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ABSTRACT 

 

Since the first peopling of the region, multiple demographic events have 

occurred generating a complex genetic landscape in North Africa 

characterized by high genetic heterogeneity and constant gene flow from 

surrounding regions.  In this thesis we have attempted to condense this in 

a single demographic model that could explain the diversity observed in 

North Africa. The analysis reveals clear different demographic histories 

for both the majority groups in North Africa, Imazighen & Arabs, 

pointing to a back-to-Africa, Upper Palaeolithic origin for the first and an 

Arab expansion origin for the latter. Moreover, the results points to 

continuous soft splits as drivers of divergence rather than hard splits 

followed by strong, punctual admixture events. This thesis presents 

advances on the exploration of the demogenomics in very complex 

populations, centered on the North Africa scenario.   
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RESUMEN 

 

Desde los primeros pobladores de la región, múltiples eventos 

demográficos han generado un paisaje genético complejo en el norte de 

África, caracterizado por una alta heterogeneidad genética y un flujo 

constante de genes desde regiones circundantes. En esta tesis, hemos 

intentado condensar esto en un solo modelo demográfico que explique la 

diversidad observada en el norte de África. Los análisis revelan historias 

demográficas claramente diferentes para los dos grupos mayoritarios en el 

norte de África, los Imazighen y los árabes, señalando un origen en el 

Paleolítico Superior como consecuencia de un movimiento de vuelta a 

África para los primeros, y un origen como resultado de la expansión 

árabe en la región para los segundos. Además, los resultados indican 

migraciones suaves continuadas desde la separación de dos poblaciones 

como impulsores de la divergencia en lugar de divisiones fuertes seguidas 

de migraciones fuertes y puntuales. Esta tesis presenta avances en la 

exploración de la demogenómica en poblaciones muy complejas, centrada 

en el escenario del norte de África.  
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PREFACE 

 

The study of human societies has been of focal interest since ancient 

Greece, to the point that we have a specific field in science exclusively 

dedicated to it, Anthropology. In anthropological studies we explore the 

origin and evolution of Homo sapiens from several areas of knowledge such 

as archaeology, linguistics, philosophy, or biology in the most clear and 

unbiased way possible. Biological anthropology focuses on how the 

biological characteristics of living people are related to their social and 

cultural practices and can be divided in physical and molecular 

anthropology, with the latter describing how these sociocultural events 

affect humans at the most basic level, how they are able to alter the 

genetic structure of a population. Population genetic studies intend to 

explore and analyze these genetic differences among human individuals 

and populations in a quantifiable and statistically significant manner. 

Demogenomics is the field of population genetics that utilizes genomic 

data to infer the demographic processes that led to the patterns of genetic 

diversity observed in a given population. It gathers them all together in a 

null demographic model that allow us to understand the history of a 

population (bottleneck events, population expansions, migrations…), set 

the neutral background to perform selection studies, and to have a model 

that can be used in conservation analysis to preserve the genetic diversity 

of a species.  

 

In this PhD thesis we aim to apply demogenomics to the North African 

populations to explain the origins and effect of the different demographic 

events to model the genetic landscape observed in the region. Although 

historically underrepresented in population genetic studies, North Africa 

is of high interest for demogenomics. Its geographical location, isolated to 
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the south by the Sahara Desert, already differentiates its population 

history from the rest of Africa. On top of that, due to its proximity to 

Europe and the Middle East multiple migrations towards the region have 

occurred through the course of history. This extensive movement of 

people across the region has led to a very complex pattern of genetic 

diversity that presents an interesting and challenging opportunity to 

explore the effect of demographic events into the genetic landscape of a 

population.  

 

By applying different machine learning algorithms and developing some 

new demographic inference methodologies we tried to disentangle how 

the effects bottlenecks, population expansions or migrations shaped the 

current populations in North Africa, represented by Amazigh and non-

Amazigh groups, which was their origin and how they interacted with 

their surroundings.  
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1.1 Human Population Genetics 

 

Population genetics is the branch of biology that deals with explaining the 

patterns of genetic diversity between populations, how they originated, 

and how they change over time. Through the integration of genetics and 

statistics the field unveils the intricate processes that have shaped the 

diversity of populations over time. To examine the genetic makeup of 

individuals and populations it’s key to understand the effect of the four 

basic evolutionary forces and how they shape the population dynamics of 

genetic variants with a given demographic history, spatial structure, and 

mating system. These four drivers of evolution are: 

1. Mutation: A mutation is a change in the DNA sequence of an 

organism. Mutations are a result of errors in the DNA replication 

during cell division, exposure to mutagens or viral infections. If this 

happens in germline cells, the new allele is introduced to the 

population and becomes an agent in evolution. 

2. Natural selection: Differential transmission of alleles from one 

generation to the next due to functional differences that 

favor/hinder some genotypes over others resulting in an increased 

reproduction success (fitness) of some individuals over others. 

3. Genetic Drift: Differential transmission of alleles from one 

generation to another due to random sampling. In small populations 

the effect of drift is stronger and can lead to fixation of non-

beneficial alleles.  

4. Gene flow: exchange of genetic material between populations 

because of migration of individuals. Allows the introduction of new 

alleles and phenotypes to a population.  
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Approximately 0.08% of the nucleotide base pairs in human DNA vary 

among individuals from which only 15% seem to be population specific 

(Relethford & Harding, 2001). Human population genetics, analyses this 

diversity and infers the evolutionary processes that led to it. The study of 

genetic variation in humans mainly tries to answer three questions: What 

does the level of variation imply about the genetic structure of a 

population? Can we reconstruct the history of a population? and how is 

this diversity affected by the local environments?  

   

To answer these questions, population genetic studies apply statistical, 

biometrical, biochemical and bioinformatical procedures to the analysis of 

genetic markers. The first studies involved the observation of phenotypes, 

like eye colour or protein markers such as ABO blood groups system 

(Yamamoto et al., 2012) and HLA antigen analysis (Thorsby, 2009). From 

there, molecular markers began to be fundamental in population genetics. 

First with microsatellites or short tandem repeats (STRs), later with single 

nucleotide polymorphisms (SNPs), both allowing the exploration of 

variation at a fundamental state. 

   

Uniparental markers like mitochondrial DNA (mtDNA) and Y 

chromosomal DNA, allowed the study of genetic history with a more 

direct interpretation than autosomal data due to the lack of recombination 

and ease of phylogeographic inference (general reference of mtDNA and 

Y). Nonetheless, they present limitations especially due to that uniparental 

markers represent a limited fraction of the genome, meaning that the 

genetic history analyzed is the one specific to the marker and can lead to 

incomplete results in the genetic history of the population, moreover due 

to its small size and high variability present a lower effective population 

sizes contrary to other genetic markers.  
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Autosomal markers, in contrast, provide higher resolution and no sex 

biased studies as a trade-off of a higher computational cost, and the need 

to consider recombination when analysing the data. In autosomal studies, 

as the segment of the genome analyzed is bigger, the number of 

polymorphisms increases dramatically from a few hundred ,in mtDNA, 

up to millions in the bigger genome-wide arrays currently available 

(Affymetrix & Inc, n.d.). Genome-wide array data allows the exploration 

of the genome by genotyping sets of SNPs specifically defined to tackle 

concrete problems, although not covering all the sites like in whole-

genome sequencing. In human population genetics the most widely used 

array is the Human Origins Array that has been uniquely catered to 

ancestry specific analysis with over 900 hundred current worldwide 

individuals from multiple populations and archaic hominids as reference 

(Affymetrix & Inc, n.d.). Array-based analysis presents inherent biases 

depending on the criteria used to design the array. For example, an array 

design to target a specific disease would have a different set of variants 

that one used in population structure analysis. On top of that, arrays tend 

to be biased towards more represented populations (European 

ascertainment bias). This ascertainment bias could generate errors in the 

inferences when dealing with understudied populations (Eller, 2009). 

  

Whole genome sequencing (WGS) tackles this limitation by exploring the 

whole extension of the human genome. This base-by-base view of the 

genome allows the discovery of previously unknown SNPs plus provides 

information on other kinds of genetic variation, such as indels, inversions, 

translocations or copy number variants. Another advantage that WGS 

presents over arrays is the exploration of rare variants, of special interest 

in biomedical studies or demogenomics (Pervez et al., 2022).  
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WGS techniques can be separated into three generations:  

• Sanger sequencing: The original sequencing methodology. Based 

on the addition of labelled oligonucleotides to a complementary chain 

of DNA during the replication process. Produces medium-length 

reads (>500 bp) with up to 99.999% accuracy (Shendure & Ji, 2008)  

but is slow and expensive for large-scale projects. 

• Second generation sequencing:  Produce short reads (100-150 bp) 

with higher errors than Sanger (over 100 times higher) (Shendure & 

Ji, 2008), but at a higher throughput and lower cost. Currently, the go 

to methodology for WGS analysis.  

• Third generation sequencing: Also known as long read 

sequencing, consists of reading the DNA molecule of a single 

molecule instead of breaking it into small fragments.  With these 

methods we can generate longer sequence reads (> 10kb) at expense 

of a higher per-base cost rate and significantly higher error (Pervez et 

al., 2022).  

 

In this thesis, 2nd generation WGS data is used in most of the analysis, 

specifically Illumina based methods to produce high coverage genomes. It 

is also important to, when available, try to homogenize the source of the 

genomes to minimise possible batch effects caused by the use of data 

from different sequencing technologies (Maceda & Lao, 2021). 
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1.1.1 Contextualization of population genetics 

 

Population genetics is a crucial component of the study of human 

evolution; however, gaining a comprehensive understanding of this 

intricate process requires the integration of cultural and environmental 

studies into the analysis. Gene flow is a key evolutionary factor, but its 

interpretation goes beyond the mere exchange of genes between 

populations; it requires contextualization to grasp the underlying reasons 

for these genetic movements. Environmental factors, such as glaciation 

events or natural disasters, and cultural factors like wars or agricultural 

innovations, significantly impact the genetic composition of a population. 

Additionally, cultural elements like religion or language can influence the 

internal structure of a population. These various factors collectively 

challenge the detection of signals related to demographic processes within 

populations. Consequently, a holistic approach that considers the interplay 

between genetics, culture, and the environment is essential for a 

comprehensive understanding of human evolution (Creanza & Feldman, 

2016) 

.  

Figure 1: Genetic, environmental, and cultural factors influence one 

another, and all have an impact on human evolution. Figure and caption 

from Creanza and Feldman 2016   
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1.1.2 History of Human Population Genetics 

 

The field of population genetics originated back in the middle of the 20th 

century when researchers began exploring the genetic basis of human 

variation. The rediscovery of Gregor Mendel’s work (Mendel, 1886) on 

the inheritance laws, by botanists Hugo DeVries (De Vries, 1900), Carl 

Correns (Carl Correns, 1900) and Erich von Tschermark (Tschermak, 

1900), presented the foundations of the discipline. Mendel’s work was 

then confirmed by Thomas Hunt Morgan studies on Drosophila 

melanogaster (Morgan et al., 1922) who defined the inheritance units, 

named genes, kickstarting a century of marvels on the study of heredity 

and genetics.  

 

The development of three ideas, extracted from the exploration of 

Mendelian heredity, before 1918 would become the basis of the 

fundamental works of Fisher, Wright, and Haldane, that later would be 

considered the steppingstones of population genetics. First, the Hardy-

Weinberg equilibrium law back in 1908 (Hardy, 1908; Weinberg, 1908).  

The Hardy-Weinberg equilibrium states that alleles and genotype 

frequencies in a population will remain constant from one generation to 

the next if there is no influence from evolutionary forces (genetic drift, 

mutation, assortative mating, natural selection…), essentially defining the 

conditions under which there is no evolution. The second idea was the 

work on mathematical consequences of inbreeding mainly driven by H. S. 

Jennings (Jennings, 1914, 1916; Kimura & Crow, 1964), which in short, 

end up with a measure of linkage disequilibrium defined by Robbins 

(Robbins, 1918). And finally, we have the analysis of the effects of 

selection over many generations formulated by H.T.J Norton (Punnet, 

1915).  
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In the following years, the contributions to the field were mainly 

dominated by Haldane, Fisher, and Wright. Fisher introduced the 

diffusion equations into population genetics (Fisher, 1922, 1923), Haldane 

developed an approximation of change of number of copies of very rare 

variants by branching processes (Haldane, 1927) and Wright presented a 

theory on the effects of random changes on small populations, what later 

was called genetic drift (Haldane, 1927). The contributions from these 

three scientists come together in the Wright-Fisher diffusion model (WF 

model). The Wright–Fisher diffusion is a central model for the temporal 

fluctuation of allele frequencies in a large population which assumes a 

population of a constant size, random mating, and non-overlapping 

generations in the absence of the effects of mutation, gene flow and 

natural selection. The WF model provides a tool for studying how the 

introduction of any complex evolutionary forces can affect a relatively 

simple model like in descriptions of coalescence theory, where a WF 

model is used as the standard model for the coalescent framework and is 

then modified to account for the effect of selection, changes in population 

size or migration (see in 1.2.1 - Coalescence Theory).  

 

Two milestones for genetic research occurred during the next few years. 

In 1944, Oswald Avery and colleagues discovered the DNA as a carrier of 

genetic information (Avery et al., 1944). Nine years later, the double 

helical structure of the molecule was described (Watson & Crick, 1953), 

allowing the development of molecular genetics. The introduction of 

DNA sequencing and the ability to analyse specific regions of the genome 

allowed scientists to explore the genetic variation within the populations.     

    

During the 1960s population genetics continued to expand. From a 

theoretical perspective, there were two major achievements. On one side, 
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the work of Lewontin (Hubby & Lewontin, 1966) and Harris (H. Harris, 

1966) on quantification of genetic variability by using electrophoresis of 

soluble proteins. On the other side, Motoo Kimura developed his neutral 

theory of evolution which shows that the probability of fixation of any 

variant is dependent on the effective population size (Ne) and a selection 

coefficient (s), proposing that genetic variation mainly arises as to the 

balance between mutations and genetic drift (Kimura, 1964). Kimura also 

proposed the “infinite sites model” (Kimura & Crow, 1964), explained 

later in this thesis (see in 1.2.1 - Coalescence Theory). In a more technical 

aspect, in the 1960s the use of computer-based simulations became a 

more relevant in biological studies (Allen & Fraser, 1968; Garfinkel et al., 

1964; Sheppard, 1969). In population genetics, one of the first simulation-

based studies was the application of Monte-Carlo experiments to a 

stepwise mutation model comparing it to an infinite sites model (Kimura 

& Ohta, 1974). From this point forward, there has been a tight 

relationship between new dry lab methodologies and advances in 

population genetics.  

 

In the 1970s the exploration of simulation-based studies continued 

(Kimura & Ohta, 1974) and it was also the decade where the first 

sequencing method was developed by Frederick Sanger (Sanger et al., 

1977). Also, during the 70s it was defined that the difference between 

human populations constituted only a minor variation of the total 

variation between individuals (Lewontin, 1972). 

 

The 80s marked an important advancement in population genetics, 

especially for this thesis, with the introduction of coalescence theory 

(Hudson, 1983; Kingman, 1982; Tajima, 1983). The coalescence treats a 

set of alleles as the product of a bifurcating genealogy, simplifying the 
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analysis of sequence variation under neutral models and allows estimation 

of parameters of interest by rapid simulation of populations that have 

undergone past population size changes or are subdivided (see in 1.2.1 - 

Coalescence Theory). 

 

The late 80s and early 90s reignited the population genetics field. On top 

of the theoretical aspects developed in the prior decades, molecular 

genetics advancements in the production of mtDNA sequences, array 

chips (Chee et al., 1996) and microsatellites (Litt & Luty, 1989) were a 

trigger to the exploration of diversity between human populations. In 

1987, Rebecca Cann, Mark Stoneking and Allan Wilson proposed the out-

of-Africa hypothesis by analysing the genetic diversity present in the 

mtDNA of 147 individuals, proposing the maternal origin of Homo sapiens 

in Africa (Cann et al., 1987). Another seminal work of human population 

genetics was the one produced by Cavalli-Sforza, Menozzi and Piazza in 

1993 where they compiled all classical markers studies, defining the 

population structure of all major population groups (Cavalli-Sforza & 

Piazza, 1993). Finally, the 90s suppose the start of two major projects that 

would transform population genetics from then onwards; the extraction 

and characterization of ancient DNA molecules (Pääbo, 1989) and the 

Human Genome Project (HGP) that launched in the 1990 (National 

Human Genome Reasearch Institute, 2022).    

 

The turn of the 21st century marked a transformative period for human 

population genetics, driven by the completion of the HGP (International 

Human Genome Sequencing Consortium et al., 2001) and the 

development of high-throughput genotyping technologies. These 

breakthroughs enabled large-scale studies, including genome-wide 

association studies (GWAS), which linked specific genetic variants with 
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complex traits and diseases, and large databases of WGS like the 1000 

Genomes Projects (The 1000 Genomes Project Consortium, 2015) or the 

Simons Genome Diversity Project (Mallick et al., 2016) that defined fine-

scale population structures and migration events. By examining the 

genetic architecture of diverse populations, researchers uncovered 

population-specific genetic risk factors and the influence of genetic 

background on disease susceptibility. 

 

Demographic inference analysis also became common, especially in the 

2010s. Some relevant papers on the matter explain the out-of-Africa 

expansion event (Gravel et al., 2011), some specific demographic 

histories, specially focusing on Austronesian populations (Malaspinas et 

al., 2016; Mondal et al., 2019) or African populations (Lorente-Galdos et 

al., 2019), ancient Neolithic (Marchi et al., 2022) and bronze age 

populations (Clemente et al., 2021) and the presence of weak population 

substructure at the beginning of H. sapiens (Ragsdale et al., 2023). Outside 

humans, demographic history analysis on other primates (Kuhlwilm et al., 

2019; Pawar et al., 2023; Peter et al., 2010) and other mammals, like killer-

whales (Foote et al., 2019) or grey wolfs (Bergström et al., 2022) among 

many others, have also gained relevance in the last few years. 
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1.2 Demographic inference in complex populations. 

 

Demographic history inference involves reconstructing the past 

population dynamics based on genetic data from present-day populations. 

By analyzing patterns of genetic variation, we can make inferences about 

historical events such as population expansions, population contractions 

(bottlenecks as a combination of both), splits and unions of populations, 

admixture events and migration patterns. The next generation sequencing 

revolution supposes an exponential multiplication in the amount of 

genetic polymorphism data available and has allowed scientists the 

development of new inferential methods, many of them inspired by 

coalescence theory.   

Figure 2: Flow chart of the demographic inference process. From Marchi 

et al 2021. 
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1.2.1 Coalescence Theory 

  

Coalescence theory is a theoretical framework that models the process of 

genetic lineages tracing back to a common ancestor. The main goal is to 

understand the forces which produce and maintain genetic variation. The 

coalescence was first described by Kingman (1982) (Kingman, 1982), but 

also discovered independently by Hudson (1983) (Hudson, 1983) and by 

Tajima (1983) (Tajima, 1983).  The coalescent approach is based on two 

fundamental insights (M Nordborg, 2007): 

The first insight is that since neutral variants do not impact reproductive 

success, we can separate the neutral mutation process from the 

genealogical process. To illustrate this, let's consider an example using a 

population of N clonal organisms that reproduce following the neutral 

Wright-Fisher (WF) model (Fisher, 1922; Haldane, 1927; Wright, 1937). 

In this model, each generation is discrete, and N parents are randomly 

selected with replacement and without mating. The number of offspring 

contributed by a specific individual to the new generation follows a 

binomial distribution with parameters N (number of trials) and 1/N 

(probability of selection). Now, let's examine the genealogical 

relationships in this reproductive context. When observing forward in 

time, lineages diverge when an individual produces more than one 

offspring and terminate when there are no offspring. Conversely, when 

tracing back in time, lineages merge or coalesce when multiple individuals 

descend -are copies- from the same parent. If we track backwards in time 

a group of chromosomes across generations, the number of distinct 

lineages will gradually decrease until reaching a single lineage, which 

represents the most recent common ancestor (MRCA) of the 

chromosomes under consideration. All of this happens independently of 

the neutral allelic differences between individuals, so we can model the 
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evolutionary dynamics of neutral allelic variants using coalescence and 

mutation dropping. The allelic state of any group of individuals can be 

generated by assigning an ancestral state to their MRCA and then 

‘dropping’ mutations along the branches of the tree that leads to them. 

 

The second insight is that it is possible to generate a genealogy of a group 

of individuals backwards in time without worrying about the rest of the 

population. The genealogy of a group of individuals may be generated by 

simply tracing back generation by generation, keeping track of 

coalescences between lineages until we found the MRCA.  

These two insights help us realize that the pattern of neutral variation that 

we can observe in a population can be viewed as the result of random 

mutations on a coalescence tree. Therefore, we can understand how 

Figure 3: Coalescence trees. a) Neutral mutation process can be separated 

from the genealogical process. A realization of the genealogical relationships 

under a neutral Wright-Fisher model with N = 10. b) Genetic composition of a 

group of individuals is completely determined by the group’s genealogy and 

the mutations that occur on it. 
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model parameters affect polymorphism data by understanding how they 

affect genealogies. Another crucial concept we extract from coalescence 

approaches is that no matter how many individuals we sample, there is 

only a single underlying genealogy to estimate meaning that we could 

obtain an equally good inference with a sample size of one than with a lot 

of data.  

 

The original Kingman paper (Kingman, 1982) described the coalescence 

as a continuous-time Markov process that arises naturally as a large 

population approximation to the Wright-Fisher model.  

 

∏
𝑁 −𝑖

𝑁

𝑘−1
𝑖 = 0 =  ∏ (1 −

𝑖

𝑁
)𝑘−1

𝑖 = 0 =  1 −
 
𝑘

2

𝑁
 +  𝑂 (

1

𝑁² 
) (eq.1) 

 

The equation above describes the probability that no lineages coalesce in a 

previous generation for k lineages. By employing this approximation, we 

describe the coalescent models of a sample of n haploid chromosomes as 

a random bifurcating tree. In this tree, the n-1 coalescence events 

(representing all coalescence events until reaching the MRCA of the entire 

population) are treated as mutually independent and exponentially 

distributed random variables. The trees resulting can be extremely 

variable, in topology and branch lengths. Due to the independent 

exponential distribution of branch lengths and the random selection of 

lineages for coalescence regardless of branch length, the number of 

potential trees escalates exponentially with an increasing number of 

individuals. Although we can obtain multiple coalescent trees from a set 

of individuals, there is only one underlying genealogy. Consequently, 

sampled gene copies from a population must be considered dependent, 

rendering the impact of increasing the sample size rather ineffective. 
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We can extend the coalescent function to calculate what would be the 

probability of two lineages coalescing under a population with constant 

size 2N (diploid WF model) (Hahn, 2018). 

𝑃(𝑘 →  𝑘 − 1)  =  
𝑘(𝑘−1)

4𝑁
  (eq.2) 

This probability assumes that at most two chromosomes can choose the 

same ancestor in any generation and implies that larger samples of 

lineages have higher chances to present a coalescent event at any given 

generation. The next three equations are derived from this one and give 

more insight on the coalescent process. The first one, indicates which 

should be the time for which k lineages remain.  

   𝐸(𝑇𝑘)  =  
4𝑁

𝑘(𝑘−1)
   (eq.3) 

The time between coalescent events is smaller as the number of samples 

increases (N). The second equation allows us to explore at which time all 

the lineages present in our sample coalesce. We can determine the average 

tree height by summing the waiting times at each k.  

     𝐸(𝑇𝑀𝑅𝐶𝐴)  =  4𝑁 (1 −  
1

𝑛
)  (eq.4) 

Finally, we can calculate the total length of the tree. The total length of a 

coalescence tree represents the number of mutations observed in the 

sample.  

 𝐸(𝑇𝑡𝑜𝑡𝑎𝑙)  =  ∑ 𝑘𝑛
𝑘 = 2

4𝑁

𝑘(𝑘−1)
 =  4𝑁 ∑

1

𝑘

𝑛−1
𝑘 = 1  (eq.5) 

The model of coalescence we have presented is an approximation using 

the WF model of evolution, that assumes drift as the only driver of 

fluctuations of the allele frequency. After the original representation of the 

coalescence, multiple generalizations have been made that take into 

several levels of biological complexity not present under WF. The first 

generalizations were applied to take into account non-haploid organisms 
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and sexual differentiation (Möhle, 1998). After that other important 

generalizations to do demographic inferences include:  

 

- Variation in the Effective Population size (Ne) 

Although the coalescence is not robust to variation in population size, 

incorporating changes in the Ne is relatively easy. Let N(t) be the 

population size at t generations ago. Lineages are more likely to coalesce 

when the population size is small than in generations with large 

population size (Figure 4).  

 

 

 

 

Figure 4: Variable population size can be modelled as a standard 

coalescence with a nonlinear time scale. As the population that grows 

exponentially shrinks back in time, the scaled time runs faster making more 

likely the coalescence between branches when Ne is smaller. From Nordborg 

2007, in Handbook of Statistical Genetics. 
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- Extensions to non-neutral models:  

Initially, the coalescent method was developed for neutral genetic 

variation. However, subsequent generalizations have incorporated various 

forms of selection, recombination, and other non-WF model processes 

into the coalescent framework. Both the inclusion of selection and 

recombination cause substantially increasing the complexity of modelling 

the coalescent process, especially selection. By definition, under selection 

some genotypes reproduce more than the others, because backwards in 

time there is no random picking of the parents.  Even in this case, 

extensions to take into account selection have been proposed (Kaplan et 

al., 1988; Neuhauser & Kronet, 1997; SLATKIN, 2001). Recombination, 

on the other hand, profoundly affects the coalescence process. Each 

recombination event between two sites causes a rearrangement in the 

coalescent tree. The more recombination events there are, the more a 

genealogy changes. Each individual genealogy we obtain from a 

Figure 5: Effect of recombination on coalescent genealogies. The 

ancestral recombination graph summarizes the three unique genealogies 

represented above. 
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recombination event is called marginal genealogy. Given all the 

marginal genealogies we can construct an ancestral recombination 

graph (ARG) (Figure 5) that models the effect of recombination instead 

of a tree by representing the history of all the non-recombining segments 

of the genome (Griffiths & Marjoram, 1996; Hudson, 1983; Magnus 

Nordborg & Tavaré, 2002).  

- Multiple populations:  

The coalescent model has been extended to accommodate multiple 

populations or subpopulations. This allows for the analysis of population 

structure, migration, and admixture events. 

- Infinite-sites coalescent model:  

With the advent of high-throughput sequencing technologies, the 

coalescent method has been adapted to analyse genomic data, including 

whole-genome sequencing and genotyping data.  

As the amount of data increases the new models need to consider these 

data arise. The best sort of model would be a four-state mutation model 

that could account for the differences in mutation rates among all four 

nucleotides and multiple mutations at the same site. However, due to the 

rare nature of polymorphisms the infinite-site models (Ewens, 1974; 

Wakeley, 2020) assume that multiple mutations at single sites do not 

happen. This approximation works especially well in low diversity species 

such as Humans. The incorporation of the infinite-sites generalization 

provides a simplified framework for estimating mutation rates and 

inferring evolutionary relationships based on the observed DNA sequence 

differences.  

Under an infinite-sites model and the assumption that mutations occur 

randomly with probability μ per generation, the expected number of 

segregating sites in N diploid individuals in a sample is:  
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𝐸(𝑆)  =  𝜇 ∗  4𝑁 ∑
1

𝑘

𝑛−1
𝑘=1   (eq.6) 

We can see that the expected number of segregating sites can be explained 

as the total length of a coalescent tree multiplied by the mutation rate μ. 

This highlights the relationship between the infinite site model and the 

coalescence and that, although the addition of more sequences increases 

the number of segregating sites, each extra sequence will contribute less 

and less to the total length of the coalescence tree.  

The structure of coalescent genealogies can graphically represent the 

frequency of alleles and the Site Frequency Spectrum (SFS) (see in 1.2.2.1 - 

The Site Frequency Spectrum). The exact topology of the genealogy will 

determine what allele frequencies are possible and the possible SFS. 

However, averaging over all genealogies we can predict the expected 

number of segregating sites at any frequency i with:  

                                𝐸(𝑆𝑖)  =  
4𝑁𝜇

𝑘
 =  

𝜃

𝑘
   (eq.7) 

This equation implies that there are 𝜃 singletons, 𝜃/2 doubletons, 𝜃/3 

tripletons, and so on, been the singletons the most common type of site 

and generating the expected graph of a Site Frequency 

Spectrum.(Pedersen et al., 2017) 
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Figure 6: SFS distribution for six human populations. Populations contain 

individuals with the following ancestry: Finns from Finland (FIN), Peruvians 

from Lima, Peru (PEL), Gujarati Indians from Houston, Texas (GIH), Utah 

Residents (CEPH) with Northern and Western Ancestry (CEU), Yoruba in 

Ibadan, Nigeria (YRI), and Han Chinese in Bejing, China (CHB) Each 

population is followed by a p var estimate per variable site. Figure and caption 

from Pedersen et al 2017.  

The coalescence theory has given us the theoretical framework to 

transform predictive population genetics into a rather inferential 

discipline. It allows the possibility to link past demographic events with 

genetic diversity by observing how migrations patterns, divergence times 

and changes in the effective population alter the calculation of MRCA 

that we can observe in a pair of neutrally evolving sequences. In the 

following section we are going to discuss different methodologies to 

perform demographic inferences and their pros and cons.  
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1.2.2 Methods of Demographic Inference 

 

There is no straight recipe for sound demographic inference. The many 

different approaches and programs available, as well as the data, model 

selection and validation with observed data difficult our ability to do 

proper inferences.  

Data selection is a crucial aspect of demographic inference analysis, and 

whole genome sequences (WGS) offer a valuable opportunity to enhance 

our understanding of demographic histories. Over time, WGS has 

become more accessible, enabling researchers to delve deeper into 

population genetics. Compared to other genetic data like SNPs 

microarrays or microsatellite data, WGS provides a higher resolution, 

facilitating more precise and detailed demographic inferences. Complete 

genomes allow the search of rare and structural variants across the 

genome (Hinds et al., 2005; T. L. Newman et al., 2006; Sharp et al., 2006). 

This information contributes to the study of populations at a finer scale 

and more in depth understanding of demographic history of specific 

groups. Moreover, WGS can identify subtle patterns of admixture 

enabling the study of historical interactions between populations and 

uncovering the demographic history of more complex populations. 

Finally, the popularization of WGS due to a decrease in the costs of 

production, has led to an increase in the amount of samples available per 

population. This larger sample size provides a more representative 

depiction of population diversity and enhances the robustness of 

demographic inferences.  

Although the great advantages that whole genome data confers in the 

study of demographic history, it also presents some limitations mainly 

because of the high dimensionality of the data and the computational 

challenges that come with it. A typical solution to bypass the high 
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dimensionality problem is using some type of summary statistics (SS) 

(Tajima’s D, F-statistics, nucleotide diversity - Ⲡ -, SFS, LD, …) that can 

capture the relevant information to carry out demographic inference 

analysis, with Site Frequency Spectrum (SFS) being the one more widely 

used in inference due to its high efficiency to capture large scale genome 

diversity and the fact that we understand how the underlying demography 

modifies the spectrum.  

1.2.2.1 The Site Frequency Spectrum  

 

The Site Frequency Spectrum (SFS), or Allele Frequency Spectrum (AFS), 

is essentially a histogram of the frequency of certain alleles in a dataset. In 

each bin in the histogram, we observe the proportion of sites in an 

alignment of multiple sequences with a given minor allele frequency 

(Figure 6). In a neutrally stationary population, the expected SFS relative 

frequencies are given by the expected segregating sites function (Eq. 7).  

In a one-dimensional SFS (1D-SFS), the simplest form of SFS, we 

construct the histogram by assigning values to each Single Nucleotide 

Variant (SNV) depending on the reference allele. We give 0 if the SNP is 

homozygous for the reference allele, 1 to the heterozygous and 2 if 

homozygous for the alternative allele. Then we count how many SNVs 

show each possible minor allele frequency and build the histogram with it.  
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Figure 7: Diagram on how a 1D-SFS is built. (1) Assign values to 

genotypes depending on minor allele presence. (2) Count the number of 

SNPs with different frequencies of minor alleles across the population. (3) Plot 

the SFS. 

For most demographic history analysis, instead of defining the bins 

relative to a reference sequence we do it by utilizing one or more closely 

related species to define the ancestral state of each site. By considering the 

ancestral state we could identify the source population during a 

population split event. This form of SFS is what is known as an unfolded 

SFS. In this thesis we use the unfolded SFS when we apply this summary 

statistic to our analysis.  

Figure 8: 2D-SFS extracted from a genomic dataset of 2 populations. The 

total number of cells in the SFS matrix is 9. In a multi-SFS with 10 populations 

the total number of cells would be 59,049. Modified from Sousa & Hey 2013 
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Sometimes we want to apply a SFS to compare between two or more 

populations. The SFS can be extended to two or more populations 

forming matrices where the entry (i,j), in the case of a 2D-SFS, 

corresponds to the count of sites with frequency i in population 1, and 

frequency j in population 2 (Sousa & Hey, 2013).  Following this premise, 

we can theoretically build SFS that can compare as many populations as 

we need, but at some point we would again face a curse of dimensionality 

problem since the matrix increases exponentially as the number of 

populations increases (Blum, 2010) (Eq. 8).  

𝑆𝐹𝑆𝑐𝑒𝑙𝑙𝑠  = 3𝑛 − 2     (eq.8) 

By computing the observed SFS of a set of populations and comparing it 

to the SFS calculated from simulations we can infer demographic 

parameters and natural selection but we must consider possible caveats of 

this approximation. The first important limitation is that SFS ignores 

linkage disequilibrium information. The SFS captures genetic information 

from an independent set of SNVs. This, although it is valuable since every 

SNV becomes highly informative, misses the information extracted from 

analysing the LD patterns which can uncover fine structure of large, 

subdivided populations and recent migration events. In addition, the SFS 

minimax rate of convergence1 is poor (Terhorst & Song, 2015), meaning 

that the number of samples needed to estimate a population size history 

function, for example, needs to be exponentially bigger to obtain a similar 

magnitude of error than other classical estimators such as density function 

or non-parametric regression (Terhorst & Song, 2015). Finally, Myers, 

Fefferman & Patterson (Myers et al., 2008) showed that for any 

population size function, one can construct many smooth functions 

 
1 Minimax theory provides a rigorous framework for establishing the best 
possible performance of a procedure under given assumptions. There are a 
set of techniques for finding the minimum, worst case behaviour of a 
procedure (Devroye & Lugosi, 2001).  
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generating the same population SFS. This results in the possibility of 

obtaining the same expected SFS for multiple trees which can be a 

problem when inferring the demographic history of a population if the 

sample size of the population is not sufficient (Baharian & Gravel, 2018; 

Bhaskar et al., 2015).  

Once we have understood how the SFS works as a summary statistic for 

identifying diversity patterns across the genome, now we are going to see 

some methods that use this SS to do inferences about a population 

demographic history. 

 

Inference from the SFS 

 

There are three main methods that take advantage of the distribution of 

allelic frequencies to infer effective sizes, splitting events and migrations 

between populations. Those methods utilize different extensions and 

optimizations of the maximum likelihood function to compare the 

simulated data to the observed SFS.  

 

The first method to infer demographic histories based on the use of SFS 

is the diffusion approximation for demographic inference (∂a∂i) from 

Gutenkunst et al. (Gutenkunst et al., 2009).  ∂a∂i efficiently simulates a 

multipopulation SFS by adopting the diffusion approach explained in 

(Ewens, 2000; Fisher, 1922; Kimura, 1964). Following, this approach 

utilizes a composite likelihood function2 to compare the simulations with 

 
2 Composite likelihood is an inference function derived by multiplying a 
collection of component likelihoods; the collection used is often determined by 
the context, in this case, the linkage disequilibrium between sites. Because 
each individual component is a conditional or marginal density, the resulting 
estimating equation obtained from the derivative of the composite log-
likelihood is an unbiased estimating equation (Reid et al., 2011) 
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the observed data to ensure that correlated (linked) allele frequencies do 

not bias the parameter estimation. 

  

The next two methods, the stairway plot (Liu & Fu, 2015) and 

fastsimcoal2 (Excoffier et al., 2013, 2021), obtain the expected SFS 

probability using a coalescent based approach. The stairway plot method 

optimizes the observed SFS composite likelihood by means of a genetic 

algorithm (see 1.2.3.1 – Genetic Programming). The algorithm is not restricted 

to specific demographic models and can explore a larger model space 

therefore allowing inference of more detailed demographic histories. The 

genetic algorithmic nature of the stairway plot makes it especially useful 

for exploratory and hypothesis-generating analysis.  

 

Excoffier et al. (Excoffier et al., 2013, 2021) proposed the fastsimcoal2 

framework as an algorithm that approximates the likelihood of the SFS by 

using coalescent simulations. Fastsimcoal2 uses coalescent simulations to 

estimate the expected SFS, and a conditional expectation maximization 

algorithm3 (CEM) to estimate the parameters, one at a time over several 

optimization cycles. This approach has been shown to be very robust and 

can be applied to an arbitrarily large number of populations.  

 

The use of SFS allows to explore complex scenarios and apply the 

inferences to large numbers of data, but lacks the information provided by 

linkage disequilibrium. Moreover, even though these methods can be 

extended to many samples, the SFS can become intractable and 

 
3 A CEM is an extension of the two-step Expectation Maximization (EM) 
algorithm. In the E-step, the algorithm computes the expected value of the 
complete-data log-likelihood function, given the observed data and the current 
estimate of the parameters. In the M-step, the algorithm maximizes the 
expected log-likelihood function with respect to the parameters (Dempster et 
al., 1977; Meng & Rubin, 1993).  



29 
 

simulation-based estimations become slower as the sample size increases, 

and the number of populations grow. 

1.2.2.2 IBD & IBS based methods. 

 

Identity by descent (IBD) and Identity by State (IBS) are two other types 

of summary statistics that, contrary to SFS, take into account linkage 

information between sites. IBS describes fragments that are identical, 

whereas IBD describes segments of the genome that have been inherited 

from a common ancestor without any recombination. The more closely 

individuals are related, the higher the percentage of their shared IBD, 

since they share a more recent common ancestor in their genealogical 

history compared to two randomly sampled individuals. As populations 

undergo both divergence and admixture over time, the lengths of IBD 

segments will gradually degrade due to recombination (Carmi et al., 2013; 

Palamara & Pe’er, 2013). Therefore, longer haplotype segments tend to 

indicate more recent relatedness, as there is a lower probability of 

recombination inducing a decay in their length over shorter periods of 

genealogical time (Henn et al., 2012). Demographic factors can be 

estimated based on the distribution of observed IBD in a contemporary 

population (Browning & Browning, 2015). Analysing IBD segments 

provides valuable insights into the demographic history and relatedness 

among individuals within a population. Some of the methods that make 

use of IBDs to infer demographic history are, GERMLINE (Gusev et al., 

2009), RaPID (Naseri et al., 2019) or ILASH (Shemirani et al., 2021) 

among others.  IBS methods also contribute to infer the parameters of a 

demographic model including population size changes, divergence events 

and admixture pulses giving accurate prediction where SFS inference 

methods, such as ∂a∂i, failed to converge (K. Harris & Nielsen, 2013). 
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IBS has also been used to show that at least 2 migration pulses are needed 

to account for admixture from Europeans into Native American 

populations (Gravel, 2012).   

 

These methods rely on good ascertainment of the segments, which is 

specially complicated for small segments that correspond to historical 

events that occurred further in time. Most approaches that perform 

inference based on IBD or IBS blocks explicitly condition tract size to be 

larger than a specific cut‑off when calculating the likelihood; thus, using a 

minimum length cut‑off will not result in biased inferences (Sticca et al., 

2021). 

1.2.2.3 Markovian coalescent methods. 

 

Markovian coalescent methods, pairwise (PSMC) and sequential (MSMC), 

are statistical approaches derived from the sequential coalescent (Wiuf & 

Hein, 1999), itself derived from the coalescent with recombination 

(Hudson, 1983), used to infer past changes in effective population size 

based on genetic data. Both methods are particularly useful when studying 

deep population timescales and when working with a very limited number 

of samples. Studies using this approach have been given great results in an 

ancient horse (Orlando et al., 2013), an ancient wolf (Skoglund et al., 

2015) and two woolly mammoths (Palkopoulou et al., 2015), among many 

others (Mather et al., 2020).  
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Extended from the sequential Markov coalescent (SMC) (McVean & 

Cardin, 2005), they make use of Hidden Markov models [Box1] under a 

coalescent framework that allows the tracking of the coalescent event 

between the two alleles at every locus in a single genome. By tracking this 

process in a limited time frame across the genome, PSMC and MSMC 

reconstruct the effective population size through time provided an 

assumption of the mutation rate (Mather et al., 2020) (Figure 9). The 

central concept behind these models is that recombination events of a 

population sample can be represented as transitions between the marginal 

genealogies along the genome. We can take a look at an ARG (Figure 4, 

Figure 9), each node signifies either coalescence or recombination events. 

The sequential coalescent associates each locus of the sample alignment 

with a genealogy embedded in the ARG. Consequently, a recombination 

Box 1. Hidden Markov models 

 
A Hidden Markov model (HMM) consist of a double stochastic process, in which 
the hidden stochastic process (Xt) can’t be directly observed, but can be inferred by 
analysing the sequence of observation symbols (Yt) of another set of stochastic 
processes that depend of Xt. The HMM can be represented as a stochastic model of 
discrete events and a variation of the Markov chain, a chain of linked states, in 
which the next state (Xt) depends only on the current state of the system (Xt-1). 
After Xt has moved to its new state, the value of Yt is generated by a probability 
distribution that depends on the value that Xt takes on that time.  

           
 

Hidden Markov model with four hidden states (Xt) and three observed states (Yt). 
Each hidden state presents a probability pt-1t of transitioning from a hidden state 
(Xt-1) to another hidden state (Xt) and an observation probability bt(k) distribution 
for state t.  
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event in the ARG corresponds to a change in the genealogy along the 

genome. 

   

 

In the PSMC (Li & Durbin, 2011), one diploid sequence is needed as it 

uses two haplotypes to generate the inferences. From those haplotypes, 

PSMC infers the TMRCA based on the local density of heterozygous. 

From there the TMRCA at each segment/locus is used to create a 

Figure 9: The sequentially Markovian coalescent. The colored circles 

represent nucleotide states belonging to the alleles at each locus and double 

grey lines denote recombination breakpoints. The TMRCA of the two alleles at 

each locus is reflected in the local tree. (a) In PSMC, there are only two 

haplotypes. Thus, the topology of the local tree is fixed, but the time to the 

most recent common ancestor differs among loci. (b) In MSMC, there are 

multiple haplotypes. MSMC ignores most of the local tree topology, focusing 

only on the most recent coalescence event at each locus. From Mather et al. 

2020. 
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TMRCA distribution across the genome. And since the rate of coalescent 

events is inversely proportional to effective population size (Ne), PSMC 

identifies periods of Ne change. By analysing the fluctuations in 

coalescent rates across the genome, PSMC reconstructs changes in 

effective population size over time.  

The MSMC (Schiffels & Durbin, 2014) extends PSMC analysing multiple 

genomes at the same time and calculating the MRCA of the two alleles 

that coalesce first a given locus. MSMC models the coalescent rates 

between pairs of lineages, considering the joint coalescence of multiple 

lineages, because this the input data must be phased. Phasing allows the 

method to distinguish between the two parental haplotypes and accurately 

infer the coalescent events occurring within each time interval. MSCM can 

be applied to estimate more recent evolutionary histories than PSMC, 

which is limited to 20-30 Kya.  

Although these methods are robust and powerful for inferring changes in 

the population size through time, they do present some limitations we 

have to consider when deciding the method to use. 

 

● Even though MSCM can deal with recent events better than 

PSMC, it still presents limitations in capturing very recent 

demographic events.  

● SMC methods have limited sensitivity to migrations and very 

complex demographic scenarios. MSCM captures better migration 

events but still presents problems in very complex models, such as 

situations where population substructure is important. 

● Both present strict cut off values in the sample quality to run 

reliably (Nadachowska-Brzyska et al., 2016).  
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Following the release of MSCM, new methods have expanded the SMC 

that outperform and deal with certain limitations of PSMC and MSCM. 

For example, the SMC++ allows a larger number of genomes and 

unphased data to be used, plus presents higher accuracy in recent past 

population size inferences as it incorporates the distributions of the allele 

frequency as a summary statistic of the remaining n-2 haplotypes 

(Terhorst et al., 2017).  

 

The methods discussed so far rely on defining a likelihood equation to 

compare different models. This approach provides a strong statistical 

representation of the likelihood of a model in relatively simple 

demographic scenarios. However, it becomes challenging to apply these 

methods to very complex scenarios because the calculations and analyses 

become impractical and the equations that define the likelihood become 

intractable. To deal with this issue, at the end of the 20th century, 

methods based on Bayes statistics were developed. In the following 

section, we are going to explore the Approximate Bayesian Computation 

and some of its extensions to do demographic inferences.   

1.2.2.4 Approximate Bayesian Computation 

 

Approximate Bayesian computation (ABC) is a statistical framework 

extended from the Bayes Theorem (Bayes & Price, 1763) [Box2] used for 

inferring posterior distributions of parameters given a demographic 

model, and or compare models of interest if a function to estimate the 

likelihood of the data given the models does not exist. The first ABC-

related ideas originated back in the 1980s, when Rubin (Rubin, 1984) 

described a hypothetical sampling mechanism that yields a sample from 

the posterior distribution. This description coincides exactly with that of 
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the ABC-rejection scheme. In 1997, two main studies settled the basis of 

ABC by proposing simulating artificial datasets and selecting among them 

by comparing summary statistics (SS) (Fu & Li, 1997; Tavare et al., 1997) 

and selecting those that have the same exact number of differences as the 

observed data. Tavare et al., 1997, explicitly can be considered the father 

of modern ABC as they introduced the Bayesian component in the 

inference as the  𝜃 =  4𝑁𝜇 parameter was not fixed but sampled from a 

prior distribution. This first approach yielded two main problems that 

were addressed the next year by Weiss and Von Hassler (Weiss & Von 

Haeseler, 1998). The first problem is regarding the SS. Weiss & Von 

Hassler proposed that to capture all the information of the data a single 

SS was not enough. They addressed this by proposing that the distance 

between observations and simulations should be computed by combining 

multiple summary statistics instead of using just one. In the following 

years a lot has been written about the use of summary statistics, especially 

regarding the selection of optimum SS (Beaumont, 2019; Joyce & 

Marjoram, 2008; Marjoram et al., 2003; Nunes & Balding, 2010) and 

methods to overcome the SS selection bias have been developed that rely 

on the use of Deep Learning [Box 3] (Mondal et al., 2019). The second 

problem was about the retention of only those simulations that yield 

identical results to the observed data. If we only select those, a large 

proportion of the simulations we are using is discarded affecting the 

predictability of the methodology. Weiss and Von Hassler proposed that 

instead of using the distance = 0, between observed and simulated data, 

the selection criteria would depend on a threshold of tolerance (Ɛ) that 

represents a quantile and depends on the investigator criteria that usually 

intends to minimize the bias-variance trade off (Beaumont, 2019; 

Beaumont et al., 2002).  
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Beaumont et al. (Beaumont et al., 2002) formalized and generalized the 

ABC approach. They introduced some improvements and evaluated the 

performance of the ABC against full-likelihood methods. But the main 

improvement was the introduction of a regression step. Beaumont et al. 

proposed that a linear regression between a parameter and the vector of 

SS, estimated using the retained simulations, with more weight on the 

simulations closer to the observed data, could modify the retained 

parameters thus mimicking a situation where all simulations produce SS 

equal to the observed values. This approach deals with some of the 

problems of the trade-off between bias and variance especially when the Ɛ 

is high and the number of accepted simulation increases.  

 

 

We can describe the ABC (Figure 10) in an eight-step process (Bertorelle 

et al., 2010; Sunnåker et al., 2013):  

1 Set the scene: Bibliographic step where we define the models and 

the parameters of the models we want to compare. The parameters 

used to specify the models for an ABC analysis are the classic 

demographic parameter (Ne, migration/admixture rates, split 

Box 2. Bayes Theorem 

 
Bayesian statistics, named after the British mathematician Thomas Bayes, are a 
statistical school of thought that holds that inferences about any unknown parameter 
or hypothesis should be encapsulated in a probability distribution, given the 
observed data. Bayes theorem allows to compute the posterior distribution for an 
unknown from the observed data and its assumed prior distribution.  
 

                             
 
The Bayes theorem formula expresses the posterior probability of an event, P(A|B) 
as the modification of the prior probability of the event, P(A) by multiplying it to the 
result of a division between the likelihood of the observed data given the belief of 
the prior is true, P(B|A) and the marginal probability of the observed data, P(B). It’s 
important to remark that to this formula to be true, events must be independent.  
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times…) and the genetic parameters (mutation and recombination 

rates).  

2 Incorporating the prior information: Prior distribution of each 

parameter should be large enough to include all possible values. 

Prior should reflect previous knowledge on some parameters and 

can be fixated if we know it with relatively high precision. Defining 

the parameters and the prior distributions can be difficult in some 

cases and lead to biases and errors in the model ascertainment, so 

metaheuristic solutions could be implemented to search for those 

distributions (see 1.2.3 - Metaheuristics & Genetic Programming).   

3 Simulating the models: huge number of datasets must be 

simulated under the models defined to have sufficient power. The 

higher the complexity of the model and number of populations the 

higher the number of simulations. Nowadays, efficient simulators 

that produce hundreds of thousands of simulations on relatively 

complex models are available both backwards coalescence 

(fastsimcoal2 (Excoffier et al., 2021), msprime (Baumdicker et al., 

2022)) and forward in time, SLim (Haller & Messer, 2023). 

4 Filtering the simulations: Simulations are retained when the 

distance between observed and simulated SS is below a certain 

threshold (Ɛ) (Eq 9). This threshold is determined by the 

investigator and usually tends to minimize the bias-variance trade-

off. 

𝑝(𝜃 | 𝑋)  ≈  𝑝(𝜃𝑖  | 𝑑 (𝑆𝑆𝑠𝑖𝑚, 𝑆𝑆𝑜𝑏𝑠)  <  𝜀 )      (eq.9) 

5 Model Selection: The probability of a model is equivalent to the 

proportion of simulations from that model that are retained given Ɛ. 

Additionally we can calculate an index to assess how much better a 

model predicts the data than another model, the Bayes Factor. The 

Bayes Factor can be computed as the ratio between the posterior 
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probabilities of a pair of models divided by the ratio of their prior 

probabilities.  

 

6 Quality control and model selection: The ABC can be used to 

investigate the robustness by simulating datasets under scenarios 

with known parameter values and comparing the estimations to the 

real data.  

Figure 10: Conceptual overview of Approximate Bayesian Computation 

from Sunnaker et al 2013. (1) Compute the SS that is going to be used to 

compare between the observed and simulated data; (2) Extract n simulations, 

each with a parameter drawn from the prior distribution; (3) Compute the SS for 

each simulation; (4) Decide for each simulation whether its SS is sufficiently 

close to that of the observed data based on a distance ᴩ and a threshold ε ; (5) 

Approximate the posterior distribution of a parameter from the values 

associated to the accepted simulations. 
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The 7th and 8th steps are modifications of steps 5 and 6 but specifically 

designed for parameter estimation (Bertorelle et al., 2010). Several 

programs have been developed that perform ABC analysis but the one 

that currently is more used and the one we use in this thesis is the “abc” 

package for R (Csilléry et al., 2012). 

(Awad & Khanna, 2015; Godfellow et al., 2016; Huang et al., 2023; 

Jaganathan et al., 2019; Jumper et al., 2021; Mondal et al., 2019; Villanea & 

Schraiber, 2019; Zhou & Troyanskaya, 2015) 
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Box 3. Deep Learning 

 
Deep Learning (DL) is a technique of Machine Learning (ML) which is a part of 
Artificial Intelligence (AI). DL layers algorithms and computing units - neurons - 
into artificial neural networks (ANN) that mimic the human brain enabling a 
computer to learn from observational data. DL is composed of simple but non-
linear modules that each transform the representation at one level into a 
representation at a higher, more abstract level (Godfellow et al., 2016).  

 
One of the most basic types of DL architecture is called multilayer perceptron 
(MLP). A MLP is an ANN where each neuron is connected to all the neurons of the 
upper and lower layer and is defined by a first layer, the input layer, where we have a 
vector X representing one data point in the dataset. After that, several hidden layers 
of neurons are added sequentially. Each layer is defined by their weight (w) and bias 
vector (b). The information of a layer is transmitted to the next by the means of an 
activation function (f(z)). It adds non-linearity to the network and transforms the 
value obtained, into an input to the next hidden layer or as an output (Awad & 
Khanna, 2015).  

            
 
ANN have a wide range of applications across various fields, from facial recognition 
and image classification to music composition or climate modelling. In genetics, 
deep learning techniques has been applied to predicting the effects of noncoding 
variants (Zhou & Troyanskaya, 2015), detecting alternative splicing sites (Jaganathan 
et al., 2019) or predicting the protein 3D structures (Jumper et al. 2021). Specifically 
in population genomics, ANNs has been used in inference problems. Villanea and 
Scharaiber (Villanea & Scharaiber, 2019) successfully classify the interaction between 
neanderthal and two sapiens populations between five admixture models using an 
MLP. Mondal et al. (Mondal et al. 2019) incorporate a MLP to select summary 
statistics from the SFS in ABC inferences. For an exhaustive review on the use of 
deep learning techniques for population genetic inference studies see Huang et al. 
(Huang et al. 2023) 
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1.2.3 Metaheuristics: Genetic Programming 

 

Model comparison by ABC requires defining which are the models to 

consider. These models are, by definition, simplifications of reality. 

However, basic assumptions about the demographic events, and 

particularly population substructure, can significantly bias the model 

ascertainment. To bypass this issue, in this thesis we have developed a 

new demographic inference method based on genetic programming (GP), 

a branch of evolutionary algorithms.  

 

Evolutionary algorithms are a type of metaheuristic algorithms (MAs), 

which are optimization algorithms used to solve complex optimization 

problems that are not effectively solvable by traditional methods. 

Metaheuristics are problem independent processes that aim to guide the 

search process efficiently through the solution space (Sörensen, 2015).  

The objective is not to find the optimal solution, but rather to obtain a 

good solution in a reasonable amount of time for a problem that is too 

complex or too big. Any MA success depends on the proper handling of 

the exploration - exploitation trade-off. This dilemma has been a crucial 

issue in the field of metaheuristics since its beginnings. The exploration 

component of MA is responsible for the detection of the most promising 

regions of the search space. While the exploitation promotes the 

convergence of solutions (Sarhani et al., 2022). In other words, during the 

latter stage, the search is concentrated in a smaller space of the solution 

space, comparing between neighbouring solutions. Meanwhile, in the 

exploration stage, it is encouraged a more general search process across 

the whole solution space to examine unvisited regions and to generate 

solutions that differ in significant ways from those seen before.   
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There are multiple types of MA that can be classified in multiple ways. 

For example, we can classify the MA by the source of inspiration. 

Depending on the source of inspiration, MA can be classified into four 

categories; as swarm intelligence (SI) based algorithms, like Ant Colony 

optimization as physic-chemistry based algorithms, like Simulated 

Annealing algorithm; as Evolutionary Algorithms, like Genetic 

Programming and a fourth group comprised by the rest of algorithms 

identified as Miscellaneous (Rajwar et al., 2023) (Figure 11). 

 

Of the different types of MAs, we are going to focus on the ones inspired 

by the Darwinian ideas of natural selection, the Evolutionary Algorithms 

(EAs).  EAs start with a population of individuals (solutions) and simulate 

sexual reproduction with recombination and mutation to create a 

Figure 11: Classification of MAs based on the source of inspiration. 

From Rajwar et al 2023 
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generation of offspring. This practice is repeated along a selection process 

that eliminates the weaker solutions while maintaining increasingly 

stronger offspring across the generations. Genetic algorithm (GA), 

differential evolution (DE), gene expression programming (GEP) or 

genetic programming (GP) are all subtypes of Evolutionary algorithms.  

1.2.3.1 Genetic Algorithm & Genetic Programming 

 

Genetic Algorithms were first introduced by John Holland in the early 

1960s (Holland, 1962a, 1962b). In a GA each solution in the space 

(individual in a population) is represented as a binary coded string 

(chromosome) (Figure 12) with an associated fitness measure (Awad & 

Khanna, 2015). Successive solutions are built as combinations of the 

selected individual solutions. A standard GA follow a process that can be 

illustrated in the following pseudo-code:  

 

generate initial population, G(0); 

evaluate G(0) 

t:=0; 

repeat 

   t=t+1; 

   generate G(t) using G(t-1); 

   evaluate G(t); 

repeat until a solution is found 

 

Figure 12: Basic pseudo-code that explains how a standard genetic 

algorithm works. From an initial population G(0) evaluation on how close the 

population is to real data is done. After that, multiple iteration (t) are done 

where, in each iteration, the population G(t) is a modification of the one before 

G(t-1) and re-evaluated against the observed data until we reach a solution.  
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The first step implies a random generated initial population. Each 

individual of the population is represented by a string of characters. Next, 

we apply a fitness function to each one of the chromosomes to quantify 

the quality of the solution. Once we know each chromosome’s fitness, a 

selection process takes place to select the individuals that are going to be 

parents of the following generation. There are multiple selection schemes, 

but here I am going to present some of the more used ones (Carlos A. 

Coello Coello, 2005; Sivanandam & Deepa, 2008):  

- Roulette Wheel Selection: In this selection technique, each 

solution is presented as a slot in a wheel weighted in proportion to the 

individual’s fitness value. Is a moderately strong technique, since fit 

individuals are not guaranteed to be selected for, but somewhat have a 

greater chance. 

Figure 13: Genetic algorithm vs Genetic programming structure. A. 

Binary coded string that represents a chromosome in a GA. B.  Tree structure 

of a GP program where each node is a parameter to infer. 
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- Random Selection: Parents are selected completely random from 

the population.  

- Rank Selection: The Roulette wheel selection will have a 

problem when the fitness values differ too much. For example, if the 

best solution fitness is 90%, the rest of the chromosomes will have 

very few chances to be selected. In rank selection, each solution 

receives a rank based on its fitness value. Under this scheme 

convergence is slower and diversity is preserved from one generation 

to the next, hence leading to more successful search of the space.  

- Tournament Selection: This strategy provides selective pressure 

by holding a tournament among the solutions. The best individual 

from the tournament is the one with the highest fitness and is the one 

inserted in the mating pool. Multiple tournaments are held until the 

mating pool is filled. The mating pool at the end is composed of all 

tournament winners and has, on average, a higher population fitness 

than the original population.  

- Steady State Selection: This technique works individual by 

individual, replacing the worst individual in the current generation with 

the best individual in the next generation. Only a few individuals are 

replaced in each generation. It is used in evolving rule-based systems in 

which incremental learning and remembering what has already been 

learned is important.  

Following the selection of the solutions that are included in the mating 

pool. The offspring generation phase starts. During this stage two main 

mechanisms work as drivers of evolution (genetic operators) in a GA, 

recombination (crossover) and mutation. Mutation is an important genetic 

operator that randomly changes a gene of a chromosome. In a binary 

coded string, a mutation occurs when a 1 is changed to a 0 o vice versa.  

This operator introduces diversity to the population assuring the 
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exploration of the entire search space. The recombination operator 

creates new solutions by exchanging genetic material between a pair of 

individuals. There are several ways of performing a crossover operation 

with the three most common being (Sivanandam & Deepa, 2008; Vikhar, 

2017):  

1. Single-point crossover: Pairs of individuals are recombined by a 

random selected point in the chromosome.  

2. Two-point crossover: Two positions in the chromosome are 

selected at random to exchange chromosomic material.  

3. Uniform crossover: Each gene in the offspring is created by 

copying the corresponding gene from one or the other parent 

chosen according to a random generated mask, where 1 

corresponds to the first parent and 0 to the second. Offspring are 

a mixture of genes from each parent with a number of crossing 

points that will average L/2 (where L is the length of the 

chromosome) (Figure 13).  

The final step is the search termination step, or the convergence criteria. 

Since in most cases a true solution is not reached, there could be multiple 

stopping conditions to finalize a GA. Some of the stopping conditions are 

the reach of a maximum number of generations, the elapsed time, a no 

change in fitness criteria, a stop if there is no improvement in the 

objective functions after a number of consecutive generations (Stall 

generations) and no improvement during an interval of time (Stall time 

limit). Also, we can reach termination of search if the best individual 

fitness is below the convergence value or when the worst individual of the 

population has a fitness less than the convergence criteria. The stopping 

criteria depends on the problem we are tackling and the resources we have 

available (Carlos A. Coello Coello, 2005; Sivanandam & Deepa, 2008).    
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Genetic Programming on the other hand is better suited for generating 

formulae and population relationships as the algorithm codes solutions in 

the form of a graphical (tree) structure whose nodes or edges represent 

parameters (Figure 12) (John R Koza, 1994, 1990). GP is an automated 

invention machine, unlike GAs that are passive structures, which routinely 

delivers high-return human competitive machine intelligence, duplicating 

the functionality of previously patented inventions, infringed a previously 

issued patent, or created a patentable new invention (J R Koza et al., 

2003). The basic workflow of a GP is similar to that of a GA but instead 

of modifications of genes in a chromosome, the mutation and 

recombination processes occur at a node level by modifying a specific 

node or by exchanging subtrees at random crossover points. In this thesis, 

we applied a GP algorithm to infer the demographic history of North 

Figure 14: Types of crossover operations. A. One point crossover. B. Two-

point crossover. C. Uniform crossover 
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African populations because it allowed us to reduce biases at the 

parameter definition level on each of the tested models.  

 

The main application areas of GP are computer science, science, or 

engineering. In the last few years, GP has been used to develop prediction 

models to forecast COVID-19 in India (Salgotra et al., 2020), to design 

steel-concrete composite floors (Shariati et al., 2019), to infer the energy 

dissipation variables in cascade spillways (Salmasi et al., 2021) or a tax 

revenue forecast model in a heterogeneous population (Alexi et al., 2023) 

just to name a few examples.  

 

1.2.3.1.1 Genetic Programming in demographic inference studies 

 

In canonical GP, the exploration of the space of solutions is mainly 

accomplished by creating new solutions from the recombination of the 

most successful ones. The offspring is a combination of both parental 

trees using a subtree-crossover operator (Sivanandam & Deepa, 2008), 

leaving modifications of the parental structures – i.e., mutations – as a less 

frequent event to generate new solutions (Sivanandam & Deepa, 2008). 

However, in demographic models, where time plays a pivotal role in the 

definition of the trees, classical recombination approaches could lead to 

non-compatible solutions where the root node of the replaced subtree 

from one tree could have older times than the preceding node. Because of 

this, in this thesis we have applied mutation as the solely driver of change 

in the GP framework, since the mutation process can be constrained to be 

in between the ranges of the previous and next demographic events.   
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1.2.3.2 Advantages and disadvantages of Evolutionary Algorithms 

 

MAs and especially EAs have been widely used to solve many complex 

problems due to its advantages over classical deterministic techniques. 

EAs, as they are inspired by natural evolution, are conceptually simple and 

flexible. They use prior knowledge, which restricts the search space, 

speeding analysis time. Evolution is a parallel process, so each evaluation 

in EA performs parallel operations. EAs are robust and made to adapt 

solutions in changing environments. Finally, EA can solve problems 

without the need of human expertise (Vikhar, 2017).  

 

Although they are quite advantageous, metaheuristics suffer from some 

significant disadvantages against deterministic algorithms. The main 

comparison is that MAs do not guarantee optimal solutions, but rather 

satisfactory solutions. This can be seen as a trade-off between optimum 

solution in simple problems and satisfactory solutions in very complex 

problems. Some MAs also are affected by the “curse of dimensionality 

problem” that affects their performance as the problem size increases. 

Finally, there is a lack of mathematical analysis in many MAs. We obtain 

results but we cannot analyse the degree of trust we have on the result. 

There is no strong theoretical notion that overcomes this limitation, but 

we need to consider that metaheuristics as a field is still in its infancy 

compared to physics or mathematics (Rajwar et al., 2023).  
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1.3 North Africa, a complex scenario 

1.3.1 Human population history of North Africa  

1.3.1.1 Pre-historic North Africa 

1.3.1.1.1 Palaeolithic 

 
The presence of hominids in North Africa dates back to at least 2.4 

million years ago, as indicated by the discovery of stone artifacts and 

cutmarked bones at sites like Ain Hanech and Ain Boucherit in Algeria, 

estimated to be approximately 1.9 million and 2.4 million years old, 

respectively (Sahnouni et al., 2018). 

 

The oldest Homo remains with anatomically modern human (AMH) 

features were found in the Jebel Irhoud cave in eastern Morocco, dating 

back to 314,000 ± 34,000 years ago (Jean Jacques Hublin et al., 2017; 

Richter et al., 2010). This discovery emphasizes the significant role of 

North Africa, or non-eastern Africa, in the early stages of Homo sapiens, 

potentially shedding light on the importance of early population structure 

in the origin of AMH (Gibbons, 2017; Hollfelder et al., 2021; Ragsdale et 

al., 2023). Artifact remains extracted from the site are associated with a 

Levallois-based Middle Stone Age stone tool assemblage (Jean Jacques 

Hublin et al., 2017) which can be defined as the Mousterian industry 

(Richter et al., 2017). The Mousterian industry eventually gave way to the 

Aterian culture, characterized by the presence of pedunculated tools 

(Klein, 2000). Aterian sites in North Africa have been dated from 150,000 

years ago (Richter et al., 2010), coinciding with the beginning of the last 

Interglacial period, up to 20,000 years ago. 
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The Later Stone Age is defined by the Iberomaurisian tradition in the 

coastal Maghreb region, extending from 22,000 years ago to 9,500 years 

ago and characterized by microlithic backed, partially backed, and obtuse-

ended bladelets (Irish, 2000). One of the most significant sites associated 

with the Iberomaurisian culture is the Taforalt site in eastern Morocco, 

where ancient DNA, dating back to approximately 15,000 years ago, was 

extracted from fossils (Van De Loosdrecht et al., 2018). 

 

Figure 15: Mousterian and Aterian lithic cultures. Aterian lithic is 

characterized by the presence of pedunculated tools in contrast to the simpler 

shaped Mousterian industry.  Figure modified from Klein 2000 

Around 10,000 years ago, coinciding with a wet period in the Sahara, a 

new culture emerged in North Africa known as the Capsian (J. L. 

Newman, 1997). Temporarily overlapping with the Iberomaurisian culture 

but preferring inland territories, Capsian communities were larger and 

more sedentary, occupying numerous rammadiyat (snail-shell mound) sites 
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in Algeria and Tunisia (Dachy et al., 2023). Despite their sedentary nature, 

Capsian communities remained hunter-gatherer societies and can be 

divided into two phases: the Typical Capsian, characterized by a large 

number of tools with backed blades, and the Upper Capsian, which 

featured a reduced number of tools but an emphasis on geometric 

microlithic and a rich bone industry (Rahmani, 2004). Dental nanometrics 

on Capsian samples suggest an affinity with West Asian and European 

traits but with deviations toward Sub-Saharan traits, indicating a complex 

origin of North African populations with influences from multiple sources 

(J. J. Hublin et al., 2012; Irish, 2000). 

1.3.1.1.2 Neolithic  

 

The origin of the Neolithic period in North Africa remains a subject of 

debate, with no definitive conclusion reached. While the most widely 

accepted hypothesis suggests a Middle Eastern origin followed by a demic 

diffusion into North Africa (Morales et al., 2013; Mulazzani et al., 2016), 

there is also evidence of Neolithic traits being acculturated by 

epipaleolithic communities in the region (Linstädter et al., 2012; 

Mulazzani et al., 2016) 

 

In eastern North Africa, there is controversial evidence of cattle 

domestication dating as far back as 10,000 years ago at the Bir Kiseiba site 

in Lower Nubia (Brass, 2013; Wendorf et al., 1985). By the 7th 

millennium BCE, the Neolithic had spread across North Africa to the est 

in at least three distinct traditions (Figure15):  
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Figure 16: Chronology of the different Neolithic traditions present in 

North Africa. The Neolithic in North Africa is divided into three major 

traditions, Saharan-Sudanese Neolithic, Capsian Neolithic and Mediterranean 

Neolithic, each with different geographical distributions and different eras. 

Translated and modified from SiAmmour et al 2022  

1. The Saharan-Sudanese Neolithic (8,000 - 3,000 years ago): 

Primarily found in the Hoggar region of southern Algeria, this 

tradition is characterized by a nomadic pastoralist lifestyle (Smith, 

2001) and lake and river fishing (Si-Ammour, 2022) 

2. The Capsian Neolithic (7,500 - 3,500 years ago): This tradition 

was widespread across the lower Sahara up to the Sahara Atlas, 

from Libya to Western Sahara. It initially began as Upper Capsian 

groups incorporated Neolithic traits. The early Neolithic Capsian 

tradition is marked by the rise of pastoralism, with attempts at 

domesticating sheep, dogs, and goats. In the late Neolithic, earlier 

Capsian traits were lost, and a fully developed Neolithic economy 

emerged, featuring agriculture and cattle domestication. This 

Neolithic group seems to precede the North Africa proto-historic 

Berber tradition (J. L. Newman, 1997; Si-Ammour, 2022).    

3. The Mediterranean Neolithic: This tradition is associated with 

the periodization of the Moroccan Neolithic from around 7,000 

BCE, evidenced by the documentation of domesticated plants and 

animals (Linstädter et al., 2012) and the spread of Cardium-
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impressed pottery from the Iberian Peninsula (Si-Ammour, 2022). 

There is controversy whether this tradition originated in North 

Africa or was later introduced from the Iberian Peninsula (Perrin et 

al., 2022). 

  

It is important to note that this chronology is somewhat fragmented, with 

many of the dates lacking a clear stratigraphic sequence. Radiocarbon 

dates have been obtained from less reliable samples, so the dates for the 

Neolithic transition should be interpreted with caution. 

1.3.1.1.3 The Importance of the Sahara 

 

The Sahara has played a crucial role as a biological corridor during several 

humid periods in its history. One of the most extensive of these periods 

occurred during the last Interglacial period, approximately between 

130,000 and 117,000 years ago (Larrasoaña et al., 2013). At that time, the 

Sahara was characterized by a network of watercourses that flowed 

towards the Mediterranean. Within this landscape, three major rivers—

Irharhar, Sahabi, and Kufrah—were present. Among these, the Irharhar 

river is considered the most likely route for the dispersion of hominins, as 

Middle Stone Age (MSA) artifacts have been discovered in its basin 

(Coulthard et al., 2013). 

 

This network of biological corridors played a pivotal role in separating the 

industries of the Nile Valley from other North African regions (Osborne 

et al., 2008) and in the migration of flora and fauna across the Sahara. The 

presence of similarities in fauna between the northern and southern parts 

of the Sahara further supports the hypothesis of a pan-African origin of 

Homo sapiens (Drake et al., 2011; Geraads, 2010). 
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The last humid period in the Sahara took place during the early Holocene, 

around 11,000 to 8,000 years ago. During this time, various species 

expanded, and fishing traditions developed in the lakes scattered across 

the Sahara (Si-Ammour, 2022). This humid period coincided with the 

Neolithic expansion in North Africa. However, by the end of the 

Neolithic era, the aridification of the Sahara had already commenced, 

compelling populations to adopt a more nomadic pastoralist way of life 

throughout the Sahara, except for the Nile River basin. This shift in 

lifestyle was driven by the changing environmental conditions of the 

region. 

1.3.1.2 Historic North Africa 

 
By the end of the Neolithic, small proto-Amazigh-speaking (Lybico-

Berbers) groups had been formed across North Africa, expanding from 

nomadic herders to groups with more agricultural economies, either in 

coastal sites or oasis at the north and center of the Sahara (Camps, 1982, 

1998; J. L. Newman, 1997). The interaction of them with the different 

populations that would occupy the region at different points in time 

would result in the current demographic picture we observe today in 

North Africa.  

1.3.1.2.1 Historical Mediterranean Contacts 

 

The first reported non-African civilization that contacted the proto-

Amazigh groups were the Phoenicians. Phoenicians established a small 

outpost at Utica, in the Algerian coast about 1,100 years BC (McEvedy, 

1995; J. L. Newman, 1997). It seems that they never had colonization as a 

priority and the different posts were only to serve as trading sites with 
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other European civilizations. By the 6th century BC, Carthage, once a 

trading outpost, had grown and became a major economic and political 

center in the ancient world. Libyco-Berber groups were slaves working on 

the fertile plains close to Carthage as slave trade was part of the economic 

fabric of the Phoenicians. Trans-Saharan trades between Phoenicians and 

some proto-Amazigh groups, like the Garamantes were constant in 

southwestern parts of Libya. The presence of Phoenicians brought North 

Africa to the Iron Age and a series of states modelled along Carthaginian 

lines sprung throughout the Maghreb, introducing the area to the 

Mediterranean world (Naylor, 2009; J. L. Newman, 1997).  

Figure 17: Scheme of the main population movements in North Africa. 

Movements from Europe (green), the Middle East (blue), sub-Saharan Africa 

(dark orange), and North Africa (yellow) are shown. Arrows are 

approximations and show direction rather than specific migration routes for 

the major migrations, although additional migrations may have occurred. 

Figure and caption from Lucas-Sanchez et al 2021. 

At the east of North Africa, Mediterranean groups also started to 

influence. Ionian (Greeks and Macedonians) presence began in the 7th 

century BC, when Egypt recruited Ionian mercenaries to assist against the 
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Assyrian. From there, merchants established in Naukratis and started to 

do business along the Nile. In the 4th century BC, the Ionian took control 

of Egypt after banishing the Persians and began the construction of 

Alexandria. From there, Hellenistic language and culture began spreading, 

mainly in the Egyptian elite. Outside of Egypt, there were few Ionian 

settlements to the west, mainly related to agriculture and trade. The 

expansion to the west was mainly limited by the Phoenician settlements.  

By the end of the 1st century BC, both the Phoenician (Carthage 146 BC) 

and the Ionian (Egypt 30 BC) had fallen at the hands of the Roman 

Empire (J. L. Newman, 1997). Although Rome had control all over North 

Africa their presence was not homogenous. In Egypt, Roman presence 

was largely administrative, mainly concerned in grain extraction and tax 

collection. Very few officials were Roman and Greek remained the official 

language. On the other hand, the presence of the Roman Empire in the 

Maghreb was much larger. Large number of colonists arrived to west 

North Africa and a great number of infrastructures were built. Legions 

were deployed to protect the states from Libyco-Berber attacks, and 

“Italians” were sent to Africa as consequence of land shortage on the 

peninsula (J. L. Newman, 1997).  

  

Some Amazigh lured by Roman culture also went to live in the Roman 

cities at the coast while others remained in the hinterland forming 

different Berber Kingdoms. The Berber and Roman relationships 

fluctuated a lot, from trading partners, mainly exchanging wool, leather, 

and sub-Saharan slaves to not so cordial interactions. Some Amazigh 

groups revolted at different times weaking Roman authority in the region 

until the invasion of the Vandals (Germanic invaders) in the 420 CE. The 

Vandals did not take much of the Roman territory, allowing for the 

occupation by Imazighen Kingdoms of the North African Roman 
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provinces. This situation was maintained for over a hundred years until in 

553 CE, the Byzantine Roman Empire took back control of North Africa 

from the Vandals (Arauna-Rubio, 2017; Naylor, 2009; J. L. Newman, 

1997).   

1.3.1.2.2 Arab Conquest 

 

In the 610 CE, Muhammad founded Islam in the city of Mecca in current 

Saudi Arabia. By 630, Muslims dominated Mecca and started an expansion 

from the Arabian Peninsula. North African expansion started right after 

the conquest of nowadays Palestine and Syria, reaching Byzantine Egypt 

in 639 CE. From there the Arabs conquered Cyrenaica (West Libya) and 

Tripolitania (Northeast Libya) in the 642 & 643 CE respectively (Arauna-

Rubio, 2017; J. L. Newman, 1997). They continued their advance to the 

west until they had the last Amazigh controlled city fall in 698 CE. In 711 

CE Tariq ibn Ziyad crossed the Mediterranean and entered Iberia 

culminating the expansion with the conquest of Al-Andalus4 (Naylor, 

2009).  

   

Two different but linked processes occurred in North Africa: Islamization 

and Arabization. The first implies the assimilation of the religious beliefs 

by the conquered population, which occurred rather quickly, with most of 

the population adopting Islam a couple centuries after the first arrival of 

Muslims. Arabization, in contrast, concerns the acculturation of language, 

culture and identity and is a separated process that not necessarily was tied 

together with the religious conversion, although non-Arab individuals 

 
4 Etymologically, al-Andalus is hypothesized to have originated from the 
Tamazight term “tamort u-andalus” which translates to “land of the vandals” 
referring to the Germanic groups that inhabited the south of the Iberian 
peninsula until the 5th century BC (Anders, 2023) 
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were discriminated against even if they converted to Islam (2). Even 

nowadays it is still an ongoing process in several parts of North Africa 

(Coffman, 1992)   

 

Although originally the Arab expansion was mainly a cultural movement, 

with only small groups from the elites arriving to North African cities 

from the Arabian Peninsula, this would change in the 10th and 11th 

centuries. Driven by an increased population pressure in Arabia, two large 

Bedouin groups, the Banu Hilal and the Banu Sulaym, migrated first to 

Egypt and then expanded to the Maghreb, occupying the oases that were 

until now ruled by Imazighen. In the next centuries the number of Arab 

people highly increased both in coast and desert regions as well as the 

pressure to embrace Islam and Arab culture forcing the Imazighen to 

recede to the remote regions (Lucas-Sánchez, 2023; Naylor, 2009; J. L. 

Newman, 1997).  

 

1.3.1.2.3 Ottoman Empire & Colonialism   

 
Arab rule in North Africa was uninterrupted for almost a thousand years, 

until the Ottoman Empire conquered Egypt in 1517 expanding as far as 

Algeria with Cairo and Algiers being the most prominent cities under 

Ottoman rule. From that point onwards, a series of revolts followed by a 

new ruler arisen from time to time. The first being the Mamluk 

overthrowing the Ottoman in the 18th century followed the French 

seizure of Algeria in 1830 which later expanded to Tunisia and Morocco. 

Egypt was under British intervention, as Italy took over Ottoman 

Tripolitania and Spain claimed territories in Morocco and the Western 

Sahara. At the start of the 20th century these regions under European 

control started to declare their independence. By 1962, with the exception 
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of Spanish western Sahara, North Africa was decolonized but with most 

countries suffering from the consequences of, in most cases, incomplete 

(Gritzner & Gritzner, 2006; Naylor, 2009). 

1.3.1.3 The Amazigh  

 
Historical context shows North Africa as a very tumultuous region, with 

extensive migrations from different civilizations and times that have 

influenced the autochthonous populations since the Neolithic. This 

autochthonous group, from an anthropological point of view, seems to be 

formed by a heterogeneous set of groups, grouped together by a linguistic 

similarity. The Tamazight is a language, or group of languages of the 

Afroasiatic branch characterized by the use of a particular consonantal 

alphabet, the tifinagh. Genetic and cultural evidence consider the 

Amazigh as the direct descendants of the Epipaleolithic populations in 

North Africa (Van De Loosdrecht et al., 2018).  (IRCAM, 2023) 

Figure 18: Tifinagh alphabet and its corresponding Latin-Amazigh 

alphabet characters. The thirty-three characters that compose the tifinagh 

alphabet as stipulated by the Royal Institute of Amazigh Culture in Morocco 

(IRCAM 2023). 
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Amazigh relationships with foreigners have been very diverse but mostly 

following a relationship of commerce and rebellions (J. L. Newman, 

1997). The deepest cultural transformation in Imazighen in historic times 

happened with the Arab expansion. Huge cultural conversion processes 

led to large Amazigh empires like the Almohades and extensive migrations 

from Middle East like the Bedouin migrations of the 10th and 11th 

century were big turning points in the Arabization of the Amazigh 

population and had an impact that can be observed in the current genetic 

landscape of North African (Arauna-Rubio, 2017; Lucas-Sánchez et al., 

2021; Serra-Vidal et al., 2019). On top of that, Imazighen were slave 

traders since their first contacts with populations of the Mediterranean. 

This control over slave migratory routes from the south of the Sahara 

could have also had an impact on the genetics of the Imazighen in 

particular, and on the North African in general (Lucas-Sánchez, 2023; 

Lucas-Sánchez et al., 2021). 

 

 

 

 

 

 

 

 

 

 

 

 



62 
 

1.3.2 Genetics of North Africa  

 

North Africa has historically been neglected from genetic studies even 

though having a principal role in human history (Lucas-Sánchez et al., 

2021). Sampling has been very limited, with North African groups having 

residual participation in public genetic databases in contrast to other 

populations at the south of the Sahara (Yoruba individuals in the 1000 

genomes projects, n = 208; North African individuals in the 1000 

genomes project, n = 30) (Bergström et al., 2020; Mallick et al., 2016; The 

1000 Genomes Project Consortium, 2015) .  

1.3.2.1 Current day North-African genomics  

 

Initial studies with classical markers identified a complex pattern of 

genetic diversity, with extensive admixture and a clear differentiation of 

North Africa from the rest of the African continent (Cavalli-Sforza & 

Piazza, 1993). Genomic studies centered on North African populations 

(Arauna-Rubio et al., 2017; Fadhlaoui-Zid et al., 2013; Henn et al., 2012; 

Lucas-Sánchez et al., 2021, 2023; Serra-Vidal et al., 2019) point to the 

presence of at least four major admixture sources, resulting in a mosaic of 

variation at different proportions of (i) an autochthonous genetic 

component, (ii) a Middle Eastern-like component, (iii) a European-like 

component and (iv) a component that can be attributed to a mix of 

populations at the south of the Sahara (Henn et al., 2012; Lucas-Sánchez 

et al., 2023). This Middle East-like ancestry appears to be stronger in the 

eastern regions of North Africa, highly influenced by pre-historic and 

historical migrations from Arabia and the Levant, and declines moving 

westward in a opposite direction to the autochthonous Maghrebi 

component that is maximized in isolated populations of Tunisia (Arauna-

Rubio et al., 2017; Serra-Vidal et al., 2019). Some authors have related this 
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Maghrebi component to a back-to-Africa migration more than 12.000 

years ago by a pre-Holocene population splitting from the rest of out-of-

Africa groups (Fregel et al., 2018; Henn et al., 2012), although is also 

possible that this component can be attributed to a group that remained 

isolated in North Africa from over ~300,000 years indicating a population 

continuity since the MSA due to similar lithic industry found next to the 

AMH of 300,000 years and an Aterian sites dated as young as 20,000 years 

ago. 

 
Figure 19: Genetic structure of North African populations. Left: First and 

second principal components of North African samples together with a 

worldwide panel. Right: ADMIXTURE analysis (K=6) of North African 

samples. Autochthonous components in orange, Middle Eastern-like 

component in blue, European Neolithic-like component in grey, western 

European hunter-gatherer-like component in yellow, Steppe-ancestry in 

purple and south Saharanan-like component in black. Modified from Serra-

Vidal et al 2019  
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Studies on uniparental markers reveal evidence on the uniqueness of 

North Africa within the continent. The presence of uniparental lineages 

(haplogroups) that originated in sub-Saharan Africa, the Middle East, or 

Europe, suggests a complex pattern of gene flow towards North Africa 

(Brakez et al., 2001; Ennafaa et al., 2009; Fadhlaoui-Zid et al., 2004; Font-

Porterias et al., 2018; González et al., 2007; Plaza et al., 2003; Turchi et al., 

2009). However, autochthonous lineages have also been described. 

Mitochondrial DNA analyses identify two main lineages in North Africa, 

U6 and M1 whose origin has been traced back to Upper Palaeolithic times 

(Pennarun et al., 2012; Secher et al., 2014; Van De Loosdrecht et al., 

2018), with presence of this lineages later in the Epipaleolithic and Early 

Neolithic suggesting a back-to-Africa migration from Southwestern Asia 

(Fregel et al., 2018; Hervella et al., 2016; Olivieri et al., 2006; Van De 

Loosdrecht et al., 2018). A second hypothesis supports that M1 and U6 

haplogroups could be related to the spread of Iberomaurisian culture 

(Pennarun et al., 2012) as oldest mtDNA samples present these lineages 

(Kefi et al., 2018; Van De Loosdrecht et al., 2018), making a North Africa 

origin of the haplogroups viable. Regarding Y-lineages, two 

autochthonous haplogroups, E1b1b1a-M78 and E1b1b1b-M81 (Bosch et 

al., 2001; Solé-Morata et al., 2017), have been detected at the highest 

frequency in the region. Both present high levels of genetic diversity but 

with opposite clinal geographical distributions, with M78 being maximized 

in Eastern North Africa (Egypt) and M81 having the highest frequency 

towards the Maghreb (Fadhlaoui-Zid et al., 2013; Fregel et al., 2009; Solé-

Morata et al., 2017; Van De Loosdrecht et al., 2018). An in-situ origin of 

both haplogroups seems to be the most plausible scenario with origin 

dates ranging from Epipaleolithic to historic times (Cruciani et al., 2006; 

Fadhlaoui-Zid et al., 2004, 2013; Solé-Morata et al., 2017). 
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1.3.2.2 Ancient North Africa genomics 

 

The introduction of ancient DNA studies in North Africa revealed a 

genetic continuity that dates backs, at least, to the Late Stone Age, as 

genomic data extracted from 15,000 years old individuals from the 

Iberomaurisian site of Taforalt, in Morocco, share genomic segments with 

present-day North Africans (Serra-Vidal et al., 2019; Simões et al., 2023; 

Van De Loosdrecht et al., 2018). The Taforalt site in Morocco (dated 

between 15,100–13,900 calibrated years before present) is the oldest site 

to date to yield DNA data, not only in North Africa but in Africa as a 

whole (Lucas-Sánchez et al., 2021). Taforalt genomes present similarities 

with early Holocene Near Eastern Natufians (Levantine Natufians) 

suggesting pre-Neolithic gene flow between North Africa and the Middle 

East. They also present influence from populations south of the Sahara in 

higher proportion than current day North African groups although no 

good proxy of the ancestral sub-Saharan component is currently available. 

Following the Taforalt samples, an individual from the Epipaleolithic site 

of Ifri Ouberrid (Morocco), dated around 7,600 years ago showcased 

similar genetic structure as the Taforalt sample (Simões et al., 2023), 

confirming a long-lasting continuity for the last 15 thousand years. In 

addition to these ancient North African Epipaleolithic genomes, nine 

individuals from Early Neolithic, five from the  Ifri n’Amr or Moussa 

(IAM) (Fregel et al., 2018) site and four from the coastal Moroccan site of 

Kaf Taht el-Ghar site show genetic similarities with the Taforalt samples 

with the latter presenting a maximized Early Neolithic European 

component suggesting an early arrival of European Neolithic groups to 

the coasts of the Maghreb possibly introducing Neolithic concepts to local 

communities (Linstädter, 2013; Simões et al., 2023). Middle and Late 

Neolithic samples from the Moroccan Atlantic sites of Skhirat-Rouazi (3) 
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(~4,000 BCE) and Kelif el Boroud (Fregel et al., 2018) (KEB) (~3,000 

BCE) have been analyzed showing different proportions of Levant 

Neolithic and European Neolithic admixture suggesting independent 

Neolithic expansion processes in North Africa from Middle Eastern 

Levant and Europe crossing the Gibraltar Strait (Fregel et al., 2018; 

Simões et al., 2023). Historic ancient North African studies have been 

very scarce. The analysis of 3, 1st millennium BCE human remains from 

the archaeological site of Abusir-el Meleq in Egypt suggest a closer 

relationship of ancient Egyptian with Near Easterns than current day 

Egyptian population, with a higher influence of populations at the south 

of the Sahara (Schuenemann et al., 2017). Finally, a recent study on Iron 

Age samples from current-day Tunisia demonstrate contacts and gene 

flow between the different shores of the Mediterranean Sea (Moots et al., 

2023).  

 

Very little has been studied about the interaction between Neanderthals 

and North African groups. The difficulties in separating the 

autochthonous North African component to the Middle East-like and the 

European-like ancestral components in North African samples difficult 

the analysis of any specific interaction between Neanderthal and ancient 

North Africans. Even though, some analysis has shown signals of 

Neanderthal introgression towards North Africans with it not being due 

to recent Near Eastern or European migrations (Sánchez-Quinto et al., 

2012). 
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Figure 20: Geographic location and inferred population history of 

ancient western Maghreb samples. Sites abbreviations stand for: Taforalt 

(TAF), Ifri Ouberrid (OUB), Kaf Taht el-Ghar (KTG), Ifri n’Amr or Moussa 

(IAM), Skhiriat-Rouazi (SKH), and Kelif el Bouroud (KEB). Modified from 

Simões et al 2023  

1.3.2.3 A source of gene flow  

 

North Africa has not only been a sink but also an important source of 

gene flow to its surrounding regions (Lucas-Sánchez et al., 2021). 

Prehistoric contacts with Europe have been attested by the presence of 

North African uniparental markers (Brakez et al., 2001) and autosomal 
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segments (Arauna et al., 2019) in Iberian individuals, as well as the 

presence of archaeological evidence (Linstädter et al., 2012; Perrin et al., 

2022). The Arab expansion greatly shaped the genetic landscape of North 

Africa but also heavily influenced southern Europe, especially Iberia 

where the Arab occupation (mainly Amazigh people) lasted more than 

700 years contributing to the genetic pool of current day Iberians (4).   

Ancient Guanche samples from the Canary Island suggest North African 

as the first settlers of the archipelago (Arauna et al., 2019; Botigué et al., 

2013; Fregel et al., 2009; Maca-Meyer et al., 2003, 2004; Rodríguez-Varela 

et al., 2017). Genome-wide data revealed that the geographical location of 

the source of admixture differs between the Canary Islands and southern 

Europe, of the Atlantic coast for the former, and the Mediterranean front 

for the latter (Arauna et al., 2019). North African influence has also been 

detected at the south of the Sahara mainly related to pastoralism and the 

presence of lactase persistence alleles (Tishkoff et al., 2007; Vicente et al., 

2019). This gene flow towards the south has been linked to the absence of 

a particular Iran Neolithic genetic component in Fulani individuals 

suggesting that the Eurasian-like component present in those populations 

had to arrive before the expansion of Neolithic into North Africa, 

pointing to migrations of autochthonous North African individuals south 

during before 8000 years BP corresponding with the last humid period of 

the Sahara (Castañeda et al., 2009; D’Atanasio et al., 2023).    
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2 OBJECTIVES  
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As stated in the introduction North Africa is characterized by high genetic 

heterogeneity and the presence of an amalgam of genetic components, 

because of extensive gene flow from different areas and different time 

frames. This complex scenario has hampered the establishment of a 

demographic model for North African groups. The main goal of this PhD 

thesis is to overcome this challenge and reconstruct a demographic model 

of the Amazigh and the Arab population that could be used as a neutral 

demographic model in future studies. To reach this objective, whole-

genome sequences from different North African groups has been 

analyzed using already established demographic inference methods such 

as Approximate Bayesian Computation coupled with Deep Learning 

(Mondal et al., 2019) as well as newly developed methods that utilize the 

power of metaheuristics - Genetic Programming for Population Genetics 

(GP4PG) - to overcome possible biases in the identification of the 

demographic events and associated parameters that explain the genetic 

variation observed in North Africa, as well as limitations in the 

reproducibility of the models.  The specific objectives pursued are as 

follow:  

 

1) Revise the population demography data and the proposed 

migration hypothesis in North Africa (Results section 3.1) 

 

2) Define if the North African groups, generally defined by the 

linguistically and cultural difference of Amazigh and Arabs, 

present a different genetic origin. (Results section 3.2)  

 

3) Obtain the split time between each of the North African groups 

and their closest group. (Results section 3.2) 
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4) Describe specific demographic history parameters such as 

effective population size, migrations, and admixture events, mainly 

focusing on the impact of Middle Eastern migrations at Neolithic 

and historic (Arabization) times.  (Results section 3.2) 

 

5) Identify the possible effect of genetic substructure in the 

demographic history of a population. (Results section 3.2) 
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3 RESULTS  
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writing the sections “The North African Genetic Component”, “Ancient 
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ABSTRACT 

 

Background: North African human populations present a complex 

demographic scenario. The presence of an autochthonous genetic 

component and population substructure, plus extensive gene flow from 

the Middle East, Europe, and sub-Saharan Africa, have shaped the 

genetic composition of its people through time. 

Results: We conducted a comprehensive analysis of 364 genomes to 

construct detailed demographic models for the North African region, 

encompassing its two primary ethnic groups, the Arab and Amazigh 

populations. This was achieved through the utilization of the 

Approximate Bayesian Computation with Deep Learning (ABC-DL) 

framework and a novel algorithm called Genetic Programming for 

Population Genetics (GP4PG). This innovative approach enabled us to 

effectively model intricate demographic scenarios, utilizing a subset of 

16 whole-genomes at >30X coverage. The demographic model 

suggested by GP4PG exhibited a closer alignment with the observed 

data compared to the ABC-DL model. Both methods point to a back-to-

Africa origin of North African individuals and a close relationship of 

North African with Eurasian populations. Results support different 

origins for Amazigh and Arab populations, with Amazigh populations 

originating back in Epipaleolithic times, as early as 22.3 Kya. GP4PG 

model supports Arabization as the main source of Middle Eastern 

ancestry in North Africa. The GP4PG model better explaining the 

observed data includes population substructure in surrounding 

populations (sub-Saharan Africa and Middle East) with continuous 

gene flow after the split between populations (migration decay). In 

contrast to what we observed in the ABC-DL, the best GP4PG model 

does not require pulses of admixture from surrounding populations into 

North Africa pointing to soft splits as drivers of divergence in North 

Africa. 
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Conclusions: We have built a demographic model on North Africa 

that points to a back-to-Africa expansion and a differential origin 

between Arab and Amazigh populations, emphasizing the complex 

demographic history at a population level. 

 

Keywords: Human population genetics, Whole-genome sequences, 

North Africa, Demographic history, Genetic programming, Deep-

learning 

  

BACKGROUND 

The North African region has a complex human demographic history 

with multiple migration events that have shaped the genetic makeup of 

its populations. Stone artifacts found in Algeria suggest that the first 

peopling of North Africa occurred around 2.4 million years ago [1]. 

However, the oldest human remains found in the region, at the 

Moroccan site of Jebel Irhoud, date back to 300,000 years ago [2]. 

Nonetheless, up to now there is no evidence that points to a continuity 

from these ancient humans to current North African people. 

 

The oldest ancient DNA samples retrieved from North African 

individuals in the Taforalt site in Morocco date to Epipaleolithic times 

(15.1-13.9 Kya) [3]. The analysis of these Taforalt individuals shows a 

high affinity with Near Eastern Natufian populations. The presence of 

mitochondrial DNA haplogroups U6 and M1 in North Africans are 

consistent with a back-to-Africa event [3–5]. When compared with 

current inhabitants, the Taforalt ancestry component is present in all 

current North African populations following a West to East cline with 

highest frequencies observed on Amazigh individuals [6], pointing to a 

genetic continuity in the region at least since Epipaleolithic times. 
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Multiple migrations from surrounding regions have occurred in North 

Africa, leaving their genetic imprints on the local populations, which are 

characterized by an amalgam of ancestry components [7]. Most of 

these migrations originated in the Middle East, such as the Neolithic 

expansion associated with the spread of agriculture, which had a 

dramatic impact on the genetic makeup of North Africans, diluting the 

autochthonous Palaeolithic component in a similar demic process as in 

Europe [8]. In addition to the Neolithic migration event from the Middle 

East, recent data on ancient remains have shown that North Africa has 

also experienced gene flow from Europe in Neolithic times, as 

evidenced by the presence of Iberian genetic ancestry in Western 

North Africans in early Neolithic sites, suggesting a complex and 

heterogeneous gene flow in the region [9]. Furthermore, post-

Neolithization gene flow has been observed in North Africa, resulting 

from events such as Arabization during the 7th to 11th centuries [10], 

the trans-Saharan slave trade from Roman times to the 19th century, 

and contacts with Mediterranean populations [7,11,12]. This complex 

pattern of migrations, with different temporal and geographical origins, 

has challenged the demographic reconstruction of North African 

population history. 

 

Linguistics broadly classify the present populations of North Africa into 

two major groups: the Imazighen (Amazigh in singular), also known as 

the misnomer of Berbers, and the North African Arabs. After the Arab 

arrival to North Africa during the Arabization, most North African 

autochthonous groups adopted the Arab culture, and mixed with the 

immigrants [13]. However, a few groups retreated to remote places 

and maintained their customs, along with the Amazigh identity and 

language (i.e., Tamazight) [14,15]. Previous studies showcase large 

genetic heterogeneity within North African populations [6,7,15–18] with 

no clear differentiation between Arab and Amazigh populations as a 



91 
 

whole. However, some Tamazight-speaking populations are genetic 

outliers with remarkable differences with their neighbouring Arab-

speaking populations. This was attributed to isolation and drift, as well 

to differences in their demographic histories [6,18]. 

 

The genetic heterogeneity of North African populations plus the 

presence of an amalgam of genetic components, as a result of 

extensive gene flow coming from different areas and different time 

frames, have hampered the establishment of a demographic model for 

North African groups. To overcome this challenge, in this study we aim 

to reconstruct a demographic model of the Amazigh and Arab 

populations in North Africa that might be used as a neutral 

demographic model for future studies. We aim to tackle this issue by 

addressing three main questions. First, estimate the origin of North 

African groups and how they evolved. Secondly, address the number 

and amount of admixture events that have happened in the region. 

And finally, assess whether Imazighen and North African Arabs share 

the same demographic history. Overall, all these questions relate to 

the development of a demographic model that reproduces the rich and 

complex history of the region. 

 

To answer these questions, we applied two different computational 

approaches. We first capitalized on the whole genome data of North 

Africa and used the Approximate Bayesian Computation framework 

coupled with Deep Learning (ABC-DL) [19]. Upon recognizing that the 

model identified by ABC-DL exhibited limited reproducibility with the 

observed data, we embarked on the development of a novel approach, 

Genetic Programming for Population Genetics (GP4PG), rooted in 

metaheuristics. GP4PG uses natural computing algorithms to infer the 

most optimum set of demographic events and associated parameters 

to explain the genetic variation observed in a given dataset. 
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RESULTS 

Genetic Structure Analysis of North African samples. 

 

The Principal Component Analysis (PCA) performed on the whole 

genome dataset (see Methods) of North African individuals (N=30) and 

reference samples from Africa and Eurasia (N = 364), comprising 1.58 

M SNPs, explains 8.64% of total variance on the first two principal 

components and recapitulates a similar population structure as 

previously described [6,7,12], with North African individuals clustered 

together in-between sub-Saharan African and Eurasian populations 

(Fig.1_a). A second PCA, focused on North African samples, shows in 

more detail the genetic structure of North Africa. East North Africa 

individuals cluster closer to Middle Easterns than West North Africans. 

Nonetheless, we observe a very heterogeneous pattern with the 

exception of the two North African Imazighen from Chenini (Tunisia) 

that cluster together isolated from the rest of North Africans (Fig. 1_b) 

(for full analysis see Additional file 1: Fig S1). The ADMIXTURE 

analysis (Fig. 1_c) identifies similar patterns to the PCA analysis. The 

lowest cross validation errors were found in the range between K=3 

and K=9 (Additional file 1: Fig S2), with K=3, K=6, K=9 showing the 

least number of common modes among the different runs in pong [20]. 

At K=3 we observe the differentiation between sub-Saharan African 

(red), European (dark blue) and East Asian (light grey) components. 

All North African samples show similar ancestry patterns exposing an 

exclusive North Africa component at K = 9 (light blue) except for the 

Egyptian samples that show higher proportions of a purple component 

that is maximized in the Middle Eastern samples in K = 9 (Fig. 1_c). 

The rest of results at different K are in the Supplementary file 

(Additional file 1: Fig S3). 
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Fig. 1: Genetic structure of North Africans and reference groups. A. PCA 

plot of all North African samples and the reference dataset. B. PCA plot 

focused on North African population substructure. C. Estimated ancestry 

proportions for the whole dataset in the three Ks most supported by pong [20]. 

 

North African demographic model using an ABC-DL approach. 

 

Given these previous results showing the presence of population 

substructure in North Africa and a complex amalgam of genetic 

components, we conducted an Approximate Bayesian Computation 

(ABC) analysis coupled to a Deep Learning (DL) framework [19]. 
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Our aim was to delve into the origins of contemporary North African 

populations and discern variations in the scenario based on the 

cultural backgrounds of these populations. 

On one side, our dataset included North Africa Amazigh populations, 

considered the descendants of the autochthonous inhabitants of the 

region. On the other hand, we have also analysed North African Arab 

populations resulting from multiple cultural and migration events from 

the Middle East that vastly changed the genetic background of the 

populations from the region. We were also interested in measuring the 

genetic impact of migrations from neighbouring populations (Middle 

East, Europe, and sub-Saharan Africa) in both Amazigh and Arab 

groups. 

We implemented seven demographic models where the North African 

groups diverge at different moments in time from the surrounding 

populations (Additional file 1: Fig S4): Model A considers North African 

groups as sister branches of West Africa. Model B shows North African 

populations splitting from the Middle East in a back-to-Africa 

movement. This is the model mostly supported in previous analyses by 

population structure and admixture-f3 approaches [6,7]. Model C 

implements a third variation of the possible origin of North Africa, 

placing it also in a back-to-Africa event prior to the split between 

Europeans and Middle Easterns. In Model D North African populations 

are split between Arab and Amazigh. Imazighen show a deeper origin 

splitting from the Eurasian branch, whereas Arab North Africans split 

more recently from the Middle Eastern branch. In Model E North 

African groups are separated, where Imazighen are a sister branch of 

West African populations while Arabs split from Middle Easterns. 

Model F represents the origin of Imazighen after the split of European 

populations but before the divergence between Middle Easterns and 

North African Arabs. Lastly, in Model G Imazighen appear as a sister 

branch of East African populations while Arabs split from Middle 
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Easterns. Since all models comprised migration between North African 

populations and their surroundings, we did not include these 

parameters in the model ascertainment in order to improve the power 

of the DL prediction to discriminate between competing topologies. 

After training the DL neural network for identification of the seven 

demographic models using as input the joint site frequency spectrum 

(jSFS) of each of the simulations to the observed data jSFS (see 

materials and methods), cross validation analyses using simulated 

data as observed showed that the ABC-DL can efficiently distinguish 

among the competing models. The minimum success rate for the 

discrimination is 67% and 76% for models F and D respectively, and 

the larger confusion is shown between these two models, which is 

expected as these are the two more similar topologies evaluated 

(Additional file 1: Table S1). The fact that F and D show such a level of 

misclassification is not surprising as both models show similar 

demographic topologies, only distinguishing on the branch where 

North African Imazighen diverge from the surrounding populations. In 

Model D, Imazighen have an origin that predates the European split 

while in Model F the Imazighen origin is slightly more recent, after 

Europeans have diverged from Middle Easterns. This similarity in the 

Models in addition with the fact that there is limited genetic 

differentiation between Middle Easterns, Europeans, and North 

Africans (Fig. 1), causes this misclassification rate in the ABC analysis. 

When applied to the observed data, the posterior probability estimated 

by ABC-DL strongly supports model D (posterior probability of model 

given data =0.922) (Additional file 1: Table S2). Furthermore, only the 

models with Imazighen as a separate clade from Arabs and with a 

back-to-Africa movement show posterior probabilities greater than 0 

(Additional file 1: Table S2). While both models are selected by the 

ABC, Model D represents the data 11.8 times better than Model F 
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(Additional file 1: Table S3), presenting a robust result on the topology 

discrimination. 

 

We further explored the D topology by adding migration pulses. We 

differentiate between migration and admixture pulses, with migrations 

referring to recent and continuous gene flow between two populations 

and admixture pulses defined as discrete and past gene flow from a 

target to a source population. We evaluated five different migration 

scenarios for Model D (Fig. 2): Model D_1 represents Model D without 

migration or admixture events. Model D_2 includes gene flow of both 

North African populations from/to surrounding populations. The model 

also includes several admixture pulses from Middle East to both Arab 

and Amazigh groups (which could mimic historic and pre-historic 

admixture events [13]) and admixture pulses to both North African 

populations from both East & West Africa representing that could 

represent the effect of trans-Saharan slave trade in the region [13]. 

Model D_3 increases the complexity of Model D_2 by including a 

“ghost” population from Eurasia. This population is described 

elsewhere [21] as a way of explaining basal substructure Out-of-Africa. 

We include two admixture pulses from this Basal Eurasian population, 

one to its sister branch and a second one to the European-Middle 

Eastern branch, representing a possible weaker influence of this Basal 

Eurasian on Amazigh respect to European, Middle East, and North 

African Arab populations. Model D_4 is the most complex model since 

it includes a second “ghost” population in sub-Saharan Africa that 

represents the population substructure in Africa. This “ghost” 

population admixes with the “real” populations in Africa as described 

previously [22]. On top of that, this model also includes an admixture 

pulse from European populations to both North Africa [13] and one 

Middle Eastern admixture pulse to Imazighen. Finally, Model D_5 

reduces the complexity by excluding all admixture pulses that do not 
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come from “ghost” populations. This model is a simplification of Model 

D_4 to test if admixture pulses towards our target population are 

needed to explain the North Africa scenario. 

 

Cross validation analysis between these five models shows that ABC 

correctly identifies the model in 30-60% of the simulations (Additional 

file 1: Table S4). This limited sensitivity is compatible with the 

hypothesis that all models are remarkably similar between themselves 

with a lot of admixture events that may result in very similar statistics 

comparing one model to another.  

 

When applied to the observed data, we obtained that Model D_4 is the 

“best” model with 76.2% of accepted simulations (Additional file 1 

Table S5) and a Bayes factor [23] of 8.07 to the second “best” model 

(Additional file 1: Table S6).: 
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Fig. 2: Tested demographic models including migration pulses. Left 

figures: variations of the selected topology on the first run of ABC-DL (Model 

D), included on the ABC-DL analyses considering North African Arab (NAa), 

North Africa Amazigh (Ama), Middle Eastern (ME), European (Eu), East Asian 

(EAs), East African (EAf), West African (WAf), and Ju/’hoansi (San) 

populations. Distinct levels of complexity are shown in each tested model, 

with purple lines representing recent migration and blue lines indicating 

admixture pulses from surrounding regions to both North African populations. 

The posterior probability obtained with our ABC-DL approach is shown on the 

top of each model. Right figure: fitted D_4 model with estimated parameters. 

Coloured lines represent admixture pulses from the specific population 

defined by the same color. 

Next, we estimate the posterior probability for each of the 82 

parameters form Model D_4 by applying the ABC-DL approach 

[19,22]. For each parameter, we analysed to which extent the posterior 

distribution captures its real value. First, we computed the factor 2 

statistic (Additional file 2: page 4: Table S1), defined as the number of 

times that the estimated mean is within the 50% to 200% of the true 

value of the parameter [23]. In most of the cases, the factor 2 analysis 

indicates high confidence in the estimation of the true value of each 

parameter. Time splits show significant better results than effective 

population size estimates, ranging from 98% (split of Europeans from 

the Middle East-North African Arab clade) to 100% in the West Africa 

split, compared to the 75% (effective population size of North Africa_ 

Middle East (NA_ME)) to 99% of West Africa effective population size 

(Additional file 2: page 4: Table S1). Regarding introgression 

parameters, introgression times show better factor 2 results (98% 

Basal Eurasian to European, Middle East, and North African 

populations) than the introgression amounts (77% NA_ME to 

Imazighen as the best value). In fact, the less accurate performance 

using the mean as proxy is for migration parameters. Factor 2 statistics 
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show ~ 70% chance of true value being in the 50% to 200% range of 

the estimated mean, which is similar to the value obtained when 

calculating the mean from random sampling of the prior distribution 

(Additional file 2: page 4: Table S1). Despite the weak performance in 

the estimation of migration parameters, the models with migration 

perform better in the ABC-DL than those without migration. These 

results indicate that the ABC-DL framework allows us to obtain a 

confident set of posteriors in most of the parameters, particularly for 

some of the more relevant ones since they show high factor 2 values 

and very significant differences between prior and posterior 

distributions (Additional file 2: page 4: Table S2). Of particular interest 

is the time of the split of Imazighen to the rest of European, Middle 

East, and North African populations. In 99.5% of cases, the mean 

posterior distribution of the time split of Imazighen to the rest of 

European, Middle East, and North African populations is within the 

factor 2. This suggests that the mean of the posterior distribution of 

this parameter can be considered a good proxy of the real value. 

 

When the ABC-DL is applied to each parameter of the model (Fig. 2), 

we observed that the posterior distributions for a large number of 

parameters were significantly different from the prior distributions 

(Additional file 3: histograms; Additional file 2: page 4: Table S2) and 

that in most cases there is a correlation between predicted and 

simulated values in the ABC analysis (Additional file 4: Spearman 

correlation; Additional file 2: page 4: Table S3). According to the ABC-

DL analysis, the North African Arab population diverged from Middle 

East common ancestor 8.6 Kya (97.5% credible interval (CI) ranging 

from 4.65 Kya to 15.40 Kya, assuming a generation time of 29 years 

per generation [24]). Imazighen split from the rest of Eurasian 

populations at 18.12 Kya (97.5% CI of 9.68 Kya to 27.33 Kya), 

whereas the Out-of-Africa event is estimated at 79.28 Kya (97.5% CI 
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51.11 Kya to 108.39 Kya). The effective population size indicates a 

reduction between the split with East Africa (Ne = 23,401 (97.5% CI: 

4,465 to 39,557)) and the split with East Asia (Ne = 5,619 (97.5% CI: 

1,292 to 9,713)), coinciding with the Out-of-Africa bottleneck. In some 

cases, the effective population size is slightly larger than the expected 

given our prior distributions (Additional file 3: histograms; Additional file 

2: page 3). All parameters are estimated considering a mutation rate of 

1.61e-8 ± 0.13e-8 mutations per bp [25]. 

 

The admixture estimates obtained from Model D_4 show multiple 

migration pulses from Middle East, Europe, and sub-Saharan African 

populations towards both Amazigh and Arab populations in the last 

200 generations. We observe that the amount of admixture from 

Middle East to North African Arab is larger than to Amazigh (9.7% 

[97.5% CI: 19.4% to 0.5%] vs 5.1% [97.5% CI: 9.8% to 0.3%]). Another 

interesting result is the 20% introgression from the “ghost” basal 

Eurasian population towards the MRCA of Middle East, European, and 

North African in at least two pulses of admixture. Other pulses of less 

intensity from East and West Africa to North Africa (~ 5%) and from a 

“ghost” African population to San and West Africa are also observed 

(2.5% [97.5% CI: 4.9% to 0.2%] and 3.2% [97.5% CI: 4.9% to 0.4%], 

respectively). 

 

Finally, we tested the robustness of the proposed model to generate 

datasets compatible with the observed genetic diversity in the data. 

We simulated 1000 datasets using the mean estimated at each 

parameter from Model D_4 with fastsimcoal2. In order to quantify how 

similar each simulated dataset resembles the observed data, we 

compared the jSFS obtained for each simulation with the observed 

jSFS using a replication -unseen during the training of the DL- dataset 

by means of a PCA [26,27]. The results of the PCA indicate that the 
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model does not correctly replicate the data since the observed jSFS 

falls as an outlier in the PCA of the simulations (Additional file 1: Fig. 

S5; Additional file 1: Fig. S6). This suggests that the current static 

models used might not properly capture the whole demographic 

complexity present in North Africa. 

 

Unravelling demographic history using Genetic Programming for 

Population Genetics (GP4PG). 

 

To overcome the limitation of the ABC-DL approach in the 

reconstruction of North African population history, we have developed 

a novel approach to explore the demographic parameter and model 

topology space of a demographic model based on the paradigm of 

Genetic Programming. Genetic Programming is a meta-heuristic 

method inspired on evolution to generate formulae or programs coded 

as trees. Each node in the tree represents an operation or function, 

and the branches represent arguments or operands. An evolutionary 

approach Genetic Programming for Population Genetics (GP4PG) 

algorithm considers evolutionary events, such as changes in the 

effective population size or the increase or decrease of population 

substructure, as operations. GP4PG search the space of possible 

configurations of evolutionary events to define the demographic events 

that would generate genomic datasets similar to the observed ones 

(see material and methods). These demographic events include the 

ones already considered in ABC-DL, such as the presence of 

admixture, effective population sizes, or time of the demographic 

event. However, GP4PG allows modelling population substructure 

within each of the considered populations, or ecodemes [28,29], from 

the demographic model. In this framework, each ecodeme is formed 

by multiple topodemes that relate to each other following an isolation 

by distance pattern [30], where topodemes that are situated closer will 
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migrate at higher rates than topodemes that are further apart 

(Additional file 1: Fig. S7). This allows generating reticulated and 

partially reticulated demographic models [31]. 

 

In addition, this new algorithm also takes into account population 

substructure when exploring different demographic scenarios. In our 

case, we considered eight ecodemes: San, West Africa, East Africa, 

Middle East, East Asia, Europe, North Africa Amazigh, and North 

Africa Arab, all with the same size and without distance between 

neighbouring ecodemes to simplify the models. 

 

We apply the GP4PG algorithm with the six of the considered 

topologies used with the ABC-DL. We discarded Model A since it 

consistently showed the worst performance in multiple iterations of the 

ABC-DL reducing computing times and resource allocation. For the 

remaining six models, we used two different versions: a variant that 

includes migration between topodemes (populations) and a variant 

without including migrations resulting in 12 different topologies 

(Additional file 1: Fig. S8). Since GP4PG is a metaheuristic approach 

based on exploring graph topologies (see material and methods), it 

can be trapped into local optima. Therefore, we independently run 40 

times the GP4PG algorithm, each for 200 iterations, retrieving the best 

demographic model from the end of the 200 iterations. After the 200 

iterations the fitness error between the simulated dataset and the 

observed dataset at each run of GP4PG reaches a plateau (Additional 

file 1: Fig. S9). Interestingly, we observe differences in the final error of 

each run, ranging between 10 to 2, thus supporting that GP4PG tends 

to get trapped in local optima. 

 

Model D is the one most supported by the GP4PG with 10 out of the 

40 replications performed. The model that presents the minimum error 
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is Model D (Model D_15 - Error = 2.56). Next, we assessed the 

performance of each model to predict the observed data. We selected 

the 10 models from the GP4PG runs with the least amount of fitness 

error. For each of them, we computed a thousand simulations. For 

each simulation we computed the 4-fold SFS of all the simulations. 

Finally, we compared them to a replication set of the observed data 

using PCA. We compared the results of the ABC-DL simulation, 

transforming the jSFS into a 4-fold SFS to evaluate if the performance 

of the GP4PG is better than the ABC-DL (Additional file 1: Fig. S9). 

Simulations from the ABC-DL ModelD_4 fall further to the observed 

data than any of the GP4PG models in the PCA indicating that the 

models produced by the new methodology are consistently better at 

describing the observed data than the models produced by the ABC-

DL (Additional file 1: Fig. S9). 
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Fig. 3 : Fitted model obtained with GP4PG algorithm. Demographic model 

of North African populations with the least amount of error in the GP4PG 

algorithm (E = 2.56), iteration 15 out of 40. This model presents a different 

origin of North African Amazigh and Arab. Each color represents a different 

range of Ne also represented by the width of the columns. The model shows 

some population substructure, especially in sub-Saharan African populations 

and presents the ability to explain complex demographic models with 

population substructure and decaying migration after split pattern. 

 

After verifying that simulated data from models inferred by GP4PG fit 

the genetic diversity observed in the real data, we ascertained the 

model interpreted as the “best” after both ABC-DL and GP4PG (Fig. 

3). This demographic model presents a topology that proposes 

different demographic histories between Amazigh and Arab 

populations, with Amazigh splitting from the MRCA around 22.3 

thousand years ago. On the other hand, North African Arab individuals 

split from Middle Easterns around 1.6 Kya, which might be related to 

the Arabization process in North Africa. This result contrasts with the 

one obtained with the ABC-DL approach that estimated an older split 

of North African Arabs closer to Neolithic times. Another detail that we 

deduced from this demographic model of North Africa is that admixture 

pulses do not appear as drivers of genetic diversity in any of the best 

10 models. Instead, most of the current genetic diversity can be 

explained by a combination of population substructure and migration 

decay between demes. The rest of the parameters of each model can 

be found in the supplementary material (Additional file 5: parameters 

for the best 10 models of the GP4PG). 
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DISCUSSION 

 

North African populations are a demographic melting pot [7,13]. The 

presence of complex and recent demographic histories with multiple 

gene flow events from different sources difficult our ability to construct 

a feasible demographic model with current methodologies. The 

absence of model-specific statistics recapitulating particular events 

even for moderately complex evolutionary problems has fuelled the 

development of methods based on machine learning [32]. 

 

The application of the ABC-DL approach considering relatively 

complex demographic models supports that the Imazighen present a 

different demographic history compared to surrounding populations. 

Prior studies with autosomal markers on North Africa populations 

pointed to Amazigh populations presenting a unique genetic 

component that has been described as the autochthonous component 

for the region and that can be traced back to, at least, Epipaleolithic 

times [3,7]. This is supported by our ABC-DL model as we estimate a 

continuity of the Amazigh population up to 18.14 Kya (97.5% CI of 9.68 

Kya to 27.33 Kya) falling in the range of the Epipaleolithic samples of 

Taforalt (15-13 Kya) [3]. The Arab population in North Africa, on the 

other hand, shows higher genetic affinity with Middle Eastern groups 

than to the ancient Taforalt samples. This affinity is described by an 

east to west cline on the amount of Middle East-like genetic ancestry 

across North Africa and has been hypothesized as a consequence of 

several migration movements from the Middle East to North Africa with 

the Neolithization and the Arab expansion being the more relevant 

ones [13]. The ABC-DL model supports the Neolithic expansion to 

North Africa as the main source of the Middle Eastern component. This 

is supported by divergence times between North African Arabs and 

Middle Easterns at 8.6 Kya (97.5% CI of 4.65 Kya to 15.40 Kya) which 
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overlaps with previous studies on Neolithic expansion in North Africa 

[8]. We observe at least one pulse of admixture in late Neolithic from 

the Middle East to both North African populations around 5.6 - 5.9 

thousand years ago (97.5% CI of 0.54 Kya to 13.94 Kya to Arab; 

97.5% CI of 0.63 Kya to 14.03 Kya to Amazigh), highlighting the 

importance of Neolithic demic diffusion in North Africa [8,33]. Other 

admixture events from surrounding regions are also supported by our 

model. European admixture in Neolithic times is present, although 

always placed later than the Middle Eastern admixture (Additional file 

2: page 4). This is observed both in both Amazigh and non-Amazigh 

populations in small proportions (~5%) which is consistent with the 

hypothesis of European contact in western North Africa at least 5,000 

years ago [8–10]. In addition to these gene flow events, it has been 

proposed the presence of a basal Eurasian population that could 

explain early diversity in West Eurasia, North Africa, and the Near East 

[21]. We observed that, when including this “ghost” basal Eurasian 

population in our models, the performance of the models increases, 

reinforcing the hypothesis of the basal Eurasian population proposed 

previously [21]. Focusing on the performance of the ABC-DL approach 

in North Africa, some of the main flaws are related to the estimation of 

effective population sizes. In some populations the posterior 

distribution of effective population size is larger than the initial prior 

distributions we provided. This might be an issue when estimating 

several parameters since effective population size and split times are 

highly correlated. Effective population size is dependent on 

heterozygosity [26]. As the heterozygosity increases, the effective 

population size or the split time of a population needs to increase in 

order to reach coalescence [26]. We observe that the heterozygosity in 

the North African Arab samples is higher compared to European and 

Middle Eastern populations (Additional file 1: Fig. S10) which can be a 

result of recent gene flow from sub-Saharan Africa. This increased 
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heterozygosity hinders the estimation of split times and effect sizes as 

we may need bigger sample sizes or more complex scenarios to take 

this diversity into account. 

 

Despite the reasonable performance of the ABC-DL approach, it has 

replicability issues. The accepted models cannot grasp all the diversity 

of the data and are biased by our preconceptions of the history of the 

populations. Moreover, a further drawback of the methodology is the 

black-box nature of DL approaches [34], which limits interpreting which 

parameters from the model should be modified in order to improve the 

performance of the inferred demography. To overcome these 

limitations, we have developed a new algorithm, GP4PG, inspired by 

the field of genetic programming and evolutionary algorithms [35–38], 

for automatizing the exploration of complex parameter-free 

demographic models. GP4PG performs, in terms of reproducing the 

observed genetic variation, better in the North Africa scenario than the 

best possible model obtained with ABC-DL algorithms by minimizing 

the difference between our dataset and the simulations obtained from 

the best model (Additional file 1: Fig. 9). It also reduces the amount of 

bias that can be imputed due to the building of each of the competing 

models, given that the only inputs to the GP4PG algorithm are the 

topologies for each of the models. 

 

The GP4PG analysis, like the ABC-DL, supports that Amazigh and 

Arab populations in North Africa have different demographic histories 

despite both originated as back-to-Africa movements from Eurasian 

populations. Amazigh groups appeared before the European, Middle 

Eastern, and North Africa Arab branch, splitting from a common 

ancestor around 22.3 Kya (Fig. 3). This date precedes the oldest 

genomic data available in the region [3] for at least seven thousand 

years, pointing to a genetic continuity even before than expected, and 
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which is closer to the earliest known appearance of Iberomaurisian 

culture in Northwest Africa (25.85 to 25.27 cal. Kyra) at Tamar Hat 

[39]. On the other hand, North African Arab populations appear to have 

split from Middle Easterns 1.6 Kya, placing this population closer to an 

Arabization replacement on North Africa than to a Neolithization demic 

diffusion. This result contrasts with the ABC-DL results that show a 

deeper impact of the Neolithization process in the North African Arab - 

Middle Eastern split. The difference in the divergence time can be 

attributed to the effect of migration. From a coalescent perspective, 

migration between two populations generates a distinction between the 

coalescence time between the lineages and the split time between the 

populations. In models where migration is included as a parameter, the 

split time between North African Arab and Middle East populations is 

closer to the one observed in the ABC-DL analysis (ModelD_7 at 6.41 

Kya; ModelD_26 at 13.39 Kya; Additional file 5) implying that the 

inclusion of migration increases the time of coalescence between the 

populations. 

 

The absence of admixture events in the best model of the GP4PG 

algorithm can be attributed to the fact that our algorithm is weighted 

towards modelling population splits by a soft process in which 

migration decays forward in time between related populations. 

Therefore, whenever a split between two populations occurs, migration 

between the newly formed topodemes continues for generations, 

decaying as the demes grow further apart until they achieve a constant 

migration rate. Our selected model presents population substructure in 

current sub-Saharan African populations that extends to ancient times 

(Fig. 3). These observations support the results obtained by Ragsdale 

et al [31], where reticulated population substructure tens of thousands 

years ago could explain some of the genetic diversity previously 

attributed to archaic introgression [19,22]. Although the most robust 
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model supports this idea of soft splits between populations, we do not 

rule out the possibility of admixture pulses as we observe in the ABC-

DL analysis because we hypothesize that the effect of continuous 

migration after split could be mixed up with the effect of admixture 

pulses. 

 

Since our analysis includes a limited number of samples (n = 2 per 

population), the study lacks some power to confidently corroborate 

some of these results, especially for the sub-Saharan population. 

Despite this, the results indicate that the models always perform better 

when including some amount of population substructure. On top of 

that, we must be aware that the selected Imazighen individuals are 

part of a very isolated population, the Chenini Amazigh. This 

population is an outlier in North Africa (Fig.1_b) due to isolation. This 

characteristic makes it useful as a proxy of the North Africa 

autochthonous component given that the amount of sub-Saharan and 

Middle Eastern genetic components is lower than in the rest of North 

African Imazighen groups [40]. Nonetheless, taking into account the 

heterogeneity within Imazighen groups due to different amounts of 

genetic components coming from neighbouring populations, using 

other Imazighen groups could lead to slight differences in some of the 

studied parameters. 

 

Most of the selected topologies in the 40 runs of the GP4PG are either 

Model D (25%), Model C (17.5%), or Model F (20%). These three 

models present very similar topologies, with slight variations, mainly in 

setting the Amazigh origin. The current implementation of the GP4PG 

algorithm has enough statistical power to discriminate between 

competing models but falls short to detect fine scale migration and 

admixture events. This is due to the multimodal nature of the SFS that 

can lead to similar genomic patterns [26,41] with different demographic 
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models. Implementation of haplotype-based summary statistics to the 

GP4PG algorithm in the future could solve some of these issues in 

very complex demographic scenarios such as that of North Africa. 

 

CONCLUSION 

 

In sum, we have built a robust model of the demographic scenario of 

the North African populations. By implementing an ABC-DL algorithm 

and a novel GP4PG algorithm based on metaheuristics, we have 

defined a clear topology that proposes a back-to-Africa origin and 

differentiates the Amazigh-speaking population from the Arab-

speaking groups in the origin and settlement in northern Africa. Our 

data point to a complex scenario where population substructure and 

admixture events had a significant impact on the genetic structure of 

current North African populations. 

 

MATERIAL & METHODS 

Databases 

 

To analyse the population structure and demographic history of North 

Africa a dataset was compiled consisting of 32 whole genomes 

sequenced on deep coverage from North Africa. This dataset includes 

fifteen newly published samples from Morocco (n = 6) and Tunisia (n = 

9) (Ref : EGAXXXX), Imazighen (n =4) and non-Imazighen (n = 6) 

individuals from Serra-Vidal 2019 [6], Egyptian samples (n = 3) from 

Pagani et al. 2015 [42] and Saharawi (n = 2) and Mozabite (n = 2) 

North Africa individuals extracted from the Simons Genome Diversity 

Project (SGDP) [43]. These North African samples were merged with a 

panel of world-wide populations from the SGDP (n = 295) [43], the 

1000 Genomes Project (n = 38) [44] and high coverage Qatari 

individuals (n = 9) from Fakhro et al [45]. The final dataset used for the 
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population structure analysis consists of 374 whole genome high 

coverage individuals. Furthermore, to perform the demographic 

inference analysis, a subset of individuals from each of the proxy 

groups for every population was analysed (Additional file 1: Table S7). 

Two North African Arab speaking population (Tunisian Arab), two from 

a Tamazight speaking group in North Africa (Tunisian Chenini), two 

Middle Eastern representatives from Qatar, two Northern European 

from Utah (CEU), two East Asian from Han (CHB), two West African 

from Yoruba population in Ibadan (YRI), two East African from Luhya 

in Kenya (LWK) and two South African San from Ju/’hoansi North in 

Namibia (JHN). The final dataset for the demographic inference 

analysis comprised 16 individuals with an individual whole-genome 

coverage of >30X. 

 

Read Mapping and Variant Calling 

 

Single-nucleotide polymorphism (SNP) genotype variation of each 

sample was obtained by the following procedure. Read quality 

assessment of the fastq files was performed with fastQC 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Reads 

were mapped to the hg19 reference genome using the Burrows-

Wheeler Aligner (BWA-MEM v0.7.13) [46]. Reads were then sorted 

using SAMtools v1.2 [47] and duplicates were removed using 

MarkDuplicates from Picard (https://broadinstitute.github.io/picard/). 

Indels were realigned and quality scores were recalibrated using the 

Genome Analysis Toolkit (GATK 4.1.8.1) [48]. Variant calling was done 

using the HaplotypeCaller and merging of each sample into a 

multisample VCF was done using the GATK GenomicDB-

GenotypeGVCFs functions [48]. 

 

https://broadinstitute.github.io/picard/
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We obtained the structure dataset by merging all samples, keeping the 

common SNPs across all samples, and applying SNP (geno = 0.1) and 

individual missingness (mind = 0.1) in PLINK v1.9 [49–51]. We then 

excluded the SNPs with MAF < 0.01 and removed the individuals with 

cryptic relatedness using KING [52] based on a cutoff of 0.325. The 

final dataset comprised 9.68 M SNPs on 365 individuals from 150 

different populations. 

 

Data filtering 

 

For demographic modelling, the dataset was further filtered to obtain a 

confident set of variants by implementing the following criteria: (i) a 

minimum of 5 reads mapped for each locus, (ii) a quality score 

threshold for the alternative allele of the variant, with a minimum score 

of 20 in the QUAL field of the VCF file, (iii) a PASS in the genotyping 

quality, (iv) exclusion of regions covered by structural variants [22] 

using TandemRepeatMarker repeats of length greater than 80 bp 

(UCSC browser) and 1000 Genomes Project copy number variants 

(https://www.ncbi.nlm.nih.gov/dbvar/studies/studyvariants_for_estd199

.csv), (v) exclusion of regions adjacent to indels with a 6bp flanking 

region, and (vi) exclusion of multiallelic variants. Based on these 

filtering steps, we obtained a 1.962.660.202 bp-long callable genome 

containing a high-confidence set of 16.4 M SNPs for downstream 

analyses. The ancestral state of each variant in these genomes was 

set to the chimpanzee reference genome (panTro4 genome assembly 

from 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/vsPanTro4/reciproca

lBest) to avoid any discrepancy between African and non-African 

populations as detailed elsewhere [19,22]. 

 

Structure analysis 
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Principal component analysis 

 

Principal component analysis was performed using flashPCA [53], 

pruning the data for linkage disequilibrium between the markers using 

PLINK v1.90 [49–51] based on an r2 threshold of 0.4 in every 

continuous window of 200 SNPs with a step of 25 SNPs (i.e., –indep-

pairwise 200 25 0.4). 

 

ADMIXTURE analysis 

 

ADMIXTUREv1.3 [54] was applied on the whole structure dataset, 

which was previously pruned for linkage disequilibrium between 

markers (–indep-pairwise 200 25 0.4). ADMIXTURE-ready dataset had 

1.58 M SNPs on 365 samples. ADMIXTURE in unsupervised mode 

was run assuming several ancestral clusters ranging from K = 2 to K = 

12 with 10 independent runs for each K using different randomly 

generated seeds for each run. The cross-validation error was 

assessed for each run, with K = 3 to K = 9 giving the minimum error. 

We then ran pong [20] in the greedy mode in order to identify common 

modes among different runs for each K to align clusters across 

different values of K. 

 

Demographic Model 

 

To decipher the complex demographic scenario of North Africa, we 

used an Approximate Bayesian Computation with Deep Learning as 

explained more in detail in Mondal et al. [19]. The ABC-DL 

implementation is a three-step analysis. First, we generated thousands 

of simulations with fastSimcoal2 [55,56] for each of the competing 

models using the joint multidimensional site frequency spectrum 

among populations (jSFS) as a raw summary statistic. This statistic 
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contains the information to run most of the frequency-based statistical 

analyses used in population genetics which are informative for 

detecting most of the demographic parameters considered in our 

demographic models (more in [19]. Second, we trained a DL to predict, 

from the jSFS, the most informative summary statistic (SS-DL) of the 

considered parameter or set of models. A potential limitation of this 

approach is the fact that the DL is trained with simple data and 

compared to the real model generated by the observed data, possibly 

overfitting our models. To avoid biases in the DL prediction, we 

injected jSFS noise in each simulation from the real data (see [19]). 

Finally, we performed a classical ABC approach using the SS-DL in a 

new set of simulated datasets. 

 

The callable fraction of the genome we used for the demographic 

modelling is a modification of that defined by Pouyet [57]. We further 

cleaned the original callable genome, defined by Pouyet, to identify 

neutral regions by masking genomic regions containing Ensembl 

genes within a 20 kb range and masking CpG islands as defined 

elsewhere [19]. After that, we excluded all regions failing to reach a 

SNP density over 90% on 10 Kb windows with a sliding step of 2500 

bp. to obtain 53.7 Mb of callable genome that was used in the next 

steps. 

 

Ten Deep Learning (DL) networks were created, with four hidden 

layers each, and trained with 20,000 simulations each. An additional 

set of 180,000 simulations per model was generated, injecting noise 

from the observed jSFS of an individual of each population (BTUN01, 

TUN01, NA18559, NA12878, SR098230, NA19037, NA19207, 

HGDP01032), and the probability of each model was predicted using 

the 10 DL networks. The results were averaged to get the summary 

statistic (SS-DL) for the Approximate Bayesian Computation (ABC) 
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analysis, carried out using the “abc” package in R [58,59]. We have 

assumed a mutation rate of 1.61e-8 ± 0.13e-8 [25] and a generation 

time of 29 years [24]. 

The ABC process can be divided into two steps. First, we checked how 

well the “abc” was able to distinguish between competing models. To 

do so, we applied the cv4postpr function on the “abc” package that 

performs a cross validation analysis on the ability of 

25 

distinguishing between models [58]. This was done using 50 

simulations per model and the same ABC parameters we used when 

analysing the observed data. The cv4postpr runs the ABC using 

simulated data as observed data and counting the number of times 

that the model with the highest posterior probability was, in fact, the 

model that generated the simulated data. Once the “abc” was able to 

distinguish between the different competing models, we began the 

discrimination of the “best” model. To do so we applied the “postpr” 

function of the “abc” package [58], keeping the 1000 best simulations 

(out of a total of 180,000 simulations per model) under a “mnlogistic” 

option for model comparison (tol = 0.001). We applied this procedure 

twice, one for the discrimination between the 7 competing models and 

another one to select the best variant for the topology selected before. 

The DL process and ABC calculation were repeated for the parameter 

estimation of each parameter in the “best” model to get the posterior 

range for all demographic parameters. Mean, median, mode, 95% 

Credible Interval (CI) and 95% Highest Density Interval (HDI) [60] were 

calculated for each parameter. Finally, Spearman correlation, factor2 

[23], and Kullback-Leiber distance [61] were used to assess the quality 

of the posterior predictions. 
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GP4PG 

 

Model comparison by ABC requires defining which are the models to 

consider. These models are, by definition, simplifications of reality. 

However, basic assumptions about the demographic events, and 

particularly population substructure, can significantly bias the model 

ascertainment [31]. Previous studies have dealt with the presence of 

hidden population substructure by modelling “ghost” populations 

[19,21,22] or by generating ancient weak structured stems that interact 

forming the current populations [31]. To bypass this issue, we have 

developed the Genetic Programming for Population Genetics 

(GP4PG), which is based on using genetic programming (GP), a 

branch of natural computing. 

 

Natural computing refers to meta-heuristic algorithms inspired by 

nature to solve –by means of optimizing an error function– complex 

problems that are otherwise intractable. The underlying rationale of 

natural computing is that strategies used by nature to solve natural 

problems can be applied by reverse engineering to human-based-

problems. Within the context of natural computing, Darwinian evolution 

inspires a broad family of algorithms called Evolutionary Algorithms 

that mimic the process of how evolution works to adapt an organism to 

its environment. Within the evolutionary algorithm family, Genetic 

algorithms have been already used in population genomics for 

demographic parameter definition [62]. However, GP is better suited 

for generating formulae and population relationships as the algorithm 

codes solutions in the form of a graphical (tree) structure whose nodes 

or edges represent parameters [37,38]. GP is an automated invention 

machine, which routinely delivers high-return human competitive 

machine intelligence, duplicating the functionality of previously 

patented inventions, infringed a previously issued patent, or created a 
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patentable new invention [63]. The basic workflow of a GP embraces 

the basics of the biological evolution of a population, including 

selection, recombination, and mutation. Within this machine learning 

framework, a proposed solution, coded in the form of a graph, is 

considered as a biological being, which is subject to selection 

according to how good is for predicting the parameter of interest –how 

good is the summary statistic to distinguish models, or to predict a 

parameter of a given model. A set of solutions define a population that 

evolves over generations, exchanging information through 

recombination and exploring the surrounding space through mutation, 

to minimize an error function. Within the context of demographic 

modelling, the nodes refer to possible demographic events – and the 

tree depicts a demographic model (Additional file 1: Fig. S11; 

Additional file 1: Table S8). 

 

The proposed GP4PG framework considers the particular features of 

demographic modelling and applies some modifications to the classical 

GP algorithm to account for them. GP4PG organizes populations in 

fundamental homogeneous groups called “demes” that are nested 

within “topodemes" and “ecodemes” [29]. Gilmour and Gregor defined 

these concepts from an ecological perspective. Ecodeme refers to 

those topodemes sharing a given habitat, while topodeme is used to 

group the individuals that are from the same locality. Each ecodeme 

can have one or more topodemes depending on the heterogeneity of 

the population. In a population genetics and demographics scenario, 

we used topodeme as a unit of population substructure to resemble 

the different population nuclei that we could observe in a population 

and that suggest the internal diversity that be observed in a given 

region (“ecodeme”) [28]. 
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The GP4PG algorithm models the migration rate of each ecodeme 

within itself and with adjacent ecodemes following an isolation by 

distance approach [30]. Thus, populations situated further apart would 

have less chance to exchange migrants than those that are closer 

together. For the sake of simplicity, we considered that populations all 

occupy a same size space and that the distance between adjacent 

populations was zero, meaning that geographical barriers, such as the 

Sahara Desert or the Mediterranean Sea, were not considered to order 

the populations in the space. All models included a migration decay 

function. Following the split between two ecodemes, these demes 

continue to exchange migrants, but the quantity is gradually reduced 

over time until it reaches the migration rate defined between the two 

populations or they stop sharing migrants if the models do not have 

migration. This modelling approach accounts for the fact that the 

migration rate between two populations is not constant from the outset, 

but rather fluctuates and diminishes exponentially with time as they 

become more isolated and distinct. 

 

First of all, the nodes used in GP4PG represent demographic events 

rather than operations to be added to a formula. Each demographic 

event requires a time when it occurs, and such time determines the 

relationship with its preceding nodes in backward. The GP4PG will 

also choose from the several possible demographic events (admixture, 

addition and reduction of demes or changes in the migration rates) and 

different combinations to produce the simulations that are going to be 

tested against the observed data. All the simulations were ranked by 

means of a standardized error comparing the jSFS (4-wise SFS) of 

each of the simulations to the observed data jSFS. The best 

simulations will, following the concepts of GP, produce more offspring 

than the worst simulations, that will suffer modifications using 

mutations and recombination with other models, similar to an 
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evolutionary process, optimizing the models after each generation. In 

this way, at each iteration, we’ll obtain better models to explain the 

observed data. 

 

Exploring the space of possibilities within the GP4PG framework 

 

In canonical GP, exploration of the space of solutions is mainly 

accomplished by generating solutions from the most successful ones 

by means of recombination: exchanging sub-trees at a given node in 

both parents. Thus, the offspring is a combination of both trees using a 

subtree-crossover operator [36]. In the GP framework, modifications of 

the parental structure -i.e., mutation- are less frequent [36]. However, 

classical recombination approaches applied to demographic models 

could easily produce non-compatible solutions, where the root node of 

the replaced subtree from one parent could have older times than its 

preceding node. This does not occur if only the mutation process is 

applied, as in this case changing the time can be constrained to be 

between the ranges of the previous and next demographic event. 

There are different evolutionary strategies and evolutionary strategies-

like algorithms whose main exploration force is a type of mutation. We 

adapted the invasive weed optimization algorithm (IWO) [64,65] to be 

used for GP-tasks. IWO emulates the process of colonizing new 

environments by invasive plants. In IWO, each solution present in the 

population reproduces proportional to its fitness. First, a finite number 

of seeds (demographic models) is produced. Reproduction of each 

solution depends on a seed offspring function [Eq.1] that lets those 

solutions that have better fitness reproduce more than those that are 

further from the optimum. This reproduction technique allows the 

chance to survive and reproduce for unfeasible solutions, hence not 

discarding possible useful information carried by low fitness 

individuals. Once the new solutions are proposed proportional to how 
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good each parental solution is, the new solutions are ranked from the 

best to the worse and a new population of the original size is 

generated by disregarding worse performing solutions. 

 

In our case, we rank all the possible solutions according to how close 

the simulated dataset produces summary statistics (SS) close to the 

summary statistics observed in the real data (Eq. 1): 

 

 𝑓𝑠𝑖𝑚 = ∑ (
𝑆𝑆𝑠𝑖𝑚

𝑠 −𝑆𝑆𝑜𝑏𝑠
𝑠

𝜎𝑜𝑏𝑠
𝑠𝑖𝑚 )

2
𝑛𝑠𝑢𝑚𝑠𝑡𝑎𝑡
𝑠=1   (Eq.1) 

 

Where each element s comes from the jSFS of each simulated model 

computed among all possible combinations of four populations (4jSFS) 

against the 4jSFS of the observed data. The standard error of each 

element s is obtained by Monte Carlo resampling with replacement 

from the considered genomic fragments 1,000 datasets of the same 

genomic size as in the training dataset and computing for each dataset 

the 4jSFS. 

 

By using 4-population-fold jSFS instead of the full multidimensional 

SFS (mSFS) among all populations, the total number of summary 

statistics is reduced to Eq. 2 instead of Eq. 3. This avoids the 

exponential explosive nature of the full multidimensional site frequency 

spectrum and the associated curse of dimensionality [66], reducing the 

number of mSFS combinations with value 0, while allowing to 

recapitulate the demographic relationships among populations [67]: 

𝑛𝑠𝑢𝑚𝑠𝑡𝑎𝑡4𝑗𝑆𝐹𝑆  =  (34 − 2) ∗
𝑛!

4!(𝑛−4)!
   (Eq. 2) 

 

𝑛𝑠𝑢𝑚𝑠𝑡𝑎𝑡𝑚𝑆𝐹𝑆 = (3𝑛 − 2)  (Eq .3) 

30 
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Evolving the population of answers 

 

The best performing solution in our population (i.e., the one whose 

demographic model produces 4jSFS close to the one in the observed 

data) generated eight new solutions, each of them showing in 

probability differences on the time of the events, the events and 

particular parameters related to the events. The worst performing 

solution in our population produced two offspring. Other solutions 

reproduced in proportion S (Eq.4). In our analysis we have determined 

a 𝑆𝑆𝑚𝑖𝑛𝑚𝑖𝑛 of 2 and a 𝑆𝑆𝑚𝑎𝑥𝑚𝑎𝑥 of 8, this allows the preservation of 

low fitness solutions that could potentially give higher fitness offspring 

that otherwise with a more restrictive 𝑆𝑆𝑚𝑖𝑛𝑚𝑖𝑛 would be lost: 

𝑆𝑖  =  (𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛) ∗
𝑓 −𝑓𝑚𝑖𝑛

𝑓𝑚𝑎𝑥− 𝑓𝑚𝑖𝑛
 +  𝑆𝑚𝑖𝑛  (Eq.4) 

 

Model comparison with GP4PG 

 

We tested six competing topologies in the GP4PG algorithm (Fig. 4), 

which are the same topologies tested for ABC-DL except for Model A. 

On top of that, we constructed two models for each topology, one 

considering migration between “ecodemes” and the other without it. 

For the GP4PG algorithm, in order to speed up the algorithm, we have 

used half the masking regions filtered from Pouyet [57], and a second 

set of data to validate the analysis. The GP4PG algorithm gives us the 

model that presents the least amount of error to the data for each 

iteration. In our case we have performed 40 iterations with 200 

generations for each iteration. The 10 best solutions were then 

compared to the observed data by performing a PCA of the 4jSFS of a 

thousand simulations of each model against the 40 4jSFS of the 

replication dataset to take into account the deviation in the SFS due to 

the random selection of masked regions. 
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Fig. 4: Structure of the GP4PG algorithm. From an initial set of models, we 

compute a summary statistic (4jSFS) for each simulation and compare it to 

the observed data by the means of a fitness error function. Then, the errors 

are ranked. We produce the offspring (2nd generation) following an invasive 

weed optimization algorithm modifying each child model (mutation). We 

repeat this procedure until the error is 0 or it reaches a plateau. 

 

DECLARATIONS 

 

Ethics approval and consent to participate. 

The present project has the corresponding IRB approval (Comitè 

d’Ètica d’Investigació-Parc de Salut Mar 2019/8900/I, Barcelona, 

Spain). 



125 
 

 

Consent for publication 

 

The authors declare no competing interests and agree with the 

publication of the results. 

 

Availability of data and materials 

 

Funding  

This work was supported by the Spanish Ministry of Science and 

Innovation (grant numbers PID2019-106485GB-I00 and RTC-2017–

6471-1 AEI/FEDER, UE), Fundación CajaCanarias and Fundación 

Bancaria “La Caixa” (2018PATRI20), and “Unidad María de Maeztu” 

(CEX2018-000792-M) funded by the MCIN and the AEI 

(DOI:10.13039/501100011033). J.M.S was supported with a Formació 

de Personal Investigador fellowship from Generalitat de Catalunya 

(FI_B100135). 

 

Authors' contributions 

 

J.M.S., O.L., and D.C. conceived the work. J.M.S. and O.L. performed 

the computational analyses, generated the figures, and wrote the 

manuscript. D.C. contributed to analysis and/or interpretation of 

results. All authors approved the final manuscript. 

 

Acknowledgements 

 

We would like to thank the Scientific Computing Core Facility at the 

UPF (https://www.upf.edu/web/sct-sit) for their technical help and 

support. 



126 
 

Competing interest 

 

The authors declare no competing interests. 

 

REFERENCES:  
 

1. Sahnouni M, Parés JM, Duval M, Cáceres I, Harichane Z, Van Der 

Made J, et al. 1.9 million and 2.4 million year old artifacts and stone 

tool–cutmarked bones from ain boucherit, Algeria. Science (80- ). 

2018;362:1297–301. 

2. Hublin JJ, Ben-Ncer A, Bailey SE, Freidline SE, Neubauer S, 

Skinner MM, et al. New fossils from Jebel Irhoud, Morocco and the 

pan-African origin of Homo sapiens. Nature [Internet]. 2017;546:289–

92. Available from: http://dx.doi.org/10.1038/nature22336 

3. Van De Loosdrecht M, Bouzouggar A, Humphrey L, Posth C, Barton 

N, Aximu-Petri A, et al. Pleistocene north african genomes link near 

eastern and sub-saharan african human populations. Science (80- ) 

[Internet]. 2018;360:548–52. Available from: 

https://www.sciencemag.org/lookup/doi/10.1126/science.aar8380  

4. Hervella M, Svensson EM, Alberdi A, Günther T, Izagirre N, Munters 

AR, et al. The mitogenome of a 35,000-year-old Homo sapiens from 

Europe supports a Palaeolithic back-migration to Africa. Sci Rep. 

2016;6. 

5. Pennarun E, Kivisild T, Metspalu E, Metspalu M, Reisberg T, 

Moisan JP, et al. Divorcing the Late Upper Palaeolithic demographic 

histories of mtDNA haplogroups M1 and U6 in Africa. BMC Evol Biol. 

2012;12.  

6. Serra-Vidal G, Lucas-Sanchez M, Fadhlaoui-Zid K, Bekada A, 

Zalloua P, Comas D. Heterogeneity in Palaeolithic Population 

Continuity and Neolithic Expansion in North Africa. Curr Biol [Internet]. 



127 
 

2019;29:3953-3959.e4. Available from: 

https://doi.org/10.1016/j.cub.2019.09.050  

7. Henn BM, Botigué LR, Gravel S, Wang W, Brisbin A, Byrnes JK, et 

al. Genomic ancestry of North Africans supports back-to-Africa 

migrations. Schierup MH, editor. PLoS Genet [Internet]. 

2012;8:e1002397. Available from: 

http://dx.plos.org/10.1371/journal.pgen.1002397  

8. Pimenta J, Lopes AM, Comas D, Amorim A, Arenas M. Evaluating 

the neolithic expansion at both shores of the mediterranean sea. Mol 

Biol Evol. 2017;34:3232–42.  

9. Simões LG, Günther T, Martínez-Sánchez RM, Vera-Rodríguez JC, 

Iriarte E, Rodríguez-Varela R, et al. Northwest African Neolithic 

initiated by migrants from Iberia and Levant. Nature. 2023;618:550–6.  

10. Fregel R, Méndez FL, Bokbot Y, Martín-Socas D, Camalich-

Massieu MD, Santana J, et al. Ancient genomes from North Africa 

evidence prehistoric migrations to the Maghreb from both the Levant 

and Europe. Proc Natl Acad Sci U S A [Internet]. 2018;115:6774–9. 

Available from: 

http://www.pnas.org/lookup/doi/10.1073/pnas.1800851115  

11. Elkamel S, Cherni L, Alvarez L, Marques SL, Prata MJ, Boussetta 

S, et al. The Orientalisation of North Africa: New hints from the study of 

autosomal STRs in an Arab population. Ann Hum Biol. 2017;44:180–

90.  

12. Lucas-Sánchez M, Fadhlaoui-Zid K, Comas D. The genomic 

analysis of current-day North African populations reveals the existence 

of trans-Saharan migrations with different origins and dates. Hum 

Genet. 2023;142:305–20.  

13. Lucas-Sánchez M, Serradell JM, Comas D. Population history of 

North Africa based on modern and ancient genomes. Hum Mol Genet. 

2021;30:R17–23.  



128 
 

14. Camps G. Els Berbers, mite o realitat? In: Roque MA, editor. Les 

Cult del Magreb. Barcelona: Enciclopedia Catalana; 1994. p. 41–74.  

15. Fadhlaoui-Zid K, Plaza S, Calafell F, Amor M Ben, Comas D, El 

Gaaied AB. Mitochondrial DNA heterogeneity in Tunisian Berbers. Ann 

Hum Genet. 2004;68:222–33.  

16. Bosch E, Calafell F, Pérez-Lezaun A, Comas D, Mateu E, 

Bertranpetit J. Population history of North Africa: Evidence from 

classical genetic markers. Hum Biol. 1997;69:295–311.  

17. Bosch E, Calafell F, Comas D, Oefner PJ, Underhill PA, 

Bertranpetit J. High-resolution analysis of human Y-chromosome 

variation shows a sharp discontinuity and limited gene flow between 

northwestern Africa and the Iberian Peninsula. Am J Hum Genet 

[Internet]. 2001;68:1019–29. Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/11254456  

18. Arauna LR, Mendoza-Revilla J, Mas-Sandoval A, Izaabel H, 

Bekada A, Benhamamouch S, et al. Recent Historical Migrations Have 

Shaped the Gene Pool of Arabs and Berbers in North Africa. Mol Biol 

Evol. 2017;34:318–29.  

19. Mondal M, Bertranpetit J, Lao O. Approximate Bayesian 

computation with deep learning supports a third archaic introgression 

in Asia and Oceania. Nat Commun [Internet]. 2019;10. Available from: 

http://dx.doi.org/10.1038/s41467-018-08089-7  

20. Behr AA, Liu KZ, Liu-Fang G, Nakka P, Ramachandran S. pong: 

fast analysis and visualization of latent clusters in population genetic 

data. Bioinformatics. 2016;32:2817–23.  

21. Lazaridis I, Belfer-Cohen A, Mallick S, Patterson N, Cheronet O, 

Rohland N, et al. Paleolithic DNA from the Caucasus reveals core of 

West Eurasian ancestry. bioRxiv. 2018;  

22. Lorente-Galdos B, Lao O, Serra-Vidal G, Santpere G, Kuderna 

LFK, Arauna LR, et al. Whole-genome sequence analysis of a Pan 

African set of samples reveals archaic gene flow from an extinct basal 



129 
 

population of modern humans into sub-Saharan populations. Genome 

Biol. 2019;20:1–15.  

23. Excoffier L, Estoup A, Cornuet JM. Bayesian analysis of an 

admixture model with mutations and arbitrarily linked markers. 

Genetics. 2005;169:1727–38.  

24. Fenner JN. Cross-cultural estimation of the human generation 

interval for use in genetics-based population divergence studies. Am J 

Phys Anthropol. 2005;128:415–23.  

25. Lipson M, Loh P-R, Sankararaman S, Patterson N, Berger B, 

Reich D. Calibrating the Human Mutation Rate via Ancestral 

Recombination Density in Diploid Genomes. PLOS Genet. 

2015;11:e1005550.  

26. Marchi N, Schlichta F, Excoffi Er L. Demographic inference. R276 

Curr. Biol. 2021.  

27. Clemente F, Unterländer M, Dolgova O, Amorim CEG, Coroado-

Santos F, Neuenschwander S, et al. The genomic history of the 

Aegean palatial civilizations. Cell. 2021;184:2565-2586.e21.  

28. Winsor MP, Gilmour SL, Gregor JW. Species, Demes, and the 

Omega Taxonomy: Gilmour and The New Systematics. Biol. Philos. 

2000.  

29. Gilmour JS., Gregor JW. Demes: A Suggested New Terminology. 

Nature. 1939;333.  

30. Wright S. ISOLATION BY DISTANCE. Genetics [Internet]. 

1943;28:114–38. Available from: 

https://academic.oup.com/genetics/article/28/2/114/6033172  

31. Ragsdale AP, Weaver TD, Atkinson EG, Hoal EG, Möller M, Henn 

BM, et al. A weakly structured stem for human origins in Africa. Nature 

[Internet]. 2023;617:755–63. Available from: 

https://www.nature.com/articles/s41586-023-06055-y  



130 
 

32. Schrider DR, Kern AD. Supervised Machine Learning for 

Population Genetics: A New Paradigm. Trends Genet. Elsevier Ltd; 

2018. p. 301–12.  

33. Mulazzani S, Belhouchet L, Salanova L, Aouadi N, Dridi Y, 

Eddargach W, et al. The emergence of the Neolithic in North Africa: A 

new model for the Eastern Maghreb. Quat Int [Internet]. 

2016;410:123–43. Available from: 

https://linkinghub.elsevier.com/retrieve/pii/S104061821501215X  

34. Korfmann K, Gaggiotti OE, Fumagalli M. Deep Learning in 

Population Genetics. Genome Biol. Evol. NLM (Medline); 2023.  

35. Vikhar PA. Evolutionary algorithms: A critical review and its future 

prospects. Proc - Int Conf Glob Trends Signal Process Inf Comput 

Commun ICGTSPICC 2016. Institute of Electrical and Electronics 

Engineers Inc.; 2017. p. 261–5.  

36. Sivanandam SN, Deepa · S N. Introduction to Genetic Algorithms. 

Berlin Heidelberg New York: Springer; 2008.  

37. Koza JR. Genetically breeding populations of computer programs 

to solve problems in artificial intelligence. Dyn Genet Chaotic Program 

[Internet]. Stanford University, Department of Computer Science 

Stanford, CA; 1990. p. 819–27. Available from: http://www.genetic-

programming.com/jkpdf/soucek1992.pdf  

38. Koza JR. Genetic programming as a means for programming 

computers by natural selection. Stat Comput. 1994;4:87–112.  

39. Hogue JT, Barton RNE. New radiocarbon dates for the earliest 

Later Stone Age microlithic technology in Northwest Africa. Quat Int. 

2016;413:62–75.  

40. Arauna LR, Hellenthal G, Comas D. Dissecting human North 

African gene-flow into its western coastal surroundings. Proc R Soc B 

Biol Sci. 2019;286.  



131 
 

41. Lapierre M, Lambert A, Achaz G. Accuracy of demographic 

inferences from the site frequency spectrum: The case of the yoruba 

population. Genetics. 2017;206:139–449.  

42. Pagani L, Schiffels S, Gurdasani D, Danecek P, Scally A, Chen Y, 

et al. Tracing the Route of Modern Humans out of Africa by Using 225 

Human Genome Sequences from Ethiopians and Egyptians. Am J 

Hum Genet [Internet]. 2015;96:986–91. Available from: 

http://dx.doi.org/10.1016/j.ajhg.2015.04.019  

43. Mallick S, Li H, Lipson M, Mathieson I, Gymrek M, Racimo F, et al. 

The Simons Genome Diversity Project: 300 genomes from 142 diverse 

populations. Nature. 2016;538:201–6.  

44. The 1000 Genomes Project Consortium. A global reference for 

human genetic variation. Nature. 2015;526:68–74.  

45. Fakhro KA, Staudt MR, Ramstetter MD, Robay A, Malek JA, Badii 

R, et al. The Qatar genome: A population-specific tool for precision 

medicine in the Middle East. Hum Genome Var. 2016;3:16016.  

46. Li H, Durbin R. Fast and accurate long-read alignment with 

Burrows-Wheeler transform. Bioinformatics. 2010;26:589–95.  

47. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, 

et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10.  

48. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, 

Kernytsky A, et al. The genome analysis toolkit: A MapReduce 

framework for analyzing next-generation DNA sequencing data. 

Genome Res. 2010;20:1297–303.  

49. Korn JM, Kuruvilla FG, McCarroll SA, Wysoker A, Nemesh J, 

Cawley S, et al. Integrated genotype calling and association analysis 

of SNPs, common copy number polymorphisms and rare CNVs. Nat 

Genet. 2008;40:1253–60.  

50. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. 

Second-generation PLINK: Rising to the challenge of larger and richer 

datasets. Gigascience. 2015;4:7.  



132 
 

51. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, 

Bender D, et al. PLINK: A tool set for whole-genome association and 

population-based linkage analyses. Am J Hum Genet. 2007;81:559–

75.  

52. Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen 

WM. Robust relationship inference in genome-wide association 

studies. Bioinformatics. 2010;26:2867–73.  

53. Abraham G, Qiu Y, Inouye M. FlashPCA2: principal component 

analysis of Biobank-scale genotype datasets. Bioinformatics. 

2017;33:2776–8.  

54. Alexander DH, Novembre J, Lange K. Fast model-based 

estimation of ancestry in unrelated individuals. Genome Res. 

2009;19:1655–64.  

55. Excoffier L, Dupanloup I, Huerta-Sánchez E, Sousa VC, Foll M. 

Robust Demographic Inference from Genomic and SNP Data. PLoS 

Genet. 2013;9.  

56. Excoffier L, Marchi N, Marques DA, Matthey-Doret R, Gouy A, 

Sousa VC. Fastsimcoal2: Demographic inference under complex 

evolutionary scenarios. Bioinformatics. 2021;37:4882–5.  

57. Pouyet F, Aeschbacher S, Thiéry A, Excoffier L. Background 

selection and biased gene conversion affect more than 95% of the 

human genome and bias demographic inferences. Elife. 2018;7:1–21.  

58. Csilléry K, François O, Blum MGB. Abc: An R package for 

approximate Bayesian computation (ABC). Methods Ecol Evol. 

2012;3:475–9.  

59. 3.6.3 RDCT. A Language and Environment for Statistical 

Computing. R Found Stat Comput [Internet]. 2020 [cited 2023 Mar 

15];https://www.R-project.org. Available from: https://www.r-

project.org/  



133 
 

60. Kruschke JK. Doing Bayesian data analysis: A tutorial with R, 

JAGS, and Stan, second edition. 2nd ed. Doing Bayesian Data Anal. A 

Tutor. with R, JAGS, Stan, Second Ed. Elsevier Science; 2014.  

61. Kullback S, Leibler RA. On Information and Sufficiency. Ann Math 

Stat. 1951;22:79–86.  

62. Noskova E, Ulyantsev V, Koepfli KP, O’brien SJ, Dobrynin P. 

GADMA: Genetic algorithm for inferring demographic history of 

multiple populations from allele frequency spectrum data. Gigascience. 

2020;9.  

63. Koza JR, Keane MA, Streeter MJ, Mydlowec W, Yu J, Lanza G. 

Genetic Programming IV: Routine Human-Competitive Machine 

Intelligence. 2003.  

64. Mehrabian AR, Lucas C. A novel numerical optimization algorithm 

inspired from weed colonization. Ecol Inform. 2006;1:355–66.  

65. Misaghi M, Yaghoobi M. Improved invasive weed optimization 

algorithm (IWO) based on chaos theory for optimal design of PID 

controller. J Comput Des Eng. 2019;6:284–95.  

66. Blum MGB. Approximate bayesian computation: A nonparametric 

perspective. J Am Stat Assoc. 2010;105:1178–87.  

67. Patterson N, Moorjani P, Luo Y, Mallick S, Rohland N, Zhan Y, et 

al. Ancient admixture in human history. Genetics. 2012;192:1065–93.

   



134 
 

  



135 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 DISCUSSION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



136 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



137 
 

4.1 What are the contributions of this PhD thesis? 

 

This PhD thesis presents two main contributions to the knowledge on the 

population genetic field. On one hand, the work here presented expands 

our understanding on the demographic history of the underrepresented 

populations of Northern Africa by presenting the first comprehensive 

demographic model that tackles the genetic diversity of the region. On the 

other hand, as a part of this thesis we have developed a novel approach to 

demographic inference, Genetic Programming for Population Genetics 

(GP4GP), that applies genetic programming and evolutionary algorithms 

to automate the exploration of complex parameter-free demographic 

models. 

4.1.1 North African demographic history 

As stated in the introduction and the results, North African populations 

are a demographic melting pot. Since the Upper Palaeolithic, multiple 

groups have inhabited the region, possibly interacting with themselves and 

with populations from their surroundings. This interaction has been 

accompanied by extensive gene flow resulting in the presence of complex 

demographic histories, challenging our ability to reconstruct a 

demographic model for North Africa. In this thesis, I present the first 

attempt at defining a model that explains the genetic variation of the 

region and how the different evolutionary forces (mutation, drift and 

migration) have affected the demographic history of the region.  

The most supported models we have tested back the idea of separate 

demographic histories for North Africa Arab and North African Amazigh 

groups. Both the results obtained with the ABC-DL method (Mondal et 

al., 2019) and the GP4PG method establish the origin of Amazigh 
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populations as an isolated group that originated in a back-to-Africa event 

between 18.14 and 22.3 thousand years ago, respectively. Both dates 

situate the presence of a North African autochthonous group, identified 

in previous studies as a Maghrebi autochthonous genetic component 

(Arauna-Rubio et al., 2017; Henn et al., 2012; Serra-Vidal et al., 2019), 

before the current oldest North African available genomes, the fossils 

extracted from the Taforalt cave in Morocco, dated around 15,000 years 

ago (Van De Loosdrecht et al., 2018). The Arab population in North 

Africa, on the other hand, shows higher genetic affinity with Middle 

Eastern groups. This affinity is represented in both methods by a 

demographic model that shows the North African Arab individuals as a 

sister clade of the Middle Eastern one with a recent split time between the 

two groups. This Middle Eastern-like genetic component has been 

hypothesized to originate as a consequence of several migration 

movements from the Middle East to North Africa with the Neolithization 

and the Arab expansion being the more relevant ones. The ABC-DL 

methodology supports a more ancient split of North African Arab and 

Middle Eastern followed by admixture waves with smaller impact during 

the Arabization. These results are in concordance with previous studies 

that point to a higher impact of the ancestral differentiation (Ammerman 

& Cavalli-Sforza, 1984; Pimenta et al., 2017; Sokal et al., 1991) rather than 

the hypothesis supported by the GP4PG analysis that backs the 

Arabization process as the main driver of the appearance of Middle 

Eastern genetic affinity in Northern Africa. The hypothesis that the Arab 

conquest has been the main driver of the observed differences between 

North African groups has gained momentum in recent years (5) and the 

results obtained by the GP4PG analysis increase the support on this idea 

that the impact of Arab migrations (specially the Bedouin expansion of 

the 11th century) have had a lasting genetic impact on current North 
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African populations. The discrepancy between the ABC-DL & the 

GP4PG results regarding the split times of the North African Arab 

population can be attributed to the effect of migration to coalescence. 

Migration occurs at a fastest time scale than coalescence, so in models 

with stronger migration, like the one obtained by the ABC-DL approach, 

the coalescence time between the Middle Eastern and the North African 

lineages would be further in the past than in model with weaker migration, 

like the one selected as the best by the GP4PG approach (6).   

4.1.1.1 On the effective population size 

The concept of effective population size (Ne) is central to population 

genetics and evolution as it quantifies the magnitude of genetic drift and 

inbreeding in real populations (Charlesworth, 2009; Wang et al., 2016). Ne 

determines the amount and distribution of genetic variation in a 

population in interaction with several evolutionary forces like mutation, 

recombination, selection, and migration making it dependent on the 

demographic history of a population. So, the value of the effective 

population size is a good indicator of the demographic dynamics of a 

certain population.   

The results of our thesis (see Results 3.2), indicate that North African Arab 

and Amazigh groups present different demographic dynamics as pointed 

out by the different effective population sizes we observe in both 

populations. For the Amazigh group, the effective population is 

maintained small, probably because of isolation of these autochthonous 

groups at different times since the Epipaleolithic. North Africa is a vast 

region, currently characterised by deserts and mountainous areas, an 

orography that is very suitable for the appearance of shelters that could 

have isolated populations protecting them from climate change and 
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cultural, political and military events, all of them very present in the 

history of North Africa. This has led to different isolation degrees in the 

population, which, as observed by the results of this thesis, have had a 

lasting impact on the genetic diversity of Imazighen. The Arabs, on the 

other hand, present an effective population size like that of surrounding 

populations like the European and Middle Easterns. Being that North 

African Arab groups present higher levels of admixture due to inhabiting 

more cosmopolitan areas than the isolated Imazighen, it is expected that 

diversity of the Arab population is higher resulting in a bigger effective 

population size.  

4.1.2 Genetic Programming for Population Genetics 

One of the major challenges of this thesis has been related to the 

replicability issues of the models. Although the ABC-DL presented robust 

results regarding the demographic inference for North Africa, when trying 

to replicate the observed diversity pattern with the simulations obtained 

by the “best” model we kept failing because of the Bayesian nature of the 

approach. As explained in the ABC section of the introduction (see 

1.2.2.4), the ABC defines the best suitable model/parameter for a given 

dataset by comparing the simulated models/parameters extracted from a 

prior distribution to the observed data, and applying a threshold to keep 

those simulations that are considered the “best”. Although a more proper 

term would be to keep those simulations that are closer to the data. 

Meaning that, even if we are taking the “best” model from the possible 

pool of priors, this model could be extremely non-representative of the 

observed dataset. As we kept finding in multiple iterations of the ABC-

DL algorithm that the model that ended up being the “best” was unable 

to properly represent the diversity of North Africa, probably due the 
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complex nature of the demographic scenario at hand. We decided that a 

new approach was needed, one that would detect the “best” possible 

model without the restrictions of defining prior demographic models that 

are simplifications of reality and may not explore the whole of the 

possible demographic events that could occur in a population. After this 

thought process the Genetic Programming for Population Genetics 

(GP4GP) is born.  

GP4PG intends to explore this space of demographic models, reducing 

the inherent bias that human defined demographic models suppose. This 

Genetic Programming algorithm, it is extensively explained in this thesis 

(see 1.2.3 & 3.2), gives us results that when compared to an observed 

dataset show higher replicability than the ABC-DL approach. On top of 

that, it also allowed us to address the substructure-ghost introgression 

issue, which is a hot topic on the demographic inference field (Mondal et 

al., 2019; Ragsdale et al., 2023). When defining demographic models for a 

population there is always some level of variation that we are not able to 

explain just with the samples we are using to test the models. In most 

cases, population substructure is the reason behind this variation, and not 

taking it into account can significantly bias the model ascertainment 

(Ragsdale et al., 2023). Previous studies have dealt with hidden population 

substructure by introducing “ghost” populations (Lazaridis et al., 2018; 

Loog, 2021; Lorente-Galdos et al., 2019; Mondal et al., 2019) or by 

generating ancient weak structured stems that account for the excess of 

diversity we observed in current day populations (Ragsdale et al., 2023). 

We proposed a different approach in the GP4PG framework. Here we 

define a population as a “ecodeme” and then simulate the population 

substructure by considering smaller “topodemes'' that have higher 
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migration rates between themselves than with the demes of other 

populations on an isolation by distance basis.  

4.2  Caveats, limitations, and possible biases 

4.2.1 Data availability 

Limitations in North Africa genetic studies start at the sampling step. 

Although recently there has been an effort to increase the representation 

of North Africa in the worldwide pool of whole genomes (Bergström et 

al., 2020; Pagani et al., 2015; Serra-Vidal et al., 2019), the amount of 

individuals and populations available is still scarce. Very few genetic 

studies include North African samples, with even a smaller number 

focusing on North Africa. Many of the studies are based on re-analyzing 

already available data rather than generating new samples. This situation 

presents a problem, especially in highly heterogeneous populations like 

North Africa, where the lack of genomic data of populations with 

different lifestyles and cultural backgrounds may lead to extracting biased 

conclusions. An extensive genetic panel of North Africa with enough 

representation of its different cultural and demographic groups could be a 

solution to explore in depth the genetic and biomedical patterns in the 

region.  

4.2.2 Ancient North African genomes  

The inclusion of ancient genomes when inferring the demographic history 

of a population is highly informative, allowing to fill gaps in the genetic 

history that otherwise would be impossible to. During the preparation of 

this thesis, I have thought several times about including the ancient 

Taforalt samples to the demographic models of North Africa. Although 
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methodologically feasible the inclusion of ancient genomes would 

incorporate another layer of complexity to the models as we had to 

consider contamination and DNA damage to the simulations. On top of 

that, and the main reason we discarded the possibility of including aDNA 

to the demographic inference is that there were no available ancient whole 

genomes until the ones from Simões et al (2023) (Simões et al., 2023) and 

the trying perform demographic inferences using current whole genomes 

and ancient enrich array panels (Van De Loosdrecht et al., 2018) increased 

the error probability of the simulations making it un-assumable to include 

ancient samples in the models (Clemente et al., 2021).  

As explained above, there are very few ancient genome studies from 

North Africa (Fregel et al., 2018; Simões et al., 2023; Van De Loosdrecht 

et al., 2018) with nearly null exploration of historic ancient samples in 

North Africa (Schuenemann et al., 2017). Many conclusions of prehistoric 

North Africa are based on this very limited number of samples, which 

may not be representative of the people living in the region in their time. 

Also, due to climatic and political constraints most of the samples come 

Figure 21: Diagram on the process a simulation must have to adapt to 

the characteristics of aDNA. A lot of noise must be added to a simulation to 

resemble an aDNA molecule, including deamination processes, missingness 

and noise related to possible contamination from exogenous DNA.  
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from the extremes of North Africa (Morocco and Egypt), with no data 

from the land in between. More aDNA data would provide a more 

comprehensive picture of prehistoric North Africa as well as more 

information on the current North African scenario. The historic aDNA 

situation is even worse, with basically no data available after Egyptian 

times. With data from different historical eras, we would be able to fill the 

gaps and learn about the genetic composition and the effect of different 

demographic events in the region.  

 

Figure 21: Correlation between observed jSFS of whole genome and the 

1240K datasets. The orange line indicates complete correlation.  WGS 

and 1240K jSFS do not correlate so we cannot use data from both 

methodologies to compare SFS. Modified from Supplementary of Clemente 

2022. 

4.2.3 Population definition in demographic inference  

During this thesis we’ve widely made use of the term ‘population’ to 

describe the groups of individuals we have analysed. But defining what 



145 
 

constitutes a population is somewhat challenging and we must be treated 

carefully. Defining populations as non-interbreeding, phenotypically 

different individuals, like in interspecies studies is simple. However, in 

human studies this becomes more complex, as, although humans have the 

potential to breed with anyone around the world, they clearly do not form 

one panmictic population, but rather exhibit substructure. Defining 

populations is difficult and no criteria is absolute, but we tend to group 

individuals by geographical proximity, common language and shared 

ethnicity or cultural background (Jobling et al., 2004). In this thesis we 

analyze individuals that follow a criterion of four grandparents coming 

from the same geographical zone and cultural background to be identified 

as members of a population. Although it has been the most standard 

method of population identification it still can present problems, 

especially as the distances between birthplaces of parents increases, the 

number of individuals that meet these criteria will decrease in the next 

years increasing the difficulties on population determination in future 

studies. 

In demographic inference methods the definition of the populations and 

the samples that form these populations is of extreme importance. Most 

population genetic analysis, where many individuals are used, assume that 

those populations are discrete and homogeneous without any subdivision 

or genetic substructure (Loog, 2021). However, this rarely happens, as 

individuals inside a population are often sampled from structured 

populations or from relatively broad geographical locations. Such 

heterogeneity inside a population do not impact the inference of the 

genetic affinity between individuals such as in a principal component 

analysis (PCA) or admixture approaches but can be a greater issue when 
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studying the demographic history leading to underestimations of TMRCA 

or overestimations of population size (Marchi et al., 2023). 

In this thesis we apply an SFS-based demographic inference approach that 

deals with this problem by treating each single individual as a population 

and estimating the past demography of each population separately, with 

the help of hundreds of thousands of simulations. We have performed the 

demographic inference of the North African population using just two 

individuals for each Tunisian group (Tunisian Arabs & Tunisian Amazigh) 

as a proxy for the whole North Africa, one as a test and the second as a 

replica. Both the ABC-DL and the GP4PG frameworks only allow a 

limited number of sequences and populations in the tested models 

(Clemente et al., 2021; Lorente-Galdos et al., 2019; Mondal et al., 2019) 

and rely on the testing of many simulations to estimate the parameters in 

each model. This limitation on the population and number of individuals 

makes the definition of the proxies for each group extremely important.  

The first population we define was the proxy population for the 

autochthonous North African group. The Tunisian Chenini population, 

due to their isolated nature (Fadhlaoui-Zid et al., 2011) shows the highest 

genetic affinity to the ancient Taforalt population making it an ideal proxy 

for the autochthonous populations of North Africa. After that, we 

defined the North African Arab population. To reduce the possible 

geographical differences between both North African groups, we took a 

Tunisian cosmopolitan population as the proxy for North African Arab. 

The results obtained in this thesis have this in mind, and we are aware that 

we have analysed two extremes of the whole diversity present in North 

Africa. As stated before, the demography of the region has been complex 

and the simple dichotomy of Arab and Amazigh populations does not 

reflect this complex pattern, since there is an extensive heterogeneity 
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within both groups. If other individuals had been used as proxies for both 

North African Arab and North African Amazigh the demographic 

histories that we are explaining could have been slightly different. 

4.3 Concluding remarks and future research 

4.3.1 Concluding remarks 

This PhD thesis explores the understudied region of North Africa from 

an approach that has not been tested before, and for a reason. Inferring 

the demographic model of an extremely complex region, such as the 

North African, has been a struggle. Trying to identify which parameters 

better suit each model and the prior distributions for each of them has 

given me more than one headache. Other demographic inferences done 

with the same ABC-DL methodology infer as much as 45 parameters for 

the Aegean civilization demographic model (Clemente et al., 2021), 46 for 

the study of introgression in Asia and Oceania (Mondal et al., 2019) or 51 

parameters in a single model of sub-Saharan Africa  (Lorente-Galdos et 

al., 2019) while, the selected best model in our ABC-DL study infers up to 

82 different parameters applying a level of complexity to demographic 

inference methods we have not seen until this thesis. This level of 

complexity was what drove us to develop this new methodology to infer 

demographic histories that do not rely on previous knowledge of the 

population as it explores that demographic space after each iteration. The 

GP4PG has proven to present more reliable and replicable results than 

the ABC-DL, at least for complex scenarios like the North African one. 

Results from this analysis, conclude that the genetic continuity in North 

Africa is far deeper in time than previously detected, with the 

autochthonous genetic component emerging during the Upper 
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Palaeolithic before any available ancient genome analysed in the region. 

Moreover, it also reflects the importance of isolation and its effect on the 

genetic diversity of a population. Finally, the GP4PG plants a seed for 

future exploration regarding the effect of punctual gene flow and how can 

it be masked by genetic substructure and soft splits, as the results 

obtained, especially for the North African Arab - Middle Eastern splits as 

soft split models show less error and more affinity to the observed data 

than models with discrete gene flow events.  

4.3.2 Future research 

In this last chapter I will present some points to further investigate 

regarding North African genetics:  

a) What is the extent of the genetic heterogeneity in North Africa as the number 

of sampled populations increases? How does it correlate with the cultural 

diversity and the geographical location of the groups?  

As we dive deeper into the knowledge of the North African 

region, we realise that the complexity and genetic heterogeneity of 

the groups in the region is even greater than what we expected. In 

most studies, including the one of this theses, North African has 

been studied from an Arab-Amazigh dichotomic perspective. 

However, this is an oversimplification of the socio-cultural 

landscape. As we increase the number of samples and reach non-

studied groups, we could obtain more robust answers that could 

present us with a more extensive understanding of the 

relationships between different Amazigh and Arab groups in 

North Africa.  
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b) How are selection studies in North Africa affected with the presence of a null 

demographic model of the region?   

After this thesis, we now possess a null demographic model for 

North Africa. This model sets a basal genetic diversity for Arab 

and Amazigh populations and can be used in selection studies 

(Font-Porterias et al., 2021). Up until now, selection analyses in 

North Africa rely on a rather simplistic demographic model to 

assess the effect of natural selection and drift to the population. 

From now on, a more extensive model that considers the effect of 

surrounding populations is available to explore these effects as 

well as the effect of archaic introgression into the region.  

c) Can this model be applied in biomedical studies? 

 

Demographic models have already been used to detect risk 

variants for diseases. For example, a demographic model of 

Eurasian groups was used to describe the evolutionary trajectory 

of a risk variant (TYK2 P1104A) for tuberculosis in Europeans 

(Kerner et al., 2021). So, the application of the North African 

demographic model on the detection of the evolutionary 

trajectories for endemic variants could help define population-

based medicine for North Africa.  

 

d) Will this model need updates?  

Finally, further updates on these models should be taken into 

consideration when better archaic genomes are available in the 

region as including aDNA to the analysis may give more 
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robustness to some of the inferences that have been made in these 

models.  
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6.1 Supplementary information: Modelling the 

demographic history of human North African 

genomes points to soft split divergence between 

populations. 

 

 

Modelling the demographic history of human North African 
genomes points to a recent soft split divergence between 
populations. 
 
Authors  
Jose M Serradell, Jose M Lorenzo-Salazar, Carlos Flores, Oscar Lao and David 
Comas  
 
Additional file 1: Supplementary figures S1 to S11 and Supplementary Tables 
S1 to S10 
 
Additional file 2:  Xlsx file with the posterior values of the accepted models in 
the ABC-DL analysis (Model D in first analysis and Model D4 in second 
analysis). Factor 2, Kullback-Leiber, and Spearman correlation tables for the 
accepted models in both ABC-DL analysis.  
 
Additional file 3: Histograms with the posterior versus prior distributions of 
all parameters for the best model in ABC-DL analysis (Model D4)    
 
Additional file 4: Spearman correlation plots for all parameters in the best 
model in the ABC-DL analysis (Model D4) 
 
Additional file 5: Parameter values for the best 10 models in the 

GP4PG analysis. 
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Additional file 1. 

 

 
Fig. S 1: Principal Component Analysis on genomic dataset of North Africa. 

Visualization of PC3 & PC4 

Fig. S 2: CrossValidation error of ADMIXTURE analysis with K=2 to K=12. Best 

K is K=3 
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 Fig. S 3: ADMIXTURE analysis on 364 individuals with K=2 to K=12 
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Fig. S 4: Competing topologies tested in ABC-DL analysis. Seven 

different topologies included on the ABC-DL analyses considering North 

African Arab (NAa), North Africa Amazigh (Ama), Middle Eastern (ME), 

European (Eu), East Asian (EAs), East African (EAf), West African (WAf), and 

Ju/’hoansi (San) populations.  
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Fig. S 5: Replication PCA for Model D_4 in ABC-DL analysis. PCA for 1000 

simulations of the model D_4, -the best model in the ABC-DL analysis- and the 

replication dataset of observed data. Observed data is an outlier in the PCA indicating 

that the ABC-DL model cannot properly replicate the diversity observed in the dataset. 

 

Fig. S 6: Box plot of the distances between each simulation in the PCA and the 

centroid of the PCA. The red dot represents the observed data as an outlier of the 

distances. 
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Fig. S 7: Competing topologies tested in GP4PG analysis. The competing 

topologies for the GP4PG analysis are the same as the ones used in the ABC-DL analysis 

but discarding Model A, due to being the worst performing one in previous analysis and 

due resource consumption. 

 
Fig. S 8: Coordinates of the different ecodemes we are testing in the GP4PG 

analysis. Each ecodeme has the exact same size and major geographical barriers such as 

seas and deserts has been removed for the sake of simplicity. 
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Fig. S 9: Fitness of the different runs of the genetic algorithm. a. Distribution of the 

fitness error of 40 independent iterations of the GP4PG algorithm with 6 competing 

topologies (B to G in ABC-DL) during 200 generations. Model D appears as the most 

selected model in a fourth of all the iterations, with D_15 as the model with the least 

error. b. PCA plot comparing the jSFS obtained from simulations of the best ABC-DL 

model with the 10 best GP4PG models. GP4PG simulations explain the observed data 

better than the ABC-DL. c. Same PCA plot as b but not including the simulations from 

ABC-DL result. Models C_29 and C_39 are the ones that show a more similar jSFS to 

the one produced by the observed data. 
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Fig. S 10: Observed heterozygosity per individual compared by superpopulation. 

Sub-Saharan populations present a higher heterozygosity than Eurasian populations, 

North African individuals have heterozygosity levels between the sub-Saharan and the 

Eurasians, probably due to gene flow from sub-Sharan populations to north African 

individuals. 

 
Fig. S 11: A tree-based depiction of the demographic relationships between 

different ecodemes and topodemes. Each node codes for a demographic event that 

occurs at a given time (dashed lines). 
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Table S1: Confusion matrix computed with the 7 models under evaluation. 50 

randomly sampled simulations per model were used as “observed” data for the 

ABC-DL algorithm. Diagonal, in bold, shows the probability of a model being correctly 

assigned by the A 

 

 
Table S 2: Proportion of accepted simulations using postpr function for the “abc” 

package with tolerance = 0.0008. Model D is present 92.2% of times in the 1000 

closest simulations to the observed data. 
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Table S 3: Bayes factor for the ABC-DL topology discrimination analysis. Model D 

is 11.8 times better at explaining the observed data than the second-best model (Model 

F). 

 

 
Table S 4: Confusion matrix computed with the five D models under evaluation. 

50 randomly sampled simulations per model were used as “observed” data for the 

ABC-DL algorithm. Diagonal, in bold, shows the probability of a model being correctly 

assigned by the ABC. 
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Table S 5: Proportion of accepted simulations using postpr function for the “abc” 

package with tolerance = 0.001. Model D4 is present 76.22% of times in the 1000 

closest simulations to the observed data. 

 

 
Table S 6: Bayes factor for the ABC-DL with different admixture patterns. Model 

D4 is 8.074 times better at explaining the observed data than the second-best model 

(Model D3). 
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Table S 7: Samples for the demographic analysis of North Africa 
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Table S 8: Possible demographic events and associated probabilities in GP4PG 

algorithm.  
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Table S 9: Parameters and prior distributions of the seven considered models in 

Fig. S4 
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Table S 10: Parameters and prior distributions of the five considered models in 

Fig. 2. 
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Additional file 2. 

 

Model D results 

 

Page 1: Mean, median, mode and other centrality statistics for each 

parameter in best Model D in the first run of ABC-DL  

 
 

Page 2: Three tables with other statistics to asses quality of ABC-DL 

results for Model D (Factor2, KL-divergence and Spearman correlation) 
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Model D4 results 

Page 3: Mean, median, mode and other centrality statistics for each 

parameter in best Model D4 in the second run of ABC-DL  
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Page 4: Three tables with other statistics to asses quality of ABC-DL 

results for Model D4 (Factor2, KL-divergence and Spearman correlation) 
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Additional file 3: 

Histograms with the posterior (red) versus prior distributions (blue) of 

all parameters for the best model in ABC-DL analysis (Model D4).     
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Additional file 4: Spearman correlation plots for all parameters in 

the best model in the ABC-DL analysis (Model D4) 
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Additional file 5: Parameter values for the best 10 models in the 

GP4PG analysis. Time express in generations (29 years/generation) 

 

Demes at present time  

 
 
Each model presents a different number of topodemes in the predefined ecodemes 

(populations) that migrate within themselves at a defined rate. Values represent the 

effective population size (Ne) at each topodeme.  

´ 

 

 

 

 

 

 

 

 

Parameters ModelBm_2 ModelF_5 ModelDm_7 ModelD_15 ModelD_23 ModelFm_24 ModelDm_26 ModelC_29 ModelCm_31 ModelC_39

ºTOPODEMES(0) 16804 15962 4770 14852 33473 5970 20667 24986 16009 16565

18665 20401 32878 36191 18849 16873

5522 25978 11721

42539 28011

SUMATORY 2 4 1 1 4 3 2 2 1 1 2.1

migrationWithin 3.52E-05 9.52E-05 4.24E-05 1.71E-05 8.95E-05 1.73E-05 5.97E-05 4.81E-05 8.12E-05 7.13E-05 5.57E-05

ºTOPODEMES 7627 4320 4671 3840 5904 12670 2840 4910 3741 6212

17971

SUMATORY 1 1 2 1 1 1 1 1 1 1 1.1

migrationWithin 3.56E-05 4.92E-06 6.21E-05 4.49E-05 5.50E-05 6.22E-05 1.48E-05 9.61E-05 1.30E-05 4.13E-05 4.30E-05

ºTOPODEMES 14450 20318 33539 22620 6509 14386 8986 23803 22879 6087

10864 30998 19338 30424 4698

47809

SUMATORY 1 2 3 2 1 2 2 1 1 1 1.6

migrationWIthin 8.68E-05 2.93E-05 3.25E-05 5.43E-05 1.33E-05 5.23E-05 8.69E-05 9.04E-05 6.24E-05 5.01E-05 5.58E-05

ºTOPODEME 15325 13481 26116 7779 9096 3875 25001 20203 16988 19307

25736 15529 26640

25401 26847

26330

11788

SUMATORY 2 1 3 1 1 1 1 1 1 5 1.7

migrationWIthin 2.10E-05 6.21E-05 2.74E-05 1.94E-05 9.81E-05 1.49E-05 2.13E-05 2.94E-05 5.63E-05 7.75E-05 4.27E-05

ºTOPODEME 8088 24170 6339 8104 7004 7747 3963 10494 8408 6021

26392 25623 20997

SUMATORY 2 1 1 1 1 2 1 1 2 1 1.3

migrationWithin 7.78E-05 3.44E-05 3.43E-06 6.40E-05 4.60E-05 4.48E-05 1.27E-05 7.04E-05 1.87E-05 9.26E-05 4.65E-05

ºTOPODEME 62983 70133 79735 65695 78578 53508 19063 50517 40050 67517

70263 53448 46038 39172 73500 68358

12965 79903

70635 73739

SUMATORY 2 2 1 2 1 1 4 1 4 2 2

migrationWithin 5.89E-05 7.63E-05 2.10E-05 8.24E-05 1.99E-05 9.10E-06 8.92E-05 6.56E-05 5.24E-05 2.17E-05 4.97E-05

ºTOPODEME 31405 42178 24780 49741 48808 19116 30541 27751 24776 51960

7848 7253 5708 3511 2522 57634

34831

SUMATORY 2 2 1 1 1 2 2 2 1 3 1.7

migrationWithin 7.93E-05 1.08E-04 5.25E-05 1.41E-05 2.94E-05 7.01E-05 7.44E-05 5.63E-05 1.38E-05 4.89E-05 5.47E-05

ºTOPODEME 36019 59352 37749 5842 24898 22155 41527 47458 39157 25220

46230 39807 29326 35858 77439 7073

71170 36141 51583

35460

SUMATORY 1 3 4 2 1 3 1 2 1 2 2

migrationWithin 8.42E-05 5.51E-05 3.48E-05 8.98E-05 2.83E-05 5.06E-05 5.17E-05 6.14E-05 5.94E-05 9.00E-05 6.05E-05

Ecodeme5(EAf)

Ecodeme6(WAf)

Ecodeme7(San)

Ecodeme0(NAa)

Ecodeme1(Ama)

Ecodeme2(ME)

Ecodeme3(EU)

Ecodeme4(EAs)
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Time splits and migration decay 

 
 

For each model the order at which the population split is predefined but how they do it 

is generated by the GP4PG algorithm. The different parameters are t, time of the split in 

generations (29 y/gen); source/sink, specifies the original and the new demes formed 

after the split backwards in time; min/max_migration_decay; range at which the 

migration between interacting demes decays after the split of the population, it stabilizes 

as the 2 new populations never stop interchanging individuals.  

 

 

 

 

 

 

 

 

Parameters ModelBm_2 ModelF_5 ModelDm_7 ModelD_15 ModelD_23 ModelFm_24 ModelDm_26 ModelC_29 ModelCm_31 ModelC_39

t 545 322 462 56 46 385 221 260 426 79

source/sink 0(0,1)/1(2) 0(0)/2(5) 2(3,4,5)/0(0) 0(0)/2(2) 2(5)/0(0) 2(4)/0(2) 0(0,1)/2(4) 3(4)/2(3) 3(3)/2(2) 2(2)/3(4)

source/sink 0(1,2,3)/2(6) 2(5)/0(0)

SUMATORY 1 2 1 1 1 2 1 1 1 1 1.2

min_migration_decay 7.15E-07 7.03E-05 1.80E-04 8.89E-07 5.70E-07 8.71E-07 4.33E-07 7.91E-05 6.79E-05 9.77E-07

max_migration_decay 6.94E-04 7.93E-03 4.24E-03 8.40E-03 2.18E-03 3.85E-03 4.67E-03 3.86E-04 3.58E-04 5.32E-04

t 765 767 681 535 502 453 327 790 749 127

source/sink 2(3)/1(2) 2(5,6)/1(4) 3(6,7,8)/0(0) 2(2,3)/3(4) 0(0,1,2,3)/3(6) 1(3)/0(0) 2(3,4)/3(5) 0(0,1)/1(2) 0(0)/1(1) 0(0)/1(1)

SUMATORY 1 1 1 1 1 1 1 1 1 1 1

min_migration_decay 4.45E-05 2.39E-05 3.24E-05 6.25E-07 2.00E-08 8.79E-07 2.02E-05 3.06E-07 1.60E-05 6.08E-05

max_migration_decay 9.68E-04 9.76E-04 3.85E-04 1.60E-04 5.75E-04 5.08E-04 5.46E-05 9.16E-04 0.009877202 7.96E-03

t 904 828 699 770 815 699 675 870 926 762

source/sink 3(4)/1(2) 3(7)/1(4) 1(1,2)/0(0) 1(1)/3(4) 1(4)/3(6) 0(0,1,2)/3(6) 3(5)/1(2) 2(3)/1(2) 2(2)/1(1) 3(3,4,5,6,7)/1(1)

SUMATORY 1 1 1 1 1 1 1 1 1 1 1

min_migration_decay 8.15E-05 5.50E-05 6.27E-07 5.33E-05 4.40E-05 1.30E-04 7.79E-07 9.29E-07 8.90E-07 8.43E-05

max_migration_decay 6.12E-04 9.76E-04 3.04E-04 5.73E-04 5.69E-04 8.92E-04 4.32E-04 3.65E-04 5.73E-04 1.68E-04

t 1200 1094 899 939 941 1044 876 1107 1265 1061 1042.6 80.2278591

source/sink 4(6,7)/1(2) 4(8)/1(4) 4(9)/0(0) 3(4)/4(5) 3(6)/4(7) 4(7,8)/3(6) 4(6)/1(2) 4(5)/1(2) 4(4,5)/1(1) 4(8,9)/1(1) 129.4425656

SUMATORY 1 1 1 1 1 1 1 1 1 1 1

min_migration_decay 5.94E-07 7.60E-07 6.54E-07 7.48E-07 8.62E-07 1.12E-04 3.98E-07 6.33E-07 2.32E-05 3.91E-05

max_migration_decay 4.73E-04 4.76E-04 3.88E-05 8.35E-04 9.53E-04 2.42E-04 3.45E-05 4.12E-04 6.36E-04 9.22E-05

t 3407 2527 2727 3058 3017 3001 2803 2643 2803 3393 2937.9 183.4557117

source/sink 5(8,9)/1(2) 5(9,10)/1(4) 5(10)/0(0) 5(6,7)/4(5) 5(8)/4(7) 5(9)/3(6) 1(2)/5(9) 5(6)/1(2) 5(6,7,8,9)/1(1) 5(10,11)/1(1) 295.9941629

SUMATORY 1 1 1 1 1 1 1 1 1 1 1

min_migration_decay 6.91E-07 2.25E-07 7.73E-08 1.15E-07 9.09E-07 7.14E-07 5.10E-07 5.72E-07 2.55E-05 2.31E-05

max_migration_decay 5.12E-04 3.91E-04 6.46E-04 1.86E-04 1.65E-04 8.15E-04 9.44E-04 2.57E-05 3.02E-04 3.35E-04

t 5891 2537 4225 3354 4057 5622 3080 4388 3862 3605 4062.1 651.7440345

source/sink 1(2)/6(11) 1(4)/6(12) 0(0)/6(11) 6(8)/4(5) 6(9)/4(7) 3(6)/6(11) 5(7,8)/6(11) 1(2)/6(7) 1(1)/6(10) 6(12,13,14)/1(1) 1051.54769

source/sink 5(9,10)/6(12)

SUMATORY 1 1 1 1 1 1 2 1 1 1 1.1

min_migration_decay 1.15E-05 8.68E-05 4.21E-05 3.28E-05 4.64E-07 1.33E-04 2.51E-04 9.32E-05 1.99E-04 3.50E-05

max_migration_decay 9.85E-04 4.84E-04 8.94E-04 7.50E-04 9.67E-04 8.88E-04 6.57E-04 6.13E-04 7.75E-04 3.16E-04

t 5900 8574 4226 5487 9916 6808 3704 5119 3865 6290 5988.9 1251.9674

source/sink 7(12)/6(10) 7(13,15)/6(12) 7(12,13,14,15)/6(11)4(5)/7(9) 4(7)/7(10) 7(12,14)/6(10) 7(13)/6(11) 7(10)/6(8) 7(11)/6(10) 1(1)/7(16) 2019.970047

source/sink 7(14)/6(11) 7(13)/6(11) 7(9)/6(7)

SUMATORY 1 2 1 1 1 2 1 2 1 1 1.3

min_migration_decay 2.87E-06 1.09E-06 2.35E-05 1.14E-07 7.70E-05 6.17E-05 9.33E-07 2.75E-08 6.97E-07 4.99E-07

max_migration_decay 4.40E-04 8.80E-04 2.93E-05 6.23E-04 5.24E-04 5.16E-04 9.30E-04 9.76E-04 1.33E-04 7.95E-04

7th_Split

3rd_Split

4th_Split

5th_Split

6th_Split

1st_Split

2n_Split
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Other demographic events (migrations, changes in Ne, modification in 

number of demes…) 

 
 

In the 10 best models the only demographic events that we observe are migrations 

between different topodemes that follow an isolation by distance pattern, and an increase 

in forward of topodemes in a population. This means that an ecodeme gains population 

substructure (by gaining a topodeme), in this case deme 5 produces deme 4 at generation 

68.    

 

 

 

 

 

 

 

Parameters ModelBm_2 ModelF_5 ModelDm_7 ModelD_15 ModelD_23 ModelFm_24 ModelDm_26 ModelC_29 ModelCm_31 ModelC_39

Name Increase_InFwd

time 68

NeChage 3(5>3(4)

Ama>NAa 2.99E-04 3.00E-04 9.15E-04 2.87E-04 5.27E-05

Ama>ME 1.91E-03 3.05E-04 1.48E-03 8.33E-04 1.87E-03

Ama>EU 1.44E-04 3.15E-04 4.72E-05 8.31E-04 2.79E-06

Ama>WAf 2.20E-03 2.23E-04 5.04E-05 1.66E-03 3.47E-04

Ama>EAf 2.98E-04 6.71E-05 2.24E-04 8.23E-04 3.76E-04

NAa>Ama 4.22E-04 8.11E-04 4.30E-04 3.56E-04 9.89E-05

NAa>ME 2.23E-04 1.54E-04 2.84E-04 1.34E-03 8.50E-04

NAa>EU 9.30E-05 1.10E-03 4.95E-04 2.09E-03 4.77E-04

NAa>WAf 1.36E-03 3.54E-04 2.81E-04 9.18E-05 4.10E-04

NAa>EAf 1.87E-04 2.43E-03 1.27E-03 2.49E-03 2.03E-03

ME>Ama 7.54E-04 4.66E-04 1.25E-03 2.31E-05 1.42E-05

ME>NAa 3.30E-04 7.32E-04 2.46E-05 4.41E-04 2.05E-05

ME>EU 2.53E-04 9.00E-03 1.33E-04 2.95E-04 3.50E-04

ME>EAf 2.73E-04 5.92E-04 6.34E-03 4.02E-03 3.94E-03

EU>Ama 1.47E-04 1.33E-05 9.48E-04 1.06E-05 2.06E-03

EU>NAa 1.34E-04 1.59E-04 1.26E-03 4.13E-04 1.22E-04

EU>ME 5.99E-05 3.87E-04 3.96E-03 4.43E-04 4.98E-05

EU>EAs 9.50E-04 2.29E-04 1.07E-02 6.47E-04 6.72E-04

EU>WAf 5.51E-04 4.39E-04 1.84E-03 8.38E-04 1.30E-03

EU>EAf 2.00E-04 4.01E-04 8.23E-05 1.47E-03 4.81E-04

EAs>EU 1.31E-05 1.36E-06 1.18E-03 6.67E-05 8.86E-06

EAf>Ama 4.54E-04 1.28E-04 8.91E-04 1.82E-03 1.28E-03

EAf>NAa 8.96E-04 6.62E-04 5.52E-05 3.64E-04 4.36E-03

EAf>ME 1.22E-04 9.89E-04 2.86E-03 2.10E-03 7.58E-04

EAf>EU 6.46E-04 9.31E-04 9.63E-04 9.87E-04 3.41E-04

EAf>WAf 3.64E-04 3.62E-05 7.65E-04 3.66E-04 7.29E-04

EAf>San 3.68E-03 1.10E-03 1.64E-03 1.98E-03 1.44E-03

WAf>Ama 1.40E-03 2.08E-04 1.01E-04 7.00E-04 6.79E-04

WAf>NAa 4.34E-04 4.06E-04 1.09E-03 1.69E-05 3.76E-04

WAf>ME 1.86E-03 2.01E-04 6.98E-04 2.32E-03 1.97E-04

WAf>EU 3.55E-03 3.61E-04 1.21E-03 2.50E-04 2.98E-04

WAf>EAf 1.15E-04 1.69E-04 2.24E-04 3.52E-04 9.52E-04

WAf>San 3.74E-04 9.20E-05 2.75E-04 6.20E-04 5.68E-03

San>EAf 2.74E-03 4.25E-04 1.18E-03 4.03E-05 1.31E-05

San>WAf 9.07E-04 1.13E-05 1.10E-03 2.68E-04 5.94E-04

OTHER DEMOGRAPHIC EVENTS

1st Demographic event

Migrations Between Topodemes
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