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A B S T R A C T

This thesis aims to investigate the efficacy and applicability of Wireless
Backhaul Network (WBN) in two divergent contexts: ultra-dense urban
networks for 5G and connectivity solutions for rural or digitally divided
areas. WBN offer an adaptable and resilient framework for data transmis-
sion, making them an attractive option for the next generation of wireless
networks, particularly 5G. In dense urban settings, where the demand
for high data rates is pressing, wireless mesh backhauls can serve as a
strategic asset in achieving the promised data throughput for 5G networks.
These networks inherently require a dense deployment of nodes to deliver
on their promise of high-speed, low-latency communication. Therefore,
we analyze the role that wireless mesh backhauls can play in such densely
populated areas, emphasizing their potential to meet or even exceed 5G’s
high data rate expectations.

Conversely, in rural or digitally divided areas, the economic feasibility
of deploying traditional last-mile copper or fiber-optic networks often
proves to be prohibitive. In such cases, WBN, deployed either as Wireless
Community Network (WCN) or as part of a Wireless Internet Service
Provider (WISP)’s infrastructure, can offer a viable alternative. This tech-
nology could bridge the digital divide by providing robust, cost-effective
internet connectivity to underserved regions.

To substantiate my findings, I leveraged Geographic Information Sys-
tems (GIS) technology and GPU-based computational methods together
with graph analysis and simulations. GIS technology, leveraging different
open datasets such as Digital Surface Models (DSM) and vectorial maps,
make a detailed understanding of the geographical landscape possible,
crucial for building detailed feasibility models in various environments.
GPU-based computational methods accelerate the model analysis, en-
abling an in-depth evaluation within a reasonable timeframe. As a result I
was able to optimize various network aspects, such as node placement,
network topology and energy consumption, which are critical parameters
for the effective deployment of these networks.

This work integrates these computational methods and technologies
to offer a comprehensive view of how wireless mesh backhauls can be
efficiently deployed in both urban and rural settings. The results offer
valuable insights into the network architecture best suited for each context,
with particular attention to scalability and resiliency. In summary, this
thesis contributes to a broader understanding of the potential that wireless
mesh backhauls hold in addressing the connectivity requirements of di-
verse settings, ranging from the ultra-dense urban environment required
for 5G to the unique challenges posed by rural and digitally divided
regions.
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1 I N T R O D U C T I O N

Over the past decade, the increasing demand for wireless communication
bandwidth has driven the shift towards higher frequency bands, primarily
due to the exhaustion of the lower frequency spectrum. The Extremely
High Frequency (EHF) band, spanning from 30 GHz to 300 GHz has
recently gathered significant interest. Notably, its lower portion commonly
called millimeter wave (mmWave) band, has been included in different
technologies such as 802.11ay, standardized by IEEE for personal wireless
networks [12], and 5G New Radio (5G-NR), standardized by 3GPP for 5th
generation (5G) cellular networks under the name of Frequency Range
2 (FR2) [13]. At the same time, the research community pushing this
boundary even further, researching radio communication in the THz band
[14].

Even more recently, the unallocated portion of the radio spectrum be-
tween 7GHz and 24GHz, known as Frequency Range 3 (FR3), has gained a
lot of attention and will be probably a focal point of future communication
technologies such as 6G.

While these bands offer enhanced capacity, they also reduce its commu-
nication range and resilience to Non-LoS (NLoS) communication. Con-
sequently, traditional network architecture and planning tools for Radio
Access Network (RAN) are becoming obsolete. Innovative solutions are
imperative for the effective deployment of 5G and subsequent cellular
networks.

Addressing the propagation challenges of higher frequencies and aug-
menting capacity per user requires a significant increase in RAN density.
Estimates from both academic [15] and industry [16] sources suggest up
to a hundred Base Stations (BSs) per square kilometer. Furthermore, to
ensure Line of Sight (LoS) communication, these stations will likely be
positioned at street level, on fixtures like lampposts, building exteriors, or
traffic lights.

Such an increase of BSs also demands a redeployment of the wired
backhaul connecting these devices to the network core. However, deploy-
ing such a widespread fiber backhaul network to individual street-level
devices is neither economically viable nor feasible for Mobile Network
Operators (MNOs).

In this scenario, Wireless Backhaul Networks (WBNs) offer a more flexi-
ble approach to cellular deployments. They allow MNO to connect only a
fraction of the BSs via fiber and then use wireless communication to link
the remaining stations. Such technology has been widely used in the past,
with Point-to-point radio links used as a “wireless cables” to connect remote
BS. With 5G, however, WBN have been integrated and standardized in the
RAN with the concept of Integrated Access and Backhaul (IAB) [13]. The
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2 introduction

core idea of IAB is that BSs functions can be split into two parts: the ma-
jority of the Next Generation Node Bases (gNBs) are IAB-nodes, smaller
and suitable for street-level placement without wired connections, while
a minority, IAB-donors, resemble traditional base stations and connect
to the network via fiber. IAB-nodes and IAB-relays then interconnect in
a multi-hop wireless mesh which is used to relay the user traffic to the
wired network. It’s worth mentioning that since IAB is part of the 5G
standard, it uses the same radio technology (5G-NR) used in the access,
thus the same frequency used for the radio access can also be used for the
wireless backhaul.

Beyond urban settings, WBNs have proven invaluable in rural areas,
often overlooked by MNOs and Internet Service Providers (ISPs) due to
low population density and reduced profit margins. Here, WBNs serve
both mobile access and fixed broadband networks. Technologies like IAB,
combined with Non-Terrestrial Networks, offer sustainable backhaul so-
lutions for cellular BSs. Conversely, for fixed broadband, WBNs enable
Wireless Internet Service Providers (WISPs) or Wireless Community Net-
works (WCNs) to bridge the digital divide, deploying wireless equipment
on subscriber premises to provide and relay connectivity.

The deployment of such an infrastructure, made of hundreds of ra-
dio nodes that need to be interconnected, cannot be performed oppor-
tunistically as often done in the past and requires meticulous planning.
Traditional modeling techniques, such as stochastic LoS probability and
pathloss models, are still employed, but the shift to the EHF spectrum and
ultra-dense deployments necessitates more precise models. Geographic
Information Systems (GIS) technology can be helpful in this context, to-
gether with GPU-based algorithms, to evaluate the algorithms and models
for WBNs. Leveraging open geographic datasets, such as Open Street Map
(OSM), and high-definition morphological datasets from Light Detection
And Ranging (LiDAR) technology, allows for accurate assessments of
WBN behavior.

To the best of our knowledge, this thesis is the first comprehensive
work on the planning and optimization of WBNs in ultra-dense and rural
environments. Its open-source nature ensures that other researchers or
network operators can utilize this work for network deployment planning,
optimal node placement, topology determination, and real-time network
optimization.

The rest of the manuscript is organized as follows:

• Chapter 2 provides an overview of the evolution of mobile and fixed
broadband networks and introduces the models, techniques, and
algorithms used in this thesis to model WBN.

• Chapter 3 focuses on ultra-dense networks, discussing both the
placement of obstacle-free base stations and their interconnection to
form WBN.
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• Chapter 4 delves into the optimization of IAB network topologies,
offering algorithms and techniques for designing robust and energy-
efficient topologies.

• Chapter 5 shifts the focus to rural areas, analyzing the technical and
economic feasibility of using WBNs to deliver broadband connectiv-
ity.

open-data and reproducibility Reproducibility stands as a corner-
stone in academic research. It ensures that other scholars can validate our
conclusions and utilize our resources to advance the field further. In line
with this principle, throughout this thesis, we have exclusively employed
datasets under open licenses. Additionally, we have made both the code
that generated our results and the results themselves publicly available.
The specifics of the datasets employed can be found in Section Sect. 2.3.
Below, we provide references to all datasets and repositories associated
with this work.
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Type Description Sect. URL

Dataset Optimal placement of the BSs 3.2 1

Code Visibility analysis GPU algorithms
and placement heuristics

3.2 2

Dataset Traffic model and optimal place-
ment of the BSs for vehicular net-
works

3.3 3

Code Placement heuristics 3.3 4

Dataset Visibility graphs and IAB network
topologies

3.5 5

Code Visibility Graph GPU Algorithms 3.5 6

Emulation
Scenarios

Realistic RF Scenarios for IAB 4.2 7

Containers Containers with OAI and IAB 4.2 8

Code IAB experiments orchestrator 4.2 9

Code Code to generate the scenarios 4.2 10

Code Optimization models implementa-
tion

4.3 11

Dataset IAB topologies 4.3 12

Code Optimization models implementa-
tion

4.4 13

Dataset IAB topologies 4.4 14

Code and
Datasets

Topology design algorithm and re-
sults

5.3 15

1https://zenodo.org/record/6813283
2https://github.com/UniVe-NeDS-Lab/TrueBS/
3https://github.com/UniVe-NeDS-Lab/TrueBS/tree/vehicular_mod
4https://github.com/UniVe-NeDS-Lab/TrueBS/tree/vehicular_mod
5https://zenodo.org/record/4905536
6https://github.com/UniVe-NeDS-Lab/TrueNets
7https://colosseumneu.freshdesk.com/support/solutions/articles/

61000303373-integrated-access-and-backhaul-scenarios
8experiments.colosseum.net
9https://github.com/wineslab/iab-manager

10https://github.com/UniVe-NeDS-Lab/ColosseumScenarioGenerator
11https://github.com/UniVe-NeDS-Lab/backhaul-topology-optimization
12https://github.com/UniVe-NeDS-Lab/backhaul-topology-optimization
13https://github.com/wineslab/IABEnergyOptimization
14https://github.com/wineslab/IABEnergyOptimization/tree/main/simulator/

results_globecom/milano_5_80
15https://github.com/UniVe-NeDS-Lab/ODCM

https://zenodo.org/record/6813283
https://github.com/UniVe-NeDS-Lab/TrueBS/
https://github.com/UniVe-NeDS-Lab/TrueBS/tree/vehicular_mod
https://github.com/UniVe-NeDS-Lab/TrueBS/tree/vehicular_mod
https://zenodo.org/record/4905536
https://github.com/UniVe-NeDS-Lab/TrueNets
https://colosseumneu.freshdesk.com/support/solutions/articles/61000303373-integrated-access-and-backhaul-scenarios
https://colosseumneu.freshdesk.com/support/solutions/articles/61000303373-integrated-access-and-backhaul-scenarios
experiments.colosseum.net
https://github.com/wineslab/iab-manager
https://github.com/UniVe-NeDS-Lab/ColosseumScenarioGenerator
https://github.com/UniVe-NeDS-Lab/backhaul-topology-optimization
https://github.com/UniVe-NeDS-Lab/backhaul-topology-optimization
https://github.com/wineslab/IABEnergyOptimization
https://github.com/wineslab/IABEnergyOptimization/tree/main/simulator/results_globecom/milano_5_80
https://github.com/wineslab/IABEnergyOptimization/tree/main/simulator/results_globecom/milano_5_80
https://github.com/UniVe-NeDS-Lab/ODCM


2 B A C KG R O U N D

2.1 broadband networks

Broadband networks have rapidly evolved over the last few decades,
revolutionizing the way we communicate, work, and entertain ourselves.
This technological evolution required provisioning multi-gigabit data
rates to billions of people in heavily populated areas, both using wired and
wireless technologies. However, the rise of these networks has unveiled a
stark digital divide, with rural areas often left behind in the digital race.
This has led to the deployment of new kinds of access networks using
a mix of wireless and wired technology capable of being economically
sustainable even in loosely populated areas.

In this section, we will analyze and explain the different kinds of broad-
band networks and their evolution in the past decades. We will make
a first distinction between Mobile Networks which are meant to connect
individuals, cars, and mobile devices; and wired broadband networks which
are meant to connect households and businesses.

2.1.1 Mobile Networks

Mobile Access Networks, often simply called mobile networks or cellular
networks, can be defined as a telecommunication network whose last-mile
connection is provided by a wireless transceiver, also called Base Station
(BS) which communicates with a Mobile Termination (MT), often called
User Equipment (UE).

Typically, multiple BSs get distributed in cells over an area, and together
they provide radio coverage. Moreover, thanks to signaling between the
MTs and the UEs, terminals that are moving through multiple cells get
automatically reconnected to the strongest cell in a process called handover.
This allows users to be able to perform voice calls and maintain data
connection even while walking, driving, or on high-speed vehicles such
as trains.

2.1.1.1 From the First to the Fifth Generation

Introduced in the late 1970s, the 1st generation (1G) of mobile network
represents the pioneering era of mobile communications. Operating on
analog signals, 1G primarily facilitated voice calls. With limited capacity
and susceptibility to eavesdropping, these networks laid the foundation
for future mobile telephony innovations.

Emerging in the early 1990s, the second generation, known as 2G,
marked the transition from analog to digital communication. This dig-
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6 background

ital shift, characterized by technologies such as the Global System for
Mobile Communications (GSM), introduced features like text messaging
(SMS) and basic data services, typically reaching speeds up to 144 kbps.
Enhanced encryption in 2G also provided better security, minimizing call
interception risks.

By the early 2000s, the demand for more advanced services rose and
the 3rd generation (3G) emerged. Offering faster data transfer rates, often
up to 14 Mbps, 3G networks enabled internet browsing, video calling,
and multimedia streaming. This generation utilized a broader spectrum,
essentially setting the stage for the ubiquity of mobile internet and appli-
cations. The following evolution led to the 4th generation (4G) around
2010. Designed for high-speed mobile internet and utilizing technologies
like Long Term Evolution (LTE), 4G networks delivered data transfer
speeds often reaching up to 150 Mbps, if not more. This surge in speed
and capacity enabled seamless video streaming, online gaming, and a
plethora of data-intensive applications on mobile devices.

As the need for higher data rates increased, fueled by applications like
augmented reality, high-resolution video streaming, and the Internet of
Things (IoT), mobile networks have had to adapt in innovative ways. In
2019 the 5th generation (5G), standardized by the 3rd Generation Part-
nership Project (3GPP) in Release 15 [17], introduced several new bands.
In the sub-6Ghz range, several bands were introduced. Such as the n78
with a range from 3.3GHz to 3.8GHz and the band n79 with a range
from 4.4GHz to 5GHz. Moreover, a whole new frequency range, called
Frequency Range 2 (FR2), commonly called millimeter wave (mmWave)
was introduced. This new band, with frequencies above 24GHz, allows
for larger channel bandwidths up to 2GHz.

Even more recently a new frequency range, called FR3, has gained the
attention of the telecommunication industry, and will possibly be included
in the next 3GPP release. This range lies between FR1 and FR2 specifi-
cally between 7GHz and 24 GHz. Among its advantages, there is a less
challenging propagation than FR2 frequencies and enough unallocated
frequencies to support the increasing demands for bandwidth.

These higher frequency bands can transmit vast amounts of data at
incredible speeds. However, they come with a limitation: shorter trans-
mission ranges compared to lower frequencies and less penetration. This
necessitates a radical change in the network architecture, with different
solutions on multiple levels: On the hardware level, antennas with higher
gain are needed. This is made possible by taking advantage of massive
Multiple Input, Multiple Output (MIMO) antenna arrays, with up to
256x256 antenna elements that enable the use of beamforming to increase
the directionality of the antennas and reduce the interference from other
transmissions.

On a network design level, the number of BS needs to grow dramatically
and their planning needs to be optimized to guarantee Line of Sight (LoS)
communication. While this poses infrastructural and economic challenges,
the payoff in terms of data rates and reduced latency is immense, 5G in
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fact aims to reach multi-gigabit data rates and an in-network delay down
to 1ms.

2.1.1.2 Current Architecture

The 5G network architecture is a complex arrangement of interconnected
elements, designed to offer a multitude of services with varying require-
ments. Fig. 2.1 gives an overview of such architecture. At the user end,
the UE (or MT) serves as the primary interface for 5G services. The UE
connects to the network via the 5G New Radio (5G-NR), which operates
on a broad spectrum ranging from sub-6 GHz frequencies to mmWave.

The next layer of the architecture is the Next Generation Node Base
(gNB), the 5G equivalent of the BS. The UEs connect to the gNB and routes
data to and from various network functions. The gNBs themselves are
interconnected through the so-called Xn interface, allowing seamless user
mobility and data exchange.

The 5G architecture introduces a more flexible and scalable approach to
networking by decoupling the control plane and the user plane, unlike
earlier cellular technologies. The control plane is responsible for setting
up the connections, routing, and overall network management. The user
plane deals with the actual data transmission.

The gNBs connect to the 5G core network through the NG interface,
which carries both control-plane and user-plane data. In the core, several
key functions take place, most notably:

• Access and Mobility Management Function: Handles UE’s mobility
and access authentication.

• Session Management Function: Manages the data sessions.

• User Plane Function: Responsible for packet routing and forwarding.

• Network Slice Selection Function: Assists in network slicing, direct-
ing UEs to the appropriate slice based on their service requirements.

These core functions are interconnected through various interfaces,
like N2 and N3, facilitating robust, high-speed data services for UEs. By

Figure 2.1: Architecture of a 5G network, detailing the main interfaces between
the Radio Access Network (RAN) and the core.
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segregating functions, adopting software-centric approaches, and through
the use of containerization, the 5G core architecture aims for agility and
scalability, enabling quick adaptation to varied service demands.

2.1.1.3 Integrated Access and Backhaul (IAB)

Traditional backhaul solutions, in which fiber is deployed to each gNB
location, are limited in terms of scalability and costs. Already in pre-5G
networks, Point-to-Point out-of-band wireless backhauls were used to
connect remote or inaccessible locations. With the 3GPP Release 16th of
the standard, native support for wireless backhaul has been introduced.
Specifically, with IAB the same protocol and waveform of 5G are used
to self-backhaul the BS through a multi-hop wireless network. IAB, in
fact, defines two different kinds of gNB: IAB-donors and IAB-nodes. The
formers are, like in traditional deployments, connected using fiber; the
latter instead, can connect directly to the IAB-donors using the 5G protocol
stack, or to other IAB-nodes forming a backhaul wireless mesh network.
Then, over the air, the IAB traffic is encapsulated using the Backhaul
Adaptation Protocol (BAP), a protocol standardized by 3GPP specifically
for IAB [18].

Fig. 2.2 depicts an example with two UEs, two IAB-nodes and one
IAB-donor, together with the protocol stack.

Note that while 3GPP standardized the most technical aspects of IAB,
many system-level aspects are left under the control of the Mobile Net-
work Operator (MNO). One important aspect that’s subject to different
interpretations and that radically affects our research, is whether both
access and backhaul should share the same radios and spectrum or not.

Sharing the same radio resources among the backhaul and access net-
works is beneficial in economic terms, as less spectrum and radios are
needed to run the network. However, this comes at the cost of reducing
the capacity of the mesh backhaul and thus the depth of the IAB tree. This,
in turn, requires more IAB-donors to be deployed and thus increases the

Figure 2.2: Architecture of an IAB network, with details on the IAB protocol
stack.
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upfront cost that the MNO has to undertake to deploy the network, also
known as Capital Expenditure (CapEx).

2.1.1.4 Open RAN

Open-RAN (or O-RAN) represents a significant shift in the design and
deployment of mobile networks. Unlike traditional RAN architecture,
which tightly couples the hardware and software components, O-RAN
aims to decouple these elements. This allows for more modular networks
with interoperable components, reducing dependency on a single vendor
and potentially lowering costs. [19] The initiative is backed by the O-RAN
Alliance and the Telecom Infra Project, among other industry groups,
and it has received considerable attention as an enabler for more flexible,
efficient, and scalable network architectures.

In an O-RAN environment, the functionalities of the radio access net-
work are virtualized and run on general-purpose hardware. This opens
the door to employing software-based, cloud-native technologies that can
be more easily updated and scaled. It enhances the network’s ability to
support features like network slicing, real-time analytics, and machine
learning algorithms for network optimization. One of the significant ad-
vantages of O-RAN is the facilitation of multi-vendor environments. It
allows operators to mix and match products from different vendors at a
modular level—something nearly impossible in traditional RAN settings
since components from different vendors often had compatibility issues.
Following the disaggregation paradigm proposed in the 3GPP Rel. 17 [13],
the traditional monolithic BS, is split in three different functional units,
the Radio Unit (RU), the Distributed Unit (DU), and the Central Unit (CU)
(O-RU, O-DU, and O-CU in the O-RAN terminology).

Fig. 2.3 exemplifies the network architecture, with the main building
blocks and interfaces.

The higher-level component of the stack is the CU, which takes care of
the higher level of the 3GPP stack. This component can be virtualized on
general-purpose servers and deployed at the edge.

Below the CU, we have the DU, which takes care of high-level physical
layer functionalities and of the Medium Access Control (MAC) and Radio
Link Control (RLC) layers. This component requires more specialized
hardware components and is generally virtualized on general-purpose

Figure 2.3: Disaggregated O-RAN architecture.
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machines with hardware accelerators such as Graphics Processing Units
(GPUs). It’s worth noting that different companies are working on devel-
oping solutions in this field, such as NVIDIA with the Aerial platform [20]
and Intel with FlexRAN [21].

Finally, deployed in physical proximity of the antenna and the Radio
Frequency (RF) circuitry we have the RU, this component is in charge of
lower-phy functionalities, such as Fast Fourier Transform (FFT), equaliza-
tion, cyclic prefix addition/removal, etc. It is often generally implemented
using Field Programmable Gate Arrays (FPGAs) or Application-Specific
Integrated Circuits (ASICs), making it a relatively inexpensive and simple
device.

One of the additional innovations in O-RAN is the RAN Intelligent
Controller (RIC). The RIC is an intelligent software management layer
that operates in conjunction with the RAN. Its primary role is to optimize
the RAN performance by using realtime analytics and machine learning
algorithms. It enhances the adaptability and automation of the RAN,
enabling dynamic resource allocation, automated network slicing, and
other advanced functionalities that make the network more resilient and
efficient.

Two different RICs have been defined in O-RAN: the Near-realtime
RIC and the Non-realtime RIC. The first one is deployed on the network’s
edge and interacts with the RAN with a time-scale between 10ms and
1s; the second one operates on longer time scales (higher than 1s) and
can be deployed in the core of the network. On the two RICs, custom
optimization algorithms, called apps, are run. In the case of the Near-
realtime RIC, these are called xApps and interact with the RAN using the
E2 interface, while in the case of the Non-realtime RIC, these are called
rApps and use the O1 interface.

As the standardized interfaces and the concept of apps have enabled
third-party algorithms to interact with the RAN, a thriving area of research
has emerged with different apps concepts proposed and evaluated. These
apps’ goal ranges from optimizing the allocation of resources through
slicing [22] to optimizing spectrum sharing among different operators
[23].

2.1.2 Fixed Broadband Networks

The evolution of wired broadband networks has been marked by progres-
sive advancements to accommodate increasing data transmission require-
ments. Initially, dial-up technology was prevalent, utilizing telephone
lines to provide speeds up to 56 kbps. Subsequently, Digital Subscriber
Line (DSL) technology was introduced to fulfill the demand for enhanced
bandwidth. Depending on its variant and line quality, DSL could provide
speeds ranging from 128 kbps to 24 Mbps. The pursuit for even higher
speeds led to the integration of Fiber-to-the-Cabinet (FTTCab). In this
configuration, fiber-optic cables reach street-level cabinets, after which
Very high-speed Digital Subscriber Line (VDSL) technology, using the
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traditional copper lines is employed, with data-rates ranging between 50
Mbps to 100 Mbps. Advancing further, Fiber-to-the-Home (FTTH) became
a benchmark in broadband technology. With fiber-optic cables running
directly to individual residences, FTTH can achieve data rates exceeding 1
Gbps, often reaching up to 10 Gbps in some implementations.

2.1.3 Digital Divide

The evolution of fixed broadband technology highlights an associated is-
sue: the digital divide. This refers to the unequal distribution of advanced
digital technologies, including high-speed internet, across different re-
gions and demographics. Urban areas, due to infrastructural investments
and demand concentrations, often benefit from the latest broadband tech-
nologies. Meanwhile, rural and economically disadvantaged regions may
remain reliant on older technologies or lack internet access entirely. This
discrepancy poses significant implications for education, healthcare, and
economic opportunities in underserved areas. Addressing the digital di-
vide is crucial to ensure that the benefits of technological advancements
are accessible to all segments of the population.

In the following sections, we will analyze different network solutions
to overcome the digital divide in rural areas. First, we will explain the
phenomena of Wireless Internet Service Providers (WISPs), then Wireless
Community Networks (WCNs), and finally Satellite Broadband.

2.1.3.1 WISPs

WISPs serve as a crucial bridge in mitigating the broadband connectiv-
ity gap prevalent in rural and remote areas. They offer a cost-effective
alternative by utilizing wireless technologies to provide broadband ser-
vices. These providers typically employ a network of strategically placed
wireless antennas, usually on mountains or places with high visibility, to
provide broadband connectivity to individual homes or businesses.

The initial CapEx is considerably lower than traditional wired networks,
and the modular nature of wireless technology allows for incremental
expansion as demand increases.

Albeit in some cases WISPs use licensed bands or proprietary wireless
technology, generally, standard 802.11 Wi-Fi equipment is preferred, as it
does not require any license and the devices are available at competitive
prices. Similarly to the other kinds of broadband networks seen before,
data rates for these networks have grown systematically following the
different Wi-Fi generations. Reaching hundreds of Mbps with the latest
generations.

2.1.3.2 WCNs

WCNs further complement the efforts to address the digital divide. Rooted
in community-driven initiatives, WCNs are set up, operated, and main-
tained by local communities, often without significant commercial intent.
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Figure 2.4: Graphical depiction of the architecture of a typical Wireless Internet
Service Provider (WISP). Source wispa.org

Figure 2.5: Graphical depiction of a Wireless Community Network (WCN).
Source freifunk.net

wispa.org
freifunk.net
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These networks empower communities to take charge of their connectivity
needs, ensuring that local requirements and challenges are at the forefront
of network design and operation. By leveraging shared resources, open
technologies, and collaborative approaches, WCNs can provide affordable
and locally tailored internet solutions. They not only serve as a means
to provide connectivity but also foster community engagement, digital
literacy, and local innovation. In essence, while Fixed Wireless Access
(FWA) offers a top-down approach by extending established networks
to underserved areas, WCNs provide a bottom-up solution, cultivating
connectivity from within the community itself.

Differently from WISPs, where a centralized architecture is deployed,
WCNs follows a more organic development, where older nodes get up-
graded with multiple radio devices to allow new nodes to be added to
the network. This architecture results in a more robust network, which
can sustain the failure of multiple nodes before affecting the users’ perfor-
mance.

The most notable examples of WCN are Guifi.net and Freifunk two
community-led initiatives with more than 20 years of history. Guifi.net1

is based in Catalunya and its network made of both fiber and wireless
backhauls connects more than 37.000 nodes across the whole region of
Catalunya. Freifunk2 is based in Germany and is composed of various
dozen of smaller network, roughly one for each major German city.

2.1.3.3 Satellite Broadband Connectivity

Satellite broadband connectivity has been an existing solution in remote
areas since the early 2000s. This technology can be broadly categorized
based on satellite altitude: Geostationary (GEO) and Low Earth Orbit
(LEO).

geo Early satellite solutions utilized a parabolic dish mounted on the
user’s rooftop, aligned with a Geostationary satellite, accompanied by a
ground station connected to the internet. The primary limitation of GEO-
based systems is high latency, a consequence of the significant propagation
delay. Given that GEO satellites are stationed approximately 36,000 km
above Earth, the one-way propagation delay is about 120 ms, resulting in
a round-trip delay of around 250 ms.

This technology branched into two main models: one-way and two-
way satellite connectivity. In the one-way model, the satellite link was
dedicated to the downlink channel, with the uplink managed through a
DSL or dial-up connection via the telephone line. This method enabled
the use of existing satellite dishes, often already installed for television,
with the ISP broadcasting the downlink channel via a commercial satellite.

The two-way model required a more sophisticated and costly setup, in-
cluding a satellite modem and transceiver, as it involved both transmitting

1https://guifi.net
2https://freifunk.net/en/

https://guifi.net
https://freifunk.net/en/
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and receiving data via the satellite link. This approach, while more expen-
sive due to the complexity of the equipment and increased bandwidth
usage, offered connectivity in areas devoid of DSL infrastructure.

leo LEO satellites have emerged as an alternative to GEO satellites in
providing broadband connectivity in the late 2010s. Due to the reduced
orbit, which is usually around 500km over the earth’s surface, the latency
greatly improves. However, the satellites move over the user with great
speed and thus traditional satellite dishes cannot be used. Moreover,
to guarantee uninterrupted service a large constellation of satellites is
needed.

Prominent companies in this domain include SpaceX with its Starlink
project, Amazon with Project Kuiper, and OneWeb. Specifically, Starlink
has deployed over 5000 LEO satellites, providing extensive coverage
across most of Europe and North America. The user equipment for Starlink
involves a complex MIMO array with 1464 antenna elements, operating in
the mmWave band (12-90GHz), to facilitate high-speed data transmission,
which reaches 250Mbps in downlink.
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2.2 channel modeling

In the upcoming chapters of this Thesis, different contributions will be
evaluated in simulation using a wide array of channel models. This section
aims to detail all those different channel models, ranging from the simplest
to the most complex and accurate ones.

In the first section, we detail the different pathloss models, from Free
Space Path Loss (FSPL) to more complex stochastic models. In the follow-
ing section, we move to describe two LoS probability models. Then we
move to link budgeting and finally, we detail three capacity models, both
technology agnostic and specific.

2.2.1 Propagation Models

2.2.1.1 FSPL

The FSPL model is used to predict the loss of power over the distance in
free space, without considering any reflection or refraction. This model is
particularly useful in the context of wireless communications, especially
when analyzing line-of-sight paths between the transmitter and receiver in
an open environment. The formula to calculate the FSPL, given in decibels
(dB), is represented as:

PL(d) = 20 log10

(︃
4πd fc

c

)︃
(2.1)

where d is the distance between the transmitter and receiver in meters, fc

is the carrier frequency of the signal (in Hz), and c is the speed of light.

2.2.1.2 Log-Normal Pathloss Model

One of the most used models in signal propagation is the Log-distance
model [24], which assumes an exponential relationship between pathloss
and distance. The formula of the model is the following:

PL(d) = L0 + 10αlog(d) +X (2.2)

Where L0 is the, obtained by measuring the pathloss at a reference dis-
tance (usually 1m); α is the pathloss exponent, which indicates the rate at
which the pathloss increases with distance; and X is a zero-mean Gaus-
sian random variable (in dB) which accounts for shadowing effects. The
estimation of the pathloss exponent α is crucial for the accuracy of the
model and many studies have been made in this regard [24] [25]. Common
values for it are 2, in the case of a Free Space LoS link, between 2.7 and 3.5
for Non-LoS (NLoS) links.

2.2.1.3 ITU Channel Model

More recently, in an endeavor led by 3GPP and European Telecommuni-
cations Standards Institute (ETSI), a model to predict the propagation of
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wireless links between 0.5 and 100GHz has been proposed [26] [27]. This
model encompasses four distinct environmental scenarios: Urban Micro
(UMi), Urban Macro (UMa), Rural Macro (RMa), and Indoor Hotspot
(InH). Furthermore, it is parametrized based on the LoS condition of the
wireless connection.

For the scope of subsequent chapters, we focus on the UMi environment
and present the associated formulas, beginning with the LoS scenario.

PLUMi
LoS (d) =

⎧⎨⎩PL1(d) 10m ≤ d2D ≤ dBP

PL2(d) dBP ≤ d2D ≤ 5km
(2.3)

where dBP is the Breakpoint distance and is defined as: dBP = 4hBShUT
fc
c

and hBS and hUT are respectively the height of the Base Transceiver Station
(BTS) and the height of the UE above the ground level (in meters).

Then, PL1 and PL2 can be defined as follows:

PL1(d) =32.4 + 21 log10(d3D) + 20 log10( fc) (2.4)

PL2(d) =32.4 + 40 log10(d3D) + 20 log10( fc)

− 9.5 log10((dBP)
2 + (hBS − hUT)

2)
(2.5)

For the NLoS case, the formulas are the following:

PLUMi
NLoS(d) = max(PLUMi

LoS (d), PL3(d)) (2.6)

PL3(d) =22.4 + 35.3 log10(d3D) + 21.3 log10( fc)

− 0.3(hUT − 1.5)
(2.7)

Additionally, this model includes a zero-mean Gaussian random vari-
able X which accounts for the shadow fading effects. The std of the
random variable (in dB) depends on the LoS state of the link. For LoS
σX = 4, while for NLoS σX = 7.82.

Fig. 2.6 offers a comparative analysis of various channel models for
transmissions at 3.8GHz over distances less than 1km. Notably, the FSPL
model serves as a lower bound, exhibiting the lowest pathloss with the
UMi model for LoS links being the closest to it. Then, by increasing the
pathloss exponent, or by using a NLoS model the pathloss dramatically
increases with differences up to 50dB.

2.2.2 LoS Probability Models

As shown in the models above, the state of the link can change quite
significantly the parameters of the propagation models. For this reason,
estimating the state of the link correctly is crucial to effectively model the
propagation. Over time, different models have been proposed to predict
the LoS probability. Here we detail two models that have been employed
in this thesis.
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2.2.2.1 WINNER II / ITU Model

One of the most widely recognized and utilized models originated from
the Winner II project [28], which was later expanded upon and endorsed
by both International Telecommunication Union (ITU) [27] and ETSI [29].
These models depict the LoS probability across various environments as a
function of distance, exhibiting an exponential decay.

In this thesis, we predominantly reference and employ the ITU model
for the Urban-Micro environment (UMi), as well as the Winner II mod-
els for suburban (SU) and rural macro (RMa) contexts. For additional
formulas and detailed models, the original documentation serves as a
comprehensive resource.

PUMi
LoS =

⎧⎨⎩1 d < 18m
18
d + e−

d
36 (1− 18

d ) d > 18m
(2.8)

PSU
LoS = e−

d
200 (2.9)

PRMa
LoS = e−

d
1000 (2.10)

2.2.2.2 Al-Hourani Model

The second model we consider is provided by Al-Hourani [30] and is
intended to estimate the LoS probability between two flying objects at
height h1 and h2 respectively, at a certain distance d. Distinct from the
earlier mentioned model, Al-Hourani’s approach takes advantage on
terrain morphology data sourced from Digital Elevation Model (DEM)
or Open Street Map (OSM), specifically utilizing the building height’s
Cumulative Distribution Function (CDF) to tailor the model for specific
environments.

The probability of LoS is articulated as:

P AL-H
LoS (d, h1, h2) = exp

(︃
−2r0λ0

∫︂ d− π
2 r0

0
G(h)dx

)︃
(2.11)

Herein, r0 denotes the average building’s radius, approximated as cylin-
ders, λ0 represents the average building density, and G(h) the building
height’s complementary CDF. The variable h represents the height of the
LoS at the integration partition and can be obtained as follows:

h =
x
d
(h2 − h1) + h1 (2.12)

It is worth noting that, unlike the Winner II / ITU model, the Al-
Hoourani model requires detailed knowledge of the properties of the
area where it is applied. Without such precise data the model can not be
effectively used.
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Figure 2.6: Comparison of the different pathloss models from 0 to 1000m.

2.2.3 Raytracing

Ray tracing is a method used to model RF signal propagation in a given
environment [31]. It maps how RF signals, emitted from a transmitter, in-
teract with surrounding structures and elements. The signals may reflect,
refract, or diffract based on the encountered obstacles before reaching a
receiver. Ray tracing is particularly suited at capturing multi-path propa-
gation, where signals can take multiple trajectories to the receiver, each
with its own attenuations. Its applications span cellular network design,
indoor wireless network planning, and broadcasting coverage prediction.
The technique is computationally demanding, especially for intricate envi-
ronments or high-frequency signals, but recent advancements in parallel
computing and the broad availability of GPUs have made it possible to
perform raytracing analysis on large environments.

Various software applications utilize ray tracing algorithms for RF
propagation. Among the most renowned is Wireless InSite3, though its

Figure 2.7: Raytracing output using Matlab.

3https://www.remcom.com/wireless-insite-em-propagation-software
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licensing costs are prohibitively high. Recently, Matlab introduced its ray
tracing toolkit4, which we adopted for this thesis. Additionally, Nvidia has
recently released their open-source ray tracer called Sionna RT5, which is
optimized for their GPUs [32].

Given a pair of transceivers (s, d), and a 3D model of the environment
we can perform raytracing to obtain a set Γs,d of rays. Associated to each
ray r ∈ Γs,d is a pathloss Pr, a phase ϕr, a delay δr, an angle of arrival AoAr,
and an angle of departure AoDr.

By combining these rays, as shown in the following equation, it is
possible obtain an overall pathloss, that takes into account the delay and
the phase offsets, with the following formulae:

PL(s, r) = ∑
r∈Γs,r

√
Prej(−2πδr fc+σr) (2.13)

2.2.3.1 MIMO Channel Modeling

A more generalized model for the channel can be adopted by computing
the channel matrix H from the set of rays Γs,d [33]. This allows us to model
MIMO channels with arrays of arbitrary size.

H = ∑
r∈Γs,r

√
Prej(−2πδr fc+σr)a⋆rx(AoAr)aH

rx(AoDr) (2.14)

Where arx and atx are respectively the receiver and transmitter array
responses, ⋆ is the conjugate operator and H is the hermitian operator.

Once obtained the channel matrix H we use it to compute the pathloss
PL(H, s, d) as:

PL(H, s, d) = wT
s,dHs,dwd,s (2.15)

where ws,d (wd,s) is the beamforming vector used by the device s (d) to
communicate with the device d (s), obtained by applying singular value
decomposition on the channel matrix Hs,d (Hd,s).

2.2.4 Link budget and Signal-to-Noise-Ratio (SNR) computation

The Signal-to-Noise-Ratio (SNR) is a measure often used in engineering
to compare the level of the desired signal to the level of the background
noise. It is a ratio between the power of a signal and the power of the
background noise.

SNR =
Sr

N
(2.16)

In order to compute the SNR we need to first obtain the signal level S.
This is achieved by conducting a link budget analysis, which incorporates
all the various gains and losses, ultimately determining the received signal
power Sr. Mathematically, this is expressed as:

4https://it.mathworks.com/help/antenna/ref/rfprop.raytracing.html
5https://nvlabs.github.io/sionna/api/rt.html
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Sr = ΠGtGrPL() (2.17)

Here, Π stands for the transmitter output power (in mW), Gt for the
transmitter antenna gain, PL() for a generic pathloss function6, and Gr

for the receiver antenna gain. While here we report the formula in using
linear unit of measurements (W), it’s often used an reported in logarithmic
units of measurements (dB).

Subsequently, to determine the noise power level N we generally com-
pute the thermal noise at a given frequency and temperature, to then add
the so-called noise figure, which represents the additional noise introduced
by the receiver. The formula to calculate the noise is:

N = N0BN f (2.18)

where N0 represents the spectral noise density (in W/Hz) at a given tem-
perature (commonly set at 290K), B defines the transmission bandwidth,
and N f denotes the receiver’s noise figure.

2.2.5 Capacity Models

Upon determining the received power between a transceiver pair and
their SNR, the next logical step typically involves calculating a metric
that encapsulates the prospective capacity of the wireless link in terms of
bits/s. Numerous capacity models have been formulated over time, with
some specifically tailored to certain technologies, while others maintain a
broader applicability.

2.2.5.1 Shannon Limit

As a first approximation, the Shannon capacity model is often used. This
model, named after Claude Shannon, provides a theoretical maximum
data rate for a communication channel with a specified bandwidth and
noise level [34]. This limit, often referred to as the Shannon limit, delineates
the highest possible data rate at which information can be transmitted
error-free over the channel assuming gaussian noise. The capacity C be-
tween a pair of tranceivers (s, d) can be expressed as a function of the SNR
using the formula:

CSH(d) = µB log2

(︃
1 +

S
N

)︃
(2.19)

Herin, S
N is the SNR, B is the transmission bandwidth in hertz, and µ is

the number of parallel MIMO streams.
It is worth noting that achieving rates close to the Shannon limit requires

sophisticated modulation and coding schemes.

6Whenever PL() is expressed in dB and not in linear terms such as in the first equations
of the section, it has to be converted in linear term as: 10( − PL()

10 )
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Despite the Shannon channel model being very often used in this area
of research to evaluate the performances of wireless networks, in practice,
the capacity of such networks is deeply affected by the technology and the
hardware used to implement it. For this reason, in this thesis we have often
adopted more sophisticated models derived from real-world hardware.

2.2.5.2 802.11ac capacity

For the 802.11ac technology, we have relied on the datasheets of com-
mercial devices from well-known manufacturers [35]. These datasheets
usually contain a table indicating the expected data rate and Modulation
and Coding Scheme (MCS) for a given signal quality, expressed either in
terms of SNR or directly in received power. Let the table TWi−Fi be made
of tuples (Si, Mi).

We then compute the maximum MCS M as:

M = max Mi s.t. Sr ≥ Si. (2.20)

Having obtained the MCS of the transmission we can look up at the
VHT-MCS table [36] to obtain the capacity CWi−Fi(M, µ, B) as a function
of the MCS, the number of spatial streams (µ) and the bandwidth (B).

2.2.5.3 5G-NR capacity

For 5G-NR, finding such tables from the datasheets is not possible, as the
standard allows many more combinations of parameters, and the devices
are not intended to be purchased by end users. However, thanks to the
open-source implementation of both the gNB and UE released by the
OpenAirInterface project [37] we were able to have access to the code
containing a similar table that matches the SNR to a given MCS. Let the
table T5G be made of triplets (Si, Mi, Ei) that matches a certain SNR Si
with a given MCS Mi and a desired Block Error Rate (BLER) Ei [38]. In
our analysis we have used a maximum BLER equal to 0.1, but the value
can be adapted to the reliability requirements of any specific study.

Then we can compute the maximum MCS Mmax as follows:

Mmax = max Mi s.t. Ei < 0.1 and Ss,r ≥ Si. (2.21)

Finally, we compute the downlink capacity C using the following formula:

C5G = µQ(Mmax)R(Mmax)
12RB

Tu
(1−Oh)Rslot, (2.22)

where µ is the number of MIMO layers, Q(M) and R(M) are two
functions associating the MCS to the modulation order and the code rate,
RB is the number of Resource Blocks used, Oh is the control channel
overhead, Rslot is the ratio of Downlink to Uplink slots used, and Tu

is the average duration of an OFDM symbol. Further details regarding
the formula and the different values can be found in the 3GPP technical
specifications [39].
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2.2.6 Conclusions

In this section, we have shown an array of models and techniques to
estimate the capacity of a wireless link, with different degree of accuracy
and applied to different technologies. Besides ray tracing techniques,
which often require expensive hardware and licenses, most techniques to
estimate the pathloss between two transceivers are stochastic models that
rely on the LoS conditions, either through a specific parameter, such as
in the ITU model, or by tweaking the pathloss exponent, such as in the
log-distance model. For this reason, achieving a precise estimation of the
LoS is crucial to reach a realistic estimation of the pathloss and thus of the
capacity.

In support of this claim, we report in Fig. 2.8 the estimation of the
capacity of three different kinds of wireless technologies: sub6, with
fc = 3.8 GHz and B = 100 MHz; mmWave, with fc = 27 GHz and
B = 1 GHz; and subTHz fc = 100 GHz and B = 3 GHz. The capacity
is then further differentiated for the two different conditions: LoS and
NLoS. The capacity has been computed using the Shannon capacity model
and the ITU Pathloss model.
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Figure 2.8: Shannon channel capacity as a function of the distance between
two points d and the LoS/NLoS conditions, for different kinds of
technologies.

From this analysis, we can clearly see how by increasing the carrier
frequency the difference in terms of channel capacity for LoS and NLoS
channels varies extremely. Specifically at a distance of 100 m the ratio of the
capacity between NLoS and LoS is equal to 0.59 for the sub6 technology,
0.38 for the mmWave technology, and 0.24 for the subTHz technology.

In conclusion, it’s clear that a realistic estimation of LoS conditions,
which could have been neglected for traditional technologies, is going
to become of utmost importance with the advancements towards THz
communications. For this reason, in the next section, we will detail how
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we employed real-data to obtain a realistic estimation of LoS and NLoS
conditions.
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2.3 towards more realistic studies: the use
of gis and geodatasets

As we have shown in the previous section, channel modeling accuracy
is highly influenced by the data we feed into the models. In this chapter,
we explore the use of Geographic Information Systems (GIS) techniques
and open Geodatasets to achieve accurate and realistic estimations. First,
we will introduce the concept of GIS, then the different datasets and
their sources used throughout the thesis, and finally the visibility analysis
techniques we have employed in our studies.

2.3.1 Introduction to GIS

GIS constitute a computational framework for the acquisition, storage,
manipulation, and presentation of spatially referenced data. Rooted in
cartographic science and geography, GIS has expanded its applicability
across diverse academic and industrial fields. It provides a structured
environment for complex spatial analyses, thereby influencing decision-
making processes in areas such as urban development, environmental
management, and geopolitical studies. As such, GIS stands as a funda-
mental mechanism in the contemporary methodologies for spatial inquiry.

2.3.1.1 Projection systems

A geographic coordinate system (GCS) provides means to represent loca-
tions on the Earth’s surface using a set of numerical values. At its essence,
a GCS defines positions using latitude, longitude, and often altitude. Lati-
tude measures the angular distance north or south from the equator, with
values ranging from -90° to 90°. Longitude, on the other hand, measures
the angular distance east or west of the prime meridian, with values
spanning from -180° to 180°. Altitude or elevation represents the vertical
distance above or below a reference surface, typically mean sea level.
To ensure accurate representations, a GCS relies on a datum, which is
a model of the Earth’s shape, and a reference ellipsoid, a mathematical
figure that approximates the Earth’s form. Different datums and ellipsoids
are employed depending on the region and purpose of the study, and
understanding the nuances of these systems is crucial for accurate spatial
analysis and data integration in GIS applications.

In this research, different planar datums will be used depending on the
region considered, so that the distortion is always minimized.

2.3.1.2 PostGIS and QGIS

Within GIS, PostGIS7 and QGIS8 have established themselves as funda-
mental tools for the management and visualization of spatial data.

7https://postgis.net/
8https://qgis.org

https://postgis.net/
https://qgis.org
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PostGIS is an extension of the PostgreSQL relational database that
allows for the storage and management of spatial data. Its strength lies in
its ability to handle and query large datasets efficiently. PostGIS supports a
vast array of spatial data types, including points, lines, and polygons, and
offers a rich set of functions to perform complex spatial queries, making
it a preferred choice for professionals requiring robust spatial database
capabilities.

QGIS, on the other hand, is an open-source GIS desktop application
that provides an intuitive interface for visualizing, editing, and analyzing
geospatial data. Its versatility is evidenced by its wide range of plugins and
extensions, enabling users to customize the platform to their specific needs.
QGIS can connect directly to PostGIS databases, allowing for seamless
integration between spatial data storage and visual analysis.

Throughout this thesis, both software have been extensively used to
store, interrogate, display, and analyze geographic datasets.

2.3.1.3 Raster and Vectorial Data

In GIS, data representation primarily takes on two distinct formats: raster
and vector. Raster data comprises grid structures, where each cell or pixel
contains a specific value representing information such as elevation, tem-
perature, or land cover. This format is particularly suited for continuous
spatial phenomena and is commonly used in remote sensing and DEMs.
In contrast, vector data represents geographical features using points,
lines, and polygons. Points might denote features like wells or cities; lines
can represent roads or rivers, and polygons can depict areas like buildings,
lakes, or administrative boundaries.

2.3.2 Vectorial Datasets - Roads, Buildings, and Landuse

2.3.2.1 OpenStreetMap

OSM is a collaborative project that provides freely accessible geographic
data and mapping to users around the world. Unlike traditional map-
ping services, OSM harnesses the collective input of a vast number of
users, from professional cartographers to general public enthusiasts, all
contributing, and refining the map’s data. At its core, OpenStreetMap
operates predominantly as a vector dataset. It uses points to represent
specific locations like lamp posts or mailboxes, lines for linear features
such as roads, footpaths, and rivers, and polygons to depict areas like
forests, buildings, or administrative boundaries. This vectorial represen-
tation allows for detailed, scalable, and dynamic visualizations, making
OSM a versatile tool suitable for various applications, from route planning
to spatial analysis in professional GIS platforms.

The complete raw OSM dataset is freely available for download from
multiple sources. Yet, its substantial volume (exceeding 100GB even when
compressed) combined with its format (a markup language crafted for
generating OSM tiles) often tilts the preference towards acquiring pre-
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processed datasets from intermediaries. Throughout this research, we
have relied on the shapefiles processed by Geofabrik GmbH, which are
available on their website 9. Fig. 2.9 shows a portion of one of the vectorial
datasets used throughout this thesis.

2.3.2.2 Technical Regional Charts

In certain areas, usually in rural environments, OSM may have insuffi-
cient data to effectively perform our simulations. In such cases, we have
resorted to different datasets, made available by public administrations
under different types of licenses (both open and closed). Specifically, we
have used the so-called Technical Regional Charts, which represent large
areas in vectorial datasets containing different kinds of information such
as the layout of roads, buildings, or land use. Tab. 2.1 details all the differ-
ent datasets used for Technical Regional Charts.

2.3.3 Raster Datasets - Digital Elevation Models

DEMs are specialized datasets that capture the terrain’s altitude informa-
tion over a geographic area. Represented typically as a raster grid, each
cell in a DEM contains a single elevation value, representing the height
above a specific reference point, often sea level. DEMs serve as a funda-
mental tool in a wide array of applications, from hydrological modeling,
where they help in predicting water flow patterns, to urban planning,
where they assist in determining suitable construction sites. Additionally,
they play a crucial role in environmental research, facilitating studies on
soil erosion, habitat distribution, or landform processes. The accuracy and
resolution of DEMs can vary, with some sourced from satellite imagery
while others derive from airborne LiDAR data, which can offer finer detail.

Figure 2.9: The buildings of portion of the city of Florence IT, as represented by
OSM.

9https://download.geofabrik.de/

https://download.geofabrik.de/


2.3 towards more realistic studies: the use of gis and geodatasets 27

2.3.3.1 Shuttle Radar Topography Mission

The Shuttle Radar Topography Mission (SRTM) is a collaborative initiative
spearheaded by NASA and the National Geospatial-Intelligence Agency
(NGA) to generate high-resolution topographical data of the Earth’s land
surface. Conducted in February 2000 using the Space Shuttle Endeavour,
SRTM utilized a specially modified radar system to obtain digital elevation
data for over 80% of the globe, covering latitudes from 56°S to 60°N. The
primary output of this mission is a world-wide DEMs with a spatial
resolution of 1 arc-second (30m) meters. I.e. a raster representation of the
morphology of the earth with cells of size 30x30m. These DEMs have been
extensively used in large-scale RF propagation analyses, where natural
obstacles, such as hills and mountains affect the propagation. However,
their use is limited in urban areas where, due to their resolution, the
morphology of individual buildings can not be represented.

2.3.3.2 Light Detection and Ranging

Light Detection And Ranging (LiDAR) is a remote sensing method that
employs laser pulses to measure distances to the Earth’s surface. A LiDAR
system typically consists of a laser, a scanner, and a specialized GPS
receiver, often mounted on an aircraft or drone. As the system flies over
an area, it emits rapid laser pulses towards the ground. By measuring the
time taken for each pulse to bounce back after reflecting off the surface,
LiDAR calculates precise distance measurements.

These accumulated measurements result in a dense set of elevation
data points known as a point cloud. After post-processing, this point cloud
can be converted into highly accurate DEMs. More specifically, DEM
can either be a Digital Surface Models (DSM) or a Digital Terrain Model
(DTM). The main difference between the two is that the former includes
any object above the ground, such as trees, buildings, cars, etc.; while
the latter is obtained by filtering only the ground points, which are then
interpolated into a surface that represents the terrain, without any artificial
obstruction on top. Fig. 2.10 shows a rendering of the DSM for a portion
of the city of Florence, with a precision of 1 point per meter. As expected
both individual trees and buildings are clearly identifiable.

The accuracy of LiDAR-derived DEMs is unique, often achieving ver-
tical accuracy within a few centimeters. This level of detail allows for

Area Country License Source

Tuscany IT CC-BY-SA Tuscany Region 10

Campania IT Closed Campania Region

Trentino IT CC-BY 2.5 Province of Trento 11

Table 2.1: Table detailing the different Technical Regional Charts.

10http://www502.regione.toscana.it/geoscopio/cartoteca.html
11https://patn.maps.arcgis.com/apps/webappviewer/index.html?id=

75c536fa3dd0463599818475ca06be6e

http://www502.regione.toscana.it/geoscopio/cartoteca.html
https://patn.maps.arcgis.com/apps/webappviewer/index.html?id=75c536fa3dd0463599818475ca06be6e
https://patn.maps.arcgis.com/apps/webappviewer/index.html?id=75c536fa3dd0463599818475ca06be6e
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clear topographical analyses, making LiDAR an invaluable tool for ap-
plications such as flood modeling, forest canopy analysis, and urban
planning. LiDAR measurement campaigns are often performed by public
administrations, which then release the dataset to the public with open
data licenses. Throughout this thesis, different DEM have been used, as
detailed in Tab. 2.2.

More formally, let the DEM D be a set of triplets (x, y, z), where (x, y)
represents the coordinate of a point on the surface and z its height above
sea level. We then model the DEM as a bi-dimensional matrix of real
numbers E ∈ Rmx×my , mx and my are the number of samples in the x and
y dimensions respectively12.

Ex,y = z ∀(x, y, z) ∈ D (2.23)

2.3.4 Other Datasets

2.3.4.1 Censuary Data

Every ten years, the Italian National Institute of Statistics (ISTAT) makes
a new population census, which is then partially released in the form of
open data. Different granularity are available, with many reports released
for large areas such as the whole country, individual regions, or cities.
However, a more fine-grained open dataset called the ’censuary variables’
dataset is also released which contains a portion of these variables divided
into extremely small areas called censuary sections. These areas are the
smaller units of measurement in the censuary process and can be as small
as a single block in urban areas. These variables include the number of
residents, divided by sex and age, educational level, etc. In this thesis, we
have used the number of households for each censuary section to devise a
demand model for broadband connectivity.

The dataset is available on the ISTAT website 13

2.3.4.2 Broadband Coverage

In Italy, the Regulator for Communications Guarantees (AGCOM) releases
different datasets on broadband coverage in Italy, both for fixed and
mobile access.

The dataset is divided into two categories: metrics associated with each
censuary section and gridded maps. In the first case, variables such as
the number of households connected with each technology (DSL, VDSL,
FTTH), the average download speed for each technology, and the number
of households with download speed into different ranges (0-2, 2-30, 30-100,
100-500, 500-1000). Regarding mobile networks, the dataset provides the

12In the whole thesis we always use a precision of 1 point per meter so that the number
of sample on a given axis equals its size in meters. For DEMs with a precision higher than
1 point per meter downsampling has been performed

11https://www.icgc.cat/en/Downloads/Elevations/Lidar-data
13https://www.istat.it/it/archivio/104317

https://www.icgc.cat/en/Downloads/Elevations/Lidar-data
https://www.istat.it/it/archivio/104317
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Figure 2.10: 3D rendering of the DSM of a portion of the city of Florence (IT).
The DSM has been obtained from a LiDAR measurement campaign
and has a precision of 1 point per meter.

number of different MNO available for each technology for each censuary
section. In the second case, similar data are mapped over a gridded square
with a cell size of 1x1 km.

Fig. 2.11 shows a coverage map from the AGCOM dataset. All datasets
are available for download on the AGCOM website20

2.3.5 Visibility Analysis

Visibility analysis represents a pivotal GIS technique, finding applications
across a myriad of disciplines such as telecommunications [40], [41], urban
planning [42], and archaeology [43].

It is of particular interest in the context of wireless networks where,
as we have seen in Sect. 2.2.1, LoS and NLoS conditions significantly
impact performance. This technique allows network designers to assess

Area Country Density Source

Milan IT 1p/m2 Italian Ministry of Environment 14

Tuscany IT 1p/m2 Tuscany Region 15

Naples IT 1p/m2 Province of Naples16

Trentino IT 1p/m2 Province of Trento 17

Luxemburg LU 4p/m2 Luxemburg National Geoportal 18

Catalunya ES 9p/m2 Catalunyan Cartographic Institute 19

Table 2.2: Table detailing the different LiDAR datasets.

14http://www.pcn.minambiente.it/mattm/
15http://www502.regione.toscana.it/geoscopio/cartoteca.html
16https://sit.cittametropolitana.na.it/layer.php?id=sit:quadro_unione_

lidar_dsm
17https://siat.provincia.tn.it/stem/
19https://geoportail.lu/en/
20https://maps.agcom.it/

http://www.pcn.minambiente.it/mattm/
http://www502.regione.toscana.it/geoscopio/cartoteca.html
https://sit.cittametropolitana.na.it/layer.php?id=sit:quadro_unione_lidar_dsm
https://sit.cittametropolitana.na.it/layer.php?id=sit:quadro_unione_lidar_dsm
https://siat.provincia.tn.it/stem/
https://geoportail.lu/en/
https://maps.agcom.it/
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Figure 2.11: Coverage map showing the download speed in the suburbs of
Florence (IT).

how terrain, buildings, and other physical obstructions affect the propa-
gation of RF signals between the transceivers. By applying GIS tools to
high-resolution topographical and architectural data, visibility analysis
provides a comprehensive assessment of where the signal will be strong
enough to meet performance criteria and where it may be degraded or
lost entirely.

These obstructions can cause signal reflection, diffraction, and absorp-
tion, affecting the network’s reliability and performance.

Several computational methods and algorithms can aid in conducting
visibility analysis, ranging from simple LoS calculations to more complex
models that consider various types of signal interference and attenuation.
The integration of these tools with GIS technology allows for a more
accurate and efficient design process.

2.3.5.1 LoS determination

The basic block in visibility analysis is the determination of the LoS be-
tween two points. Given two points in the 3D space pi = (xi, yi, zi) and
pj = (xj, yj, zj), and a DEM matrix E, the objective is to establish whether
the direct line joining these points intersects with the DEM. Specifically,
this means determining if the elevation of the DEM at any point lies below
the height of the line. Formally:

Υ(E, pi, pj) = E[xk, yk] < pk ∀pk ∈ f (pi, pj) (2.24)

Where f (pi, pj) is a function that computes the points of a raster (in our
case E) that approximate the line between the two points pi and pj. Such
a function can be implemented using the well-known Bresenham’s line
algorithm [44], which chooses the raster’s cell whose center is the closest
to the line. Fig. 2.12 depict the result of the Bresenham algorithm.

In practice, implementing the LoS determination can be more difficult,
as we need to take into account aspects such as the earth’s curvature,
and it has to be parallelizable on a large number of points. During this
thesis, the work by Osterman [45] has been adapted and implemented



2.3 towards more realistic studies: the use of gis and geodatasets 31

Figure 2.12: Illustration of the result of the Breshenam’s line algorithm for pi =
(1, 1) and pj = (11, 5).

.

in Numba [46], a Python framework for parallel and GPU computing
and run on NVIDIA GPUs. Algorithm 2.1 shows the pseudocode of the
implementation. We can see that its complexity is linear in the distance
between the two points.

2.3.5.2 Viewsheds

We can now move to the 2D extension of the LoS algorithm, which is the
viewshed algorithm. We are interested in determining the LoS between a
single point, usually called observer, and a large set of other points on the
DEM (Λ). We generally refer to the result of this operation as the viewshed
σi, binary matrix, representing the visibility from the observer point pi to
all the other points pj = (x, y) of the DEM E, defined as:

σi
x,y =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 (x, y) /∈ Λ

0 d(pi, pj) ≥ dmax

Υ(E, pi, pj) otherwise

(2.25)

where Υ is the function defined in Eq. (2.24), d(pi, pj) is the euclidean
distance between two point, and dmax is a technology-dependent arbitrary
maximum communication distance.

Fig. 2.13 shows the viewshed computed over set Λ representing the
roads, from an observer point on the corner of a building.

A naive implementation could take advantage of the algorithm shown
in the previous section and call it iteratively for any point on E. However,
this would be highly inefficient, with a complexity of O(n3) with respect
to the width (or height) of the area.

More efficient approaches with lower complexity have been studied
[47], with the most notable one being the sweep algorithm from van
Kreveld [48] with a complexity of O(nlog(n)). In this thesis however, we
focused on the advantages brought by GPU computing, which can dra-
matically accelerate such algorithms and we have adapted an algorithm
from Osterman et Al. [45] that runs with O(n2) time complexity. We don’t
report the algorithm as it is available on the original manuscript.
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Algorithm 2.1 Algorithm for the computation of a single Line-of-Sight on
a CUDA kernel.
Require: E (DEM of the area), pi (source node), pj (target node)

1: procedure Υ(E, pi, pj)
2: (xi, yi, zi) = pi ▷ Read coordinates of source node
3: (xj, yj, zj) = pj
4: xs = xj − xi
5: ys = yj − yi
6: d = ||pj − pi||2 ▷ Calculate the euclidean distance
7: hc =

√
d2 + Re2− Re ▷ Calculate earth curvature height correction

8: zj = zj − hc ▷ Correct the height w.r.t. the earth’s curvature
9: if |xs| > |ys| then ▷ Find dominating axis and compute the step

values
10: stepx = 1 ∗ sgn(xs)

11: stepy = ys/|xs|
12: steps = |xs|
13: else
14: stepy = 1 ∗ sgn(ys)

15: stepx = xs/|ys|)
16: steps = |ys|
17: end if
18: t = (−zi − 2 + zj + 2)/d ▷ Calculate the slope of the Line of Sight
19: for j← 0 to steps do ▷ Iterate over the dominating axis
20: x′ = stepx ∗ j + xi
21: y′ = stepy ∗ j + xj

22: dx′ = x′ − xi
23: dy′ = y′ − yi
24: d′ =

√
dx′ ∗ dx′ + dy′ ∗ dy′

25: h′c =
√

d′2 + Re2 − Re
26: z′ = E[int(x′), int(y′)]− h′c ▷ Read the height of the current

point and correct
27: l = t ∗ d′ + z′ + 2 ▷ Calculate the height of the Line of Sight
28: if z′ > l then
29: return 0
30: end if
31: end for
32: return 1
33: end procedure
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Figure 2.13: Representation of a viewshed computed in an urban area from the
corner of a building.

2.3.5.3 Set of viewsheds

A further extension of the viewshed analysis is the analysis from multiple
points (a set P). By doing so, we obtain a set of viewsheds (Ω) that can be
used in several ways. Formally, let define Ω as:

Ω = {σi ∀ pi ∈ P} (2.26)

cumulative viewsheds One first application of this set is the compu-
tation of the cumulative viewshed (σ⋆). In fact, by summing together the
cells of each viewshed, for each viewshed of the set, we obtain a single
viewshed, with values ranging from 0 to P that represents the cumulative
visibility from the set of points P . In other words, if an element σ⋆

x,y is
equal to 0 it means that it’s not in visibility with any of the points in P ,
and if it is equal to n it means that n points in P are in LoS with (x, y).

This type of analysis is often used in archeological studies [43] and in
landscape planning [42].

Formally each element (x, y) of the cumulative viewshed σ⋆ can be
defined as:

σ⋆
x,y = ∑

σi∈Ω

σi
x,y (2.27)

By changing the operation performed on the matrixes, such as by using
the bitwise and (

⋀︁
) or the bitwise or (

⋁︁
) instead of the sum (Σ), we can

obtain different results, as done in the following researches, specifically in
Chapter 3.

2.3.5.4 Visibility Graphs

A visibility graph is a graph of locations that are mutually visible to each
other. Their use ranges from robotics, where they are used to navigate a
space filled with obstacles [49], to physics where they are used as a tool to
analyze time-series [50]. In the context of telecommunication they have
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been widely used as a tool to optimize the placement of radio antennas
[41] and more broadly for telecommunication network planning [40].

More formally, given a set of points Nv, and a DEM matrix E. The
visibility graph G(Nv, Ev) can be defined as follows:

Ev = {(vi, vj) s.t. Υ(E, vi, vj) = 1 ∀(vi, vj) ∈ Nv ×Nv} (2.28)

In other words, it is a graph whose vertices are points on the space and
whose edges represent mutual LoS between those points. Algorithm 2.2
shows the algorithm used for the computation of visibility graphs, taking
advantage of the function Υ introduced in Eq. (2.24) and implemented
in Algorithm 2.1. Its complexity is cubic, or more precisely it is equal to
O(|Nv|2 · dmax), where dmax represents the maximum distance between
two points in Nv.

Algorithm 2.2 Algorithm for the computation of G(Nv, Ev).

Require: E (DEM of the area), Nv (Set of points),
1: procedure GENERATE G(Nv, Ev)(E, Nv)
2: Gv = 0
3: for pi ∈ Nv do
4: for pj ∈ Nv \ {pi} do
5: G(Nv, Ev)[i, j] = Υ(E, pi, pj)

6: end for
7: end for
8: return G(Nv, Ev)

9: end procedure

2.3.6 Set covering algorithms

An additional application of viewshed analysis, specifically using the set
of viewshed Ω, that we explore thoroughly in Sect. 3.2 and Sect. 3.3, is
the application of set covering algorithm to the set of viewsheds Ω. By
employing these techniques is possible to develop heuristics to optimize
the placement of gNBs for LoS communications.

Let briefly recall the general set cover problem: Given a set of elements
U and a collection S = {s1, s2, . . . , sn}, such that si ⊂ U ∀ si ∈ U and⋃︁ S = U the objective is to find a sub-collection S ′ ⊂ S with minimal size
(min |S ′|), that covers all the elements of U (

⋃︁ S ′ = U). The problem
is known to be NP-complete, but polynomial-time heuristic exists with
bounded error [51], [52].

We can then adapt its definition to our problem: Given a set Λ and a
collection of viewsheds Ω, where each σi is a subset of elements of Λ, we
need to find a minimal subset Ω′ ⊂ Ω that covers the entire Λ.

In our placement problems, Λ is the set of points on a public street,
and σi is the set of points covered by a specific gNB. However, we can
introduce some differences compared to the classical problem obtaining
different problems that we will explore in the rest of this thesis. First,
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we want to achieve reliability by covering each element multiple times;
second, we do not want to fully cover each set, but we tolerate a small
percentage of uncovered points; and third, we want to weight each ele-
ment of the set by following a vehicular traffic model. The first problem
is generally referred to as a multi-cover problem and the second one is a
partial-cover problem. Their intersection yields a less studied, yet more
difficult problem [53], which in recent works has been solved through the
use of heuristics and integer linear problems [54], [55]. These solutions
are unfortunately computationally impossible to solve in our context of
large-scale optimization.

Additionally, we might want to associate a demand to each element of
Λ, so that we can skew the placement algorithm to cover some areas that
we know have an higher density of devices. This problem is generally
referred to as the weighted maximum coverage problem and is a general-
ization of the set-cover problem 21. It retains its NP-completeness and is
approximable by a greedy heuristic with bounded error [56].

The intersection of the multi-coverage with the weighted variant, i.e.
providing reliable coverage by following a vehicular demand model, has
not been studied in this thesis and is left for future analyses.

21By equally weighting all the elements of the set, the problem converges to the classic
set-cover problem.





3 N E T W O R K D E N S I F I C AT I O N A N D
W I R E L E S S B A C K H A U L I N G

The advancement of 5G networks has highlighted numerous challenges
and factors to consider, with network densification standing out as a vital
aspect. This chapter specifically addresses network densification in the
context of 5G and Wireless Backhaul Network (WBN), focusing on the
role of Integrated Access and Backhaul (IAB).

In telecommunications, densification typically involves increasing the
number of Next Generation Node Bases (gNBs) in a specified area to
enhance both capacity and coverage. The promise of 5G, with its high data
rates, reliability, and low latency, requires an effectively dense network
configuration. However, simply adding more gNBs without methodical
planning can lead to suboptimal performance. It’s therefore essential to
have methodologies that guide both the strategic placement of gNBs and
their efficient interconnection.

One of the fundamental challenges in wireless transmission is the ac-
curate assessment of Line of Sight (LoS) and Non-LoS (NLoS) conditions.
The quality of the wireless channel is significantly influenced by these
conditions and traditional methods of estimating it often fall short of
providing a realistic representation, especially in dense urban settings
where obstructions and interferences are common. Thus, there is a need
for innovative techniques that can provide more accurate estimations.

In this context, this chapter introduces the application of visibility analy-
sis techniques, drawing from the field of Geographic Information Systems
(GIS), in Radio Frequency (RF) planning. These techniques allow for the
creation of models and datasets that offer realistic estimations of LoS and
NLoS conditions, which are crucial for optimizing the performance of 5G
networks in dense environments.

This chapter comprises four key studies that delve into this subject.
These works, published on journals or in the progress of being published,
provide a comprehensive understanding and solution framework for the
challenges posed by network densification.

The first study, published in 2022 by IEEE Transaction of Network
and Service Management [10], explores the optimal placement of gNBs
in ultra-dense access networks. In fact, the ongoing transition towards
high-frequency communication is challenged by both fixed obstructions,
such as buildings, and mobile obstructions, such as vehicles, which can
significantly impact signal propagation. By leveraging visibility analysis,
this study investigates their placement based on LoS conditions across 3
different urban areas in Italy by leveraging different optimization targets,
so that each point on the ground is covered by multiple gNBs. Through ex-
tensive simulations, the study also identifies lower bounds on the required
density of gNBs to achieve such coverage.

37
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The second study presented in this chapter, published initially at The
18th Annual Conference on Wireless On-demand Network Systems and
Services [7] and then invited for an extension on the Computer Communi-
cation Journal [2] where it’s undergoing the review process, extends the
aforementioned placement optimization algorithms in the context of ve-
hicular networks. Here we analyze how the need for densification differs
between a vehicular-centric and a pedestrian-centric network. Moreover,
by applying channel models for millimeter wave (mmWave) communica-
tion, we evaluate the capacity of such networks at different gNB densities.

The subsequent two studies shift focus to the interconnection of these
nodes, a process called backhauling. These studies introduce the concept
of visibility graphs in the research area of telecommunications, where per-
formance evaluations are often carried out with simplistic assumptions
that do not resemble the real world or by leveraging on computational-
intense methods, such as ray-tracing, which however constrain the evalu-
ation on small areas.

The third, published as a Work In Progress paper at the 22nd Inter-
national Symposium on a World of Wireless, Mobile and Multimedia
Networks [11], introduces the idea of exploiting visibility analysis to back-
haul design and compares Its applications to more traditional approaches.
It also implements a state of the art algorithm for reliable topology design
and tests its application on the visibility graph.

The fourth, and last, research, published in 2023 by IEEE Transaction of
Network Science and Engineering [8], further extends this, by analyzing
9 different Italian municipalities for which the visibility graph is built
between all the buildings in order to characterize topologically the connec-
tivity of those areas. Visibility graphs are then compared to less realistic
– yet widely-used – topological models that leverage the simplistic as-
sumption, such as LoS probability models, in terms of their topological
properties. Moreover, by applying state-of-the-art backhaul topology de-
sign algorithms on both the visibility graph and the less-realistic graphs,
further evaluation are carried out to demonstrate the need for more realis-
tic topological models.

3.1 related works

The background of these studies is rooted in different, but related re-
search areas: cellular networks, visibility analysis, set covering algorithms,
wireless backhaul topology design, and channel models. Some of these
topics have already been covered previously in Sect. 2.2.1 and Sect. 2.3.5.
Here below we detail the state of the art related to the one specific to this
chapter.
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3.1.1 Cellular Networks

The placement of gNBs has been widely studied since the deployment
of the first mobile networks [57]. The topic has gotten more focus lately,
due to the densification of gNBs, but the specific topic of LoS coverage
has not received much attention. Even very recent works as [58] base
their analysis on antenna directionality, but disregard the 3D geometry
of the problem. Anjinappa et al. [59] investigate the optimal placement
for gNBs and passive reflectors in two urban areas; however, they do not
consider any cost model or try to account for the Capital Expenditure
(CapEx) to deploy such a network. Zhang et al. [60] tackle the problem of
gNBs placement by trying to minimize the outage probability by studying
a regular, Manhattan-style urban topology, while Haile et al. [61] use an
approach similar to ours, for NLoS communications. Another branch of
research focuses on the placement of Unmanned Aerial Vehicles (UAVs)
base stations [62] but has different requirements compared to our problem.

Research investigating placement strategies to optimize mobile cover-
age by taking advantage of realistic traffic data seems, to the best of our
knowledge, to be missing. The most similar research, from Jaquet et Al.
[63] is focused on enhancing vehicular networks by taking advantage of
unmanned aerial vehicles. Another research, from Anjinappa et Al. [64],
optimizes the placement of mmWave gNBs and Passive Metallic Reflec-
tors to provide LoS coverage, lacking however a validation on realistic
traffic models. Devoti et Al. [65], proposes a network planning framework
for mmWave networks, which takes into account angular separation and
links length to optimize the placement of gNBs in an urban scenario. Fiore
et Al. [66], introduces Reconfigurable Intelligent Surfaces (RISs) and op-
timize the placement of both RISs and gNBs to increase the reliability of
IAB networks.

Similar problems have also been addressed for the placement of sensors
and cameras. Sensors are, in fact, assumed to be able to perceive events
in a certain area around them, and one problem is finding the minimal
deployment of sensors that cover each point multiple times. This problem
is not new [67] and received a lot of attention [68], but the constraints
and the solutions are very different from network coverage: The visibility
regions of urban public spaces are not unit circles nor stochastic regions;
furthermore, there is no reason to keep points connected because they are
not communicating with each other, and our points are contiguous and
not randomly distributed on a 2D space. Regarding camera placement, a
common problem is placing a minimal set of cameras to monitor a certain
area, or a certain number of objects in space [69]. The problem is only
partly similar because cameras can be oriented, they can pan and zoom,
and deployments are in the order of tens of cameras, while we have tens of
thousands of potential locations. However, given the similarity to network
coverage, we adapt the heuristic proposed in [70] that tries to achieve a
fair coverage of selected targets from multiple cameras.
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3.1.2 Wireless backhaul topology design

Several works have been proposed in the past to design a wireless back-
haul for 5G networks with different optimization targets: reliability [71],
energy efficiency [72], and cost [73]. These studies rely on mmWave links
or free-space-optical links [74], both requiring LoS between the endpoints.
The introduction of IAB in the latest revision of 5G provided a concrete
application and reinforced the interest in the creation of efficient backhaul
topologies [75]–[78].

To the best of our knowledge, works that focus on the design of wireless
backhaul topologies take a very simplistic approach in modeling the
characteristics of the visibility graph, due to the total absence of literature
that characterizes the realistic properties of visibility graphs. In the same
way, works on mobile networks often leverage unrealistic gNBs placement
strategies to evaluate their contributions. For these reasons, we stress the
need for realistic topological models, as well as gNB placement algorithms
to be published. So that future researchers can use them to evaluate their
contributions more effectively.
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3.2 reliable LoS coverage for urban areas

In this research, we used a novel 3D approach to estimate the w-coverage,
i.e., the coverage with multiplicity w, and the cost of its deployment, by
extending existing heuristics developed for two NP-complete problems:
set coverage and minimum partial set multi-cover problems. The solution
to these problems returns the optimal placement of gNB for LoS communi-
cation in urban areas, with different objectives depending on the different
metrics we proposed and evaluated.

The analysis was carried out on 3 Italian Cities (Trento, Firenze, and
Napoli) where we selected 5 central areas with an average size of 0.7 km2

for a total of 15 different locations. As both the code and datasets had
been released with open-source licenses, the extension to other areas is
straightforward.

We considered placing antennas on buildings’ facades, and we used
state-of-the-art GIS techniques implemented on Graphics Processing Unit
(GPU), as described in Sect. 2.3.5.2, to estimate the LoS coverage with its
multiplicity on the ground area identified by public streets.

We then evaluated the coverage, and the cost necessary to achieve it,
offering significant insight on the problem of robust coverage for LoS
communication, ranging from the effective number of gNBs required to
achieve a given coverage (e.g. 90 or 95%) to building selection strategies
to reduce the coverage cost.

The contribution of this research addressed two different aspects of
coverage planning related to mmWave and in general to ultra-high fre-
quency technologies that require LoS for good performance. The first one
relates to the algorithms available to solve the multi-coverage problem
to increase the robustness and resilience of the network. We considered
state-of-the-art algorithms derived from visibility analysis problems and
adapted them to tackle communication networks’ planning, showing how
to modify them and how they affect the network design.

The second contribution is the first quantitative analysis of real urban
data on the required density of gNBs to achieve a robust and reliable
coverage with mmWave and THz communication. The results we present
show that in general between 60 and 120 gNBs per km2 are sufficient for
LoS coverage in public streets when the maximum distance between the
User Equipment (UE) and the gNB is set to 300m. This is consistent with
the estimate of 100 gNBs per km2 often mentioned by operators [16] and
academics [58].

3.2.1 Problem constraints and Optimization Goals

As LoS communications prevent placing gNBs on roofs, we assume their
deployment on the facades of buildings, a location that is already used by
telecommunication companies to install fiber-to-the-home splitters and
4G small cells.
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Symbol Type Definition

D Set Digital Elevation Model (DEM)

E Matrix Matrix Representation of DEM

pi, pj Vector Generic points in a 3D space

sr Set The points of the perimeter of building r

A(sr) Function Function that returns the points inside sr

R Scalar Number of buildings

Sr Matrix Rasterized building shape

δ() Function Dilation

Pr Matrix Rasterized perimeter of the building r

Cr Set Set of potential coordinates on the border of building r

Λ Set (x, y) coordinates of street points to cover

σi Matrix Ground visibility from the point pi

Ω Set Ground visibility matrices

Γ() Function Maximum coverage heuristic

Table 3.1: Symbols and notation used. In general scalars and vectors are standard
math characters and matrices’ names are bold. Sets are calligraphic
letters, elements of a matrix use the same name of the matrix and
appropriate pedices, e.g., σi

x,y is an element of matrix σi.

Let A(sr) be the area contained in a polygon sr that represents the 2D
perimeter of a building, which we obtain from open datasets, and let R
be the total number of buildings in the area. Given a building r whose 2D
perimeter is represented by sr, we implement a function that transforms
the polygon into a binary matrix Sr of the same dimensions of E, so that:

Sr
x,y = 1 ⇐⇒ (x, y) ∈ A(sr) (3.1)

In order to isolate the border points of the building, we use a morpho-
logical operation δ() called dilation, which dilates the binary matrix of the
polygon by one unit in every direction [79] and sets to 1 the corresponding
coordinates. Then given the matrix Sr we define its perimeter using a
matrix Pr as:

Pr = δ(Sr)− Sr (3.2)

Figure 3.1 shows the graphical representation of the matrices Sr and Pr.
We assign to every point on the perimeter a height from the ground zr

that is the minimum between the height of the building minus one meter
and 10 m from the street level, and finally we define the set of coordinates
Cr as:

Cr = {(x, y, zr) | Pr
x,y == 1} (3.3)

Eq. (3.3) identifies a set of potential positions for gNBs on the facade of
building r. Each point lies on the border of the buildings and it is placed
at the height of the building, or at 10 m from the ground if the building
is taller than 10 m (as the ITU recommendations for micro cells in urban
areas suggest [27]). In every area we have roughly 500 to 700 buildings,
the set of points pi ∈ {∪rCr} is the set of potential locations where to
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place our gNBs. As the average number of points per building perimeter
is roughly 100 we have a total of 50, 000 to 70, 000 potential gNB locations.

3.2.1.1 Defining the Ground Visibility Matrix

We use street maps provided by Openstreetmap, where each road is
identified by a mono-dimensional line that represents the center of the
street. We expand the line to make it a 2D surface and we call Λ the set of
all (x, y) coordinates of the points on the street, obviously (x, y) ∈ Λ →
(x, y) /∈ A(sr) ∀r < R. Let us now consider all points pj of coordinates
(x, y, Ex,y + 1.5) where (x, y) ∈ Λ. The point pj is a point in the street
elevated by 1.5 m from the ground, a common assumption of the position
of a mobile terminal. Assume pi is the position of a gNB, we call σi the
viewshed matrix computed from such point, as defined in Eq. (2.25).
Figure 3.2 shows the graphical rendering of a matrix σi.

Given all the potential locations of gNBs, i.e., the union of all the sets
Cr, let Ω be the collection of all potential visibility matrices:

Ω = {σi ∀ pi ∈ {∪rCr}} (3.4)

and let k be the number of gNB we want to install in that specific area.
The problem can be expressed as the search of a subset Ω′ ⊆ Ω that
maximizes w-coverage, with |Ω′| ≤ k. We start by defining 1-coverage,
which is intuitive, and we then extend the approach to arbitrary values of
w.

3.2.1.2 Maximizing 1-coverage

Let | · |0 be the L0 norm of a matrix (the number of non zero elements); the
problem of maximizing 1-coverage can be formalized as the search of a
subset Ω′ ⊆ Ω, such that

|Ω′| ≤ k and
⃓⃓⃓
∑ σi ∈ Ω′

⃓⃓⃓
0

is maximised. (3.5)

This is a classical maximum coverage problem, in which we have a
collection Ω of sets, each set has elements in Λ and given k, we need to
find the k sets that cover the largest number of elements of Λ. Being a
set covering problems, it is NP-complete and can not be solved exactly
when |Ω| and |Λ| are in the order of tens of thousands. We leverage a
polynomial heuristic with bounded error [80] that allows finding a semi-
optimal solution in a reasonable time, extending it to fit our problem.
Since the maximum coverage problem can be seen as a special case of
maximization of submodular functions with a cardinality constraint, we
can state that the error of this polynomial heuristic is bounded and it
matches the theoretical bound [51] [81].

3.2.1.3 Maximizing w-coverage

The interpretation of Eq. (3.5) is straightforward: given a number k of gNBs
that can be deployed to cover a certain area, we want to have visibility
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Figure 3.1: Dilation of a building r with its perimeter points Pr in blue (each
pixel represents a point) and the rasterized building shape Sr in black.
© 2022 IEEE

Figure 3.2: Ground coverage σ0 (light green) from a gNB in point p0 (black) in
a portion of the city of Florence. Figure shows also the buildings’
shapes sr (red), the set of points on the street Λ (grey) and other gNB
locations (purple). © 2022 IEEE

from at least 1 gNB to the largest possible number of points in the public
streets.

The 1-coverage is sufficient to claim to be covering an area, but does
not provide reliability because there can be obstacles that obstruct the
LoS with the gNB, the most obvious one being the person that holds
the terminal, but also other people, cars, trucks, and so forth. The goal
of a good coverage plan must be to provide 1-coverage to the largest
area, but also a reliable service to mobile users, thus the problem is better
formulated as a w-coverage, with a suitable w.

Maximizing w-coverage can be formulated as finding Ω′ such that:

|Ω′| ≤ k and, given Φ = ∑ σi ∈ Ω′⃓⃓
{Φx,y ≥ w}

⃓⃓
is maximised,

(3.6)
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where Φ is a matrix populated with the multiplicity of the coverage for
each point.

This is an extension of the set covering problem known as minimum par-
tial set multi-cover problem, it is NP-complete [55], and no efficient heuristics
are yet known. To solve this problem, we start from a heuristic proposed
for multi-camera visibility [70] and, after analyzing the specific problem
and goal, we propose a simpler one with comparable performance.

3.2.2 A generic heuristic for w-coverage

The goal of w-coverage is to guarantee a robust and efficient coverage,
but in communications it has many subtleties that need to be considered,
in particular, the problem that a complete w-coverage in real cities is
probably impossible or simply too costly to pursue, so one has to take
into account also the points where the coverage is smaller than w, solving
dilemmas as, for instance, is it better to add an antenna that improves the
1-coverage in n points or one that improves the w coverage in m other points?

To achieve this goal we wish to have a single approximation algorithm
where different metrics (or score functions) can be applied to explore
different balances of the coverage. Algorithm 3.1 describes the heuristic
we propose to tackle the w-coverage problem, extending the heuristic
algorithm for set coverage proposed in [80].

Let us first introduce the notation used in the algorithm. Let 0 be the
matrix of dimension mx × my of all zeros. We also introduce the sum-
capped-to-w operator with symbol +w so that given matrices B, D, then
A = B +w D is a matrix whose elements are: Ai,j = min(w, Bi,j + Di,j).

Algorithm 3.1 works as follows. It takes in input a set of ground visibil-
ity matrices Ω, each one corresponding to a point pj where a gNB can be
placed, a number k of gNBs to be placed, and the desired value for w. It
returns a subset Ω⋆ ⊂ Ω corresponding to the set of the viewsheds (1-t-1
mapped to gNB positions) that provide a close-to-optimal w-coverage.
Line 2 initializes the matrix C at 0. The points on public streets are con-
sidered by the algorithm, the others remain untouched at zero. Line 3
initializes the set Ω⋆ to an empty set. Every iteration of the loop beginning
at Line 4 chooses a new viewshed σ j (corresponding to a possible gNB lo-
cation) to be added to Ω⋆. To select the viewshed above, every iteration of
the loop beginning at Line 6 evaluates the additional coverage offered by
every possible viewshed, i.e., every possible candidate position for a gNB.
C⋆ is defined at Line 7 as the matrix of the points covered if the candidate
viewshed σ j is added to the set. Every element of C⋆ is thus the result of
the element by element sum capped to w of the already existing coverage
plus the viewshed σ j. The score function ρ(C⋆, k) at Line 8 is the core of
the algorithm that actually defines the metric by which candidate gNB
locations are ranked. Sect. 3.2.2.1 discusses three different score functions
we propose and evaluate.

The score functions are defined so that a better coverage obtained by
adding σ j corresponds to an algebraically higher value of hj. Line 9 checks
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Algorithm 3.1 Computation of approximate solution to the maximum
coverage and minimum partial set multi-cover problems

Require: Ω (Set of viewsheds), k (number of gNB), w (w-coverage)
Ensure: Ω⋆ (Set of the viewsheds from optimal locations)

1: procedure Γ(Ω, k, w)
2: C = 0
3: Ω⋆ = {}
4: for i← 0 to k do
5: h⋆ = −∞
6: for σ j ∈ Ω do
7: C⋆ = C +w σ j

8: hj = ρ(C⋆, w) ▷ Calculate score
9: if hj > h⋆ and σ j /∈ Ω⋆ then

10: σ⋆ = σ j; h⋆ = hj
11: end if
12: end for
13: C = C +w σ⋆ ▷ Update covered elements
14: Ω⋆ = Ω⋆ ∪ {σ⋆}
15: end for
16: return Ω⋆

17: end procedure

the score and, if the score for candidate σ j is greater than the largest found
so far, the candidate σ⋆ and its corresponding score h⋆ are updated. Finally,
Lines 13 and 14 update the coverage C and the list of selected viewsheds
Ω⋆; at the end of the algorithm, Ω⋆ is returned, also yielding the selected
gNB positions.

3.2.2.1 Score Functions

The final outcome of Algorithm 3.1 depends on the score function ρ(),
which specifies, step-by-step, the metric for the best σ j selection. These
functions express how the algorithm will push towards 1-, 2-, . . . or w-
coverage at each iteration. We introduce here three functions that assign a
different importance to different levels of coverage; Sect. 3.2.5 analyzes
their impact on the final outcome.

3.2.2.2 w-coverage Maximization (w-cm)

The first score we consider is a simple 1-norm (sum of all the elements) on
the candidate coverage C∗ computed at Line 7 in Algorithm 3.1:

ρ(C∗, w) = |C∗|1 (3.7)

For w = 1 applying Eq. (3.7) in Algorithm 3.1 solves the canonical maxi-
mum set coverage problem. For w > 1 it returns the global weight of C∗

elements, thus Algorithm 3.1 ends up in maximizing the weighted cover-
age, without any attempt to prioritize the points that have zero coverage
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over the ones that have coverage between 1 and w− 1. Notice that C∗

are capped to w, so that points whose coverage is larger than w do not
influence the score. Besides its simplicity, this naive function completely
disregards the difference between a point that is not served at all and one
that already has coverage, but whose coverage is improved by adding the
considered viewshed.

w-coverage fairness (w-cf) Reducing the difference between dif-
ferent levels of coverage resembles a problem of fairness, thus we recall
the well-known fairness index proposed by Ray Jain [82], that applied to
our problem can be written in terms of matrix norms as

FI(C∗) =
(|C∗|1)2

|Λ|(|C∗|2)2 (3.8)

the 2-norm is the square root of the sum of the squared elements of the
matrix.

The fairness pushes all elements of C∗ to a similar value, but alone does
not provide a useful score, since we are interested in a wide, fair coverage
and not only in a fair one (all 0-coverage is perfectly fair). This problem
has been analyzed in the context of visual coverage in sensor networks in
[70], and we adopt the same cost function proposed there, which, adapted
to the problem and with the notation of this paper can be formalized as

ρ(C∗, w) = FI(C∗)× |C
∗|1
|Λ|w =

(|C∗|1)2

|Λ|(|C∗|2)2 ×
|C∗|1
|Λ|w (3.9)

FI(C∗) is weighted by the ratio between the 1-norm of the 1-coverage and
the target w-coverage (|Λ|w), so that the first factor of Eq. (3.9) tries to
balance the coverage and the second tries to extend it.

w-coverage gap (w-cg) The score defined by Eq. (3.9) is composite
(a multiplication of two factors aiming at different goals), and its inter-
pretation not always straightforward, thus we propose a third, simple
metric whose goal is to weight the gap between the actual coverage and
the target coverage with a quadratic function. Let 1 be the mx ×my matrix
with 1 in all the positions that need to be covered and 0 otherwise. The
target coverage can be expressed simply as 1 · w, and the score becomes

ρ(C∗, w) = −(|1 · w−C∗|2)
2 (3.10)

We use the squared value of | · |2 for computational efficiency. Since this
score measures a gap from the intended coverage, we use its negative
value so that Algorithm 3.1 remains consistent in selecting the algebraic
maximum.

When w = 1 Eq. (3.7) and Eq. (3.10) yield exactly the same result, while
Eq. (3.9) returns a different numeric result (values are divided by |Λ|2)
but the obtained ranking is the same of the other two. For this reason,
Sect. 3.2.5 presents only 1-CM results, while for other values of w all metrics
are reported.
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3.2.2.3 Complexity

Algorithm 3.1 is composed of two nested loops, the first one iterates
over the number k of gNBs that are to be deployed and the second one
iterates over the number of potential locations |Ω|. At each inner loop the
algorithm computes a score hj by calling the function ρ. All score functions
loop iteratively over all the values of |C∗|, so they have time complexity
O(|C∗|). This leads to a worst case time complexity of O(k |Ω| |C∗|).

The memory required to execute the algorithm is bounded by the num-
ber of ground points (Λ), as the algorithm allocates a 2-dimensional matrix
of size (|Λ|, |Ω|) (Line 2). At Line 7 we allocate a new temporary matrix C∗

of the same size. Since we only need to store a boolean value for each cell
of the matrix, we can use the smallest datatype available, which is uint81.
Thus the memory footprint is 2 |Λ| |Ω| bytes. The memory footprint of ρ

is constant.

3.2.3 Three-step heuristic

The heuristic presented in the previous section finds what we call the
semi-optimal placement for the gNBs. Given a certain number k of gNBs
that the operator can afford to place, it provides the best locations where
these gNBs should be placed. Iterating on values of k, we can answer the
question: what is the minimum number of gNBs and their positions to obtain
w-coverage of a certain fraction of points on the street, e.g. 95%? However,
Algorithm 3.1 treats every σ j in Ω the same way, irrespectively of the
building it corresponds to. This means that if convenient, the algorithm
can place one gNB per building, or even all gNBs in the same building.
Albeit theoretically possible, these configurations would be practically
impossible or not cost-effective. To produce realistic results we need to
introduce two practical constraints based on the cost estimation of a gNB
deployment.

In a study done in 2020, Oughton et al. calculated the cost of a 5G small
cell to be 20100$, of which only 3380$ were accountable to the radio2 while
the rest includes several fixed costs for constructions, hardware, backhaul
fiber network, etc. that are needed to realize the gNB [83]. We assume that
a multi-radio small cell can be realized keeping the fixed cost constant,
and increasing the number of radios up to a maximum of 5 per gNB. This
is a free parameter of our algorithm and can be adjusted to any other
value.

We designed a heuristic that applies Algorithm 3.1 in three steps to limit
the number of buildings on which to place gNBs and the number of radios
per gNB: First, for every building, it finds the best 5 points that maximize
the building visibility; Second, it finds the top g buildings ordered by their

1Theoretically a single bit could be used, but the Numba architecture does not support
it.

2These costs have been converted to Dollars ($) for the sake of readability, in the
original research they were expressed in British Pounds (£).
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cumulative visibility provided by the best 5 points; Third, among the best
5 points of the top g buildings, it finds the overall best k locations for the
gNBs. The choice of g is key for the final result, in fact, if the target of the
operator is to provide w-coverage to a certain percentage of the points on
the ground, if g is too small such objective may not be reachable. On the
other hand, the larger is g, the higher is the cost of the deployment. The
optimal g is of course scenario-dependent and can be found iterating on
g with our heuristic. Since reducing the number of buildings (and thus
the cardinality of Ω) makes the 3-step heuristic faster than the original
one, the optimal g for an area of roughly 0.7km2 with 135 gNB/km2 can
be computed in around 1 minute.

Note that the formulation of the Γ() function in Algorithm 3.1 is ex-
tremely generic as it takes a set Ω of viewsheds as an input, and it returns
another set of viewsheds. We can thus change the input Ω and k and apply
the algorithm three times obtaining semantically different results, without
the need to modify its internals.

3.2.3.1 First step: Point selection

At the first step we limit Ω to the set of all points from a single building.
Let Ωr be the set of all the visibility matrices from points on the (dilated)
perimeter of builing r, then:

Ωr = {σ j ∀ pj ∈ Cr} (3.11)

We apply Γ() using Ωr as the first argument, and limiting the choice to 5
points. We obtain a list of viewsheds from the best 5 points in the building.

Ωr
5 = Γ(Ωr, 5, w) (3.12)

We repeat this step for every building r.

3.2.3.2 Second step: Building Selection

Let Φr be the ground visibility matrix of building r, i.e., the visibility
matrix from the best 5 points on the facade of building r. Φr is defined as
the logical OR (

⋁︁
) of all the binary visibility matrices:

Φr =
⋁︂

σ j∈Ωr
5

σ j (3.13)

and let ΩR = {Φr ∀ r < R} be the set of all the visibility matrices
from all buildings. Invoking the function Γ() using ΩR and g as an input,
we obtain the cumulative viewsheds from the best g buildings. Since the
areas in which we run the experiments are different and contain a different
number R of buildings, in practical terms it is more convenient to refer to
the percentage X of buildings to be used, where g = ⌈ X

100 ∗ R⌉. We then
define:

ΩR
X = Γ

(︃
ΩR,

⌈︃
X

100
∗ R
⌉︃

, w
)︃

(3.14)

that is the set of the best cumulative viewsheds from a percentage X of
the buildings of the area.
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3.2.3.3 Third step: gNB Selection

Step two returns a set of cumulative viewsheds obtained considering the
best 5 points on X% of the buildings, and we use it to select the set BX of
the indices of the best buildings:

BX = {r ∀ r |Φr ∈ ΩR
X} (3.15)

and thus we can define the input to the third and last step of the heuristic:

ΩX = {σ j ∈ Ωr
5 ∀ r ∈ BX} (3.16)

ΩX contains all the possible viewsheds from each of the best 5 points
(selected in step 1), from X% of the buildings that have the best cumulative
viewshed (selected at step 2). As an example consider an area with 600
buildings each of which has an average of 100 points on its border. If
X = 10 then g = 60, and the third step of our heuristic would explore at
most |ΩX| = 60× 5 = 300 locations out of the 60.000 available.

Finally, we apply Γ() again and obtain:

Ω⋆
X,k = Γ(ΩX, k, w) (3.17)

Ω⋆
X contains exactly k viewsheds that correspond to k points in space

where to place gNBs. These places represent the semi-optimal choice
among ΩX, with a maximum of 5 radios per building and X% of buildings.

Similarly to what we did passing from g to X, it is more practical to
target a desired density λ of gNBs per squared km, rather than a number
k. So, given a certain area and λ we have:

Ω⋆
X,λ = Γ(ΩX, λ ∗ area, w) (3.18)

We are now able to compare the coverage obtained in heterogeneous
areas with a target density of gNBs per squared km, using X as a tuning
parameter to obtain the most favorable cost/performance trade-off.

Note that while the original heuristic has a bounded error, our three
steps heuristic loses this theoretical property. However, when used with
X = 100% the effect is to pick the best 5 points for each building, and
then apply the bounded heuristic to this restricted set of points. This
reduces the dimension of the problem, but also corresponds to a practical
constraint in real deployments, since the number of gNBs per building
cannot grow arbitrarily. The application of the three-step heuristic with
X = 100% thus maintains the bounded error, and Sect. 3.2.5 shows that
results with X = 4% are very close with a strong reduction of the cost of
the infrastructure. Finally, since Algorithm 3.1 has polynomial complexity,
its three-step application is again of polynomial complexity.

3.2.4 Experiments Set Up and Metrics

As already mentioned we evaluate 5 areas for each of the three densely
populated Italian cities for a total of 15 scenarios. Trento, Firenze, and
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Figure 3.3: Graphical rendering of the area choosen for the experiment (in dark
grey), its buffer of radius dmax/2 (in light grey), and the set of points
on the street Λ in black. © 2022 IEEE

Napoli, however, have quite different urban textures, so they represent
a valid sample of different urban areas. The average size of the areas is
roughly 0.7 km2 and is limited by the computational power we had access
to, as obtaining Ω⋆

X,λ is a computationally intensive task that requires
handling tens of thousands of large integer matrices. To speed-up the
algebra on large matrices we implemented the algorithms on an NVIDIA
V100 GPU equipped with 5120 CUDA cores, which enables parallelization
of matrix operations. The limit is given by the 16 GB of RAM of the GPU
which limits computation to areas of up to 1 km2. Results can be extended
to larger areas straightforwardly with more resources, and with some
effort by improving the memory space optimization.

Placing the gNBs in a constrained area causes a border effect: Points on
the border of the area can be covered only by the gNBs placed inside the
area, but not from the ones outside the area, which would be present in
the real world coverage. For this reason, we enlarge the area where gNBs
can be placed with a guard band of width dmax/2 m as shown in Fig. 3.3
(light gray area), but we measure coverage only in the inner area (dark
gray area).

3.2.4.1 Evaluation Metrics

To evaluate the performance of different algorithms and their parameters
we calculate the effective coverage, that is the sum of all the viewsheds
σi ∈ Ω⋆

X,λ:
ΦX,λ = ∑

σ j∈Ω⋆
X,λ

σ j (3.19)

This matrix, with the same dimensions of E, contains values ranging from
0 (no LoS with any gNB) to k = λ ∗ area (LoS with all gNBs). Fig. 3.4
shows the effective coverage on a sample area of Napoli.
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Figure 3.4: Graphical rendering of the coverage Φ[4,45] (shades of green), and the
set of optimal points (black dots) in a portion of one of the considered
areas, in Napoli.

Every experiment is repeated varying λ, X and w as reported in Tab. 3.2;
in graphs we report the confidence interval on the 15 areas with confidence
level α = 0.95 as error bars.

coverage The coverage metric, analyzed as a function of X, counts
the number of points with w-coverage normalized by the total number of
points on the public street;

cw(λ) =
γw(ΦX,λ)

|Λ| (3.20)

where γw(ΦX,λ) is a function that counts the number of elements of ΦX,λ

that are greater or equal than w. In the numerical results we show c1(λ),
which expresses the portion of streets covered by at least one gNB, and
c3(λ) the portion of streets covered with higher reliability (at least 3 gNBs).
We also show the coverage distribution on the points of Λ, i.e., the Empir-
ical Probability Density Function (EPDF) of the coverage values.

resistance to obstruction Fig. 3.5 depicts the ground projection of
the rays that connect a point p to three gNBs in two different cases. In both

Parameter Value Descriptioon

λ
{15, 45, 75, 105,
135, 165, 195 }

gNB density

X {2, 4, 100}% Percentage of buildings

dmax 300 m Maximum distance for the links [84]

cgNB 16720 $ Cost of a gNB without any radio [83]

cradio 3380 $ Cost of each radio of a gNB [83]

w {1,3} Target coverage

Table 3.2: Parameters used for the numerical results.
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Figure 3.5: Ground projection of two examples of 3-coverage. Black dots are
gNBs. © 2022 IEEE

scenarios, an obstacle that obstructs an angle α2 + α3 may totally shadow
p, but in the right figure this is way more likely than in the left one, so
w-coverage alone does not necessarily imply resistance to obstruction.
We define αc(p) = 360◦ −max(α1, α2, α3) to be a measure of robustness
against shadowing. It is easy to show that one single object that obstructs
an angle smaller than αc(p) cannot totally prevent LoS with some gNB, so
the larger is αc(p) the better it is. Let Λ2 be the set of points with coverage
larger or equal than 2, then

OR =
|{p ∈ Λ2 | αc(p) > 45◦}|

|Λ2|
(3.21)

provides the fraction of points for which one obstacle that obstructs 45◦

does not prevent LoS. In the absence of finer metrics, OR provides a
heuristic measure of how well the coverage can resist to shadowing.

total cost The cost function we use to evaluate the CapEx for the de-
ployment of the network follows a cost model conceived for 5G networks
[83]. From the model we extract a fixed part cgNB for the deployment of
the gNB in a building, and a variable part for each radio interface of the
node (cradio):

cost(λ) = cgNB ∗ NgNB + cradio ∗ k (3.22)

where NgNB counts the number of buildings on which at least one gNB
has been deployed and k = λ ∗ area. The cost() value depends on the
desired density of gNBs per km2, so it is expressed as a function of λ, but
it is also influenced by X. We also define upper and lower bounds of the
cost function, as:

UB = (cradio + cgNB) · k
LB = cradio · k + cgNB

(3.23)

The upper bound UB is given by the worst case where every coverage
point is a single antenna gNB on a different building, while the lower
bound LB is given by the (practically impossible) network where all radios
are placed on a single building.

marginal cost To estimate the Return on Investment (RoI) of deploy-
ing a robust network, we also evaluate the cost-effectiveness of adding
new gNBs to further improve the coverage. We evaluate the cost of a de-
ployment with growing densities λi. Since the heuristic is deterministic, if
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λi−1 < λi then Ω⋆
X,λi−1

⊂ Ω⋆
X,λi

, and the difference cost(λi)− cost(λi+1) is
exactly the marginal cost of the added gNBs. Similarly, cw(λi)− cw(λi−1)

is the marginal increase of relative coverage. Thus we can define the
incremental cost metric mc:

mc(λi) =
cost(λi)− cost(λi−1)

c1(λi)− c1(λi−1)
(3.24)

that provides an efficiency metric ($/m2) to estimate how cost-effective it
is to increment the density of gNBs to improve coverage.

3.2.5 Results

We present the results following the same order we introduced for the
metrics: coverage, total cost, and marginal cost.

3.2.5.1 1-Coverage

Fig. 3.6 reports cw(λ) for X = 2, 4, 100% and w = 1, 3. Each point is the
average of all 15 areas we consider; vertical bars are the 95% confidence
intervals. Since areas are never overlapping and thus they are indepen-
dent, we can safely consider their average coverage as the outcome of an
i.i.d. random variable, thus the confidence interval can be computed as a
Student-t distribution with 15 degrees of freedom. The confidence inter-
vals are reasonably compact, thus we deem that the results are reliable.

If we focus on the first row (1-coverage) the plots show one key point
of our analysis, that it is possible to obtain a very large c1 in urban areas
with λ below, or very close to 100. This confirms that in urban areas a very
high LoS coverage is achievable with a number of gNBs that is close to
what is expected (roughly ten times what is used for 4G, so λ ≃ 100). We
see in fact that with X = 100 and with X = 4 all the curves reach c1 = 80%
(λ = 45), c1 = 90% (λ = 75), and 1-CM and 3-CG reach c1 = 95% (λ = 105).
We stress that these results were obtained with realistic assumptions: a
limited, realistic number of devices per building and a precise ray-tracing
model based on real data. All curves follow a trend expected in a set
covering problem, with a steep initial rise followed by a saturation phase.

1-CM provides the highest 1-coverage, which is consistent with its de-
sign, while it is important to note that 3-CG, when evaluated on c1, domi-
nates the other 3-coverage strategies on values of c1 > 80%. The difference
is not very large, but it is consistent in the saturation phase, in which it is
extremely expensive to gain even a single percentage point, thus this very
simple score function serves well both coverage and robustness. We also
see that with X = 2% all strategies stay below c1 = 90%, while as said,
with X = 4% we can achieve results that are very close to X = 100.

n-coverage and reliability Let us now focus on the 3-coverage
row, which confirms that X = 2% is outperformed by the other two
configurations (and thus, we do not comment on results with X = 2%
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Figure 3.6: Coverage metrics c1 and c3 for different values of X and different
score functions evaluated on all the 15 areas considered. © 2022 IEEE
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Figure 3.7: EPDF of the coverage for X = 4 and different λ. © 2022 IEEE
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anymore). It is evident that a remarkable difference between 1-CM and
the 3-coverage strategies exists. Among the latter ones, 3-CM is the one
that performs slightly better than others, as it focuses only on 3-coverage
and disregards other possible goals. In this case, the difference in the
saturation point between X = 4 and X = 100 is more evident, as with
X = 4 the highest 3-coverage is 84%.

The take-away from this set of results is that if an operator wants just to
provide 1-coverage, it should use 1-CM, and can reach 95% coverage with
λ = 75 and X = 4%. This is the most cost-effective solution, as shown later,
but obviously is also the most fragile. If the operator is interested only in
3-coverage, because its target customers need extremely high reliability,
then the best choice is 3-CM, calibrating X on the desired coverage. Most
likely the operator is interested primarily in 1-coverage (as it provides
basic connectivity) and with lower priority in 3-coverage (for users that
need high reliability). In this case, 3-CF and 3-CG are the best choices, as
they perform very close to 1-CM in terms of 1-coverage while being very
close to 3-CM, outperforming 1-CM, in terms of 3-coverage.

To better understand the behavior of the coverage as a function of the
gNB density, and why it tends to saturate before reaching 100% coverage,
Fig. 3.7 shows the EPDF of the coverage multiplicity for X = 4% and
three values of λ. First, it is clear that to reach a good 1-coverage some
areas are covered many times, with the tail of the coverage distribution
growing significantly. Second, 3-CM penalizes the 1-coverage to the point
that the probability of 0-coverage is higher than the probability of strictly
1-coverage. The mass of the distribution is different between 1-CM and
the 3- score functions, but the tails remain very close to one another
suggesting that there are geometric properties that force a very high
degree of coverage in some areas when trying to cover the areas that have
remained uncovered.

Fig. 3.8 shows the robustness to obstruction OR for all points p ∈ Λ2 for
different λ values. We report also the bar for 1-CM for completeness, but
previous results show that 2-coverage for 1-CM is bad (for each reported λ

slightly more than 50% of 2-coverage compared to the worst of the other
strategies), thus OR should be weighted by its lower 2-coverage and it is
not really meaningful. The other strategies perform similarly, with a fairly
high fraction of points (between 63% and 77%) that resists to shadowing
from an obstacle that obstructs a 45 degree angle, and 3-CG better than
the others in three cases. On the other hand, increasing the density of
gNBs by a factor of 3 improves OR only about 10%, which indicates that to
improve this result a different heuristic that takes into account this specific
objective should be considered.

Finally, Fig. 3.9 presents the Empirical Cumulative Density Function
(ECDF) of the length of the link to the closest gNB for every covered point.
We report this metric to show that with any value of λ the largest majority
of the best links are below 100 meters of length, and the 95% of them are
below 214 meters (less than 200 meters for higher density), so our choice
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of setting the maximum link length to 300 meters only marginally impacts
the results.

3.2.5.2 Total Cost

Fig. 3.10 shows the cost of each deployment as a function of λ for X = 4%;
and X = 100%. Changing X gives rise to very different trends, with the
cost for X = 4% that grows remarkably more slowly than the cost for
X = 100%. This is the beneficial effect of limiting the number of buildings.
Fig. 3.11 reports the trends of the cost using as a free variable the coverage,
with vertical lines to highlight key coverage values (90% and 95% in c1

and 84% in c3). The cost for X = 100% is always higher than the cost for
X = 4% at the same coverage: our heuristic with X = 4% may need a
higher λ compared to X = 100% (as Fig. 3.6 shows), however, the total
cost of for X = 100% is higher because it uses more buildings. This results
highlight two facts. First, the cost to ensure nearly complete w-coverage
increases very fast with a sort of asymptotic behavior independently from
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Figure 3.9: ECDF of the length of the link to the nearest BS. The dashed lines
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Figure 3.10: Deployment cost of the network with the four score functions and
for X = 4 and 100%. © 2022 IEEE

w. Second, and rather obvious, including all buildings in the selection
allows a better coverage again independently from w.

We quantify this increase in Tab. 3.3 reporting the relative cost difference
between X = 4% and X = 100% with the 1-CM and the 3-CG strategies at
the same coverage value (the intercept of the vertical lines and the curves
in Fig. 3.11). Not limiting the number of buildings produces an increased
cost of 19% and 36% for c1 and a probably unacceptable 70% for c3.

3.2.5.3 Marginal Cost

Fig. 3.12 reports the marginal cost per m2 mc(λ). Each point is the ratio
between the increased cost and the increased covered area (Eq. (3.24)).
The figure shows that c1 (left plots) monotonically increases for the 1-CM

strategy, with very high costs when the gNB density becomes very high
(λ = 160, 180). This is consistent with the design of the metric as it is
trying to cover every single uncovered point, at the cost of placing new
gNBs that cover just a few squared meters. The other metrics instead grow
up to a certain coverage and then oscillate with a more noisy trend. This is
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coverage 1-CM 3-CG

0.84 19% 24%

c1 0.90 27% 24%

0.95 30% 36%

c3 0.84 – 70%

Table 3.3: Cost increase passing from X = 4% to X = 100%.
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an artifact of the metric, as the incremental cost is monotonously growing
as in Fig. 3.10, but the incremental covered area is not monotonously
growing for strategies that use w = 3 that do not simply try to maximize
c1.

Looking at the right column, we see that the marginal cost per m2 of c3

has a different trend. Initially, the cost for all strategies decreases, as the
3-coverage is very low (see Fig. 3.6) and it is easy to improve it. When the
coverage curves start to saturate, then mc increases. The 1-CM strategy has
a lower mc simply because it has a lower c3 and thus, it is not saturating
even at high values of λ.

Our approach makes it possible to obtain these data that are vital for
operators, because they help to identify a realistic maximum value for
coverage, beyond which it is not cost-effective to add more gNBs.
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3.3 optimal gnb placement for vehicular net-
works

In this research, we extended the heuristics and the algorithms used in
the previous section, focusing on the placement of gNBs for vehicular
communication. This is accomplished by devising a vehicular demand
model that, based on simulated traffic patterns, weights each point on
the public roads. Given this demand model, we developed a new heuris-
tic that exploits it to find the optimal locations for gNBs. Additionally,
we evaluated the quality of the coverage in terms of capacity, using the
International Telecommunication Union (ITU) Pathloss model, seen in
Sect. 2.2.1.3, together with the Shannon capacity formula, seen in Sect. 2.2.5
for a mmWave access network at 28Ghz with 400MHz bandwidth.

The analysis has been performed on open-data from the city of Luxem-
burg, together with a realistic traffic model of the same city [85] leads us
to the following findings:

• A “reasonably low” density (15 gNBs/km2) can be used to provide
95% coverage to vehicles, while pedestrian areas require a higher
density (35 gNBs/km2);

• NLoS links can be useful to fill the gap but the performance penalty
is extremely high;

• Providing connectivity to vehicles and pedestrians are two com-
peting objectives, as a small part of the walkable area is on the
streets. If the operator needs to guarantee service continuity also to
pedestrians, it needs to adopt a different covering strategy.

3.3.1 Problem Formulation and Solution

Similarly as in Sect. 3.2, we start from the DEMD and its associated matrix
E. We define a set Λ of points in the ground that can be potentially covered
with a LoS connection from a gNB. Each point corresponds to an (x, y, z)
triplet, in which the (x, y) coordinates are quantized using one point per
squared meter. Points are selected to be outside any building shape and
only in public areas (streets, roundabouts, street parking, sidewalks) and
not in private areas. Each point in Λ is uniquely identified by the (x, y)
couple, as we set the z value to a height of 1.5m, as such, with a little abuse
of notation we may use (x, y) ∈ Λ when it simplifies the description.

The problem we tackle can be summarized in three steps described in
the next two sections:

1. For each point in Λ define a weight, the higher the weight the higher
the probability the point will be covered. The matrix that associates
(x, y) to a generic weight is called τ;

2. Identify the set P of points in space in which a gNB could potentially
be placed. Each position pi ∈ P is defined by an (x, y, z) triplet, we
consider only points on the facades of buildings;
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3. Find an algorithm that chooses the minimal number of gNBs so that
the coverage is maximized according to some metric.

Step one is a novel contribution of this research. The solution to the sec-
ond step comes from the work described in Sect. 3.2, while the third step
modifies the solution proposed therein to take into account the weights
introduced in step one. In the remainder of this section, we will formalize
point 3 (the gNB placement problem) and provide an algorithmic solution
for a generic weights matrix τ. Then, in Sect. 3.3.2 we detail the differ-
ent strategies to obtain 2 realistic weights matrices for vehicles and for
pedestrians. For convenience, we list all the mathematical symbols in
Tab. 3.4.

It is important to note that all our results are to be interpreted as a
base-line on which to produce fine-grained further results, as we are
considering only the obstruction due to buildings.

3.3.1.1 gNB Placement

We briefly recall what was proposed in Sect. 3.2.2 that is at the base of
this work. Let B = {bi} be the set of buildings extracted from the OSM
dataset. Let also ϕ(bi) be a function that extracts a set of coordinates that
compose the perimeter of the building bi, with points spaced on average
one meter away from each other, placed 1 m below the height of the roof.
We can then define the set of candidate locations P as:

P =
⋃︂

bi∈B
ϕ(bi) (3.25)

Once the set of candidate locations is determined, we need to evaluate the
coverage from each one of them. In order to do so, we take advantage of
the viewshed algorithm mentioned in Sect. 2.3.5.2. This algorithm, applied
on a highly precise Digital Surface Models (DSM) computes the presence
of LoS from the candidate location pi to each point in Λ given a maximum
distance (dmax = 300 m) from pi. We consider this value of distance as it
has been used as an upper bound in other works [84].

Let σi be the viewshed matrix (or ground visibility matrix) from point
pi, defined as in Eq. (2.25). If we compute the viewshed matrix from all
the points in P , we obtain a collection of matrices that represent all the
possible viewsheds from all the potential positions of gNBs, which we
call Ω = {σ1, σ2, . . . , σm}. In which σi

x,y = 1 means that a terminal in
position (x, y) has LoS with a gNB placed in the point pi.

Remember that we extend the classic definition of LoS with the addi-
tional constraint of being within a maximum distance dmax.

3.3.1.2 Quasi-optimal gNB placement

We want to find a subset Ω⋆ ⊆ Ω whose size is lower than a parameter k
(|Ω⋆| ≤ k) that maximizes the elements coverage

⃓⃓⃓⋁︁
σi∈Ω⋆ σi

⃓⃓⃓
, where

⋁︁
is

the OR operator between binary matrices and | · | is the norm-1 operator
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Table 3.4: List of symbols

Symbol Meaning

Λ Set of ground points potentially to be covered

τ matrix of weights associated to points in Λ

P Set of all candidate locations for gNBs

B = {bi} Set of buildings extracted from the OSM dataset

ϕ(bi) Set of coordinates that compose the perimeter of the building bi

σi binary matrix representing the viewshed from the point pi

Ω Set of all viewsheds corresponding to all possible gNB positions

Ω⋆ Quasi-optimal set of viewshed computed by the optimization algorithm

π, γ Weight matrices for the pedestrian and vehicular strategies, respectively

Λπ , Λγ Set of ground points to be covered by the pedestrian and vehicular strate-
gies, respectively. Named as walkable and drivable areas in the text

(the sum of all elements). In order to take into account the traffic patterns,
consider a generic non-negative weight matrix τ with the same shape of
σi. We can formulate the maximization objective as follows:̧

max
Ω⋆

⃓⃓⃓⃓
⃓⃓τ ⊙

⎛⎝ ⋁︂
σi∈Ω⋆

σi

⎞⎠⃓⃓⃓⃓⃓⃓ with |σi| ≤ k (3.26)

Where ⊙ is the Hadamard product (the element-by-element multipli-
cation between two matrices). This will lead to a choice of the optimal k
viewsheds in Ω⋆ to cover the roads with the highest traffic. The problem
is a so-called weighted maximum coverage problem.

Note that if we call 1 the matrix made of all one elements, and we set
τ = 1 then the problem converges to the classical unweighted maximum
coverage problem, in which we try to cover the largest portion of the
points in Λ treating all of them equally.

3.3.1.3 Heuristic solution

The above-described coverage problem is NP-Hard, as the one previosuly
described in Sect. 3.2.1.2. Here we modify the greedy heuristic as described
in detail in Algorithm 3.2 to take into account the weight matrix. The
heuristic proceeds as follows: we start by defining a coverage matrix C of
the same size of τ, initialized with zeros (Line 2). Each iteration of the loop
in Line 4 will choose the position of one gNB. For each candidate location
pi and the corresponding viewshed σi we derive the so-far uncovered
elements C̄ as the negation of the coverage matrix (Line 7). The idea
is, at each step, to progressively add the gNB that provides the largest
additional coverage with respect to the already covered area.

We define C⋆ that represents the so-far uncovered elements that would
be covered by the candidate location, with their weight given by τ (Line 8).
Note that bool() is a function that makes an integer matrix a boolean one,
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¬ is the boolean NOT operand. We then provide a score for pi as the
norm-1 of the coverage matrix (in Line 9).

Then, the element with the maximal ranking that is not already in Ω⋆

(σ j /∈ Ω⋆) is chosen and the corresponding values of the viewshed matrix
are added to C (Line 15). Note that this makes C a non-boolean matrix.
Finally, the viewshed with the maximal ranking σ⋆ is added to the set
of optimal viewsheds (Line 16). The loop is repeated till the number of
desired locations is reached. The operation at line Line 8 has complexity
|Λ|, and is repeated at most k × |P| times, so the overall complexity is
O(k|P||Λ|).

This algorithm is referred to as Γ(Ω, k, τ) and in the next section we use
it with two weights matrices π or γ, producing two sets of quasi-optimal
viewsheds optimized for pedestrians or vehicles respectively.

3.3.2 A Demand Model for Vehicles and Pedestrians

Obtaining realistic traffic data, for both pedestrians and vehicles, is always
a challenging task, as data collected by cities is rarely released to the public.
One possibility, which is the one we consider in this work, is to generate
traffic data using microscopic traffic simulators and realistic scenarios. We
use the urban traffic simulator SUMO [86] to generate realistic mobility
traces of the city of Luxembourg. In particular, we make use of the Lux-
embourg SUMO Traffic (LuST) scenario [85], a publicly available scenario
generated from traffic data provided by the Luxembourg government
which includes both public and private transportation over a period of
24 h. Unfortunately, since the model does not include pedestrian mobility,
we had to resort to a different approach to model it. In the next sections,
we detail both models.

3.3.2.1 Vehicular Model

To obtain traffic traces, we run the scenario over the full 24 h for a total
of 286 215 vehicles moving on the streets. The simulation step is set to
1 s and, at the same frequency, we log the positions of the vehicles in the

Figure 3.13: Area of the city of Luxembourg over which traces are collected.
©2023 IFIP
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Algorithm 3.2 Greedy algorithm for the weighted maximum coverage
problem.

Require: Ω (Set of viewsheds), k (number of gNBs), τ(weighted traffic
matrix)

Ensure: Ω⋆ (Set of the viewsheds from optimal locations)
1: procedure Γ(Ω, k, τ)
2: C = 0
3: Ω⋆ = {}
4: for i← 1 to k do
5: h⋆ = −∞
6: for σ j ∈ Ω do
7: C̄ = ¬bool(C)

8: C⋆ = C̄⊙ σ j ⊙ τ

9: hj = |C⋆|
10: if hj > h⋆ and σ j /∈ Ω⋆ then
11: σi⋆ = σ j

12: h⋆ = hj
13: end if
14: end for
15: C = C + σi⋆

16: Ω⋆ = Ω⋆ ∪ {σi⋆}
17: end for
18: return Ω⋆

19: end procedure

area of the city shown in Fig. 3.13, corresponding to an area S of roughly
4 km2. We collect traces using GPS (latitude/longitude) coordinates and
then convert them to a .gpx file for later processing. We map each point
in a trace to a cell in the discretized space given by Λ. We obtain a matrix
γ with the same shape as τ, where γx,y = n means that n vehicles have
passed in cell (x, y) during the whole simulation3.

For the sake of readability we rescale it to the number of passages per
minute, Fig. 3.17 shows the EPDF of the values of the cells with non zero
value, binned with bins of size 0.125 passages/minute. It can be seen that
the majority of the cells have less than one passage per minute, with the
95th percentile roughly at 0.55. The distribution is pretty skewed, with
about 5 orders of magnitude between the largest and the lowest frequency.

We call Λγ the set of points (x, y, z) ∈ Λ in which γx,y ̸= 0, and we refer
to it as the drivable area.

3In our previous work [87] due to memory limitations of our GPU we had to re-scale
the frequency values in τ to be within the allowed range of one byte: [0, 255]. In this work
we resort to a GPU with a larger memory, enabling us to work with 16 bit integers and get
rid of such re-scaling.
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3.3.2.2 Pedestrian Model

Due to the lack of a pedestrian mobility model in the LuST scenario, we
had to manually define certain public areas where the pedestrians would
transit. We decided to focus on sidewalks and public open-air areas such
as parks, gardens, squares, etc.

To model the sidewalks we started from the lines characterizing the
OSM roads, which were used to center two symmetrical 2-meter wide side-
walks with a distance from the center of the road depending on the type
of road. To model the public open-air areas, on the other hand, we relied
on the public land use database from OSM, where we selected the public
areas with one of the following types: cemetery, forest, grass, heath,

meadow, orchard, park, recreation_ground. Again, we mapped those
points to a cell in the discretized space given by Λ and obtain a matrix π

with the same shape as τ, where πx,y = 1 when the element corresponds
to one of those areas and 0 otherwise. Fig. 3.14 shows both sidewalks
and public areas in green, the roads dedicated to vehicles in yellow, and
buildings in gray. We call Λπ the set of points (x, y, z) in which πx,y ̸= 0,
and we refer to it as the walkable area.

3.3.3 Experimental Setup and Metrics

We consider two different settings, one in which we optimize the coverage
for the vehicular traffic (τ = γ), and another one in which we optimize
for the areas where pedestrians might be located (τ = π). We apply
Algorithm 3.2 to compute the optimal locations for the gNBs, increasing
their number k. We consider a density λ of gNBs per squared km going
from 5 to 45 at steps of 5, and we set k = λS.

We obtain two solutions for the coverage:

Ω⋆
λ,γ = Γ(Ω, λ ∗ S, γ) (3.27)

Ω⋆
λ,π = Γ(Ω, λ ∗ S, π) (3.28)
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Figure 3.15: Detailed view of a portion of the area considered in the analysis.
Yellow highlights roads, green indicates public areas for pedestrians
(sidewalks and parks), grey indicates buildings, and white indicates
private areas. The zoomed portion shows the vehicular traces with
a grayscale representing the number of passages per point (darker
means higher).

Parameter Value

Area size 3.98 km2

Carrier frequency 28 GHz

Bandwidth (B) 400 MHz

Thermal Noise (T=300 K) −87.8 dBm

Noise Figure (Nt) 5 dB

3GPP Channel Model ETSI TR 38.901 Urban Micro

Reception gain 3 dBi

MIMO layers (µ) 2

Transmission power 30 dBm

Transmission gain 10 dBi

Maximum distance for LoS links 300 m

Table 3.5: Simulation Parameters
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that we aggregate with the OR operator to obtain a full coverage matrix:

Φλ,γ =
⋁︂

σ j∈Ω⋆
λ,γ

σ j; Φλ,π =
⋁︂

σ j∈Ω⋆
λ,π

σ j (3.29)

In brief, the elements in Φ indicate whether a point (x, y) is covered by at
least one gNB.

3.3.3.1 Coverage Metrics

We use four metrics to compare the results in terms of coverage (again, ⊙
is the Hadamard product and | · | the norm-1). The first two refer to the
drivable area and are:

Dcovve(λ) =
|γ⊙Φλ,γ|
|γ| ; Dcovpe(λ) =

|γ⊙Φλ,π |
|γ| (3.30)

The metrics in Eq. (3.30) tell how good the coverage of drivable areas is
when we optimize for vehicles (Dcovve) or when we optimize for pedes-
trians (Dcovpe). Dcovpe, in practical terms, tells us what happens if we try
to optimize the coverage for pedestrians but we measure the results only
on the points where the vehicles pass (with their multiplicity). Of course,
we expect Dcovve(λ) to be larger than Dcovpe(λ), yet we are interested in
the difference.

We use two more metrics to evaluate the complementary set-up:

Wcovpe(λ) =
|π ⊙Φλ,π |
|π| ; Wcovve(λ) =

|π ⊙Φλ,γ|
|π| (3.31)

Both metrics express how good the coverage of walkable areas is, in the
first case when we optimize for pedestrians (Wcovpe) while, in the second,
when we optimize for vehicles (Wcovve).

3.3.3.2 Channel Capacity Model

Besides the evaluation on pure coverage, we also evaluate the quality of
the coverage in terms of capacity, using the Shannon channel capacity
formula. To obtain the received signal strength we consider a transmission
power of 30 dBm at a frequency of 28 GHz. To compute the pathloss
between a gNB located at pi and a point (x, y, z) in the city, we employ the
Urban Micro model defined in ETSI TR 38.901 [29], detailed in Sect. 2.2.1.3.
The model provides the path loss for both LoS and NLoS conditions,
and we can easily distinguish between the two cases thanks to the pre-
computed viewsheds. In addition, we consider a gNB to be in LoS with
a point only if the distance between them is smaller than 300 m. We set
the noise floor for a bandwidth B = 400 MHz to be Nt = −87.8 dBm
and we compute the Signal-to-Noise-Ratio (SNR) and the corresponding
Shannon channel capacity, as explained in Sect. 2.2.5. Tab. 3.5 details all
the parameters.

Fig. 3.16, shows two interesting aspects. First, by looking at the distance
between the two curves, we can understand that a terminal continuously
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Figure 3.16: Shannon channel capacity as a function of the distance between two
points d and the LoS/NLoS conditions.

switching between LoS and NLoS would experience a constant change
in network performance that would make it very hard to support any
application, so a partial LoS coverage may be worse than a fully NLoS
coverage. Second, by shifting the NLoS curve to the right, it can intersect
the LoS one. This translates into the fact that in certain points it may be
convenient to choose a gNB that is in NLoS but is physically closer to the
closest one in LoS. This is more likely if the NLoS link is very short, and
impossible if it is longer than roughly 50 m. It is interesting to evaluate if
and how often this event happens.

3.3.3.3 Capacity Metrics

Consider a point (x, y, z) ∈ Λγ in the drivable area, the set Ω⋆
λ,γ of the

quasi-optimal viewsheds at density λ optimized for the vehicles, and
the corresponding positions of gNBs. We call LCx,y,γ(λ) the highest ca-
pacity we can achieve from any gNB to (x, y, z) using only LoS links4. If
LCx,y,γ(λ) = 0 then there is no LoS link between (x, y, z) to any gNB. We
call NCx,y,γ(λ) the highest capacity when using only NLoS links, which is
always larger than zero (there are always NLoS links to any (x, y, z)). The
same metrics are also defined for walkable areas using the π pedix. We
collect all the capacities in four sets, divided by LoS/NLoS:

DcapL
λ = {LCx,y,γ(λ) ∀ (x, y, z) ∈ Λγ | LCx,y,γ(λ) > NCx,y,γ(λ)}

(3.32)

DcapN
λ = {NCx,y,γ(λ) ∀ (x, y, z) ∈ Λγ | NCx,y,γ(λ) > LCx,y,γ(λ)}

(3.33)

WcapL
λ = {LCx,y,π(λ) ∀ (x, y, z) ∈ Λπ | LCx,y,π(λ) > NCx,y,π(λ)}

(3.34)

WcapN
λ = {NCx,y,π(λ) ∀ (x, y, z) ∈ Λπ | NCx,y,π(λ) > LCx,y,π(λ)}

(3.35)

4As previously said, we don’t use z as an index in the subscript since (x, y) uniquely
addresses one point.
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There are two important things to note in these definitions. The first is
that we estimate the capacity on the drivable (walkable) area only when
we optimize on vehicles (pedestrians), so we do not consider the cross-
metrics like in Sect. 3.3.3.1 and capacity metrics lose the ve/pe subscript.
The second is that we consider NLoS links only when a LoS link is not
available or it offers a lower capacity than a NLoS link. This last obser-
vation leads to the definition of a further metric: the fraction of points
for which there exist some LoS links, but a NLoS link provides a higher
capacity.

Wdiff (λ) =
|{(x, y, z) | NCx,y,γ(λ) > LCx,y,γ(λ) > 0}|

|Λγ|
(3.36)

Ddiff (λ) =
|{(x, y, z) | NCx,y,π(λ) > LCx,y,π(λ) > 0}|

|Λπ |
(3.37)

We analyze the sets of capacity metrics in the following section in terms
of averages, cumulative distribution functions, and coefficient of variation
to provide a link quality estimation of the coverage strategies.

3.3.4 Results

3.3.4.1 Analysis of the coverage

We start the analysis by looking at coverage metrics as observed by differ-
ent areas in the city (walkable and drivable areas) for the two optimization
strategies. Fig. 3.17a shows the coverage as perceived on walkable areas
when optimizing for pedestrians (Wcovpe) and for vehicles (Wcovve) as a
function of the density of gNBs. Conversely, Fig. 3.17b shows the coverage
as perceived on drivable areas when optimizing for pedestrians (Dcovpe)
and for vehicles (Dcovve).

Fig. 3.17b shows two very relevant conclusions. The first is that Dcovve

reaches 90 % coverage with λ = 10, 95 % coverage with λ = 15 and 99.9 %
coverage with λ = 25 while Dcovpe needs 150 % and 100 % more gNB to
cover 90 % and 95 % of the vehicles, respectively, and can not reach 99.9 %
even with λ = 45. Considering that vehicles’ coverage for autonomous
driving requires high reliability, we see that there is a relevant difference
when we specifically optimize for vehicles, rather than for pedestrians.
The second conclusion is more generic: so far we did not have any concrete
indication of how much we need to increase the density of gNBs to achieve
vehicles coverage, and this result tells us that in urban areas, a reasonably
low density can still be sufficient for a reliable service.

Fig. 3.17a instead tells a different message. There is a remarkable differ-
ence in the coverage of walkable areas when optimizing for vehicles or
not. In particular, Wcovve (the vehicles’ optimization) allows us to cover
only slightly more than 80 % of the ground. This result is worse than in
our previous work [87] where we show that we could not cover more than
95 % of the ground because here we included larger public areas such as
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Figure 3.17: Coverage (fraction of points reached by at least one LoS link) for
different optimization strategies. On the left, we measure the cov-
erage for walkable areas (Wcovpe(λ) and Wcovve(λ)) while on the
right we measure the coverage for drivable areas (Dcovve(λ) and
Dcovpe(λ)).

parks and squares in the analysis. On the other side, while optimizing for
pedestrians and measuring on walkable areas, Wcovpe reaches 90 % with
λ = 25 and 95 % with λ = 35.

The takeaway for the operator that needs to start deploying gNBs for
LoS communications is that the goals of covering vehicles or pedestrians
are concurrent ones. Optimizing for vehicles would reduce significantly
the required density of gNBs but would not allow to reliably cover pedes-
trian areas.

3.3.4.2 Analysis of the capacity

While coverage gives us a qualitative measure of the impact of different
optimization strategies, it does not provide us with quantitative insights.
In this section, we analyze the capacity resulting from different optimiza-
tion strategies, but before that, we introduce Fig. 3.18, which shows the
fraction of NLoS links chosen even if a LoS link was available (Wdiff (λ)

and Ddiff (λ)). Regardless of the density, less than 1 % of the links will ob-
tain better connectivity from a NLoS link than from a LoS link. This means
that in realistic coverage conditions, the best link is almost always the
LoS one and that NLoS links are of prevalent importance only when the
LoS coverage is low, that is, in the leftmost part of the curves in Fig. 3.17.
The fact that the curves in Fig. 3.18 grow with λ is due to the average
reduction of the distance to any gNB with the growth of λ. As we already
noticed this makes it more likely that the two curves in Fig. 3.16 intersect,
as the average link length stays in the lower range.

estimating the average capacity For each density value λ, we
compute the average capacity for LoS and NLoS links, as well as the
overall average. Fig. 3.19a shows the average capacity measured over the
walkable areas when optimizing the locations of gNBs for pedestrians. The
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Figure 3.18: Fraction of points for which a NLoS gNB has been chosen even
though a LoS gNB was available, for drivable areas (Ddiff (λ)) and
walkable areas (Wdiff (λ)).

absolute values are to be considered as an upper bound (as in conditions of
interference, the capacity can be far from the Shannon limit) however the
comparison is interesting, with a minimum average of 5.5 Gbit/s achieved
at the lowest gNB density for LoS links, versus less than 500 Mbit s−1 for
NLoS links. Especially at low gNB densities, this has a large impact on the
overall (LoS and NLoS) average capacity: As the fraction of NLoS links
for λ = 5 is 45 % (Fig. 3.17), the overall average is as low as 4 Gbit/s.

Fig. 3.19b instead shows the average capacity measured over drivable
areas only when optimizing for vehicles. Again, there is a striking differ-
ence between LoS and NLoS links, however, since with the same density
the drivable areas reach a better coverage, the overall average is closer to
the average of LoS links. This also applies to the right end of the curve, in
which a higher density reduces the average length of all links (including
NLoS) and thus the green curve gets closer to the orange one.

capacity distribution As averages hide information about the dis-
tribution of the capacities, Fig. 3.20b show the ECDF of the Dcapve and
Wcappe sets. Each graph shows the distribution for λ = 5, the density to
cover 95 % of the area (λ = 35 for pedestrians, λ = 15 for vehicles), and
for λ = 45, for both LoS and NLoS links.

By looking at LoS capacities, regardless of the optimization strategy
and the density, for the smallest possible density, we can see that all dis-
tributions have a reasonable shape. Most importantly we can see that
no capacity is smaller than 3 Gbit/s. This means that, regardless of the
objective, deploying gNBs focusing on LoS will result in very good perfor-
mance.

With respect to NLoS, the quality of links is instead highly dependent on
density. At low densities, a vast majority of links experience capacities that
are very close to zero. For the densities providing 95 % coverage, instead,
the distribution depends on the optimization strategy. When optimizing
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Figure 3.19: Average Capacity for different areas and LoS conditions. On the left,
we measure the average capacity for walkable areas, divided LoS
links (WcapL

λ), NLoS links (WcapN
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λ )). On the right, we measure the same metrics for drivable
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Figure 3.20: ECDF of the capacity for different areas, LoS conditions and gNB
densities. At the top, the metrics are displayed for drivable areas,
while at the bottom for walkable areas. The gNB densities displayed,
corresponds to the minimum considered (λ = 5), the maximum
(λ = 45) and the density that guarantees a LoS coverage of 95 % of
the areas (λ = 15 for drivable areas and λ = 35 for walkable areas).
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for vehicles (Fig. 3.20a), roughly 20 % of the links have close to zero
capacity, and 75 % have a capacity lower than 1 Gbit/s. This means that, in
high density zones, vehicles will experience very good network conditions,
but in less dense areas communication might be at risk and some roads
might be left completely without coverage or with poor communication.
For the pedestrian strategy, there are fewer links with this problem, as
50 % of them have an available capacity of at least 1.5 Gbit/s, but this
comes at the cost of more than doubling the density of gNBs. At high
density, the vehicular strategy results in very good performance, with just
20 % of links experiencing a capacity smaller than 3 Gbit/s and 75 % of
them experiencing at least 4 Gbit/s. On the contrary, the ECDF for the
pedestrian strategy grows at a much slower rate, with almost 50 % of the
links having a capacity smaller than 2 Gbit/s.

Finally, Fig. 3.21 shows the coefficient of variation (i.e., the ratio between
standard deviation and the average) of the capacity for different values
of λ. Regardless of the optimization strategy, the coefficient of variation
decreases with the density of gNBs. This indicates that, as we increase the
density of gNBs the change in the experienced capacity between different
locations reduces, indicating a more even distribution of resources among
users, but also in the trajectory of one single user. Increasing the coverage
not only improves the average performance but makes it more stable.
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3.4 feasible topologies for backhaul mesh net-
works

In this section, we used similar visibility analysis techniques as in the
previous works with a different objective. Here, instead of focusing the
analysis on the ground points in LoS with the gNBs, we tried to analyze
what kind of network could be made by interconnecting rooftop-placed
gNBs using LoS links in different environments: Urban, Suburban, and
Rural.

We built visibility graphs for 9 Italian municipalities divided in Urban,
Suburban, Rural environments, and we compared them to a full-mesh
graph realized on the same set of nodes by focusing on robustness metrics.
The motivation came from recent works that dealt with mesh backhaul
assuming a full mesh between the network nodes [71], [88] and we wanted
to test how this assumption influences the results in a more generic setting.

Results showed how important it is to include in topological models of
mesh networks details deriving from topographic characteristics. Once
this need is assessed, a plethora of possibilities (and needs) open up
for the research community: finding synthetic models that include these
characteristics so that realistic studies can be carried out without the
need of using specific or particular data; define strategies to select the
best positions for mesh nodes given an area; study the impact of the
mesh topologies on vertical applications or paradigms like Mobile Edge
Computing (MEC) and many others

3.4.1 Methodology

Given a geographical area, we choose a building in the area which serves
as a gateway ng. This building is selected according to considerations that
define a good place for a gateway, and we initializeN = {ng}. We select a
1400 m× 1400 m area centered on the gateway and we divide it in a 5× 5
regular grid of squares with side 280 m. In every square we choose the
tallest building and we place there a node of the graph, completing a set
N with 26 nodes. In some cases there are no buildings in some squares, or
the tallest building is not in line-of-sight with any other building, so not
all the graphs are made of exactly 26 nodes.

Given N we compute two different graphs:

• i) the visibility graph G(Nv, Ev) or Gv for brevity, as per Sect. 2.3.5.4;

• ii) the full mesh graph G f obtained connecting every pair of nodes
in N .

Fig. 3.22 reports the spanning tree rooted in the gateway computed
with Dijkstra algorithm when the cost of links is proportional to their
length for an area in Urban 3 scenario (around ‘Piazza del Municipio’); the
thin dotted lines define the regular grid and one of the squares is in the
gulf of Napoli and has no building. The left hand side refers to G f , and
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(a) FullMesh (b) TrueNets

Figure 3.22: G f vs. Gv: minimum spanning tree to reach ng in a Urban 3 area
with full visibility or TrueNets model. © 2021 IEEE

it is obviously a star. The right hand side refers to Gv and the outcome is
clearly very different. The goal of the figure is qualitative: to show how
different the topology is when it is built considering effective topographic
data from the one built on a simple visibility model, heuristically intuitive
given the nodes are on the tallest buildings of each area.

The goal of this initial work is to study how Gv influences the feasible
network topology given a set of nodes, and specifically, how different
robustness metrics of networks built on Gv and G f are.

3.4.2 Robustness and Performance Metrics

3.4.2.1 Effective Graph Resistance

The first metric we consider is related to the overall potential capacity of
the network and its robustness, because it takes into account the presence
of parallel (possibly disjoints) paths. The metric is called Effective Graph
Resistance [89], and has been used and defined in the previous section. As
in Eq. (3.43), let it be defined as ξ.

We use this metric to give a high level estimate of the quality of a
mesh build on a specific visibility graph Gv. ξ strictly decreases when
an edge is added to the network, so the smaller ξ the more robust is
the mesh, but also the overall capacity can be larger, as it can exploit
more disjoint paths between nodes. To guarantee an easy interpretation
of results independently from the number of nodes of the graph, we use

the ratio between the effective resistance of G f and that of Gv: ξR =
ξ

G f

ξGv
.

Since the effective resistance of a full mesh is the minimal possible one,
ξR ≤ 1 for any visibility graph Gv, and the smaller it is the worst are the
properties of meshes built on Gv.
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3.4.2.2 k-edge Connectivity

Next, we consider r[k], the fraction of nodes that are part of a k-edge
connected graph embedded on a graph G and including ng. Algorithm 3.3
describes how we compute r[k].

Algorithm 3.3 The spanning-tree robustness metric
Require: G(Nv, Ev), ng, k_conn_max

1: procedure (r (Number of nodes in the k-edges-connected subgraphs))
2: k = 1
3: r =dict() ▷ a mapping int–>object
4: for iin1 . . . k_conn_max do
5: r[i] = [] ▷ initialize to an empty list
6: end for
7: newG = G
8: while k <= k_conn_max do
9: S(Ns, Es) = compute_min_spanning_tree(newG)

10: for e in Es do
11: newG.remove_edge(e)
12: end for
13: newG = connected_component(newG, ng)
14: sizeG = |newG| ▷ // number of nodes in newG
15: if sizeG > 1 then
16: r[k].append(sizeG)
17: end if
18: end while
19: k += 1
20: return r
21: end procedure

The algorithm starts from complete graph G and creates a minimum
spanning tree St, then removes from G all the edges of St and checks the
size sizeG of the largest connected component including ng. It iterates
this process as long as ng does not get disconnected from the rest of the
graph (sizeG = 1). At each k-th iteration we save r[k] = sizeG. A simple
interpretation of r[k] is that when a node n is k-edge-connected with the
gateway, then there are at least k independent spanning trees that connect
n to ng. This means that n can survive any pattern of k− 1 failures, as in
the worst case scenario one edge fails on a different St, but still there is
at least one St on which n can communicate with ng. The r[k] metric tells
what is the number of nodes of the graph that are k-edge-connected. Note
that the spanning tree are generated with the classical Kruskal algorithm,
and not centered on ng as in Fig. 3.22, otherwise only one spanning tree
would be possible around the gateway in a full mesh, as all its outgoing
edges are removed after the first loop of Algorithm 3.3.
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Given a municipality, we select 5 gateways and areas A around them
with different sets of nodes SA = {N0 . . .N4}. Then we compute 5 graphs
Gv

i as a visibility graph, and for each one we obtain ri[k].

3.4.2.3 Weather Disruption-Tolerant Networks

The third metric is a state of the art algorithm for topology design [88].
This work tackles the problem of designing a robust backhaul topology
using a realistic model for the probability of link availability under heavy
rain or snow. It proposes two optimization algorithms. The first one,
which assumes uncorrelated link failures, is formulated as an integer
linear program and it is more scalable and easier to reproduce, the second
introduces correlation among link failures and is formulated as a quadratic
linear program. We use the first one, as it is more scalable and useful to
highlight our findings. This model, called in the original work TD_IF,
takes as input all the paths from any n ∈ N to ng and selects the least
number of disjoint paths so that the probability that n is disconnected is
below a certain threshold ϵ. As shown in algorithm 3.4, TD_IF returns a
set of optimal paths for every n, which are joined into a single topology.
We introduce two modifications on the original algorithm to make it run
on our graphs, first, we limit the set of paths to the ones with less hops
than diam(G) + 2, where diam(G) is the diameter of the graph G; second
we relax the robustness requirement otherwise some of the TrueNets

graphs do not support a solution: reliability ϵ is achieved for at least 90%
of the nodes in the graph. The metric is the cost of the graph, which is
proportional to the sum of the length of the links in all the paths. This is,
like ξR, a synthetic number whose absolute value has no straightforward
interpretation, but that can be used to compare two strategies.

Algorithm 3.4 Modified TD_IF algorithm.
Require: G(Nv, Ev), ng

1: procedure DO SOMETHING(Gt)
2: ξg = ∅ ▷ empty set of edges
3: for n in N do
4: Pall = calc_simple_paths(G, n, ng, diam(G) + 2)
5: Pbest = TD_IF(Pall , ϵ)
6: for e in Pbest do
7: ξg = ξg ∪ e
8: end for
9: end forreturn Gt(N , ξg)

10: end procedure
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3.4.3 Results

We can now analyze the nine different municipalities in Italy, verify the
impact of the TrueNets modeling and check if there are regularities for
Urban, Suburban, and Rural areas.

Fig. 3.23 reports the ratio ξR between the effective resistance of G f

and Gv for all the municipalities under analysis. It is clear that Gv differ
significantly from a full mesh in all cases, even in densely populated
areas as the Urban municipalities in Italy. There is no specific “trend”
related to the density of building, while what seems to have more impact
is the landscape itself (Suburban 1 is mostly flat, while Rural 1 is in the
mountains) and possibly the presence of buildings that are indeed much
higher than others.

Fig. 3.24 shows the value of the robustness r[k] defined in Sect. 3.4.2.2.
Recall that r[k] = |N | means that there are k completely independent
spanning trees that cover the entire network, while decreasing values
means that some nodes are not k-edge-connected. It’s clear that building
a mesh on a graph that allows a large number of independent spanning
trees makes it very robust and resilient, while if removing the links of
the first spanning tree leaves some node disconnected the mesh is clearly
fragile. Orange lines refer to FullMesh, while blue ones to TrueNets and
we report results for the 5 different networks we generated in each area;
shaded areas are the envelope of the five curves. The difference is evident
with Gv that rarely allows the presence of more than two independent
spanning trees without leaving some node disconnected; in some cases
only one exists.

Fig. 3.25 finally describes the cost of the topologies generated with
the TD_IF algorithm, again on 5 graphs per strategy. The x axis is the
probability ϵ of letting a node disconnected, the y axis reports the cost
of the corresponding graph generated using the TD_IF algorithm. We
report only 6 out of 9 municipalities. In one area (Suburban 1) TrueNets
generates topologies that are close to a FullMesh, and thus, the cost of the
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Figure 3.23: The ratio ξR between the effective resistance of G f and Gv. © 2021
IEEE
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Figure 3.24: The value of r[k] computed on 5 instances of Gv and G f in 6 out of
9 areas. © 2021 IEEE
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network is similar. This is consistent with Fig. 3.23 in which Suburban
1 has the closest score to the FullMesh. In all the other areas the cost is
strongly affected by the underlying topology, especially with higher levels
of robustness, with an more visible effect in rural areas.
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3.5 wireless backhauls for urban mesh net-
works

The last contribution of this chapter extended the work-in-progress re-
search, presented in the previous section, by evaluating the visibility
graphs and their applications on larger areas, up to 100km2 and 50000
buildings.

We did so by first developing an heuristic to find the most suited loca-
tion to deploy a gNB on a rooftop and then by building a visibility graph
between all the couples of buildings in that area. Using the same set of
locations, we then built a more simplistic version of visibility graphs by
leveraging on widely used LoS probability models.

We compared the different graphs in terms of their topological proper-
ties and then we used two state-of-the-art topology design algorithms to
embed an IAB topology into those graphs.

The analysis was carried out using Open-data coming from 9 different
Italian municipalities and led us to understand that the use of synthetic
models, such as the ones proposed by ITU, lead to wireless backhauls
whose property and behavior is far from the realistic one and thus, from
reality.

3.5.1 Visibility analysis: generating the visibility graph

We first define some fundamental concepts of visibility analysis, which
we then apply to generate G(Nv, Ev).

Given a DEMD and it’s associated matrix E, let Υ(E, pi, pj) be a function
that returns 1 if there is direct LoS between pi and pj and 0 otherwise, as
defined in Eq. (2.24).

Evaluating Υ(E, pi, pj) is a computationally intensive task, but recent
advances in GPU optimized algorithms [90] allow performing this pro-
cess in areas that contain tens of thousands of buildings, with billions of
potential links to be tested. The design of this process, together with the
software provided to the community, is one of the contributions of this
paper.

We start from the DEM of 9 real-world areas, corresponding to 9 ad-
ministrative municipalities in Italy. The areas belong to urban, suburban,
and rural areas5, whose properties are reported in Tab. 3.6. To process the
data we use the Numba libraries that exploit the CUDA architecture for
NVIDIA GPUs6.

Our goal is to study the visibility graph G(Nv, Ev) where each vertex of
the graph corresponds to one point on the roof of an existing building, so
we need the shapes of the buildings in the specified areas. This information

5The urban/suburban/rural label was obtained using the Eurostat definitions, see
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=

Territorial_typologies_manual_-_degree_of_urbanisation
6See the Numba documentation at

https://numba.pydata.org/numba-doc/latest/cuda/index.html.

https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Territorial_typologies_manual_-_degree_of_urbanisation
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Territorial_typologies_manual_-_degree_of_urbanisation
https://numba.pydata.org/numba-doc/latest/cuda/index.html


86 network densification and wireless backhauling

Figure 3.26: Visibility graph of the sample area of Fig. 3.27 (for clarity, only a
subset of the points are reported). © 2023 IEEE

Name
Extension

(km2)
Pop. dens.
(ab./km2)

Buildings
Build. dens.
(buil./km2)

U1 Trento 187.88 749.24 16490 104.45

U2 Firenze 102.32 3702.54 44598 435.87

U3 Napoli 119.02 8058.82 50879 423.90

S1 Mezzolombardo 13.88 517.10 1285 92.01

S2 Barberino di Mugello 133.29 82.05 2338 17.54

S3 Sorrento 9.95 1639.25 3856 387.32

R1 Predaia 80.05 83.39 2333 29.14

R2 Pontremoli 182.48 39.36 4079 22.35

R3 Visciano 10.90 401.60 1266 116.11

Table 3.6: Main urbanization parameters for the 9 areas
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is obtained using two different sources: OSM and the technical regional
charts data made available by the single municipalities. More details on
this are available in Sect. 2.3.2.

The latter source is more accurate but not necessarily updated, while
the first source is more frequently updated especially in urban areas, but
may miss some buildings. For each area, we use the source that provides
the highest density of buildings per km2 without attempting to merge
the data, a process that would be too error-prone. Therefore, given a
closed polygon sk that represents building bk we implement a function
that provides a binary matrix Sk of the same dimension of E so that:

Sk
x,y = 1 ⇐⇒ (x, y) ∈ A(sk) (3.38)

where A() returns the area limited by sk.
In the following, we detail the steps needed to create the annotated

visibility graph G(Nv, Ev) once we have Sk for all the buildings in a certain
area.

3.5.1.1 Roof Node Placement

The first step for the computation of G(Nv, Ev) is to determine Nv, which
requires to attribute one point pi to each building bk, so |Nv| equals the
number of buildings in the area. The precise position is important because
it influences the chances of having LoS with the other chosen points. In
the real world this is done inspecting the roof and visually searching for
the place with the best visibility towards other buildings. In an automated
procedure, we need an algorithm that tries to maximize the probability of
LoS towards other buildings.

For every sk we are looking for a point pi with coordinates (x, y) ∈ A(sk)

so that the resulting graph G(Nv, Ev) has the highest number of edges. An
exact algorithm needs to explore all the possible combinations of all the
(x, y) ∈ sk for every k ∈ [1, . . . |Nv|], whose number grows exponentially
with |Nv|. By modeling the problem as a colored graph, where each point k
on the roof is colored with the same color, we can reduce it as the search for
the connected rainbow subgraph, which has been proven to be NP-Hard
[91]. For this reason we need a heuristic.

A reasonable assumption is that points that have a good visibility to-
ward the centroids of buildings will also have good visibility toward the
good visibility points on the buildings, so that, starting from centroids,
we can select these points with an algorithm that scales quadratically with
the number of buildings. However, centroids may actually fall outside the
building roof (e.g., internal courts), so we use the point ck, which is the
point of coordinates (xk, yk, zk) where (xk, yk) are the coordinates of the a
suitable point that ensures (xk, yk) ∈ A(sk) as defined by the C++ function
GEOSPointOnSurface from the GEOS library. For the sake of readability we
will call these points pseudocentroids.
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We define the pseudocentroid ck = (xk, yk, zk=Ex,y+2) adding 2 m to
zk since we assume gNB antennas are elevated on the roof with a pole7

and we compute all the viewsheds σk from any point ck to any other
point also elevated by 2 m. Since Υ is a symmetric function, given a point
(x, y, Ex,y + 2), each element σk

x,y represents the availability of LoS from

(x, y, Ex,y + 2) to ck. Summing all σk we obtain V = ∑|Nv|
k=1 σk, which is a

cumulative visibility matrix whose values range from 0 to |Nv| indicating
how many centroids ck are in LoS from any elevated point on every
building. The second step is searching, for every building bk, the point p̄i
that has the highest visibility of centroids. This is obtained masking V with
Sk: V ∗ Sk (where ∗ is the element-wise multiplication) selecting all the
values of V belonging to points inside bk, and returning the coordinates of
the maximum:

(x̄, ȳ) = arg max(x,y)(V ∗ Sk) (3.39)

then p̄i = (x̄, ȳ, z̄k = Ex̄,ȳ + 2) is going to be the position of the gNB
antennas for building bk. We repeat this process for every building and we
obtain Nv as the collection of all the p̄i. From now on, when we mention a
generic point pi, we always refer to points chosen with this procedure.8

Fig. 3.27 shows a sample of the visibility matrix V as a greyscale image
in which every pixel is a point in V, with lighter color meaning higher
visibility index; the chosen p̄i ∈ Nv are reported in yellow.

3.5.1.2 Building the visibility graph

Once the set Nv has been determined we need to build the set Ev comput-
ing Υ(pi, pj) for each couple of points pi, pj ∈ Nv, tracing a ray between
pi and pj and checking whether any obstacle intersects the ray.

As in the previous task, implementing this algorithm in a GPU allows
parallelizing the task among the large number of cores available. As
described previously in Sect. 2.3.5.2, each core is assigned to one point
pi ∈ Nv and calculates the LoS towards any other point pj ̸= pi ∈ Nv

using well known visibility algorithms [47]. Our specific implementation
is detailed in Algorithm 2.2.

Fig. 3.26 shows the visibility graph of the sample area. The properties of
the resulting graphs are reported in Tab. 3.7 and commented in Sect. 3.5.3.

3.5.1.3 Complexity analysis

The worst-case time complexity for building G(Nv, Ev) is O(|Nv|2) · C(Υ),
where the first part represents the iteration on every pair of nodes and the
second part represents the complexity of the LoS computation between
two given points. C(Υ) depends on the longest LoS link for which the

7This is an arbitrary choice that can be modified according to the design constraints
and requirements.

8Note that this introduces a little abuse of notation. So far we used i as the index
of point pi in the ordering o(x, y) for the coordinates in the DEM, and k as an index for
buildings, so the two indexes are uncorrelated. From now on we will simply refer to pi as
the point chosen for building i.



3.5 wireless backhauls for urban mesh networks 89

Figure 3.27: Outcome of the selection of the best visibility point –in yellow– for
each building in a small portion of an urban area, the shade of
grey indicates the visibility index with light grey indicating higher
visibility. © 2023 IEEE

algorithm needs to evaluate every space element intersected by the ray.
Assuming that E is a square matrix, the longest link would be its diagonal
which is

√︁
2|E|, which leads to C(Υ) = O(

√︁
|E|), thus a general complex-

ity equals to O(|Nv|2 ·
√︁
|E|). In order to express the complexity solely on

the size of the area we can take advantage of the fact that the number of
buildings grows linearly with the area. This leads to an overall complexity
of O(|E| ·

√︁
|E|)

On the other hand, the SoA algorithm for viewshed analysis [47] has a
complexity of O(|E|2) to calculate a single viewshed. In order to calculate
the visibility graph the complexity would be O(|Nv| · |E|2), which again
expressed only in terms of the area is O(|E|2 ·

√︁
|E|).

Computing such an algorithm on datasets like U3 (more than 50 k nodes
and 100 km2) would not be feasible using a normal CPU, however modern
GPUs, with their high number of cores and large RAM allow to speed
up the process and compute the whole visibility graph in a reasonable
time. We used an NVIDIA Tesla P100 GPU which has 3584 cores and
16 GB of memory. This allows the computation of the whole process for
the largest city in the data-set in roughly one hour at a speed of 40 M-links
per second.

3.5.2 Generation of the topology

Given G(Nv, Ev) and the position of a set Nφ ⊂ Nv of gNBs, Gφ is embed-
ded into G(Nv, Ev) choosing a set Eφ ⊂ Ev that will create the wireless
backhaul. Our goal is to show that the realistic data-set of G(Nv, Ev)

topologies that we publish is key to obtain realistic results in the design of
a next generation wireless backhaul Gφ. Contrarily to classical large-scale,
low density mesh networks that span across multiple municipalities [92]
a Next Generation Wireless Backhaul (NGWB) is expected to extend a
wired backhaul in localized regions, so in this section we describe three



90 network densification and wireless backhauling

processes: i) how we create realistic localized G(Nv, Ev) and Nφ; ii) how
we create simplistic localized G(Nv, Ev) and Nφ for comparison; iii) two
strategies from the state of the art to choose Eφ, whose performance will
strongly vary when applied to realistic or simplistic data.

3.5.2.1 A Realistic Localized visibility graph

In each of the 9 areas we select 5 sub-areas of approximately 1× 1 km, and
in each sub-area we call Γ the border of the convex hull that includes all
the buildings fully contained in the sub-area, with A(Γ) ≤ 1 km2 its area.
We choose Nv assigning a point pi to each building in the area with the
procedure described in Sect. 3.5.1, and finally we produce the localized
realistic G(Nv, Ev) applying Algorithm 2.2 to these points. Given a desired
density of gNB per km2 (ρ ∈ {30, 60}), we set the size |Nφ| = ρA(Γ) and
we pick a random set Nφ ⊂ Nv. In the figures we simply refer to data
generated with this process with the TrueNets label.

3.5.2.2 Simplistic Localized visibility graph

Given the same 9 areas and |Nφ| as defined above, we generate two
versions of a simplistic G(Nv, Ev). As a baseline we pickNv = Nφ using a
Homogeneous Poisson Point Process (which we refer to as HPPP) in which
locations are chosen with a random uniform choice in A(Γ), without any
relation to the building maps. In order to create Ev, for each couple of
nodes in Nv, we add an edge with a probability given by the ETSI model
using Eq. (2.8). This simple strategy is the one used in most of the papers
that propose approaches for the creation of wireless backhauls, such as
the ones from Polese et al. [75], [76] mentioned later on.

In a second, slightly more realistic approach, we pick Nφ as in the
realistic case of Sect. 3.5.2.1, but we use the ETSI model to generate the
edges Ev. This is an intermediate model in which the 2D distribution of
the points is not completely uncorrelated from the city map, but is similar
to the 2D distribution of the buildings. Yet, without 3D information, the
edges are chosen with a synthetic model and not with the Υ function. As
we use the OpenStreetMap data, we refer to this process as OSM.

3.5.2.3 Choosing the edges

Both the described processes produce a visibility graph G(Nv, Ev) and a
set Nφ of gNBs. In the IAB terminology, some of the nodes are donors, i.e.,
they are connected to the wired backbone, and the other nodes need to
build a multi-hop path to some donor. We randomly choose ⌈0.1ρA(Γ)⌉
donors (at least 10% of the gNBs), as in [75]. For each donor a Directed
Acyclic Graph (DAG) is created that interconnects the reachable nodes,
and the union of all the DAGs provides Gφ. We mentioned in Sect. 2.1.1.3
that there are several proposals to choose the DAGs, and thus create the
backhaul graphs, among which we pick two. The first is one of the heuris-
tic proposed by Polese et al. [75] that assumes no centralized coordination.



3.5 wireless backhauls for urban mesh networks 91

We report the results for the algorithm named DPS_WF, in which each
node tries to connect with a multi-hop path to the physically closest donor.
The algorithm is distributed and greedy, thus not optimal. The second one
is an optimal centralized strategy for the creation of the backhaul with
the smallest distance (in hops) from each node to its donor. The strategy
chooses Eφ as the union of all the edges that are in the shortest path from
any node to the closest donor, computed with classical Dijkstra’s algo-
rithm. It is optimal in the sense that it minimizes the distance between
each node and its donor.

Both algorithms are taken from literature and we use them to test the
impact of G(Nv, Ev) on the properties of Gφ.

3.5.3 Analysis of the visibility graph

This section presents the features of the visibility graph G(Nv, Ev) gen-
erated considering the whole areas and the 5 sub-areas of 1 km2. Due to
space constraints in the rest of the paper we include and comment only a
small set of the figures we generated, that are enough to robustly support
our conclusions. The rest of the figures can be found in the supplementary
material, together with the links to the data sets and the source code.

3.5.3.1 Size of the giant component

Before we provide the results on the analysis of G(Nv, Ev), we want to
highlight the importance of the algorithm chosen to select p̄i. We compute
G(Nv, Ev) with three different strategies: i) using the heuristic described
in Sect. 3.5.1.1; ii) using the pseudocentroid ck; and iii) using the highest
point on the roof. Fig. 3.28 shows the relative difference in terms of num-
ber of edges between our heuristic and the other two. For instance, in
case of comparison between the heuristic (h) and the pseudocentroid (c)

placement the metric is |E
h
v |−|E c

v |
|E h

v |
.

It is clear from the figure that the improvement with respect to the
pseudocentroids is substantial. In fact in areas such as U3 the number of
edges doubles. The comparison with the highest point of the roof still
shows a relevant gain, up to 10% in U3, with one exception: R1, which
is a mountain rural area composed of isolated hamlets at very different
heights, where overall visibility is more influenced by the position of the
hamlets than the characteristics of the buildings. Note that, in absolute
terms in U3 we gain 7,696,210 edges while in R1 we lose 13,187 edges,
so overall the advantage is considerable. Moreover, the highest point
in the roof could be hardly accessible (e.g., a chimney). This confirms
the importance of a solid and repeatable methodology to produce the
visibility graphs like the one we provide. It also suggests that in the
real world small differences in node positions reflect in large differences
in the graph properties, i.e., the network density in the real world is
extremely sensitive to small differences in nodes placement. This makes it
an interesting challenge to define generic synthetic models able to capture



92 network densification and wireless backhauling

Name
Giant

Component
Links

Avg.
Degree

U1 Trento 16348 (99.1%) 21531378 1317

U2 Firenze 44221 (99.2%) 36981097 836

U3 Napoli 50552 (99.3%) 64141794 1268

S1
Mezzo-

lombardo
1276 (99.2%) 327579 256

S2
Barberino

di Mugello
2288 (97.9%) 474618 207

S3 Sorrento 3828 (99.2%) 2041968 533

R1 Predaia 1954 (83.7%) 834965 427

R2 Pontremoli 3869 (94.8%) 621069 160

R3 Visciano 1161 (91.7%) 169083 145

Table 3.7: Gφ Network metrics for the 9 areas.

that variability. From now on we only consider the points pi selected with
the heuristic.

Tab. 3.7 reports the number of nodes that can not be connected to the
giant network component. It is always less than 2.1% for the urban and
suburban areas and below 10% in the rural areas, with the exception
of Rural-1 where, due to the morphology of the area, roughly 17% of
the nodes are not in the giant component. However, in the process of
network construction that we followed we did not devote any effort to
have full connectivity while in a real setting several ad-hoc solutions can
be introduced, e.g., higher trellises on roofs, repeater nodes in strategic
locations even in the absence of a building – recall that Rural-1 is in a
mountain area. So the first key finding is that a NGWB mesh network
covering almost entire cities or vast suburban/rural areas is possible in 8
out of 9 settings, without any specific attempt to maximize coverage. This
is itself an extremely interesting result, as it confirms that the concept of
IAB is feasible in practice and encourages several applications that rely on
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Figure 3.28: Relative gain on the number of edges between our heuristic and
other point selection strategies. © 2023 IEEE
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LoS links, such as backup networks, community networks, the extension
of wired access where it can not be provided, or even dedicated networks
made of Free Space Optical links for quantum key distribution [93]. An
additional result that provides further insights is shown in Fig. 3.29, where
the size of the giant component is evaluated in the case when only a subset
of the buildings, randomly selected, are used. The figure shows that even
with a small percentage of randomly selected buildings it is still possible
to build a backhaul connecting most of the nodes. In fact with just 30%
of the buildings it is possible to connect more than 95% of the nodes in
7 out of 9 areas, and in all cases more than 80% of the selected nodes are
connected. Note that this positive result should be considered as a lower
bound, as operators can easily improve it choosing high buildings or those
in strategic positions, instead of choosing at random.

3.5.3.2 Coverage, Degree Distribution, Link Length, LoS Probability

The topological properties of G(Nv, Ev) do not show clear regularities
among different areas or even inside the same area. Fig. 3.30 reports the
degree distribution of all rural and urban areas, and shows that while
the distributions for Urban-2 and Urban-3 seem to suggest a power law
trend, the same trend is less distinguishable for Urban-1 (also due to a
more compact distribution). Rural areas have a noisy behavior indicating
irregular degrees, also due to the smaller number of nodes in the area, and
Rural-3 has a second mode close to the maximum degree. The average
degree is high, as it ranges from 145 to 1317. In the network with the
lowest (highest) edge density, the average degree corresponds to 1.8%
(20%) of the number of nodes.

The physical length of the links of G(Nv, Ev) displays large differences
even among areas of the same kind. Fig. 3.31 reports the cumulative
density function of the link length for all the areas, and it shows that the
curves for the three areas of the same kind are always distinct and they
start to diverge very early in the graph.
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Figure 3.31: EPDF of links length for all the 9 areas. © 2023 IEEE

These observations have two key direct implications for the perfor-
mance of NGWBs, the first is that a high average degree implies a huge
number of Gφ networks that can be embedded on G(Nv, Ev). This is very
important because it allows to divide the physical network into multiple
virtual backbones to support different applications. This can be an enabler
of the network slicing features of 5G: A high density of links provides
many possible physical IABs to map slices on, each one with different
performance in terms of delay, robustness, etc. The second implication
is that the diversity in the link length strongly impacts the performance
of the network, and the choice of the technology to build links on the se-
lected edges, as the propagation of signals changes significantly with the
technology selected. This calls for techniques to build Gφ that are tailored
for the specific target area, discouraging a one-size-fits-all approach, and
justifies the need for the real-world data sets we publish.

3.5.3.3 Antenna elevation

The differences in G(Nv, Ev) shown in Sect. 3.5.3.2 are due to two concur-
rent factors, a different distribution of building elevation, mostly due to
terrain factors, and a different distribution of buildings in the 2D map of
the area. Here we focus on the first one.
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Fig. 3.32 reports the ECDF of the z value for all the points pi (accounting
for the ground elevation, building height and 2 m pole) in all areas and 2
sets of sub-areas. The z values are referred to the lowest point of the area.

Fig. 3.32 shows clear differences between areas, without a recognizable
pattern even among areas of the same kind. Rural-3 shows a bimodal
behavior that is due to the earth altitude, rather than the buildings’ height,
while Rural-2 shows a smooth trend that is quite different from the other
curves. If we zoom on a single area, we find again different situations.
Urban-1 is surrounded by mountains, so that a different choice of the
sub-area yield even more variability (Fig. 3.32b). The same can not be said
for SubUrban-2, in which the five sub-areas show a very similar behavior
(Fig. 3.32c). Again, we observe that the variability of the data do not allow
a single model for all the areas, and not even for sub-areas inside the same
one. This has a strong impact on the accuracy of simulations that use a
single model to describe every scenario, as we discuss in Sect. 3.5.4.

3.5.3.4 Comparison with SoA LoS models

We now compare the probability of LoS estimated on the graphs generated
with TrueNets with the two LoS models introduced in Sect. 2.2.2: The ITU
Model in and the Al-Hourani model. As explained, these two models
were not derived for rooftop backhauls, thus the goal of this analysis is
understanding if these model are somehow adequate for the design of
rooftop backhauls or not.

Consider a certain area on which we compute G(Nv, Ev), let us call Ep

the set of all the potential edges, i.e. all the couples (pi, pj) of the points inNv,
with i ̸= j. An edge e = (pi, pj) is present in Ep even if Υ(pi, pj) = 0. We
call d(e) the length of e. For computational reasons, we extract a random
fraction r (r = 1% in urban areas and 10% in sub-urban and rural areas)
of edges from Ep called E p, and we bin the edges in E p based on the edge
length, with interval ∆ = 200 m:

Bl = {e ∈ E p | l∆ < d(e) < (l + 1)∆} (3.40)

Then for each e ∈ Bl we compute the LoS probability PUrbanMicro(UMi)
LoS (d(e))

using the ETSI model as in Eq. (2.8), and we calculate the average on the
whole bin:

M ETSI
LoS (l) =

1
|Bl | ∑

e∈Bl

PUMi
LoS (d(e)) (3.41)

We repeat the same procedure to obtain M WINNER
LoS (l) (using the WINNER

model for rural areas) and M AL-H
LoS (l) (for the Al-Hourani model). In the

latter case we compute P AL-H
LoS (d(e), z, z′) using Eq. (2.11), with e = (pi, pj)

and z, z′ the elevation values of pi and pj. We replace P ETSI
LoS with P AL-H

LoS in
Eq. (3.41) and we obtain M AL-H

LoS (l). Finally, we use TrueNets to compute
Υ(E, pi, pj) and we have a fourth value:

MLoS(l) =
1
|Bl | ∑

(pi ,pj)∈Bl

Υ(E, pi, pj) (3.42)
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Fig. 3.33 contains different curves for three different areas (the supple-
mentary material contains all the figures for all the areas), the x axis of
each graph is cut to avoid the noise introduced by bins with less than 0.1%
of the sampled edges. The upper graphs report the numerosity of the bins,
which shows that in the urban areas the density of buildings smooths
the distribution, with some small fluctuations. We observed this behavior
also in the other two urban areas. The sub-urban area maintains some
regularity, while the rural area shows a completely different behavior. In
this case, the area seems to be partitioned in small clusters that gener-
ate the multi-modal shape of Fig. 3.33c, due to the settlement structure
done by small, dense hamlets scattered in a mountain environment: two
hamlets facing each other across a valley at distance x give a very large
contribution of LoS links around this value.
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Figure 3.33: Comparison between synthetic LoS probability models (ETSI and
Al-Hourani) and measures with TrueNets. © 2023 IEEE

The curves in the bottom part of the figure report the four values of
MLoS. We observe that the Al-Hourani model seems to differ largely from
TrueNets values, which is due to two effects. The first is that Al-Hourani
was designed for short links (below 250 m) so its application to longer
links extends beyond its initial purpose. In the supplementary material
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we report the curves for the range 0-500 m that show (for some cases) a
trend that is closer to MLoS. Second, Al-Hourani models the LoS of drones
moving in a 3D space, so the position of the drones is in the empty area
among buildings, while we put our nodes on top of the buildings. We
already observed the large difference caused by a change in the position
of pi inside the same building area (Tab. 3.7), so it is not surprising that
the Al-Hourani model does not fit a real-world LoS probability between
building roofs.

The ETSI model for Urban-Micro has a trend that is reasonably similar
to MLoS but on a totally different scale, which suggests that it could be
adapted to fit the real data at least in the initial part of the curve. One of
the most interesting observation is that the WINNER models for the area
types we consider (suburban and rural) yield completely different results:
Not only they are a pure exponential models, but they also follow a decay
that is often completely different from the measured values.

3.5.3.5 Robustness
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Figure 3.34: Effective Graph Resistance ξ of ETSI and Al-Hourani models
as a percentage difference from ξ measured with TrueNets with
30 gNB/km2. © 2023 IEEE

One intrinsic limit of both the ETSI and Al-Hourani model is that they
use a radial symmetry, so given pi they assume the probability of LoS with
pj is independent of the angle of the segment between pi and pj, which is
of course not true in a real setting. To quantify the effect of the path loss
model we need to evaluate the properties of visibility graphs generated
with different LoS probability models. We already studied the properties
of G(Nv, Ev) on entire areas, so here we focus on G(Nv, Ev) built among a
subset of buildings in sub-areas that are most likely to be interesting for
designing real communication graphs.

We use the methodology described in Sect. 3.5.2.1 to select a random
set of buildings in one sub-area, and then we build the visibility graph
G(Nv, Ev) among all the pi on the selected buildings. We repeat the process
ten times with different random seeds (ρ = 30 gNB/km2) in all the 45 sub-
areas obtaining a total of 45× 10 random topologies.
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Since availability and fault tolerance is a key requirement for nextG, we
focus on a robustness metric: the Effective Graph Resistance ξ. ξ takes into
account the presence of parallel (possibly disjoint) paths, and is computed
as the average of the resistance between any two nodes s, d in the network,
computed as if the graph were an electrical resistive circuit where the
links have unitary resistances (the interested reader can refer to Ellens et
al. for details[89]). ξ is defined as:

ξ = |Nv|
|Nv|

∑
i=2

1
λi

(3.43)

where λi is the value of the i-th eigenvalue (ordered by their value) of the
Laplacian matrix of graph G(Nv, Ev). ξ strictly decreases when an edge is
added to the network, so the smaller ξ the more robust is in general the
mesh, but also the larger is the overall capacity of a mesh built on top of
it, as it can exploit more disjoint paths between nodes. For each generated
graph we compute the relative percent difference as follows:

100
ξETSI − ξTrueNets

ξTrueNets
(3.44)

for the case of the ETSI model, and similarly for the Al-Hourani model.
Fig. 3.34 reports the values averaged on all graphs. It is evident that

even using the ETSI model, that was somehow closer to the TrueNets
data in Fig. 3.33, the robustness metric is completely different, and so
the properties of the potential embedded Gφ will be. The Al-Hourani
model maintains a higher similarity, but robustness still differs in a range
between +33.6% and −63.4%. Again, this has direct implications on the
design of reliable networks and in the support of integrated network
slices.

3.5.4 Analysis of the topology

To underline the impact of realistic data in the evaluation of scientific con-
tributions we selected two state-of-the-art algorithms for the generation of
Gφ, and we compare its performance when applied to synthetic G(Nv, Ev)

models based on HPPPs (Homogeneous Poisson Point Processes) to place
nodes and synthetic models of LoS probability, or to realistic G(Nv, Ev)

estimated with TrueNets. The first one is a greedy distributed algorithm
from Polese et al. [75], which was proposed as an algorithm to deploy
IAB networks [76]. The second one is the classical centralized shortest
path algoritm from Dijkstra used to compute a multi-source spanning
tree. As documented in Sect. 3.5.2 we dissect the comparison in three
parts, showing the impact of both modifications incrementally and finally
together. The baseline, which we call HPPP+ETSI, is the synthetic model
used by Polese [75]: Nφ is selected with an HPPP and Eφ is based on
the ETSI UMi model. The intermediate one we call OSM+ETSI uses the
realistic positions of Nφ from real-world data and retains the ETSI model
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for the selection of Eφ. Finally, TrueNets uses both realistic node location
and realistic edge LoS measured from our data set.

For each of the 45 sub-areas of 1 km2 and for each strategy we generate
10 different possible networks, each one with a different random choice
of Nφ and donor nodes and a different resulting Eφ (the process is the
same explained in Sect. 3.5.2.1) and we average the results. As usual,
we report only the minimal set of results to support our conclusions,
more results which corroborate the same conclusions are available in the
supplementary material.

3.5.4.1 Distributed Algorithm
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Figure 3.35: a) Ratio of unconnected nodes with DPS_WF strategy. b) ECDF of
the distance of IAB nodes from the closest gNB donor in Urban-3.
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The first result, reported in Fig. 3.35 a), shows the ratio of IAB-nodes
that can not be connected with a multi-hop path to any IAB-donor. These
nodes are isolated and can not be part of the backhaul network. This result
indicates that the main difference is due to the LoS probability model.
In fact, regardless of the nodes selection strategy for Nφ, the fraction of
disconnected nodes remains very similar. In all three areas the difference
among the baseline and OSM+ETSI (blue and black bars) is below 30%.
On the other hand, the usage of a realistic visibility graph dramatically
impacts the ratio of unconnected nodes, with differences up to 700% due
to the strong difference in the LoS probability as reported in Fig. 3.33. In-
creasing the density of gNBs, the fraction of disconnected nodes becomes
marginal and also differences between strategies decrease as one may
expect.

The second result, reported in plot b) of Fig. 3.35, is the metric used by
the authors in the original research: The distance between each IAB node
and its donor gNB in terms of hops, which is a key parameter to estimate
the latency in an NGWB, but also to estimate the effective capacity given
a technology to set up links on edges. The plots report the ECDFof the
hopcount and show that not only the Gφ generated using synthetic data
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has between 20% and 30% fewer nodes (Fig. 3.35 a)), but also the length
of the path to the donor is much longer.

3.5.4.2 Centralized Algorithm

The results found for the distributed algorithm generally holds true also
for the centralized (and optimal) algorithm. The first result, reported in
plot a) of Fig. 3.36 shows that the usage of a realistic visibility graph still
provides some gains in the connectivity of nodes. In fact, albeit the values
are more compressed, the usage of a realistic visibility graph diminish the
number of unconnected nodes.

The second result, reported in plot b) of Fig. 3.36, also confirms the
results found for the distributed algorithm. By using a realistic visibility
graph, the paths are generally shorter due the fact that longer edges are
less likely to be present in synthetic graphs than in reality. Additionally, we
note that when employing a centralized algorithm the average number of
hops diminishes significantly, suggesting that the algorithm proposed in
[75] was not conceived to minimize the number of hops. Without further
findings, a centralized algorithm may be preferable for delay-sensitive
applications.
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We can conclude that, in this case, the use of synthetic data produces
results that are extremely pessimistic, primarily in terms of admission to
the network, but also in terms of performance, so that an evaluation based
on these models may lead to hamper the development of a technology
that is instead very promising. These results do not change if we use
synthetic models to estimate the LoS and realistic node positions, but they
dramatically change when we use realistic data for both node positions
and LoS availability, confirming the importance of data-based approaches
and models for the generation of G(Nv, Ev).



4 I A B TO P O LO GY O P T I M I Z AT I O N
U S I N G O P E N R A N

The advent of the 5th generation (5G) of cellular networks brought with it
the promise of unprecedented speeds and connectivity. Critical to realizing
this potential is the efficient deployment and management of networks in
dense urban and diverse rural settings. millimeter wave (mmWave) com-
munication stands as a promising solution for such deployments, given
its capacity for multi-gigabit mobile throughput. However, challenges like
the notorious short range and high susceptibility to interference associated
with mmWave communications require a denser network, which in turn
escalates deployment costs.

Integrated Access and Backhaul (IAB) emerges as an elegant solution
to this problem. By integrating backhaul and access transmissions within
the same radio technology, IAB promotes the use of a Wireless Backhaul
Network (WBN) composed of several Next Generation Node Bases (gNBs)
which successfully reduces the deployment costs and thus enables Mobile
Network Operator (MNO) to reach such levels of densification.

This architecture, however, introduces a new dimension of complex-
ity in the network design and management that cannot be addressed
using traditional techniques. The Open Radio Access Network (O-RAN)
paradigm, with its concept of RAN Intelligent Controller (RIC) and closed-
loop control previously explained in Sect. 2.1.1.4, is the ideal solution to
effectively optimize different aspects of IAB networks, such as energy
efficiency, capacity, delay, etc.

This chapter encompasses three research works that delve into the
complexity of the IAB architecture in the context of the O-RAN paradigm.

The first research, presented at the 21st Mediterranean Communication
and Computer Networking Conference [6], details the challenges faced
extending the O-RAN architecture to IAB, proposing a tentative archi-
tecture to integrate the two different systems that was missing. Then it
validates such framework on an experimental platform by leveraging on
OpenAirInterface (OAI), an open-source implementation of the 5G stack.

The second research, submitted at IEEE International Conference on
Computer Communications [1], focuses on the optimization of IAB topolo-
gies, by proposing algorithms to optimize IAB networks under different
constraints, such as a minimum capacity or a reliability level. Then the
algorithms are framed in the O-RAN context to automatically tune the
network during its lifecycle.

The third research, presented at the 2023 IEEE Global Communications
Conference [5], tackles the problem of energy optimization. By showing a
novel model for joint routing and energy optimization, it offers insights
into leveraging the capabilities of O-RAN to maintain network efficiency
while simultaneously minimizing energy costs.
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It is worth mentioning that all works of this chapter build on top of the
data and techniques detailed in the previous chapter. Here, in fact, we
leverage optimal placements and visibility graphs to assess the perfor-
mances of the experimental frameworks and optimization techniques we
propose.

4.1 related works

The foundation of these studies lies in diverse yet interconnected fields of
research: the first field is the newly born field of O-RAN enabled optimiza-
tion of the Radio Access Network (RAN), and the second one is related to
specifics optimization for IAB networks.

4.1.1 Closed-loop control using Open RAN

The capabilities introduced by Open RAN, enable different kinds of op-
timization of the RAN that were not possible before. For this reason,
in recent years we have seen an increase in research works leveraging
O-RAN with a variety of use cases.

The most flourishing area is, perhaps, the one involving resource alloca-
tion; with a large number of articles optimizing scheduling, slicing, and
in general, the provision of network functions, many of which leverage
Machine Learning based optimization. Bonati et Al. [94] provide the first
demonstration of closed-loop control of softwarized cellular networks
optimizing the scheduling policies towards different targets. Johnson et Al
[95] similarly take advantage of an O-RAN xApp to optimize the slicing of
a mobile network running on an experimental over-the-air testbed. Polese
et Al. [96] propose ColO-RAN, a pipeline to design, train, and test Deep
Reinforcement Learning based control in O-RAN, which is showcased by
controlling slicing and scheduling policing through an xApp.

Another promising use case for closed-loop control is resource sharing.
This technique allows different MNOs to share parts of, or all, the network
infrastructure. By doing so both the Capital Expenditure (CapEx) and the
Operational Expenditure (OpEx) needed to deploy and operate a mobile
network decrease. Bonati et Al. [23] proposes NeutRAN, a framework
based on the O-RAN architecture to optimize and balance the use of re-
sources among different MNO on a single infrastructure. Baldesi et Al.
[97], with ChARM, devise an O-RAN compliant framework that, lever-
aging on Neural Networks, senses the spectrum in real-time and, upon
sensing an incumbent transmission on the current channel, re-configures
the ran on a different frequency. Polese et Al. [98], similarly leverages
external information about the satellite orbits to perform automatic and
dynamic spectrum sharing to avoid interfering with passive incumbents.
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4.1.2 IAB topology optimization

The optimization of wireless mesh networks is an extensively studied area
of research, from planning [99] to scheduling [100], and reliability [101].
As the concept of IAB emerged more recently, there are fewer studies
explicitly dealing with its optimization. Some of the most general research
on mesh networks could be adapted, however, the adoption of higher
frequencies and the introduction of beam-steering created new challenges
that are being currently investigated. Zhang et Al. [102], for instance,
leverage on Multi-Agent Reinforcement Learning techniques to optimize
resource allocation in a mmWave IAB network. Pagin et Al. [103], instead,
adopt a centralized approach to optimize scheduling on an IAB topology.
Polese et Al. [104], devise and evaluate several distributed algorithms to
select the best hop for an IAB network.

There is a lack of research that specifically leverage the Open RAN
framework to optimize IAB networks, due to the novelty of both systems.
Gahtan et Al. [105] leverages Deep Reinforcement Learning to optimize
the scheduling of an IAB network and discuss its integration into an
O-RAN framework. Munldamuri et Al. [106] showcase an IAB-like imple-
mentation using OpenAirInterface in a O-RAN network, showing how a
flying IAB node can improve the throughput of an User Equipment (UE)
which is in Non-LoS (NLoS) with the gNB.

In the remainder of this chapter, we will describe our efforts, both from
an experimental perspective and optimization perspective, on how IAB
networks can leverage on O-RAN.
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4.2 a framework to experiment with iab and
openran on colosseum

In this effort, we lay off the basis to allow the dynamic control of IAB
network through O-RAN, leveraging on OpenAirInterface and publicly
available testbeds to validate our contribution.

We started by considering how the O-RAN architecture, interfaces, and
control loops can be extended to IAB scenarios, with the ultimate goal
of allowing large-scale, data-driven control and management of 5G IAB
networks. We then proposed an experimental framework, built on top of
IABEST [107], where researchers can easily deploy an end-to-end O-RAN-
enabled IAB network with Over-The-Air (OTA) and hardware-in-the-loop
emulation capabilities. Furthermore, to further facilitate experimental
research activities, we packaged and integrated the entire framework into
OpenRAN Gym, a publicly available research platform for data-driven
O-RAN experimentation at scale [108]. Finally, we validated the proposed
framework on Colosseum, the world’s largest wireless network emulator
[109], where a synthetic scenario and a realistic scenario, based on the
data and techniques developed in the previous chapter, have been used to
test its performance.

4.2.1 Integrating IAB in Open RAN

The existing 3rd Generation Partnership Project (3GPP) standards offer
adaptation and control mechanisms through the IAB Backhaul Adaptation
Protocol (BAP) layer, the F1 interface, and the Radio Resource Control
(RRC) layer across the IAB-Donor Central Unit (CU) and the IAB-Node
Distributed Unit (DU). However, the specifics of control and adaptation
within these configurations are often dependent on the individual ven-
dor’s implementation.

In this context, integrating IAB networks within the O-RAN architecture
becomes significant. This integration allows for the functionalities of IAB-
Donor and IAB-Node to be made accessible to the RICs. These RICs have
the advantage of a centralized overview of the RAN and access to a vast
array of analytics and information, which are typically not available at
the level of individual IAB-Donors and Nodes. For IAB networks, this
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could mean improved coordination across multiple IAB-Donors, leading
to reduced interference, more adaptable network topologies, and dynamic
resource allocation. This approach also facilitates proactive congestion
management across both access and backhaul links through data-driven
strategies.

4.2.1.1 Extensions to Open RAN

Adapting the O-RAN architecture to accommodate IAB deployments
involves several design and architectural challenges. A key decision is
whether to support O-RAN interfaces directly in the IAB-Nodes, which
could involve either terminating these interfaces at the IAB-Donor or
transmitting the data over the wireless backhaul. The former is simpler
and does not require changes in the architecture but limits control to the
capabilities of the IAB-Donor, lacking visibility into the IAB-Nodes. The
latter offers more detailed control but adds complexity and necessitates
data tunneling over the wireless backhaul.

3GPP anticipates the execution of Self-Organizing Network (SON)-like
operations via the wireless backhaul interface. Therefore, our proposed
architecture, as depicted in our framework, opts for the latter approach,
which aligns closely with integrating O-RAN and IAB deployments. This
approach involves encapsulating O-RAN interface data in dedicated bear-
ers, necessitating coordination between the network’s control plane and
user plane transport. This could, for instance, be managed through a dedi-
cated Packet Data Unit (PDU) session between local User Plane Functions
(UPFs) in both the IAB-Donor and IAB-Node Mobile Termination (MT).
Subsequently, local interface termination would be established in the
IAB-Node, similar to a traditional, fiber-equipped RAN node. However,
it’s crucial to prioritize O-RAN traffic correctly on the wireless backhaul
to maintain control objectives without negatively impacting user perfor-
mance or causing congestion.
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Figure 4.2: Overview of the RAN architecture deployed over white-box hard-
ware. © 2023 IEEE

o1 extension The O1 interface could connect the Service Manage-
ment and Orchestration (SMO) framework to the IAB-Node for tasks like
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maintenance and updates of the components (MT and DU) of the IAB-
Node. Since the control loops via O1 operate at a longer timescale (around
1 second or more), its traffic can be assigned a lower priority compared
to E2 traffic. This scenario advocates for the use of dedicated bearers and
tunnels for each O-RAN interface over the backhaul.

e2 extension Enhancing the E2 interface for IAB usage may require
new, dedicated E2 Service Models (E2SMs). These models define the se-
mantics of the E2 interface interactions with xApps in the near-real-time
RIC. For IAB, an extension of the E2SM Key Performance Measurement
(KPM) [110] can be utilized to reveal performance metrics related to the
MT, in addition to the DU. Other potential targets for near-real-time con-
trol over E2 could include the allocation of resources between backhaul
and access traffic or dynamic Time Division Duplexing (TDD) slot config-
urations to adjust to fluctuating traffic patterns.

o2 extension This interface could integrate IAB-Nodes as part of the
O-Cloud resources. In contrast to traditional virtualization infrastructure,
the IAB-Nodes in the O-Cloud are accessible and reachable over O2 only
when a session is established from an IAB-Donor to the IAB-Node.

4.2.2 Developing an Experimental Framework for
IAB and O-RAN

In this section, we present a comprehensive experimental framework that
encapsulates the entire software suite necessary for operating an O-RAN-
enabled IAB network, as outlined in Section 4.2.1. This framework is
designed with a multi-layer architecture and is compatible with Commer-
cial Off-the-Shelf (COTS) hardware, including generic x86 machines and
USRP Software-defined Radios (SDRs).

We have customized the OpenAirInterface (OAI), an open-source 5G
RAN framework [37], to support the functionality of IAB-Donors, IAB-
Nodes, and IAB-capable core functions. Furthermore, our framework
integrates agents for E2 and O1 interfaces into both IAB-Donor and IAB-
Node, facilitating the architectural integration proposed in Section 4.2.1.
These interfaces enable the non-real-time and real-time Radio Intelligent
Controllers (RICs) included in our framework to manage the IAB network
components effectively.

We now describe the aforementioned components, separating them into
the RAN and O-RAN domains.

4.2.2.1 RAN and Core Network Components

Figure 4.2 represents an overview of the radio access functional com-
ponents that enable end-to-end communication in our framework. In
particular, we provide the following: a minimal yet functional deploy-
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ment of 5G Core Network (CN) functions, software-defined IAB-Nodes
and IAB-Donors and software-defined UEs.

iab-nodes and iab-donors According to 3GPP specifications [76],
an IAB-Donor consist of a CU and multiple DUs. Likewise, an IAB-Node
is split into a DU and an MT. The DU is responsible for enabling the
downstream connectivity, while the MT is responsible for the upstream
connectivity. At the time of first developing this framework, OAI’s imple-
mentation of the CU/DU functional split does not support multiple DUs
connected to a single CU [111]1. This limitation is not compliant with the
IAB architecture. Thus, we employ a full OAI gNB in place of both CU
and DU. As for the MT, this component is functionally equivalent to a UE,
as it connects to upstream nodes using the same resources and protocols.
Consequently, we have selected OAI’s software-defined UE to act as MTs
in this framework. The resulting system is thus made up of two concur-
rently running instances: an OAI gNB, acting as a DU, and an OAI UE,
acting as a MT. These two components can either be deployed over two
separate machines, interconnected with high-speed networking, as shown
in Fig. 4.2, or on a single machine, provided that sufficient computing
power is available.

core network A minimal set of 5G CN functions have been included
in our framework: Network Repository Function (NRF), Access and Mo-
bility Management Function (AMF), Slicing Magangement Framework
(SMF) and User Plane Function (UPF), all based on the OAI 5G core
implementation. All these functions run as Docker containers on a sin-
gle x86 machine, as shown in Fig. 4.2, which hosts all the network core
functions. Due to the selected IAB system design, the UPF required mod-
ifications to enable IAB operations. As previously mentioned, UEs acts
as MTs in IAB-Nodes, connecting to upstream nodes. The established
GPRS Tunneling Protocol (GTP) tunnels are then used to provide direct
connectivity between the DU component of the IAB-node and the CN
functions. However, OAI’s UPF implementation lacks support for the
required forwarding capability, as any packet whose destination is not a
UE is dropped. Therefore, we have modified the UPF implementation to
allow forwaring packets to an UE that are not intended to be received by
it, so that they can be forwarded to the DU.

user equipment From the perspective of the UE, an IAB network
deployed using the components described above is entirely standard-
compliant. As such, both software-defined UEs (as shown in Fig. 4.2) and
COTS UEs can be used in the proposed framework.

1At the time of writing this thesis, there exists a branch that supports multiple DU per
CU, in the next future this framework will be updated to support it
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4.2.2.2 O-RAN Components

As mentioned earlier in Sect. 4.2.1, O-RAN defines a set of standardized
and open interfaces with which the RAN exposes data collection and
control primitives to the RICs. In the proposed framework, we have en-
abled IAB-Nodes and IAB-Donors to be O-RAN-compatible by integrating
software agents for the E2 and O1 interfaces into the codebase of OAI.
Furthermore, our framework comprises a Near Real-time RAN Intelligent
Controller (Near-RT RIC) and a Non-Real-Time Ran Intelligent Controller
(Non-RT RIC).

o1 interface In order to properly manage all the different aspects
of networked elements, the O1 interface defines various Management
Services (MnS), which can be used either from the managed entities (the
gNBs) to report information back to the RIC or from the managing entity
(the SMO and the rApps running on it) to deploy configurations changes,
transfer files or update the software on the managed entities [19], [112].
Among all the different MnS, we have focused our contribution on im-
plementing the Heartbeat MnS, which periodically transmits heartbeats;
the Fault Supervision MnS, which reports errors and events; and the Per-
formance Assurance MnS, which streams performance data. Those MnS
have been integrated into the OAI codebase by implementing a scheduler
that, running on a dedicated thread, periodically sends Virtual Network
Function (VNF) Event Stream (VNF) notifications in JSON format over
HTTP. This format and communication protocol has been chosen among
the different options defined in the standard, as it is widely known and
easily extendable by other researchers. As of now, our implementation
reports performance metrics, such as the throughput and information
on the channel quality between IAB-Nodes, and failure events, such as
RRC or Uplink Shared Channel (UL-SCH) failures, which can be used
in rApps to monitor and optimize the backhaul network. Provisioning
MnS, which can be used by the rApps to deploy configuration changes
(e.g., topology optimizations), have not been implemented by following
the O1 specifications, as it would have needed major reworks in the OAI
codebase. Instead, we have taken advantage of IAB-Manager, a software
component we developed to orchestrate IAB experiments, as discussed
next.

e2 interface The E2 interface is functionally split into two protocols:
E2AP, tasked with establishing a connection with the Near-RT RIC, and
E2SM, which implements specific monitoring and control functionali-
ties, namely Service Models (SMs), as discussed in Section 4.2.1. In our
software implementation, E2AP has been adopted from O-RAN Alliance
Software Community reference implementation and, as such, it is entirely
compliant with O-RAN. The E2SMs however, are defined using ASN.1: a
powerful abstract description language which is, however, cumbersome
and challenging to use in the fast-paced research and development envi-
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ronments targeted by our framework. For this reason, we employ custom
SM that are defined through Protocol Buffers (protobuf), an abstract defini-
tion language developed by Google, that is easier to handle and allows for
fast prototyping and testing, facilitating the development of IAB-aware
control solutions. Since the E2 interface is such that the E2SM messages
are encoded and decoded only in the RAN and xApp, the custom SM
definitions are transparent to the RIC, allowing our proposed solution to
retain generic O-RAN compliance. At the time of this writing, we have
implemented a set of protobuf messages that can be used to reproduce
both the KPM and RAN Control (RC) SMs [19]. These can be used to
develop data collection and control xApps, respectively.

iab-manager IAB networks are expected to include several IAB-Nodes,
and the framework we propose can scale to such numbers. Managing
experiments with tens or more RAN components is however a challenging
task. Each component can be hosted by a different machine, thus setting
up an IAB deployment requires the users to activate and configure each
machine according to a sequence that starts from the CN functions and
ends with the terminal IAB-Nodes. To facilitate experimenting at such a
large scale, we have developed IAB-Manager [107]: an orchestrator that
automates the IAB network deployment and experimentation through
an Application Programming Interface (API) and a command line inter-
face. Specifically, IAB-Manager is the entry point for controlling the entire
experiment. It handles all the different network components, the setup
of the emulated radio environment, and the management and reconfigu-
ration of the IAB topology. Furthermore it also automates the tests and
collects the results upon completion. From a functional point of view,
IAB-manager instantiate a Secure Shell (SSH) connection to the machines
involved in the experimentation and runs some commands to configure
them according to the assigned roles. Additionally, as previously men-
tioned, IAB-Manager is used in place of the O-RAN O1 interface to execute
the network configuration changes mandated by the rApps.

ran intelligent controllers The proposed framework includes
standard compliant RICs, specifically the Near-RT RIC and Non-RT RIC
implemented by the O-RAN Software Community.
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Figure 4.3: Linear IAB topology. © 2023 IEEE
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Figure 4.4: Results for the linear chain. © 2023 IEEE

4.2.3 Validation and Results

This section focuses on the experimental validation of our framework.
Specifically, we characterize some fundamental Key Performance Indica-
tors (KPIs) of the deployments allowed by our IAB framework, and we
validate its correct functioning.

We chose to base our validation campaign on Colosseum [109], but we
stress that the openness and flexibility of the software components are
such that the framework can run on generic x86 hardware. Colosseum
is a publicly available large-scale testing platform with hardware-in-the-
loop capabilities. It comprises 128 Standard Radio Nodes (SRNs), each
composed of a powerful x86 computing node and a USRP X310 SDR. All
the components of our framework can be trivially deployed on Colos-
seum’s SRNs. Every SRN radio is interconnected by an FPGA mesh, called
MCHEM, that emulates arbitrary radio channels defined through tapered
delay models. Specifically it can emulate 65536 distinct channels, each one
with a 4 TAPs characterization, allowing to faithfully model multipath

Parameter Value

Area Size for realistic deployment 0.627 km2

gNB Density 45 gNB/km2

IAB-donors/ IAB-nodes ratio 1/10

Emulated center frequency ( fc) 28 GHz

Bandwidth (B) 40 MHz

Scheduler 7 2 1

Subcarrier Spacing 30khz

Colosseum Base loss 50 dB

Channel Model ETSI Urban Micro

MIMO layers (µ) 1

Table 4.1: Table of System Settings
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effects. With the capability of emulating complex scenarios made of tens
of nodes, Colosseum makes it possible to perform system-level evaluation
of large IAB networks over complex propagation scenarios thus repre-
senting an ideal validation platform for our framework. Furthermore,
Colosseum is open to the research community, and the validation tools are
made available, allowing interested parties to start experimenting with a
minimal initial effort.

4.2.3.1 Experiments with a linear chain

We start by evaluating the performance of an IAB network deployed
in a tightly controlled scenario. To this end, we consider a 5-hop linear
topology, as shown in Figure 4.3. As detailed in Section 4.2.1, each IAB-
Node comprises an MT and a DU, bringing this experiment’s overall radio
node count to 10. In order to characterize the upper-bound performance
of the proposed framework, we employ an ideal propagation scenario.
Through properly manipulating Colosseum’s channel emulator, a 0 dB
pathloss model is selected for nodes connected in the linear topology, and
an infinite pathloss is set for all the other channels, effectively suppressing
any possible interference. In other words, this radio scenario is equivalent
to connecting the SDRs with coaxial cables.2 Transmissions occur on band
n78 with 106 Physical Resource Blocks (PRBs) available, for a total of
40MHz bandwidth.

Figure 4.4a shows the downlink and uplink TCP throughput against
the number of hops, as measured between the core network and the spe-
cific MT/UE. The first-hop values of 47 Mbps in DL and 21 Mbps in UL
represent the maximum throughput attainable in the testing settings. This
upper bound is far from the theoretical maximum allowed by the available
bandwidth. It is limited by several factors that depend on the experimental
platform, OAI software implementation, and system design. Most notably,
the strongest detractor to the final throughput performance is given by
the OAI implementation of the software-defined UE, which is employed
to build the MT. In particular, the OAI UE is inefficient in reception and
transmission, thus becoming a bottleneck for the entire communication
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chain. Efforts are ongoing to improve the performance and stability of this
software framework. Furthermore, the frameworks’ system design is such
that each IP packet is encapsulated into as many GTP packets as the num-
ber of hops. This increased overhead can cause packet fragmentation with
a further negative impact on the overall performance. Additionally, even
if the emulated channel is set to a 0 dB pathloss, Colosseum’s architecture
includes an unavoidable base loss of 50 dB [113] due to characteristics of
the hardware architecture. This, together with the aforementioned inef-
ficiencies, make such that packet drops and subsequent retransmissions
happen also in this ideal scenario.

As the number of hops increase, the downlink throughput experiences a
sharp decrease before stabilizing on a per-hop loss of around 6 Mbps. The
notable throughput loss experienced at the second hop can be explained
by observing the standard deviation of the throughput, represented by
the whiskers in Figure 4.4a. This value is at its maximum for the first hop,
suggesting that the first radio link is unstable due to the RX pipeline of the
MT being overwhelmed. This substantial variability is caused by packet
loss and retransmissions and internal buffer overflow, which negatively af-
fect the performance of the second hop, as it is noticeable in the numerical
results. At the same time, the second hop’s throughput standard deviation
is lower, as the decreased traffic volume causes less drops in the involved
MTs. This stabilizing effect propagates down the topology, as both the
decreasing standard deviation and the linear per-hop loss testify. On the
other hand, the uplink throughput is relatively stable and close to the
upper bound, even at the fourth hop. This is because the limited OAI UE
performance and BS scheduling process limits the uplink traffic volume,
and the gNBs are far from being overwhelmed. On the other hand, since
the uplink throughput does not significantly decrease from the maximum,
the UE’s congestion level remains relatively stable and high, as proven by
the constant standard deviation values.

RTT is measured when the network is unloaded, that is when there is no
traffic flowing through the IAB network. As shown in Figure 4.4b, the first
hop latency is around 11 ms. This value represents the base processing
delay plus a small fixed propagation delay that is, however, the same
for each hop. As the number of hops increases, the RTT experiences a
linear increase comparable with the first hop latency, as expected. This
shows how the system does not introduce any spurious latency when the
network is unloaded. Finally, the relatively higher RTT standard deviation
of the last hop (as represented by the whiskers in Figure 4.4b) suggests
that multiple packet retransmissions are required.

4.2.3.2 Validation over realistic RF scenarios

After having validated the system performance in a controlled environ-
ment, we move to more realistic urban scenarios, representing the typical
deployment environment of an IAB network. We take advantage of the
results, released as open-data, of the research on gNB placement detailed
in Sect. 3.2. Specifically, we take the optimal placement for different gNB
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Figure 4.4: Realistic deployment scenario in Florence, Italy. Donors are repre-
sented in red, while IAB-Nodes are represented in yellow. © 2023
IEEE

density values and we build the visibility graph among their locations.
Then, we characterize the propagation between each gNB according to
the ITU Urban Micro Pathloss Model (see Sect. 2.2.1.3), and we produce
a tapered-delay representation of the communication channels, which
Colosseum can then emulate. This process has been carried out for several
European cities and four different scenarios are made available.3

Motivated by the fact that IAB is unanimously considered as a key
enabler of mmWave RAN [114], we are interested in providing an experi-
mental solution that enables testing in such conditions. While Colosseum
is not directly capable of operating at frequencies higher than 6 GHz, we
can approximate these radio scenarios by reproducing the most relevant
propagation characteristics of mmWaves, namely the extremely directive
transmissions through beamforming and the increased pathloss [115]. In
particular, the pathloss between nodes that are not directly connected in
the provided topologies has been set to infinite. The resulting suppression
of inter-node interference might appear too ideal at first. However, this is
compatible with the highly directive transmissions typical of mmWave,
where interference in static conditions (i.e., as in a backhaul IAB topol-
ogy) can be practically neglected [116]. A more refined mmWave channel
emulation will be subject of future extensions. In addition, since Colos-
seum’s channel emulation happens in base-band, we can apply arbitrary
pathloss independently of the radio frequency employed during the ex-
periments. Thanks to this flexibility, we could compute pathloss for a

3https://colosseumneu.freshdesk.com/support/solutions/articles/

61000303373-integrated-access-and-backhaul-scenarios

https://colosseumneu.freshdesk.com/support/solutions/articles/61000303373-integrated-access-and-backhaul-scenarios
https://colosseumneu.freshdesk.com/support/solutions/articles/61000303373-integrated-access-and-backhaul-scenarios
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carrier frequency of 28 GHz and apply them to Line of Sight (LoS) links.
Nonetheless, the scenarios made available to the Colosseum community
are available for both 3.6 GHz and 28 GHz, both with and without inter-
node interference suppression.

For the experimental evaluation presented in this work, we have se-
lected a scenario based on the city of Florence, Italy. Figure 4.4 shows both
the urban layout and the IAB deployment, which is extended over 0.7 km2

and comprises 21 nodes (3 of which are IAB-Donors). To determine which
nodes are going to become IAB-Donors, we have applied the group close-
ness centrality metric [117] to the visibility graph. This centrality metric
selects k nodes such that their distance to all the other nodes is minimized.
Then, we have determined the IAB topology as a Shortest-Path Forest
computed over the visibility graph of the area with the well-known Dijk-
tra’s Algorithm. Similar to what has been done for the previous analysis,
we characterize the throughput and latency at each hop in the network. In
this case, however, the different link lengths cause performance variations
in the per-hop throughput and latency. As such, we employ box plots to
synthetically describe the network performance statistics in Figure 4.5. In
particular, consider Figure 4.5a. Here the bottom and top edges of each
box represent the first and third quartile of the downlink throughput
measurements taken at all the different hops in the scenario. Similarly,
the central marks indicate the median, and the whiskers represent the
extreme data points. The plotted values indicate how the realistic pathloss
introduced in the study scenario causes lower performance than the ideal
case previously analyzed, independently of the considered hop. The same
can be noted for the uplink throughput, as shown in Figure 4.5b. In both
cases, the decreasing per-hop throughput trend is conserved. However,
the throughput variability is the same for the two transmission directions.
This is because, as opposed to the ideal scenario, the link length now
represents the main performance-determining factor. This is testified by
the significant distance between the first and third quartile of the first
hop in both downlink and uplink throughput, which is consistent with
the high variance of the first hop length in the topology of study. As for
the second and third hop, the relatively closer quartiles are motivated by
lower link length variations for these hops in the considered topology.
Finally, the upper whiskers represent the performance of the shortest
links, giving a further characterization of the system performance in this
realistic scenario.

Figure 4.5c shows the RTT statistic through the same plotting technique.
Differently from the throughput, the latency is not affected by the link
length variations in the considered scenario for the first two hops. Ad-
ditionally, the RTT increase at hops 1 and 2 is consistent with the one
experienced in the controlled scenario. On the other hand, the high RTT
variance of the third and last hop suggests a high probability of requiring
retransmissions along the IAB path.
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4.3 optimal topology design for iab

In this research, we focused on pre-deployment and post-deployment
approaches for the optimal identification and management of topologies
across complex IAB networks, with the goal of (i) providing a minimum
guaranteed area capacity, in line with the International Telecommunication
Union (ITU) recommendations for next-generation cellular networks [27];
and (ii) minimizing the downtime of the IAB tree in case of failures of
links between parent and child IAB nodes.

First, we introduced optimization problems that mix topological con-
straints (i.e., maximum degree and maximum diameter of the network
graph), robustness constraints (resilience to link failure), and flow con-
straints (characterization of the demand and conservation of the flow
on the path to a donor). The problems belong to the family of mixed
Integer-Linear Problems (ILPs), which we tested on synthetic graphs to
show that with accessible hardware we are able to find a very close to
optimal solution for fault-tolerant topologies with flow guarantees and up
to 45 nodes with a number of fiber-connected gNBs (i.e., the IAB-donors)
between 66% and 23% of the total number of gNBs.

Second, we further evaluated our approach on realistic IAB topologies
by using open 3D surfaces representing urban areas. In these scenarios,
we were able to apply the optimization with networks of up to 60 nodes,
in these large networks we need as little as 19% of the nodes to be IAB-
donors.

Finally, we embedded and implemented the optimization routine using
the O-RAN architecture [6], [19] in an rApp (i.e., a piece of custom control
logic running in the O-RAN Non-real-time (Non-RT) RIC). The rApp
dynamically recreated the IAB topology in case of link failures in the
backhaul topology, based on the guidance from the optimization problem.
We used Colosseum [109], the world’s largest wireless network emulator
with hardware-in-the-loop, to confirm the viability of our approach using
the experimental framework presented in Sect. 4.2.

4.3.1 Problem Statement

This section introduces the proposed system model for the design of opti-
mal, reliable, and reconfigurable IAB topologies, based on the main blocks
illustrated in Fig. 4.5. First, we leverage realistic representations of the
areas where the IAB network operates. Second, we develop optimization
techniques that deploy optimal connectivity graphs over such topologies,
including redundant paths to enforce network resiliency. Third, we lever-
age the O-RAN architecture, and, specifically, the O1 interface between
the RAN and the Non-RT RIC, to perform reconfigurations of the network
in case of failures.

IAB supports a backhaul network made of multiple trees rooted in
IAB-donors. In our optimization we start from the positions of gNBs and
we study how to create an optimal IAB backhaul. The number of IAB-
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Figure 4.5: System model of the IAB closed-loop optimization using the (i) real-
istic topologies representations; (ii) graph-based optimization; and
(iii) the O-RAN infrastructure.

donors needs to be minimized as they are fiber connected to the core
network, and this impacts the overall capital expenditure. Based on the
gNBs positions, the proposed optimization will jointly decide their roles
(IAB-donor or IAB-node), and the backhaul topology, with different levels
of redundancy. As such, the optimization should be performed before
deploying the network, as it determines the nodes with wired access and
those using a wireless backhaul, so we do not target real-time network
optimization. However, we support and generate redundant paths that
the controller can configure at run-time to repair link failures. Note that
the focus of our work is on the backhaul network, the access network can
be realized with a separate radio or using portions of the bandwidth we
don’t use for backhauling.

4.3.1.1 Realistic Deployment Area Representation

The starting point of our analysis is the reconstruction of a 3D surface that
represents with high fidelity a certain area that we need to cover with a
next-generation network. This approach has been recently adopted by a
number of papers for various goals, such as, studying propagation models
[118], localization [119], network planning [10], and LoS estimation [30].
We use open data from public administrations and the OSM buildings
project [120]. In this paper we use the methodology and heuristic proposed
in [10] to deploy a network of gNBs in an outdoor urban area, and we
then evaluate LoS and link capacity between the gNB similarly to [30].
The result is that given a certain urban scenario, and a desired density of
gNB per square kilometer, we can identify the positions of the gNBs that
provide an optimal outdoor coverage.

We also leverage a realistic traffic demand profile, based on the knowl-
edge of the area covered by each gNB and requirements for next-generation
wireless systems, as we detail in Sect. 4.3.2.1, and a link model based on
parameters for 3GPP systems and the OAI reference implementation,
as discussed in Sect. 4.3.2.2. In the remainder of the paper, we focus on
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a IAB network deployed at mmWaves, to evaluate the impact of large
bandwidth availability to the performance of the system.

4.3.1.2 Topology Optimization

For the optimization of the network topology and access/backhaul link
distribution, we consider the visibility graph G(Nv, Ev), representing all
the feasibile connection between the gNBs in a specific area. The first goal
of the optimization is to find the smallest number of IAB-donors, i.e., the
smallest subset N ∗ ⊆ Nv that must be connected to the core network
with a wired connection. The second goal is to choose the subset E∗ ⊆ Ev

of edges that create a multi-hop path from every gNBs in Nv to some
IAB-donor. The resulting topology must respect some performance and
reliability requirements. All together, the final goal is to define N ∗ and
a new graph G∗(Nv, E∗) made of all the gNBs and the set E∗ of edges
resulting from the union of all the edges of all the trees. We will impose
two classes of constraints: topological constraints that impose reliability
features and flow conservation based on the estimated link capacity and
traffic demand of every gNB.

4.3.1.3 Open RAN for Optimized IAB Deployments

This generated graph is used to optimally deploy the IAB network in
the first instance, but also in the context of network programmability,
driven by primitives and capabilities provided by the O-RAN architecture
depicted in Fig. 4.5. O-RAN introduced the Non-RT RIC, which performs
optimization and service provisioning with a closed-loop control with a
granularity higher than 1 s, and connects to the RAN through the O1 inter-
face. The control logic is defined by custom applications called rApps [121].
In our previous research (see Sect. 4.2) we also extended the O-RAN archi-
tecture to support IAB operations, with the interfaces to the RICs (e.g., O1
and E2) implemented as tunnels over the backhaul network.

The IAB rApp is then used in two phases. During the network setup,
it receives the optimized topology and configures each network compo-
nent to enforce it. When the network is running, it continuously receives
performance metrics and failure events through the O1 interface, and
uses them to detect relevant changes in the network topology (e.g., the
degradation of a radio link). The rApp eventually reacts by reconfiguring
the IAB topology based on the optimization output. We test the rApp on
Colosseum, a wireless network emulator that includes 256 SDR together
with a digital channel emulator to run large-scale experiments involving
real hardware and software [109].

4.3.2 Estimating Demand and Link Capacity

As in the previous research, the starting point of this analysis is the visi-
bility graph computed between all gNBs of an area, whose location have
been determined using the optimal placement algorithms from Sect. 3.2.
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We then need to estimate the traffic demand for every gNB, and the link
capacity that every point-to-point link between gNBs can offer. This will
create the annotated graph G(Nv, Ev)over which we run the optimization.
Both estimations are data-driven and are part of our original methodology.

4.3.2.1 Estimating Demand

The ITU provides precise parameters to simulate gNB deployments when
offering “extended mobile broadband” services [27], which correspond
to 10 UE per gNB, each one with a demand of at least 100 Mb/s, so
each gNB should be able to serve a load λ = 1000 Mb/s. This work
focuses on the coverage of outdoor public areas (streets, public gardens,
etc.), so assigning a fixed load per gNB is realistic only if the goal is to
minimize coverage overlap in a context where gNBs can be deployed
without constraints. However, in scenarios based on actual topographies,
as those used in this paper, the buildings make the area of interest non
homogeneous, with some gNBs that are placed in positions that cover
specific areas which would otherwise be significantly shadowed [122]. As
a result, coverage areas are often partially overlapping and the UEs may
be shared among gNBs. This calls for a strategy to model shared demand
among gNBs.

We consider a sampling of the area under analysis with one point
per square meter. From the initial placement algorithm, we obtain Σ =

{σ0 . . . σn} that is a family of sets. σi includes all the discrete (x, y) coor-
dinates on the ground that are covered by gNB i ∈ Nv. In this paper we
consider a mmWave deployment thus we restrict σi to the points on the
ground that are in LoS with the gNB i, but the same approach can be used
with a different definition (i.e., all the points with a minimum estimated
capacity). The area occupied by σi is then simply |σi| (the number of points
in the sampled 2D space). One point can belong to more than one set, so
we define the multiplicity mx,y = |{σi ∈ Σ | (x, y) ∈ σi}|. We define the
demand di of a gNB as:

di =
|σi|λ

∑(x,y)∈σi mx,y
(4.1)

Note that if σi is not overlapping with any other σj, then mx,y = 1 ∀ (x, y) ∈
σi and di = λ, while if gNB i covers an area that overlaps with some other
gNB (as it happens for the majority of the real-world scenarios) then
di < λ.

4.3.2.2 Link Capacity Estimation

To estimate the capacity of each link between a pair of nodes (s, d), we
model the propagation through a ray tracing analysis using the MATLAB
suite, and combine a link abstraction model based on the physical layer
implementation of OAI. First, we load the 3D model of the buildings
obtained from OSM Buildings, then for each pair of gNBs we perform ray
tracing using the shooting and bouncing method [31]. We consider up to
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a maximum of 4 reflections and we ignore the effect of diffraction that is
negligible at mmWave frequencies [33].

Then, we apply the Multiple Input, Multiple Output (MIMO) channel
model, described in Sect. 2.2.3.1, onto each pair of nodes (s, d) and finally
we use the 5G capacity model, described in Sect. 2.2.5.3, to obtain a realistic
estimation of the capacity Cs,d of each link. The detailed parameters are
reported in Tab. 4.2

4.3.3 Optimization Models

Let us consider the edges in E∗ as directed, representing the downstream
links from the donors down to the gNBs. We focus on downstream for
simplicity but the problem can be trivially extended to both downstream
and upstream. Given an IAB-node i, let the out-degree i be its number of
direct children and the distance of i be the number of hops that separates
i from the IAB-donor.

Let the binary variable ui,l be equal to 1 if and only if node i is at distance
l from the IAB-donor. If ui,0 = 1, then node i is an IAB-donor. Let Pi,j be
a binary variable that is set to 1 if and only if the potential edge from
i to j is part of E∗. The optimization algorithm will assign both sets of
variables and thus define the network topology. The parameters of the
optimizations are:

• D: the maximum distance from a gNB to an IAB-donor;

• δ: out-degree of a gNB;

• ei,j: a set of parameters so that ei,j = 1 if and only if the edge from i
to j is present in Ev, i.e., the SNR is sufficient to negotiate a link.

The objective of the optimization is to minimize the number of donors:

objective: min ∑
i∈Nv

ui,0. (4.2)

We first introduce some topological conditions:

D

∑
l=0

ui,l = 1 ∀i (4.3)

∑
i∈Nv

Pi,j = 1− uj,0 ∀j (4.4)

∑
j∈Nv

Pi,j < δ ∀i (4.5)

Pi,j ≤ 1− uj,l + ui,l−1 ∀i, j ∀l ∈ {1 . . . D} (4.6)

Pi,j ≤ ei,j ∀i, j (4.7)

Pi,j + Pj,i ≤ 1. (4.8)

Briefly, the equations can be explained as follows: Eq. (4.3) imposes that
every IAB-node is assigned to one single tree rooted in one IAB-donor;
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Parameter Value

Carrier frequency ( fc) 27 GHz

Bandwidth (B) 400 MHz

Resource Blocks (RB) 132

Numerology (µ) 3

Uplink to downlink slot ratio (Rslot) 0.7

Control channel overhead (Oh) 0.18

Noise density (N0) −174 dBm/Hz

Noise Figure (N f ) 7 dB

Antenna Elements 8x8

Maximum number of reflection 4

MIMO Layers (µ) [1,2]

Transmission power (Π) 33 dB m

Maximum BLER 0.1

Table 4.2: Simulation parameters. Most parameters are adapted from [27].

Eq. (4.4) imposes that IAB-donors have no incoming edges, and other
nodes have one (thus it is a tree topology); Eq. (4.5) imposes the maximum
out-degree; Eq. (4.6) imposes consistency on paths, hop by hop, that is,
if a link connecting IAB-node i to IAB-node j is active, then the distance
of IAB-node i equals the distance of IAB-node j minus one; Eq. (4.7)
imposes that only existing links can be used; Eq. (4.8) imposes that links
are unidirectional.

The problem is a merge between two known problems, a multi-commodity
flow problem, and the shortest path tree problem, both of which can be
modeled with an ILP approach. There are however two key differences.
The first is that the sources of the commodity are not decided a-priori, but
must be decided by the optimization. The second is that we give to the
network designer the freedom to choose a maximum out degree of and a
maximum distance from the IAB-donors. The second parameter in partic-
ular will affect the delay of the traffic, so it is important that the operator
can define it based on the specific applications that must be supported.

This model has a number of variables that scales as |Nv|2 as the number
of variables is dominated by the dimension of Pi,j.

4.3.3.1 Link-Failure-Resilient Model

The previous formulation can be extended to provide edge-failure re-
siliency, which improves IAB operations at mmWaves, where links be-
tween gNBs are subject to blockage causing an abrupt degradation of the
performance. We can divide the set of edges in R disjoint sets, and impose
that every tree rooted in an IAB-donor must use edges coming from only
one out of R sets, while every IAB-node must belong to all trees. If R = 2,
then there are two separate trees that serve each IAB-node i, so that if
one edge fails in one tree, the second tree can be used to serve IAB-node
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i. This requires the reconfiguration of the backhaul topology, which we
implement in the rApp. The model can be formulated as follows: let ui,l,k
be the binary variable that is set to 1 if IAB-node i is at distance l from
the IAB-donor that is the root of a tree whose edges belong to the sub-set
k ∈ [1, . . . R]. Pi,j,k is the binary variable that is set to one if edge from i to j
is active in a tree that belongs to sub-set k.

The objective of the optimization is still the minimization of the number
of IAB-donors:

objective: min ∑
i∈Nv

R

∑
k=1

ui,0,k, (4.9)

under the following constraints:

D

∑
l=0

ui,l,k = 1−∑
r ̸=k

ui,0,r ∀i, ∀k (4.10)

∑
k

ui,0,k ≤ 1 ∀i (4.11)

∑
i∈Nv

Pi,j,k = 1−∑
r

uj,0,r ∀j, k (4.12)

∑
j∈Nv

Pi,j,k < δ ∀i, k (4.13)

Pi,j,k ≤ 1− uj,l,k + ui,l−1,k ∀i, j, k ∀l ∈ {1 . . . D} (4.14)

Pi,j,k ≤ ei,j ∀i, j, k (4.15)

∑
k

Pi,j,k + ∑
k

Pj,i,k ≤ 1 ∀i, j. (4.16)

These equations extend the previous formulation in a multi-tree version,
thus we explain only the ones that differ significantly from their single-tree
formulation: Eq. (4.10) imposes that every gNB must belong to at least one
tree per edge-set k, unless it is an IAB-donor, which must belong to exactly
one tree, the one that it is the root of; Eq. (4.11) imposes that each IAB-
donor must be the root of a single tree; Eq. (4.16) imposes that every edge is
used only in one direction and only in one tree. This last equation produces
trees that are edge-disjoint. As a result we have R disjoint sets of edges,
however we may have more trees, because the topological constraints and
the availability of edges may make it impossible to have only R trees. Each
tree will have disjoint edges from each other tree, and each IAB-node will
have two parents, belonging to two different trees rooted in two different
IAB-donors.

Fig. 4.6 shows an example of an optimized topology when D = 3 and
R = 2. We can see that the optimization creates two separate edge-set,
represented using two colors. The optimization yields 3 IAB-donors out
of 18 total gNBs (thus 15 IAB-nodes), and each IAB-donor is the root of
a tree using edges coming only from one set. Every IAB-node has two
parents connected with links using two distinct colors. As a consequence,
if one edge fails and an IAB-node can not reach the IAB-donor at the root
of the tree using the blue edge-set, it can still reach a IAB-donor using the
tree made of orange edges.
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Figure 4.6: An example realization of the robust backhaul graph with R = 2.
Circles are IAB-nodes, squares are IAB-donors, orange/blue edges
belong to two disjoint edge-set, grey edges are all the potential edges.
Every grey node has two incoming edges.

The cost associated to using this model is the added complexity, as it
comes with a number of variables that scales as s R|Nv|2 as it is dominated
by the dimension of Pi,j,k.

4.3.3.2 Flow-based Model

Finally, we introduce the flow-based model, which can be implemented as
a set of new equations on top of the topology-based ones, thus producing
a topology and flow-based model. The flow-based model introduces three
new sets of parameters, that are di (the flow demand for IAB-node i), C
(the total maximum outgoing flow for an IAB-donor), and Li,j (the link
capacity of ei,j). It also introduces two new sets of variables: fi,j,h that is
the flow destined to IAB-node h that passes through edge ei,j, and ai,j that
is a real value in [0, 1] that represents the fraction of time link ei,j is used.
As each node j has a single radio for access and backhaul, it becomes
necessary to impose a constraint on the total number of active links for
j, modeled through variable ai,j. If j is connected to, for example, node
1 in upstream and node 2 in downstream, then a1,j + a2,j ≤ 1. In this
multi-commodity flow problem, IAB-nodes are not marked a priori as a
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generators or consumers of the commodity, and the decision is part of the
optimization. The constraints are set as follows:

fi,j,i = 0 ∀ i, j (4.17)

∑
h

∑
j

fi,j,h −∑
h ̸=i

∑
j

f j,i,h <= Cui,0 ∀ i (4.18)

∑
j

f j,i,i ≥ (1− ui,0)di ∀ i (4.19)

∑
h

fi,j,h ≤ Li,jai,j ∀ i, j (4.20)

ai,j ≤ Pi,j ∀ i, j (4.21)

∑
i

∑
h

fi,j,h ≤∑
i

Li,jai,j∀j (4.22)

∑
i
(ai,j + aj,i) ≤ 1 ∀ j (4.23)

∑
h

fi,j,h ≤ ai,jLi,j ∀i, j. (4.24)

Here, Eq. (4.18) imposes flow conservation for all IAB-nodes, except for
donors that can provide at most C. Note that the real flow outgoing node
i is capped in every link by Eq. (4.20), so C is just an arbitrary non zero
upper bound that makes the equation formally correct, and it can model
the bit-rate available on the wired link. Eq. (4.19) imposes that every IAB-
node receives at least the amount of flow corresponding to its demand;
Eq. (4.20) imposes that flow on a link does not exceed the capacity of
the link itself, limited to the fraction of time it was allocated; Eq. (4.21)
imposes that the usage on a link must be zero if the link is not chosen by
the topology optimization; Eq. (4.22) imposes that an IAB-node can not
receive in input more flow that what all its incoming link allow; Eq. (4.23)
imposes that the fractional time allocated for all links does not exceed 1 for
every IAB-node; and, finally, Eq. (4.24) imposes that flow on a link does
not exceed its allocated capacity. The objective function is still Eq. (4.9) as
these conditions just impose more constraints on the choice of the IAB-
donors. There is always one trivial acceptable solution in which all gNBs
are IAB-donors.

Again, the cost associated with the model is the added complexity. This
model has a number of variables that scales as |Nv|3 as the number of
variables is dominated by the dimension of fi,j,h. However, since every
IAB-node has only one parent if the capacity of one incoming link to
IAB-node j is lower than the demand of IAB-node j (Li,j < dj), we can
set ei,j = 0 as that link can not be used for serving the demand of dj. This
allows us to prune some edges in Ev before running the optimization.

Further, if the underlying topology model is the link-failure-resilient
one, some equations need to be slightly modified. First of all, the flow
variables need to be independent for each tree so they gain a new index:
fi,j,h,k now represents the flow destined to IAB-node h passing through
edge ei,j belonging to tree k. This is required because even if edges can not
belong to more than one tree, the flow constraints need to be guaranteed
in each edge and in every tree. Similarly, ui,j is replaced with ui,j,k, which
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is true if the distance of IAB-node i from IAB-donor in tree k is j. The
equations used for the single-tree flow-based model need to be adjusted
with the new variables, together with a new constraint that imposes that
if an edge is not assigned to tree k the corresponding flow in tree k is zero,
i.e.,

fi,j,h,k ≤ Li,jPi,j,k ∀i, j, h, k (4.25)

The total number of variables becomes R|Nv|3.
Finally, while our model is designed for a greenfield deployment, in

which the operator is planning the network from scratch, it can also be
used in a brownfield deployment in which some IAB-donors are already
connected to the core with a fiber connection. The only required change in
the model is the need to force some of the ui,0,k variables to be constant set
to 1. This is important because we can use the optimization for both new
networks, or to upgrade or dynamically control existing ones, as shown
in Sect. 4.3.5.

4.3.4 Numerical Results

In this section we report on the tests realized to verify the feasibility and
the effectiveness of the proposed optimization, leveraging the resilient and
non-resilient versions of the flow optimization problem. We use as a metric
the fraction ρ of IAB-donors in the network, which is the ratio between
the value of the objective function and the total size of the network |Nv|:

ρ =
∑i∈Nv ∑R

k=1 ui,0,k

|Nv|
.

First, we consider results obtained on synthetic random graphs, in order
to verify the feasibility of our approach in a controlled scenario, then we
use realistic graphs generated from open data of four European cities.

4.3.4.1 Synthetic Graphs

The synthetic graphs are generated by placing nodes in random positions
in a 2D area, with an average density of 45 gNBs per square km, that
is the density reported to be sufficient to achieve 95% coverage of the
outdoor urban areas [10]. We use a constant gNB density, and vary the
area to deploy 15, 30, and 45 gNBs. For each gNB, the demand is estimated
with Eq. (4.1), assuming a coverage radius of 100 m. We use the 3GPP TR
38.901 technical report for modeling both the probability of LoS between
two gNBs and the path loss (using two different decay values for LoS
and NLoS links) [26]. We thus do not explicitly model obstacles, and
obtain networks with an edge density substantially higher than in real
settings. Given the path loss on every link, we compute the link capacity
as described in Sect. 4.3.2.2, using the parameters in Tab. 4.2 and varying
the number µ of MIMO layers from 1 to 2. Execution times are evaluated
on a 16 cores server (Intel Xeon Gold 6342 CPU @ 2.80GHz), with 64GB
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of RAM using the Gurobi solver with 30 randomly generated graphs for
each number of gNBs.

Fig. 4.7 shows the ratio ρ between IAB-donors and total number of gNBs
in the simulation. The top row reports the results for the failure resilient
model (R = 2), while the bottom row reports the results with only one
tree (R = 1). In the left column, µ = 1, while in the right column, µ = 2.
As a general trend, higher µ and lower R decreases ρ. This is expected
since with a higher capacity per link the backhaul network can transport
more traffic to a smaller number of donors, while redundancy requires
more independent trees and thus more donors. Increasing |Nv| enlarges
the space of possible results and can lead to a further reduction of the
number of required IAB-donors. For the most challenging configuration
(µ = 1, R = 2), the median value of ρ ranges from 0.66 to 0.6, which means
that we can save up to 40% of the donors. Savings increase to up to 60%
with µ = 2, R = 2 and 45 gNB/km2, which means that 27 gNBs out or 45
do not need to be connected with a fiber cable.

The failure resilient topology imposes a very strong condition, i.e., that
all flow is conserved and there is no performance degradation upon the
failure of a link. If we relax this condition, and set R = 1, we can further
reduce the number of IAB-donors down to 37% (45 gNBs, µ = 1) and
23% (45 gNBs, µ = 2), introducing a non zero probability of network
outage. This does not necessarily imply that the failure of one link discon-
nects some UE, but it could produce a certain performance degradation.
Specifically tailored models could provide a trade-off between these two
approaches, which obtain ρ close to the ones generated with R = 1 with a
predictable performance penalty in case of failure.

Finally, we ran the optimization for at most 48 hours. In 67% of the cases
this produces the guaranteed optimal solution, in the rest of the cases, the
upper bound of the distance of ρ from the global optimum is on average
6.3%. This is perfectly compatible with the use-case we target, that is, the
planning of a network that is yet to be realized.

4.3.4.2 Realistic Graphs

Here we report the results with realistic graphs, which were generated for
4 cities (Florence and Milan in Italy, Barcelona in Spain, and Luxembourg
city). For each city we draw on a map an area of roughly one square km,
as in Fig. 4.8. As we select areas following the boundaries of streets, the
area size will not be exactly 1 square km and will be different from city to
city so the exact number of gNBs is not constant. For each scenario, we
use densities of 30, 45, and 60 gNBs/km2, we run the placement heuristic
to position the gNBs and we then compute the capacity of each link using
ray-tracing as described in Sect. 4.3.2.2. Some gNBs are placed in locations
that do not allow them to have any neighbor (the Signal-to-Noise-Ratio
(SNR) is too low to negotiate a link) and in those cases, we remove them
from the graph, as they can not be part of the backhaul network.

Fig. 4.9 shows ρ in the realistic scenario, that confirm results obtained
in the synthetic scenarios, i.e., as the density increases (moving left to
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Figure 4.7: Box-plots of the fraction of donors ρ for the synthetic topologies, with
different MIMO configuration (µ = 1, µ = 2), the single tree model
(R = 1) and the failure resistant model (R = 2). The box plot show
the median, 25% and 75% quartile and 1.5*IQR (inter quantile range)
whiskers.

Figure 4.8: Map showing one of the four realistic networks in the city of Milan,
with density 45 gNBs/km2. IAB-nodes are depicted in black, and fea-
sible backhaul links are depicted with a color gradient corresponding
to their capacity (yellow for low capacity and green for high capac-
ity).
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right in the figure), fewer IAB-donors are required. Remarkably, since
the presence of a realistic distribution of obstacles makes topologies less
dense, we can complete the optimization even with 60 gNBs/km2, and in
some configurations ρ is lower than 20% (Fig. 4.9(b)). Only in 4 cases over
48 runs the optimization did not reach the optimal value, and in those 4
cases the upper bound of the distance of ρ from the global optimum is on
average 6%.

Overall our results confirm that in both synthetic and realistic scenarios
our optimization scheme is fully usable and produces robust topologies
that can save a large number of IAB-donors. This turns into a massive cut
of capital expenditure costs given by the use of wireless backhaul links
instead of wired ones.

4.3.5 Implementation and validation of the rApp

The goal of this section is to show that we can integrate our methodology
within the O-RAN framework, and so our approach provides all the neces-
sary tools to set-up and operate a real network. We focus on implementing
a prototype rApp running in the Non-RT RIC that takes in input a network
made of 2 trees (a primary and a back-up one) and gracefully handles the
failure of a link by reconfiguring all the gNBs to switch from their primary
tree to the backup one. We validate the rApp using OpenAirInterface on
Colosseum.

The application gets initialized by the user with the multitree topology
obtained in the network planning phase. Once the network is set-up
and running, the rApp maintains an updated representation of the IAB
network using some specific messages (HeartBeats, Performance Reports,
and Fault Events) arriving from the RAN through the O-RAN O1 Interface
(see Fig. 4.5). Upon the failure of a radio link between IAB-nodes, the
upstream node, still connected to the core, detects the RRC failure and
sends a Failure Event message to the RIC through the O1 interface. The
message gets forwarded to the rApp, which reconfigures the network by
restarting the IAB-node which has lost connectivity, so that it connects to
the other IAB-node. It also restarts all the IAB-nodes downstream since
they need to reconnect to the network core using a new path. Finally, it
reconfigures the core of the network so that the routing table to reach the
downstream IAB-nodes reflects the new topology.

4.3.5.1 Validation on Colosseum

The current implementation of OAI does not support fast handover be-
tween the network components, so it introduces fluctuations and long
delays. For this reason, our goal is not to provide an accurate performance
analysis, but to show that our approach can be implemented in a real net-
work. We thus have set up a representative IAB-network topology, shown
in Fig. 4.10, comprising two IAB-donors, two IAB-nodes and twenty UEs.
Each IAB-node is connected to a different IAB-donor, and a feasible (but
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Figure 4.9: Fraction of donors ρ for the realistic topologies, with different MIMO
configuration (µ = 1, µ = 2), the single tree model (R = 1) and the
failure resilient model (R = 2).
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unused) link is available between the two IAB-nodes. Note that we assume
gNBs have a secondary communication channel for their management
through the O1 interface, possibly using the sub-GHz bands in order to
be less subject to path loss due to obstacles [123].

After the rApp initializes the whole network, all UEs and all IAB-nodes
start sending Internet Control Message Protocol (ICMP) packets to a server
in the core network, routed through the parent IAB-node or donor. Then,
by altering the radio environment we simulate the failure of the link
between IAB-node 2 and its donor. This triggers the transmission of a
Fault Event message to the rApp, that in turn triggers the reconfiguration
of IAB-node 2, which will end up passing through IAB-node 1 to reach
the core. Since the current implementation of IAB for Colosseum and
OAI creates end-to-end tunnels from UEs to the core network [6], the UEs
attached to IAB-node 2 must also be reconfigured. Moreover, the rApp
reconfigures the 5G core, so that the backwards path to the UEs is also
restored.

Figure 4.11 shows how the RTT of the transmitted packets is affected
during and after the reconfiguration of the network. Since the RTT on
the experimental testbed is noisy, we compute a rolling average with a
window of 10 s, and we average the RTT of all the UEs connected to
the same IAB-node. At t = 0 both IAB-nodes report a RTT of roughly
10 ms and their UEs measure an RTT of roughly 24 ms, which accounts
for one more wireless hop and some switching time. At time t = 19 s,
we induce the failure of the link between IAB-node 2 and IAB-donor 2,
which interrupts the successful transmission of the ICMP packets and
triggers the reconfiguration of the network from the rApp. OAI does not
yet support a fast handover so the whole stack needs to be rebooted after
the reconfiguration, which takes roughly 15 s. Around second t = 35 s,
IAB-node 2 is able to ping the core again, with an average RTT of 22 ms,
due to the additional hop. At that point, also the software-defined UEs
stack restarts, adding 25 more seconds before the UEs successfully ping
the core, with their RTT increased to an average of 47 ms, corresponding
to 3 hops of distance to the core and two switching delays.

Albeit the current state of OAI affects the performance of the recon-
figuration, this experiment fully confirms the practical viability of our
approach in a realistic network scenario, based on the O-RAN specifica-
tions.
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Figure 4.10: IAB topology including the Core network, two IAB-donors, two
IAB-nodes and 20 UEs. Black arrows indicate the normal topology
and the grey dotted line indicates the backup link between the two
IAB-nodes.
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Figure 4.11: RTT from the IAB-nodes and the UEs before, during, and after the
link failure. The vertical lines indicate the time of fault and the time
of the two recoveries.
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4.4 energy-efficient iab topology control

In this last research, we showcased how IAB networks can be optimized
to minimize energy consumption, by leveraging on closed-loop control
logic deployed in the RIC.

Specifically, we introduced the concept of measurements graph, a repre-
sentation of all the potential wireless links of an IAB network, that can be
obtained by collecting metrics and messages from the RAN through the O-
RAN interfaces. On this representation, we run an optimization algorithm,
developed ad-hoc for this contribution, that selectively deactivates certain
IAB nodes that are not essential to guarantee a certain level of service to
the UEs.

To validate our optimization model, we devised a time-varying de-
mand model for UEs from openly available datasets. This model, which
describes an ideal week in the city center of Milan, Italy, estimates the
density of UEs per hour of the day. We then used this information to
generate 168 instances of the IAB measurements graph (one per each hour
of the week).

Finally, we validated our optimization model on all the different mea-
surements graph, showing that the proposed optimization model reduces
the energy consumption of the RAN by 47%, while guaranteeing a mini-
mum downlink capacity per each UE equal to 80Mb s.

4.4.1 System Model and Optimization

Let us first introduce the problem formally. We start from a weighted
directed graph G = (V , E), called measurements graph, whose nodes can
be either IAB-nodes or UEs. We denote the set of UEs as U ⊂ V and the
IAB-donor as t ∈ V. Each edge (u, v) of this graph represents a potentially
usable wireless link between each node and it is weighted by its available
capacity (c(u, v)), which depends on the channel quality. It is conceptually
similar to a visibility graph, but instead of being constructed by applying
visibility analysis algorithms on open-data, it is constructed dynamically
by the network, by collecting measurements from the RAN.

Since the goal is to find a tree representing the routing from each UE to
towards the donor t, the edges of the graph will be directed accordingly.
Access links (originating from the UEs) will always have UEs as source
and IAB-nodes as destination. Backhaul links involving t will always
point towards it, as it is always the destination to reach the core. The
links between IAB-nodes instead can be used in one or the other direction
to build the IAB-tree, so the measurements graph contains a couple of
links per each neighbor IAB-node pair. Fig. 4.12a and Fig. 4.12b report an
example of a measurements graph and a possible IAB-tree.

Local detailed information on the feasibility of wireless links between
UEs and IAB-nodes is available on each gNBs. The O-RAN architecture
allows extensions to standard interfaces so that we can assume that the
local information can be collected by an rApp, running on the non-real-
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time RIC, which reconstructs the measurements graph we mentioned
above. Then, the optimization algorithm periodically runs and pushes the
optimized topology to the RAN through the O1 interface. Note that we
take into consideration periodic updates of the topology with a period
in the order of minutes, so we assume that disabled nodes wake up to
receive an updated topology with a similar schedule. This schedule is
also perfectly compatible with the non-real-time RIC closed-loop time
constraints. Without loss of generality in the following model, we will
assume the optimization of a single tree, but the proposed optimization
model can be trivially adapted to optimize multiple trees.

4.4.1.1 Optimization problem

Our optimization model aims to identify a tree, denoted as T , which is
a subgraph of G, rooted in the IAB-donor, and whose leaves are the UEs.
The primary objective of T is to minimize the energy consumption of the
network. This consumption is generally viewed as a combination of static
energy, which is expended even when an IAB-node remains idle, and
dynamic energy, which depends on the volume of radio resources the IAB-
node has to serve. As per the findings in [124], static energy constitutes
over 70% of the peak energy consumption by a gNB. Given this significant
skew towards static energy, our model simplifies to focus predominantly
on static energy. The resultant objective is to construct the tree T such that
the activation of IAB-nodes is minimized.

Additionally, since the whole network operates using the same spec-
trum, we assume that each node has a Time Division Multiple Access
(TDMA) scheduler that operates using a round-robin policy to schedule
the inbound traffic and a dedicated radio device to relay the outbound
traffic. This additional constraint—which follows guidance from 3GPP
technical documents [125]—differentiates our model from a classical mul-
ticommodity flow problem, where adjacent edges do not have to share
the same time resources as in a wireless network.

We begin the formulation of the problem as a binary multicommodity
flow problem. In such a problem, we have to route a set K of commodities
on the graph, each using a single path. A commodity k ∈ K is defined
as a triplet sk, tk, dk where sk is the source node (in our case, a UE), tk is
the destination node (in our case, the IAB-donor t) and dk ∈ R is the

(a) (b)

Figure 4.12: Example of a measurements graph G (a) and a possible IAB Tree
T (b). IAB-donors are depicted in red, IAB-nodes in blue, UEs in
black, and deactivated IAB-nodes in light blue. © 2024 IEEE
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bandwidth to reserve on the path from sk to tk. These commodities are
decided by the MNO beforehand, depending on the minimum capacity
it wants to guarantee to its customers, and might be differentiated by
different classes. The MNO can feed this information to the rApp running
the optimization problem. We denote by Nout(v) the outer neighbors of
node v and byNin(v) its inner neighbors. The cardinality of these sets (e.g.,
the outer and inner degrees) are denoted by out(v) and in(v), and their
sum (the degree of the node) deg(v) = out(v)+ in(v). Let us introduce the
binary variables a(v) ∀v ∈ V which indicate whether node v is turned on
or sleeping, binary variables fk(u, v) which indicate whether commodity k
uses edge (u, v) ∈ E , and binary variables f (u, v) which indicate whether
(u, v) is used by any commodity. We define the problem as the following
binary non-linear programming problem:

min ∑
v∈V

a(v) (4.26)

s.t. ∑
k∈K

fk(u, v) · dk ≤ c(u, v)

× 1
∑

w∈Nin(v)
f (w, v)

∀(u, v) ∈ E , ∀k ∈ K
(4.27)

∑
v∈V

fk(u, v)− ∑
v∈V

fk(v, u) = 0 ∀u ∈ V , ∀k ∈ K (4.28)

∑
v∈V

fk(sk, v)− ∑
v∈V

fk(v, sk) = 1 ∀k ∈ K (4.29)

∑
v∈V

fk(v, tk)− ∑
v∈V

fk(tk, v) = −1 ∀k ∈ K (4.30)

a(v) ≥ 1
deg(v)

⎡⎣ ∑
∀u∈Nin(v)

f (u, v) + ∑
∀u∈Nout(v)

f (v, u)

⎤⎦
∀(v) ∈ E

(4.31)

f (u, v) ≥ fk(u, v) ∀(u, v) ∈ E , k ∈ K (4.32)

∑
v∈Nout(u)

f (u, v) ≤ 1 ∀u ∈ V (4.33)

a(v), f (u, v), fi(u, v) ∈ {0, 1} (4.34)

Our objective in Eq. (4.26) is to minimize the number of nodes that
are turned on, e.g., the energy consumption of the network. In Eq. (4.31),
the value of variable a(v) is enforced to be 1 if any flow uses node v.
Eq. (4.27) to (4.30) are multi-commodity flow constraints, where Eq. (4.28)
to (4.30) enforce the equilibrium of the flow and Eq. (4.27) ensures the
capacity constraints are respected. This constraint is different from the
classic multicommodity flow problem, in which it would be

fk(u, v) · dk ≤ c(u, v) ∀(u, v) ∈ E , ∀k ∈ K.

In fact, as mentioned above, in a wireless network the edges adjacent to
the same node need to share the spectrum, typically by using TDMA with
a specific scheduler. In our case, we have assumed that a Round Robin
scheduler allocates equal resources to all the adjacent edges. Finally, the
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constraint in Eq. (4.32) ensures that an edge is activated if any commodity
uses it and Eq. (4.33) makes sure all activated nodes have outer degree 1,
which implies the network is a tree.

This model is non-linear because of the inverse function in Equation
Eq. (4.27). We now propose an equivalent linearized version of the previ-
ous model. We prove the equivalence in Theorem 1.

In the linearized model below, we introduce binary variables xi(v) ∀v ∈
V . These variables are equal to 1 iff at least i of the inner edges incident to v
are activated. This enables us to linearize the inverse function in Eq. (4.27)
and to replace it with a weighted sum of those binary variables.

min ∑
v∈V

in(v)

∑
i=1

xi(v) (4.35)

s.t. f (u, v) · dk ≤ c(u, v) ·
(︄

x1(v)−
in(v)

∑
i=2

xi(v)
(i− 1)i

)︄
∀(u, v) ∈ E

(4.36)

xi(v) ≥

⎛⎝ ∑
u∈Nin(v)

f (u, v)− (i− 1)

⎞⎠ /in(v)

∀v ∈ V , ∀1 ≤ i ≤ d(v)

(4.37)

xi(v) ∈ {0, 1} ∀v ∈ V , ∀1 ≤ i ≤ d(v) (4.38)

(4.28), (4.29), (4.30), (4.32), (4.33), (4.34)

Theorem 1. The BNLP (4.26) - (4.34) has the same optimal solution as the BLP
(4.28) - (4.38).

Proof. Let us first observe that

(︄
∑

u∈Nin(v)
f (u, v)− (i− 1)

)︄
is always posi-

tive if at least i inner edges of v are activated, and is nonpositive otherwise.
also note that this sum is always lower or equal to in(v). Hence, the right-
hand side of Eq. (4.37) is between -1 and 1, and its value is positive if i
inner edges are used. This, combined with the fact we are minimizing
the sum of variables xi(v) means that in an optimal solution to problem
(4.28)− (4.38), xi(v) will be equal to 1 if at least i inner edges of v are
activated and 0 otherwise.
Let us now observe that in Eq. (4.36), if n inner edges of v are activated,
then
x1(v), x2(v), ...xn(v) will be equal to 1. It follows that the sum x1(v) −
∑in(v)

i=2
xi(v)
(i−1)i will be equal to 1

n , e.g. the constraint is equivalent to constraint
(4.27). Finally, observe that since we are building a tree, minimizing its
number of edges is equivalent to minimizing its number of nodes, as a tree
of n nodes always has exactly n− 1 edges, meaning the objective function,
Eq. (4.35), is equivalent to the objective in Eq. (4.26).



4.4 energy-efficient iab topology control 137

4.4.2 Performance Evaluation Setup

This section presents the techniques used to synthetically generate the set
of measurements graphs G(V , E), needed to evaluate the feasibility and
effectiveness of our optimization model. In particular, we will be using
datasets representing an area of 0.092km2 in the center of Milan, Italy.

4.4.2.1 Placement of gNBs and UEs

The set of nodes of our graph V is comprised of both IAB-nodes, and UEs,
whose placement is done separately using two different techniques. IAB-
nodes are placed on building facades with a given density λgNB. The exact
position is computed by relying on the placement optimization techniques
described in Sect. 3.2. UEs are then randomly distributed both in public
areas, such as streets, and inside buildings. Specifically, given a density
of λUE, indoor UEs are uniformly randomly distributed inside buildings
with a density equal to ri/o · λUE and outdoor UEs are uniformly randomly
distributed inside buildings with density (1− ri/o) · λUE, where ri/o is a
commonly used ratio of indoor to outdoor UE equal to 0.8 taken from
3GPP technical report [126]. In short, we consider that in our simulations
80% of the UEs are placed indoors. Fig. 4.13 shows a deployment with
λgNB = 45 and λUE = 900 UE/km2.

4.4.2.2 Access and Backhaul channel models

Once the location of both UEs and IAB-nodes have been determined, we
evaluate the path loss by applying the ITU Urban-Micro (UMi) channel
model,described in Sect. 2.2.1.3. However, instead of using the stochastic
LoS probability model provided by the same UMi model, we determin-
istically evaluate the LoS by employing visibility analysis on the same
3D models used to find the optimal locations, obtaining a more accurate
estimation. For indoor UEs, we always consider them to be NLoS and we
add the additional Outdoor to Indoor (O2I) penetration loss. Since the
buildings in the area we consider are mostly made out of concrete, we use
the high-loss O2I model [26].

Finally, we compute the SNR using the thermal noise and by adding
the receiver noise figure, then we calculate the Shannon capacity. Both
access and backhaul are assumed to be using the same frequencies, but
different values of antenna gain and numbers of MIMO layers are used.
Tab. 4.3 details all the values used in our simulations, which are aligned
with typical literature and 3GPP studies on this topic.

4.4.2.3 Time-varying UE density model

Most studies dealing with topology optimization focus their analysis on a
single, or a handful, value of λUE. Since the energy optimization technique
we devise tunes the IAB-node activation on the basis of the number of
UEs and their load, we need to evaluate our model on a large number
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Figure 4.13: Sample deployment of a network in the center of Milan, with 1
IAB-donor (in red), 7 IAB-nodes (in blue), and 83 UEs (in black). It
corresponds to λUE(9) = 900 UE/km2 (Mon 9am). © 2024 IEEE

of values of UE density, ideally following a realistic trend. Therefore, we
employ a technique used in similar research [127] to devise a time-varying
UE density model. First, we extract the cell load profile p(t) related to
our analysis area, in Milan, from openly available datasets [128]. We then
normalize it in the range (0, 1], and we model the UE density as a function
of time λUE(t) = p(t)lλgNB, where l = 10 is the number of UEs per gNBs
taken from the 3GPP technical report [126]. Finally, we generate a set of
168 graphs spanning an average week with a one-hour granularity.

Fig. 4.14 reports the hourly trend of λUE(t) corresponding to the area of
our analysis, showing how for several hours every night the network has
to serve almost no UEs and how in the weekends, even at peak hours, the
density of UEs never exceed 80% of the weekday peak hours.
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Figure 4.14: Weekly profile for the UE density in central Milan. © 2024 IEEE
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Parameter Value

Area size 0.092 km2

UE density range [0-900] UE/km2

Indoor/Outdoor UE ratio 80/20

Carrier frequency 28 GHz

Bandwidth 100 MHz

Noise Figure 5 dB

O2I Loss 14.15 dB

Reception gain (Access/Backhaul) 3 / 10 dBi

MIMO layers (Access/Backhaul) 2 / 4

Backhaul transmission power 30 dBm

Minimum Capacity per UE 80Mb/s

Number of independent simulation runs 10

Table 4.3: Simulation Parameters

4.4.3 Results

We evaluate our model on a 0,092km2 area in the center of the city of
Milan (Italy), for which we computed the UE density trend λUE of an
average week. For each hour of the week (168 in total), we generate the
measurements graph as described in the previous section and then we
run our optimization algorithm on it. We compare the trees found by our
solution with 4 strategies:

• All donors, a dense deployment without IAB, where all the gNB
are wired. It is an upper bound in terms of energy consumption and
capacity. Additionally, no re-distribution of the UEs is performed as
they are always attached to the gNB with the lowest SNR.

• No relays, a deployment where all the IAB-nodes are not active. It
is a lower bound in terms of energy and capacity.

• Widest Tree, a strategy that employs the well-known widest path
algorithm to find the path of maximum capacity (e.g., with the largest
bottleneck in terms of capacity) from each UE towards the donor
and deactivates all the IAB-nodes that are not part of any path.

• Optimized Tree, our optimization model.

In the first part of this section, we compare the energy consumption (both
in terms of the number of nodes activated and of the overall number
of gNB-hours) of the different algorithms. Then, in the second part, we
evaluated the topologies in terms of bottlenecks of the downlink capacity.

4.4.3.1 Energy Consumption

To evaluate the energy consumption of the IAB networks we first show
the hourly number of active IAB-nodes, then we introduce a metric that
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measures the total number of hours each IAB-node has been active. The
IAB-donor is not taken into consideration as we always need at least one
node to be active to provide a minimum service to the users.

Figure 4.15 shows the number of IAB-nodes activated, on the left axis,
and the number of UEs connected to the network, on the right axis. To
improve the readability only the values for the first day of the week have
been reported. Optimized Tree, shows that it is possible to fully deactivate
the IAB-nodes at nighttime (from 12 pm to 4 am) and that also during
daytime several IAB-nodes can be deactivated. By comparing its trend
with the number of UEs, we can also see that it gets perfectly followed,
highlighting the effectiveness of our optimization model. Widest Tree,
on the other hand, never manages to deactivate more than 3 IAB-nodes,
highlighting that a specific algorithm is needed to fully implement energy-
saving policies.

Additionally, by integrating the number of activated gNB at each hour
for the span of the week we obtain the total number of gNB-hours for each
strategy. For No relays, the value is 168h, as only one gNB is always active.
For All donors, on the other hand, the total number of gNB-hours is
equals to 168h · 8 = 1344h, since 8 IAB-donors are active at all times. More
interestingly, the values for Widest Tree and Optimized Tree respectively
activate the RAN for 1141h and 709h, which means our method improves
the power consumption of 47% over All Donors and 38% over Widest
Tree.

4.4.3.2 Capacity

To evaluate the performance of the topology we analyze the capacity
served to each UEs with three different capacity metrics, which are shown
in Fig. 4.16 and detailed below. First, let us define some functions used
throughout the section. Let p(u, t) be the function returning the set of
edges forming the path from u to t over our topology tree. Let Nin(t) the
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Figure 4.15: Number of IAB-nodes activated in the first 24 of the week (Mon).
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number of edges directed towards t in the tree and c(i, j) the capacity of
the edge (i, j).

The first metric, called Average Idle Capacity measures the average
theoretical capacity of UEs, e.g. the capacity that would be attainable if
the network resources were completely unused. As detailed in Eq. (4.39)
below, it is computed as the minimum capacity (the bottleneck) of the
edges over the path between each UE (u) and the donor (t). Which is then
averaged across all the UEs u ∈ U . This metric represents an upper bound
on the capacity per UE.

ĉI =
1
|U | ∑

u∈U
min

(i,j)∈p(u,t)
c(i, j) (4.39)

Figure 4.16a shows the Average Idle Capacity for the four different
strategies on the first 24 hours of our week. The first insight provided by
this figure is that the maximum capacity per UE does not depend on the
load of the network. Moreover, as we were expecting All donors and No
relay are respectively the upper and lower bounds in terms of capacity.
Widest Tree, the strategy that maximizes the bottleneck between each
UE and the donor, manages to achieve a capacity very close to the upper
bound (8% lower). Optimized Tree instead shows a more significant drop
with a loss of 35%. The drop can be explained by the minimum capacity
constraint that, instead of letting each UEs reach the IAB-donor through
the widest path, in certain cases picks paths worse in terms of maximum
capacity that instead guarantee the minimum capacity.

The second metric, called Average Saturation Capacity and detailed in
Eq. (4.40), is formulated in a very similar way as Eq. (4.39). However, here
we assume that all the UEs try to access the network at the same time, thus
we divide the capacity of each edge cs,t by the number of inner neighbors
of the node t, since those edges share the same resources through the
scheduler.

ĉS =
1
|U | ∑

u∈U
min

(i,j)∈p(u,t)

c(i, j)
Nin(j)

(4.40)

As in the previous metric, also here All donors and No relays behaves
respectively as upper and lower bound. The difference between the two
other strategies, and their distance from the upper bound drops sharply.
In fact, at peak time All donors is capable of delivering roughly 200Mb/s
per UE, while Optimized Tree and Widest Tree respectively deliver 115
and 130 Mb/s per UE.

The third metric, called Minimum Saturation Capacity and detailed in
Eq. (4.41), measures the capacity delivered to worst UE while the network
is under saturation by all the UEs, e.g. it defines the minimum level of
Quality-of-Service provided by the topology. It is defined similarly to the
previous one, but instead of averaging over the UEs we take the worst
value.

c̄S = min
u∈U

min
(i,j)∈p(u,t)

c(i, j)
Nin(j)

(4.41)
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Fig. 4.16b shows that Optimized Tree is the only strategy that manages
to guarantee the minimum level of service, equal to 80Mb/s during peak
hours (7 am-16 pm), while also minimizing the excessive capacity at
night time. In comparison, with No relays we measure a minimum level
of service that, at peak time, is one order of magnitude lower than the
minimum level of service (between 2 and 7 Mb/s) while Widest Tree and
All donors behave similarly in terms of minimum capacity, as they can
both take advantage of all the IAB-nodes available. However, since the
UEs are not load-balanced across all the available gNB, the minimum
level of service is not met. We also note that with All donors there is
also an excess of capacity at night time; when energy-saving policies
could deactivate several IAB-nodes, moreover despite being in a more
favorable position where no routing is to be performed beyond the first
link between the UEs and the BS, All donors still has less capacity than
the Optimized Tree. This emphasizes the importance of balancing the load
of UEs between base-stations





5 W I R E L E S S B A C K H A U L
N E T W O R K S I N R U R A L A R E A S

The pandemic showed us that a working Internet connection is not just an
enabler of other human rights, as we already knew, but it is a necessity
for many people to study, work, and access basic services. However, 2.9
billion people, almost 40% of the world population did not have access to
the Internet in 20211, a rate that grows to 61% in rural areas, worldwide.
One key reason for this situation is that telecommunication companies
have a business model that works best in densely inhabited areas, have
large capital expenditures to deploy the infrastructure, and rely on the
high number of potential customers to return on the investment. It is an
all-or-nothing model that fails in regions where the population density is
very low, houses are clustered in groups several km apart, and the cost of
the middle-mile connecting them is very high.

One of the successful instruments that we have to reduce the digital
divide consists in Wireless Backhaul Networks (WBNs), a network ar-
chitecture usually adopted either by Wireless Internet Service Provider
(WISP) or by Wireless Community Networks (WCNs) 2. With this archi-
tecture, the customers, or participants, of the network host part of the
infrastructure on their premises and leverage wireless technology to cut
capital costs related to the deployment of fiber optic, the deployment of
trellises where to place antennas, etc.

In this chapter, we focus on analyzing the feasibility and economic
sustainability of these models in rural areas 3 through two main pieces of
research.

The first research, published in IEEE Network Magazine [3], analyzes
the phenomena of WCN from a historical and evolutional perspective.
The evolution of WCN is divided into three main generations of networks
using different technologies and solving different problems. More focus
is given to the 3rd generation of WCN, still in an emerging phase, that
we foresee will be using millimeter wave (mmWave) frequencies and
massive Multiple Input, Multiple Output (MIMO) antennas to increase its
capacity and thus provide a viable alternative in providing multi-gigabit
broadband access. Finally, we evaluate the possible coverage of a 3rd
generation WCN by adopting open-data methodologies as done in the
studies presented in Chapter 3

1See ITU Facts and Figures 2021 https://www.itu.int/itu-d/reports/statistics/

facts-figures-2021/
2Note that even though most WCNs started using only Wireless technology, now many

of them have moved to hybrid wireless/wired architecture and are generally referred
simply as Community Networks

3The definition of rural areas used in this chapter is the same adopted in Chapter 3,
which is the definition made by Eurostat.
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The second research, presented at the 18th International Conference on
Network and Service Management [9] and then extended and submitted
to IEEE Transaction on Network and Service Management [4], proposes
an open-data-based economical model for WBN in rural areas, estimates
the demand for this kind of service and then evaluate both the level of
service and the economical sustainability of such model. Additionally,
the reliability of the infrastructure is assessed and different strategies to
improve its reliability are discussed.

5.1 related works

Since low-cost wireless equipment was made available at the beginning
of the 2000s, wireless community networks [129] and WISPs [130] pro-
liferated. Rapidly these types of networks attracted the attention of the
research community studying a variety of aspects related to routing, scal-
ability, security, measurements, testbeds, topologies, performance, usage
patterns, evolution, and mobility. See e.g. the Ph.D. thesis from Neumann
[131] and Yahel [132] and the references therein for wireless community
networks and WISPs, respectively. Soon these technologies were consid-
ered good candidates to provide Internet access to developing and rural
regions. In this context, some works related to economy and planning
similar to ours can be found. In Maccari et Al. [133] the authors inves-
tigate the economic feasibility of the growth of a wireless community
network. In Cameron et Al. [134] a WISP backhaul optimization model is
formulated in order to minimize energy consumption. Examples of real
use cases include Potch et Al. [135] which describes the WISP planning
in a rural region of Northern California; Hameed et Al. [136] where the
implementation of a WISP in mountainous areas in Pakistan is discussed;
and Mubaraq et Al. [137] where there is an economic study of a WISP in a
specific district in the state of Kerala in India.

In the context of 5G/6G cellular networks, there is a large number of
works dealing with economic and topology planning models [138]. E.g. in
Oughton et Al. [139] an optimal network planning and cost assessment
tool is developed for 5G networks. In Yaghoubi et Al. [88] an optimization
model is used to formulate a backhaul design maximizing reliability for a
channel model that includes rain attenuation. However, 5G has a specific
focus on increasing user performance in dense areas, but no provision for
under-served rural areas [140]. Some effort in this direction is ongoing for
6G [141] but it is far from being a viable present solution.

A promising area of research involved in reducing digital divide re-
volves around Community Cellular Networks (CCNs), a concept that
leverages many concepts used in WCN but to deploy Cellular Networks
in underserved areas. In Barela Et Al. [142] [143], the authors document
the experience and challenges encountered in deploying a CCN in the
Philippines. In Guzman Et Al. [144], a wireless backhaul using Line of
Sight (LoS) links, is evaluated as an alternative to satellite backhaul. In
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Heimerl Et Al. [145] a system to operate CCNs at large, called Commu-
nityCellularManager, is presented and its impact is evaluated through a
multi-year deployment in the Philippines.

Another hot research topic and a promising technology for closing
the digital divide is given by low-orbit satellites, as they are capable of
providing broadband connection with global coverage at a competitive
price. However, their global performance, cost-effectiveness, and manage-
ability are still to be demonstrated, especially in underserved areas with
low income. In the near future, the integration of satellite networks and
community networks is a promising option, and it is already part of the
research agenda [146].
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5.2 towards smart wireless community net-
works

This research analyzed the state of WCNs from a technological and re-
search point of view, with three main contributions: first, we summarized
the path of WCNs in the last two decades, focusing on the design of
two generations of wireless WCNs that were analyzed in the literature,
with their pros and cons; Second, we described the emergence of a third
generation of WCNs (3G-WCN) which, in addition to the evolution of
Wi-Fi, will incorporate recent advances in blockchain and AI, and we
discuss the directions in which these technologies can be applied. Third,
we argued that WCNs can continue to be a key instrument to overcome
the digital divide if they evolve, providing added value to their users
beyond connectivity. We outlined the challenging research items that need
to be addressed to make WCNs evolve into smart community networks
based on past experiences and growing interest in this theme.

As a tangible example, we simulated a 3G-WCN and study its pen-
etration in regions that are now under-served. We used an innovative
approach mixing open data and GPU-based visibility analysis to estimate
the fraction of households that could be reached using 3G-WCN with
state-of-the-art technology. This had a double goal of showing the fea-
sibility of a CN and of introducing new methodologies for high-impact
research.

5.2.1 From Roofnets to Large Scale WCNs

With the diffusion of IEEE 802.11, the concept of mesh networks was
introduced in ICT research. While there is no specific definition, a wireless
mesh network is generally described as an infrastructure for which:

• The nodes are stationary (as opposed to a mobile ad-hoc network);

• Nodes are both generators/receivers of traffic and routers of other
nodes’ traffic;

• There is no planning, and the network is self-healing: nodes can be
added or removed, and the protocols must make new nodes reach-
able and/or route around failures without manual reconfiguration.

The first generation of WCNs (1G-WCN) used commercial off-the-shelf
(COTS) 802.11b/g access points mounted on house roofs or terraces, as in
the MIT Roofnet [147].

The advantage of this design was an extremely simple set-up, with
only one device to be mounted and configured. Morover the network was
purely non hierarchical with a flat mesh topology in which any node was
connected to all the reachable neighbors. However the performance of
this architecture was extremely low. Omnidirectional antennas can cover
short distances (up to hundreds of meters), and the network capacity
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scales sub-linearly with the number of nodes, as the interference is hard
to mitigate when the spatial density increases. As soon as 802.11 became
popular, the unlicensed bands started to be crowded, and the idea of
creating general-purpose, large-scale mesh networks with this design
faded.

5.2.1.1 Motivations and Design of a Modern CN

To be usable in under-served areas with low house density, the wireless
links of a CN need to span across several km, which encouraged a second
generation of community networks (2G-WCN). The single COTS device
on the roof is replaced by a set of outdoor ISP-grade point-to-multipoint
devices using Power over Ethernet (PoE) and mounted on one (or more
than one) pole on the house’s roof (as depicted in Fig. 5.1). The devices
create links spanning several km, powered by 802.11ac with up to gigabit
performance (see Tab. 5.1). They need to be connected to a router that will
take care of the routing of packets, plus a home access point to provide
connectivity to the terminals inside the house. 2G-WCNs enable networks
made of hundreds [92] or even thousands of nodes [148] covering very
large regions.

Such a CN is a techno-social artifact: an unplanned distributed net-
work that adapts to the addition of new nodes, mirrored in a distributed
community that grows spontaneously one person after the other. The
network is still, in principle, non-hierarchical. However, nodes placed on
better locations, such as location with great visibility or easy accessibility,
quickly becomes more important than others and thus the network often
becomes semi-hierarchical, with a two-layer architecture. The owners of
the nodes, however, can still organize in agile peer-to-peer communities
with very lightweight coordination to organically expand the network at
needs. WCNs are generally treated as a not-for-profit initiative held in
commons, often with no legal entity, which makes them easy to bootstrap,
the exact opposite of the all-or-nothing model we mentioned. This design
sparked a body of interdisciplinary research in ICT [149], social systems
analysis [150], network economy [151], and many more.

However, 2G-WCNs design has three big drawbacks. The first is the
complexity of the architecture, which now requires configuring at least
three devices with a non-trivial network and physical set-up, as shown in

gen. standard antenna band throughput

802.11 type GHz Mbps

1 b,g omni. 2.4 < 20

2 n,ac sector, ptp 2.4, 5 20∼300

3 ac,ad,ax ptp, beamf. 5, 60 100 ∼1000

Table 5.1: Link characteristics for different generations of WCNs.
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Figure 5.1: Comparison between CN generations. © 2023 IEEE

Fig. 5.1. The second is the increased cost, which can reach several hundred
euros per node (with a large variability). The third and most critical is the
loss of self-healing capacity, as directive antennas need to be re-pointed or
added when the topology is modified. With this network design, every
time the conditions change (a new link is created or some link fails),
a trained person needs to climb onto a roof (in someone else’s house),
physically modify some existing nodes, and reconfigure the devices. C
onsequently, 2G-WCNs strongly rely on the initiative of some technically
skilled members of the community to be maintained. Their technical
structure tends to centralize because a few, better-equipped nodes are
easier to maintain, and the social structure, while still being perceived by
the community as a peer-to-peer distributed one, inevitably degenerates
into a highly centralized and fragile one depending on a few skilled
individuals. When the network grows too much to be maintained by a
small voluntary team, its performance and reliability degrade, and the
community fades. This is a structural limitation of current WCNs that
has been measured analytically in one case [150] and led to the decline of
some initiatives4.

Future WCNs will have to improve in two directions to make the com-
munity less dependent on a few individuals: i) improve the manageability;
ii) provide added value beyond connectivity to enlarge the user base. We
foresee two possible ways to overcome this limitation, which introduces
very interesting research challenges. The first is a 3G-WCN design based
on new technologies that can make the network easier to maintain. In
Sect. 5.2.2, we explain the technological building blocks and provide data
to assess its feasibility. The second requires better integration with services
that can make WCNs attractive beyond Internet connectivity, provide

4See the “Report on the Governance Instruments and their Application to WCNs” of
the netCommons Project: https://netcommons.eu/?q=content/deliverables-page.

https://netcommons.eu/?q=content/deliverables-page
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added value to the participants, and thus create new economic incentives
to make WCNs self-sustainable (we cover it in Sect. 5.2.3 and 5.2.4).

5.2.2 3rd Generation Community Networks

The advent of 5G encouraged research on communications at high fre-
quencies such as mmWave (beyond 24 GHz) and Terahertz (beyond 1 THz)
communications, where there are large unused portions of the spectrum
that can be used to provide high throughput links. Moreover, high fre-
quencies need smaller antennas, so we can have Massive Multiple Input
Multiple Output (M-MIMO) antenna arrays made of tens of elements
to enable beamforming. A MIMO device covering a sector of 120◦ can
create a narrow beam aimed in the direction of the receiver, achieving
a transmission (and reception) gain close to the one achievable with a
directional antenna and reducing the overall interference. The beam is
steerable in a dynamic way, so the advantage of having a point-to-point
link does not come with the disadvantage of manual aiming, as with di-
rective antennas. However, at high frequencies, the propagation of signals
is challenging. The communications happen primarily in line-of-sight as
obstacle penetration is impossible, and fading due to rain, foliage, or even
atmosphere is way more impacting than at the unlicensed spectrum used
by 802.11n/ac.

While these techniques were primarily intended to improve radio access
in mobile 5G networks, mesh networks at high frequencies are the next
step. For instance, 5G supports backhauling via mesh networks (referred
to as Integrated Access and Backhaul, which is receiving considerable
attention from the communications research area). In contrast, in the unli-
censed spectrum (60GHz), commercial mesh devices are already available,
like the products that support the Facebook/Meta Terragraph mesh net-
work, providing gigabit performance.5

Given these recent advances, we can imagine a forthcoming 3G-WCN
design using higher frequencies than the classical 2.4/5 GHz spectrum,
from 24 GHz up, and based on two building blocks: i) MIMO devices
that create links in line-of-sight with steerable beams of length lower than
one km to create dense local meshes; ii) a minimal number of long links
spanning several km, using directional antennas to connect the otherwise
disconnected meshes. 3G-WCN mesh nodes look similar to the second
one. Still, the large majority of the antennas do not need to be pointed,
and once mounted and configured, they don’t need human intervention
to create new links, which makes their management way easier than 2G-
WCN mesh nodes and recovers the self-healing capacity. In contrast, link
length is reduced substantially, and line-of-sight is required. Thus, we
must answer the question: is it feasible to achieve widespread population
coverage in rural areas with a 3G-WCN?

5See https://terragraph.com/.

https://terragraph.com/
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5.2.2.1 Simulating The Coverage of 3G-WCNs in Rural Areas

To evaluate the possible coverage of 3G-WCNs, we adopt a data-based
methodology similar to the one used in the other contribution of this chap-
ter, that can be fully re-used in this, or other contexts. We start from a 3D
surface obtained by open data from public administration that represents
a certain municipality, we identify buildings using open maps, and we
use open demographic data to obtain the number of households for every
census section, which is a subset of the area of the municipality. Using
the 3D shape, we estimate the volume of the buildings, exclude the ones
smaller than a certain threshold, and assign to each building a number of
households proportional to the volume, up to the number of households
in the area. Of the total number N of buildings, we randomly select a
fraction ρ of buildings, with a probability distribution that follows the
number of households per building. We ideally place an antenna on top of
the building roofs, assuming a 2 m tall pole, and we then follow a 2-step
heuristic: in step 1, we use visibility analysis to compute the line-of-sight
between every couple of buildings in the area, setting a maximum link
length of 600 m. We extrapolated this value from the specifications of the
Terragraph hardware as published by Facebook/Meta6, which reports
links up to 450 m (600 m) with a throughput of roughly 1 Gb/s (200 Mb/s).

Step 1 creates several disconnected clusters, which we try to connect
with longer links. In step 2, for each couple of clusters larger than one
node, we search for a feasible line-of-sight link of length up to 4 km. This
distance is instead extrapolated by the data-sheet of the point-to-point
Ubiquiti airFiber 60XG7, certified as compatible with Terragraph. We
consider the resulting graph, and we count the nodes M in the largest
connected component of the network graph. We evaluate a coverage
metric λ given by M divided by the number of potential nodes in the
network (λ = M

Nρ ) that provides an estimation of the coverage of wireless
WCNs in the selected areas. If λ = 1, then all the nodes we randomly
chose are part of the connected component of the mesh network, which
means that a network connecting all the nodes can be successfully realized.
If λ < 1, then not all nodes can be reached by the mesh network, and it is
essential to evaluate how close λ is to 1.

We use data from 10 rural areas in Italy that we selected among those
considered digitally divided (the fastest wired technology that reaches
some houses in the area is ADSL with legacy copper cables). Their size and
the number of houses is reported in Tab. 5.2. Given the large number of
links for which we need to test line-of-sight (up to the order of 106), we
use an NVIDIA GPU to parallelize the task.

For each value of ρ, and each area, we repeat 30 Monte Carlo simulations
with a different choice of the buildings, and we report λ Vs ρ in Fig. 5.3.

6See the Terragraph Mesh Paper, Throughput Vs Range image, page 11: https://
terragraph.com/docs/whitepapers. We use the 99.6 availability curve.

7The device is a point-to-point device capable of up to 6Gb/s at 60GHz, see https:

//dl.ui.com/ds/af60-xg_ds.pdf.

https://terragraph.com/docs/whitepapers
https://terragraph.com/docs/whitepapers
https://dl.ui.com/ds/af60-xg_ds.pdf
https://dl.ui.com/ds/af60-xg_ds.pdf
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(a) short links only (b) long+short links

Figure 5.2: Two instances of the same network in Semproniano that attempt to
connect all the buildings (ρ = 1), long links are colored in red. © 2023
IEEE

Table 5.2: Summary of data when trying to connect all the buildings in the area
(ρ = 1, N potential nodes).

Village
Area size
(km2)

# of
nodes (N)

# of links
(potential)

# of links
< 450m

# of links
> 600m

Borgo a Mozzano 72.2 2174.5 99398.4 59239.1 (60%) 3.5

Castel del Piano 67.8 1337.8 168956.3 96733.3 (57%) 0.6

Magliano in Toscana 250.7 1270.6 30299.3 12861.4 (42%) 23.2

Porcari 17.9 1066.4 59083.3 30518.5 (52%) 0.7

Roccalbegna 124.9 482.1 17128.7 13027.7 (76%) 0.5

Sambuca Pistoiese 766.9 1449 9577.4 6413.1 (67%) 6.5

Santa Fiora 63.5 1383.0 91653.3 48452.3 (53%) 4.0

Semproniano 81.7 711.4 24483.3 14966.1 (61%) 6.5

Stazzema 82.1 347.3 2367.5 2056.3 (87%) 3.8

Villa Basilica 36.6 574.4 13962.9 11291.8 (81%) 2.1
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Every point in Fig. 5.3 reports the average λ over 300 runs (10 areas
times 30 runs) and the 95% confidence interval. The blue line is the value
of λ when only step 1 is applied. Even without long links, roughly 50%
of the houses can be connected. The red line is obtained with steps 1 and
2. It grows from 66% to 85% and shows that this technology can reach
a very large proportion of the population. Note that λ grows with ρ, so
some houses are key to connecting otherwise disconnected areas. With
a random choice of the buildings, the probability of choosing these key
houses increases with ρ (and thus λ increases). Still, with minimal network
engineering, we believe λ can be increased even for lower values of ρ: In
a real network, the community may set up nodes in strategic positions,
or they may decide to use higher poles in the nodes that can not be
reached. However, these simulations confirm that the current technology
can enable 3G-WCNs with a widespread population coverage in rural
areas. In Fig. 5.2 two instances of a 3G-WCN in Semproniano are shown,
highlighting how a small number of longer links can dramatically improve
coverage.

Tab. 5.2 provides more details on the areas and on the results for the
case ρ = 1 and shows that the density of the potential links (those that
can be realized in line-of-sight) is extremely high. The average degree
ranges from 13 to 252, which provides an extremely high diversity of
paths between nodes and thus, resilience to failures. The number of links
that can provide gigabit performance is the majority of the potential ones
(except in one case), and, most of all, the number of long links that require
manual reconfiguration upon failure is extremely low (less than 2 every
100 nodes). We can thus say that 3G-WCNs would be much easier to
maintain than 2G-WCNs, and finally more reliable in case of failures.
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Figure 5.3: Coverage of a CN in 10 rural areas of Italy. © 2023 IEEE
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5.2.3 From WCNs to Smart WCNs

Smart and sustainable cities (or rural communities), as ITU-T defines8,
need interconnected information to understand and control their opera-
tions and optimize their limited resources. Information and Communica-
tion technologies can improve the quality of life, the efficiency of urban
operations and services, and competitiveness while ensuring the needs
of present and future generations concerning economic, social, environ-
mental as well as cultural aspects. This is achieved by comprehensive
environmental sensing: data on public infrastructures such as energy and
water consumption, pollution, weather conditions, security, and safety,
combined with data processing to automate well-informed, proactive,
and efficient decisions with transparency and accountability, making a
community smart. The nodes of WCNs are strategically placed close to
data sources and sinks (sensors and actuators on roofs) together with com-
puting nodes with storage capacity (below the roof). This split physical
design depicted in Fig. 5.1 is a peculiarity of WCNs that help environmen-
tal monitoring practices. However, to support smart applications, WCNs
need to provide a faster, more reliable, and more easily manageable net-
work, minimizing the dependency on manual interventions that increase
downtime and lower reliability. To make a parallel, we can see 3G-WCN
as the innovation brought to mobile networks by 5G. They both improve
performance and reliability and enable future added-value applications
that are interdependent, co-located, and vertically integrated. Smart appli-
cations encourage participation and economic investment, fundamental
to making a not-for-profit CN infrastructure sustainable in the long term,
especially today that even for traditional telecommunication companies
providing bare connectivity is less and less a profitable/sustainable activ-
ity.

In this section, we outline some of the promising applications that
3G-WCNs can enable.

smart applications for WCNs Organizations and people collabo-
rate in WCNs to achieve a shared goal. Thus, they are generally willing to
collect and share their data in a privacy-respecting way to improve the
operation and development of their neighborhood. In WCNs, users al-
ready have network devices on their roofs and are excellent candidates for
data collection and participation in smart city initiatives. Complementary
data add detail and quality to environmental sensing, informing city-level
and citizen-level decisions with more relevant data. That data pool can
feed edge processing for informed and adaptive decisions and actuation.
In fact, pooling brings scaling advantages to networking, data storage or
computing, and co-location facilitates mutual support for smart decisions.
Two examples are the use of data and applications for smart farming,
which has been enabled in rural areas thanks to the presence of a CN

8See the ITU-T Recommendation "Overview of key performance indicators in smart
sustainable cities", https://www.itu.int/rec/T-REC-L.1600-201606-I

https://www.itu.int/rec/T-REC-L.1600-201606-I
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[152], or initiatives that use the CN infrastructure to monitor air or noise
pollution9.

edge intelligence in WCNs Data become actionable when stored
and processed. WCNs offer local clouds with storage and processing of
large volumes of locally relevant data, accessible at minimal cost and
latency, away from the privacy and confidentiality risks of large cloud
providers [153]. Tightly coupled with cloud storage is the opportunity of
federated machine learning where data is processed near the generation
point, and only locally trained models are transferred to a coordinating en-
tity. This procedure has significant advantages over traditional centralized
ones, such as data privacy and savings in energy and network bandwidth,
and works for both city and citizen-level control decisions and resources.
Edge data and intelligence is a key ingredient for smart applications. Even
the network infrastructure can benefit from that, allowing more auto-
mated self-managing networks. A big challenge is the development of a
multi-layer software stack and network architecture, re-usable in different
networks, similarly to the Open Radio Access Network (O-RAN) now
under development for 5G10.

value transactions on WCNs The sustainability of a CN depends
on its economy, that is, how people share the cost of the infrastructure
and its maintenance. Blockchains are suitable instruments to play this
role in WCNs as they provide accountability and transparency and are
designed to work in communities of people with limited reciprocal trust.
Permissioned blockchains, running on a set of small edge nodes, have
been deployed and experimented in WCNs as tools for network traffic
metering and cost-sharing [154]. Once the Blockchain is in place, the
flat and cooperative governance of WCNs suites its usage as a form of
alternative currency for reputation and value in exchange b data, work,
and smart services.

WCNs as enablers of other networks Finally, we mention that
3G-WCNs can become the backbone for other networks as a distributed
internet exchange that adds even more value to the community. It is the
case with WCNs acting as Internet traffic exchanges, enabling mobile
access or IoT applications that need a capillary distribution system.

5.2.4 Challenges emerging from Real Cases

CN solutions have open challenges due to their peculiar distributed,
bottom-up infrastructure. As such, we need to keep in mind that cen-
tralized, top-down solutions for network management and economic

9See, for instance, the SEA-HAZEMON project in WCNs in Thailand and South Asia
https://interlab.ait.ac.th/HAZEMON/.

105G is not a monolithic network as previous generations, and its interfaces are open
ones, see: https://www.o-ran.org/

https://interlab.ait.ac.th/HAZEMON/
https://www.o-ran.org/
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sustainability that are widespread in other networks can not be easily
applied. In this section, we mention some research challenges that are
peculiar to WCNs, coming from the observation of real cases.

disintermediation: If a smart CN becomes a key societal asset, the
dependability on its operational status increases and thus the governance
and management become more complex. The automation and verifiability
of an increasing volume of information to deal with become a need to
make sure the network operates smoothly. This is the case of network rout-
ing and traffic analysis to optimize and deal with traffic anomalies, attacks,
or faults. Distributed ledger technologies (DLT) and blockchains bring
technological solutions to implement networks that generally exchange
verifiable data and value. They allow a trusted and verifiable account-
ing required to support the representation, management, and transfer
of valuable information, such as funds. As a result, smart WCNs can
have truthful and verifiable information about service-level agreements,
commitments, property, investment, payments, penalties, etc., recorded
in a trusted manner and accounted for automatically by code in smart
contracts that automatically execute, control or document relevant events
and perform actions according to the terms of a contract. [154]. In addition,
all these DLT applications can run on servers owned and managed by
the smart CN, becoming an economical substrate for further smart CN
applications, where network managers and end-users develop economic
schemes for resource sharing and service provision and retribution. The
scalability of such a system, the kind of blockchain, and how to map net-
work resources to transactions in a verifiable way are still open research
issues.

economic: Once analyzed the feasibility of 3G-WCNs in terms of cover-
age, economic feasibility comes into play. With today’s prices, a mmWave
node can cost up to 2000 dollars, but as high-frequency technologies be-
come widespread, we expect the price of devices to reach the price of
2G-nodes, about 200-300 dollars per node. Beyond radio devices, there
are several other costs: upstream bandwidth, fixed network routers, and
the computing and storage needed for smart applications. When a smart
CN becomes a key asset for a whole community, its ecosystem must in-
clude individuals, IT companies, small telecom operators, cloud providers,
non-IT companies or organizations from any related sector, and public
organizations [155]. In the end, a smart community network will thrive if
the infrastructure performs well and all providers and consumers have
a positive balance in terms of investment and return value, so economic
sustainability becomes fundamental.

However, the interplay between common goods and for-profit activities
is highly complex to manage. Individuals need incentives for voluntary
actions that naturally result in desired collective direction. Commercial ac-
tivities use profit-oriented economic models to compensate for risk-taking,
and the two models may conflict. One viable approach is to consider the
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network as a shared infrastructure owned by the community, that devel-
ops in a cost-oriented, not-for-profit model, equivalent to the model of
Internet Exchange Points [151] and then allows commercial initiatives on
the network for services [156]. Again, machine learning and blockchain
could be the bridge between the two worlds, as models based on data
processing combined with incentive schemes approved by the community
can be implemented as smart contracts that, in exchange for actions, result
in the automated generation of community currency transfers that can be
spent to buy services offered in the network [154].

technological: Different technologies offer different sweet spots to
satisfy network needs. Therefore, there is a need for a combination of
technological solutions, including software tools to manage the integration
of traffic management (e.g. routing), data collection and processing, and
smart applications on top.

This is particularly true for WCNs that often operate in market failure
situations, in which the traditional one-size-fits-all connectivity model is not
applicable11. 3G-WCNs must diversify, combining diverse connectivity
technologies with multiple devices and service providers to offer the
most cost-effective technology for each location, node, and person. That
implies combining wireless, cellular, and wired connectivity [155] while
managing location sharing, and more automated interconnection with
higher amounts of traffic and economic compensation, for more resilient
critical networks and smart applications. In some cases, these technologies
are operated by different entities or third parties (including public and
private for-profit companies) [156] as local internets. Managing such a
heterogeneous network is an open challenge, and the smart aspects bring
an additional challenge related to data management, data integration,
smart data processing, and data protection. Vendor silos with limited
interoperability and lack of standards on 3G-WCNs are limiting factors.

Finally, machine learning is a pervasive technology that is also now
being successfully applied in the field of networking. Federated learning,
a form of distributed ML, shows it is possible to efficiently utilize network
resources, automating management for IoT users and the operating costs
for cellular operators [157]. Its application to a distributed network has
been tested for traffic classification or anomaly detection, but we need
more evidence on its scalability and applicability in real cases [158].

governance: As mentioned, WCNs tend to develop in an organic and
decentralized manner, developing with little planning compared to most
large operator networks. That is similar to how the Internet has developed
by setting up local networks that expand and interconnect. WCNs require

11One promising large-scale connectivity option is given by low-orbit satellites. How-
ever, their global performance, cost-effectiveness, and manageability are still to be demon-
strated. Satellite networks are not yet an alternative to CN’s communications needs, even
if their integration with WCNs is already part of the research agenda. See the recent
discussion inside IETF on Satellite-Integrated WCNs, https://datatracker.ietf.org/
meeting/114/session/gaia

https://datatracker.ietf.org/meeting/114/session/gaia
https://datatracker.ietf.org/meeting/114/session/gaia
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agreements for inter-operation and standards, similar to the global Inter-
net. Coordinating this evolution while keeping a network operational and
avoiding single points of failure [150] is an open challenge.
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5.3 wireless backhaul design for rural net-
works

In this study, we investigated the deployment of networks by WISPs in
rural areas setting out a detailed economical model considering the cost
of the fixed initial assets, the so-called Capital Expenditure (CapEx), and
the recurring expenses required to sustain the network, the Operational
Expenditure (OpEx). Using open data provided by public administrations
we also estimated the demand for connectivity in rural areas, which
provided realistic constraints for network design, and the cost of the
available connectivity options in these areas.

We focused on a model of a WBN because the main cost of wired
connectivity in a rural area is due to the last- and mid-mile between a
fiber-connected building (generally in the center of a nearby town) and all
the houses that are scattered around the territory. From a fiber-connected
location, we modeled the deployment of aerial fiber to a set of gateway
nodes, from each gateway we design a multi-hop wireless backbone made
of relay nodes that brings connectivity close to the users, and finally each
user connects wirelessly to any relay node. We proposed a methodology to
choose gateway locations and to plan the network topology. We dedicated
particular attention to the robustness of the backbone wireless network,
showing that with minimal cost increase it can be made resistant to the
failure of several nodes and edges, adding value to the network archi-
tecture. We applied our model to ten digitally divided municipalities in
central Italy, exploiting the availability of geographical and demographic
open data in public repositories.

To the best of our knowledge, this was the first study proposing:

• a detailed technical and economic model for network deployment
in rural areas with a mixed wireless/wired approach,

• a methodology to design a reliable backhaul topology and node
placement using geographical data, with a realistic estimation of the
downtime due to hardware failure,

• the application of our model in a real-case situation based on open
data, and available connectivity options.

5.3.1 Reliable Wireless Backhaul Design

We briefly describe the design of a router node depicted in Fig. 5.4a, which
has an indoor part and an outdoor part. Outdoors there is one pole on
which wireless devices (devices, from now on) are mounted, these are ISP-
grade radio devices that create point-to-point or point-to-multipoint links,
which we assume operate in the 5GHz ISM bandwidth with 802.11ac. This
configuration has been used in real mesh networks made of hundreds of
nodes studied in the literature [133], [159], but our model could be easily
modified to use different technologies such as mmWave communications.
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Figure 5.4: a) Graphical depiction of a relay node with two radios and one router.
b) Example topology made of two gateways (red), four relay nodes
(yellow), and seven leaf nodes (white). © 2022 IEEE

A router that takes care of packet routing with some standard routing pro-
tocol like Open Shortest Path First (OSPF), Optimized Link State Routing
Protocol (OLSR), or even a centralized one based on Software Defined
Networking (SDN). Inside the house of the subscribers, there is a simple
802.11 Access Point. If only one wireless device is on the roof, the router is
not present.

Let us consider a rural area in which there is a set of households that
need connectivity. These households are spread on a set of physical loca-
tions (buildings), and each building is a potential node n of the network.
The realistic way we choose V is explained in Sect. 5.3.2.1, for the time
being, we can assume V is given. Exploiting recent ray-tracing techniques
and the availability of open data for the terrain, we assess the presence
of line-of-sight between the roofs of every couple of nodes (assuming a
pole of 2 meters) and create a visibility graph G = (V , E) made of all the
nodes and all the potential links. Details on this process can be found in
past works that exploit the same data and methodology [160] [10].

For scalability reasons, we can not connect every node to a single gate-
way, so the network must be a clustered network with one or at most
two gateways per cluster. A WBN is thus made of three types of nodes,
graphically depicted in Fig. 5.4b. The first type is the gateway node, which
is fiber connected to some ISP core network. We call B the set of gateway
nodes. The second type is the relay node, which is used to create a wireless
backhaul that brings connectivity close to the users. Relay nodes route the
user traffic, and we callR their set:

R = {n ∈ V | δ(n) > 1∧ n /∈ B} (5.1)

where δ(n) is the degree of node n in the resulting network graph (i.e.
the number of neighbors). The last type of node is the leaf node, that is
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connected to the backhaul with a single edge, so it does not perform any
routing operation. These are defined by the set L:

L = {n ∈ V | δ(n) = 1∧ n /∈ B} (5.2)

All nodes provide connectivity to the subscribers that are assigned to
the buildings where they are placed.

Let G = (V , E) be the visibility graph. The Reliable Wireless Backhaul
Design Problem (RWBDB) consists in finding a set B ⊂ V of gateway
nodes and a set of edges E ′ ⊆ E that interconnect all the nodes in V to a
gateway in B with a multi-hop path, providing a configurable resilience
to failures.

Ideally, we could formulate an optimization problem that contains all
the constraints and finds an optimal solution. However, this approach can
scale up to tens of nodes (like in previous works [88]) while in our setting
we have thousands of nodes and tens of thousands of potential edges.
The aim of our work is not to simplify the problem to make it tractable
with some theoretical formulation to achieve some global optimum, nor
to introduce new approximation algorithms to marginally improve the
algorithmic state of the art. Rather, it is to provide a readily usable solution
for network planning and engineering on arbitrarily large networks, to
study the feasibility of the mixed mesh/wired approach. Thus, we use
state-of-the-art algorithms customized to fit our specific problem and the
real data we own, and we make data and source code available for further
research that will improve and refine the algorithmic aspects.

We propose a heuristic divide-et-impera approach in four steps: i) we
partition G into k clusters; ii) we find the set of gateways D̄i for each cluster.
We consider the base case in which |D̄i| = 1 or a more robust design in
which |D̄i| = 2; iii) we elaborate a strategy to select a E∗i ⊂ E in order to
connect each node in the cluster to a gateway; iv) we ensure each cluster
has a failure resistant topology. In the following subsections, we will go
through the details of each step of the process.

5.3.1.1 Graph Partitioning

Given a graph G = (V , E) there are a plethora of clustering algorithms
that partition V in k subsets V1, . . . Vk. In our specific case each cluster
corresponds to one or at most two gateways, and considering that the cost
of the gateway is a large part of the CapEx due to the fiber connection,
we need to minimize the number of clusters. The gateway is connected to
the cluster via wireless links, and given the limited amount of devices we
can place on a single gateway, the wireless connection of a gateway is the
bottleneck of the cluster. Therefore, our design tries to achieve the smallest
number of clusters connecting roughly the same amounts of households,
in order to obtain the maximum usage of the bottleneck.

Each node in the network can serve more than one subscriber (one node
corresponds to a building, and in a building we can have more than one
household), thus we need to solve the following problem: Given a graph
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G = (V , E) and a weight function s(n) that is the number of subscribers
in building n ∈ V , the k-way graph partitioning can be defined as the
problem of partitioning V in k subsets V1, . . .Vk such that:

1. ∪iVi = V

2. Vi ∩ Vj = ∅ for i ̸= j

3. ∑n∈Vi
s(n) ≃ 1

k ∑n∈V s(n)

4. the number of edges with end-points in two different subsets is
minimized

The well know METIS graph partitioner [161] is one of the few algo-
rithms that enables us to have clusters of the same (or at least similar) size.
It uses the Kernighan–Lin algorithm [162] with complexity O(|E |).

After computing all the sets Vi we extract their associated subgraph
Gi = (Vi, Ei), where Ei is defined as:

Ei = {(vj, vk) ∈ E | vj, vk ∈ Vi} (5.3)

5.3.1.2 Gateway Selection

Given a certain Vi we need to identify a node, or a group of nodes D̄i that
are in the best position for being the gateways of the cluster. Gateways
are fiber connected, thus expensive, and they represent a critical point
of failure for all nodes in Vi. We use two designs, a first one with one
gateway per cluster and a second with more than one, so if one gateway
fails, the nodes in the cluster have a backup. In the paper, we consider
the two-gateway design (|D̄i| = 2) but the process can be generalized to
more.

Since the hop-count from a node to the gateway influences the end-to-
end delay, we choose D̄i minimizing the average distance to all nodes in
Vi. Given a node y ∈ Vi, the distance of a candidate group D of nodes to y
is defined as follows:

d(y, D) = min
n∈D

d(y, n)

Since in our problem each node can represent multiple subscribers we
weigh the distance to that specific node y by the number of subscribers
s(y) associated with it and we use the concept of Centrality [163], and in
particular of group closeness centrality. The set D̄i with the highest group
closeness centrality is the group (among all groups D of the chosen di-
mension) that maximizes the inverse of the sum of the weighted distance
to all the other nodes of the network, as follows:

D̄i = argmaxD
1

∑y∈Vi
s(y)d(y, D)

If we want only one gateway per cluster (|D̄i| = 1) computing centrality
requires computing the shortest path between any couple of nodes, so
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it has polynomial complexity with the size of Vi, and it takes negligible
time with thousands of nodes. When |D̄i| > 1 the problem becomes
combinatorial and NP, but with two gateways we can still find the optimal
solution in minutes.

5.3.1.3 Distribution Tree Design

To connect each node of a cluster to its gateway, a subset of the available
edges of Gi is sufficient. In principle, all edges could be used, but in
practice, each node has a limited amount of devices, so economical and
technical constraints lead us to minimize the number of edges. At the end
of this step we have a set of graphs Ḡ i = (Vi, Ē i) so that the subset of
edges Ē i ⊆ Ei creates a Shortest Path Tree (SPT) allowing each node in Vi
to reach a gateway. This problem has to be treated separately for the one
gateway or the two gateways scenario.

tree design with one gateway per cluster In this scenario, the
optimal tree is the SPT computed with classical Dijkstra’s algorithm. We
use the link length as the weight for the shortest path, as it is computa-
tionally easier to handle, we performed several tests with a weight that is
more realistic due to the non-linearity of the path loss of wireless signals,
and noticed only minimal differences. Note that the SPT tends to produce
many nodes that directly connect to the gateway, which is convenient
to reduce the traffic that needs to be relayed on multi-hop paths, thus
occupying more resources.

tree design with multiple gateways per cluster The straightfor-
ward extension of the previous design would be to compute a multi-rooted
SPT, with roots corresponding to the gateways. However, this would not
fully exploit the presence of multiple gateways. The failure of a gateway,
in fact, would disconnect the leaf nodes attached to it from the wireless
backhaul and thus, from the other gateway.

Thus, we use the multi-rooted SPT approach as a benchmark but we
propose a multi-gateway design that avoids leaf nodes directly attached
to the gateways named Shortest Path without Attached Leaves (SPAL).
Given Vi, and a choice of gateways D̄i we search for a forest F(Vi, Ē i) that
minimizes the distance between each node and one gateway, where no
edge directly connects leaf nodes to gateways. More formally we search
for Ē i that minimizes:

min ∑
n∈Vi

d(n, D̄i) (5.4)

constrained to:

(n, d) /∈ Ē i ∀ n ∈ Vi | δ(n) = 1, ∀d ∈ D̄i (5.5)

Through some graph manipulations, SPAL can be reduced to the class
of well know Shortest Path with Forbidden Paths (SPFP) [164] problems,
specifically to Elementary SPFP (ESPFP) which does not allow cycles and
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produces a tree topology [165]. Many algorithms have been proposed
for the solution of these problems, for this work we took advantage of
an open source implementation of ESPFP from Elkael et Al. [166], which
produces the desired minimal subset of edges Ē i.

Specifically, we use the function Ē i = ESPFP(Vi, d, P) by Elkael et Al.
[166] that solves the generic ESPFP problem. The function takes in input a
graph Ḡ i = (Vi, Ei), a destination node d and the set of forbidden paths
P and yields the set of edges Ē i ⊆ Ei that defines the tree topology. We
adapt this function to solve our specific problem in Algorithm 5.1.

We first add to the graph a fictitious destination d⋆ connected to each
gateway d ∈ D̄i (Line 5), so the result will be a single tree we can map
to a forest of trees in our graph. Then for each node n, we introduce a
fictitious leaf node called n⋆ connected to n (Lines 8,9). We add to the list of
forbidden paths P the paths {n⋆, n, d, d⋆} ∀d ∈ Di, ∀n ∈ Vi (Line 11). We
can then apply ESPFP to this manipulated graph, remove all the fictitious
edges from the solution and obtain the solution to our problem (Line 14).

Note that the failure of a gateway may still disconnect some subscribers
that are allocated to the gateway itself, or due to the fact that the failure of
a gateway may disconnect some relays from the backhaul. This is however
mitigated by the graph augmentation described in the next section.

Algorithm 5.1 Reduction from SPAL to SPFP

Require: Gi(Vi, Ei) (Visibility Graph), D̄i (Gateway Nodes)
1: procedure SPAL(Gi, D̄i)
2: F = {}
3: Vi = Vi ∪ d⋆ ▷ Create and add the fictitious gateway
4: for d ∈ D̄i do
5: Ei = Ei ∪ (d, d⋆)
6: end for
7: for n ∈ V do
8: Vi = Vi ∪ n⋆ ▷ Create and add the fict. node
9: Ei = Ei ∪ (n, n⋆)

10: for d ∈ D̄i do
11: F = F ∪ {n⋆, n, d, d⋆}
12: end for
13: end for
14: Ei¯ =ESPFP(G, d⋆, F) ▷ Solve ESPFP
15: for d ∈ D̄i do
16: Ei¯ = Ei¯ \{(d, d⋆)} ▷ Remove the fict. gateway
17: end for
18: for n ∈ V do
19: Ei¯ = Ei¯ \{(n, n⋆)} ▷ Remove the fict. source
20: end for
21: return Ei¯

22: end procedure
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5.3.1.4 Graph Augmentation

The previous step produces a backhaul network in which every node has
a path to one gateway using the minimal number of edges (a tree). The
outcome is a topology in which the failure of a single link close to the
gateway could disconnect large portions of a cluster, and even in the case
of multiple gateways there is no guarantee that nodes have another path
to the other gateways. In order to increase the reliability of the network,
additional edges must be added. This is a Graph Augmentation Problem,
which can be formalized as follows. Given Ḡ i we want a set of edges
E∗i ⊆ Ei such that:

• |E∗i | is minimal and Ē i ⊆ E∗i

• G∗i = (Vi, E∗i ) is 2-edge-connected

A 2-edge connected graph tolerates the failure of 1 edge without discon-
necting any node. Like other graph combinatorial problems, also this
problem has been proven NP-Hard. For this reason, a heuristic is needed
to solve it [167]. This heuristic finds an approximated solution E∗i with
log-linear complexity.

Augmenting the whole wireless backhaul, however, would be too costly,
as it would approximately double the number of devices. Moreover, no
commercial Internet Service Provider (ISP) guarantees a fault-tolerant
connection to its subscribers. For this reason, we augment only the core of
the network (which corresponds to the sub-graph made of the relays and
gateways) to make it 2-edge-connected. In the scenario with two gateways
we first run the ESPFP which creates two trees. Each tree is a separate
partition of nodes in Vi, which is augmented. Finally, we connect the two
partitions with the shortest link between relay nodes if available, or the
shortest link between any two types of nodes.

Note that not every graph can be transformed in a 2-edge connected
graph, and that’s why in Sect. 5.3.3 we evaluate the robustness of the
resulting graphs.

5.3.2 Link Dimensioning and Economical Modelling

The process we described so far uses as input an estimation of the demand,
in terms of what buildings will be served, and how many subscribers
per building are present. Here we describe two original contributions of
the paper: how to estimate the demand and how to estimate the cost of
creating and operating the network (the CapEx and OpEx, respectively).

The final goal is to compute a monthly cost per subscriber, given by:

Sc =
1

60 ns
(C + 5 ·O) (5.6)

where C is the overall CapEx, which we amortize in 5 years (and thus in
60 months), O is the yearly OpEx and ns is the number of subscribers:
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ns = ∑
n∈V

s(n)

Note that a 5 years amortization time for a network serving thousands
of people is very short compared to the life of competitors’ technologies,
such as fiber connections. However, wireless technologies are subject to a
rapid development and thus, we chose this short and challenging target,
assuming that every 5 years the infrastructure needs to be renewed.

5.3.2.1 Demand Model

To construct a realistic backhaul network, we first have to define V by se-
lecting a subset of the buildings in the analysis area where the subscribers
are located. This could be done by randomly selecting a given number
of buildings, but it would lead to a selection that is not representative
of the geographical distribution of the population. For this reason, we
have retrieved the population and household census from the Italian In-
stitute of Statistics (ISTAT), which provides the number of households
and inhabitants for each census section. A census section is a polygon
of variable dimension, which in the areas under analysis has an average
surface of 4.52 km2 and contains on average 70 buildings. Based on this
data-set, and the position and size of the buildings extracted from Open
Street Map (OSM) we assign to each building a probability wi of having a
household that could be a subscriber of the WISP. This allows us to per-
form a weighted sampling with replacements of ns subscribers distributed
over |V| buildings, which are representative of the household distribution,
and perform Monte Carlo simulations. Note that the same building can
be extracted multiple times, this corresponds to a single building with
multiple households (s(n) > 1). We refer to the ratio between ns and the
total number of households in the area as the subscriber ratio, which is a
configuration parameter. Let C = {cj} be a set of census section polygons
for the municipality under analysis and let hj be the number of house-
holds in the polygon, both obtained by ISTAT. Let P = {pi} be a set of
polygons representing buildings, obtained by the OSM data-set. We use
highly precise morphological open-data12 to compute the volume vi of
each building pi, we remove buildings smaller than 100m3, as they have a
low probability of being inhabited.

mathematical formulation for w i Since OSM buildings can span
different census sections, we first need to calculate the volume occupied
by the building pi in each census section cj. We call V j

i the volume of the
building pi in the section cj:

V j
i =
∩(cj, pi)

|pi|
× vi (5.7)

12See the LiDAR datasets released by the Italian Ministry of Environment https:

//www.mite.gov.it

https://www.mite.gov.it
https://www.mite.gov.it
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where ∩(cj, pi) is a function that returns the area of the intersection of two
polygons and |pi| is the area of the building. Eq. (5.7) takes into account
the fact a building may lay across two different census sections. We then
normalize V j

i over the volume of all buildings in the census area, and
multiply it for the number of households in the area:

H j
i =

V j
i

∑pk∈P V j
k

× hj. (5.8)

H j
i is the number of households we expect to live in building pi that pertain

to the census area cj. We need to sum this value over all the possible census
sections, and then normalize again over the total number of households in
all census sections. We obtain a set of weights {wi}, which represents the
probability of having a household in a given building bi in the municipality
under analysis.

wi =
1

∑ck∈C hk
∑

pj∈C
H j

i (5.9)

5.3.2.2 Estimating the CapEx

To compute the CapEx of a WBN we assume that leaf nodes are equipped
with a single device, whose cost is al . Relay nodes and gateway nodes
can have multiple wireless devices of the same cost, each one with a
beamwidth β. They are also equipped with a router, whose costs are rr and
rgw respectively. Every node has a fixed cost for the physical installation,
which includes also the home router.

Tab. 5.3 reports the cost of the devices. Note that the costs are inten-
tionally higher than the market price as they are intended to include also
other accessories such as uninterruptible power supplies and power over
Ethernet switches. The costs are extracted from data sheets, works in
the literature, and interviews with members of the guifi.net community
network based in Catalonia, which offers connectivity in rural areas.

Symbol Value Description Source

dl 300€ Deployment cost of a leaf node ∗
al 100€ Cost for a leaf radio [35]

dr 1000€ Deployment cost of a relay node ∗
ar 200€ Cost for a single 120° PtMP radio [35]

rr 500€ Cost for a relay router [168]

dgw 10000€ Deployment cost of a gateway node ∗
rgw 5000€ Cost of a gateway router [168]

cap f 6000€ Cost to deploy aerial fiber (per km) [169]

∗ Values obtained by interviews, similarly as in [170].

Table 5.3: CapEx costs
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Given a gateway b ∈ B its cost Cgw(b) depends on the number of the
radio devices na(b), times the cost of a radio ar, plus the cost of the router
rgw and the installation cost dgw:

Cgw(b) = dgw + rgw + ar · na(b) (5.10)

Similarly to the gateway node, the cost Cr(r) of a relay node r ∈ R
depends on the number of radio devices na(r) times the cost of a radio ar

plus some fixed costs for the router and the deployment (rr and dr):

Cr(r) = dr + rr + ar · na(r) (5.11)

The cost of a leaf node is given simply by the sum of the cost of one
radio al and the physical deployment dl .

Finally, we estimate the cost for the deployment of aerial fiber to the
gateways C f (B) from the closest Point of Presence (PoP) of some operator.
Since traditional operators are present in these areas we assume that the
PoP is a point p0 in the center of the municipality. Given the street graph,
we compute the Steiner tree connecting all the gateways to the PoP along
existing public streets, we sum the length (in km) of every arch of the
tree and we multiply it by the cost of a km of aerial fiber cap f . Eq. (5.12)
shows the composition of the CapEx of the network which is the sum of
the cost of gateways, relays, and leaf nodes plus the cost of the aerial fiber
backhaul:

C = ∑
b∈B

Cgw(b) + ∑
r∈R

Cr(r) + (dl + al)|L|+ C f (B) (5.12)

determining n a () Once we have a desired topology, we need to es-
timate the number of wireless devices per relay in order to satisfy two
constraints: the coverage of the neighbor nodes and the overall capacity
required to route the traffic. The first number is given by elementary geo-
metrical considerations based on the position of the neighbors, so that if
the total angle that must be covered by relay r is ϕ(r) then we need at least⌈︂

ϕ(r)
β

⌉︂
devices. The second number requires a more elaborated reasoning.

Let us call sp(r) the number of shortest paths that go from a subscriber
(there can be more than one subscriber per node) to a gateway and pass
through relay r. We call csub the minimum guaranteed capacity (in Mb/s)
per subscriber, so that sp(r) csub is the required minimum incoming ca-
pacity at r. Since traffic is relayed to the gateway the sum of incoming
and outgoing required capacity at r is 2 sp(r) csub. The capacity of a link
depends on the Modulation and Coding Scheme (MCS) negotiated with
the other end of the link, for which we assume an average value cch (in
Mb/s). Then, the required number of devices is given by:

na(r) = max
(︃⌈︃

2 · sp(r) · csub

cch

⌉︃
,
⌈︃

ϕ(r)
β

⌉︃)︃
(5.13)

Through Eq. (5.13) our model takes into account two factors: the need to
add devices to cover a wider angle, or the need to add devices to provide
more capacity in a specific direction.
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Note that these additional devices could be point-to-point with a narrow
beamwidth, to reduce overall interference. However, this is an approxima-
tion of the minimum number of radios given the total capacity needed in
the relay, since our planning does not include device orientation. It holds
on average, but in the real world, installers may take different decisions.

The number of devices for the gateway is determined by the same
Eq. (5.13), with the only difference that the multiplier 2 is removed, as
the gateway does not rely on wireless devices but on fiber. We call na =

∑v na(v) the total number of wireless devices in the network.

5.3.2.3 Estimating the OpEx

As shown in Eq. (5.14), the yearly OpEx is made of three different parts:
Ow is the cost of leasing the needed wholesale capacity at the closest
Internet Exchange Point (IXP) (see Waites et al. [171] for a description on
the role of IXPs in rural connectivity); Ot is the cost of the transit from the
closest PoP of some operator to the IXP; Om is the cost of maintenance of
the backhaul:

O = Ow + Ot + Om (5.14)

The basic costs we consider for the calculation are reported in Tab. 5.4. The
total capacity that the WISP needs to contract is given by the minimum
guaranteed capacity provisioned to each subscriber (csub, in Mb/s), times
the number of subscribers (ns). We consider a yearly price for wholesale
connectivity given by opw (see Tab. 5.4) with a minimum unit of 1 Gb/s.

Ow =
⌈︂ csub

1000
· ns

⌉︂
· opw (5.15)

The cost for the transport of the connectivity from the PoP to the regional
IXP equals op10

t if the transport is up to 10 Gb/s or op100
t if it is between 10

and 100 Gb/s. We then have:

Ot =

⎧⎨⎩op10
t if csub

1000 · ns < 10 Gb/s

op100
t otherwise

(5.16)

To estimate the yearly maintenance cost of the network, we take into
account the failures of both routers and radio devices deployed in the
wireless backhaul. For both, we have found realistic mean-time-to-failure
(mttf) and mean-time-to-repair (mttr) values, which respectively express
the average life of a device and the average time needed to repair/replace
it after a failure.

We can calculate the yearly cost of maintenance as the number of devices
divided by the mttf (which yields the number of yearly failures) times the
cost of the intervention, plus the cost of a new device. This is detailed in
Eq. (5.17) and is made of four terms:

Om =
|B|

mttfr
(mttrr ·mu + rgw) +

|R|
mttfr

(mttrr ·mu + rr)

+ ∑
r∈R

na(r)
1

mttfa
(mttra ·mu + ar) +

|L|
mttfa

(mttra ·mp + al)
(5.17)
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The first term takes into account the failure of gateway routers, which
are one per gateway, the following term takes into account the failure of
routers on relay nodes, the third term takes into account the failure of
radio devices on relays, the last one takes into account the failure of leaf
nodes. The reason we separate leaf nodes from relay nodes is that most
user contracts allow to delay the technical repair until the next working
day, while relay nodes need to be repaired as soon as possible as they
can impact many users, moreover, even if we have a fully redundant
backhaul network, correlated failures could disconnect large portions of
the topology. Thus, we use mu in Eq. (5.17) for relays and mp for the leaf
nodes.

Some other components of the OpEx could be included to refine the
model, such as energy consumption and software licenses. The former is
very hard to estimate because we miss the data on energy consumption of
commercial hardware. However, since our model uses a precise estimation
of the required transmission power, it could be enriched with an experi-
mental campaign to extract these data. The latter is a cost that depends
on the chosen technology, we notice that open-source commercial-grade
options for network management exist (see for instance the openwisp.io
platform), so this cost can be compressed. Other works that focus on cel-
lular networks, including both licenses and energy estimate the OpEx to
be 10% of the CapEx [139], and this is in line with the data we report in
Sect. 5.3.3.

5.3.3 Experiments and Results

We evaluate our model on ten rural municipalities in central Italy. The
areas have been chosen, among the ones for which the morphological data
were available, for their degree of digital division. In fact, for all the areas
the average download speed of traditional (xDSL) broadband connectivity
was below 30 Mb/s. The municipalities have on average an area of 83 km2,
1558 households, and 3110 buildings. We assume the use of 802.11ac,

Symbol Value Description Source

mu 200€/h Unplanned maintenance cost ∗
mp 50€/h Planned maintenance cost ∗
mttfr 22.8y Mean time to failure of a router [172] [168]

mttfa 11.4y Mean time to failure of a radio [35]

mttrr 2h Mean time to repair of a router [172]

mttra 4h Mean time to repair of a radio ∗
opw 1680€/y 1Gb/s wholesale at the local IXP [170]

op10
t 31200€/y 10Gb/s of transport to local IXP [173]

op100
t 55200€/y 100Gb/s of transport to local IXP [173]

∗ Values obtained by interviews.

Table 5.4: OpEx costs
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Symbol Value Description

β 120◦ Beamwidth of relay antenna

cch 360 Mb/s Channel capacity at MCS8

ce 0.84 802.11ac MAC efficiency [174]

pm 30 dBm Maximum EIRP due to regulations

f 5.8Ghz Tranmission Center Frequency

gr 19 dBi Relay antenna gain

gl 27 dBi Leaf antenna gain

sch 40 Mhz Channel width

csub 7.2 Mb/s Minimum Guranteed Capacity

cs {50,100,200} Maximum Cluster Size

sr {0.25,0.5,1} Subscribers ratio

Table 5.5: Parameter used in the Experiments

as is the newest Wi-Fi standard that is widely supported by commercial
hardware. However, any other kind of wireless standards, such as 802.11ay
or 802.11ax could be used by modifying the configuration parameters,
which are reported in Tab. 5.5. Among them we mention the transmission
frequency f , the channel bandwidth sch and the link capacity cch we used
in Eq. (5.13). We consider two kinds of devices: a sectorial antenna with
beamwidth β, gain gr and cost ar for the relay nodes; and a more directive
antenna with gain gl and cost al for the leaf nodes. For both devices, the
maximum transmission power (including the antenna gain) has been set
to pm according to local regulations. Finally, the minimum guaranteed
capacity per subscriber (csub) has been set to 7.2 Mb/s as an xDSL offer.
The experiments have been executed by varying the cluster size cs and
the fraction of served households sr. Each combination of parameters has
been run 50 times in ten different areas with a different random seed and
thus a different set of subscribers (500 runs per configuration). Images
report 95% confidence intervals as error bars.

This section reports the results with only one gateway per cluster, which
helped us to calibrate parameters, Sect. 5.3.4 reports the results with the
multi-gateway scenario.

5.3.3.1 CapEx and OpEx

We first show the cost of aerial fiber C f (B) with respect to the cluster
size cs and the subscribers ratio sr, dividing this metric by the number of
subscribers to make it comparable in different configurations:

Fc =
1
ns

C f (B) (5.18)

Fig. 5.5a shows that Fc monotonically decreases with both the cluster size
cs and the subscribers ratio sr, as larger clusters require less gateways.
Clusters smaller than 200 subscribers are hardly economically sustainable
at low penetration, as the CapEx needed to deploy the aerial fiber backhaul
alone can reach 500 euros per subscriber. On the other hand, larger clusters
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may not scale due to the limited availability of independent channels in
the 5 GHz band. Fig. 5.5b shows a boxplot of the number of devices
per gateway with cs = 200, which is always below 5 and concentrated
on 4 (whiskers are 1st and 99th percentiles). Using 802.11ac this is well
below the number of 12 independent channels available at 40 MHz width.
Fig. 5.5b also shows the same number for relays, which is generally lower.
A very small number of outlier nodes exist with a higher number of
devices (less than 0.1% of the relays have more than 3 devices), which is
an effect of the automated design process, in the real world these relays
would be manually split in more than one node to make them less critical.
The small average number of devices per node, and the use of PtP/PtMP
links, reduce the chances of saturating the spectrum. For this reason, we
then set the maximum number of subscribers per cluster to cs = 200 and
from now on we show results for this cluster size, without excluding that
in future works we can better model the channel allocation and increase
this number.

Fig. 5.6 shows the overall CapEx per subscriber divided by each cost
type considered in Sect. 5.3.2.2:

Cc =
C
ns

(5.19)

We observe a similar decreasing trend due to the reduced (relative) cost
of the aerial fiber (as the clusters get saturated), and the reduction of the
ratio between relays and nodes, as their capacity is better exploited. The
total upfront investment fluctuates between 923€ and 539€ per subscriber,
a value which could be either advanced by the subscriber or amortized
over a fixed amount of years.

Fig. 5.7 shows Sc (as in Eq. (5.6)) which corresponds to an ideal monthly
recurring cost for subscribers including OpEx and CapEx amortized over
60 months (5 years). We will compare this figure with existing offers in
Sect. 5.3.5.

5.3.3.2 Backhaul Network Reliability

The graph augmentation process described in Sect. 5.3.1.4 produces a bi-
connected backhaul network, resistant to the failure of one edge. However,
certain network topologies do not allow a fully bi-connected backhaul,
and more than one link can fail at the same time when one radio fails.
For this reason, we run experiments to quantify the robustness of the
backhaul network to the failure of j radios. As a first step we evaluate
the probability of j simultaneous radio failures, assuming that the time to
failure (repair) of antennas is exponentially distributed with rate 1/mmtf
(1/mttr). The probability of being in state πj (having j failed radios) can
be computed as the stationary distribution of the birth/death process in
Fig. 5.8, given by:

πj =

αj

(na−j)!

∑na
j=0

αj

(na−j)!

, j = 0, · · · , na (5.20)
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Figure 5.8: Markov Chain whose state variable j represents the number of failed
radios.

where α = mttrr
mttfr

. We consider a very pessimistic scenario (compared to
the realistic numbers used in Tab. 5.4): mttf = 3(y) and mttr = 48(h)
corresponding to radios that fail every three years and 48 hours to repair
one of them, so that α = 0.00183.

Fig. 5.9 reports the number of hours per year we expect to be in the state
of having exactly j failed radios, for clusters of maximum 200 subscribers.
For 97% of the time the network is in state 0 or 1 failures, that do not affect
the connectivity of the backhaul. Having more than 4 failures happens
less than one hour per year, and thus, we set the maximum j to 4. Given
the bi-connected relay graph of a single cluster G∗i we remove j radios
chosen at random among the ones on the relay nodes. We then remove
from the affected relays ⌈ δ(r)

na(r)
⌉ edges at random for each failed radio and

we compute Rj: the fraction of subscribers that still have a multi-hop path
to the gateway after j failures. Fig. 5.10 then reports Rj averaged on all
clusters after 100 repetitions (10 runs for 10 areas). The curves don’t start
at value one because we take into account the subscribers that don’t have
line-of-sight with any relay from the very beginning and are unreachable
from our network. The trend of the curve is almost linear, indicating that
the backhaul is very robust: Every failure disconnects the subscribers that
had a direct link towards the failed radio, but there is not a catastrophic
effect, typical of graph percolation analysis. This is expected to happen
for larger values of j, that are so rare that we don’t consider them. For 97%
of the time the network is very close to its maximum connectivity.
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5.3.3.3 Capacity for Subscribers

To estimate the performance provided to the subscribers, we first need to
compute the maximum capacity of each link. Then, we have to aggregate
the capacities onto the path from each subscriber to the nearest gateway to
obtain the capacity we can provision to each subscriber. We use two capac-
ity metrics: the average minimum and maximum bit-rate per subscriber
(c̄min and c̄max, respectively).

link capacity modeling Given two nodes we compute the pathloss
using the Free Space Path Loss (FSPL) model (note that, as explained in
Sect. 5.3.1 our links are deterministically in line-of-sight and we can use
higher poles to avoid partial obstruction of the Fresnel zone). We then com-
pute the received power by considering the antenna gains and the power
of the devices. Finally, we employ the 802.11ac channel model, described
in Sect. 2.2.5.2, that maps the received power to the negotiable bit-rate as
per the data sheets of the devices. They range between bw(−72 dBm) =

400 Mb/s for the coding scheme MCS9 13 and bw(−96 dBm) = 30 Mb/s
for the coding scheme MCS0, and we multiply this value for a MAC effi-
ciency parameter ce = 0.84 [174]. In our topologies we have 96% of links
using MCS9 while the lowest value is given by MCS6 (270 Mb/s), which
validates the assumption of using a fixed link capacity cch = 360 Mb/s
made in Eq. (5.13).

capacity per subscriber In order to compute the capacity metrics
from a subscriber s (hosted on node nt) to a gateway g, let n0, n1, n2 . . . nt

be a sequence of nodes on the shortest path from g = n0 to the destination
node nt and sp(n) be the number of shortest paths from g to all subscribers
that pass through n. We call ∆(n) the set of the neighbors of n with
|∆(n)| = δ(n). We call r(ni, nj) the negotiated bit-rate on the link ni →

13We consider a sch = 40Mhz channel width, 2 MIMO streams and guard interval
400 ns, as per device specifications. We use datasheets for the Microtik mANTBox 19s and
LHG XL5 ac, see https://mikrotik.com/products/group/wireless-systems, accessed
April 7th 2023.

https://mikrotik.com/products/group/wireless-systems
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nj (based on the bw() function introduced earlier). Then we derive the
average bit-rate per neighbor of node n:

r̂(n) =
ce

δ(n) ∑
nj∈∆(n)

r(n, nj) (5.21)

The minimum bit-rate per shortest path on node n based on the number
of devices and the number of paths passing through the node is:

rmin(n) =
r̂(n) · na(n)

2 · sp(n)
(5.22)

Note that in our model we do not assign a specific orientation to the
devices, so we can not effectively compute the number of edges per device,
and we must rely on an average per node. On the path from g to s if
n = g then Eq. (5.22) is modified removing the 2 at the denominator. The
minimum capacity for subscriber s is the bottleneck on the path from the
gateway:

cmin(s) = min
ni∈{n0 ...nt}

rmin(ni) (5.23)

and c̄min is the average on all subscribers. To compute cmax(s) we use:

cmax(s) = min
ni∈{n1 ...nt}

r(ni−1, ni) (5.24)

where c̄max(s) is the average on all subscribers.

results Fig. 5.11a shows c̄min, the value is slightly greater than the
expected one (csub) as Eq. (5.13) often overprovisions the number of the
radios due to geographical constraints or the upper integer operator (⌈ ⌉).
Fig. 5.11b shows c̄max and confirms that the maximum capacity we can
provide to subscribers is high, as the links are short enough to be efficient.
Overall these results confirm our design is sound.
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5.3.4 Analysis for multiple gateways

The two gateways topology detailed in Sect. 5.3.1.3 comes at a cost, but
it increases the resilience and improves the performance of the network.
This section analyzes the effects in terms of Reliability, Cost, and Capacity.

5.3.4.1 Reliability

To estimate the network robustness we consider the network graph made
of all clusters and gateways, we randomly remove j ∈ [1, 4] gateways and
we call Rj the fraction of subscribers that still have a multi-hop path to
some gateway. We average Rj over 100 repetitions (10 runs with different
random seeds, per 10 areas). We compare the single gateway scenario and
the multi-gateway using both multi-tree SPT and SPAL in Fig. 5.12.

It is clear that the addition of a second gateway dramatically improves
the general reliability of the network. With the failure of one gateway,
the single gateway strategy loses 32% of the subscribers, while the multi-
gateway strategy with SPT loses only 8% and the SPAL strategy the loss is
close to 0. After the failure of additional gateways, Rj maintains the same
trend, with a difference of roughly 30% between one and two gateways
with SPT and 10% between SPT and SPAL.

5.3.4.2 Capacity

Fig. 5.13 shows the capacity c̄min (as in Sect. 5.3.3.3) upon the failure of a
gateway. The first group of bars reports the average c̄min in a network with
two gateways per cluster without failures, to be compared with Fig. 5.11a.
Since the bottleneck is given by the wireless access to the gateway reducing
the number of subscribers per gateway increases the minimum capacity
per subscriber by roughly 50%. The second group of bars reports c̄min
when we force the failure of one gateway in each cluster. The average
capacity halves, as the network is dimensioned for two gateways and the
failure of one triggers re-routing of all the traffic to the other. Still, the
reliable design is capable of providing 75% of the capacity compared to a
topology that was optimized for one gateway only (see Fig. 5.11a).
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We don’t report c̄max since the maximum capacity per subscriber only
depends on the slowest link on every path to the gateway, and the multi-
gateway design does not practically affect the average value.

5.3.4.3 Cost

Doubling the number of gateways clearly comes at a cost in term of both
CapEx and OpEx since we account 10000€ for the deployment of each
gateway, and more fiber deployment for a network can have up to a
dozen gateways in the most populated areas. The most impacted metric
is the deployment cost in Cc, shown in Fig. 5.14a, which increases from
the results reported in Fig. 5.6 by roughly 35%. Other components of the
CapEx, such as the Radio, Router and Fiber costs hardly differ from the
single gateway design. Finally, Fig. 5.14b shows that the multi-gateway
reliable design increases the subscription cost by around 8.20€, 6.9€ and
5.6€ for sr 0.25, 0.5 and 1, respectively.

3

5.3.5 Comparison with Available Offers

We conclude our analysis showing a price comparison with available
commercial offers in the areas. Tab. 5.6 shows the comparison of WBN for
two values of sr with the monthly price of xDSL offers [175] and Starlink
satellite connectivity14 [176]. Speed measurements for the xDSL offers
come from AGCOM (the Italian Regulator on Communications15) while
for Starlink they represent the maximum capacity advertised by Starlink
itself. Some details are important to notice: with one gateway and 0.25
penetration the cost is roughly 10% below the lowest price, and with 0.5
penetration it is 34% lower. The two gateway design is still convenient
with sr = 0.5. This leaves a very high margin to include the interests of
a loan (if the WISP can not afford the initial upfront cost) and also some
profit if the WISP is not a community initiative but a for-profit one. It is
also important to note that existing ISPs have been publicly financed in
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14Note that during the publication of the manuscript the price for Starlink’s equipment
and subscription have dropped from 719€ to 300€ and from 99€ to 50€ respectively.

15https://maps.agcom.it/
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the latest years to extend their infrastructure in remote areas, while we
assume the WISP takes all the costs. The cost of the satellite solution is
simply incomparable to the other ones.

If we look at the per-Mb/s cost, we also see that the WBN model pro-
vides better efficiency than the other models and that the multi-gateway
solution offers the best trade-off in terms of minimum guaranteed capacity
per user for sr = 0.5. Note however that while our model roughly respects
a contention ratio of 50 between maximum and minimum capacity, we
do not know the real performance of the other operators. For the xDSL
we can only report the minimum negotiated capacity of the market offers
available in the area without knowing the real performance and there is
no information on the minimum capacity for the satellite offer.

Finally, we report the number of households that we could not connect
to the visibility graph and the number of households that are declared
impossible to serve by the telecommunication ministry, and we see that
even without any specific means to increase penetration (high trellises,
or nodes placed on strategic positions to increase coverage) a WBN can
serve a higher percentage of the population.
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WBN xDSL SAT

single-gateway multi-gateway

0.25 0.5 0.25 0.5

Upfront cost 942.9 787.2 1363 1129 480 324

Recurring cost 14.9 9.3 16.2 10.5 29 50

Monthly cost (5y) 30.7 22.5 38.8 29.3 34 55.4
Unconnected
Households (%)

8 9 6 7 18 -

Max Speed (Mb/s) 334.1 334.8 335.5 335.8 12.6 250

Min Speed (Mb/s) 7.9 7.2 11.7 11.3 7.2 -

Monthly Max (€/Mb/s) 0.09 0.07 0.11 0.09 2.6 0.4

Monthly Min (€/Mb/s) 3.9 3.1 3.3 2.6 4.7 -

Table 5.6: Comparison of single and multi gateway designs with sr = [0.25, 0.5]
with available commercial offers.





6 C O N C L U S I O N S

In this dissertation, we delve into the challenges associated with expand-
ing broadband infrastructure in two contrasting yet interconnected set-
tings.

In urban landscapes, the surge in demand for extremely high capacity is
pushing the shift towards ultra-dense, high-frequency Radio Access Net-
works (RANs). Conversely, in rural regions, the extremely low population
density hinders the widespread adoption of broadband technology.

In both cases, the deployment costs of fiber backhaul networks pose
a significant barrier to the expansion of these technologies. However,
Wireless Backhaul Networks (WBNs) present a promising solution. They
enable network operators to leverage wireless technologies to expand
their backhaul network.

Throughout the preceding chapters, we’ve demonstrated how to op-
timize such infrastructures during both the planning and operational
stages, utilizing a range of technologies. Foremost among these are Geo-
graphic Information System (GIS) technologies. With access to detailed
morphological and topological datasets, GIS allows for a comprehensive
environmental analysis, pinpointing the best methods to set up and link
network elements.

Furthermore, by employing economic models, we’ve illustrated how
these optimization techniques can substantially reduce deployment costs.
This is achievable during the network’s setup phase through strategic plan-
ning and during its operational phase by minimizing recurring expenses,
such as energy usage and maintenance costs.

By making this thesis, its accompanying code, and data available under
open licenses, we aim to empower the research community and network
operators. Our hope is that they will leverage this work to enhance internet
access universally, ensuring everyone, everywhere can benefit.
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