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RESUMEN 

Introducción: La neumonía nosocomial causada por Pseudomonas aeruginosa está asociada a una alta 

mortalidad morbilidad. Además, la elevada incidencia de multirresistencias a los antimicrobianos, hacen 

que el tratamiento tanto empírico como dirigido sea una decisión compleja para los clínicos. Diversas 

estrategias se han planteado entre las que figuran la optimización de la concentración de los 

antimicrobianos vía la nebulización o través de un mejor estudio de la penetración a nivel pulmonar; así 

como el uso de nuevas combinaciones antimicrobianas como son ceftolozane-tazobactam, meropenem-

nacubactam. 

Objetivos: Los objetivos fundamentales fueron: (i) esclarecer si los modelos farmacocinéticos construidos 

con perfiles completos a nivel local (ELF, por sus siglas en inglés) pueden conducir a estimaciones más 

precisas; (ii) elucidar los beneficios del tratamiento antimicrobiano empírico apropiado con ceftolozane-

tazobactam en comparación con el tratamiento empírico inapropiado; (iii) evaluar la eficacia de la 

combinación antimicrobiana de meropenem-nacubactam en cepas de P. aeruginosa que expresan KPC y 

sobreproducen AmpC; (iv) analizar el papel de la amikacina/fosfomicina nebulizada como terapia 

adyuvante, en comparación con la administración de intravenosa de meropenem en la neumonía 

nosocomial causada por P. aeruginosa. 

Materiales y métodos: Los estudios incluidos en esta tesis doctoral se basaron fundamentalmente en un 

modelo porcino de neumonía grave y en un modelo de infección pulmonar en ratones neutropénicos. Los 

animales se inocularon con diferentes cepas de P. aeruginosa, para posteriormente ser randomizados y 

tratados en función del diseño de cada estudio. Se analizaron los resultados microbiológicos, histológicos, 

inflamatorios y parámetros clínicos. Además, se realizaron análisis farmacocinéticos y farmacodinámicos. 

Principales resultados y conclusiones: Los principales hallazgos fueron que: (i) los modelos ELF 

construidos con concentraciones en puntos dispersos dan como resultado estimaciones similares a los 

construidos a partir de perfiles concentrados; (ii) el tratamiento inicial apropiado con ceftolozane-

tazobactam disminuyó la carga bacteriana en las secreciones respiratorias, evitó el desarrollo de 

resistencias y logró el objetivo terapéutico a nivel farmacodinámico; (iii) la adición de nacubactam a 

meropenem resultó en una reducción bacteriana sustancial en los recuentos de P. aeruginosa ; (iv) y se 

corroboró que la amikacina/fosfomicina nebulizadas reduce la presencia de P. aeruginosa en las 

secreciones traqueales y limita el desarrollo de resistencias, pero tiene una eficacia insignificante en el 

tejido pulmonar.
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1. NOSOCOMIAL PNEUMONIA 

Pneumonia is one of the most common nosocomial infections to occur in hospitalized patients (1, 2). 

Nosocomial pneumonia or hospital-acquired pneumonia (HAP) is defined as infection of the pulmonary 

parenchyma ≥48 hours after admission in patients who did not present any signs of antecedent infection 

at hospital admission (3).  Among nosocomial pneumonias, there is also ventilator-associated pneumonia 

(VAP). VAP develops in patients admitted to the intensive care unit (ICU) who have undergone invasive 

mechanical ventilation (IMV) for at least 48 h (4). 

Definitions for nosocomial pneumonia, HAP and VAP are not homogeneous throughout literature (5). 

The complexity of nosocomial pneumonia subsets in both the ward and ICU is shown as a diagram in Figure 

1. In the following doctoral thesis, nosocomial pneumonia is used to refer to the onset of pneumonia 48 

hours or more after hospital admission, either in the ICU (ICU-acquired pneumonia; ICUAP) or conventional 

ward (HAP), and irrespective of IMV (5). While, VAP appears after 48 hours of IMV (6), patients with 

severe nosocomial pneumonia who require IMV during their treatment after infection onset do not meet 

the definition of VAP (7). Nonetheless, ventilated HAP (v-HAP) warrants consideration, given that this 

specific subtype is associated with increased severity due to respiratory failure when compared against 

non-ventilated HAP (8). Other conditions such as nosocomial tracheobronchitis are not detailed in this 

doctoral thesis. 

 
Figure 1. Complexity of nosocomial pneumonia from wards to ICU settings. 

Color intensity shows the progression of nosocomial pneumonia severity. Crude mortality data are shown for each entity. ICU, 

intensive care unit; ICUAP, ICU-acquired pneumonia; HAP, hospital-acquired pneumonia; VAP, ventilator-acquired pneumonia; V-

ICUAP, ventilated ICU-acquired pneumonia; V-HAP, ventilated hospital-acquired pneumonia.  Source: Adapted from Ibn Saied W 

Intensive Care Med, 2020 (9). Data from Melsen WG et al. Lancet Infect Dis, 2013 (10), Magill SS et al. N Engl J Med, 2014 (11), 

Micek ST et al. Chest, 2016 (12), Giuliano KK et al. Am J Infect Control, 2018 (13), Ibn Saied W et al. Crit Care Med, 2019 (14), 

Gonçalves-Pereira J et al.  J Hosp Infect, 2021 (15). 
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In the following paragraphs, we will summarize the current understanding of the epidemiology, 

physiopathology, diagnosis, prevention, and treatment of nosocomial pneumonia, focusing specifically on 

novel antimicrobials agents and new therapeutic strategies for this hospital-acquired infection. 

 

1.1 Incidence, outcomes, and economic impact 

Nosocomial pneumonia constitutes an important health problem worldwide, causing high morbidity 

and mortality among hospitalized patients (2, 16, 17). In Europe, nosocomial pneumonia is the most 

frequent health care infection, accounting for up to 40% among all such infections (18).  Within the last 

decade, its incidence of has ranged between 12-33% in the United States, and several series have 

reported this infection as the second most common nosocomial infection (1, 11, 18, 19). Most nosocomial 

pneumonia cases occur in non-ventilated patients. The incidence of HAP in patients admitted to the 

conventional ward ranges between 1.6-6.2 cases per 1,000 admissions (20). Mortality ranging between 

11-18% has been consistently reported for HAP in non-ICU-admitted patients. Among this subset of 

patients, though, 19% will require IMV, thereby increasing mortality risk to 28-31% (15). The highest risk 

for nosocomial pneumonia is in patients requiring IMV (VAP or v-HAP); mortality can reach up to 50% (8).  

In the ICU, VAP represents more than 80% of pneumonia cases due to a 6-20-fold increased risk of 

pneumonia onset in patients receiving IMV (19, 21). Overall, incidence density of VAP ranges between 2-

7 episodes per 1,000 ventilator days, with significant differences present between  the United States and 

Europe (22, 23). While the US observes a VAP incidence between 1.9 and 3.8 per 1000 days of IMV (22), 

the figure increases to 6.6 per 1,000 days in Europe (23). Nevertheless, this index is in continual decline 

due to the implementation of bundled measures aimed at reducing nosocomial pneumonia incidence (24). 

Indeed, according to the ENVIN-HELICS report, incidence in Spain is considerably lower than 10 years ago 

(14.9 versus 5.41 episodes per 1,000 days of IMV in 2009 and 2019, respectively) (25). Attributable 

mortality of VAP remains controversial and highly depent on. A recent systemic meta-analysis including 

data from 24 randomised prevention study trials showed overall attributable mortality of VAP to be 13% 

(10).  

As nosocomial pneumonia lengthens hospital stays by 7-9 days (12, 13), healthcare costs in patients 

with nosocomial pneumonia increase, especially if VAP develops. The excess of unadjusted costs 

associated with VAP was estimated to be approximately 40,000-49,000 US dollars per patient (26, 27), 
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while estimated non-ventilated HAP acute care costs were reported as ranging between 28,000-40,000 

US dollars (11, 13). 

 

1.2 Etiology and resistance mechanisms 

Microorganisms responsible for nosocomial pneumonia differ according to geographic areas, hospital 

location, patients’ specific characteristics, hospital and ICU stay duration, and risk factors for multidrug-

resistant (MDR) pathogens (28). However, large series have shown that the most frequent causative 

pathogens are aerobic, Gram-negative bacilli like Pseudomonas aeruginosa, Escherichia coli, Klebsiella 

pneumoniae or Acinetobacter species; Staphylococcus aureus is the predominantly isolated Gram-positive 

pathogen (Table 1) (29-31). Certainly, these pathogens, also named ESKAPE by their acronym, are 

responsible for more than 80% of nosocomial pneumonia cases (29, 32). It is rare that causative agents 

for nosocomial pneumonia are fungi and viruses, even though cases of caused by Candida spp and 

Aspergillus fumigatus have been reported particularly in immunocompromised patients (2, 33).  

 

Pathogens 
Europe 

(n=2,393)(30) 
USA 

(n=1,334) (29) 
Asia 

(n=2,530) (31) 

Latin 
America 

(29) 

All regions 
(n=7,496) (29) 

 HAP VAP HAP VAP HAP VAP HAP/VAP HAP VAP 

Staphylococcus aureus 20.9 16.2 48.6 34.4 15.8 12.2 20.1 26.6 19.5 

Pseudomonas 
aeruginosa 

21.6 22.6 18.4 21.2 15.6 25.9 28.2 22.4 26.6 

Klebsiella species 11.0 15.8 7.1 8.4 12.0 16.7 12.1 10.5 10.2 

Enterobacter species 5.7 4.8 4.3 5.6 4.1 4.2 6.2 7.5 7.0 

Acinetobacter species 5.4 16.3 2.0 3.0 13.5 36.5 13.3 8.3 14.3 

Serratia species 3.8 3.2 5.5 6.5 1.2 0.7 2.4 4.1 4.1 

Escherichia coli a 12.0 9.2 - - 6.9 3.4 5.5 - - 

Other CAP pathogens b 8.2 4.4 3.3 6.6 6.7 2.2 3.7 2.6 4.1 

 

Table 1. Frequency of bacterial pathogens associated with hospital-acquired pneumonia and ventilator-associated pneumonia 

across geographic areas.  

Data is reported in percentages. a E. coli frequency was not reported for USA and all regions. b CAP pathogens included 

Haemophilus influenzae, Streptococcus pneumoniae and Moraxella catarrhalis.  CAP, community-acquired pneumonia; HAP, 

hospital-acquired pneumonia; VAP, ventilator-associated pneumonia. Source: Compiled by the PhD candidate. Data extracted from 

Flamm RK et al. Int J Antimicrob Agents, 2016 (30), Jones RN et al. Clin Infect Dis, 2010 (29), and Chung DR et al. Am J Respir 

Crit Care Med, 2011(31). 
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1.2.1 Pseudomonas aeruginosa 

Among the aforementioned nosocomial pathogens, P. aeruginosa is the most common Gram-negative 

bacterial pathogen to cause life-threatening nosocomial pneumonia (29, 34). It has intrinsic resistance to 

many antimicrobial agents, increasing over the last decades due to selection pressure exerted by the 

inappropriate and indiscriminate use of broad-spectrum antibiotics (e.g. empirical therapies for infections 

in critically ill patients) (35).  

 
 Biochemical characteristics Main involved enzymes Substrates 

b-lactamases Enzymatic inactivation of b-lactam antibiotics 

Ambler class C 
Chromosomally located. 

Cephalosporinases 
AmpC Cephalosporins 

Ambler class A 
Extended-spectrum b-lactamases. 
Penicillinases inhibited by clavulanic acid 
and carbenicillinases 

PER, TEM, SHV, CTX-M, 
GES, CARB, VEB, KPC 

Cephalosporins, 
penicillin, monobactams 

Ambler class B 
Metallo-b-lactamases conferring 

resistance to most of -b-lactams except 
monobactams 

IMP, VIM, SPM 
Penicillin, cephalosporins, 

carbapenems 

Ambler class D Oxacillinases OXA- Penicillin, oxacillin 

Efflux systems 
Increased efflux pump expression (i.e., 
antibiotic efflux) 

MexAB-OprM, 
MexCD-OprJ 
MexEF-OprN 
MexXY-OrpM 

Fluoroquinolones, b-
lactams, tetracycline, 

tigecycline, 
chloramphenicol 

Outer membranes Decreased of porin expression OrpD 

b-lactams, tetracycline, 
aminoglycosides, 
chloramphenicol, 

ciprofloxacin 

LPS modification Modification or loss of LPS pmrAB and phoPQ Colistin 

Topoisomerase IV and 
DNA gyrase 

Mutation in critical genes for bacterial DNA 
replication 

parC, gyrA, gyrB, parE Fluoroquinolones 

16S rRNA methylases Methylation of 16S rRNA RmtA, RmtD, and ArmA Aminoglycosides 

Aminoglycoside-modifying 
enzymes 

Enzymatic inactivation 
by aminoglycoside-modifying enzymes 

AAC(6')-I, AAC(6')-II, 
ANT(2'')-I, APH(3')-VI 

Aminoglycosides 

 

Table 2. Mechanisms of P. aeruginosa antimicrobial resistance. 

Classification of mechanisms of P. aeruginosa antimicrobial resistance, their major biochemical characteristics, main involved 

enzymes or proteins and substrates. Source: Compiled by the PhD candidate. Data extracted from Zavascki AP et al. Expert Rev 

Anti Infect Ther, 2010 (36); El Zowalaty ME et al. Future Microbiol 2015 (37); Eichenberger EM et al. Antibiotics, 2019 (38). 
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Standardized definitions for MDR (i.e., nonsusceptibility to at least one antibiotic in at least three 

classes of antibitotics), extensively drug-resistant (XDR) (i.e., nonsusceptibility to at least one agent in all 

but two or fewer classes of antibiotics) and pandrug-resistant (PDR; i.e., nonsusceptibility to all agents) 

were proposed for P. aeruginosa infections in 2012 (39). 

Prevalence of MDR among patients with HAP/VAP due to P. aeruginosa is high (40), and have been 

associated with increased in-hospital mortality (41). In fact, the percentage of MDR and XDR P. aeruginosa 

isolates vary depending on the setting, local epidemiology and if HAP or VAP, with figures reaching 20-

43% and 5-21%, respectively (31, 42-44). The 2022 annual report by the European Antimicrobial 

Resistance Surveillance Network reported that 30.1% of the P.  aeruginosa isolates were resistant to at 

least one of the antimicrobial groups under surveillance, while 12.1% were resistant to three or more 

antimicrobial groups (45). The main resistance mechanisms of P. aeruginosa include hyperexpression of 

chromosomal AmpC b-lactamases, loss of outer membrane channel OprD, increased efflux pump systems, 

production of carbapenemases, and lipopolysaccharide modification (46). Other mechanisms comprise 

extended spectrum b-lactamases (ESBL), topoisomerase IV/DNA gyrase mutation, methylation of 30S 

RNA and PmrA-PmrB two-component system genetic modification(35, 47). A summary of resistance 

mechanisms, major characteristics and their substrates is displayed in Table 2.   

 

1.3 Pathogenesis and risk factors 

Development of pneumonia depends on the virulence of pathogens; size of the inoculum reaching 

the lung; and degree of alteration of host defense responses (48, 49). Mechanisms for nosocomial 

pneumonia consists of aspiration of the pathogen into the upper respiratory tracts; inhalation of 

contaminated aerosols via the respiratory tract or the endotracheal tube (ETT) if the patient is intubated; 

and, more rarely, bacterial translocation by hematogenous dissemination (Figure 2) (49, 50). 

Endogenous colonization is the primary source of pathogens (51, 52). However, exogenous flora may 

also play a significant role, irrespective of preventive strategy implementation (51).  In the subset of 

mechanically ventilated patients, the presence of the ETT facilitates microaspirations of oropharyngeal 

secretions and bacteria into the lungs via the folds in the ETT cuff (53). Additionally, the ETT completely 

impairs anatomical barriers, creating a direct canal to the lungs. The formation of biofilm (i.e., aggregated 

microorganisms within an exopolysaccharide matrix) on the inner surface of the ETT also entails an 
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important risk factor as a persistent source of colonization (54, 55). Finally, given its influence on 

pulmonary immunity, the “gut-lung axis” dysbiosis in intestinal microbiota has been highlighted as a 

potential risk factor for nosocomial pneumonia (56). 

 

 

Figure 2. Main mechanisms of pathogenesis and risk factors for nosocomial pneumonia  

Main pathogenic mechanisms are highlighted in blue while patient-related, while procedure-related and intervention-related risk 

factors are colored in black. Source: Own illustration.  

 

1.4 Diagnostics 

The presence of leukocytosis, fever, and purulent secretions; the appearance of a new infiltrate on a 

chest radiograph or extension of existing ones; and a deterioration in gas exchange constitute clinical 

signs to suspect pneumonia (57, 58).  Nevertheless, these are not specific enough, especially in critically 

ill and mechanically ventilated patients in whom multiple conditions may present same signs and symptoms 

(59). In this context, it is highly recommended to obtain respiratory samples prior to any antimicrobial 

therapy to confirm the diagnosis, identify the pathogen responsible for the infection and thus, adapt the 

initial empirical antibiotic treatment accordingly (57, 60). For non-ventilated patients, non-invasive 

sampling (i.e., spontaneous expectoration, sputum induction, nasotracheal suctioning) is recommended 

(57, 60). Non-invasive sampling (i.e., tracheal aspirate) with semiquantitative cultures is also the preferred 

methodology for VAP or nosocomial pneumonia diagnoses in patients requiring IMV, given such approach 

helps avoid unnecessary harm and cost (57). However, invasive sampling (i.e., bronchoalveolar lavage 
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(BAL), protected specimen brush, mini-BAL) can occasionally be performed; it may help decrease 

antibiotic exposure (60, 61). Current defined thresholds are 105 colony-forming unit (CFU)/mL for tracheal 

aspirate; ≥104 CFU/mL for BAL; and ≥103 CFU/mL for protected specimen brush (59). Moreover, the 

determination of antimicrobial resistance is crucial to guide the antimicrobial therapy. Mostly, the minimum 

inhibitory concentration (MIC), the lowest concentration of an antimicrobial that will inhibit the visible 

growth of a microorganism, is used to grade into susceptible, increased exposure, or resistant to a 

particular antimicrobial by using a breakpoint (62, 63).  

In the last decades, several different molecular methods have been developed for more rapid 

identification, including resistance genes, and therefore, to improve overall utilization of antimicrobials 

(64). In this scenario, the impact of choosing the adequate antimicrobial by obtaining the microbiological 

identification earlier may be notorious.  

 

1.5 Prevention 

Many elements have been considered to have a significant impact on reducing nosocomial pneumonia 

incidence worldwide. Besides the common practices of hand hygiene and use of protective gloves and 

gowns (65), some other measures have strong evidence to support their routine use and consideration 

as key components in prevention bundles (60, 66, 67). Those bundles focus on preventing aspiration of 

contaminated subglottic secretions and stomach contents. To avoid gastro-esophageal reflux, a 

fundamental element is the semi-recumbent position (i.e., bed elevation to 30-45º) (68, 69). Selective 

digestive decontamination and selective oral decontamination have been designed to reduce the 

contamination of both subglottic secretions and gastric contents (70, 71). Although these strategies were 

promising at first, the unclear, long-term impact of their routine use on antimicrobial resistance (72) has 

led current international guidelines to recommend the use of selective oral decontamination, albeit not 

selective digestive decontamination, in ICUs with low resistance rates (60).  

In mechanically ventilated patients, ETTs with subglottic drainage may decrease the leakage of 

contaminated secretions via the cuff, and thereby, VAP incidence and mortality (73). The use of coated 

tubes to prevent biofilm formation and cuff pressure monitoring have also been largely investigated; 

however, high initial costs in the former and inconclusive benefits in the latter make their routine use 
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ambiguous (74-76). In contrast, reducing ventilator circuit manipulations and suctions may also protect 

against unneeded contamination of lower airways (77). Given the strong correlation between VAP 

incidence and prolonged IMV, other strategies focusing on reducing IMV duration have been implemented. 

Among them, spontaneous breathing trials (78), daily awakening trials (79) and early mobilization (80) 

have shown positive impact on shortening IMV duration, and thereby, a decreased number of VAP 

episodes.  

2. CURRENT TREATMENT FOR NOSOCOMIAL PNEUMONIA 

Treatment for nosocomial pneumonia includes comprehensive measures such as antimicrobial 

therapy, the use of respiratory support devices (i.e., oxygen mask, high flow nasal cannular, non-invasive 

ventilation and IMV), non-antimicrobial agents or adjunctive therapies, and other organ function support 

strategies. Among them, though, antimicrobial treatment, including both empirical and pathogen-targeted 

treatments, is the most important (57). 

 

2.1 Empirical therapy for nosocomial pneumonia 

Hasty initiation of empirical antimicrobial therapy may be a key factor in improving clinical outcomes 

of patients with nosocomial pneumonia. However, antibiotic selection is intricate for physicians. There must 

be a balance between selecting adequate empirical treatment to cover potential MDR pathogens and 

minimizing the risk of future resistance due to an overuse of the most effective antibiotics and avert 

adverse events related to the use of multiple broad-spectrum agents. 

Selection of appropriate empirical treatment should be based on local etiology and the presence of 

risk factors for MDR/XDR pathogens. Indeed, hospitals and ICUs are highly recommended to be in 

possession of their own updated data of local antibiotic resistance, as it may change across units (60, 

81). Furthermore, physicians should also consider the patient’s severity of illness, clinical characteristics, 

presence of severe sepsis or septic shock, other organ function status and prior antibiotic use (57, 60, 

82). European Respiratory Society, European Society of Intensive Care Medicine, European Society of 

Clinical Microbiology and Infectious Diseases and Asociación Latinoamericana del Tórax 

(ERS/ESICM/ESCMID/ALAT) guidelines recommend including late-onset HAP/VAP (i.e., ≥ 5 days of 
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hospitalization) as a risk factor for MDR pathogens (60). In patients clinically suspected of HAP/ VAP, 

empirical antimicrobial treatment should be started as soon as possible after clinical diagnosis of HAP/VAP 

and the retrieval of respiratory secretions for microbiological cultures have been performed (3). Even in 

cases wherein the drug is selected properly, mortality and hospitalization can increase if empirical 

treatment is delayed (83).  

Empirical treatment recommendations by both international guidelines are summarized in Figure 3 

(57, 60).  In patients with suspected nosocomial pneumonia and low risk factors, a narrow-spectrum 

antibiotic that covers methicillin-susceptible S. aureus is suggested. For Gram-negative bacilli coverage 

including P. aeruginosa, physicians should administer a narrow-spectrum single agent with activity against 

P. aeruginosa. In contrast, for patients at high risk of resistance or mortality, a combination therapy of 

broad-spectrum antimicrobials targeting P. aeruginosa and ESBL-producing pathogens, as well as an 

antimicrobial drug to cover methicillin-resistant S. aureus (MRSA) is recommended. 

Inappropriate empirical treatment (IEAT) indicates that the empirical dug administered within the first 

three days of clinical suspicion of nosocomial pneumonia was not active against the identified pathogen. 

The rate of IEAT in patients with nosocomial pneumonia can reach up to 60% (84). Primarily, the 

increasing resistance to classical b-lactams and difficulty in achieving adequate concentrations due to 

high MICs drive this percentage (85). Indeed, the ENVIN-HELICS program computed a 30% likelihood of 

patients receiving an inadequate empirical treatment for a P. aeruginosa infection, including even with 

combination therapy (25). The impact of IEAT on mortality is still inconclusive due to conflicting results 

found in literature (86). For example, prospective observation study performed to define the impact of 

appropriate empirical antimicrobial selection on clinical outcomes of patients with VAP showed that 

mortality was lower in patients who received appropriate treatment versus those with inadequate therapy, 

including even in those who switched treatment after microbiological data became available (87). Also, in 

115 patients with microbiologically confirmed cases of VAP and in whom 85% received appropriate 

therapy, mortality was significantly higher in those with inadequate empirical therapy than in those with 

appropriate therapy (47 vs. 20%, p = 0.04) (88). On the other hand, in a study of 758 ICU-admitted 

patients with nosocomial pneumonia due to MDR pathogens, investigators Vasudevan et al. reported that 

IEAT was not an independent risk factor for ICU mortality (89). Similarly, in a multicenter study of critically 

ill patients with Gram-negative lower tract respiratory infections, failure in empirical treatment selection 

culminated in more hospital days and thus, higher economic burden; however, there was no impact on all-
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cause mortality (ACM) (90). On the other side, it is equally apparent that excessive antibiotic use promotes 

the emergence and spread of antibiotic-resistant pathogens from patients in ICUs (91). Nevertheless, 

international guidelines consider the appropriateness to be more important to the outcome, and place it 

therefore in higher consideration than the emergence of resistance (57, 60).  

 

 
Figure 3. Recommendations for empirical treatment for clinically suspected cases of HAP and VAP per risk factors for MDR 

pathogens by the international guidelines. 

a Risk factors for mortality depend on the requirement of mechanical ventilation and/or septic shock status. b If the patient has no 

factors for mortality, only one agent is recommended. In case of high-risk mortality or intravenous antibiotics, two 

antipseudomonal are recommended to avoid the use of two b-lactams. c For patients who are not in septic shock, only a single 

Gram-negative agent such as antipseudomonal b-lactam or quinolone is recommended. d Colistin may be needed in settings with 

a high prevalence of MDR A. baumanniii.  Source: Compiled by the PhD candidate. Data extracted from Kalil AC et al. Clin Infect 

Dis, 2016 (57) and Torres A et al. Eur Respir J, 2017 (60). ARDS, acute respiratory distress syndrome; ESBL, extended-spectrum 

b-lactamases; HAP, hospital-acquired pneumonia; MDR, multidrug resistance; MSSA, methicillin susceptible S. aureus; MRSA, 

methicillin-resistant S. aureus; VAP, ventilator-associated pneumonia. 
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2.2 Pathogen-targeted therapy for P. aeruginosa nosocomial pneumonia 

Efficacy evaluation should be performed within 48-72 hours of empirical treatment once 

microbiological cultures are available. Such evaluation should consider patient’s clinical response, 

evolution on chest radiographs, follow-up cultures and other laboratory examinations (3, 92, 93). 

Thereafter, clinicians should switch to targeting the pathogen or opting for a narrower antibiotic regimen 

or monotherapy—also called de-escalation—based on antimicrobial susceptible testing results.  Current 

guidelines do not recommend one agent more than the other, albeit a special statement has advised 

clinicians to avoid aminoglycoside monotherapy  (57, 60). Mainly, the poor penetration of aminoglycosides 

into the lungs is the primary reason for this suggestion. Actually, to obtain microbiologically effective 

intrapulmonary concentrations, clinicians would have to administer high systemic concentrations that 

would otherwise increase risk of toxicity (94, 95).  

Both Infectious Diseases Society of America – American Thoracic Society (IDSA/ATS) and European 

guidelines recommend 7-8 days of antibiotic therapy for most patients (57, 60); however, ERS panelists 

note that short-course therapy may not be possible for non-fermenting Gram-negative pneumonias. 

IDSA/ATS guidelines have not found differences between pneumonia patients with and without non-

fermenting Gram-negative pathogens and have extended the recommendation to include longer courses 

only for patients with slow clinical and radiological recovery. 

3. NOVEL THERAPEUTIC STRATEGIES 

The high incidence of MDR microorganisms has reiterated the importance of rationally using 

antimicrobial agents (96). In the last decades, novel approaches have been continually developed to 

reduce the selective pressure of MDR expansion and associated mortality and morbidity (97, 98). These 

strategies range from antimicrobial optimization and breakthrough drug combination and delivery to 

bacteriophage therapy and immunotherapy (98, 99). In the context of this PhD thesis, here we present 

two examples in particular: antimicrobial optimization and nebulization of antimicrobials. 

 

3.1 Optimizing antibiotic administration 

Among the possible and recognized strategies, an antibiotic optimization approach requires the 

consideration of both pharmacokinetics and pharmacodynamics (100). Pharmacokinetics (PK) is the 
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branch of pharmacology that studies the change in drug concentrations in body compartments over time. 

Drug concentration variation is related to the process of absorption (i.e., transfer to central compartment); 

distribution (i.e., transfer among peripheral compartments); metabolism (i.e., biotransformation); and 

excretion or elimination of drugs. The main PK parameters that play a role in the final drug concentration 

that reaches the tissue include volume of distribution and clearance. Antibiotic properties are also 

determinant in describing the fate of administered drugs. Considering this perspective, PK is affected by 

drug physicochemical properties, mainly aqueous solubility, and protein binding. Hydrophilic antibiotics 

disseminate in intravascular and extravascular body fluids, while lipophilic drugs can reach lipid tissue and 

distribute intracellularly (101). The percentage in which a drug binds to protein implies how 

microbiologically active free drug, as protein-bound drug cannot interact with molecular targets (102).  

The other pharmacological area is pharmacodynamics (PD), which assesses the effects of 

antimicrobial agents. Therapeutic outcomes are determined by the concentrations reached at the site of 

action, which is dependent on PK behavior, and antibiotic susceptibility of microorganisms, expressed as 

the MIC. Pathogen-drug interaction has classically been determined by in vitro methods; however, 

therapeutic success will depend also on isolate virulence, immune response, and site of infection (103). 

Given PD properties, antibiotics have been classified into three categories: concentration-dependent, time-

dependent or a combination of concentration- and time-dependent (which is based on the concentration-

time curve associated with maximal bacterial killing). The PD drivers associated with each of these groups, 

respectively, include the ratio of maximum free drug concentration to the MIC (f Cmax/MIC); free time above 

MIC (f T>MIC); and ratio of the area under the curve to the MIC (f AUC/MIC).  Among antimicrobials 

commonly used to treat nosocomial pneumonia, that is, b-lactams, f T<MIC is the related predictor with 

bacteria eradication and microbiological response (104). The f Cmax/MIC is the close-fitted parameter for 

aminoglycosides (105), fluoroquinolones (106) and polymyxins, whereas f AUC/MIC is suitable for 

predicting the efficacy of vancomycin (107) and oxazolidinones (108).  In each case, only free drug is 

considered (102). 

3.1.1 Optimization in patients with nosocomial pneumonia 

Mathematical relationships between dosing regimen and resultant plasma concentrations can be 

established and decisive, given that the concentration profile over time can affect outcomes. Furthermore, 

the ability of drugs optimization may help to suppress the emergence of resistance, thereby representing 

a critical preventive response to this current and alarming epidemiological concern (109).  
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Given all of the changing parameters, studies have observed inadequate concentrations of antibiotics 

during critical illness, which may drive to IEAT. In this context, there is a need for optimal doses in this 

subset of patients (110, 111). Indeed, PK parameters depend largely on the host and are subject to 

influence by illness severity (112). Clearance can change rapidly given the fluctuating hemodynamic state 

and renal function in critically ill patients (113). Similarly, volume of distribution tends to increase in those 

patients due to a capillary leakage, in which fluid moves from the capillaries to surrounding tissues and 

body cavities (114) (115). This value also depends on both the pharmacological characteristics of the 

drug and serum protein concentration. Alterations in these protein levels such as hypoalbuminemia – 

observed in approximately 40% of critically ill patients – can increase the unbound fraction of the drug, 

raising the volume of distribution and clearance as a result (116). This translates to lower antibacterial 

exposure, which could result in suboptimal treatment for the patient (114). 

Pharmacodynamic parameter breakpoints have been widely identified in lower respiratory tract 

infections. Free concentrations in plasma are often considered as an acceptable approximation for free 

concentrations at the site of infection, but this is not always the case.  In some cases, they may be 

misleading (117). Measuring antimicrobial concentrations at the site of infection might be more relevant 

in predicting clinical response (118). Although it is possible to include additional compartments in PK 

modelling phase and perform simulations for concentrations at the site of infection, sampling in each 

compartment is required to properly estimate exposure profiles. Determining intrapulmonary drug 

concentrations in the epithelial lining fluid (ELF) compartment is currently the most widely employed 

method to estimate antibiotic exposure for extracellular respiratory tract pathogens (Figure 4) (118, 119). 

Nevertheless, some limitations must be considered in this context. First, drug concentration is measured 

in BAL samples and then correlated to ELF by using urea as an endogenous marker (120). This estimation 

is inaccurate: it can contribute to underestimation, or conversely, overestimation of the intrapulmonary 

concentration (121). Other technical errors such as dwelling time of fluid during bronchoscopy or 

contamination of BAL with blood urea need to be considered (121).  

Macrolides, oxazolidines and fluroquinolones have higher ELF than serum concentrations, while b-

lactam, aminoglycosides and glycopeptides showed the inverse. In all of the cases notwithstanding, the 

relation is linear. In contrast, carbapenems showed discordance in the form of concentration-time profiles 

called hysteresis (118). Therefore, penetration ratios will vary in magnitude with the sampling time(s) 
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chosen. To overcome this issue, it is recommended that research studies determine penetration ratios 

from estimates of the AUCs values obtained from plasma and ELF data.  

Pooled data at each sampling time point are then averaged to estimate a concentration profile in ELF 

throughout the dosing interval. In more recent years, population PK modeling and Monte Carlo simulation 

methods have been applied to these data to assess the variability in ELF penetration and evaluate 

antibiotic PD and target attainment (PTA). Populations are constructed with specified demographics, 

relevant infection profiles and individualized antibiotic PK profiles (122). Monte Carlo simulation is a 

computer modelling process that incorporates both the variability in PK parameters and the natural MIC 

distribution within a bacterial population to create a hypothetical population of thousands of patients. For 

each of these hypothetical patients, a concentration-time profile is simulated and the PD target (e.g., f T 

> MIC) calculated. The PTA is an estimation of the probability that simulated subjects can achieve this 

predefined PD target within the entire simulated population. A PTA of 90% or higher at MIC values of 

interest is a widely accepted value to support a dose regimen (111). Such investigations can contribute 

significantly to identifying optimal antibiotic selection, alongside to dosing regimens and MIC breakpoints 

for new and existing agents. 

 

Figure 4. Pathophysiological alterations at lung level during nosocomial pneumonia and their potential effect on pharmacokinetics 

of antimicrobial agents.  

Source: Own illustration.  

 

3.2 Nebulized antimicrobials 

The other strategy for ventilated nosocomial pneumonia (i.e., VAP or v-HAP) treatment that falls 

within the scope of this doctoral thesis is nebulization of antimicrobial agents. In the last decades, 
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nebulized antibiotics—also called inhaled or aerosolized drugs, depending on the delivery system—have 

been widely proposed, to respond to the increasing rates of MDR pathogens in patients with nosocomial 

pneumonia (123, 124). Currently, aminoglycosides and polymyxins are the drugs that have been most 

investigated. 

As mentioned before, intravenous treatment has several limitations, including insufficient lung 

distribution and development of adverse side effects (123). With an established role in cystic fibrosis and 

bronchiectasis (125, 126), the aim of nebulized antimicrobial agents in nosocomial pneumonia is to deliver 

a therapeutically effective amount of the drug directly into the respiratory system, so it acts in the bronchi 

and reaches high deposition in the infected lung parenchyma (127). Nebulized antimicrobials could 

accomplish an extremely high local drug concentration capable of eradicating MDR/XDR pathogens (128). 

Moreover, Palmer et al. have demonstrated that nebulized antibiotics prevented the development of 

resistance to intravenous antibiotics (129). Similarly, low systemic exposure may dramatically reduce 

potential adverse effects, as Abdellatif and colleagues demonstrated in a randomized trial evaluating high 

doses of nebulized colistin versus intravenous colistin for VAP (130). In fact, patients in the nebulized 

group had a significantly lower incidence of acute renal failure, a higher level of oxygenation and a 

shortened time to bacterial eradication than those in the control group receiving intravenous colistin, 

although the overall clinical cure rate was not significantly different. 

Some important considerations must be taken into account as it relates to this strategy and 

antimicrobial choice, dosing regimen, formulation and delivery system (131). With respect to drug 

characteristics, formulation should be between 150-1200 mOsm/kg and have a pH of 4.0-8.0 to avoid 

bronchial irritation, cough and/or bronchoconstriction (132, 133). Also, particle diameter size must range 

between 1-5 µm to prevent deposition in the circuit and, at the same time, avoid systemic absorption 

(134). Moreover, the nebulizer in itself and ventilator settings during nebulization are key factors for 

adequate drug deposition. After several technological improvements, currently available vibrating mesh 

nebulizers have increased aerosol delivery efficiency by up to 40-60% (135, 136). Specific setting to limit 

inspiratory flow turbulences that included an optimal distance from the nebulizer to Y-piece, no humidifier 

use, low breathing rate, low inspiratory flow and prolonged inspiratory time may facilitate the adequate 

drug lung deposition (124, 137). Finally, extension and severity of lung infection also affect lung 

distribution of aerosolized antibiotics; sufficient airway patency and alveolar opening are required for 

correct deposition to be achieved (135, 138).  
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According to current USA guidelines (57), which were written before the last failed randomized 

controlled trials (RCT) (139, 140), nebulized antibiotics are only recommended as adjunctive therapy for 

patients with VAP caused by XDR bacteria only susceptible to aminoglycosides or colistin and reject their 

routine use.  As lung and airway concentrations may be subtherapeutic in these antibiotic classes, 

combined treatment with nebulized antimicrobial may be beneficial. Also, the US expert panel contemplates 

their use as a last resort for patients who are not responding to intravenous antibiotics alone. Finally, the 

European Society of Clinical Microbiology and Infectious Diseases have made a statement against the 

routine use of nebulized antimicrobial agents and support use of such agents only in the aforementioned 

conditions (141). 

3.2.1 Nebulized Amikacin/Fosfomycin 

Of the potential antibiotics that can be nebulized into the respiratory system, the combination of 

fosfomycin and an aminoglycoside could prove to confer great benefit on patients with VAP caused by 

either MDR Gram-negative or Gram-positive pathogens (142, 143).  

Amikacin is an aminoglycoside that is active against Gram-negative aerobic bacilli, including P. 

aeruginosa (144). A bactericidal antibiotic, amikacin exhibits concentration-dependent killing (145). In 

other words, for therapeutic success, it is necessary to administer a large dose that is 5-10 times greater 

than the MIC of the target organism at the site of infection (146, 147). Severe respiratory infections due 

to XDR pathogens are often treated by parenteral administration of amikacin combined with other antibiotic 

classes (57, 60), although nephrotoxicity and ototoxicity have been commonly associated with such 

administration (148). 

Fosfomycin is a broad-spectrum phosphonic acid antibiotic with bactericidal activity against Gram-

negative bacteria and Gram-positive bacteria, including MRSA (149, 150). Fosfomycin is moderately active 

against P. aeruginosa (150). A time-dependent drug, fosfomycin inhibits bacterial cell wall synthesis and 

enters into the bacterial cell by two means of transport: a constitutively functional L-α-glycerophosphate 

transport and the hexose-phosphate uptake system (149). Fosfomycin monotherapy is commonly used 

to treat uncomplicated urinary tract infections caused by E. coli (151). A single intravenous or 

intramuscular dose of 2 g of fosfomycin achieves peak serum concentrations of between 25-95 µg/mL 

within 1-2 hours (152), while lung distribution and concentrations are very low (1-13 µg/mL) (153). 

These pulmonary concentrations are insufficient to kill most pathogens, in particular P. aeruginosa, and 

therefore make nebulization a good option.  
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In the last decades, investigators have assessed the effects of aerosolized amikacin on the treatment 

of Gram-negative pneumonia in in vivo models (127, 128, 138, 154, 155). In an animal study, Goldstein 

et al. (127) compared the deposition and the efficacy of nebulized amikacin in comparison to  intravenous 

(IV) amikacin with ventilated piglets with E. coli severe pneumonia. Besides finding 30 times higher tissue 

concentration in nebulized pigs, they also found lower lung bacteria burden in this group in comparison 

to the intravenous one (127, 154).  

Nebulized amikacin has been also used in a few studies to treat intubated patients with VAP – often 

in association with other systemic antibiotics (128, 139, 140, 156-159). Investigators Lu et al. (128) 

compared 8-day curative rates between aerosolized and intravenous ceftazidime and amikacin in patients 

with VAP due to P. aeruginosa. Results showed a similar curative rate, although antibiotic resistance 

developed only in patients treated with intravenous antibiotics. Similarly, Palmer et al. (159) showed a 

reduction in the resistance pressure in critically ill patients treated with nebulized antibiotics. In a later 

study in mechanically ventilated patients with gram-negative pneumonia, Niederman et al. (156) found 

that aerosolized amikacin distributed well throughout the lung while maintaining serum concentrations 

below the renal toxicity. 

Despite a suggested benefit in uncontrolled observational studies, two recent double-blind RCT 

studies failed to meet their primary efficacy endpoints (139, 140). First, in a prospective, double-blind, 

placebo-controlled trial of 143 patients with Gram-negative VAP (IASIS trial, NCT01969799), Kollef et al. 

(139) tested a combination of nebulized amikacin (300 mg q12 h) and fosfomycin (120 mg q12 h) as 

adjunctive therapy against standard-of-care IV antibiotics plus nebulized saline for 10 days. While this RCT 

failed to find effects on clinical outcomes, nebulized antibiotics were associated with a faster sterilization 

of bronchial secretions and, once again, a significantly reduced emergence of drug-resistant bacteria. A 

second double-blind, placebo-controlled trial (INHALE trial, NCT01799993 and NCT00805168)(140) 

randomized patients with Gram-negative VAP: 725 patients received either nebulized amikacin or placebo 

as adjunctive therapy to standard-of-care IV antibiotics. In this case, investigators found no difference in 

survival at 28-32 days between both treatment groups (odds ratio 0.84, 95% confidence interval (CI) 

0.55–1.28; p=0.43). 

Despite these discouraging results, several factors may have had a negative influence on treatment 

efficacy (159-163). For instance, data differs as to whether nebulized drug reaches the terminal bronchi 

and alveoli, if the edema, inflammatory debris and the mucus almost entirely obstruct the distal bronchi 
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(Figure 5) (135, 164). In addition, several technical aspects and timing of the nebulization procedure 

could influence lung drug distribution (137). Finally, the potential methodological biases in the RCT design 

may have also played a role in these unsatisfactory results (160, 162). Nebulized antimicrobials as a 

rescue threapy could have merits in patients with difficult-to-treat infections; they could also serve a 

purpose in patients with PDR pathogens as per current pneumonia guidelines recommendations (57, 60, 

141). However, the associated survival benefits of these treatments in these subpopulations have not yet 

been studied in large RCTs. 

 
Figure 5. Lung tissue with heterogenous damage and bronchoscopy evaluation in swine P. aeruginosa monolateral pneumonia 

model.  

The penetration of nebulized antibiotics into the distal pulmonary parts of highly infected regions filled with respiratory secretions 

could be reduced in comparison to proximal areas or healthy sections. Source: Own illustration. 

4. NOVEL ANTIMICROBIAL AGENTS AGAINST P. aeruginosa 

The likelihood of resistance to conventional antipseudomonal b-lactam, although are frequently 

prescribed, is high and commonly associated with resistance to other traditional b-lactams (165). In an 

effort to overcome the various resistance enzymes observed in P. aeruginosa, novel antimicrobial agents 

and new combinations of b-lactam/b-lactamase inhibitors have been developed (166). Some of these 

antibiotics have received preference based on their potential advantages reported in in vitro data, and 
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pivotal and observational studies (167).  However, various experts have warrant the use of other antibiotic 

families in accordance with the site of infection, clinical severity and comorbidities, risk factors for MDR 

acquisition, and existing MDR pathogens in each unit/hospital (168, 169), as suggested by IDSA/ATS (57) 

and ERS/ESICM/ESCMID/ALAT (60) algorithms.  

Ceftobiprole (170), ceftazidime-avibactam (171), ceftolozane-tazobactam (172), meropenem-

vaborbactam (173), imipenem-relebactam-cilastin (174) and cefiderocol (175) are new molecules that 

recently licensed for the treatment of nosocomial pneumonia. Table 3 displays the main RCTs carried out 

in the last years for nosocomial pneumonia patients. A summary of labeled indications, approved dosages, 

and main outcomes are presented. Moreover, ceftaroline-avibactam (176), aztreonam-avibactam (177), 

cefoperazone-sulbactam (178), plazomicin (179), meropenem-nacubactam (180), and murepavadin 

(181) are other new investigational drugs in development phases that may be approved, representing 

promising options to improve the antimicrobial armamentarium against P. aeruginosa nosocomial 

pneumonia.  

Among all these novel antimicrobial agents, this doctoral thesis will focus on both b-lactams/b-

lactamase inhibitors: ceftolozane-tazobactam and meropenem-nacubactam. 

 

4.1 Ceftolozane-tazobactam 

Ceftolozane-tazobactam (C/T) is an intravenously administered combination of novel cephalosporin 

ceftolozane and b-lactamase inhibitor of tazobactam. In both the European Union and United States, C/T 

has received approval for the treatment of complicated intra-abdominal or urinary tract infections in adults 

(182). Moreover, in June 2019, the Food and Drug Administration approved the use of C/T to treat 

HAP/VAP due to Gram-negative microorganisms in patients aged 18 years and older (182). The European 

Medicines Agency (EMA) also extended its indication to nosocomial pneumonia in December 2020.  

4.1.1 Mechanism of action and spectrum activity 

Ceftolozane, previously known as CXA-101 and FR264205, is a cephalosporin structurally like 

ceftazidime; however, it has a pyrazole ring that provides stability and prevents hydrolysis by AmpC b-

lactamases (183, 184).



 
 

  

 

Table 3. List of last major randomized phase II trials of novel intravenous antimicrobial agents for the treatment of P. aeruginosa nosocomial pneumonia.a The reported primary and secondary 

endpoints were HAP (excluding VAP) patients. ACM, all-cause mortality; AmpC, Ambler class C b-lactamase; CC TOC, clinical cure at test-of-cure; EMA, European Medicines Agency; ESBL, extended 

spectrum b-lactamase; HAP, hospital-acquired pneumonia; IV, intravenous; KPC, Klebsiella pneumoniae carbapenemase; MBL, New Delhi metallo-b-lactamase; MC TOC, microbiological cure at test-

of cure; MDR, multidrug resistance; OXA-48, oxacillin carbaepenemase 48; RCT, randomized clinical trial; VAP, ventilator-associated pneumonia. Source: Compiled by the PhD candidate.

Drug name 
Included Gram-negative 

(166, 185-187) 
EMA labeled 
indications 

Study trial and 
num. patients 

Dosage  Comparator 
Design and 
population 

Primary outcomes 
Intervention vs comparator 

Risk differences (95% CI) 

Ceftolozane-
tazobactam 
(172) 

ESBL Enterobacteriaceae 
Limited AmpC and OXA-48 
Enterobacteriaceae 
Efflux and AmpC P. aeruginosa 

Approved in 
2019 for adults 
with HAP/VAP at 
3g q8h 

ASPECT-NP 
(NCT02070757) 
726 patients 

3g q8h as 
1-h IV 
infusion 

Meropenem 

Double-blind, non-
inferiority RCT for 
ventilated HAP + 
VAP  

ACM: 24.0% vs 25.3% 
CC TOC: 54.4% vs 53.3% 
MC TOC: 73.1% vs 68.0% 

ACM: 1.1 (-5.1 to 7.4) 
CC TOC: 1.1 (-6.2 to 8.3) 
MC TOC: 4.5 (-3.4 to 12.5) 

Ceftobiprole 
(170) 

Nonextended spectrum b-
lactamases, non-AmpC, and non-
cabepenemases-producing 
Enterobacterales, P. aeruginosa 

Approved in 
2013 for adults 
with HAP 
excluding VAP at 
500 mg q8h 

NCT00210964 
781 patients 

500 mg 
q8h as 2-h 
IV infusion 

Ceftazidime 
plus 
linezolid 

Double-blind, non-
inferiority RCT for 
HAP + VAP  

ACM: 16.7% vs 18.0% 
CC TOC: 77.8% vs 76.2% 
MC TOC: 62.9% vs 67.5% a 

ACM: -1.2(-7.4 to 5.0) 
CC TOC: 1.6 (-6.9 to 10.0) 
MC TOC: -16.7 (-38.8 to -0.4) 

Ceftazime- 
avibactam 
(171) 

ESBL, AmpC, KPC, OXA-48 
Enterobacteriaceae 
AmpC P. aeruginosa 

Approved in 
2018 for adults 
with HAP/VAP at 
2.5g q8h 

REPROVE 
(NCT01808092) 
879 patients 

2.5g q8h 
as IV 2-h 
infusion 

Meropenem 
Double-blind, non-
inferiority RCT for 
GN HAP + VAP  

ACM: 9.6% vs 8.3% 
CC TOC: 68.8% vs 73.0% 
MC TOC: 55.6% vs 64.1% 

ACM: NA 
CC TOC: -4.2 (-10.8 to 2.5) 
MC TOC: -8.6 (-18.7 to 1.6) 

Cefiderecol 
(175) 

ESBL, AmpC, KPC, OXA-48, MBL 
Enterobacteriaceae 
Efflux and AmpC P. aeruginosa, 
MDR A. baumannii 

Approved in 
2020 for adults 
with Gram-
negative 
infections and 
limited options 

APEKS-NP 
(NCT03032380) 
300 patients 

2g q8h as 
3-h IV 
infusion 

Meropenem 

Double-blind, non-
inferiority RCT for 
Gram-negative HAP 
+ VAP 

ACM: 21.0% vs 20.5% 
CC TOC: 64.8% vs 66.6% 
MC TOC: 47.6% vs 48.0% 

ACM: 0.5 (-8.7 to 9.8) 
CC TOC: -2.0 (-12.5 to 8.5) 
MC TOC: -1.4 (-13.5 to 10.7) 

Meropenem- 
vaborbactam 
(173) 

ESBL, AmpC, KPC 
Enterobacteriaceae 
AmpC P. aeruginosa 
Limited MDR A. baumannii 

Approved in 
2018 for adult 
HAP/VAP at 4g 
q8h 

TANGO-II 
(NTC02168946) 
77 patients 

4g q8h as 
3-h IV 
infusion 

Best 
available 
therapy 

Open-label RCT for   
Carbapenem-
resistant 
Enterobacteriaceae 
infections including 
HAP + VAP 

ACM: 3.1% vs 33.3% 
CC TOC: 59.4% vs 26.7% 
MC TOC: 53.1% vs 33.3% 

ACM: -29.0 (-5.1 to 7.4) 
CC TOC: 32.7 (4.6 to 60.8) 
MC TOC: 19.8 (-9.7 to 49.3) 

Imipenem- 
cilastin- 
relebactam 
(174) 

ESBL, AmpC, KPC 
Enterobacteriaceae 
Efflux and AmpC P. aeruginosa 
Limited MDR A. baumannii 

Approved in 
2020 for adults 
with HAP/VAP at 
1.25g q6h 

RESTORE-IMI2 
(NCT02493764) 
537 patients 

1,250 mg 
q6h as 30-
min IV 
infusion 

Piperacillin/ 
tazobactam 

Double-blind, non-
inferiority RCT for 
HAP + VAP 

ACM: 15.9% vs 21.3% 
CC TOC: 61.0% vs 55.8% 
MC TOC: 67.9% vs 61.9% 

ACM: -5.3 (-11.9 to 1.2) 
CC TOC: 5.9 (-3.2 to 13.2) 
MC TOC: 6.2 (-2.7 to 15.0) 



NOVEL ANTIMICROBIAL AGENTS 

 

  
45 

Like other cepthalosporins, ceftolozane exerts bactericidal activity by binding to penicillin-binding 

proteins (PBPs), thus inhibiting cell wall biosynthesis, and inducing bacterial cell lysis and death (188). 

Tazobactam is a well-established b-lactamase inhibitor that inhibits most class A, including ESBLs, and a 

number of class C b-lactamases(189). Its addition in a 2:1 ratio therefore protects ceftolozane against 

hydrolysis due to b-lactamase enzymes 

C/T is active against Gram-negative and Gram-positive bacteria, the greatest in vitro activity is that 

against P. aeruginosa, including those which are MDR and XDR (190). In vitro activity of C/T against P. 

aeruginosa isolates collected in recent surveillance reports are shown in Figure 6. Its activity is 20-25% 

greater than other competitor compounds, making C/T the most active compound after colistin (191). 

Susceptibility ranges between 81-98%, being similar across various geographic and clinical settings (192-

197). 

Activity against Enterobacteriaceae is also good, albeit more variable and dependent on the specific 

species and b-lactamases (195).  In contrast, C/T has no activity against most carbapenemases (Klebsiella 

pneumoniae carbapenemase (KPC) and metallo-b-lactamases (MBL)); it is, however, residual against  

OXA-48 (198). Similarly, activity against Gram-positive is quite limited.  

Current Clinical and Laboratory Standards Institute (M100 32nd edition, valid from February 

2022)(62) and European Committee on Antimicrobial Susceptibility Testing breakpoints (version 12.0, 

valid from January 2022)(63), for C/T based on 1,000-to-500 mg dosing of C/T intravenously for P. 

aeruginosa and Enterobacteriaceae are ≤ 4/4 mg/L and ≤2/4 mg/L, respectively.  Based on current data, 

potential for the selection of resistance to C/T against P. aeruginosa appears to be linked to intrinsic AmpC 

modifications and horizontally-acquired b-lactamases (e.g., OXA-14)(199, 200), while efflux pumps 

upregulation and structure/functional changes of porin channels have not been shown to have significant 

impact (201).  

4.1.2 Pharmacokinetics and pharmacodynamics 

In phase I studies, ceftolozane shows linear PK after 1 g dose with Cmax up to 92.3 mg/L, plasma half-

life around 2.5 hours, protein binding approximately 20% and 14L of volume of distribution (202, 203). 

As both ceftolozane and tazobactam are renally excreted, clearance decreases with impaired renal function 

(204). C/T dosages must, therefore, be adjusted according to the creatinine clearance. 



NOVEL ANTIMICROBIAL AGENTS 

 

 
46 

 

Figure 6.  Distribution of P. aeruginosa isolates from nosocomial pneumonia patients in terms of C/T value and the PTA in both 

compartments. 

Histograms represent the MIC distribution stratified by region. Lines represent PTA values through MIC level. PTA of ceftolozane 

in plasma and ELF in patients with nosocomial pneumonia and normal renal function following 3 g C/T administered as a 1-h q8h, 

using 32.2% fT>MIC as pharmacodynamic target. Source: Own illustration. Distribution of isolates were obtained from Carvalhaes 

CG et al. Diagn Microbiol Infect Dis, 2019 (196) and Sader HS et al. J Antimicrob Chemother, 2020 (197) for Western Europe and 

US data, respectively. PTA data was obtained from Xiao AJ et al. J Clin Pharmacol, 2016 (205). ELF, epithelial lining fluid; f T>MIC, 

free time above MIC; MIC, minimum inhibitory concentration, PTA, probability of target attainment.  

 

Consistent with other b-lactam antimicrobials, ceftolozane exhibits time-dependent bactericidal 

activity (206). As such, the PD parameter best correlated to C/T antimicrobial activity is the percentage of 

time in which free drug concentration is above the infecting organism’s MIC across a dosing interval (i.e., 

40-50%f T>MIC) (207, 208). Neutropenic murine thigh infection model with humanized doses evaluated 

the bactericidal efficacy, showing that 40% f T>MIC is likely to achieve >1-log killing against P. aeruginosa 

isolates with MICs as high as 16 mg/L (209).  
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Subsequent population PK modeling analyses using human data have shown that depending on the 

dosing scheme, PTA might not be as high (210). Indeed, main Monte Carlo simulations with alternative 

dosing regimens suggested that a dose more than 1.5 g of C/T and/or continuous infusion may optimize 

PTA (Figure 6)(205), especially for those critically ill patients with augmented renal clearance, pneumonia, 

or with MDR P. aeruginosa isolates (110, 211). After intravenous administration of 1.5 g of C/T, the 

intrapulmonary penetration based on total ELF/plasma AUC was 48%. This is higher than piperacillin-

tazobactam (i.e., 26%), hinting at appropriate penetration (210). However, when Xiao et al. (205) 

conducted Monte Carlo simulation in 25 healthy subjects, they found that doubling the approved dose of 

C/T (i.e., 3 g q8h)  for complicated urinary tract infections and complicated intra-abdominal infections is 

necessary in treating nosocomial pneumonia. Specifically, at 3-g dose, PTA for 1-log kill was approximately 

98.4% for pathogens with an MIC up to 8 mg/L in ELF, whereas the PTA was approximately 85% at 1.5 g 

dose (205). These models were confirmed by evaluating PK data for ceftolozane and tazobactam in 

plasma and ELF of a 3-g dose of C/T administered via a 1-hour infusion every 8 hours in adult patients 

with ventilated nosocomial pneumonia (212). 

4.1.3 Clinical trials for nosocomial pneumonia 

 C/T has been evaluated in several clinical, multicenter RCT across all indications (172, 213-216). 

This section will only discuss the clinical trial for nosocomial pneumonia including VAP. The ASPECT-NP 

study (NCT02070757) (172), a multicenter phase III study, compared 2g ceftolozane/ 1g tazobactam 

with 1g of meropenem both as 1-h intravenous infections every 8h in patients with ventilated nosocomial 

pneumonia (either VAP or v-HAP) (Table 3). Based on the aforementioned PK data (205), the dose of 

C/T was the double that of approved dosing regimens for both complicated urinary tract and intra-

abdominal infections. Patients received treatment for 8-14 days. This balanced randomized study of 726 

patients, C/T showed non-inferiority when compared to meropenem as it relates to primary outcome of 

28-day ACM in the intention-to-treat population (weighted treatment difference 1.1%, [95% CI -5.1 to 

7.4]) (Figure 7).  C/T was also non-inferior to meropenem in terms of clinical cure at test-of-cure and 

appeared well tolerated. Nevertheless, higher rates of treatment-related adverse events occurred in C/T 

than meropenem group (172). Furthermore, C/T resulted in comparable outcomes between participants 

with either augmented renal clearance or normal renal function (217). 

Significant differences were demonstrated with respect to the non-pre-defined subgroup of patients 

with HAP who required IMV (218). Further analyses in this subset of patients showed—after adjusting for 
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variables with great impact on mortality (i.e., bacteremia and vasopressor treatment)—that the odd ratio 

for 28-day ACM with meropenem treatment versus C/T was 2.3 (95% CI 1.2 – 4.5) (218). While limited 

due to retrospective analysis, this finding suggests a potential C/T survival advantage. Although baseline 

pathogens in meropenem group had lower MIC values and were thus more susceptible to randomized 

study drug, C/T may perform better due to greatest chance of achieving the PD target associated with 

antibacterial activity at the site of the infection (219). Of note, meropenem dosing regimen was not 

optimized to extended infusions (e.g., 3-h infusion), which is recommended in critically ill patients (220, 

221).  

 

Figure 7. Primary and secondary efficacy outcomes in overall population and various subpopulations from ASPECT-NP study of 

ceftolozane-tazobactam against meropenem in the intention-to-treat population. 

Weighted treatment differences (meropenem minus ceftolozane-tazobactam) are shown for the overall population. Percentage of 

patients achieving the primary and secondary outcomes are display for the overall population and VAP and ventilated-HAP 

subpopulations. VAP, ventilator-associated pneumonia; v-HAP, ventilated hospital-acquired pneumonia. Source: Own illustration 

based on data extracted from Kollef MH et al. Lancet Infect Dis., 2019 (172). 

 

4.2 Meropenem-nacubactam 

4.2.1 Mechanism of action and spectrum activity 

Nacubactam is a novel non-b-lactam, diazabicyclooctane b-lactamase inhibitor with a triple-

mechanism action (222). This inhibitor has in vitro activity against class A, C and some class D b-

lactamases that prevent inactivation by hydrolysis due to co-administration with other b-lactam agents 

(222, 223). When class A serine b-lactamase hydrolyzes meropenem, nacubactam’s inhibition confers 
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stability onto the meropenem molecule to then restore its activity in KPC presence (224, 225). Conversely, 

nacubactam also has affinity and inhibits PBP-2 to exert direct antibacterial effect against MBL-producing 

Enterobacteriaceae (226). Also, investigators Morinaka et al. described nacubactam acting as an 

“enhancer” of activity of several b-lactam drugs, including PBP3-targeted agents such as cefepime or 

piperacillin (227). 

In vitro data from UK diagnostic laboratories showed that of 240 Enterobacteriaceae isolates, MIC for 

nacubactam alone ranged mostly between 1 and 4 mg/L (228). High MICs were also found among P. 

aeruginosa and Acinetobacter baumannii  isolates. Nevertheless, approximately 80% susceptibility was 

achieved when nacubactam was combined with other b-lactam agents. Specifically, at higher MICs (i.e., ≥ 

4 mg/L), nacubactam contributes to combination activity against bacteria with class A or class C b-

lactamases, contingent on b-lactamase inhibition. In the P. aeruginosa strain, a 2-to-5-fold potentiation 

of biapenem was achieved depending on the presence and expression of OrpD porin and AmpC b-

lactamase (228). In another large in vitro study with more than 4,000 isolates and focused on the 

combination of meropenem-nacubactam, presenters showed that more than 99% of Enterobacteriaceae 

were inhibited by the studied combination at 2/4 mg/L (229). Indeed, the MIC90 (i.e., MIC required to 

inhibit the growth of 90% of organisms) for meropenem was 0.03, with constant concentration of 

nacubactam at 4 mg/L. In contrast to the previous study, no such effect was observed in either the 

Pseudomonas spp. or A. baummannii isolates, remaining at similar susceptible levels than with meropenem 

alone. These in vitro results reveal the need for further in vivo studies assessing the efficacy of nacubactam 

in P. aeruginosa isolates.  

4.2.2 Pharmacokinetics and pharmacodynamics 

Studies in healthy volunteers demonstrated that meropenem and nacubactam exhibit very similar 

plasma protein binding, half-lives, and routes of elimination (180). Nacubactam PK were linear and 

comparable when it is administered alone or in combination with meropenem. Meropenem PK was also 

not affected by nacubactam coadministration. Like other b-lactamase inhibitors, nacubactam is 

predominantly renally excreted. Variation in kidney function in critically ill patients may, therefore, impact 

this disposition. Total nacubactam clearance in healthy volunteers ranged from 7.2 to 8.9 L/h, similar to 

creatinine clearance; while the volume of distribution at steady state after a dose 2,000 mg was around 

26 L (180). 
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Single and multiple doses of nacubactam were well tolerated. Adverse events were mainly mild and 

resolved without sequalae (180). When nacubactam was administered in combination with meropenem, 

the adverse events were consistent with the known safety profile of meropenem (180). No serious adverse 

events, dose-limiting adverse events, or death were reported. Also, no clinically relevant dose-related 

trends were observed in renal biomarkers or in electrocardiogram monitoring, including QT interval. 

Murine infection models were used to derive a predictive PD target of the combination efficacy (230-

234). As with other inhibitors,  b-lactam-b-lactamase inhibitor combinations, f T>MIC was an effective 

driver of the therapy, with half maximal inhibitory concentration value of 19.6% f T>MIC (234). 

Based on the well-established PK/PD profile and suitability of meropenem as a potential b-lactam 

associate (225), the clinical development of nacubactam may be able to proceed to further clinical studies 

in patients with nosocomial pneumonia. 

4.2.3 Clinical trials for nosocomial pneumonia 

At the time of writing this dissertation, there is no registration at ClinicalTrials.gov of any phase II or 

phase III trials aiming to assess either the pharmacokinetics in nosocomial pneumonia or efficacy of 

meropenem-nacubactam in comparison to standard antimicrobial agents. Despite the paucity of in vitro, 

in vivo and clinical data, the combination of meropenem-nacubactam may serve as a valuable alternative 

in overcoming resistance emergence and treating nosocomial pneumonia.  
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ARTICLE 1 

Is One Sample Enough? β-Lactam Target Attainment and Penetration into Epithelial Lining Fluid 

Based on Multiple Bronchoalveolar Lavage Sampling Time Points in a Swine Pneumonia Model 

Motos A, Kuti JL, Li Bassi G, Torres A, Nicolau DP 

Antimicrob Agents Chemother 2019; 63(2):e01922-18. doi: 10.1128/AAC.01922-18. 

 

Hypothesis 

Describing the disposition of antimicrobial agents at the site of infection is crucial in guiding optimal 

dosing for investigational agents (118). For antibiotics developed to treat patients with pneumonia, 

concentrations are routinely determined in the epithelial lining fluid via a collection of BAL samples (118, 

121). For ethical reasons, BAL sampling in humans is routinely done at a single time point. However, this 

results in ambiguity in the precise ELF profile (235). Pooled data at each sampling time point are then 

averaged to estimate pharmacokinetic profile in ELF over the dosing interval. Pharmacokinetic modeling 

and Monte Carlo simulation methods have been applied to assess the estimated ELF penetration and PTA 

to predefined pharmacodynamics targets (204, 205, 235). 

It is currently unknown if sparse sampling methodologies used in humans result in comparative 

penetration and pharmacodynamics exposure attainment to full ELF profiles. Thus, models constructed by 

full ELF profiles may lead to more accurate estimates of exposure. 

Aims 

The primary goal was to describe the influence of collecting sparse BAL samples from each subject 

on the population’s pharmacokinetic profile in comparison with a full ELF profile obtained via simulated 

human regimens of two b-lactams, ceftolozane and piperacillin, in a swine pneumonia model (236, 237). 

Our secondary goals were to compare penetration ratios and the PTA achieved by different BAL sampling 

approaches. 
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ARTICLE 2  

Short-term Effects of Appropriate Empirical Antimicrobial Treatment with Ceftolozane/Tazobactam 

in a Swine Model of Nosocomial Pneumonia 

Motos A, Li Bassi G, Pagliara F, Fernandez-Barat L, Yang H, Aguilera Xiol E, Senussi T, Idone FA, Travierso 

C, Chiurazzi C, Amaro R, Yang M, Bobi J, Rigol M, Nicolau DP, Frigola G, Cabrera R, Ramirez J, Pelosi P, 

Blasi F, Antonelli M, Artigas A, Vila J, Kollef M, Torres A 

Antimicrob Agents Chemother 2021; 65(2):e01899-20. doi: 10.1128/AAC.01899-20. 

 

Hypothesis 

The rising frequency of MDR pathogens is making IEAT more frequent in nosocomial pneumonia (84, 

89). Indeed, the likelihood of receiving IEAT for P. aeruginosa infection is approximately 30% (25). The 

short-term effects of appropriate empirical treatment within the first 48-72h hours has not been studied 

yet (i.e., traditional microbiological methods take at least 48 hours to provide results). International 

guidelines for HAP/VAP recommend empirical therapy to cover ≥95% of pathogens in P. 

aeruginosa infections based on an institution’s antibiograms (57), although due to increasing 

resistance it becomes arduous to achieve (238).  

In this context, C/T—a novel antipseudomonal with high in vitro activity (191, 197)—has yet to be 

fully characterized against first-line empirical antibiotics for nosocomial pneumonia (239). Herein we 

present a prospective, randomized animal study to study the short-term benefits of appropriate empirical 

antimicrobial treatment C/T in comparison with IEAT with piperacillin/tazobactam, a b-lactam/ b-lactamase 

inhibitor commonly used for suspected cases of nosocomial pneumonia. 

Aims 

The primary aim of the study was to investigate bactericidal activity and lung histopathological severity 

during the first 48 hours of appropriate treatment with ceftolozone/tazobactam in comparison with IEAT 

with piperacillin/tazobactam in a pneumonia swine model due to P. aeruginosa (236). Secondary 

outcomes included P. aeruginosa burden in tracheal secretions and BAL fluid, the development of antibiotic 

resistance and inflammatory markers. 
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ARTICLE 3 

Meropenem–Nacubactam Activity against AmpC-overproducing and KPC-expressing 

Pseudomonas aeruginosa in a Neutropenic Murine Lung Infection Model 

Asempa TE, Motos A, Abdelraouf K, Bissantz C, Zampaloni C, Nicolau DP 

Int J Antimicrob Agents. 2020; 55(2):105838. doi: 10.1016/j.ijantimicag.2019.10.019 

 

Hypothesis 

The increasing rate of MDR Gram-negative bacteria is a global concern that warrants attention as it 

relates to in hospitals’ best practices, infection control, and the development of new antibiotics (96). 

Specifically, P. aeruginosa has a great propensity to develop antimicrobial resistance quickly (240). Its 

management, therefore, makes P. aeruginosa a serious therapeutic challenge within the clinical setting. 

The development of carbapenem resistance, alongside the problem of the appearance of KPC-positive 

appearing as an emerging resistance pattern, is compromising the use  of such as antipseudomonal option 

(241). In this context, the need for alternative and novel therapeutic options with potent antipseudomonal 

activity is indisputable. Nacubactam is a breakthrough, non-β-lactam, diazabicyclooctane, and β-

lactamase inhibitor with in vitro activity against P. aeruginosa isolates (227). In combination with 

meropenem, it may prove to be a good strategy against serious Gram-negative bacterial infections, 

including lung infections (223, 228).  

Aims 

To assess the efficacy of human-simulated ELF exposures of meropenem, nacubactam and the 

meropenem-nacubactam combination against chromosomal AmpC-overproducing and KPC-expressing P. 

aeruginosa in a neutropenic murine lung infection model (242). 
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ARTICLE 4  

Nebulized Amikacin and Fosfomycin for Severe Pseudomonas aeruginosa Pneumonia: An 

Experimental Study 

Li Bassi G, Motos A, Fernandez-Barat L, Aguilera Xiol E, Chiurazzi C, Senussi T, Saco MA, Fuster C, 

Carbonara M, Bobi J, Amaro R, De Rosa F, Comaru T, Yang H, Ranzani OT, Marti JD, Rinaudo M, Comino 

Trinidad O, Rigol M, Bringue J, Ramirez J, Nicolau DP, Pelosi P, Antonelli M, Blasi F, Artigas A, 

Montgomery AB, Torres A 

Critical Care Medicine 2019; 47(6):e470-e7. doi: 10.1097/CCM.0000000000003724. 

 

Hypothesis 

Pneumonia caused by P. aeruginosa is commonly treated by IV administration of antibiotics to ensure 

adequacy of treatment in cases of MDR etiology (57, 60). Systemic antibiotics often achieve sub-optimal 

pulmonary concentrations and adverse effects, i.e., renal failure (114). The combination of 

amikacin/fosfomycin, delivered through a vibrating mesh nebulizer, could achieve higher pulmonary 

amikacin/fosfomycin concentrations and dramatically improve therapeutic efficacy and reduce antimicrobial 

resistance development (142, 143, 157). Yet, to date, the latest trials discourage the use of nebulized 

amikacin/fosfomycin for IMV patients with nosocomial pneumonia (139, 140). Moreover, the 

intrapulmonary distribution of nebulized amikacin/fosfomycin is not fully elucidated upon and could be 

affected by the extension and severity of lung infection (135), as well as the ventilator parameters used 

during nebulization (124, 137). 

Therefore, to clarify potential benefits of nebulized amikacin/fosfomycin combined with IV meropenem, 

we assessed bactericidal efficacy and antibiotic resistance development in swine with severe pneumonia 

caused by P. aeruginosa resistant to amikacin and fosfomycin in comparison with systemic therapy alone. 

Aims 

The primary aim of this animal study of P. aeruginosa pneumonia swine model (236) was to evaluate the 

effects of nebulized amikacin/fosfomycin with IV meropenem versus IV meropenem alone on lung tissue 

P. aeruginosa burden. Furthermore, we investigated the effects of nebulized antimicrobial combinations 

on lung histology, pulmonary function and mechanics, antibiotic resistance acquisition, hemodynamics, 

and inflammation.  
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Nosocomial pneumonia is one of the most common hospital-acquired infections. It is associated with 

substantial morbidity and crude mortality that could reach 70% (3, 60). In the last decade, an increase in 

the prevalence of MDR microorganisms has been observed due to selection pressure exerted by the 

inappropriate and indiscriminate use of broad-spectrum antibiotics (243). This is becoming an emerging 

problem due to the lack of new antimicrobial strategies (244).  P. aeruginosa is one of the most common 

causative pathogens, responsible for many life-threatening conditions (29, 34). Indeed, MDR/XDR P. 

aeruginosa is a potentially challenging pathogen, being associated with an even higher mortality rate and 

worse clinical outcomes when compared to non-MDR (244).  

 

 

Figure 8. An integrative approach of novel antimicrobial treatments and strategies for P. aeruginosa nosocomial pneumonia. 

A summary of current setbacks and potential strategies discussed in this PhD thesis that could affect the outcomes of patients 

with P. aeruginosa nosocomial pneumonia, especially in those who required mechanical ventilation. Source: Own illustration. MDR, 

multidrug resistant; MIC, minimum inhibitory concentration, PK, pharmacokinetics; PTA, probability of target attainment; XDR, 

extensively drug resistant. 

 

For the aforementioned reasons, an integrative approach in managing nosocomial pneumonia is a 

must. In this PhD thesis, the candidate has tried to elucidate some of the potential problems and solutions 

among novel strategies and antimicrobial therapies aimed at treating nosocomial pneumonia caused by 
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P. aeruginosa (Figure 8). Specifically, we have found that: (i) the ELF models constructed with 

concentrations from sparse ELF sampling time points result in exposure estimates similar to those 

constructed from robustly sampled ELF profiles; (ii) the appropriate initial treatment with C/T decreased 

respiratory secretions' bacterial burden, prevented the development of resistance, achieved the 

pharmacodynamic target, and possibly reduced systemic inflammation; (iii) the addition of nacubactam to 

meropenem resulted in substantial bacterial reduction in KPC-expressing and AmpC-overproducing P. 

aeruginosa isolates; (iv) and corroborate that nebulized amikacin and fosfomycin alone efficiently reduced 

P. aeruginosa in tracheal secretions and hindered development of meropenem-resistant P. aeruginosa, 

with negligible effects on pulmonary tissue. 

 

BAL sampling for constructing pharmacokinetic antimicrobial profiles 

The emergence of MDR or XDR pathogens makes antimicrobial therapy a challenge, both in ensuring 

adequate likelihood of efficacy and in preventing the inappropriate use of broad-spectrum antimicrobials. 

In this context, defining the disposition of antimicrobial agents at the site of infection is essential for guiding 

optimal dosing for antimicrobials targeting pneumonia (118, 204). In fact, antimicrobials developed for 

pneumonia are typically dosed more aggressively than the doses used for complicated nosocomial 

infections, given that pulmonary concentrations are generally diminished when compared to serum levels 

(205). The likelihood of PK parameters in critically ill patients is high, requiring dose adjustment (110). 

Moreover, the poor knowledge of drug disposition and the neglect of PD at the site of infection can lead 

to failure in phase II and III clinical trials (245). Therefore, studying the pulmonary penetration is crucial 

in providing optimal dosing regimens and conferring good clinical outcomes. 

Drug concentrations are routinely determined in the ELF via the collection of BAL fluids (118, 246). 

Due to ethical and logistical issues, BAL is performed only once in healthy volunteers or patients at a 

defined sampling time point (247). Although bronchoscopies are widespread, effective, and generally safe; 

repetition of such a procedure has been shown to elevate morbidity in critically ill patients (248). Pooled 

data are, therefore, at each averaged to estimate pharmacokinetic profile in ELF over the dosing interval 

(118). Consequently, the impact of collecting only one BAL sample from each subject in the population 

pharmacokinetic profile was unknown. 

We studied the pharmacokinetics of ceftolozane and piperacillin in a swine model of severe P. 

aeruginosa pneumonia (237). We used this database to delineate a simple approach that would determine 
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the impact of different sampling approach on the  population PK profile. We successfully constructed 

population pharmacokinetic models for ceftolozane and piperacillin using robust (i.e., concentrations in 

ELF from 4-5 time point per pig), 1-BAL (i.e., concentrations in ELF from one randomly selected time point 

per pig) and 2-BAL sampling approaches (i.e., concentrations in ELF from two randomly selected time 

points per pig). Astonishingly, related drug models resulted in similar pharmacokinetic parameter 

estimates. Furthermore, no remarkable differences were found in plasma and ELF AUC, nor in penetration 

ratios between sampling approaches were found when the 5,000-subject simulations were run. As 

expected, the penetration distributions obtained with the 2-BAL model were closer to those obtained with 

the robust model when compared to the 1-BAL model. Nevertheless, the increase from one to two time 

points did not confer a large improvement. PTAs in ELF displayed across all MICs for both drugs were 

consistently similar among different sampling approaches. 

Similar to our study, sparse and dense sampling approaches were compared for PK profiles 

constructed only with plasma concentrations (249, 250). For instance, Choi et al. found that increasing 

the sampling frequency reduce the bias due to time measurement error radically (249). However, a 

complete D-optimal informative design for plasma sampling should generate good parameter estimates 

(251).  Thus, someone might argue that a similar situation may then occur with BAL sampling. As the 

number of sampling times increases, we might find ourselves obtaining larger pieces of information. 

Nevertheless, unless an inconceivably large number of samples were obtained (ethical issues aside), the 

models would still show dispersion for patients who are in the outlier part of the distribution (251). Our 

data suggests that a single BAL sampling timepoint per each subject would be sufficient in predicting the 

median penetration and variability for both β-lactam drugs. Additionally, sparse ELF models result in 

similar exposure estimates to robustly sampled BAL profiles. Therefore, this study validates current ELF 

sampling procedures in PK studies done in humans. However, even with the endorsement of sparse 

sampling methodologies, we encourage that studies be conducted with larger subject numbers (i.e., 

n ≥ 20 subjects) to best assess intersubject variability. 

Several limitations of this study should be noted. First, the swine pneumonia model is not as rigorous 

as the actual treatment of patients with ventilator-associated pneumonia. However, it did allow for the 

opportunity to explore the effects of sampling at multiple time points on predicted ELF exposures. Second, 

the drug disposition in ELF of this swine model may be different from that observed in humans enrolled in 

studies, even though the PK profile comparison was out of the study scope. Third, only two β-lactams 
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were included in this assessment. Our conclusions may not be applicable in other antibiotic classes 

particularly for agents noted to have poor ELF penetration (e.g., aminoglycosides). Finally, this study 

included only 7 – 8 pigs for each drug, which may limit the ability to extrapolate results. 

 

Short-term effects of appropriate empirical treatment with ceftolozane-tazobactam 

The global dissemination of antimicrobial resistance complicates empirical antibiotic therapy decisions, 

which are essential in patients with a suspected infections Moreover, high MICs and PK variations among 

patients with acute illnesses also threaten adequate antimicrobial pulmonary concentrations (110, 113). 

An empirical antimicrobial regimen is usually categorized as inappropriate when it did not include any 

antibiotic showing in vitro activity against the isolated bacteria. However, the lack of PD target attainment, 

even when the pathogen is susceptible to the antimicrobial, should begin to be considered as part of IEAT. 

In the hospital and ICU settings, the high prevalence of MDR/XDR P. aeruginosa strains is posing as 

a major threat when it comes to decisions regarding appropriate initial antimicrobial treatment (35). In 

fact, the frequency of IEAT is up by 70% (238). Although clinical practice universally assumes that an 

overall beneficial outcome due to appropriate antibiotic therapy, some studies showing not impact on 

mortality continued to be published (89, 90). 

Our study on a swine model of severe and XDR P. aeruginosa pneumonia corroborates that 

appropriate empirical treatment with human-simulated C/T regimen yields higher bactericidal efficacy in 

tracheal secretions and BAL fluids. Importantly, C/T averts the development of P. aeruginosa resistance 

and lessens systemic inflammation in comparison with IEAT. Yet, due to short antimicrobial course, P. 

aeruginosa tissue burden was moderately affected. The results suggest that C/T may serve as a useful 

empirical therapeutic strategy in ICU-admitted patients when there is a high likelihood that MDR P. 

aeruginosa is the causative pathogen.  

Ceftolozane has been shown to possibly more stable against the most common resistance 

mechanisms of P. aeruginosa, driven by mutation, upregulation or hyperproduction, i.e., AmpC, efflux 

pumps or OprD (252). Remarkably, in our study C/T avoided the development of resistance. In contrast, 

after only 48 hours of treatment with piperacillin-tazobactam, MIC increased substantially. Nevertheless, 

it is also important to emphasize that Hadair et al. recently published a small case series of sixteen patients 

with MDR P. aeruginosa pneumonia. These patients underwent longer treatment with C/T, on average 20 

days, and 12.5% developed resistance to C/T (199). Authors identified AmpC overexpression and 
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mutations as potential resistance mechanisms in those isolated strains. Therefore, using broad-spectrum 

antibiotics for initial therapy in order to avoid IEAT may indeed lead to a worsening in antimicrobial 

resistance burden due to the selection of even more resistant pathogens (91). The development of novel 

antibiotics is therefore necessary if clinicians are to have a higher chance of choosing an active, effective 

agent for empirical therapy of nosocomial pneumonia (96). Similarly, the development of rapid, low-cost 

diagnostic microbiological tools that allow the prompt use of narrow-spectrum antibiotics is equally 

significant (64). 

Among recently developed antimicrobials, C/T efficacy has been judged in comparison to other 

antibiotics,  especially ceftazidime-avibactam – a combination of a third-generation cephalosporin and a 

novel β-lactamase inhibitor (166). Both drugs demonstrated its efficacy, presenting great in vitro activity 

and less resistance development; they can be used to limit carbapenems use (97). In a recent metanalysis 

of clinical outcomes using C/T and ceftazidime-avibactam for the treatment of MDR Gram-negative 

infections, the researchers found similar clinical success rates among them, with a pooled rate of 73.3% 

(95% CI, 68.9%–77.5%)(253). Nevertheless, in vitro data suggested that C/T may have enhanced activity 

against P. aeruginosa and may, therefore, be preferred for hospital settings with a higher MDR frequency 

(254, 255). Also, the activity of imipenem-relebactam-cilastatin, a  carbapenem combined with cilastatin 

and a novel β-lactamase inhibitor, appears to be slightly lower than C/T (194). Unfortunately, those agents 

have never been compared, and real-world data rivalling novel antimicrobial agents is needed in order to 

resolve C/T place in therapy. 

In conclusion, our experimental study is the first study to shed some light on comparisons with 

another first-line antibiotic and comprehensively assessing the effects of C/T in a large animal model that 

closely resembles critically ill patients with severe P. aeruginosa pneumonia. Our findings are also in line 

with the in vitro data and clinical studies (172, 195, 196, 255, 256), and further emphasize the value of 

C/T for nosocomial pneumonia.  

A number of limitations of this study should be noted. First, piperacillin-tazobactam could yielded 

subinhibitory concentrations in ELF and therefore facilitated the development of resistance. However, our 

methods aimed to simulate clinical conditions. In this context, the attainment of PD targets in both systemic 

and pulmonary compartments is usually unexpected, in cases of IEAT. Second, the validation of the 

outcomes was restricted due to one P. aeruginosa strain and therapy duration. Finally, animals in our 



   

 

 158 

setting did not have comorbidities and were deeply sedated throughout the study. These dissimilarities – 

when considering critically ill patients with nosocomial pneumonia – are noteworthy to mention. 

 

Efficacy of meropenem-nacubactam against P. aeruginosa pneumonia 

Investing in developing novel antibiotics can help reduce the impact of resistance and lower IEAT 

rates in hospital settings. The limited armamentarium against MDR P. aeruginosa has led to the 

development of several novel β-lactam-β-lactamase inhibitor combinations. Among them, the combination 

of meropenem-nacubactam may appear a potential option for treating the nosocomial pneumonia caused 

by P. aeruginosa. 

In contrast to other β-lactamase inhibitors, such as avibactam and vaborbactam, nacubactam 

possesses a multiple mechanism of action – first, as a β-lactamase inhibitor against organisms with Class 

A and C enzymes. The second is its intrinsic antimicrobial activity against Enterobacteriaceae. There, it  

enhances of the activity of various β-lactam agents including carbapenem-resistant P. aeruginosa by 

AmpC-derepressed β-lactamase (222). Therefore, combinations of nacubactam with β-lactam agents 

boast the a potential to overcome resistance (225, 226).  

A growing number of studies have reported enhanced efficacy of different β-lactam drugs and 

nacubactam against Enterobacteriaceae harboring a variety of β-lactamases including KPC (225, 226). 

Nevertheless, in vitro and in vivo activity against P. aeruginosa are still limited. In a recent abstract 

including 203 P. aeruginosa isolates, Sader et al. reported an inhibition rate of 82.2% when nacubactam 

was combined with meropenem, even though higher figures were found when the combination was with 

cefepime or piperacillin (257). 

In the present study, the availability of data on the meropenem-nacubactam bronchopulmonary PK 

in healthy adults allowed for the efficacy of the combination to be evaluated using the human-simulated 

ELF exposures in a murine lung infection model. This improves the translation application of study 

outcomes to the clinic. Despite the use of subtherapeutic meropenem exposure, the addition of human-

simulated nacubactam dosing regimen show a synergistic effect against P. aeruginosa isolates. Indeed, 

meropenem-nacubactam combination achieved significant bacterial killing among KPC-expressing and 

AmpC-overproducing P. aeruginosa isolates in this neutropenic lung model in mice. Based on the study 

results, meropenem-nacubactam appears to be an option to treat enzyme-mediated carbapenem-
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resistant P. aeruginosa pneumonia.  This may be clinically relevant as some of the novel β-lactams-β-

lactamase inhibitor combinations do not include KPC-expressing P. aeruginosa, especially as the kind of 

resistance mechanism start to be alarmed (241). Indeed, C/T spectrum does not cover KPC-expressing P. 

aeruginosa (190). Thus, this combination could provide an opportunity to add another treatment option 

against these challenging pathogens.  

Similar results were obtained by Morinaka and collegues when they tested the efficacy of nacubactam 

in combination with cefepime in in a neutropenic murine thigh AmpC-derepressed P. aeruginosa infection 

model (227). Interestingly, administration of either cefepime or nacubactam alone showed a bacterial 

count similar to the controls; howver, in combination, bacterial counts decreased up to 4 log CFU.  

All results together suggest that nacubactam, which alone has no antibacterial activity in vivo, works 

as an AmpC- and KPC-expressing P. aeruginosa isolates. Future studies are needed to compare the activity 

of meropenem-nacubactam to those of ceftazidime-avibactam and meropenem-vaborbactam in order to 

examine whether meropenem-nacubactam offers a potential alternative to ceftazidime-avibactam in 

resistant strains. Other combinations of β-lactams and nacubactam should be tested in vivo, as current in 

vitro data suggests higher efficacy than the actual combination (257). Finally, other novel antimicrobial 

agents still in development phases such as murepavadin (181), cefoperazone-sulbactam (178) or 

plazomizin (179), may be in a better position for the future treatment of P. aeruginosa nosocomial 

pneumonia.  

 

Nebulization of amikacin/fosfomycin for ventilated P. aeruginosa nosocomial pneumonia 

The rising rates of MDR and a paucity of treatment options have also stimulated interest in nebulized 

antimicrobials as adjunctive therapy to traditional systemic monotherapy in patients with ventilated 

nosocomial pneumonia, especially VAP (258). Theoretically, through nebulization, antimicrobial efficacy 

would be optimized, guaranteeing adequate drug levels at the site of infection; reducing the risk of the 

appearance of resistance, and avoiding the risk of systemic toxicity (129, 156, 158). In this context, in 

vivo and observational studies conducted during the early 2000s reinforced this idea.  They found that 

nebulized antimicrobials reached high intra-pulmonary concentrations and have benefits in terms of 

resolution of signs and symptoms of pneumonia in comparison to systemic therapy alone (128, 135, 154, 
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158). Nevertheless, the two recent RCTs (IASIS and INHALE trials)(139, 140) did not show benefits when 

nebulized antimicrobial therapy was used as adjunctive treatment for VAP or v-HAP.   

In this context, and in line with IASIS trial, we set out to investigate the efficacy of nebulized 

amikacin/fosfomycin with IV-meropenem in comparison to IV-meropenem alone in animals with severe 

amikacin/fosfomycin-resistant yet meropenem-susceptible P. aeruginosa pneumonia (259). We also 

added nebulized antibiotics alone and as a combination to the study treatment groups. We appraised the 

bactericidal effects in pulmonary tissue and secretions, the potential emergence of antimicrobial resistance, 

lung histology, and drug distribution in a controlled setting with limited confounding factors, otherwise 

unfeasible in clinical studies  

We have demonstrated that the potential benefits of nebulized amikacin/fosfomycin as adjunctive 

therapy in bacterial eradication are ephemeral at best. Indeed, in our model using a P. aeruginosa strain 

resistant to amikacin yet susceptible to meropenem, IV-meropenem drove the reduction of the lung tissue 

P. aeruginosa concentration. In contrast, nebulized amikacin/fosfomycin had a great effect on P. 

aeruginosa burden in tracheal secretions, showing bactericidal synergy when combined with systemic 

treatment. Those results are in line with the latest RCT trials (139, 140). Indeed, IASIS trial, which use the 

same drug combination for nebulization, found significantly fewer positive tracheal cultures on days 3 and 

7 than placebo. The reason behind the fact that nebulized antibiotics did not prove beneficial, neither in 

the RCT nor in our in vivo study, appears related to the susceptibility of the infected microorganisms (162). 

All enrolled patients in both trials were infected by susceptible pathogens to intravenous antibiotics as P. 

aeruginosa was susceptible to meropenem in our model. Therefore, any adjunctive therapy, even if 

effective, was unlikely to have a detectable effect. Remarkably, Kollef et al. (139) reported clinical cure 

rates among PDR cases of 67% versus 25% in treatment and placebo groups, respectively. This context 

defends the standpoint that inhaled antibiotics may be only beneficial in the management of VAP due to 

difficult-to-treat organisms (260). Indeed, in a meta-analysis including 11 studies of which six were RCTs, 

aerosolized therapy led to higher resolution rates for patients with resistant pathogens, albeit not in those 

with susceptible bacteria (261).  

Also, we found that even with 48-h course of IV-meropenem, nebulized amikacin/fosfomycin also 

suppressed the emergence of meropenem-resistant subpopulation in contrast with only IV-meropenem. 

Among the last clinical studies that evaluated post-treatment isolated microorganisms, none found an 

increase in resistance in patients treated with nebulized therapy (139, 140). Indeed, some studies showed 
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that nebulized treatment may hinder the development of resistance to the IV therapy (129). In the IASIS 

trial, only one patient in the nebulized amikacin/fosfomycin group compared to eight in the placebo group 

showed a fourfold or greater increase in MICs. Unfortunately, in the INHALE trial the emergence of 

resistance was not evaluated. In this scenario, nebulized antibiotics such as amikacin could have a greater 

window for efficacy and help prevent resistance development (Figure 9). Indeed, the RCT should consider 

other endpoints like the antibiotic side effects and the overuse of systemic antibiotics. If nebulized 

antimicrobials were used during 7 – 10 days of systemic therapy, being longer for nonresponders, this 

adjunctive therapy could reduce the amount of systemic antimicrobial prescribed (260). Given the 

promising results as it relates to increasing the barrier to antibiotic resistance, future trials should also 

include this important metric.  Clinical and laboratory research will be essential in confirming the value of 

nebulized antimicrobial agents as it concerns the reduction of resistance development to systemic therapy 

and the determination of related mechanisms. 

 

Figure 9. Theorical differences between systemic and nebulized antibiotics and potential microorganisms targeted in ventilated 

nosocomial pneumonia.  

Differences of efficacy, drug distribution, resistance emergence, and systemic toxicity between nebulized and intravenous 

antimicrobials for various levels of antimicrobial resistance are displayed. The solid and dashed lines show theoretical 

concentration-time drug profile for plasma and ELF, respectively. The grey area displays the desirable concentration to achieve 

high efficacy and prevent resistance development. Source: Own illustration. MDR, multidrug-resistant; MIC, minimum inhibitory 

concentration; PDR, pandrug-resistance; XDR, extensively drug-resistance.  

 

As expected, high concentrations of nebulized drugs were found in tracheal secretions and ELF with 

marginal figures in plasma. This reinforces the idea for using such drugs to prevent systemic toxicities. 

Similar results had already been published in both animal and clinical studies; however, the impact on the 

histopathology was never clearly assessed (127, 138, 154, 157, 158). Remarkably, a histological analysis 
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of lung tissue revealed that nebulized antibiotics first cleared pathogens within the airways and alveoli; 

however, it incompletely removed the bacterial reservoirs in the interlobular septa. The IV-meropenem 

treatment group presented pathognomonic signs of pneumonia within the centrilobular alveoli but 

marginally at alveolar regions close to the interlobular septa. Importantly, the bronchial contamination may 

overestimate ELF concentration, that stated, PK data should be interpreted with caution(164) and 

microdialysis sampling may be more accurate (262). 

Other antimicrobial agents have been proposed for nebulization administration in v-HAP and VAP. 

Among them, other aminoglycosides and colistin were the most investigated (263). In a recent meta-

analysis including 11 RCTs using nebulized amikacin, tobramycin, vancomycin, colistin or gentamicin, the 

use of adjunctive nebulized antibiotic therapy improved the rates of clinical cure (1.13 [95% CI 1.02 to 

1.26]) and microbiological eradication (1.45 [95% CI 1.19 to 1.76]). Mortality did not, however, 

decreased (1.00 [95% CI 0.82 to 1.21]) for VAP patients (264). Other alternatives such as a combination 

of aztreonam and tobramycin with promising synergistic effects (265), nebulized arbekacin (266), a 

broad-spectrum aminoglycoside, and an inhaled liposomal ciprofloxacin that may allow for a slow release 

(267), are under study evaluation. Nevertheless, the issues of these novel approaches may be similar to 

those observed in nebulized amikacin/fosfomycin. The in vitro efficacy of all of these drugs is undeniable, 

but future trials could also fail if the aforementioned issues (i.e., study design, dosing and nebulization 

technique) are not properly addressed (Figure 10)(161). 

In summary, nebulized antibiotics may have a place for patients with difficult-to treat pathogens and 

either v-HAP or VAP. In those patients with XDR or PDR pathogens, systemic treatment options are limited 

to IV antimicrobials with poor lung penetration (e.g., colistin or aminoglycosides) or systemic toxicities, 

which prevents later escalation of intravenous dosing. In fact, the use of nebulized antimicrobial agents as 

a rescue therapy for MDR pulmonary infections might be considered when systemic therapy fails. Also, its 

use for preventing biofilm formation, frustrating VAP relapses, should be investigate. High tracheal 

secretion drug concentration may play a significant role (268). Future studies should also compare 

delivery devices and settings to define the optimal method of nebulized antibiotic administration when it 

relates to reaching distal portions of highly infected pulmonary regions. This could be done radio-labeled 

drugs trackable by gamma scintigraphy or position emission tomography (269)(Figure 7).  
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Figure 10. Features of RCTs for nebulized antimicrobials. 

Summary of methodological characteristics that likely explain the negative results in RCTs for nebulized antimicrobials and potential 

remedies. Source: Own illustration. BAL, bronchoalveolar lavage; IMV, invasive mechanical ventilation; MDR, multidrug-resistant; 

PDR, pandrug-resistance; PK, pharmacokinetics; RCT, randomized clinical trials; XDR, extensively drug-resistance.  

 

 

This study presents some limitation that deserve further discussion. First, unlikely in the most 

probable clinical scenario, we used a short therapy course. This may have influenced the efficacy of the 

treatments when considering long-term outcomes. Second, in our study, animals did not have 

comorbidities, and were young and deeply sedated. These are noteworthy dissimilarities when we 

considered the profile of critically ill patients with nosocomial pneumonia. Finally, we did not evaluate the 

mechanism of meropenem resistance.   
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In this PhD thesis, we have studied the benefits of novel treatments and strategies against P. 

aeruginosa nosocomial pneumonia in well-standardized swine and murine models of pneumonia. Indeed, 

we have assessed the benefits of three different and novel treatments. First, we have elucidated the 

influence of collecting sparse or dense BAL samples from each subject on the population’s PK profile, 

Second, we have assessed the consequences of appropriate treatment with ceftolozane-tazabactam – a 

novel β-lactam-β-lactamase inhibitor combination – in comparison with IEAT. Third, we have tested the 

novel β-lactam/ β-lactamase inhibitor combination, meropenem-nacubactam. Finally, we have compared 

nebulized amikacin/fosfomycin with system therapy alone. Specifically, we can conclude that: 

 

• The ELF models constructed with concentrations from sparse ELF sampling time points result in 

exposure estimates similar to those constructed from robustly sampled ELF profiles. Indeed, a 

single BAL sampling time point may be enough to determine median penetration and 

pharmacodynamic exposure.  

Thus, this study validates current ELF sampling procedures in pharmacokinetic studies in 

humans. 

 

• In a mechanically ventilated swine model with XDR P. aeruginosa pneumonia, appropriate initial 

treatment with C/T decreased respiratory secretions' bacterial burden, prevented the 

development of resistance, achieved the pharmacodynamic target, and possibly reduced 

systemic inflammation. However, after only 2 days of treatment, P. aeruginosa tissue 

concentrations were moderately affected. 

This data implies the benefits of appropriate empirical treatment and calls for further clinical 

studies to be done to fully elucidate the short-term implications of inappropriate empirical 

antimicrobial treatment. 

 

• The addition of nacubactam to meropenem resulted in substantial bacterial reduction in KPC-

expressing and AmpC-overproducing P. aeruginosa isolates, despite the use of subtherapeutic 

meropenem exposure.  
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Therefore, meropenem-nacubactam showed promising in vivo activity against meropenem-

resistant P. aeruginosa, which is indicative of its potential role in treating infections caused by 

these challenging pathogens.  

 

• Our findings corroborate that nebulized amikacin and fosfomycin alone efficiently reduced P. 

aeruginosa in tracheal secretions, with negligible effects in pulmonary tissue. Combination of 

nebulized amikacin and fosfomycin with IV meropenem does not increase antipseudomonal 

pulmonary tissue activity; however, it does reduce the development of meropenem-resistant P. 

aeruginosa when compared to sole use of IV meropenem. 

Our findings imply potential merits for the preemptive use of nebulized antibiotics to reduce 

resistance to IV meropenem. 
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