of the Arc de Triomph STL. In (a), we show the deformed configura-
tion for linear elasticity and the colour map for the stress field. A vertical body
force (0, 0,−1) is applied to the volume, representing its own weight. The elastic
modulus is set to 10−5, the Poisson ratio is 0.3 and the deformation is magnified
500 times. We use a Cartesian mesh with 50 × 50 × 50 cells. In (b), we show a
line integral convolution of the velocity field for a viscous flow around the ge-
ometry and the pressure colour map on the surface. The inlet velocity is set as
vin(x, y, z) = vmax (0, v1(x)v1(z), 0), where vmax = 0.2 and v1(x) = 4x− 4x2. The

wall velocity is zero. We use a Cartesian mesh with 20× 60× 20 cells.

2.5. Conclusions and future work 41

combines the background mesh and a cell-wise partition of cut cell interiors into con-
vex polyhedra and can straightforwardly be used to integrate the bulk terms in unfitted
FE schemes.

The implementation of the algorithms are distributed as open source software and
can be found in [76]. The algorithm implementation has been applied with success on
all 3D analysis-suitable meshes in the Thingi10K database [123] (almost 5,000 meshes),
showing the sound robustness of the approach. The reported integration errors are
close to machine precision, which prove its accuracy. These integration meshes have
been successfully combined with one unfitted formulation, the AgFEM [22], to discre-
tise PDEs on these geometries, and convergence error plots are provided. Finally, the
computational complexity and cost of the geometrical algorithm is reported and com-
pared against the FE solver step.

Future work involves the extension of this approach to other background meshes,
specially octree meshes, even though this extension is quite straightforward; the algo-
rithms are cell-wise defined and can readily be applied to locally refined structured
meshes. It is of practical relevance to extend the current (open source) implementation
to distributed-memory computers. Since the algorithms mainly involve cell-wise com-
putations, they are embarrassingly parallel, a great benefit compared to unstructured
mesh generation algorithms that require global consistency and thus are very hard to
parallelise. The extension to 4D (under homotopy assumptions or allowing topology
changes in time) is of special relevance, since it would allow one to solve complex
time-dependent problems (e.g., fluid-structure interaction or multi-fluid models) that
involve moving interfaces, one of the main challenges in the field. Most of the ingredi-
ents in the current algorithms are dimension-agnostic and the polyhedron representa-
tion in terms of oriented graphs seems to be general enough (the formulation does not
rely on planar graphs, which would prevent a 4D extension, since 4D polytopes cannot
be represented as planar graphs in general). Another topic of interest is the extension
of this approach to higher order boundary representations, e.g., connecting the algo-
rithm with the BREP representation to attain higher levels of accuracy via nonlinear
intersection algorithms.

Chapter 3

High-order unfitted finite element
discretizations for explicit boundary
representations

The contents of this chapter correspond to the research publication

[75] P. A. MARTORELL AND S. BADIA, High order unfitted finite element discretizations
for explicit boundary representations, submitted.

When modeling scientific and industrial problems, geometries are typically mod-
eled by explicit boundary representations obtained from computer-aided design soft-
ware. Unfitted (also known as embedded or immersed) finite element methods offer
a significant advantage in dealing with complex geometries, eliminating the need for
generating unstructured body-fitted meshes. However, current unfitted finite elements
on nonlinear geometries are restricted to implicit (possibly high-order) level set geome-
tries. In this work, we introduce a novel automatic computational pipeline to approxi-
mate solutions of partial differential equations on domains defined by explicit nonlin-
ear boundary representations. For the geometrical discretization, we propose a novel
algorithm to generate quadratures for the bulk and surface integration on nonlinear
polytopes required to compute all the terms in unfitted finite element methods. The al-
gorithm relies on a nonlinear triangulation of the boundary, a kd-tree refinement of the
surface cells that simplify the nonlinear intersections of surface and background cells to
simple cases that are diffeomorphically equivalent to linear intersections, robust poly-
nomial root-finding algorithms and surface parameterization techniques. We prove the
correctness of the proposed algorithm. We have successfully applied this algorithm to
simulate partial differential equations with unfitted finite elements on nonlinear do-
mains described by computer-aided design models, demonstrating the robustness of
the geometric algorithm and showing high-order accuracy of the overall method.

3.1 Introduction

A wide range of industrial and scientific applications requires solving PDEs on com-
plex domains. These domains are commonly enclosed by BREP models and generated

43

44 Chapter 3. High-order unfitted discretizations for explicit BREPs

in CAD software. CAD models are described by NURBS and boolean operations like
constructive solid geometry (CSG). Due to the high-order nature of NURBS, it becomes
essential to employ specialized tools capable of efficiently handling numerical simula-
tions on these complex domains.

Despite the enduring popularity of body-fitted meshes in traditional simulation
pipelines, they exhibit significant limitations. The generation of body-fitted unstruc-
tured mesh generation relies on manual intervention, resulting in significant bottle-
necks in the process [63], especially when dealing with high-order representations.
Additionally, simulating PDEs on body-fitted meshes with distributed memory ma-
chines necessitates mesh partitioning strategies based on graph partition techniques.
These algorithms are inherently sequential and demand extensive memory resources
[67]. Consequently, the mesh partitioning process represents a major bottleneck in the
simulation pipeline and cannot be automated in general.

Unfitted FEMs, also known as embedded or immersed FEMs, offers a solution to
the mesh generation bottlenecks by eliminating the need for body-fitted meshes. Unfit-
ted methods rely on a simple background mesh, such as a uniform or adaptive Carte-
sian mesh. Traditionally, unfitted methods utilize implicit descriptions (level sets) to
describe geometries. There are only a few works combining unfitted FEM with ex-
plicit boundary representations, such as the one described in [17], which is specifically
designed for oriented linear triangulations as boundary representations (a.k.a. STL).

On the other side, several approaches have been introduced to combine unfitted
methods with high-order implicit representations of geometries. The initial approach
was presented in [51], and since then, there have been gradual improvements in sub-
sequent works, including [50, 53, 69, 105]. These advancements have even extended to
handling BREP models in [104]. However, it is worth noting that these methods still
rely on level set representations.

In embedded FEMs the small cut cell problem is a significant limitation exten-
sively discussed in the literature [43]. This problem arises when the intersection be-
tween physical and background domain cells becomes arbitrarily small, leading to ill-
conditioning issues in the numerical solution. Although various techniques have been
proposed to address this problem, only a few have demonstrated robustness and op-
timal convergence. One approach is the ghost penalty method [33], which is utilized
in the CutFEM packages [34]. Alternatively, cell agglomeration techniques present a
viable option to ensure robustness concerning the cut cell location, initially applied
in DG methods [84]. Extensions to the C0 Lagrangian FE have been introduced in
[14], while mixed methods have been explored in [22], where the AgFEM term was
coined. AgFEM exhibits good numerical qualities, including stability, bounds on con-
dition numbers, optimal convergence, and continuity concerning data. Distributed
implementations have been exploited in [10, 117], also AgFEM has been extended to h-
adaptive meshes [85] and higher-order FE with modal C0 basis in [19]. In [18], a novel

3.1. Introduction 45

technique combining ghost penalty methods with AgFEM was proposed, offering re-
duced sensitivity to stabilization parameters. In [7] the AgFEM has been extended to
solve transient problems in moving boundaries through space-time discretizations.

The development of isogeometric analysis (IGA) over the past two decades has
been driven by the goal of improving the interaction between CAD and CAE [63].
While IGA techniques are suitable for PDEs on boundaries, they cannot readily handle
PDEs in the volume of a CAD representation of the domain. Standard CAD repre-
sentations are 2-variate (boundary representations) and they do not provide a param-
eterization of the volume. To overcome this limitation, some works [46, 47, 120, 121]
propose constructing volume parametrizations based on Bernstein-Bézier basis using
the Bézier projection techniques described in [113]. Nevertheless, these approaches still
rely on high-order unstructured meshes, thereby inheriting the known limitations as-
sociated with them, such as tangling issues, lack of parallelization, and global graph
partition bottlenecks.

Similarly to unfitted FE methods, immersed IGA [2, 3, 119] eliminates the need
for unstructured meshes by utilizing the intersection of a background mesh. These
methods utilize integration techniques for complex domains, including dimension re-
duction of integrands [40, 57], i.e., integrating over lines and surfaces. The precision
of these methods is bounded by the approximation algorithms used on the trimming
curves, which represent surface-surface intersections [91, 105] resulting from boolean
CSG on the CAD models.

One of the primary challenges in the CAD to CAE paradigm is the approxima-
tion of trimming curves [71, 92, 100]. Trimming curves, in general, cannot be repre-
sented in the intersected surface patches. In the literature, there is a wide range of
strategies to approximate trimming curves, see [25, 77] and references therein. These
strategies can be categorized into analytical methods, lattice evaluation methods, sub-
division methods, marching methods, or a combination thereof. The representation
of the approximated trimming curves is also extensively studied. Once the trimming
curves are approximated, various techniques can be employed. Untrimming tech-
niques [1, 78, 79, 120, 121] are one approach, which involves a conformal reparametriza-
tion of the original surface. Another approach is the direct integration onto trimmed
surfaces [57, 98].

In this work, we propose a computational framework that combines unfitted FEM
and implicit CAD representations of the geometry. In order to do this, we propose
a novel approach to numerically integrate on unfitted cut cells that are intersected by
domains bounded by a high-order BREPs. Our method involves approximating the ge-
ometry using a set of Bézier patches, utilizing Bézier projection methods [29]. By lever-
aging the properties of Bézier curves, we can efficiently perform intersections. We can
reduce the complexity of the collision interrogations and tangling prediction through
the convex hull property. The variational diminishing property of Bézier curves en-
ables root isolation for determining the intersection points [83]. We can employ efficient

46 Chapter 3. High-order unfitted discretizations for explicit BREPs

multivariate root-finding techniques [82, 94] for polynomials on nonrational Bézier
patches. To build an intersection method for nonlinear polytopes, we combine the
intersection techniques with partition techniques typically used in level set methods
[51] and linear polytopal intersection [17]. We propose a kd-tree refinement of the sur-
face B’ezier triangulation that reduces nonlinear intersections against background cells
to simple situations that are diffeomorphically equivalent to linear intersections. This
allows us to handle the complexity of intersecting high-order geometries efficiently.
Furthermore, we can approximate these intersections with a set of Bézier patches using
least-squares techniques based on [30].

With the intersection method established, we are then able to integrate on the sur-
face of these polytopes to solve PDEs on high-order unfitted FE meshes. We employ
moment-fitting techniques based on Stokes theorem [19, 40] to ensure accurate and
stable integration. By utilizing these techniques, we can effectively handle the integra-
tion process on high-order unfitted FE meshes, allowing for the solution of PDEs in
domains bounded by complex high-order BREPs.

The outcomes of this work are as follows:

• An automatic computational framework that relies on a robust and accurate in-
tersection algorithm for background cells and Bézier patches of arbitrary order
(briefly described above), and the mathematical analysis of the correctness of the
algorithm.

• Accuracy and robustness numerical experimentation of the intersection algorithm.
The algorithms exhibit optimal convergence rates of the surface and volume in-
tegration. These errors are robust concerning the relative position of the back-
ground cells and the BREP.

• The numerical experimentation of a high-order unfitted FE method for high-
order BREPs with analytical benchmarks. The results demonstrate optimal hp-
convergence of the error norms.

• The demonstration of the application of the methods for problems defined in
CAD geometries.

The outline of this chapter is as follows. Firstly, in Section 3.2, we introduce the
unfitted FE methods and their requirements for handling high-order BREPs. Next, in
Section 3.3, we provide the proposed geometric algorithms for computing the nonlin-
ear intersections between background cells and oriented high-order BREPs, along with
a surface parametrization method for integration purposes. Then, in Section 3.4, we
present the numerical results obtained from applying the proposed method, including
accuracy and robustness of the intersections, benchmark tests for validation of the un-
fitted FE pipeline, and simulations on CAD geometries. Finally, in Section 3.5, we draw
the main conclusions and future work lines.

3.2. Unfitted finite element method 47

3.2 Unfitted finite element method

3.2.1 Unfitted finite element formulations

Let us consider an open Lipschitz domain Ω ∈ R3 in which we want to approximate a
system of PDEs. An oriented high-order surface mesh B defines the domain boundary
∂Ω and encloses the domain interior. The PDEs usually involve Dirichlet boundary
conditions on ΓD and Neumann boundary conditions on ΓN , where ∂Ω .

= ΓD ∪ ΓN and
ΓD ∩ ΓN = ∅. These subsets, ΓD and ΓN , correspond to geometric discretizations of BD
and BN , resp., such that B ≡ BD ∪ BN .

The principal motivation of this work is to enable the utilization of grid-based un-
fitted numerical schemes that can be automatically generated from the oriented high-
order surface mesh B. This approach is valuable in industrial and scientific applica-
tions. We can alleviate the geometric constraints associated with body-fitted meshes
by employing embedded discretization techniques. These techniques utilize a back-
ground partition T bg defined over an arbitrary artificial domain Ωart ⊇ Ω. The artifi-
cial domain can be a simple bounding box containing Ω, dramatically simplifying the
computation of T bg compared to a body-fitted partition of Ω. In this work, we adopt
a Cartesian mesh T bg for the sake of simplicity, although the proposed approach can
readily be used on other types of background meshes, such as tetrahedral structured
meshes obtained through simplex decomposition or adaptive mesh refinement (AMR)
techniques.

The abstract exposition of unfitted formulations considered in this work is general
and encompasses various unfitted FE techniques from the literature. These techniques
include the XFEM [26], designed for handling unfitted interface problems. In order to
have robustness with respect to small cut cells, the cutFEM method [34] and the finite
cell method [96] add stabilization terms. The AgFEM [22] provides robustness via a
discrete extension operator from interior to cut cells. Since DG methods can work on
polytopal meshes, combined with cell aggregation [84], they are also robust unfitted FE
techniques.

The definition of FE spaces on unfitted meshes requires a cell classification. The
background cells K ∈ T bg with a null intersection with Ω are classified as exterior cells
and are denoted as T out. These exterior cells, which have no contribution to functional
discretization and can be discarded. The active mesh, denoted as T = T bg \ T out,
represents the relevant mesh for the problem (Figure 3.1). The unfitted FE techniques
stated above utilize FE spaces defined on T to construct the finite-dimensional space
V. This space approximates the solution and tests the weak form of PDEs. An abstract
unfitted FE problem reads as follows: find u ∈ V such that

a(u, v) = l(v), ∀v ∈ V,

48 Chapter 3. High-order unfitted discretizations for explicit BREPs

where
a(u, v) =

∫
Ω

LΩ(u, v)dΩ +
∫

ΓD

LD(u, v)dΓ +
∫
F

Lsk(u, v)dΓ,

and
l(v) =

∫
Ω

FΩ(v)dΩ +
∫

ΓN

FN(v)dΓ +
∫

ΓD

FD(v)dΓ.

The bulk terms LΩ and FΩ consist of the weak form of the differential operator,
the source term, and possibly other numerical stabilization terms. On ΓD, the opera-
tors LD and FD represent the enforcement of the Dirichlet boundary conditions, often
implemented using Nitsche’s method in unfitted formulations. The term FN on ΓN rep-
resents the Neumann boundary conditions of the given problem. The skeleton of the
active mesh F corresponds to the interior faces of T , while the term Lsk collects ad-
ditional penalty terms, such as weak continuity enforcement in DG methods or ghost
penalty stabilization techniques.

∈ T ∈ B

(a)

∈ T cut ∈ Bcut

(b)

Figure 3.1: Example of the embedded nonlinear domain in 2D. Figure (a) presents
a nonlinear oriented skin mesh B embedded in an active mesh T . The intersec-
tions, computed with the techniques proposed in this work, result in the two-level
partitions T cut and Bcut shown in (b). These partitions are utilized for integrat-
ing unfitted formulations. It is important to note that the intersections in 2D are
points that can be represented exactly. However, the intersections in 3D are trim-

ming curves that must be approximated in general.

Since FE methods are piecewise polynomials, integrating these terms requires a
cell-wise decomposition for both bulk and surface contributions. However, to accu-
rately respect the geometry and solve the PDE on the proper domain, it is necessary to
perform these integrals within the interiors of the domains. In particular, we have∫

Ω
(·)dΩ = ∑

K∈T

∫
K∩Ω

(·)dΩ. (3.1)

Due to the inherent characteristics of unfitted FE methods, the surface mesh B is
not the boundary restriction of the background mesh T , which defines the cell-wise
polynomial FE functions. Consequently, to integrate the boundary terms on B, we
must compute a cell-wise integral as follows:

3.2. Unfitted finite element method 49

∫
Γ∗
(·)dΓ = ∑

K∈T
∑

F∈B∗

∫
F∩K

(·)dΓ, ∗ ∈ {D, N}. (3.2)

It is important to note that, in general, we do not need to restrict the integrals on
the skeleton terms Lsk to the domain interior. In most applications, one can integrate
these terms on the entire face skeleton, e.g., ghost penalty and DG methods. Therefore,
in the unfitted FE methods, we must give particular attention to the geometrical op-
erations involving K ∩Ω and K ∩ B (or more specifically, BN and BD). However, the
methodology described below also handles F ∩Ω for F ∈ F , in case it is required.

3.2.2 Geometrical ingredients for unfitted finite elements

This section aims to describe the geometrical entities that we need to compute the
integrals (3.1)-(3.2) of unfitted FE formulations. These entities are easier to compute
than unstructured meshes in body-fitted formulations. Our geometrical framework in-
volves intersection algorithms that are cell-wise, and so, embarrassingly parallel. Since
the FE spaces are defined on background meshes, the cut meshes do not require to be
conforming or shape-regular.

The input of our geometrical framework is an oriented mesh of non-rational trian-
gular Bézier elements B whose interior is the domain Ω. Each triangle F ∈ B is the
image of a Bézier map φφφF : F̂ → F of order q acting on a reference triangle F̂ ⊂ R2.

In the following exposition, we use ξ̂ξξ to represent the coordinate system of the ref-
erence space of F̂ and xxx to represent the coordinate system of the physical space. Given
a set of points f̂ in the reference space of F̂ we can compute f .

= φφφF(f̂). Since F̂ is diffeo-
morphic, we can also define f and compute f̂ .

= φφφ−1
F (f). Given a function γ̂(ξ̂ξξ) in the

reference space of F̂, we can compute γ(xxx) .
= γ̂ ◦φφφ−1

F (xxx). Reversely, we can define γ(xxx)
in the physical domain and compute its pull-back γ̂(ξξξ)

.
= γ ◦ φφφF(ξξξ). We will heavily

use this notation to transform sets and functions between the reference and physical
spaces.

In practical applications, geometries are described through a CAD model BCAD.
Transforming BCAD into B generally involves an approximation process, where we can
utilize least-squares methods and third-party libraries, e.g., gmsh [54]. Next, we per-
form intersection algorithms between the surface representation and the background
mesh, which consist of two steps as follows.

In the first step, we consider the intersection of the triangular Bézier elements that
compose the surface F ∈ B with the background cells K ∈ T . According to (3.2), the
resulting mesh Bcut can be represented as a two-level mesh:

Bcut .
=

⋃
K∈T
Bcut

K , where Bcut
K

.
= {F ∩ K : F ∈ B}.

Bcut is a partition of B composed of general nonlinear polytopes (see Figure 3.2). We
define a nonlinear polytope as the image of a polytope under a diffeomorphic map.

50 Chapter 3. High-order unfitted discretizations for explicit BREPs

(a) B, BK and K (b) Bcut
K (c) Kcut

Figure 3.2: Representation of the surface B .
= ∂Ω (see (a)), its intersection Bcut

K
.
=

B ∩ K for a background cell K ∈ T (see (b)), and the domain interior of the cell
Kcut .

= K ∩ Ω (see (c)). In order to compute Bcut
K , we identify first the subset of

cells BK ⊆ B touching K (see cells with red edges in (a)). Next, for each triangle
F ∈ BK, we compute the intersection of F ∩ K at the reference FE, i.e., we compute
φφφ−1

F (F ∩ K). Finally, we intersect K with the surface portion Bcut
K to obtain Kcut. It

is worth to note that Bcut
K ⊂ ∂Kcut.

In the second step, we compute a mesh of general nonlinear polyhedra that repre-
sent the domain interior of background cells (see Section 3.3.6):

T cut .
=

⋃
K∈T

Kcut, where Kcut .
= K ∩Ω.

The surface cut cells in Bcut
K are nonlinear polygons that can be split into simplices.

A simplex decomposition of the volumetric cells in T cut is much more complex and
expensive. Instead, we avoid a trivariate representation of T cut and instead rely on a
bivariate representation of ∂T cut. We consider a boundary representation (often abbre-
viated B-rep or BREP in solid modeling and computer-aided design) of Kcut as the in-
terior of an oriented closed surface represented as the collection of connected oriented
surface elements, i.e.:

∂Kcut = (∂K)cut ∪ Bcut
K , (∂K)cut .

=
⋃

F∈Λ2(K)

F ∩Ω.

3.2.3 Integration methods for cut cells

For the computation of the volume integrals in (3.1), since we define cut cells by its
boundary representation in (3.2.2), we compute the integration of polynomials on vol-
ume cut cells by transforming them into surface integrals via Stokes theorem [19, 40].
Let us denote rth order polynomial differential k-forms in R3 with PrΛk(R3) and d
the exterior derivative (see, e.g., [4]). For any ω(xxx) ∈ PrΛ3(R3), one can readily find
σ ∈ Pr+1Λ2(R3) such that ω(xxx) = dσ(xxx), due to the exactness of the polynomial de

3.2. Unfitted finite element method 51

Rham complex. Using Stokes theorem, one gets:∫
Kcut

ω =
∫

∂Kcut
σ =

∫
Bcut

K

σ +
∫
(∂K)cut

σ = ∑
F∈BK

∫
F∩K

σ + ∑
F∈Λ2(K)

∫
F∩Ω

σ

= ∑
F∈BK

∫
φφφ−1

F (F∩K)
φφφ∗F(σ) + ∑

F∈Λ2(K)

∫
φφφ−1

F (F∩Ω)
φφφ∗F(σ).

where φφφ∗F(σ) denotes the pull-back of σ by φφφF. In order to create a quadrature on Kcut,
we combine this expression with a moment-fitting technique. First, we integrate all
the elements in the monomial basis for Pr(R3); e.g., given a monomial 3-form ω(xxx) =
xαyβzγdx ∧ dy ∧ dz, we define σ(xxx) = 1

α+1 xα+1yβzγdy ∧ dz (which holds ω = dσ) and
use (3.2.3). After computing these integrals for the monomial basis at each face F ∈ BK

, we can combine them to compute the integrals of Lagrangian polynomials, use the
corresponding nodal interpolation, and end up with a quadrature on the cut cell Kcut.

To compute the surface integrals in (3.2) and the right-hand side of (3.2.3), we have
several options. One approach is to generate a simplex nonlinear mesh of the boundary
of the nonlinear polytopes in T cut, which is feasible on surfaces. We can use a moment-
fitting method to compress the resulting quadrature. E.g., for the integral on Bcut

K , we
consider a nonlinear triangulation Scut

F̂
of φφφ−1

F (F ∩ K) and compute:

∫
Bcut

K

σ = ∑
F∈BK

∑
S∈Scut

F̂

∫
S

φφφ∗F(σ) = ∑
F∈BK

∑
S∈Scut

F̂

∫
F̂

φφφ∗S ◦φφφ∗F(σ)

where we rely on a map φφφS : F̂ → S to transform the integral to the reference triangle
F̂; S is a nonlinear triangle in R2 because it can have nonlinear edges. We proceed
analogouly for the surface integral on (∂K)cut; this is a simpler case, since the surface is
already contained in a plane in the physical space.

The edges of S ∈ Scut
F̂

that result from intersections are implicitly defined. Thus,
we must consider an approximation φ̃S of the map φS in (3.2.3). This approximation is
detailed in the next section. Since F (and as a result S ∈ T cut) is a smooth manifold,
the polynomial approximation φ̃S will introduce an error that is reduced by increas-
ing the polynomial order of the approximation or by reducing the diameter of S. In
turn, the diameter goes to zero with both the background mesh T and surface mesh B
characteristic sizes.

Another approach is to integrate the pull-back φφφ∗F(σ) of the polynomial differential
form σ in (3.2.3) on the surface to F̂ (which are polynomials of higher order due to the
factor det(∂φφφF

∂ξξξ) that comes from the pullback) and transform the integral to ∂F̂ using
Stokes theorem:∫

F∩K
σ =

∫
φφφF
−1(F∩K)

φφφ∗F(σ) =
∫

φφφ−1
F (F∩K)

d$

=
∫

∂φφφ−1
F (F∩K)

$ =
∫

φφφ−1
F (∂F∩K)

$, ∀$ ∈ Pr+2qΛ1(R2) : d$ = φφφ∗F(σ).

52 Chapter 3. High-order unfitted discretizations for explicit BREPs

We note that φφφ∗F(σ) ∈ Pr+2q−1Λ2(R2) and the existence of $ is assured by the exactness
of the polynomial de Rham complex. In this case, we can extract the (nonlinear) edges
E of ∂F ∩ K and define a map φφφE : Ê→ E from φφφF. Next, we can compute the integrals
in a reference segment, i.e., ∫

F∩K
σ = ∑

E∈∂F∩K

∫
φφφ−1

E (E)
$.

As above, since some edges E ∈ ∂F ∩ K are only implicitly defined, we must con-
sider approximations φ̃φφE of φφφE in (3.2.3). However, we do not need to compute approx-
imated surface maps or triangulations of φφφ−1

F (F ∩ K). Since we approximate each edge
separately, and both F and the faces of K are smooth manifolds, a polynomial approx-
imation provides error bounds that vanish by increasing the polynomial order or by
reducing the edge sizes; edge sizes also go to zero with both the background mesh T
and surface mesh B characteristics sizes.

3.3 Intersection algorithm

In this section, we describe an algorithm that takes a background mesh T and a high-
order oriented surface B as inputs and returns T cut and Bcut. This algorithm is robust
to the relative position of T and B. Moreover, it provides an accurate description of
the intersections. We list below the different steps considered in the definition of the
algorithm:

1. In Section 3.3.1, we describe the nonlinear computations of the singular points
utilized in the intersection algorithms. There, we utilize multivariate root-finding
techniques [82].

2. In Section 3.3.2 and Section 3.3.3, we propose an accurate intersection algorithm
for nonlinear polyhedra. It combines refinement strategies (to simplify the non-
linear intersection to simple cases) and linear clipping methods [17].

3. Section 3.3.4 describes a partition method for the intersected surface. This parti-
tion is composed of standard polytopes and is ready to be parametrized.

4. In Section 3.3.5, we introduce a parametrization method for intersected nonlin-
ear polyhedra. This parametrization consists of a combination of least-squares
methods [30] and sampling strategies [51]. It returns a set of nonrational Bézier
patches.

5. In Section 3.3.6, we build the polyhedral representation of the intersected cells. In
addition, we provide the tool to parametrize the resulting surface.

We describe a global algorithm that combines the previous algorithm in Section 3.3.7.

3.3. Intersection algorithm 53

3.3.1 Intersection points

In this section, we perform some intersection algorithms that will be required in our
geometrical framework. In order to compute surface intersections, we require the com-
putation of three types of intersections, described below.

Consider an oriented plane π defined by a point xxxπ on the plane and its outward
normal nnnπ. The plane-point distance function can be computed as

γπ(xxx)
.
= dist(π, xxx) .

= (xxx− xxxπ) · nnnπ, xxx ∈ R3.

In the following, we will also consider this distance function parametrized in the ref-
erence face F̂ as γ̂π(ξ̂ξξ)

.
= γπ ◦ φφφF(ξ̂ξξ). Let us denote by int(γπ) = {xxx : γπ(xxx) < 0} the

interior of a level set. The zero level set of the distance function is represented by

γ̂0
π

.
= { ξ̂ξξ ∈ F̂ : dist(π, φφφF(ξ̂ξξ)) = 0 }.

Curve-plane intersection

First, we define the curve-plane intersections as the intersection of an edge E = φφφE(Ê)
(which can be described as a diffeomorphic polynomial map on a reference segment Ê)
with a plane π (see Figure 3.3(a)). We compute the intersection points in the reference
segment Ê as the result of finding:

t̂ ∈ Ê : γπ ◦φφφE(t̂) = 0.

If E ∈ Λ1(F), the map φφφE : Ê → E can be readily obtained from the corresponding
face map φφφF. Since φφφE is a polynomial, the computation of t̂ involves finding the roots
of a univariate polynomial system. One can utilize root isolation techniques combined
with standard iterative solvers, e.g., the Newton-Rapson method. As the solution may
be not unique, the root isolation techniques in [83] provide the means to find multiple
roots by leveraging the variation diminishing property of Bézier curves.

Surface-line intersection

Next, we consider line-surface intersections. Since a line can be represented as the
intersection of two half-spaces, we compute surface-line intersections as surface-plane-
plane intersections (see Figure 3.3(b)). To compute these intersections, we find:

ξ̂ξξ ∈ F̂ : γπi ◦φφφF(ξ̂ξξ) = 0, ∀ i ∈ {1, 2},

where π1, π2 are the planes whose intersection is the line we want to intersect. We note
that ξ̂ξξ ∈ R2. It can be checked that this is a system of two bivariate polynomial equa-
tions of order q. The roots can be computed using bivariate root-finding algorithms
for polynomials. The algorithms described in [82] bound and subdivide the reference

54 Chapter 3. High-order unfitted discretizations for explicit BREPs

π

E
xE

(a) E ∩ π

F

π1
π2

xF

(b) F ∩ π1 ∩ π2

ξ̂1

ξ̂2

xc

x′c

F

π

(c) ∇̂∇∇γ̂π(ξ̂ξξc) · ξ̂1 = 0

Figure 3.3: Definition of intersection points. The intersection of curves and planes
(see (a)) is computed through univariate root-finding methods. The surface-plane-
plane intersection points in (b) also represent the intersection of surface-ine in-
tersections. The AA critical points in (c) are defined in the reference space of F.
These points split the surface-plane intersection curves into monotonic curves in
the reference space (see an analogous reference space in Figure 3.4(a)). Both com-
putations, surface-plane-plane intersection points and AA critical points, require

solving a bivariate root system.

domain until the roots are isolated with a given precision. In this work, we adapt the
implementation to simplices using the bounding techniques defined in [94].

Critical points of the zero isosurface of a distance function with respect to an edge.

Finally, we compute the points in which the zero let set curve γ̂0
π has a zero directional

derivative with respect to a given direction ttt (see Figure 3.3(c)). When the direction ttt is
axis-aligned (AA), we call these points AA critical points. These points are obtained as
the solution of the following system:

ξ̂ξξ ∈ F̂ : ∇̂∇∇γ̂π(ξ̂ξξ) · ttt = 0, γ̂π(ξ̂ξξ) = 0,

which is again a system of two bivariate polynomial equations of order q and can be
computed as above. We note that the critical points are defined in the reference space.
Thus, we take the gradient in the reference space.

3.3.2 Nonlinear trimming surface

Given a face F ∈ BK, we consider its intersection against a cell K ∈ Th. The objective is
to create a partition of BK by splitting its faces by intersection against the background
cells K ∈ Th. We consider Th to be a partition of Ωart in a pointwise sense, i.e., every
xxx ∈ Ωart belongs to only one K ∈ Th; K is neither open nor closed in general. We refer
to [17] for more details. The pointwise partition is required to properly account for the
case in which F ∈ BK is (in machine precision) on K; otherwise, we could be counting
more than once the same face F. We utilize the notation K◦ and K to refer to the interior
and closure of K, resp.

Assumption 3.3.1. We assume that F ∩ K◦ 6= ∅.

3.3. Intersection algorithm 55

(a) (b) (c) (d) (e)

Figure 3.4: Refinement steps of Algorithm 11. Step 1 is represented in (a) and (b).
Steps 2-4 are represented in (c)-(e), resp. Red and blue dashed lines represent the
γ̂0

f and γ̂0
f ′ -curves, resp., f , f ′ ∈ Λ2(K). Interior black lines represent the proposed

partition of F̂ for a given invariant. Solid black lines are the edges of Λ1(F̂). There
are multiple possible partitions, depending on the order the intersections are pro-

cessed.

In [17], we propose an algorithm that determines whether the assumption holds,
i.e., checks if F ∩ π f = F for some f ∈ Λ2(K). Here, f ∈ Λ2(K) represents a face
bounding K and π f its corresponding half-space. If the assumption does not hold,
F ∩ K = F ∩ f , and we perform the intersection in one dimension less, which is a
simplification of the one below.

Assumption 3.3.2. We assume that all intersection queries are well-posed, i.e., they return a
finite number of points.

For simplicity in the exposition, we postpone the ill-posed cases till the end of the
section.

For each f ∈ Λ2(K) and its corresponding half-space π f , we can define the dis-
tance function γ̂π f in the reference space using (3.3.1) , which we denote with γ̂ f for
brevity. We can also consider the zero level set curves {γ̂0

f } f∈Λ2(K), using (3.3.1), and
their intersections:

γ̂0
f ∩ γ̂0

f ′ , f , f ′ ∈ Λ2(K).

We note that the intersection points of these curves are the intersections φφφ−1
F (π f ∩ π f ′);

π f ∩ π f ′ contains the edge e ∈ Λ1(K) such that e ∈ f , f ′. We also note that γ̂0
f ∩

F̂, f ∈ Λ2(K), can have several disconnected parts. We represent with C f (F̂) the set of
mutually disconnected components of γ̂0

f ∩ F̂.
In the following, we want to refine F in such a way that the nonlinear case is diffeo-

morphically equivalent to the linear one. Thus, we can use a linear clipping algorithm
to compute the cyclic graph representation of the nonlinear polytope (see [17]). For
this purpose, we consider the AA refinement ref1 of F presented in Algorithm 11 and
illustrated in Figure 3.4.

Let us consider the level set curve γ̂0
εd

associated with the diagonal edge εd ∈ Λ1(F̂).
After ref1, these edges cannot contain intersection points in their interior. Having in-
tersection points only on AA edges simplifies the exposition of the next algorithms.
We cannot do the same for AA edges since new AA edges are generated after each
refinement step and new intersections can appear.

56 Chapter 3. High-order unfitted discretizations for explicit BREPs

Algorithm 11 ref1: axis-aligned refinement of invariants

Let us consider a kd-tree partition ref0
1(F̂) of F̂ by refining against

1. ξ̂1-aligned lines that contain the ξ̂2-aligned critical points of γ̂0
f , f ∈ Λ2(K). Pro-

ceed analogously for ξ̂2-aligned lines and ξ̂1-aligned critical points.

2. ξ̂1 and ξ̂2-aligned lines containing each intersections γ̂0
f ∩ γ̂0

f ′ and γ̂0
f ∩ γ̂0

εd
, for all

f , f ′ ∈ Λ2(K).

After this refinement, if γ̂0
f ∩ ∂F̂R, f ∈ Λ2(K), F̂R ∈ ref0

1(F̂), has more than two inter-

section points, consider the partition ref1
1(F̂R) by refining against

3. AA lines perpendicular to the AA edge ε ∈ Λ1(F̂R) containing each of these in-
tersection points.

Next, if γ̂ f ∩ γ̂ f ′ or γ̂ f ∩ γ̂0
εd

, f , f ′ ∈ Λ2(K), intersect more than once F̂R ∈ ref1
1 ◦ ref0

1(F̂),

4. Consider a partition of F̂R by an AA line that passes between two vertices.

Return the final kd-tree partition ref1(F̂) after these four steps.

Proposition 3.3.3. The number of faces in ref1(F̂) is bounded.

Proof. First, we note that there is a limited number of intersections and critical points
since φφφF is a polynomial. Thus, the number of lines in the refinement strategy is
bounded, so the resulting number of faces is also bounded. Furthermore, these points
do not change with refinement (the sides of the children faces can only be parallel to
the sides of the parent face). Only the intersection points in step (3) do change with
refinement. However, we only need to perform step (3) once for the purpose of Propo-
sition 3.3.4.

Proposition 3.3.4. After the refinement strategy above, for any f ∈ Λ2(K), C f (F̂R) is a set of
smooth connected curves such that: given F̂R ∈ ref1(F̂)

(i) the curves in C f (F̂R) cannot be tangent to any AA line in F̂R \Λ0(F̂R);

(ii) every curve in C f (F̂R) is strictly monotonic with respect to the coordinates (ξ̂1, ξ̂2), can
only intersect once AA segments in F̂R \ Λ0(F̂R) and can only intersect diagonal edges
on Λ0(F̂R);

(iii) all the curves in C f (F̂R) are strictly increasing with respect to the coordinates (ξ̂1, ξ̂2) (or
all strictly decreasing).

Proof. First, we note that AA critical points do not change by refinement. The curves
are smooth since they are the intersection of a smooth surface (image of a polynomial
map) with a plane.

Let us prove (i) by contradiction. We assume that some γ̂0
f , f ∈ Λ2(K) is tangent

to a ξ̂1-aligned AA line on F̂R \ Λ0(F̂). The point was a ξ̂1-critical point before the

3.3. Intersection algorithm 57

refinement. As a result, after refinement, this point belongs to a ξ̂2-aligned axis of F̂R

(by (1) in ref1). Then, the point can only be in Λ0(F̂R). We proceed analogously for
ξ̂2-aligned lines.

Next, we prove (ii). By definition of the refinement rule, there cannot be AA critical
points in F̂◦R. We also know that the curves cannot be tangent to AA sides. Thus, by
the implicit function theorem, γ̂ f (ξ̂ξξ) = 0 can be expressed as the graph of a function
d1(ξ̂1) = ξ̂2 and d2(ξ̂2) = ξ̂1 in F̂ \Λ0(F̂). Since these functions are smooth, by the mean
value theorem, they must be strictly monotonic in F̂ with respect to ξ̂1 and ξ̂2. Thus,
they can intersect AA lines at most once. Besides, all intersections against diagonal
sides are on Λ0(F̂R) after refinement (by (2) in ref1); note that we are not inserting new
non-AA edges by refinement.

Finally, we prove (iii). We note that the partition in step (3) or ref1 prevents two
curves α̂ f , α̂′f ∈ C f (F̂R), strictly increasing and decreasing, resp., to be in the same F̂R.
Let us assume that these two curves are in F̂R before step (3). Then, by refining through
the intersection points of α̂ f , we create the axis-aligned bounding box (AABB) of the
curve. α̂ f (which cannot touch the face boundary as proven above) splits the face into
two parts, including the bottom-left and top-right vertices of this face, resp. A strictly
decreasing curve in this face must connect the left-top and bottom-right edges inter-
secting α̂ f . However, this is not possible since α̂ f and α̂′f are disconnected components
of a non-self-intersecting curve γ̂0

f (since φφφF is a diffeomorphism).

Proposition 3.3.5. Given f , f ′ ∈ Λ2(K), f 6= f ′, and connected components α̂ f ∈ C f (F̂R)

and α̂ f ′ ∈ C f ′ , satisfy the following properties in F̂R ∈ ref1(F̂),

(i) α̂ f intersects at most once an edge ε̂ ∈ Λ1(F̂R) and is not tangent to the edge;

(ii) if α̂ f intersects F̂◦R, α̂ f intersects twice ∂F̂R;

(iii) α̂ f and α̂ f ′ do not intersect in F̂R \Λ0(F̂R);

(iv) α̂ f and α f ′ intersects at most once in F̂R.

Proof. Statement (i) is a direct consequence of Proposition 3.3.4. Let us prove (ii) by
contradiction. We assume that there exists a α̂ f ∈ C f (F̂R), f ∈ Λ2(K), that does not
intersect any edge ε̂ ∈ Λ1(F̂R). α̂ f is a closed curve in R2. This curve is not monotonic,
which is in contradiction with Proposition 3.3.4. If we assume that α̂ f ∈ C f (F̂R), f ∈
Λ2(K) intersects only once ∂F̂R, then α̂ f is tangent to an edge ε̂ ∈ Λ1(F̂R), which is in
contradiction with (i). α̂ f cannot intersect more than twice ∂F̂R since α̂ f is a connected
and non-self-intersecting curve.

All intersections are on vertices of refined faces by step (2) in ref1, which proves
(iii). Step (3) in the refinement rule explicitly enforces (iv).

58 Chapter 3. High-order unfitted discretizations for explicit BREPs

We note that we have not provided yet an algorithm that determines C f (F̂R), f ∈
Λ1(F̂R), i.e., the α̂-curves after ref1. We can compute all the intersections (vertices)
but it still remains open how to connect these vertices. We develop the details of the
connectivity of the intersection points in the next section. In any case, assuming that
the α̂-curves are connected, we can define the following refinement rule ref2 to compute
the intersection F̂R ∩K, where F̂R ∈ ref1(F̂). The ref2 is not AA but it does not introduce
new intersection points, as stated in Theorem 3.3.6 (see Figure 3.5).

Algorithm 12 ref2: partition by connecting intersections

Split F̂R ∈ ref1(F̂) through each edge α ∈ C f (F̂R), ∀ f ∈ Λ2(K).

Theorem 3.3.6. The previous refinement rule is such that F̂R ∈ ref2 ◦ ref1(F̂) has the following
properties:

(i) Λ1(F̂R) is composed of AA edges and strictly monotonic nonlinear edges (including po-
tential diagonal edges);

(ii) The vertices of F̂R lay on the boundary of its AABB;

(iii) All the nonlinear edges are strictly increasing or all strictly decreasing;

(iv) F̂R is diffeomorphically equivalent to a convex linear polygon Pln;

Proof. We note that the refinement ref1 is a kd-tree partition of the square that contains
the reference triangle. Let us consider the set of AABBs obtained by this refinement. By
construction of the partition, F̂R ∈ ref2 ◦ ref1(F̂) is the clipping of an AABB by strictly
monotonic curves that do not intersect among themselves (see Proposition 3.3.4 (ii)
and Proposition 3.3.5). Thus, (i) and (ii) readily hold, while (iii) holds due to Proposi-
tion 3.3.4 (iii).

The nonlinear polygon can be represented as a cyclic graph, where the vertices are
the intersection points of the edges. We can replace the nonlinear edges with linear ones
connecting the vertices, creating a closed linear polygon. Since the nonlinear edges are
smooth, the vertices are preserved, and the topology of the surface is preserved, the
linear polygon is diffeomorphic to the nonlinear one. Thus, (iv) holds.

After refining F, the γ̂0-curves do not intersect F̂◦R, i.e., they belong to ∂F̂R, for F̂R ∈
ref2 ◦ ref1(F̂). Thus, F◦R can only be inside or outside K. Now, we can classify the faces
with respect to K as interior,

F cut .
= { F̂R ∈ ref2 ◦ ref1(F̂) : F̂R ⊆

⋂
f∈Λ2(K)

int(γ̂ f) }, (3.3)

and exterior, F ext .
= { F̂R ∈ ref2 ◦ ref1(F̂)} \ F cut. Remember that K is not open or

closed in general, as stated at the beginning of this section. Thus, int(γ̂ f) (where int(·)
denotes the interior), f ∈ Λ2(K) in (3.3) can be either open or closed (see more details

3.3. Intersection algorithm 59

∈ F cut ∈ F ext

α̂ f

α̂′f

(a) F̂R ∈ ref1(F̂) (b) ref2(F̂R) (c) F̂R ∩ K

Figure 3.5: Representation of clipping algorithm F ∩ K. In (a), we start with a re-
fined face F̂R ∈ ref1(F̂) such that the α̂-curves are strictly monotonic with respect
to the axes in the reference space and do not intersect in F̂R \ Λ0(F̂R). Here, the
α̂-curves are α̂ f ∈ C f (F̂R) (red) and α̂ f ′ ∈ C f ′(F̂R) (blue) for f , f ′ ∈ Λ2(K). Then,
in (b), we generate a partition ref2(F̂R) through the α̂-curves, in which we clas-
sify the faces with respect to K. Finally, in (c), we restrict ref2(F̂R) inside K (see

Algorithm 12).

in [17]). Once the refined faces are classified, we define Algorithm 13 to obtain F ∩ K as
a partition into nonlinear polygons (see Figure 3.5). We note that, due to Theorem 3.3.6,
the linearization of F ref can be represented with a cyclic graph (see [17]). Thus, F cut

can utilize such representation.

Algorithm 13 F ∩ K
Compute the partition F ref .

= ref2 ◦ ref1(F).
Return the faces F cut in F ref that are inside K (see (3.3)).

Remark 3.3.7. For linear F and intersection curves, the AA critical point computation is ill-
posed. However, there is no need to add any point in this case, since the intersection is linear.
The curve-plane intersection is ill-posed if the curve is contained in the plane (linear edge); anal-
ogously for the surface-line intersection (linear face). These intersections can also be disregarded
because they are not affecting the meas2 of sets after trimming.

Remark 3.3.8. The partition generated by the refinement above may contain a level of refine-
ment that is not required to fulfill all the requirements for Proposition 3.3.5 to hold. Thus, one
can perform a coarsening step of F ref that reduces the non-essential vertices, edges, and faces,
while maintaining a diffeomorphically equivalent surface.

Remark 3.3.9. The presence of AA critical points can improve the accuracy of a parametriza-
tion step in Section 3.3.5, since the resulting curves are strictly monotonic with respect to the
edges of the reference space. Additionally, one can consider another refinement of the γ0

f -curves
to bound the relative chord δ̂max up to a given threshold.

3.3.3 Connection algorithm

Let us consider a face F ∈ ref1(F0) after the refinement in Algorithm 11. We stress
that F hereafter denotes a refined face and F0 the original face before refinement in the

60 Chapter 3. High-order unfitted discretizations for explicit BREPs

previous section. We remark that the reference space is always the one of the original
face, i.e., the map φφφF is inherited from the unrefined face. Thus, the curves γ0

f are
independent of the refinement.

As above, let us consider the set C f (F̂) of mutually disconnected components of
γ̂0

f ∩ F̂ (now at the refined face). We omit the face sub-index, i.e., we use C(F̂), to rep-
resent the union of all these sets for all faces f ∈ Λ2(K). In the reference space F̂,
the curves α̂ f ∈ C f (F̂) are strictly monotonic smooth curves in F̂ \ Λ0(F̂) (see Propo-
sition 3.3.4); for brevity, we refer as monotonic the curves that are monotonic with
respect to (ξ̂1, ξ̂2). In Proposition 3.3.4, we prove that all the curves in C f (F̂) are strictly
increasing or all curves are strictly decreasing. Moreover, two α̂-curves, α̂ f ∈ C f (F̂)
and α̂ f ′ ∈ C f ′(F̂), f , f ′ ∈ Λ2(K), cannot intersect in F̂ \ Λ0(F̂) (see Proposition 3.3.5).
Let us define the set of intersection points:

I = {γ̂0
f ∩ ∂F̂ : f ∈ Λ2(K)}.

There is an injective map between the intersection points in I and the α-curves. We
assume that I is composed of isolated points, i.e., γ̂0

f ∩ ∂F̂ is not an edge of F̂. This
singular case can readily handled, as discussed in Remark 3.3.7.

By construction (clipping of the reference triangle with AA lines), F̂ has four edges
and the bottom-left corner connects two AA edges. Thus, we can label the edges of
Λ1(F̂) as ε̂1, ..., ε̂4 in the counterclockwise direction, starting with the leftmost vertical
edge. We note that ε̂3 can be non-AA and ε̂4 empty, but it does not affect the discussion.
The refinement rules ensure that the non-AA edges are not intersected by γ̂0

f . One can
simply consider the AABB that contains the face, which cannot affect the intersection
points, since the α̂-curves only connect AA edges that do not change by this step. Thus,
we can assume that all edges are AA without loss of generality.

Let us consider C f (F̂) to be composed of strictly increasing curves. We define Γ+ .
=

ε̂1 ∪ ε̂2 and Γ− .
= ∂F̂ \ Γ+ and I+ .

= I ∩ Γ+ and I− .
= I ∩ Γ−. We proceed analogously if

C f (F̂) is composed of strictly decreasing curves, but defining Γ+ .
= ε̂1 ∪ ε̂4.

Proposition 3.3.10. Every node in I+ is connected to one and only one node in I−. The
opposite is also true. Thus, we can connect all the nodes in I+ and I−.

Proof. Let us consider the case in which C f (F̂) is composed of strictly increasing curves.
A node in I+ cannot be connected to a node in I+ since one node in I belongs to only
one curve, the curves are strictly increasing, and a strictly increasing function that starts
in ε1 or ε2 cannot intersect again ε1 or ε2. Using an analogous argument, we can prove
the result when C f (F̂) is composed of strictly decreasing curves.

Proposition 3.3.11. If I+ and I− are sorted clockwise and anti-clockwise, resp., then each node
in I+ can only be connected to the node in the same position in I−.

Proof. Let us assume that i+1 ∈ I+ is connected to i−k , k 6= 1. The line that connects i+1
and i−k split F̂ into two non-empty parts. We note that this is due to the fact that i+1 and

3.3. Intersection algorithm 61

α̂2α̂1

i2i1

i4i3

(a)

Γ+ Γ−

i2i1

i4i3

(b)

Figure 3.6: Representation of Algorithm 14 for strictly increasing curves. In (a),
we present the intersections i1, ..., i4 ∈ I of the curves α̂1, α̂2 ∈ C f (F̂) with ∂F̂.
These intersections are classified into I+ = {i3, i4} and I− = {i1, i2} according to
their position in the boundary, Γ+ or Γ−, resp. These sets are sorted in clockwise
and anticlockwise order, resp. This sorting leads to the connection shown in (b)
(dashed red). If the curves in C f (F̂) were strictly decreasing, the figures would be

symmetric to these ones.

i+k cannot be on the same edge. One of the parts contains nodes i−1 , ..., i−k−1 ∈ I− and the
other part contains I+ \ i+1 . By Proposition 3.3.10, nodes contained in the two different
regions are connected by α-curves. But these α-curves then intersect the one connecting
i+1 and i−k . This is not possible, since these are disconnected components of a non-self-
intersecting curve. Thus, i+1 can only be connected to i−1 . We proceed analogously for
the other nodes.

This way, we compute all the connections in the graph with Algorithm 14. First, in
line 1, we compute the intersections between γ̂0

f and ∂F̂ using intersection algorithms
(see Figure 3.6(a)). In line 3, we return the straightforward connection of two points.
Otherwise, in line 5, we compute the derivative sign of the α-curves in C f (F̂) (e.g.,
evaluating the gradient ∇∇∇(γ̂0

f) at any intersection point i ∈ I). Next, we connect1

the nodes in the sorted sets I+ and I− according to Proposition 3.3.11 (line 6-8). The
algorithm returns a set of edges E that connect the intersections I. These connections
define entirely the α̂-curves, which are then used in Algorithm 12. We note that the full
connection algorithm is barely used in practice if we start with a surface mesh with a
small chordal error of its linearisation.

Algorithm 14 connect(F̂, γ̂ f)

1: I ← {γ̂0
f ∩ ∂F̂}

2: if length(I) = 2 then
3: return E ← {i1, i2 ∈ I}
4: end if
5: s← derivative_sign(γ0

f)

6: I+, I− ← split_by_position(I, s)
7: I+, I− ← cyclic_sort_by_sign(I−, I+, s)
8: return E ← { (i+, i−) ∈ zip(I+, I−) }

1In line 8, we use the notation zip to iterate simultaneously over multiple iterators of the same length,
e.g., aaa and bbb. Each iteration returns a tuple of the ith value of each interator, (ai, bi).

62 Chapter 3. High-order unfitted discretizations for explicit BREPs

Remark 3.3.12. In the computation of intersection points in Algorithm 14, we disregard the
ones that do not logically represent an intersection. E.g., if the level set value γ f does not change
the sign around a vertex with zero level set value.

One can observe that for this algorithm to work, I must have an even number of
elements (after filtering I with Remark 3.3.12). It is true since the α̂-curves are mono-
tonic. Thus, any α̂ f ∈ C f (F̂) that α̂ f ∩ F̂ \ Λ0(F̂) 6= ∅ can only intersect twice ∂F̂ (see
Theorem 3.3.6).

3.3.4 Surface partition

Let us consider a nonlinear general polygon F̂ in R2, e.g., F ∈ F cut. In order to
parametrize F, we need a partition into regular polygons, e.g., simplices or quadri-
laterals. This parameterization is needed to compute bulk and surface integrals when
using (3.2.3). However, this is not needed when transforming these integrals into edge
integrals using (3.2.3).

Let us recover the definition of a kernel point. A kernel point can be connected
by a segment to any other point of a polytope without intersecting its boundary. The
union of all possible kernel points is the kernel polytope, which is convex. The kernel
polytope of a convex polytope is itself [124]. In a linear polytope Pln, we can compute
a kernel point by finding a point that belongs to the half-spaces defined by the faces of
Pln; see more details in [103].

Finding the kernel of a nonlinear polytope F̂ is not trivial. One can find a lower
bound of the kernel polytope with the convex hull of the nonlinear faces. If a kernel
point exists for a given polytope F̂, we can compute a simplex partition of F̂ using
linear edges. However, the kernel point does not exist in general.

Proposition 3.3.13. If F̂ has the properties of Theorem 3.3.6 then F̂ can be partitioned into a
set of nonlinear triangles and quadrilaterals by adding linear edges only.

Proof. Let us assume that Λ1(F̂) is composed of two strictly increasing nonlinear curves
and a set of AA edges. According to Theorem 3.3.6, these curves and edges can only
intersect at the boundary of the AABB of F̂. Thus, we connect the endpoints of the non-
linear curves with non-increasing linear edges. Since the new edges are non-increasing,
they can only intersect once each curve, i.e., at the endpoints. This connection gener-
ates a nonlineal quadrilateral Q̂ ⊆ F̂. The remaining parts F̂ \ Q̂ are linear and convex
(see Theorem 3.3.6), in which a simplex partition is straightforward.

Therefore, we can compute a hybrid partition if a nonlinear polytope F̂ has no ker-
nel point We note that the nonlinear quadrilaterals of Proposition 3.3.13 are composed
of two nonlinear edges and two linear edges. Thus, they can be represented with a ten-
sor product map with anisotropic order, e.g., q× 1 where q is the order of the nonlinear
edges. If needed, we can decompose the nonlinear quadrilaterals into triangles within
their reference space.

3.3. Intersection algorithm 63

Remark 3.3.14. We can consider a coarsening of F cut that satisfies Proposition 3.3.5 (see
Remark 3.3.8) if the resulting polygons have a kernel point. We note that the coarsening stated
in Remark 3.3.8 can lead to non-convex polygons.

3.3.5 Surface parametrization

The intersection Bcut
K

.
= B ∩ K is a nonlinear surface mesh in which the intersection

curves are implicitly represented. Thus, we need a parametrization of the edges and
surfaces for further operations. We utilize a least-squares method [30] combined with a
sampling strategy [51]. This iterative process converges to an accurate parametrization
of the intersection curves and trimmed surfaces.

In the least-squares method we can find the Bézier control points Xb = {xb
j }m

j=1

that minimize X` − BXb where {B}ij = bj(ξi) are the Bézier basis evaluated at the
reference points {ξ j}n

j=1 and Xξ = {x`j }n
j=1 represents the set of sampling points (see

[97] for more details). When B is not a square matrix, i.e., n > m, Xb is approximated
through a linear least-squares operation. To isolate the approximation between the
d-faces, one can recursively perform a least-squares operation on the interior points,
increasing the dimension. Note that for square matrices, i.e., n = m, we are building
the Bézier extraction operator [29].

The authors in [51] discussed several sampling strategies and demonstrated similar
convergence in FE analysis. In each of the sampling strategies, they solve a nonlinear
problem for every sampling point. In our case, we aim to parametrize the intersection
curves F ∩ G, F ∈ B, G ∈ Λ2(K). Thus, we define a sampling strategy to represent the
intersection curves by solving a closest point problem. Specifically, we find

ξ̂ξξ ∈ F̂ : (xxx0−φφφF(ξ̂ξξ)) ·nnnπ = 0, (xxx0−φφφF(ξ̂ξξ)) · (nnnπ × (∂∂∂ξ̂1
(φφφF(ξ̂ξξ))× ∂∂∂ξ̂2

(φφφF(ξ̂ξξ)))) = 0.

When we compute the closest point to a surface, e.g., when parametrizing the interior
of a nonlinear face, the problem reads as follows: find

ξ̂ξξ ∈ F̂ : (xxx0 −φφφF(ξ̂ξξ)) · ∇∇∇(φφφF(ξ̂ξξ)) = 000.

This algorithm requires a seed point in the physical space xxx0, which does not belong
to the surface or curve, and an initial reference point ξ̂ξξ0 ∈ F̂. This sampling strategy,
as well as others, assumes relatively small curvature in the curves and surfaces. The
curvature has already been bounded in Section 3.3.2.

The least-squares method with a sampling strategy is insufficient for an accurate
parametrization, see the example of Figure 3.7(b). The authors in [30] propose a method
to optimize the reference points {ξ j}n

j=1 iteratively. We use a similar approach that
fixes the reference points and recomputes the sampling points at each iteration. This
approach allows us to compute the least-squares operator B+ only once. In addition,
the sampling will be evenly spaced in the reference space. The example in Figure 3.7

64 Chapter 3. High-order unfitted discretizations for explicit BREPs

shows how the approximation improves with the iterations. This method applies to
the parametrization of curves and surfaces.

T b ∈ X ` ∈ X b∈ T b(Xξ)S

(a) it = 0 (b) it = 1 (c) it = 5 (d) it = 15

Figure 3.7: Example of iterative approximation of a curve. From the linear ap-
proximation in (a), we sample the closest points. These sampling points X` are
approximated in a Bézier curve X b in (b). In (b), we evaluate the approximated
seed points T b(Xξ) to compute the new sampling points. Across the iteration,
in (c) and (d), the approximation improves by reducing the distance between the
sampling points and the curve. In (d), the sampling points are evenly spaced in the
reference space (up to a stopping criterion). Note that this example corresponds to
a particular case of the Algorithm 15 in which the approximation degree is fixed

to p = 3.

The parameterization method is described in Algorithm 15. Even though this al-
gorithm is designed for Bcut

K , it is general to any nonlinear mesh, namely S . We first
generate a linear approximation of S in line 1 with a simplex partition (or a partition
into standard polytopes, see Section 3.3.4). In line 2, we initialize the sampling points
through the degree elevation, see [47]. Then, we parametrize the d-faces from lower
to higher dimension line 3. Each d is parametrized from lower to higher order line 4,
in simplices, we start with p0 = d. The gradual increment of the approximation er-
ror improves the convergence. In each iteration, we compute a Bézier mesh with the
least-squares method then we compute the sampling points from the evaluations of
the Bézier mesh. When the variation of the error estimator is below a tolerance, we
increase the degree. Finally, we return the Bézier mesh with the least-squares method
of the highest degree.

3.3.6 Cell intersection

The intersection of a cell with the domain Kcut .
= K ∩ Ω can be represented using

its boundary ∂Kcut .
= (∂K)cut ∪ Bcut

K , as stated in Section 3.2.2. In Algorithm 16 , we
aim to compute (∂K)cut .

= ∂K ∩Ω = ∂K ∩ int(Bcut
K) using the linear algorithms from

[17]. Here, int(Bcut
K) represents the domain bounded by Bcut

K . For this purpose, we first
need a linearized surface Blin

K
.
= lin(Bcut

K) partitioned into simplices (see line 1 and
Figure 3.8(a) to Figure 3.8(b)). Since Bcut

K is composed of nonlinear polytopes that are
diffeomorphically equivalent to linear and convex polytopes, both linearization and
simplex decomposition are straightforward.

3.3. Intersection algorithm 65

Algorithm 15 parametrize(T , D)

1: T lin ← simplexify(S , D)
2: T ` ← elevation(T lin, p`)
3: for d ∈ {1, . . . , D} do
4: for p ∈ {p0, . . . , pb} do
5: e− ← ∞; ∆e← ∞
6: while ∆e > ε do
7: T b ← B+

p · T `
d

8: T `
d ← sample(T b, T `

d ,S)
9: e← ‖T b − T `

d ‖`2 ; ∆e← |e− e−|/e; e− ← e
10: end while
11: end for
12: end for
13: return B+

pb · T `

The main algorithm in [17] provides a linearized partition for Kcut, i.e., T lin
K

.
= K ∩

Blin
K in line 2 and Figure 3.8(c). From T lin

K , we can obtain (∂K)lin by filtering the faces
that belong to ∂K in line 3. Additionally, we merge cells P ∈ (∂K)lin such that Λ1(P) is
composed of cell edges εK ⊆ ε ∈ Λ1(K) and surface edges εB ∈ Λ1(Blin

K). It is important
to note that the surface edges εB ∈ Λ1(Blin

K) have bijective map to ε′B ∈ Λ1(Bcut
K),

namely ΦB : εB 7→ ε′B . Therefore, we recover the nonlinear cell boundary intersection
(∂K)cut by replacing the εB edges with the ones parametrized in Bcut

K (see line 4 and
Figure 3.8(d)).

(a) Bcut
K (b) Blin

K (c) T lin
K (d) (∂K)cut

Figure 3.8: Representation of the steps that generate (∂K)cut. First, the surface
portion Bcut

K (see (a)) is linearized and partitioned into simplices (Blin
K in (b)). Then,

in (c), we intersect the background cell K with the half-spaces of the planes of Blin

using linear algorithms, resulting in T lin
K . This linear intersection is possible since

the faces F ∈ Blin
K are planar. Next, we extract the boundary of T lin

K that belong to
∂K, leading to (∂K)lin. Finally, we replace the edges in (∂K)lin by the ones in Bcut

K
to obtain (∂K)cut (see (d)). The boundary of K∩Ω is represented by (∂K)cut ∪Bcut

K .

The parametrization of the edges of (∂K)cut is extracted from Bcut
K . However, the

surface parametrization requires a surface partition into standard polytopes. We utilize
the methods described in Section 3.3.4 to build such a partition. In this case, the AA
critical points and AA partitions are defined in the reference space of P ∈ (∂K)cut,

66 Chapter 3. High-order unfitted discretizations for explicit BREPs

Algorithm 16 ∂K ∩ int(Bcut
K)→ (∂K)cut

1: Blin
K ← lin(Bcut

K)
2: T lin

K ← K ∩ int(Blin
K)

3: (∂K)lin ← {F ∈ Λ2(P) : P ∈ Tlin
K , F ⊂ ∂K}

4: return (∂K)cut ← replace_edges((∂K)lin, ΦB)

i.e., in the reference space of F ∈ Λ2(K). It is worth noting that, in this partition, the
intersections of the nonlinear edges ε ∈ Λ1(Bcut

K) with AA lines are computed in the
reference space of ε. This fact ensures local conformity.

3.3.7 Global algorithm

The algorithms presented in the previous sections are defined cell-wise. In this section,
we describe an algorithm that allows us to integrate FE functions in the whole do-
main and its boundary. Each cell of the background mesh is intersected by the domain
bounded by a high-order Bézier surface mesh. Therefore, to proceed, we first need
to generate this surface mesh from the given BREP, e.g., analytical functions or CAD
representation. From CAD models we can generate high-order surface meshes with
a third-party library, e.g., gmsh [54]. We can convert these meshes into Bézier patches
with a Bézier projection operation or a least-squares approximation.

The intersection of a background cell K ∈ T with the whole surface mesh B would
be inefficient. Therefore, we restrict the surface mesh to the faces colliding with the cell
K. We perform this operation in a preprocessing step similar to [17]. The interrogations
are approximated by linear operations on the convex hull of each Bézier patch. We can
accelerate these queries with a hierarchy of simpler bounding domains, e.g., AABBs,
oriented bounding boxes (OBBs) or discrete orientation polytopes (k-DOPs) [68, 122].
We note that these operations prioritize speed over accuracy as the subsequent opera-
tions can deal with false positives in the surface restriction.

The global algorithm is described in Algorithm 17 and demonstrated through an
example in Figure 3.9. First, in line 2, the Bézier mesh is extracted from the given rep-
resentation, e.g., CAD model in Figure 3.9(a). For each cell K ∈ T , we restrict the
faces F ∈ B touching K, see Figure 3.9(b) step (i) and line 4. The surface BK is inter-
sected by the walls of K, see step (ii) and line 5. Then, the cell boundary is intersected
by the half-spaces of the intersected surface Bcut

K (line 6). Both boundary intersections
Bcut

K ∪ (∂K)cut represent the boundary of the cut cell Kcut, see step (iii). The parameteri-
zation of these is stored for integration purposes (line 7).

Once we have classified the non-intersected cells as described in [17], we can pro-
ceed with the integration over the entire domain. The integration strategy depends
on the dimension of the parametrization used in line 7. In the methods described in
this section, we utilize high-order 2-faces for parametrization, enabling us to employ
Stokes theorem for integration [40] in combination with moment-fitting methods [19].

3.3. Intersection algorithm 67

Algorithm 17 T ∩ int(BCAD)

1: T cut ← ∅
2: B ← extraction(BCAD)
3: for K ∈ T do
4: BK ← restrict(B, K)
5: Bcut

K ← BK ∩ K
6: (∂K)cut ← ∂K ∩ int(Bcut

K)
7: T cut ← T cut ∪ parametrize(Bcut

K) ∪ parametrize((∂K)cut)
8: end for
9: return T cut

(a) CAD and cell sample

(i) (ii)

(iii)

(b) Local main steps

Figure 3.9: In (a) the CAD geometry (colored CAD entities) is first approximated
into a high-order surface mesh. In each cell of the background mesh (b), in (i) we
restrict the nonlinear faces touching the background cell. Then, in (ii) we clip the
nonlinear faces by the background cell walls. Finally, in (iii) we build the polytopal
representation of the intersected ∂K ∩Ω. Afterward, we prepare the polytpes for

the integration, e.g., with a surface parametrization.

68 Chapter 3. High-order unfitted discretizations for explicit BREPs

However, when using edge parametrizations, it is necessary to employ Stokes theorem
over trimmed faces [57].

3.4 Numerical experiments

In the numerical experiments, we aim to demonstrate the robustness of the method
and optimal convergence of the geometrical and PDE solution approximations. First,
we demonstrate hp-convergence of the intersection and parametrization methods in
Section 3.4.2. Then, in Section 3.4.3, we show the robustness of the method concerning
the relative position of the background mesh and the geometry. Next, in Section 3.4.4,
we show the optimal hp-convergence of the FE analysis for a manufactured solution
of the Poisson equation and an elasticity benchmark. Finally, we show the application
of the method in real-world examples on CAD described in terms of standard for the
exchange of product model data (STEP) files.

3.4.1 Experimental setup

The numerical experiments have been performed on Gadi, a high-end supercomputer
at the NCI (Canberra, Australia) with 4962 nodes, 3074 of them powered by a 2 x 24
core Intel Xeon Platinum 8274 (Cascade Lake) at 3.2 GHz and 192 GB RAM. The al-
gorithms presented in this work have been implemented in the Julia programming
language [27]. The unfitted FE computations have been performed using the Julia FE
library Gridap.jl [21, 116] version 0.17.17 and the extension package for unfitted meth-
ods GridapEmbedded.jl version 0.8.1 [118]. STLCutters.jl version 0.1.6 [76] has been
used to compute intersection computations on STL geometries. The computations of
the convex hulls have been performed with DirectQhull.jl version 0.2.0 [61], a Julia
wrapper of the qhull library [23].

The CAD geometry preprocess is done in gmsh library [54] by using the GridapGmsh.jl
Julia wrapper [115]. The gmsh library calls Open CASCADE Technology (OCCT) [90]
as a parser for STEP files. The sample geometries are extracted from [90] and [56].

3.4.2 Approximation and parametrization analysis

In this section, we analyze the approximation of the geometry by a Bézier mesh B. We
use a sphere as test geometry. We define the sphere by the boundary of a reference cube
bumped by f (x̂xx) = xxx0 +R(x̂xx− x̂xx0)/‖x̂xx− x̂xx0‖where x̂xx0 is the center of the reference cube,
xxx0 is the center of the sphere and R = 1 is the radius of the sphere in our experiments. In
the following experiments, we consider a triangular surface mesh for the reference cube
boundary obtained from the convex decomposition of a Cartesian mesh. We define
the relative cell size as hsurf = 1/nsurf where nsurf is the number of elements in each
Cartesian direction. The surface partition of the sphere is approximated by a Bézier
mesh B of order p by using a least-squares operation. This sphere is embedded in a

3.4. Numerical experiments 69

cube of side L = 3. This domain is discretized with a background Cartesian mesh T of
relative cell size h = 1/n where n is the number of cells in each direction. During the
intersection of the surface, the relative chord of the edges is bounded to δ̂max < 0.1. The
surfaces are computed by integrating a unit function on the high-order surface mesh,
while we use Stokes theorem in the volume computation.

In the surface approximation experiments of Figure 3.10(a), we test a matrix of sur-
face cell sizes hsurf = 2−α, with α = 2, .., 5 and a range of Bézier orders p = 1, .., 7.
We compute the Bézier approximation error as the difference between the surface of B
and the analytical surface. We observe that the convergence rate of the approximation
errors is p + 1 for odd orders and p + 2 for even orders. In [1], one can observe similar
convergence rates of the surface and volume errors.

In Figure 3.10(b), the surface mesh B is intersecting by each background cell K ∈ T .
This generates Bcut. These intersections are performed for surfaces B of order p and
parametrized with order p, where p = 2, ..., 6. In Figure 3.10(c), we present the results
of intersecting each background cell K ∈ T with the domain bounded by B, resulting
in T cut. In this case, the approximation of B and surface parametrization are computed
with order p = 2, 3, 4 for computational reasons. In both cases, the cell size of the back-
ground mesh is fixed to h = 2−2. We observe in Figure 3.10(b) and Figure 3.10(c) that
the convergence rates of the cut surface error, |surf(Bcut)− surf(B)|, and the cut vol-
ume error, |vol(T cut)− vol(B)|, are similar to the convergence rates of Figure 3.10(a).

(a) (b) (c)

Figure 3.10: Surface and volume errors of the approximation and the
reparametrization of a sphere. In (a), the surface error of approximating the
geometry Bgeo into a Bézier mesh B, |S − Sgeo| where Sgeo = surf(Bgeo) and
S = surf(B). In (b), the parametrization error of Bcut, the intersection of B with
each background cell K ∈ T , |Scut − S| where Sgeo = surf(Bgeo). In (c), the vol-
ume integration error of T in, the intersection of each background cell K ∈ T with

the domain bounded by B, |Vin −V| where Vin = vol(T in) and V = vol(B).

3.4.3 Robustness experiments

In this section, we demonstrate robustness concerning the relative position of B and
T . For these experiments, we consider a sphere with the same geometrical setup as

70 Chapter 3. High-order unfitted discretizations for explicit BREPs

in Section 3.4.2. We perform the intersections with the same relative background cell
size and surface cell size h = hsurf = 2α, α = 3, 4. We test for the approximation
and parametrization orders p = 2, ..., 4. In each combination, we shift the geometry
∆x = (i/N)h, with i = 1, ..., N where N = 20, from the origin.

In Figure 3.11(a) and Figure 3.11(b), we observe the surface and volume variation of
the surface error, |surf(Bcut)− surf(B)|, and the volume error, |vol(T in)− vol(B)|,
resp. Here, T in .

= T cut ∪ {K ∈ T : K ∩ ∂Ω = ∅} is the physical volume mesh. The
variations of the surface error are approximately two orders of magnitude and the vari-
ations of volume are one order of magnitude.

However, in Figure 3.11(c), we observe a machine precision error in the domain
volume error |vol(T in) + vol(T out)− vol(T bg)|, where T out .

= T bg \ T in is comple-
mentary of T in. The low error is due to the conformity between inside and outside
polytopes of the cut cell described in Section 3.3.6.

(a) (b) (c)

Figure 3.11: Demonstration of robustnes concerning the relative position of B and
T . Both plots have surface and volume errors when shifting a sphere in the em-
bedded domain. Even though the surface and volume errors in (a) and (b) show
variations, the errors are bounded. In (c), the domain volume errors are close to
machine precision because the inside and outside polytopes of the cut cell are con-

forming, see Section 3.3.6

3.4.4 Unfitted FE experiments

In these experiments, we explore the behavior of the intersection algorithms by solving
PDEs with unfitted FEs on two analytical benchmarks and two realistic examples. We
analyze a Poisson equation with a manufactured solution on a sphere and a spherical
cavity benchmark with an analytically derived solution [31]. Both experiments are per-
formed with the geometrical setup described in Section 3.4.2. However, in the spherical
cavity experiments, the domain is the outside of an octant of the sphere. We compute
the FE solutions using AgFEM with modal C0 basis and moment-fitting quadratures
[19], even though the proposed framework can be used with other unfitted methods
like ghost penalty stabilization [33]. In AgFEM, we aggregate all cut cells.

3.4. Numerical experiments 71

In the Poisson experiments, we consider Dirichlet boundary conditions and a forc-
ing term that satisfies the manufactured solution u(x, y, z) = xa + ya, with a = 6. We
compute the convergence tests for h = hsurf = 2−α, with α = 3, 4, 5, for the FE order
p = 1, 2, 3 and the geometrical order q = 1, 2, 3 of the approximation and parametriza-
tions. In Figure 3.12(a) and Figure 3.12(b), we can observe that the L2 and H1 errors
converge with the optimal rate, p + 1 and p, resp. This convergence is independent
of the geometrical order q, as expected, the geometry description does not affect the
manufactured solution problem.

In the linear elasticity benchmark of the spherical cavity, we derive the potentials
with automatic differentiation in Julia. We compute the tests for the same cell sizes
h = hsurf = 2−α and orders p = 1, 2, 3 and q = 1, 2, 3 than in the Poisson experiments.
We set consider a Young modulus E = 105 and Poisson ratio ν = 0.3. We observe in Fig-
ure 3.12(c) and Figure 3.12(d) the expected convergence rates for the L2 and H1 errors,
min(p, q) + 1 and p resp. This demonstrates that we require high-order discretizations
to accurately solve PDEs with high-order unfitted FE methods.

(a) Poisson L2 (b) Poisson H1 (c) Linear Elasticity L2 (d) Linear Elasticity
H1

Figure 3.12: Convergence tests in AgFEM. Convergence of the manufactured solu-
tion with a Poisson equation in a sphere, in (a) and (b). Convergence of the linear
elasticity benchmark in a spherical cavity, in (c) and (d). Some combinations of FE

order p and geometry order q are not shown for the sake of conciseness.

Finally, we demonstrate the viability of the method in real-world geometries de-
fined by CAD models in STEP files. These files are extracted from [90] and [56], resp.
On each CAD geometry, we generated a high-order surface mesh using gmsh. Then,
we converted this mesh into a Bézier mesh with a least-squares method. The indexing
of topological entities of the CAD surface, BCAD, is preserved in the intersected mesh
Bcut. Thus, we can impose Dirichlet and Neumann boundary conditions over the enti-
ties in BCAD. We consider a heat problem and an elasticity problem in the two different
geometries Figure 3.13. The experiments are described in the figure caption.

72 Chapter 3. High-order unfitted discretizations for explicit BREPs

(a) (b)

Figure 3.13: Realistic examples on CAD geometries. In (a) we consider a heat
equation with thermal conductivity k = 1.0 and Dirichlet boundary conditions on
two opposite entities (uD1 = 0 and uD2 = 1). The background mesh is defined in a
AABB 20% larger than the geometry with 40× 40× 5 elements of order p = 2. The
surface is approximated in 524 quadratic Bézier patches. In (b) we consider a linear
elasticity problem with Young modulus E = 105 and Poisson ratio ν = 0.3, with
Dirichlet and Neumann boundary conditions (uD = (0, 0, 0) and gN = (1, 0,−1),
resp.). The magnification factor of the deformation is 75. The background mesh is
defined in an AABB 20% bigger than the geometry with 30× 10× 60 elements of

order p = 2. The surface is approximated in 1786 quadratic Bézier patches.

3.5. Conclusions and future work 73

3.5 Conclusions and future work

In this work, we have designed an automated pipeline for numerically approximating
PDEs in complex domains defined by high-order boundary meshes using unfitted FE
formulations in a structured background mesh. The main challenge of the method lies
in the numerical integration of the background cells intersected by the domain bound-
ary. This requires handling the intersection between background cells and complex
boundary meshes, including the computation of trimming curves and dealing with
nonlinear and nonconvex domains.

We have presented a novel intersection algorithm for general high-order surfaces
and polytopal cells, which is accurate and robust. The algorithm is based on mesh
partition methods for nonlinear level sets, linear clipping algorithms for general poly-
topes, multivariate root finding, geometrical least-squares methods and the properties
of Bézier patches. The result of this algorithm is a set of nonlinear general polyhedra
that represent the cut cells of the background mesh. We parametrize the boundary of
these polyhedra using sets of Bézier patches, taking advantage of concepts like convex
hull and kernel point concepts. These Bézier patches can be used to integrate the bulk
with moment-fitting quadratures.

The implementation, accuracy and robustness of the geometrical algorithm have
been tested on high-order geometries defined by analytical methods and CAD mod-
els. In our tests, we observe optimal convergence of the numerical approximations,
limited only by rounding errors. Additionally, we have observed the robustness of the
method when varying the relative position of the background mesh. Furthermore, we
have successfully solved PDEs on geometries defined by nonlinear boundary repre-
sentations with high-order FE methods. We have demonstrated optimal convergence
of the solutions in the designed benchmarks. We have also shown the viability of the
method in real-world geometries defined by CAD models in STEP files. These results
position the method as a pioneering computational framework for simulating PDEs on
high-order geometries with unfitted FE methods. It provides an automatic geometrical
and functional discretization that can be especially useful within shape and topology
optimization loops, inverse problems with unknown boundaries and interfaces, and
transient problems with moving domains.

Future work involves the extension of the method for other background discretiza-
tions, e.g., octree meshes for adaptive refinement. We also plan to extend the method
to distributed memory [16], since the method is cell-wise parallel, allowing us to solve
larger problems. We can optimize the method by parametrizing only the polytopal
edges and using moment-fitting integration on the surfaces [57]. Further extension of
the method involves solving boundary layer problems with a separate discretization,
see [119]. Finally, we plan to extend the method to more complex scenarios and practi-
cal applications, such as fluid-structure interaction (FSI) and transient problems.

Chapter 4

Space-time unfitted finite element
method for moving explicit
boundary representations

This work proposes a novel variational approximation of partial differential equations
on moving geometries determined by explicit boundary representations. The benefits
of the proposed formulation are the ability to handle large displacements of explicitly
represented domain boundaries without generating body-fitted meshes and remesh-
ing techniques. For the space discretisation, we use a background mesh and an unfit-
ted method that relies on integration on cut cells only. We perform this intersection by
using clipping algorithms. To deal with the mesh movement, we pullback the equa-
tions to a reference configuration (the spatial mesh at the initial time slab times the
time interval) that is constant in time. This way, the geometrical intersection algorithm
is only required in 3D, another key property of the proposed scheme. At the end of the
time slab, we compute the deformed mesh, intersect the deformed boundary with the
background mesh, and consider an exact transfer operator between meshes to compute
jump terms in the time discontinuous Galerkin integration. The transfer is also com-
puted using geometrical intersection algorithms. We demonstrate the applicability of
the method to fluid problems around rotating (2D and 3D) geometries described by
oriented boundary meshes. We also provide a set of numerical experiments that show
the optimal convergence of the method.

4.1 Introduction

Space-time formulations for FEMs are valuable techniques for solving transient nu-
merical problems. Unlike standard time stepping schemes, which employ different
discretizations for space and time, space-time formulations discretize the problem si-
multaneously in both space and time. However, generating 4D space-time body-fitted
meshes becomes extremely challenging on moving complex geometries. There are no
general-purpose tools to generate 4D meshes. Besides, the re-meshing process due to
moving domains introduces projection errors when transferring between meshes.

75

76 Chapter 4. Space-time unfitted FEM for moving explicit BREPs

The bottleneck of mesh generation can be addressed by employing unfitted FEMs.
Unfitted FEMs, also known as embedded or immersed FEMs, offers a solution that
eliminates the need for body-fitted mesh generation, relying instead on a simple back-
ground grid, such as a uniform or adaptive Cartesian grid. For large-scale simulations
on distributed-memory platforms, one can replace expensive (both in terms of compu-
tational time and memory) unstructured mesh partitioning [66] by efficient tree-mesh
partitioners with load balancing [36, 37]. Unfitted FEMs have gained increasing pop-
ularity in various applications, including FSI [35, 49, 99], fracture mechanics [44, 55],
additive manufacturing [38, 87], and stochastic geometry problems [9]. Traditionally,
unfitted problems utilize level sets to describe geometries. However, recent work [17]
has extended unfitted discretizations to simulate geometries described by CAD mod-
els, i.e., explicit geometry representations.

The small cut cell problem, commonly discussed in the literature [43], is a signifi-
cant limitation of unfitted FEMs. The intersection between the physical domain and the
background cells can become arbitrarily small, thereby giving rise to ill-conditioning
issues. While several authors have attempted to address this problem, only a few tech-
niques have demonstrated robustness and optimal convergence. The ghost penalty
methods [33], employed within the so-called CutFEM framework [34], represent one
such approach. Alternatively, cell agglomeration techniques have emerged as viable
options to ensure robustness in the presence of cut cells, naturally applied on DG meth-
ods [84]. Extensions to the C0 Lagrangian FE have been introduced in [22], while mixed
methods have been explored in [14], where the AgFEM term was coined. AgFEM ex-
hibits good numerical qualities, including stability, bounds on condition numbers, op-
timal convergence, and continuity concerning data. Distributed implementations have
been exploited in [11, 117], while AgFEM has also been extended to h-adaptive meshes
[85] and higher-order FE [19]. In [18], a novel technique combining ghost penalty meth-
ods with AgFEM was proposed, offering reduced sensitivity to stabilization parame-
ters compared to standard ghost methods.

In the body-fitted case, one can consider variational space-time formulations [24,
111, 114] to avoid the generation of 4D meshes. In these formulations, a body-fitted
mesh is extruded using a geometric mapping technique to represent the temporal evo-
lution of the boundary displacements. However, when dealing with large displace-
ments, the geometric mapping process becomes ill-posed, often necessitating re-meshing.
Similar challenges arise in body-fitted ALE [45, 89] schemes, where frequent re-meshing
becomes necessary due to large changes in topology. Consequently, none of these for-
mulations are optimal when confronted with large displacements. Furthermore, the
re-meshing process introduces bottlenecks within the simulation procedure and incurs
in projection errors when transferring between meshes.

Despite the notable advantages of unfitted FEMs, its application in the space-time
domain [7, 60] is currently limited to implicit level set geometrical representations (in
which 4D geometrical treatment is attainable), 2D explicit representations (in which 3D

4.2. Space time unfitted finite element method 77

geometrical tools, e.g., in [17], can readily be used for space-time) or piecewise constant
approximations of the geometry in time [70]. This limitation stems from the complexity
involved in developing 4D geometrical tools for unfitted methods.

The present work introduces a novel variational space-time formulation for unfit-
ted FEMs that eliminates the need for complex 4D geometrical algorithms. Instead, our
formulation relies on time-extruded FE spaces. Furthermore, we incorporate an exact
inter-slab transfer mechanism through an intersection algorithm, which removes pro-
jection errors between time slabs. The main contributions of our work are as follows:

• We develop space-time formulations for unfitted FEMs on moving 3D geometries
described explicitly.

• We propose to pull back the problem to a reference configuration that is constant
in each time slab to avoid 4D geometrical algorithms.

• We propose and implement an exact time-slab mechanism transfer that relies on
3D intersection algorithms.

• We compute the solution of transient problems on complex unfitted domains
with large displacements.

The outline of this chapter is as follows. In Section 4.2, we introduce the geometry
description and the space-time FE spaces employed in this work. In Section 4.3, we
present the variational formulation through a model problem. We also define the inte-
gration measures and the inter-slab transfer mechanism. In Section 4.4, we describe the
intersection algorithm for time slab transfer. Then, in Section 4.5, we present numer-
ical results for space and time convergence, condition number tests, and a numerical
example of a moving domain. Finally, in Section 4.6, we present our conclusions and
future work.

4.2 Space time unfitted finite element method

In this section, we introduce the geometry description by utilizing a geometrical map
defined in a space-time FE space. We also define the unfitted space-time FE spaces that
are necessary to support our proposed formulation.

4.2.1 Geometry description for moving domains

Let us consider an initial Lipschitz domain Ω0 in a description suitable for unfitted
FEM. Following the methodology described in [17], we assume that Ω0 is represented
by a parameterized surface, e.g., a STL mesh or a CAD model. For simplicity, we
consider an oriented surface mesh B0

h where the interior corresponds to the domain
Ω0. Let [0, T] be the time interval of interest.

78 Chapter 4. Space-time unfitted FEM for moving explicit BREPs

We consider the coordinates of the mesh nodes of Bh to be time-depedendent. Con-
sequently, Bh(t) and its corresponding interior Ω(t). This variation of coordinates can
be represented by a map DDD : Bh(0)× [0, T]→ Bh(t) such that DDD(·, 0) is the identity.

Next, we define the space-time domain Q = {x ∈ Ω(t) : t ∈ [0, T]}, in accordance
with the nomenclature in [7], see Figure 4.1. Additionally, we partition the boundary
of the domain ∂Ω(t) into Dirichlet and Neumann boundaries, ∂ΩD(t) and ∂ΩN(t),
resp. This partition is such that ∂Ω(t) = ∂ΩD(t) ∪ ∂ΩN(t) and ∂ΩD(t) ∩ ∂ΩN(t) = ∅.
The space-time boundaries are defined as ∂Q∗

.
=
⋃

t∈[0,T] ∂Ω∗(t)× {t} for ∗ ∈ {N, D}.
Consequently, the boundary of Q is given by ∂Q .

= Ω(0) ∪Ω(T) ∪ ∂QD ∪ ∂QN .

Ω(t)

Ωart

Ω(0)

tn+1Qn
art

Q

Qart

Qn

∂Qn

Qn
art

Qn
art

tn

T̄ n

x

yt

y

x

Figure 4.1: Representation of the space-time domain Q embedded within an artifi-
cial space-time domain Qart. The spacial domains Ω(t) and Ωart in 2D are extruded
in the time dimension. The solution is computed in each time-slab Jn = (tn, tn+1)

on the space-time domain Qn, which is embedded in Qart.

In addition, we introduce an artificial spatial domain Ωart, such that Ω(t) ⊂ Ωart for
all t ∈ [0, T]. This artificial domain can be a simple geometric shape, such as a bounding
box, that can conveniently be meshed with a regular grid, such as a Cartesian mesh.
Subsequently, we define the artificial space-time domain Qart

.
= Ωart × [0, T], such that

Q ⊂ Qart.
We define a partition in time, {Jn}N

n=1 for [0, T], in which the time domain is divided
into time slabs. The time slabs are defined as Jn = (tn, tn+1), 1 < n < N where tn <

tn+1, ∀n ∈ 1, ..., N. Within each time slab, the time-step size is defined as τn = tn+1− tn

and the domain time-step size is defined as τ = maxn=1,...,N τn. In each time-slab, we
define an artificial space-time domain Qn

art
.
= Ωart × Jn. In a time slab, the space-time

domain is determined by Qn .
= Qn

art ∩Q. Similarly, the space-time boundary is denoted
as ∂Qn

{D,N}. We also introduce the notation Ωn .
= Ω(tn), n = 1, ..., N + 1.

Finally, we define an undeformed space-time domain at each time slab as Q̂n .
=

Ωn × Jn, see Figure 4.2. Here, we note that Ωn is the initial spatial domain of the time

4.2. Space time unfitted finite element method 79

slab Jn = (tn, tn+1). In order to define the reference configuration, we require a map
ϕϕϕn

h : Q̂n → Qn that must satisfy

ϕϕϕn
h(∂Ω(t)) = DDD(t)(B0

h),

i.e., respect the boundary position determined by DDD.

Q̂n Qn

Qn
art

ϕn
h

Qn
art

Figure 4.2: Representation of the deformation map ϕϕϕn
h resulting from extending

the variation of the surface map DDD in the time slab domain Qn (or in the time slab
artifical domain Qn

art). The undeformed configuration Q̂n will be used for the FE
analysis.

Let T̄ n
art represent a simple partition of Ωart at time tn. Even though Ωart does not

evolve in time, the partition T̄ n
art can differ across time slabs, e.g., when using AMR

techniques. We define the partition of Qn
art as a Cartesian product of T̄ n

art and Jn. Specif-
ically, T n

art
.
= {K̄ × Jn : K̄ ∈ T̄ n

art}. We can classify the spatial artificial cells K ∈ T̄ n
art

as interior, cut, and exterior depending on the relative position concerning the domain
boundary ∂Ωn. Since there is a one-to-one map between cells in T̄ n

art and T n
art, it al-

ready provides a classification of the cells in the space-time artificial mesh T n
art, which

corresponds to the in-out classification for the extruded space-time domain boundary
∂Q̂n.

In the context of unfitted FEM, we are interested in solving PDEs using the active
portion of T n

art, i.e., the cells touching Ωn at tn. Thus, we remove the exterior cells
T̄ n

out
.
= {K̄ ∈ T̄ n

art : K̄ ∩Ωn = ∅} from the artificial spatial partition T̄ n
art, leading to an

active spatial partition T̄ n .
= T̄ n

art \ T̄ n
out. From the spatial active partition, we compute

the active space-time partition T n .
= {K̄× Jn : K̄ ∈ T̄ n} by extrusion.

4.2.2 Space-time finite element spaces

In this section, we define space-time unfitted FE spaces for the discretization of the
model problem on moving domains. However, a main difference with respect to [7],
the original problem on Qn will be re-state in the undeformed domain Q̂n. As a result,
in this section, we only need a construction that works on time-extruded domains.
Thus, the active mesh T n is the one that intersects Ωn at tn, as defined above. We note
that T n may change across time slabs in evolving domains.

80 Chapter 4. Space-time unfitted FEM for moving explicit BREPs

Firstly, we define the FE space X n
h in the spatial domain. Then, for each DOF in Xh,

we introduce a 1D FE basis Yn
τ . Thus, we construct the space-time FE space composed

as the tensor product of these two spaces, Vn
h

.
= X n

h ⊗Yn
τ .

In each space-time cell Tn = T̄n× Jn ∈ T n, we can define the FE local interpolation,
which consists of tensor product DOFs Σ .

= ΣX ⊗ ΣY and shape functions Φ .
= ΦX ⊗

ΦY. Specifically, any shape function φ ∈ Φ can be expressed as φ(αX ,αY)(xxx, t) = φαX
X (xxx)⊗

φαY
Y (t).

To address the ill-conditioning issues in unfitted FEM, we will utilize as a model
example the AgFEM, even though the proposed numerical framework can readily be
used for other techniques, e.g., ghost penalty stabilization (see [7] for space-time unfit-
ted formulations). The AgFEM eliminates problematic DOFs by constraining them to
well-posed DOFs using a discrete extension operator E . We define the spatial extension
operator Ē : V̄h,in 7→ V̄h between the the spatial interior V̄h,in and active V̄h FE spaces .
The spatial aggregated finite element (AgFE) space is defined as V̄h,ag

.
= Ē(V̄h,in)

We define a slab-wise space-time discrete operator between Vn
h,in and Vn

h . In each
time slab, we aggregate the cut cells in the spatial active mesh T̄ n using the aggrega-
tion techniques from the AgFEM. For a given time slab Jn, the space-time extension
operator En : Vn

h,in 7→ Vn
h is defined as

En(Vn
h,in) = En(V̄n

h,in ⊗Yn
τ) = Ēn(V̄n

h,in)⊗Yn
τ ,

where Ēn : V̄n
h,in 7→ V̄n

h represents the spatial extension operator, and Yn
τ the FE

space in time at the time slab Jn. We define the space-time AgFE space on the time-slab.
Now, we can define the global AgFE space as Vh,ag

.
= V1

h,ag × · · · × VN
h,ag. Note that no

continuity is imposed across time slabs, i.e., the discrete time space is discontinuous.
In ghost penalty formulations, one can readily use the non-aggregated spaces on

the active mesh and add stabilization terms (see, e.g., [42]) to make the problem robust
with respect to cut locations. Thus, the space-time FE spaces to be used in this case is
simply Vn

h .

4.2.3 Extension of the deformation map

In the case in which the domain is represented in time by its explicit boundary repre-
sentation and its boundary displacement DDD(t), we must extend DDD(t) defined on B(t)
to the space-time domain Q̂n of each time slab Jn. For this purpose, we solve the fol-
lowing linear elasticity problem in Q̂n, even though other extension operators could be
considered. Find ûuu ∈ Rd such that,

∇̂x · σσσ(ûuu) = 0 in Q̂n,

ûuu = ûuun
D on ∂Q̂n

D,

ûuu = 0 on ∂Q̂n
D0

,

nx · σσσ(ûuu) = 0 on ∂Q̂n
N .

4.2. Space time unfitted finite element method 81

where σσσ is the stress tensor, ∇̂x is the spatial gradient, nx is the spatial component of
outward normal vector to ∂Q̂n, and

ûuun
D(t) = (DDD(t)−DDD(tn)) ◦ (DDD(tn))−1

is the Dirichlet boundary condition on ∂Q̂n
D = Bh(tn)× Jn, which imposes the defor-

mation near the unfitted boundary (see Figure 4.3). On the boundary of the artificial
domain and at the initial spatial domain, ∂Q̂n

D0
= ∂Ωart × Jn ∪Ωn × {tn}, the deforma-

tion is fixed to zero. The Neumann boundary is defined on ∂Q̂n
N = Ωn × {tn+1}.

D(tn)

D(tn+1)

tn+1t1 = 0 tn
ϕn

h(t
n+1)

Bh(0)

∂Ωn+1
I∂Ωn

I

Ω(0) Ωn Ω̃n+1

Figure 4.3: Representation of the deformation map DDD and the extended map ϕϕϕn
h

in the time slab Jn = (tn−1, tn). This example represents the external domain.
The spatial deformation map DDD(t) : Bh(0) 7→ Bh(t), t ∈ [0, T], is defined on the
surface mesh, and the extended map ϕϕϕn

h(t) : Ωn 7→ Ω̃(t), t ∈ Jn, is defined on the
spatial domain. At tn+1, the description of the inner boundary ∂Ωn+1

I may differ
across maps: ϕϕϕn

h(t
n+1)(∂Ωn

I) ≈ DDD(tn+1)(Bh(0)), where ∂Ωn
I = DDD(tn)(Bh(0)). The

approximation error decreases with the spatial discretization size h.

This problem is approximated with a continuous Galerkin (CG) method and weak
imposition of the Dirichlet boundary conditions on the unfitted boundary ∂Q̂D using
Nitsche’s method [88]. In the weak formulation, we find u ∈ Vn

h,ag such that,

a(ûuu, v̂vv) = l(v̂vv), ∀v̂vv ∈ Vn
h,ag

where the bilinear form and the linear form are defined as,

a(ûuu, v̂vv) =
∫

Q̂n
εεε(v̂vv) : σσσ(εεε(ûuu))dx̂xxdt +

∫
∂Q̂D

(τDv̂vv · ûuu− v · (nx · σσσ(εεε(ûuu)))) dx̂xxdt,

and
l(v̂vv) =

∫
∂Q̂D

(v̂vv · ûuuD − nx · σσσ(εεε(v̂vv)) · ûuuD) dx̂xxdt,

resp., where εεε is the symmetric (spatial) gradient operator.
From the approximated solution ûuun

h ∈ Vn
h,ag we extract the map ϕϕϕn

h(x̂xx, t) = x̂xx +

ûuun
h(x̂xx, t). One can alternatively use a ghost penalty stabilization to solve the elasticity

problem. Since the deformation is imposed weakly, the deformation ûuun
h is not equal

to ûuun
D on Bh(t). Thus, the deformed space-time domain Qn is approximated by Q̃n =

82 Chapter 4. Space-time unfitted FEM for moving explicit BREPs

ϕϕϕn
h(Q̂

n). In any case, the geometrical error is expected to decrease with the mesh size
h. For given time t ∈ Jn, we can extract the spatial map ϕϕϕn

h(t) : Ωn 7→ Ω̃(t) (see
Figure 4.3). Here, the spatial domain is also approximated, Ω(t) ≈ Ω̃(t).

We assume that the computed map is one-to-one, i.e., det(∇ϕϕϕn
h) > 0 at all times.

Assuming that DDD is such that it admits an extension that is diffeomorphic, this require-
ment can be attained for small enough time steps in the time-discrete problem. One
can also move back to the Cartesian mesh after several time steps, as soon as the map
remains bijective.

4.2.4 Extended active mesh

As discussed above, in the case in which the deformation map has to be computed, ϕϕϕn
h

is not equal to DDD on Bh(t), since unfitted methods usually make use of weak imposition
of boundary conditions.

At the end of the time slab Jn, we can define the solution in the approximated do-
main Q̃n as

un+1,−
h (xxx) = ûn

h(ϕϕϕ
n
h(t

n+1)−1(xxx), tn+1), ∀xxx ∈ Ω̃n+1,

which is a function defined on the undeformed domain Ωn; since we integrate the
forms on Q̂n, the inverse map is never computed in practice. On the other side, with
the method proposed below, we have to compute an inter-slab integral on Ωn+1 that
involves un+1,−

h .
In order for un+1,−

h to be defined on Ωn+1, we proceed as follows. First, we extend
the active mesh by T̄ n

ext = T̄ n ∪ {K ∈ T̄ n
art : ϕϕϕn(tn+1)(K) ∩Ωn+1 6= ∅}. Assuming that

the geometrical map is one-to-one, the inverse ϕϕϕn
h(t

n+1)−1 is well-defined on Ωn+1.
To accommodate a FE space V̄n

h,ext in T̄ n
ext, one can consider the modification of the

extension operator. In the AgFEM framework, we can simply redefine the extension
operator Ēn

ext : V̄n
h,in 7→ V̄n

h,ext. In non-aggregated methods like CutFEM, we can utilize
the same extension on the solution Ēn

ext(V̄n
h).

We note that the implementation of the extended triangulation and FE space can be
computed a posteriori, on demand, whenever it is needed. One can mark the additional
cells that are needed for the extension, and then extend the aggregates to these cells.

4.3 Variational formulation on a model problem

In this section, we establish the space-time variational formulation by employing a
model problem, specifically the heat equation. Although we use the heat equation for
demonstration purposes, it is essential to note that a similar approach can be applied
to other PDEs.

4.3. Variational formulation on a model problem 83

4.3.1 Weak formulation

In order to define the space-time variational formulation, we first define the convection-
diffusion equation in a space-time domain Q, as find u such that,

∂tu + (www ·∇x)u− µ∆xu = f in Q,

u = uD on ∂QD,

µnx ·∇xu = gN on ∂QN ,

u = u0 on Q(0).

(4.1)

where µ is the diffusion coefficient, www the advection velocity, f the source term, uD the
Dirichlet boundary condition, and gN boundary flux on ∂QN . ∇x and ∆x denote the
spatial gradient and spatial Laplacian, resp. Well-posedness requires that www · nx + nt ≥
0 on the Neumann boundary ∂QN . Here, n = (nx, nt) is the outward normal to ∂Q.

We discretize this problem with the AgFEM in space (or a ghost penalty stabiliza-
tion) and a DG method in time. We weakly impose the Dirichlet boundary conditions
using Nistche’s method [88]. Since the coupling between time slabs respects causality,
we analyze the problem on a single time slab, assuming we know the solution of the
previous one (see also [7]). To analyze each time slab Jn = (tn, tn−1), we define the
problem in the reference domain Q̂n = (ϕϕϕn

h)
−1(Q̃n) as: find û ∈ Vn

h,ag such that

Bn
h (û, v̂) = Ln

h(v̂), ∀v̂ ∈ Vn
h,ag,

with u = û ◦ (ϕϕϕn
h)
−1. The bilinear form reads as:

Bn
h (û, v̂) =

∫
Q̂n

v̂∂n
t û|JQ̃n |dx̂xxdt +

∫
Ωn

v̂(tn)û(tn)|JΩn |dx̂xx + ah(û, v̂),

ah(û, v̂) =
∫

Q̂n
(µ∇n

x û ·∇n
x v̂ + v̂(www ◦ ϕϕϕn

h ·∇
n
x)û) |JQ̃n |dx̂xxdt

+
∫

∂Q̂n
D

(βhv̂û− v̂ (nn
x · µ∇n

x û)− (nn
x · µ∇n

x v̂) û) |J∂Q̃n
D
|dx̂xxdt,

(4.2)

and the linear form reads as,

Ln
h(v̂) =

∫
Ωn

v̂(tn)ûn−1(tn)|JΩn |dx̂xx + lh(v̂),

lh(v̂) =
∫

Q̂n
v̂ (f ◦ ϕϕϕn

h) |JQ̃n |dx̂xxdt +
∫

∂Q̂n
N

v̂ (gN ◦ ϕϕϕn
h) |J∂Q̃n

N
|dx̂xxdt

+
∫

∂Q̂n
D

(βhv̂ (uD ◦ ϕϕϕn
h)− (nn

x · µ∇n
x v̂) (uD ◦ ϕϕϕn

h)) |J∂Q̃n
D
|dx̂xxdt,

(4.3)

Let us define the norms used in [7] to prove stability and convergence results, which
we will computed in the numerical experiments. In [7] the space-time accumulated DG

84 Chapter 4. Space-time unfitted FEM for moving explicit BREPs

norm of Vh,ag is defined as follows,

|||v|||2n,∗
.
= ‖vn(tn+1)‖2

L2(Ωn) +
n

∑
i=1
‖vi(ti)− vi−1(ti)‖2

L2(Ωi) + cµ

∫ tn+1

0
‖v‖2

V̄n(h)dt,

where cµ is the coercivity constant and V̄n(h) .
= V̄n

h,ag + H2(Ω(t)) is the norm of the FE
space at a time step t given by

|||v|||2V̄n(h)
.
= µ‖∇v‖2

L2(Ω(t)) + ∑
T̄∈T̄h,act

βT̄‖v‖2
L2(T̄∩∂ΩD(t))

+ ∑
T̄∈T̄ n

h,act

µh2
T̄‖v‖

2
H2(T̄∩Ω(t)).

The proof of this stability result follows the ideas in [7] in the case in which the
deformation map ϕϕϕn

h(t) is equal to DDD(t) on Γ(t). Otherwise, the analysis is more tech-
nical and would require to use ideas similar to the ones in [59, 70]. The analysis therein
assumes a constant deformation map and a level-set description of the domain. In our
case, the deformation map can be of higher-order (time-dependent) and the domain is
represented by its boundary. We will leave this analysis for future work.

In the variational form, the Dirichlet boundary conditions are imposed weakly with
the Nistche method, with a penalty term βh that depends on the spatial cell size h.
The initial value is also imposed weakly with DG in time, where the jump is given by
[û(tn) − ûn−1(tn)]. The evaluation of the solution of the previous time slab ûn−1(tn)

in Ωn requires special attention since it is computed using a different discretization.
Further discussion is provided in Section 4.3.2 and Section 4.4.

The derivatives are projections of the space-time gradient into space and time,
∂n

t = (∇n)t, and ∇n
x = (∇n)x, resp. They are obtained by transporting the space-time

gradient to the deformed domain ∇n = F−T∇̂, where F = ∇ϕϕϕn
h . The operators ()x

and ()t represent the projection to the space and time directions, resp. The boundary
normal is also transported to the deformed domain. It is computed as follows,

nn
x =

(
F−Tn∂Q̂n

‖F−Tn∂Q̂n‖

)
x

,

where n∂Q̂n is the normal vector in the undeformed space-time domain.
The integration measures to define the domain change are defined by the jacobians

of the deformed domain. The integration measure change of the space-time domain
Q̃n is given by JQn = J, where J = det(F). The initial boundary Jacobian is defined
as JΩn = det(Fx(tn)). In the given case JΩn = 1. Note that for small deformations,
where minΩ(J) ≈ 1, a simpler approach can be considered by assuming a deformed
initial state, e.g., Ωn = ϕϕϕn−1

h (tn)(Ωn−1). In this situation, the evaluation ûn−1
h (tn) does

not require the change of reference space described in Section 4.3.2. This approach is
equivalent to a time slab with more than one cell in time and continuous FE spaces in
time could be considered within this macro-cell.

4.3. Variational formulation on a model problem 85

The pullback of the area differential form to the reference domain is expressed as

da∂Q̃n = J
√

nT
∂Q̂n · C−1 · n∂Q̂n da∂Q̂n

where C = FTF (see, e.g., [28]).
The space-time gradients are transported to the deformed domain, ∇n = F−T∇̂.

The map gradient, F = ∇ϕϕϕn
h , contains the terms as follows:

F =

[
Fx 0

∂tϕϕϕ
n
h,x 1

]
=

[
Fx 0
wT 1

]
,

where Fx is the space gradient and wT = ∂tϕϕϕ
n
h,x the deformation velocity. Then, the

inverse gradient is given by

F−T =

[
F−1

x 0
−wTF−1

x 1

]
.

Then, by decomposing the space-time gradient into space and time derivatives, we
obtain [

∇n
x

∂n
t

]
= F−T

[
∇̂x

∂̂t

]
=

[
F−1

x ∇̂x

∂̂t −wTF−1
x ∇̂x

]
,

which already recovers the derivative terms used in ALE formulations.

4.3.2 Inter-slab integration

In the formulation (4.2)-(4.3), a DG method is used in time, where the initial value at
the time slab is imposed weakly through an inter-time slab jump [ûn(tn)− ûn−1(tn)].
However, integrating this jump is not straightforward, since ûn(tn) and ûn−1(tn) in
(4.3) are expressed in different discrete spaces (and meshes).

To address this evaluation, an intermediate unfitted discretization T̄ n
int is introduced.

T̄ n
int is a partition of Ωn that results of intersecting the embedded discretization T n

cut of
Ωn and T̄ n

− = ϕϕϕn−1
h (tn)(T̄ n−1), i.e., T̄ n

int results from intersecting T̄ n, T̄ n
− and Ωn−1.

Each cell Kint ∈ T̄ n
int has an injective map to Kn−1 ∈ T̄ n−1 and Kn ∈ T̄ n. A representa-

tion of T̄ n
int is depicted in Figure 4.4, and its construction is detailed in Section 4.4.

The integration of the jump in the time slab interface is performed in T̄ n
int. Thus, we

need to define the cell maps from T̄ n
int to T̄ n and T̄ n+1. For ûn−1(tn) we need a cell map

from K̂int ∈ T̄ n
int to K̂1 ∈ T̄ n such that

ψ− = (φK1)
−1 ◦

(
ϕϕϕn−1

)−1
◦ (φKint) ,

where φK1 maps from the reference space to the undeformed physical space of K1 ∈ T̄ n

and φKint maps from the reference space to the physical space of Kint, see Figure 4.5. In

86 Chapter 4. Space-time unfitted FEM for moving explicit BREPs

(a) ϕϕϕn−1
h (tn)(T̄ n−1) (b) T̄ n

int (c) T̄ n

Figure 4.4: Mesh sequence for solution transfer between time slabs. The solution
obtained in T̄ n−1 in (a) is then evaluated at T̄ n (c). Acting as a bridge, the inter-
sected mesh T̄ n

int = ϕϕϕn−1
h (tn)(T̄ n−1) ∩ T̄ n ∩Ωn in (b) facilitates the evaluation by

providing injective cell maps to both active meshes.

the case of ûn(tn) we need a cell map from K̂int ∈ T̄ n
int to K̂n ∈ T̄ n such that

ψ+ = (φK2)
−1 ◦ (φKint) .

where φK2 maps from the reference space to the physical space of K2 ∈ T̄ n. Now, we
can numerically integrate the jump by evaluating the following integral,

∑
Kint∈T̄int

∑̂
q

(
ûn(tn) ◦ ψ+ − ûn−1(tn) ◦ ψ−

)
(vn(tn) ◦ ψ+ (q̂))|JKint |wKint ,

where JKint , q̂ and wKint are the Jacobian, quadrature points and quadrature weights of
Kint, resp.

K̂

K̂int

K1 K2

ϕn−1(K1)

Kint

φK1

φK2

ϕn−1

x̂

ŷ

x

y

φKint

Figure 4.5: Representation of the cell maps used in the time slab interface integra-
tion. The maps φK1 and φK2 send the reference element K̂ to the physical space of
K1 ∈ T̄ n−1 and K2 ∈ T̄ n, resp. The map φKint sends the reference element K̂int to

the physical space of Kint ∈ T̄ n−1
int .

4.4. Intersection algorithm for time slab transfer 87

4.4 Intersection algorithm for time slab transfer

In this section, we will present one of the key novelties of this work. We will develop
the geometrical algorithms required in Section 4.3.2 to evaluate the inter-time-slab so-
lution. These algorithms are based on the methods presented in [17]. Specifically, we
compute a linear intersection T̄ n

int of T n, T̄ n
− = ϕϕϕn−1

h (tn)(T̄ n−1) and Ωn = int(Bh(tn)).
It is important to note that, to ensure the linearity of the intersections, we need to avoid
bilinear terms in ϕϕϕn−1

h using a Pk space, e.g., decomposing K ∈ T̄ n into simplices.
To simplify the exposition of the intersection algorithm Algorithm 18, we redefine

T = T̄ n, T− = T̄ n
− and B = Bh(tn). Within the cell loop of Algorithm 18, we first

consider the cells close to K ∈ T by restricting B and T− accordingly (line 3 and line 4).
These restriction queries are computed during a preprocessing stage before entering
the loop. Next, in line 5, we compute the intersection of K with the interior of B using
the algorithms in the loop-body of Algorithm 10 in [17].

These algorithms assume that B is a linear polytope, which is non-convex in gen-
eral. Thus, its domain interior int(B) is bounded by the set of planar faces of B. The
intersection K ∩ int(B) requires a convex decomposition of B and K before intersecting
the half-spaces defined by the planar faces (see [17]).

Finally, we intersect each polytope in T K
cut by the subset of T− around K (line 8).

These intersections are performed employing convex linear clipping algorithms [108]
described in Algorithm 2 in [17]. Alternatively, in line 10, we intersect the cells K ∈ T
within the domain int(B) bounded by B that are not intersected by the domain bound-
ary B. The information about the cells inside int(B) is obtained from the propagation
through the untouched cells (see [17]). The returned triangulation Tint not only covers
the cells cut cells intersected by the boundary B but the entire domain enclosed by B.
This process guarantees that each cell Kint ∈ Tint has an injective map to K ∈ T and
K− ∈ T−. The cells in Tint are general polytopes that cannot use standard quadrature
rules. In order to numerically integrate in these cells, one can perform a decomposition
of the cells into simplices. Alternatively, one can reduce the dimension of the integrals
with Stokes theorem and moment-fitting methods; see more details in [75] and refer-
ences therein.

We emphasize that the intersection algorithm is as robust as the core cut algorithm
in line 5. Furthermore, it is important to note that, for evaluation purposes, accurate
tolerance management is not required in the intersection process of line 8. While the
algorithm is described for the core cut algorithm with an exact embedded discretization
of explicit domain representation [7], Algorithm 18 is general enough to be used with
other unfitted discretizations.

88 Chapter 4. Space-time unfitted FEM for moving explicit BREPs

Algorithm 18 T ∩ T− ∩ int(B)
1: Tcut ← ∅, Tin ← ∅
2: for K ∈ T do
3: BK ← restrict(B, K)
4: T K

− ← restrict(T−, K)
5: T K

cut ← K ∩ int(BK)
6: for K− ∈ T K

− do
7: if K ∩ B 6= ∅ then
8: T K,K−

cut ← {Kcut ∩ K− : Kcut ∈ T K
cut}; Tcut ← Tcut ∪ T K,K−

cut
9: else if K ⊂ int(B) then

10: Tin ← Tin ∪ (K ∩ K−)
11: end if
12: end for
13: end for
14: return Tint ← Tcut ∩ Tin

4.5 Numerical experiments

4.5.1 Objectives

In the experiments of this section, we aim to demonstrate the effectiveness of the pre-
sented methods. In particular, we examine the following aspects within our formula-
tion:

• We evaluate the hp-convergence on both 2D and 3D spatial domains, compared
to the results and analysis in [7].

• We explore numerical stability concerning the cut location and the approximation
degrees.

• We assess the applicability of our formulation to complex 2D and 3D moving
domains derived from STL models.

It is important to note that these experiments focus on comparing our formulation
with the one presented in [7]. Recall that [7] uses space-time embedded discretizations
on implicit geometries determined by level sets, and the results are presented exclu-
sively in 2D+1D domains (as the geometrical algorithms for 3D+1D domains are sig-
nificantly more complex). In contrast, we design a space-time formulation that works
on explicit boundary representations and only require geometrical intersection algo-
rithms in space only, e.g., 2D and 3D vs. 3D and 4D in [7]. This is possible by pulling
back the problem into an extruded space-time domain using the formulation in Sect.
4.3.1.

4.5.2 Environment setup

The numerical experiments have been performed on Gadi, a high-end supercomputer
at the NCI (Australia) with 4962 nodes, 3074 of them powered by a 2 x 24 core Intel Xeon

4.5. Numerical experiments 89

Platinum 8274 (Cascade Lake) at 3.2 GHz and 192 GB RAM. The algorithms presented
in this work have been implemented in the Julia programming language [27]. The un-
fitted FE computations have been performed using the Julia FE library Gridap.jl [116]
version 0.17.17 and the extension package for unfitted methods GridapEmbedded.jl

version 0.8.1 [118]. STLCutters.jl version 0.1.6 [76] has been used to compute inter-
section computations on STL geometries. To mitigate excessive computational costs,
the condition numbers are computed in the 1-norm using cond() Julia function.

4.5.3 Space-time convergence tests

To demonstrate optimal convergence rates we solve a simple PDE with a manufactured
solution out of the FE space. Inspired by [7], we solve the Poisson equation (4.1) with
the following manufactured solution

u(x, t) = sin
(

παt
T

) D

∏
i=1

sin
(

πxi

Li

)
,

where {L1, ..., LD, T} are the cartesian dimensions of the space-time domain and the
time parameter is set to α = 0.5 for the experiments shown in Figure 4.6 and Figure 4.7.
Furthermore, in the equation (4.1) we set the diffusion term as µ = 1. The space domain
is a n-cube with a n-cubic hole in the center. The hole is described by the STL of a cube.
The lengths at the domain sides are L = 3 while the lengths of the hole sides are l = 1.
The time domain has size T = 1. The hole is linearly translated in the x direction. The
displacement map is described as DDD(x, t) = (0.2t, 0, 0). In all the cases, the domain
discretization is a regular Cartesian grid, with the same number of elements n in each
direction, both space and time.

For implementation reasons, the two-dimensional examples are computed with a
three-dimensional STL. Thus, we build a pseudo-two-dimensional domain that has
only one cell in the z direction. The space-time domain dimensions are {L, L, L

n , T}
while the number of elements in each direction is {n, n, 1, n}. The number of elements
per direction in convergence tests is n = 2i, i = 3, ..., 6 in two-dimensional runs, while
n = 2i, i = 3, ..., 5 for three-dimensional runs.

We analyze the condition number of the system to be inverted in each time-slab.
Since the system matrix is nonsymmetric, as suggested in [7], a preconditioner for DG
in time [102] can be considered. The effectiveness of this preconditioner depends on
the condition numbers the mass and stiffness matrices, which are defined as follows,

Mab =
∫

Q̂n
En(Φa)En(Φb)|JΩn |dx̂xxdt, Aab = ah

(
En(Φa), En(Φb)

)
.

The condition numbers presented in Figure 4.6(a) and Figure 4.6(b) are computed in
the initial time slab of the two-dimensional convergence experiments. We observe that
the condition number of the mass matrix remains nearly constant, while the condition

90 Chapter 4. Space-time unfitted FEM for moving explicit BREPs

number of the stiffness matrix scales with O(h−2). These observations align with the
behavior expected for AgFEM in space-time domains analyzed in [7].

Now, let us analyze the convergence of the error norms. In Figure 4.6, we can
observe the accumulated DG error norm convergence with coercivity constant cµ = 1.
We observe that using the AgFEM and constant h/τ the error converges with O(hr),
where the convergence rate r = min(p, q). Figure 4.7 shows the L2(Ωn) and H1(Ωn)

norms at the final time t = T. The convergence rate of L2(Ωn) norm is r = min(p, q)+ 1
while the convergence rate of H1(Ωn) norm is r = p. These results are in agreement
with the theoretical and analytical space-time AgFEM results in [19].

(a) Mass matrix (b) Stiffness matrix (c) 2D (d) 3D

Figure 4.6: Scaling of the condition numbers of the mass and stiffness matrices in
the initial time slab, (a) and (b). Convergence of the space-time DG norm error
(e = u− uh) in two and three-dimensional space domains (c) and (d). Here, p and

q represent the space and time approximation order, resp.

(a) 2D (b) 3D (c) 2D (d) 3D

Figure 4.7: Convergence of the L2(Ωn) and H1(Ωn) norms of the error (e = u− uh)
at the final time t = T in two and three-dimensional space domains. Here, p and q

represent the space and time approximation order, resp.

4.5. Numerical experiments 91

4.5.4 Moving domains examples

To demonstrate the applicability of the presented algorithms for the simulation of fluids
around moving boundaries, we solve the flow around two rotating geometries in 2D
and 3D. We solve the Stokes equations in both examples with a kinematic viscosity
ν = 10−2. Regardless of the dimension, we run similar setups. Both share the same
discretization order for pressure pp = 1, velocity pu = 2 and time q. We utilize the
AgFEM aggregating all cut cells.

We improve the accuracy of both meshes by clustering the cells around the geome-
try. See Figure 4.8 and Figure 4.9 for 2D and 3D, resp. We map each direction i ∈ 1, ..., d
of the Cartesian meshes as follows,

φi
M(x̂) =

x̂xxi
0

(
x̂i

x̂i
0

)α
if x̂i < x̂i

0,

1− (1− x̂i
0)
(

1−x̂i

1−x̂i
0

)α
otherwise.

(4.4)

Here, x̂i = xi − xi
0/Li is the reference axis of the direction xi where xi

o is the lower
value in the i direction, and Li is the i-length. In (4.4), we use x̂i

0 = 0.5 to determine the
region of element condensation and the exponential factor α < 1 for the smoothness of
the map.

Figure 4.8: Background spatial mesh T̄ bg around a prismatic gear B0 (geometry
id 71711 from Thingi10k [123]). This mesh is the simplex partition of a mapped
Cartesian mesh. The uniform elements are mapped in each direction with φM (4.4)
and an exponential factor α = 0.5. The Cartesian mesh has 80× 40 elements before
the simplex decomposition. The artificial domain Ωart is a box of size 4.8Lx ×

2.4Ly. Here, Lx and Ly represent the bounding box size of B0.

In the 2D example of Figure 4.8 and Figure 4.10, we set up the boundary conditions
of a viscous flow benchmark. We define a parabolic inlet flow in the x-direction,

u(xxx) = Umax(4x2 − 4x2
2),

where Umax = (1, 0, 0). We set zero velocity on the y-faces and zero z-velocity in the z-
faces, i.e., slipping conditions. We weakly impose the displacement velocity ∇ϕϕϕn with
Nistche’s method on the geometry B(t). See the description of the displacement DDD in
Figure 4.10.

92 Chapter 4. Space-time unfitted FEM for moving explicit BREPs

Figure 4.9: Background spatial mesh T̄ bg around a wing B0 (id 65604 in Thingi10k).
This simplex mesh comes from a mapped Cartesian mesh. The coordinates of the
mesh are mapped in the x and y directions with φM (4.4) and an exponential factor
α = 0.3. The Cartesian mesh has 20× 20× 8 elements. The artificial domain Ωart

is a box of size 4Lx × 4Ly × 0.8Lz. Here, Lx, Lz and Ly represent the bounding box
size of B0.

0.0 2.6

uh

(a) t = 0.0 (b) t = 0.5 (c) t = 1.0

Figure 4.10: Representation of the line integral convolution (LIC) filter of the vis-
cous flow simulation a evolving geometry in Figure 4.8. The time step size is
τ = 1/60. The geometry combines rotation and displacements. The initial geome-
try B0 is mapped by DDD(xxx, t) = xxx0 +R(t) · (xxx− xxx0) +Ax sin(ωxt), where R(t) is the
rotation matrix with angular velocity ω = π rad/s, xxx0 is the center of the mesh,
Ax = (0, 0.1) and ωx = π. The red tooth serves as a reference for visualizing the

rotation.

4.5. Numerical experiments 93

In the 3D experiment of Figure 4.9 and Figure 4.11, we utilize the same boundary
conditions as in the 2D experiment. However, we define a different inlet profile,

u(xxx) = Umax(4x2 − 4x2
2)(4x3 − 4x2

3),

that utilizes the 3D domain. The differences in the z-direction are clearly shown in
Figure 4.11. Equally, the z-faces have a slipping condition to hold the rotation of the
wing in the z-direction. The rotation is defined by the displacement DDD described in
Figure 4.11. We slightly optimize the number of time slab transfer operations in these
experiments. Above a deformation threshold, e.g., max(∇ϕϕϕn) < 0.8, we maintain the
spatial active mesh T̄ n between time slabs. In these cases, the initial value evaluation
does not require mesh intersections, reducing computational cost.

0.0 1.0

uh

(a) t = 0.0, ẑ = 0.5 (b) t = 0.1, ẑ = 0.5 (c) t = 0.2, ẑ = 0.5

(d) t = 0.0, ẑ = 0.75 (e) t = 0.1, ẑ = 0.75 (f) t = 0.2, ẑ = 0.75

(g) t = 0.0, ẑ = 1.0 (h) t = 0.1, ẑ = 1.0 (i) t = 0.2, ẑ = 1.0

Figure 4.11: LIC representation of the viscous flow around Figure 4.9. The matrix
representation shows several time slabs on different slices. Here, ẑ = (z− z0)/Lz
represents the relative position in z where z0 is the lower the z-coordinate and Lz
the z-length. The step size of the simulation is τ = 1/120. The wing geometry
is rotating with the map DDD(xxx, t) = xxx0 + Rθ(t)(xxx − xxx0), where xxx0 is the center of
the mesh and Rθ is the rotation matrix of the angle θ(t) = θmax sin(ωθt) over the
z-axis. Here, θmax = π/10 and ωθ = π. Note that the wing is not an extrusion of

an airfoil. The central section (ẑ = 0.5) has a flat trailing edge (see Figure 4.9).

94 Chapter 4. Space-time unfitted FEM for moving explicit BREPs

4.6 Conclusions and future work

In this work, we have introduced a novel space-time formulation for unfitted FEM
that can handle large displacements of moving domains. This formulation relies on
a space-only embedded discretization. Therefore, we eliminate the requirement for
four-dimensional geometric algorithms. We have achieved this through an intersection
mesh that allows us to integrate the time slab interface exactly.

We have validated this method through an hp-convergence analysis of a manufac-
tured solution using AgFEM. We have observed optimal convergence rates for two-
dimensional and three-dimensional space domains in these experiments. The conver-
gence has been validated by comparing it with another space-time analysis for unfitted
FEM [7]. Additionally, we have observed the expected scaling of the condition number
of the mass and stiffness matrices. Furthermore, we have demonstrated the practical
applications of this methodology to the simulation of incompressible flows around ro-
tating geometries in two examples, one with a two-dimensional geometry and another
with a three-dimensional geometry.

Future work involves the numerical analysis of the method in the case in which the
deformation maps do not much the boundary displacement by designing a high-order
extension of the work in [70] and the extension of this method to distributed memory
machines [16]. The geometrical component of this extension will be highly scalable,
given that the presented algorithms are defined cell-wise and thus embarrasingly par-
allel, as they are in [17]. Distributed computations combined with background mesh
refinement, e.g., using octree meshes, will allow us to solve larger real-world simula-
tions. Additional developments include applying this method to FSI simulations. This
extension will develop the full potential of the method in dynamic interface-coupling
multiphysics simulations.

Chapter 5

Distributed unfitted finite element
discretizations for explicit boundary
representations

Approximating partial differential equations for extensive industrial and scientific ap-
plications requires leveraging the power of modern high-performance computing. In
large-scale parallel computations, unfitted finite element methods offer an advanta-
geous solution for mesh partitioning compared to standard body-fitted formulations.
These methods do not necessitate unstructured body-fitted meshes. Nevertheless, their
application is constrained to implicit (level-set) geometrical representations. This chap-
ter presents an efficient parallel implementation for unfitted finite element methods for
explicit boundary representations. Such geometries can be generated using standard
computer-aided design tools. The proposed algorithms utilize a multilevel approach
to overlapping computations, effectively eliminating bottlenecks in large-scale compu-
tations. The numerical results demonstrate perfect weak scalability over 12,000 proces-
sors and one billion cells.

5.1 Introduction

Nowadays, computing power does not follow Moore’s Law, and a performance in-
crement of scientific simulations is only achievable through parallel algorithms on
distributed-memory machines. Large-scale parallel computations involve efficient com-
munications to exploit the power of current HPC resources. Many FE methods effi-
ciently approximate the solution of PDEs in parallel. The balancing domain decompo-
sition by constraints (BDDC) [12] and AMG [32] methods are popular solvers that have
demonstrated high parallel scalability.

Distributed-memory FE computations require body-fitted meshes and partitioning

95

96 Chapter 5. Distributed unfitted discretizations for explicit BREPs

them. In practical applications, generating unstructured body-fitted meshes over com-
plex geometries is challenging, especially in parallel. Additionally, the mesh parti-
tioning algorithms rely on graph partitioning techniques [65] that are inherently se-
rial. Thus, the mesh partitioning step can become the bottleneck, even a showstop-
per, of the simulation pipeline for parallel computations on distributed-memory ma-
chines. Furthermore, this framework is unsuitable for practical large-scale applications
on non-trivial domains in AMR since dynamic load-balancing has an unacceptable per-
formance overhead.

Unfitted (also known as embedded or immersed) FE methods [81] can overcome
the current limitations of body-fitted meshes. Instead, unfitted methods use a back-
ground mesh for the functional discretization and a geometrical discretization for in-
tegrating the interior of the domain Ω. This approach drastically reduces the mesh
constraints. An unfitted approach can use tree-based background meshes and exploit
scalable and dimension-agnostic mesh generators and partitioners [10, 20]. The gen-
eration and load-balancing of octree-meshes is efficient thanks to space-filling curve
techniques [6]; see, e.g., the highly scalable p4est framework [37] for handling forests
of octrees on hundreds of thousands of processors.

Unfitted discretizations may lead to unstable and severe ill-conditioned discrete
problems [43] unless a specific technique mitigates the problem. The size and aspect
ratio of the intersection of a background cell and the physical domain are not bounded.
Despite the vast literature on the topic, unfitted FE formulations that solve these is-
sues are quite recent. Stabilized formulations based on the so-called ghost penalty were
originally proposed in [33] for Lagrangian continuous FEs and has been widely used
since [34]. The so-called cell aggregation or cell agglomeration techniques are an alterna-
tive way to ensure robustness concerning cut location. This approach is very natural
in DG methods, as their formulation on agglomerated meshes is straighforward [84].
These techniques present extensions with C0 Lagrangian FE in [22] and mixed methods
in [14]; the method was coined AgFEM. These unfitted formulations enjoy good nu-
merical properties, such as condition number bounds, stability, optimal convergence,
and continuity concerning data. Distributed-memory implementations for large-scale
problems have been designed [117], and error-driven h-adaptivity and parallel tree-
based meshes have also been exploited [10].

Most of the unfitted FE methods utilize implicit geometry representations, e.g.,
level sets, which dramatically reduces their applications. In Chapter 2, we presented
an extension for explicit BREP. In Chapter 3, we extended this method to high order
BREPs, e.g., CAD models. Unlike level set methods, explicit geometry representations
require global operations to define the inside and outside domains, e.g., ray-tracing
and propagation techniques. These operations are not trivial to parallelize; they can
become a bottleneck in large-scale simulations.

This chapter presents a scalable algorithm to parallelize the generation of embed-
ded discretizations for explicit geometry representations. Apart from the definition of

5.2. Distributed unfitted finite element method 97

inside and outside, the intersection algorithms in Chapter 2 and Chapter 3 are embar-
rassingly parallel. We define a multilevel propagation algorithm that overlaps coarse
and fine computations to achieve perfect scalability. The presented algorithm, inspired
by the multilevel BDDC [32], has demonstrated weak scalability over 10k processors.

The outline of this chapter is as follows. In Section 5.2, we introduce the parallel
unfitted FE methods used in this chapter. In Section 5.3, we present the distributed
intersection algorithm. In Section 5.4, we expose the numerical results on stability.
Finally, in Section 5.5, we will summarize the main conclusions of this chapter.

5.2 Distributed unfitted finite element method

Let us consider a Lipschitz domain Ω ⊂ Rd, with d ∈ {2, 3} the number of spatial
dimensions. We describe the boundary of the domain ∂Ω with a parametric oriented
surface mesh B. We aim to solve a system of PDEs that can involve Dirichlet boundary
conditions on ΓD and Neumann boundary conditions on ΓN . ΓN and ΓD are a partition
of ∂Ω. The geometrical representation, e.g., CAD model, must respect this partition.
Therefore, we consider a partition of BD and BN a partition of B, such that represent
ΓN and ΓD repectively.

This work aims to define an efficient method for the parallel implementation of
unfitted FE discretizations generated from B. Unfitted discretizations utilize a back-
ground mesh T bg mesh instead of body-fitted meshes. This background mesh is an
arbitrary partition of an artificial domain Ωart such that Ωart ⊃ Ω (see Figure 5.1). Ωart

can be as simple as a bounding box. The T bg is a simpler partition than a body-fitted
mesh, e.g., a Cartesian grid or a refinement of a hexahedral mesh.

In distributed-memory computation, we subdivide the domain Ωart into S subdo-
mains Ωart

s , s = 1, . . . , S (see Figure 5.1). Subdomain partition of uniform Cartesian
meshes is straightforward. However, we can efficiently aggregate the subdomain cells
in adaptive meshes like octrees using space-filling curves [6]. In any case, serial graph
partition algorithms [65] are not necessary to partition background meshes.

The presented unfitted FE formulation accommodates different methods from the
literature, e.g., the extended FE method (XFEM) [26], the cutFEM cite[34], the AgFEM
[22], or the finite cell method [95]. Furthermore, the presented algorithm is agnostic to
the solver utilized for parallel unfitted FE methods, e.g., BDDC [20] or AMG [32].

To solve PDEs on the unfitted discretization, we need to classify the background
cells into interior, exterior, and cut, T ∗, ∗ ∈ {in, out, cut}, respectively (see Figure 5.1).
The functional discretization does not consider the exterior cells T out. Thus, we con-
sider the active mesh T .

= T bg \ T out for the FE discretization. The unfitted FE tech-
niques utilize standard FE spaces on T , V, to solve and test the weak form of the PDEs.

98 Chapter 5. Distributed unfitted discretizations for explicit BREPs

∈ T cut ∈ T out ∈ T in

Ωart

Ω

∂Ω

(a) (b)

Ωart
5 Ωart

6 Ωart
7 Ωart

8

Ωart
9 Ωart

10 Ωart
11 Ωart

12

Ωart
13 Ωart

14 Ωart
15 Ωart

16

Ωart
1 Ωart

2 Ωart
3 Ωart

4

(c)

Figure 5.1: Unfitted FE representation in a distributed-memory computation. In
(a), a surface mesh B represents the boundary of the domain ∂Ω. The domain
Ω is embedded in Ωart. The artificial domain Ωart is discretized in a Cartesian
background mesh T bg. In (b), We classify the cells in T bg interior, exterior, and
cut cells. For parallel computations, in (c), we divide Ωart in S subdomains Ωart

s ,
s = 1, . . . , S. The background mesh is partitioned accordingly. The partition into

subdomains coincides with the coarse mesh T coarse.

The unfitted problem reads as follows: find u ∈ V such that

a(u, v) = (f , v)Ωart , ∀v ∈ V,

where
a(u, v) =

∫
Ω

LΩ(u, v)dΩ +
∫

ΓD

LD(u, v)dΩ +
∫
F

Lsk(u, v)dΓ,

and
l(v) =

∫
Ω

FΩ(v)dΩ +
∫

ΓN

FN(v)dΓ +
∫

ΓD

FD(v)dΓ.

Here, we include the differential operator, the source term, and additional stabi-
lization terms within the bulk terms FΩ and LΩ. The integration of the operations FD

and LD on ΓD are related to the weak imposition of the Dirichlet boundary conditions,
commonly utilizing Nische’s method. The terms FN and FN integrated on ΓN impose
the Neumann boundary conditions. The skeleton F represents the interior faces of the
active mesh T . Integrating Lsk on F , we introduce additional penalty terms, e.g., ghost
penalty stabilization techniques or weak imposition of continuity in DG methods.

In FE methods, the integration of piecewise-wise polynomials relies on a cell-wise
decomposition of bulk and surface terms. In unfitted FE methods, the integration is
defined only in the domain’s interior. Bulk integration meshes T int .

= {K ∩Ω : K ∈
T } = T in ∪ T clip, where the clipped mesh reads as Tclip .

= {K ∩Ω : K ∈ T cut}. A cell-
wise geometrical algorithm, e.g., algorithms in Chapter 2 and Chapter 3, performs the
intersection of the cut cells K ∈ T cut. However, the definition of the interior cells K ∈
T in is not trivial in distributed memory computations. The propagation of inside cells

5.3. Distributed intersection algorithm 99

can become a bottleneck in large-scale computations. The integration of the surface
terms requires the intersection of the boundary with the background mesh Bint .

= {B ∩
K : K ∈ T cut}. Again, the algorithms described in previous chapters provide the
algorithms for these computations.

The parallel unfitted FE methods each background cell K ∈ T bg owns to a single
task s ∈ 1, ..., S (see Figure 5.1(c)). Therefore, one can define the above meshes in each
of the S tasks, e.g., T ∗s , ∗ ∈ {in, out, cut, bg, int}, Bs and Bint

s . In the proposed algo-
rithms, each coarse cell Kcoarse

s ∈ T coarse represents an artificial subdomain Ωart
s . The

distributed FE solvers also need to utilize ghost cells and DOFs. However, we do not
deal with ghost elements in this work, we focus on the geometrical side.

5.3 Distributed intersection algorithm

In this section, we define an algorithm that intersects the background distributed cells
K ∈ T bg and a physical domain Ω described by an oriented surface mesh B. First,
in Section 5.3.1, we expose the algorithms for the bulk intersections K ∩ Ω and the
boundary intersections K ∩ B. Then, in Section 5.3.2, we state a propagation method
for classifying non-intersected cells K ∩ ∂Ω = ∅. Finally, in Section 5.3.3, we describe
a global algorithm that overlaps classifications and intersections in a two-level dis-
tributed mesh.

5.3.1 Local intersection

The main complication of the unfitted FE methods resides in the integration of the cut
cells. For this purpose, we need to compute the intersections of the background cells
K ∈ T bg with the domain Ω. Each integration method relies on a different underlying
data structure to store the resulting intersection T clip. Generating a two-level simplex
mesh is an option, and building a mesh of general polytopes is another. Depending on
the parametriation of B, T clip can hold linear or nonlinear elements (see Chapter 2 and
Chapter 3, respectively).

Chapter 2 and Chapter 3 present algorithms to generate T clip, and also Bint. Both
linear and nonlinear algorithms rely on 3D polytopal clipping. However, this work
considers a different 2D intersection algorithm for demonstration purposes. This 2D
algorithm considers a mesh enrichment of each cell K ∈ T with the elements of the
surface mesh F ∈ B. After this enrichment, we have a two-level mesh that is cell-wise
conformal. The subcells can be classified as interior and interior through a depth-first
traversal algorithm based on edges (assuming the conformity within each cell). It is
important to note that extending this enrichment algorithm to 3D is not trivial. Insert-
ing 3D edges may introduce inaccuracies requiring a more complex development (see
[101]). We can consider other 2D algorithms, e.g., the 2D restriction of the algorithms
in Chapter 2.

100 Chapter 5. Distributed unfitted discretizations for explicit BREPs

5.3.2 Local classification

The definition of the non-intersected background cells K ∈ T bg \ T cut is a simple task
in serial computations. Taking advantage of the information given by the intersected
cells K ∈ T cut, a depth-first traversal propagation is an efficient choice. In contrast to
ray tracing algorithms [5], this method does not require floating point operations.

The algorithm utilizes nodal propagation of the relative positions, i.e., interior and
exterior. Nodal propagation is trivial in conformal meshes, e.g., Cartesian meshes.
However, we may need to propagate across the hanging nodes in non-conformal meshes,
e.g., octree meshes from p4est. It is worth noting that we do not need to consider the
hanging nodes in 2:1 k-balanced octrees, i.e., a maximum of one hanging node per edge.
The 2:1 k-balance constraint improves the parallelization and scalability of distributed
tree-based meshes (see [10]). In the 2:1 k-balance, a minimum of one true node connects
every two neighboring cells.

5.3.3 Global distributed algorithm

Each task in a distributed-memory environment computes local computations in a sub-
domain Ωart

s ⊂ Ωart. This subdomain is discretized with a local background mesh T bg
s

in each task. A single task can not contain the global mesh T bg in large-scale computa-
tions. One additional task contains a coarse background mesh T coarse. Each cell of this
coarse mesh Kcoarse

s ∈ T coarse represents a subdomain Ωart
s , thus Kcoarse

s and Ωart
s belong

to a single task s. This coarse mesh can be reused in the solver stage, e.g., in the BDDC
solver [32]. Similarly to BDDC, one can consider a multi-level coarse mesh to handle a
larger number of tasks. However, in this work, we consider a single coarse mesh (see
Figure 5.2).

The main advantage of using a two-level distributed algorithm is the reduction of
communications. The centralized communications go through the root processor that
contains the coarse mesh. The processors communicate with the root processor using
gather and scatter MPI commands. The processors can also communicate with the
nearest neighbors using send, recv, or sendrecv MPI commands. The nearest-neighbor
communications enforce the consistency in the elements near the interface between
subdomains. We perform the least number of nearest-neighbor communications to
maintain the scalability of the algorithm.

The algorithm Algorithm 19 performs the intersection of the background cells and
the inside propagation in a distributed-memory computation. We developed an effi-
cient and scalable algorithm by overlapping computations. Each MPI task runs the
algorithm. The fine tasks execute the code blocks within s 6= scoarse (see line 1, 12 and
20) and the coarse task runs the blocks in s = scoarse (see line 15). All the tasks execute
the code outside these conditions.

5.3. Distributed intersection algorithm 101

cut interior exterior undefined

(a) Fine (i) (b) Fine (ii) (c) Fine (iii) (d) Fine (iv)

(e) Coarse (i) (f) Coarse (ii) (g) Coarse (iii)

Figure 5.2: Representation of the two-level propagation algorithm. The domain
boundary ∂Ω intersects the fine (a) and coarse mesh (e). First, we intersect the
domain boundaries Ωart

s (b) to define the coarse cells Kcoarse
s ∈ T coarse (f). The

gather MPI command performs the fine to coarse communications. Then, we
propagate the coarse cells (g) while intersecting the rest of the fine subdomains
(c). Finally, after a coarse to fine communication (scatter), we define the cells in

the untouched subdomains (d).

102 Chapter 5. Distributed unfitted discretizations for explicit BREPs

Algorithm 19 distributed_intersection(T bg
s , Kcoarse

s , Ωs)

1: if s 6= scoarse then
2: T bnd

s ← {K ∈ Ts : K ∩ ∂Kcoarse
s 6= ∅}

3: T clip,bnd
s ← {K ∩Ωs : K ∈ T bnd

s , K ∩ ∂Ωs 6= ∅}
4: Ls ← location_map(T clip,bnd

s)
5: Ls ← propagate_location(T bnd

s ,Ls)
6: Ls ← sendrecv(Ls)
7: Lcoarse

s ← {(F,Ls(F (F))) : F ∈ Kcoarse
s }

8: end if
9: Lcoarse ← gather(Lcoarse

s)
10: if s 6= scoarse then
11: T bulk

s ← Ts \ T bnd
s

12: T clip
s ← T clip,bnd

s ∪ {K ∩Ωs : K ∈ T bulk
s , K ∩ ∂Ωs 6= ∅}

13: Ls ← location_map(T cut
s)

14: Ls ← propagate_location(T bg
s ,Ls)

15: else
16: T coarse ← Ts
17: Lcoarse ← propagate_location(T coarse,Lcoarse)
18: end if
19: Lcoarse

s ← scatter(Lcoarse)
20: if s 6= scoarse then
21: if T clip

s = ∅ then
22: Ls ← {(F,Lcoarse

s (Kcoarse
s)) : F ∈ Ts}

23: end if
24: T in

s ← {K ∈ T
bg

s : Ls(K) = in}
25: end if
26: return T in

s ∪ T
clip

s

5.4. Numerical experiments 103

The first part of the algorithm, line 2-3, performs the intersection and classifica-
tion of the cells near the boundary of each subdomain ∂Ωart

s (or ∂Kcoarse
s); see Fig-

ure 5.2(b). Here, we define the location map of the faces as L : F 7→ {in, out, cut} for
F ∈ faces(T). In line 4, we extract the location map from the clipped boundary mesh
T clip,bnd

s in a straightforward operation. The map Ls is indexed with the local faces
of T bg

s . Then, in line 5, we propagate the location Ls through the domain boundary
cells T bnd

s . The line 6 enforces consistency of the interface faces with nearest-neighbor
communications, e.g., sendrecv MPI command. At this point, the location of the sub-
domains is defined with minimum operations and communications. Thus, we build
a map for the location of the local coarse entities Lcoarse

s in line 7. For non-interested
subdomains, i.e., T clip

s = ∅, the location of the entire subdomain is set as undefined.
The coarse task collects the local locations of the coarse entities in line 9 with a gather

communication (see Figure 5.2(f)).
In the second part, we overlap the intersection of the rest of the fine cells (line 12)

and the classification of the coarse mesh (line 15). This overlapping is crucial to avoid
the idling of the main bunch of processors. The intersection of the bulk cells T bulk

s in
line 12 is analogous to the intersections of the boundary cells T bnd

s in line 2. Here,
we intersect and classify the entire subdomains. Classifying the coarse cells T coarse

in line 17 utilizes serial propagation algorithms. After this part, the coarse sends the
coarse location to each processor through the scatter command (line 19). Finally, we
define the local cells in the untouched domains (line 22). This algorithm returns a mesh
ready for integration T in ∪ T clip.

5.4 Numerical experiments

5.4.1 Experimental setup

The numerical experiments have been performed in the Marenostrum IV supercom-
puter at the Barcelona Supercomputing Center. The supercomputer has 3.456 nodes
with 2 Intel Xenon Platinum chips of 24 cores at 2.1 GHz. The experiment times are cal-
culated from the lowest of 20 runs to minimize the impact of external factors on CPU
timings. The implementation is done in FEMPAR [13], a parallel FE object-oriented
Fortran library that scales up to hundreds of thousands of processors. In FEMPAR, we
generate octree meshes with p4est library [37]. The parallelization is done with the
Intel MPI library available in Marenostrum IV.

5.4.2 Parallel scalability

In this section, we focus the results on the parallel performance, specifically on the
scalability of the algorithm. The geometry is a polygonal circle of 100 evenly spaced
points. This circle of radius R = 0.4 is embedded in a unit square artificial domain Ωart.
The background mesh T bg is built with p4est. Thus, the number of cells is a power of

104 Chapter 5. Distributed unfitted discretizations for explicit BREPs

4l where l is the number of uniform refinement levels. In the presented data points, we
execute a manufactured solution unfitted FE of the Poisson equation.

We perform strong scalability tests to estimate the local size in the weak scaling
tests. These tests are performed with a fixed number of cells, 1.048.576. As expected,
the strong scalability in Figure 5.3 is not optimal. We do not aim to design a strongly
scalable algorithm. The coarse task becomes more significant with the number of tasks,
and eventually, it will limit the task overlapping. In the Algorithm 19, T bulk

s ∩Ωs and
the propagation in the coarse mesh T coarse are overlapped. Larger loads in the coarse
propagation will force idling to the rest of the processors.

100 101 102 103

procs

10−5

10−4

10−3

10−2

10−1

100

Ti
m

e
[s

]

T bg ∩Ω
T bulk
s ∩Ωs

T bnd
s ∩Ωs

T coarse propagation
Ideal Scaling

Figure 5.3: Strong scaling of the creation of distributed embedded discretizations
with fixed background mesh T bg (1.048.576 cells). The figure shows the strong
scaling of the stages of the algorithm. The T bg ∩Ω represent entire Algorithm 19,
T bnd

s ∩ Ωs corresponds to line 1, T bulk
s ∩ Ωs executes line 12 and T coarse runs
line 17.

The algorithm is designed to be weakly scalable. Weak scaling is essential in large-
scale simulations. In the weak scaling tests, we increase the number of processors
P with the number of background cells N while keeping the local number of cells
N/P constant. Based on the strong scaling tests, we test the following local sizes
N/P = 4l/48 with l = 9, 10, 11, namely 5k, 22k, and 87k, respectively. In Figure 5.4,
we show perfect weak scalability for local problems of 22k and 87k cells. However, for
smaller local problems, e.g., 5k cells, the scalability is slightly reduced. The tests are
performed for P = 48 · 4m, m = 0, ..., 4 processors. Therefore, we have tested perfect
weak scalability up to 1,073,741,824 cells in 12,288 processors.

It is important to note that, in these tests, the intersection algorithm represents
around 5% of the simulation workflow. Even though the intersection stage may become
more significant in the more complex 3D geometries, the weight of the intersection step
only depends on the size of the local problem.

5.5. Conclusions and future work 105

48 192 768 3072 12288
procs

0.00

0.05

0.10

0.15

0.20

Ti
m

e
[s

]

N/P = 87k
N/P = 22k

(a)

48 192 768 3072 12288
procs

0.00

0.01

0.02

0.03

Ti
m

e
[s

]

N/P = 5k

(b)

Figure 5.4: Weak scaling of the creation of distributed embedded discretizations.
In (a), the algorithm presents perfect weak scalability for larger local loads, e.g.,

87k cells per processor. In (b), for smaller local loads, the scalability is reduced.

5.5 Conclusions and future work

In this chapter, we have presented a distributed extension of the algorithms of the doc-
ument in this thesis, exploiting the embarrassingly parallel implementations. This ex-
tension presents perfect weak scalability over ten thousand processors and 109 back-
ground cells. Such extension accelerates the pipeline from CAD models to FE simula-
tions of PDEs.

The presented results are a proof of concept of the distributed extension. The al-
gorithm is implemented in FEMPAR, an object-oriented Fortran code that handles
large-scale FE computations. Even though the tests are performed with a simple 2D
intersection algorithm in p4est background meshes, the propagation algorithms are
dimension-independent. Therefore, complex 3D intersections can readily utilize this
algorithm.

The future work involves implementing these algorithms in the Julia implementa-
tions, like STLCutters.jl with Gridap meshes. Such implementation will make use
of GridapDistributed.jl [15] utilities. The Gridap ecosystem also provides tools for
AMR, e.g., GridapP4est.jl [74]. The Julia implementations will exploit the potential of
the other chapters of this thesis, e.g., the space-time methods and the nonlinear geom-
etry representations. In general, the distributed extension will allow us to solve PDE in
more extensive problems with more complex geometries in an automated unfitted FE
pipeline.

Chapter 6

Conclusions and future work

6.1 Conclusions

This thesis has introduced innovative techniques to unlock the potential of unfitted FE
methods for the numerical approximation of PDEs in complex geometries represented
by CAD models. These techniques can be applied across a broad spectrum of physics
in science and engineering problems, e.g., FSI in civil engineering projects, additive
manufacturing simulations, and topology optimization. The state-of-the-art unfitted
tools fail to address the challenges of the geometries represented by CAD models. The
presented algorithms tackle these challenges with a scalable, accurate, and robust ap-
proach. Real-world applications often involve transient dynamics. In response, we
have formulated and analyzed a space-time framework to simulate evolving domains.
Parallel computing is of paramount importance to simulate practical applications. The
presented distributed algorithms facilitate efficiently exploiting the available HPC re-
sources.

In this section, we summarize the main conclusions. The conclusions of each chap-
ter are independent from each other since each they are self-contained.

In Chapter 2, we have designed a fully automated simulation pipeline for the nu-
merical approximation of PDEs on general domains described by a linear boundary
mesh, e.g., STL models. The algorithm utilizes a structured background mesh and an
unfitted FE formulation on this mesh. The presented algorithms successfully address
the intricate task of integrating the background cells intersected by the domain bound-
ary. These intersections become particularly challenging when dealing with complex
and non-convex geometries with many faces. A numerical analysis of this algorithm
has demonstrated accuracy and robustness on unfitted FE simulations, in particular
with the AgFEM [22]. Notably, the algorithm implementation has achieved success-
ful applications across all 3D analysis-suitable meshes in the Thingi10K database [123]
(almost 5,000 meshes). These computations exhibit scalability and are performed cell-
wise, thus, suitable for distributed memory machines. The algorithm implementation
is available as open source software [76].

In Chapter 3, we have extended the automated pipeline of Chapter 2 to high-order
geometries defined by CAD models. This high-order extension dramatically compli-
cates the geometry description and its intersections. The challenge of numerically

107

108 Chapter 6. Conclusions and future work

integrating over these domains involves handling trimming curves, nonlinear inter-
sections, and non-convex domains. The corresponding analysis has underscored ro-
bustness and optimal hp-convergence achieved in the tailored benchmarks. Moreover,
the methods have been successfully employed in simulating real-world geometries de-
fined by CAD models in STEP files. This compressive analysis positions these methods
as cutting-edge tools for simulating PDEs on high-order geometries with unfitted FE
methods.

In Chapter 4, we have introduced a novel space-time formulation for unfitted FEM
that can handle large displacements of moving domains. This formulation relies on
space-only embedded discretizations. Therefore, we circumvent the necessity for 4D
geometric algorithms. This achievement is realized by integrating the time slab in-
terface via an intersection mesh, allowing exact integration. The efficacy of this for-
mulation has been substantiated through a comparative assessment with an alterna-
tive space-time analysis employing unfitted FEM [7]. This validation underscores the
practical feasibility of implementing the method within real-world simulations. The
approach’s potential has been unveiled by successfully simulating two flow dynam-
ics examples around a rotating geometry, one featuring a 2D geometry and the other
involving a 3D geometry.

In Chapter 5, we have introduced a distributed extension of the algorithms ex-
pounded within this thesis. This extension leverages the cell-wise implementations
detailed in Chapter 2-4, which are embarrassingly parallel. The parallelization signif-
icantly accelerates the design pipeline proposed in this thesis. CAD to CAE simula-
tions substantial allocation of computational resources, particularly when addressing
complex geometries characterized by a high level of detail. The proposed parallel al-
gorithms effectively distribute the workloads and diminish potential bottlenecks, such
as the classification of the background cells. We have demonstrated optimal weak scal-
ability over ten thousand processors and 109 background cells. These tests were per-
formed upon p4est quadtree meshes in FEMPAR, an object-oriented Fortran code en-
gineered for managing large-scale parallel computations. These tests were not proven
on the concrete implementations of Chapter 2-4. However, the underlying algorithms
are agnostic to the mesh’s dimension and topology.

6.2 Future work

The novelties introduced within this thesis constitute a substantial step forward in the
field of unfitted FE methods. Despite their significance, these advancements are insuf-
ficient to replace the prevailing design workflows in numerous scientific and engineer-
ing applications. Our numerical framework still has several limitations that need to be
addressed to achieve a high level of competitiveness compared to manual pipelines. In
this section, we discuss the following lines of research to develop the latent potential
of the algorithms expounded herein.

6.2. Future work 109

• Formulate boundary layer problems on high-order unfitted methods

In flow dynamics, the simulation of the region near the boundary assumes paramount
importance. Unfitted methods fail to capture the boundary layer dynamics in
large Reynold numbers. The AMR techniques do not solve this problem effi-
ciently. In the context of body-fitted meshes, a prevalent strategy involves the
utilization of tailored boundary layer meshes. Future work explores the com-
bination of boundary layer meshes with unfitted FE methods. This approach
involves coupling separate discretizations as proposed in [119]. The boundary
layer discretizations should be extruded from high-order surfaces to provide an
accurate solution of the flow around complex geometries.

• Exploit parallel framework for large-scale simulations

The algorithms presented in Chapter 5 have demonstrated high scalability on
distributed memory machines. However, the integration and testing of these al-
gorithms with those detailed in Chapter 2-4 remain pending. Such integration is
key to utilizing the inherent potential for solving larger and more accurate prob-
lems. It is imperative to optimize the workflow to benefit from the available HPC
resources. The usage AMR, e.g., p4est grids [37], in space and time with proper
error estimator will dramatically reduce the number of DOFs and the computa-
tional cost of the simulations. The efficiency of distributed computations with
AMR requires proper load balancing. Furthermore, the optimization horizon ex-
tends to the enhancement of integration steps. The integration process can further
benefit from moment fitting techniques [40, 57].

• Test multiphysics capabilities of the framework

One of the main motivations of Chapter 4 and the entire thesis is providing tools
for efficiently simulating FSI problems. Even though direct validation through
multiphysics scenarios remains pending, the presented methods are general enough
for this purpose. The exigencies of practical FSI problems in complex domains
demand extensive computational resources. Therefore, the parallel extension
(Chapter 5) is a mandatory prerequisite before undertaking extensive FSI sim-
ulations. The proposed FSI framework will be able to handle large displacements
of the interface using unfitted FE methods. The utilization of space-time meth-
ods in Chapter 4 increases robustness compared to standard body-fitted ALE ap-
proaches. The simulation of FSI problems utilizing the methods presented in this
thesis will demonstrate their inherent potential.

Bibliography

[1] P. ANTOLIN, A. BUFFA, AND M. MARTINELLI, Isogeometric analysis on v-reps: First
results, Computer Methods in Applied Mechanics and Engineering, 355 (2019),
pp. 976–1002.

[2] P. ANTOLIN AND T. HIRSCHLER, Quadrature-free immersed isogeometric analysis,
Engineering with Computers, 38 (2022), pp. 4475–4499.

[3] P. ANTOLIN, X. WEI, AND A. BUFFA, Robust numerical integration on curved poly-
hedra based on folded decompositions, Computer Methods in Applied Mechanics
and Engineering, 395 (2022), p. 114948.

[4] D. N. ARNOLD, Finite Element Exterior Calculus, Society for Industrial and Ap-
plied Mathematics, Dec. 2018.

[5] J. ARVO AND D. KIRK, A survey of ray tracing in, in An Introduction to Ray Trac-
ing, Academic Press, Ltd., 1989, pp. 201–262.

[6] M. BADER, Space-Filling Curves: An Introduction With Applications in Scien-
tific Computing, Springer Science & Business Media, 2012. Google-Books-ID:
eIe_OdFP0WkC.

[7] S. BADIA, H. DILIP, AND F. VERDUGO, Space-time unfitted finite element methods
for time-dependent problems on moving domains, Computers & Mathematics with
Applications, 135 (2023), pp. 60–76.

[8] S. BADIA, J. DRONIOU, AND L. YEMM, Conditioning of a hybrid high-order scheme
on meshes with small faces, (2021).

[9] S. BADIA, J. HAMPTON, AND J. PRINCIPE, EMBEDDED MULTILEVEL MONTE
CARLO FOR UNCERTAINTY QUANTIFICATION IN RANDOM DOMAINS, In-
ternational Journal for Uncertainty Quantification, 11 (2021), pp. 119–142.

[10] S. BADIA, A. F. MARTÍN, E. NEIVA, AND F. VERDUGO, The aggregated unfitted fi-
nite element method on parallel tree-based adaptive meshes, SIAM Journal on Scientific
Computing, 43 (2021), pp. C203–C234.

[11] S. BADIA, A. F. MARTÍN, E. NEIVA, AND F. VERDUGO, The aggregated unfitted fi-
nite element method on parallel tree-based adaptive meshes, SIAM Journal on Scientific
Computing, 43 (2021), pp. C203–C234.

111

112 BIBLIOGRAPHY

[12] S. BADIA, A. F. MARTÍN, AND J. PRINCIPE, A highly scalable parallel implemen-
tation of balancing domain decomposition by constraints, SIAM Journal on Scientific
Computing, 36 (2014), pp. C190–C218.

[13] S. BADIA, A. F. MARTÍN, AND J. PRINCIPE, FEMPAR: An Object-Oriented Parallel
Finite Element Framework, Archives of Computational Methods in Engineering, 25
(2018), pp. 195–271.

[14] S. BADIA, A. F. MARTÍN, AND F. VERDUGO, Mixed aggregated finite element meth-
ods for the unfitted discretisation of the Stokes problem, SIAM Journal on Scientific
Computing, 40 (2018), pp. B1541–B1576.

[15] S. BADIA, A. F. MARTÍN, AND F. VERDUGO, GridapEmbedded. Version 0.2., Nov.
2021. Available at https://github.com/gridap/GridapDistributed.jl.

[16] S. BADIA, A. F. MARTÍN, AND F. VERDUGO, GridapDistributed: a massively parallel
finite element toolbox in julia, Journal of Open Source Software, 7 (2022), p. 4157.

[17] S. BADIA, P. A. MARTORELL, AND F. VERDUGO, Geometrical discretisations for un-
fitted finite elements on explicit boundary representations, Journal of Computational
Physics, 460 (2022), p. 111162.

[18] S. BADIA, E. NEIVA, AND F. VERDUGO, Linking ghost penalty and aggregated un-
fitted methods, Computer Methods in Applied Mechanics and Engineering, 388
(2022), p. 114232.

[19] S. BADIA, E. NEIVA, AND F. VERDUGO, Robust high-order unfitted finite elements
by interpolation-based discrete extension, Computers & Mathematics with Applica-
tions, 127 (2022), pp. 105–126.

[20] S. BADIA AND F. VERDUGO, Robust and scalable domain decomposition solvers for
unfitted finite element methods, Journal of Computational and Applied Mathemat-
ics, 344 (2018), pp. 740–759.

[21] S. BADIA AND F. VERDUGO, Gridap: An extensible Finite Element toolbox in Julia,
Journal of Open Source Software, 5 (2020), p. 2520.

[22] S. BADIA, F. VERDUGO, AND A. F. MARTÍN, The aggregated unfitted finite element
method for elliptic problems, Computer Methods in Applied Mechanics and Engi-
neering, 336 (2018), pp. 533–553.

[23] C. B. BARBER, D. P. DOBKIN, AND H. HUHDANPAA, The quickhull algorithm for
convex hulls, ACM Transactions on Mathematical Software, 22 (1996), pp. 469–
483.

[24] G. L. BEAU, S. RAY, S. ALIABADI, AND T. TEZDUYAR, SUPG finite element com-
putation of compressible flows with the entropy and conservation variables formulations,

https://github.com/gridap/GridapDistributed.jl

BIBLIOGRAPHY 113

Computer Methods in Applied Mechanics and Engineering, 104 (1993), pp. 397–
422.

[25] G. BEER, B. MARUSSIG, AND C. DUENSER, Simulation with trimmed models, in The
Isogeometric Boundary Element Method, Springer International Publishing, sep
2019, pp. 185–216.

[26] T. BELYTSCHKO, N. MOËS, S. USUI, AND C. PARIMI, Arbitrary discontinuities in
finite elements, International Journal for Numerical Methods in Engineering, 50
(2001), pp. 993–1013.

[27] J. BEZANSON, A. EDELMAN, S. KARPINSKI, AND V. B. SHAH, Julia: A fresh ap-
proach to numerical computing, SIAM Review, 59 (2017), pp. 65–98.

[28] J. BONET AND R. D. WOOD, Nonlinear continuum mechanics for finite element anal-
ysis, Cambridge university press, 1997.

[29] M. J. BORDEN, M. A. SCOTT, J. A. EVANS, AND T. J. R. HUGHES, Isogeomet-
ric finite element data structures based on bézier extraction of NURBS, International
Journal for Numerical Methods in Engineering, 87 (2010), pp. 15–47.

[30] C. F. BORGES AND T. PASTVA, Total least squares fitting of bézier and b-spline curves
to ordered data, Computer Aided Geometric Design, 19 (2002), pp. 275–289.

[31] A. BOWER, Continuum mechanics, elasticity. Brown Universit, School of Engineer-
ing, 2012. Available at https://www.brown.edu/Departments/Engineering/

Courses/En221/Notes/Elasticity/Elasticity.htm, Accessed: May, 2023.

[32] M. BREZINA AND P. S. VASSILEVSKI, Smoothed Aggregation Spectral Element Ag-
glomeration AMG: SA-ρAMGe, in Large-Scale Scientific Computing, I. Lirkov,
S. Margenov, and J. Waśniewski, eds., no. 7116 in Lecture Notes in Computer
Science, Springer Berlin Heidelberg, jun 2011, pp. 3–15.

[33] E. BURMAN, Ghost penalty, Comptes Rendus Mathematique, 348 (2010), pp. 1217–
1220.

[34] E. BURMAN, S. CLAUS, P. HANSBO, M. G. LARSON, AND A. MASSING, CutFEM:
Discretizing Geometry and Partial Differential Equations, International Journal for
Numerical Methods in Engineering, 104 (2015), pp. 472–501.

[35] E. BURMAN AND M. A. FERNÁNDEZ, An unfitted nitsche method for incompressible
fluid–structure interaction using overlapping meshes, Computer Methods in Applied
Mechanics and Engineering, 279 (2014), pp. 497–514.

[36] C. BURSTEDDE AND J. HOLKE, A tetrahedral space-filling curve for nonconforming
adaptive meshes, SIAM Journal on Scientific Computing, 38 (2016), pp. C471–C503.

https://www.brown.edu/Departments/Engineering/Courses/En221/Notes/Elasticity/Elasticity.htm
https://www.brown.edu/Departments/Engineering/Courses/En221/Notes/Elasticity/Elasticity.htm

114 BIBLIOGRAPHY

[37] C. BURSTEDDE, L. C. WILCOX, AND O. GHATTAS, p4est: Scalable algorithms for
parallel adaptive mesh refinement on forests of octrees, SIAM Journal on Scientific
Computing, 33 (2011), pp. 1103–1133.

[38] M. CARRATURO, J. JOMO, S. KOLLMANNSBERGER, A. REALI, F. AURICCHIO,
AND E. RANK, Modeling and experimental validation of an immersed thermo-
mechanical part-scale analysis for laser powder bed fusion processes, Additive Man-
ufacturing, 36 (2020), p. 101498.

[39] B. CHAZELLE, Convex partitions of polyhedra: A lower bound and worst-case optimal
algorithm, SIAM Journal on Computing, 13 (1984), pp. 488–507.

[40] E. B. CHIN AND N. SUKUMAR, An efficient method to integrate polynomials
over polytopes and curved solids, Computer Aided Geometric Design, 82 (2020),
p. 101914.

[41] S. DANISCH, MeshIO. Version 0.4., Apr. 2020. Available at https://github.com/
JuliaIO/MeshIO.jl.

[42] F. DE PRENTER, C. V. VERHOOSEL, E. H. VAN BRUMMELEN, M. G. LARSON,
AND S. BADIA, Stability and conditioning of immersed finite element methods: Anal-
ysis and remedies, Archives of Computational Methods in Engineering, 30 (2023),
p. 3617–3656.

[43] F. DE PRENTER, C. V. VERHOOSEL, G. J. VAN ZWIETEN, AND E. H. VAN BRUM-
MELEN, Condition number analysis and preconditioning of the finite cell method, Com-
puter Methods in Applied Mechanics and Engineering, 316 (2017), pp. 297–327.

[44] R. DEKKER, F. MEER, J. MALJAARS, AND L. SLUYS, A cohesive XFEM model for
simulating fatigue crack growth under mixed-mode loading and overloading, Interna-
tional Journal for Numerical Methods in Engineering, 118 (2019), pp. 561–577.

[45] J. DONEA, S. GIULIANI, AND J. HALLEUX, An arbitrary lagrangian-eulerian finite
element method for transient dynamic fluid-structure interactions, Computer Methods
in Applied Mechanics and Engineering, 33 (1982), pp. 689–723.

[46] L. ENGVALL AND J. A. EVANS, Isogeometric triangular bernstein–bézier discretiza-
tions: Automatic mesh generation and geometrically exact finite element analysis, Com-
puter Methods in Applied Mechanics and Engineering, 304 (2016), pp. 378–407.

[47] L. ENGVALL AND J. A. EVANS, Isogeometric unstructured tetrahedral and mixed-
element bernstein–bézier discretizations, Computer Methods in Applied Mechanics
and Engineering, 319 (2017), pp. 83–123.

[48] E. FEBRIANTO, M. ORTIZ, AND F. CIRAK, Mollified finite element approximants
of arbitrary order and smoothness, Computer Methods in Applied Mechanics and
Engineering, 373 (2021), p. 113513.

https://github.com/JuliaIO/MeshIO.jl
https://github.com/JuliaIO/MeshIO.jl

BIBLIOGRAPHY 115

[49] L. FORMAGGIA, F. GATTI, AND S. ZONCA, An XFEM/DG approach for fluid-
structure interaction problems with contact, Applications of Mathematics, 66 (2021),
pp. 183–211.

[50] T. FRIES, Higher-order conformal decomposition FEM (CDFEM), Computer Methods
in Applied Mechanics and Engineering, 328 (2018), pp. 75–98.

[51] T.-P. FRIES AND S. OMEROVIĆ, Higher-order accurate integration of implicit geome-
tries, International Journal for Numerical Methods in Engineering, 106 (2015),
pp. 323–371.

[52] T. P. FRIES, S. OMEROVIĆ, D. SCHÖLLHAMMER, AND J. STEIDL, Higher-order
meshing of implicit geometries—Part I: Integration and interpolation in cut elements,
Computer Methods in Applied Mechanics and Engineering, (2017).

[53] T. P. FRIES, S. OMEROVIĆ, D. SCHÖLLHAMMER, AND J. STEIDL, Higher-order
meshing of implicit geometries—Part I: Integration and interpolation in cut elements,
Computer Methods in Applied Mechanics and Engineering, 313 (2017), pp. 759–
784.

[54] C. GEUZAINE AND J.-F. REMACLE, Gmsh: A 3-d finite element mesh generator with
built-in pre- and post-processing facilities, International Journal for Numerical Meth-
ods in Engineering, 79 (2009), pp. 1309–1331.

[55] B. GIOVANARDI, L. FORMAGGIA, A. SCOTTI, AND P. ZUNINO, Unfitted FEM
for modelling the interaction of multiple fractures in a poroelastic medium, in Lecture
Notes in Computational Science and Engineering, Springer International Pub-
lishing, 2017, pp. 331–352.

[56] Grabcad, 2023. Available at https://grabcad.com/library/

connecting-rod-416, Accessed: May, 2023.

[57] D. GUNDERMAN, K. WEISS, AND J. A. EVANS, High-accuracy mesh-free quadrature
for trimmed parametric surfaces and volumes, Computer-Aided Design, 141 (2021),
p. 103093.

[58] P. HACHENBERGER, Exact minkowksi sums of polyhedra and exact and efficient de-
composition of polyhedra into convex pieces, Algorithmica, 55 (2008), pp. 329–345.

[59] F. HEIMANN AND C. LEHRENFELD, Geometrically higher order unfitted space-time
methods for pdes on moving domains: Geometry error analysis, arXiv, (2023).

[60] F. HEIMANN, C. LEHRENFELD, AND J. PREUSS, Geometrically higher order unfitted
space-time methods for pdes on moving domains, SIAM Journal on Scientific Com-
puting, 45 (2023), p. B139–B165.

https://grabcad.com/library/connecting-rod-416
https://grabcad.com/library/connecting-rod-416

116 BIBLIOGRAPHY

[61] J. HEISKALA, DirectQhull. Version 0.2.0., Dec. 2022. Available at https://github.
com/JuhaHeiskala/DirectQhull.jl.

[62] Y. HU, Q. ZHOU, X. GAO, A. JACOBSON, D. ZORIN, AND D. PANOZZO, Tetrahe-
dral meshing in the wild, ACM Transactions on Graphics, 37 (2018).

[63] T. J. R. HUGHES, J. A. COTTRELL, AND Y. BAZILEVS, Isogeometric analysis: CAD,
finite elements, NURBS, exact geometry and mesh refinement, Computer Methods in
Applied Mechanics and Engineering, 194 (2005), pp. 4135–4195.

[64] A. JOHANSSON, B. KEHLET, M. G. LARSON, AND A. LOGG, Multimesh finite
element methods: Solving PDEs on multiple intersecting meshes, Computer Methods
in Applied Mechanics and Engineering, 343 (2019), pp. 672–689.

[65] G. KARYPIS, A software package for partitioning unstructured graphs, partitioning
meshes, and computing fill-reducing orderings of sparse matrices. Version 5.1.0, tech.
rep., University of Minnesota, Department of Computer Science and Engineer-
ing, Minneapolis, MN, 2013. Available at http://glaros.dtc.umn.edu/gkhome/
fetch/sw/metis/manual.pdf.

[66] G. KARYPIS, K. SCHLOEGEL, AND V. KUMAR, ParMETIS: Parallel graph partition-
ing and sparse matrix ordering library, tech. rep., Department of Computer Science
and Engineering, University of Minnesota, 1997.

[67] V. KARYPIS, GEORGE; KUMAR, Metis: A software package for partitioning unstruc-
tured graphs, partitioning meshes, and computing fill-reducing orderings of sparse ma-
trices, tech. rep., University of Minnesota, Department of Computer Science and
Engineering, 1997. Available at https://hdl.handle.net/11299/215346.

[68] J. KLOSOWSKI, M. HELD, J. MITCHELL, H. SOWIZRAL, AND K. ZIKAN, Efficient
collision detection using bounding volume hierarchies of k-DOPs, IEEE Transactions
on Visualization and Computer Graphics, 4 (1998), pp. 21–36.

[69] G. LEGRAIN AND N. MOËS, Adaptive anisotropic integration scheme for high-order
fictitious domain methods: Application to thin structures, International Journal for
Numerical Methods in Engineering, 114 (2018), pp. 882–904.

[70] C. LEHRENFELD AND M. OLSHANSKII, An eulerian finite element method for pdes in
time-dependent domains, ESAIM: Mathematical Modelling and Numerical Analy-
sis, 53 (2019), p. 585–614.

[71] X. LI AND F. CHEN, Exact and approximate representations of trimmed surfaces
with NURBS and bézier surfaces, in 2009 11th IEEE International Conference on
Computer-Aided Design and Computer Graphics, IEEE, aug 2009.

https://github.com/JuhaHeiskala/DirectQhull.jl
https://github.com/JuhaHeiskala/DirectQhull.jl
http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/manual.pdf
http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/manual.pdf
https://hdl.handle.net/11299/215346

BIBLIOGRAPHY 117

[72] J. LÓPEZ, J. HERNÁNDEZ, P. GÓMEZ, AND F. FAURA, VOFTools - a software pack-
age of calculation tools for volume of fluid methods using general convex grids, Com-
puter Physics Communications, 223 (2018), pp. 45–54.

[73] J. LÓPEZ, J. HERNÁNDEZ, P. GÓMEZ, AND F. FAURA, Non-convex analytical and
geometrical tools for volume truncation, initialization and conservation enforcement in
VOF methods, Journal of Computational Physics, 392 (2019), pp. 666–693.

[74] A. F. MARTÍN, GridapP4est. Version 0.2., Feb. 2023. Available at https://github.
com/gridap/GridapP4est.jl.

[75] P. A. MARTORELL AND S. BADIA, High order unfitted finite element discretizations
for explicit boundary representations, arXiv preprint arXiv:2311.14363, (2023).

[76] P. A. MARTORELL, S. BADIA, AND F. VERDUGO, STLCutters, Zenodo, (2021).

[77] B. MARUSSIG AND T. J. R. HUGHES, A review of trimming in isogeometric anal-
ysis: Challenges, data exchange and simulation aspects, Archives of Computational
Methods in Engineering, 25 (2017), pp. 1059–1127.

[78] F. MASSARWI, P. ANTOLIN, AND G. ELBER, Volumetric untrimming: Precise de-
composition of trimmed trivariates into tensor products, Computer Aided Geometric
Design, 71 (2019), pp. 1–15.

[79] F. MASSARWI, B. VAN SOSIN, AND G. ELBER, Untrimming: Precise conversion
of trimmed-surfaces to tensor-product surfaces, Computers & Graphics, 70 (2018),
pp. 80–91.

[80] A. MASSING, M. G. LARSON, AND A. LOGG, Efficient implementation of finite el-
ement methods on nonmatching and overlapping meshes in three dimensions, SIAM
Journal on Scientific Computing, 35 (2013), pp. C23–C47.

[81] R. MITTAL AND G. IACCARINO, Immersed Boundary Methods, Annual Review of
Fluid Mechanics, 37 (2005), pp. 239–261.

[82] B. MOURRAIN AND J. PAVONE, Subdivision methods for solving polynomial equa-
tions, Journal of Symbolic Computation, 44 (2009), pp. 292–306.

[83] B. MOURRAIN, F. ROUILLIER, AND M.-F. ROY, Bernstein’s basis and real root isola-
tion, Research Report RR-5149, INRIA, 2004.

[84] B. MÜLLER, S. KRÄMER-EIS, F. KUMMER, AND M. OBERLACK, A high-order dis-
continuous Galerkin method for compressible flows with immersed boundaries, Interna-
tional Journal for Numerical Methods in Engineering, 110 (2017), pp. 3–30.

[85] E. NEIVA AND S. BADIA, Robust and scalable h-adaptive aggregated unfitted finite
elements for interface elliptic problems, Computer Methods in Applied Mechanics
and Engineering, 380 (2021), p. 113769.

https://github.com/gridap/GridapP4est.jl
https://github.com/gridap/GridapP4est.jl

118 BIBLIOGRAPHY

[86] E. NEIVA, S. BADIA, A. F. MARTÍN, AND M. CHIUMENTI, A scalable parallel fi-
nite element framework for growing geometries. application to metal additive manufac-
turing, International Journal for Numerical Methods in Engineering, 119 (2019),
pp. 1098–1125.

[87] E. NEIVA, M. CHIUMENTI, M. CERVERA, E. SALSI, G. PISCOPO, S. BADIA, A. F.
MARTÍN, Z. CHEN, C. LEE, AND C. DAVIES, Numerical modelling of heat transfer
and experimental validation in powder-bed fusion with the virtual domain approxima-
tion, Finite Elements in Analysis and Design, 168 (2020), p. 103343.

[88] J. NITSCHE, Über ein variationsprinzip zur lösung von dirichlet-problemen bei verwen-
dung von teilräumen, die keinen randbedingungen unterworfen sind, Abhandlungen
aus dem Mathematischen Seminar der Universität Hamburg, 36 (1971), p. 9–15.

[89] F. NOBILE AND L. FORMAGGIA, A stability analysis for the arbitrary lagrangian eule-
rian formulation with finite elements, East-West Journal of Numerical Mathematics,
7 (1999), pp. 105–132.

[90] Open cascade technology, 2022. Available at https://dev.opencascade.org/, Ac-
cessed: Jan, 2023.

[91] Y. PARK, S.-H. SON, M.-S. KIM, AND G. ELBER, Surface–surface-intersection com-
putation using a bounding volume hierarchy with osculating toroidal patches in the leaf
nodes, Computer-Aided Design, 127 (2020), p. 102866.

[92] N. M. PATRIKALAKIS AND T. MAEKAWA, Shape interrogation for computer aided
design and manufacturing, Springer Berlin Heidelberg, 2010.

[93] D. POWELL AND T. ABEL, An exact general remeshing scheme applied to physically
conservative voxelization, Journal of Computational Physics, 297 (2015), pp. 340–
356.

[94] M. REUTER, T. S. MIKKELSEN, E. C. SHERBROOKE, T. MAEKAWA, AND N. M.
PATRIKALAKIS, Solving nonlinear polynomial systems in the barycentric bernstein ba-
sis, The Visual Computer, 24 (2007), pp. 187–200.

[95] D. SCHILLINGER AND M. RUESS, The Finite Cell Method: A review in the context of
higher-order structural analysis of CAD and image-based geometric models, Archives
of Computational Methods in Engineering, 22 (2015), pp. 391–455.

[96] D. SCHILLINGER, P. K. RUTHALA, AND L. H. NGUYEN, Lagrange extraction and
projection for NURBS basis functions: A direct link between isogeometric and standard
nodal finite element formulations, International Journal for Numerical Methods in
Engineering, 108 (2016), pp. 515–534.

https://dev.opencascade.org/

BIBLIOGRAPHY 119

[97] R. SCHMIDT, R. WÜCHNER, AND K.-U. BLETZINGER, Isogeometric analysis of
trimmed NURBS geometries, Computer Methods in Applied Mechanics and En-
gineering, 241-244 (2012), pp. 93–111.

[98] F. SCHOLZ AND B. JÜTTLER, Numerical integration on trimmed three-dimensional
domains with implicitly defined trimming surfaces, Computer Methods in Applied
Mechanics and Engineering, 357 (2019), p. 112577.

[99] B. SCHOTT, C. AGER, AND W. A. WALL, Monolithic cut finite element–based ap-
proaches for fluid-structure interaction, International Journal for Numerical Meth-
ods in Engineering, 119 (2019), pp. 757–796.

[100] J. SHEN, L. BUSÉ, P. ALLIEZ, AND N. DODGSON, A line/trimmed NURBS sur-
face intersection algorithm using matrix representations, Computer Aided Geometric
Design, 48 (2016), pp. 1–16.

[101] H. SI, TetGen, a delaunay-based quality tetrahedral mesh generator, ACM Transactions
on Mathematical Software, 41 (2015), pp. 1–36.

[102] I. SMEARS, Robust and efficient preconditioners for the discontinuous galerkin time-
stepping method, IMA Journal of Numerical Analysis, (2016), pp. 1961–1985.

[103] T. SORGENTE, S. BIASOTTI, AND M. SPAGNUOLO, A geometric approach for com-
puting the kernel of a polyhedron, Smart Tools and Apps for Graphics - Eurographics
Italian Chapter Conference, (2021).

[104] J. STANFORD AND T. FRIES, A higher-order conformal decomposition finite element
method for plane b-rep geometries, Computers & Structures, 214 (2019), pp. 15–27.

[105] J. W. STANFORD AND T. P. FRIES, Higher-order accurate meshing of nonsmooth im-
plicitly defined surfaces and intersection curves, Computational Mathematics and
Mathematical Physics, 59 (2019), pp. 2093–2107.

[106] M. B. STEPHENSON AND H. N. CHRISTIANSEN, A polyhedron clipping and cap-
ping algorithm and a display system for three dimensional finite element models, ACM
SIGGRAPH Computer Graphics, 9 (1975), pp. 1–16.

[107] Y. SUDHAKAR, J. P. MOITINHO DE ALMEIDA, W. A. WALL, J. P. DE ALMEIDA,
AND W. A. WALL, An accurate, robust, and easy-to-implement method for integra-
tion over arbitrary polyhedra: Application to embedded interface methods, Journal of
Computational Physics, 273 (2014), pp. 393–415.

[108] K. SUGIHARA, A Robust and Consistent Algorithm for Intersecting Convex Polyhedra,
Computer Graphics Forum, 13 (1994), pp. 45–54.

[109] I. E. SUTHERLAND AND G. W. HODGMAN, Reentrant polygon clipping, Commu-
nications of the ACM, 17 (1974), pp. 32–42.

120 BIBLIOGRAPHY

[110] M. TAREK, Preconditioners. Version 0.3., Oct. 2019. Available at https://github.
com/mohamed82008/Preconditioners.jl.

[111] T. E. TEZDUYAR, S. SATHE, R. KEEDY, AND K. STEIN, Space–time finite element
techniques for computation of fluid–structure interactions, Computer Methods in Ap-
plied Mechanics and Engineering, 195 (2006), pp. 2002–2027.

[112] THE CGAL PROJECT, CGAL User and Reference Manual, CGAL Editorial Board,
5.3 ed., 2021.

[113] D. THOMAS, M. SCOTT, J. EVANS, K. TEW, AND E. EVANS, Bézier projection: A
unified approach for local projection and quadrature-free refinement and coarsening of
NURBS and t-splines with particular application to isogeometric design and analysis,
Computer Methods in Applied Mechanics and Engineering, 284 (2015), pp. 55–
105.

[114] L. L. THOMPSON AND P. M. PINSKY, A space-time finite element method for struc-
tural acoustics in infinite domains part 1: Formulation, stability and convergence, Com-
puter Methods in Applied Mechanics and Engineering, 132 (1996), pp. 195–227.

[115] F. VERDUGO, GridapGmsh. Version 0.6.1., July 2022. Available at https://github.
com/gridap/GridapGmsh.jl.

[116] F. VERDUGO AND S. BADIA, The software design of gridap: A finite element package
based on the julia JIT compiler, Computer Physics Communications, 276 (2022),
p. 108341.

[117] F. VERDUGO, A. F. MARTÍN, AND S. BADIA, Distributed-memory parallelization of
the aggregated unfitted finite element method, Computer Methods in Applied Me-
chanics and Engineering, 357 (2019), p. 112583.

[118] F. VERDUGO, E. NEIVA, AND S. BADIA, GridapEmbedded. Version 0.7., Oct. 2021.
Available at https://github.com/gridap/GridapEmbedded.jl.

[119] X. WEI, B. MARUSSIG, P. ANTOLIN, AND A. BUFFA, Immersed boundary-conformal
isogeometric method for linear elliptic problems, Computational Mechanics, 68 (2021),
pp. 1385–1405.

[120] S. XIA AND X. QIAN, Isogeometric analysis with bézier tetrahedra, Computer Meth-
ods in Applied Mechanics and Engineering, 316 (2017), pp. 782–816.

[121] S. XIA AND X. QIAN, Generating high-quality high-order parameterization for isoge-
ometric analysis on triangulations, Computer Methods in Applied Mechanics and
Engineering, 338 (2018), pp. 1–26.

[122] X. XIAO, M. SABIN, AND F. CIRAK, Interrogation of spline surfaces with application
to isogeometric design and analysis of lattice-skin structures, Computer Methods in
Applied Mechanics and Engineering, 351 (2019), pp. 928–950.

https://github.com/mohamed82008/Preconditioners.jl
https://github.com/mohamed82008/Preconditioners.jl
https://github.com/gridap/GridapGmsh.jl
https://github.com/gridap/GridapGmsh.jl
https://github.com/gridap/GridapEmbedded.jl

BIBLIOGRAPHY 121

[123] Q. ZHOU AND A. JACOBSON, Thingi10K: A Dataset of 10,000 3D-Printing Models,
arXiv preprint arXiv:1605.04797, (2016).

[124] G. M. ZIEGLER, Lectures on Polytopes, Springer New York, 1995.

	Abstract
	Resum
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Thesis objectives
	Document structure
	Research publications
	Conference talks
	Research stays

	Unfitted discretizations for linear explicit BREPs
	Introduction
	Unfitted finite element discretisations
	Intersection algorithms
	Polyhedra and polygonal surface representations
	Half-space representations
	Clipping a polyhedron with a plane
	Intersecting a polyhedron with a surface
	Robust computation of signed distances
	Global intersection algorithm

	Numerical experiments
	Objectives
	Experimental setup
	Batch processing the STL models of the Thingi10K data-set
	Robustness test
	Finite Element convergence test

	Conclusions and future work

	High-order unfitted discretizations for explicit BREPs
	Introduction
	Unfitted finite element method
	Unfitted finite element formulations
	Geometrical ingredients for unfitted finite elements
	Integration methods for cut cells

	Intersection algorithm
	Intersection points
	Curve-plane intersection
	Surface-line intersection
	Critical points of the zero isosurface of a distance function

	Nonlinear trimming surface
	Connection algorithm
	Surface partition
	Surface parametrization
	Cell intersection
	Global algorithm

	Numerical experiments
	Experimental setup
	Approximation and parametrization analysis
	Robustness experiments
	Unfitted FE experiments

	Conclusions and future work

	Space-time unfitted FEM for moving explicit BREPs
	Introduction
	Space time unfitted finite element method
	Geometry description for moving domains
	Space-time finite element spaces
	Extension of the deformation map
	Extended active mesh

	Variational formulation on a model problem
	Weak formulation
	Inter-slab integration

	Intersection algorithm for time slab transfer
	Numerical experiments
	Objectives
	Environment setup
	Space-time convergence tests
	Moving domains examples

	Conclusions and future work

	Distributed unfitted discretizations for explicit BREPs
	Introduction
	Distributed unfitted finite element method
	Distributed intersection algorithm
	Local intersection
	Local classification
	Global distributed algorithm

	Numerical experiments
	Experimental setup
	Parallel scalability

	Conclusions and future work

	Conclusions and future work
	Conclusions
	Future work

	Bibliography

