

ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD
STORAGE SERVICES

Raul Saiz Laudo

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets
de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials
d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual
(RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En
qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la
persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació
efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc
s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant als continguts de la tesi com als seus resums i índexs.

ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los
derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en
actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto
Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización
previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá
indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se
autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación
pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una
ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como
a sus resúmenes e índices.

WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It
can be used for reference or private study, as well as research and learning activities or materials in the
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and
previous authorization of the author is required for any other uses. In any case, when using its content, full
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit
use or public communication from outside TDX service is not allowed. Presentation of its content in a window
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis
and its abstracts and indexes.

On Improved Performance and Secure Data
Management in Cloud Storage Services

RAÚL SÁIZ LAUDÓ

DOCTORAL THESIS
2024

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

Raúl Sáiz Laudó

On Improved Performance and Secure

Data Management in Cloud Storage

Services

DOCTORAL THESIS

Supervised by

Dr. Marc Sánchez-Artigas

Department of Computer Engineering and Mathematics

Tarragona

2024

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

FAIG CONSTAR que aquest treball, titulat “On Improved Performance and Secure Data
Management in Cloud Storage Services”, que presenta Raúl Sáiz Laudó per a l’obtenció
del títol de Doctor, ha estat realitzat sota la meva direcció al Departament d’Enginyeria
Informàtica i Matemàtiques d’aquesta universitat.

HAGO CONSTAR que el presente trabajo, titulado “On Improved Performance and
Secure Data Management in Cloud Storage Services”, que presenta Raúl Sáiz Laudó para
la obtención del título de Doctor, ha sido realizado bajo mi dirección en el Departamento
de Ingeniería Informática y Matemáticas de esta universidad.

I STATE that the present study, entitled “On Improved Performance and Secure Data
Management in Cloud Storage Services”, presented by Raúl Sáiz Laudó for the award
of the degree of Doctor, has been carried out under my supervision at the Department
Computer Engineering and Mathematics of this university.

Tarragona, 16 de Gener/16 de Enero/January 16, 2024

El director de la tesi doctoral

El director de la tesis doctoral

Doctoral thesis supervisor

Dr. Marc Sánchez-Artigas

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

Abstract

The rise of cloud storage systems in both personal and enterprise domains has brought

a significant shift in data management practices. This transition encompasses not only

raw object storage but also personal cloud-based storage services like Dropbox, which

enable users to synchronize their files across multiple devices, fostering collaboration

and accessibility. Both types of storage services, namely object storage and personal

cloud storage, are the primary focus of this thesis.

On one hand, this thesis focuses on personal cloud storage services. The corner-

stone of these services is to implement an efficient file synchronization protocol that

automatically maps the changes in the local file system of a user to the cloud via a

series of network communications in a timely manner. If not sufficient care is taken,

an ill-designed file synchronization protocol may generate huge network traffic, causing

tremendous financial losses and performance penalties to both service providers and

users. To increase the network efficiency of file synchronization protocols, this thesis

proposes a novel file synchronization deferment method named “rate-based sync de-

ferment”. Synchronization deferment consists of batching edits to a file to deliberately

defer the synchronization process for some time. In this way, the client can artificially

increase the amount of useful data per synchronization operation, and thus, diminish

the network overhead.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

vi

On the other hand, this thesis focuses on raw object storage services. At the same

time, cloud storage is becoming a more integral part of our digital ecosystem, it is also

developing into a large repository of private and sensitive data. However, the tools

for protecting data in object storage services is very limited. For instance, Amazon

S3, the market leader, only protects data while it is in transit by using Secure Socket

Layer/Transport Layer Security (SSL/TLS) or at rest, using either client-side or server-

side encryption. But it does not allow, for instance, to use homomorphic encryption in

place to provide more expressive functionalities for encrypted data. To overcome this,

this thesis explores the benefits of applying the software-defined principles to secure

data management in object stores and proposes a new system called EGEON. In EGEON,

the control plane holds the intelligence of the system and consist of a logically central-

ized controller. The data plane, implemented as a serverless programmable framework,

enables the injection of programming logic such as encryption primitives to perform

custom computations over object GET requests.

In both cases, the results of the thesis have been satisfactory, advancing the state of

the art in two clear-cut directions. On one hand, the new synchronization deferment

mechanism improves synchronization delays between 2X to 12X relative to the state of

the art. On the other hand, this thesis demonstrates the software-defined principles are

a powerful tool to circumvent the rigidity of object storage APIs and bring data manip-

ulation in place, eliminating unnecessary external data movements to protect data.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

Acknowledgements

I would like to express special thank you to my advisor, Dr. Marc Sánchez-Artigas,

for his invaluable guidance, unwavering patience, and expert advice. His mentorship

was critical in shaping both this research and my growth as a scholar. I also extend

my gratitude to the faculty members of the Research Group CloudLab for their support

throughout this process.

My deepest appreciation goes to my family, especially my parents, Juan and Empar,

my brother Guillermo, my wife Sory, and my two children, Raul and Diego, for their

endless love, understanding, and support. Their belief in me has been a constant source

of strength, inspiring me to persevere even in the most challenging times.

Finally, to everyone who has been a part of my thesis journey, both directly and indi-

rectly, your support has been invaluable. Thank you for contributing to this significant

milestone in my life.

Raúl Sáiz Laudó

Cambrils January 2024

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

ix

Thesis Publications

• Raul Saiz-Laudo. “Reducing Network Overhead on Personal Cloud Systems”. In:

3rd URV Doctoral Workshop in Computer Science and Mathematics. Ed. by Sergio

Gómez and Aïda Valls. Tarragona, Spain: Publicacions URV, Nov. 2016, pp. 27–31.

ISBN: 978-84-8424-495-0 [80].

• Raúl Sáiz-Laudó, Marc Sánchez-Artigas, and Pedro García-López. “RSD: Rate-

Based Sync Deferment for Personal Cloud Storage Services”. In: IEEE Communica-

tions Letters 21.11 (2017), pp. 2384–2387. DOI: 10.1109/LCOMM.2017.2731848. JCR

Impact Factor: 2.723 (Q2 Telecommunications), SJR Index: 0.589 (Q1 Electrical and

Electronics Engineering) [82].

• Raul Saiz-Laudo and Marc Sánchez-Artigas. “Egeon: Software-Defined Data Pro-

tection for Object Storage”. In: 2022 22nd IEEE International Symposium on Clus-

ter, Cloud and Internet Computing (CCGrid). 2022, pp. 99–108. DOI: 10 . 1109 /

CCGrid54584.2022.00019. Ranked Core A. Acceptance rate: 24% (75/302𝑠𝑢𝑏𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠)

[81].

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

https://doi.org/10.1109/LCOMM.2017.2731848
https://doi.org/10.1109/CCGrid54584.2022.00019
https://doi.org/10.1109/CCGrid54584.2022.00019

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

xi

Table of Contents

Abstract v

Thesis Publications ix

1 Motivation 1

1.1 Problem statement . 2

2 State of the Art and Background 7

2.1 Generic Object Storage . 8

2.1.1 Overview . 8

2.1.2 Swift: example as infrastructure . 10

2.1.3 Swift API . 12

2.1.4 Swift Middleware . 14

2.1.5 Access control . 16

2.2 Personal Cloud Storage . 17

2.2.1 Overview . 17

2.2.2 Synchronization on personal cloud storage 19

2.2.3 Minimizing synchronization network use 21

2.2.4 Synchronization Deferment . 24

2.3 Software-Defined Storage . 26

2.3.1 Overview . 26

2.3.2 SDS Systems: state of the art . 30

2.3.3 Near Data Processing in object storage systems 35

2.3.4 NDP as serverless storage functions 36

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

xii

3 Rate-based Sync Deferment for Personal Cloud Storage Services 43

3.1 Introduction . 44

3.2 Rate-based sync deferment . 45

3.2.1 Trade-off between TUE and synchronization time 45

3.2.2 The RSD algorithm . 46

3.2.3 Analytical Comparison: RSD vs. ASD 48

3.3 Experimental Comparison . 51

3.4 Conclusion . 54

4 Software-Defined Data Protection for Object Storage 55

4.1 Introduction . 56

4.2 Related Work . 59

4.3 Design . 62

4.3.1 Threat Model . 63

4.3.2 Privacy Plane . 64

4.3.3 Data Plane . 68

4.3.4 Data Transformation UDFs . 72

4.4 Implementation . 75

4.5 Evaluation . 77

4.5.1 Microbenchmarks . 77

4.5.2 Applications . 84

4.6 Work-In-Progress: porting EGEON to the edge. 87

4.6.1 Modifications to the runtime . 89

4.6.2 Preliminary results . 92

4.7 Conclusions . 96

5 Conclusions and Future Work 97

5.1 Conclusions . 97

5.2 Future Work . 99

Bibliography 101

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

xiii

List of Figures

2.1 Object storage high level generic structure. 9

2.2 Swift Architecture. 11

2.3 Middleware pipeline and bypass mechanism. 15

2.4 Personal cloud storage communication schema. 18

2.5 Personal cloud storage basic communication schema. 20

2.6 Comparison between high-level structure on traditional and SDS systems. 27

2.7 Generic SDS infrastructure. Control applications are the entry point of

the control environment (CtrlApp1 and CtrlApp2), and the de facto way

of SDS users to express different storage policies (P) to be enforced over

the storage infrastructure. Policies are a set of rules that declare how the

I/O flow is managed, being defined at control applications, disseminated

by controllers, and installed at the data plane., which is a programmable

multi-stage component distributed along the I/O path. Each stage can be

placed within or horizontally aligned with I/O layers, and respects to a

distinct storage service to be employed over intercepted data flows, such

as data management (e.g., caching, rate limiting), data transformations

(e.g., compression, encryption), and data routing activities (e.g., flow cus-

tomization, replica placement). 29

2.8 Class diagram illustrating the classes involved in the Storlet API. 33

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

xiv

2.9 Abstract architecture of a storlet-based data plane stage. Stages compre-

hend a set of pre-installed storlets that comply with initial storage poli-

cies. An stage forms several storlet-made pipelines to efficiently enforce

storage services over data flows. At runtime, I/O flows are intercepted,

filtered, classified, and redirected to the respective pipeline. 34

2.10 Vertigo and Microcontrollers structure. 34

2.11 Serverless cloud computing offers backend as a service (BaaS) and function

as a service (FaaS). The BaaS includes services like storage, messaging, and

user management. While, the FaaS enables developers to deploy and

execute their code on computing platforms. The FaaS relies on the services

provided by the BaaS such as a database, messaging, user authentications. 36

2.12 Zion presents a disaggregated computing layer between the storage and gate-

way nodes for executing the functions, a metadata service for triggers man-

agement and an interception software (depicted as a router) running in the

storage gateways, which inspects incoming requests and reroutes them to

the compute tier if necessary. 38

2.13 Three layers Shredder’s architecture. 40

3.1 𝑇𝑈𝐸 as a function of sync deferment time in UB1. 47

3.2 RSD under a regular triangular pattern. 50

3.3 Empirical 𝑇𝑈𝐸 of ASD and RSD for different target 𝑇𝑈𝐸 values. 52

3.4 Slowdown ratio (𝑆𝑅) of ASD relative to RSD for different 𝑇𝑈𝐸s. 53

4.1 EGEON’s software-defined architecture. The system is divided into two

planes: the privacy plane, specialized for data protection, which offers an

API to allow data owners to manage life-cycle of their data protection poli-

cies, and the data plane responsible for generating the privacy-compliant

data views delivered to final user. 60

4.2 Docker, controller and Functions Structure. 76

4.3 Time to First Byte (TTFB) for different object sizes. 80

4.4 Overhead of chain setup of EGEON versus Vertigo. 81

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

xv

4.5 Throughput and latency of EGEON under a multi-client setting. 83

4.6 Performance of EGEON in two composite policies. 86

4.7 EGEON-EDGE new runtime. Two main concurrent UDFs (UDF1 and UDF2)

from inter_UDF threapool are executing various threads, which are grabbed

from intra_UDF threadpool on each intercepted pthread_create POSIX call. 90

4.8 Time to First Byte (TTFB) and Time to Last Byte (TTLB) of the NOOP UDF

comparison between Swift, EGEON-EDGE (C++ Executor) and EGEON-

CLOUD (JAVA executor). 94

4.9 Time to First Byte (TTFB) and Time to Last Byte (TTLB) of the grep UDF

comparison between EGEON-EDGE to EGEON-CLOUD. 95

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

Listings

2.1 Account Access Control ACL Swift example. 17

2.2 Storlet invoke interface. 33

2.3 A simple function that echoes the data passed to it. 39

4.1 EventType example. 65

4.2 XPath Event example. 66

4.3 UDF Block example. 66

4.4 JSON record example. 66

4.5 A sample policy to process employee records. 69

4.6 A transformation UDF to perform summations on ciphertexts. 71

4.7 A no-operation (NOOP) UDF. 79

4.8 A policy definition example. 85

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

xix

List of Tables

3.1 Details of Workloads. 51

4.1 Performance of cryptographic primitives available in EGEON. 82

4.2 Maximum throughput (ops/sec) for different object sizes. 84

4.3 Network Speeds. 87

4.4 Efficiency comparison of ZION and EGON-EDGE. RSS stands for Resident

Set Size. Capacity is measured as the number of containerized executors

concurrently running in both systems. 94

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

xxi

List of Equations

2.1 Traffic Usage Efficiency. 25

2.2 ASD EWMA. 25

3.1 RSD EWMA. 47

3.2 Time window. 49

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

List of Abbreviations

ACLs Access Control Lists

API Application Programming Interface

ASD Adaptative Sync Deferment

AWS Amazon Web Services

AZs Availability Zones

BaaS Backend as a Service

CDC Content-Defined Chunking

CLAC Content-Level Access Control

CPU Central Processing Unit

CRT Chine Remainder Theorem

CRUSH Controlled Replication under Scalable Hashing

CSV Comma-separated values

EWMA Exponentially Weighted Moving Average

FaaS Function as a Service

FPGA Field-Programmable Gate Array

Gb Gigabits

GbE Gigabit Ethernet

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

xxiv

GB Gigabyte (109 bytes)

GHz Gigahertz

HPC High-Performance Computing

HTTP Hypertext Transfer Protocol

IDS Identity Service

I/O Input/Output

IoT Internet of Things

ITR Interrupted Transfer Resumption

JSON JavaScript Object Notation

JVM Java Virtual Machine

KB Kilobyte (103 bytes)

KiB Kibibyte (210 bytes)

LaBAC Label Based Access Control

LAN Local Area Network

LRU Least Recently Used

LTS Long Time Service

Mb Megabits

Mbps Megabits per second

MB Megabyte (106 bytes)

MiB Mebibyte (220 bytes)

ms Millisecond

NDP Near Data Processing

NOOP No Operation

NVMe Non-Volatile Memory Express

OSDs Object Storage Daemons

PBs Petabytes (1015 bytes)

PEKS Public Key Encryption with Keyword Search

PII Personal Identifiable Information

P2P Peer-assisted Offloading

RSD Rate-Based Sync Deferment

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

xxv

RAM Random Access Memory

s Second

SDN Software-Defined Networking

SDS Software-Defined Storage

SR Slowdown Ratio

SSD Solid State Disk

SSF Serverless Storage Functions

S3 Amazon Simple Storage Service

TUE Traffic Usage Efficiency

TTFB Time to First Byte

TTLB Time to Last Byte

UB1 Ubuntu One

UDF User-Defined Function

VM Virtual Machine

XML Extensible Markup Language

4G 4th Broadband Cellular Network

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

Chapter 1

Motivation

In today’s digital landscape, cloud storage has become an integral component, revo-

lutionizing how we store, access, and manage data. With the exponential increase in

data generation from various sources, including personal devices, businesses, and IoT

systems, the traditional means of storage such as local hard drives (HDDs) and solid

state drives (SSDs) have become insufficient to guarantee high availability of data and

durability.Recent projections suggest that by 2025, the worldwide datasphere will swell

to an immense 163 Zettabytes (ZiB) [77]. This represents a staggering tenfold increase

from the volume of data produced in 2016.

Cloud storage services address this challenge by offering scalable, flexible, and effi-

cient data storage solutions that are accessible from anywhere in the world. This tech-

nology not only ensures high data availability but also facilitates collaboration and data

sharing across different geographical locations. Among the available cloud storage in-

carnations, object storage has become the storage of choice in the cloud, and of other

everyday storage services such as file synchronization systems (e.g., Dropbox). Services

like Amazon S3, the market leader, are growing at an amazing clip. The reason is that

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

2 Chapter 1. Motivation

object storage is cheap, reliable and scalable, but also because it eliminates a historically

big challenge in bringing new and compelling products to market. But S3, and other

object storage services such as OpenStack Swift, are schemaless and lack the tools to

extract value from the massive amounts of data that they house. Their APIs are rather

poor, operate at the object level, and offer almost no tools, e.g., to enable data manipu-

lation in-place, requiring physical transformations or external data movements. Simply

put, they lack the ability to code directly on the object storage infrastructure, building

virtual data pipelines and transformations [84]. Companies are pouring so much data

into the cloud but then have to move it to other services to draw insights and perform

even basic analytics. That is expensive, time consuming and in many cases complete

overkill. The insufficient programmability of object storage, together with the need of

supporting data security policies that govern how users and apps can interact with a

given content, have become one of the main motivations behind this thesis. We recall

that the security support available in object storage systems is strikingly inadequate

to support complex, collaborative environments such as of those file synchronization

systems. For instance, managing access control at scale based on the content of the

objects themselves is impossible in today’s cloud object stores [14].

1.1 Problem statement

Public clouds have democratized access to storage resources for a variety of workloads

by offering a plethora of services to users. These services range from raw object storage

up to more sophisticated personal cloud storage services such as Dropbox, where users

can synchronize their files across multiple devices, fostering collaboration and accessi-

bility. Both types of storage services, namely object storage and personal cloud storage,

are the primary focus of this thesis.

On one hand lies personal cloud storage. These services provide users with a very

convenient way to store and share data from anywhere, on any device, and at any time.

However, the linchpin in providing this functionality is to implement an inefficient file

synchronization protocol that automatically maps the changes in the local file system of

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

1.1. Problem statement 3

a user to the cloud via a series of communications over the network in a timely manner.

We say "timely", because slow synchronization may lead to file conflicts in case that

multiple users are editing the same very file concurrently. Typically, only one copy of

the file will be saved as the original copy and other updates will generate new copies of

the file as "conflict version". This is burdensome for users. But this only half of the story.

The other half of the story is that an efficient file synchronization protocol may generate

huge network traffic, and cause tremendous financial losses and performance penalties

to both service providers and users. An example of this was the case of the Ubuntu

One (UB1) service. A key problem for the survival of UB1 was the growing costs of

outsourcing data storage [93]. This was indeed related to a poor data management. For

instance, the fact that file updates were responsible for 18.5 of upload traffic in UB1,

mostly due to the lack of delta updates1 in the desktop client, gives an idea of the what

may happen when the file synchronization protocol is built without proper care [30].

In this context, this thesis explores a new file synchonization deferment method that

optimizes the use of network bandwidth between clients and service providers. The root

of the problem is the presence of frequent edits to files. Frequent edits may well incur

in abundant overhead traffic that far exceeds the amount of useful synchronization data

sent by the client over time, which is referred to as the traffic overuse problem [47]. As

observed in [23], 8.5% of Dropbox users, more than 10% of their synchronization traffic is

caused by frequent edits, which suggests that this is a relevant problem in personal cloud

storage services. Unfortunately, some cloud storage services such as iCloud Drive as of

2019 still treated frequent edits as full file synchronization operation2, thus aggravating

the traffic overuse. To overcome this problem, some cloud storage services deliberately

the synchronization process for a certain period of time to batch the file updates and

save network traffic. This observation leads to the first question tackled by this thesis:

1Delta compression is also noteworthy, as it involves storing only the changes made to a file, rather than
the entire file after each edit, thus conserving storage space and bandwidth.

2A full upload of the file to the cloud servers

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

4 Chapter 1. Motivation

Question I: Could file synchronization deferment be optimized to help mitigate the

traffic overuse problem?

On the other hand, mainstream personal cloud storage services abide by a two-cloud

system architecture [47], one cloud for storage, and another for control. The control

cloud, typically inhouse, is responsible for the indexing of file blocks, file metadata such

as folders, user accounts, and so forth. The storage cloud stores the synchronized files,

along with small-sized thumbnail views for certain files, and use object storage services

such as Amazon S3 for this aim. Example of these sevices included Dropbox [23] and

UB1 [30]. That is, these services use raw object storage as storage substrate for files,

and file blocks in case the cloud storage service supports incremental synchronization.

The reason is that object storage is cheap and reliable, e.g., the standard service level

agreement (SLA) of Amazon S3 offers 99.99% data availability. Although Amazon S3

gives any developer access to a highly scalable, reliable, fast, inexpensive data storage

infrastructure, its has a poor interface, operating at the level of entire objects, with a few

exceptions such as multipart uploads3 and small set of services (e.g., caching, queueing,

data placement). This makes it difficult to implement collaborative scenarios in personal

cloud storage services that require advanced security policies. Just to illustrate, Amazon

S3 protects data at rest using server-side encryption, which means that Amazon is who

manages the encryption keys and can access all the information uploaded by users. Per-

sonal cloud storage services may alternatively use client-side encryption to protect data.

With client-side encryption, the user client could encrypt the data client-side and upload

it to Amazon S3. However, this approach would require the participation of the control

cloud much more intensively. The control cloud would need to manage encryption keys

and security policies to enable the secure sharing of data among multiple users (e.g.,

collaborative file editing).

3Multipart upload enables a client to upload a single object as a set of independent parts and in any order.
Each part is a contiguous portion of the contents of the object. If transmission of any part fails, the client can
retransmit that part without affecting the rest of the parts.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

1.1. Problem statement 5

To circumvent the rigidity of object storage APIs, the software-defined storage (SDS)

paradigm has emerged as a compelling solution to this problem [98, 53]. In this new

paradigm, the control and the data flows are split into two major components, namely

the control and data planes. Among other things, this separation ensures better mod-

ularity of the storage stack, and introduces differentiated I/O treatment of data flows.

SDS inherits legacy concepts from Software-Defined Networking (SDN) [42] and applies

them to storage-oriented environments, bringing new insights to storage stacks, such as

improved system programmability and extensibility [89]. Although there exist some

SDS systems for object storage such as Crystal [29], the existing solutions have so far

put the spotlight on performance and data management, such as compression, cache

optimization, and bandwidth differentiation, leaving software-defined security aside

and out of the picture. This observation set off the second main question of this thesis:

Question II: In collaborative scenarios such as those of personal cloud storage services,

could security data management be outsourced to the storage cloud by applying the

principles of software-defined storage?

Put another way, the second question of this thesis explores the benefits of applying

the software-defined principles to secure data management in object stores. In this sense,

it is easy to envision a system where the control plane would hold the intelligence of the

system and consist of a logically centralized controller. And a data plane, e.g., imple-

mented as a serverless4 programmable framework, which would allow the injection of

programming logic such as encryption primitives to perform custom computations over

object requests.

4By "serverless", we refer to the so-called Function as a Service (FaaS) model that helps developers work
better by removing the need for them to maintain application infrastructure, letting them to focus on writing
the programming logic.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

6 Chapter 1. Motivation

Finally, this thesis provides some preliminary results of porting the software results

of Question II to the edge. One of the primary drivers of modern storage systems is the

proliferation of Internet of Things (IoT) devices, or more specifically, what is known as

edge computing. Unfortunately, building an edge object storage system is far from trivial

due to numerous challenges, such as the stringent resources of the edge servers. For a

storage system to be viable at the edge, it must provide speed, resilience and security

with very little compute and storage resources. Certainly, this attribute led us to study

whether or not object storage can be the storage of choice for the edge. To answer this

question, we provide some preliminary results to show to what extent this idea is feasible

by providing a unified platform that can handle both storage and data transformations

in a single edge server.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

Chapter 2

State of the Art and Background

This chapter reviews the state of the art relative to our contributions with the aim to

bring the reader closer to the research problems that motivate this thesis.

Data varies in its access patterns, and as a result, it is optimally stored on different

types of storage systems. There are three primary categories of data storage: block

storage, file storage, and object storage [7].

This thesis is exclusively focused on the study and proposal of improvements for

open-source Software-Defined Storage (SDS) systems, specifically those that employ a

data-plane based on storlets [65].

As such, the structure of this chapter will be as follows:

Our discussion will begin with an explanation of the term ’object storage’, outlining

its basic concept and distinguishing features. Following that, we will delve into the in-

ternal structure of object storage, highlighting its key components and how they interact.

Next, we will explore a specific application of object storage, focusing on personal cloud

storage systems to illustrate its practical use. Finally, we will examine software-defined

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

8 Chapter 2. State of the Art and Background

storage (SDS), discussing its definition, structural components, and the various options

available in the current technological landscape.

2.1 Generic Object Storage

Object storage does not allow access to raw data blocks or file-based access. Instead,

it grants access to entire objects or blobs of data, typically through a system-specific

API (see §2.1.3 for further details). These objects can be accessed through URLs using

HTTP protocols, similar to accessing websites in web browsers. Object storage uses

URL abstraction to allow the storage system to expand and scale independently of the

underlying storage mechanisms. This characteristic makes object storage particularly

suitable for systems requiring scalability in terms of capacity, concurrency, or both.

One of the primary benefits of object storage is its capability to spread requests for

objects across numerous storage servers. Major cloud service providers, including AWS

with their S3 service, Microsoft Azure’s Blob Storage, IBM’s Cloud Object Storage (COS),

Oracle’s OCI Object Storage, and Google’s Cloud Storage, offer disaggregated storage

solutions [3, 36, 44]. This distribution enables reliable, scalable storage solutions for

vast data quantities at a comparatively low cost.

2.1.1 Overview

In object storage, each piece of data is treated as a distinct object. Each object includes the

data itself, a unique identifier, and metadata. The metadata is extensive and can include

details about the data’s security, retention policies, and other attributes. Figure 2.1

showns main parts of an object storage system. Now we are going to highlight the most

important components:

(i) Unique Identifiers: Objects are stored in a flat address space and are accessed

through unique identifiers (like a URL in web-based storage). This differs from

file systems which use a hierarchical structure of directories and file names (see

§2.1.3 for further details).

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

2.1. Generic Object Storage 9

FIGURE 2.1: Object storage high level generic structure.

(ii) Scalability: Object storage is highly scalable. It can manage vast amounts of un-

structured data, making it ideal for cloud storage solutions and big data appli-

cations. For example, S3 uses a system of prefixes, akin to unique file paths in

operating systems. The design of S3 partitions these prefixes1 a feature that allows

the system to efficiently handle thousands of requests per second as stated on [92,

51].

(iii) Metadata: The rich metadata allows for more sophisticated management and data

analytics. It can be used for automating tasks like data indexing, archiving, or

tiering.

(iv) Data Durability and Reliability: Object storage often includes built-in features for

data durability, such as replication and erasure coding, making it highly reliable

and suitable for long-term data retention. Recently, in 2020, AWS updated S3 to

1You can use prefixes to organize the data that you store in Amazon S3 buckets. A prefix is a string of
characters at the beginning of the object key name [4]

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

10 Chapter 2. State of the Art and Background

function as a strongly consistent2 system [5, 92], aligning with the capabilities of

other cloud providers who already offered strong consistency.

(v) API Access: Access to object storage is typically provided through APIs (see §2.1.3

for further details), such as the S3 API from Amazon Web Services, which has

become a de facto standard.

2.1.2 Swift: example as infrastructure

Swift is a multi-tenant, highly scalable, and durable object storage system, engineered to

store substantial volumes of unstructured data at a low cost. It is utilized by a diverse

range of entities, including businesses of various sizes, service providers, and research

organizations around the globe. Swift is commonly used for storing unstructured data

like documents, backups, images,etc.

Swift [7] enables the storage, retrieval, and deletion of objects along with their related

metadata in containers using a RESTful HTTP API. Developers have the flexibility to

either interact directly with the Swift API or utilize one of the numerous client libraries

available for widely-used programming languages, including Java, Python, and more.

Figure 2.2 shows a high-level overview of the components of a common OpenStack

Swift deployment. These components [67], include proxy, account, container and object

servers, a hash ring which determines the data placement, and some standalone services

(e.g. object audition, object replication).

At the core of Swift’s architecture lies the Proxy Server, which serves as the central

connecting component for the rest of the architecture. Functioning as a gateway to the

storage nodes where data is physically stored, the Proxy Server also houses the public

API that clients use to submit requests. For every request, it identifies the location of

the relevant account, container, or object within the ring and directs the request appro-

priately. The ring itself is a crucial component that maps the names of stored entities to

their physical locations on disk. Once established, a ring constitutes a fully operational

storage policy, enabling the differentiation of service levels.
2Amazon S3 delivers strong read-after-write and list consistency automatically for all applications. What

you write is what you will read.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

2.1. Generic Object Storage 11

FIGURE 2.2: Swift Architecture.

Conversely, the role of Account Servers is to manage listings of containers, whereas

Container Servers primarily deal with the listings of objects. The Object Server, on its

part, is a straightforward blob storage server capable of storing, retrieving, and deleting

objects on local devices. These objects are stored as binary files in the filesystem, with

their metadata kept in the file’s extended attributes (xattrs). Each object’s storage path is

determined based on the hash of the object’s name and the timestamp of the operation.

Key characteristics

Swift is engineered to scale linearly, adapting to the quantity of data that requires storage

and the number of users it needs to accommodate. To scale up, the system expands in

the necessary areas – by incorporating more storage nodes to boost storage capacity,

adding proxy nodes to handle an increase in requests, and enhancing network capacity

to alleviate identified bottlenecks. To enhance its reliability and availability, Swift not

only replicates and distributes object copies within a cluster but also across different

data centers.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

12 Chapter 2. State of the Art and Background

Utilizing a shared-nothing approach3, Swift is able to fully leverage the available

server capacity to handle numerous requests concurrently. This architecture allows it

to operate efficiently on a range of commodity hardware. Additionally, Swift offers

storage policies enabling operators to utilize hardware optimally, tailored to the specific

demands and constraints of different scenarios.

Moreover, Swift supports the development and implementation of middleware di-

rectly on the storage system. This capability allows for the customization and enhance-

ment of storage functionalities, catering to specific use cases and requirements (see §2.1.4

for further details).

2.1.3 Swift API

The Swift RESTful HTTP API encompasses a defined set of rules that outline the var-

ious types of HTTP requests you are permitted to send to a Swift cluster. These rules

also specify the kinds of success and failure responses you can expect to receive under

different circumstances, along with the details of the data contained in those responses.

For each incoming request, Swift must first verify the identity of the requester and de-

termine whether they have the necessary permissions before it processes the request and

provides a response. Within the Swift cluster, the proxy server process is the exclusive

component that interacts with external clients. This exclusivity stems from the fact that

only the proxy server process implements the Swift API. In simple terms, the Swift API

is an HTTP-based protocol consisting of a specific set of rules and terminology that the

proxy server process utilizes to communicate with external clients.

3In a share-nothing architecture, each node (which could be a server, or a cluster) operates independently
and autonomously, with its own private resources, such as memory, disk storage, and processing power.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

2.1. Generic Object Storage 13

For example, a storage URL for an object in a Swift cluster might look like this:

https : //server.com/v1/account/container/object

From this URL we can extract the next information:

(i) server.com/v1 This part is an endpoint into the cluster. Proxy server on a node can

now handle your request.

(ii) /account/container/object This part is formed with one or more identifiers that

make up the unique location of the data. This hierarchical structure dictates that to

reach a particular object, you should sequentially specify the account, followed by

the container, and finally the object within that container.

Swift utilizes the standard HTTP verbs for different actions. These verbs and their

corresponding actions in Swift are as follows:

(i) GET This is used to download objects (along with their metadata), or to list the

contents of containers or accounts.

(ii) PUT This verb is employed to upload objects, create containers, or overwrite meta-

data headers.

(iii) POST It is used for updating metadata for accounts or containers, overwriting

metadata for objects, or creating containers if they don’t already exist.

(iv) DELETE This command deletes objects or containers that are empty.

(v) HEAD Used to retrieve header information, including metadata, for an account,

container, or object.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

14 Chapter 2. State of the Art and Background

2.1.4 Swift Middleware

Swift comes equipped with various middleware packages that enhance the functionality

of its installation. Middleware presents an excellent opportunity to tailor Swift to meet

your specific requirements.

Swift is built upon Python’s Web Services Gateway Interface (WSGI) model and is

configured using the Python Paste framework. One of the key strengths of WSGI is its

middleware which effectively envelops around other middleware layering down to the

core application at the center, which in this context is Swift itself.

A significant advantage of this structure is that each middleware layer operates in-

dependently, without needing to be aware of the other layers, including the core appli-

cation layer (Swift in this instance). This independent functionality allows middleware

code to be relatively straightforward and modular. This modularity facilitates easy cus-

tomization and extension of Swift’s capabilities to suit various use cases and operational

environments. In Figure 2.3 you can observe the interaction between the middleware

layers and how a request or response is bypassed through the system. This illustration

provides a clear visual representation of the middleware workflow, demonstrating the

path of a request as it navigates through the various layers, and how certain responses

can effectively shortcut the remaining stages in the pipeline.

In summary, each middleware layer in Swift’s architecture has the option to inspect

a request and modify it if necessary. After this inspection and modification, the mid-

dleware can either pass the request along to the next layer in the pipeline or provide a

response that effectively bypasses the remaining middleware layers. Similarly, on the

return trip of a request, each middleware layer has the option to once again inspect

and potentially modify the request before it proceeds further. This flexible middleware

structure allows for a high degree of customization and control over how requests are

processed within the Swift system.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

2.1. Generic Object Storage 15

(A) Middleware pipeline. Each layer has the option to inspect a request and modify it if
necessary.

(B) Middleware bypass. Certain responses can effectively shortcut the remaining stages in
the pipeline.

FIGURE 2.3: Middleware pipeline and bypass mechanism.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

16 Chapter 2. State of the Art and Background

2.1.5 Access control

Swift provides two levels of access control: account-level and container-level, each with

its own set of privileges and functionalities.

Account-Level Access Control. This access control grants privileges across an entire ac-

count and is typically used for broad account’s resources management which is suitable

for administrators or users needing extensive access across the account.

• A user with read-only account-level access can download any object in the ac-

count, list objects in any container, view all containers, and access any non-sensitive

metadata about objects, containers, or the account.

• Read-write account access includes all read-only privileges, plus the ability to

create and overwrite objects, create new containers, delete objects or empty con-

tainers, and set any non-sensitive container or object metadata.

• Admin account access provides full ownership of the account to the authorized

groups, allowing complete control over the account and its resources.

Container-Level Access Control. This access control level grants privileges within a

specific container. Container-level access can be configured to allow permissions even to

unauthenticated users for reading and/or writing objects within the container. Container-

level access control is ideal for more granular control over specific containers, useful

in scenarios where different containers within the same account have varying access

requirements.

The ACL for a container is formatted as a comma-separated list that may include:

• Authorization groups: Specified groups that are granted access based on the per-

missions set.

• Referrers: External entities or domains that may be granted access.

• The keyword “.rlistings” indicates that clients can retrieve a list of objects within

the container.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

2.2. Personal Cloud Storage 17

1 X-Account -Access -Control:{

2 "admin":["AUTH_alice","sysadmins"],

3 "read -only":["AUTH_bob"]

4 }

LISTING 2.1: Account Access Control ACL Swift example.

In Listing 2.1, as illustrated in the example from Swift ACL [7], we see the configura-

tion of access control settings. Specifically, in line 2, user Alice and the group sysadmins

are granted full control over a resource, which could be an account, a container, or an

object. This level of control includes capabilities like modifying, deleting, or adding re-

sources. Additionally, in line 3, user Bob is provided with permissions to list, download,

and view the metadata of that same resource. This setup showcases the flexibility of

Swift’s ACL system in defining varying levels of access for different users or groups to

the same resource.

2.2 Personal Cloud Storage

Personal Cloud Storage (PCS) services are data-intensive applications accessible via the

Internet that enable users to synchronize files with servers in the cloud and across vari-

ous devices. These services have become a popular tool for distributed and collaborative

work, allowing files to be automatically shared and synchronized among users, thereby

introducing additional requirements for near real-time data access and synchroniza-

tion [2].

2.2.1 Overview

The convenience of storing personal files, synchronizing devices and sharing content

with ease has significantly increased the appeal of these services. As a result, more in-

dividuals are utilizing them for their personal and professional needs. This widespread

popularity has led to a competitive cloud storage market, with a multitude of providers

vying for users’ attention [60].

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

18 Chapter 2. State of the Art and Background

The market includes established players like Dropbox and Box [24, 16], as well as

tech giants such as Apple, Google, and Microsoft. These larger companies are able

to offer substantial amounts of storage space at increasingly affordable prices, further

intensifying the competition in the cloud storage sector. This competitive landscape

challenges new entrants to differentiate themselves and offer compelling services to

attract and retain users.

PCS services offer users highly user-friendly tools, particularly valuable in the con-

text of the growing variety of user devices that need synchronization. Owing to the

availability of these resources and tools, many of which are free, there is a tendency for

users to upload increasingly substantial volumes of personal and private data [31].

FIGURE 2.4: Personal cloud storage communication schema.

The core function of cloud storage services is data synchronization (sync), a pro-

cess that automatically reflects changes made in users’ local file systems to the cloud.

Synchronizing a file in cloud storage services encompasses a sequence of data sync

events. These events include transferring the data index, the actual data content, a sync

notification, sync status / statistics, and finally, a sync acknowledgement. Each of these

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

2.2. Personal Cloud Storage 19

data sync events generates network traffic, contributing to the overall communication

load between the local system and the cloud. This process that is visually depicted and

explained in Figure 2.4.

2.2.2 Synchronization on personal cloud storage

In this section, we address another common issue in the development of cloud storage:

the overuse of network resources during the synchronization process. The synchroniza-

tion (sync) traffic in these services accounts for more than 90% of the total service traffic,

indicating a significant portion of data transfer within these systems. Interestingly, it is

noted that this total service traffic is equivalent to one-third of the traffic generated by

a major online platform like YouTube [23]. This comparison highlights the substantial

amount of data involved in sync processes, suggesting that a part of this sync traffic

might be avoidable or reducible with more efficient synchronization strategies.

Mainstream cloud storage services — for example Dropbox or Baidu Netdisk [8,

24]— typically adopt a two-cloud system architecture. One cloud, the object storage

cloud, serves as the hosting platform for users’ file content. The index/control cloud,

on the other hand, is utilized to maintain users’ account information, online status, file

metadata (such as directories), block index (when applicable), and other related data.

This structure is depicted in Figure 2.5, providing a visual representation of how the

object storage cloud and the index/control cloud function together in the system.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

20 Chapter 2. State of the Art and Background

FIGURE 2.5: Personal cloud storage basic communication schema.

In Figure 2.5, three distinct types of sync traffic are exchanged to facilitate standard

data synchronization activities:

(i) Connection with Front-End Server:

(a) Each client maintains a connection to a front-end server.

(b) This server authenticates the user’s account and stores metadata about their

files, including a list of files, their sizes, attributes, and locations in the object

storage cloud.

(c) If files are stored as blocks in the object storage cloud, a corresponding block

index is linked with the user/file metadata index.

(ii) Connection to Object Storage Server:

(a) Clients establish connections with an object storage server to transfer the con-

tent of files or their blocks.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

2.2. Personal Cloud Storage 21

(b) For transferring large files, clients may create additional connections to mul-

tiple object storage servers, enabling parallel transfers and increased through-

put.

(c) Clients capable of data compression compress files or blocks before uploading

to the object storage cloud.

(d) With modifications in synced files, and if incremental sync is supported, clients

will first check a local cache or consult the front-end server to identify file

updates. These updates are then uploaded as compressed binary diffs to the

object storage cloud.

(iii) Connection to Heartbeat Server:

(a) Clients also keep a connection to a heartbeat server.

(b) They periodically send a status signal to the heartbeat server to confirm their

online presence and receive sync notifications from the index/control cloud

(like updates made to shared files by other users).

In addition to these three sync traffic types, there’s also inter-cloud traffic between

the two clouds, facilitating the sync process. For instance, during incremental sync, the

front-end server might need to access data from the object storage cloud to determine

file differences. This multi-layered approach ensures comprehensive and efficient data

synchronization across the network.

2.2.3 Minimizing synchronization network use

In examining the sync mechanisms in [46], we identified three main streams: intra-file

approaches, cross-file approaches and batching approaches. Each stream represents a

distinct method of optimizing the data synchronization process explained below:

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

22 Chapter 2. State of the Art and Background

Intra-File Approaches

This includes techniques like varying the data compression level for each file, handling

interrupted file transfers, and applying data deduplication within a single file to mini-

mize redundancy.

• Compression: varying levels of compression are applied depending on the access

method. Notably, the compression level on the server side is generally set higher

than on the client side, ranging from 5% to 30% more compression. This means that

data downloads typically consume less traffic than uploads from a user’s client

perspective, due to the more efficient compression applied on the server side for

stored data. Moreover, studies reveal that the compression technique is applied

differently by each cloud storage provider [46]. For instance, Dropbox [24] applies

compression both during file upload and download. In contrast, Seafile [87] only

uses compression during file uploads, while SugarSync [96] does not employ com-

pression in either uploads or downloads.

• Incremental sync: can greatly reduce the sync traffic of file edits by transferring

only the altered bits or blocks. There are three granularities in data synchronization

techniques: full-file, block-level, and chunk-level. Google Drive exemplifies full-

file sync, where the entire file is synchronized. Seafile, on the other hand, employs

Content-Defined Chunking-based sync (CDC)4. Dropbox [24], iCloud [37] , and

SugarSync [96] utilize delta-sync on the client side, but they differ in the chunk

sizes they use for synchronization.

• Interrupted transfer resumption (ITR): Most current services support ITR by em-

ploying different sequences (either sequentially or in parallel) and granularities for

block transfers, which typically range between 128𝐾𝐵 and 32𝑀𝐵 [46].
4Dynamic chunking mechanism [69]

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

2.2. Personal Cloud Storage 23

Cross-File Approaches

This might include protocols for efficient data delivery between files, such as choosing

between a Client/Server or Peer-to-Peer model, and methods for identifying and elimi-

nating duplicate data across different files.

• Deduplication: can avoid the transmission of data already stored both on the

server side and client side. Block-level dedup exhibits trivial superiority (in terms

of traffic saving) to full-file dedup but incurs much higher computation complex-

ity [46].

• Peer-assisted offloading (P2P) : can considerably cut down the cloud-side traffic

cost by around 25% for delivering a popular file shared by multiple users. Only

Baido Netdisk [8] adopted this mechanism for the moment [46].

Batching Approaches

This includes strategies like file or chunk bundling and sync deferment, which delay

the synchronization process until a significant batch of data is accumulated, thereby

reducing the frequency of sync operations and potentially saving network resources.

• Bundling: consolidates several small data modifications into a larger combined

change for network transmission. This method is effective in decreasing the over-

head linked to sending continuous minor changes to keep all data synchronized.

• Sync deferment: postponing synchronization tasks until a more suitable moment,

which helps in decreasing the network overhead. There are adaptive techniques

in place that adjust the timing of data synchronization not at predetermined in-

tervals, but in response to the prevailing system conditions, the extent of data

alterations, network traffic, and other relevant factors. When handling frequent

edits, iCloud [37], Drive [56] and SugarSync [96] degrade from incremental sync to

full-file sync, thus aggravating the traffic overuse. However, fixed sync deferments

are inefficient in certain scenarios [46].

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

24 Chapter 2. State of the Art and Background

2.2.4 Synchronization Deferment

Some studies indicate that for approximately 8.5% of Dropbox [24], users frequent edits

are responsible for more than 10% of their sync traffic [13]. This suggests that a signifi-

cant portion of the network resources utilized by these users is due to the continuous files

updates. Moreover, these frequent edits can lead to a substantial amount of overhead

traffic which may greatly surpass the volume of useful data updates transmitted by the

user client over time. This issue is known as the traffic overuse problem [13]. To ad-

dress this challenge, some cloud storage services deliberately delay the synchronization

process for a fixed duration. This deferral aims to batch file updates together, thereby

reducing the frequency of sync operations and consequently, the associated overhead

traffic.

Consider a situation where multiple apps on a single device are frequently updating

a shared key-value store. If every change immediately triggers a synchronization with

the server, it would result in an overwhelming number of network requests. This could

significantly strain the network bandwidth, potentially causing higher latency and re-

duced battery life in mobile devices due to persistent network activity. As the frequency

of these updates increases, the system begins to defer certain changes to alleviate net-

work traffic. However, this deferral means that updates may not appear instantly on

other devices. Finding the right balance in this scenario is challenging. It is critical to

maintain network efficiency and ensure the system remains responsive and functional,

but doing so without overloading network resources or compromising data immediacy

is a complex task.

Network overhead

Addressing the issue of overuse of network resources requires an initial understanding

of what constitutes network overhead. Throughout the thesis, we will utilize the Traffic

Usage Efficiency (𝑇𝑈𝐸) 5 metric [48] to quantify the network overhead, which is defined

5When a file is updated (created, modified, or deleted) at the user side, the data update size denotes the
size of altered bits relative to the original local file (or the cloud-stored file if it is not compressed). From the
users’ point of view, the data update size is an intuitive and natural signifier about how much traffic should
be consumed.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

2.2. Personal Cloud Storage 25

as:

𝑇𝑈𝐸 =
Total sync traffic
Data update size

, (2.1)

where the data update size refers to the size of the altered bits in the update due to file

creation, modification or removal. It intuitively signals the network overhead from the

user side.

Adaptive Sync Deferment

We describe the adaptive sync deferment (ASD) algorithm presented in [48]. To the best

of our knowledge, ASD is the only algorithm in the literature that adaptively adjusts the

deferment time. We briefly revisit it here. It works as follows:

Upon the 𝑖th update at time 𝑡𝑖 , the idea behind ASD is to adaptively tune the sync

deferment time window 𝑇𝑖 , such that if the next update falls within the range 𝑡𝑖 to 𝑡𝑖 +𝑇𝑖 ,

then it is deferred and marked as pending in the client. Otherwise, all the pending

updates are pushed to the cloud backend. Specifically, 𝑇𝑖 is tuned in an iterative manner

as an Exponentially Weighted Moving Average (EWMA) controller:

𝑇𝑖 = min ((1 −𝜔)𝑇𝑖−1 +𝜔Δ𝑡𝑖 + 𝜖,𝑇𝑚𝑎𝑥) , (2.2)

where Δ𝑡𝑖 is the inter-update time between the (𝑖-1)th and the 𝑖th data updates, and

𝜖 ∈ (0,1.0) is a small constant that ensures 𝑇𝑖 to be slightly longer than Δ𝑡𝑖 in a small

number of iteration rounds. 𝑇𝑚𝑎𝑥 is a constant representing an upper bound on 𝑇𝑖 , to

prevent a large 𝑇𝑖 from harming user experience due to long sync delays.

By a simple inspection of (2.2), it is easy to see that ASD does not account for the

size of updates. It focus only on one single dimension: inter-update time. Although this

metric is sufficient to reduce the 𝑇𝑈𝐸, it does not always minimize the sync delay. An

improvement of this mechanism is proposed on this thesis on chapter §3.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

26 Chapter 2. State of the Art and Background

2.3 Software-Defined Storage

Software-defined Storage (SDS) can be succinctly described as storage orchestrated by

software. The core concept behind ’software-defined’ technology lies in detaching the

control software from the hardware layer, which facilitates centralized and streamlined

management of the infrastructure. SDS conforms to this paradigm by using a software-

centric control layer that operates independently from the physical components like

storage servers, disks or arrays. Currently, this technology is viewed as a facilitator

for the architectural design, configuration and operation of a storage system [19], pro-

viding optimized and automated control and administration to improve the efficiency

of resource utilization.

2.3.1 Overview

SDS restructures the I/O stack from traditional storage frameworks. This reorganiza-

tion separates the control and data flows into two distinct layers: control and data. In

conventional storage systems, each I/O layer necessitates the development of specific

control tasks, such as coordination, queueing, metadata management, and monitoring

at each layer. However, SDS adopts a more unified system abstraction.

In this model, basic control operations such as I/O bandwidth allocation [89, 70,

98] are handled by a logically centralized control plane. These control operations are

expressed using policies and implemented in form of control applications. This central-

ized control platform enables the implementation of various control functionalities, like

I/O prioritization, data placement strategies, and rate limiting. These functionalities can

be applied across a broad range of control granularities (such as per-user, per-tenant,

or per-request) and in different environments like cloud computing, high-performance

computing (HPC), and specialized application-specific storage stacks. The importance

of the software-defined approach is that the aforementioned functionalities can be pro-

vided in a transparent way using control plane (micro-controllers, data policies) and

data plane abstractions [49].

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

2.3. Software-Defined Storage 27

(A) Traditional system structure. (B) Software-defined structure abstraction.

FIGURE 2.6: Comparison between high-level structure on traditional and SDS systems.

Figure 2.6 contrasts a monolithic approach with a Software-Defined Storage (SDS)

approach, emphasizing the stark differences in flexibility and adaptability. In the mono-

lithic model, storage components are tightly integrated, forming a single, unified system.

This integration, while robust, makes modifications and scalability challenging, as any

change often requires significant overhaul of the entire system. Conversely, the SDS

approach is represented as a modular and dynamic structure, where storage resources

and services are abstractly separated from the underlying hardware.

Fundamentally, SDS embodies a storage architecture designed to cater to a wide

range of storage requirements, consisting of dynamically configurable software and hard-

ware components. To fully realize the capabilities of SDS, implementations need to em-

brace these features, thereby creating a storage environment that is responsive, efficient,

and adaptable:

(i) Programmatically administered: Programmable interfaces to support dynamic

storage deployment, configuration and management, enabling policy-based au-

tomation of infrastructure storage resources.

(ii) Automation: Realization of autonomic data storage capabilities (provisioning,

reconfiguration, etc.) to provide dynamic SLA configuration.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

28 Chapter 2. State of the Art and Background

(iii) Monitoring: Metric collection for the automation of the storage in order to guaran-

tee and validate that the users SLAs are met.

(iv) Scalability: High scalability of the storage virtualization, and pooling, which is

essential to adapt the storage resources to the demand.

(v) Interoperability: Generic storage infrastructure and control components. The

abstraction of functionality across underlying hardware eases systems integration

and configuration of infrastructure components.

SDS Architecture

A SDS architecture is characterized by two principal functional planes. This architecture

is visually represented in Fig. 2.7a and 2.7b , which illustrate a layered perspective of SDS

functionality and an SDS-enabled storage infrastructure, respectively. The control plane,

a key component of this architecture, is divided into two parts: first, it includes the

global control building blocks essential for creating system-wide control applications.

Secondly, it is the core of the SDS system’s intelligence, featuring a logically centralized

controller. This controller provides a comprehensive view of the entire system and cen-

tralizes control functions. Additionally, a number of control applications are developed

on top of this centralized controller, further enhancing the system’s capabilities [33].

Control applications act as the primary interface for the control environment, as

shown in Fig.2.7b (CtrlApp1 and CtrlApp2). They are the standard method for SDS

users, such as system designers and administrators, to implement various storage poli-

cies across the storage infrastructure. These policies, comprising a series of rules, govern

the management of I/O flow. They are established within the control applications,

distributed by the controllers, and executed within the data plane.

The data plane in an SDS architecture is a programmable, multi-stage component

that is distributed along the I/O path, as illustrated in Figure 2 (Stage1 . . . Stage4).

It contains sophisticated, fine-grained storage services that are dynamically adaptable

to changes in the infrastructure. Each stage within the data plane can be positioned

within or in parallel to different I/O layers. These stages are designed to implement

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

2.3. Software-Defined Storage 29

(A) Layered view of the SDS planes of funcionality.

(B) SDS-enabled on top of generic multi-tenant infrastructure.

FIGURE 2.7: Generic SDS infrastructure. Control applications are the entry point of the control
environment (CtrlApp1 and CtrlApp2), and the de facto way of SDS users to express different
storage policies (P) to be enforced over the storage infrastructure. Policies are a set of rules that
declare how the I/O flow is managed, being defined at control applications, disseminated by
controllers, and installed at the data plane., which is a programmable multi-stage component
distributed along the I/O path. Each stage can be placed within or horizontally aligned with
I/O layers, and respects to a distinct storage service to be employed over intercepted data flows,
such as data management (e.g., caching, rate limiting), data transformations (e.g., compression,
encryption), and data routing activities (e.g., flow customization, replica placement).

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

30 Chapter 2. State of the Art and Background

specific storage services on intercepted data flows. Services include data management

activities like caching, rate limiting, and I/O prioritization; data transformations such

as compression, encryption, and deduplication; and data routing functions like flow

customization and replica placement.

For any intercepted I/O requests, applicable policies trigger the execution of associ-

ated storage services on the filtered data. Subsequently, the processed data is redirected

back into the original I/O flow, exemplified in Figure 2 by the data flow between the File

System, Stage1, and the Block Device.

2.3.2 SDS Systems: state of the art

As highlighted in earlier chapters, we will now explore in greater detail the systems that

serve as the foundation for our study.

IOFlow

IOFlow [98] introduced the first comprehensive SDS architecture. It allows for the speci-

fication of end-to-end (e2e) policies that dictate how I/O flows are managed from virtual

machines (VMs) to shared storage. This is achieved through a queuing abstraction in the

data plane, which translates high-level policies into specific queuing rules. IOFlow of-

fers rule-based policies that enable complex routing primitives (like creating/removing

queues, configuring token buckets) for particular storage flows at the data plane. The

system’s automation capabilities mainly involve data services implemented as “stages”.

Implementing IOFlow requires modifications at both the storage server and hyper-

visor levels to intercept I/O request flows, indicating that it is not inherently system

transparent. Its control plane is centralized yet adaptable, capable of integrating new

algorithms or bandwidth policies for controlling I/O routing across various stages. Sim-

ilarly, the data plane is designed to be extendable, allowing the addition and discovery

of new stages by the control plane.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

2.3. Software-Defined Storage 31

sRoute

sRoute [94] introduces an innovative platform for executing computing services on data

flows, utilizing sSwitches, which are an evolution of the stages concept found in IOFlow.

In this system, the control plane enforces rule-based policies that outline the forwarding

rules for directing I/Os from clients to the storage backend, passing through one or more

sSwitches. These sSwitches, by intercepting and categorizing I/O flows, can incorporate

data services such as custom replication (static data service automation) or tail latency

control (dynamic provisioning).

A notable feature of sRoute is the concept of a “delegate function”, which serves to

distribute control rules across data plane stages, thereby achieving a degree of decen-

tralization in the control plane. On the data plane, sSwitches can intercept I/O flows

at multiple points, performing operations related to the classification, redirection, and

prioritization of block requests, all without affecting the client VMs. The data plane is

also designed to be extensible, allowing for the integration of new sSwitches via an API.

While sRoute still necessitates changes in the storage stack to add new sSwitches to

a target storage server, thus limiting system transparency, a key distinction from IOFlow

is that sSwitches can also reside in other servers. This implies that some sSwitches do

not require code alterations in the target storage system, as they are added as external

services where I/O flows can be rerouted.

Retro

Retro [52] offers effective resource management in multi-tenant distributed storage sys-

tems, allowing system designers to independently orchestrate and refine resource man-

agement policies, separate from the base system implementation. A centralized con-

troller with a logically flat structure offers a comprehensive global view of resources and

orchestrates various queue-based data plane stages. Retro [52] operates independently

of specific systems and resources, with its data plane designed to abstract various re-

sources (such as storage devices, CPUs, thread pools, and networks). It incorporates

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

32 Chapter 2. State of the Art and Background

management-based storage features like I/O prioritization and rate limiting, which are

implemented at predetermined locations along the I/O path.

Crystal

Crystal, as referenced in [29], enhances the resource management capabilities established

by Retro [52]. It introduces an SDS architecture designed for object storage, aiming

to ensure efficient resource sharing and performance isolation in environments with

multi-tenant heterogeneous workloads. Within its control plane, Crystal employs a

set of distributed controllers with a flat architecture. These controllers are designed to

dynamically adjust storage components to accommodate the evolving needs of different

tenants. Functioning as separate micro-services, each controller can be deployed during

runtime and applies a unique control algorithm to implement policies at designated

levels within the storage stack.

In this system, global controllers possess the ability to monitor and consistently ad-

minister the data plane stages across the entire system. Their primary duties involve

enhancing monitoring events and disseminating storage policies throughout the con-

trollers and data stages. On the other hand, automation controllers handle set mon-

itoring metrics, employing these to accurately and immediately adjust stages using a

trigger-based method. This approach is particularly used for managing actions related

to object requests.

Regarding the data plane, as referenced in [64], the system utilizes customizable

storlet-based stages within OpenStack Swift instances. These stages play a crucial role in

delivering management and transformation services for storage. Equipped with adapt-

able filters, known as storlets [65], they enable developers to implement and execute

tailored storage services that operate on incoming object requests. This framework [63]

significantly boosts the flexibility and effectiveness of the storage service provision. A

storlet [65] is the binary code deployed as a Swift object. Invoking a storlet on a data

object is done in an isolated manner so that the data accessible by the computation is

only the object’s data and its associated metadata. Moreover, the computation has no

access to disks, network or to the Swift request environment. An intuitive illustration of

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

2.3. Software-Defined Storage 33

this structure is presented in Figure 2.9, and its invoke interface shown on Listing 2.2,

which class diagram is shown on Figure 2.8.

1 public void invoke(ArrayList <StorletInputStream > inStreams ,

2 ArrayList <StorletOutputStream > outStreams ,

3 Map <String ,String > parameters ,

4 StorletLogger logger) throws StorletException;

LISTING 2.2: Storlet invoke interface.

FIGURE 2.8: Class diagram illustrating the classes involved in the Storlet API.

Vertigo

Vertigo [83] offers a distributed framework that enables tenants to manage their data

in a flexible and dynamic way. It features a programmable policy abstraction, termed

a microcontroller. These microcontrollers are crafted to enable tenants to manage the

distinct attributes of each object with versatility. Acting as wrappers, they regulate the

behavior of these objects.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

34 Chapter 2. State of the Art and Background

FIGURE 2.9: Abstract architecture of a storlet-based data plane stage. Stages comprehend a set
of pre-installed storlets that comply with initial storage policies. An stage forms several storlet-
made pipelines to efficiently enforce storage services over data flows. At runtime, I/O flows are
intercepted, filtered, classified, and redirected to the respective pipeline.

FIGURE 2.10: Vertigo and Microcontrollers structure.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

2.3. Software-Defined Storage 35

Vertigo [83] utilizes microcontrollers that engage with and influence the lifecycle

of objects within these nodes. A distinctive feature of these microcontrollers is their

capacity to react to changes in the state of an object. Such reactivity facilitates the

execution of intricate management policies. A high level abstraction of this structure

is shown on Figure 2.10.

Additionally, microcontrollers go beyond mere monitoring functions. They are capa-

ble of orchestrating active storage tasks, adding an extra dimension of dynamic manage-

ment to the system.

2.3.3 Near Data Processing in object storage systems

Serverless cloud computing [39, 33] adds another layer of abstraction to conventional

cloud computing paradigms. This innovation effectively eliminates the necessity for

developers to handle server-side management, as stated in [10].

To be classified as a serverless service, as outlined in [39, 33], it must scale auto-

matically without the requirement for manual provisioning and charge based on actual

usage. Currently, cloud functions represent a fundamental component in serverless

computing and are pioneering a more simplified and versatile programming model for

cloud-based environments.

Serverless cloud computing provides two primary services: Backend as a Service

(BaaS) and Function as a Service (FaaS):

BaaS includes a range of services such as storage, messaging, and user management.

BaaS offers developers a set of ready-to-use backend services that can simplify and

accelerate the development process by managing the server-side operations.

FaaS allows developers to deploy and execute their code on cloud computing platforms

without having to manage the underlying infrastructure. FaaS heavily relies on BaaS

services like databases, messaging systems, and user authentication mechanisms. It is

often considered the most dominant model in serverless computing and is synonymous

with “event-driven functions” [27, 43]. This model is designed to respond to specific

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

36 Chapter 2. State of the Art and Background

events, executing code in response to triggers such as HTTP requests, database changes,

or message queue actions.

FIGURE 2.11: Serverless cloud computing offers backend as a service (BaaS) and function as a service
(FaaS). The BaaS includes services like storage, messaging, and user management. While, the FaaS
enables developers to deploy and execute their code on computing platforms. The FaaS relies on
the services provided by the BaaS such as a database, messaging, user authentications.

As an example, developers have the capability to deploy their applications onto the

serverless cloud in the shape of functions, as depicted in Figure 2.11. This methodology

streamlines the development process by automating the management of the underlying

infrastructure. Consequently, developers can concentrate predominantly on coding and

enhancing the functional aspects of their applications.

2.3.4 NDP as serverless storage functions

The initial wave of research in NDP emerged in the 1970s and 80s, marked by the

development of “database machines” that integrated computing functions into the stor-

age/memory systems. This period saw references [15, 22, 34, 68, 95] highlighting these

advancements. The 1990s experienced a renewed interest in NDP, particularly in the

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

2.3. Software-Defined Storage 37

fields of databases, along with expansion into image processing and data mining, fre-

quently utilizing “Active Disks” [1, 40, 79, 78]. During this time, data was typically

presumed to be located on the same device where computations occurred, often over-

looking the complications related to sharding in distributed storage systems.

The initial mainstream adoption of NDP systems emerged in the mid-2000s with the

development of Hadoop and the HDFS ecosystems, as referenced in [21]. Although

HDFS and Hadoop are capable of managing certain simple data types that may be

distributed across blocks and nodes, the emergence of computational storage devices

reintroduces a fundamental challenge. This challenge involves records that are divided

across devices and are unable to utilize in-situ computations effectively without extra

complexity or the need for data collation.

Ceph [107] and OpenStack Swift [66] each implemented their unique NDP features.

For Ceph, this capability was facilitated through dynamic classes [106]. In contrast, Swift

introduced storlets, which are compact applications designed to be executed within a

Swift deployment [25, 62, 65]. For more detailed information about OpenStack Swift,

please refer to Section 2.1.2.

Ceph [107] is an object storage based free software storage platform that stores data

on a single distributed computer cluster, and provides interfaces for 𝑜𝑏 𝑗𝑒𝑐𝑡 − 𝑙𝑒𝑣𝑒𝑙 , 𝑏𝑙𝑜𝑐𝑘 −

𝑙𝑒𝑣𝑒𝑙 and 𝑓 𝑖𝑙𝑒 − 𝑙𝑒𝑣𝑒𝑙 storage. At its core, Ceph features RADOS 6, a fully distributed,

reliable, and self-managing object store. The fundamental components of Ceph are the

OSDs. These OSDs are tasked with storing objects on local file systems and collabora-

tively working to replicate data. They play a crucial role in detecting and recovering

from failures, as well as managing data migration when OSDs are added to or removed

from the cluster. The design philosophy of Ceph is grounded in the understanding that

failures are a common occurrence in large-scale storage systems. Therefore, Ceph is

engineered to guarantee both reliability and scalability, primarily through the intelligent

functionalities of the OSDs. Ceph storage clusters are designed to run on commodity

hardware, using an algorithm called Controlled Replication under Scalable Hashing

6Reliable Autonomic Distributed Object Store

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

38 Chapter 2. State of the Art and Background

(CRUSH) to ensure data is evenly-level distributed across the cluster and that all cluster

nodes can retrieve data quickly without any centralized bottlenecks.

As llustrative examples of severless NDP storage systems, one can refer to systems

like: Zion [84], Shredder [110] and Glider [11]. The following is a brief description of

each of these systems.

ZION

As representative examples of serverless NDP storage systems, we can refer to Zion [84],

which is a data-driven serverless computing framework designed for cloud object stores.

Its development aims to address the challenges of scalability and resource contention. A

key advantage of Zion is its utilization of data locality to minimize latency, achieved

by positioning the serverless compute layer strategically between the proxy and storage

nodes.

FIGURE 2.12: Zion presents a disaggregated computing layer between the storage and gateway nodes
for executing the functions, a metadata service for triggers management and an interception software
(depicted as a router) running in the storage gateways, which inspects incoming requests and
reroutes them to the compute tier if necessary.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

2.3. Software-Defined Storage 39

Zion [84] is implemnted on top of OpenStack Swift [64] and has three main com-

ponents: a disaggregated computing layer, a metadata service and an interception soft-

ware. All of them depicted on Fig. 2.12 and explained below.

The computing layer, which is disaggregated, operates as a collection of containers.

These containers are responsible for executing the functions. A function, in this context,

is defined as a computation code that intercepts the data flow. It processes the data

inline, either as the object is incoming or outgoing from the storage cluster.

Each function, a simple example is shown Listing.2.3, is allocated a separate Linux

container to ensure it does not disrupt other cloud functions. These containers, each

with a running function, are termed ’workers’. Depending on the workload, a function

can have varying numbers of workers active simultaneously.

1 public class Handler implements IFunction {

2

3 public void invoke (Context ctx , API api) {

4

5 while((data = ctx.object.stream.read())){

6 ctx . object . stream . write (data);

7

8 }

9 }

10 }

LISTING 2.3: A simple function that echoes the data passed to it.

The interception software, that is seamlessly incorporated into the storage gateway

(illustrated as a router in Fig.2.12). This software’s primary purpose is to handle the

deployment of functions, link triggers to these functions, and facilitate their activation

upon a request aligning with a trigger. A trigger consists of a URL accompanied by

prefix and suffix filters, akin to those in AWS Lambda for Amazon S3, and is associated

with an HTTP method, which includes GET, PUT, POST, and DELETE.

The metadata service, which efficiently pre-processes and indexes trigger metadata. It

also plays a crucial role in redirecting the input flow towards an available worker as the

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

40 Chapter 2. State of the Art and Background

object is read. Data flows that are not intercepted continue rapidly along the default

storage path, bypassing the serverless compute layer as is standard practice.

Shredder

Internally, Shredder [110] is composed of three distinct layers: a networking layer, a stor-

age layer, and a function layer. Each CPU core independently operates all three layers.

This is facilitated by a shared-nothing architecture, ensuring that each layer’s state is

partitioned across CPU cores to minimize contention and synchronization overheads.

This architecture and its components is shown on Figure 2.13.

The storage layer is responsible for hosting all tenants’ data in memory, offering a

basic key-value interface through GET and PUT functions. The network layer takes

charge of managing network connections, processing protocols, and handling requests

from all tenants. It directly interacts with the storage layer for reading and writing

data using the key-value interface. For requests requiring specific storage functions,

the network layer forwards these to the function layer.

FIGURE 2.13: Three layers Shredder’s architecture.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

2.3. Software-Defined Storage 41

The serverless function layer plays a crucial role by matching incoming requests with

the appropriate storage function code and its context, which includes the environment

and state linked with that storage function. It executes these operations within a dedi-

cated per-core instance of the V87 [100] runtime. To streamline interactions between the

function runtime and the storage layer, each V8 runtime incorporates a set of embedded

trusted access methods, thereby avoiding costly inter-layer calls.

Shredder’s storage functions are designed to enhance the storage data model, al-

lowing safe utilization of low-level hardware. These functions are also safeguarded by

cost-effective language-level guarantees, ensuring efficient and secure operations.

Glider

Concurrently with the writing of this thesis, D. Barcelona et. al have proposed Glider [11]

which introduces a novel approach to addressing the challenge of data movement in

serverless computing, particularly concerning the intermediate data generated during

compute stages. This approach revolves around the idea of minimizing data transfer by

reversing the conventional process: instead of moving data to the code (compute stages),

it proposes moving the code to where the data resides. This is achieved through a unique

service model for ephemeral computational storage, facilitating near-data computation.

By enabling data-bound operations to be executed close to the data storage, Glider

significantly reduces both the number of connections required from serverless functions

to storage and the volume of data transmitted.

7Google’s open source high-performance JavaScript and WebAssembly engine, written in C++.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

Chapter 3

Rate-based Sync Deferment for

Personal Cloud Storage Services

Cloud storage services like Dropbox, Google Drive, and OneDrive, to cite a few, are

becoming an increasingly “vital” tool in our everyday life. Unluckily, these services can

incur large network overhead in different usage scenarios. To reduce it, these systems

utilize several techniques like source-based deduplication, chunking, delta compression,

etc. One of these techniques is sync deferment, which relies on the packing of updates to

intentionally defer the synchronization process for some time, and increase the volume

of useful data per overhead byte. The scientific literature has shown this technique to

be very helpful, though there are still some limitations on current solutions. To resolve

them, we present here a new adaptive sync deferment method, that is comparable to the

current state of the art in terms of network overhead, but is also able to minimize the file

synchronization time up to 12X.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

44 Chapter 3. Rate-based Sync Deferment for Personal Cloud Storage Services

3.1 Introduction

As a tool for personal storage and file synchronization, cloud storage services like Drop-

box, OneDrive or Google Drive have become part of our everyday life. In these systems,

the process of synchronizing a file requires of several metadata and data transfers be-

tween the cloud servers and the end user devices. To reduce the network overhead,

these services use a suite of tools like delta compression, chunking, etc. [48, 50].

One of these optimizations, and the subject of this chapter, is sync deferment. Sync

deferment consists of batching updates to intentionally defer the sync process for some

time. In this way, the client can artificially increase the amount of useful data per sync

operation, and hence, diminish the network overhead [48]. This has proven to be very

effective to cope with frequent file modifications [47]. The authors of [48], however,

discovered that simple sync deferment based on static thresholds could be not helpful.

To wit, they found that by using a fixed sync deferment time (not tunable by the user),

the network overhead could be of several orders of magnitude larger than the amount

of useful data in some situations. To address this issue, they proposed an adaptive sync

deferment (ASD) technique that adjusts the sync deferment time based on the inter-update

time.

As a part of our ongoing process of implementing an open-source cloud storage

service based on [50], we carefully studied the ASD algorithm, and found that in some

cases, it may render long synchronization delays. Such a finding spurred us to come

up with a novel deferment algorithm that we contribute here. While it is comparable

to ASD in terms of network overhead, its distinguishing feature is that it is also capable

of minimizing the synchronization delay, up to 12X compared with ASD. This translates

into a better user experience, and less conflicts. The reason is that we study another

dimension beyond inter-update time: the data size of updates. Combining both metrics,

we can operate with the data rate instead, and adjust the deferral time to the minimum

necessary to presumably collect enough useful data, and thus deliver a low network

overhead.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

3.2. Rate-based sync deferment 45

3.2 Rate-based sync deferment

Although it has been seen in [48] that ASD outperforms sync deferment algorithms based

on static values (e.g., the number of uncommitted bytes), it only considers an EWMA

estimator of the inter-update time as the deferment criteria. And hence, it neglects an

important dimension: the size of updates. The 𝑇𝑈𝐸 metric, however, measures the traffic

overhead. Consequently, what should be key for a sync deferment scheme should be to

accumulate a sufficiently large number of unsynced bytes such that 𝑇𝑈𝐸 was close to

1, yet delivering a short synchornization delay. With time alone, it is very difficult to

achieve this, as we demonstrate in the evaluation. It is also necessary to consider the

count of deferred bytes. Put another way, when the number of deferred bytes guarantees

a small 𝑇𝑈𝐸, it does not yet make sense to wait for a new update, but to trigger a sync

operation with the cloud backend as soon as possible.

3.2.1 Trade-off between TUE and synchronization time

It is clear that a sync deferment algorithm able to hold good levels on both parameters is

still missing. This task is not easy. There is a trade-off between both parameters: when

one tries to minimize one dimension, the other can grow uncontrollably.

To better understand this, pretend now that the dimension to optimize is the syn-

chronization delay. Clearly, this will benefit user experience, since any modification to

a file will be quickly propagated to the unsynced devices. However, it will impose a

huge overhead on the system, because the count of unsynced bytes will be typically

small. On the other hand, suppose now that objective is to decrease the network over-

head. This would require deferring updates in order to transmit more useful bytes per

overhead byte. Depending on to what extent, however, the synchronization delay could

become intolerably long, and for instance, preclude services such as collaborative file

editing.

To give a sense of this trade-off, we investigated the impact of sync deferment delay

on 𝑇𝑈𝐸 in Ubuntu One (UB1), a real cloud storage service. Concretely, we randomly

picked 10, 000 client sessions from the publicly available trace [30]. Then, for each client

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

46 Chapter 3. Rate-based Sync Deferment for Personal Cloud Storage Services

session, we recorded the resulting 𝑇𝑈𝐸 obtained by varying the sync deferment thresh-

old from 30 to 120 seconds. The resulting𝑇𝑈𝐸 values were averaged to produce Fig. 3.1.

Since the UB1 service shut down on July 2014, we could not use its desktop client to

empirically measure the𝑇𝑈𝐸. Instead, to approximate the resulting𝑇𝑈𝐸 as a function of

the amount of deferred data, we performed a small measurement analysis of Dropbox

similar to that in [48]. The idea was pretty simple. To approximate its real 𝑇𝑈𝐸, we

measured the resulting 𝑇𝑈𝐸 when adding files of different sizes to the sync folder. To

avoid any bias, we used binary, non-compressible files, ranging from 1 B to 100 MB, so

that the 𝑇𝑈𝐸 can be simply approximated as the ratio between the monitored network

traffic after every file addition and the file size. Actually, we got similar results to those

listed in [47, 48], with a 𝑇𝑈𝐸 of ≈ 37 for 1 KB files, and of ≈ 1.1 for 100 MB files. As

a result of this measurement, we could return a 𝑇𝑈𝐸 value for every potential size of

deferred data by means of curve interpolation, and thus produce Fig. 3.1. We also used

the interpolated 𝑇𝑈𝐸 curve in our evaluation1.

As can be seen in this figure, the longer the client waits to send the pending updates

to the cloud, the shorter the TUE is. The important observation to be made is that

deferring updates too much is not of much utility. Beyond a certain point, 𝑇𝑈𝐸 does

not reduce significantly. This suggests that as soon as the size of the deferred updates yields

a small 𝑇𝑈𝐸, it is better off to push them to the cloud. Almost surely, waiting for the next

update will bring no much benefit. ASD cannot exploit such a trade-off well. For this

reason, we devised the RSD algorithm.

3.2.2 The RSD algorithm

Given a target network overhead 𝑇𝑈𝐸, our major objective is to minimize the synchro-

nization time. To this end, instead of adapting the sync deferment time according to the

inter-update time as in ASD, we do so by turning attention onto the update rate, defined

as 𝑅 = 𝑏/Δ𝑡 , where 𝑏 is the total number of bytes accumulated from local updates over

certain time interval Δ𝑡 . By estimating the rate 𝑅, we can dynamically adjust the sync

1All the experiments in this letter were performed on a commodity machine: Intel Core i5-4440 3.10GHz
CPU, 8 GB RAM, connected to a 1 GbE LAN.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

3.2. Rate-based sync deferment 47

30 40 50 60 70 80 90 100 110 120

Fixed Sync Deferment Time (Secs)

1.39

1.4

1.41

1.42

1.43

1.44

1.45
T

U
E

FIGURE 3.1: 𝑇𝑈𝐸 as a function of sync deferment time in UB1.

deferment delay to the data generation rate of a user, so that it can be shortened if it is

expected that the targeted𝑇𝑈𝐸 will be fulfilled soon according to the predicted rate. This

is the reason why our algorithm is called rate-based sync deferment (RSD).

In practice, our scheme expresses the overhead objective as the number of unsynced

bytes necessary to accumulate in order to yield an overhead equal or lower than 𝑇𝑈𝐸.

We denote this quantity as 𝐵𝑇𝑈𝐸 . Note that 𝐵𝑇𝑈𝐸 = (Total sync traffic)/𝑇𝑈𝐸.

To estimate the rate, RSD utilizes an EWMA predictor. This means that upon the 𝑖th

update, RSD estimates the current rate 𝑅𝑖 as an average between the value of the last

estimation 𝑅𝑖−1, and the current observation 𝑏𝑖/Δ𝑡𝑖 such that:

𝑅𝑖 = (1 −𝜔)𝑅𝑖−𝑖 +𝜔
𝑏𝑖

Δ𝑡𝑖
, (3.1)

where Δ𝑡𝑖 is the inter-update time between the (𝑖-1)th and the 𝑖th data updates, 𝑏𝑖 is

the size of the 𝑖th update in bytes, and 𝜔 is the weighting factor that shapes its memory.

With the value of 𝑅𝑖 at hand, then RSD calculates the sync deferment time 𝑇𝑖 as

𝑇𝑖 =
𝐵𝑇𝑈𝐸−𝐵ACC

𝑅𝑖
, i.e., as the number of bytes still needed to amass from future updates

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

48 Chapter 3. Rate-based Sync Deferment for Personal Cloud Storage Services

(𝐵𝑇𝑈𝐸 − 𝐵ACC) divided by 𝑅𝑖 , where 𝐵ACC is a byte counter that tracks the size of all

updates since the last sync operation with the cloud backend. After syncing the pending

updates, 𝐵ACC is always reset to 0.

As in ASD, a sync operation is started with the cloud servers when the next update

falls outside the range 𝑡𝑖 to 𝑡𝑖 +𝑇𝑖 . Also, to ensure that updates do not remain unsynced

for a long time, RSD uses a timer T . When T expires, a new sync operation is triggered,

irrespective of whether the target 𝑇𝑈𝐸 is met or not. Note that this is different from

limiting the maximum allowed value for each individual 𝑇𝑖 as in ASD. Indeed, ASD

does not ensure that the deferred updates are eventually applied. This is easy to see by

simply inspecting (2.2). If inter-update times were always < 𝑇𝑚𝑎𝑥 (e.g., as a result of a

frequent file modification), ASD could defer the updates forever if EWMA converged to a

stationary value. In RSD, we addressed this issue from the start by using an independent

timer, which is re-programmed upon the arrival of the first update after the last sync

operation. The complete pseud code is listed in Algorithm 1.

Algorithm 1 RSD algorithm

upon 𝑖th update happens do
if 𝐵ACC = 0 then

set timer T to 𝑇𝑚𝑎𝑥 seconds
Δ𝑡𝑖 := 𝑡𝑖 − 𝑡𝑖−1 ⊲ compute the inter-update time
𝑅𝑖 := (1 −𝜔)𝑅𝑖−𝑖 +𝜔 𝑏𝑖

Δ𝑡𝑖
⊲ update the EWMA estimator of the rate

𝐵ACC := 𝐵ACC +𝑏𝑖
if 𝑇𝑖−1 < Δ𝑡𝑖 then

push the deferred 𝐵ACC bytes to the cloud; 𝐵ACC := 0
else

𝑇𝑖 := 𝐵𝑇𝑈𝐸−𝐵ACC

𝑅𝑖

upon timer T expires do
push the deferred 𝐵ACC bytes to the cloud; 𝐵ACC := 0

3.2.3 Analytical Comparison: RSD vs. ASD

Here we compare analytically the performance of RSD with ASD to better understand

the benefits of sync deferment based on the data generation rate. For this purpose, we

will adopt the “𝑋 KB/𝑋 sec” pattern that was originally posited in [48, 45] to validate

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

3.2. Rate-based sync deferment 49

ASD. As in [45], we will set the weight factor 𝜔 = 1/2 to simplify our discussion. From

the analysis in [45], it follows easily the following corollary:

Corollary 1 Under the“𝑋 KB/𝑋 sec” pattern, ASD triggers at most 𝑘 = lg𝑋 + 1 data transfers

to the cloud.

Indeed, it is easy to see that these data transfers occur at the first 𝑘 updates, i.e., while

the value of 𝑇𝑖 converges to 𝑋 . From that point onwards, (2.2) guarantees that 𝑇𝑖 > 𝑋 ,

for 𝑖 > 𝑘2, and hence, subsequent file updates may stay in pending state at the desktop

client for a long time, even forever, yielding very long synchronization times.

With RSD, however, the value of 𝑇𝑖 decreases progressively towards 0, to ensure

that when the size of the deferred updates reaches 𝐵𝑇𝑈𝐸 bytes, a sync operation with the

cloud backend is always started. This minimizes the synchronization time yet delivering

a small 𝑇𝑈𝐸:

Theorem 1 Under the“𝑋 KB/𝑋 sec” pattern, RSD delivers the minimum synchronization delay

to satisfy 𝑇𝑈𝐸.

Corollary 2 Let 𝐵𝑇𝑈𝐸 denote the number of bytes necessary to accumulate to meet the objective

𝑇𝑈𝐸. To verify that RSD minimizes the synchronization time, we must prove that there is no

data transfer to the cloud until the target 𝑇𝑈𝐸 is fulfilled. First, we note that the observed rate

𝑟𝑖 =
𝑋
𝑋
= 1 for all updates. Similar to [45], note that we assume 𝐵𝑇𝑈𝐸 < 𝑇𝑚𝑎𝑥 . Otherwise, a sync

operation would be triggered without reaching the target 𝑇𝑈𝐸. Then, according to (3.1), we will

have the series 𝑅𝑘 =

(
1 − 1

2𝑘

)
, which gives the corresponding time window series:

𝑇𝑘 =
𝐵𝑇𝑈𝐸 − 𝑘𝑋

𝑅𝑘
=

(
𝐵𝑇𝑈𝐸 − 𝑘𝑋

) (2𝑘

2𝑘 − 1

)
. (3.2)

Recall that a sync operation is triggered only if 𝑇𝑘 < 𝑋 (where 𝑋 is the inter-update time).

From (3.2), it is easy to see that this inequality does not hold for 𝑘 ≤ 𝐵𝑇𝑈𝐸

𝑋
− 1. Hence, a new

sync operation with the cloud will not be started until at least 𝐵𝑇𝑈𝐸 bytes are accumulated from

the deferred updates, thus meeting the target 𝑇𝑈𝐸 while yielding the minimum sync delay.
2Under the “𝑋 KB/𝑋 sec” pattern, the inter-update time is Δ𝑡𝑖 = 𝑋 sec ∀𝑖.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

50 Chapter 3. Rate-based Sync Deferment for Personal Cloud Storage Services

0 20 40 60 80 100 120
1

2

3

4

5

6

7

8

9
x 10

4

Time (secs)

B
y
te

s

RDS Uploads

FIGURE 3.2: RSD under a regular triangular pattern.

To sum up, under a regular pattern, RSD is able to minimize the synchronization time,

triggering a new sync operation with the cloud only when the overhead is optimal. In

contrast, ASD triggers a logarithmic number of sync operations until reaching a stable

state, and then, it defers updates forever until there is a significant change in the inter-

update time. This behavior is easy to see in the triangular pattern shown in Fig. 3.2,

where the bitsize of updates increases gradually up to 80KBs to decrease with the same

speed. While RSD triggers a new sync operation as soon as 𝐵𝑇𝑈𝐸 bytes has been buffered,

spreading them over time, ASD only triggers a final sync operation after adjustment of

the deferral time to the regular inter-update time, remaining out-of-sync for 110 seconds.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

3.3. Experimental Comparison 51

TABLE 3.1: Details of Workloads.

Inter-update
time (secs)

Update size
(MB)

Workload No. Updates 90%-tile Skewness Median CV
1 1, 653 16 3.24 2.74 1.41
2 5, 133 1 30.12 0.03 6.19
3 3, 463 7 18.2 0.40 4.53
4 736 61 1.02 0.81 0.28
5 505 49 3.13 5.54 0.67
6 441 234.6 1.96 5.01 0.67
7 730 125.1 −0.11 0.01 0.51

3.3 Experimental Comparison

In practice, however, data update patterns are not so regular as the “𝑋 KB/𝑋 sec” pat-

tern. For this reason, we compared the performance of both algorithms using real ses-

sions from UB1 users [30]. From this trace3, and after some pre-processing, we extracted

7 random workloads4 corresponding to 7 different users. For clarity, we numbered them

from 1 to 7. Workloads 1 − 5 corresponded to active users with inter-updates times of

a few seconds. Their purpose was to evaluate both algorithms in the face of frequent

of file modifications, which is the major driving force for sync deferment techniques.

Workloads 6 and 7 corresponded to “warm” users, and concretely, to users who often

made changes to their sync folder with a frequency that exceeded 120 sec. The goal

of the last two workloads was to evaluate the performance of RSD when the timer T

expires. More details about workloads can be found in Table 3.1.

Metrics. Besides 𝑇𝑈𝐸, we compared both algorithms in terms of synchronization delay,

which is the aspect that distinguishes RSD from ASD. To this aim, we utilized the

slowdown ratio 𝑆𝑅 defined as 𝑆𝑅 =
𝑇𝑖𝑚𝑒ASD

𝑇𝑖𝑚𝑒RSD
, where 𝑇𝑖𝑚𝑒ASD and 𝑇𝑖𝑚𝑒RSD are the average

lengths of deferment periods delivered by ASD and RSD, respectively. Note that 𝑆𝑅 = 1

if both algorithms perform identically. A value of 𝑆𝑅 > 1 quantifies how many times the

synchronization delay is larger in ASD compared with RSD.

3The UB1 log trace contains the timestamp and the size of every update, among other information.
4The workloads are available upon request.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

52 Chapter 3. Rate-based Sync Deferment for Personal Cloud Storage Services

Setup. The experimental setup was as follows. In both algorithms, we set the weight-

ing factor 𝜔 to 1/2 in order to strike a perfect balance between memory and agility.

𝑇𝑚𝑎𝑥 was set to 120 sec in both algorithms. For RSD, this meant that the timer T was

reset to “120” sec at the beginning of each deferment period. As RSD depends also on

the targeted 𝑇𝑈𝐸, we ran it for 3 different values of 𝑇𝑈𝐸: 1.2, 1.3 and 1.4, respectively.

This gave us a sense of the sensitivity of RSD to 𝑇𝑈𝐸.

In the experiment, we replayed the sequence of updates in each workload. During

each replay, we recorded two measures on a per-deferment period basis: the length and

resulting 𝑇𝑈𝐸 of each sync deferment interval. For each workload, the results of both

metrics were finally averaged to produce Fig. 3.3-3.4.

1 2 3 4 5 6 7

Workload

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

T
U

E

RSD TUE = 1.2

RSD TUE = 1.3

RSD TUE = 1.4

ASD

FIGURE 3.3: Empirical 𝑇𝑈𝐸 of ASD and RSD for different target 𝑇𝑈𝐸 values.

Results. As shown in Fig. 3.3, the 𝑇𝑈𝐸 values of both ASD and RSD are very similar in

the workloads 1 − 5. These workloads are very intense, and show that both mechanisms

are equally effective in the reduction of the network overhead in the face of frequent

file modifications. For these workloads, RSD does not appear to be sensitive to the

prespecified 𝑇𝑈𝐸. This is a “good news”, since it reduces the amount of potential “fine

tuning” decisions to be made in order to optimize RSD’s performance.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

3.3. Experimental Comparison 53

1 2 3 4 5 6 7

Workload

0

10

30

50

70

90

110

130

150

S
R

TUE = 1.2

TUE = 1.3

TUE = 1.4

FIGURE 3.4: Slowdown ratio (𝑆𝑅) of ASD relative to RSD for different 𝑇𝑈𝐸s.

For workload 6, RSD is only comparable to ASD for the most loosen 𝑇𝑈𝐸 value. The

reason is that inter-update times in this workload often exceeded the 120 sec, and RSD

ended up issuing a new sync operation with the cloud servers without attaining the

targeted 𝑇𝑈𝐸 in many occasions. However, such a behavior is desirable as confirmed

in Fig. 3.4. Thanks to timer T , RSD yielded synchronization times between 70X to 150X

shorter than ASD, which incurred intolerably long sync delays.

For workload 7, both algorithms reported bad 𝑇𝑈𝐸 values. The reason behind this is

that times between updates were very variable, alternating between long and short inter-

update times, which caused a slow response of the EWMA controller in both algorithms.

Even in this pessimistic setting, RSD was capable of decreasing a little bit the sync time

as can be seen in Fig. 3.4.

For workloads 1 − 5, RSD improved sync delays between 2X to 12X relative to ASD

with equivalent 𝑇𝑈𝐸 values, which undeniably demonstrates the superior performance

of RSD.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

54 Chapter 3. Rate-based Sync Deferment for Personal Cloud Storage Services

3.4 Conclusion

Cloud storage services like Dropbox and Google Drive are becoming very popular

these days. To optimize network traffic, these storage services rely on techniques like

sync deferment. Literature so far has proven this technique to very useful in the face of

frequent file modifications. However, there still exist some performance weaknesses on

current implementations. To cope with them, this letter presents an innovative adaptive

sync deferment algorithm, which is comparable to the current state of the art in terms of

overhead, but as a distinguishing feature, it also optimizes file synchronization delays.

Our experimental results report improvements between 2X to 12X in sync delay.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

Chapter 4

Software-Defined Data Protection

for Object Storage

With the growth in popularity of cloud computing, object storage systems (e.g., Ama-

zon S3, OpenStack Swift, Ceph) have gained momentum for their relatively low per-

GB costs and high availability. However, as increasingly more sensitive data is being

accrued, the need to natively integrate privacy controls into the storage is growing in

relevance. Today, due to the poor object storage interface, privacy controls are enforced

by data curators with full access to data in the clear. This motivates the need for a new

approach to data privacy that can provide strong assurance and control to data owners.

To fulfill this need, this paper presents EGEON, a novel software-defined data protection

framework for object storage. EGEON enables users to declaratively set privacy policies

on how their data can be shared. In the privacy policies, the users can build complex data

protection services through the composition of data transformations, which are invoked

inline by EGEON upon a read request. As a result, data owners can trivially display

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

56 Chapter 4. Software-Defined Data Protection for Object Storage

multiple views from the same data piece, and modify these views by only updating the

policies. And all without restructuring the internals of the underlying object storage

system. The EGEON prototype has been built atop OpenStack Swift. Evaluation results

shows promise in developing data protection services with little overhead directly into

the object store. Further, depending on the amount of data filtered out in the transformed

views, end-to-end latency can be low due to the savings in network communication.

4.1 Introduction

With the rapid growth in popularity of Cloud services, object storage systems (e.g.,

Amazon S3 [3], IBM COS [36] or OpenStack Swift [64]) have gained momentum. These

storage systems offer consolidated storage at scale, with high degrees of availability and

bandwidth at low cost. Proof of that is the recent trend of serverless computing. Due to

the high difficulty of function-to-function communication1, many serverless systems use

object storage for passing data between functions [85, 74, 59, 86, 54], which has revived

the interest in this type of object storage.

Although very useful for cloud applications, object storage systems offer a small

number of options to keep sensitive data safe. Few (or no) efforts have been realized on

security issues such as data confidentiality, data integrity, or access control, to mention a

few. For instance, online storage services such as Amazon S3, or IBM COS, only provide

server-side encryption for protecting objects at rest [3, 36]. Similar words can be said

for the access control of individual objects2, which is currently either realized via simple

object ACLs (Access Control Lists) as in S3 [3], or not possible at all as in OpenStack

Swift [14].

This poor interface is insufficient for many applications. For instance, it does not

enable in-place queries on encrypted data, transparent and secure data sharing, and

access control based on the content of an object. But also, it is very difficult to make it

1Some works have shown that cloud functions can communicate directly using NAT (Network Address
Translation) traversal techniques. However, direct communication between functions is not supported by
cloud providers.

2In general terms, cloud object stores enforce access at the container level rather than at the object level.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

4.1. Introduction 57

evolve to meet the changing needs of applications and withstand the test of time. In

practice, most of these object storage systems leave no other choice to modifying the sys-

tem internals to incorporate new security mechanisms at the object level. This requires a

deep knowledge of the system, extreme care when modifying critical software that took

years of code-hardening to trust, and significant cost and time (see, for instance, [46],

where it is described the “daunting” task of deploying new erasure coding solutions in

object stores such as OpenStack Swift [64] and Ceph [107]).

Rather than relying on object storage systems to change, we advocate in this paper

to “work around” the traditionally rigid object storage APIs by embracing a software-

defined approach. Similarly to software-defined networking (SDN), we argue that the

separation of the “control logic” from the “data protection logic” can give the needed

flexibility and ease of use to enable users, programmers and sysadmins to custom-fit

access control and object protection. To give an example, pretend that upon certain

conditions, parts of an encrypted object need to be re-encrypted to share it with the

mobile users of the application. Further, these conditions may depend on the contents

of the object itself (e.g., on sensitive data such as sexual orientation), which must always

remain confidential from the server. Simply put, what we pursue is to offer users the

ability to succinctly express this behavior at the object storage level, and enforce it by

calling the corresponding re-encryption modules.

Nevertheless, a software-defined solution to enhance object storage data protection

requires solving several issues at two levels:

• At the control plane, by enabling the composition of per-object protection services.

These compositions should be expressed concisely and in a manner agnostic to the

data protection code and the remaining storage stack.

• At the data plane, by making it truly programmable. To put it baldly, the data

plane should not only allow to plug-in new protection logic in the critical I/O path,

but to run it safely. In addition, it should enable the re-usability of the protection

capabilities, so that users can compose new data protection controls.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

58 Chapter 4. Software-Defined Data Protection for Object Storage

In this research work, we present EGEON, a novel software-defined data protection

framework for object storage. EGEON exports a scripting API to define privacy policies

for protecting objects. These policies enable data owners to declaratively set complex

data protection services through the composition of user-defined transformations run

in a serverless fashion. These functions represent the elementary processing units in

EGEON, and may be re-used and linked together to implement complex privacy poli-

cies. The major feature of these transformations is that they are executed “inline” by

EGEON upon a standard Get request. In this way, users can trivially display multiple

views from the same object, and modify these views by updating the policies. If some

functionality to implement a view is missing, EGEON provides a simple API to deploy

new transformations and customize the access to data objects.

In this sense, one of the primary contributions of EGEON is the ability to provide

privacy-compliant transformed views of the underlying data on the fly. Perception of

privacy can vary broadly across applications. As an example, a dataset created by a

hospital may include personally identifiable information (PII) that is not needed when it

is processed by a data analytics engine. Nonetheless, if the same dataset is accessed by

medical personnel, a richer view of it should be given. Thus, a practical system needs to

support a range of privacy preferences.

By adopting a software-defined storage architecture, EGEON allows users to express

their privacy preferences as policies in the control plane and produce views conforming

to the policies by running transformations in the data plane. In this work, we focus on

(cryptographic) transformations that process data as streams, that is, as data is being

retrieved from object storage nodes. Consequently, the first bytes of transformed views

are received as soon as possible, which permits EGEON to scale to arbitrary object sizes

without important penalty on end-to-end latency.

The EGEON prototype we present in this research has been implemented atop Open-

Stack Swift [64]. We took Swift because it is open source and a production quality system.

Its sizable developer community ensures that our new properties are built on code that

is robust and that will be soon evaluated. It must be noticed that the design concepts

underpinning EGEON are generic and could be easily ported to other storage substrates.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

4.2. Related Work 59

For example, object classes allow to extend Ceph by loading custom code into Object

Storage Daemons (OSDs), which can be run from within a librados application [57].

Thus, with some effort, it would be possible to leverage object classes to implement

transformed views of data.

Our performance evaluation of EGEON shows promise in developing data pro-

tection services with low overhead directly into the object storage. For instance, the

overhead of a NOOP policy, where a storage function simply echoes the input data, is

of around 9 ms. Also, depending on the amount of protected data filtered out in the

transformed views, end-to-end latency can be even lower with EGEON due to the savings

in network communication (up to 72.1x for a 4G mobile use case).

4.2 Related Work

Software-defined storage systems. A first category of related work comprises software-

defined approaches for storage, and in particular, for object storage systems. The com-

mon feature of these approaches is that they break the vertical alignment of conventional

storage infrastructures by reorganizing the I/O stack to decouple the control and data

flows into two planes of functionality—control and data. A number of proposals have

followed this approach, including IOFlow [98], sRoutes [94], Retro [52], Vertigo [83] and

Crystal [29, 32].

Among them, only Vertigo and Crystal have been tailored to object storage. As

EGEON, both systems have been deployed atop OpenStack Swift. But unlike EGEON,

their data plane is based on OpenStack Storlets [65]. A Storlet is a piece of Java logic that

is injected into the data plane to run custom storage services over incoming I/O requests.

As in EGEON, this design increases the modularity and programmability of the data

plane stages, fostering reutilization. However, Storlet-made pipelines are not reactive,

wasting resources when we are only interested in specific elements of the data stream.

Moreover, the Storlet-enabled data plane of Vertigo and Crystal emphasizes control-flow

over data-flow, making it hard to explicitly represent the (cryptograhic) transformations

of objects. Per contra, EGEON’s data plane is driven solely by the events showing up in

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

60 Chapter 4. Software-Defined Data Protection for Object Storage

FIGURE 4.1: EGEON’s software-defined architecture. The system is divided into two planes: the
privacy plane, specialized for data protection, which offers an API to allow data owners to manage
life-cycle of their data protection policies, and the data plane responsible for generating the privacy-
compliant data views delivered to final user.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

4.2. Related Work 61

the data streams, which makes it easy to reuse the same transformations over and over

again on different data. Only the events must be re-defined in the policies.

Finally, it is worth to note that to the best of our knowledge, we are not aware of an-

other software-defined storage system that automatically enforces privacy policies along

the I/O path as EGEON. Software-defined security has remained within the boundaries

of software-defined networking (see, for instance, Fresco [91]). The only exception is the

recent vision paper [38] on software-defined data protection. Like EGEON, [38] argues

that the key ideas of software-defined storage can be translated to the data protection

domain. However, the approach of [38] is radically different. Instead of adding privacy

controls to the I/O stack of a disk-based object storage system, [38] assumes all in-

storage processing to occur on FPGAs and “smart storage” devices, for we see [38] as

an orthogonal work to us.

Privacy Policy Enforcement. There exist many systems that enforce privacy policies

automatically. Most of these systems resort to Information Flow Control (IFC) as a means

to control how information flows through the system. See, for instance, Riverbed [104],

which uses IFC to enforce user policies on how a web service should release sensitive

user data. In contrast to these systems, EGEON follows a software-defined approach to

leverage the storage resources and enforce the privacy policies where data is. Similar

to our transformation chains, Zeph [17] proposes to enforce privacy controls crypto-

graphically but over encrypted stream processing pipelines. Specifically for storage,

Guardat [101], at the block level, and Pesos [41], at the object level, enable users to specify

security policies, for instance, to stipulate that accesses to a file require a record be added

to an append-only log file. Nonetheless, these systems do not permit the composition of

advanced privacy controls as EGEON, and thus, fall short to empower users with strong

data controllers.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

62 Chapter 4. Software-Defined Data Protection for Object Storage

4.3 Design

EGEON is a software-defined data protection framework that augments object storage

with composable security services to enforce users’ privacy preferences over protected

data. These services are built up as pipelines of serverless functions. Fig. 4.1 illustrates

an overview of EGEON’s architecture. Our objective is to enable authorized users or

applications to access protected data without violating the privacy policies of data own-

ers. We have designed EGEON to make it easy the leverage of state-of-the-art privacy

solutions (such as content-level access control, homomorphic encryption, encrypted key-

word search, ...) while preserving the normal data flow in the consuming applications.

Concretely, we achieve this by introducing a logical separation between the privacy plane,

where data owners set their privacy preferences, and the data plane, where the creation

of privacy-compliant transformed views happens. This separation allows for hetero-

geneous policies atop the same data without having to modify the system internals to

enforce advanced policies at the object level.

EGEON’s architecture consists of the following components:

Privacy Plane. The privacy plane in EGEON corresponds to the control plane of a software-

defined architecture [29, 32], but specialized for data protection. In practice, this means

that EGEON provides its own script language to assist data owner in composing data

protection services from elementary serverless functions in the data plane. The textual,

JSON-based language supports conditions and compositions to build up inline privacy

transformers (e.g.,see Listing 4.5). Moreover, EGEON offers an API to allow data owners

to manage the life-cycle of their data protection policies.For performance reasons, once

uploaded, the policies are automatically compiled into Java bytecode and stored in the

Metadata Service. For fast access, this service has been built on top of Redis [76], an in-

memory, low-latency key value store.

Data Plane. In EGEON, the data plane has a critical role. The data plane is responsible

for generating the privacy-compliant data views. And hence, it must be extensible to

accommodate new functionality that enables privacy transformations on data. Particu-

larly, in this realization of EGEON, we have focused on inline privacy transformations

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

4.3. Design 63

as data is retrieved from storage nodes HDDs. As mandated by the policies in the

privacy plane, privacy transformations are constructed from pipelines of user-defined

functions executed as serverless functions by EGEON. Namely, a user integrating a new

transformation only needs to contribute the logic. Resource allocation and execution

of the chain of transformations is automatically handled by EGEON, bringing a true

serverless experience to users.

To minimize execution overhead, since many cryptographic operations are CPU-

intensive, EGEON abides by the principles of reactive programming and runs a trans-

formation only when is strictly needed, instead of continuously on the data streams.

More concretely, EGEON extends the observer pattern [26] and execute a certain trans-

formation in the pipeline when an event occurs [9]. Consequently, EGEON better utilizes

the available resources in the storage servers by balancing the load across the chain of

transformations. To better understand this, pretend that a user wants to compute the av-

erage salary of employees in a department X. Now suppose that all the employee records

have been saved in a single JSON document with all the salary values homomorphically

encrypted. Thanks to EGEON reactive core, the transformation to average the salary will

only be run when the event "employee of department X" comes through the data stream,

thereby saving CPU resources.

4.3.1 Threat Model

Specifically, EGEON enforces user’s privacy preferences via function composition. That

is, users are ensured that their data is transformed as it goes through a pipeline of

transformation functions before it is released to applications. In the meantime, the

original data remains end-to-end encrypted.

We assume an honest-but-curious [71] storage servers, i.e., the server performs the

computations correctly but will analyze all observed data to learn as much information

as possible. We also presume the existence of an identity service (IDS) such as OpenStack

Keystone for user authentication. We leverage this service for authentication of the

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

64 Chapter 4. Software-Defined Data Protection for Object Storage

storage functions. An IDS is a standard requirement in multi-user systems and can even

be a trustworthy external entity.

Consumers of shared data are semi-trusted, in that they do not collude with the

servers to leak the data or keys. This is a reasonable assumption for groups of data

consumers that are acquainted with each other. Further, EGEON assumes that the appli-

cations behave correctly and do not hand out user keys to malicious parties. Finally, we

assume state-of-the-art security mechanisms to be in place for user devices, and that all

parties communicate over secure channels.

In this setting, EGEON enforces data confidentiality, making sure that the adversary

learns nothing about the data streams, except what can be learned from the transformed

views.

Robustness. While EGEON is able to handle various types of failures in practice, prov-

able robustness against misconfigured, or even malicious privacy policies, and data

producers is out of scope for this research. A malicious user sending corrupted tokens

cannot compromise privacy but could alter the output of a transformed view.

4.3.2 Privacy Plane

In the privacy plane, EGEON provides the capabilities for data owner to set their privacy

preferences —i.e., user-centric privacy—, and what transformations will be required to

apply to enforce a privacy policy. These transformations are specified by their unique

name, and their existence is verified when the privacy policy is to be compiled. A privacy

policy applies to a single object. In this paper, we do not consider the question of how

to set privacy policies for group of objects and how they should look like. This question

has been left for future work.

In EGEON, targeted data objects in the privacy policies are specified by its full re-

source path. Following OpenStack Swift specs [64], the access path to an object is struc-

tured into three parts: /account/container/object. As an example, for the rose.jpg ob-

ject in the images container in the 1234 account, the resource path is: /1234/images/rose.jpg.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

4.3. Design 65

Data owners can translate their preferences over an object to a set of transforma-

tions by mapping them in a JSON-based schema language. In addition to some meta-

information (e.g., policy identifier), this schema permits data owners to formalize condi-

tions at the policy level using a rich set of operators such as “StringLike", “NumericLessThan",

etc. Importantly, the language enables data owners to build date expressions using

operators like “DateNotEquals", which makes it possible to express temporal restric-

tions. For instance, pretend that a data owner wishes to prevent that a document can be

accessed on weekends. She could indicate this through the date expression:

“DateNotEquals" : {“Day" : [“Sat", “Sun"]}.

More interestingly, this schema allows composing complex data protection transfor-

mations from elementary UDFs (User-defined Functions). This can be achieved by

adding each individual UDF as a step in the transformation pipeline defined in the

JSON object “Action". This object contains two name-value pairs: “StartAt", which

indicates the first transformation in the pipeline, and “Steps", which is another JSON

object that specifies the transformation UDFs along with their input parameters. Since

transformations run only when the corresponding events come through the data stream,

this schema allows data owners to specify the observed events for each transformation

to execute. To do so, there exists a field named “EventType" to signal the event to be

observed by a particular transformation UDF. A typical “EventType" block looks like

one in Listing 4.1.

1 {

2 "Type": "<type_of_event >",

3 "Input": [<parameter_block >, ...],

4 }

LISTING 4.1: EventType example.

where the “Type" field specifies the type of an event (e.g., an XPath [103] event) and the

array “Input" lists the parameters that are required for this type of event. For instance,

if a data owner wanted to apply a transformation UDF over all salary elements of an

XML document, she could do so by setting an XPath event as as shown in Listing 4.2.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

66 Chapter 4. Software-Defined Data Protection for Object Storage

1 {

2 "Type": "XPathEvent",

3 "Input": [{"Predicate": "// salary"}],

4 }

LISTING 4.2: XPath Event example.

Similarly, a transformation UDF block is shown on Listing 4.3.

1 {

2 "Id": "<identifier_of_UDF >",

3 "EventType": "<event_block >",

4 "Input": [<parameter_block >, ...],

5 "Next": (<identifier_of_UDF >|"End")

6 }

LISTING 4.3: UDF Block example.

The “Id" field is a string which uniquely identifies the UDF, while the “Input" field

permits to specify the parameters for the transformation UDF (e.g., the targeted security

level of a cryptosystem). Finally, the “Next" field indicates the next step to follow in the

pipeline, or “End" to indicate the end of the chain of transformations.

An example of a real policy can be found in Listing 4.5. This policy provides trans-

formed views over a JSON file containing employee records of the format shown on

Listing 4.4.

1 {

2 "employee": {

3 "name": "Alice",

4 "identification": {

5 "SSN": "32456677"

6 },

7 "salary": 50000

8 }

9 ...

10 }

LISTING 4.4: JSON record example.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

4.3. Design 67

As a first transformation in the chain, this policy uses content-level access control [14]

(CLAC). Very succinctly, CLAC works as follows. It assigns targeted JSON elements

an object label (olabel) and each user a user-label (ulabel). Then, it allows to define

rules in the form of (ulabel, olabel), which means that the JSON elements labeled with

any of the olabels are allowed to be read by the users labeled with the corresponding

ulabels. To indicate what JSON items to protect, CLAC uses JSONPath in this case.

In this policy, we assume two types of users: treasurers with user label “treasurer"

and regular users with label “user". We protect the salaries with the object label “sensitive"

and specify the single rule

(“treasurer", “sensitive"), which means that only treasurers will have access to the

salaries. The field “salary" is identified using the JSONPath expression: ‘$.employee.salary’

(Listing 4.5,line 14).

The second transformation applies homomorphic encryption on the field “salary"

to prevent the servers from learning the employee salaries [90], while computing the

average salary of employees (Listing 4.5, lines 20-30).

As a final transformation in the chain, the policy uses proxy re-encryption [90] to con-

vert the homomorphically encrypted average salary to a ciphertext under the receiver’s

key. Thus, the transformed view can be decrypted by the receiver, without the data

owner having to share her private key nor performing any encryption for the receiver

on her personal device.

To wrap up, this policy will generate two transformed views of the same data. For

regular users, it will only be executed the first step (Listing 4.5, lines 10-19): the CLAC

transformation. Due to lack of permissions, the CLAC module will eliminate the en-

crypted “salary" field, and output a transformed view with the rest of information. For

a treasurer, it will output the same view as any regular user (without individual salaries),

but enriched with the average salary encrypted under her public key thanks to proxy re-

encryption (Listing 4.5, lines 31-37).

We want to note that the different transformations UDF only execute when the corre-

sponding JSONPath events come along. To wit, proxy re-encryption will only be run one

time, after the JSON field named "average_salary" is added at the end of the response

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

68 Chapter 4. Software-Defined Data Protection for Object Storage

by the second transformation in the chain.

As a final word, this example clearly displays how EGEON is capable of performing

real-time privacy transformations atop the same data object for a variety of application

scenarios, thus enhancing the rigid interface of object storage systems.

4.3.3 Data Plane

The focus of EGEON is on inline privacy transformations, where data streams are

“observables” and user-defined privacy transformations are “observers” subscribed to

the data streams. As as soon as an event is observed, it will be delivered to the subscribed

observers. If there are no events on the data stream then the original data stream is

pushed back to the user. In this sense, a privacy transformation is nothing but a function

taking an observable as input and returning another observable as its output. This de-

sign has the advantage that transformations can be chained together to generate complex

data views compliant with the policies in the privacy plane.

Runtime. Currently, EGEON’s runtime is Java-based. Thus, the chain of transforma-

tions is run within a Java Virtual Machine (JVM) wrapped within a Docker container to

guarantee a high level of isolation between two different data transformations.

Policy Enforcement. Upon a new Get request, EGEON starts up a thread inside the JVM

to perform three tasks. We refer to this thread as the “master thread”. The three tasks in

order of execution are:

1. Policy loading, where the master thread loads the policy into memory and evaluates

its conditions clauses.

2. Observable setting, where the master thread opens a data stream to the target object,

namely, the observable, if the policy conditions are fulfilled. To this aim, it creates

an instance of the appropriate subclass of the abstract class StreamBuilder that

the EGEON’s engine leverages to start parsing the object. Subclasses are required

since the specific logic to parse the data stream and generate the events depends on

the type of file. Specifically, EGEON picks up the proper StreamBuilder subclass

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

4.3. Design 69

1{
2"Id": "employee.policy",
3"Object": "v1/{account}/{container}/employees.json",
4"Condition": {
5"DateNotEquals": { "Day": ["Sat","Sun"] }
6},
7"Action": {
8"StartAt": "Step1",
9"Steps": {
10"Step1": {
11"Id": "CLAC",
12"EventType": {
13"Type": "JSONPathMarkerEvent",
14"Input": [{"Predicate":"$.employee.salary", "olabel":

"sensitive" }]
15},
16"Input": [{"ulabel": "treasurer",
17"olabel": "sensitive" }],
18"Next": "Step2"
19},
20"Step2": {
21"Id": "SUM",
22"EventType": {
23"Type": "JSONPathEvent",
24"Input": [{"Predicate":"$.employee.salary"}]
25},
26"Input": [{"average": true},
27{"keyOwner": "meta:// Alice/keys/hom",
28{"output":"$.average_salary"}],
29"Next": "Step3"
30},
31"Step3": {
32"Id": "PRE",
33"EventType": {
34"Type": "JSONPathEvent",
35"Input": [{"Predicate":"$.average_salary"}]
36},
37"Next": "End"
38}}}

LISTING 4.5: A sample policy to process employee records.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

70 Chapter 4. Software-Defined Data Protection for Object Storage

based on the object extension (e.g., “.json" for JSON documents) using factory

methods.

3. Transformations setting, where the master thread makes an instance of each trans-

formation UDF in the pipeline and chains them together. The StreamBuilder

subclass generates events as the data is being parsed, and notifies the subscribed

transformation UDFs in the same order as dictated in the privacy policy. To wit,

in Listing 4.5, upon the JSONPath event ‘$.employee.salary’, EGEON will execute

first the CLAC transformation, followed by the SUM transformation.

In EGEON, we assume that an observable can only handle one event at a time. We

adopted this design to minimize compute resources at the storage layer, so that both

the data stream and all its transformations operate in the same thread, in our case, the

master thread. Nevertheless, this can be easily changed by switching to a different thread

and integrating some additional logic for coordinating the threads.

Since each transformation UDF acts as an observer, another responsibility of the

master thread is to subscribe each privacy transformation to the events specified in the

policy. To this aim, it invokes the method

install(Event event, UDF observer) in the StreamBuilder class, where the parameter

observer is the transformation UDF bound to the event.

Extensibility. At the time of this writing, EGEON implements three types of data sources:

XML, JSON and CSV documents, a number of events including XPath and JsonPath

expressions, CSV field and records, etc., and multiple transformation UDFs (see §4.3.4

for further details). However, EGEON is extensible, and new events, observables and

observers can be incorporated by extending the abstract classes Event, StreamBuilder

and UDF, respectively.

We show here an example of a transformation UDF to perform summations on cipher-

texts [90] to see how easy it is to code a transformation UDF (Listing 4.6).

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

4.3. Design 71

1 package com.urv.egeon.function;

2

3 import com.urv.egeon.runtime.api.crypto.Homomorphic;

4 import com.urv.egeon.runtime.api.parser.UDF.ContextUDF;

5 import com.urv.egeon.runtime.api.parser.UDF.UDF;

6 import com.urv.egeon.runtime.api.parser.event.Event;

7

8 public class Sum extends UDF {

9 private Homomorphic accum = new Homomorphic ();

10

11 @Override

12 public Event update(Event e, ContextUDF ctx) {

13 try {

14 this.accum.add((String) e.getValue ());

15 } catch (Exception ex) {

16 // first execution of the UDF

17 this.accum.setKeys ((String)

ctx.getParameter("keyOwner"));

18 this.accum.setCipher(this.accum.fromSerial ((String)

e.getValue ()));

19 } finally {

20 return e;

21 }

22 }

23 @Override

24 public Object complete(ContextUDF ctx) { ... }

25 }

LISTING 4.6: A transformation UDF to perform summations on ciphertexts.

As shown in Listing 4.6, a UDF has two methods: the method update, which is in-

voked every time a new subscribed event is emitted, and the method complete, which is

called when the data stream is finalized (empty). The update method has two arguments

of type Event and ContextUDF. The first argument encapsulates the details of the emitted

event. For instance, for the homomorphic summation UDF of Listing 4.6, this may mean

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

72 Chapter 4. Software-Defined Data Protection for Object Storage

a JSONPath event, alongside the value of the selected field by the JSONPath expression

(e.g., an encrypted salary value), and accessible via the method getValue (Listing 4.6,

line 14). The ContextUDF encapsulates the access to the request metadata, such as HTTP

headers and cryptographic keys and tokens sent out by the client, the object’s metadata,

and specific parameters required for the UDF to work, such as the data owner’s public

key to operate on the encrypted values (Listing 4.6, line 17). All this information is

automatically made available by EGEON to the transformation UDF. This includes the

input parameters set in the privacy policy (e.g., Listing 4.5„ lines 26-28).

It is worth to mention here that the input arguments whose values have the format

of “meta : //key" are automatically downloaded from the Metadata Service using the key

“key". In this way, a data owner can change the input parameters (e.g., her homomorphic

public key) without having to re-compile the policy. An example of this can be found

in Listing 4.5, line 27, for the argument “keyOwner", whose value is retrieved from the

Metadata Service behind the scenes, and made accessible to the summation UDF via the

context (Listing 4.6, line 17).

The purpose of the method complete is to provide a hook for developers to perform

final computations and append their result at the end of the data stream. For instance,

this could be useful to compute the average over encrypted data and append the result

as new item at the end of a JSON document.

4.3.4 Data Transformation UDFs

EGEON comes up with a library of reusable functions (UDFs) for inline data protection.

While some of these functions apply cryptographic transformations, others act on raw

data, e.g., by filtering out protected parts of a JSON object to non-privileged users [14].

All functions are composable to provide complex transformed data views. These are the

following:

Homomorphic encryption (HOM). HOM is a cryptosystem (typically, IND-CPA secure)

that allows the server to perform computations directly on encrypted data, the final

result being decrypted by the user devices. For general operations, HOM is prohibitively

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

4.3. Design 73

slow. However, it is efficient for summation. To support summation, along with proxy

re-encryption (PRE), we adopted the homomorphic cryptosystem of [90]. We chose this

scheme, because it allows secure data sharing and is tailored to mobile platforms and

constrained IoT devices. Concretely, we implemented two UDFs:

• Summation (SUM): This UDF supports the summation of ciphertexts, such that the

result is equal to the addition of the plaintext values: Enc(𝑚1) · Enc(𝑚2) = Enc(𝑚1 +

𝑚2).

• Re-Encryption (PRE). Succinctly, PRE allows the storage servers to convert cipher-

texts under the data owner’s key to ciphertexts under authorized users keys with-

out leaking the plaintext. Therefore, the data owner can securely share data with

other users, i.e., without sharing her private key nor performing any encryption for

them on her personal device. To do so, the data owner 𝑑 solely needs to issue a re-

encryption token for a user𝑢 based on his public key 𝑝𝑘𝑢 as the Token𝑑→𝑢 . With this

token, the PRE UDF can automatically re-encrypt data on behalf of the data owner

without her intervention. Further, the re-encryption tokens are unidirectional and

non-transitive.

For both UDFs, we assume integers of ≤ 32 bits with 128-bits of security. The im-

plementation makes use of the optimal Ate pairing [102] over Barreto-Naehrigopera

elliptic curve [13], and also applies the Chine Remainder Theorem (CRT) to optimize

decryption [90]. For all this cryptographic processing, we use the RELIC toolkit [6].

Keyword search (SEARCH) To allow keyword searches (as the SQL "ILIKE" keyword),

we make use of a cryptographic scheme for keyword searches on encrypted text [35].

As above, we have chosen this scheme because it is multi-user. To put it baldly, before

storing an object, the data owner first selects the users with whom she wants to share her

data and then encrypts it with their public keys. To search for keywords in the shared

object, a user makes a trapdoor Trap𝑊 for the keyword set𝑊 using his private key, and

then sends it to the server. The server runs the SEARCH UDF, which takes the public key

of the user, the trapdoor Trap𝑊 and the encrypted text, and returns "yes" if contains𝑊

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

74 Chapter 4. Software-Defined Data Protection for Object Storage

or "no" otherwise. As expected, this scheme is proved secure against chosen keyword

attacks (IND-CKA).

One major advantage of this scheme is its short ciphertext size. Concretely, for 𝑛

users, it requires (𝑛 + ℓ + 1) · 𝐿1 bits, where ℓ is the number of keywords and 𝐿1 is the

bit length of the underlying finite field F𝑞 , which is much smaller than the deployment

of 𝑛 separate instances of a public key searchable encryption scheme, one for each user.

For the implementation of this scheme, we use the “SS512” elliptic curve, a symmetric

curve with a 512-bit base field, which provides a security level of 80-bits, from the jPBC

library [20].

Content-level access control (CLAC). As an example of a non-cryptographic function,

we decided to implement content-level access control [14]. The central idea of CLAC is to

enforce access control at the content level to restrict who reads which part of a document.

To give a concrete example, consider that a hospital stores its patient records as big JSON

object. These records should be accessed differently by different personnel. For example,

a "doctor" could see health information from her patients, while a "receptionist" should

only view basic profile information about the patients. With CLAC, a data owner can

define content-level policies to censor access to parts of a data object. Remember that

in object storage systems such as Swift or Amazon S3, once an object is made accessible

to someone, she retrieves the full content of the object. So, there is no way to hide out

sensitive information to that user.

Our implementation of CLAC overcomes this limitation. As introduced in §4.3.2, CLAC

borrows the LaBAC model (Label Based Access Control Model) [14]. Either be an XML

element, a JSON element, or a CSV column, an object label (olabel) is assigned on the

targeted item. Similarly, each authorized user is given a user label (ulabel). Then,

the LaBAC model works by specifying tuples of rules in the form of (ulabel, olabel),

which tell that only the users labeled with ulabel can access the items labeled with

that olabel. For instance, if only users with the user label “manager" were authorized

to access items labeled with “restricted", a data owner should have to set the rule

(“manager", “restricted") to effectively formalize access control. As in the LaBAC model,

our implementation admits hierarchies of both ulabels and olabels to rank users and

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

4.4. Implementation 75

objects.

One interesting side effect of our reactive data plane is that our CLAC implementation

is generic, and not tied to a specific file type. What changes is the mechanism to identify

the items, which depends on the object type. That is, for XML, an XPath expression

should be used to indicate that a certain element has “restricted" access, while for a

JSON document, a JSON predicate should be used in its stead. We have abstracted this

coupling by the definition of specific marker events as shown in Listing 4.5,lines 22-25.

4.4 Implementation

We have constructed EGEON by extending Zion [84], a data-driven serverless computing

middleware for object storage. In particular, we have implemented EGEON on top of

OpenStack Swift [64], a highly-scalable object store.

OpenStack Swift is split into several components. The main components are the

object and proxy servers. While the object servers are responsible for the storage and

management of the objects, the proxy servers expose the RESTful Swift API

(e.g., GET /v1/account/container/object to get object content) and stream objects to

and from the clients upon request.

To be as non-intrusive as possible, the only modification we perform in the default

Swift architecture is the deployment of a custom Swift middleware to intercept GET,

or read, requests at the proxy servers [63]. This middleware also provides a simple

API to manage the life-cycle of privacy policies. Essentially, it communicates with the

Metadata Service to store and retrieve the privacy policies for protected data objects.

Recall that the Metadata Service leverages Redis [76] to yield sub-millisecond access

latency to metadata. To optimize request matching even further, we have collocated the

Redis instance with the proxy server. As Zion, EGEON uses containers to sandbox the

execution of the chain of privacy transformations. That is shown on Fig. 4.2. However,

contrary to Zion, which is a general-purpose serverless platform, EGEON employs a

single, optimized serverless function to produce the privacy-compliant views of the

underlying data. This function deserializes the compiled privacy policy, loads it into

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

76 Chapter 4. Software-Defined Data Protection for Object Storage

FIGURE 4.2: Docker, controller and Functions Structure.

memory, evaluates the conditions from the clauses, and if it “applies”, it runs the the

pipeline of UDF transformations. This design has two main benefits. On the one hand,

EGEON runtime starts up faster. On the other hand, UDF transformations enjoy of a

great level of isolation. Simply put, they have neither direct network access nor access

to the local Linux file system, among other namespaced resources, which protects the

whole system from malicious transformations.

Also, to enhance response time for policies that are accessed frequently, EGEON run-

time deploys a cache for policies using the Google Guava caching library [28] configured

with a least-recently-used (LRU) eviction policy.

Resource allocation is managed by Zion. EGEON does not contribute any optimiza-

tion at this level. When a read request comes along, our Swift middleware contacts the

Zion service, which manages the containers in the object servers, and starts up a new

one if necessary.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

4.5. Evaluation 77

4.5 Evaluation

In this section, we evaluate key aspects of EGEON’s design and our prototype implemen-

tation. First, we begin with a series of microbenchmarks to judge aspects such as system

overhead, throughput and the performance of the cryptographic operators in isolation.

Finally, we assess EGEON’s flexibility to compose complex data views.

System setup. All the experiments have been conducted in a cluster of 8 machines: 2 Dell

PowerEdge R320 machines with 12GB RAM, which operate as Swift Proxy servers, and

6 Dell PowerEdge R320 machines with 8GB RAM and 4-core CPUs, which act as object

servers. The version of OpenStack Swift is Stein 5.2.0. All the machines run Ubuntu

Server 20.04LTS and are interconnected through 1GbE links. The client machine for the

experiments is equipped with a Intel Core i5-4440 CPU with 4 cores and 8GB RAM.

Competing systems. In some tests, we have compared EGEON against plain Zion [84]

and Vertigo [83], all deployed in the same Swift cluster as above. Concretely, we have

used Zion as a baseline to assess the overhead added by EGEON’s software-defined

architecture to the original Zion design, while we have chosen Vertigo as an example

of a general-purpose, software-defined object storage system. As EGEON, Vertigo allows

users to create pipelines of storage functions, each implemented as an OpenStack Stor-

let [65]. Hence, it is a good representative to act as a proving ground for the performance

of EGEON against a similar software-defined architecture. It must be noticed that the

control plane in Vertigo is programmatic, while in EGEON is declarative through the use

of JSON-based privacy policies.

4.5.1 Microbenchmarks

We have run several microbenchmarks:

Cryptographic operations. To better understand the sources of overhead incurred by

EGEON, we examined the throughput of the individual transformation UDFs, since dif-

ferent privacy policies may result in various transformation mixes. For each type of

cryptographic transformation, we measured the number of operations per second that

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

78 Chapter 4. Software-Defined Data Protection for Object Storage

the EGEON runtime can perform on a object server in the data plane, as well as the

latency. The meaning of each operation depends on the specific type of the cryptographic

transformation UDF. For HOM, this refers to the summation of two encrypted 32-bit inte-

gers. For PRE, it refers to the proxy re-encryption of a single encrypted 32-bit integer,

while for SEARCH, it represents the search of a keyword in an encrypted document with

the same keyword. The results of this experiment are given in Table 4.1. As expected,

we can observe that the latency of the cryptographic operations is in the order of a few

milliseconds, which is acceptable for many use cases. Due to the added latency of the

cryptographic transformations, a reactive data plane such as that available in EGEON,

which is driven exclusively by the events appearing in the data streams, can be of great

help to define privacy policies that minimize the number of cryptographic operations

(for instance, by skipping unneeded data in the first steps of the transformation chain).

Overhead. To provide a full picture of the overheads incurred by EGEON, we measured

the latency introduced by EGEON to the I/O path with respect to Zion and vanilla Swift.

To measure the overhead, we utilized the Time to First Byte (TTFB), which captures how

long the client needed to wait before receiving its first byte of the response payload from

the Swift servers. To make measurements more precise, we colocated the client with

one of the Swift proxy servers. As a client, we used pycurl to generate the Get requests

for three different data file sizes. For each object size, we performed 1K requests. For

Zion, each request caused the invocation of a NOOP function that simply echoes the input

stream to the output (see Listing 1 in [84] for further details). For EGEON, we set up a

NOOP policy which includes a single NOOP UDF in the transformation chain. An UDF that

does nothing can be shown on Listing 4.7.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

4.5. Evaluation 79

1 package com.urv.egeon.function;

2

3 import com.urv.egeon.runtime.api.parser.UDF.ContextUDF;

4 import com.urv.egeon.runtime.api.parser.UDF.UDF;

5 import com.urv.egeon.runtime.api.parser.event.Event;

6

7 public class Noop extends UDF {

8 @Override

9 public Event update(Event e, ContextUDF ctx) { return e; }

10 @Override

11 public Object destroy(ContextUDF ctx) { return null; }

12 }

LISTING 4.7: A no-operation (NOOP) UDF.

The results are given in Fig. 4.3. As seen in this figure, Zion and EGEON are on par, which

demonstrates that EGEON software-defined architecture adds little overhead to Zion.

With respect to vanilla Swift, both systems add around 9ms of extra latency, which can

be considered very small. To wit, serverless function invocation in major cloud providers

usually take between 25 to 320ms in warm state [105].

Since Zion does not support the pipelining of functions, we compared EGEON against

Vertigo. Recall that Vertigo enables users to chain several Storlets together, where each

Storlet can implement some reusable storage function such as decryption, compression,

etc. We repeated the same experiment as above, but evaluating chains of increasing

length. For EGEON, we set up chains of NOOP UDFs, while for Vertigo, we did the same,

but for pipelines of NOOP Storlets. The results are depicted in Fig. 4.4. We can see that

while the overhead keeps constant in EGEON, Vertigo shows a linear increase in latency.

The reason for such a difference is the reactive core of EGEON, which does nothing if the

transformations are not subscribed to any event. Vertigo, however, wires each Storlet

with their neighbors in the chain, which takes some time, albeit each of them just copies

the input to the output. This strongly reinforces the idea that for a software-defined data

protection system to be useful, it is not a good idea to route the data streams through

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

80 Chapter 4. Software-Defined Data Protection for Object Storage

Swift Zion Egeon

System

0.013

0.016

0.019

0.022

0.025

0.028

0.031

0.034

0.037

T
T

F
B

 (
s
e
c
s
)

(A) TTFB for a 10KB object.

Swift Zion Egeon

System

0.013

0.016

0.019

0.022

0.025

0.028

0.031

0.034

0.037

0.04

T
T

F
B

 (
s
e
c
s
)

(B) TTFB for a 100KB object.

Swift Zion Egeon

System

0.013

0.016

0.019

0.022

0.025

0.028

0.031

0.034

0.037

0.04

T
T

F
B

 (
s
e
c
s
)

(C) TTFB for a 1MB object.

FIGURE 4.3: Time to First Byte (TTFB) for different object sizes.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

4.5. Evaluation 81

#1 #2 #3

Number of NOOP UDFs

2

4

6

8

10

12

14

16

18

20

L
a
te

n
c
y
 (

m
s
)

(A) Overhead of EGEON.

#1 #2 #3

Number of NOOP Storlets

60

80

100

120

140

160

180

L
a
te

n
c
y
 (

m
s
)

(B) Overhead of Vertigo.

FIGURE 4.4: Overhead of chain setup of EGEON versus Vertigo.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

82 Chapter 4. Software-Defined Data Protection for Object Storage

TABLE 4.1: Performance of cryptographic primitives available in EGEON.

Transformation UDF Throughput (ops/sec) Latency (ms)
Homomorphic Addition (SUM) 616 1.62
Proxy Re-Encryption (PRE) 137 7.29
Keyword Search (SEARCH) 166 6.02

a pipeline of functions, but rather to act on them when it is strictly needed. Indeed,

Vertigo’s overhead is more than one magnitude higher than EGEON’s overhead as shown

in Fig. 4.4.

Throughput. As a final microbenchmark, we quantified the impact of EGEON on the sys-

tem throughput. As above, EGEON was compared to Zion and vanilla Swift to give real

sense of its performance. For this experiment, we utilized the getput benchmarking tool

suite [88] for Swift. And in particular, the gpsuite to conduct parallel tests with multiple

clients. More concretely, we run gpsuite in one of the Swift proxy servers for 10 seconds

and for different object sizes. We considered a replication factor of 3, and instrumented

gpsuite to stress 3 out of the 6 object servers in the data plane. As in the overhead

test, a NOOP function call per request was made for Zion and a NOOP policy plus NOOP

UDF for EGEON. Table 4.2 reports the maximum throughput in operations per second

attained by each system. Similarly to what was observed for the overhead, EGEON and

Zion perform in similar terms. More interestingly, as the object size increases, the gap

between both EGEON and Zion and Swift grows. We investigated this issue and we

found that this happens due to a higher CPU interference caused by the JVM used to

run the EGEON logic and the NOOP code in Zion, respectively.

Also, Fig. 4.5a plots the throughput for an increasing number of emulated clients for

a 1MB object, which exhibits the same behavior as before. That is, EGEON and Zion

showing a similar performance, while Swift delivering a much higher throughput due

to the absence of any computation in the I/O path. Finally, Fig. 4.5b illustrates EGEON’s

slowdown relative to vanilla Swift, calculated as Slowdown = EGEON download time
Swift download time , as a

function of the object size (𝑥-axis) and the number of concurrent clients (𝑦-axis). As can

be seen in the figure, the slowdown factor does not increase steeply. Rather, it increases

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

4.5. Evaluation 83

1 2 4 8 16 32 64 128 256

Clients

20

40

60

80

100

120

O
p
e
ra

ti
o
n
s
 /
 s

e
c

Swift Zion Egeon

(A) Throughput (ops/sec) for a 1MB object.

(B) Slowdown of EGEON over vanilla Swift.

FIGURE 4.5: Throughput and latency of EGEON under a multi-client setting.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

84 Chapter 4. Software-Defined Data Protection for Object Storage

TABLE 4.2: Maximum throughput (ops/sec) for different object sizes.

System Object size
100KB 1MB 10MB

Swift 157,81 111,43 31,62
Zion 140,72 79,69 21,17

Egeon 140,56 79,59 21,26

gradually in both axes, never doubling the latency. This indicates that pushing down

data protection logic to the storage may be acceptable for many applications.

4.5.2 Applications

To evaluate the composability of EGEON, we have designed two privacy policies that

capture the different complexities of real-world applications. These applications are the

following:

Covid-19 use case. In this use case, we demonstrate the same policy of Listing 1, but

applied to healthcare. We use the JSON file reported by the US government that sum-

marizes the patient impact on healthcare facilities caused by Covid-19 [99] (April 2021).

Specifically, we exchange the user label “treasurer" by “state coordinator", and label

the field that reports the sum of patients hospitalized in a pediatric inpatient bed in 7-

day periods [FAQ-10.b)] as “sensitive", as it reveals which hospitals may be collapsed.

The rest of information is ignored. As a result, the transformed view for state officials

only bears a single homomorphically encrypted value that aggregates the sum of all

healthcare facilities. As in Listing 1, the policy links 3 UDFs: CLAC→HOM→PRE. To play

out with the file size, we split this dataset into three smaller files based on increasingly

smaller time periods: year, month and week.

Adult dataset [61] use case. This dataset in CSV format from the UCI Machine Learning

Repository [61] has 48842 records and 14 attributes. Some of these attributes can leak

sensitive information such as race and occupation. For this use case, we have decided

to protect the attribute #7: occupation, with the SEARCH scheme to allow for type-of-

employment searches on encrypted text. To prove composability, we have used CLAC to

protect three attributes out of the four attributes chosen for this experiment. We have

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

4.5. Evaluation 85

used one object label: “sensitive", and one user label: “HR manager", so that only a

human resources manager can retrieve the three protected columns. Further, we have

encrypted other fields to increase the file size to 134MB, to later split it into 3 smaller files

based on the attribute #6: marital-status. The policy is as follows (some fields have been

omitted for brevity):

1 {

2 "Object": "v1/{account}/{container}/adult.csv",

3 "Action": {

4 "StartAt": "Step1",

5 "Steps": {

6 "Step1": {

7 "Id": "CLAC",

8 "EventType": {

9 "Type": "ColumnMarkerEvent",

10 "Input": [{"columns": [2,6,7], "olabel": "sensitive" }]

11 },

12 "Input": [{"ulabel": "HR manager", "olabel": "sensitive" }],

13 "Next": "Step2"

14 },

15 "Step2": {

16 "Id": "SEARCH",

17 "EventType": {"Type": "ColumnEvent", "Input": [{

"column":7}]},

18 "Next": "End"

19 }}}

LISTING 4.8: A policy definition example.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

86 Chapter 4. Software-Defined Data Protection for Object Storage

1.3 GB 537 MB 153 MB 38 MB

Object size

0

100

200

300

400

D
o

w
n

lo
a

d
 t

im
e

 (
s
e

c
s
) Egeon

LAN 1Gb

4G network 28Mb

Fiber 50Mb

(A) Covid-19 use case.

134 MB 63 MB 18 MB 4 MB

Object size

0

10

20

30

40

D
o

w
n

lo
a

d
 t

im
e

 (
s
e

c
s
) Egeon

4G network 28Mb

Fiber 50Mb

LAN 1Gb

(B) Adult dataset use case.

FIGURE 4.6: Performance of EGEON in two composite policies.

Experiment. In this test, we measure the time to download the raw files directly from

Swift against the time to download the transformed views generated by EGEON. The

goal is to decide if it is worth to push the privacy transformations into the object store

instead of running them on the user devices and VMs, so that software-defined data

protection is within reach. To do so, we have capped the ingoing bandwidth of our client

machine to emulate different network speeds and customary scenarios: Fiber network

speeds to emulate home and business users, 4G network bandwidth to emulate mobile

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

4.6. Work-In-Progress: porting EGEON to the edge. 87

users, and finally, LAN to simulate a scenario where the client and Swift servers reside

on the same local area network (e.g., a university intranet). The exact network speeds

are listed in Table 4.3. We performed 1K executions per object size and network speed.

TABLE 4.3: Network Speeds.

Network 4G Fiber LAN
Median speed (Mbps) 28.9 [109] 55.98 [108] 887 (SpeedTest)

The results are plotted in Fig. 4.6a for the Covid-19 use case, and in Fig. 4.6b for

the Adult dataset. Error bars display the standard deviations of results, which are

indeed very narrow. Non-surprisingly, we can see that EGEON lowers the download

time significantly for the slow 4G and fiber connections, which means that pushing

down privacy transformations to storage is a good deal better than the naive approach

of encrypting data on the client side and retrieve the whole file as alleged by cloud

providers such as AWS for S3. The savings in some scenarios can be dramatic such

as in the Covid-19 use case, where just a few bytes (e.g., aggregates such as SUM, COUNT

and AVG, etc.) are consumed by the application, reaching 72.1X speedup for 4G mobile

terminals. For the LAN setting, the benefits are not so clear, and for the Adult dataset,

EGEON shows a slowdown factor of 3.3X in the worst case due to the heavy compu-

tations associated with keyword search—actually, the test primitive of SEARCH requires

three pairing operations [35]. Either way, we believe that EGEON’s fine-grained data

protection capabilities outweigh the slight loss of performance.

4.6 Work-In-Progress: porting EGEON to the edge.

Although our original aim was on cloud object storage, we felt that moving EGEON to

the edge can provide a cost-effective and secure data infrastructure for many applica-

tions. With 5G around the corner and the Internet of Things (IoT) economy exploding,

the truth is the current cloud infrastructure will struggle to keep up and can quickly

accumulate multiple PBs of data in no time. PBs of data that can be processed close to

the devices [12, 73]. One of the key challenges in the development of applications at the

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

88 Chapter 4. Software-Defined Data Protection for Object Storage

edge is the efficient data sharing between the multiple edge clients. In this sense, edge

storage can greatly improve data access and enable latency-sensitive applications [97,

55]. However, the dynamic and heterogeneous environment in the edge, along with the

diverse application requirements poses several challenges such as:

• Stringent resources of the edge servers;

• Preprocessing of different data storage formats and data types, often involving

Extract, Transform, Load (ETL) operations;

• Execution of low-latency data analytics applications;

• Security and privacy concerns; and

• Quality of service (QoS) guarantees.

Despite recent advancements in the pursuit of practical edge storage solutions, there

is no solution to address all the above challenges in a holistic manner. To support a

variety of data formats, such as documents, images, and other unstructured data types,

the object storage model is the right abstraction. Certainly, object storage is the storage

of choice in the cloud, then:

Why couldn’t object storage be the storage of choice for the edge?

The answer depends on many factors. Above all, the edge storage model is useful in

those situations where the objective is to perform processing and analytics at the edge,

filtering out unnecessary data and retaining or sending only the insights and relevant

data to the cloud. In this model, the compute and storage components are co-located

at the edge and are specifically designed to store and process data on-site. The primary

aim is not to store petabytes of data at the edge. Instead, this model envisions managing

data ranging from a hundreds of gigabytes up to a terabyte.

Unfortunately, as discussed in this thesis, solutions such as OpenStack Swift, AWS

S3 and MinIO [58] , the most prominent technical cloud solutions, fall short to address

all the above challenges. Just to illustrate, the above solutions are general-purpose and

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

4.6. Work-In-Progress: porting EGEON to the edge. 89

have not been designed with NDP in mind. NDP refers to a computational paradigm

where processing elements are co-located “next to” data (see section §??sec:ndpexplain

for further details). The absence of NDP support implies that the processing of a datum

requires shipping it out of the local storage subsystem to a separate software stack for

data analysis, often located at a distance, which can lead to increased data movement,

latency, and potential performance bottlenecks. Even storage system such as Swift,

which provides some incipient NDP support in form of storlets [62], is not well-prepared

for edge computing. Storlets are small Java applications that can be launched within a

Swift deployment. However, the lack of resources problem still remains: the execution

of a simple storlet requires launching a Java Virtual Machine (JVM), which may be too

heavyweight for many edge servers.

Based on the above observations, we have started to adapt EGEON to become an

edge object storage solution with NDP support, or put another way, with UDF support

for data transformations. The new edge storage solution must be "all-in-one" and fit in

a single server. In principle, the current architecture of EGEONallows this, providing

a unified platform that can handle both storage and data transformations. However,

its architecture has a large memory and storage footprint, mostly due to its Java-based

runtime. To mitigate this, we have re-written the whole Java executor into C++, which

allows us to have a fine-grained control of the memory, along with a series of modifi-

cations to make it more efficient. Since this research is still in progress, here only de-

scribe most important modifications undertaken to make EGEONmore edge-compliant,

together with some preliminary results.We call this new variant "EGEON-EDGE".

4.6.1 Modifications to the runtime

Here we discuss the main changes to the original system. First off, we have implemented

a new C++ multi-threaded executor for EGEON. The new executor is more lightweight,

and is compiled to the underlying system architecture (e.g., x86_64) for improved per-

formance when EGEONis deployed on an edge server. As in the Java executor, the

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

90 Chapter 4. Software-Defined Data Protection for Object Storage

new executor is containerized, but the new containers is built from a "distroless" im-

age. Distroless images contain only your application and its runtime dependencies.

They do not contain package managers, shells or any other programs you would ex-

pect to find in a standard Linux distribution. Concretely, we used the container image

gcr.io/distroless/cc, maintained by Google. This image contains a minimal Linux,

glibc runtime and has a size of around 24 MiB. As we will see in Section 4.6.2, the use

of small container image allowed us to minimize the memory footprint, as well as to

reduce significantly the cold start time, i.e., the time it takes for a container instance to

boot up. Fig.4.7 shows an overview of the new C++ runtime of EGEON.

FIGURE 4.7: EGEON-EDGE new runtime. Two main concurrent UDFs (UDF1 and UDF2) from
inter_UDF threapool are executing various threads, which are grabbed from intra_UDF threadpool
on each intercepted pthread_create POSIX call.

Executor-to-object server communication. To communicate the object server with a

multi-threaded executor instance, we use Linux pipes. The object server reads the file

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

4.6. Work-In-Progress: porting EGEON to the edge. 91

from disk and passes the file to the executor using a pipe. The executor processes the

file as a stream and sends the transformed file chunks back to the object server using

another pipe. In this back and forth, multiple data copies take place between the user

space and the kernel space, hurting performance. To alleviate this, EGEON-EDGE uses

the vmsplice system call to attach the virtual memory pages from the executor process

directly into the kernel pipe buffer, avoiding to copy the transformed data chunks from

user space to kernel space. When the object server instance calls the readv system call,

the data is then directly copied from these pages to the destination buffer. In this way,

the data is transferred using a single memory copy. Communication between an object

server and a process server continues to be HTTP-based.

By default the Linux kernel has a compile-time limitation of 16 pages per pipe, i.e., 4

KiB/page, for a total limit of 64 KiB transferred per call to vmsplice or readv. At first

glance this limitation may seem cumbersome. However, in practice, our preliminary

results show a significant improvement with the default values, with no need to use huge

pages, which may provide unsatisfactory performance on important applications [75].

Hierarchical thread pool. To reuse the same executor for handling concurrent requests,

the new executor is also multi-threaded. However, the multi-thread support has been

implemented as a thread pool to eliminate the cost of thread creation and destruction.

Upon a new object request, a thread is borrowed from the pool to execute the corre-

sponding UDF. When the UDF finishes execution, the thread is automatically returned

to the pool for later usage. An interesting feature of the thread pool is that is hierar-

chical. By “hierarchical”, we mean that the thread pool has been split into two regions.

The first region, or inter-UDF thread pool, is used to execute the main thread of the

UDFs; however, if the UDF in turn creates new threads, the new threads are grabbed

from the second region of the pool, or intra-UDF thread pool. We have adopted this

structure to enable UDFs to leverage intra-UDF parallelism, which is very interesting for

commonplace CPU-intensive operations such as compression and encryption. To stick

with the standards, the intra-UDF parallelism adopts the POSIX Thread model, which is

available in many operating systems, including Windows.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

92 Chapter 4. Software-Defined Data Protection for Object Storage

To implement it, we have replaced and rewritten the corresponding function such

as pthread_create in the POSIX Thread API with the LD_PRELOAD library. With the

LD_PRELOAD library, the executor intercepts the calls to pthread_create and replaces

it by a custom implementation that borrows a thread from the second region of the

pool. If there are not sufficient threads in this region, the executor traps and cancels

the execution of the whole threaded UDF. In case there are no sufficient threads in the

first region, the incoming object request is enqueued until a thread becomes available, or

the request simply times out. We believe that this design is well consistent with object

storage semantics.

Last but not least, it must be noted that the size of the thread pool is configurable. By

now, the system administrator can decide how many threads will be allocated to the first

and second regions of the pool. We hope in a near future to provide a simple API with

calls such as set_num_intraop_threads to dynamically resize the second region of the

pool.

4.6.2 Preliminary results

In this section, we provide some preliminary results of EGEON-EDGE. The results in this

section show how the new system behaves in terms of scalability, resource consumption,

and response time to the end user. This data provides valuable insights into the efficacy

of the implemented changes and helps in identifying areas that may require further

optimization or adjustment.

Setup. For the experiments, all the systems were deployed on a single VM instance with

the following specs: 4GiB of RAM and 2 vCPUs, equipped with the Linux distribution

20.04 Ubuntu 64 bits, which emulates a small edge server. In addition to the original

EGEON system, which we call it now EGEON-CLOUD to differentiate it from the new

variant, we compare EGEON-EDGE to ZION.

Efficiency of EGEON-EDGE. We first focus on the difference in the resource footprint

and cold-start initialization latency between EGEON-EDGE and ZION. To this aim, we

leveraged various tools such as Prometheus [72] and cAdvisor [18] to extract metrics

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

4.6. Work-In-Progress: porting EGEON to the edge. 93

such as CPU utilization and memory utilization for both the EGEON-EDGE and ZION

executors. To measure memory consumption, we used the resident set size (RSS) metric,

which reflected the number of pages each executor had in real memory. To have a

broader view, we got these metrics for both executors at rest (i.e., when they are not

running any UDF), and when running the NOOP storage function, that is, a UDF that

simply echoes the input object to the output. With this, we can report the minimal

footprint in both the passive and active states.

We also investigated cold-start initialization times. To do so, we measured the time

to create a new container and have the corresponding executor up and running. Finally,

we observed the capacity as the maximum number of concurrent running executors that

the VM can sustain before running out of memory. These metrics give a sense of the

elasticity of both systems, with the one with more capacity and lower cold-start times

exhibiting a higher degree of elasticity.

Results are given in Table 4.4. This table shows several orders of magnitude im-

provement in the resource footprint. This comes from the thinning of the container

image and the design of a lighter executor written in C++, tailored to the execution of

storage functions. Altogether, this results in a significantly lower CPU utilization, of up

to 20 times less under similar conditions. Furthermore, RAM utilization has markedly

decreased with the new incarnation of EGEON, reaching a reduction factor of up to 2, 600

times compared to ZION.

In terms of elasticity, the VM can support up to 5.76X more executors in EGEON than

in ZION, while exhibiting a 70% lower cold start initialization time. These two metrics

are very important in a serverless context. A higher capacity means a higher packing

density of concurrent storage functions on a given host. Low initialization times reduce

cost and latency for the user, through their mitigation of the cold-start problem.

Performance of EGEON-EDGE. To get a first sense of the performance of EGEON-EDGE,

we coded and executed a UDF that performs a grep to search the keyword IGMP in a

1.97GB network log file. We chose this function because it is an IO-bound task, more

amenable to what would be run on an edge server, where some preprocessing is typically

performed to sanitize the data before further processing it in the cloud. As a baseline, we

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

94 Chapter 4. Software-Defined Data Protection for Object Storage

TABLE 4.4: Efficiency comparison of ZION and EGON-EDGE. RSS stands for Resident Set Size.
Capacity is measured as the number of containerized executors concurrently running in both
systems.

Metric Zion EGEON-EDGE Improvement Factor
Cold Start 1.8709s 1.0960s 1.70X
image size 422MB 34MB 17.51X
containers 135 778 5.76X
RSS idle 48, 345, 088B 16, 384B 2, 646X
RSS NOOP 59, 805, 696B 151, 552B 395X
CPU idle 0.580% 0.029% 19.5X
CPU noop 0.812% 0.035% 22.6X

also ran the NOOP UDF. To obtain meaningful results, we ran both functions 100 times in

pre-warm state. As performance indicators, we measured the Time to First Byte (TTFB)

and the Time to Last Byte (TTLB), or download time.

FIGURE 4.8: Time to First Byte (TTFB) and Time to Last Byte (TTLB) of the NOOP UDF comparison
between Swift, EGEON-EDGE (C++ Executor) and EGEON-CLOUD (JAVA executor).

The results for the NOOP UDF can be found in Fig. 4.8. As can be seen in this figure,

the TTFB is almost equivalent to that of Swift, and more than 2X shorter than ZION.

Likewise, the TTLB of EGEON-EDGE was very similar to that of Swift, and 3X shorter

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

4.6. Work-In-Progress: porting EGEON to the edge. 95

FIGURE 4.9: Time to First Byte (TTFB) and Time to Last Byte (TTLB) of the grep UDF comparison
between EGEON-EDGE to EGEON-CLOUD.

than that of ZION. The reason for this improvement is attributable to the use of the

vmsplice system call that allowed us to avoid copying data in and out of an opaque

in-kernel pipe buffer, and the development of a lighter executor compared to ZION,

which is managed by the JVM garbage collector. This trend also turns up for the grep

UDF, albeit smaller in magnitude, as shown in Fig. 4.9. The reason is that the this UDF

is not purely I/O and CPU costs reduce the benefit of a single-copy IPC. This result

could be improved by letting EGEON pipeline the write of a data chunk to the pipe with

the processing of the next data chunk in another thread. We left this improvement as

future work. Either way, the performance results seem promising, and research path to

continue exploring in the next months with more evaluation and enhancements.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

96 Chapter 4. Software-Defined Data Protection for Object Storage

4.7 Conclusions

As increasingly much more sensitive data is being collected to gain valuable insights,

the need to natively integrate privacy controls into the storage systems is growing in

importance. In particular, the poor interface of object storage systems, which lacks of

sophisticated data protection mechanisms, along with the inherent difficulties to refac-

tor them, have motivated us to design and implement EGEON. To put in a nutshell,

EGEON is a novel software-defined data protection framework for object storage.

It allows data owners to define privacy policies on how their data can be shared,

which permit the composition of data transformations to build sophisticated data pro-

tection controls. In this way, data owners can specify multiple views from the same

data piece, and modify these views by only updating the policies (e.g., by modifying the

chain of transformations that produce a particular view), leaving the system internals

intact. The EGEON prototype has been coded atop OpenStack Swift. Our evaluation

results demonstrate that EGEON adds little overhead to the system, yet empowering

users with the needed controls to ensure strong data protection.

As a work in progress (WIP), we are porting EGEON to the edge by rewriting critical

parts of the software stack in C++ such as the executor, getting promising results. For

instance, the new enhancements have shown several orders of magnitude improvement

in the resource footprint and cold start initialization times compared to the original

system implementation.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

Chapter 5

Conclusions and Future Work

5.1 Conclusions

The increasing popularity of cloud storage services like Dropbox and Google Drive

underscores the importance of optimizing network traffic. Sync deferment has been

identified as a crucial technique in this context, particularly effective in scenarios of fre-

quent file modifications. Current literature affirms the convenience of this technique,yet

it also highlights performance shortcomings in existing implementations.

The first key question of this thesis appears here: Could file synchronization defer-

ment be optimized to help mitigate the traffic overuse problem?.

Based on the research and experimental results, the answer is affirmative. We have

developed an innovative adaptive sync deferment algorithm named Rate-based Sync

Deferment (RSD) which matches the current state of the art in terms of overhead but

also stands out by reducing file synchronization delays.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

98 Chapter 5. Conclusions and Future Work

The adaptive nature of RSD allows it to dynamically adjust to varying conditions,

thereby enhancing efficiency. This is particularly crucial in cloud storage environments

where file modification frequencies can be unpredictable and varied. The experimental

results are compelling, showing improvements in sync delay by factors ranging from

2X to 12X which mitigates network traffic overuse and also enhances user experience by

ensuring more timely updates of their stored data.

On another note, in the context of personal cloud storage services, especially in

collaborative scenarios, the second key question of this thesis arises: Could security data

management be effectively outsourced to the storage cloud by applying the principles

of software-defined storage?

To answer this question, a novel software-defined data protection framework for ob-

ject storage named EGEON has been developed, demonstrating its practical applicability

and effectiveness by introducing minimal overhead to the system. EGEON asnswers

the growing need for integrated privacy controls in storage systems, particularly in

collaborative environments where data security is paramount.

EGEON allows data owners to define privacy policies that control how their data

can be shared. This capability enables the composition of data transformations to create

sophisticated data protection controls. By specifying multiple views from the same data

and modifying these views through policy updates (for example, altering the chain of

transformations that produce a particular view), data owners can manage their data

security without altering the system’s internals.

EGEON introduces a minimal overhead of just 9ms, which is quite modest when

compared to the 25 to 320 ms overhead typically associated with cloud providers [105].

In terms of performance, EGEONexhibits a certain degree of slowdown, but is relatively

small. In practical terms, this means that the performance degradation, while noticeable,

is not excessively burdensome. It never exceeds double the time it would take without

it.

For a wide range of applications, the overhead level introduced by EGEON is gener-

ally acceptable. In most cases, the advantages offered by EGEON, particularly in terms of

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

5.2. Future Work 99

enhanced data security and secure cooperation scenarios, significantly outweigh the mi-

nor performance reduction it causes. This situation presents a strategic balance between

functionality and efficiency. For numerous users and organizations, this trade-off could

be considered worthwhile.

5.2 Future Work

As a work in progress, we are exploring object storage as a potential storage solution

for edge computing. It’s important to emphasize that the decreased resource footprint

and quicker initialization times are key elements in edge environments. In these settings,

where resources are typically limited, and responsiveness is crucial, these factors become

even more critical.

In this sense, EGEON is being adapted to edge computing by rewriting critical parts

of its software stack in C++, focusing on components like the executor. This has yielded

promising results, improving by several orders of magnitude both the resource footprint

and cold start initialization times compared to the original Cloud-based system imple-

mentation. This suggests that object storage could indeed be a viable choice for edge

computing.

However, it is important to consider that the journey to make object storage suitable

for the edge involves overcoming inherent challenges such as limited computing power,

storage capacity and network connectivity. The ongoing work on EGEON indicates that

these challenges are not insurmountable but require changes, for example, to resilence.

Resilience is a critical factor for storage in edge computing environments. In such set-

tings, IoT devices and edge data centers are often difficult to physically access and main-

tain. Unlike drives in traditional data centers, those in IoT and edge data centers face

more challenging physical conditions, increasing the likelihood of drive failures. Given

this reality, it is s imperative for these architectures, particularly the storage components,

to be designed to fail in place. This means accepting that drive failures are inevitable

and ensuring that these failures do not result in data loss. This scenario underscores

the importance of a self-healing and automated storage architecture. Such a system can

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

100 Chapter 5. Conclusions and Future Work

safeguard data even in the event of drive failures and is capable of automatically failing

over to alternate data centers if all drives at a specific edge location fail.

Therefore, it would be desirable to have a sort of localized cloud at the edge, comple-

mented by the backup of central cloud storage. By adopting this approach, we enhance

the resilience of data. In the event of a failure, we would be supported by our nearby

edge cloud, while still having the reassurance of backup from the main cloud storage.

This dual-layered strategy ensures data robustness, providing a fail-safe mechanism

where the nearby edge cloud offers immediate support and the central cloud storage

serves as a reliable safety net.

In that sense, we are planning to implement a dual cloud strategy, combining the

localized processing power of edge cloud capabilities with the comprehensive backup

and robustness offered by central cloud storage.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

Bibliography

[1] Anurag Acharya, Mustafa Uysal, and Joel Saltz. “Active disks: Programming

model, algorithms and evaluation”. In: ACM SIGOPS Operating Systems Review

32.5 (1998), pp. 81–91.

[2] Mahmuda Akter et al. “Performance Analysis of Personal Cloud Storage Services

for Mobile Multimedia Health Record Management”. In: IEEE Access 6 (2018),

pp. 52625–52638. DOI: 10.1109/ACCESS.2018.2869848.

[3] Amazon. Amazon S3 Developer Guide. http://aws.amazon.com/documentation/

s3. 2018.

[4] Amazon. AWS S3 Prefixes. https://docs.aws.amazon.com/AmazonS3/latest/

userguide/using-prefixes.html.

[5] Amazon. AWS S3 Strong Read after Write Consistency. https://aws.amazon.com/

es/blogs/aws/amazon-s3-update-strong-read-after-write-consistency.

[6] Diego F. Aranha and Conrado P.L. Gouvêa. RELIC is an Efficient LIbrary for

Cryptography. https://github.com/relic-toolkit/relic. 2017.

[7] Joe Arnold. Openstack swift: Using, administering, and developing for swift object

storage. " O’Reilly Media, Inc.", 2014.

[8] Baidu. Baidu. 2024. URL: https://www.baidu.com (visited on 01/01/2024).

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

https://doi.org/10.1109/ACCESS.2018.2869848
http://aws.amazon.com/documentation/s3
http://aws.amazon.com/documentation/s3
https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-prefixes.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-prefixes.html
https://aws.amazon.com/es/blogs/aws/amazon-s3-update-strong-read-after-write-consistency
https://aws.amazon.com/es/blogs/aws/amazon-s3-update-strong-read-after-write-consistency
https://github.com/relic-toolkit/relic
https://www.baidu.com

102 Bibliography

[9] Engineer Bainomugisha et al. “A Survey on Reactive Programming”. In: ACM

Comput. Surv. 45.4 (Aug. 2013).

[10] Ioana Baldini et al. “Serverless computing: Current trends and open problems”.

In: Research advances in cloud computing (2017), pp. 1–20.

[11] Daniel Barcelona-Pons, Pedro García-López, and Bernard Metzler. “Glider:

Serverless Ephemeral Stateful Near-Data Computation”. In: Proceedings of the 24th

International Middleware Conference. 2023, pp. 247–260.

[12] Luciano Baresi and Danilo Filgueira Mendonça. “Towards a serverless platform

for edge computing”. In: 2019 IEEE International Conference on Fog Computing

(ICFC). IEEE. 2019, pp. 1–10.

[13] Paulo S. L. M. Barreto and Michael Naehrig. “Pairing-Friendly Elliptic Curves of

Prime Order”. In: Selected Areas in Cryptography (SAC). 2006, pp. 319–331.

[14] Prosunjit Biswas, Farhan Patwa, and Ravi Sandhu. “Content Level Access Con-

trol for OpenStack Swift Storage”. In: ACM CODASPY. 2015, pp. 123–126.

[15] Haran Boral and David J DeWitt. “Database machines: An idea whose time has

passed? A critique of the future of database machines”. In: Database Machines:

International Workshop Munich, September 1983. Springer. 1983, pp. 166–187.

[16] Box. Box Cloud Storage. https://www.box.com/.

[17] Lukas Burkhalter et al. “Zeph: Cryptographic Enforcement of End-to-End Data

Privacy”. In: 15th USENIX Symposium on Operating Systems Design and Implemen-

tation (OSDI 21). USENIX Association, July 2021, pp. 387–404.

[18] cAdvisor. URL: https://github.com/google/cadvisor (visited on 01/01/2024).

[19] Larry Coyne et al. IBM Software-Defined Storage Guide. IBM Redbooks, 2018.

[20] Angelo De Caro and Vincenzo Iovino. “jPBC: Java pairing based cryptography”.

In: 16th IEEE Symposium on Computers and Communications, ISCC 2011. 2011,

pp. 850–855.

[21] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified data processing on

large clusters”. In: (2004).

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

https://www.box.com/
https://github.com/google/cadvisor

Bibliography 103

[22] David J DeWitt and Paula B Hawthorn. “A performance evaluation of database

machine architectures”. In: (1981).

[23] Idilio Drago et al. “Inside dropbox: understanding personal cloud storage ser-

vices”. In: Proceedings of the 2012 internet measurement conference. 2012, pp. 481–494.

[24] Dropbox. Dropbox Cloud Storage. https://www.dropbox.com/.

[25] Michael Factor. “Storlets: Turning Object Storage into a Smart Storage Platform”.

In: IBM Research Blog (2014).

[26] Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley Professional, 1994.

[27] Xinzhou Geng et al. “Research on early warning system of power network

overloading under serverless architecture”. In: 2018 2nd IEEE Conference on Energy

Internet and Energy System Integration (EI2). IEEE. 2018, pp. 1–6.

[28] Google. Guava: Google Core Libraries for Java. https://github.com/google/guava.

2021.

[29] Raúl Gracia-Tinedo et al. “Crystal: Software-Defined Storage for Multi-Tenant

Object Stores”. In: 15th USENIX Conference on File and Storage Technologies (FAST

17). 2017, pp. 243–256.

[30] Raúl Gracia-Tinedo et al. “Dissecting ubuntuone: Autopsy of a global-scale per-

sonal cloud back-end”. In: Proceedings of the 2015 Internet Measurement Conference.

2015, pp. 155–168.

[31] Raúl Gracia-Tinedo et al. “Giving wings to your data: A first experience of

Personal Cloud interoperability”. In: Future Generation Computer Systems 78

(2018), pp. 1055–1070.

[32] Raúl Gracia-Tinedo et al. “Software-defined object storage in multi-tenant envi-

ronments”. In: Future Generation Computer Systems 99 (2019), pp. 54–72.

[33] Hassan B Hassan, Saman A Barakat, and Qusay I Sarhan. “Survey on serverless

computing”. In: Journal of Cloud Computing 10.1 (2021), pp. 1–29.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

https://www.dropbox.com/
https://github.com/google/guava

104 Bibliography

[34] David K. Hsiao. “Data base machines are coming, data base machines are

coming!” In: Computer 12.03 (1979), pp. 7–9.

[35] Yong Ho Hwang and Pil Joong Lee. “Public key encryption with conjunctive

keyword search and its extension to a multi-user system”. In: International

conference on pairing-based cryptography. Springer. 2007, pp. 2–22.

[36] IBM. IBM Clod Object Storage. https://cloud.ibm.com/docs/services/cloud-

object-storage. 2018.

[37] iCloud. iCloud. 2024. URL: https://www.icloud.com (visited on 01/01/2024).

[38] Zsolt István, Soujanya Ponnapalli, and Vijay Chidambaram. “Software-Defined

Data Protection: Low Overhead Policy Compliance at the Storage Layer is within

Reach!” In: Proc. VLDB Endow. 14.7 (2021), pp. 1167–1174.

[39] Eric Jonas et al. “Cloud programming simplified: A berkeley view on serverless

computing”. In: arXiv preprint arXiv:1902.03383 (2019).

[40] Kimberly Keeton, David A Patterson, and Joseph M Hellerstein. “A case for

intelligent disks (IDISKs)”. In: Acm Sigmod Record 27.3 (1998), pp. 42–52.

[41] Robert Krahn et al. “Pesos: Policy Enhanced Secure Object Store”. In: Thirteenth

EuroSys Conference (EuroSys ’18). 2018.

[42] Diego Kreutz et al. “Software-defined networking: A comprehensive survey”. In:

Proceedings of the IEEE 103.1 (2014), pp. 14–76.

[43] Sameer G Kulkarni et al. “Living on the edge: Serverless computing and the

cost of failure resiliency”. In: 2019 IEEE International Symposium on Local and

Metropolitan Area Networks (LANMAN). IEEE. 2019, pp. 1–6.

[44] Leo Leung. Core Concepts, Oracle Cloud Infrastructure. Youtube. 2019. URL: https:

/ / www . youtube . com / watch % 20v = BCj4cLYB8NU & list = PLvlciYga5j3zcvx _

1BgVaPk1-BX7t2YcK (visited on 01/01/2024).

[45] Zhenhua Li, Zhi-Li Zhang, and Yafei Dai. “Coarse-grained cloud synchronization

mechanism design may lead to severe traffic overuse”. In: Tsinghua Science and

Technology 18.3 (2013), pp. 286–297.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

 https://cloud.ibm.com/docs/services/cloud-object-storage
 https://cloud.ibm.com/docs/services/cloud-object-storage
https://www.icloud.com
https://www.youtube.com/watch%20v=BCj4cLYB8NU&list=PLvlciYga5j3zcvx_1BgVaPk1-BX7t2YcK
https://www.youtube.com/watch%20v=BCj4cLYB8NU&list=PLvlciYga5j3zcvx_1BgVaPk1-BX7t2YcK
https://www.youtube.com/watch%20v=BCj4cLYB8NU&list=PLvlciYga5j3zcvx_1BgVaPk1-BX7t2YcK

Bibliography 105

[46] Zhenhua Li et al. “A quantitative and comparative study of network-level

efficiency for cloud storage services”. In: ACM Transactions on Modeling and

Performance Evaluation of Computing Systems (TOMPECS) 4.1 (2019), pp. 1–32.

[47] Zhenhua Li et al. “Efficient batched synchronization in dropbox-like cloud

storage services”. In: Middleware 2013: ACM/IFIP/USENIX 14th International Mid-

dleware Conference, Beijing, China, December 9-13, 2013, Proceedings 14. Springer.

2013, pp. 307–327.

[48] Zhenhua Li et al. “Towards network-level efficiency for cloud storage services”.

In: Proceedings of the 2014 Conference on Internet Measurement Conference. 2014,

pp. 115–128.

[49] Pedro Garcia Lopez, Raul Gracia Tinedo, and Alberto Montresor. “Towards Data-

driven software-defined infrastructures”. In: Procedia Computer Science 97 (2016),

pp. 144–147.

[50] Pedro Garcia Lopez et al. “Stacksync: Bringing elasticity to dropbox-like file

synchronization”. In: Proceedings of the 15th International Middleware Conference.

2014, pp. 49–60.

[51] Oleg Lvovitch and Sally Guo. AWS re:Invent 2022 - Deep dive on Amazon S3

(STG203). Youtube. 2022. URL: https : / / www . youtube . com / watch ? v =

FJJxcwSfWYg (visited on 01/01/2024).

[52] Jonathan Mace et al. “Targeted resource management in multi-tenant distributed

systems”. In: Proceedings of the 12th USENIX Conference on Networked Systems

Design and Implementation.

[53] Ricardo Macedo et al. “A survey and classification of software-defined storage

systems”. In: ACM Computing Surveys (CSUR) 53.3 (2020), pp. 1–38.

[54] Ashraf Mahgoub et al. “SONIC: Application-aware Data Passing for Chained

Serverless Applications”. In: 2021 USENIX Annual Technical Conference (USENIX

ATC 21). 2021, pp. 285–301.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

https://www.youtube.com/watch?v=FJJxcwSfWYg
https://www.youtube.com/watch?v=FJJxcwSfWYg

106 Bibliography

[55] Antonios Makris et al. “Towards a Distributed Storage Framework for Edge Com-

puting Infrastructures”. In: Proceedings of the 2nd Workshop on Flexible Resource and

Application Management on the Edge. 2022, pp. 9–14.

[56] Microsoft. Microsoft. 2024. URL: https : / / www . microsoft . com / en - us /

microsoft-365/onedrive/online-cloud-storage (visited on 01/01/2024).

[57] Leonardo Militano. Experimenting on Ceph Object Classes for Active Storage. https:

//blog.zhaw.ch/icclab/experimenting-with-ceph-object-classes-for-

active-storage/. 2019.

[58] Minio Private Cloud Storage. https://min.io/.

[59] Ingo Müller, Renato Marroquín, and Gustavo Alonso. “Lambada: Interactive

Data Analytics on Cold Data Using Serverless Cloud Infrastructure”. In: 2020

ACM SIGMOD International Conference on Management of Data (SIGMOD’20).

2020, pp. 115–130.

[60] Maurizio Naldi and Loretta Mastroeni. “Cloud storage pricing: A comparison of

current practices”. In: Proceedings of the 2013 international workshop on Hot topics in

cloud services. 2013, pp. 27–34.

[61] C.L. Blake D.J. Newman and C.J. Merz. UCI Repository of machine learning

databases. https://archive.ics.uci.edu/ml/index.php. 1998.

[62] OpenStack. Github Storlets. https://github.com/openstack/storlets.

[63] OpenStack. Middleware and Metadata. https://docs.openstack.org/swift/

latest/development_middleware.html. 2021.

[64] OpenStack. Swift. https://docs.openstack.org/swift/. 2021.

[65] OpenStack. Welcome to storlets’ documentation! https://docs.openstack.org/

storlets/latest/. 2020.

[66] openstack. openstack Object Storage Middleware. openstack. 2023. URL: https://

docs.openstack.org/swift/ussuri/middleware.html (visited on 01/01/2024).

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

https://www.microsoft.com/en-us/microsoft-365/onedrive/online-cloud-storage
https://www.microsoft.com/en-us/microsoft-365/onedrive/online-cloud-storage
https://blog.zhaw.ch/icclab/experimenting-with-ceph-object-classes-for-active-storage/
https://blog.zhaw.ch/icclab/experimenting-with-ceph-object-classes-for-active-storage/
https://blog.zhaw.ch/icclab/experimenting-with-ceph-object-classes-for-active-storage/
https://min.io/
https://archive.ics.uci.edu/ml/index.php
https://github.com/openstack/storlets
https://docs.openstack.org/swift/latest/development_middleware.html
https://docs.openstack.org/swift/latest/development_middleware.html
https://docs.openstack.org/swift/
https://docs.openstack.org/storlets/latest/
https://docs.openstack.org/storlets/latest/
https://docs.openstack.org/swift/ussuri/middleware.html
https://docs.openstack.org/swift/ussuri/middleware.html

Bibliography 107

[67] openstack. openstack Swift Architecture. openstack. 2023. URL: https : / / docs .

openstack . org / swift / stein / overview _ architecture . html (visited on

01/01/2024).

[68] Esen A Ozkarahan, Stewart A Schuster, and Kenneth C Smith. “RAP: an associa-

tive processor for data base management”. In: Proceedings of the May 19-22, 1975,

national computer conference and exposition. 1975, pp. 379–387.

[69] Calicrates Policroniades and Ian Pratt. “Alternatives for Detecting Redundancy

in Storage Systems Data.” In: USENIX Annual Technical Conference, General Track.

2004, pp. 73–86.

[70] Rogério Pontes et al. “Safefs: A modular architecture for secure user-space file

systems: One fuse to rule them all”. In: Proceedings of the 10th ACM International

Systems and Storage Conference. 2017, pp. 1–12.

[71] Raluca Ada Popa et al. “CryptDB: Protecting Confidentiality with Encrypted

Query Processing”. In: Twenty-Third ACM Symposium on Operating Systems Prin-

ciples (SOSP’11). 2011, pp. 85–100.

[72] Prometheus . Monitoring system and time series database. URL: https://prometheus.

io/ (visited on 01/01/2024).

[73] Ioannis Psaras et al. “Mobile data repositories at the edge”. In: USENIX Workshop

on Hot Topics in Edge Computing (HotEdge 18). 2018.

[74] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. “Shuffling, fast and slow:

scalable analytics on serverless infrastructure”. In: 16th USENIX Symposium on

Networked Systems Design and Implementation (NSDI’19). 2019, pp. 193–206.

[75] Recommendation to disable huge pages for MongoDB. 2019. URL: https://docs.

mongodb . com / manual / tutorial / transparent - huge - pages/ (visited on

01/01/2024).

[76] Redis. https://redis.io/.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

https://docs.openstack.org/swift/stein/overview_architecture.html
https://docs.openstack.org/swift/stein/overview_architecture.html
https://prometheus.io/
https://prometheus.io/
https://docs.mongodb.com/manual/tutorial/transparent-huge-pages/
https://docs.mongodb.com/manual/tutorial/transparent-huge-pages/
https://redis.io/

108 Bibliography

[77] David Reinsel, John Gantz, and John Rydning. “Data age 2025: the evolution

of data to life-critical don’t focus on big data; focus on the data that’s big”. In:

International Data Corporation (IDC) White Paper (2017).

[78] Erik Riedel, Garth Gibson, and Christos Faloutsos. “Active storage for large-scale

data mining and multimedia applications”. In: Proceedings of 24th Conference on

Very Large Databases. Citeseer. 1998, pp. 62–73.

[79] Erik Riedel and Garth A Gibson. “Active Disks: Remote Execution for Network-

Attached Storage (CMU-CS-97-198)”. In: (1997).

[80] Raul Saiz-Laudo. “Reducing Network Overhead on Personal Cloud Systems”.

In: 3rd URV Doctoral Workshop in Computer Science and Mathematics. Ed. by Sergio

Gómez and Aïda Valls. Tarragona, Spain: Publicacions URV, Nov. 2016, pp. 27–31.

ISBN: 978-84-8424-495-0.

[81] Raul Saiz-Laudo and Marc Sánchez-Artigas. “Egeon: Software-Defined Data

Protection for Object Storage”. In: 2022 22nd IEEE International Symposium on

Cluster, Cloud and Internet Computing (CCGrid). 2022, pp. 99–108. DOI: 10.1109/

CCGrid54584.2022.00019.

[82] Raúl Sáiz-Laudó, Marc Sánchez-Artigas, and Pedro García-López. “RSD: Rate-

Based Sync Deferment for Personal Cloud Storage Services”. In: IEEE Communi-

cations Letters 21.11 (2017), pp. 2384–2387. DOI: 10.1109/LCOMM.2017.2731848.

[83] Josep Sampé, Pedro García-López, and Marc Sánchez-Artigas. “Vertigo: Pro-

grammable Micro-controllers for Software-Defined Object Storage”. In: 2016 IEEE

9th International Conference on Cloud Computing (CLOUD’16). 2016, pp. 180–187.

[84] Josep Sampé et al. “Data-Driven Serverless Functions for Object Storage”. In: 18th

ACM/IFIP/USENIX Middleware Conference (Middleware’17). 2017, pp. 121–133.

[85] Josep Sampé et al. “Serverless Data Analytics in the IBM Cloud”. In: 19th

ACM/IFIP Middleware Conference Industry (Middleware’18). 2018, pp. 1–7.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

https://doi.org/10.1109/CCGrid54584.2022.00019
https://doi.org/10.1109/CCGrid54584.2022.00019
https://doi.org/10.1109/LCOMM.2017.2731848

Bibliography 109

[86] Marc Sánchez-Artigas et al. “Primula: A Practical Shuffle/Sort Operator for

Serverless Computing”. In: 21st International Middleware Conference Industrial

Track (Middleware’20). 2020, pp. 31–37.

[87] SeaFile. SeaFile. 2024. URL: https://www.seafile.com/en/home/ (visited on

01/01/2024).

[88] Mark Seeger. GetPut benchmarking suite. https : / / github . com / markseger /

getput. 2021.

[89] Michael A. Sevilla et al. “Malacology: A Programmable Storage System”. In:

EuroSys. 2017, pp. 175–190.

[90] Hossein Shafagh et al. “Secure Sharing of Partially Homomorphic Encrypted IoT

Data”. In: 15th ACM Conference on Embedded Network Sensor Systems (SenSys’17).

2017.

[91] Seungwon Shin et al. “FRESCO: Modular Composable Security Services for

Software-Defined Networks.” In: 20th Annual Network and Distributed System

Security Symposium NDSS’13. 2013.

[92] Matt Sidley and Sally Guo. AWS re:Invent 2021 - Deep dive on Amazon S3. Youtube.

2021. URL: https : / / www . youtube . com / watch ? v = v3HfUNQ0JOE (visited on

01/01/2024).

[93] Jane Silber. Shutting down Ubuntu One file services. canonical. 2014. URL: https:

//canonical.com/blog/shutting-down-ubuntu-one-file-services (visited

on 01/01/2024).

[94] Ioan Stefanovici et al. “sRoute: treating the storage stack like a network”. In:

USENIX FAST’16. 2016, pp. 197–212.

[95] Stanley YW Su and G Jack Lipovski. “CASSM: A cellular system for very large

data bases”. In: Proceedings of the 1st International Conference on Very Large Data

Bases. 1975, pp. 456–472.

[96] SugarSync. SugarSync. 2024. URL: https://www1.sugarsync.com (visited on

01/01/2024).

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

https://www.seafile.com/en/home/
https://github.com/markseger/getput
https://github.com/markseger/getput
https://www.youtube.com/watch?v=v3HfUNQ0JOE
https://canonical.com/blog/shutting-down-ubuntu-one-file-services
https://canonical.com/blog/shutting-down-ubuntu-one-file-services
https://www1.sugarsync.com

110 Bibliography

[97] Theodoros Theodoropoulos et al. “Cloud-based XR services: A survey on rele-

vant challenges and enabling technologies”. In: Journal of Networking and Network

Applications 2.1 (2022), pp. 1–22.

[98] Eno Thereska et al. “IOFlow: a software-defined storage architecture”. In: ACM

SOSP’13. 2013, pp. 182–196.

[99] U.S. Department of Health & Human Services. COVID-19 Reported Patient Impact

and Hospital Capacity by Facility. https://healthdata.gov/Hospital/COVID-19-

Reported-Patient-Impact-and-Hospital-Capa/anag-cw7u. Apr. 2021.

[100] V8. URL: https://v8.dev (visited on 01/01/2024).

[101] Anjo Vahldiek-Oberwagner et al. “Guardat: Enforcing Data Policies at the Storage

Layer”. In: Tenth European Conference on Computer Systems (EuroSys ’15). 2015.

[102] Frederik Vercauteren. “Optimal Pairings”. In: IEEE Transactions on Information

Theory 56.1 (2010), pp. 455–461.

[103] W3C. XML Path Language. https://www.w3.org/TR/xpath-30/. 2020.

[104] Frank Wang, Ronny Ko, and James Mickens. “Riverbed: Enforcing User-defined

Privacy Constraints in Distributed Web Services”. In: 16th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 19). 2019, pp. 615–630.

[105] Liang Wang et al. “Peeking Behind the Curtains of Serverless Platforms”. In: 2018

USENIX Annual Technical Conference (USENIX ATC 18). 2018, pp. 133–146.

[106] Noah Watkins and Michael Sevilla. “Using Lua in the Ceph distributed storage

system”. In: Proceedings of the Lua Workshop. 2017, pp. 16–17.

[107] Sage A. Weil et al. “Ceph: A Scalable, High-performance Distributed File Sys-

tem”. In: USENIX OSDI. 2006, pp. 307–320.

[108] www.fcc.gov. Measuring Fixed Broadband - Tenth Report | Federal Communications

Commission. https://www.fcc.gov/reports-research/reports/measuring-

broadband-america/measuring-fixed-broadband-tenth-report.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/anag-cw7u
https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/anag-cw7u
https://v8.dev
https://www.w3.org/TR/xpath-30/
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-fixed-broadband-tenth-report
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-fixed-broadband-tenth-report

Bibliography 111

[109] www.opensignal.com. Benchmarking the global 5G user experience – October update

| Opensignal. https://www.opensignal.com/2020/10/13/benchmarking-the-

global-5g-user-experience-october-update.

[110] Tian Zhang et al. “Narrowing the gap between serverless and its state with

storage functions”. In: Proceedings of the ACM Symposium on Cloud Computing.

2019, pp. 1–12.

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

https://www.opensignal.com/2020/10/13/benchmarking-the-global-5g-user-experience-october-update
https://www.opensignal.com/2020/10/13/benchmarking-the-global-5g-user-experience-october-update

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

UNIVERSITAT ROVIRA I VIRGILI
ON IMPROVED PERFORMANCE AND SECURE DATA MANAGEMENT IN CLOUD STORAGE SERVICES
Raul Saiz Laudo

	Abstract
	Thesis Publications
	Motivation
	Problem statement

	State of the Art and Background
	Generic Object Storage
	Overview
	Swift: example as infrastructure
	Swift API
	Swift Middleware
	Access control

	Personal Cloud Storage
	Overview
	Synchronization on personal cloud storage
	Minimizing synchronization network use
	Synchronization Deferment

	Software-Defined Storage
	Overview
	SDS Systems: state of the art
	Near Data Processing in object storage systems
	NDP as serverless storage functions

	Rate-based Sync Deferment for Personal Cloud Storage Services
	Introduction
	Rate-based sync deferment
	Trade-off between TUE and synchronization time
	The Rsd algorithm
	Analytical Comparison: Rsd vs. Asd

	Experimental Comparison
	Conclusion

	Software-Defined Data Protection for Object Storage
	Introduction
	Related Work
	Design
	Threat Model
	Privacy Plane
	Data Plane
	Data Transformation UDFs

	Implementation
	Evaluation
	Microbenchmarks
	Applications

	Work-In-Progress: porting Egeon to the edge.
	Modifications to the runtime
	Preliminary results

	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

