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Abstract 

Sensor Networks (SN) will play an integral role in Beyond 5G (B5G) ecosystems, 
especially for highly-distributed use cases and services such as Digital Twins (DT). 
Thus, the underlying transport network needs to provide connectivity between the 
highly dense and distributed SNs and the DT manager, that typically runs far from 
sensor data sources, i.e., in a centralized server. In view of this, critical requirements 
such as high data throughput, latency sensitivity communication, and data veracity 
and integrity assurance are essential to be provided by B5G networks to support DT 
services.  

In order to meet such requirements, statistical and Artificial Intelligence (AI)-based 
SN data collection and analysis can be implemented to provide smart and efficient 
data transmission. By means of those procedures, SN data can be compressed and 
analyzed locally in order to reduce the total data volume to be conveyed in the 
centralized server. In addition, the inherent nature of the compression and analysis 
algorithms add privacy and security to the transmitted data without affecting 
integrity. The use of these kind of AI-based techniques opens the opportunity to 
perform Knowledge Transfer (KT) between DTs operating under the same tenant 
infrastructures. Since sharing raw data poses a privacy breach, AI-based methods 
allow interchanging relevant information while obfuscating critical details, thus 
enabling coordinated operation across differentiated segments. 

This Ph.D. thesis aims at enhancing the operation of dense SNs, which are supported 
by an underlying transport infrastructure that includes edge/fog computing 
capabilities distributed among nodes. Through the application of statistical and AI-
based methods and procedures, the proposed methods will target several objectives, 
such as reducing the volume of data transported through the network while keeping 
privacy and integrity, detecting anomalies or events in the collected data to provide 
early alarms and notifications, and facilitating the operation of services across 
several SN domains. 

In more detail, the first objective is to develop methods to reduce the volume of 
collected sensor data through statistical and AI-based methods for data compression 
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and sampling rate manipulation. We proposed both statistical-based and 
Autoencoder (AE)-based approaches for compression, as wells as sampling rate 
adaptation method that works with either. Simulations of implemented algorithms 
on real world datasets showed a significant ability to reduce the volume of the data, 
reaching 1% of its original size in some cases, and leading the reduced energy 
consumption in the factor of one-tenth in case of sensors with limited energy 
availability. 

The second objective is to develop methods for maintaining data veracity through 
employing AI-based anomaly detection methods at multiple levels of the network. 
Anomalies may arise due to a range of factors from faulty sensors to malicious 
attacks and detecting them can facilitate timely actions to avoid or mitigate their 
effect. We proposed two AE-based methods: one operating at the sensor level, and 
the other on the network level. Simulations of implemented algorithms on real world 
datasets showed more than 90% of accuracy in detecting anomalies in single sensor 
data analysis. Moreover, prompt detection of subtle anomalies spanning multiple 
sensors that could not be detected by single sensor data analysis was achieved. 

Finally, the third objective is to investigate methods to improve multi-domain DT 
systems management and coordination through KT while preserving the privacy of 
each individual DT. We proposed an AE-based knowledge extraction method that 
extracts codified information about the state of the sharing DT and sends it to the 
target DT. The method showed that the target DT is able to use the codified and 
private information about the state of the sharing DT before the changes are 
apparent through their effect on its system. 



 
 
 
 
 
 
 
 
 

Resumen 

Las redes de sensores (SN) desempeñarán un papel esencial en los ecosistemas de 
redes 5G y más allá (B5G), especialmente para casos de uso y servicios altamente 
distribuidos como Gemelos Digitales (DT). Así pues, la red de transporte subyacente 
debe proporcionar conectividad entre las redes de sensores distribuidas y el sistema 
de gestión del DT, que suele estar lejos de las fuentes de datos de los sensores 
(típicamente, en un servidor centralizado). En vista de ello, es esencial que las redes 
B5G proporcionen requisitos críticos como alta capacidad de transmisión, 
comunicación sensible a la latencia y garantía de veracidad e integridad de los datos, 
todo ello para permitir servicios de DT.  

Para cumplir con estos requisitos, se puede recurrir a la monitorización y el análisis 
de datos de SN basados en estadística e Inteligencia Artificial (IA) con el fin de 
proporcionar una transmisión de datos inteligente y eficiente. Mediante estos 
procedimientos, los datos generados por las SNs se pueden comprimir y analizar 
localmente para reducir el volumen total de datos que debe transmitirse al servidor 
centralizado. Además, la naturaleza inherente de los algoritmos de compresión y 
análisis añade privacidad y seguridad a los datos transmitidos sin afectar a su 
integridad. El uso de este tipo de técnicas basadas en IA abre la oportunidad de 
realizar Transferencia de Conocimiento (KT) entre DTs que operan sobre una 
infraestructura compartida. Dado que compartir datos sin procesar puede vulnerar 
la privacidad, los métodos basados en IA permiten intercambiar información 
relevante a la vez que se ofuscan detalles críticos, permitiendo así un funcionamiento 
coordinado y seguro entre segmentos diferenciados. 

Esta tesis doctoral tiene como objetivo mejorar el funcionamiento de las SNs densas, 
que se necesitan de una infraestructura de transporte subyacente que incluya 
capacidades de computación entre los nodos. Mediante la aplicación de 
procedimientos estadísticos y basados en IA, los métodos propuestos perseguirán 
varios objetivos, como són: reducir el volumen de datos transportados a través de la 
red manteniendo la privacidad y la integridad; detectar anomalías o eventos en los 
datos recogidos para proporcionar alarmas y notificaciones tempranas; y facilitar la 
operación de servicios a través de varios dominios de SN. 
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Entrando en detalle, el primer objetivo consiste en desarrollar métodos para reducir 
el volumen de datos recogidos por los sensores mediante métodos estadísticos y 
basados en IA para la compresión de datos y la manipulación de la frecuencia de 
muestreo. Se han propuesto enfoques de compresión basados tanto en estadística 
como en el uso de autocodificadores (AE), así como un método de adaptación de la 
frecuencia de muestreo que funciona con ambos. Mediante simulación con conjuntos 
de datos reales, se demuestra una capacidad significativa para reducir el volumen 
de los datos, alcanzando el 1% de su tamaño original en algunos casos, y conduciendo 
a la reducción del consumo de energía a una décima parte en el caso de sensores con 
disponibilidad limitada de energía. 

Finalmente, el tercer objetivo consiste en investigar métodos para mejorar la gestión 
y coordinación de sistemas de DT multidominio mediante KT, preservando al mismo 
tiempo la privacidad de cada DT individual. Se ha propuesto un método de extracción 
de conocimiento basado en AEs que extrae información codificada sobre el estado del 
DT que comparte y la envía al DT de destino. Resultados numéricos demuestran que 
el DT de destino es capaz de utilizar la información codificada y privada sobre el 
estado del DT que comparte antes de que un evento correlacionado entre ambos DTs 
afecte al DT de destino.
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Chapter 1 

Introduction 

1.1 Motivation 

Sensor Networks (SN) is a technology paradigm consisting of miniaturized sensor 
devices with the ability to self-organize into an interconnected collective. These 
devices are becoming increasingly integral components within Beyond 5G (B5G) and 
Digital Twin (DT) systems, where one of their primary use cases lies. Within a DT 
deployment, the multitude of sensors continuously generate huge volumes of 
telemetry data at high velocity, in order to maintain an up-to-date digital facsimile 
of the physical system under observation. In addition, the underlying Transport 
Network (TN) provides the required connectivity between those highly dense and 
distributed sensors and the DT that typically runs in a centralized server, i.e., in the 
cloud. Such required connectivity amongst network elements and the DT poses 
critical challenges such as high bitrate and latency-sensitive communications. 
Moreover, other aspects such as reducing data redundancy amidst high throughput, 
avoiding bandwidth exhaustion due to data transmission, and performing anomaly 
detection within the gathered data to facilitate fault handling in a localized and real-
time manner are foreseen as key features of intelligent data collection. 

This intelligent data collection requires the convergence of resources as well as the 
utilization of Artificial Intelligence (AI) and Machine Learning (ML) techniques. AI 
and ML can be leveraged to intelligently govern network and computational 
resources, as well as the energy utilization of the sensor networks. Implementation 
can commence at the sensor level, integrated in software Sensor Agents (SA) 
enabling sensors to derive meaningful insights from raw data. SA outputs can then 
scale up to Cluster Agents (CA) with the ability to make decisions regarding sensors 
operating parameters using aggregate sensor data, and ultimately reaching the sink 
node i.e., the DT Manager, where knowledge can be extracted. Here, AI and ML have 
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the potential to optimize resource utilization and Anomaly Detection (AD) within the 
immense volumes of telemetry data generated by the multitude of sensors deployed 
within DT systems. 

Moreover, within the same tenant infrastructure, there may exist combinations of 
DTs managing sub-physical systems of different natures, such as multiple water 
distribution systems or the power grid. While these DTs may have different 
operators and clients, relevant information about the operation of some may be 
valuable to others - for example, the power consumption profile of a water 
distribution system may be critical for the DT of the power grid for its own peak 
demand forecasts. This poses a privacy challenge, necessitating solutions to share 
essential information between DTs without violating privacy. Thus, Knowledge 
Transfer (KT) paradigms can be leveraged to facilitate this coordination, enabling a 
DT to disseminate key operating information of interest to others while obfuscating 
critical details like system infrastructure. In this way, DT and the underlying 
physical system can fully exploit resources for intelligent and coordinated operation 
across segments, vital for realizing many B5G use cases, while preserving privacy. 

1.2 Goals of the Thesis 

This Ph.D. thesis aims at enhancing the operation of dense SN, which are supported 
by a TN infrastructure that includes edge/fog computing capabilities distributed 
among SN and TN nodes. Through the application of statistical and AI-based 
methods and procedures, the proposed methods will target several objectives, such 
as reducing the volume of data transported through the network, detecting 
anomalies in the collected data to provide early alarms to problems, and facilitating 
the operation of services across several SN domains. 

Specifically, this thesis has been organized in different goals: 

G.1 – Develop methods to reduce the volume of collected sensor data 

This is an important goal as SNs generate large volumes of data, which can be 
challenging to transport and process them efficiently. By reducing the volume of 
collected sensor data, the amount of network bandwidth required for data transport 
can be decreased, which in turn can lead to a reduction in energy consumption and 
improved network efficiency. This goal can be achieved through the application of 
statistical and AI-based methods and procedures and utilizing ML, which would 
enable intelligent management of sensor data at various levels of the network 
hierarchy. 

G.2 – Develop anomaly detection methods in the collected sensor data 

The ability to detect anomalies in real-time is crucial for providing early alarms to 
potential problems in SN. Anomalies may arise due to a range of factors, such as 
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environmental changes, faulty sensors, or malicious attacks. Detecting such 
anomalies can facilitate timely actions to avoid or mitigate the impact of these 
problems on the network. The use of AI-based and ML methods and procedures can 
enable efficient AD in SN. By training the ML models to detect patterns in the 
collected data, the network can identify and flag potential anomalies in real-time, 
leading to improved network reliability and performance. 

G.3 – Develop methods to improve multi-domain network management and 
coordination 

Another objective of the Ph.D. thesis is to improve global network management and 
coordination. Using KT-based methods, different DTs can coordinate their efforts 
through sharing information (data/models) among each other on a need-to-know 
basis, which helps to ensure client privacy. ML is used in order to extract from each 
system only the information that other systems need to know in order to perform 
coordinated actions successfully. In addition to privacy, this method also reduces the 
required bandwidth for such exchange of knowledge without reducing the 
effectiveness of coordination between multi-domain networks. 

1.3 Methodology 

The methodology employed in this thesis involves the implementation of several 
scenarios to assess the developed methods. To this end, real-life datasets were 
utilized, which were collected under diverse conditions and gathering sensor data 
from many sensors, frequently on a periodic basis. Datasets that contain such data, 
with labels and timestamps, were used. To simulate nodes generating the data 
generated by each sensor at the intervals indicated by the timestamp, Python code 
was written to create synthetic sensors and their agents (both SA and CA). 
Additionally, SN and TN architecture and topology were implemented, and each 
method was rigorously evaluated to ensure its effectiveness. By using real-life 
datasets and simulating network conditions, the developed algorithms were 
evaluated under various scenarios, leading to robust and reliable performance. 

1.4 Thesis Outline 

The remainder of this thesis is organized as follows. 

Chapter 2 provides the needed background for an easier understanding of the 
research conducted throughout this PhD thesis. Specifically, background on SN, 
autoencoders (AE), compression, anomaly detection, and KT is provided. Chapter 3 
reviews the state-of-the-art associated with the defined thesis goals. Chapter 4 
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details information about the DT use case, the reference SN and TN architecture, 
and the datasets used in the simulations. Chapter 5 is related to G.1 and explains 
how statistical-based methods on the level of the sensor and the network level were 
developed and evaluated to efficiently and intelligently reduce the size of sensor data 
through compression. This chapter is related with the work published in [IEESJ21]. 
Chapter 6 also relates to G.1 and describes how AE-based methods were developed 
for efficient data compression at the level of the sensor. It partly covers the work 
published in [Sensors23] and [ICTON23]. Chapter 7 deals with G.2 showing how 
ML-based methods were used to perform AD on sensor telemetry data on multiple 
levels of the network. Main results and contributions are also included in 
[Sensors23]. Chapter 8 focuses on goal G.3 and provides effective coordination 
between different DTs through KT that ensures privacy for the sharing party. 
Finally, Chapter 9 present the main concluding remarks and lessons learned. 

1.5 Contributions and References from the 
Literature 

For the sake of clarity and readability, references contributing to this PhD thesis are 
labelled using the following criteria: [<conference/journal acronyms Year(by) [. 
autonum]>], e.g., [IEESJ21] or [ICTON23]; in case of more than one contribution 
with the same label, a sequence number is added. The rest of the references to 
journal articles and conference papers are labelled with the initials of the first 
author’s surname and year of publication, e.g., [Abd21] or [Aza20]. Additionally, 
references to books are labelled with the initials of the book title and year of 
publication, e.g., [EON16]. Finally, references to norms or standards are labeled with 
its identification, e.g., [ITU-T G.709].



 
 
 
 
 
 
 
 
 
 

Chapter 2 

Background 

The goal of this chapter is to give a brief overview of some of the main technologies 
that are involved in several parts of this PhD thesis. In section 2.1, we give a small 
background about SN and their development in recent years. Section 2.2 introduces 
the DT and its applications. Section 2.3 describes the basic concept of ML and its role 
in developing many technologies. Finally, Section 2.4 describes the main concepts 
related to KT. 

 Sensor Networks (SN) 

In this section we provide a background about SN, their definition, architecture, 
applications, and how they evolved to become an integral part of many of today’s 
technological infrastructures.  

An SN consists of spatially distributed autonomous sensors that collaboratively 
monitor physical or environmental conditions. These sensors can measure 
parameters such as temperature, humidity, light, sound, motion, pressure, voltage, 
and various other variables depending on the application, and can have wired or 
wireless connections to the network [Yic08]. SN are extensively used for monitoring 
air quality, water quality, weather conditions, and natural disasters. Real-time data 
collected by these networks enables effective environmental management and early 
warning systems [Doi20]. 

An SN architecture typically comprises numerous sensors, a gateway or base station, 
and data processing units. Sensor nodes are individual devices equipped with 
sensors, processing units, and communication capabilities. They collect data from 
the environment and transmit it to the base station. Base stations act as the central 
entity in the network, responsible for collecting and aggregating data from multiple 
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sensor nodes. The base station communicates with external systems for data storage, 
analysis, and decision-making. 

The development of the capabilities of sensor-based data collection has been truly 
remarkable. In the early stages, data collection was primarily performed manually. 
Researchers and field workers would physically collect data by making observations, 
taking measurements, and recording them manually. This approach was time-
consuming, prone to human errors, and limited in terms of data volume and 
frequency. Later the process was automated by the invention of wired sensors, which 
improved scalability and enabled real-time data transmission, and centralized 
monitoring and management. However, it was constrained by the limitations of 
wired connections, such as installation challenges and limited coverage [Tub03]. The 
later stage of development was the Wireless Sensor Networks (WSN), which 
revolutionized data collection capabilities. It enabled wider deployments and offered 
wider flexibility in sensor placement [Sta08].  This enabled real-time collection from 
remote or inaccessible locations, and opened new possibilities for environmental 
monitoring, industrial applications, and smart infrastructure. These capabilities 
only increased with the emergence of the Internet of Things (IoT) [Mad15]. IoT 
integrated SN with internet connectivity and cloud-based platforms. This 
integration allowed for seamless data transmission, storage, and analysis on a large 
scale. IoT-enabled devices, equipped with sensors, became able to collect and 
transmit data autonomously, enabling real-time monitoring, predictive analytics, 
and data-driven decision-making across various domains [Gul22]. More recently, 
and with the rise of edge computing, data processing capabilities have been pushed 
closer to the data source. Edge sensors, embedded with computing power, gained the 
ability to perform data preprocessing and filtering tasks locally before transmitting 
relevant information to centralized systems or the cloud. This approach reduced 
latency, conserved network bandwidth, and enabled faster response times for critical 
applications [Wan19]. Finally, the integration of AI and ML algorithms has 
revolutionized sensor data collection capabilities. These technologies enabled 
automated data analysis, AD, and pattern recognition, allowing for real-time 
insights and proactive decision-making based on sensor data. AI and ML also 
enabled predictive and prescriptive analytics, empowering systems to optimize 
operations and anticipate future events [Abu14]. 

The applications of SN are numerous, and they are a key part of many future 
technologies such as i) Smart Cities: SNs enable the development of smart cities by 
monitoring traffic flow, parking availability, waste management, and energy 
consumption. This data helps optimize resource allocation and improve the quality 
of life for citizens [Sha21]. ii) Healthcare: SNs play a crucial role in remote patient 
monitoring, wearable devices, and telemedicine. They enable continuous monitoring 
of vital signs, medication adherence, and early detection of health issues [Abd20]. 
iii) Industrial Automation: SN are employed in industrial settings to monitor and 
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control manufacturing processes, optimize energy consumption, and ensure worker 
safety [Maj22]. 

Overall, the evolution of SN and their data collection capabilities has paved the way 
for a more connected, intelligent, and data-driven world, enabling enhanced 
monitoring, control, and decision-making across a wide range of applications. 

 Digital Twin (DT) 

In this section, we will talk about the DT, its concept, key components, applications, 
the transformative impact it has on various industrial sectors, and how the 
contributions proposed in this PhD can be utilized in its scope. 

A DT is a cutting-edge concept that has gained significant prominence in recent 
years, particularly within the field of industrial simulation and optimization, 
especially as current TN are being pushed toward the B5G era [Int20]. As industries 
strive to enhance productivity, efficiency, and decision-making processes, the 
integration of physical systems with their digital replicas has emerged as a powerful 
tool [Bar19].  

A DT refers to a virtual replica or simulation of a physical object, system, or process. 
It is composed of three primary components: the physical entity or asset, the virtual 
counterpart, and the connection that enables real-time communication between the 
two. The physical entity captures data through sensors, which are then transmitted 
to the virtual counterpart, where sophisticated algorithms analyze and model the 
data. This integration allows for the exchange of information and enables decision-
making based on real-time insights [Sin21]. 

SNs play a pivotal role in the implementation of DT technology, providing a vital 
link between the physical asset and its virtual counterpart. These networks consist 
of a multitude of sensors strategically deployed to capture real-time data from the 
physical environment. Whether utilizing wired or wireless connections, SNs enable 
the continuous acquisition of valuable information about the asset's condition, 
performance, and operating parameters. This data serves as the foundation for 
creating an accurate digital representation of the asset within the DT framework 
[Fla09] [Sha14]. 

Wired SNs offer reliable and robust communication channels, ensuring high-quality 
data transmission with minimal latency. They are particularly suitable for critical 
applications where data integrity and security are of utmost importance. Wired 
connections provide a stable and dedicated link, minimizing the risk of signal 
interference and offering precise data synchronization. These networks often rely on 
standardized protocols such as Ethernet, ensuring compatibility and ease of 
integration with existing infrastructure [Fla09].  
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On the other hand, WSNs offer unparalleled flexibility and scalability, making them 
well-suited for dynamic and distributed environments. They eliminate the need for 
extensive wiring, allowing for easy installation and deployment of sensors in remote 
or challenging locations. Wireless connections enable real-time data transmission 
over long distances, facilitating the monitoring of assets spread across vast areas. 
Additionally, wireless networks offer the advantage of mobility, allowing sensors to 
be easily repositioned or added as per changing operational requirements [Sha14]. 

Regardless of the chosen network type, SN are essential for collecting a diverse range 
of data, including temperature, pressure, vibration, humidity, and more. These data 
streams provide valuable insights into the asset's performance, behavior, and 
environmental conditions. The integration of SN with DTs empowers organizations 
to monitor asset health, identify anomalies, and optimize operations in real-time. 
The continuous feedback loop established through SN ensures that the virtual model 
remains synchronized and accurate, enabling effective decision-making and 
predictive analysis. 

Basically, SN, whether wired or wireless, are a fundamental component of DT 
technology. They serve as the bridge between the physical asset and its digital 
counterpart, enabling the collection of real-time data for accurate modeling, 
simulation, and analysis. The choice of network type depends on the specific 
requirements of the application, balancing factors such as reliability, scalability, 
flexibility, and cost-effectiveness. With SN as the backbone, DTs unlock the potential 
for improved operational efficiency, predictive maintenance, and data-driven 
decision-making in various industries. 

DT technology comprises a combination of advanced technologies, including IoT, AI, 
ML, cloud computing, and data analytics. The architecture typically involves SN, 
data acquisition systems, communication protocols, data storage infrastructure, and 
visualization interfaces. The integration of these technologies facilitates data 
collection, analysis, and feedback between the physical asset and its digital 
representation [Rat21]. 

DT has found applications across various industries, including manufacturing, 
energy [Pet20], healthcare [Ero20], transportation [Gao21], water distribution 
[Fue20] and smart cities [Iva20]. In manufacturing, DTs enable real-time monitoring 
and optimization of production processes, predictive maintenance, and quality 
control [QiQ18]. In the energy sector, DTs facilitate efficient management of power 
grids, renewable energy systems, and predictive maintenance of equipment. In 
healthcare, they aid in patient monitoring, personalized medicine, and simulation of 
surgical procedures. Transportation industries utilize DTs for predictive 
maintenance of vehicles, traffic optimization, and autonomous vehicle testing. Smart 
cities leverage DTs to optimize urban planning, energy consumption, and resource 
management. 
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DT technology offers several significant benefits. Firstly, it allows for enhanced 
operational efficiency through real-time monitoring and optimization of systems. By 
simulating and analyzing the behavior of physical assets, organizations can identify 
bottlenecks, reduce downtime, and improve overall productivity. Secondly, DTs 
enable predictive maintenance, allowing for proactive identification of equipment 
failures and minimizing unplanned downtime. Thirdly, DTs facilitate improved 
decision-making by providing data-driven insights and the ability to simulate 
different scenarios. This capability enhances strategic planning and risk mitigation. 
Finally, DTs contribute to sustainability efforts by optimizing resource consumption, 
reducing waste, and supporting energy-efficient [Wes18]. 

DT technology is poised to play a pivotal role in the advancement of 5G and beyond 
applications. As the next generation of wireless communication, 5G promises ultra-
low latency, high bandwidth, and massive connectivity, creating a fertile ground for 
the integration of DTs. By leveraging the power of 5G networks, DTs can seamlessly 
exchange vast amounts of real-time data between physical assets and their virtual 
representations. This enables highly responsive and interactive simulations, 
enabling precise control, monitoring, and optimization of complex systems. 
Furthermore, the combination of 5G and DT technology opens doors to 
transformative applications, such as remote operation of autonomous vehicles, real-
time monitoring of critical infrastructure, and immersive virtual experiences. The 
high-speed and reliable connectivity provided by 5G networks enhances the 
accuracy, scalability, and effectiveness of DTs, fueling innovation and unlocking new 
possibilities across industries and sectors [Ngu21]. 

The DT concept represents a groundbreaking approach to merge physical and virtual 
worlds, revolutionizing industrial simulation and optimization. By harnessing the 
power of advanced technologies, DTs enable real-time monitoring, predictive 
maintenance, and data-driven decision-making across various sectors. As this 
paradigm continues to evolve, it holds the potential to transform industries, drive 
innovation, and shape the future of how we design, operate, and optimize physical 
systems. 

 Machine Learning (ML) 

In this section we will talk about ML-based methods that are considered in this PhD 
thesis. Specifically, in section 2.2.1 we will discuss the general concept of Deep 
Learning, and in section 2.2.2 we will go into the details of AE, a type of feed-forward, 
non-recurrent ANN, which learn by unsupervised learning, and have an inherent 
capability to learn a compact representation of data. 



12 Ahmad Mohammad El Sayed – PhD Thesis 

2.3.1 Deep Learning 

Deep Learning is a subset of Artificial Neural Networks (ANNs) that focuses on 
architectures with multiple layers. It aims to emulate the hierarchical organization 
of the human brain, allowing computers to learn and extract intricate patterns from 
complex data. By leveraging deep neural networks, Deep Learning has 
revolutionized the field of ML and achieved remarkable breakthroughs in various 
domains [Goo16]. 

The key feature of Deep Learning is its ability to automatically learn representations 
from raw data. Each layer in a deep neural network learns increasingly abstract and 
high-level features by building upon the representations learned in the previous 
layers. This hierarchical learning process enables the network to capture complex 
relationships and extract meaningful insights from large datasets. 

Training deep neural networks poses challenges due to the vanishing or exploding 
gradient problem. As the gradients used for weight updates are propagated 
backward through multiple layers, they can either become extremely small or 
explode, hindering the learning process. To address this issue, techniques such as 
the rectified linear unit (ReLU) activation function and batch normalization have 
been introduced, enhancing the stability and convergence of deep networks [Shr19]. 

Deep Learning has achieved groundbreaking results in various fields. In computer 
vision, deep neural networks have demonstrated superior performance in image 
classification, object detection, and facial recognition tasks. Natural Language 
Processing (NLP) benefits from deep learning architectures for tasks such as 
machine translation, sentiment analysis, and language generation [Ott21]. Deep 
Learning has also made significant contributions to healthcare, autonomous driving, 
finance, and many other domains. 

The success of Deep Learning is attributed to the availability of massive amounts of 
data, advances in computing power, and algorithmic innovations. The use of graphics 
processing units (GPUs) and distributed computing frameworks has accelerated the 
training of deep neural networks on large-scale datasets. 

However, Deep Learning also faces challenges, including the need for substantial 
computational resources, the requirement of extensive labeled data for training, and 
the potential for overfitting when dealing with small datasets. Researchers continue 
to explore techniques to address these challenges, such as transfer learning, semi-
supervised learning, and generative adversarial networks [Sha19]. 

2.3.2 Autoencoders (AE) 

AEs are a type of artificial neural network architecture that aim to learn efficient 
representations of input data by reconstructing the input itself. They belong to the 
field of unsupervised learning, as they do not require labeled data for training 
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[Hin06]. AE have gained significant attention in the field of deep learning due to 
their ability to learn meaningful representations and their numerous applications in 
various domains such as image recognition, AD, and data compression [Tsc18]. 

The basic structure of an AE consists of an encoder and a decoder. The encoder takes 
an input and maps it to a lower-dimensional representation called the Encoding or 
the Latent Space (LS). The decoder then attempts to reconstruct the original input 
from this latent representation. The overall goal of the AE is to minimize the 
difference between the input and the reconstructed output, encouraging the model 
to learn a compressed representation that captures the most key features of the input 
[Hin06]. 

The architecture of an AE can vary depending on the specific application and the 
nature of the data. However, the most common type is the "fully connected" or 
"dense" AE, where each neuron in one layer is connected to every neuron in the 
subsequent layer. The number of neurons in the input and output layers is equal, 
while the number of neurons in the intermediate or hidden layer is typically smaller, 
resulting in dimensionality reduction. 

Training an AE involves two main steps: the forward pass and the backward pass. 
During the forward pass, the input is fed through the encoder, and the latent 
representation is obtained. Then, the latent representation is passed through the 
decoder to generate the reconstructed output. In the backward pass, the difference 
between the input and the output is measured using a loss function, such as mean 
squared error (MSE) or the mean absolute error (MAE), and the weights of the AE 
are adjusted using backpropagation and gradient descent to minimize this loss. By 
iteratively updating the weights, the AE learns to reconstruct the input as accurately 
as possible. 

One of the key benefits of AE is their ability to capture useful representations of 
data. The hidden layer, or the LS, acts as a compressed and informative 
representation of the input. This property makes AE useful for tasks such as 
dimensionality reduction, where the high-dimensional input is mapped to a lower-
dimensional space while preserving relevant information. By discarding the decoder 
part of the AE, the compressed LS can also be used for data visualization. 

Another important application of AE is AD. Since AEs learn to reconstruct normal 
data patterns, they can be used to identify anomalies or outliers in new data [Yoa10]. 
By comparing the reconstruction error between the input and the output, anomalies 
can be detected as instances where the reconstruction error exceeds a certain 
threshold [Vel19]. 

AE can also be used for generative purposes. By training an AE on a specific dataset, 
the decoder can be used to generate new data samples that resemble the training 
data. Variations of AE, such as variational AE (VAEs) [Kus17] and generative 
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adversarial networks (GANs) [Cre18], have been developed to enhance the 
generative capabilities of the model. 

In summary, AEs are a type of neural network architecture that learns efficient 
representations of input data by reconstructing the input itself. They are widely used 
for dimensionality reduction, AD, data compression, and data generation tasks. With 
their ability to capture meaningful representations, AEs have become an essential 
tool in the field of deep learning. 

 Knowledge Transfer (KT) 

Knowledge transfer plays a crucial role in the advancement of AI and ML systems. 
It involves the process of extracting, abstracting, and transferring knowledge from a 
source domain to a target domain, enabling the target domain to benefit from the 
expertise of the source domain. ML algorithms heavily rely on data and patterns to 
make accurate predictions or decisions. However, in many real-world scenarios, 
labeled data may be scarce or expensive to obtain. Knowledge transfer offers a 
solution by leveraging knowledge acquired from related or similar domains to 
improve the learning performance in the target domain [Pan10]. 

Knowledge transfer enables ML models to generalize better, adapt faster, and 
achieve higher performance with limited labeled data. It helps to overcome the data 
sparsity problem and reduce the need for extensive training in the target domain. 
By transferring knowledge, ML systems can benefit from pre-existing knowledge, 
models, or feature representations, saving time and resources. Despite its potential 
benefits, knowledge transfer in ML faces several challenges. These include the 
identification of relevant source domains, the alignment of feature spaces, the 
mitigation of negative transfer effects, and the trade-off between transferring too 
much or too little knowledge. Domain dissimilarity, distribution shift, and the 
presence of noisy or irrelevant information are additional hurdles to be addressed 
[Zhu20]. 

Various transfer learning approaches have been developed to facilitate knowledge 
transfer in ML. These include: i) Pre-training and Fine-tuning: Pre-training a model 
on a large-scale dataset from a source domain and fine-tuning it on a smaller dataset 
from the target domain. ii) Domain Adaptation: Modifying the ML model to reduce 
the discrepancy between the source and target domains, aligning their feature 
distributions. iii) Instance Transfer: Transferring instances or examples from the 
source domain to the target domain, either directly or by generating synthetic 
instances. iv) Multi-Task Learning: Training a model to perform multiple tasks 
simultaneously, where the knowledge gained from one task can improve 
performance on another [Wei20]. 
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Assessing the effectiveness of knowledge transfer methods requires appropriate 
evaluation metrics. Commonly used metrics include accuracy, precision, recall, F1-
score, and area under the curve (AUC). Comparative evaluation against baseline 
models or other transfer learning techniques is essential to validate the 
improvements achieved [Sha18].  

Knowledge transfer using ML is a valuable technique for improving performance in 
target domains with limited labeled data. It enables ML models to leverage 
knowledge from related domains, significantly reducing the need for extensive 
training. By addressing challenges and utilizing various transfer learning 
approaches, researchers can unlock the potential of knowledge transfer and advance 
the field of AI and ML. 





 
 
 
 
 
 
 
 
 
 

Chapter 3 

Review of the State-of-the-Art 

This chapter aims to review the state-of-the-art related with the technologies 
investigated in this PhD thesis. Section 3.1 reviews the state-of-the-art regarding 
the sensor data rate reduction. In Section 3.2, the state-of-the-art about AD is 
detailed. Section 3.3 focuses on the state-of-the-art of KT. Finally, Section 3.4 
concludes the revision of the state-of-the-art 

 Time Series Data Rate Reduction 

In this section, we will present a state of the art about the data rate reduction for 
time series data, and it will be divided into three sub-sections. The first sub-section 
is about data aggregation methods, where algorithms are used to combine similar 
values together to reduce the size of the sent data. The second sub-section is about 
sampling rate adaptation methods, which reduce the amount of transmitted data by 
increasing the time between collected samples. The third is about compression 
techniques. 

3.1.1 Data Aggregation 

In [Che19], the authors propose a layered adaptive compression design for efficient 
data collection (LACD-EDC) in industrial WSN. LACD-ED on the clustering data 
scheme and it aims to search the spatio-temporal correlation within (e.g., intra) and 
among (e.g., inter) clusters. Then, a compression method is proposed at the sensor 
level followed by a recover technique at the sink to regenerate the raw data and 
achieve an approximation of original data. The authors of [Jan19] propose a sequence 
statistical code-based data compression method to reduce the packet size and 
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improve the energy efficiency of sensors. The compression process is achieved using 
first order static code (FOST) and sequence code (SDC) algorithms which give better 
compression ratio compared to arithmetic coding. In [Lia14], the authors propose a 
Sequential Lossless Entropy Compression (S-LEC) which organizes the alphabet of 
integer residues obtained from differential predictor into increased size groups. S-
LEC code-word consists of two parts: the entropy code specifying the group and the 
binary code representing the index in the group. 

3.1.2 Sampling Rate Adaptation 

The authors of [Har17] propose three mechanisms that allow sensor to adapt its 
sampling rate to the variation of monitored environment. The proposed mechanisms 
are respectively based on similarity functions, distance functions, and analysis of 
variance with statistical tests. The proposed techniques work in rounds, where each 
round consists of a set period. The sensor adapts its sampling frequency at the end 
of each round. In [Yan16], the adaptation of sampling rate of the sensor node is based 
on system-context and application context levels. On one hand, the availability of 
harvesting energy represents the system-context to identify the maximum rate of 
sampling to be assigned to the sensor node. On the other hand, the user request 
represents the application context where feedback from a system executing specific 
rules of user or field scientists is used to set the rates of sensor node sampling in an 
optimal way. The authors of [Baş19] propose two sampling rate adaptation 
techniques: exponential double smoothing adaptive sampling (EDSAS) and Wiener 
filter based adaptive sampling (WFAS). Both algorithms search the correlation 
between current and previous collected data and aim to minimize the sensor 
sampling rate while a high level of data accuracy. In [Bah14], the authors propose a 
prefix frequency filtering (PFF) technique based on clustering architecture of the 
network. Further to local processing at the sensor node level, PFF uses Jaccard 
similarity function to allow aggregator nodes to identify similarities between near 
sensor nodes at each period and integrate their sensed data into one record. 

3.1.3 Learning Compression 

Authors in [Eic14]-[Hol17] tackled the problem of lossy compression in time series 
data using different techniques. In [Eic14] a piecewise regression technique is used 
to compress time series data from the smart grid. The approach depends on three 
regression algorithms, each specializing in a class of polynomial functions, which are 
applied incrementally. The final compression factor depends on the user defined 
maximum tolerable deviation between the original time series and the reconstructed 
one. The authors of [Fin11] proposed a method of lossy compression that depends on 
extrema (minimum and maximum) extracted from the data. Different definitions 
and different importance levels for extrema are applied in several pass algorithms. 
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The authors in [Hol17] performed an evaluation of five data compression algorithms 
and five change detection algorithms on several datasets. Their approach focused on 
finding out how these different techniques perform under different datasets with 
different characteristics, and how best to choose the parameters under which these 
algorithms will properly work. 

Regarding time series compression using AEs, the authors in [Cha19] developed an 
algorithm called LFZip (Lossy Floating-point Zip), which compresses time series by 
using an encoder and a decoder that is based on the prediction-quantization-entropy 
coder framework, with works under the mean absolute error metric that has a 
maximum allowable error that is defined by the user. Another variant of the AE, the 
Convolutional AE, was used by the authors in [Aza18] to compress and decompress 
electroencephalogram signals to reduce the data size, thus conserving energy of the 
edge devices reading and transmitting these signals. Another medical application 
used AEs to compress data collected from wearable IoT data that have a limited 
energy source [Sun20], using three parameters: compression ratio, reconstruction 
error, and energy consumption to optimize the learning process. Also, for IoT 
applications with limited processing memory, the authors in [Bla18] developed a low 
memory, low latency algorithm for time series compression that allows to 
decompress later at speeds up to 3GB/s, by using a high-speed forecasting algorithm. 
A Recurrent Neural Network Based (RNN) AE was used in [Hsu17], combined with 
data segmentation and aggregation into segments of variable length but with similar 
total variation. Similarly, RNN AEs were used in [Won18] to partially reconstruct 
multi-dimensional time series data effectively, allowing insight into the operating 
state of some of the sensors in the system without the need for full reconstruction. 

 Time Series Anomaly Detection 

A remarkable list of use cases and algorithms for AD in time series can be found in 
literature [Red16] [Coo20]. In [Red16], the authors used deep AEs trained with raw 
time series data from flight sensors collected under nominal operating conditions 
and examined the reconstruction error to detect faults with up to 97% accuracy and 
identify two types of faults with no false positives. Similarly, deep AEs inspired by 
robust principal component analysis were developed to detect outliers and perform 
de-noising even without access to clean data [Zha17]. The method proposed in 
[Guo18], called GGM-VAE, uses Gated Recurrent Unit (GRU) and is used to discover 
the correlation in multi-dimensional time series data. Another approach which 
tackles AD in multi-variate time series is the method described in [Rus20], which 
describes the usage of 1D convolutional neural networks, where the convolutions are 
performed over the inputs across the temporal axis of the data, to detect anomalies 
in sewer processing monitoring data, by checking if the reconstruction error in the 
decoding stage is above a certain value. 
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Also, in the scope of AD, the authors in [LiL21] used a technique they called 
smoothness inducing sequential variational AEs (SISVAE), which is based in 
Variational AEs (VAE) but has a backbone in RNNs. Their method uses the mean 
and variance of each sample as parameters, which means the compression process 
is not rigid and is flexible to the variations in the data. Moreover, to compensate for 
the susceptibility to anomalies that this approach generates, a smoothness inducing 
prior over estimations is used, thus penalizing non smooth estimations. The authors 
in [Suh16] used the Echo-State Network, which is a method used to train RNN where 
only parameters for output are learned to train VAEs to detect anomalies in 
multivariate time series, making use of the temporal dependence in the data. A 
hybrid approach for AD was used in [Ghr20], where Long-Short Term Memory 
(LSTM)-based AEs trained on normal samples are used to extract features from both 
normal samples and ones containing anomalies where an SVM classifier is used for 
detection purposes. A squeezed Convolutional VAE (SCVAE) is modeled to detect 
anomalies in edge devices of IoT as described in [Kim18], and reconstruction 
probability, which is a probabilistic measure that takes into account the variability 
of the distribution of variables, was used to tune VAEs to detect anomalies in 
[AnJ15]. Finally, the authors in [Coo20] conducted a survey of the AD methods for 
time series across a variety of domains and concluded that the main challenges 
remain real time processing, online adaptive learning, multivariate data, the 
shortage of labels anomaly data and the difficulty in obtaining it, and the lack of a 
generalized approach which works in all cases. 

 Privacy Preserving Knowledge Transfer 

There is scarce literature on KT where the privacy of the sharing party is taken into 
consideration. The authors of [You23] proposed a method of sharing natural 
language processing (NLP) datasets with disadvantaged parties that do not have the 
ability to produce high quality dataset with reduced privacy risks. They did this 
through partial sharing of the parameters of and NLP model already trained on the 
dataset that they intend to share with the aid of a proxy dataset. 

Two other works focusing on the sharing of smart meter data while ensuring the 
privacy of the users are [Ton16] and [Tra22]. The authors of [Ton16] proposed a low 
overhead method to obfuscate meter data based on 802.11s wireless mesh network 
that is able to protect the privacy of user data while still enabling the utility company 
to perform distribution state estimation. On the other hand, the authors of [Tra22] 
addressed the problem of the lower quality of utility estimation performed on smart 
meter data that have been partly obfuscated by introducing perturbations to it. They 
proposed a two-phase approach, one of noise generation where a distributed 
perturbation method provides privacy for consumers while retaining the accuracy of 
energy services like regional load forecasting. The second phase is a private noise 
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distribution protocol for called nn-PND, securely distributes n noise elements 
generated by an energy distribution operator to n SMs in a semi-honest adversarial 
model. 

 Conclusions 

As can be seen as to the best of our knowledge, we can conclude that: i) none of them 
perform all operations (data rate reduction + compression + AD) at the same time; 
ii) some of them require a lot of real time processing power at the level of the agent 
performing the compression or the AD; and iii) some of them are only deployable 
after extensive training using data from the targeted systems, which may delay the 
deployment process. 

Hence, our proposed novel system outperforms the methods in the literature in the 
following terms: i) performs data rate reduction, compression and AD at the same 
time using the same models; ii) using pre-trained models requiring very little 
processing power in the agent; iii) allowing immediate deployment by training the 
models using general purpose data, which allows performing at acceptable levels of 
compression and reconstruction errors until enough data is collected to make the 
models system-specific. 

Regarding KT, and to the best of our knowledge, there are no literature about 
sharing information between DTs managing physical systems operating under a 
shared TN, and the literature found is about obfuscating datasets for privacy 
ensuring sharing or introducing noise to consumer data within a single domain to 
protect them from eavesdropping. 

 





 
 
 
 
 
 
 
 
 
 

Chapter 4 

Preliminaries 

 Reference Use Case 

The reference scenario is sketched in Figure 1 (a), where a physical system (in the 
example, a water distribution infrastructure) contains a plethora of different sensors 
that generate heterogeneous telemetry data that need to be gathered and analyzed 
for several purposes such as smart autonomous operation. Without loss of generality, 
let us assume that sensors generate data periodically, with a fixed time interval (that 
can be different among sensors). Therefore, each single sensor is a source of one or 
several time series telemetry data streams. All these data flows need to be 
transported from their sources to the centralized location where the DT is running. 
A typical DT architecture consists of three essential components: i) a Data Lake, 
where the collected, pre-processed and post-processed data is stored; ii) the Sandbox 
Domain, containing the different models and algorithms that emulate the different 
components of the physical system; and iii) the Digital Twin Manager (DTM) that 
oversees several actions including the management of the models in the sandbox 
domain. Moreover, the DTM interfaces the Application Manager in charge both the 
physical and DT systems. Note that the Application Manager use the DT to analyze 
the current and future state of the physical system, which can be done by combining 
the collected data available in the Data Lake and the models and algorithms in the 
sandbox domain. The result of such analysis can lead to specific actions to be 
executed in the physical system. Moreover, the Application Manager can configure 
rules and policies to the DTM, so that the latter can perform tasks such as intelligent 
data aggregation and anomaly detection in an autonomous way. 

Figure 1 (b) provides a deeper insight of the hierarchical architecture needed to run 
the proposed telemetry data compression and analysis. The first level is at the 
sensors layer where data is generated periodically. For the sake of simplicity, let us 
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assume that sensors are those physical elements that can monitor one specific 
metric, e.g., temperature, pressure, etc. Then, a number of these sensors are 
integrated in a monitoring device, which provides the support (computing, power) to 
those sensors, as well as contains the needed transceivers and interfaces (wired or 
wireless) required to eject the data out of the device. Since most multi-purpose 
monitoring devices are built on top of powerful boards such as Arduino or Raspberry 
Pi [Fer14] [Vuj14] a software-based Device Agent (DA) is deployed in the device for 
several purposes including telemetry data processing and device control and 
management. Specifically, in the context of our work, we consider that the DA 
contains the AEs necessary to compress the collected telemetry data and perform 
AD. Then, the DA sends the compressed data to the DTM that is hosted in the remote 
location. Along with the compressed data, three types of metadata are sent: i) the 
device/sensors identification data, including location; ii) the compression method 
metadata including aspects such as the AE id that is required to decompress the 
data, as well as the expected reconstruction error; and iii) the AD diagnosis, in case 
that some anomaly affecting one or multiple sensors is detected. 
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Figure 1:  Reference scenario (a); overall architecture (b) 

The second element in the proposed hierarchical architecture is the (CA) that runs 
as one of the processes in DTM, and aggregates the inputs received from several 
devices that form a group (cluster). The meaning of a cluster is open: can represent 
any subset of monitoring devices in a physical subsystem. Without loss of generality, 
we assume that the creation of clusters is part of the design of both the physical 
system and DT, which is out of the scope of this paper. Each CA oversees 
decompressing the data received from its nested DAs and store such decompressed 
data in the Data Lake. Moreover, it is also in charge of training AEs as soon as new 
relevant data is collected and uploading new models to the DAs in an automatized 
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manner. Finally, it processes the AD diagnosis reports received from DAs, perform 
multiple AD if needed, and notifies the application manager in case of some anomaly 
event has been detected. 

 Sensor Network Architecture 

Network architecture is one of the most important aspects of the deployment of SN. 
It strongly affects the performance of any proposed technique. In this thesis, we 
interested in the cluster-based network architecture due to three main reasons: 1) It 
supports high network scalability regardless of the number of deployed sensor nodes. 
2) It reduces the overhead communication among nodes in the network. 3) It 
facilitates handling node failure. Figure 2 presents the cluster scheme that is 
considered the main architecture of the systems that this thesis covers. 

 

 

Figure 2: Network Design Based on Cluster Theme 
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Typically, the cluster scheme divides the nodes into a set of clusters and a CA is 
assigned to each. The CA receives data from the member nodes inside the cluster, 
performs a certain function with it if needed, then forwards it to the sink node. The 
CA can be the same type of mote as the nodes, or it can be a more advanced type, 
better equipped to perform the extra functions needed from it. Another approach 
would be the dynamic selection of the CH, in which case it would be subject to several 
metrics, for example in the case of a WSN the remaining energy of the mote, or the 
distance to the sink, etc. 

 Datasets 

Two readily available datasets and were used to run simulations and experiments. 

4.3.1 Intel Berkley Lab Data 

Contains data collected from 54 sensors deployed in the Intel Berkeley Research lab 
between February 28th and April 5th, 2004 (Figure 3). Mica2Dot sensors with 
weather boards collected time-stamped topology information, along with humidity, 
temperature, light and voltage values once every 31 seconds. Data was collected 
using the TinyDB in-network query processing system, built on the TinyOS platform 
[Bod04] 

 

 

Figure 3: Distribution map of sensors in the Intel Lab 
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4.3.2 WADI Testbed Data 

The WADI dataset contains experimental sensor data measured in a water 
distribution testbed under different conditions, including normal operation and 
operation in the presence of system perturbations (see example in Figure 4). The 
testbed comprises several water tanks as well as chemical dosing systems, booster 
pumps, valves, instrumentation, and analyzers, thus forming a complete and 
appropriate physical system for the performance evaluation of the proposed methods 
[iTr19]. 

 

Figure 4: Example of sensor data time series in the WADI dataset 

4.3.3 Datasets Summary 

Table 1 contains a summary of information about the datasets we talked about 
earlier. 

Table 1: Dataset Details Summary 

Dataset Intel Berkley Lab WADI Testbed Data 

Collected by us No No 

Number of Sensors 54 83 

Samples Per Sensor 36000 768000 

Period Between Samples 31 seconds 10 second 

Data Type 
Light, Humidity, 

Temperature 
Voltage, Pressure, 
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 General Notation 

Table 2 contains the general notation used throughout the thesis. 

Table 2: General Notation 

S Set of sensors 

G Set of groups. A group comprises a set of sensors that can be the sensors in 
each device or the sensors of the same type in a given cluster 

Sg⊂ S Subset of sensors belonging to group g⊂ G 

w Monitoring interval duration, in time units 

𝑥  Raw telemetry data vector from sensor s at time interval t 

𝑦  Compressed telemetry data vector from sensor s at time interval t 

𝑥′  Reconstructed telemetry data vector from sensor s at time interval t 

 Performance Evaluation Metrics 

Table 3 describes the main performance evaluation metrics that will be used 
throughout the document. 

Table 3: Performance Evaluation Metrics 

Metric Definition Example 

Compression 
Ratio 

The ratio of the compressed 
data size of the original data 

size 

Uncompressed data: 10 

Compressed Data 2 

Ratio = 2 / 10  = 0.2 

Compression 
Factor 

1 / Compression Ratio 

Uncompressed data: 10 

Compressed Data 1 

Factor = 1 / 0.2 = 5 

Energy 
Consumption 

Ratio 
Percentage 

The ratio of the energy 
consumption due to the 

transmission of compressed 
data over the energy 

consumption of uncompressed 
raw data 

Uncompressed data energy 
consumption : 10 

Compressed data energy consumption : 
3 

Ratio Percentage = 3 * 100 / 10 = 30% 



 
 
 
 
 
 
 
 
 
 

Chapter 5 

Statistically Based Compression 
and Sampling Rate Adaptation 

In this chapter, we focus on automatic SN management and propose an energy-
efficient Zoom-In Zoom-Out (ZIZO) mechanism based on the cluster network 
architecture and dedicated to periodic WSN applications. It utilizes two techniques 
which are applied at sensor level and the CA respectively. The first, called Index-
Bit-Encoding (IBE), is a data compression method that exploits the similarity in 
readings collected by the sensor to reduce the size of data that it transmits. The 
second, called Sampling Rate Adjustment (SRA), studies correlation among sensor 
node data then adapts the sampling frequencies (SR) of the sensors in the cluster. 
Figure 5 sketches the main blocks of ZIZO within the architecture in Figure 1. 

DA i

Sensor i

IBE 

xit

yit

CA 
SRA 

DA j 

Sensor j

IBE 

xjt

yjt SRjSRi

…

 

Figure 5: Diagram of ZIZO in the proposed architecture 
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The rest of the chapter is organized as follows: Section 5.1 describes the operation of 
ZIZO at sensor level i.e., the IBE method. Section 5.2 describes the operation of ZIZO 
at CA level i.e., the SRA method. The results obtained are evaluated in section 5.3. 
Finally, section 5.4 concludes the chapter. 

Table 4 summarizes the special notation to be used in this chapter along with the 
general notation introduced earlier. 

 ZIZO at Sensor Level 

In periodic SN, the similarity in collected readings is inversely correlated to the rate 
of variation in the conditions of the monitored target. i.e., The bigger the rate of 
variation in the conditions is, the lower the level of similarity, and vice versa. In 
other words when the conditions are stable, the rate of variation would be very small 
and the level of similarity will be high, which also means there will be a high level 
of redundancy in the data. ZIZO aims at reducing the size of raw data sent by using  

Table 4: Special Notation 

 

IBE, which allows to aggregate similar readings in each period without 
compromising the temporal information of the collected data. 

5.1.1 Definitions 

Let us now define the similarity function (∆) that each sensor uses to search for 
similarity between the readings it collected during a period. 

Definition 1: (Similarity function, Δ 𝑥 , 𝑥 ). Assume 𝑥  and 𝑥  are two readings 
collecting by a sensor node S. We consider 𝑥  and 𝑥  similar if and only if the 
difference between them is less than a defined threshold 𝜀𝑠𝑖𝑚 as follows: 

Δ 𝑥 , 𝑥  = 𝑥  − 𝑥   ≤ 𝜀𝑠𝑖𝑚 

𝜀  Similarity Threshold 

𝑢  Set of unique values extracted from a set of readings 𝑥  in an 
interval w 

c Unique value code 

wgt(c) Weight of the code c 

𝜀  False-rejection probability for the T-test 

𝑅𝑅  Redundancy Rate for a period w 

𝐶  Application Criticality 
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where 𝜀𝑠𝑖𝑚 is a threshold determined by the application parameters. By applying the 
similarity function to the readings of 𝑥  collected at the period w sequentially, we 
get a set of unique readings 𝑢  where each reading in 𝑥  is similar to one and only 
one of the values in 𝑢 . Then for each reading in  𝑢  its weight is calculated using 
IBE which is explained in the next section. The combination of unique values and 
their weights form the compressed set of readings 𝑦  which is sent to the CH. 

5.1.2 Index-Bit-Encoding (IBE) Method 

IBE method enables the compression of the set of readings 𝑥  while preserving the 
temporal information of the data. It does this by encoding the indices of the readings 
in 𝑢  in the weight of the corresponding reading. This way, upon decompression, a 
very close estimate of the original set of readings is generated, with the mean 
difference between the original set and the decompressed set is less than 𝜀𝑠𝑖𝑚. The 
generation of the weight passes through the intermediate process of generating the 
code of reading defined in the following:  

Definition 2: (Code of a unique value u ∈ 𝑢  , c). c is a binary code with a size equal 
to the number of readings in 𝑥 . Thus, for a reading u in 𝑢  , for each x in 𝑥  , if u 
and x are similar corresponding bit in c is set to 1, otherwise it set to 0.  

Definition 3: (Code weight, wgt(c)). The code weight wgt(c) of a code c is the integer 
value corresponding to it. The final form of the set of readings 𝑥  would be: 𝑦 = [(𝑢 , 
wgt (𝑐 )), ( 𝑢 , wgt (𝑐 )), . . ., ( 𝑢 , wgt (𝑐 ))]. 

The size of the set of readings would be optimally set to multiples of 8, as this would 
correspond to one byte. Given that each decimal value in the set of readings needs 4 
bytes to be encoded and depending on the size of the set of readings 𝑥  , which is 
subject to adapt under ZIZO, the size of the compressed set of readings could be much 
smaller than the original set. 

Figure 6 shows an illustrative example of the compression and decompression of the 
set of measurements through IBE using similarity function with threshold 𝜀𝑠𝑖𝑚 = 0.8. 

5.1.3 Sensor Level Algorithm 

Algorithm 1 shows the sequential application of the similarity function on the set of 
readings of a sensor in period 𝑥  to generate the compressed vector 𝑦 , with a period 
size w and similarity threshold 𝜀𝑠𝑖𝑚. 

 

 

 



32 Ahmad Mohammad El Sayed – PhD Thesis 

𝑥  [ 10.0, 12.1, 12.2, 10.6, 11.4,  14.4, 13.9, 9.2 ] 

▼   Similarity Function 

𝜀  =0.8 [ 10.0, 12.1, 12.2, 10.6, 11.4,  14.4, 13.9, 9.2 ] 

▼   Code of Reading 

8-bit [ (10.0, 10010001)  (12.1, 01101000) (14.4, 00000110)   ] 

▼   Code Weight 

𝑦  [ (10.0, 145)  (12.1, 104) (14.4, 6) ] 

   Decompression 

𝑥′  [ 10.0, 12.1, 12.1, 10.0, 11.4,  14.4, 14.4, 10.0 ] 

Figure 6: Illustrative example of data compression and decompression in ZIZO 

Algorithm 1: ZIZO sensor level algorithm 

 Input: period size: w; similarity threshold: 𝜀𝑠𝑖𝑚; set of 
readings of a sensor in period: 𝑥  

 Output: compressed readings set of sensors in period: 𝑦 . 
1. 𝑢  ← ∅, 
2. for each value 𝑥  ϵ 𝑥  where i ϵ [1, w] do  
3.     SimIndex ← indexOf (u ϵ 𝑢  where 𝛥 𝑥 , 𝑢 ≤ 𝜀𝑠𝑖𝑚) 
4.     if SimIndex == -1 then 
5.         c = {0,0, 0, …, 0,} 
6.         𝑢  ← 𝑢  ∪ {𝑥 , c} 
7.         SimIndex ← i 
8.     end if 
9.     for each reading 𝑢  ϵ 𝑢  where j ϵ [1, Count (𝑢 )] do 
10.         if SimIndex == j then 
11.             𝑐  ← 𝑐  ∪ {1} 
12.         end if 
13.     end for 
14. end for 
15. 𝑦  ← ∅ 
16. for reading 𝑢  ϵ 𝑢  where j ϵ [1, Count (𝑢 )] do 
17.     wgt(𝑐 ) ← CalculateCodeWeight(𝑐 ) 
18.     𝑦  ← 𝑦  ∪ {𝑢 , wgt(𝑐 )} 
19. end for 
20. return 𝑦  

 

The algorithm can be executed in two ways. Either the 𝑥  is collected and at the end 
of the period the sensor proceeds to compress the set of readings, like what is 
demonstrated in Algorithm 1. The algorithm starts at index 1 and proceeds until the 
end of the period i.e., when w readings are obtained. Any possible sequence can be 
followed to obtain the best compression, as the low complexity of the algorithm 
permits this. The other way is to start the compression at the beginning of the period, 
with each new reading taken being immediately added to the set of compressed 
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values 𝑦  appropriately by applying the similarity function and adjusting the code 
of an existing reading or adding a new one. This is even less complex and easier to 
implement. The set of unique readings 𝑢  is started empty (line 1). Then for each 
reading 𝑥  taken from 𝑥  a check is done to see if there a reading in 𝑢  similar to it 
and get the index of this values, or -1 in case none is found (line 3). If a similar value 
is not found, 𝑥  is added to 𝑢  with a code that indicates that there are no readings 
similar to it in the previous indices (line 4 − 7). Then the code c of the unique value 
in 𝑢  that is similar to 𝑥  is changed to 1 and the rest of the unique values remain 0 
(lines 9 − 13). Finally, for each unique value in 𝑢  the code weight wgt(c) is calculated 
from c, and they are added to the compressed set 𝑦  (lines (14−19)). 

 ZIZO at CA Level  

Each period w is divided into T equal slots of time, e.g., w = [𝑠 , 𝑠 , . . ., 𝑠  ]. At the 
end of each period, the CA will receive the sets of readings coming from its member 
nodes in the cluster. Indeed, data collected by the sensors in the same cluster contain 
a certain level of redundancy due to the spatial-temporal correlation between them. 
Thus, in order to reduce the data transmission from the member nodes, the CA would 
adapt the sensing frequencies of the sensors to minimize the redundancy. Let 
assume that the CA receives the compressed set of readings 𝑦  from a sensor node 
s. The first step is to decompress 𝑦 , using the process of reverse IBE, index-bit-
decoding (IBD). This allows the generation the set 𝑥′ , which is a very close 
estimation of 𝑥 . Then, all the decompressed reading sets are vertically stacked to 
form a matrix 𝑀  at each period w in the shape in Figure 7 where each row 𝑅  for t 
∈ T consists of a set readings of n sensors at one instant of time t. Our objective is to 
study the redundancy existing in 𝑀 . 

 𝑠  𝑠  … 𝑠  

𝑅  𝑟  𝑟  … 𝑟  

𝑅  𝑟  𝑟  … 𝑟  

… … … … … 

𝑅  𝑟  𝑟  … 𝑟  

Figure 7: Example of the matrix 𝑀  

Then, based on it, to adapt the sensing frequency of all the sensors in the cluster for 
the next period w+1 in order to try to minimize the collection of redundant data. In 
the next sections, we show how the CA calculates the redundancy level in the data 
matrix based on the T-test statistic and how it adapts the sensing frequencies of the 
sensors. 
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5.2.1 Redundancy Rate based on T-test. 

In our mechanism, we incorporate the temporal information between the collected 
data in the calculation of the redundancy rate. The CA determines if each pair of 
sets of readings collected at successive slot times 𝑡  and 𝑡  are similar, and based 
on the number of such sets, it calculates the Redundancy Rate for the period 𝑅𝑅 . 
The paired T-test is fitting for this measurement because each pair of successive sets 
is a set of paired observations by statistical definition. The null hypothesis of the T-
test is that the true mean difference between paired observations is zero. The 
alternative hypothesis being that there is a significant difference. Let’s assume the 
set of readings collected by all the sensors during a slot time t ∈ T as 𝑅  = [𝑟 , 𝑟 , . . ., 
𝑟 ], where 𝑟  is collected by the sensor 𝑆  and the number of sensors, i.e. the number 
of readings in 𝑅  is n. Then, the value of the T-test for the pair 𝑅  and 𝑅  collected 
at successive time slots t and t + 1 is calculated as follows: 

 

𝑇 − 𝑡𝑒𝑠𝑡(𝑅 , 𝑅 ) =  
𝑋 , −  µ

𝜎

√𝑛

,  

 

where: 

𝑋 , : the mean of the difference set { 𝑅 −  𝑅  } 

µ: is the population mean of the whole matrix 𝑀  

𝜎 , : the standard deviation of the difference set { 𝑅 −  𝑅  } 

 
Thus, two successive sets of readings 𝑅  and 𝑅  are considered as having a 
significant difference if the value of the T-test between them is less than the defined 
threshold 𝜀𝑝𝑟𝑜𝑏 as follows: 

 

𝑇 − 𝑡𝑒𝑠𝑡(𝑅 , 𝑅 )  ≤ 𝜀   

 

where 𝜀𝑝𝑟𝑜𝑏 is the T-test value corresponding to some desired false-rejection 
probability α ∈ [0, 1]. Sets of readings that do not have a significant difference between 

them are considered similar. 

Finally, the redundancy rate during the period w, i.e., 𝑅𝑅 , can be calculated as the 
number of similar successive pairs of sets of readings over the total number of 
possible successive pairs of sets of readings (T −1) during the period as follows: 
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𝑅𝑅 =  
∑ 𝑇 − 𝑡𝑒𝑠𝑡(𝑅 , 𝑅 ) ≤ 𝜀  

𝑇 − 1
 

 

Thus, 𝑅𝑅 will be a number between 0 and 1; with 0 meaning no redundancy and 1 
meaning maximum redundancy. The value of α greatly influences the redundancy 
rate; the higher it is, the greater the tolerance is to the difference between sets. That 
is why the choice of α is a parameter set depending on the application. 

5.2.2 Sensing Rate Adjustment Algorithm 

After calculating the redundancy rate at each period, the CA adapts the sensing 
frequencies of the sensors in the cluster uniformly to try to minimize the collection 
of redundant data in the next period, within an upper and lower bound. A big level 
of similarity of the readings of one sensor can be offset by a big level of difference in 
the readings of another in the cluster, leading to a sampling rate that is neither too 
high nor too low. In addition to redundancy, several metrics that are determined 
depending on the application can be used, and they can be a predefined set of rules, 
or dynamic based on the changing nature of the data. The preservation of the 
temporal data and the fact the a very close estimate of the original set of 
measurement can be created for each sensor means that trend analysis and time 
series analysis could be used by the sink, which may have additional resources, and 
by using these tools a smart decision making system for sensing rate adaption can 
be implemented, and the sink would then direct the CHs to change the sensing 
frequencies in their respective clusters accordingly. 

 Performance Evaluation 

The performance of our mechanism is evaluated using simulations and experiments. 
The first is done using data collected by the Intel Berkeley Research Lab and they 
are available online. The second is using data gathered through real experiments 
using telosB nodes. In the next sections, we detail and discuss the results of the 
simulation. The parameters used in our setup for simulations are shown in the Table 
5. 

For our application, we considered there are three levels of redundancy as shown in 
Table 6, Redundancy Rate Table (RRT). Also, for SRA, we introduced a parameter 
that we used along the redundancy rate called application criticality. We considered 
the application to be either of low or high criticality. The following Table 7 Sampling 
Rate Adjustment Table (SRAT) was created and used a decision mechanism by the 
CH. 
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Table 5: Simulation Application Parameters 

Parameter Description  Values 

w Period Size 32 and 64 

𝜀  Similarity Threshold Temperature: 0.07, 0.1,0.2 

Humidity: 0.2, 0.5, 0.1 

Light: 10, 15, 25 

𝐶  Application Criticality low and high 

𝜀  False-rejection probability risk 
value 

0.2 

 

Table 6: Redundancy Rate Table (RRT) 

Redundancy Rate Description 

0 ≤ 𝑅𝑅  ≤ 0.4 Low Redundancy Rate 

0.4 ≤ 𝑅𝑅  ≤ 0.7 Medium Redundancy Rate 

0.7 ≤ 𝑅𝑅  ≤ 1 High Redundancy Rate 

 

Table 7: Sensing Rate Adjustment Table (SRAT) 

𝑹𝑹𝒘 𝑪𝒓 low 𝑪𝒓 high 

low 60% of T T 

medium 40% of T 60% of T 

high 20% of T 40% of T 

 

5.3.1 Simulation Results 

For our setup, we assumed that all nodes send their data to a common CA placed at 
the center of the lab. Figure 3 shows the distribution of the sensors in the Intel lab. 
For comparison purposes, we selected those techniques among all available in the 
literature that closer fit with the main characteristics of our proposed mechanism, 
i.e., distributed operation and energy minimization target by means of sensors data 
collection reduction. Specifically, we selected: 

1) S-LEC in [Lia14] as it is a lossless compression technique that compresses data 
efficiently and robustly but pays no attention to the redundancy in the data. 
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2) PFF technique in [Bah14] which is similar to our technique in terms of using 
aggregation on the part of the sensor to compress data and finding similarity in the 
data on the part of the CH. However, the aggregation method of the technique does 
not preserve temporal information, and only uses similarity in the data to further 
remove redundant data before sending the data to the sink. 

1) Compression Ratio Study: First, we study the performance of the IBE method 
proposed in our mechanism compared to S-LEC and PFF at the sensor level in terms 
of data compression ratio only i.e., the size of data sent after compression relative to 
the size of the data vie that naive approach. Indeed, the obtained result of IBE is 
highly related to the period size T and the Similarity Threshold value 𝜀𝑠𝑖𝑚 (Figure 
8). We show that the compression ratio using IBE is less than those obtained using 
S-LEC in all cases, and less than those obtained by PFF in almost all cases, giving a 
compression ratio of 0.05 in the best case and 0.32 in the worst case. This is due to 
the simplicity in which data compression is encoded compared to the other 
techniques. In addition, the following can be observed: 1) The compression ratio of 
IBE improves with the decreasing of the period size (Figure 8 (a) and Figure 8 (b)) 
or (Figure 8 (c) and Figure 8 (d)) or (Figure 8 (e) and Figure 8 (f)). This is because 
when T decreases, the number of bytes needed to record the temporal information 
decreases, which is why period dividing becomes an advantage. 2) The compression 
ratio of IBE improves with increasing the Similarity Threshold  Figure 8 (a) to Figure 
8 (f)). This is because when the value of 𝜀𝑠𝑖𝑚 increases, the greater the difference that 
can exist between two readings while still considering them similar and aggregating 
them together. This is why the Similarity Threshold is a crucial factor in determining 
both the Compression Ratio and Data Accuracy. 3) IBE gives much better results 
than S-LEC in the cases where there is high redundancy, such as with the humidity 
condition as shown in Figure 8 (c) and Figure 8 (d)). This is because SLEC does not 
aim to reduce redundancy but compresses the data as is, which allows IBE to be 
more effective in these cases. 

2) Data Redundancy Study: The aim of this section is to show how SRA affected the 
value of the redundancy rate resulted in the CA at the end of each period. For this 
aim we fixed three parameters: the period size to 64 readings, the similarity 
threshold to 0.1 and T-test false-rejection probability risk to 0.2. We also used only 
temperature data and ran the simulation under three conditions: Without SRA, with 
SRA and low criticality, with SRA and high criticality. Figure 9 demonstrates how 
the redundancy level (calculated in equation 5) varied over the course of 20 periods. 
The results show how the 𝑅𝑅  leads to SRA, which leads to decreasing 𝑅𝑅  in the 
next round, which is clear in the case of SRA with low criticality as compared to No 
SRA. They also show the effect of the SRA decision parameters, as setting strict SRA 
decision parameters such as for high criticality applications lead to redundancy rates 
that sometimes matched the condition where no SRA is used. 
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Figure 8: Data compression ratio for as a function of similarity threshold under 
different conditions 
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Figure 9: Redundancy rate variation as a function of period number for 
temperature data T=64, 𝜀𝑠𝑖𝑚 =0.1 

3) Adapting Sampling Rate Study: This section uses the same simulation used in the 
previous one but aims to highlight how exactly the sampling frequency was adjusted 
over the course of the periods under the aforementioned conditions. Figure 10 shows 
this variation and demonstrates how strict SRA decision parameters such as with 
high criticality led to the sampling frequency remaining equal to period size in much 
of the simulation, which caused the high levels of 𝑅𝑅  as shown in Figure 9. 

While with low criticality the parameters allowed for a bigger decrease in sampling 
frequency, and lead to lower levels of 𝑅𝑅 . This shows the importance of choosing 
adequate parameter values in deciding SRA to lower redundancy without affecting 
data accuracy by using a very high Similarity Threshold 𝜀𝑠𝑖𝑚. 

4) Energy Consumption Study: Reducing the energy consumption in the network is 
one of the most important challenges in WSN. In our simulations, we used the 
Heinzelman model [Hei00], [Hei02] which is the most popular model for energy 
consumption estimation to evaluate the energy consumption in the network under 
different scenarios. In such a model, energy consumption is highly dependent on the 
data transmission and reception in the network while negligent the other factors 
(sensing, processing, etc..). For each scenario, we calculated the overall energy 
consumption by all the sensors and the CA over the course of the whole simulation. 
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Figure 10: Variation of sensor sampling frequency as a function of period number 
for temperature data T=64, 𝜀𝑠𝑖𝑚 =0.1 

The scenarios were: using IBE alone, using IBE with SRA with low criticality, using 
IBE with SRA with high criticality, using S-LEC and PFF, while varying the period 
size and the Similarity Threshold, along the naive approach. Figure 11 displays the 
energy ratio of these scenarios i.e., the energy consumption in each relative to the 
energy consumption of the naive approach. It shows that our technique can 
significantly reduce energy consumption, as using IBE alone was more energy 
efficient in all but one case, reducing energy consumption ratio percentage down to 
10% compared to 35% and 14% for S-LEC and PFF respectively. This is consistent 
with the results in Figure 8 which are similar in terms of compression ratio. Also, 
we observe that the energy consumption using our mechanism is lower with smaller 
period size (Figure 11 (a) and Figure 11 (b)) and higher Similarity threshold (Figure 
11 (a) or Figure 11 (b)), which shows a trade-off between energy efficiency and data 
accuracy. Finally, we see the effect of SRA, as it led to lowering the energy 
consumption ratio to 8% in the best case. 

5.3.2 Analytical and Complexity Study 

In this section, our objective is to give further considerations of our mechanism by 
studying its complexity at both sensor and CA levels. Indeed, the complexity is an 
important metric that must be considered in WSN due to the limited sensor 
resources and the impact of processing to the data delivery delay when sending the 
data to the sink [FuX19], [FuX20]. 
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(a) T=32 
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(b) T=64 

Figure 11: Energy consumption ratio percentages for the whole network for some 
algorithms as a function of similarity threshold under different period sizes 

From one hand, each sensor node S will form a set 𝑥  of T readings in each period. 
Due to the IBE, the size of this set will be reduced from T to |𝑦 |. Therefore, our 
mechanism has at most O (|𝑦 | ) as a computation complexity at the sensor and it 
will save at most (2 × |𝑦 |) readings at each period in its memory. These complexities 
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are suitable for the case of sensor node since the collected readings are usually 
redundant thus, makes |𝑦 | small even in the worst case. This fact is shown clearly 
in simulation (Figure 8) where the data collected by each sensor in each period is 
significantly reduced. On the other hand, the complexity of our mechanism at the 
CA level is dependent on the dimensions of the matrix 𝑀  which is T × T in the worst 
case. Thus, after enumerating and comparing every successive reading set based on 
the T-test, the complexity of our mechanism will be in order of O (𝑇 ). Such 
complexity can be more reduced in case we adapted the scaling down strategy 
proposed for large period size (cf. section IV.C) or minimized the value of T. 

 Conclusions 

In this chapter, we have proposed a ZIZO mechanism to minimize the data 
transmission in SN to extend its lifetime. ZIZO is based on the cluster network 
architecture and works on the two levels of a WSN: a low complexity, energy efficient 
data compression technique called IBE at the level of the sensor, and a sampling 
frequency adaptation technique based on statistical similarity study called SRA at 
the level of the CH. Through both simulations and experiments, we evaluated the 
performance of our mechanism in terms of minimizing data transmission and energy 
consumption while comparing them to other techniques and showed that we can 
achieve a compression ratio of down to 0.05, and an energy consumption ratio 
percentage of down to 8%. 

In terms of future work, ZIZO can be improved in several directions. First, we seek 
to improve the compression ratio of IBE. Second, at the CH, we aim to reduce the 
difference between the original set of readings and the decompressed set of readings 
by applying different filters on the latter, increasing the level of accuracy without 
sacrificing compression ratio. Third, we aim to use the data collected by the sensors 
at the sink, to implement dynamic clustering, i.e., change the distribution of sensors 
to the clusters, considering factors such as battery levels, and implement a 
scheduling strategy to switch correlated nodes into sleep/active modes. 

 



 
 
 
 
 
 
 
 
 
 

Chapter 6 

Autoencoder-based Telemetry 
Data Compression 

This chapter describes the novel method for lossy compression of time series data 
using deep AEs and its possible application within the architecture of a DT. For the 
compression, and instead of compressing the input data using a single AE, a pool of 
AEs with different number of latent features is used. Thus, the Adaptive AE-based 
Compression (AAC) method is presented as an autonomous process that can choose 
the best AE in the pool i.e., the one that reaches a target reconstruction error with 
the minimum latent space (LS) size. The variability of the number of the latent 
features means that the size of the compressed data is not fixed, which draws 
similarities between AE-based compression and conventional compression methods 
in which the characteristics of the input data play an important role in the 
compression ratio. It also means that the compression is adaptive to the variations 
in the data and hence, compression size is indeed a variable that can be analyzed as 
additional and extended information of collected monitoring data. It is worth adding 
that AEs are trained using data from the specific sensor/s that they operate. 
However, since this may not be available from the beginning of sensor operation, 
generic AEs with moderated compression rates trained for heterogeneous sensor 
data are used until enough data is collected to train the specific AEs. 

 Main Components 

Figure 12 details the architecture previously sketched in Figure 1(b), showing the 
key building blocks and their relationship. The figure focus on the processes related 
to telemetry data compression. For the sake of simplicity, the processes of training 
and updating AEs are not depicted in the figure. Let us assume that the DA 
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implements a telemetry database (DB) that temporarily stores the data injected by 
each of the sensors in the device. We can assume that this data collection is done at 
a very narrow telemetry interval e.g., one measurement per second and device. Then, 
a larger monitoring interval e.g., every minute, is configured to retrieve data from 
telemetry DB and compress them. Thus, let us denote 𝑥  as the telemetry 
measurements collected during monitoring interval t by sensor s. This data is then 
fed to the compressor module that is responsible for running the AAC process. By 
means of the AE pool, adaptive and effective compression is achieved. The 
compressed telemetry data (denoted as 𝑦 ) as well as the identifier of the AE selected 
by AAC for compression (denoted as 𝑖𝑑𝑠𝑡) are sent to the CA. Without loss of 
generality, we assume that CA process the received compressed data immediately 
upon their reception, calling a simple de-compressor process that uses the decoder of 
selected AE to reconstruct the original telemetry stream (denoted as 𝑥′ ) and inject 
it into the data lake. 

DA 

Telemetry DB

…

Sensor 1 Sensor n

AAC 

xst

…

yst , idst

AE pool

…
Device 1

 

Figure 12: Components involved in AAC. 

 Algorithms 

6.2.1 AAC Special Notation 

Table 8 provides the main notation that is consistently used in the following 
algorithms, in addition to the general notation. 
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Table 8: AAC Special Notation 

Z Set of allowable sizes for the LS 

Ψ   Pool of AEs for compressing telemetry data from sensor s  

𝑖𝑑  Id of the AE used to compress data from sensor s at time interval t 

𝑟  Reconstruction error vector from sensor s at time interval t 

DB Telemetry Database for training and testing purposes 

ε  Target average reconstruction error for compression 

6.2.2 AAC 

Algorithm 2 details the pseudo-code of the AAC process, which runs for each sensor 
s in a device and is executed every interval 𝑡 a new telemetry stream is available. As 
introduced in the previous section, it receives the raw telemetry data stream 𝑥  
containing a number 𝑤 of measurements, the pool of AEs of the sensor Ψ𝑠, and the 
reconstruction error threshold ε𝑐𝑜𝑚𝑝 to determine whether a given compressed 
stream 𝑦  produces an accurate enough reconstructed telemetry stream when 
decoded. Besides 𝑦 , the algorithm also returns the identifier of the selected AE in 
the pool 𝑖𝑑𝑠𝑡, as well as the reconstruction error vector 𝑟𝑠𝑡. 

After initializing output variables (line 1 of Algorithm 2), the set of AEs in the pool 
Ψ𝑠 are sorted in ascendant order of size of LS (line 2). Thus, they are going to be 
sequentially evaluated in a loop from highest to lowest compression ratio (line 3). 
Given an AE Ψ , the input data is normalized with the min-max values stored as 
model coefficients (line 4). Then, the normalized input 𝑥 is propagated through the 
encoder part and the compressed stream 𝑦 is obtained (line 5). At this point, the 
decoder is used to compute the reconstructed data stream 𝑥′, which is used to 
compute the reconstruction error 𝑟 that Ψ   produces (lines 6-7). Note that if the 
average reconstruction error is below threshold ε𝑐𝑜𝑚𝑝, then an accurate compression 
is found, and AE pool search is interrupted (lines 8-10). Finally, the resultant output 
is returned (line 12). Note that this output can be either a compressed telemetry 
stream if an AE producing average reconstruction error below ε𝑐𝑜𝑚𝑝 is found or the 
original input if no accurate compression can be effectively done. 

Recall that we consider that generic AEs with moderated compression rates trained 
from heterogeneous generic sensor data are used until enough sensor-specific data 
is collected to train ad-hoc AEs that better compress the data of a given sensor. 
Without loss of generality, we can assume that this procedure can run periodically 
as soon as telemetry data from sensors is available. Algorithm 3 details the proposed 
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Algorithm 2: AAC method 

INPUT: 𝑥 , Ψ , ε𝑐𝑜𝑚𝑝 
OUTPUT: 𝑦 , 𝑖𝑑𝑠𝑡, 𝑟𝑠𝑡 
1. 𝑦  ← 𝑥 ; 𝑖𝑑  ← ∅; 𝑟𝑠𝑡 ← zeros(w) 
2. sort (Ψ , |Ψ .latent|, “ascending”) 
3. for each Ψ  ∈ Ψ  do 
4.     𝑥 ← normalize (𝑥 , Ψ .minmax) 
5.     𝑦 ← Ψ .encoder.propagate (𝑥) 
6.     𝑥′ ← Ψ .decoder.propagate (𝑦) 
7.     𝑟 ← computeReconstructionError (𝑥, 𝑥′) 
8.     if avg (𝑟) ≤ ε𝑐𝑜𝑚𝑝: 
9.         𝑦  ← y; 𝑖𝑑  ← Ψ .id; 𝑟𝑠𝑡 ← 𝑟 
10.         break 
11. return 𝑦 , 𝑖𝑑𝑠𝑡, 𝑟𝑠𝑡 

 

Algorithm 3: AE pool update 

INPUT: Ψ𝑠, 𝑍, 𝐷𝐵 
OUTPUT: Ψ𝑠 
1.  𝐷𝐵 , 𝐷𝐵  ← split (𝐷𝐵) 
2.  for each 𝑧 ∈ 𝑍: 
3.      𝜓  ← trainAE (𝐷𝐵 , 𝑧) 
4.      𝜓  ← select (Ψ𝑠, |Ψ .latent|= 𝑧) 
5.      if 𝜓  = ∅ then 
6.          Ψ𝑠.add(𝜓 ) 
7.      else 
8.         𝑌 ← 𝜓 .encoder.propagate (𝐷𝐵 ) 
9.         𝑋′ ← 𝜓 .decoder.propagate (𝑌) 
10.        𝑟  ← computeReconstructionError (𝐷𝐵 , 𝑋′) 
11.        𝑌 ← 𝜓 .encoder.propagate (𝐷𝐵 ) 
12.        𝑋′ ← 𝜓 .decoder.propagate (𝑌) 
13.        𝑟  ← computeReconstructionError (𝐷𝐵 , 𝑋′) 
14.        if avg(𝑟 ) < avg(𝑟 ) and max(𝑟 ) < max(𝑟 ) then 
15.           Ψ𝑠.replace(𝜓 , 𝜓 ) 
16.  return Ψ𝑠 

 

procedure to train and update the AEs in a pool. Thus, given an AE pool Ψ (that 
could be initially empty) and a database DB containing telemetry measurements 
(that can be either generic or sensor-specific), the algorithm trains a set of AEs with 
LS sizes defined in set Z to find new models that improve existing ones. 

The procedure starts by splitting the data in DB in both training and testing datasets 
e.g., following a typical 80%-20% split [Bis06] (line 1 in Algorithm 3). Then, each LS 
size 𝑧 in 𝑍 is selected and a new AE 𝜓  is trained for such LS size (lines 2-3). This 
new AE needs to be compared against the current one in the pool with the same LS 
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size (denoted as 𝜓 ) and therefore, it is retrieved from the pool (line 4). Note that 
𝜓  is directly added to the pool if there is no currently available AE with such size 
𝑧 (lines 5-6). Otherwise, the testing dataset is used to evaluate the reconstruction 
error in both 𝜓  and 𝜓  (lines 8-13). Thus, the current AE is replaced by the new 
one if both average and maximum reconstruction errors are reduced by the new AE 
(lines 14-15). Eventually, the updated AE pool is returned. 

 Performance Evaluation 

In this section, we first introduce the simulation environment developed to evaluate 
the methods and algorithm presented in previous sections. Then, we analyze the 
performance of AAC, using telemetry data from a real physical system. Finally, we 
analyze the impact of the proposed methods on a network case study where TN 
capacity savings are shown. 

6.3.1 Simulation Environment 

For numerical evaluation purposes, we implemented a Python-based simulator 
reproducing the main blocks of the architecture presented in Figure 17, as well as 
the algorithm described in the chapter. In particular, a CA with three DAs was 
configured, where every DA processes data from one single sensor. Sensors were 
implemented as time series data generators injecting real measurements (one per 
second) from the Water Distribution (WADI) dataset [iTr19]. The WADI dataset 
contains experimental sensor data measured in a water distribution system under 
different conditions including normal operation and operation in the presence of 
system perturbations. Among all available data in WADI, we selected three time 
series from three different sensor types (hereafter, referred as S1, S2, and S3) with 
different behaviors and patterns. Figure 4 shows an example of each sensor time 
series data under normal operation. As can be observed they are different in terms 
of time patterns, as well as in magnitude and range of the telemetry data. 

For the sake of simplicity, we assume that AEs in the pool of CA and DAs are trained 
using Algorithm 2 after a period of raw data collection to populate the initial 
database DB. Without loss of generality, we assume that the measurements collected 
during this period belong to the normal operation of the physical system. Then, fixing 
interval w to 256 seconds, we obtained 7.68e5 samples for training, as well as 9.6e4 
samples for testing. Regarding AE pool configuration, we considered 4 different AEs 
with Z = {4, 8, 16, 32} LS sizes. In all the cases, we considered 2 hidden layers, with 
128 and 64 hidden neurons each. We used keras library for AE training and testing, 
as well as pandas and NumPy to load and manipulate the datasets. AEs were trained 
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during 100 epochs using Adam optimizer and mean absolute errors as loss function, 
which results in reconstruction accuracy values around 99%. 

6.3.2 AAC Results 

The first numerical study is focused on evaluating the performance of AAC procedure 
in Algorithm 2 once the AE pool of every DA has been trained with telemetry data of 
its specific sensor. The metric used was the ratio of the number of windows 
compressed by any AE in the pool to total amount of windows (compressed to total 
data ratio),  so 0 means that AAC cannot compress any measurement below the 
target ε𝑐𝑜𝑚𝑝 and 1 means that all measurements are compressed with the AE with 
lowest LS size (in our case, 4). Figure 13 shows the CTR as a function of target 
reconstruction error ε𝑐𝑜𝑚𝑝 for both normal operation Figure 13 (a) and operation with 
perturbations ( Figure 13 (b) after 9 hours of simulated time (~32000 monitoring 
samples per sensor).. As can be observed, AAC shows the desired adaptability, 
sharply increasing compressed to total data ratio when ε𝑐𝑜𝑚𝑝 is relaxed. 
Interestingly, we can observe that different time series produce different 
compression performance, even when AEs were specifically trained for that data. 
However, maximum compression is always achieved with low reconstruction error 
(0.05) under normal system operation, as well as remains very high when 
perturbations appear in the system, which validates the applicability of the proposed 
method in systems subject to changes in the telemetry data generated. 
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Figure 13: AAC performance under normal operation (a) and operation with 
perturbations (b) 

Once the AAC has been presented as an adaptive and polyvalent method, let us now 
focus on evaluating its performance compared against two benchmarking methods. 
First, Figure 14 (a) compares AAC against a simplest method consisting in the single 
AE that better works for a given ε𝑐𝑜𝑚𝑝, i.e., the one with the smallest LS size that 
always achieves reconstruction error not greater than ε𝑐𝑜𝑚𝑝. Note that this 
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benchmarking method is easy to deploy in our system, provided that the required 
ε𝑐𝑜𝑚𝑝 does not (often) change in time, because every requirement variation could 
entail a new AE re-training to adjust LS size. The figure shows the compression 
factor, which is simply the inverse of the compression ratio, as well as the relative 
gain of AAC with respect to using the best AE in each case. In light of the results, 
we can conclude that AAC produces larger compression ratio than using a single AE, 
reaching remarkable relative gain above 60% for stringent reconstruction errors 
around 0.01. Recall that AAC can adapt to changes in ε𝑐𝑜𝑚𝑝without the need of 
retraining AEs that combined with its high performance makes AAC as the best 
option for AE-based compression. 

In order to have a second benchmarking evaluation, Figure 14 (b) compares the 
achieved compression ratio for two selected ε𝑐𝑜𝑚𝑝 values against the compression 
method presented in [Cha19], called LFZip. Similar to AAC, LFZip is a lossy 
compression method using fully connected neural network decoders that achieves 
good compression ratios. In [Cha19], the authors provide the achieved compression 
ratio for the selected target reconstruction errors using different time series data. 
The figure compares the performance of AAC (averaging all sensors under normal 
operation) and LFZip (results from [Cha19]), where large benefits of AAC can be 
observed. However, since we were not able to reproduce neither LFZip method with 
our sensor data nor AAC with the data in [Cha19] (due to the lack of algorithm 
details and data availability), the conclusions of such comparison are mild. For this 
reason, we included the relative gain of each method when ε𝑐𝑜𝑚𝑝 is relaxed from 0.01 
to 0.05. In view of the values, we can state that AAC clearly outperforms LFZip in 
terms of adaptability to variable requirements and relative compression gain, as the 
compression factor of LFZip increased from 8 (equivalent to a 0.125 compression 
ratio) to 18 (equivalent to a 0.05), while AAC increased from a compression factor of 
5 (0.2 compression ratio) to a compression factor of 60 (0.01 compression ratio).  
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Figure 14: AAC benchmarking against best single AE (a) and LFZIP (b) methods. 

It is worth noting that the outstanding AAC performance illustrated so far requires 
the availability of a pool of AEs specifically trained for each of the sensors. Once a 
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new sensor is installed in the physical system and telemetry is started being 
collected and processed by a new or existing DA, such specific AEs are not available 
until enough data have been collected. This is the reason why, as introduced in 
previous sections, our approach proposes initializing AAC with a pool of generic AEs 
trained with heterogeneous data, i.e., mix of data from other sensors available in the 
data lake. Figure 15 (a) compares the percentage of compressed samples using 
generic AEs trained with a mix of telemetry measurements of all sensors and specific 
AEs for each of the sensors individually. In both cases AAC has been configured with 
a stringent ε𝑐𝑜𝑚𝑝 = 0.01. As can be seen, generic AEs produce an overall good 
performance (around 50% of samples can be effectively compressed), although 
provides negligible benefit for sensors that behaves very different to considered 
generic data. This occurs in S2 data, which shows a clearly on-off period (recall the 
example in Figure 4) that vastly differs from generic data used for training. As soon 
as specific AEs can be trained, then both individual and overall compression 
increases (around 80% of samples can be compressed). 

Finally, Figure 15 (b) details how many times every AE in the pool is used, for both 
generic and specific AE pools. Results show the average performance for all DAs and 
ε𝑐𝑜𝑚𝑝 = 0.01. Note that the smallest LS size is frequently selected; however, 
sometimes is needed a smaller compression (larger LS) to guarantee the target 
reconstruction error, which adds value to the proposed AAC method. Moreover, the 
use of larger AEs is reduced when specific AEs are trained. For this very reason, we 
can conclude that the use of generic AEs is useful to provide compression from the 
beginning of sensor operation but needs to be substituted by specific AEs to reach 
maximum performance. 
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Figure 15: Generic and Specific AAC performance vs sensor type (a) and LS size (b) 

6.3.3 Case Study 

Eventually, we conducted a numerical case study in order to evaluate the impact of 
the proposed methodology assuming a larger network scenario like the one sketched 
in Figure 2 (a). Thus, we assume that a physical system containing hundreds to 
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thousands of sensors is geographically distributed among a number of locations, 
where the DAs are locally deployed. For the sake of simplicity, let us assume that 
the overall telemetry data generated by all the sensors in the system, i.e., the total 
volume that needs to be gathered by the DT, is fixed to 400 Gb/s. Moreover, let us 
assume an optical TN that allows transparent connectivity between the remote 
physical locations and the location where the DT is deployed, e.g., a datacenter. To 
support the transport of such telemetry data, optical connections taking advantage 
of digital subcarrier multiplexing technology can be deployed [Vel21]. This means 
that optical connections can be established with a fine granularity of 25 Gb/s each. 

Figure 16 (a) shows the amount of data injected as a function of the number of 
locations, assuming an even split among locations of the total amount of telemetry 
data. Two cases are shown: no compression and using AAC. For the latter, we 
consider ε𝑐𝑜𝑚𝑝= 0.01 and, according to Figure 14 and considering that sensors behave 
similarly to the ones used before, the average compression factor is around 12.5. 
Assuming this compression performance, the figure shows great savings in the total 
amount of data generated by every location distributed in the network. Nevertheless, 
the impact on the true amount of data that needs to be conveyed in the TN will 
depend on the number of optical connections needed to carry out such data, which is 
shown in Figure 16 (b) as a function of number of locations, as well as the capacity 
savings of using AAC with respect to no compression scenario. For instance, 50% of 
optical capacity savings are achieved when 400 Gb/s of raw data are generated 
among 8 different locations. In this case, every location is generating around 50 Gb/s 
of raw telemetry data, which requires 2 optical connections between the location and 
the centralized DT. On the contrary, the proposed AAC method reduces conveyed 
data to 4 Gb/s, which can be served with only one optical connection per location. 
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Figure 16: Network study analysis 

Hence, we can definitely conclude that the proposed adaptive telemetry compression 
mechanism allows a large reduction on the number of optical connections and true 
data to be conveyed through the TN. 
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6.3.4 Comparison to IBE 

Table 9 compares the main parameters of IBE algorithm (component of ZIZO) 
described in Chapter 5 and ACC presented in this chapter. While the IBE algorithm 
is a similarity-based, low complexity algorithm that can be used on sensors with 
small computing resources, AAC is a more complex method that relies on ML to 
produced more efficient results, however it requires more computing resources and 
can be deployed on more advanced sensors. is a comparison of the parameters of the 
simulation performed using both methods. 

Table 9: Operation parameters of IBE and AAC 

IBE (ZIZO) AAC 

Period Size 32 and 64 Input Size 256 

Application 
Criticality 

High and Low 𝜀  [0.01, 0.05] 

Similarity 
Threshold 

temperature: 0.07, 
0.1, 0.2  

humidity: 0.2, 0.5, 1 
light: 10, 15, 25 

Latent Space Size 4, 8, 16, 32 

 

While the input size for ZIZO was variable between 32 and 64, it was fixed at 256 for 
AAC. This means longer data collection periods for AAC, however it makes it more 
scalable than ZIZO since IBE is constrained by the index bytes, while AAC can be 
scaled down to 128 or scaled up to 512 for example. The application criticality in 
ZIZO also is variable between Low and High, which is reflected and the adapted 
sensing periods, however the criticality of the application can be adjusted for by 
changing the ARE in AAC, from 0.01 being very strict and 0.05 being very loose. 
Finally, the size of the compressed data depends on the Similarity Threshold only 
for ZIZO, however in AAC, it depends both on the ARE and the available latent space 
sizes, with a possibility of having a compressed data size equal to 1% of the original 
data size if selected AE is the one with latent space size equal 4. Table 10 shows a 
comparison of the characteristics of each algorithm. 

6.3.5 Integration with SRA 

Since SRA operates at the CA level and uses decompressed sensor data to calculate 
redundancy in order to adjust the sensing frequency for the following period, and 
since both IBE and AAC operate on the DA level in a periodic data collection basis, 
AAC can be integrated with SRA easily.  

Table 10: Comparison of the characteristics of ZIZO and AAC 
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 IBE (ZIZO) AAC 

Basis Statistical Analysis Machine Learning 

Data Collection Periodic Periodic 

Require Training No Yes 

Adaptive Yes Yes 

Scalable No Yes 

Configurable Yes Yes 

 Concluding Remarks 

In this chapter, we presented a smart adaptive telemetry data compression (AAC) 
for DT use case. The method made use of AEs trained with generic and specific 
sensor telemetry data, as well as a set of algorithms that use those AEs to maximize 
the performance of compression. 

The numerical evaluation of such models and algorithms was performed using an 
experimental data set of a water distribution system. The main conclusions derived 
from such numerical analysis are: i) AAC produces smaller compression ratios than 
using a single AE, reaching remarkable relative gain above 60% for stringent 
reconstruction errors around 1%; ii) AAC achieves compression ratios one order of 
magnitude smaller than other benchmarking lossy compression mechanisms in 
literature. 

Finally, the smart compression of telemetry data for DT use case is evaluated in 
terms of reduction of TN resources. To this aim, we considered distributed scenarios 
where telemetry data sources are spread among different network locations, thus 
needing to gather such telemetry data in a centralized location. Results showed that 
remarkable capacity savings measured in terms of dedicated optical connections are 
achieved for moderately high distributed scenarios. 





 
 
 
 
 
 
 
 
 
 

Chapter 7 

Autoencoder-based Telemetry 
Data Anomaly Detection 

This chapter describes a method for two methods for AD using deep AEs that  operate 
on both single and multiple time series, and their possible application within the 
architecture of a DT. Regarding the AD part, the first method, called Single Sensor 
Anomaly Detection (SS-AD), takes advantage of the specificity of the trained AEs to 
detect when the collected data contains an anomaly, e.g., if the sensor malfunctions 
or some kind of additional noise is introduced to the data from an external source. 
The second method, called Multiple Sensor Anomalous Group Diagnosis (MS-AGD), 
detects anomalies that can affect several sensors in a correlated way, even when they 
cannot be detected by SS-AD in independent time series. It does this by comparing 
data points with a certain degree of reconstruction error values across all the time 
series involved, making it able to detect subtle correlated anomalies. 

 Main Components 

Figure 17 details the architecture previously sketched in Figure 1(b) and is an 
extension to Figure 12, adding to it the components involved in AD in addition to the 
previously described compression. 

Besides the compressed telemetry data, the AAC process also computes the 
reconstruction error vector obtained by the selected AE (denoted as 𝑟𝑠𝑡). This error 
is defined as the difference between the original and reconstructed telemetry 
measurements. This relevant output is locally processed at the DA for AD purposes. 
Specifically, the DA manager receives a reconstruction error vector per each sensor 
and monitoring interval and triggers two different AD processes. On the one hand, 
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the SS-AD analyzes the individual reconstruction error of each sensor in order to 
find an anomalous error pattern such as continuous large error. On the other hand, 
the MS-AGD analyzes the reconstruction errors of the sensors in the device and 
performs a correlated analysis in order to identify subtle anomalies affecting several 
sensors at the same time. The diagnosis generated by each of the methods is then 
processed by the DA manager that generates a device diagnosis report when a 
remarkable event is detected by one or both methods. 

Such device diagnosis report (if generated) is sent to the CA manager that can trigger 
a wider and deeper anomaly analysis. It can request to the DA of the devices under 
its control those reconstruction error vectors that have not been sent before. As an 
illustrative example, let us imagine that an anomaly in a temperature sensor has 
been detected in device i. The CA can then request the reconstruction error of the 
rest of temperature sensors of all the devices in the cluster, in order to perform a 
group analysis and detect e.g., an incipient temperature anomaly in other elements 
of the system. Note that, to allow this analysis, we consider that DA managers 
temporary store reconstruction errors even when they are not detecting any 
anomaly. Finally, the results of received device diagnosis reports generated by DA 
managers and the sensor group analysis (if proceed) generated by CA manager 
composes the cluster diagnosis report that is sent to the application manager. 
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Figure 17: Detailed architecture and key components 
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 Algorithms 

7.2.1 AD Special Notation 

The following table provides the main notation that is consistently used in the 
following algorithms, in addition to the previously introduced notation. 

Table 11: Special Notation 

ε  Individual reconstruction error for AD 

α Number of consecutive error values above AD threshold 

β Number of total error values above AD threshold 

7.2.2 SS-AD 

Algorithm 4 details the pseudo-code of the SS-AD procedure that runs locally in the 
DA every time a new compressed telemetry stream is obtained and hence, a new 
reconstruction error vector 𝑟𝑠𝑡  is available. Since the principle of AD using AEs relies 
in the fact that an anomalous input will be poorly reconstructed, an anomaly error 
detection threshold ε𝑎𝑛𝑜𝑚 is needed to perform such detection. Indeed, AD is triggered 
if either one of the following conditions is met: i) a number α of consecutive 
measurements produced a reconstruction error larger than threshold ε𝑎𝑛𝑜𝑚; ii) a 
number 𝛽 of total measurements (non-consecutive) produced a reconstruction error 
larger than threshold ε𝑎𝑛𝑜𝑚.  

Algorithm 4: SS-AD 

 

The algorithm starts by initializing the counters of consecutive and total number of 
measurements above the error threshold (line 1 in Algorithm 4). Then, each single 
error value in 𝑟𝑠𝑡 vector is evaluated and compared with the threshold (lines 2-3). 

INPUT: 𝑟𝑠𝑡, ε𝑎𝑛𝑜𝑚, α, 𝛽 
OUTPUT: anomaly 
1. 𝑘 , 𝑘  ← 0 
2. for each 𝑟 ∈ 𝑟𝑠𝑡 do: 
3.     if r > ε𝑎𝑛𝑜𝑚 then 
4.         𝑘  ← 𝑘  + 1 
5.                      𝑘  ← 𝑘  + 1 
6.     if 𝑘  == α or 𝑘  == 𝛽 then 
7.         return true 
8.     else 
9.         𝑘  ← 0 
10. return false 
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When the error exceeds the thresholds, then both counters are increased in one unit 
(lines 4-5). At this point, it is worth checking if one of the AD conditions is met and 
if so, the procedure stops and returns an AD event (lines 6-7). On the contrary, it is 
necessary to reset the counter of consecutive values above the threshold before 
analyzing the next error value (lines 8-9). Finally, no anomaly event is returned in 
case that none of the conditions is met (line 10). 

7.2.3 MS-AGD 

The pseudo-code of MS-AGD procedure is detailed in Algorithm 5, which aims at 
computing a score that increases when several sensors within a group generate high 
reconstruction error at the same time. Indeed, this score has the form of a vector of 
𝑤 positions, indicating the score at a given time unit within the analyzed monitoring 
interval (which allows fine multiple AD analysis). Moreover, recall that the MS-AGD 
can be executed at device level e.g., analyzing all (or a subset) of the sensors of a 
given device, or at cluster level e.g., analyzing all (or a subset) of the sensors in each 
cluster. Regardless of the case, let us consider that the reconstruction errors vectors 
obtained at a given monitoring time interval of a given group of sensors is denoted 
as 𝑅. This is the main input of MS-AGD, which also requires the specific parameter 
γ that defines the time interval size needed to compute the score. 

Algorithm 5: MS-AGD 

INPUT: 𝑅 = {𝑟 , ∀s ∈ 𝑆 }, γ 
OUTPUT: score 
1. score ← zeros(w) 
2. Q ← zeros (|𝑆 |, 𝑤) 
3. 𝑖 ←  0  
4. for s  ∈  𝑆  do 
5.     𝑖 ← 𝑖 + 1 
6.     𝑟  ← avg (𝑅.𝑟 ) 
7.     for 𝑗 == 1 … 𝑤 do: 
8.         if 𝑅. 𝑟  [𝑗] > 𝑟  then 
9.             𝑄[𝑖, 𝑗] ← 1 
10.     for 𝑗 == γ … 𝑤 do 
11.         𝑎 ← sum (𝑄[: , 𝑗]) / 𝑆  
12.         𝑏 ← dotproduct (𝑄[: , 𝑗 −   γ + 1: j ]) / γ  
13.         score [𝑗] ← 𝑎 . 𝑏 
14. return score 

 

The first step is to initialize the score vector, as well as the auxiliary matrix 𝑄 that 
is going to facilitate score computation (lines 1-2 of Algorithm 5). In particular, 𝑄 is 
a sparse 0-1 matrix, where cell ⟨𝑖|𝑗⟩  is 1 if and only if the sensor 𝑖 at time unit 𝑗 took 
a measurement above the average value of that sensor within monitoring interval 𝑡. 
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After computing 𝑄 (lines 3-9), the score is computed for every time unit within 
monitoring interval (lines 10-13). The score of each time unit 𝑖 is the product of 
components 𝑎 and 𝑏. On the one hand, 𝑎 is the normalized sum of 1s in 𝑄 that time 
i.e., which proportion of sensors generate a measurement that produced a 
reconstruction error above the average. On the other hand, 𝑏 computes the 
normalized dot product of 𝑄 in the last γ time units. Note that a large value indicates 
that there are consecutive time units where several sensors are above the average. 
In particular, 𝑏 = 1 when all sensors in 𝑆  stay above average reconstruction error 
during a consecutive number γ of time units. 

To better understand the rationale behind MS-AGD score, Figure 18 shows the 
reconstruction error 𝑟𝑠𝑡  and the score in a monitoring time interval of 𝑤 = 20 of an 
example with three sensors. Three different cases are depicted, assuming γ = 5: i) 
error stays constant and low for all the time and sensors (no anomaly, Figure 18 (a)); 
ii) error increases in all the sensors but not at the same time (non -correlated subtle 
anomaly, Figure 18 (b)); iii) error increases in all the sensors and partially coincide 
in time (correlated subtle anomaly, Figure 18 (c)). For the sake of simplicity, average 
reconstruction error is around 0.5% in all the sensors in Figure 18 (a) and around 
1.5% in all the sensors in Figure 18 (b) and  Figure 18 (c). Colored circles indicate 
when reconstruction error is above the threshold. As can be observed, score reaches 
significant values (above 0.5) only when several sensors exceed average 
reconstruction error at the same time. 
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Figure 18: Example of Score 

 Performance Evaluation 

In this section, we first introduce the simulation environment developed to evaluate 
the methods and algorithms presented in previous sections. Then, we analyze the 
performance of SS-AD, and MS-AGD using telemetry data from a real physical 
system. 
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7.3.1 Simulation Environment 

The simulation environment used for testing SS-AD and MS-AGD is the same used 
to test AAC and described int the previous chapter with a few key changes. The AE 
used to calculate the reconstruction error of the series was the one with the largest 
LS i.e., Z=32. This is because the AD depends on the analysis of the reconstruction 
error, and thus we wanted to avoid any higher error resulting from smaller LS sizes 
and not due to actual data anomalies. 

7.3.2 SS-AD and MS-AGD performance 

In this section we focus on evaluating the performance of AD procedures assuming 
that specific AE are already trained and working. In particular, we configured our 
simulator to reproduce two different use cases: i) large individual anomalies for SS-
AD evaluation, and ii) subtle time-correlated anomalies for MS-AGD evaluation. 

For the first use case, we assume that SS-AD is continuously running for each sensor 
during 9 hours of normal operation followed by a drastic change in the pattern of the 
generated data (happening at time t𝑎𝑛𝑜𝑚). In order to introduce variety of anomalies, 
we consider that sensor Si starts generating at t𝑎𝑛𝑜𝑚  data similar to that of sensor 
𝑆 , being [𝑖 ≠ 𝑗] and [𝑖, 𝑗]  ∈  {1, 2, 3}  , thus reproducing 6 different anomalies. 

Figure 19 evaluates the percentage of false positive detected by each of the sensors 
as a function of different values of SS-AD parameters ε𝑎𝑛𝑜𝑚 and α (β  was fixed to 
100). A false positive is detected if SS-AD returns True during the period of normal 
operation, i.e., when no anomalies are introduced. Considering the results, we can 
conclude that increasing ε𝑎𝑛𝑜𝑚 to 0.10 is sufficient to reduce α to short values (25 for 
S1 and S2, and 10 for S3) that lead to zero false positive detection. Note that, the 
shorter α is, the faster the detection of true anomalies.  
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Figure 19: SS-AD: false positive detection 

Then, assuming the best configuration of parameters for every sensor, Table 12 
shows the detection accuracy of all the anomalies. It is worth noting that SS-AD 
achieves very high accuracy (>95%) for most of the considered anomalies. Indeed, 
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only S1 SS-AD process is not able to detect S3-like data, which is reasonable due to 
the similarity of both S1 and S3 time series. Therefore, we can conclude that SS-AD 
performs accurate and robust detection of individual anomalies. 

Table 12: SS-AD: best configuration and AD accuracy 

Si 𝛆𝒂𝒏𝒐𝒎 α 
𝑺𝒋 

S1 S2 S3 

S1 0.1 25 - 95.7% 0% 

S2 0.1 25 95.4% - 99.9% 

S3 0.05 25 95.6% 95.5% - 
 

Regarding the second use case, we took advantage of WADI dataset measurements 
collected under perturbations that were intentionally introduced in the system. The 
available metadata clearly indicates the time where a perturbation starts, which we 
identified as t𝑎𝑛𝑜𝑚. Figure 20 plots the three sensors’ data in time period before and 
after t𝑎𝑛𝑜𝑚, as well as the score computed in all such period. In view of the results, 
we can conclude that the proposed score clearly identifies when the correlated 
anomaly starts (no false positive detection is observed before t𝑎𝑛𝑜𝑚). Note that the 
first-time interval where score reaches a value significantly larger than 0 is only 40 
seconds later than t𝑎𝑛𝑜𝑚, which validates MS-AGD as a prompt time-correlated AD 
method. 

 Concluding Remarks 

In this chapter, we presented a two method for sensor telemetry data AD within  the 
DT use case: single sensor anomaly detection (SS-AD) and multiple sensor anomaly 
diagnosis (MS-AGD). The two methods made use of AEs trained with specific sensor 
telemetry data, as well as a set of algorithms that use those AEs to maximize the 
performance of anomaly detection. 

The numerical evaluation of such models and algorithms was performed using an 
experimental data set of a water distribution system. The main conclusions derived 
from such numerical analysis are: i) SS-AD achieves anomaly detection accuracy 
larger than 95% when telemetry data anomalies are injected; and ii) MS-AGD is able 
to perform prompt detection (<1 min) of subtle correlated anomalies affecting a group 
of sensors. 
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Figure 20: MS-AGD performance 



 
 
 
 
 
 
 
 
 
 

Chapter 8 

Knowledge Transfer for Private 
Data Sharing between DTs 

This chapter goes beyond the domain of a single DT and describes a method to 
improve the operational efficiency through KT for several DTs operating under the 
same TN. The method, called Privacy-Ensuring Knowledge Transfer (PEKT), 
employs two layers of AEs to obfuscate data from one DT before sharing it with the 
other DT. It does this while keeping it possible to extract specific, intended insight 
into the state of the sharing DT, while ensuring that critical information remain 
hidden and unextractable from the shared data, and thus ensuring privacy. 

The chapter presents a first section where the main PEKT concept is sketched. Then, 
an algorithm to implement PEKT for DT environments similar to the ones presented 
in previous chapters is detailed. Finally, some preliminary results are presented, 
showing the potential benefits of applying KT for secure and efficient DT 
coordination. 

 PEKT Concept 

The concept of PEKT is sketched in Figure 21 with a simple example involving two 
physical systems (A and B). Each physical system has sensors collecting telemetry 
data specific to its operation and sending its private data to the respective DT 
through the TN to be stored in its respective data lake. However, physical system A 
collects some telemetry data that is of the same nature than physical system B 
collects and may be of interest to it.  
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Let us provide an example of KT between two different systems, where physical 
system A is a water distribution system and B is a power grid system. The data  
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Figure 21: PEKT Concept 

collected by DT of water distribution system contain measurements such as 
pressure, volume of water pumped, etc. as well as data from sensor measuring power 
consumption of devices such as pumps. The latter type of measurements are of 
special interest for the DT of the power grid e.g., to anticipate power consumption 
peaks or better adapt production to power demand profiles. However, the water 
distribution DT does not want to share the detailed power consumption profile of the 
pump. 

In view of that, the data gathered by the DT of physical system A is passed to a 
codifier, that generates some codified data that would contain events relevant for the 
system B without revealing critical information. For instance, when certain changes 
in the power consumption profile occurs, they are sent to the power grid DT which 
uses it to anticipate how the power consumption demand would be affected at the 
network grid node where the pump is located. 

More formally, the codifier generates a codified representation of the data called 
digest, that is shared directly with DT B manager, which uses it gain insight into 
the operation of physical system A. The digest is generated by a double layer of 
obfuscation, which ensures that the shared data is safe from data extraction attacks 
which can be used to reconstruct the private data generated by the sharing DT. The 
first layer is the layer of the AE trained to compress the data. The encoders of these 
compress the data into a set of latent features that have the key information, and 
that can be used by the decoder to reconstruct the original data with a low level of 
reconstruction error. However, even without the decoder, some analysis of the latent 
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features can be done, such as explainability studies, and insights may be gained into 
the data, so sharing the latent space is not safe and does not ensure hiding all the 
details from the receiver. The second layer of obfuscation is the layer of a ML-based 
regression model that is trained to predict the values of the sensor data that needs 
to be shared using the data from other sensors correlated to it and are collecting data 
in proximity to it. 

 PEKT Training Algorithm 
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Figure 22: Double obfuscation mechanism 

Figure 22 shows the codification mechanism based on double obfuscation. In physical 
system A there are two types of data: the data of the relevant sensor to be shared, 
i.e., the target time series data, and the data of the correlated sensors, i.e., the input 
time series data. During training phase of the regression model (green arrows in 
system A), the latent space of both input and target series is used to train a Support 
Vector Regressor (SVR) model that predicts the latent space of the target with some 
error. This prediction is the one that is shared with system B as obfuscated target 
series. 

The process of training the codifier is shown in Algorithm 6, that uses as input series 
(denoted as x), the target series (denoted as 𝑥′) and the set of trained AE for both the 
input series and the target series (denoted as Ψ′ ). We first normalize the target 
series (line 1 in Algorithm 6) and then generate its set of latent features 𝑦′ (line 2), 
and flatten it to obtain a continuous latent features series that would serve as the 
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training target series (line 3). Then, we initialize the empty matrix of input series 
(line 4), and do the same for each of the input series, stacking the result vertically in 
the matrix in a way that the values in the same instance are in the same row (line 
5-9). Then, we calculate the mean, generating a single time series which will act as 
a new single input series (line 10). An SVR model is initialized (line 11), and 
resultant input and target series are used to train it (line 12). 

Algorithm 6: Codifier Training 

INPUT: { 𝑥, ∀s ∈ 𝑆 }, 𝑥′, { Ψ , ∀s ∈ 𝑆 }, Ψ′  
OUTPUT: Κ 
1. 𝑥′ ← normalize (𝑥 ,  minmax) 
2. 𝑦′ ← Ψ′ .encoder.propagate (𝑥’) 
3 𝑦′ ← flatten(𝑦′) 
4. S ← Ф 
5. for each   Ψ  ∈ Ψ   do: 
6.     𝑥 ← normalize (𝑥, minmax) 
7.     𝑦 ← Ψ .encoder.propagate (𝑥) 
8     𝑦 ← flatten(𝑦) 
9.     S ← vstack(S,y) 
10. S ← mean(S , axis=1) 
11. Κ ← SVR(kernal=’rbf’) 
12. Κ .fit(S, 𝑦′) 
13. return Κ 
 

 

As also shown in Figure 22, when a new window of data arrives from the input series, 
a similar data series would be created by applying the same transformations done to 
prepare that data to train the codifier, and this data series would be passed through 
the SVR model which would predict a set of latent features for the target series. The 
predicted latent features series is then passed through the decoder of the AE of the 
target series, generating a codified representation that only contains indications of 
what actually happened in the target series. 

 Performance Evaluation 

8.3.1 Simulation Environment 

In order to test the algorithm, used the same simulation environment we used for 
the previous 3 algorithms, the WADI dataset, and we selected a group of 4 sensors 
measuring values to monitor a single component, a water pump. The target series 
was the series of the sensor monitoring the power consumption of the pump, while 
the other 4 measured, pressure, voltage, and water volume. Figure 23 shows the 
selected series. 
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Figure 23: The target series and the 3-input series 

8.3.2 Results 

We first generated the set of latent spaces for the 4 series. The target and the input 
series, each having 256000 data points, we split into 1000 windows of size 256, to fit 
the input size of their respective 32LS AE. The we used their AEs to obtain the 
dataset of latent features, which means for each series a matrix of dimension 
1000x32, and then flattened the matrix to obtain 4 new series each having 32000 
data points. Then we split the newly generated 4 series, and into 3 segments: 
training (70%), validation (20%) and testing (10%). The training and validation 
segments were used to train the SVR model. The parameters of the SVR were not 
fine-tuned, as very accurate prediction was not intended, but the exact opposite, 
which is to introduce some noise to the data, so the parameters were tuned to 
generate a prediction error of just less than 0.1. Next, we used the classifier to 
generate the predicted values of the LS of the target series test segment. Figure 24 
shows the normalized values of both the original LS values of the target series and 
the ones predicted by the classifier. As the figure shows, the values are drastically 
different, and thus sufficient ambiguity was introduced to the LS. 
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Figure 24: The normalized original and predicted LS values for the target series 

Next, we split the values of the LS series into windows of 32, the input size of the 
decoder of the AE of LS32 of the target series and generated the decoded values 
which were concatenated to generate the codified segment of the data. Figure 25 
shows the original test segment and the codified segment. 

 

Figure 25: Original test segment and the codified segment of the target series 

As the figure shows, the profile and values of the target series were completely 
hidden in the codified series. However, when sharp changes in the values of the 
original target series occur, a proportional change in the values of the codified series 
happens, which means that the direction and magnitude of change can be inferred 
by studying the codified series. 



Smart and Efficient Sensor Networks Operation for 5G and Beyond Ecosystems 69 

 Concluding Remarks 

In this chapter, we introduced a method for KT among DT operating under the same 
TN for the purpose of improving coordination and increasing the operational 
efficiency while ensuring privacy for the sharing party. The method is called PEKT, 
and it utilizes two levels of AEs to codify relevant information that is then passed on 
to the receiving party, structuring the shared data in a way that keeps the intended 
insight extractable. 

The proof of concept of the algorithm showed that the codifier can create a digest 
that shows the pattern and magnitude of changes occurring in a certain time series, 
while almost entirely changing the profile of the series in a way that data extraction 
attacks are not possible. 

 





 
 
 
 
 
 
 
 
 
 

Chapter 9 

Closing Discussion 

 Main Contributions 

This PhD thesis focused on applying several methods for smart and efficient 
management of SN for B5G applications. The main contributions and conclusions of 
this work are next detailed. 

First, in Chapter 5, we proposed the ZIZO mechanism to minimize the data size. 
ZIZO is based on the cluster network architecture and operates on the two levels of 
a SN: i) Sensor Level: using a low complexity, energy efficient data compression 
technique called IBE. ii) CA Level: a sampling frequency adaptation technique based 
on statistical similarity study to minimize redundancy within collected data in a 
group of close proximity sensors called SRA. Through simulations, we evaluated the 
performance of our mechanism in terms of minimizing data transmission and energy 
consumption while comparing them to other techniques and showed that we can 
achieve a compression ratio of down to 0.05, and an energy consumption ratio 
percentage of down to 8%. 

In Chapter 6, we presented an adaptive, AE-based telemetry data compression 
(AAC) method within the DT use case. The method made use of AEs trained with 
generic and specific sensor telemetry data, and the algorithm was optimized to 
maximize the compression efficiency. The numerical evaluation of such models was 
performed using an experimental data set of a water distribution system. As main 
conclusions, AAC produces smaller compression ratios than using a single AE, 
reaching remarkable relative gain above 60% for stringent reconstruction errors 
around 1%. Also, AAC achieves compression ratios one order of magnitude smaller 
than other benchmarking lossy compression mechanisms in literature. 
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In Chapter 7, we, presented AE-based single sensor anomaly detection (SS-AD) and 
multiple sensor anomaly (MS-AGD) for AD within the DT use case. The methods 
were trained with data from the same WADI dataset used to train the compression 
models, make use of the section of the data collected under cyber-attacks to simulate 
anomalies to detect. SS-AD achieves anomaly detection accuracy larger than 95% 
when telemetry data anomalies are injected, while MS-AGD is able to perform 
prompt detection (<1 min) of subtle correlated anomalies affecting a group of sensors. 

Finally, in Chapter 8, we introduced the PEKT concept and detailed how it can be 
used to share information between different DTs in order to achieve some 
coordination and preserving privacy. Both AE and SVR classifier-based algorithm to 
codify sensor data beyond recognition were proposed. Preliminary results show that 
the patterns and magnitude of changes found in original data are preserved in a 
private way in the obfuscated data shared. 
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