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Abstract 

 

 

As a crucial node of maritime transportation, seaports carry more than 90% of global 

trade. Considering the complexity of a port system, even slight improvement at strategical 

and operational decision levels will lead to a considerable efficiency enhancement. In 

recent years, the rapid rise of Data Science has sparked a new revolution in the scientific 

research paradigm, namely data-driven research, which has had a particularly significant 

impact on the field of complex system research. Therefore, to make more reliable 

decisions, attention to the Data Science tools used to port traffic has increased noticeably. 

The objective of this thesis is to investigate the benefit of Data Science tools on maritime 

transportation and port operation analysis. The impact of this thesis is to provide useful 

tools for policymakers and stakeholders to make better decisions. At the same time, in 

this thesis, Data Science tools are applied in the busiest region in China in terms of 

maritime transportation, the Yangtze River Delta region. However, the findings and the 

methodology proposed in this thesis may also be useful for other regions worldwide. 

As one of the most developed regions in China, the Yangtze River Delta multi-port system 

(YRDP) has caught more and more attention in recent years due to its relevance and the 

specific economic weight in world trade. Therefore, to insight into the development 

pattern of YRDP, this thesis first combined the Hierarchical Clustering method with 

Compositional Data techniques to explore the temporal and spatial evolution of YRDP 

from 1992 to 2019. This exploratory tool I used can find the temporal and spatial 

characteristics simultaneously and the findings indicated that the development of YRDP 

has gone through four stages and the evolution of YRDP is characterized by a tendency 

towards a multi-core development and faces a differentiated pattern of peripheral port 

challenges.  
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A clear port-city dynamic coupling relationship can be an essential asset for port 

authorities and stakeholders. To explore the dynamic coupling relationship and the inter-

lagging effect in a port system, the second part of the thesis proposed a complete 

framework based on the Auto-Regression Distribute Lag model (ARDL) and ARDL-

Error Correction Model (ARDL-ECM), and then the framework is applied in YRDP. The 

findings indicated that this framework is useful to explore the dynamic coupling 

relationship and the inter-lagging effects between the port and port city and different ports 

have different port-city relationships and different inter-lagging effects.  

Accurate forecasting of container traffic is critical for policymakers and port authorities, 

especially in the context of anomalous events. (e.g. the COVID-19 pandemic and the 2008 

financial crisis). So, the third part of this thesis proposed a hybrid forecasting model based 

on statistical models and Machine Learning models for container traffic forecasting to 

enhance prediction accuracy while eliminating the nonlinearity and multivariate 

limitations. Error metrics analysis suggests that the hybrid models we proposed have 

better performance compared to other benchmark models. At the same time, this hybrid 

model can also better predict container traffic in the context of anomalous events. Finally, 

the results also reveal that, with an increase in the training dataset extensions, the accuracy 

of the models is improved, particularly in comparison with standard statistical models (i.e. 

SARIMA model).  

To resist the challenge of anomalous, the last part of this thesis proposed a method based 

on the Pearson Correlation Coefficient and Complex Network to explore the co-opetition 

changes and connectivity and accessibility changes in port systems under the influence 

of anomalous events. An empirical analysis of the Chinese port system was performed 

for illustration and verification purposes. The results indicate that: 1) the cooperation 

between large-scale ports is more intense than that of small-scale ports after the COVID-

19 pandemic and lower-intensity competition mainly occurs in the pre-COVID-19 period 

and high-intensity competition mainly took place in the post-COVID-19 period. 2) the 

COVID-19 pandemic weakened the connectivity and accessibility of the port. 3) from the 

perspective of the Chinese port systems, the Pearl River Delta multi-port system (PRDP) 

has the greatest internal cooperation, YRDP is second to PRDP, and the Bohai Rim port 

system (BRP) is the last one for both periods. In terms of connectivity and accessibility, 

the ranking of the Chinese port system is as 
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follows: YRDP, PRDP and BRP. 4) in terms of methodology, we provide a new 

perspective to explore the co-opetition pattern changes in a port system.  

The investigation of this thesis has proven that the Data Science tools are useful for 

interpreting and examining the port traffic evolution, port connectivity and accessibility, 

port competition and cooperation, port dynamic coupling relationship and the inter-

lagging effects between the port and port city. Consequently, I expect that these analytical 

tools based on Data Science will have more predominant relevance and will be used in 

other port systems worldwide in the future. 

Keywords: Data Science, Port traffic evolution, Port container traffic prediction, Port 

connectivity and accessibility, Port competition and cooperation, Port dynamic coupling 

relationship, Inter-lagging effect. 
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Resumen (Spanish) 

 

Como nodo crucial del transporte marítimo, los puertos transportan más del 90% del 

comercio mundial. Teniendo en cuenta la complejidad de un sistema portuario, incluso 

una ligera mejora en los niveles de decisión estratégica y operativa conducirá a una 

mejora considerable de la eficiencia. En los últimos años, el rápido aumento la ciencia de 

datos está provocando una nueva revolución en el paradigma de la investigación científica, 

es decir, la investigación basada en datos, que ha tenido un impacto particularmente 

significativo en el campo de la investigación de sistemas complejos. Por lo tanto, para 

tomar decisiones más confiables, es necesario prestar atención a las herramientas de 

ciencia de datos utilizadas al tráfico portuario para ayudar a tomar decisiones ha 

aumentado notablemente. El objetivo de esta tesis es investigar el beneficio de las 

herramientas de ciencia de datos en el transporte marítimo y la operación portuaria. El 

impacto de esta tesis es proporcionar herramientas útiles para que ejecutivos, políticos y 

partes interesadas tomen mejores decisiones. Las herramientas de ciencia de datos en esta 

tesis se aplican en una de las regiones más transitadas de China en términos de transporte 

marítimo: la región del delta del río Yangtze. Sin embargo, los hallazgos y la metodología 

propuestas en esta tesis también pueden ser útiles para otras regiones del mundo. 

Como una de las regiones más desarrolladas de China, el sistema multipuerto del delta 

del río Yangtze (YRDP) ha atraído cada vez más atención en los últimos años debido a 

su relevancia y su peso económico específico en el comercio mundial. Esta tesis combina 

por primera vez el método de agrupamiento jerárquico con técnicas de datos 

composicionales para explorar la evolución temporal y espacial de YRDP de 1992 a 2019. 

Esta herramienta exploratoria permite encontrar y explorar características temporales y 

espaciales simultáneamente. Los hallazgos indicaron que el desarrollo de YRDP ha 

pasado por cuatro etapas y la evolución de YRDP se caracteriza por una 
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tendencia hacia un desarrollo multinúcleo con un patrón diferenciado en los puertos 

periféricos. 

Una relación clara de acoplamiento dinámico puerto-ciudad puede ser un activo esencial 

para las autoridades portuarias y las partes interesadas. Para explorar el efecto de inter-

lagging y la relación de acoplamiento dinámico en un sistema portuario, la última parte 

de la tesis propuso un marco completo basado en el Auto-Regression Distribute Lag 

model (ARDL) and ARDL-Error Correction Model (ARDL-ECM), y su posterior 

aplicación en el marco del YRDP. Los hallazgos indicaron que este ejemplo es útil para 

explorar la relación de acoplamiento dinámico y los efectos de retardo entre el puerto y 

la ciudad portuaria y que diferentes puertos tienen diferentes relaciones puerto-ciudad y 

diferentes efectos de inter-lagging. 

La previsión precisa del tráfico de contenedores es fundamental para los formuladores de 

políticas y las autoridades portuarias, especialmente en el contexto de eventos anómalos 

(por ejemplo, la pandemia de COVID-19 y la crisis financiera de 2008). Por lo tanto, la 

segunda parte de esta tesis propone un modelo híbrido (basado en modelos estadisitcos y 

de inteligencia artificial) para el tráfico de contenedores para mejorar la precisión de la 

predicción y al mismo tiempo eliminar la no linealidad y las limitaciones multivariadas. 

El análisis de métricas de error sugiere que los modelos híbridos tienen un mejor 

rendimiento en comparación con otros modelos. Al mismo tiempo, dicho modelo híbrido 

también puede predecir mejor el tráfico de contenedores en el contexto de anomalías. 

Finalmente, los resultados también revelan que, con un aumento en la extensión del 

conjunto de datos de entrenamiento, la precisión de los modelos mejora, particularmente 

en comparación con los modelos estadísticos estándar (es decir,  modelo tipo SARIMA). 

Para abordar comportamientos anómalos, la tercera parte de esta tesis propone un método 

basado en el Coeficiente de Correlación de Pearson y la Red Compleja para explorar los 

cambios de cooperación y los cambios de conectividad y accesibilidad en los sistemas 

portuarios bajo la influencia de eventos anómalos. En este sentido se realizó un análisis 

del principal sistema portuario chino: YRDP. Los resultados indican que: 1) la 

cooperación entre los puertos de gran escala es más intensa que la de los puertos de 

pequeña escala después de la pandemia de COVID-19 y la competencia de 
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menor intensidad ocurre principalmente en el período anterior al COVID-19 y la 

competencia de alta intensidad tuvo lugar principalmente en el período posterior al 

COVID-19. 2) la pandemia de COVID-19 debilitó la conectividad y accesibilidad del 

puerto. 3) desde la perspectiva de los sistemas portuarios chinos, el sistema multipuerto 

del delta del río Perla (PRDP, por sus siglas en inglés) tiene la mayor cooperación interna, 

el YRDP ocupa el segundo lugar después del PRDP y el sistema portuario de Bohai (BRP, 

por sus siglas en inglés) es el último en ambos períodos. 4) En términos de metodología, 

proporcionamos una nueva perspectiva para explorar los cambios en los patrones de 

cooperación en un sistema portuario. 

La investigación de esta tesis ha demostrado que las herramientas de ciencia de datos son 

útiles para interpretar y examinar la evolución del tráfico portuario, la conectividad y 

accesibilidad portuaria, la competencia y cooperación portuaria, la relación de 

acoplamiento dinámico portuario y los efectos de interrelación entre el puerto y la ciudad 

portuaria. En consecuencia, se espera que estas herramientas analíticas basadas en 

Ciencia de Datos tengan una relevancia más predominante y se utilicen en otros sistemas 

portuarios a nivel mundial en un futuro próximo. 

 

Palabras clave: Ciencia de datos, Evolución del tráfico portuario, Predicción del tráfico 

de contenedores portuario, Conectividad y accesibilidad portuaria, Competencia y 

cooperación portuaria, Relación de acoplamiento dinámico portuario, Efecto inter-

lagging. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Resum (Catalan) 

 XI 

 

 

Resum (Catalan) 

Com a node crucial del transport marítim, els ports transporten més del 90% del comerç 

mundial. Tenint en compte la complexitat d'un sistema portuari, fins i tot una lleugera 

millora als nivells de decisió estratègica i operativa conduirà a una millora considerable 

de l'eficiència. En els darrers anys, el ràpid augment de la ciència de dades està provocant 

una nova revolució en el paradigma de la investigació científica en l'àmbit portuari, és a 

dir, la investigació basada en dades, que ha tingut un impacte particularment significatiu 

en el camp de la investigació de sistemes complexos. Per tant, per prendre decisions més 

fiables, cal parar atenció a les eines de ciència de dades utilitzades al trànsit portuari. 

L'objectiu d'aquesta tesi és investigar el benefici de les eines de ciència de dades al 

transport marítim i l'operació portuària. L’impacte d’aquesta tesi és proporcionar eines 

útils perquè executius, polítics i parts interessades prenguin millors decisions. Les eines 

de ciència de dades en aquesta tesi s'apliquen a una de les regions més transitades de la 

Xina en termes de transport marítim: la regió del delta del riu Yangtze. Tot i això, les 

conclusions i la metodologia proposades en aquesta tesi també poden ser útils per a altres 

regions del món. 

Com una de les regions més desenvolupades de la Xina, el sistema multiport del delta del 

riu Yangtze (YRDP) ha atret cada vegada més atenció en els darrers anys a causa de la 

seva rellevància i el seu pes econòmic específic en el comerç mundial. Aquesta tesi 

combina per primera vegada el mètode d'agrupament jeràrquic amb tècniques de dades 

composicionals per explorar l'evolució temporal i espacial de l'YRDP del 1992 al 2019. 

Aquesta eina exploratòria permet trobar i explorar característiques temporals i espacials 

simultàniament. L'anàlisi indica que el desenvolupament d'YRDP ha passat per quatre 

etapes i l'evolució d'YRDP es caracteritza per una tendència cap a un desenvolupament 

multi-nucli amb un patró diferenciat als ports perifèrics. 

Una relació clara d’acoblament dinàmic port-ciutat pot ser un actiu essencial per a les 

autoritats portuàries i les parts interessades. Per explorar l'efecte d'inter-lagging i la 

relació d'acoblament dinàmic en un sistema portuari, l'última part de la tesi va proposar 
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un marc complet basat en l'Auto-Regression Distribute Lag model (ARDL) i ARDL-Error 

Correction Model (ARDL- ECM), i la seva aplicació posterior en el marc de l'YRDP. Les 

conclusions indiquen que aquest exemple és útil per explorar la relació d'acoblament 

dinàmic i els efectes de retard entre el port i la ciutat portuària i que diferents ports tenen 

relacions port-ciutat diferents i diferents efectes d'inter-lagging. 

La previsió precisa del trànsit de contenidors és fonamental pel desenvolupament de 

polítiques i decisions en autoritats portuàries, especialment en el context d'esdeveniments 

anòmals (per exemple, la pandèmia de COVID-19 o la crisi financera del 2008). Per tant, 

la segona part d’aquesta tesi proposa un model híbrid (basats amb models estadístics i 

d'intel·ligència artificial) per al tràfic de contenidors per millorar la precisió de la 

predicció i alhora eliminar la no linealitat i les limitacions multivariades. L’anàlisi de 

mètriques d’error suggereix que els models híbrids tenen un millor rendiment en 

comparació amb altres models. Alhora, aquest model híbrid també pot predir millor el 

trànsit de contenidors en el context d'anomalies. Finalment, els resultats també revelen 

que, amb un augment en l'extensió del conjunt de dades d'entrenament, la precisió dels 

models millora, particularment en comparació dels models estadístics estàndard (és a dir, 

model tipus SARIMA). 

Per abordar comportaments anòmals, la tercera part d'aquesta tesi proposa un mètode 

basat en el Coeficient de Correlació de Pearson i Xarxa Complexa per explorar els canvis 

de cooperació i els canvis de connectivitat i accessibilitat als sistemes portuaris sota la 

influència d'esdeveniments anòmals. En aquest sentit es va fer una anàlisi del principal 

sistema portuari xinès: YRDP. Els resultats indiquen que: 1) la cooperació entre els ports 

de gran escala és més intensa que la dels ports de petita escala després de la pandèmia de 

COVID-19, la competència de menor intensitat passa principalment en el període anterior 

al COVID-19 i la competència d'alta intensitat va tenir lloc principalment al període 

posterior al COVID-19. 2) la pandèmia de COVID-19 va afeblir la connectivitat i 

accessibilitat del port. 3) des de la perspectiva dels sistemes portuaris xinesos, el sistema 

multiport del delta del riu Perla (PRDP, per les sigles en anglès) té la major cooperació 

interna, l'YRDP ocupa el segon lloc després del PRDP i el sistema portuari de Bohai 

(BRP, per les sigles en anglès) és l'últim en ambdós períodes. 4) En termes de metodologia, 

proporcionem una nova perspectiva per explorar els canvis als patrons de cooperació en 

un sistema portuari. 
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La investigació d'aquesta tesi ha demostrat que les eines de ciència de dades són útils per 

interpretar i examinar l'evolució del trànsit portuari, la connectivitat i l'accessibilitat 

portuària, la competència i la cooperació portuària, la relació d'acoblament dinàmic 

portuari i els efectes d'interrelació entre el port i la ciutat portuària. Per tant, s'espera que 

aquestes eines analítiques basades en Ciència de Dades tinguin una rellevància més 

predominant i s'utilitzin en altres sistemes portuaris a nivell mundial en un futur proper. 

  

Paraules clau: Ciència de dades, Evolució del trànsit portuari, Predicció del trànsit de 

contenidors portuari, Connectivitat i accessibilitat portuària, Competència i cooperació 

portuària, Relació dʻacoblament dinàmic portuari, Efecte inter-lagging.
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Chapter 1 

  

1 Introduction 

 

With the development of the world economy, international trade is becoming increasingly frequent. 

Traditional maritime transport patterns cannot meet the increasing demand of international trade. We 

need to accelerate the development of the Data Science (DS) application in port management and 

maritime transport. In this chapter, the state of the art for port management, maritime transport and DS 

application in port are first introduced, then the objections are clear, and finally, the outline is listed.
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1.1 State of the art 

1.1.1 Port development 

Maritime transportation nearly accounts for 90% of world trade, and ports, as critical infrastructure 

connecting sea, land, and air, are catalysts for the development of the world economy (Christiansen et 

al. 2020). Ports also serve as logistics centres, providing storage, distribution, and value-added services 

to shippers and consignees (Notteboom and Winkelmans 2001). With the advent of globalization in 

the 19th century, modern ports began to take shape with better infrastructure and facilities. In the 20th 

century, containerization revolutionized maritime transport and led to the expansion of large container 

terminals, such as Rotterdam Port (Hayut 1981; Slack 1985). 

The port system is the spatial combination of ports with different functions, different types, and 

different scales in a specific region, adjacent to the layout, and competition and cooperation. The 

earliest research on port systems can be traced back to The Theory of Seaport Location proposed by 

Kautz (1931). The Theory of Seaport Location is the beginning of the research on port evolution (Mou 

et al. 2021). Since then, Morgan (1958) systematically elaborated on the relationship between port 

form, location, and environment, and established port geography. In the 1960s, Taaffe et al. (1963) 

provided six stages model for port evolution, he pointed out that the formation of a land transportation 

network strengthens the connection between ports and nodes, and achieves the expansion of hinterland 

and the trend of centralized development of ports by invading the hinterland of surrounding ports. Bird 

(1963) proposed an Anyport model, which identified three major steps in the port evolution: setting, 

expansion and specialization. The three steps accurately described port evolution, particularly in large 

traditional ports (Notteboom and Rodrigue 2005). Meanwhile, the Anyport model also revised the six 

stages model of Taaffe et al. (1963) that only considered the impact of the land hinterland 

transportation network on the port city, and has become the fundamental theoretical model of port 
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evolution. To compensate for Taaffe et al. (1963)’s model, Rimmer (1967a; 1967b)considered the 

impact of shipping liner routes on the evolution of port systems. He believed that shipping liner route 

networks play a key role in port evolution, and the evolution of port systems tends to be concentrated. 

In the same year, Rimmer (1967c) redefined a five stages model, and the redefined model incorporates 

the weighting of transportation networks, and he discovered that the port system was shifting from 

centralized to decentralized.  

With the rapid growth of global shipping and the development of containerization in ports, new 

technology affecting the evolution of port systems was constantly presented. To meet the development 

trend of containerization, Hilling (1977) proposed a five stages model based on six stages model 

(Taaffe et al. 1963) and five stages model (Rimmer 1967c), he pointed out that large and small ports 

can coexist, and changes in hinterland economic and resource conditions may lead to the growing of 

small ports and the expansion of large ports. According to the Anyport model, the initial port expansion 

needs to take advantage of innovative techniques, such as new ship design and new loading and 

unloading techniques. The findings were consistent with the first phase of the five stages model 

developed by Hayut (1981). The introduction of container transportation has had a great impact on 

port transportation but has limited adoption in a few ports. With the vertical and lateral diffusion of 

containerization, containerized traffic mainly occurred in a few large ports. Some ports did not get 

better development in this phase due to a lack of financial resources or locational and physical 

limitations. Containerization developed rapidly leading to build a load centre (Hayut 1981). Slack 

(1990) believes that factors such as intermodal transportation and spatial agglomeration of goods on 

transportation arteries will lead to the elimination of small- and medium-scale ports.  

Since the 21st century, under the influence of factors such as changes in shipping technology, global 

industrial transfer, and reorganization of port and shipping companies, the global port systems have 

gradually transformed into a global logistics supply chain centre, and more and more port systems 

show a deconcentration tendency.  Notteboom and Rodrigue (2005) and Notteboom (2010) proposed 

a port regionalization stage in the port and port system evolution, they pointed out that the 
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improvement of transportation systems and the flexibility of transportation modes have intensified the 

competition between ports and the hinterland. Wilmsmeier et al. (2014) found that strategic location 

has driven the development of secondary port systems and posed challenges to major ports, while first-

mover advantages, planning systems, and diversification have driven the rise of secondary ports, 

leading to a trend of decentralization in the port system. Taking five pairs of adjacent ports along the 

coast of China as an example, Wang et al. (2017) revealed the uniqueness of the development process 

of the Chinese port system. They indicated that adjacent ports have formed functional differentiation 

to achieve sustainable development, and first-mover advantage and dislocation competition are the 

influencing mechanisms for the functional differentiation of ports. 

The transformation of shipping technology and the improvement of transportation networks have led 

to port activities tending towards superior natural conditions and proximity to developed economic 

zones. The scale effect generated by the spatial agglomeration of port activities has promoted the 

centralization of the port system. However, with the improvement of regional economic development, 

there has been traffic congestion in the hub ports and the rise of peripheral ports, which has led to the 

gradual diffusion of port activities from hub ports to surrounding ports, and the port system has become 

deconcentrated Sheng et al. (2017). 

1.1.2 Port Competition and Cooperation 

The development of ports is often accompanied by competition and cooperation. In terms of port 

competition, the research can be categorised into two types, the first is an experience-based approach 

to define port competitiveness. The second approach is based on mathematical models, such as game 

theory (Lee and Lam 2015). According to Saeed and Larsen (2010), port competition can be divided 

into three levels: competition between terminals in the same port, competition between adjacent ports 

(Song 2003; Cui and Notteboom 2017; Wang et al. 2022), and competition in different geographical 

regions (Bae et al. 2013; Ishii et al. 2013). When two ports have overlapping hinterlands, there must 

be competition (Slack 1985). And competition can be inter- and intra-port competition (Song et al. 
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2016). For the inter-port competition, Yip et al. (2014) pointed out that if both terminals expanded, the 

competition for inter- and intra-port would become worse. For internal competition (i.e. intra-port 

competition), the intra-port competition can increase the competitiveness of the port (Luo et al. 2022). 

Port competition should be adaptable to the port development stage in different regions (Luo et al. 

2022). From the perspective of the methodology, game theory is the most useful method for exploring 

competition behaviour, such as (Luo et al. 2012) and (Ishii et al. 2013).  

When two ports together generate higher returns than themselves, there is a reason for cooperation 

(Luo et al. 2022). With the intensification of competition, cooperation between ports has attracted more 

attention from scholars, many ports have considered cooperation (Luo et al. 2022). Li and Jiang (2014) 

applied a grey correlation model to measure the cooperation performance between the seaport 

(Qingdao Port, China) and dry port (Xi’an Port, China), they found that their cooperation resulted in 

deficiencies in service. Different regions have different cooperation forms, in China, cooperation 

between the domestic ports can lead to provincial-level integration (Huo et al. 2018). In North Adriatic, 

non-commercial lobbying and collaborative marketing operations are the extents of port cooperation 

(Stamatović et al. 2018).  

Collaborative competition is a strategy of cooperative competition that avoids destructive competition 

between ports (Rupnik et al. 2018). With the improvement of competition, some scholars have begun 

to explore the coexistence of competition and cooperation between ports. Facing the challenge of the 

world economic decline and fierce port competition, many researchers have explored port integration 

and alliance. Song (2003) believed that globalization, intense port competition, and horizontal and 

vertical integration are all driving forces that encourage competitors to form strategic alliances in 

certain situations and achieve win-win outcomes. Saeed and Larsen (2010) explored the ports 

integration strategy, they found that integration could lead to a higher cost of service. The integration 

could cut down the marginal cost in the supply chain (Dong et al. 2018). Notteboom et al. (2017) 

explored the impact of shipping lines’ participation in the port selection and found that when members 

are stakeholders of the port, the port has a higher chance of receiving calls from the alliance. As one 
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of the most essential forms of port cooperation and one of the most effective instruments for port 

governance, integration is expected to eliminate overcapacity and decrease competition, especially in 

proximity port regions (Notteboom and Yang 2017; Shinohara and Saika 2018; Zhang et al. 2019). 

1.1.3 Research on the Application of Data Science in Port  

In recent years, the rapid development of DS has sparked a new revolution in the scientific research 

paradigm, namely data-driven research, which has had a particularly significant impact on the field of 

complex systems. With the enrichment of container traffic data, DS tools, as the most powerful data 

analysis technology at present, have achieved many good applications in intelligent transportation data 

analysis. The research topics of DS application in maritime transportation can be divided into 

prediction issues, voyage optimization, sustainability of transportation, maritime security 

improvement, energy efficiency management, and digital and smart ports.  

Prediction issues 

The prediction issue in port management can be subdivided into port throughput prediction (e.g. port 

container traffic prediction, truck demand prediction and cargo throughput), vessel arrival time 

prediction, vessel turnaround time prediction and so forth. In terms of methodology, DS tools used in 

port throughput prediction include traditional statistical methods, Machine Learning models (ML) and 

hybrid models. From the perspective of forecasting accuracy, hybrid models have the best performance, 

the ML models are second only to hybrid models, and the last are traditional statistical models (Huang 

et al. 2022b). At the same time, the prediction issue in the port includes many aspects, such as port 

container traffic prediction, truck demand prediction and cargo throughput, which are all benefits for 

the port schedule and port investment.  

DS tools are widely used for maritime transportation. One of the hottest research topics is container 

traffic prediction. Predictive analytics can provide more foresight suggestions, which is more efficient 

and effective in port management (Filom et al. 2022). There are many DS tools used for container 
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traffic forecasting, for example, the most common model is traditional statistical models, such as the 

Grey model, Regression model, ARIMA (i.e. Autoregressive Integrated Moving Average model), 

SARIMA (i.e. Seasonal ARIMA model), ARIMAX (i.e. ARIMA with Explanatory Variable) and 

SARIMAX. With the development of computer science, ML, Deep Learning models (DL) and hybrid 

models have caught more attention. 

The traditional statistical forecasting models for container traffic mainly include the qualitative 

forecasting approach and quantitative forecasting approach (Lee et al. 2018). Generally speaking, 

qualitative forecasting is an experience-based method based on subjective opinions and insights, 

whereas quantitative forecasting is a method based on historical data. The quantitative model can be 

subdivided into the causal model and the time series model. The causal model uses univariate or 

multivariate to predict another variable. The time series model uses historical data to predict future 

data, such as the Grey model, Regression model, ARIMA, SARIMA, ML, DL and hybrid models. 

 ML now is the most extensive model, such as SVR (i.e. Support Vector Regression model), LSTM 

(i.e. Long Short Term Memory model), ANN (i.e. Artificial Neural Network model), CNN (i.e. 

Convolutional Neural Network model) and RNN (i.e. Recursive Neural Network). The container 

traffic prediction models based on ML and DL have better performance than traditional statistical 

models, and the hybrid models have the best prediction performance than other models (Huang et al. 

2022b). The hybrid models have two forms, the first is the combination of two or more forecasting 

models to predict the container traffic, such as Huang et al. (2022b) combined SARIMA with SVR 

and LSTM to predict the container traffic, they found that the hybrid model is more accurate than 

single models. Another form is using an algorithm to optimize the parameters of a forecasting model, 

such as Ping and Fei (2013) applied Genetic Algorithms (GA) to optimize the Back-Propagation 

Neural Network model (BPNN) to predict the container traffic, they found this kind of Hybrid model 

has better performance than a single model. 
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Sustainability of transportation 

The role of maritime transportation in the process of global sustainability is increasingly recognized. 

The International Maritime Organization estimated that the greenhouse gas emitted by ships in 2007 

was 1046 million tons, which accounts for about 3% of global emissions. In 2009, they planned to set 

a 15% reduction target in maritime transport emissions until 2018 (Hoang et al. 2022). In the context 

of the ongoing implementation of the 2030 Agenda for Sustainable Development and the Pair 

Agreement on climate change, there is an opportunity to explore the sustainability of the maritime 

transport sectors (Benamara et al. 2019). 

Undoubtedly, maritime transport is more than account for 90% of world trade, which means the 

increasing international trade will result in increasing greenhouse emissions (Yu et al. 2021). To reduce 

emissions and costs, voyage optimization is essential for shipping industries. The voyage plan system 

usually includes voyage optimization and water routing, which can improve the efficiency of ship 

operations and gain more economic benefits and also ensure the safety of ships and reduce greenhouse 

emissions (Perera and Mo 2016). At the same time, an efficient voyage optimization system can make 

maritime companies more competitive and sustainable (Yu et al. 2021). The voyage optimization is 

associated with ocean state (i.e. wave, wind, ice and currents), weather, mathematical process and 

dynamic forecasting system for navigation trajectory. Voyage optimization can be defined as the 

process of providing the most economical and safe, and most energy-reduction route by taking the 

ocean state, weather state and ship characteristics into account. The reliability of voyage optimization 

is associated with the accuracy of hydrodynamics estimation, accurate weather prediction and the 

quality of the optimization algorithm. The targets of the voyage optimization are the minimization of 

fuel consumption and overall operation costs (Li et al. 2020), the balance of cargo delivery delay and 

fuel consumption (Lee et al. 2018), the reduction of charter costs (Norlund and Gribkovskaia 2017), 

and a tradeoff between fuel consumption and the arrival time (Lin 2018).  
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Shipping route optimization 

In recent years, the safety and economy of shipping routes have been of great concern to the 

organizations engaged in shipping and DS tools for shipping route optimization have been widely used. 

Before the 2000s, Haltiner et al. (1962) applied the Calculus of Variations to confirm the shortest time 

shipping route between two ports of call. Bleick and Faulkner (1965) improved the research of Haltiner 

et al. (1962), which improved the accuracy of the minimum time shipping route. Chen (1978)proposed 

a stochastic dynamic algorithm for minimizing the cost of shipping. Calvert et al. (1991) formulated a 

dynamic programming technique to match the ship response algorithm with the expected predicted 

environmental conditions during the duration of the voyage. Jaramillo and Perakis (1991) applied 

linear programming to solve the optimal deployment problem. After the 2000s, Bijlsma (2004) used 

dynamic programming to analyse the minimization of fuel consumption. Sen and Padhy (2015) 

proposed a ship weather routing algorithm to determine the best route based on the research of Bijlsma 

(2004). Lin et al. (2013) also proposed a ship weather routing algorithm to confirm the optimized 

shipping routes based on the influence of multi-dynamic factors. Shao et al. (2012) presented a 

program for shipping weather routing to minimize fuel consumption. Zaccone et al. (2018) proposed 

a program aiming to determine the optimal route and speed. Chuang et al. (2010) proposed a GA for 

liner shipping planning to find the best route for container ships. Wang et al. (2018) developed a GA 

to minimize shipping route time in a dynamic environment. Wang et al. (2019) proposed an 

optimization algorithm based on the programming of Bijlsma (2004) to enable ships to schedule the 

best sailing speeds. It is promising to provide the optimal global solution for ship routes.  

file:///E:/TT/Thesis/Chapter%201.docx%23_ENREF_9
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Smart Port 

With the increased investment in automation and digitization of ports, Smart Port has received more 

attention (Heilig et al. 2020). The objective of the Smart Port is to equip the port with wisdom and 

make the port act as a people to achieve more efficiency, more rational, more environmental and 

especially smarter (Li et al. 2023a). At the same time, new technologies (e.g. the Internet of Things 

(IoT), Big Data, Robotics and AI), inject new impetus into Smart Ports (Xu et al. 2018). By applying 

those technologies in port, there is a large amount of data available, which can enable both industry 

and academia to utilize those data to improve port productivity (Filom et al. 2022). 

The issues in Smart Port can be classified as autonomous shipping, anomaly detection, ship traffic 

pattern, environmental evaluation, collision avoidance, vessel route scheduling and port allocation 

operations (Filom et al. 2022). Yao et al. (2017) designed a framework for autonomous shipping 

detection based on CNN, which can accurately locate the ship. Chen et al. (2020) proposed a new 

hybrid DL model for ship detection, especially for small ship detection. Zhao et al. (2019) designed an 

ANN based on CNN for ship detection and recognition. Matsumoto (2013) used Histograms of 

Oriented Gradient-SVM in a ship detection system and evaluated it quantitatively. DS tools widely 

used in Smart Ports are triggered by the enrichment of AIS data (Yang et al. 2019a). DS tools used to 

explore shipping traffic patterns are categorized into two types, point-based and trajectory-based 

(Cazzanti and Pallotta 2015). For example, Ristic (2014) proposed a point-based method to stimulate 

the normal maritime traffic pattern. de Vries and van Someren (2012) proposed an ML-based 

framework to analyse the moving object trajectory from a maritime ship. As to vessel route scheduling, 

Bilgili (2023) developed an ANN, the findings indicated that the two most important external 

environment factors affecting resistance are swell direction (33%) and wave direction (28%).  

Port Allocation Operations are to make a balance of incoming vessel arrivals to determine the 

minimum time at port (de Oliveira et al. 2012; Ting et al. 2014). Lokuge and Alahakoon (2007) 
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proposed an ANN framework to optimize the Port Allocation Operation, this framework fully 

considers multiple factors (e.g. crane performance). de León et al. (2017) proposed a model based on 

ML to determine the best performance of the Port Allocation Operation problem. Liu et al. (2020) 

applied the K-means model to cluster vessel types based on one-month AIS data, which can help with 

ship arrival and departure planning. Kim and Lee (2019) presented a DNN to forecast the shipping 

destination in a port area, which improved the accuracy of the baseline model by about 10% to 15%. 

Vessel delays and estimated arrival play a key role in the port operation schedule (Zhen et al. 2011). 

Fancello et al. (2011) proposed a model based on the Feed-Forward NN model, which reduced 

uncertainty in vessel arrival time. Kolley et al. (2021) applied ML to forecast the vessel arrival time 

based on AIS data, they found that accurate vessel arrival time forecasting can improve the robustness 

of the port operation schedule. Another important indicator in port operation is vessel turnaround time, 

which mainly consists of berthing time, waiting time and service time. Those indicators can 

significantly the overall port operation efficiency and capacity (Poulsen and Sampson 2020).  

Safety Issues 

Safety is always the most important for any port-in-port operation. Therefore, any safety issue might 

result in environmental problems, and human and financial loss (Filom et al. 2022). Ozturk et al. (2019) 

investigated 140 pilots to explore the navigation collision risk in port areas and provided collision 

prevention fuzzy rules. Lee et al. (2020) applied ML to determine the range of safe and unsafe berthing 

velocity, they found that the Extra Trees Classifier, Random Forest Classifier and Gaussian Naive 

Bayes Classifier have higher accuracy than other models. Port State Control inspection is another 

important safety indicator in a port. The factors such as ship age, and ship type can affect Port State 

Control inspection (Heij and Knapp 2019). Xiao et al. (2020) analysed ship detention risk to assess an 

inspection regime effectiveness. Yan et al. (2021) used the Balanced Random Forest method to 

forecast ship detention, which resolve the imbalance issue. Apart from the seaside operation safety 

issue, landside operation safety is also important. Cheng and Yang (2017) applied the Machine version 

method to detect abnormal behaviour in port operation. Pruyn et al. (2020) used the Markov Chain 
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method to forecast the ship waiting time based on probability analysis. Effective management of 

marine oil spills is crucial for minimizing the negative impact of oil spills on the environment 

(Mohammadiun et al. 2021). There are many effective DS tools to explore marine oil spill management, 

such as CNN (Basit et al. 2021), ANN(Ye et al. 2019), DL (Zeng and Wang 2020) and Image 

Processing (Guo and Zhang 2014).  

 

1.1.4 Brief Description of the Yangtze River Delta Region 

The Yangtze River Delta (YRD) region is located at the intersection of the Coastline of China and the 

Yangtze River Golden Waterway. Meanwhile, YRD is also located at the critical intersection of the 

21st Century Maritime Silk Road and the Yangtze River Economic Belt (Cao et al. 2019) (see Figure 

1.1). It receives more and more attention due to its relevance in world trade and its specific economic 

weight. This region includes Shanghai, Jiangsu and Zhejiang provinces, which account for 3.8% of 

China’s area (Cao et al. 2019). However, 16.7% of China’s population, 20.38% of China’s GDP and 

33.41% of China’s total container throughput took place in the YRD region in 2022. Shanghai Port 

and Ningbo Port ranked first and third respectively among the top ten container ports in the world in 

2022, both of which are in YRDP.  

There are 15 ports in YRDP, and they belong to different provincial administrative regions, Shanghai 

Port belongs to Shanghai Province. Suzhou Port, Nantong Port, Nanjing Port, Lianyungang Port, 

Jiangyin Port, Taizhou Port (Jiangsu Province), Yangzhou Port, and Zhenjiang Port belong to Jiangsu 

Province. Ningbo Port, Taizhou Port (Zhejiang Province), Wenzhou Port, Jiaxing Port, Huzhou Port 

and Hangzhou Port belong to Zhejiang Province. The evolution of container traffic at each port is 

shown in Figure 1.1. 
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Figure 1.1 The location and container traffic evolution of YRDP in 1992, 1996, 2001, 2014 and 2022. 
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Figure 1.2 The evolution of container traffic of each port in YRDP from 1992 to 2022 (in 10000TEU). 

YRDP plays a significant strategic role in the development of the inland of China. At the same time, 

the Yangtze River is the largest in China, serving as the main artery for water transportation that runs 

from east to west and is known as the Golden Waterway in China.  Along the Yangtze River, the 

Chinese government established the Yangtze River Economic Belt in 2016. The Yangtze River 

Economic Belt covers 11 provinces and cities, including Shanghai, Jiangsu, Zhejiang, Anhui, Jiangxi, 

Hubei, Hunan, Chongqing, Sichuan, Yunnan and Guizhou, with an area of approximately 2.0523 

million square kilometres, accounting for 21. % of China’s land area, population and Gross Domestic 

Product (GDP) both exceed 40% of China. Therefore, the Yangtze River Economic Belt is a powerful 

engine for the development of the economy of China. Most of the cargo in the Yangtze River Economic 

Belt is carried out inland-water transportation, and the cargo volume of the Yangtze River Economic 

Belt accounted for 30% of China’s total water transportation (including inland-water transportation 

and sea transportation , accounting for more than 60% of China’s total inland-water transportation.  

As shown in Figure 1.3, we can see that the Yangtze River Economic Belt and Chinese coastal areas 

have developed a T-shaped transportation pattern. In the entire transportation system, ports are the 
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core and play a key role in connecting various transportation modes. Previous research has clarified 

that ports are a node in the global supply chain (Park and Seo 2016). The development of the regional 

economy is closely related to the efficiency and quality of logistics and port activities (Wang and 

Cullinane 2015). According to the geographical location, the port group along the Yangtze River can 

divide into upstream, midstream and downstream port clusters, and the three port clusters have a close 

relationship with Cheng-Yu Economic Zone, Midstream City Cluster and YRD City Cluster, 

respectively (see Figure 1.3). The upstream economic region is based on the two megacities of 

Chengdu and Chongqing, which is supported by regional economic central, such as Chongqing, 

Sichuan, Hubei, Guizhou and Yunnan. The midstream city cluster is based on Wuhan City, which is 

supported by Jiangxi, Hubei and Hunan. The downstream economic city cluster is based on the 

Yangtze River Delta city cluster, such as Shanghai and Nanjing, which is supported by Shanghai, 

Jiangsu, Zhejiang and Anhui. Due to the different natural environments and economic development of 

upstream, midstream and downstream of the Yangtze River, the freight volume of water transportation 

presents regional differences. Since China’s reform and opening up, the freight volume in the 

downstream region (i.e. YRD) is significantly higher than that in the midstream, and the midstream is 

slightly higher than those in the upstream (Deng et al. 2022).  

In the past decades, China has developed into one of the most active economic countries, and YRDP 

is one of the most developed regions in China, therefore, this region has caught more attention. YRDP 

includes Shanghai, Jiangsu and Zhejiang provinces, subdivides into 41 cities and covers an area of 

about 5,000 square kilometres, and Shanghai Port and Ningbo Port are the two most important ports, 

at present, Shanghai Port is the largest container port in the world and its cargo throughput ranks second 

in the world. Ningbo Port has the largest cargo throughput in the world and its container traffic ranks 

third in the world. Before the 2000s, 855.7 million TEU were handled in YRDP, and more than 75% 

of the container was imported and exported in Shanghai Port, in this background, Shanghai Port 

obtained the oligopoly position in the YRD region in terms of liner container transportation. After 

entering the 21st century, China government decentralized their right of port management and 

construction to the local government, which accelerated the development of the port infrastructures, 
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and more and more ports grew rapidly, such as Ningbo Port, Suzhou Port, Nanjing Port and 

Lianyungang Port (Yang et al. 2019b). Among them, Suzhou Port, Lianyungang Port and Nanjing Port 

take advantage of their hinterland of Jiangsu province, and Ningbo Port has the endowment in natural 

geographical conditions and the advantages of a deep-water port. Therefore, containers can reach all 

over the world through Ningbo Port, Nanjing Port, Suzhou Port and Lianyungang Port, Shanghai Port 

is not the only choice (Feng et al. 2020). Shanghai Port gradually lost its monopoly on container traffic 

in YRDP, and the port group in Shanghai Province, Zhejiang Province and Jiangsu Province off a 

tripartite confrontation trend since 2012 (Feng et al. 2021).   
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Figure 1.3 The ports along the Yangtze River 
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1.2 Objective  

Over the past few decades, the YRD region has developed into one of the most economically 

prosperous economic regions in the world. Meanwhile, the world’s largest port and third largest port, 

Shanghai Port and Ningbo Port are all in this region, therefore, this region has caught more attention 

in recent years.  

The objective of this thesis is to investigate the benefit of Data Science tools on maritime transportation 

and port operation analysis. The details are summarized as follows: 1) to explore the development 

pattern of YRDP, we applied Compositional Data techniques (CoDa) to characterize the evolution of 

YRDP; 2) to better cope with the future challenge, we proposed a hybrid model to predict the container 

traffic; 3) to examine the dynamic coupling relationships and inter-lagging effect between port and 

city, we proposed a complete and helpful framework to indicate the inter-logging effect between port 

and city. 4) to cope with anomalous events such as Covid-19 and the 2008 financial crisis, we provide 

a more accurate forecasting model to evaluate the influence of the anomalous events and also explore 

the forecasting accuracy of different forecasting horizons and training extensions; 5) to better 

understand the influence of the anomalous events, we proposed a useful framework to explore the 

influence of COVID-19 on container traffic and port co-opetition. In consequence, this thesis intends 

to prove that Data Science tools are useful for interpreting and examining the port traffic evolution, 

port connectivity and accessibility, port competition and cooperation, port dynamic coupling 

relationship and the inter-lagging effects between the port and port city. 
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1.3 Thesis outline 

In this thesis, we focus on the most developed region, the YRD region in China, to explore the 

development pattern, port-city dynamic coupling relationships, the influence of COVID-19 on 

container traffic and port co-opetition. In chapter 1, we presented the state of the art, including the port 

development, DS tools application in port management and maritime transport. Then, we listed the 

objections of this thesis, and finally, we closed this chapter in the thesis outline. In chapter 2, we first 

introduced the CoDa techniques, including the biplot method and CoDa-Dendrogram method, then we 

analyzed the development stages in YRDP and also provided managerial insight for policymakers and 

port-related researchers. In chapter 3, we first proposed a complete and useful framework to explore 

the dynamic coupling relationships of port and port city based on the Autoregressive Distributed Lag 

model (ARDL) and Error Correction models (ECM), and then we examined the inter-lagging effects 

between port container traffic and the economy of the port city. Chapter 4 proposed a hybrid prediction 

model to forecast container traffic and evaluated the influence of anomalous events, COVID-19. We 

also compared the forecasting performance for various forecasting horizons and training extensions. 

In chapter 5, we developed a method to evaluate the influence of COVID-19 based on the Pearson 

Correlation Coefficient and also explore the port co-opetition changes in YRDP. Finally, we closed 

this thesis with conclusions in chapter 6. 
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Abstract 

YRDP receives increasing attention due to its relevance in world trade and excellent competitiveness 

in the container traffic market. To insight into the development pattern of YRDP, this chapter proposed 

a method that combines Hierarchical Clustering with CoDa exploratory tools (i.e. biplot and 

dendrogram) to explore the temporal and spatial evolution of YRDP from 1992 to 2019.  CoDa 

describes parts of some whole (i.e., frequency and percentage), conveying relative information in the 

ratios between its components. Container traffic share in a multi-port region is typical CoDa. 

Traditional statistical approaches to CoDa could lead to spurious correlations and erroneous 

conclusions. However, using suitable CoDa techniques, such as the centred log-ratio (clr) 

transformation, can effectively avoid these misinterpretations. The novel method can simultaneously 

find the temporal and spatial characteristics. The findings indicate that the development of YRDP has 

gone through four stages and the evolution of YRDP is characterized by a tendency towards a multi-

core development and faces a differentiated pattern of peripheral port challenges. The analysis further 

improved the port system’s evolutionary model and explained the underlying reason for the 

development of YRDP. CoDa techniques also provided a new perspective for the temporal and spatial 

evolution of the transport discipline. 

Keywords: YRDP, CoDa, Concentration Indexes, Hierarchical Clustering. 
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2.1 Introduction 

The YRD region is an influential intersection of the 21st Century Maritime Silk Road and the Yangtze 

River Economic Belt (Cao et al. 2019). In recent years, the spatial and temporal evolution process of 

YRDP received increasing attention.  

There are many methods to investigate the evolution of port traffic. For instance, Notteboom (1997) 

utilized the concentration index (Normalized Herfindahl-Hirschman index [H*] and Gini coefficient) 

to demonstrate that the containerization of the European ports would lead to further concentration. The 

European port system and most of its multi-port gateways were still undergoing a deconcentration 

process. Svindland et al. (2019) utilized a concentration index and semi-structured interviews to 

explore the evolution of the Norway port system, which proved that the Norway port system followed 

the same concentration process and then deconcentration as major port ranges. Grifoll et al. (2018) 

investigated the container traffic share evolution of the Mediterranean ports using Hierarchical 

Clustering and concentration indexes, which provided an excellent method to explore the temporal 

evolution in a multi-port region. Pallis and Vaggelas (2017) introduced the evolution of Greece 

container port market and the reform process over the last decade. Research demonstrated that the 

Greek port system was different from the models endorsed in other countries. Recently, Feng et al. 

(2020) employed the ternary diagram with concentration ratios (CR(n)), H* and Aitchison distance to 

study inequality, shift volumes flow and competition in a port system, this method provided a new 

perspective for transport discipline. Those contributions have achieved considerable skills in multi-

port traffic temporal evolution, but developing and applying robust and coherent analytical tools still 

deserves more attention to providing a conclusive characterization of temporal and spatial evolution 

in multi-port systems. This chapter proposed a method to combine the Hierarchical Clustering based 

on the clr-transformation with CoDa exploratory tools to explore the temporal and spatial evolution of 
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YRDP from 1992 to 2019. The novel method can find the temporal and spatial characteristics 

simultaneously. So, in this contribution, we will prove that this method can distinguish a differentiated 

pattern that other methods cannot meet obtaining coherent temporal periods and identifying 

differentiated temporal evolution from specific ports in YRDP. In this sense, the insight gained by DS 

may also contribute substantially to port management and policies (Parola et al. 2021). 

CoDa is a quantitative description of the parts of some whole (i.e., frequency and percentage), 

conveying relative information in the ratios between its components (see Eq (2.1)) (Pawlowsky-Glahn 

et al. 2015). CoDa techniques have been applied to a wide variety of scientific disciplines, such as 

geography (Buccianti and Grunsky 2014), economics (Ferrer-Rosell et al. 2015), archaeometry (Baxter 

and Freestone 2006) and chemistry (Reimann et al. 2012), among others. CoDa techniques were first 

applied by Grifoll et al. (2019) to build port associations and reveal the underlying tendencies, offering 

a better interpretation of container traffic evolution. However, they concluded that further exploration 

of CoDa in multi-port systems and application of advanced CoDa techniques (e.g., Sequential Binary 

Partition [SBP]) is required to postulate new methods to gain insight into port systems and 

transformation. Container traffic share in YRDP is an excellent objective to explore the applicability 

of CoDa techniques due to its relevance in world trade and excellent competitiveness in the container 

traffic market. We believe that it is necessary to study the temporal and spatial evolution of container 

traffic in YRDP. It is also beneficial to understand the underlying impact of policies on the 

development of the port.  

The contributions of this chapter are three folds. Firstly, a novel method is proposed to combine the 

Hierarchical Clustering based on the clr-transformation with CoDa exploratory tools (i.e., biplot and 

dendrogram) to investigate the temporal and spatial evolution of YRDP from 1992 to 2019. Unlike the 

traditional concentration index (i.e., H*, CR(n) and Gini coefficient), the novel method can 

simultaneously explore temporal and spatial characteristics and find the differentiated development 

pattern that other methods cannot meet. In this sense, this method contributes further to improve the 

port system’s evolutionary model and provides a new perspective for the temporal and spatial 
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evolution of the transport discipline. Secondly, based on the CoDa analysis, we find that the 

development of YRDP has gone through four stages and YRDP is characterized by a tendency towards 

a multi-core development and faces a differentiated pattern of peripheral port challenges. Thirdly, we 

take economic and policy factors into account to explain the underlying reason for the prosperity of 

YRDP and provide a direction for its future development. 

This chapter is presented in the following structure. Section 2.2 describes the mathematical theory, 

including H*, the ternary diagram, and CoDa techniques. In section 2.3, we applied CoDa exploratory 

tools to analyze the development pattern of YRDP, looking for port associations and similarities from 

its temporal evolution. In section 2.4, we discussed the results and provided some development 

experiences. Finally, section 2.5 outlines the findings and considerations for future studies. 
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2.2 Methodology 

This chapter proposed a method that combines Hierarchical Clustering based on the clr-transformation 

with CoDa exploratory tools (i.e., biplot and dendrogram) to investigate the temporal and spatial 

evolution of YRDP from 1992 to 2019. Firstly, to identify the temporal characteristics of YRDP  from 

1992 to 2019, we used Hierarchical Clustering to categorise the development of YRDP into four stages. 

Then we added these four stages as temporal factors to CoDa exploratory tools so that the points 

clustering in clr-biplot or boxplot can display four different colours. We can see that the four coloured 

points clustering is highly consistent with Hierarchical Clustering. Finally, we can easily indicate a 

differentiated pattern other methods cannot distinguish from CoDa exploratory tools. At the same time, 

the results obtained from CoDa techniques can also be identified by H*, the ternary diagram and 

Aitchison distance. In this method, we can find the temporal and spatial characteristics and 

differentiated patterns simultaneously that other methods cannot meet. In this section, CoDa 

techniques, H* and the ternary diagram are introduced briefly. 

2.2.1 CoDa 

CoDa is a part of the whole (i.e., frequency and percentage), conveying relative information in the 

ratios between its components (Pawlowsky-Glahn et al. 2015). The 𝐷-parts simplex is a group of 

positive vectors closed to constant 𝑘 and denoted by:  

𝑆𝐷 = {𝑥 = [𝑥1, 𝑥2, … , 𝑥𝐷]: 𝑥1 > 0, 𝑥2 > 0, … , 𝑥𝑛 > 0; ∑ 𝑥𝑖 = 𝑘

𝐷

𝑖=1

} (2.1) 
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When all of its components are purely strictly positive numbers and only carry relative information 

the row vector  𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝐷] is a 𝐷-parts compositional data (Pawlowsky-Glahn et al. 2015). 

The constant 𝑘 is any purely positive number, is called the closure, usually 1 or 100. When 𝑘 =  1, 

CoDa is proportional data, when 𝑘 =  100, the CoDa is percentage data.  

In this case, 𝑥1 means the container traffic in Shanghai Port is of port one (a composition) of YRDP in 

1992,  𝑥2 is the container traffic Shanghai Port are of port two (a composition) in YRDP in 1993 and 

so on…,  𝑘=1, D is equal to 28, representing 28 parts. 

The Aitchison distance is the Simplex characterization like the distance in Euclidean geometry. The  

Aitchison distance and Norm are given by Eq (2.2) and Eq (2.3) (Aitchison 1982).                                                  

Aitchison Distance between composition x and composition 𝑦 ∈ 𝑆𝐷 , 

d𝑎(𝑥, 𝑦) = √
1

2𝐷
∑ ∑(ln(

𝑥𝑖

𝑥𝑗
) − ln(

𝑦𝑖

𝑦𝑗
))2

𝐷

𝑗=1

𝐷

𝑖=1

(2.2) 

Norm of composition 𝑥 ∈ 𝑆𝐷 , 

‖𝑥‖𝑎 = √
1

2𝐷
∑ ∑ (ln

𝑥𝑖

𝑥𝑗
)

2𝐷

𝑗=1

𝐷

𝑖=1

(2.3) 

The standard statistical measures (e.g., Pearson correlation) are based on real space, when it is used to 

CoDa, it can lead to spurious correlations and erroneous conclusions. Based on the Aitchison geometry, 

a new set of descriptive measures has been defined. The central tendency measurement of a 

compositional data set 𝑋 is called the centre: 

cen (𝑿) = �̂�𝑗 = 𝑪[�̂�1, �̂�2, … , �̂�𝐷] (2.4)    
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�̂�𝑗 = (∏ 𝑥𝑖𝑗 

𝑛

𝑖 =1

)

1
𝑛

, 𝑖 = 1,2, … , 𝑛.  𝑗 = 1,2, … , 𝐷 (2.5) 

Where 𝐶 is the closure operator to constant 𝑘, �̂�𝑗 is the geometric mean of composition 𝑥, 𝑖 is the parts 

order in the data set, 𝑗 is the order of the composition. Dispersion in CoDa can be described by the 

variation matrix, initially defined by Aitchison as 

Τ = (

𝑡11 𝑡12 … 𝑡1𝐷

𝑡21 𝑡22 … 𝑡2𝐷

⋮ ⋮ ⋱ ⋮
𝑡𝐷1 𝑡𝐷2 𝑡𝐷3 𝑡𝐷𝐷

) (2.6)                                                                

where 𝑡𝑖𝑗 = var( ln
𝑥𝑖

𝑥𝑗
) is the variance of the log ratio of parts 𝑖 and 𝑗.  

The total variance is a measure of a compositional sample’s global dispersion, given by      

Tovar[𝑋] =
1

2𝐷
∑ var(ln

𝑥𝑖

𝑥𝑗
)

𝐷

𝑖,𝑗=1

=
1

2𝐷
∑ 𝑡𝑖𝑗

𝐷

𝑖,𝑗=1

(2.7) 

There are generally two approaches to research CoDa. One is to work directly on the Simplex. Another 

is to formulate the compositions as log-ratio coordinates and then apply standard statistical methods 

to the log-ratios (in real space). Some transformations based on the log ratio approach have been 

developed gradually, such as the additive log-ratio (alr) transformation, clr-transformation (Aitchison 

1982) and the isometric log-ratio (ilr) transformation (Egozcue et al. 2003). The clr-transformation of 

a composition 𝑥 = [𝑥1, 𝑥2, . . . 𝑥𝑛] is 

𝑐𝑙𝑟(𝑥) = [ln
𝑥1

𝑔𝑚(𝑥)
, ln

𝑥2

𝑔𝑚(𝑥)
, … , ln

𝑥𝐷

𝑔𝑚(𝑥)
] (2.8) 

 where 𝑔𝑖(𝑥) = (∏ 𝑥𝑖
𝐷
𝑖=1 )1/𝐷 is the geometric mean of the parts. 

The clr-transformation is an operation for compositions in the Simplex that are translated compositions 

into the real vector as an isometry. The clr-transformation of the D-part composition is a vector of 
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coordinates of dimension 𝐷 − 1  through the ilr-transformation: 𝑆𝐷 → 𝑅𝐷−1 . The composition is 

expressed as the coordinate of orthogonal basis, and the transformation is also isometry. The main 

criterion for choosing an orthogonal basis is that it Shanghai Port ould enhance the interpretability of 

coordinate representation. The particular cases that deserve our attention are related to SBP of the 

constituent vectors of the basis (Egozcue and Pawlowsky-Glahn 2005). The primary goal of the bases 

obtained from an SBP is to make it simple to interpret the composition according to the clustered 

sections selected at each level of the partition.  

The balance is the normalized log ratio of the geometric mean of the group of parts defined by the sign 

matrix at each step. In each balance, all parts are divided into two groups. This procedure is repeated 

until each group has just one part. For the 𝑖 𝑡ℎ order partition, the definition of balance is described as 

follows: if the 𝑟 parts (𝑖1, 𝑖2, … , 𝑖𝑟) of the first subgroup are coded by +1 and the 𝑠 parts  (𝑗1, 𝑗2, … , 𝑗𝑠) 

of the second subgroup coded by -1 (see Table 2.2 and Figure 2.5) (Egozcue and Pawlowsky-Glahn 2005). 

Balances are defined as follows: 

𝑏𝑘 = √
𝑟𝑠

𝑟 + 𝑠
ln

(𝑥𝑖1
, 𝑥𝑖2

, … 𝑥𝑖𝑟
)

1
𝑟

(𝑥𝑗1
, 𝑥𝑗2

, … 𝑥𝑗𝑟
)

1
𝑠

= ln
(𝑥𝑖1

, 𝑥𝑖2
, … 𝑥𝑖𝑟

)
𝑎+

(𝑥𝑗1
, 𝑥𝑗2

, … 𝑥𝑗𝑟
)

𝑎−
(2.9) 

where 𝑎+ = +
1

𝑟
√

𝑟𝑠

𝑟+𝑠
,  𝑎− = −

1

𝑠
√

𝑟𝑠

𝑟+𝑠
 , and the values of r and s belong to the kth order partition, 

respectively. 

2.2.2 H* 

Usually, H* is used to indicate market concentration (Elbayoumi et al. 2016), which is expressed by 

the formula: 

𝐻∗ =

∑ 𝑇𝐸𝑈𝑖
2𝑛

𝑖=1

(∑ 𝑇𝐸𝑈𝑖)𝑛
𝑖=1

2−
1

𝑛

1−
1

𝑛

(2.10)                                                               

where 𝑖 to 𝑛 is the number of ports, 𝑇𝐸𝑈𝑖 is the container throughput of port 𝑖. H* has a range of [0, 1]. 
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When the market is a monopoly by one port, the H* is equal to 100%, if the H* is equal to 0, it means 

the market is divided equally by all the ports. 

2.2.3 The ternary diagram 

Three variables are depicted graphically as points in an equilateral triangle in the ternary diagram, it is 

also can describe the Aitchison distance of two points 𝑥 and 𝑦 in 𝑆𝐷 (see Eq (2.2) and Figure 2.1). 

Viviani’s theorem is the theoretical foundation of the ternary diagram (Abboud 2010). The ternary 

diagrams have a broad range of applications in chemistry (Radivo ević et al. 201 ), geology 

(Promentilla et al. 2016), energy analysis (Petrik et al. 2018) and other fields. We divide the big 

equilateral triangle into four smaller equilateral triangles at the midpoints of the axes to help explain 

the concentration in the ternary diagram (see Figure 2.1) (Feng et al. 2020). The three small equilateral 

triangles on the corners are labelled A Dominating, B Dominating and C Dominating, while the middle 

triangle is labelled Effective Competition (Shepherd and Shepherd 2003). For instance, Port A has a 

market share of more than 50% in the A-dominated region. As a result, Port A dominates the industry. 

However, in the Effectively Competition region, each port has less than a 50% market share, and no 

single port can dominate the competition.  
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Figure 2.1 The Aitchison distance is described in the ternary, and three parts of composition data (A, B and C) are 

represented in the ternary diagram.  
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2.3 Results 

Figure 2.2 illustrates the evolution of container traffic in Shanghai Port from 1992 to 2019. The sum 

of the container traffic share of Shanghai Port and Ningbo Port always accounted for more than 80% 

of YRDP from 1992 to 2019. In 1998, the traffic share of Shanghai Port reached the highest level 

(Shanghai Port,  ingbo Port and the other 13 ports’ traffic share was 74.63%, 5.41% and 19.96%, 

respectively). After 1998, the container traffic share of Shanghai Port declined slowly until 2013, when 

the container traffic share of Shanghai Port remained at about 47%, however, Ningbo Port’s container 

traffic share gradually increased from 1998 until today. From 1992 to 2012, Shanghai Port’s container 

traffic share accounted for more than 50% and monopolized the most container traffic share. By 2012, 

Shanghai Port’s traffic share had dropped below 50% (49.34%) firstly. In 2005, the sum of container 

traffic share of Shanghai Port and Ningbo Port achieved the highest level (i.e., traffic share of Shanghai 

Port, Ningbo Port and the other 13 ports was 68.45%, 21.3% and 10.25%, respectively), and after 2005, 

the container traffic share of the other 13 ports began to increase steadily. As a result of the 2008 

financial crisis, all ports in YRDP grew less than 0 in 2009. Other than that, all ports maintained strong 

growth and YRDP is in an enormous development momentum.  
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Figure 2.2 Evolution of the container traffic share in YRDP. 

For 2019, Shanghai Port’s traffic share reached the lowest level and Ningbo Port’s traffic share reached 

the highest level, the traffic share of Shanghai Port, Ningbo Port and the other 13 ports accounted for 

46.95%, 29.85% and 23.2%, respectively. Consequently, the development of YRDP from 1992 to 2019 

has experienced different stages (see Figure 2.3). These stages are indicated by Hierarchical Clustering. 

Hierarchical clustering uses ward criteria based on clr-transformation, which allows the extraction of 

information on temporal evolution by defining similarity over the years. As an example of clr-

transformation, Table 2.1 includes the values of the log ratio and the geometric mean for the year 2019. 

Using Hierarchical Clustering, we categorize the container throughput evolution of YRDP into four 

stages: 1992-1995, 1996-2000, 2001-2013and 2014-2019. Then we add the temporal factors (four 

stages) to CoDa exploratory tools (clr-biplot and CoDa-dendrogram) to explore the temporal and 

spatial characteristics. The four stages label the raw dataset into four groups. Their role is to colour the 

points in the biplot or the boxplots in CoDa-dendrogram so that can show different coloured points in 

the biplot and different coloured boxplots in CoDa-dendrogram (see  Figure 2.4 and Figure 2.5). It also 

reflects that the temporal characteristics are highly consistent with H* and Aitchison distance (see 

Figure 2.6). 
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Figure 2.3 Dendrogram (Hierarchical Clustering) for clr-transformed container traffic share of YRDP from 1992 to 

2019. Different colours represent different stages, the first period according to 1992-1995 (black), the second period 

is 1996-2000 (red), the third is 2001-2013 (blue) and the last is 2014-2019 (green). 

Table 2.1 Normalized variation matrix of the traffic throughput yearly compositions and clr-transformation for the 

year 2019 (the last row). The geometric mean for this year is equal to 0.0155.  

Port SHP NBP SZP NTP NJP LYGP JYP TZPJ YZP ZJP TZPZ WZP JXP HZP HZHP 

SHP 0 0.35 0.32 0.17 0.15 0.45 3.56 1.98 0.11 0.14 0.17 0.07 4.83 4.54 1.22 

NBP 0.35 0 0.23 0.84 0.55 0.16 1.84 0.7 0.18 0.44 0.59 0.24 2.71 3.37 1.06 

SZP 0.32 0.23 0 0.59 0.23 0.09 2.62 1.41 0.22 0.13 0.37 0.15 3.13 3.26 1.32 

NTP 0.17 0.84 0.59 0 0.12 0.88 5.03 3 0.37 0.21 0.1 0.25 5.98 4.58 1.2 

NJP 0.15 0.55 0.23 0.12 0 0.45 4.14 2.39 0.22 0.03 0.09 0.09 4.73 3.81 1.24 

LYGP 0.45 0.16 0.09 0.88 0.45 0 2.05 1.09 0.24 0.3 0.59 0.22 2.64 3.34 1.51 

JYP 3.56 1.84 2.62 5.03 4.14 2.05 0 0.59 2.83 3.67 4.23 3.18 1.24 5.21 4.24 

TZPJ 1.98 0.7 1.41 3 2.39 1.09 0.59 0 1.47 2.15 2.42 1.73 1.19 3.19 1.92 

YZP 0.11 0.18 0.22 0.37 0.22 0.24 2.83 1.47 0 0.17 0.25 0.07 3.87 3.78 1.09 

ZJP 0.14 0.44 0.13 0.21 0.03 0.3 3.67 2.15 0.17 0 0.12 0.06 4.33 3.84 1.33 

TZPZ 0.17 0.59 0.37 0.1 0.09 0.59 4.23 2.42 0.25 0.12 0 0.15 4.92 3.78 0.97 

WZP 0.07 0.24 0.15 0.25 0.09 0.22 3.18 1.73 0.07 0.06 0.15 0 4.04 3.89 1.18 

JXP 4.83 2.71 3.13 5.98 4.73 2.64 1.24 1.19 3.87 4.33 4.92 4.04 0 2.57 4.13 

HZP 4.54 3.37 3.26 4.58 3.81 3.34 5.21 3.19 3.78 3.84 3.78 3.89 2.57 0 2.36 

HZHP 1.22 1.06 1.32 1.2 1.24 1.51 4.24 1.92 1.09 1.33 0.97 1.18 4.13 2.36 0 

clr 3.41  2.96  1.48  0.07  0.84  1.20  -0.96  -1.41  -1.03  -1.23  -1.25  -0.56  0.26  -1.03  -2.77  
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Figure 2.4 The clr-biplot, different coloured points represent different stages. Note: SHP (Shanghai Port), NBP 

(Ningbo Port), SZP (Suzhou Port), NTP (Nantong Port), NJP (Nanjing Port), LYGP (Lianyungang Port), JYP 

(Jiangyin Port), TZPJ (Taizhou Port, Jiangsu Province), YZP (Yangzhou Port), ZJP, (Zhenjiang Port), TZPZ, 

(Taizhou Port, Zhejiang Province), WZP (Wenzhou Port), JXP (Huzhou Port), HZP (Huzhou Port), HZHP, 

(Hangzhou Port). 

 

Figure 2.5 CoDa-dendrogram of YRDP using the balances of Table 2.2. 
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Table 2.2 Sequential Binary Partition for container traffic time series in YRDP. 

Balance SHP NBP  SZP  NTP NJP LYGP JYP TZJP YZP ZJP TZPZ WZP JXP HZP HZHP 

b1 1 1 1 1 1 1 -1 -1 1 1 1 1 -1 -1 1 

b2 0 0 0 0 0 0 -1 -1 0 0 0 0 -1 1 0 

b3 0 0 0 0 0 0 1 -1 0 0 0 0 -1 0 0 

b4 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 0 0 1 

b5 0 0 0 0 0 0 0 1 0 0 0 0 -1 0 0 

b6 -1 1 1 -1 -1 1 0 0 -1 -1 -1 -1 0 0 0 

b7 -1 0 0 -1 -1 0 0 0 1 -1 -1 -1 0 0 0 

b8 -1 0 0 1 -1 0 0 0 0 -1 -1 -1 0 0 0 

b9 0 1 -1 0 0 -1 0 0 0 0 0 0 0 0 0 

b10 -1 0 0 0 1 0 0 0 0 -1 1 -1 0 0 0 

b11 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 0 

b12 1 0 0 0 0 0 0 0 0 -1 0 -1 0 0 0 

b13 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 

b14 0 0 0 0 0 0 0 0 0 1 0 -1 0 0 0 

 

Principal Component Analysis is a multivariate statistical method that can be applied to analyze CoDa 

through a clr-transformation. The clr-biplot display multidimensional data points cloud by projecting 

data points into two-dimensional or at most three-dimensional space (see Figure 2.4) (Buccianti and 

Grunsky 2014). In the clr-biplot, some characteristics must be introduced, for example, a clr-biplot is 

composed of points, rays and links, and also by links formed by rays. In this case, the length of rays is 

proportional to variability, orthogonal connection means that the two sub-compositions are not related. 

Another explanation is that if the three rays are aligned, the relationship between the three parts is 

linear (Daunis-i-Estadella et al. 2011; Pawlowsky-Glahn et al. 2015). 
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Figure 2.6 The evolution of H* and Aitchison distance for YRDP from 1992 to 2019. 

Table 2.1 shows the normalized variation matrix of the container throughput of YRDP. The pairs give 

the largest contributions: Nantong Port-Jiaxing Port (5.98), Jiangyin Port-Huzhou Port (5.21), Nantong 

Port-Jiangyin Port (5.03) and other contributions that used to involve Jiaxing Port, Jiangyin Port, 

Huzhou Port and Taizhou Port (Jiangsu Province). The clr-biplot also confirms these results. Figure 

2.6 presents the clr-biplot of the container traffic share in YRDP. More than 86% of the projection is 

built on the first two components. The largest contribution of variability is given by the rays of Jiaxing 

Port, Jiangyin Port, Huzhou Port and Taizhou Port (Jiangsu Province), as already indicated in Table 

2.1. Due to its small container throughput with minimal fluctuations, their fluctuation will be more 

significant for the same increase in capacity. For example, the container traffic growth rate of Jiangyin 

Port in 1995, 2005, 2009, 2014 and 2019 was 0. 00%, -4.71%, 48.4%, -56.6% and -4.2% respectively. 

But the growth rate of Shanghai Port is 27.4%, 24.2%, -10.7%, 4.5% and 3% in 1995, 2005, 2009, 

2014 and 2019 respectively, it is extremely stable compared with Jiangyin Port fluctuated in the 2008 

financial crisis. The other two larger variabilities are Hu hou Port and  iaxing Port. Hu hou Port’s 
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container traffic growth rate in 2009 and 2019 was 100% and -3.5%, respectively and Jiaxing Port was 

0% and 6.5%. 

According to Eq (2.9), the compositions are expressed as balance 1 to balance 14 (b1, b2, ..., b14). The 

sequential binary partition used to achieve each balance (SBP) is outlined in Table 2.2. Once the 

balances are received, the CoDa-dendrogram is a valuable tool to describe these balances. The CoDa-

dendrogram is represented by the dendrogram-type links between groups, the horizontal lines do not 

contain any information other than connecting the group of parts, the length of the vertical lines shown 

in Figure 2.5 is equal to the variance of each balance, and they represent the decomposition of the total 

variance, the intersections of the horizontal line and vertical line determined the mean of a balance 

(Daunis-i-Estadella et al. 2011; Pawlowsky-Glahn et al. 2015). The CoDa-dendrogram also shows the ilr 

dispersion and quartiles through the boxplots. The first balance corresponds to the longest vertical line, 

Jiaxing Port, Taizhou Port (Jiangsu Province), Jiangyin Port and Huzhou Port are separated from the 

geometric mean (centre) of the remaining ports. As the temporal element is added to the CoDa-

dendrogram, the variances of the balances change in Figure 2.5. In the first balance, the balance centre 

has an obvious change to the other balance, which means Jiaxing Port, Taizhou Port (Jiangsu Province), 

Jiangyin Port and Huzhou Port have an increasing influence compared to the other ports. This is also 

reflected in the aforementioned clr-biplot (see Figure 2.6) and the normalized variation matrix (Table 

2.1).  

In Figure 2.4, we refer to the ray of Nanjing Port, Taizhou Port (Zhejiang Province), Nantong Port, 

Zhengjiang Port, Shanghai Port, Suzhou Port, Wenzhou Port, Lianyungang Port and Ningbo Port as 

group 1. We add the temporal factor (four stages) to the clr-biplot, the clustering of the four coloured 

points in Figure 2.4 means the four stages consistent with H* and Aitchison distance (see Figure 2.6). 

The links between any rays in group 1 with Jiaxing Port or Taizhou Port (Jiangsu Province) and the 

links between Jiangyin Port and Huzhou Port are approximately orthogonal. It implies that the log ratio 

of the respective ports indicates a low correlation (i.e., the correlation between ln (Jiaxing Port/any 

port in group 1) and ln (Jiangyin Port/Huzhou Port) is -0.085). From a temporal perspective, Jiangyin 

Port had excellent development after 2000, but it gradually lost this advantage after 2010 (see  Figure 

2.4 and Figure 2.5). This tendency can also be observed in Figure 1.2. From 2014 to 2019, the 

advantage of Jiaxing Port, Jiangyin Port and Huzhou Port is gradually shifting to Huzhou Port.  
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Aitchison distance can be calculated by Eq (2.2). Figure 2.6 displays the evolution of H* and Aitchison 

distance of YRDP from 1992 to 2019, where we can see that Aitchison distance is strongly consistent 

with H*. Simultaneously, the turning points in H* and Aitchison distance coincide with the four stages 

of Hierarchical Clustering (i.e., 1995 and 2013). The peak of H* was in 1998 at 0.5 and the highest of 

Aitchison distance was 1.855 in 1992 respectively, then H* and Aitchison distance all decreased to the 

lowest point in 2018 at 0.23 and 0.47 respectively. Since 2013, the points in the ternary diagram have 

steadily shifted from Shanghai Port to Effective Competition implying that Shanghai Port has 

gradually lost its monopoly status. This tendency is also evidenced in Figure 2.4 and Figure 2.5, for 

example, from 2000 to 2010, points gradually shifted from Shanghai Port to Jiangyin Port, Taizhou 

Port (Jiangsu Province) and Jiaxing Port. After 2014 this tendency shifts to Huzhou Port. In Figure 2.5, 

in the first balance (b1), the third and fourth stages (2001-2013, 2014-2019) are close to Jiaxing Port, 

Jiangyin Port, Taizhou Port (Jiangsu Province) and Huzhou Port. In b12 balance, the development is 

focused on Jiangyin Port, Taizhou Port (Jiangsu Province) and Jiaxing Port. The results are consistent 

with biplot in Figure 2.4. Meanwhile, H* and Aitchison distance remained at 0.24 and 0.5 with slight 

fluctuations after 2013.  
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2.4 Discussion 

The benefits of CoDa techniques in transport disciplines are identified from YRDP application results. 

In this way, we can simultaneously find temporal and spatial characteristics and distinguish a 

differentiated pattern (peripheral port challenges) that other methods cannot meet. The spatial 

evolution of the multi-port systems may include several stages in the function of the opportunity factors 

such as infrastructure development, global trade tendency, shipping atmosphere or administrative 

issues, and the monopolistic status of Shanghai Port as the Chinese mainland gateway was no longer 

valid (Feng et al. 2019). Simultaneously, ports within YRDP used their strengths to enhance port-port 

and port-hinterland cooperation and extend their economic radius, making port development a vital 

force for urban and regional development (Sakalayen et al. 2017). The spatial evolution of YRDP 

continuous expansion, which roughly presents a northwest-southeast distribution pattern in space (see 

Figure 1.1 and Figure 2.8). The four stages of YRDP are characterised as follows:    

1) Original single-core: 1992-1995 

This first stage of interpretation relates to the excellent geographical location and advanced economy. 

Since the reform and opening up in 1978, Pudong in Shanghai City was established as an international 

financial centre and shipping centre. It performed most of the ocean transportation of the multi-port 

system and undertook the transhipment of other traditional port cargo in the multi-port system (Wang 

and Ducruet 2012). During this period, the traffic share was mainly concentrated in Shanghai Port due 

to the expansion of global supply chains in containerization (see Figure 2.1) (Guerrero and Rodrigue 

2014). The other ports, except for Shanghai Port, were isolated and less connected from each other. 

Simultaneously, Shanghai Port in YRDP was relatively single in terms of landward, and the seaward 

was just starting to take off. Consequently, other ports in YRDP began to implement containerized 

transportation gradually, and the connection among ports in YRDP became closer.  
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2) Polarization single-core: 1996-2000 

The second period according to 1996-2000 is a process of polarization (see Figure 2.8). Under the 

effect of initial advantages (i.e., the excellent geographical location and policy support) and scale 

economy mechanism, Shanghai Port integrated the import and export transportation and transhipment, 

attracting more container resources, the H* and Aitchison distance continued to rise until 2000. 

Simultaneously, the connection between the better-developed container ports and the inland cities was 

progressively strengthening. A minority of ports became sub-centres within the multi-port system (see 

Figure 1.1 and Figure 2.8).  

 

Figure 2.7 The container traffic share of Shanghai Port, Ningbo Port and the other 13 ports described in the ternary 

diagram.  
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3) Dual-core development: 2001-2013 

The deconcentration is shown in the ternary diagram, H* and Aitchison distance suggests that YRDP 

began to change from neighbouring ports. After 2001, the development centre shifted to Jiaxing Port, 

Taizhou Port (Jiangsu Province), Huzhou Port and Jiangyin Port (see Figure 2.4) and the peripheral 

ports challenges appeared (see Figure 2.6, Figure 2.7 and Figure 2.8 . Since China’s accession to the 

World Trade Organization (WTO) and opening up policy had extended from coastal areas to inland in 

2001, the port capacity exceeded 10 million TEU from 2001 to 2005, with a utilization rate of 161%. 

In 2005, China established its first bonded port zone at Yangshan in Shanghai, which attracted Hong 

Kong’s traffic share due to the comparable tariff advantages of a bonded port and a free trade port 

(Yang et al. 2019b). 

With its excellent geographical advantage and increased cargo flow, the sub-core port (Ningbo Port) 

has been positively expanding and exploring new shipping routes, especially ocean shipping routes 

(see Figure 1.1 and Figure 2.8). As a result, many shipping enterprises transferred by sub-core port 

directly, which greatly stimulated the sub-core port development (see Figure 2.8). The sub-core port 

has gradually developed into a port comparable in function and scale to the core-hub port and has 

become another core-hub port of YRDP (Feng et al. 2019). Therefore, Shanghai Port and Ningbo 

Port’s expansion accelerates the development of neighbouring ports, and a few ports have evolved 

from small ports to local hubs (i.e., Jiaxing Port and Huzhou Port). Simultaneously, due to enhancing 

the inland and sea collection and distribution network, a common economic hinterland has emerged 

between Ningbo Port and Shanghai Port forming a transportation corridor. Affected by the 2008 

financial crisis, throughput in YRDP fell by 6.45% but grew by 13.33% in 2010 compared to 2008. 

After the 2008 financial crisis, all ports in YRDP experienced negative container traffic growth (see 

Figure 1.2). However, Shanghai Port and Ningbo Port were much better able to adapt to the 2008 

financial crisis and environmental impacts, and after 2009, all ports were back to the state they were 

before the 2008 financial crisis (see Figure 2.1).  
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Figure 2.8 The temporal and spatial evolution model of the YMPS, the size of the circle represents the size of the 

port. 
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4) Multi-core development: 2014-2019 

With further development of YRDP, the core-hub ports were beginning to be affected by the peripheral 

ports challenges mechanism (see Figure 2.8) (Wang et al. 2012b). After 2013, ports in YRDP entered 

a new situation. Overall, the multi-port system appeared an evident dispersion. For example, the ports 

along the Yangtze River (i.e., Nanjing Port, Suzhou Port and Nantong Port) have initially built regional 

shipping centres. Lianyungang Port is the intersection of the Belt and the Road and is a gateway to the 

Silk Road Economic Belt. At the same time, the container traffic share of Jiaxing Port, Huzhou Port, 

Jiangyin Port and Taizhou Port (Jiangsu Province) have changed significantly (see Figure 2.1), and the 

challenge of small ports has become evident. Ports in YRDP trended towards a multi-core development 

(see Figure 2.8) (Zhou et al. 2017). In this sense, CoDa has provided a robust tool to identify patterns 

when the magnitudes of the big ports particularly dominated the temporal evolution, for example, in 

Figure 1.2, the container throughput in Shanghai Port was 85 times larger than for Jiaxing Port, the 

four small ports were isolated from other ports in Figure 2.5. Jiaxing Port and Huzhou Port showed a 

differentiated pattern thanks to their geographical position near Shanghai Port and Ningbo Port. In the 

context of China’s foreign-oriented economy, many goods supplied in the midstream and upstream of 

the Yangtze River needed to be transshipped to Shanghai Port and Ningbo Port by Jiaxing Port and 

Huzhou Port (see Figure 2.8). Consequently, it accelerated the development of Jiaxing Port and 

Huzhou Port. Jiangyin Port and Taizhou Port (Jiangsu Province) belong to Jiangsu Province. Jiangsu 

Province ranks 2nd in China and 1st in the YRD region in terms of GDP, which indicates the ports in 

Jiangsu Province have a huge hinterland and a vast amount of cargo needs to be transshipped by ports. 

Following the above analysis, the spatial and temporal evolution of traffic share is characterized by 

the “Original single-core”-“Dual-core development”-“Multi-core development” (see Figure 2.8). At 

the end of the 20th century, China built numerous deep-water terminals at Shanghai Port and Ningbo 

Port. As a result, the container traffic share of Shanghai Port decreased from 75% to 47% from 1992 

to 201 ,  ingbo Port’s traffic share increased from  . % to 2 % and the other 13 ports increased from 
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19.6% to 24% respectively from 1992 to 2019, which demonstrated the multi-core development in 

YRDP is strengthened (see Figure 1.1 and Figure 2.8). Thus, Ningbo Port and the other 13 ports posed 

a challenge to Shanghai Port. The challenge effect was minimal and mainly manifested in the challenge 

of the second largest port, Ningbo Port, to the first largest port, Shanghai Port. The conclusions drawn 

from the CoDa techniques agree with the competitiveness analysis of Ningbo Port and Shanghai Port 

postulated by Feng et al. (2020) and Gao and Li (2019) where hinterland, natural endowment and 

services were identified as potential competition variables. Also, these ports had fallen into an efficient 

competition taking shape in a twin-hub port. 

This chapter proposes a method that combines Hierarchical Clustering based on the clr-transformation 

with CoDa exploratory tools (i.e., biplot and dendrogram) to investigate the temporal and spatial 

evolution of YRDP from 1992 to 2019. Firstly, to identify the temporal characteristics of YRDP from 

1992 to 2019, we use Hierarchical Clustering to categorise the development of YRDP into four stages. 

Then we add these four stages as temporal factors to CoDa exploratory tools so that the points 

clustering in clr-biplot or boxplot can display four different colours. We can see that the four-coloured 

points clustering is highly consistent with Hierarchical Clustering. Finally, we can easily indicate a 

differentiated pattern other methods cannot distinguish from CoDa exploratory tools. At the same time, 

the results obtained from CoDa techniques can also be identified by H*, the ternary diagram and 

Aitchison distance. In this method, we can find the temporal and spatial characteristics and 

differentiated patterns simultaneously that other methods cannot meet. 

Through the abovementioned analysis, CoDa techniques are an excellent way to explore the temporal 

evolution and spatial integration in market share (Grifoll et al. 2019). Some concentration indexes like 

H* or Gini coefficients can only describe concentration or deconcentration. However, CoDa 

techniques (ie., clr-biplot and CoDa-dendrogram) can explain the temporal evolution and study the 

spatial characteristics simultaneously. CoDa techniques can also find the differentiated development 

pattern that other methods cannot meet. At the same time, the identification of the peripheral ports is 

also a good demonstration of the benefits of CoDa techniques.  
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2.5 Conclusions  

As YRDP plays an increasingly important role in international trade and the container traffic market, 

YRDP has received more and more attention from scholars. In this chapter, a method is proposed to 

investigate the temporal and spatial evolution of YRDP from 1992 to 2019. The method can explore 

temporal and spatial evolution simultaneously. To the best of my knowledge, this is the first approach 

to analyze the temporal and spatial characteristics simultaneously in YRDP. Through the verification 

of traditional methods, such as H*, Aitchison distance and the ternary diagram, we get the following 

conclusions. 

Firstly, in discipline, we propose a method that combines Hierarchical Clustering with CoDa 

exploratory tools to explore the temporal and spatial evolution of YRDP from 1992 to 2019. This 

method can simultaneously identify the temporal and spatial characteristics and find the differentiated 

development pattern that other methods cannot meet. In this sense, this method contributes further to 

improve the port system’s evolutionary model and provides a new perspective for the temporal and 

spatial evolution of the transport discipline. 

Secondly, based on the CoDa analysis, we find that the development of YRDP has gone through four 

stages and YRDP is characterized by a tendency towards a multi-core development and faces a 

differentiated pattern of peripheral port challenges. That means Shanghai Port acts as the centre of 

YRDP and faces a challenge and the main challenge is from the second largest port Ningbo Port. 

Shanghai Port and Ningbo Port’s expansion accelerates the development of neighbouring ports and 

emerging smaller ports. Thirdly, we take economic and policy factors into account to explain the 

underlying reason for the prosperity of YRDP and provide a direction for its future development. Such 
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work also benefits policymakers and stakeholders in making better decisions involving infrastructure 

management, business decisions and resource allocation. 

In addition, in the experimental case of YRDP, we believe that CoDa techniques can apply to other 

multi-port regions, such as the Pearl River Delta multi-port system and the Bohai Rim multi-port 

system. From a development perspective, we have focused on a few relatively large ports, and these 

ports are facing the challenges of small and medium-sized ports, so in future work, the internal 

competition of the multi-port region is attractive work.
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Abstract 

This study aims to explore the dynamic coupling relationships and the inter-lagging effects between 

the port and port city based on the Auto-Regression Distribute Lag model (ARDL) and Error 

Correction Model (ECM). An empirical analysis of the YRDP was performed for illustration and 

verification purposes from the perspective of container traffic and the economy of the port city. The 

findings show that port container traffic and the economy of the port city have significant interaction 

for both short- and long-run relationships, but different-scale ports have different port-city 

relationships and different inter-lagging effects. The findings also show that the Tertiary Industry (TI) 

has the most associated with port development, the Secondary Industry (SI) is second, and the Primary 

Industry (PI) has less connection with port development. Meanwhile, with the extension of the lagging 

periods, the positive effect and negative effects are always declining. In terms of methodology, this 

framework is also helpful and applicable to other ports and port cities worldwide, and the empirical 

analysis also can provide managerial insight for policymakers and investors. 

Keywords: port-city dynamic coupling relationships, inter-lagging effects, ARDL-ECM, YRDP 
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3.1 Introduction 

Ports as nodal infrastructures connecting global and local markets have played a key role 

in world trade, and they are traditionally regarded as a strategic economic endowment 

that can promote the process of globalization (Cullinane and Haralambides 2021). 

Meanwhile, economic prosperity or disruptions can also promote or hinder the 

development of ports (Notteboom et al. 2021). Therefore, understanding port and 

economic linkages is critical for port governance and the growth of regional economies 

(Fedi et al. 2022).  

A city that has a port with the functions of a water and land transportation hub is called a 

port city (Cong et al. 2020). The economy of the port city is one of the most important 

factors in port development, and port container traffic can also accelerate the development 

of the port city (Cheung and Yip 2011; Cuevas Valenzuela et al. 2023). For instance, from 

the perspective of scale economics theory, services provided by ports positively impact 

industry productivity in different ways, and the main way including improving efficiency 

and reducing transport costs, which in turn can produce various effects, such as higher 

productivity of other inputs, growth of the trade and improvement of scale relevant market 

(Bottasso et al. 2014; Slack and Gouvernal 2016). Meanwhile, port traffic has a 

significant effect on GDP, while it has an opposite impact on total retail sales of consumer 

goods. In terms of economic structure indicators, port traffic grows in parallel with SI, 

but is negatively correlated with PI and  TI (Cong et al. 2020). 

Different ports have different influences on their local economies, and different cities also 

have different economic structures, then cause different effects on the port development, 
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but there is insufficient evidence to indicate these points. On the other hand, there is much 

research to investigate the unidirectional effect of port activity on the regional economy 

or the regional economy on port activity, but other literature rarely studies the 

bidirectional relationship between port activity and the regional economy. Consequently, 

in this chapter, we analysed the long- and short-run bidirectional relationships and inter-

lagging effects between the port and port city using ARDL and ECM.  

ARDL bounds test proposed by Pesaran et al. (2001) was utilized for cointegration 

analysis. According to (Nusair and Olson 2022), the ARDL and ECM are excellent 

approaches to explore both long- and short-run relationships. The advantage of an ARDL 

is that this model can handle the variables at different lag orders, which cannot be met by 

other methods. Another benefit is that the ARDL bounds test does not need to have the 

same level of stationary to perform the analysis. At the same time, the ARDL-ECM is 

applied in many fields, such as environmental protection (Sufyanullah et al. 2022), and 

economics (Nusair and Olson 2022). 

Compared with the current research about the port-city relationship, this contribution 

mainly proposed a helpful and complete framework to explore the long- and short-run 

bidirectional relationships and the inter-lagging effects between port and city. The 

findings show that port container traffic and the economy of the port city have significant 

interaction for both short- and long-run relationships, but different-scale ports have 

different port-city patterns and different inter-lagging effects, and the empirical analysis 

shows that TI has the most associated with port development, SI is second, and PI has 

less connection with port development. Meanwhile, with the extension of the lagging 

periods, the positive effect and negative effects are always declining. In terms of 

methodology, this chapter proposed a complete analytical framework to explore the 

dynamic coupling relationships and the inter-lagging effects between economic indicators 

of the port city and port container traffic. An empirical analysis of YRDP was performed 
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for illustration and verification purposes, but the framework we proposed are also useful 

and applicable to other port and port city worldwide. 

The remainder of this chapter is organised as follows. Section 3.2 is the literature review. 

Section 3.3 introduced the analytical framework and methodology used in this chapter. 

Section 3.4 is the case study and Section 3.5 is the discussion. Finally, we got the 

conclusion in section 3.6. 

3.2 Literature review 

Each port has its indispensable function that is closely related to the structure of the local 

economy, especially through its role in transportation. For example, Bottasso et al. (2014) 

applied a spatial panel econometric framework to analyse the impact of port activities on 

local development in European countries, they found that ports not only have important 

effects on local GDP but also take place outside the region where the port is located. Cong 

et al. (2020) used a panel data regression model to examine the relationships between 

economic indicators of the port city and the port traffic, they pointed out that port traffic 

has a positive effect on SI, but is negatively correlated with PI and TI. Grossmann (2008) 

pointed out that with the development of world technology and economy, the city should 

make changes according to the port development. Otherwise, the market shares would be 

lost by competitors. Significant infrastructure changes can influence the economic 

structure and port specialization, thus affecting the distribution of economic activities 

(Wang and Ducruet 2012).  

Port is an advantageous condition for the development of the port city, and economic 

indicators such as employment and value-added have always been important factors in 

demonstrating the contribution of port development to local governments and community 
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economies (Ha et al. 2019). Xiu et al. (2021) found that the expansion of the port can 

improve port city development. Port cities are nodes of the world commodity flows, 

which could provide advanced services related to shipping and port activities (Jacobs et 

al. 2010). The shipping service industry depended on port development would bring 

employment to the port city. However, with the development of emerging technologies, 

such as deindustrialization, containerization and the adoption of automated port handling 

systems and technologies, the employment created per ton of cargo has been declining. 

Moreover, with increasing mechanization of the ports, direct employment decreased 

(Bryan et al. 2006). This is also indicated by the evidence from Belgian ports (Dooms et 

al. 2015). While the value added per ton or TEU is increasing with the development of 

new handling technologies. This leads to a shift of logistics activities to the port hinterland, 

which in turn increases employment in the hinterland and reduces the value added per ton 

or TEU and employment in the port city (Notteboom and Rodrigue 2005).  

An insightful discussion of the relationship between port production and local economic 

development helps to enrich the understanding of port-economy interaction (Zhao et al. 

2017; Crotti et al. 2022). A large amount of literature echoes that ports are the catalysts 

for the economic development of a region, accelerating economic industry integration 

and service agglomeration, thereby generating socioeconomic benefits (Funke and Yu 

2011; Song and van Geenhuizen 2014). According to Ma et al. (2021), port integration 

has a positive effect on the economic growth of cities in the YRD, particularly in small- 

and medium-sized port cities. Heijman et al. (2017) inferred that world trade has been 

contributed by ports because the shipping industry plays a foundational role in global 

import and export trade from the case of the Rotterdam Port. Vanoutrive (2010) analysed 

the Antwerp Port case and found that the lagging effect is different in different regions. 

According to Merkel (2017), the Rouen Port contributed more than 21% of GDP in 2007. 

Meanwhile, improved accessibility and decreased transportation costs for a port help to 

boost the market potential (Condeço-Melhorado et al. 2011). Akhavan (2017) applied the 
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four-phase model as the tool to explore the interface of port fixed assets investment and 

port throughput, the findings reveal that the creek dredging and newly constructed ports 

integrated with infrastructures have played an important role in boosting the economic 

growth in Dubai.  
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3.3 Methodology 

The analysis process of this chapter is shown in Figure 3.1. The first step is the Unit Root 

Test. Unit Root Test is used to identify the stationary of the variables before employing 

the ARDL to avoid spurious regression and Unit Root Test is also necessary for the ARDL 

Bounds approach. In this chapter, the Augmented Dickey-Fuller (ADF) test (Pesaran et 

al. 2001), the Phillips-Perron (PP) test (Johansen and Juselius 1990), and the 

Kwiatkowski-Phillips-Schmidt-shin (KPSS) test (Kwiatkowski et al. 1992) are applied. 

When the Unit Root Test finished, we executed the ARDL bounds test to identify whether 

there is a cointegration relationship among variables. Finally, ARDL and ARDL-ECM 

are used to explore the long- and short-run relationships and lagging effects. 

 

Figure 3.1 The analysis process of this chapter. 
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3.3.1 ARDL-ECM 

In the real world, most of the time series does not have a cointegration relationship, so, 

the examination of the following hypothesis is performed utilizing ARDL bound test 

based on F-statistics to detect whether cointegration: 

H0: There is a cointegration relationship between variables. 

H1: There is no cointegration relationship between variables. 

The null hypothesis of no cointegration will be rejected when the upper limit of the critical 

value lies below the assessed F-statistic value and vice versa. Once the hypothesis is 

accepted, cointegration is existing. 

ARDL bounds test proposed by Pesaran et al. (2001) was utilized for cointegration 

analysis. According to Nusair and Olson (2022), the ARDL bounds test is an excellent 

approach to explore both long-run and short-run relationships between various time series. 

The advantage of an ARDL is that this model can handle the variables that have different 

lag orders, which cannot be met by other methods. Another benefit of the ARDL method 

is that the ARDL bounds test does not need to have the same level stationary I(0) or I(1) 

to perform the analysis, which other models cannot be met. However, the drawback of 

the ARDL methodology is that none of the variables must be of I(2) or higher order. 

ARDL is used for regression analysis between a dependent variable and several 

independent variables. In contrast to other statistical models, the variables required by 

ARDL should be played by their past values (autoregression) and the current and previous 

values of other variables (distribution lags). When there are two independent variables, 

an ARDL model of order 𝑝, 𝑘 and 𝑞 is defined as 𝐴𝑅𝐷𝐿 (𝑝, 𝑘, 𝑞), which consists of 𝑝 

and 𝑘 lags of independent variables and 𝑞 lags dependent variable, and the optional lags 
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was selected by Akaike Information Criterion (AIC). The ARDL model is written as 

follows. 

𝑌𝑡 = 𝛼 + ∑ 𝛾𝑖

𝑝

𝑖=0

𝑋𝑡−𝑖 + ∑ 𝛽𝑖

𝑘

𝑖=0

𝑍𝑡−𝑖 + ∑ 𝜇𝑖

𝑞

𝑖=1

𝑌𝑡−𝑖 + 𝜀𝑡. (3.1) 

In Eq (3.1), 𝛼 is constant, 𝑋𝑡−𝑖 and 𝑍𝑡−𝑖  are independent variables, 𝑌𝑡 is the dependent 

variable, 𝑖 is the lag order of each variable and 𝜀𝑡 is a random error term, 𝛾𝑖 and 𝜇𝑖 are 

short-run dynamic coefficients. 

ARDL bounds test helps in identifying underlying variables regarded as a long-run 

relationship equation. If the underlying equation is identified, the ARDL model of the 

cointegrating vector is reparametrized into the ARDL-ECM. The ARDL-ECM results 

reveal short-run dynamic relationships between the variables.  

We reparametrized Eq (3.1) as follows: 

∆𝑌𝑡 = 𝛼0 + 𝛾0𝐸𝐶𝑀𝑡−1 + ∑ 𝛽𝑖

𝑞

𝑖=1

∆𝑌𝑡−𝑖 + ∑ 𝜃𝑖

𝑝

𝑖=0

∆𝑋𝑡−𝑖 + ∑ 𝜑𝑖

𝑘

𝑖=0

∆𝑍𝑡−𝑖 + 𝜇𝑡. (3.2) 

In Eq (3.2), 𝛼0  is constant, ∆ which means the first difference between the variables, 

𝐸𝐶𝑀𝑡−1 is the error correction term, 𝛾0 is error correction coefficient. 

The 𝐸𝐶𝑀𝑡−1 is defined 

𝐸𝐶𝑀𝑡−1 = 𝑌𝑡−1 − ∑
𝛽𝑖

𝛽0

ℎ

𝑖=1

𝑋𝑖,𝑡−1. (3.3) 

Based on Eq (3.3), then the ARDL bounds test is applied. 

𝐻0: 𝛽0 = 𝛽1 = 𝛽2 = ⋯ = 𝛽𝐻 = 0 
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If 𝐻0 is rejected, then we consider cointegration between variables. 

3.4 Case study 

In the past few decades, China has developed into one of the world’s largest economies. 

In this subsection, the proposed method is used to study the dynamic coupling relationship 

between the port and its city in the YRD. In section 3.4.1, we described the statistical data 

used in this chapter. Section 3.4.2 shows the Unite Root test results then ARDL and 

ARDL-ECM results shows in section 3.4.3. 

3.4.1 Data description 

According to Cong et al. (2020), port traffic is the most reprehensive indicator for port 

development, at the same time, GDP is also the most important measurement of the 

development of the city, so in this chapter, we selected the three major industries and port 

traffic as our research objection to conduct the study. In this chapter, the port container 

traffic in  RDP and their cities’ three ma or industries (i.e. P , S , and T   are used as the 

indicators of the port development and port development to explore the dynamic coupling 

relationships and the inter-lagging effects between the port and the port city’s economy. 

YRDP is located downstream of the Yangtze River, which is the most important region 

connecting the world and the China mainland (see Figure 3.2) (Huo et al. 2018). YRDP 

mainly consists of 15 ports, in this chapter we only choose nine ports as the objective, 

including Shanghai Port (SHP), Ningbo Port (NBP), Suzhou Port (SZP), Nantong Port 

(NTP), Nanjing Port (NJP), Lianyungang Port (LYGP), Jiaxing Port (JXP), Zhenjiang 

Port (ZJP), and Taizhou Port (Zhejiang Province) (TZPZ) (see Figure 3.2). Shanghai Port 

is the world’s largest container port in terms of container throughput, and Ningbo Port is 

ranked third in the world, but the other ports are small-scale ports. It is the fact that these 
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ports consist of international ports and small and medium-sized ports that make the 

argument more convincing. 

 

Figure 3.2 The location of the nine ports used in this chapter. Note: In YRDP, Lianyungang Port, 

Nanjing Port, Zhenjiang Port, Nantong Port and Suzhou Port belong to Jiangsu Province. Shanghai 

Port belongs to Shanghai City. Ningbo Port, Taizhou Port and Jiaxing Port belong to Zhejiang 

Province. 

The data statistical description is shown in Table 3.1 and Table 3.2. The data on three 

major industries come from the National Bureau of Statistics (http://www.stats.gov.cn/), 

and the container traffic dataset comes from the China Ports Year Book (1999-2019) and 

the Ministry of Transport of the People’s Republic of China (https://www.mot.gov.cn/ . 

Table 3.1 Monthly data on container traffic of YRDP statistical description. 

 SHP NBP SZP NTP NJP LYGP JXP ZJP TZPZ 

Mean 1140.24  312.81 84.86 29.93 65.58 69.87 5.02 5.07 0.06 

Max 4350.00 2872.00 635.50 191.00 331.00 635.50 120.40 50.00 0.14 

Min 73.10  5.30 4.50 3.00 7.300 1.20 0.01 0.40 0.03 

SD 1479.19  976.26  249.26 44.69 121.92 229.78 70.09  16.30  12.86 

The abbreviations are as follows: SHP (Shanghai Port), NBP (Ningbo Port), SZP (Suzhou Port), NTP 

(Nantong Port), NJP (Nanjing Port), LYGP (Lianyungang Port), JXP (Jiaxing Port), ZJP (Zhenjiang 

Port), TZPZ (Taizhou Port, Zhejiang Province). Mean is the mean value of the time series. Max is the 
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maximum of the port container traffic time series; min is the minimum of the time series and SD means 

the standard deviation of the port container traffic time series. 

Table 3.2 Monthly data on three major industries of the port cities in YRDP statistical description. 

Three major industries City Mean Max Min SD 

PI 

SH 0.27 1.46 0.71 0.35 

NB  1.24 4.70 2.21 1.00 

SZ  0.72 4.02 1.61 0.98 

NT 1.71 12.51 5.08 3.26 

NJ 0.90 3.70 2.07 0.65 

LYG  3.83 9.62 6.94 1.53 

JX 1.80 16.8 6.52 4.36 

ZJ 0.99 3.17 1.85 0.50 

TZZ 2.83 14.60 5.60 3.28 

SI 

SH 26.59 55.60 42.27 8.79 

NB 40.98 56.74 50.62 3.54 

SZ  42.99 66.29 55.13 6.18 

NT 45.78 62.03 53.94 5.03 

NJ 35.19 52.70 45.19 5.28 

LYG  43.44 59.38 51.44 5.28 

JX 45.50 54.30 50.32 2.73 

ZJ 43.62 61.84 54.25 5.21 

TZZ 41.53 62.5 52.60 7.67 

TI 

SH 43.40 73.15 57.01 9.07 

NB  40.87 57.75 47.17 3.68 

SZ  32.35 56.29 43.26 6.68 

NT 28.50 52.27 40.98 7.27 

NJ 44.66 62.81 52.72 5.20 

LYG  36.10 48.62 41.62 4.31 

JX 30.30 52.20 43.16 6.24 

ZJ 35.94 54.80 43.91 5.37 

TZZ 26.50 55.50 41.79 10.31 

Note: PI represents the primary industry, SI is the secondary industry and the tertiary industry. The 

lower abbreviations are as follows: SH (Shanghai City), NB (Ningbo City), SZ (Suzhou City), NT 

(Nantong City), NJ (Nanjing City), LYG (Lianyungang City), JX (Jiaxing City), ZJ (Zhenjiang City), 

TZZ (Taizhou City, Zhejiang Province). Mean is the mean value of the time series. Max is the 

maximum of the time series; Min is the minimum of the time series and SD means the standard 

deviation of the time series.   
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3.4.2 Unit Root Test Results 

According to Figure 3.1, the Unit Root Test is the first step to check the stationary of the 

time series before the ARDL bounds test. In this chapter, the ADF test, PP test, and KPSS 

test are applied and the results are illustrated in Table 3.3. It shows that the results of 𝐼(0) 

are different, for PP test, most of the variables are stationary, for the KPSS test, about half 

of the variables are stationary, however, for the ADF test, nearly all of the variables are 

nonstationary. But we can see that all variables are stationary at the first difference (i.e. 

𝐼(1)), which sets the stage for the ARDL bounds test that follows.  



Chapter 3 

 

 

67 

 

Table 3.3 Unit Root test results for the time series. 

Variables Ports ADF test PP test KPSS test 

Container 

traffic 

SHP -1.9247 -4.0182** -21.6602*** -36.478*** 0.276* 0.059*** 

NBP -2.4708 -3.6062** -16.7520** -30.735*** 0.154* 0.112*** 

SZP -1.6998 -5.1004** -29.5009*** -40.635*** 0.364 0.125** 

NTP -1.5141 -6.0734** -24.8802*** -34.351*** 0.324* 0.178*** 

NJP -1.911 -4.315** -17.4709** -28.805*** 0.265*** 0.125*** 

LYGP -2.038 -3.0972** -24.6009*** -36.554*** 0.431* 0.098*** 

JXP -3.5901** -8.3094*** -27.1509*** -39.524*** 0.512** 0.135*** 

ZJP -3.2265* -4.6251*** -19.2351* -36.6874*** 0.5218* 0.1125*** 

TZPZ -4.3303*** -9.365*** -21.5660*** -40.124*** 0.563 0.384** 

 Cities ADF test PP test KPSS test 

PI 

SH -3.5108** -7.5063*** -8.2773 -26.746** 0.251 0.124** 

NB -2.6352 -4.2316*** -21.6862 -33.1401*** 0.279 0.4286 * 

SZ  -2.1251 -4.5123*** -24.9101 -38.0667* 0.3276 0.5032 *** 

NT -1.9682 -3.6874*** -27.1835 -41.5409* 0.5176 0.7951 *** 

NJ -2.6987 -4.5632*** -8.28723 -12.6643*** 0.2538 0.3898 *** 

LY -2.361 -6.3261*** -21.8985 -33.6383** 0.3066 0.4562 *** 

JX -2.3015 -3.6985*** -25.1539 -38.639*** 0.36 0.5356 *** 

ZJ -1.8975 -4.5369*** -27.4496* -42.1653** 0.5688 0.8463 ** 

TZZ -1.9361 -3.9654*** -8.36835 -12.8546* 0.2789 0.4149 ** 

SI 

SH -2.7738 -5.4866** -10.864 -22.509** 0.214* 0.214*** 

NB -1.9531 -3.6547** -16.7721 -25.6306* 0.1557 0.2392 ** 

SZ -2.3615 -4.5897*** -17.4919 -26.7305** 0.2679 0.4115 * 

NT -2.1365 -6.9856*** -19.2582 -29.4297*** 0.5275 0.8104 ** 

NJ -2.3124 -4.6235*** -10.877 -16.6219*** 0.2164 0.3323 ** 

LY -1.9652 -4.3621*** -16.9363 -26.0159*** 0.1711 0.2546 *** 

JX -2.2254 -2.6398*** -17.6631* -27.1323*** 0.2944 0.4380 ** 

ZJ -2.1635 -4.3251*** -19.4467 -29.8721** 0.5797 0.8625 *** 

TZZ -3.0695 -3.6985*** -10.9835 -16.8718** 0.2378 0.3537 ** 

TI 

SH -2.7932 -5.0985** -9.902 -26.669** 0.268 0.015** 

NB -1.9864 -5.3261*** -29.5363 -45.1364*** 0.368 0.5653 ** 

SZ  -2.1564 -3.9684*** -24.6304 -37.6394*** 0.4357 0.6693 ** 

NT -1.9485 -5.6235*** -21.5919 -32.996*** 0.5692 0.8743 * 

NJ -1.9634 -3.9652*** -9.91388 -15.1501** 0.2709 0.4162 *** 

LY -2.0152 -4.1258*** -29.8254 -45.8149** 0.4044 0.6017 *** 

JX -2.3124 -6.3215*** -24.8715 -38.2052*** 0.4788 0.7124 *** 

ZJ -2.3016 -5.3265*** -21.8032 -33.492*** 0.6255 0.9306 * 

TZZ -2.2265 -4.3574*** -10.0109 -15.3778*** 0.2977 0.4430 *** 

*, **, *** represent a rejection of the null hypothesis at 1%, 5% and 10% significance, usually if the 

value is significant at 5%, we think this time series is stationary. 𝐼(0) denotes the time series is 

stationary at level, 𝐼(1) denotes the time series is stationary at first difference. The variables were 

tested at 5% significance, and all variables were stationary at first difference. 
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3.4.3 ARDL Results and ARDL-ECM Results 

Table 3.4 and Table 3.5 display the long- and short-run relationship of the influence of 

three major industries on port container traffic (ECO-oriented mechanism).  Table 3.6 

and Table 3.7 show the long- and short-run relationship of port container traffic effects 

on the three major industries (TEU-oriented mechanism).  

𝑅2 in Table 3.4 is the coefficient of determination, which donates the model explains the 

proportion of the variation. For example, the first 𝑅2 is 0.897, implying the independent 

variables (i.e. PI, SI, and TI) can explain 89.7% of the total variation of the dependent 

variable (container traffic of Shanghai Port). 𝐹 donates weather there is a cointegration, 

which means the independent variables have a long-run equilibrium with the dependent 

variable. From Table 3.4 we can see all 𝐹 values are significant at 1% indicating that PI, 

SI and TI always have long-run equilibrium with Shanghai Port, Ningbo Port, Suzhou 

Port, Nantong Port, Nanjing Port, Lianyungang Port, Jiaxing Port, Zhenjiang Port and 

Taizhou Port (Zhejiang Province), respectively, which means all variables have a long-

run association and move together. 

Table 3.4 The ARDL model coefficient estimates (ECO-oriented mechanism). 

 SHP NBP SZP NTP ZJP NJP LYGP JXP TZP 

Cons 0.031 0.016 -0.017** 0.003 0.014 -0.014* -0.019* -0.013** -0.003* 

𝐿𝑛(𝑃𝐼) 0.010* -0.031*  -0.036 0.021 0.021 -0.026 0.026 0.016 -0.036 

𝐿𝑛(𝑆𝐼) 0.054** 0.062* 0.046** 0.016 0.006 0.032* 0.034** -0.015 0.025 

𝐿𝑛(𝑇𝐼) 0.058* 0.041*** 0.026*** -0.002* -0.004* 0.015* 0.011* -0.012* -0.014** 

𝑅2 0.897 0.968 0.885 0.895 0.889 0.954 0.964 0.854 0.887 

𝐹 2.300*** 2.230*** 2.252*** 3.036*** 2.369*** 3.061*** 3.036*** 2.649*** 3.125*** 

*, **, *** represent a rejection of the null hypothesis at 1%, 5% and 10% significance, usually if the 

value is significant at 5%, we think this time series is stationary. N means there is one lagging period 

effect but non-significance between the independent variable and dependent variables. 

TEU-oriented mechanism donates the effects of three major industries on port container 

traffic, in this part, the independent variables are the corresponding port cities’ P , S  and 

TI, and the dependent variables are the nine ports’ container traffic. For example, the data 

in the first column in Table 3.4 shows the independent variables (i.e. Shanghai City’s P , 
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SI and TI) and Cons coefficients for the dependent variable (container traffic of Shanghai 

Port). The coefficient of PI for Shanghai Port is 0.010, which means that without the 

influence of SI and TI, as a percentage of PI increase Shanghai Port will increase by about 

1.0%. That indicates PI has a negative effect on Shanghai Port. In the same way, Ningbo 

Port has a PI coefficient of 0.031, which means that in the absence of SI and TI effects, 

Ningbo Port will increase by about 3.1% as a percentage of PI increase. This suggests 

that PI has a positive effect on Ningbo Port. The PI coefficients for other dependent 

variables are empty means there is no effect of PI on port container traffic. 

The SI coefficients of Shanghai Port and Ningbo Port are 0.054 and 0.062, respectively, 

which donates that without the influence of PI and TI, Shanghai Port and Ningbo Port 

will be improved by 5.4% and 6.2% under the SI effects, respectively. For Shanghai Port 

and Ningbo Port, the change of container traffic caused by every one percent change in 

the SI is higher than that of the PI. Correspondingly, TI coefficients for Shanghai Port 

and Ningbo Port are also positive, the values are 0.058 and 0.041. The TI coefficient for 

Shanghai Port is greater than other ports, indicating that TI for Shanghai Port has the 

greatest positive impact on container transportation compared with other PI and SI. 

The Cons coefficient for Suzhou Port is estimated to be -0.017, which means that when 

the coefficients of the independent variable are zero, Suzhou Port will decrease by about 

1.7%. The PI coefficient for Suzhou Port is insignificant, and SI and TI coefficients for 

Suzhou Port are 0.046 and 0.026 which are all second only to Shanghai Port and Ningbo 

Port. The coefficient structure of Nanjing Port and Lianyungang Port is similar to Suzhou 

Port, and the SI, TI and Cons coefficients for Nanjing Port are 0.032, 0.015 and -0.01, 

respectively. The SI, TI and Cons coefficients for Lianyungang Port are 0.034, 0.011 and 

-0. 019, respectively. The coefficient structure is also similar to Suzhou Port and Nanjing 

Port. Those ports can get positive effects from SI and TI. For Nantong Port, the only TI 

coefficient is -0.002, which means that a percentage increase in TI donated decreases 
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Nantong Port by about 0.2%. The coefficient structure of Zhenjiang Port is similar to 

Nantong Port, the only TI coefficient is negative, meaning TI reacts with Zhenjiang Port, 

and the effect is -0.4%. The only TI coefficient for Jiaxing Port is -0.012, and the same 

thing also happens with Taizhou Port (Zhejiang Province), the TI coefficient is -0.014. 

For Nantong Port, Zhenjiang Port, Jiaxing Port and Taizhou Port (Zhejiang Province), 

they have one coefficient TI, and they are all negative. 

The ARDL-ECM model measures how quickly the model adjusts from dynamic short-

run shocks to equilibrium. The 𝐸𝐶𝑇𝑡−1 coefficients are all statistically significant, and the 

p-values are all less than 1%, indicating there are short-run relationships among the 

variables. For example, in  Table 3.5, 𝐸𝐶𝑇𝑡−1 coefficient of Shanghai Port is estimated to 

be about -0.127, which means that if Shanghai Port is in disequilibrium with three 

industries, it will converge to equilibrium at the speed of 12.7% per year. Moreover, Table 

3.5 also shows the three ma or industries’ different influences on container traffic in the 

short-run relationship. We can see that not only did the current year effects (i.e. 𝑃𝐼𝑡 , 

𝑆𝐼𝑡 and 𝑇𝐼𝑡) of the three industries have an impact on port container traffic, but the effects 

of the three major industries in previous years (e.g. the first lagging period of the three 

major industries is 𝑃𝐼𝑡−1, 𝑆𝐼𝑡−1 and 𝑇𝐼𝑡−1) also had an impact on port container traffic, 

such as 𝑃𝐼𝑡−1, 𝑆𝐼𝑡−1 and 𝑇𝐼𝑡−1 have a positive effect on Shanghai Port, the values are 

5.5%, 2.4% and 1.7%, respectively. The current period of PI, SI and TI have a positive 

impact on Shanghai Port, the effect values are 6.3%, 6.5% and 2.5%, respectively. At the 

same time, the three major industries have the second lagging period effect on Shanghai 

Port, the effects are 3.2%, 1.1% and 1.2%, respectively. 

The impact of the current period of PI, SI and TI on Ningbo Port is all positive, that effects 

values are -5.4%, 9.4% and 3.6% respectively, the corresponding impact of the first 

lagging period of PI, SI and TI are -4.3%, 3.1% and 2.1%, respectively. Suzhou Port, 

Nanjing Port and Lianyungang Port have the same coefficient structure. PI does not 

influence Suzhou Port, Nanjing Port and Lianyungang Port container traffic. SI with its 

first lagging period have a pulling effect on those three ports, the current period effects 

are 1.4%, 3.3% and 2.6%, and their first lagging period effect is 0.5%, 1.2% and 1.6%. 
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TI of those three ports has a positive influence on port container traffic and their first 

lagging period also has a positive influence on container traffic. Nantong Port, Zhenjiang 

Port, Jiaxing Port and Taizhou Port (Zhejiang Province) also have similar coefficient 

structures, such as the influence mainly caused by TI, the coefficients are -0.016, -0.004, 

-0.009 and -0.019, respectively. The only difference the first lagging period of TI has a 

positive impact on Zhenjiang Port, and others without a lagging effect. Table 3.6 and 

Table 3.7 show the long- and short-run relationship of port container traffic effects on 

three industries (TEU-oriented mechanism). TEU-oriented mechanism donates the 

effects of port container traffic on three industries, in this part, the independent variables 

are the nine ports’ container traffic, and the dependent variables are port cities’ P , S  and 

TI. 

In the long-run relationship of TEU-oriented, there are two ports’ container traffic 

influence PI (i.e. Shanghai Port and Ningbo Port). The coefficients of Shanghai Port and 

Ningbo Port are 0.014 and -0.006, respectively. The effect of Ningbo Port on PI is slight 

but causes a reverse response. Increasing one unit of container traffic in Shanghai Port 

will increase the PI by 1.4% and that in Ningbo Port will decrease the PI by 0.6%. This 

fact indicates that port container traffic has few influences on PI. Regarding the influence 

of port container traffic on SI, five ports show a positive influence on SI. For example, 

Shanghai Port has the biggest positive shock on SI and with every increase in one unit of 

container traffic, SI will increase by 5.8%. The second influence on SI is from Suzhou 

Port and the coefficient value is 0.046. The third is Ningbo Port with a coefficient of 0.44. 

The last two are Lianyungang Port and Nanjing Port with coefficients of 0.034 and 0.032. 

The effect of Nantong Port, Zhenjiang Port, Jiaxing Port and Taizhou Port (Zhejiang 

Province) on SI are non-significance. For T , all independent variables’ coefficients are 

positive, which indicates port container traffic can accelerate the development of TI in a 

long-run relationship. Shanghai Port has the biggest positive influence on TI and Ningbo 

Port has the second effect on T . Shanghai Port’s increase in one unit of container traffic 
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will increase the T  by  .1% and  ingbo Port’s increase in one unit of container traffic 

will decrease the TI by 3.9%.  
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Table 3.5 The ARDL-ECM model coefficients estimates (ECO-oriented mechanism). 

 SHP NBP SZP NTP ZJP NJP LYGP JXP TZPZ 

∆𝐿𝑛 𝑃𝐼𝑡 0.063* -0.054** 0.067 0.032 0.036 -0.007 -0.026 0.153 0.067 

∆𝐿𝑛 𝑃𝐼𝑡−1 0.055** -0.043* 0.005 -0.021 0.365 0.105 0.067 0.132 0.205 

∆𝐿𝑛 𝑃𝐼𝑡−2 0.032** 0.058 0.006 0.036 -0.067 0.006 0.005 0.067 0.006 

∆𝐿𝑛 𝑃𝐼𝑡−3 -0.036 0.036 0.039 0.067 0.005 0.139 -0.008* 0.005 0.039 

∆𝐿𝑛 𝑆𝐼𝑡 0.065** 0.094** 0.014** 0.005 0.006 0.033* 0.026* 0.206 0.036 

∆𝐿𝑛 𝑆𝐼𝑡−1 0.024** 0.031** 0.005*** 0.006 0.039 0.012*** 0.016*** 0.039 -0.365 

∆𝐿𝑛 𝑆𝐼𝑡−2 0.011* N 0.016 0.039 0.305 0.016 0.321 0.024 0.067 

∆𝐿𝑛 𝑆𝐼𝑡−3 0.002 0.012 0.051 0.026 0.016 -0.021 -0.016 -0.063 0.005 

∆𝐿𝑛 𝑇𝐼𝑡 0.025*** 0.036* 0.026** -0.016* -0.004* 0.029* 0.009** -0.019** -0.008* 

∆𝐿𝑛 𝑇𝐼𝑡−1 0.017* 0.021** 0.024* 0.015 0.031 0.021** 0.007** 0.039 0.009 

∆𝐿𝑛 𝑇𝐼𝑡−2 0.012* -0.021 0.015 0.016 0.027 0.620 0.021 0.036 0.036 

∆𝐿𝑛 𝑇𝐼𝑡−3 -0.032 0.036 0.036 0.026 0.015 0.036 0.025 -0.365 -0.065 

𝐸𝐶𝑇𝑡−1 -0.127*** -0.026*** -0.071*** -0.007** -0.006 -0.054*** -0.027*** -0.068*** -0.053*** 

𝑅2 0.964 0.854 0. 974 0.885 0.039 0.965 0.941 0.921 0.881 

𝐹 1.378 2.036 1.365 2.366 3.210 2.032 2.659 2.036 2.342 

*, **, *** represent a rejection of the null hypothesis at 1%, 5% and 10% significance, usually if the value is significant at 5%, we think this time series is stationary. 

N means there is one lagging period effect but non-significance between the independent variable and dependent variables.  
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Table 3.6 The ARDL model coefficient estimates (TEU-oriented mechanism). 

 𝑃𝐼 𝑆𝐼 𝑇𝐼 

SHP 0.014* 0.058*** 0.051* 

NBP -0.006* 0.044** 0.039*** 

SZP 0.167 0.046*** 0.021* 

NJP 0.215 0.032* 0.012* 

LYGP 0.106 0.034* 0.006*** 

NJP 0.039 0.005 0.006* 

ZJP 0.036 00306 0.004*** 

JXP -0.365 0.039 0.003** 

TZPZ 0.067 0.036 0.007* 

R2 0.805 0.968 0.885 

F 2.300*** 2.230*** 2.252*** 

*, **, *** represent a rejection of the null hypothesis at 1%, 5% and 10% significance, usually if the 

value is significant at 5%, we think this time series is stationary. Note: In this table, PI SI and TI 

correspond to each port city, for example, the first number in this table is 0.0.014, which means the 

coefficient of container traffic of SHP on the PI of Shanghai City. 

Table 3.7 shows short-run dynamic relationships of TEU-oriented. There are two ports 

whose container traffic contributes to the PI, which are Shanghai Port and Ningbo Port. 

Moreover, Shanghai Port and Ningbo Port have a lagging effect on PI, the lagging period 

is three and one, respectively. The current period of Shanghai Port for PI is 0.0095, and 

its lagging period coefficients are 0.0048, 0.0037 and 0.0012, respectively. Ningbo Port 

coefficient is negative and its first lagging period also has a negative impact on PI, their 

coefficients are -0.0031 and -0.0016. The other ports’ container traffic does not influence 

PI. 

There are five ports’ container traffic has a positive influence on S  and they all have one 

lagging period effect. For example, Shanghai Port with three lagging periods, Ningbo 

Port with two lagging periods, and Suzhou Port, Nanjing Port and Lianyungang Port have 

one lagging period. Moreover, the current period coefficients of Shanghai Port and 

Ningbo Port for SI are 0.0084 and 0.0044, indicating the container traffic of Shanghai 

Port and  ingbo Port can stimulate the S ’s increase. The first, second and third lagging 

periods of Shanghai Port are decreased with the extension of the lagging period, the values 

are 0.0062, 0.0026 and 0.0008, respectively. The first lagging period and second lagging 

period of Ningbo Port are also descending compared to the current period of Ningbo Port. 

Suzhou Port, Nanjing Port and Lianyungang Port have one lagging period and their 
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coefficient structure is similar. For example, those three ports’ container traffic has no 

contribution to PI and has a beneficial influence on SI and TI. The current period 

coefficient of those three ports’ container traffic for S  is 0.0021, 0.0031 and 0.002 , 

respectively. At the same time, the first lagging period coefficient of those three ports’ 

container traffic is 0.0015, 0.0014 and 0.0006. The left four ports, Nantong Port, 

Zhenjiang Port, Jiaxing Port, and Taizhou Port (Zhejiang Province) have no contributions 

to SI. 

The independent variables coefficients for TI are also positive and there is a lagging 

period effect for Shanghai Port, Ningbo Port, Suzhou Port, Nanjing Port and Lianyungang 

Port. The current period coefficient of Shanghai Port for TI is 0.0069, and 𝑆𝐻𝑡−1 

coefficient is 0.0066. The second lagging period of Shanghai Port is 0.0036 and the third 

lagging period of Shanghai Port is 0.0004. The current period coefficient of Ningbo Port 

with its first lagging period coefficient is 0.0036 and 0.0029. About Suzhou Port, Nanjing 

Port and Lianyungang Port, their lagging periods are one and all coefficients are positive. 

Meanwhile, the lagging period coefficients are always smaller than the current period. 

Nantong Port, Zhenjiang Port, Jiaxing Port and Taizhou Port (Zhejiang Province) only 

play a role on TI and have no lagging effect on TI. Nantong Port has a slight effect on TI 

(0.0001). For Zhenjiang Port, Jiaxing Port and Taizhou Port (Zhejiang Province), their 

coefficients for TI are 0.0016, 0.0011 and 0.0024, respectively.  



The dynamic coupling relationship between port and city  

76 

 

Table 3.7 The ARDL-ECM model coefficient estimates (TEU-oriented mechanism). 

 𝑃𝐼 𝑆𝐼 𝑇𝐼 

∆𝐿𝑛 𝑆𝐻𝑡 0.0095* 0.0084*** 0.0069** 

∆𝐿𝑛 𝑆𝐻𝑡−1 0.0048* 0.0062** 0.0066** 

∆𝐿𝑛 𝑆𝐻𝑡−2 0.0037** 0.0026* 0.0036* 

∆𝐿𝑛 𝑆𝐻𝑡−3 0.0012* 0.0008* 0.0004* 

∆𝐿𝑛 𝑁𝐵𝑡 -0.0031** 0.0044** 0.0036* 

∆𝐿𝑛 𝑁𝐵𝑡−1 -0.0016*** 0.0023** 0.0029** 

∆𝐿𝑛 𝑁𝐵𝑡−2 N 0.012 N 

∆𝐿𝑛 𝑁𝐵𝑡−3 N 0.006 N 

∆𝐿𝑛 𝑆𝑍𝑡 0.233 0.0021* 0.0032 

∆𝐿𝑛 𝑆𝑍𝑡−1 0.226 0.0015** 0.0012 

∆𝐿𝑛 𝑆𝑍𝑡−2 N 0.234 0.243 

∆𝐿𝑛 𝑆𝑍𝑡−3 N 0.100 0.166 

∆𝐿𝑛 𝑁𝐽𝑡 0.124 0.0031* 0.0016** 

∆𝐿𝑛 𝑁𝐽𝑡−1 N 0.0014** 0.0012* 

∆𝐿𝑛 𝑁𝐽𝑡−2 N 0.202 N 

∆𝐿𝑛 𝑁𝐽𝑡−3 N 0.101 N 

∆𝐿𝑛 𝐿𝑌𝐺𝑡 0.162 0.0025*** 0.0018* 

∆𝐿𝑛 𝐿𝑌𝐺𝑡−1 0.213 0.0006* 0.0009* 

∆𝐿𝑛 𝐿𝑌𝐺𝑡−2 0.126 -0.426 0.224 

∆𝐿𝑛 𝐿𝑌𝐺𝑡−3 0.022 0.222 0.135 

∆𝐿𝑛 𝑁𝑇𝑡 0.036 0.026 0.0001* 

∆𝐿𝑛 𝑁𝑇𝑡−1 -0.365 0.345 0.344 

∆𝐿𝑛 𝑁𝑇𝑡−2 0.017 0.117 0.126 

∆𝐿𝑛 𝑁𝑇𝑡−3 0.019 0.119 0.154 

∆𝐿𝑛 𝑍𝐽𝑡 0.033 0.013 0.0016** 

∆𝐿𝑛 𝑍𝐽𝑡−1 -0.335 N 0.325 

∆𝐿𝑛 𝑍𝐽𝑡−2 0.067 N 0.362 

∆𝐿𝑛 𝑍𝐽𝑡−3 0.127 N 0.325 

∆𝐿𝑛 𝐽𝑋𝑡 0.215 0.039 0.0011* 

∆𝐿𝑛 𝐽𝑋𝑡−1 0.106 0.036 -0.225 

∆𝐿𝑛 𝐽𝑋𝑡−2 0.039 -0.365 0.067 

∆𝐿𝑛 𝐽𝑋𝑡−3 0.036 0.067 0.026 

∆𝐿𝑛 𝑇𝑍𝑍𝑡 -0.365 0.026 0.0024* 

∆𝐿𝑛 𝑇𝑍𝑍𝑡−1 0.067 0.345 0.215 

∆𝐿𝑛 𝑇𝑍𝑍𝑡−2 0.321 0.117 0.365 

∆𝐿𝑛 𝑇𝑍𝑍𝑡−3 0.254 0.119 N 

*, **, *** represent a rejection of the null hypothesis at 1%, 5% and 10% significance, usually if the 

value is significant at 5%, we think this time series is stationary. N means there is one lagging period 

effect but non-significance. In this table, all 𝑅2 are greater than 0.85, and 𝐹 is also significant between 

each group of independent variables and dependent variables. 

Note: In this table, PI SI and TI correspond to each port city, for example, the first number in this table 

is 0.0095, which means the coefficient of container traffic of Shanghai Port on the PI of Shanghai City 

is 0.0095.  



Chapter 3 

77 

 

 

3.5 Discussion 

The economy of port cities is the most important factor in port development (Cheung and 

Yip 2011; Haezendonck et al. 2014). Port container traffic also can accelerate the 

economic development of the port cities. From the results of the ECO-oriented 

mechanism and TEU-oriented mechanism, we can divide the port-city relationships into 

four types, first is Shanghai Port, whose container traffic is closely related to PI, SI and 

TI, and the effect is positive bidirectional. Meanwhile, port container traffic in Shanghai 

has three lagging periods effect on three major industries of Shanghai City and Shanghai 

City’s three ma or industries have two lagging periods effect on Shanghai’s port container 

traffic (i.e. their inter-lagging effects between port and city are three years and two years). 

 The Chinese reform and opening up policy built Shanghai City into a world finance 

centre, and the Chinese central government has been aiming to promote the construction 

of the Shanghai International Shipping Centre, which accelerated the development of 

Shanghai Port (Feng et al. 2019). As we mentioned before, TI is closely related to the 

service industry, transportation and finance. Shanghai City has a high level of 

comprehensive development and its industrial structure is also dominated by the TI (see 

Figure 3.3 . The lagging period of Shanghai Port for Shanghai City’s three ma or 

industries is three years, which indicates Shanghai Port takes about three years on average 

to affect the economy of Shanghai City. That is mainly due to Shanghai City is status as 

the centre of China’s financial, transportation and technological innovation, and Shanghai 

Port is the supporting urban subsystem (Ye et al. 2020). Consequently, the service 

industry is developing rapidly, and the effect of the port and port industry on the overall 

pulling effect of the city is obvious.  
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Figure 3.3 The Shanghai Port container traffic and Shanghai City’s three industries ratio. 

The second type is Ningbo Port which has positive bidirectional with SI and TI but has 

negative bidirectional with PI. Meanwhile, the port container traffic of Ningbo has one 

lagging period effect on its three major industries and Ningbo City have one lagging 

period effect on  ingbo’s port container traffic. The lagging period of  ingbo Port for P , 

SI and TI is one, which indicates that the influence of Ningbo Port on its three major 

industries will last for at least one year. The physical characteristics of containers are 

highly coordinated with heavy industry and advanced manufacturing products (i.e. SI). 

This is consistent with the fact that the products of these industries in Ningbo Port are 

suitable for containerization and have high containerization. Also, Ningbo Port is 

beneficial from containerization (Feng et al. 2019). Ports are considered the gateways of 

international trade and play a crucial role in the economic development of coastal regions. 

The rise of containerization has transformed the port industry and containerization is now 

the predominant method of cargo transportation worldwide. Containerization has 

increased container throughput and has had a significant impact on the growth of port 

cities. In many coastal regions, container traffic has a strong positive relationship to the 

local economy, such as Hong Kong, Singapore and Turkey (Cullinane and Toy 2000; Ng 

and Tongzon 2010; Xiao and Lam 2017). According to the Fourteenth Five-Year Plan, 

by 2025, Shanghai Port will be built into a world-class international shipping centre. 

However, the Chinese central government also limited the expansion of Ningbo Port 
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cannot at the expense of Shanghai Port container traffic to ensure the success of the 

Shanghai International Shipping Centre (Feng et al. 2019). Therefore, the Chinese central 

government’s strong support for Shanghai Port is not conducive to the expansion of 

neighbouring ports (i.e. Ningbo Port), thus restricting container traffic (Wang and 

Ducruet 2012). Those strategies and policies limited the development of the TI of Ningbo 

Port and stimulated the development of TI of Shanghai Port (see Figure 3.3 and Figure 

3.4), and then had the same effects on container traffic.  

 

Figure 3.4 The container traffic in Ningbo Port and the three industries ratio of Ningbo City. 

The third type is Suzhou Port, Nanjing Port and Lianyungang Port, whose container traffic 

has positive bidirectional relationships with SI and TI (see Table 3.4 and Table 3.6). At 

the same time, their container traffic has one lagging period effect on their three major 

industries, and their three major industries have one lagging period effect on port 

container traffic (see Table 3.5 and Table 3.7). PI involves the production of raw materials 

and has traditionally been the backbone of the economy of many port cities and SI 

involves the processing of raw materials and the manufacturing of goods. Container ports 

have been crucial in facilitating the export of raw materials to other countries and the 

availability of container transport has made it easier for manufacturers to export their 

products to other countries. The development of container ports has had a significant 

impact on the growth of the TI. Container traffic has increased the demand for various 

services, such as warehousing, transportation, and logistics (Shan et al. 2014; Lee and 
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Shin 2019). Lianyungang Port is mainly engaged in container, bulk and general cargo. It 

is the biggest port in Jiangsu Province and the east bridgehead of the new Eurasian 

Continental Bridge. Meanwhile, Lianyungang Port has good rail connections with the 

hinterland. This fact takes advantage of the agglomeration effect of people, logistics, 

information, and capita. The agglomeration effect of the port economy has a strong 

radiating effect, which will greatly drive the development of the regional economy, 

effectively promote the adjustment of local economic and industrial structure, and 

enhance the regional competitiveness of Lianyungang City. Due to its good inland 

transportation system, the water-to-water transhipment rate is low (Li et al. 2020). Suzhou 

Port is the joint port of the Shanghai International Shipping Center, located at the 

intersection of the two main axes of the Jiangsu Riverside Industrial Belt and the Coastal 

Open Belt. In terms of the port container throughput, Suzhou Port is the seventh port since 

2018. And Suzhou City is also famous for the manufacturing and metal smelting industry 

in China, as we mentioned before, manufacturing is suitable for containerization. It is 

excellent for Suzhou City to develop foreign trade.  

The last type is Zhenjiang Port, Jiaxing Port, Taizhou Port (Zhejiang Province) and 

Nantong Port, whose container traffic is only related to TI (see Table 3.4 and Table 3.6), 

and there is no lagging effect in their dynamic relationship. For the ECO-oriented 

mechanism, the effect on the four ports is negative, and for the TEU-oriented mechanism, 

the effect on the port cities’ three ma or industries is positive (see Table 3.5 and Table 

3.7). One of the ways in which container throughput has contributed to the development 

of TI is by creating new job opportunities. The growth of TI has created many new jobs 

in port cities, such as truck drivers, warehouse workers, and logistics specialists. These 

jobs have contributed to the growth of the local economy and have helped to stimulate 

the development of TI. At the same time, Suzhou Port and Nantong Port are located at 

the estuary of the Yangtze River and are important river iron ore transhipment hubs, 

leading transportation services and in turn driving the growth of the TI. Zhenjiang Port 

and Nantong Port as transhipment ports located downstream of YRD, and the 

transhipment rates are about 97% and 99%, respectively (Yang et al. 2017). This point is 

also consistent with the opinions that a port with a high transhipment rate always has less 

related to the port city’s economy (Cheung and Yip 2011; Slack and Gouvernal 2016). 

The influence of Zhenjiang Port and Nantong Port on the three industries only exists in 



Chapter 3 

81 

 

the current period. Taizhou Port (Zhejiang Province) and Jiaxing Port as feed ports of 

Ningbo Port and their main cargo type tend to be homogeneous with Ningbo Port. The 

goods are mainly construction materials, coal, automobiles, cement, steel, petroleum, 

electromechanical and other seven categories, accounting for more than 90% of the total 

throughput over the years.   
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3.6 Conclusions 

The case study of YRDP highlights the port-city dynamic relationships. This chapter 

constructed a useful framework to explore the dynamic coupling relationships and the 

inter-lagging effects between the port and port city. The findings show that port container 

traffic and the economy of the port city have significant interaction for both short- and 

long-run relationships, but different-scale ports have different port-city relationships and 

different inter-lagging effects. In terms of methodology, this chapter proposed a complete 

analytical framework to explore the dynamic coupling relationships and the inter-lagging 

effects between economic indicators of the port city and port container traffic. An 

empirical analysis of the YRDP was performed for illustration and verification purposes, 

but the framework we proposed are also useful and applicable to other port and port city 

worldwide. 

Furthermore, the port-city relationships in YRDP can be divided into four types, first is 

Shanghai Port, the ECO-oriented and TEU-oriented effects have obvious lagging effects, 

with lagging periods of two and three, respectively. In the long-run relationship, Shanghai 

Port has positive bidirectional interrelationships with its PI, SI and TI. The second type 

is Ningbo Port. Ningbo Port has one lagging period for the ECO-oriented and TEU-

oriented effect in the short-run relationship. In the long-run relationship, Ningbo Port has 

a positive bidirectional effect with SI and TI but has a negative bidirectional effect with 

PI. The third is Suzhou Port, Lianyungang Port and Nanjing Port, the lagging effect only 

exists in SI and TI, and their lagging periods are one in short-run relationships. In the 

long-run relationship, their container traffic has a positive bidirectional relationship with 

SI and TI. The last group is Nantong Port, Zhenjiang Port, Jiaxing Port and Taizhou Port 

(Zhejiang Province), whose container traffic has a positive effect on TI, however, TI has 

a negative impact on container traffic in long-run relationships. There is no lagging effect 

no matter for the ECO-oriented effect or TEU-oriented effect in short-run relationships.  

Finally, the empirical analysis shows that TI has the most associated with port 

development, SI is second, and PI has less connection with port development. Meanwhile, 
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with the extension of the lagging periods, the positive effect and negative effects are 

always declining. The empirical analysis in this chapter can help policymakers to better 

understand the dynamic relationship between the economy of the port city and port 

container traffic, meanwhile, it also provided a new perspective for related researchers to 

enrich the understanding of port-city interaction. However, during the empirical study, 

this chapter only considers the three industries of the port city and port container traffic, 

which lacks comprehensiveness and does not consider the external factors such as trade 

and policies that influence the port system. In future research, we will build a more 

comprehensive index system of the port-city system to further improve the scientific 

accuracy of the research on the lagging effect of port-city coordination. 
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Abstract 

 

The COVID-19 pandemic had a significant impact on container transportation. Accurate 

forecasting of container throughput is critical for policymakers and port authorities, 

especially in the context of the anomalous events of the COVID-19 pandemic. In this 

chapter, we first proposed hybrid models for univariate time series forecasting to enhance 

prediction accuracy while eliminating the nonlinearity and multivariate limitations. Next, 

we compared the forecasting accuracy of different models with various training dataset 

extensions and forecasting horizons. Finally, we analysed the impact of the COVID-19 

pandemic on container throughput forecasting and container transportation. An empirical 

analysis of container traffic in the YRDP was performed for illustration and verification 

purposes. Error metrics analysis suggests that SARIMA-LSTM2 and SARIMA-SVR2 

(configuration 2) have the best performance compared to other models and they can better 

predict the container traffic in the context of anomalous events such as the COVID-19 

pandemic. The results also reveal that, with an increase in the training dataset extensions, 

the accuracy of the models is improved, particularly in comparison with standard 

statistical models (i.e. SARIMA model). An accurate prediction can help strategic 

management and policymakers to better respond to the negative impact of the COVID-

19 pandemic. 

Keywords: COVID-19 pandemic, YRDP, hybrid model, ML, SARIMA model
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4.1 Introduction 

Container transportation has become one of the most essential activities in the world’s 

economic and logistics chain (Balci et al. 2018) and container throughput has been widely 

recognized as the most important indicator of port activity (Gao et al. 2016; Grifoll et al. 

2018). For this reason, accurate forecasting of container throughput plays a crucial role, 

regardless of the port development strategies (Feng et al. 2019), infrastructure 

investments or maritime supply chain (Ha et al. 2019). Accurate forecasting can also help 

strategic management and policy development by allowing better real-time decision-

making (Stavroulakis and Papadimitriou 2017), especially in the context of anomalous 

events such as the COVID-19 pandemic. In addition, port authorities can use forecasting 

methods for route optimisation, resource assignment and terminal management (Tsai and 

Huang 2017).  

Anomalous events are generally characterised by their abruptness and unpredictability, 

such as the recent COVID-19 pandemic. Patients with COVID-19 were first detected in 

Wuhan, the capital city of Hubei Province of China, in December 2019. The outbreak of 

COVID-19 has posed unprecedented challenges to human beings and caused far-reaching 

consequences for a highly globalised world economy (Narasimha et al. 2021; Zhao et al. 

2022).  s container transport is closely linked to the world’s economic developments, 

consumer activity and supply chains, container shipping has been severely affected by 

the COVID-19 pandemic (Guerrero et al. 2022). According to Koyuncu et al. (2021), 

there was a 15.8% drop in total container throughput in China due to the lockdown 

strategy and deferred deliveries. When compared to the same period in 2019, the total 

containers handled at Chinese ports declined by 10.1% in the first two months of 2020. 

However, inaccurate forecasting of container throughput may also lead to avoidable 

financial losses and management confusion (Xie et al. 2017; Feng et al. 2021). In this 

sense, it is necessary and beneficial for policymakers and port authorities to explore a 

new method to capture anomalous events and analyse the influence of the COVID-19 
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pandemic. Consequently, container throughput forecasting has caught more attention and 

numerous forecasting methodologies have been proposed. 

The Autoregressive Integrated Moving Average (ARIMA) model is the most extensive 

and useful approach for container throughput forecasting; it is convenient and efficient in 

computation and outperforms other models in some cases, especially in short-term 

forecasting (Geng et al. 2015). The ARIMA model is also successfully applied in many 

other fields of forecasting, such as economic, traffic and environmental problems (Nepal 

et al. 2020). The  R M   model is based on the  R M  model, where ‘ ’ stands for 

exogenous external information, which can improve forecasting performance. The 

Seasonal Autoregressive Integrated Moving Average (SARIMA) model is based on 

ARIMA and brings the seasonal factor S into the ARIMA model, to exploit seasonal 

fluctuations in the time series (Ruiz-Aguilar et al. 2014), the same applies to SARIMAX. 

An Artificial Neural Network (ANN) is a mathematical model that simulates neuronal 

activity and is an information processing system based on emulating the structure and 

function of the brain’s neural networks.    s are excellent at extracting the nonlinear 

relationships and dynamic patterns widely used in forecasting tasks (Ruiz-Aguilar et al. 

2014). Given these characteristics, it is no surprise that ANN achieves numerous 

successes in transportation forecasting (Gosasang et al. 2011). Yasin et al. (1999) first 

applied ANN to traffic prediction and, since then, more and more ANN-based forecasting 

models have emerged to improve traffic forecasting performance. Typical examples 

include Back Propagation Neural Networks (BPNN) (Kunnapapdeelert and 

Thepmongkorn 2020), Feed Forward Neural Networks (FFNN) (Do et al. 2019), Radial 

Basis Function (Zhu et al. 2014), and Recurrent Neural Networks (RNN) (Li et al. 2018). 

Meanwhile, ANN has been used to compare traditional prediction models, to demonstrate 

the promising performance of ANN for specific applications (Sayed and Razavi 2000). 

In this regard, Karlaftis and Vlahogianni (2011) compared ANN with classical statistical 

methods, and the results show that ANN is more flexible and has higher accuracy than 

classical statistical models.  

Usually, traditional R  s fail to capture the input sequence’s long temporal dependence 

(Ma et al. 2015). ANN prediction models usually need more training samples, while 

container throughput datasets are limited. However, Long Short-Term Memory (LSTM) 
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can overcome those problems (Geng et al. 2015). A Support Vector Machine (SVM) was 

proposed by Vapnik et al. (1997). When SVM is used to solve a regression problem, it is 

called Support Vector Regression (SVR) and SVR has eliminated the limitation of ANN 

on the size of the dataset. SVR has several distinct benefits when it comes to solving 

small-sample, nonlinear, and high-dimensional forecasting problems (Vapnik et al. 1997). 

Therefore, SVR has been widely applied in many fields, for instance, Hung and Hong 

(2009) used SVR to forecast the exchange rate and applied SVR to forecast tourist arrivals. 

According to the research findings in transportation prediction, the single model is 

incapable of capturing nonlinear behaviour (Karlaftis and Vlahogianni 2011). Given these 

properties, hybrid forecasting techniques have received more attention and extensive 

research has shown that hybrid forecasting techniques outperform the single model in 

terms of forecasting accuracies (Zheng et al. 2006). Hybrid models are mainly divided 

into two categories. One category applies the optimisation algorithm to optimise the 

hyperparameters of another forecasting model, such as (Ping and Fei 2013), which applies 

genetic algorithms (GA) to optimise the backpropagation neural network model (BPNN) 

for forecasting the container throughput in Guangdong Province. These results showed 

that GA-BPNN has better accuracy. Mak and Yang (2007) presented a modified version 

of SVM to forecast container throughput in Hong Kong, which shows an impressive 

performance in the area of time series analysis.  

The other category combines two forecasting models, one used to forecast the linear 

component and another used to forecast the nonlinear component, such as the Gray-

SARIMA dynamic model (Carmona-Benitez and Nieto 2020), the ANN-SARIMA model 

(Ruiz-Aguilar et al. 2014) and the GA-SVR-SARIMA model (Hong et al. 2011). Usually, 

the traditional statistical models (e.g. SARIMA and ARIMA) are used to predict the linear 

component and the Machine Learning models (e.g. ANN, SVR and LSTM) are used to 

predict the nonlinear component.  

However, the port container traffic time series are difficult to classify as purely linear 

parts or nonlinear parts and, generally speaking, these time series contain both a linear 

part and a nonlinear part due to the seasonality, randomness and complexity presented in 

the time series (Wang et al. 2012a). Therefore, it is inadequate to apply SARIMA or 

Machine Learning models to fit the linear part and nonlinear part, respectively. 



Hybrid approaches for container traffic forecasting 

 

 

92 

 

Meanwhile, traditional hybrid models are best suited to multivariate forecasting, and the 

authors have not found research papers related to port container traffic univariate 

forecasting by hybrid models, despite the increasing interest in port container traffic. Also, 

anomalous events such as the COVID-19 pandemic usually occur suddenly and 

unpredictably with asymmetric information and can bring great harm to all walks of life 

(Jin et al. 2019). The time series containing anomalous events is described as an 

inherently nonlinear complex and chaotic dynamic system, which has an impact on the 

prediction accuracy (Bleick and Faulkner 1965). 

Based on the above problem, the contributions of this chapter are four-fold. Firstly, we 

proposed a hybrid model to enhance prediction accuracy and remove nonlinearity and 

multivariate limitations. Secondly, we compared the prediction performance of different 

models for various training dataset extensions and forecasting horizons. Third, we 

explored the forecasting performance of different models in the context of the COVID-

19 pandemic. Finally, we analysed the impact of the COVID-19 pandemic on forecasting 

work and maritime transportation. 

YRDP is in the most developed area of China (see Figure 4.1). This area has been 

investigated from different perspectives. Feng et al. (2020) proposed a novel ternary 

diagram method to visualise the evolution of YRDP. Huang et al. (2022a) explored the 

temporal and spatial characteristics of YRDP by a compositional data method and the 

results indicated that the development of YRDP has gone through four stages: the 

evolution of YRDP is characterised by a tendency towards a multi-core development and 

faces a differentiated pattern of peripheral port challenges. Veenstra and Notteboom 

(2011) analysed the level of cargo concentration and the degree of inequality in the 

operations of the container ports to address the dynamics in YRDP.  

In this chapter, the time series of the container throughput of Shanghai Port, Ningbo Port, 

Suzhou Port and Lianyungang Port in YRDP were applied for illustration and verification 

purposes. The reason why we selected those four ports is that Shanghai Port and Ningbo 

Port are international ports, ranked first and third in the world in terms of container traffic, 

while Lianyungang Port and Suzhou Port are small-scale regional ports in China, thus the 

forecasting work consists of large and small ports’ container traffic time series, making 

the work more convincing. 
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Figure 4.1 Location of Shanghai Port, Ningbo Port, Suzhou Port and Lianyungang Port in YRDP. This 

figure also gives the statistical description of the four ports. Each group of data represents the 

maximum value (Max), the minimum value (Min), the mean value (AV) and the standard deviation 

(STD) of each container traffic time series for each port. 

The organisation of this chapter is as follows. Section 4.2 describes the methodology, 

including the SARIMA model, LSTM model, SVR model, and two hybrid models, each 

with two configurations (configuration 1:S-L1, S-S1 and configuration 2: S-L2, S-S2). In 

Section 4.3, the experimental procedure is introduced. The empirical results and 

discussion are presented in Section 4.4. Finally, conclusions and future research are 

proposed in Section 4.5.  
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4.2 Methodology 

This section shows the analytical methods used in this contribution, including SARIMA, 

SVR, LSTM and the hybrid models. 

4.2.1 SARIMA 

A more sophisticated and accurate algorithm for analysing and forecasting time series 

data is the Box-Jenkins method, including the autoregressive model 𝐴𝑅 (𝑝), the moving 

average model 𝑀𝐴 (𝑞), the autoregressive moving average model 𝐴𝑅𝑀𝐴 (𝑝, 𝑞), and the 

Autoregressive Integrated Moving Average model 𝐴𝑅𝐼𝑀𝐴 (𝑝, 𝑑, 𝑞). The form of the 

𝐴𝑅𝐼𝑀𝐴 model is as follows: 

𝑥𝑡 = 𝜃0 + ∅1𝑥𝑡−1 + ∅2𝑥𝑡−2 + ⋯ + ∅𝑝𝑥𝑡−𝑝 + 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 − 𝜃𝑞𝜀𝑡−𝑞 (4.1) 

Adding a seasonal factor for the 𝑆𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄) model: 

𝑥𝑡 = 𝜃0 + ∅1𝑥𝑡−1 + ∅2𝑥𝑡−2 + ⋯ + ∅𝑝𝑥𝑡−𝑝 +

𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 − 𝜃𝑞𝜀𝑡−𝑞 +

𝛷1𝑥𝑡−1 + 𝛷2𝑥𝑡−2 + ⋯ + 𝛷𝑃𝑥𝑡−𝑃 +
𝛩1𝑥𝑡−1 + 𝛩2𝑥𝑡−2 + ⋯ + 𝛩𝑄𝑥𝑡−𝑄

 (4.1) 

The following is a compact expression of the model: 

𝜙𝑝(𝐵)Φ𝑃(𝐵𝑠)𝑧𝑡 = 𝜃𝑞(𝐵)𝛷𝑄(𝐵𝑠)𝜀𝑡 (4.3) 

Where: 𝑧𝑡 = (1 − 𝐵)𝑑(1 − 𝐵)𝐷ln (𝑦𝑡) , 𝜙𝑝(𝐵)  is the AR(P) operator, 𝜃𝑞(𝐵)  is the 

MA(𝑞) operator, Φ𝑃(𝐵𝑠) is the seasonal 𝐴𝑅(𝑃) operator, and 𝛷𝑄(𝐵𝑠) is the seasonal 

𝑀𝐴(𝑄) operator. The detailed parameters are presented in Appendix A. 

4.2.2 SVM 

The SVM algorithm used kernel functions to map data from low dimensions to high 

dimensional space. This method reduces dimensional catastrophe and computational 
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complexity while having better scalability and an improved ability to fit the nonlinear 

data (Wei and Chen 2012). Compared to traditional neural network algorithms, the SVM 

model uses structural risk optimisation and its scalability has been one of the advantages 

of the model. 

For a given sample (𝑥𝑖, 𝑦𝑖)(𝑖 = 1,2,3, . . . , 𝑛), 𝑛  is the sample volume, 𝑥𝑖  is the input 

vector, and 𝑦𝑖 is the output target. The SVM model uses high-dimensional mapping of 

the feature space 𝑅𝑛 to 𝑅𝑚 and then a function approximation in the feature space using 

a linear regression function. SVM for regression is called SVR: 

𝑓(𝑥) = 𝑤𝑇𝜙(𝑥) + 𝑏 (4.4) 

where 𝑤 is the weight vector, 𝜙(𝑥) donates the kernel function used for the input vector 𝑥, 

and 𝑏 is the bias term. According to the statistical theory, SVM obtained 𝑤 and 𝑏 and fits 

the regression function formula by minimizing the objective function. 

𝑅 =  
1

2
‖𝑤‖2 +

1

𝑛
𝐶 ∑|𝑦𝑖 − 𝑓(𝑥𝑖)|𝜀

𝑛

𝑖=1

(4.5) 

where 𝐶 denotes the regularisation parameter, 𝑦𝑖 − 𝑓(𝑥𝑖) represents the loss function and 

the 𝜀-intensive loss function is defined as: 

|𝑦𝑖 − 𝑓(𝑥𝑖)|𝜀 = {
𝑦 − 𝑓(𝑥), |𝑦 − 𝑓(𝑥)| > 𝜀

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(4.6) 

where 𝜀 is the tolerance error. Through Lagrange multiplier techniques, Eq (4.5) leads to 

the following dual optimisation problem: 

min
𝑤,𝑏𝜉,𝜉∗

1

2
||𝑤||

2
+ 𝐶 ∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑛

𝑖=1

(4.7) 

Subject to the constraints 

{

𝑦𝑖 − (𝑤𝑇𝜙(𝑥𝑖) + 𝑏) ≤ 𝜀 + 𝜉𝑖

(𝑤𝑇𝜙(𝑥𝑖) + 𝑏)−𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
∗

𝜉, 𝜉∗ ≥ 0

(4.8) 

for 𝑖 =  1, 2, . . . , 𝑛. 
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The training error over 𝜀 is denoted as 𝜉𝑖
∗, while the training error less than −𝜀 is denoted 

as 𝜉𝑖. The parameter vector 𝑤 in Eq (4) is derived by solving the quadratic optimisation 

problem with constraints: 

𝑤 = ∑(𝛽𝑖
∗ − 𝛽𝑖)

𝑛

𝑖=1

𝜙(𝑥𝑖) (4.9) 

The Lagrange multipliers 𝛽𝑖
∗, 𝛽𝑖 are derived by solving a quadratic program.  

Finally, the SVR regression is calculated as: 

𝑓(𝑥) = ∑(𝛽𝑖
∗ − 𝛽𝑖)

𝑛

𝑖=1

𝐾(𝑥𝑖, 𝑥𝑗) + 𝑏 (4.10) 

𝐾(𝑥𝑖, 𝑥𝑗)  are kernel functions allowing for the mapping of input data into a high-

dimensional feature space where a linear regression can be performed. 

This contribution uses the Gaussian Radial Basis Function as follows: 

𝐾(𝑥𝑖 , 𝑥𝑗) = exp (
−(𝑥𝑖 − 𝑥𝑗)

2

2𝜎2
) (4.11) 

where 𝜎 represents the width of the Kernel function.  

4.2.3 LSTM 

LSTM, as a special Recurrent Neural Network, effectively overcomes the shortcomings 

of gradient disappearance and gradient explosion in machine learning (ML) models and 

has intensity processing capability for temporal data with relatively long intervals and 

delays (Huang et al. 2021). The LSTM structure consists of a forget-gate 𝑓𝑡 that controls 

information transfer, an input gate 𝑖𝑡 and an output gate �̃�𝑡 that are used to decide which 

signals are going to be forwarded to another node, as shown in Figure 4.2  
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Figure 4.2 LSTM prediction model structure. Each blue box represents a unit of LSTM, for example, 

the left-hand box is the unit at time 𝑡. 

Sequence 𝑋 = {𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑡} is fed into the LSTM encoder: 

𝑧𝑖 = ∑ 𝑤𝑥𝑖

𝐼

𝑖=1

𝑥𝑖
𝑡 + ∑ 𝑤ℎ𝑖

𝐻

ℎ=1

ℎ𝑖
𝑡−1 + ∑ 𝑤𝑠𝑖

𝐶

𝑐=1

𝑠𝑖
𝑡−1 + 𝑏𝑖 (4.12) 

𝑦𝑖 = 𝑓(𝑧𝑡) (4.13) 

where 𝑤𝑥𝑖
、𝑤ℎ𝑖

、𝑤𝑠𝑖
represent the weight distribution of different cellular mechanisms, 

respectively. In Eq (12), ∑ 𝑤𝑥𝑖

𝐼
𝑖=1 𝑥𝑖

𝑡  meaning the external information variables 

associated with the input gates. ∑ 𝑤𝑠𝑖

𝐶
𝑐=1 𝑠𝑖

𝑡−1  represents the input in the cell, 

∑ 𝑤ℎ𝑖

𝐻
ℎ=1 ℎ𝑖

𝑡−1  represents the moment 𝑡−1 generic state, since the LSTM model cell 

correlation and implicit node information are Shared. It can be considered as being part 

of the external input, where 𝑏 is the bias vector and 𝑓 denotes the sigmoid activation 

function. The mechanism of the forgetting and the output gates (as well as the associated 

parameters) are similar to the input and the final state values of the hidden cell given by 

the 𝑡𝑎𝑛ℎ activation function (Eq (14)), to get the input predictions.  

𝑦
−

𝑖 = 𝜎(𝑤∗ℎ + 𝑏) (4.14) 
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4.2.4 The hybrid models  

The hybrid model can predict more accurately than the single model (Wang and Ducruet 

2012; Ruiz-Aguilar et al. 2014). In this chapter, we proposed two hybrid models, each 

with two configurations, to predict the container throughput. Due to the seasonality, 

complexity and randomness, the time series contains both linear and nonlinear patterns. 

Therefore, the application of SARIMA and ML-based models fit the linear and nonlinear 

patterns, respectively. Then: 

𝑌𝑡 = 𝐿𝑡 + 𝑁𝑡 (4.15) 

where 𝐿𝑡 is the linear component and 𝑁𝑡 represents the nonlinear component. 

𝑒𝑡 = 𝑌𝑡 − �̂�𝑡 (4.16) 

The SARIMA model is applied to fit the linear part and the LSTM model and the SVR 

model are used to forecast the nonlinear part. Hence, the forecast value of the linear part 

�̂�𝑡 and the residual at time 𝑡 is equal to the difference of the true value 𝑌𝑡 and the forecast 

value �̂�𝑡. 

�̂�𝑡 = �̂�𝑡 = 𝑓(𝑒𝑡) (4.17) 

Based on the characteristics of the LSTM and SVR, they can overcome the multivariate 

limitation and resolve the nonlinearity of the container throughput time series. So, in Eq 

(17), 𝑓 is the nonlinear function calculated by the LSTM model and SVR model. 

The final forecasting values are obtained: 

�̂�𝑡1 = �̂�𝑡 + �̂�𝑡 (4.18) 

where �̂�𝑡 is the linear function calculated by the SARIMA model and �̂�𝑡 is the nonlinear 

function calculated by Eq (17).  

The hybrid models in Eq  (18) are composed of the SARIMA model, LSTM, SARIMA 

and SVR, respectively. Therefore, these two hybrid models are SARIMA-LSTM and 

SARIMA-SVR. In this step, we called the hybrid models configuration 1, including 

SARIMA-LSTM1 and SARIMA-SVR1 (S-L1 and S-S1). 
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The time series of the container throughput is hardly ever purely linear or nonlinear, it 

contains both linear and nonlinear patterns. So, to overcome this point and further 

improve the forecasting performance of configuration 1, we proposed configuration 2 

(based on configuration 1) as follows:  

�̂�𝑡2 = 𝑓(�̂�𝑡1, �̂�𝑡, �̂�𝑡) (4.19)

where 𝑓 is the nonlinear function calculated by the LSTM model and SVR model, �̂�𝑡1 is 

calculated by Eq (4.18), �̂�𝑡 is calculated by the SARIMA model and �̂�𝑡 is calculated by 

Eq (4.17). Eq (4.19) is configuration 2 of the hybrid models, including SARIMA-LSTM2 

and SARIMA-SVR2 (S-L2 and S-S2).
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4.3 Experimental procedures 

This section shows the experimental procedure. Firstly, we describe the container traffic 

time series used in this chapter and the division of the dataset. Then, the Anomaly 

Detection Method (ADM) is introduced to detect anomalous points. The third is the 

modelling process, including the training model, model loading and forecasting. Finally, 

the performance of the different models is assessed. The LSTM, SVR and hybrid models 

were carried out in Python, with the function of LSTM and SVR. The SARIMA model 

was developed by R language using a forecast package. The auto.arima function in the 

forecasting package was convenient for generating the parameters. Table 4.1 displays the 

explanation of some key notation.
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Table 4.1 Key notation. 

Seasonal Autoregressive Integrated Moving Average (SARIMA) 

𝑝 The non-seasonal autoregressive order 

𝑑 The differences order 

𝑞 The non-seasonal moving average parameters 

𝑃 The non-seasonal autoregressive order 

𝐷 The differences order 

𝑄 The non-seasonal moving average order 

𝜙𝑝 The autoregressive order 

𝜃𝑞 The moving average order 

Φ𝑃 The seasonal order 

𝛷𝑄 The seasonal operator 

𝑥𝑡 Container traffic time series 

Support Vector Machine (SVM  

𝜙(𝑥) The kernel function 

𝑏 The bias term 

𝐶 The regularisation parameter 

𝜀 The tolerance error 

𝜎 The width of the kernel function 

𝛽𝑖
∗, 𝛽𝑖 The Lagrange multipliers 

Long Short Term Memory  etworks model (LSTM  

𝑓𝑡 The forget gate 

𝑖𝑡 The input gate 

�̃�𝑡 The output gate 

𝑤𝑥𝑖
、𝑤ℎ𝑖

、𝑤𝑠𝑖
 The weight distribution of different cellular mechanisms 

The hybrid models 

𝐿𝑡 The linear component 

𝑁𝑡 The nonlinear component 

�̂�𝑡 The forecast value of the linear component 

�̂�𝑡 The forecast value of the nonlinear component 

𝑌𝑡 The true value 

Anomaly Detection 

 QR The interquartile range 

4.3.1 Dataset description and division 

In this work, the container throughput time series of Shanghai Port, Ningbo Port, 

Lianyungang Port and Suzhou Port were analysed. These time series datasets are shown 

in Figure 4.3, which contains monthly records related to container traffic from 2012 to 
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2021.  ll the data came from the Ministry of Transport of the People’s Republic of China 

(https://www.mot.gov.cn/). 

 

Figure 4.3 Monthly container throughput in the four ports; the red vertical line marks the drop due to 

the anomalous events (the COVID-19 pandemic). Note: NBP (Ningbo Port), SHP (Shanghai Port), 

LYGP (Lianyungang Port), SZP (Suzhou Port). 

In this chapter, the time series datasets were divided into two periods: the first period is 

before COVID-19 (pre-COVID-19), from 2012 to 2019, and the second period is post-

COVID-19, from January 2020 to December 2021. For pre-COVID-19, we compared the 

forecasting accuracy of different models with various training extensions by splitting the 

training datasets into training expansion 84 (January 2012 to December 2018), training 

expansion 72 (January 2013 to December 2018), and training expansion 60 (January 2014 

to December 2018). At the same time, we compared the accuracy of different forecasting 

horizons with different models. The different forecasting horizons were defined as 

follows: horizon 12 (January 2017 to December 2017), horizon 24 (January 2017 to 

December 2018) and horizon 36 (January 2017 to December 2019).  

For the post-COVID-19 period, we predicted the period of January 2021 to December 

2021 using different training dataset extensions of the period from January 2014 to 

December 2020. We also categorise the training dataset into training expansion 84 

(January 2014 to December 2020), training expansion 72 (January 2015 to December 

2020), and training expansion 60 (January 2016 to December 2020). Because the 
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corresponding training dataset extensions of the post-COVID-19 period (from January 

2014 to December 2020) have the same data points as the training expansions in the pre-

COVID-19 period, we compared the accuracy of the training dataset extensions between 

the post-COVID-19 period and the pre-COVID-19 period to analyse the influence of 

COVID-19 on the prediction and maritime transportation.  

4.3.2 Anomaly point inspection and detection 

Anomalous points of time series are usually expressed as abnormal data points relative to 

some standard or conventional signals, such as an unexpected peak, unexpected trough, 

trend change and horizontal translation (Nguyen et al. 2023). The time series consists of 

a trend, season, and remainder. We need first to decompose it by the Seasonal-Trend 

decomposition procedure based on Loess (STL) and to remove the trend part and season 

part, and then check whether the remainder part consists of anomaly points (Rojo et al. 

2017). STL first decomposed the time series into three components: trend, seasonal, and 

remainder. Second, we removed the trend and season components and then tested the 

remainder component by the inter-quartile range (IQR) of +/-25 of the median, where 

IQR is the difference between the 25% and 75% quantiles. The Anomaly Detection 

Method uses an interquartile range (IQR) of +/-25 of the median, where IQR is the 

difference between the 25% and 75% quantiles. When the Anomaly Detection is finished 

(see Figure 4.4), we used the median of each container traffic time series to replace the 

anomalous points to make the forecasting work accurate.  
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Figure 4.4 Results of ADM for Ningbo Port (NBP), Shanghai Port (SHP), Lianyungang Port (LYGP) 

and Suzhou Port (SZP). The red points represent the anomalies.  

4.3.3 Modelling process and assessment criteria and robustness 

In the modelling process, random initialisation is the first and most important step. In this 

chapter, we used the initialisation (tensorflow.keras.initializers.he_normal()) of the 

TensorFlow module in Python to initialise the parameters (He et al. 2015). Then the next 

step is to find the best parameter combinations by the Grid Search method and Cross-

Validation method in the GridSearchCV function of the scikit-learning module in Python. 

For the ARIMA model, there is a function of auto.arima in R language to return the best 

parameters. Finally, the Mean Absolute Percentage Error (MAPE), Mean Absolute Error 

(MAE) and Root Mean Square Error (RMSE) were used to evaluate the performances of 

these models: 
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𝑀𝐴𝐸 =
1

𝑛
∑  

𝑛

𝑖=1

|𝑦 − 𝑓(𝑥)| (4.21) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑  

𝑛

𝑖=1

(|𝑦 − 𝑓(𝑥)|)2 (4.22) 

where 𝑦 represents the true values and 𝑓(𝑥) denotes the forecast values.    
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4.4 Numerical results and discussion 

This section presents the predicted results of the hybrid models and benchmark models 

(e.g. ML models and the SARIMA model). We compared the prediction performance of 

various models, considering different training dataset extensions and forecasting horizons, 

and then analysed the impact of the anomalous events of the COVID-19 pandemic on the 

predictions. Lastly, we provided some managerial insight based on the forecast results. 

4.4.1 Forecasting performance considering different training dataset extensions 

and forecasting horizons 

Table 4.2 shows the forecasting performance of the different models for various training 

dataset extensions. The forecasting performance was measured by three criteria (i.e. MAE, 

MAPE, and RMSE). Table 4.2 indicates that the hybrid models (both configuration 1 and 

configuration 2) have a better forecasting performance than the SARIMA model and the 

ML models (i.e. SVR and LSTM). For instance, from the MAE criteria, we can see that 

the biggest value of the hybrid model for Ningbo Port comes from S-L1, ranging from 

9.55 to 10.23 corresponding to training dataset extension 84 and training dataset extension 

60. However, the best performance of the single model is LSTM, for which the MAE 

ranges from 10.13 to 10.90, which is bigger than S-L1. In the same way, the greatest 

single model for Shanghai Port is also LSTM, whose MAE ranges from 19.92 to 20.49, 

which is much smaller than S-L1’s  .   to 10.23. The M PE and RMSE also can indicate 

this point. The worst forecasting accuracy of the hybrid model for Ningbo Port is S-L1 

for both MAPE and RMSE, whose values range from 4.36 to 4.37 and 10.23 to 10.89, 

respectively. However, the best prediction model for a single model of Ningbo Port is 

LSTM, with MAPE and RMSE of 9.19 to 9.46 and 10.78 to 11.95, respectively.  This 

pattern also applies to Lianyungang Port and Suzhou Port. With the extension of the 

training dataset, the accuracy is increased. This is because most of the criteria are 

increased with the increase of training dataset extensions for all the forecasting models, 

except for the RMSE of SVR for Lianyungang Port and the MAE of S-L2 of Suzhou Port.  
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Table 4.2 Forecasting performance comparison for various training dataset extensions. Bold numbers 

correspond to the best prediction performance for each dataset extension. 

  MAE MAPE (%) RMSE 

  84 72 60 84 72 60 84 72 60 

NBP  SVR 12.33  12.47  12.70  9.29  9.48  9.49  13.51  13.76  14.69  

 LSTM 10.13  10.88  10.90  9.19  9.46  9.46  10.78  11.69  11.95  

 SARIMA 14.72  17.57  18.41  9.67  9.67  10.91  17.82  19.08  23.47  

 S-L1 9.23 9.66 9.74 3.37  3.44  3.41  11.07  11.38  11.43  

 S-L2 8.38 8.69 9.31 3.11  3.25  3.34  9.92  9.97  9.04  

 S-S1 9.55  9.95  10.23  4.36  4.43  4.67  10.23 10.36 10.89 

 S-S2 8.39  8.78  8.89  4.14  4.25  4.24  8.47 8.56 8.69 

SHP SVR 22.95  23.36  24.23  6.63  6.80  6.87  24.19  25.67  26.64  

 LSTM 19.92  19.97  20.49  6.58  6.58  6.59  20.98  21.17  21.74  

 SARIMA 23.31  31.61  38.05  6.73  8.39  8.53  26.23  35.10  42.57  

 S-L1 13.88 13.96 14.37 6.26  6.39  6.68  18.15  18.18  18.26  

 S-L2 13.73  14.73  14.86  6.01  6.21  6.35  15.35 16.53 16.98 

 S-S1 14.65  15.80  16.41  5.42  6.07  6.23  18.11  18.82  19.51  

 S-S2 13.86 14.89 14.94 4.51  4.66  4.68  15.77 16.89 17.68 

LYGP  SVR 1.57  1.69  1.49  4.13  4.42  3.93  2.00  2.06  1.98  

 LSTM 1.45  1.50  1.56  3.83  3.95  4.08  1.96  1.97  1.99  

 SARIMA 2.47  3.35  4.30  4.02  6.10  14.56  3.01  3.78  4.85  

 S-L1 0.28  0.37  0.41  0.74  1.00  0.82  0.42  0.48  0.58  

 S-L2 0.24  0.26  0.36  0.65  0.66  0.65  0.38  0.39  0.54  

 S-S1 0.38  0.44  0.47  0.65  0.71  1.50  0.55 0.59 0.94 

 S-S2 0.32  0.36  0.44  0.54  0.59  1.21  0.46 0.54 0.87 

SZP SVR 3.95  4.87  5.09  8.61  10.08  10.45  4.50  5.37  5.59  

 LSTM 2.33  2.46  3.47  6.12  6.44  8.44  3.39  3.39  3.24  

 SARIMA 6.07  8.14  8.41  11.80  12.17  12.44  6.68  8.83  9.08  

 S-L1 0.41  0.48  0.52  0.80  0.93  1.01  1.17  1.31  1.50  

 S-L2 0.38  0.34  0.46  0.65  0.76  0.99  0.52  0.60  0.66  

 S-S1 0.44 0.56 0.66 0.65  0.91  1.50  1.24 1.42 1.67 

 S-S2 0.41 0.48 0.57 0.54  0.65  1.22  0.68 0.84 0.96 

Table 4.3 shows the forecasting performance of the different models for various 

forecasting horizons. The forecasting performance was measured by three criteria. Table 

4.3 also indicates that the four hybrid models have the best forecasting accuracy compared 

with the other single models. For instance, the MAE of S-L2 for Shanghai Port ranges 

from 8.17 to 9.15, the MAPE is from 4.36 to 5.78, and the RMSE is from 9.79 to 10.81. 

However, the best single model for Ningbo Port is LSTM, and the three criteria range 

from 14.33 to 15.3, 14.32 to 15.66, and 11.18 to 15.09, respectively, which is lower than 
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the hybrid models. According to Khashei and Bijari (2011), with the increase in the 

forecasting horizons, the forecasting accuracy decreased. However, from Table 4.3 we 

can see that the three criteria do not show sufficient evidence for this pattern. This is 

because the forecasting horizons of the various models show an irregular pattern; for 

example, the most accurate forecasting horizon of S-L1 for MAE of Ningbo Port is 

forecasting horizon 24, but for MAPE and RMSE it is forecasting horizon 12. 

For the three single models, according to the three criteria, it is no surprise that the 

SARIMA always has the biggest value, SVR is lower than S R M , and LSTM’s criteria 

are the lowest, irrespective of the different training dataset extensions or different 

forecasting horizons (see Table 4.2 and Table 4.3). That fact indicates that the LSTM 

shows the most accurate performance and SVR is second, while the traditional statistical 

model SARIMA has the worst performance. 

When we compared configuration 1 (S-L1 and S-S1) to configuration 2 (S-L2 and S-S2), 

irrespective of the various training dataset extensions or various forecasting horizons, the 

three criteria show that configuration 2 has noticeably better performance than 

configuration 1, which means the configuration 2 we proposed can further improve the 

prediction performance of configuration 1. Table 4.4 and Table 4.5 display the difference 

between the three criteria between configuration 1 and configuration 2 for the various 

training dataset extensions and forecasting horizons. From those values, we can see that 

all values are positive, which means that configuration 2 can improve the forecasting 

performance of configuration 1 for different training dataset extensions and forecasting 

horizons.  
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Table 4.3 Forecasting performance comparison for various forecasting horizons. Bold numbers 

correspond to the best prediction performance for each forecasting horizon. 

  MAE MAPE (%) RMSE 

  12 24 36 12 24 36 12 24 36 

NBP SVR 17.47  20.13  22.28  9.5 10.64 11.46 18.27  20.93  23.39  

 LSTM 14.33 15.63 14.98 14.32 15.33 15.66 11.18  12.08  15.09  

 SARIMA 19.78  22.95  25.56  19.03 17.15 16.23 20.77  23.94  26.97  

 S-L1 9.69  8.78  12.62  8.35 8.57 9.81 10.71  10.75  11.16  

 S-L2 9.15  8.71  9.11  4.39 4.36 5.87 9.79  10.66  10.81  

 S-S1 10.63 11.03 11.65 8.39 9.34 10 11.01 11.51 12.34 

 S-S2 9.31 9.62 9.98 5.69 6.35 7.58 10.05 10.43 10.97 

SHP SVR 17.96 18.32 18.69 9.85 10.51 11.4 13.36  14.61  15.32  

 LSTM 15.03  14.09  14.97  12.45 13.33 14.35 12.13  12.42  13.19  

 SARIMA 20.12 20.96 21.36 14.96 13.37 12.96 18.20  18.94  19.07  

 S-L1 11.18  12.26  11.32  7.5 7.32 8.03 11.85  13.49  13.67  

 S-L2 10.52 10.61 11.07 5.36 6.54 6.95 10.24  11.23  12.09  

 S-S1 12.11 12.36 13.65 6.65 6.98 6.25 12.06 12.54 13.66 

 S-S2 11.08 11.22 11.36 4.23 4.07 3.76 11.23 11.46 12.59 

LYGP SVR 0.96  0.75  1.12  4.52 4.33 5.21 2.03  2.10  2.12  

 LSTM 0.93  0.74  0.95  4.25 4.65 4.72 1.04  1.18  1.33  

 SARIMA 1.64  2.80  1.83  5.04 6.02 6.18 7.04  6.01  7.24  

 S-L1 0.71  0.79  0.90  2.48 2.16 3.02 0.73  0.76  0.79  

 S-L2 0.67  0.69  0.79  1.79 1.75 1.54 0.63  0.68  0.73  

 S-S1 0.88 0.94 0.96 1.86 1.8 1.59 0.89 0.94 1.16 

 S-S2 0.78 0.85 0.94 1.54 1.64 1.84 0.81 0.85 0.88 

SZP SVR 2.16  2.50  2.55  10.82 10.7 9.18 1.68  2.03  2.93  

 LSTM 1.50  1.64  1.69  12.14 13.51 12.61 1.30  1.77  1.68  

 SARIMA 3.57  3.84  4.17  14.42 13.29 11.97 4.15  4.29  4.78  

 S-L1 1.43  1.46  1.38  6.75 7.47 7.95 1.34  1.58  1.77  

 S-L2 1.15  1.19  1.66  3.01 3.27 3.18 1.32  1.52  1.55  

 S-S1 1.63 1.53 1.85 5.44 6.34 6.94 1.45 1.65 1.89 

 S-S2 1.35 1.46 1.55 1.86 1.8 1.59 1.36 1.54 1.65 
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Table 4.4 Difference of the three criteria between configuration 1 (S-L1, S-S1) and configuration 2 

(S-L2, S-S2) for various training dataset extensions during the pre-COVID-19 period. The S-L 

represents the difference between S-L1 and S-L2, and S-S represents the difference between S-S1 and 

S-S2. 

  MAE MAPE (%) RMSE 

  84 72 60 84 72 60 84 72 60 

NBP S-L 0.85  0.97  0.43  0.26  0.19  0.07  1.15  1.41  2.39  

 S-S 1.16  1.17  1.34  0.22  0.18  0.43  1.76  1.80  2.20  

SHP S-L 0.15  -0.77  -0.49  0.25  0.18  0.33  2.80  1.65  1.28  

 S-S 0.79  0.91  1.47  0.91  1.41  1.55  2.34  1.93  1.83  

LYGP  S-L 0.04  0.11  0.05  0.09  0.34  0.17  0.04  0.09  0.04  

 S-S 0.06  0.08  0.03  0.11  0.12  0.29  0.09  0.05  0.07  

SZP S-L 0.03  0.14  0.06  0.15  0.17  0.02  0.65  0.71  0.84  

 S-S 0.03  0.08  0.09  0.11  0.26  0.28  0.56  0.58  0.71  

 

Table 4.5 Difference of the three criteria between configuration 1 (S-L1, S-S1) and configuration 2 

(S-L1, S-S1) for various forecasting horizons during the pre-COVID-19 period. The S-L represents 

the difference between S-L1 and S-L2, and S-S represents the difference between S-S1 and S-S2. 

  MAE MAPE (%) RMSE 

  12 24 36 12 24 36 12 24 36 

NBP S-L 0.54  0.07  3.51  3.96  4.21  3.94  0.92  0.09  0.35  

 S-S 1.32  1.41  1.67  2.70  2.99  2.42  0.96  1.08  1.37  

SHP S-L 0.66  1.65  0.25  2.14  0.78  1.08  1.61  2.26  1.58  

 S-S 1.03  1.14  2.29  2.42  2.91  2.49  0.83  1.08  1.07  

LYGP S-L 0.04  0.10  0.11  0.69  0.41  1.48  0.10  0.08  0.06  

 S-S 0.10  0.09  0.02  0.32  0.16  -0.25  0.08  0.09  0.28  

SZP  S-L 0.28  0.27  -0.28  3.74  4.20  4.77  0.02  0.06  0.22  

 S-S 0.28  0.07  0.30  3.58  4.54  5.35  0.09  0.11  0.24  

  

4.4.2 Impact of COVID-19 on the prediction 

This subsection investigates the prediction performance of different forecasting models 

in the context of anomalous events. In this sense, the COVID-19 pandemic provides a 

suitable example to test the prediction ability of the different forecasting models using 

the container traffic time series. 
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In Table 4.6, the splitting strategy of the training dataset extension for post-COVID-19 is 

different from the training dataset extensions for pre-COVID-19. The training dataset 

extensions for the pre-COVID-19 period are split as follows: training dataset extension 

84 is the data from January 2012 to December 2018, training dataset extension 72 is the 

data from January 2013 to December 2018 and training dataset extension 60 is from 

January 2014 to December 2018; the test dataset is the data from January 2019 to 

December 2019. For the post-COVID-19 period, each training dataset extension was 

postponed for two years, respectively, and the test dataset is the data from January 2021 

to December 2021. 

Table 4.6 displays the three criteria of the various training dataset extensions for the post-

COVID-19 period. From Table 4.6 we can see that the three criteria also show that the 

hybrid models have better predictive power than the single models during the post-

COVID-19 period. For example, for Ningbo Port, the worst hybrid model is S-S1 with 

the MAE ranging from 11.60 to 12.23, but the best single model is LSTM with the MAE 

ranging from 12.71 to 13.65. In the same way, the MAPE and RMSE of LSTM are 

correspondingly lower than S-S1. At the same time, the differences in the three criteria 

between configuration 1 and configuration 2 are all positive (except for the MAE of 

Shanghai Port for training dataset extension 72 and 60; see Table 4.6). This fact indicates 

that configuration 2 also can improve configuration 1 during the post-COVID-19 period. 

For example, in terms of the MAPE of Shanghai Port, S-L2 can improve S-L1 by about 

0.22 to 0.41 (see Table 4.7). 
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Table 4.6 Three criteria of various training dataset extensions for the post-COVID-19 period. Bold 

numbers correspond to the best prediction performance for each dataset extension. 

  MAE MAPE (%) RMSE 

  84 72 60 84 72 60 84 72 60 

NBP  SVR 15.41  15.59  15.87  11.67  11.91  11.92  16.87  17.18  18.32  

 LSTM 12.71  13.63  13.65  11.55  11.88  11.88  13.51  14.63  14.95  

 SARIMA 18.36  21.87  22.90  12.14  12.14  13.67  22.17  23.73  29.13  

 S-L1 11.60  12.13  12.23  4.38  4.47  4.43  13.86  14.24  14.31  

 S-L2 10.55  10.93  11.70  4.06  4.23  4.34  12.45  12.51  11.36  

 S-S1 11.99  12.48  12.83  5.60  5.69  5.98  12.83  12.99  13.64  

 S-S2 10.56  11.04  11.18  5.33  5.46  5.45  10.66  10.77  10.93  

SHP SVR 28.49  29.00  30.07  8.40  8.60  8.69  30.02  31.84  33.04  

 LSTM 24.76  24.82  25.46  8.33  8.33  8.35  26.07  26.30  27.00  

 SARIMA 28.94  39.16  47.09  8.52  10.56  10.74  32.53  43.45  52.65  

 S-L1 17.32  17.42  17.93  7.94  8.10  8.46  22.58  22.62  22.72  

 S-L2 17.14  18.37  18.53  7.63  7.88  8.05  19.13  20.59  21.14  

 S-S1 18.27  19.69  20.44  6.91  7.71  7.90  22.53  23.41  24.26  

 S-S2 17.30  18.57  18.63  5.79  5.97  5.99  19.65  21.03  22.00  

LYGP SVR 2.16  2.31  2.07  5.32  5.67  5.07  2.69  2.77  2.67  

 LSTM 2.02  2.08  2.15  4.95  5.10  5.26  2.64  2.66  2.68  

 SARIMA 3.27  4.36  5.53  5.18  7.74  18.16  3.94  4.89  6.20  

 S-L1 0.58  0.69  0.74  1.14  1.46  1.24  0.75  0.82  0.95  

 S-L2 0.53  0.55  0.67  1.03  1.04  1.03  0.70  0.71  0.90  

 S-S1 0.70  0.77  0.81  1.03  1.11  2.08  0.91  0.96  1.39  

 S-S2 0.63  0.67  0.77  0.90  0.96  1.72  0.80  0.90  1.30  

SZP  SVR 5.10  6.23  6.50  10.83  12.64  13.10  5.77  6.84  7.11  

 LSTM 3.10  3.26  4.50  7.77  8.16  10.62  4.41  4.41  4.22  

 SARIMA 7.71  10.25  10.59  14.76  15.22  15.55  8.46  11.10  11.41  

 S-L1 0.74  0.82  0.87  1.22  1.38  1.48  1.67  1.84  2.08  

 S-L2 0.70  0.65  0.80  1.03  1.17  1.45  0.87  0.97  1.04  

 S-S1 0.77  0.92  1.04  1.03  1.35  2.08  1.76  1.98  2.29  

 S-S2 0.74  0.82  0.93  0.90  1.03  1.73  1.07  1.27  1.41  
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Table 4.7 Difference of three criteria between configuration 1 (S-L1, S-S1) and configuration 2 (S-L2, 

S-S2) for various training dataset extensions during the post-COVID-19 period. The S-L represents 

the difference between S-L1 and S-L2, and S-S represents the difference between S-S1 and S-S2. 

  MAE MAPE (%) RMSE 

  84 72 60 84 72 60 84 72 60 

NBP S-L 1.05  1.19  0.53  0.32  0.23  0.09  1.42  1.74  2.94  

 S-S 1.43  1.44  1.65  0.27  0.22  0.53  2.17  2.22  2.71  

SHP S-L 0.18  -0.95  -0.60  0.31  0.22  0.41  3.45  2.03  1.58  

 S-S 0.97  1.12  1.81  1.12  1.74  1.91  2.88  2.38  2.25  

LYGP S-L 0.05  0.14  0.06  0.11  0.42  0.21  0.05  0.11  0.05  

 S-S 0.07  0.10  0.04  0.14  0.15  0.36  0.11  0.06  0.09  

SZP  S-L 0.04  0.17  0.07  0.18  0.21  0.02  0.80  0.87  1.03  

 S-S 0.04  0.10  0.11  0.14  0.32  0.34  0.69  0.71  0.87  
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Table 4.8 shows the difference between the three criteria of the corresponding training 

dataset extensions for the pre-COVID-19 period and post-COVID-19 period. The three 

criteria in Table 4.8 are all positive, which means that each criterion post-COVID-19 is 

higher than the pre-COVID-19 period. In other words, the COVID-19 pandemic makes 

the forecasting accuracy lower. 

Table 4.8 Difference between the three criteria of the corresponding training dataset extensions for the 

pre-COVID-19 period and post-COVID-19 period. 

  MAE MAPE (%) RMS E 

  84 72 60 84 72 60 84 72 60 

NBP  SVR 3.08  3.12  3.17  1.77  1.80  1.82  3.36  3.42  3.63  

 LSTM 2.58  2.75  2.75  1.75  1.75  1.76  2.73  2.94  3.00  

 SARIMA 3.64  4.30  4.49  1.79  2.17  2.21  4.35  4.65  5.66  

 S-L1 2.37  2.47  2.49  1.49  1.64  1.67  2.79  2.86  2.88  

 S-L2 2.17  2.24  2.39  1.28  1.31  1.31  2.53  2.54  2.32  

 S-S1 2.44  2.53  2.60  1.68  1.71  1.78  2.60  2.63  2.75  

 S-S2 2.17  2.26  2.29  1.62  1.67  1.70  2.19  2.21  2.24  

SHP SVR 5.54  5.64  5.84  2.38  2.43  2.43  5.83  6.17  6.40  

 LSTM 4.84  4.85  4.97  2.36  2.42  2.42  5.09  5.13  5.26  

 SARIMA 5.63  7.55  9.04  2.47  2.47  2.76  6.30  8.35  10.08  

 S-L1 3.44  3.46  3.56  1.01  1.03  1.02  4.43  4.44  4.46  

 S-L2 3.41  3.64  3.67  0.95  0.98  1.00  3.78  4.06  4.16  

 S-S1 3.62  3.89  4.03  1.24  1.26  1.31  4.42  4.59  4.75  

 S-S2 3.44  3.68  3.69  1.19  1.21  1.21  3.88  4.14  4.32  

LYGP  SVR 0.59  0.62  0.58  1.19  1.25  1.14  0.69  0.71  0.69  

 LSTM 0.57  0.58  0.59  1.12  1.15  1.18  0.68  0.69  0.69  

 SARIMA 0.80  1.01  1.23  1.16  1.64  3.60  0.93  1.11  1.35  

 S-L1 0.30  0.32  0.33  0.40  0.46  0.42  0.33  0.34  0.37  

 S-L2 0.29  0.29  0.31  0.38  0.38  0.38  0.32  0.32  0.36  

 S-S1 0.32  0.33  0.34  0.38  0.40  0.58  0.36  0.37  0.45  

 S-S2 0.31  0.31  0.33  0.36  0.37  0.51  0.34  0.36  0.43  

SZP  SVR 1.15  1.36  1.41  2.22  2.56  2.65  1.27  1.47  1.52  

 LSTM 0.77  0.80  1.03  1.65  1.72  2.18  1.02  1.02  0.98  

 SARIMA 1.64  2.11  2.18  2.96  3.05  3.11  1.78  2.27  2.33  

 S-L1 0.33  0.34  0.35  0.42  0.45  0.47  0.50  0.53  0.58  

 S-L2 0.32  0.31  0.34  0.38  0.41  0.46  0.35  0.37  0.38  

 S-S1 0.33  0.36  0.38  0.38  0.44  0.58  0.52  0.56  0.62  

 S-S2 0.33  0.34  0.36  0.36  0.38  0.51  0.39  0.43  0.45  
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4.4.3 Discussion and Managerial insights 

The COVID-19 pandemic has led to a slowdown in container transportation and maritime 

trade (Guerrero et al. 2022). As the COVID-19 pandemic spread all over the world, many 

countries fell into a lockdown and stagnant state. The global supply chains were disrupted 

and Chinese ports were also affected by the COVID-19 pandemic. The COVID-19 

pandemic-related restrictions such as the lockdown strategy had a series of negative 

impacts on port activities. The decline, mainly in the first half of 2020, particularly in 

February, plummeted by 2.63%, 20.94%, 19.45%, and 39.13% in Ningbo Port, 

Lianyungang Port, Shanghai Port, and Suzhou Port, respectively (see Figure 4.5). In the 

next few months of 2020, it can be found that the year-on-year growth rate is always 

negative from January 2020 to June 2020. It was inferred that the lockdown strategy had 

a negative influence on the economy and maritime trade, which in turn affected the 

container transportation sector (Zhao et al. 2022). After June 2020, the Chinese 

government efficiently resumed work and production, the transportation industry 

gradually recovered in those four ports, and the year-on-year growth rate turned positive 

for the first time since the COVID-19 pandemic; the four ports showed resilience and 

vitality and the container traffic began to rebound.  

After October 2020, we found that the four ports showed a downward trend and that the 

second wave of the COVID-19 pandemic around the world caused a shock to container 

transportation. In this context, those four ports were declining for three months from 

October 2020 (see Figure 4.3 and Figure 4.5). In the last half year of 2020, the major 

economies implemented vaccination plans based on their anti-epidemic experience in 

2020 to achieve economic growth. At the same time, favourable factors such as the 

recovery of steady economic growth and the signing of the Regional Comprehensive 

Economic Partnership (RCEP) have also provided strong support for the development of 

foreign trade. Ningbo Port and Shanghai Port are ranked first and second in terms of 

container traffic in Chinese ports and have a close connection with the world maritime 

trade. By 2021, the container traffic in Ningbo Port and Shanghai Port broke a new record 

of 3180 and 4703 thousand TEUs. The container traffic year-on-year growth rate in 

Ningbo Port, Shanghai Port, Lianyungang Port and Suzhou Port are all positive, and the 

growth trend returned to the pre-COVID-19 period. As a result, container traffic likewise 

returned to pre-epidemic levels in 2021 (see Figure 4.5). 
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The port industry is traditionally labour-intensive (Trujillo and Nombela 1999). The 

prevention and control measures of the epidemic in China forced the port to apply digital 

technology, which accelerated the process of port digital transformation. Chinese ports 

reduced the contact risks by improving their automatisation during the epidemic to ensure 

the efficient and orderly operation of the entire supply chain and improved the 

understanding and recognition of digitalisation and automation in the port industry. 

Lianyungang Port and Suzhou Port are small-scale ports in comparison with Shanghai 

Port and Ningbo Port, whose development benefits from the Chinese new development 

pattern whereby internal circulation dominated and double circulation promoted each 

other. This new development pattern has become a decisive force driving China’s 

economic growth. Thanks to this development pattern, a new opportunity has been 

provided for inland ports and small-scale ports; thus, the Lianyungang Port and Suzhou 

Port have maintained the stability developed during the COVID-19 pandemic (see Figure 

4.3 and Figure 4.5). 

 

Figure 4.5 Container traffic evolution from 2019 to 2021 and container traffic year-on-year growth 

rate of 2020 and 2021. 
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According to Zhao et al. (2022), the prediction error can serve as an indicator to measure 

the impact of the COVID-19 pandemic on maritime transportation. The larger the error, 

the greater the impact of the COVID-19 pandemic on maritime transportation. Proceeding 

from this point, we compared the accuracy of the different training dataset extensions 

between the pre-COVID-19 period and the post-COVID-19 period. We found that the 

accuracy of the post-COVID-19 period was higher than the pre-COVID-19 period (see 

Table 4.6 and Table 4.8), which indicated that the COVID-19 pandemic had a negative 

influence on the prediction work, but different forecasting models have different 

predictive power, so the accuracy cannot reflect the impact of the COVID-19 on maritime 

transportation. 

The experimental prediction of the container throughput at Ningbo Port, Shanghai Port, 

Lianyungang Port and Suzhou Port in YRDP was performed by using hybrid models, ML 

models (LSTM and SVR) and the SARIMA model. The MAE, MAPE and RMSE were 

then used as the measurement criteria to compare the predictive performance. For the 

predictive performance, configuration 2 (S-L2 and S-S2) was the most accurate in the 

various models, while configuration 1 (S-L1 and S-S1) was more accurate than the 

SARIMA model and ML models. At the same time, the accuracy of the S-L1, S-S1, S-L2 

and S-S2 was also higher than the four EMD-BPN models (Wei and Chen 2012), 

SARIMA-ANNs models (Ruiz-Aguilar et al. 2014) and W-LSSVR, EMD-LSSVR, and 

EMD-ANN (Xie et al. 2019).  

In addition, the S-L2 and S-S2 performed better in the context of the COVID-19 pandemic. 

In this sense, some managerial insights for the prediction of the container throughput were 

obtained. First, hybrid models can improve the prediction performance of single models. 

Configuration 2 can help policymakers make an accurate decision during the operational 

planning of a port, especially in the context of anomalous events such as the COVID-19 

pandemic. The results also indicated that, with the increase of the training dataset 

extensions, the prediction accuracy of the container throughput is higher. This suggests 

that transportation practitioners should keep a sufficient training dataset and reduce the 

forecasting horizons to improve prediction accuracy. Finally, configuration 2 is suitable 

for the univariate time series, which can be easily implemented by strategic management 

and policymakers.  
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4.5 Conclusion 

In this chapter, to enhance prediction accuracy while eliminating nonlinearity and the 

multivariate limitations in container throughput forecasting, especially in the context of 

the COVID-19 pandemic, we proposed two hybrid models, each with two configurations 

(configuration 1:S-L1, S-S1, and configuration 2: S-L2, S-S2) in comparison to the 

benchmark models. Then, we explored the response of the different training dataset 

extensions and forecasting horizons to the prediction work and also analysed the influence 

of the COVID-19 pandemic on container throughput forecasting and maritime 

transportation. The conclusions of this study, based on the verification of the container 

throughput time series of four typical ports in YRDP, are as follows. 

⚫ The hybrid models (configuration 2) we proposed can improve the performance of 

benchmark single models and also resolve the nonlinear problem and remove the 

multivariate limit, which provides an efficient decision-making tool for policymakers 

and port authorities. At the same time, configuration 2 can further improve the 

accuracy of the traditional hybrid models (configuration 1).  

⚫ With the increase of the training dataset extensions, the accuracy of the models 

increased.  

⚫ Contrary to popular belief, with the increase of the forecasting horizon, there is 

insufficient evidence to indicate that the accuracy was lower.  

⚫ Configuration 2 performs better than other models in the context of the COVID-19 

pandemic.  

Future research into the model in this chapter is expected to be used in other time series, 

such as the stock price, GDP, and rainfall. On the other hand, in the case of sufficient data, 

the hybrid models in this chapter can better improve the accuracy of multivariate time 

series prediction. 
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Abstract 

To resist the challenge of anomalous events such as COVID-19 and the 2008 financial 

crisis, we proposed a method to explore the co-opetition changes and connectivity and 

accessibility changes in port systems under the influence of anomalous events. We then 

used this method in Chinese port systems in the context of COVID-19. The results 

indicate the following: First, cooperation between large-scale ports is more intense than 

between small-scale ports after the COVID-19 pandemic and lower-intensity competition 

mainly occurred in the pre-COVID-19 period while high-intensity competition mainly 

took place in the post-COVID-19 period. Second, the COVID-19 pandemic weakened 

the connectivity and accessibility of the port. Third, from the perspective of the Chinese 

port systems, PRDP has the greatest internal cooperation. Finally, the method we 

proposed can better cope with the challenge of anomalous events and assist policymakers 

in better understanding the changes in a port system. 

Keywords: anomalous events, port co-opetition, port connectivity and accessibility, 

Chinese port systems. 
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5.1 Introduction 

Each crisis can lead to a profound influence on a system (Lun et al. 2020; Notteboom et 

al. 2021). Ports play a crucial role in the global shipping network, however, with the 

development of the world economy and the frequent occurrence of crises in recent years, 

the global shipping network has become more complicated and vulnerable (Yang et al. 

2019a). Once a crisis occurs, it results in disruption in maritime transport, such as with 

the COVID-19 pandemic, the 2021 Suez Canal obstruction and the 2008 financial crisis, 

all of which had a huge negative impact on the global container shipping industry (Zhu 

et al. 2020; Notteboom et al. 2021; Bai et al. 2023). For example, after the COVID-19 

pandemic, the maritime trade experienced a 3.8% decline in 2020, then bounced back in 

2021 with a growth of 3.2% and overall shipments of 11 billion tonnes, which was slightly 

below the previous COVID-19 level (Uncatad 2022).  

Against the background of significant changes in the international environment, 

anomalous events have become a new normal (e.g., COVID-19 and the 2021 Suez Canal 

obstruction). At the same time, ports as the world economic nodes are important to 

international trade (Cullinane and Haralambides 2021; Liu et al. 2021). As a result, it is 

crucial to cope with the challenge of anomalous events for the upcoming new normal (Jin 

et al. 2022). However, there is a lack of scientific and effective suggestions to make policy 

decisions for container traffic to deal with anomalous events and future crises.  

Co-opetition is the most important strategy for policymakers, especially during a crisis 

(Munim and Saeed 2019). Even though the international liner shipping network has been 

strengthened following COVID-19, there has been an increase in the number of routes 

gathered at some hub ports, the overall connectivity and accessibility have reduced and 

the competition between the ports in a region has been aggravated (Nguyen and Woo 

2022). Therefore, exploring the changes in the co-opetition patterns and connectivity and 

accessibility in the port system can assist policymakers in better understanding the 

influence of the crisis on a port system and making an insightful decision. In this context, 
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we propose a method to explore the co-opetition changes and changes in connectivity and 

accessibility in the port system to cope with the challenge of a future crisis. 

The Pearson Correlation Coefficient (PCC) is a useful method to measure the correlation 

of the complicated interrelationships between factors and variables, overcoming this 

problem by integrating many characteristics into a single value. PCC is widely used in 

many fields, such as transportation (D ord ević et al. 2021), statistics (Baak et al. 2020) 

and electric power (Li et al. 2023b). Complex Network (CN) is an excellent method to 

analyse the connectivity and accessibility of the port system. The success of CN in the 

transportation discipline has caught more and more attention (Nguyen et al. 2020). For 

example, Asgari et al. (2013) applied CN to explore the competition and collaboration 

between shipping companies, port authorities and port operators. Huang et al. (2022c) 

investigated the liner shipping network using CN, and their conclusions indicated that the 

cost of route substitution and congestion will affect the design of the shipping network. 

Co-opetition is the main driving force for the evolution of a container port system (Xu et 

al. 2021), while co-opetition can enhance the competitiveness of a port group (Hwang 

and Chiang 2010). According to Slack (1985), price and service are the main factors in 

port competition. Since his study, the topic of port competition has received more 

attention. Heaver (1995) indicated that government port policy is the main factor in 

competition.  pointed out that strengthening the connection with the hinterland would 

better promote port development and competitiveness. Ishii et al. (2013) applied game 

theory to Busan and Kobe to analyse the competition, and their findings showed that port 

charges could influence port competition. Hong et al. (2011) found that port 

competitiveness is closely associated with transportation policies between hub ports and 

that port privatisation can enhance management efficiency and enhance port 

competitiveness. Özer et al. (2021) suggested that a complete port supply chain system is 

an effective strategy to increase port competitiveness. Jiang et al. (2017) pointed out that 

forming port alliances can reduce competition and port monopoly. Competition between 

container ports has a huge impact on port development and resource assignments 

(Cullinane et al. 2005) and co-opetition is the key to the success of the port authority 

(Song 2003). Cooperation is the most important strategy for the port authority to reduce 

inter-port competition, especially with neighbouring ports (Notteboom and Yang 2017). 

Cooperation at a provincial level in China leads to a provincial port group, such as 
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Zhejiang Provincial Seaport Investment & Operation Group Co. Ltd and Jiangsu Port 

Group Co. Ltd (Zhang et al. 2021). Even the cooperation of inter-ports can improve the 

port throughput but may lead to inefficiency (Luo et al. 2022). The co-opetition among 

ports shows an increased and ai expanding trend with the expansion of port integration or 

cooperation (Zheng et al. 2021). 

The global liner shipping network is facing unprecedented challenges in the aftermath of 

COVID-19. Port disruption and congestion are one of the largest problems, and port 

congestion cost affects the design of the shipping network (Huang et al. 2022c). 

Notteboom et al. (2021) investigated the influence of COVID-19 on the supply and 

demand of container traffic by comparing it with the 2008 financial crisis. They found 

that the influence of COVID-19 was the result of the port, shipping industry and supply 

chain.  used the data of shipping movements between ports to analyse the changes in the 

global shipping network during COVID-19 and found that global maritime shipping 

connectivity has declined. According to Russell et al. (2022), it is important to enable 

flexibility in the port system, especially during the period of COVID-19. Zhu et al. (2020) 

applied the Automatic Identification System (AIS) to investigate whether COVID-19 did 

not impact the number of container ships arriving at Chinese ports, but they found that 

COVID-19 harmed the average berthing time.  

This chapter provides double contributions. First, we developed a method to explore the 

co-opetition pattern changes in a port system against the background of anomalous events. 

Second, we applied this method to main ports in China to analyse the co-opetition changes 

and changes in connectivity and accessibility under the background of the anomalous 

event, COVID-19.  

This chapter is organised as follows: Section 5.2 introduces the methodology; Section 5.3 

is the data description, including the port location and port container monthly record; 

Section 5.4 shows the results and discussions; and Section 5.5 closes the chapter with 

conclusions.  
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5.2 Methodology 

To explore the co-opetition changes and changes in connectivity and accessibility in 

China’s main ports in the context of COV D-19, we proposed a novel method based on 

the Pearson correlation coefficient, and the main methods used in this chapter are briefly 

introduced as follows. 

5.2.1 PCC 

The PCC is an excellent method to describe the correlation degree of two sequences 

(Pearson 1898). If two ports each have a lot of cargo connections, there must be a higher 

PCC, and in this sense, PCC is also the index of cooperative relationships. The formula 

is as follows. 

𝑟 =
1

𝑛 − 1
∑ (

𝑋𝑖 − �̅�

𝜎𝑋
) (

𝑌𝑖 − �̅�

𝜎𝑌
)

𝑛

𝑖=1

(5.1) 

where 
𝑋𝑖−�̅�

𝜎𝑋
 is sample standard score, �̅�  is the sample mean, 𝑋𝑖  is sample standard 

deviation. PCC ranges from -1 to 1, and the greater the absolute value, the higher the 

correlation. 

5.2.2 Competition flow (CF) 

According to the PCC theory, when the two data sequences have a higher PCC, those two 

data sequences have a close relationship. If one port provides cargo to another port, the 

container traffic time series will be associated and the container traffic sequence of these 

two ports will have a higher correlation (greater PCC), which denotes that these two ports 

have a close cooperation relationship.  

The flowchart of extracting CF from a port system is shown in Figure 5.1. Figure 5.2 

shows a small port system composed of port 1, port 2, port A, port B and port C. If port 
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1 provides cargo to port A and port B in an area, the container traffic time series of port 

1 will have a high PCC with port  ’s and port B’s container traffic time series, and there 

will be competition between port A and port B for the cargo of port 1. On the other hand, 

if port 1 and port 2 provide cargo to port A and port B, the container traffic of port 1 and 

port 2 will have a high PCC with port  ’s and port B’s container traffic time series, which 

means there will be competition between port A and port B for the cargo of port 1 and 

port 2, and we could also say that the competition flow (CF) between port A and port B 

is two (port 1 and port 2). Therefore, according to this principle, in the port system of 

Figure 5.2, the CF between port A and port B is two (port 1 and port 2), with port A and 

port C as one (port 1) and port B and port C as one (port 2).  

 

Figure 5.1 The flowchart of CF analysis. 
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Figure 5.2 Competition flows extracted from PCC analysis. 

5.2.3 Complex network theory  

In our analysis, we supposed that each port in the shipping network is regarded as a node, 

and the mutual connection between ports (nodes) for container traffic through ships is 

regarded as the connection in the network. In this case, the shipping network can be 

considered as a specific form of a CN (Barrat et al. 2004).  

In a CN, node degree and centrality indexes are important indicators used to describe the 

character of the CN. In the liner shipping network, the node degree is equal to the number 

of all edges connected with the other ports, which means the external connectivity of a 

port (Nguyen and Woo 2022). In a CN, the node degree is calculated as follows: 

𝐷𝑖 = ∑ 𝑊𝑖𝑗

𝑁

𝑗≠𝑖

(5.2) 

In Eq (5.2), 𝐷𝑖 is the degree of target port 𝑖, 𝑁 is the number of ports in the liner shipping 

network, 𝑊𝑖𝑗 donates whether there is a connection between port 𝑖 and port 𝑗. 𝑊𝑖𝑗 = 1 and 

𝑊𝑖𝑗 = 0 represents existence and nonexistence, respectively.  

Degree Centrality (DC) displays the port connections in the CN and the maritime shipping 

network, and DC represents the port connectivity in the port system. A higher DC donates 

the port in the centre of the maritime shipping network (Tran and Haasis 2014). The DC 

is calculated as follows: 

𝐷𝐶𝑖 =
𝐷𝑖

𝑛 − 1
(5.3) 
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Closeness Centrality (CC) is a useful index to identify the central node in the CN, which 

can be regarded as the accessibility from a given port to other ports in the liner shipping 

network (Hadas et al. 2017), defined as follows: 

𝐶𝐶𝑖 =
𝑁 − 1

∑ ∑ 𝑑𝑖𝑗
𝑁
𝑗≠𝑖

𝑁
𝑖

(5.4) 

where 𝑑𝑖𝑗  donates the route number of connecting node 𝑖 and node 𝑗, 𝑛 represents the 

node number. In maritime shipping networks.  
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5.3 Data description 

This study proposes a method to explore the co-opetition changes and connectivity and 

accessibility changes in Chinese main ports under the background of an anomalous event 

(i.e., COVID-19). The Chinese main seaport systems consist of YRDP, BRP and PRDP 

(see Figure 5.3). YRDP is located in the east of China and connects the world and the 

Chinese mainland and plays an important role in China’s economy. BRP consists of the 

ports of Liaoning Province, Tianjin Province, Hebei Province, and Shandong Province, 

and it is the gateway of the Bohai Bay Urban Circle to the world and the link to its 

participation in international trade. PRDP is a group of ports centred on the PRD and 

radiating outwards to ports in the surrounding region, which is the frontier of China’s 

reform and opening up and is one of the most dynamic economic circles in China. 

In this chapter, twelve ports are selected as the research objective, and they contain large-

scale ports (e.g., Shanghai Port) and small-scale ports (e.g., Quanzhou Port), which makes 

the research more convincing. The twelve ports used in this chapter are Lianyungang Port, 

Suzhou Port, Shanghai Port, Ningbo Port, Dalian Port, Yingkou Port, Tianjin Port, 

Qingdao Port, Xiamen Port, Shenzhen Port, Quanzhou Port and Guangzhou Port. 

Lianyungang Port, Suzhou Port, Shanghai Port and Ningbo Port are part of YRDP; Dalian 

Port, Yingkou Port, Tianjin Port, Qingdao Port are in BRP, Xiamen Port, Shenzhen Port, 

Quanzhou Port and Guangzhou Port belong to PRDP. The location of those ports is shown 

in Figure 5.3, and the data description is shown in Table 5.1. The data used for the analysis 

is the port container traffic monthly record from January 2011 to August 2022 collected 

by the authors from the official website of the Ministry of Transport of China 

(https://www.mot.gov.cn/). 
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Figure 5.3 Location of the twelve ports used in this chapter. 

Table 5.1 The port container traffic flow statistics for the period from January 2011 to October 2022 

(Unit:10000TEU). 

 DLP YKP TJP QDP XMP SZP GZP SHP NBP LYGP  SHZP  QZP 

Min 23  26  76  98  34  121  71  194  91  32  26  12  

Max 100  58  205  225  111  282  219  435  337  50  80  26  

Median 69  46  124  150  81  208  153  314  184  40  48  16  

Average 66  46  129  155  80  208  159  324  194  41  50  19  

Note: Min donates the minimum of the container traffic monthly record for each port (Unit: 10000 

TEUs), and Max is the maximum of the container traffic monthly record for each port (Unit: 10000 

TEUs). The Median donates the median values of the container traffic monthly record for each port 

(Unit: 10000 TEUs), and the Average is the mean values of the container traffic monthly record for 

each port (Unit: 10000 TEUs). The abbreviations are as follows: DLP (Dalian Port), YKP (Yingkou 

Port), TJP (Tianjin Port), QDP (Qingdao Port), LYGP (Lianyungang Port), SZP (Suzhou Port), SHP 

(Shanghai Port), NBP (Ningbo Port), XMP (Xiamen Port), SHZP (Shenzhen Port), QZP (Quanzhou 

Port) and GZP (Guangzhou Port). 
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5.4 Results and discussion 

5.4.1 Changes in the co-opetition pattern of Chinese main ports under the 

influence of COVID-19 

COVID-1 ’s spread around the world has impacted all aspects of human activity (Xu et 

al. 2021). It is also an external shock impacting the supply chain, global trade and 

maritime shipping industry (Notteboom et al. 2021). From Figure 5.4 we can see that the 

PCC of each port was bigger in pre-COVID-19 than in post-COVID-19, which means the 

cooperation of the port in pre-COVID-19 is diminished in comparison to post-COVID-

19. During the pre-COVID-19 period, more than 11 ports had a high PCC with each other 

(except Lianyungang Port), but for the post period, there are only nine ports correlated 

with each other (except Dalian Port, Lianyungang Port and Yingkou Port). Figure 5.4 also 

shows that the PCCs between large-scale ports are higher than that of small-scale ports, 

which means that after COVID-19, cooperation between big ports is more intensive but 

less intensive between small ports. For example, Xiamen Port has the highest PCC with 

other ports for both periods, while the PCC of Shanghai Port was second in pre-COVID-

19 but ranks fifth in post-COVID-19. This means Xiamen Port is keeping a stable 

cooperation with other ports, but the cooperation of Shanghai Port with other ports has 

declined. The PCCs of Qingdao Port rose from fifth to third after COVID-19, which 

indicates that the association of Qingdao Port with other ports is enhanced. On the other 

hand, the PCCs of Yingkou Port and Dalian Port are weakening after the COVID-19 

pandemic, which denotes that these two ports have almost lost cooperation with other 

ports. Lianyungang Port barely cooperated with other ports for both periods. 
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Figure 5.4 The PCC changes under the influence of COVID-19. The left figure displays the PCC 

during the previous COVID-19 period (pre-COVID-19: January 2011 to December 2018). The right 

figure shows the PCC from January 2011 to December 2022 (post-COVID-19 period). Each circle 

was bigger following the absolute value of PCC, and the colour also darkened with the increase in the 

absolute value of PCC. The abbreviations are as follows: DLP (Dalian Port), YKP (Yingkou Port), 

TJP (Tianjin Port), QDP (Qingdao Port), LYGP (Lianyungang Port), SZP (Suzhou Port), SHP 

(Shanghai Port), NBP (Ningbo Port), XMP (Xiamen Port), SHZP (Shenzhen Port), QZP (Quanzhou 

Port) and GZP (Guangzhou Port). 

 

As shown in Figure 5.4, the PCCs of Ningbo Port also increased, which indicates Ningbo 

Port strengthened its cooperation with other ports in the post-COVID-19 period. As the 

uncertainties of the global supply chain increased after each crisis, liner companies faced 

greater competition. The port is not isolated as a node infrastructure in the supply chain 

and is crucial to strengthen cooperation with other ports under the influence of the supply 

chain fluctuation pattern (Huang et al. 2022c). Some ports in China, such as Ningbo Port, 

have strengthened their cooperation with liner companies (e.g., Maersk and MSC) by 

building long-term cooperation agreements to resist the negative influence of COVID-19 

because these agreements can reduce the costs and improve competitiveness (Dong et al. 

2023). The four ports in BRP (i.e., Yingkou Port, Dalian Port, Tianjin Port and Qingdao 

Port) show a low PCC with each other, which means these four ports had less cooperation 

during the pre-COVID-19 period; but after COVID-19, Qingdao Port and Tianjin Port 

improved their cooperation. In terms of geographical location, Yingkou Port is located 

deep in Bohai Bay, and its cooperation with Tianjin Port, Dalian Port and Qingdao Port 

is weak. 
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Figure 5.4 also indicates that the cooperation between large-scale ports is more intensive 

than that of small-scale ports in the Chinese port system after the COVID-19 pandemic. 

From the perspective of the port systems’ cooperation, the ranking of cooperation is as 

follows: PRDP, YRDP and BRP. For example, in the PRDP, Xiamen Port, Guangzhou 

Port and Shenzhen Port have strengthened their cooperation, and in terms of container 

traffic, those three ports ranked seventh, fourth and third, respectively, however, 

Quan hou Port’s cooperation with those three ports was reduced (Quan hou Port is the 

smallest port in this study in terms of container traffic). Meanwhile, the cooperation 

between small-scale ports (e.g., Dalian Port, Lianyungang Port and Yingkou Port) was 

reduced, and these small-scale ports’ cooperation with large-scale ports was also reduced, 

such as Quanzhou Port with Xiamen Port and Guangzhou Port with Shenzhen Port. In 

contrast, in YRDP, even Ningbo Port and Suzhou Port strengthened their cooperation 

with other ports in the Chinese main port systems, such as Xiamen Port and Guangdong 

Port, but Shanghai Port and Lianyungang Port weakened their cooperation with other 

ports. In BRP, apart from Qingdao Port, the cooperation of other ports was reduced. 

Figure 5.5 displays the CF and node degree changes in China’s main ports during the 

COVID-19 pandemic. The size of the port in Figure 5.5 represents the node degree, and 

we can see that most of the port’s node degrees are reduced after COV D-19; for example, 

Xiamen Port decreased by two, Shanghai Port decreased by four, and Yingkou Port node 

degree decrease of seven (see Appendix 5.1). At the same time, the node degree of some 

ports improved, such as Tianjin Port, which increased to 14 from 10, Shenzhen Port and 

Suzhou Port, which increased to 14 from 10, and Quanzhou Port, which increased to 14 

from 10. The remaining ports were stable, such as Dalian Port and Lianyungang Port 

which consistently remained stable at one, Qingdao Port and Ningbo Port which were 

stable at 14 and Guangzhou Port which was stable at 16 (see Appendix 5.1). Figure 5.5 

also shows the largest amount of CF is Ningbo Port (43), with Shanghai Port second (42) 

before COVID-19, which donates Ningbo Port faced greater competition than Shanghai 

Port (see  ppendix  .2) before COVID-19. Qingdao Port, Xiamen Port and Guangzhou 

Port tied for third place (40; see  ppendix  .2). In recent years, Ningbo Port has occupied 

a greater container traffic share as a result of its natural advantages (especially deep-water 

harbours), prices and service quality improvement, while the container traffic share of 

Shanghai Port gradually decreased to 48% and Ningbo Port increased to about 32% in 
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2021 (Wang et al. 2017; Feng et al. 2020). During pre-COVID-19, the competitive centre 

was focused on Ningbo Port (before COVID-19, the largest amount of CF was Ningbo 

Port [43]), but after COVID-19, the competitive centre shifted from Ningbo Port to 

Guangzhou Port (after COVID-19, the largest amount of CF is Guangzhou Port [45]). 

However, during the post-COVID-19 period, the CF between each port became more 

intense; for example, the largest amount of CF is Qingdao Port and Guangzhou Port with 

a value of 45, while the Tianjin Port, Xiamen Port, Shenzhen Port, Shanghai Port, Ningbo 

Port and Suzhou Port have the same CF of 44. The most competition has occurred in 

Guangzhou Port and Qingdao Port and Guangzhou Port and Xiamen Port, with a CF of 

seven (see  ppendix  .3). Therefore, the competition of each port in China tends to be 

more intensive after COVID-19. 

 

Figure 5.5 The CF and node degree changes in the Chinese main ports for pre- and post-COVID-19.  
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Even though neighbouring ports are strengthening cooperation in the sharing of public 

resources, competition is strengthening in business-like activities (e.g., price and market) 

(Notteboom and Haralambides 2020). For example, Ningbo Port has price advantages 

compared with Shanghai Port, thus occupying more container traffic share in YRDP 

(Feng et al. 2021). Before COVID-19, Shanghai Port and Ningbo Port had the fiercest 

competition in YRDP (Cullinane et al. 2005; Ye et al. 2020), which is consistent with the 

results in Figure 5.5. Figure 5.5 illustrates that the biggest CF comes from Shanghai Port 

and Ningbo Port, which has a value of eight, which also means Shanghai Port and Ningbo 

Port had the greatest competition before COVID-19 in Chinese main ports and not only 

in YRDP. Shanghai Port and Ningbo Port are all located downstream of YRDP, and they 

have a lot of practical and potential overlapping hinterland of container distribution of 

Zhejiang Province (Comtois and Dong 2007; Wang et al. 2017). Since 2006, Ningbo Port 

has rapidly developed, and in 2012, its cargo throughput exceeded that of Shanghai Port, 

in recent years, the relationship between Ningbo Port and Shanghai Port has transformed 

from a feeding relationship to a competing relationship (Feng et al. 2019). Meanwhile, 

both Shanghai Port and  ingbo Port are among the world’s top ten ports in terms of cargo 

throughput and container traffic. With the growing scale of Ningbo Port, there must be 

fierce competition between Shanghai Port and Ningbo Port in YRDP in terms of market 

Share, capital, and cargo sources. But after COVID-19, most of the competition has come 

from Guangzhou Port and Qingdao Port; and Guangzhou Port and Xiamen Port. 

Figure 5.5 also indicates that lower-intensity competition mainly occurred in the pre-

COVID-19 pandemic (see Figure 5.5 [a] and [b]), and high-intensity competition mainly 

took place in the post-COVID-19 period (see Figure 5.5 [c] and [d]). Figure 5.5(a) 

describes the CF of each port smaller or equal to four during the pre-COVID-19 period 

and Figure 5.5 (b) represents the CF that is smaller than or equal to four in post-COVID-

19; thus, we can see that the curves in Figure 5.5 (a) are more intensive than that in Figure 

5.5 (b). Figure 5.5 (c) represents the CF that is greater than four for pre-COVID-19, Figure 

5.5 (d) represents the CF that is greater than four for post-COVID-19, and it displays that 

the curves in Figure 5.5 (d) are more sparse than in Figure 5.5 (c). Hence, lower-intensity 

competition mainly occurred in the pre-COVID-19 period rather than the post-COVID-

19 period. 
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The four ports in BRP (i.e., Yingkou Port, Dalian Port, Tianjin Port and Qingdao Port) 

show a less cooperation pattern during the pre-COVID-19 period. However, the 

competition in BRP has been increasing after COVID-19, and Qingdao Port has also 

become one of the competition centres in the Chinese port system (another is Guangzhou 

Port, see  ppendix  .3). According to Liu and Park (2011), Yingkou Port, Dalian Port, 

Tianjin Port and Qingdao Port are the four gateway ports in BRP, and even though they 

rely on different economic sectors—Yingkou Port and Dalian Port belong to Liaoning 

Province, Tianjin Port is located in Tianjin Province and Qingdao Port is in Shandong 

Province—they overlap in the hinterland and have fierce competition with each other. 

Also, the positioning of the three ports is similar: Yingkou Port targets an important hub 

port in Northeast Asia, Dalian Port strives to build an international shipping centre in 

Northeast Asia, Qingdao Port combines modernisation with the international shipping 

hub in Northeast Asia and Tianjin Port takes as its goal the international shipping centre 

and logistics centre in northern China. However, from the perspective of the port systems, 

we found that the competition mainly took place in YRDP and PRDP (see Figure 5.5, 

 ppendix  .2 and  ppendix  .3). With the development of multimodal transport and 

information technology, the transport system is highly integrated, and container ports 

have become an important part of the global supply chain. In this context, the 

phenomenon of inter-port hinterland overlap is more common, and the competition 

between ports gradually rises to the level of competition between different port systems 

(Fraser et al. 2014). 

5.4.2 Port connectivity and accessibility analysis in the context of the COVID-19 

Pandemic. 

Port connectivity and port accessibility have also changed in the context of COVID-19, a 

conclusion that is consistent with Guerrero et al. (2022). According to Guerrero et al. 

(2022), the global maritime shipping network is weaker compared with the previous 

period of COVID-19. Table 5.2 shows the ranking of DC in those two periods. We can 

see the ranking of DC is the same for both periods. Table 5.2 also indicates that COVID-

19 has a negative influence on the DC because all the DC decreased after COVID-19, 

which means port connectivity decreased after COVID-19. For example, Shanghai Port 

has the largest DC for both periods, DCpre is 0.378 and DCpost is 0.356, respectively. The 
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second is Ningbo Port, DCpre is 0.322 and DCpost is 0.296, respectively, and the third is 

Xiamen Port, DCpre is 0.277 and DCpost is 0.241, respectively. Table 5.2 also shows the 

ranking of CC during pre- and post-COVID-19. The ranking of DC is different from the 

two periods. For example, Shanghai Port and Ningbo Port have the lowest CC (CCpre is 

0.126 and CCpost is 0.135, respectively) and second lowest CC (CCpre is 0.152 and CCpost 

is 0.142, respectively) for both periods; however, Shenzhen Port has the third CCpre (0.160) 

and the fourth CCpost (0.174). The third smallest CC is Shenzhen Port and Guangzhou 

Port for pre- and post-COVID-19, respectively (0.160 and 0.174). Table 5.2 also displays 

that the CCpre is smaller than CCpost, which indicates the COVID-19 pandemic not only 

decreased port connectivity but also accessibility. 

Overall, for both periods, YRDP has the largest DC, the second is PRDP and the last is 

BRP. The ranking of CC of the three port systems during post-COVID-19 is the same as 

that of pre-COVID-19. For the COVID-19 outbreak at the end of 2019, Figure 5.6 

displays the monthly growth rate of container ships arriving at Shanghai Port and Ningbo 

Port, which indicates that the COVID-19 pandemic has had few impacts on the number 

of container ships arriving at Shanghai Port but has had an obvious negative impact on 

Ningbo Port. Due to COVID-19, countries worldwide have adopted stricter sanitation and 

epidemic prevention measures, causing some ports to suspend operations or reduce 

operational efficiency. Consequently, worldwide ports are experiencing unprecedented 

congestion, including Ningbo Port and Shanghai Port, which reduces connectivity and 

accessibility between the ports (Huang et al. 2022c).   
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Table 5.2 DC and CC for the pre-and post-COVID-19 period.  

Ports DCpre Ranking DCpost Ranking CCpre Ranking CCpost Ranking 

SHP 0.378 1 0.356 1 0.126  1 0.135  1 

NBP 0.322 2 0.296 2 0.152  2 0.142  2 

SHZP 0.277 3 0.241 3 0.160  3 0.174  4 

GZP 0.251 4 0.182 4 0.169  4 0.166  3 

XMP 0.217 5 0.179 5 0.188  6 0.184  6 

QDP 0.183 6 0.171 6 0.174  5 0.183  5 

DLP 0.174 7 0.167 7 0.189  7 0.189  7 

TJP 0.172 8 0.159 8 0.198  8 0.215  10 

LYGP  0.162 9 0.150 9 0.236  11 0.267  11 

YKP 0.158 10 0.143 10 0.213  10 0.203  9 

SZP  0.158 11 0.136 11 0.200  9 0.196  8 

QZP 0.139 12 0.120 12 0.394  12 0.402  12 

The abbreviations are as follows: DLP (Dalian Port), YKP (Yingkou Port), TJP(Tianjin Port), QDP 

(Qingdao Port), LYGP  (Lianyungang Port), SZP (Suzhou Port), SHP (Shanghai Port), NBP  (Ningbo 

Port), XMP (Xiamen Port), SHZP (Shenzhen Port), QZP (Quanzhou Port) and GZP (Guangzhou Port). 

 n PRDP, Shen hen Port, Guang hou Port and  iamen Port’s DC ranked third, fourth 

and fifth for pre-COVID-19, respectively. As for the CC of those three ports, the ranking 

is third, fourth and sixth for pre-COVID-19, and after COVID-19, the ranking is fourth, 

third and sixth. The Sea-Rail intermodal transport in the PRDP has begun to be 

implemented, which leads to an increase in accessibility and connectivity (Wu et al. 2017). 

Shenzhen Port is the largest scale port in the PRDP in terms of container traffic, and the 

natural deep-water conditions and automatic terminal equipment enable it to dock the 

world’s largest container ships.  fter China entered the  TO in 2001, more and more 

container cargo was handled in PRDP. At the same time, due to the foreign capital flow 

into PRDP that accelerated sustainable development, some shipping routes have changed 

from Hong Kong Port to Shenzhen Port (Wang et al. 2022). Guangzhou Port is also one 

of the largest scale ports in PRDP, and together with Shenzhen Port and Hong Kong Port 

has formed the tri-hub stage since 2006 (Fu et al. 2023). Guangzhou Port will be put into 

operation as an international logistics centre for Sea-Rail intermodal transport in 2021, 

which also accelerate the growth of connectivity and accessibility in PRDP. In recent 

years, Hong Kong Port has also prioritised the development of high-end maritime 

logistics and related supporting industries, such as ship brokerage, shipping finance and 

ship registration. Hong Kong Port has also strengthened its cooperation with Shenzhen 
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Port, removing a part of container cargo handling to Shenzhen Port (Wang et al. 2022). 

Meanwhile, due to the advantage of lower operating costs and natural conditions (e.g. 

deep-water berths), Shenzhen Port has gradually gained the market share of Hong Kong 

Port, and some cargo has direct transport into Shenzhen Port passed Hong Kong Port, 

which indirectly improved the connection and accessibility of PRDP (Wang et al. 2022). 

Shenzhen Port and Guangzhou Port have accelerated expansion into their hinterland by 

building an inland transport network (Liu et al. 2013). PRDP has built the road-rail-

aviation-port transport network, and at the same time, the Shenzhen–Zhongshan Bridge 

and Hong Kong–Zhuhai-Macao Bridge’s building also have increased the connection and 

accessibility (Wu et al. 2017). 

 

Figure 5.6 The growth rate of monthly container ships arriving at Shanghai Port and Ningbo Port  

(collected by Zhu et al. (2020)). 

A greater throughput and a higher level of connectivity and accessibility to other ports 

are necessary for the port to transform into a hub port (Nam and Song 2011). 

Geographical endowments can make a port an international hub as it can be connected to 

other markets by different shipping routes (Nguyen and Woo 2022). Shanghai Port has a 

superior geographical position because it is located in the centre of the Chinese coastline 

and is the main artery of east-west shipping. The Yangtze River and the main north-south 
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sea channel form the intersection (Shanghai Port  of the main skeleton of China’s T-

shaped shipping. As the results show, Shanghai Port has the smallest value of CC and the 

largest DC for both periods (see Table 5.2), which indicates that Shanghai Port has the 

greatest connectivity and accessibility in YRDP and the China maritime shipping network. 

In terms of connectivity and accessibility, Ningbo Port is second only to Shanghai Port, 

and it has obvious regional advantages and is located in the middle of the coastline of the 

Chinese Mainland, the intersection of the Silk Road Economic Belt and the 21st Century 

Maritime Silk Road (Notteboom and Yang 2017; Xu et al. 2022). In 2019, the container 

traffic of the Belt and Road route in Ningbo Port was about 10 million TEUs, accounting 

for 40% of the total container throughput. At the same time, Ningbo Port had 260 

container routes that connected more than 600 ports in more than 190 countries and 

regions. In 2021, the cargo throughput of Ningbo Port reached 1.224 billion tonnes, a 

year-on-year increase of 4.4%, ranking it first in the world for the 13th consecutive year; 

The container throughput reached 31.079 million TEUs, an increase of 8.2% year on year, 

continuing to rank third in the world. After COVID-19, the connectivity and accessibility 

of the ports in the Chinese maritime network declined (see Table 5.2).  

 

Figure 5.7 The changes in the shipping lines of Shanghai Port and Ningbo Port to the eight maritime 

regions. 
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Figure 5.7 shows the changes in the shipping lines of Shanghai Port and Ningbo Port to 

the eight maritime regions, which are collected from the official websites of the eight 

major liner companies, with the average price collected from Shipping China (2020). Due 

to COVID-1 , the ports’ operational efficiency is lower than before the implementation 

of lockdown strategies, which represents the decline of the port’s connectivity and 

accessibility. 

5.4.3 Summary and final remarks 

Based on the findings in this study, further research is motivated into the impact of 

anomalous events on the port co-opetition relationships in other regions because the inter-

port co-opetition pattern is different in different port regions, for example, the Hamburg-

Le region shows competition and the Mediterranean region is characterised by 

cooperation (Merkel 2017). It is thought that fierce competition typically occurs in 

adjacent ports, with less between distant ports (Notteboom et al. 2018). But in the Chinese 

case, we find that the competition not only takes place in adjacent ports but also distant 

ports, and this point is especially significant during COVID-19. Port co-opetition is not 

always a well-planned decision process. Many factors can trigger co-opetition in the port 

system, such as financial factors, government policy and the transportation market (Parola 

et al. 2017). Moreover, sometimes it can be the result of anomalous events. In the Chinese 

case, we found that anomalous events can also lead to port co-opetition. In the context of 

anomalous events, fierce competition usually occurs in large-scale ports and weak 

competition mainly in small ports. 

In recent years, port authorities have tended to adopt cooperation and integration schemes 

to improve port performance and competitiveness, which then increases their throughput. 

One of the benefits of port co-opetition is to avoid resource waste and rationalise the use 

of assets (Ferrari et al. 2015). Many ports have built a common logistics system to save 

costs and strengthen their association, especially in the case of neighbouring ports 

(Ferretti et al. 2018). In a competitive pattern, ports build cooperative relationships that 

can achieve a higher position in the port hierarchy. However, cooperation cannot generate 

a higher position in the port hierarchy than that of strong competitors (Tagawa et al. 2022). 

In this chapter, the port cooperation we investigated is different from port integration or 

coordination; we understand it as complementarity in container throughput. From the 



Chapter 5 

 

 

143 

 

Chinese case, we find that large-scale ports can better focus on cooperation with each 

other after a crisis, which can be regarded as a valuable experience for other small ports 

or worldwide ports. In a maritime shipping ecological system, port competition or 

cooperation usually is the result of the multiple effects of port authorities, shipping 

companies and port operators (Asgari et al. 2013). From the perspective of the 

methodology, this chapter proposed a straightforward and easier method to explore the 

co-opetition relationships between ports. Port connectivity and accessibility are difficult 

to use to correctly measure port connectivity and accessibility. At the same time, port 

connectivity and accessibility are usually measured using origin and destination pairs and 

geographical distance. However, the method we proposed can better process the 

complexity of port connectivity and accessibility. Therefore, the method in this chapter 

is worthy to promote worldwide port regions.  
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5.5 Conclusions 

To resist the negative impact of a crisis, such as COVID-19, we proposed a method based 

on the PCC and CN to explore the co-opetition changes and changes in connectivity and 

accessibility in port systems against the background of the anomalous event. This 

methodology has successfully pursued the evaluation of co-opetition changes and may 

benefit future analysis on the impact of anomalous events, such as the COVID-19 

pandemic, geopolitical instability, and global financial crises. The results reveal that 

COVID-19 has indeed had a huge impact on the port co-opetition pattern as well as on 

port connectivity and accessibility. First, after the COVID-19 pandemic, the cooperation 

between large-scale ports is more intense than that between small-scale ports. At the same 

time, lower-intensity competition mainly occurred in the pre-COVID-19 pandemic, and 

high-intensity competition mainly took place in the post-COVID-19 period. Second, the 

COVID-19 pandemic weakened the connectivity and accessibility of the ports. Third, in 

terms of methodology, we provided a new perspective to explore the co-opetition pattern 

in the port system. Our approach goes beyond the existing literature in that we proposed 

a straightforward method to explore the co-opetition pattern changes in the port system 

in the context of anomalous events. Finally, from the perspective of the Chinese port 

systems, PRDP has the greatest internal cooperation, YRPD is second to PRDP and BRP 

is last in both periods. Before COVID-19, Ningbo Port faced the most competition, which 

came from Shanghai Port. However, after COVID-19, Guangzhou Port had the fiercest 

competition that happened with Xiamen Port and Qingdao Port. In terms of connectivity 

and accessibility, the ranking of the Chinese port system is as follows: YRDP, PRDP and 

BRP. Meanwhile, Shanghai Port has the highest connectivity and accessibility, Ningbo 

Port is second to Shanghai Port and Shenzhen Port is third.   
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Appendix 

Appendix 5.1 Node degree of each port during pre- and post-COVID-19. The abbreviations are as 

follows: DLP (Dalian Port), YKP (Yingkou Port), TJP (Tianjin Port), QDP (Qingdao Port), LYGP 

(Lianyungang Port), SZP (Suzhou Port), SHP (Shanghai Port), NBP (Ningbo Port), XMP (Xiamen 

Port), SHZP (Shenzhen Port), QZP (Quanzhou Port) and GZP (Guangzhou Port). 

Ports Dpre Dpost 

DLP 1 1 

 KP   1 

T P 10 1  

QDP 1  1  

 MP 1  16 

SH P 6 1  

G P 16 16 

SHP 1  1  

 BP 1  1  

L GP 1 1 

S P 6 1  

Q P 1 1 

 

Appendix 5.2 The significant flows of the liner shipping network in Chinese major ports during the 

pre-COVID-19 period. 

 DLP  KP T P QDP  MP SH P G P SHP  BP L GP S P Q P 

DLP 0 0 0 0 0 0 0 0 0 0 0 0 

 KP 0    3 3 2   3 3 0 2   

T P 0        3       0 3   

QDP 0 3    6 3   6 6 0 3   

 MP 0 3   6  2 7   6 0 2   

SH P 0 2 3 3 2  2 2 3 0 3 3 

G P 0       7 2  7   0 2   

SHP 0 3   6   2 7  6 0 2   

 BP 0 3   6 6 3   6  0 3   

L GP 0 0 0 0 0 0 0 0 0  0 0 

S P 0 2 3 3 2 3 2 2 3 0  3 

Q P 0         3       0 3  
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Appendix 5.3 The significant flows of the liner shipping network in Chinese major ports during the 

post-COVID-19 period. 

 DLP  KP T P QDP  MP SH P G P SHP  BP L GP S P Q P 

DLP 0 0 0 0 0 0 0 0 0 0 0 0 

 KP 0  0 0 0 0 0 0 0 0 0 0 

T P 0 0  6 6 6 6 6 6 0 6 2 

QDP 0 0 6  6 6 7 6 6 0 6 2 

 MP 0 0 6 6  6 7 6 6 0 6 1 

SH P 0 0 6 6 6  6 6 6 0 6 2 

G P 0 0 6 7 7 6  6 6 0 6 1 

SHP 0 0 6 6 6 6 6  6 0 6 2 

 BP 0 0 6 6 6 6 6 6  0 6 2 

L GP 0 0 0 0 0 0 0 0 0  0 0 

S P 0 0 6 6 6 6 6 6 6 0  2 

Q P 0 0 2 2 1 2 1 2 2 0 2  
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6.1 General Discussion 

The results of this thesis highlight the potential contribution of DS tools to the analysis 

and management of multi-port systems and the case of YRDP serves as a good example 

to investigate the potentialities of the DS. For instance, in chapter 3, H* allows to display 

of the container traffic share evolution in a multi-port system, and the ternary diagram 

method permits evaluating the concentration rate of port container traffic in a multi-port 

system and Hierarchical Clustering depicts the container traffic temporal evolution.  

In contrast to the H* and Hierarchical Clustering methods, CoDa techniques can evaluate 

the temporal and spatial evolution of a multi-port system simultaneously (see chapter 

2.2.1). In this sense, CoDa analysis has provided the temporal and spatial evolution of 

YRDP from 1992 to 2019, which included several stages in the function of the policy and 

economic factors such as infrastructure development, global trade tendency, shipping 

atmosphere and administrative issues. The four stages are as follows: 1) original single-

core: 1992-1995; 2) polarization single-core 1996-2000; 3) dual-core development: 2001-

2013; and 4) multi-core development: 2014-2019.  

The evolution of the first stage is closely intertwined with government policies and the 

geographical location of the port. Following China’s economic reform and opening-up, 

the Shanghai Port experienced its initial stage of development. During this period, Pudong 

in Shanghai City was established as a global financial and shipping hub, coinciding with 

Shanghai Port’s pivotal role in cargo handling and transshipment. This catapulted 

Shanghai Port to become China’s largest port. Concurrently, other ports were relatively 

isolated, primarily serving their immediate hinterlands. Thanks to favorable policies and 

geographical advantages, YRDP embarked on its second phase of development. 

While Shanghai Port maintained a monopolistic position, signs of sub-centre ports, such 

as Ningbo Port, began to emerge during this period. With the dawn of the 21st century 

and China’s accession to  TO,  RDP entered its third stage. The Chinese port system 

expanded beyond coastal regions to the inland areas in 2001, experiencing significant 

growth in port capacity, exceeding 10 million TEU from 2001 to 2005, with a utilization 

rate of 161%. In 2005, the Chinese government established its inaugural bonded port zone 
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in Yangshan, Shanghai City, which lured traffic away from Hong Kong due to 

competitive tariff advantages as a bonded and free trade port (Yang et al. 2019b). 

Capitalizing on its prime geographical location and cost-effective services, Ningbo Port 

rapidly expanded its market share and held the title of the world's largest port in terms of 

cargo throughput for 14 consecutive years starting in 2008. 

Concurrently, the expansion of Shanghai Port and Ningbo Port spurred the growth of 

nearby ports, causing a gradual shift in container traffic share toward smaller neighboring 

ports like Jiaxing Port, Huzhou Port, and Jiangyin Port. Consequently, YRDP began to 

exhibit deconcentration tendencies, challenging the previous monopolistic status of 

Shanghai Port as China's mainland gateway, as emphasized by (Feng et al. 2019). After 

2013, the challenges posed by peripheral ports became more evident, leading to a new 

phase for YRDP ports. Ports situated along the Yangtze River, such as Nanjing Port, 

Suzhou Port, and Nantong Port, initiated the establishment of regional shipping centres. 

Lianyungang Port, strategically located at the intersection of the Belt and Road Initiative, 

served as a gateway to the Silk Road Economic Belt. Consequently, the characteristics of 

this fourth phase reflect a multi-core development trend. 

 

In consequence, through the above-mentioned analysis, CoDa techniques have been 

proven an excellent way to explore the temporal evolution and spatial integration in 

market Share aligned with previous contributions (Grifoll et al. 2019). Some 

concentration indexes like H* or Gini coefficients can only describe concentration or 

deconcentration. However, CoDa techniques (i.e., clr-biplot and CoDa dendrogram) can 

simultaneously depict the temporal evolution and study the spatial characteristics of a 

multi-port system. CoDa techniques can also find the differentiated development pattern 

that other methods cannot meet. For example, Jiaxing Port and Huzhou Port showed a 

differentiated pattern thanks to their geographical position near Shanghai Port and Ningbo 

Port, respectively.  n the context of China’s foreign-oriented economy, many goods 

supplied in the midstream and upstream of the Yangtze River needed to be transshipped 

to Shanghai Port and Ningbo Port by Jiaxing Port and Huzhou Port, which accelerated 

the development of Jiaxing Port and Huzhou Port. At the same time, the identification of 

the peripheral ports is also a good demonstration of the benefits of CoDa techniques, 

which is consistent with Notteboom and Rodrigue (2005)’s works.  n this sense, the 



Chapter 6 

151 

 

introduction of CoDa in port management suggests be considered also in further analysis 

to explore the future evolution and future patterns of multi-port systems. 

In chapter 3, DS tools are applied to explore the dynamic coupling relationships and the 

inter-lagging effects between the port and port city from the perspective of container 

traffic and the economy of the port city. In this chapter, I explored the dynamic coupling 

relationships and the inter-lagging effects based on DS tools of the Auto-Regression 

Distribute Lag model (ARDL) and Error Correction Model (ECM). From the results of 

the ECO-oriented mechanism and TEU-oriented mechanism, we divided the port-city 

relationships into four types, first is Shanghai port, its container traffic is closely related 

to PI, SI and TI, and the effect is positive bidirectional. Meanwhile, Shanghai Port 

container traffic has three lagging periods effect on its three major industries and the three 

major industries have two lagging periods effect on Shanghai Port container traffic. The 

lagging periods of Shanghai Port container traffic for its three major industries are three 

years, which means Shanghai Port takes about three years on average to affect the 

economy of Shanghai City with its industries. That is mainly due to Shanghai City is 

status as the centre of Chinese financial, transportation and technological innovation, and 

Shanghai Port is the supporting urban subsystem (Ye et al. 2020). As we mentioned 

before, TI is closely related to the service industry, transportation, and finance. Shanghai 

City has a high level of comprehensive development and its industrial structure is also 

dominated by the TI. Consequently, the service industry is developing rapidly, and the 

effect of the port and port industry on the overall pulling effect of the city is obvious. 

China’s reform and opening built Shanghai City into a world finance centre. At the same 

time, the Chinese government has been aiming to promote the construction of the 

Shanghai International Shipping Centre, which accelerates container traffic in Shanghai 

Port development (Feng et al. 2019). 

The second type is Ningbo Port which has positive bidirectional with SI and TI but has 

negative bidirectional with PI. Meanwhile, container traffic of Ningbo Port has one 

lagging period effect on its three major industries and its three major industries have one 

lagging period effect on Ningbo Port. The lagging period of Ningbo Port for PI, SI and 

TI is one, indicating that the influence of Ningbo Port on its three major industries will 

last for at least one year. The physical characteristics of containers are highly coordinated 

with heavy industry and advanced manufacturing products. This is consistent with the 
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fact that the products of these industries in Ningbo Port are suitable for containerization 

and have high containerization.  

The third type is Suzhou Port, Nanjing Port and Lianyungang Port, whose container traffic 

has positive bidirectional relationships with SI and TI, their container traffic has one 

lagging period effect on their three major industries, and their three major industries have 

one lagging period effect on container traffic. Lianyungang Port is mainly engaged in 

container, bulk and general cargo. It is the biggest port in Jiangsu Province and the east 

bridgehead of the new Eurasian Continental Bridge. Meanwhile, Lianyungang Port has 

good rail connections with the hinterland. This fact takes advantage of the agglomeration 

effect of people flow, logistics, information flow and capital flow. The agglomeration 

effect of the port economy has a strong radiating effect, which will greatly drive the 

development of the regional economy, effectively promote the adjustment of local 

economic and industrial structure, and enhance the regional competitiveness of 

Lianyungang City. Due to its good inland transportation system, the water-to-water 

transhipment rate is low (Guo et al. 2020). Suzhou Port is the joint port of the Shanghai 

International Shipping Center, located at the intersection of the two main axes of the 

Jiangsu Riverside Industrial Belt and the Coastal Open Belt. In terms of the port container 

throughput, Suzhou Port is the seventh port since 2018. And Suzhou City is also famous 

for the manufacturing and metal smelting industry in China, as we mentioned before, 

manufacturing is suitable for containerization. It is excellent for Suzhou City to develop 

foreign trade.  

The last type is Zhenjiang Port, Jiaxing Port, Taizhou Port (Zhejiang Province) and 

Nantong Port, whose container traffic is only related to TI, and there is no lagging effect 

in their dynamic relationship. For the ECO-oriented mechanism, the effect on the four 

ports is negative, and for the TEU-oriented mechanism, the effect on the three major 

industries is positive. At the same time, Suzhou Port and Nantong Port are located at the 

estuary of the Yangtze River and are important river iron ore transhipment hubs, leading 

transportation services and in turn driving the growth of the TI. Zhenjiang Port and 

Nantong Port as transhipment ports located downstream of YRD, and the transhipment 

rates are about 97% and 99%, respectively (Yang et al. 2017). A Port with a high 

transhipment rate always has less related to the local economy (Cheung and Yip 2011; 

Slack and Gouvernal 2016), this point is also consistent with the results in this chapter. 
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The influence of Zhenjiang Port and Nantong Port on the three major industries only 

exists in the current period. Taizhou Port (Zhejiang Province) and Jiaxing Port as the feed 

ports of Ningbo Port and their main cargo type tend to be homogeneous with Ningbo Port. 

The goods are mainly construction materials, coal, automobiles, cement, steel, petroleum, 

electromechanical and other seven categories, accounting for more than 90% of the total 

throughput over the years.  

The above analysis indicates that the DS tools are useful for exploring the inter-lagging 

effect and the dynamic relationships between the port container traffic and the economy 

of port cities. It is an excellent tool for policymakers to make better decisions to balance 

the development of the port and the economy of port cities.  

The spread of COVID-19 around the world has impacted all aspects of human activity 

(Xu et al. 2021). It is also an external shock impacting the supply chain, global trade and 

maritime shipping industry (Notteboom et al. 2021). To resist the challenge of anomalous 

events such as COVID-19 and the 2008 financial crisis. In chapter 4, DS tools are used 

to predict container traffic considering anomalous events (such as COVID-19 and the 

2008 financial crisis), and we also evaluated the prediction performance of different 

prediction models. According to Parola et al. (2021), the most common application of DS 

in port management and maritime transportation is throughput prediction, which indicates 

that the DS tools are essential for strategic deployment and port management.  

In the real world, most time series are nonlinear, which includes container traffic time 

series. Container traffic time series show uncertainty complex, and traditional forecasting 

models, such as ARIMA and SARIMA are not applicable (Ruiz-Aguilar et al. 2014). 

However, the recently emerging DS techniques, such as ANN and CNN, SVR and LSTM 

can resolve those problems effectively. Form chapter 4, I prove that the hybrid models 

can eliminate the nonlinear limitation and keep a stable predictive performance. At the 

same time, COVID-19 as an anomalous event has led to a slowdown in container 

transportation and maritime trade due to the lockdown strategy, but the hybrid models 

can better predict the crisis, which is beneficial for policymakers and port authorities. In 

terms of forecasting accuracy, the three assessment criteria show that configuration 2 of 

hybrid models (i.e. S-L2 and S-S2) have the best performance, and the second is 

configuration 1 of hybrid models (i.e. S-L1 and S-S1). The last one is the single model, 
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and for the single models, the ranking of the forecasting accuracy is LSTM, SVR, and 

SARIMA.  

Meanwhile, DS tools also have useful applications in anomaly detection. Due to COVID-

19, many countries have taken a strict lockdown strategy, which makes a dropping in the 

container traffic time series. After October 2020, the container traffic of Shanghai Port, 

Ningbo Port, Suzhou Port and Lianyungang Port showed a downward trend, and the 

second wave of the COVID-19 pandemic caused a shock to container transportation 

around the world. In this context, those four ports were declining for three months from 

October 2020. In terms of this anomalous event, different forecasting models also have 

different predictive performances. From chapter 4, the results indicated that COVID-19 

indeed results in forecasting accuracy lower, and S-L2 and S-S2 also have the highest 

forecasting accuracy for anomalous events (i.e. COVID-19). 

For better decision-making and investment during anomalous events such as COVID-19 

and the 2008 financial crisis, in chapter 5, I proposed a framework based on DS tools to 

explore the co-opetition changes and connectivity and accessibility changes in port 

systems under the influence of COVID-19. In the case of Chinese port systems, the 

cooperation between large-scale ports is more intensive than that of small-scale ports after 

the COVID-19 pandemic. Meanwhile, the cooperation between small-scale ports was 

reduced, and the cooperation between small-scale ports and large-scale ports was also 

reduced. As the uncertainties of the global supply chain increased after each crisis, liner 

companies faced greater competition. The port is not isolated as a node infrastructure in 

the supply chain and is crucial to strengthen cooperation with other ports under the 

influence of the supply chain fluctuation pattern (Huang et al. 2022c). For instance, 

Ningbo Port has strengthened its cooperation with liner companies (e.g., Maersk and 

MSC) by building long-term cooperation agreements to resist the negative influence of 

COVID-19 because these agreements can reduce the costs and improve competitiveness 

(Dong et al. 2023). In recent years, Ningbo Port has occupied a greater container traffic 

share as a result of its natural advantages (especially deep-water harbours), prices and 

service quality improvement, while the container traffic share of Shanghai Port gradually 

decreased to 48% and Ningbo Port increased to about 32% in 2021 (Wang et al. 2017).  

Even though neighbouring ports are strengthening cooperation in the sharing of public 

resources, competition is strengthening in business-like activities (e.g., price and market) 
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(Notteboom and Haralambides 2020). During pre-COVID-19, the competitive centre was 

focused on Ningbo Port, but after COVID-19, the competitive centre shifted from Ningbo 

Port to Guangzhou Port. And the competition of each port in China tends to be more 

intensive after COVID-19. Before COVID-19, Shanghai Port and Ningbo Port had the 

fiercest competition in Chinese main ports. Ningbo Port has price advantages compared 

with Shanghai Port, thus occupying more container traffic share in YRDP (Feng et al. 

2019). Shanghai Port and Ningbo Port are all located downstream of YRDP, and they 

have a lot of practical and potential overlapping hinterland of container distribution of 

Zhejiang Province (Comtois and Dong 2007; Wang et al. 2017).  

In recent years, port authorities have tended to adopt cooperation and integration schemes 

to improve port performance and competitiveness, which then increases their throughput 

(Zulbainarni et al. 2020). One of the benefits of port co-opetition is to avoid resource 

waste and rationalise the use of assets (Ferrari et al. 2015). Many ports have built a 

common logistics system to save costs and strengthen their association, especially in the 

case of neighbouring ports (Ferretti et al. 2018). In a competitive pattern, ports build 

cooperative relationships that can achieve a higher position in the port hierarchy. 

However, cooperation cannot generate a higher position in the port hierarchy than that of 

strong competitors (Tagawa et al. 2022). From the Chinese case, I find that large-scale 

ports can better focus on cooperation with each other after a crisis, which can be regarded 

as a valuable experience for other small ports or worldwide ports.  

A greater throughput and a higher level of connectivity and accessibility to other ports 

are necessary for the port to transform into a hub port (Nam and Song 2011; Yap 2019). 

Geographical endowments can make a port an international hub as it can be connected to 

other markets by different shipping routes (Nguyen and Woo 2022). Shanghai Port has a 

superior geographical position because it is in the centre of China’s coastline and is the 

main artery of east-west shipping. The Yangtze River and the main north-south sea 

channel form the intersection (Shanghai Port) of the main skeleton of China’s T-shaped 

shipping. As the results show, Shanghai Port has the greatest connectivity and 

accessibility in YRDP and the China maritime shipping network, and Ningbo Port is 

second only to Shanghai Port, and it has price advantages compared with Shanghai Port.  

Port connectivity and port accessibility have also changed in the context of COVID-19, 

which is consistent with Guerrero et al. (2022). According to Guerrero et al. (2022), the 
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global maritime shipping network is weaker compared with the previous period of 

COVID-19. Due to COVID-19, countries worldwide have adopted stricter sanitation and 

epidemic prevention measures, causing some ports to suspend operations or reduce 

operational efficiency. Consequently, worldwide ports are experiencing unprecedented 

congestion, including Ningbo Port and Shanghai Port, which reduces connectivity and 

accessibility between the ports (Huang et al. 2022c).  

In PRDP, the Sea-Rail intermodal transport implemented led to an increase in 

accessibility and connectivity (Wu et al. 2017). Shenzhen Port is the largest scale port in 

the PRD multi-port system in terms of container traffic, and the natural deep-water 

conditions and automatic terminal equipment enable it to dock the world’s largest 

container ships. After China entered the WTO in 2001, more and more container cargo 

was handled in PRDP. At the same time, due to the foreign capital flow into PRDP that 

accelerated sustainable development, some shipping routes have changed from Hong 

Kong Port to Shenzhen Port (Wang et al. 2022). Guangzhou Port is also one of the largest 

scale ports in the PRDP, and together with Shenzhen Port and Hong Kong Port has formed 

the tri-hub stage since 2006 (Fu et al. 2023). Guangzhou Port will be put into operation 

as an international logistics centre for Sea-Rail intermodal transport in 2021, which also 

accelerate the growth of connectivity and accessibility in the PRDP. In recent years, Hong 

Kong Port has also prioritised the development of high-end maritime logistics and related 

supporting industries, such as ship brokerage, shipping finance and ship registration. 

Hong Kong Port has also strengthened its cooperation with Shenzhen Port, removing a 

part of container cargo handling to Shenzhen Port. Meanwhile, due to the advantage of 

lower operating costs and natural conditions (e.g. deep-water berths), Shenzhen Port has 

gradually gained the market share of Hong Kong Port, and some cargo has direct transport 

into Shenzhen Port passed Hong Kong Port, which indirectly improved the connection 

and accessibility of PRDP (Wang et al. 2022). Shenzhen Port and Guangzhou Port have 

accelerated expansion into their hinterland by building an inland transport network. PRDP 

has built the road-rail-aviation-port transport network, and at the same time, the 

Shenzhen-Zhongshan Bridge and Hong Kong-Zhuhai-Macao Bridge also have increased 

the connection and accessibility (Wu et al. 2017). 

From the perspective of the methodology, chapter 5 proposed a straightforward 

framework based on DS tools to explore the co-opetition relationships between ports. The 
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framework based on DS tools can better process the complexity of port connectivity and 

accessibility. Therefore, the framework based on DS tools is worthy of promoting 

worldwide port regions.  

With the development of the world economy, international trade is becoming increasingly 

frequent. Traditional maritime transport patterns cannot meet the increasing demand of 

international trade. We need to accelerate the development of the DS application in port 

management and maritime transport. The application of DS in port management and 

maritime transport can better accelerate the construction of the automation, 

informatization, and modernization of modern ports and efficient maritime transport. At 

the same time, emerging technology, such as 5G communications, AI, IoT, Big data, and 

Autonomous driving have provided technical support to port management and transport. 

The above-mentioned DS methods have provided a new perspective to investigate the 

port traffic evolution and prediction, port-city dynamic coupling relationships, port co-

opetition, and port connection and accessibility. The results of the different sections of 

this thesis have proved the potentiality of DS in multi-port traffic analysis and predictions. 

For instance, CoDa techniques are successfully used to explore temporal and spatial 

evolution, which can help related researchers and port managers find a new development 

pattern in port systems. And recent years welcomed ML methods and AI methods that 

can improve port container traffic effectively, which is beneficial for policymakers and 

investors. So further research is motivated into the application of DS tools in other port 

systems worldwide or even other transport systems. 
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6.2 Future research 

With the rapid development of DS, more and more emerging technology has been applied 

to practical (see Figure 6.1). At the same time, the enrichment of the shipping and port 

data facilitates data-driven analysis. Based on the above analysis, further investigation 

into necessary and under-explored areas and gaps in maritime transport and port 

management is outlined in the following. 

As accounted by Pena et al. (2020), 68% of the papers on DS focused on predictive 

analysis while 22% of the papers conducted prescriptive analysis, which indicated that 

the predictive analysis can provide managerial insight for policymakers and investors. 

Thus, in future analysis, predictive analysis for port management and maritime 

transportation is also the first objective. Although predictive analysis is easier to complete 

in this field, it can be seen that the prescriptive analysis should be paid more attention. In 

the field of maritime transportation and port management, many problems are 

combinatorial optimization, such as berth allocation and container relocation problems. 

In this sense, DS methods can be a worthwhile candidate to resolve such problems. 

Another future direction is port operation and maritime transport real-time analysis and 

automation. There is rare research in this field, but it can provide a useful and powerful 

tool for policymakers and port authorities. At the same time, real-time analysis and 

automation can leverage resiliency, efficiency, and intra- and inter-organizational 

collaboration. 

Port plays a key role in supply chains, therefore, higher integration and coordination 

between port and supply chain through hinterland logistics can lead to an efficient supply 

chain (Ha et al. 2017). The interaction between the port and hinterland could be done 

through different transportation modes (road, rail, and inland navigation) which demands 

a precise and accurate schedule prediction and reliable operations. In this context, DS 

could be a genuine and powerful tool due to its described capabilities. This will be a fertile 

direction of research not investigated before, and DS methods could help to improve 

decision-making procedure quality. 

Undoubtedly, maritime transport is more than account for 90% of world trade, which 

means the increasing international trade will result in increasing greenhouse emissions 
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(Yu et al. 2021). To reduce emissions and costs, a sustainability-driven study should be 

paid more attention. The sustainability issue related to port management and maritime 

transportation is associated with multiple disciplines of waste management, energy 

management, water resources management, hazardous material flows, and air and 

acoustic pollution. Port authorities and policymakers should be responsible for those 

issues. DS method for port sustainability mainly in three folds, first, DS could directly 

enhance energy consumption in port operations using intelligent energy management 

systems (Alzahrani et al. 2021). Second, DS used in the voyage plan system can improve 

the efficiency of ship operations and gain more economic benefits and also can ensure the 

safety of ships and reduce greenhouse emissions (Perera and Mo 2016). Finally, by using 

DS methods, the concentration of energy consumption in port facilities could be identified 

(Fahdi et al. 2021).  
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6.3 Conclusion 

This thesis has proved the suitability and potentiality of the use of DS techniques to 

explore and investigate the evolution and prediction of multi-port systems. The analysis 

suggested relevant managerial implications, the application of DS in container traffic 

prediction can better make the development strategy and investment schedule, and the DS 

used in exploring port-city dynamic relationships can facilitate the authority of port and 

city to make decisions (see Figure 6.1).  

 

Figure 6.1 Conceptual framework of DS application in maritime transport and port management 

According to the above-mentioned analysis of the thesis, we got the conclusions as 

follows: 

1. Characterizing the evolution of the Yangtze River Delta multi-port system using 

compositional data techniques 

1.1. In discipline, we propose a method that combines Hierarchical Clustering with 

compositional data (CoDa) exploratory tools to explore the temporal and spatial 
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evolution of YRDP from 1992 to 2019. This method can simultaneously identify 

the temporal and spatial characteristics and find the differentiated development 

pattern that other methods cannot meet. 

1.2. Based on the CoDa analysis, we find that the development of YRDP has gone 

through four stages and YRDP is characterized by a tendency towards a multi-

core development and faces a differentiated pattern of peripheral port challenges. 

2. Hybrid approaches for container traffic forecasting in the context of anomalous 

events: The case of the Yangtze River Delta region in the COVID-19 pandemic 

2.1. The hybrid models (configuration 2) we proposed can improve the performance 

of benchmark single models and also resolve the nonlinear problem and remove 

the multivariate limit. 

2.2. With the increase of the training dataset extensions, the accuracy of the models 

increased. 

2.3. Contrary to popular belief, with the increase of the forecasting horizon, there is 

insufficient evidence to indicate that the accuracy was lower. 

2.4. The hybrid model (configuration 2) performs better than other models in the 

context of the COVID-19 pandemic. 

3. The dynamic coupling relationship between port and city from the perspective 

of port container traffic and the economy of the port city 

3.1. From the results of the ECO-oriented mechanism and TEU-oriented mechanism, 

we can divide the port-city relationships into four types, first is Shanghai Port, 

the ECO-oriented and TEU-oriented effects have obvious lagging effects, with 

lagging periods of two and three, respectively. In the long-run relationship, 

Shanghai Port has positive bidirectional interrelationships with its PI, SI and TI.  

3.2. The second type is Ningbo Port. Ningbo Port with a lagging of one for the ECO-

oriented and TEU-oriented effect in the short-run relationship. In the long-run 

relationship, Ningbo Port has a positive bidirectional effect with SI and TI but 

has a negative bidirectional effect with PI.  
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3.3. The third is Suzhou Port, Lianyungang Port and Nanjing Port, the lagging effect 

only exists in SI and TI, and their lagging periods are one in short-run 

relationships. In the long-run relationship, their container traffic has a positive 

bidirectional relationship with SI and TI.  

3.4. The last group is Nantong Port, Zhenjiang Port, Jiaxing Port and Taizhou Port 

(Zhejiang Province), whose container traffic has a positive effect on TI, however, 

TI has a negative impact on container traffic in long-run relationships. There is 

no lagging effect no matter for the ECO-oriented effect or TEU-oriented effect 

in short-run relationships. 

4. Port co-opetition pattern, connectivity and accessibility changes under the 

background of the anomalous events: the case of the Chinese port system 

4.1. After the COVID-19 pandemic, the cooperation between large-scale ports is 

more intense than that between small-scale ports. At the same time, lower-

intensity competition mainly occurred in the pre-COVID-19 pandemic, and 

high-intensity competition mainly took place in the post-COVID-19 period 

4.2. The COVID-19 pandemic weakened the connectivity and accessibility of the 

ports. 

4.3. In terms of methodology, we provided a new perspective to explore the co-

opetition pattern in the port system.
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