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Abstract 

Current research efforts are being directed to commit with the long-term view of 
self-management properties for telecommunications networks. One of the key approaches 
that have been recognised as an enabler of such a view is policy-based management. Pol-
icy-based management has been mostly acknowledged as a methodology that provides 
flexibility, adaptability and support to automatically assign network resources, control 
Quality of Service and security, by considering administratively specified rules. The hype 
of policy-based management was to commit with these features in run-time as a result of 
changeable network conditions resulting from the interactions of users, applications and 
existing resources. Despite enormous efforts with policy languages, management archi-
tectures using policy in different application domains, standardisation and industrial ef-
forts, policy-based management is still not a reality. One reason behind the reticence for 
its use is the difficulty to analyse policies that guarantee configuration stability. In addi-
tion to policy conflict analysis, a key issue for this reticence is the need to derive en-
forceable policies from high-level administrative goals or from higher level policies, 
namely the policy refinement process.  

This Thesis deals with the critical nature of addressing the policy refinement 
problem. We provide a holistic view of this process, from formal analysis to its practical 
realisation, identifying the key elements involved in each step of such critical process.  

We initially propose a policy refinement framework relying on Linear Temporal 
Logic (LTL), a standard logic that allows analysis of reactive systems. Based on the for-
mer logic, we lay down the process of representing policies at different levels of abstrac-
tion. Following on with this, we develop the mechanisms that enable the abstraction of 
enforceable policies from hierarchical requirements in a fully automatic manner, making 
use of Linear Temporal Logic-based state exploration techniques. In addition, we clarify 
and identify the activities and management tasks that the administrative parties should 
carry out during the life cycle of the policy-based management system, from the perspec-
tive of the policy refinement process. 

This Thesis provides the guidelines to address policy refinement in network 
management contexts. Concretely, we take one step ahead in the materialisation of the 
policy refinement process by exploiting inherent containment properties of network 
management systems. For this purpose we provide the methodology to apply the concepts 
introduced in the policy refinement framework developed in this Thesis in the above 
context. 

In this Thesis we also execute a complete and rather detailed policy refinement 
process for a successful policy-based management solution. Taking the intra-domain 
Quality of Service Management application domain as background, we clarify and pre-
sent the implications of the policy refinement problem in such a concrete application do-
main. 



   

Resumen 

En la actualidad se están realizando diversos esfuerzos para realizar la visión fu-
turista de las redes de telecomunicación autogestionadas. La gestión basada en políticas 
ha sido reconocida como una herramienta potencial para habilitar esta visión. Mayorita-
riamente, ésta técnica ha sido reconocida como proveedora de flexibilidad, adaptabilidad 
y soporte para asignar recursos, controlar Calidad de Servicio y seguridad, de una manera 
automática y de acuerdo a reglas administrativas. Adicionalmente, se ha considerado que 
la gestión basada en políticas proveería tal flexibilidad en tiempo de ejecución y como 
resultado de cambios en la red, interacciones entre usuarios, aplicaciones y disponibilidad 
de recursos. A pesar de enormes esfuerzos realizados con lenguajes de especificación de 
políticas, arquitecturas de gestión en diversos dominios y estandarización, la gestión ba-
sada en políticas aún no es una realidad. Una de las razones para la reticencia en su utili-
zación es la dificultad para analizar políticas que garanticen estabilidad en el sistema. 
Además de la problemática asociada a la gestión de conflictos entre políticas, otro obstá-
culo para su utilización es la dificultad de derivar políticas ejecutables alineadas a objeti-
vos administrativos o a otras políticas de alto nivel. Este último es el problema del refi-
namiento de políticas. 

Esta Tesis aborda el problema crítico de refinamiento de políticas. Damos una vi-
sión completa del proceso de refinamiento, desde el análisis formal hasta su realización 
práctica, identificando los elementos que intervienen en cada paso de tal proceso.  

Inicialmente, proponemos un marco de trabajo para refinamiento de políticas ba-
sado en Lógica Lineal Temporal, una lógica estándar que permite el análisis en sistemas 
reactivos. Esta técnica es utilizada para representar políticas a diferentes niveles jerár-
quicos de abstracción. Acto seguido desarrollamos mecanismos que habilitan la obten-
ción de políticas ejecutables a partir de ciertos requerimientos mediante la utilización de 
técnicas de exploración de estados basados en Lógica Lineal Temporal. Adicionalmente, 
aclaramos e identificamos las actividades y tareas de gestión de las partes administrativas 
durante el ciclo de vida de un sistema de gestión basado en políticas, desde la perspectiva 
del proceso de refinamiento de políticas. 

Esta Tesis presenta también directrices para abordar el proceso de refinamiento de 
políticas en contextos de gestión de red. Damos un paso adelante en la materialización de 
este proceso mediante la utilización de propiedades estructurales inherentes a sistemas de 
gestión de red. Proveemos, en fin, una metodología para aplicar los conceptos introduci-
dos en el marco de trabajo desarrollado en esta Tesis en sistemas de gestión de red.  

En esta Tesis también realizamos un proceso de refinamiento de políticas com-
pleto. Detallamos la realización de tal proceso en una solución exitosa de gestión basada 
en políticas. Tomando como base el dominio de Gestión de Calidad de Servicio, aclara-
mos y presentamos las implicaciones del problema de refinamiento en este dominio de 
aplicación. 
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Chapter 1  Introduction 

In the recent years, the research community has put efforts in new paradigms that 
allow installing, configuring, optimising and maintaining next generation networks. In 
management terms, these efforts are directed to provide self-management features to cur-
rent telecommunication infrastructures [Ibm01], [Kep03]. Future communications will be 
self-configuring, self-optimising, self-healing, and self-protecting. Autonomous commu-
nications is the commonly term accepted for this view and is a long term view challenge 
still under research [Kep07].  

Nowadays, the research community is concentrating in developing the technolo-
gies that will enable autonomicity to future systems. Future communication systems will 
have to adapt their behaviour according to changing performance conditions, and looking 
after service level agreements. In management terms, a policy is a directive that is ad-
ministratively specified to manage certain aspects of desirable system behaviour resulting 
from the interactions of users, applications and existing resources [Ver00]. Policies are 
implemented with the philosophy, if “event” and “conditions” then “actions”, which in 
turn prescribes that if certain conditions are present under the occurrence of a specific 
event, then specific actions must be taken in a policy-controlled environment.  

Policy-based Management is meant to provide support to automatically assign 
network resources, control Quality of Service and security, by considering the previously 
defined set of policies. Also, it has been proposed to allow system scalability and adapta-
bility to changeable network conditions and different QoS requirements of multimedia 
applications, virtual systems and other complex application processes that take place in 
real time. This management methodology has been acknowledged as one of the key en-
ablers of self-healing properties, i.e. a key enabler of the future autonomic communica-
tions. 

1.1 Policy-based Management Architecture 

Policy-based Management involves policy creation, the translation of these poli-
cies into device specific configuration, and its application to enforce network behaviour 
according to the specified policies [Ver00]. Policy-based management has been used in 
different research projects and prototypes and consequently, we could say that there are 
several architectures tailored to address the peculiarities of each application domain in 
which policy has been used. Moreover, the background architecture mostly accepted by 
the research community is the architecture proposed by the Internet Engineering Task 
Force (IETF) [IETFPol], [IETFRap] which is graphically shown in Figure 1. A brief de-
scription of this architecture is provided thereafter. 
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Figure 1. IETF policy architecture  

 

The management of policies is executed through the Management Console. The 
latter acts as a user interface to allow constructing policies, deploying policies, and 
monitoring the status of the policy-managed environment. A Policy-based management 
system needs tools for policy specification. A Policy Definition Language (PDL) is used 
to define new policies in terms of policy rules with events, conditions and action lists. 
The language to use is very controversial, and the IETF [IETFPol], [IETFRap] has not 
reached consensus in standardising a Policy Definition Language. 

The Policy Decision Point (PDP) is typically referred to as the Policy Server (PS). 
It is the entity that decides if the conditions of a policy are fulfilled and as a consequence, 
triggers the actions involved in that policy. Besides this function that is considered the 
main one, we can also attribute to this component the detection of policy conflicts, the 
retrieval of the relevant policy when required by an external trigger event and the interac-
tion with the PEP component. 

Policy Enforcement Points (PEPs) are basically network elements and are the en-
tities that ensure that the actions ordered by the PDP are executed. It has also the role of 
metering and monitoring for auditing of policy compliance. The Policy Repository is 
used to store the policies with which the system works.  

1.2 Policy Refinement Paradigm 

The claim of policy-based management is that an ideal policy system might permit the 
definition of high-level policy description, enable their translation into lower-level ones 
and map them into commands that configure the managed devices properly. While the 
high-level policies would reflect the “business” criteria of the network administrator, the 
lower-level ones would mean to cope with device-level configuration.  
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Policy refinement is the process of transforming a high-level, abstract policy 
specification into low-level, concrete ones [Mof93]. The main objectives of this activity 
are:  
• Determine the resources that are needed to satisfy the requirements of the policy 
• Translate high-level policies into operational policies that the system can enforce 
• Verify that the lower-level policies actually meet the requirements specified by the 
high-level policy. 

1.3 Motivations of the Thesis 

Despite having been introduced in different application domains through various 
research projects, several standardisation efforts and substantial interest from industry, 
policy-based management is still not widespread used. One reason behind the reticence 
for its use is the difficulty to analyse policies that guarantee configuration stability. Poli-
cies may have conflicts leading to unpredictable effects, and also, the number of policies 
necessary to control medium- to large-scale systems may be in the order of thousands. In 
this sense, in addition to policy conflict analysis, a key issue for the reticence to use Pol-
icy-based management is the need to derive policies from high-level administrative goals 
or from higher level policies, namely the policy refinement process.  

Although policy refinement has been recognised as crucial for the success of pol-
icy-based management, it has been severely dismissed due probably to its inherent com-
plexity. The main motivation of this Thesis is to identify and to address the key elements 
confronting the solution of the policy refinement process. We are moved by the current 
situation of the policy refinement process where for instance, it is still rather unclear how 
to address the refinement problem and the implications that it has on network manage-
ment environments. To the time of the publication of this Thesis, there is not a clear un-
derstanding of the implications and future directions of the refinement problem, at least 
from what it is presented in the literature.  

1.4 Contributions of the Thesis 

In this Thesis we deal with the critical nature of addressing the policy refinement 
problem. We provide a holistic view of this process, namely from formal analysis to its 
practical realisation, identifying the key elements involved in each step of such critical 
process.  

An initial contribution with this regard is a policy refinement framework relying 
on Linear Temporal Logic (LTL), a standard logic that allows analysis of reactive sys-
tems. Considering powerful analysis techniques from the Requirements Engineering area 
based on the former logic, we lay down the process of representing policies at different 
levels of abstraction. This way, the framework proposes the formalisation of high-level 
requirements and their translation into lower-level ones by means of LTL.  

The Linear Temporal Logic foundations have made it possible to propose a 
framework that includes formal analysis techniques that enable the production of en-
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forceable polices from formal hierarchical requirements in a fully automatic manner. 
Namely, the framework makes use of Linear Temporal Logic-based state exploration 
techniques to find restricted system behaviour that should commit to the previously for-
malised requirements.  

Finally, the framework proposes ad-hoc machinery to abstract enforceable poli-
cies that should force the underlying system to behave the same way as the restricted 
system behaviour found in advance. In addition to laying down the above formalisms into 
a policy refinement framework, we clarify and identify the activities and management 
tasks that the administrative parties should carry out during the life cycle of the pol-
icy-based management system, from the perspective of the policy refinement process and 
the proposed framework. 

 

Another contribution of the Thesis is a methodological approach to apply the pol-
icy refinement framework to network management contexts. The claim is that the tech-
niques applied in the framework are mostly application-domain independent, and it is 
necessary to set up the guidelines to use them in network management contexts for prac-
tical use and to consider it a problem-solving approach. In addition, the techniques used 
in the framework are at some point novel for network management practitioners, and its 
utilisation may be unclear. With this regard, having defined a policy refinement frame-
work, we provide general guidelines of its application to real-life management systems. 
The key contribution with this regard consists of a set of guidelines to drive the refine-
ment process making use of the composition hierarchy of the management systems.  

  

Finally, a substantial contribution of the Thesis is the execution of a complete re-
finement process in a successful policy-based management solution. To the best of our 
knowledge, no other work in the literature has provided a complete refinement scenario 
applied to real-life management situations and consequently it has been unclear at what 
extent the refinement problem is feasible in complex environments, or the overall impli-
cations for its assessment. 

For this purpose we execute policy refinement for intra-domain Quality of Service 
Management, based on the principles developed in the context of the European IST pro-
ject TEQUILA - Traffic Engineering for Quality of Service for the Internet at Large Scale 
[Tri01]. We make use of our framework and the methodological approach to address the 
policy refinement problem in this concrete application domain.  

 

We must acknowledge that the policy refinement area has received very little at-
tention from the research community. No other work in the literature has provided a ho-
listic view of the refinement problem and consequently, we think that the ideas presented 
in this Thesis may encourage policy designers and researchers to address the policy re-
finement process in different application domains, We are not claiming to have solved the 
policy refinement problem because we think it is still at its initial stage and substantial 
efforts should be made to solve it. 
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1.5 Structure of the Thesis 

This Thesis is composed by seven Chapters and three Appendixes. 

Chapter 1 introduces the Thesis providing a general outline of policy-based man-
agement and the refinement problem. We also state the motivations of the Thesis and its 
main contributions to the state of the art.  

Chapter 2 presents some background material that constitutes the foundations of 
the Thesis. Concretely, we present some crucial material on Requirements Engineering 
Techniques, namely the Goal-oriented Requirements Engineering foundations, method-
ology and practicality. Finally, we provide some technical background on Analysis of 
Reactive Systems techniques that include their objectives, analysis and tool support. 

Chapter 3 describes one of the contributions of the Thesis, our policy refinement 
framework. We describe the rationale of the approach and present a functional prototype 
aligned to the former for proof of concept tests.  

Chapter 4 presents another contribution of the Thesis. This Chapter provides the 
guidelines to address policy refinement in network management contexts. It provides a 
self-contained example that illustrates how to lay down the use of the policy refinement 
framework by making use of inherent features of hierarchical management systems.  

Another contribution of the Thesis is provided in Chapter 5. This Chapter outlines 
a holistic policy refinement scenario. We make use of a Quality of Service Management 
solution and detail the refinement process as a whole.  

Chapter 6 surveys the related work on policy refinement. We provide general 
analysis of goal-oriented management approaches, analysis techniques and functional 
prototypes targeting the refinement problem, and other efforts presented so far in the re-
finement area. 

The Summary Conclusions of the Thesis are provided in Chapter 7. We review 
the contributions of the Thesis, provide additional discussion of relevant issues of the 
Thesis and provide some directions for future work. 

 Appendix A includes examples of PROMELA specifications exemplified 
throughout the body of the Thesis. Appendix B describes the Lucent Technologies Dis-
tributed Software Components toolkit used for the implementation of our functional pro-
totype. Appendix C includes a detailed description of the main methods, classes and in-
terfaces of our policy refinement prototype. Finally, Appendix D references the author’s 
publications related to this Thesis. 
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Chapter 2  Technological Background 

2.1 Introduction 

In this Chapter we provide some background material that constitutes the founda-
tions of the work. Specifically, we present the Requirements Engineering Techniques and 
the Reactive Systems Analysis.  

The formalization of the rationale to identify, organise and manage the capabili-
ties of a system is of pivotal importance in our analysis. In the context of system design 
and operation, a lot of efforts have been directed to formalise the requirements a system 
should handle. For this reason, we outline the rationale of requirements engineering tech-
niques and highlight the foundations and the practicality of this view of requirements 
formalisation. 

Reactive systems have been traditionally represented by means of Finite State 
Machines (FSM) that are based on a strong formal support [Mea55]. The general "on-event 
and if-condition then action" structure of policy rules makes it possible to consider pol-
icy-based systems as reactive systems and hence use formal methods to analyze their be-
haviour. More importantly policy is represented as a means to control when a managed 
object transitions to a new state [Str04] 

In the context of policy analysis, the representation of individual or several man-
aged objects is possible by defining finite state machines (FSMs) that describe the multi-
ple states in which such managed objects can be [Str04]. In this sense, it is possible to 
relate the behavior of an object or a set of objects to the value of one or more attributes 
that are used to characterize the states of the system. State transitions hence, are directly 
related to changes of attributes, which policies configure and control. The general 
"on-event and if-condition then action" structure of policy rules makes it possible to con-
sider policy-based systems as reactive systems and hence use formal methods to analyze 
their behaviour. For this reason, we describe the objectives and the rationale of reactive 
systems analysis techniques. 

2.2 Requirements Engineering Techniques 

The requirements engineering area has been focused on formalising and docu-
menting system requirements as the achievements of the envisioned systems. The system 
achievements have been traditionally been acknowledged as goals. For this, a lot of ef-
forts have been made to develop the so-called Goal-Oriented Requirements Engineering 
(GORE) [Lam01] methods.  

This Section provides some background material in the area of GORE methods. 
We initially provide general issues of these methodologies and then describe the scope of 
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specific areas like goal modelling, goal specification and goal-based reasoning. Due to 
the importance of goal-based reasoning in this Thesis we give some details on the foun-
dations of goal elaboration processes and their potential use. We finally describe the 
practicality of Goal-oriented methods, we give a general description of the facilities of 
Objectiver [Obj], a tool that provides support for GORE methods. 

2.2.1 Scope of Goal-oriented Requirements Engineering 

Goals capture the various objectives the system under consideration should 
achieve [Lam01]. Goals may be formulated at different levels of abstraction ranging from 
high-level concerns such as “number of real-time service subscriptions maximised ” for a 
service management system, to lower-level technical concerns such as “conservative 
thresholds set” for a subscription control system.  

The reasons for focusing on goals, found in the GORE literature [Lam01] are manifold, 
these include:  

• Achieving requirements completeness; goals provide a precise criterion for sufficient 
completeness of a requirements specification. 

• Explaining requirements to stakeholders; goals provide the rationale for requirements 
in a way similar to design goals in design process. 

• Goal refinement provides a natural mechanism for structuring complex requirements 
documents for increased readability. A goal refinement tree provides traceability links 
from high-level strategic objectives to low-level technical requirements. 

• During the goal elaboration process the requirements engineer is faced with many al-
ternatives that provide some level of abstraction to validate choices or to suggest al-
ternatives. 

• Separating stable from volatile information. A requirement represents one way of 
achieving a specific goal, but there may be other ways of achieving the same goal. In 
this view, High-level Goals re-use is pivotal to formulate evolving requirements. This 
may result in systems sharing single goal models i.e. goal generalisations. 

• Goals drive the identification of requirements to support them, they have been shown 
to be the driving force for systems requirements elaboration. 

GORE methods are concerned with the use of goals for eliciting, elaborating, 
structuring, specifying, analysing, negotiating, documenting, and modifying requirements 
[Lam01]. Several GORE methods have been defined which give more attention to one or 
more of these aspects [Reg05] but in general, major efforts are devoted to the Goal Mod-
eling, Goal Specification and Goal-based Reasoning areas.  

 

2.2.2 Goal Modeling and Specification 

Goals are modeled and specified to provide support to formal reasoning schemes 
during the requirements engineering process.  



Technological Background   9

2.2.2.1 Goal Modelling 

Goals are generally modelled by intrinsic features such as their type, attributes, 
and by their links to other goals and to other elements of a requirements model.  

Regarding goal types, the literature [Lam01] has identified two main types:  

• A classification considering functional and non-functional goals. Functional goals 
[Dar93] underlie services that the system is expected to deliver, e.g. satisfaction and 
information goals. Non-functional goals [Chu00] refer to expected system qualities 
such as security, safety, performance, usability, flexibility, customisability, interop-
erability, and so forth. 

• A second classification considering the temporal behaviour prescription. This classi-
fication identifies four different types of goals: Achieve, Cease, Maintain and Avoid. 
While Achieve and Cease goals obey to system behaviours that require some target 
property to be eventually satisfied or denied respectively, Maintain and Avoid goals 
restrict behaviours in that they require some target property to be permanently satis-
fied or denied respectively. 

Regarding attributes of goals, goals can be characterised by attributes such as the 
name and other specification. Also, priority is another important attribute that can be at-
tached to goals. Qualitative values for this attribute allow mandatory or optional goals to 
be modelled with various degrees of optionality. Other goal attributes that have been pro-
posed include goal utility and feasibility. 

Regarding goal links, these are introduced to relate goals with each other and with 
other modelling elements. Such links form the basis for defining goal structures. Links 
between goals are aimed at capturing situations where goals support other goals. Directly 
borrowed from problem reduction methods in Artificial Intelligence, AND/OR graphs 
may be used to capture goal refinement links [Dar93]. The latter results in the formalisa-
tion of AND/OR goal graph structures that may be useful to represent alternative goal 
refinements, to identify potential conflicts of goals, and to prove the correctness of goal 
refinements. 

GORE methods could be applied to any discipline that may take advantage of 
formalising requirements. In consequence, we could find Goal Modelling processes tar-
geting the formalisation of systems of any kind. GORE projects have been undertaken in 
various industrial domains that include telecom, aerospace, automotive industry, press, 
pharmaceutics, health care, air traffic control, etc [Lam04]. In this sense, the precise 
types, attributes and links that may result in the elaboration of goal graph structures de-
pends on the domain in which goals are modelled and consequently there is not a generic 
goal information model that captures the requirements for systems of any kind. 

2.2.2.2 Goal Specification 

The target of Goal Specification is to provide an alternative to formalise require-
ments amenable to Goal-based Reasoning during the requirements specification itself and 
for further management tasks like verification, validation, conflict management and so 
forth. For this reason, semi-formal specifications of goals can be attached to more formal 
notations that enable systematic Goal-based Reasoning. 
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Semi-formal specifications [Dar98] generally declare goals in terms of their type, 
attribute, and links. Such declarations may in general be provided alternatively using a 
textual or graphical syntax. For example, consider the need to specify the requirement 
that a passenger in a lifting system will be satisfied once the elevator is called and the 
passenger is transported to the destination. A textual semi-formal Goal Specification for 
the latter requirement may be integrated by three goals; “Passenger Satisfied”, “Elevator 
Called” and “Passenger Transported”. This basic Goal Specification may be completed 
by indicating that the “Passenger Satisfied” goal is the parent goal of the refinements 
“Elevator Called” and “Passenger Transported”. A graphical syntax of a Goal Specifica-
tion becomes a goal graph structure. The Figure 2 shows the goal graph structure of our 
basic Goal Specification. Obviously, a complete specification for a lifting system may be 
integrated by more requirements and consequently, the graphical syntax may result in a 
more complex goal graph structure than the one shown in the Figure 2. 

 

Passenger 
Satisfied

Elevator 
Called

Passenger 
Transported

A passenger will be 
satisfied once the 

elevator is called and the 
passenger is transported 

to the destination

Basic Requirement Semi-formal 
Goal Specification

Parent goal

Goal refinements

 
Figure 2. Semi-formal Goal Specification for a Basic Requirement  

 

In order to enable formal notations from semi-formal notations, goals may include 
keyword verbs with some predefined semantics or may be formalised with logical ex-
pressions. For example, a formal Goal Specification for the above requirement would be 
formalised by the following logical expression: 

“Passenger Satisfied is true” IF “Elevator Called is fulfilled” AND “Passenger 
Transported is fulfilled” 

The most relevant approach combining semi-formal and formal specifications of 
goals is the KAOS (Knowledge Acquisition in autOmated Specification ) methodology 
[Dar96]. Due to the relevance of the KAOS methodology in our work the next 
sub-Section provides the principles of Goal-based Reasoning with the KAOS methodol-
ogy. 

2.2.3 KAOS Goal-based Reasoning 

Goal-based reasoning techniques are applied to all system requirements activities: 
requirements elaboration, verification, validation, conflict management, negotiation, ex-
planation and evolution. In terms of relevance, requirements elaboration plays a crucial 
role given that the remaining activities rely on it. KAOS is a methodology to implement 
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goal-based reasoning. In particular, it supports requirements elaboration. In this context, 
requirements are elaborated as a two-step process. First of all, a goal graph structure 
(semiformal specification) is elaborated from which its formal notations are obtained 
making use of Linear Temporal Logic [Man92]. Therefore, we first provide some back-
ground material on Linear Temporal Logic (LTL) and then describe the principles for the 
elaboration of KAOS goal graph structures. We finally give a general outline of the po-
tential use of KAOS goal graph structures. 

2.2.3.1 Background on Linear Temporal Logic 

The branch of logic that allows one to reason about causal and temporal relations 
of system properties is called temporal logic [Man92]. Temporal logic allows to formal-
ise the properties of a system execution with the help of temporal operators. In this work 
we use the classical temporal operators: ◊ eventually in the future, □ always in the future, 
U always in the future until and W always in the future unless. We also use the classical 
logic connectors ∧  and, ∨  or, ¬  not, → logical implication, ↔ equivalence, and so 
forth.  

Linear Temporal Logic is used to express system properties where observations 
are extended with temporal connections such as “eventually in the future” or “always in 
the future”. The following are typical examples of frequently used LTL formulae de-
scribing system properties or temporal prescriptions: 

• “◊p” captures the notion that the system property p is guaranteed to eventually be-
come true at least once throughout the system execution. 

• “□p” captures the notion that the system property p remains invariantly true through-
out the system execution. 

• “p→◊q” captures the notion that if the system property p holds at some point of the 
system execution, the system property q will eventually hold in the future of the sys-
tem execution. 

• “◊p→◊q” captures the notion that if the system property p eventually holds, the sys-
tem property q will eventually hold as well. 

In conclusion, Linear Temporal Logic (LTL) enables to establish formal proper-
ties of systems and hence enables to carry out formal reasoning of systems features with 
respect to their temporal relationships. The next sub-section provides a view of the 
KAOS Support for Requirements Elaboration in terms of goals. For a complete summary 
of Linear Temporal Logic the interested reader may refer to [Man92] and for a complete 
summary of typical system properties formulae to reference [Dwy98]. 

2.2.3.2 KAOS Support for Requirements Elaboration 

In general the KAOS methodology can be used upstream in the specification 
process as it supports formal reasoning about goals. It suggests ways of refining goals to 
make up correct goal graph structures at reasonable cost, as it hides proofs and their un-
derlying mathematics [Dar96]. 

In KAOS, there is a two-level specification process; namely, semi-formal and 
formal. While the semi-formal approach copes with graphical and textual definitions, the 
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formal approach is inspired in Linear Temporal Logic (LTL) [Man92]. In this view, goals 
are defined with a specific temporal prescription that can be represented with LTL logic 
formulae. 

 
2.2.3.2.1 Basic definitions for goal refinement and refinement pattern 

Definition 1: The goal assertions G1, G2,…,Gn are complete goal refinements of 
a goal assertion G iff the following conditions hold: 

1. G1∧G2∧…∧Gn |= G  (entailment) 
2. ∀ i,j: j≠i → Gj |≠ Gi   (minimality) 
3. G1∧G2∧…∧Gn |≠ false (consistency) 
4. n > 1      (nonequivalence) 

The “entailment” condition refers to the fact that the intersection of the fulfillment 
of every goal refinement (G1, G2,…,Gn) should imply the fulfillment of the parent goal 
(G). The “minimality” condition refers to the fact that every goal refinement should be 
different in comparison with the rest. The “consistency” condition refers to the fact that 
the intersection of the temporal prescriptions of each goal refinement (G1, G2,…,Gn) 
should not conflict. Finally, the “nonequivalence” condition is set to avoid trivial refine-
ments consisting in rewriting G into logically equivalent forms. 

Definition 2: A refinement pattern is a one-level AND-tree of abstract goal assertions 
such that the set of leaf assertions is a complete refinement of the root assertion. In other 
words, a refinement pattern is a proposition of how a root goal assertion should be ful-
filled by a complementary set of goal assertions. In the KAOS method a refinement pat-
tern is propositional in the sense that it suggests the temporal prescription of the parent 
goal and that of its refinements. A refinement pattern in KAOS is applied at different lev-
els during the formalisation of the goal graph structures, namely refinement patterns are 
applied to decompose a parent goal into goal refinement which in turn may be refined by 
applying a refinement pattern. 

 
2.2.3.2.2 Domain independent goal refinement patterns 

 

The basic idea of the KAOS methodology is to provide formal support for build-
ing goal graph structures by the use of domain-independent refinement patterns. For this 
purpose the methodology provides a set of domain independent refinement patterns 
[Dar96] that have been previously proved to be correct. The refinement patterns are 
grouped by the behaviour prescription of four High-level Goals, namely Achieve, Cease, 
Maintain and Avoid. For example, Table 1 shows some KAOS Refinement Patterns (RPs) 
that represent different ways to decompose the high-level Achieve parent goal into their 
respective sub-goals i.e. different goal refinements.  
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RP Sub-goals 
RP1 P∧ R→◊Q          P →◊R          P→ P W Q 
RP2 P → ◊R            R→ R U Q  
RP3 P → ◊R            R → ◊Q 
RP4 P∧ P1→◊Q1       P∧ P2→◊Q2     □(P1∨ P2) 

                                   Q1 ∨ Q2 →Q 
RP5 P ¬∧ R→◊R         P∧ R→ ◊Q       P→□P 
RP6 ¬R→ ◊R           P∧ R→ ◊Q       P→□P 

Table 1 Some refinement patterns for the Achieve goal 

The parent Achieve goal is formally expressed as P→◊Q. This expression states 
that “If a property P occurs at some point, then property Q would eventually hold in the 
future”. Here, the different refinement patterns provide some guidelines on how to de-
compose this parent goal. For example, let us establish a differentiation between the in-
stantiations of RP3, RP4, RP5 and RP6: 

• RP3 states that a parent goal P→◊Q could be refined into sub-goals with the follow-
ing temporal prescriptions: P → ◊R, R → ◊Q.  

o P → ◊R implies that “under the occurrence of a state satisfying P, the state 
satisfying R must eventually be reached”.  

o R → ◊Q implies that “under the occurrence of a state satisfying R, the state 
satisfying Q must eventually be reached”.  

The semantics of the intersection of the temporal prescriptions “P → ◊R” and “R → 
◊Q” is as follows: “on the occurrence of a state P, an intermediate state satisfying R 
must first be reached from which a goal state Q must eventually be reached”. In other 
words, the instantiation of RP3 would formalise the fact that a milestone refinement 
tactic of fulfillment for the two sub-goals should be applied as to consider that our 
parent goal is properly fulfilled.  

• RP4 states that a parent goal P→◊Q could be refined into sub-goals with the follow-
ing temporal prescriptions:  P ∧ P1 → ◊Q1,  P ∧ P2 → ◊Q2, □(P1 ∨ P2), and 
Q1∨ Q2 →Q. 

o P∧ P1→◊Q1 implies that “on the occurrence of a state satisfying P and an 
alternative state satisfying P1, the state satisfying Q1 must eventually be 
reached”.  

o P∧ P2→◊Q2 implies that “on the occurrence of a state satisfying P and an 
alternative state satisfying P2, the state satisfying Q2 must eventually be 
reached”. 

o □(P1∨ P2) implies that “either a state P1 or a state P2 must always be satis-
fied” 

o Q1∨ Q2→Q implies that “either a state satisfying Q1 or a state satisfying Q2 
implies that Q is reached” 

The semantics of the intersection of the temporal prescriptions “P ∧ P1→◊Q1”, 
“P∧ P2→◊Q2”, “□(P1∨ P2)”, and “Q1∨ Q2 →Q” is as follows: “on the occurrence 
of P, an alternative sate satisfying either P1 or P2 will eventually satisfy the goal 
states Q1 or Q2 respectively which in turn suffices to satisfy the state Q”. In other 
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words, the instantiation of RP4 would formalise a case-driven refinement tactic of 
fulfillment in which either one sub-goal P1 or the other sub-goal P2 suffices to con-
sider our parent goal as fulfilled.  

• RP5 states that a parent goal P→◊Q could be refined into sub-goals with the follow-
ing temporal prescriptions: P ¬∧ R→◊R, P∧ R→ ◊Q, and P→□P. 

o P ¬∧ R→◊R implies that “on the occurrence of a state satisfying P, if a state 
satisfying R does not hold, the state R must eventually hold”. 

o P∧ R→ ◊Q implies that “on the occurrence of a state satisfying P, if a state 
satisfying R holds, the goal state Q must eventually be reached”. 

o P→□P implies that “the occurrence of a state satisfying P must always hold”. 

The semantics of the intersection of the temporal prescriptions “P ¬∧ R→◊R”, 
“P ∧ R→ ◊Q”, and “P→□P” is as follows: “on the occurrence of P and the absence of 
the state R, the latter must hold together with P so that the goal state Q eventually 
holds”. In other words, RP5 requires that on the occurrence of state P, if the state R 
does not hold, the goal state Q will not be satisfied unless states P and R are both 
reached. 

• RP6 states that a parent goal P→◊Q could be refined into sub-goals with the follow-
ing temporal prescriptions: ¬R→ ◊R, P∧ R→ ◊Q, and P→□P. 

o ¬R→ ◊R implies that “if a state satisfying R does not hold it must eventually 
hold”. 

o P∧ R→ ◊Q implies that “on the occurrence of a state satisfying P, if a state 
satisfying R holds, the goal state Q must eventually be reached”. 

o P→□P implies that “the occurrence of a state satisfying P must always hold”. 

The semantics of the intersection of the temporal prescriptions “ ¬ R→ ◊R”, 
“P∧ R→ ◊Q”, and “P→□P” is as follows: “on the absence of a state satisfying R, the 
latter must hold when P occurs so that the goal state Q can be eventually reached”. 
In other words, RP6 proposes that it is mandatory that the property R holds by the 
time of the occurrence of P so that the goal state Q is satisfied. 

Any of these refinement patterns [Dar96] may be used in accordance with user 
requirements. 

 
2.2.3.2.3 Using domain-independent refinement patterns 

The KAOS methodology proposes the general principle of using the above do-
main-independent refinement patterns and instantiate them with appropriate do-
main-dependent information. In addition, all these patterns have been proved to be cor-
rect and complete. In this sense, KAOS provides the necessary support to build up hier-
archical goal graph structures in which the lower-level sub-goals i.e. goal refinements, 
logically entail the parent goals. In this view the user would be enabled to build goal 
graph structures that are complete and correct without the need of carrying out logical 
proofs. The remaining of this section provides a brief example of this approach. A more 
extended description of this approach can be found in [Dar93], [Lam95]. 

Let us consider the case where a user defines the requirements for a system in 
charge of accommodating traffic load predictions to network resources. For the envi-
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sioned system the user considers two requirements: (1) Maximise the Resources Utilisa-
tion; and (2) Control Dynamic Fluctuations of Traffic Load. This basic scenario is shown 
in the left part of Figure 3. The intent is to formalise these requirements into a KAOS 
goal graph structure in which this information is modeled, specified and amenable for 
goal-based reasoning. In order to meet these requirements, Achieve prescriptions will be 
used to specify the goals in the graph structure. Let the administrator identify the parent 
goal “Traffic Predictions Accommodated” and link it to two sub-goals “Resources Utili-
sation Maximised” and “Dynamic Fluctuations Controlled”. The administrator should 
identify then the appropriate refinement pattern that would formalise the aforementioned 
information into a goal graph structure. The refinement patterns shown in Table 1 are 
suggestions of how to refine an Achieve parent goal. Moreover the selection of one re-
finement pattern depends on administrative criteria.  

Taking the patterns of Table 1 into account in this example, it is appropriate that 
the administrator selects the instantiation of RP3 since it considers that the parent goal 
“G1: Traffic Predictions Accommodated” is refined into the sub-goal refinements “G11: 
Resources Utilisation Maximised” and “G12: Dynamic Fluctuations Controlled”, making 
use of the aforementioned milestone refinement tactic. This formalises the goal graph 
structure of the right part of Figure 3, which includes the formal temporal logic formulae 
(shaded in Figure 3) for every goal of the graph structure. The meaning of all this goal 
graph structure would be “Traffic Predictions would be accommodated by maximising 
the resources utilisation and controlling dynamic fluctuations of traffic load”.  

 

Maximise
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Control Dynamic 
Fluctuations of 

Traffic Load

Accommodate 
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Figure 3. Goal Modeling, Specification and Goal-based Reasoning  

 

At this stage the administrator has formalised the first level of a goal graph struc-
ture. Going further in the process and in a similar manner as for G1, the administrator 
may formalise a second level of the goal graph structure by instantiating the appropriate 
patterns to refine G11 and G12. A third level of the graph may be formalised by refining 
the resulting goal refinements of G11 and G12 as graphically illustrated in Figure 4.   
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Figure 4. Levels of a goal graph structure  

 

2.2.3.3 Potential Use of KAOS Goal-graph Structures in the Requirements Engi-
neering area 

The goal graph structures are elaborated until implementable constraints are 
reached, namely until the lowest-level goals are represented by actions. Once this is ful-
filled, the next step is how to use the goal model. Goals are prescriptive statements of in-
tentions whose satisfaction requires the cooperation of managed entities or active com-
ponents. In this sense, goal graph structures are potential source for two key activities of 
the Requirements Engineering field [Lam01]: Responsibility Assignment and Operation-
alisation. 

• The aim of the Responsibility Assignment activity is to explore the underlying system 
and define the precise responsibilities that each managed object should take as to ful-
fill the goal specifications. In addition to the underlying system specification or 
model, the input of this activity are the goal graph structures for which additional 
analysis is necessary to identify the managed entities, assign responsibilities to them, 
derive the managed entities’ interfaces with other managed entities for mutual col-
laboration, and so forth. The analysis applied for the Responsibility Assignment is 
domain-dependent which means that there is not a unified method or procedure rely-
ing on a generic goal-based reasoning technique for this activity. 

• The aim of the Operationalisation activity is to identify the precise actions that the 
managed entities of the underlying system should take as to fulfill the goal specifica-
tions. Same as for the Responsibility Assignment, the Operationalisation activity 
handles with the specification of the underlying system and the goal graph structures. 
The analysis carried out with this activity should evaluate the pre-conditions, the 
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triggering conditions and post-conditions of the operations from the goal specifica-
tions to make sure that the operations are complete and consistent with the operation 
of the underlying system.  

In summary, the goal graph structures are potential source of information to apply 
goal-based reasoning techniques that allow defining the managed entities and the precise 
operations that such managed entities should take as to fulfill the requirements of a target 
system. For this purpose the applied techniques should handle the model of the target 
system and the goal graph structures.  

In the context of our example the goal-based reasoning analysis for the Responsi-
bility Assignment activity should target the deduction of managed entities in charge of 
accommodating traffic predictions. On the other hand, the analysis applied for the Opera-
tionalisation activity should cope with the identification of the precise operations that the 
aforementioned managed entities should take as to fulfill the goal specifications. The 
context of these two activities is graphically presented in Figure 5. A more detailed de-
scription of the Responsibility Assignment and Operationalisation activities can be found 
in [Lam01]. 
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Figure 5. Potential use of KAOS goal graph structures  

2.2.4 Objectiver. A supporting tool for goal-oriented processes 

The successful use of Goal-oriented Requirements Engineering techniques re-
quires tool support that scale up to the size of large-scale systems throughout the specifi-
cation and evolution of the requirements. Developing high-quality requirements specifi-
cations is mandatory for a number of critical industrial processes. The KAOS goal-driven 
methodology has been successfully implemented in Objectiver [Obj] and has been vali-
dated in many industrial projects [Del03]. 

Objectiver is a tool that supports the KAOS notation and has been specially tai-
lored for the creation of requirements models and documents. It contains the same com-
ponents found in most IDE (Integrated Development Environment) tools such as an ex-
plorer, a graphical editor, a query and check tool, a property editor and a text editor. Fig-
ure 6 is a snapshot of the the Objectiver environment.  
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Figure 6. Tool support for Goal-oriented methods  

 

The Graphical Editor is the space used by the stakeholder to represent the con-
cepts (e.g. goals) and their relationships (e.g. link refinements). This is the space used to 
elaborate goal graph structures following the KAOS methodology. The Text Editor al-
lows the developer to record design notes or to associate descriptive texts to diagrams. It 
allows foreign texts (such as interview transcripts or other source material) to be inte-
grated, edited and hyperlinked to model elements. The Property Editor is used to specify 
predefined attribute values or user-defined attribute-value pairs of the concepts. For ex-
ample, for a goal concept, these attributes include the name, the purpose of the goal, the 
refinement pattern used to decompose it, and the formal definition or temporal prescrip-
tion of the goal. The Explorer is used to manage hierarchical views with drag-and-drop 
facilities. It is used to retrieve goal graph structures, text documents, and concepts by 
names, types or occurrences from the internal goal database. The Query and Check Tool 
is a cross-reference navigator that goes back and forth through all traceability and refer-
ence links between existing concepts and documents. It is used to carry out analysis on 
the goal graph structures by allowing queries about the details of the goal graph structures 
(e.g. find goals not refined, find concepts by name, find all the descendants of a goal, 
etc). 
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One of the major advantages of Objectiver is that foreign components can be 
tightly integrated through a meta-model based open Application Programming Interface 
(API). This makes Objectiver an excellent platform for structuring models in a 
user-readable way and exchanging these with the most powerful third parties formal 
tools. This capability makes it possible to develop extensions to Objectiver to allow for-
mal analysis of the goal-oriented requirements. 

One of the most prominent efforts in integrating formal tools in Objectiver is the 
FAUST toolbox [Pon05]. By the time of the publication of this thesis, the FAUST toolkit 
is still under development. The aim of FAUST is to allow formal modelling activity with 
user-oriented interfaces, easy understanding and that allows user validation. 

2.3 Analysis of Reactive Systems 

In this section we describe the objectives of reactive systems analysis techniques 
and the principles and usage of finite-state Behavioural Properties (BP). We finally pro-
vide some background on automated support for reactive systems analysis. 

2.3.1 Objectives of Reactive Systems Analysis 

Broadly speaking, reactive systems analysis is intended to verify that the system 
specification satisfies some properties and/or to acquire meaningful system behaviour. 
One of the most successful approaches targeting this issue is the Model Checking tech-
nique [Cla99]. Model Checking is a formal and automated application of computational 
logic with high relevance in concurrent and distributed systems verification. As shown in 
Figure 7, it consists of three main processes: modeling system behaviour, modeling the 
system requirements specification and the verification process.  

Different formalisms have been proposed to model system behaviour, each tai-
lored for specific domains. This is because each domain might involve different issues, 
like concurrency, distribution, object-orientation, etc. Amongst the most common for-
malisms, Labelled Transition Systems (LTS) are typically used. In general terms, a LTS 
is a set of states together with a transition set modeling how a system can change its state. 
In addition, a labelling function is used to relate states and transitions with observations. 
This activity has received tremendous attention in the modelling community and cur-
rently there are solutions that allow expressing LTSs by means of UML state charts, col-
laboration diagrams, sequence diagrams, class diagrams, etc [Bal04]. 
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Figure 7. General outline of Model Checking techniques  

 

The second process of Model Checking corresponds to the modeling of require-
ments specifications. At this stage, system observables like events, value of variables or 
the processes responsible of the transitions are crucial when one wants to specify the re-
quirements specifications. In this sense, a fundamental dimension is time and how ob-
servables are time-related. In many cases, an explicit treatment of real time is not re-
quired and it just suffices to have a mechanism that allows one to express the ordering of 
events in time. This is precisely the aim of Temporal Logics [Man92]. The requirements 
of a system then should be acknowledged as the means to specify the ongoing behaviour 
of an event/state-based system for which temporal logics provide an expressive and natu-
ral language for specifying this behaviour. 

The third process of Model Checking is the verification of the properties. It at-
tempts to span the entire state space and verify every possible combination of inputs 
(events and conditions). The success of the Model Checking technique relies in two main 
abilities; on one hand, its ability to verify that a system satisfies some Behavioural Prop-
erties (BP); and on the other hand its ability to find and report system executions associ-
ated to meaningful Behavioural Properties. The system executions are reported as traces 
that show the conditions, events/states and the managed objects involved in such condi-
tions and events/states. This in fact is the ability that has made Model Checking so suc-
cessful for reactive system analysis. Due to the relevance of the specification of Behav-
ioural Properties in our analysis, the following section clarifies the nature of finite-state 
properties for Model Checking usage. 
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2.3.2 Specialisation of Behavioural Properties 

In terms of finite-state system verification, a specification pattern is a generalised 
description of a commonly occurring requirement on state/event sequences in a system 
execution [Dwy98]. In order to use these patterns in Model Checking tools, they should 
be expressed as formal specifications. In this sub-Section we provide some background 
on the nature of patterns to specify Behavioural Properties (BP) and describe an approach 
to represent these into formal logic specifications suitable to use with Model Checking 
techniques.  

2.3.2.1 Patterns for Behavioural Properties specification 

Figure 8 shows a classification of design patterns for the specification of Behav-
ioural Properties [Dwy98]. This classification takes into account two major groups: Oc-
currence and Order.  

Occurrence patterns are used to identify behaviours in which a specific state/event 
takes place. Occurrence patterns are in turn classified in Existence, Absence, Universality 
and Bounded Existence. Existence patterns deal with situations in which the most impor-
tant is to specify that a state/event occurs. Absence patterns instead deal with situations in 
which it is necessary to specify that a state/event does not occur. Universality patterns are 
meant to specify situations of occurrence of states/events throughout a scope. Finally, 
Bounded Existence patterns are used to specify the situations of occurrence of 
states/events for a number of k times within a scope. 

Order patterns deal with prescribed behavioural arrangement of states/events in 
time sequence. These are classified in Response and Precedence patterns; Response pat-
terns are used to represent constraints in the order of states/events. Precedence patterns 
are concerned with the specification of a given state/event P to be always preceded by a 
state/event Q within a scope. 
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Figure 8. Behavioural pattern classification and scopes  
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The patterns for Behavioural Properties (BP) have a scope – the extent of system 
execution over which the pattern must hold. The lower part of Fig. 8 shows a graphical 
representation of the five possible scopes: Global, Before, After, Between and After-until. 
The scope Global prescribes that a pattern holds for the entire system execution; A Be-
fore scope is used to indicate that a pattern holds throughout the execution of the system 
up to a given state/event (state/event Q in Figure 8). The scope After is used in situations 
where the pattern must hold after a given state/event (state/event Q in Figure 8) and 
throughout the execution of the system. The Between scope helps to define behavioural 
situations in which a pattern must hold at any part of the execution of the system from 
one given state/event (state/event Q in Figure 8) to another state/event (state/event R in 
Figure 8). Finally the scope After-until is like Between with the difference that in the 
former the designated part of the execution continues even if the second state/event does 
not occur (state/event R in Figure 8).  

The combination of patterns and scopes provides the sufficient support to express 
any kind of behaviour description. Broadly speaking, we can say that any behavioural 
system requirement can be mapped to their respective pattern/scope. For example, a 
combination of the Existence pattern with the Global scope would be used to specify the 
“occurrence of an event/state during the entire execution of the system”. In other words, 
this combination would represent that a state/event is kept throughout all the lifecycle of 
the system. The other way around, any behaviour description can be mapped to their cor-
responding pattern/scope; for example two concrete examples would be the following 
requirements R1 and R2: 
R1 - “state/event B is reached After state/event A” 
R2 - “state/event B is not reached After state/event A” (R2 is the opposite of R1) 

The requirement R1 corresponds to an Existence-based property pattern since the 
statement demands the condition “state/event B is reached” to occur. Additionally, R1 
clearly prescribes the After scope. The requirement R2 instead corresponds to an Ab-
sence-based pattern since the statement demands the non-occurrence of a condition 
“state/event A is not reached”. This requirement also prescribes the After scope.  

2.3.2.2 Formal specification of Behavioural Properties 

The requirements for reactive systems and their representation into different tem-
poral logics have been the subject of research for some time. This has been influenced by 
the high relevance of representing behavioural requirements with formal specifications 
suitable for use with reactive systems analysis like Model Checking, theorem proving, 
etc. The research community has identified several potential combinations of pat-
tern/scopes of Behavioural Properties and their representation into different logics. Cur-
rent approaches have been proposed to classify this information in databases and hence to 
relate formal representations with behavioural requirements in a systematic manner 
[Dwy98].  

Consider the selection of Behavioural Properties shown in Table 2. Due to the 
relevance of our study we concentrate on Linear Temporal Logic (LTL) representations. 
As in previous sections we use the classical temporal operators: ◊ eventually in the fu-
ture, □ always in the future, and the classical logic connectors ∧  and, ∨  or, ¬  not, 
→ logical implication, ↔ equivalence, and so forth. A more detailed description of pat-
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terns for the specification of Behavioural Properties and practical database systems can 
be found in [Dwy] and [Dwy98]. 

 
Id Pattern Scope LTL representation 

BP1 Absence  Globally □(¬P) 
BP2 Absence After Q □(Q→□(¬P)) 
BP3 Universality After Q □(Q→□(P)) 
BP4 Response Globally □(P→ ◊ S) 
BP5 Response After Q □(Q→□(P→◊ S)) 

Table 2 Selection of behavioural pattern/scope database entries 

 
• The LTL representation of BP1 “□(¬P)” is as follows: “property P is always ab-

sent”. BP1 is used to express situations in which a property is globally absent 
• The LTL representation of BP2 “□(Q→□(¬P))” is as follows: “It always holds that 

after the occurrence of Q, the property P never holds”. BP2 is used to express situa-
tions in which a property P is always absent after a property Q. 

• The LTL representation of BP3 “□(Q→□(P))” is as follows: “It always holds that on 
the occurrence of Q, the property P will always occur”. BP3 is used to express situa-
tions in which a property P always holds after a property Q. 

• The LTL representation of BP4 “□(P→ ◊ S)” is as follows: “It always holds that on 
the occurrence of Q, the property P eventually occurs”. BP4 is used to express situa-
tions in which the occurrence of a property P always causes the eventual occurrence 
of property S. 

• The LTL representation of BP5 “□(Q→□(P→◊ S))” is as follows: “The occurrence of 
Q always implies that the occurrence of P always causes the eventual occurrence of 
S”. BP5 is used to express situations in which a property S responds to P after the 
occurrence of a property Q. 

We have described a reduced number of behavioural properties (BP). The above 
is illustrative given that we can express an unlimited number of combinations of Pattern 
and Scopes. Moreover the most relevant of the above analysis is the possibility to express 
behavioural properties in LTL representations following a pre-established identification 
of Patterns and their application Scopes. For example, consider the requirements Rq1 and 
Rq2:  
Rq1 - “state/event B is always reached After state/event A” 
Rq2 - “state/event B is never reached After state/event A” 

• For Rq1 we could consider that the state/event B always holds after the occurrence of 
state/event A, and then instantiate BP3 to represent Rq1 in LTL notations. In this 
view, the LTL representation of Rq1 is as follows: □(state/event A→□(state/eventB)) 

• For Rq2 we could consider that state/event B is always absent after the occurrence of 
event/state A, and then instantiate BP2 to represent Rq2 in LTL notations. In this 
view, Rq2 is represented as follows in LTL: □(state/event A→□(¬ state/event B)). 



Technological Background   24

Following this approach we may use combinations of patterns/scopes to formulate 
requirements that specify “particular” behavioural aspects of system executions. More-
over, this approach enables to represent those requirements into formal specifications 
suitable for use with automated verification tools applying Model Checking techniques.  

2.3.3 Automated Support for Reactive Systems Analysis 

One of the main advantages of analysing reactive systems using Model Checking 
techniques is that there are several off-the-shelf tools available [Cla99]. Tools like SPIN 
(Simple PROMELA Interpreter) [Hol04] and NuSMV [Cim99] have enabled systematic 
analysis for different applications such as the verification of large-scale software specifi-
cations [Cha98], use of Model Checking as planning [Cim03], generation of test-cases 
through Model Checking [Amm99] and others. Due to the high relevance of linear tem-
poral analysis in this work, we provide the general outline of SPIN [Hol04], a tool that 
provides support for linear temporal analysis.  

As tool applying Linear Temporal Model Checking techniques, SPIN concerns 
with the three main activities: Modeling System Behaviour, Modeling System Require-
ments and the Verification Process. The verification process can consist of two options; 
(1) verify that a system satisfies some behavioural properties; and (2) find/report system 
executions associated to meaningful behavioural properties. The Figure 9 shows a 
graphical representation of these three activities for which a brief rationale is given here-
after. 
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Figure 9. General Outline of SPIN support  
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2.3.3.1 Modeling System Behaviour: an Overview of PROMELA 

For this fist activity SPIN uses PROMELA as specification language [Hol04]. 
PROMELA stands for Process Meta-Language and is not considered as an implementa-
tion language like Java or C but as a system description language. The emphasis on the 
language is on the modeling of process evolution, synchronisation and coordination, and 
not on computation. For example, it would be relatively hard to model the computation 
of, say, a square root but relatively easy to model the behaviour of clients and servers in 
distributed systems. This is deliberately designed to encourage the user to abstract from 
the purely computational aspects of a design, and to focus on the specification of proc-
esses evolution and interaction at system level. A PROMELA model represents an ab-
straction of design that contains only those aspects of a system which are relevant to the 
features to be modelled. For example, PROMELA emphasises on modeling how a man-
aged entity changes from one state to other, or how a managed entity receives or sends 
information to other managed entity. In conclusion PROMELA has been designed to 
model processes that would be implemented by managed entities and hence to model the 
behaviour of such managed entities in collaborative environments. For this, the language 
includes a rich set of primitives for process modelling and inter-process communication 
to exchange information between processes.  

 
2.3.3.1.1 An illustrative collaborative scenario 

Consider two collaborative entities, Managed Object 1 (MO1) and Managed Ob-
ject 2 (MO2) exhibiting the behaviour illustrated in Figure 10. In this basic example, the 
Managed Object 2 issues three events (event_1, event_2, and event_3) which in turn have 
some effect in the state transitions of Managed Object 1. Note for example that when 
MO2 transitions from state “MO2_State1” to state “MO2_State4” (occurrence of event_1 
in MO2), MO1 is obligated to transition from state “MO1_state1” to state “MO1_State4”. 
Similar effects are caused when MO2 issues the events event_2 and event_3: the MO 
transitions from MO1_State2 to MO1_State4 and from MO1_State3 to MO1_State4 re-
spectively. 
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Figure 10. Example of collaborative behaviour 
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2.3.3.1.2 The Process element in PROMELA 

PROMELA derives many of its notational conventions from the C programming 
language. In PROMELA, processes are used to define the body of the managed entities’ 
behaviour. They are identified by proctype instantiations. There must be at least one 
proctype declaration in a model. Since we are modelling the behaviour of two managed 
objects, the specification of our example integrates two proctype instantiations: proc-
type ManagedObject2 and proctype ManagedObject1. The Figure 11 shows the body 
of the proctype ManagedObject1 declaration of our example.  

Process declarations are followed by typical declarations of variables. Besides the 
typical declarations like byte, bool, int, etc, PROMELA introduces the concept of 
communication channel. The purpose of communications channels is to handle relevant 
information that causes state transitions in a state machine and amongst state machines. 
Communication channels are identified with the keyword chan. In our model example we 
have used two types of communications channels: A channel for internal communications 
declared as chan internal_queue and channels for communications amongst processes 
declared as chan ack_in and chan ack_out.  

Since PROMELA emphasises on modeling how a managed entity changes states 
from one state to other, the actual state of every managed object are modeled with values 
of variables. In this basic example we have considered the variable state0. Note for in-
stance that this variable takes different values that represent the evolution of the managed 
entities (MO1 and MO2). In this basic model, state transitions are modelled in two ge-
neric groups: Transitions without relevant information and Transitions with relevant in-
formation. 

The Transitions without relevant information are characterised by the absence of 
information linked to state transitions. In our basic model these correspond to the transi-
tions from Initial state to Idle and the transitions to the Final state of MO1 and MO2. 
Even in these circumstances the value of the state0 variable changes as illustrated by the 
pointer “Transitions without relevant information” in Figure 11. 

On the other hand, the Transitions with relevant information take into account the 
events/actions that cause the state transition like MO1Transition1 and event_1 in our 
running example. These transitions should consider the information of the channels. The 
pointer “Transitions with relevant information” in Figure 11 shows the six relevant tran-
sitions of MO1. Note the assignations of values to the state0 variable in the six shaded 
regions. Particularly relevant is the modelling of the conditions that make these transi-
tions to occur. In our example, this issue has been modelled by classical “if” clauses that 
consider the current state of the managed entity and the information of the channels.  

For example, the transition from MO1_State1 to MO1_State 4 (see Fig. 10) oc-
curs if the actual value of the variable state0 is MO1_State1 and the MO1 has received 
through its channels, the send_event_1 notification (received from the MO2). At this 
point of the evolution, the value of the variable state0 is set to MO1_State4 by the sen-
tence state0 = MO1_State4. After this the channels are updated as to make it official that 
the system has transitioned to MO1_State4. The above is modeled in the content of Fig-
ure 11 as follows:  
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    :: state0 == MO1_State1 && current_event == send_event_1 && true … -> 
       state0 = empty; 
       state0 = MO1_State4; 
       completed[cmplMO1_State4] = true; 
       internal_queue!completion_MO1_State4; 
       goto main 

 

Other parts of the body of proctype declarations in PROMELA include the ini-
tialisation of the process evolution and the channel management declarations. These are 
also shown in Figure 11. A complete description of the PROMELA modelling language 
can be found at [Hol04]. The popularity of SPIN (Simple PROMELA Interpreter) has 
enabled the development of other tools intended for analysis of reactive systems. With 
this regard we can find translators of UML models into PROMELA code [Val04] which 
makes it much friendly and intuitive the use of PROMELA. The complete PROMELA 
representation of the example presented here is provided in the first part of Appendix A. 
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proctype ManagedObject1(chan event_queue; byte this; byte initialiser_MO20) {
chan ack_out;
chan internal_queue = [completion_queue_size] of {byte};

byte state0;
byte state0_transition;
bool completed[1];
byte current_event;
byte MO2;

xr event_queue;
atomic {

MO2 = initialiser_MO20;
state0 = top_initial0_G0;
state0_transition = top_initial02Idle_G1;
goto transitionFiring

};
main:
current_event = empty;
if
:: internal_queue?[current_event] ->

internal_queue?current_event
:: else ->

if
:: event_queue?[current_event, ack_out] ->

event_queue?current_event,ack_out
:: else ->

event_queue?current_event,ack_out
fi

fi;
atomic {

if
:: state0 == Idle_G2 && current_event == completion_Idle_G3

&& completed[cmplIdle_G4] == true && true && true ->
completed[cmplIdle_G4] = false;
state0 = empty;
state0 = MO1_State2;
goto main

:: state0 == Idle_G2 && current_event == completion_Idle_G3
&& completed[cmplIdle_G4] == true && true && true ->

completed[cmplIdle_G4] = false;
state0 = empty;
state0 = MO1_State1;
goto main

:: state0 == Idle_G2 && current_event == completion_Idle_G3
&& completed[cmplIdle_G4] == true && true && true ->

completed[cmplIdle_G4] = false;
state0 = empty;
state0 = MO1_State3;
goto main

:: state0 == MO1_State1 && current_event == send_event_1 && true && true ->
state0 = empty;
state0 = MO1_State4;
completed[cmplMO1_State4] = true;
internal_queue!completion_MO1_State4;
goto main

:: state0 == MO1_State2 && current_event == send_event_2 && true && true ->
state0 = empty;
state0 = MO1_State4;
completed[cmplMO1_State4] = true;
internal_queue!completion_MO1_State4;
goto main

:: state0 == MO1_State3 && current_event == send_event_3 && true && true ->
state0 = empty;
state0 = MO1_State4;
completed[cmplMO1_State4] = true;
internal_queue!completion_MO1_State4;
goto main

:: state0 == MO1_State4 && current_event == completion_MO1_State4 
&& completed[cmplMO1_State4] == true && true && true ->

state0_transition = MO1_State42top_final0;
goto top_label

:: else
fi;

Initialization of references to collaborative entities e.g. MO2 
and the variable that keeps record of MO1 behaviour

Channel management
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Transitions without relevant information

top_label:
skip;
transitionFiring:
do
:: state0_transition == top_initial02Idle_G1 ->

state0_transition = empty;
state0 = empty;
state0 = Idle_G2;
completed[cmplIdle_G4] = true;
internal_queue!completion_Idle_G3

:: state0_transition == MO1_State42top_final0 ->
state0_transition = empty;
completed[cmplMO1_State4] = false;
state0 = empty;
state0 = top_final0_G5

:: else ->
break

od;
if
:: state0 != top_final0_G5 ->

goto main
:: else ->

goto end_machine
fi

};
end_machine:
success

}

Declaration of end state if exists

 
Figure 11. Fraction of PROMELA specification 

 

2.3.3.2 Modeling System Requirements 

For this second activity of the Model Checking technique, SPIN interprets Linear 
Temporal Logic (LTL) formulae. As we mentioned earlier, LTL formulae provide the 
means to specify any behavioural aspect of system executions. Consequently, SPIN can 
be seen as an interpreter of system behaviour. 

2.3.3.3 Verification Process 

This is the third activity of the Model Checking technique. In SPIN the Verifica-
tion Process may consist of two options; (1) verify that a system satisfies some behav-
ioural properties; and (2) find/report system executions associated to meaningful behav-
ioural properties. Due to the relevance of the second option in our work, the remaining of 
this sub-Section focuses on the SPIN capabilities to find/report system executions 

SPIN works producing system execution traces. These traces are sequences of 
inputs that indicate the conditions, events and states during system execution. In addition, 
SPIN reports how the managed entities collaborate during the execution trace. Given that 
the reports are associated to the provided LTL properties, the nature or the interpretation 
of the reports depends on the nature of those properties. LTL properties can be cast as 
either as a positive (desired) or a negative (undesired) property of the system model 
[Hol04]. 
• For “positive” properties, the reports provided by SPIN can be of two different types: 

1. Statements that the positive property is certainly satisfied. 
2. System executions that represent the behaviour that the system should exhibit 

so that the corresponding “negated” (undesired) property is satisfied. 
• For “negative” properties, the reports provided by SPIN can be also of two different 

types: 
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1. Statements that the negative or undesired property never occurs during the 
system execution. 

2. System executions that represent the behaviour that the system should exhibit 
so that the corresponding “positive” system property is satisfied. 

Therefore note that there is the possibility to obtain execution traces that make a 
requirement property R not to hold, and the possibility to obtain execution traces that 
make a requirement property R to hold. From the above description we could summarise 
that if we provide R, SPIN would generate a system trace report (or all the execution re-
ports if desired) in which R’ is satisfied. On the other hand, if we provide R’, SPIN would 
generate a system trace report (or all the execution reports if desired) in which R is satis-
fied. As a consequence of this, the resulting execution trace depends only on the type of 
requirement that the user provides 

For instance, consider from our running example, Managed Object 1 (MO1) and 
its states MO1_State1 and MO1_State4 as we showed earlier in Figure 10. Assume the 
following positive/desired requirement R and its corresponding negative/undesired re-
quirements R’: 
R: “MO1_State4 is reached After MO1_State1”. 
R’: “MO1_State4 is not reached After MO1_State1” 

 

With the above requirements if we were to provide R as input to SPIN, we would 
obtain a system trace execution that would make R not to hold. In other words, we would 
obtain a system trace execution (or all the execution reports if desired) in which 
MO1_State4 is not reached After MO1_State1. Moreover, if we were to provide R’ as 
input to SPIN, we would obtain a system trace execution that would make the require-
ment R to hold. In other words, we would obtain a system trace in which MO1_State4 is 
reached After MO1_State1. 

The central part of Figure 12 shows the visual representation of the system trace 
execution obtained when providing R’ to SPIN in our example. This represents the sys-
tem trace executions that both, MO1 and MO2 should exhibit so that MO1_State4 is 
reached after MO1_State1. The left and right parts of Figure 12 show the interpretation of 
such execution with respect to the behaviour of MO1 and MO2, initially shown in Figure 
10. Note for instance that the left part of Figure 12 shows the restricted behaviour of 
MO1 in which MO1_State4 is certainly reached after MO1_State1. 

In addition, SPIN includes the provisioning of the details of the system execution 
expressed in terms of the PROMELA specification. The Figure 13 shows part of the 
execution report of our example. These reports show the actual lines of the PROMELA 
specification that are executed the by the corresponding Managed Objects. The complete 
execution report of this example is presented in the second part of Appendix A. 
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Figure 12. Visual representation of execution report 

 

Sequence
of execution for
Managed Object 2

4: proc 2 (ManagedObject2) line 61 "pan_in" (state 1) [MO1 = initialiser_MO10] <merge 83 now @2>
4: proc 2 (ManagedObject2) line 62 "pan_in" (state 2) [state0 = 1] <merge 83 now @3>
4: proc 2 (ManagedObject2) line 63 "pan_in" (state 3) [state0_transition = 1] <merge 83 now @83>
5: proc 2 (ManagedObject2) line 135 "pan_in" (state 70)[((state0_transition==1))] <merge 0 now @71>
5: proc 2 (ManagedObject2) line 136 "pan_in" (state 71)[state0_transition = 0] <merge 75 now @72>
5: proc 2 (ManagedObject2) line 137 "pan_in" (state 72)[state0 = 0] <merge 75 now @73>
5: proc 2 (ManagedObject2) line 138 "pan_in" (state 73)[state0 = 2] <merge 75 now @74>
5: proc 2 (ManagedObject2) line 139 "pan_in" (state 74)[completed = 1] <merge 75 now @75>
6: proc 2 (ManagedObject2) line 140 "pan_in" (state -) [values: 5!0]
6: proc 2 (ManagedObject2) line 140 "pan_in" (state 75)[internal_queue!0]
7: proc 2 (ManagedObject2) line 146 "pan_in" (state 81)[else]
8: proc 2 (ManagedObject2) line 150 "pan_in" (state 86)[((state0!=7))] <merge 0 now @6>

10: proc 2 (ManagedObject2) line 67 "pan_in" (state 6) [current_event = 0]
12: proc 1 (ManagedObject1) line 172 "pan_in" (state 1) [MO2 = initialiser_MO20] <merge 71 now @2>
12: proc 1 (ManagedObject1) line 173 "pan_in" (state 2) [state0 = 1] <merge 71 now @3>
12: proc 1 (ManagedObject1) line 174 "pan_in" (state 3) [state0_transition = 1] <merge 71 now @71>
13: proc 1 (ManagedObject1) line 234 "pan_in" (state 58)[((state0_transition==1))] <merge 0 now @59>
13: proc 1 (ManagedObject1) line 235 "pan_in" (state 59)[state0_transition = 0] <merge 63 now @60>
13: proc 1 (ManagedObject1) line 236 "pan_in" (state 60)[state0 = 0] <merge 63 now @61>
13: proc 1 (ManagedObject1) line 237 "pan_in" (state 61)[state0 = 2] <merge 63 now @62>
13: proc 1 (ManagedObject1) line 238 "pan_in" (state 62)[completed = 1] <merge 63 now @63>
14: proc 1 (ManagedObject1) line 239 "pan_in" (state -) [values: 3!3]
14: proc 1 (ManagedObject1) line 239 "pan_in" (state 63)[internal_queue!3]
15: proc 1 (ManagedObject1) line 245 "pan_in" (state 69)[else]
16: proc 1 (ManagedObject1) line 249 "pan_in" (state 74)[((state0!=7))] <merge 0 now @6>
18: proc 1 (ManagedObject1) line 178 "pan_in" (state 6) [current_event = 0]

Sequence
of execution for
Managed Object 1

 
Figure 13. Fragment of detailed execution report 

 

In conclusion, the Model Checking technique provides the means to acquire the 
necessary system trace executions in accordance with specific LTL requirements proper-
ties characterising requirements of behavioural aspects of a reactive system. In addition, 
SPIN allows to achieve this in a fully automatic manner. The execution reports show the 
managed entities behaviour as a collaborative sequence of conditions, states and actions 
that the involved entities should exhibit as to commit with the LTL characterisation. For a 
detailed description of SPIN and its reference manual, please refer to [Hol04]. 
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2.4 Conclusions 

In this Chapter we have provided background material on two technical issues 
that concern with our policy refinement analysis; (1) the principles to formalise system 
requirements, concretely we have described the principles, the scope, activities, founda-
tions and the practicality of Goal-oriented Requirements Engineering techniques; and (2) 
a general description on the utilisation of reactive systems analysis techniques, more spe-
cific we have provided the general outline of Model Checking techniques. 

The Goal-oriented Requirements Engineering techniques provide support to es-
tablish formal representations, at different levels of abstraction, of the requirements that 
an envisioned system should fulfill. Concretely, we have outlined the KAOS goal elabo-
ration method. This method provides the means to carry out goal-based reasoning activi-
ties grounded in Linear Temporal Logic (LTL). KAOS proposes to use goal refinement 
patterns as a standard method to identify and make decisions on the achievements of the 
target systems. The system requirements are formalised into goal-graph structures that 
may represent either the different strategies with which the envisioned system may fulfill 
specific requirements, or the necessary requirements that a system may include to fulfill 
the high-level administrative needs. 

While KAOS provides support to document and elaborate goal graph structures 
through the Requirements Elaboration process, it does not provide support to relate man-
aged objects’ behaviour to goal fulfillment finding. In this sense, the goal graph struc-
tures elaborated with KAOS should be acknowledged as a potential source of information 
to overcome these limitations. With this regard, we have provided the principles of the 
Responsibility Assignment and Operationalisation activities. While the former is meant 
to identify the agent objects and their responsibilities as to guarantee the system require-
ments, the latter is meant to identify the operations and their domain pre- and 
post-conditions of such agent objects. These two activities are completely dependant on 
the application domain and should be supported by the information formalised with the 
KAOS goal graph structures.  

Another technical issue that we have outlined in this Chapter concerns with the 
analysis of reactive systems, more concretely we have provided the principles of verifica-
tion techniques through Model Checking. The key for the success of the latter technique 
relies on the accuracy to asses two major aspects for analysis: (1) the verification that the 
specification of a system fulfills specific properties; and (2) the acquisition of meaningful 
system behaviour as a response to the input of behavioural properties. With this regard, a 
key issue is the specification of behavioural properties and their representation with for-
mal notations suitable to use with automated Model Checking engines.  

We have outlined the principles of specification of behavioural properties for LTL 
and the corresponding linear temporal Model Checking process, effectively assessed with 
the SPIN searching engine. We have demonstrated the feasibility to express behavioural 
properties in LTL and the capability of the SPIN searching engine to acquire and report 
meaningful system behaviour committing to such behavioural specifications. The system 
behaviour is reported as a collaborative sequence of events, conditions and actions that 
specific managed entities may exhibit in runtime. It is worth noticing that this is achieved 
by a fully LTL-based state exploration process. 
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Chapter 3  A Policy Refinement Framework 

3.1 Introduction 

Policy-based management has been regarded as a potential approach to allow the 
management tasks in complex environments in network and service management. De-
spite having been introduced in different application domains through various research 
projects, several standardisation efforts and substantial interest from industry, pol-
icy-based management is still not widespread used. The number of policies necessary to 
control medium- to large-scale systems may be in the order of thousands and these poli-
cies are likely conflicting. In addition to policy conflict analysis techniques, a key issue is 
the need to derive policies from high-level administrative goals or from higher level poli-
cies.  

Policy refinement is understood as the process aimed to derive lower-level poli-
cies from higher-level ones so that the former are better suited for use in different execu-
tion scenarios. Although policy refinement has been recognised as crucial for the success 
of policy-based management, it has been severely dismissed due probably to its inherent 
complexity. In this sense, a holistic approach to the policy refinement process still re-
mains unclear.  

The main motivation of this chapter is to provide a framework that considers the 
different aspects involved in the policy refinement process. One of these aspects is the 
need to represent the aim of policies at different levels of abstraction. For this, we con-
sider the aim of policies as goals [Lam99], [Ban04] and hence we use goal refinement 
methodologies as the means to ground of the policy refinement process. In this way, the 
proposed framework is built upon goal-oriented requirements engineering methodologies. 
In other words, this framework is intended to specialise the GORE (Goal-Oriented Re-
quirements Engineering) into a policy authoring environment. 

In addition to laying down the aforementioned formal concepts into a policy re-
finement framework, another aspect that we address in this chapter is the identification of 
the processes and activities involved in the refinement paradigm. This is, we clarify the 
nature of the different tasks that the administrative parties should carry out during the life 
cycle of the policy-based management system. 

The goal elaboration process in our framework relies on the KAOS approach 
[Dar96], [Dar98], [Lam99]. As presented in Chapter 2, KAOS provides the theoretical 
support to formalise the requirements of a target system into goal graph structures. Nev-
ertheless, it doesn’t provide support to relate systems’ behaviour to goal fulfillment. An-
other aspect that we address in this chapter is the need to produce enforceable/deployable 
policies from High-level Goals in a systematic manner. This is, we formalise the neces-
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sary mechanisms that assess the Responsibility Assignment and Operationalisation ac-
tivities of the KAOS GORE approach in our policy authoring environment.  

We support Responsibility Assignment and Operationalisation activities by means 
of Linear Temporal Logic and Model Checking verification techniques [Rub05]. These 
techniques are applied in the policy refinement mechanisms as the means to provide a 
formal procedure to obtain runtime system trace executions aimed at fulfilling 
lower-level goals, and consequently the fulfillment of High-level Goals. 

Besides the framework addressing the holistic implications of the policy refine-
ment process, this Chapter also provides the overall implementation of a solution for 
generating policies following this one framework [Rub06a], [Rub06b]. This is a step 
ahead towards the materialisation of the policy refinement paradigm based on the 
framework proposed. 

After this Introduction, this Chapter is sectioned in three parts: Section 3.2 pro-
vides the rationale of the policy refinement framework; Section 3.3 describes a prototype 
solution that entails the former; and Section 3.4 provides the conclusions on our proposal. 

3.2 Rationale of the Policy Refinement Framework 

In policy authoring contexts, there is a need to formalise the aim of policies. 
Having adopted the view of considering the aim of policies as goals [Lam99], [Ban04], 
the general idea behind the policy framework is to specialise the GORE concepts of Re-
quirements Elaboration, Responsibility Assignment and Operionalisation into a policy 
authoring environment. In this sense, the final outcome of the process would be a set of 
deployable and enforceable policies committing with high-level administrative goals. The 
following is the overall rationale of the elements and activities involved in the policy re-
finement process.  

3.2.1 Actors and roles 

In a policy authoring environment, policies are refined before and/or during the 
operation of the system by an administrative party. Moreover, in order to refine policies 
in a systematic manner, previous supporting activities should be carried out during the 
design and implementation of the management system. In this sense, we consider two 
administrative parties; an Administrator Developer and an Administrator Consultant. On 
the one hand, the Administrator Developer carries out the supporting activities during the 
design and implementation, and on the other hand, the Administrator Consultant carries 
out the refinement-aware activities during the start-up and operation of the policy system. 
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Figure 14. Overall Policy Refinement Framework  

 

The framework shown in Figure 14 provides support for both, Administrator De-
veloper and Administrator Consultant. In administrative terms, the framework considers 
the following activities: 

• Goal Refinement. This activity is intended to elaborate goal graph structures of the 
High-level Goals that the system can handle. These goal-graphs represent both, the 
requirements and the different options with which the High-level Goals could be 
achieved. This activity is application-dependent and is carried out by the Administra-
tor Developer, and consequently this activity is carried out during the design and im-
plementation of the system. 

• Goal Selection. This activity is meant to define the Administrator Consultant’s “par-
ticular” goals1 for the functional policy-based system. This activity is achieved by se-
lecting, from the different options represented in the goal-graph structures, the goal 
strategies that better reflect the Administrator Consultant’s criteria. We should point 
out that Goal Selection is carried out at the beginning of the operation of the system 
operation and at service operation time. 

• Enforceable Policies Acquisition. This activity is meant to produce a set of low-
est-level policies that would fulfill the “particular” High-level Goals resulting from 
the Goal Selection activity. The acquired policies should include meaningful elements 
of policies like subjects, targets, events and actions. It is worth mentioning that these 
policy fields should commit with the managed system capabilities i.e. these should 

                                                        
1 During this work the term “particular” goals is used to denote the goals defined by the Administrator 
Consultants which are in turn reproductions of the goals defined by the Administrator Developer. 
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produce enforceable policies. This activity uses the System Model. The later includes 
the detailed behaviour of the managed elements through finite state machines, class 
and collaboration models of the management system, and their object distribution 
within the managed system. In this sense, the acquired policies should commit with 
the actual object distribution of the managed system so that not only the policies can 
be enforced but also for further deployment of these policies onto the managed sys-
tem. The System Model is provided by the Administrator Developer at de-
sign/implementation time. 

3.2.2 Goal Refinement Support 

Figure 15 shows the general outline of the Goal Refinement Support function 
whose general objective is to allow the Administrator Developer to elaborate the goal 
graph structures that the policy driven system can handle. The challenge in this activity is 
to make use of KAOS [Dar96], [Dar98], an application independent refinement approach, 
in order to build an application-dependent refinement graph.  

The Administrator Developer uses the KAOS application-independent refinement 
patterns combined with the managed system features (i.e. the managed system capabili-
ties) to drive the goal refinement process. Once the High-level Goals have been defined, 
these are further refined through the instantiation of refinement patterns that enable the 
developer to identify lower-level goals. After the goal graph structures have been elabo-
rated, these are stored in a goal database for eventual use and/or maintenance. This activ-
ity should be accomplished during the design and development phase of the system. 
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Figure 15. Goal graph structure elaboration outline  

 

In order to understand better the Goal Refinement Support function, consider for 
instance a policy-driven Network Dimensioning (ND) system for which the Administra-
tor Developer wants to elaborate the goal graph structure within this framework.  
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3.2.2.1 Identification of Managed System Features 

Consider that the developer has identified the following features of the system:  
• General purpose: The ND sub-system is in charge of assigning network resources 

according to given traffic predictions in the network. This is our policy-driven ele-
ment or managed system 

• Input: It receives a traffic estimation matrix that defines the minimum and maximum 
values for traffic estimations. 

• Output: It produces configuration sets that may eventually be propagated to enforce 
the traffic allocation calculations. 

• Capabilities: It basically integrates policy-based dimensioning mechanisms that in-
fluence the allocation of resources. These mechanisms include functions affecting the 
following parameters: limit of hop-counts, overall utilisation of the network, 
hop-count estimation for delay and packet loss estimations, explicit allocations, dis-
tribution/reduction of extra link capacity. 

3.2.2.2 Defining the nature of High-level Goals 

Consider the case where the administrator must ensure a given system behaviour; 
this is, the way it will assign network resources according to specific traffic distributions. 
The above could be interpreted as a High-level Goal, identified as ConfigurationDirectives-
Set and formalised in Linear Temporal Logic as follows: 

G1 ConfigurationDirectivesSet: ND_Request→◊DirectConfig&Propagated 

In the context of the goal refinement process, the semantics of administrator’s 
goal G1 is “when a network dimensioning request is received, the configuration direc-
tives should be generated and eventually stored and propagated to the underlying com-
ponents”. Other High-level Goals could be defined for the ND system for which the in-
tersection of all would become the different targets of interest that the Administrator De-
veloper has envisaged as controllable for the ND system. 

3.2.2.3 Goal refinement assisted by refinement patterns 

Once the High-level Goals like G1 have been identified, they are decomposed 
into offspring goals. The KAOS method prescribes to tackle this issue by asking HOW 
questions. In the context of our ND example this is equivalent to figure out how the sys-
tem can configure dimensioning directives. The ultimate objective is to achieve some 
behaviour in the envisioned system. For this purpose, different propositional patterns 
would be useful. For example, consider the selection of KAOS patterns to refine the ap-
plication-independent Achieve goal P →◊Q shown in Table 3.  

ID Formal Representation of sub-goals Description 
RP3 P → ◊R            R → ◊Q Milestone-driven refinement 
RP4 P∧ P1→◊Q1      P∧ P2→◊Q2    □(P1∨ P2) 

                              Q1 ∨ Q2 →Q 
Case-driven refinement 

RP5 P ¬∧ R→◊R         P∧ R→ ◊Q       P→□P Conditional milestone-driven 
RP6 ¬R→ ◊R           P∧ R→ ◊Q       P→□P Inconditional milestone-driven 

Table 3 Different patterns to refine the Achieve goal P →◊Q  
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The use of one pattern instead of another depends indeed on the capabilities of the 
system and the criteria of the developer. Following on with our sample, suppose P stands 
for “ND_Request” (reception of a network dimensioning request) and Q stands for “Di-
recConfig&Propagated” (ND directives generated and propagated). Suppose also that R 
stands for “TM_reception” (reception of the traffic matrix). The patterns shown in Table 
3 are brought to this specific application domain as follows: 

 
• The “Milestone-driven refinement” pattern, identified as RP3 proposes that “on the 

occurrence of a state P, an intermediate state satisfying R must first be reached from 
which a goal state Q must eventually be reached”. In our ND example this pattern 
proposes that on the occurrence of “ND_Request” state, a state prescribing 
“TM_reception” may first be reached from which the goal state “DirecCon-
fig&Propagated” must be reached. In other words, two goals would be necessary to 
fulfill the original G1 ConfigurationDirectivesSet goal.  

• The “Case-driven refinement” pattern, identified as RP4 proposes that “on the oc-
currence of P, an alternative sate satisfying either P1 or P2 will eventually satisfy the 
goal states Q1 or Q2 respectively which in turn suffices to satisfy the state Q”. In our 
ND example this pattern proposes that on the occurrence of an “ND_Request” state, it 
is possible to take two alternative intermediate goal states P1 or P2 which in turn 
should eventually satisfy the goal states Q1 or Q2 respectively. Also, either Q1 or Q2 
would yield to the “DirecConfig&Propagated” goal state. In other words, the admin-
istrator should identify two alternatives to satisfy the G1 ConfigurationDirectivesSet 
goal.  

• The “Conditional milestone-driven“ pattern, identified as RP5 proposes that “on the 
occurrence of P and under the absence of the state R, it is a requirement that state R 
and state P both hold so that the goal state Q eventually holds”. “In addition, state P 
should hold “always” during the execution of the system. In our ND example, RP5 
proposes that on “TM_reception”, it should hold that both “TM_Reception” and 
“ND_Request” to be present at the same time as for the goal state “DirecCon-
fig&Propagated” to eventually hold. Also, this pattern proposes that the state 
“ND_Request” to be present “always” until the goal state “DirecConfig&Propagated” 
is reached. 

• The “Inconditional milestone-driven” pattern, identified as RP6 proposes that “on the 
absence of a state satisfying R, the latter must hold when P occurs so that the goal 
state Q can be eventually reached”. In our ND example, RP6 proposes that on the 
absence of “TM_Reception”, the latter must eventually hold so that on the occurrence 
of “ND_Request” both hold and consequently, the goal state “DirecCon-
fig&Propagated” can be eventually reached. 

 

Continuing in the ND example, the developer evaluates how the above four alter-
natives can match the capabilities and the operation of the ND system to decide which 
refinement pattern is better suited to use to decompose the G1 ConfigurationDirectivesSet 
goal.  
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For instance, RP5 is discarded because the reception of a configuration request 
(ND_Request) is a discrete event that cannot happen continuously until the traffic matrix 
(TM_reception) is received nor until the directives are configured and propagated (Di-
recConfig&Propagated). RP6 is also discarded because the reception of a traffic matrix 
(TM_reception) is also a discrete event that cannot hold until the “ND_Request” state is 
reached.  

The two remaining options are then a milestone-driven tactic (refinement pattern 
RP3) and a refinement by cases (refinement pattern RP4). The decision of which pattern 
to apply to refine the original G1 ConfigurationDirectivesSet goal is taken by the Adminis-
trator Developer following the propositions of the two alternatives (RP3 and RP4) and 
the design/capabilities of the policy system. With regard to the latter, let us assume that 
the dimensioning of the network can be achieved in two ways: (1) considering the alloca-
tion of minimum demand or (2); considering the allocation of minimum demand plus the 
usage of the remaining physical network resources. These two options are exclusive one 
from the other and both can be used to configure the directives in the ND system. For this 
reason, the milestone-driven pattern RP3 is discarded as it may imply that both options 
are necessary to fulfill G1. In other words, bringing RP3 into this application at this stage 
may imply that the ND system should be configured considering the allocation of mini-
mum demand and also, considering again the allocation of minimum demand, plus the 
usage of the remaining physical resources.  

Finally, bringing the case-driven refinement pattern RP4 into our Network Di-
mensioning example formalises two different alternatives of how to refine the original G1 
ConfigurationDirectivesSet goal. More concretely, the developer brings the case-driven RP4 
pattern to refine G1 as he considers that the High-level Goal G1 could be fulfilled in two 
ways which in turn define the goals G2 and G3 respectively: G2 opts to dimension the 
network considering the allocation of minimum demand; G3 opts for network dimen-
sioning considering the allocation of minimum demand plus the usage of the remaining 
physical network resources. These two refinements are graphically represented in the 
upper part of Figure 16 and are formally expressed as follows: 

 
G1 ConfigurationDirectivesSet: ND_Request → ◊ DirectConfig&Propagated 
G2 MinDemandStrategy: ND_Request /\ minDemandStrategy → ◊ DirectConfig&Propagated 
G3 MinWExtraCapStrategy: ND_Request /\ minWExtraCapStrategy→ ◊DirectConfig&Propagated 

G2 should be interpreted as follows; “when a network configuration request is re-
ceived, configuration directives for the minimum demand will be eventually generated, 
stored and propagated”. Similarly, G3 should be interpreted as follows; “when a network 
configuration request is received, configuration directives for the minimum demand plus 
the usage of the remaining physical resources will be eventually stored and propagated”. 

We must acknowledge that the Goal Refinement process is aimed at elaborating 
goal graph structures of High-level Goals that the system can handle. These represent 
both, the requirements and the different options with which the High-level Goals could be 
achieved. As we will describe latter, one of the above two options to generate the con-
figuration directives would be selected by means of the Goal Selection process during the 
start up and/or the operation of the system. 
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G2: MinDemandStrategy G3: MinWExtraCapStrategy

G1: ConfigurationDirectivesSet

Instantiation of RP4;
either G2 OR G3 
suffices to satisfy G1

Instantiation of RP3:
Both, G4 and G5 are 
necessary to fulfill G2

Instantiation of RP3`:
The three, G6, G7 and G8
are necessary to fulfill G3

G6: PreCalculation G7: Processing G8: PostProcessingG5: ProcessingG4: PreCalculation

Further lower-level goal refinements  
Figure 16. Initial goal graph structure elaboration process  

 

The patterns shown in Table 3 can be extended to make them suitable for use in 
particular application domains. For instance, RP3 and RP4 could be extended to deal with 
multiple milestone-driven and multiple case-driven situations as shown in Table 4.  

 
RP Formal Representation of sub-goals Description 

RP3’ P → ◊R     R → ◊S       S → ◊Q Multiple milestone-driven 
refinement 

RP4’ P∧ P1→◊Q1,  P∧ P2→◊Q2,    P∧ P3→◊Q3, 
     □(P1∨ P2∨ P3),   Q1∨ Q2∨ Q3 →Q 

Multiple case-driven refine-
ment 

Table 4  Extension of the refinement patterns RP3 and RP4 

 

Going further in the refinement process of our example, G2 MinDemandStrategy 
and G3 MinWExtraCapStrategy should be further refined. For G2 MinDemandStrategy, the 
developer considers that this requirement must be accomplished in two steps: (1) a 
pre-calculation of resources; (2) a processing step that should take into account the 
pre-calculations. Consequently, the goal G2 MinDemandStrategy is refined into the 
sub-goals G4 PreCalculation and G5 Processing by bringing the pattern RP3 into the context 
of the refinement of G2 (see graphical representation in Figure 16). This goal sub-tree 
formalises the requirement of achieving network dimensioning configurations in two 
steps; a pre-calculation AND the processing step properly said.  
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Similarly, for the goal G3 MinWExtraCapStrategy, the developer considers that in 
addition to calculating the allocation of the minimum demand, G3 requires a 
post-processing step to allocate the remaining capacity in the core links of the network 
and to reduce the capacity when the links are over-provisioned. Consequently the goal G3 
MinWExtraCapStrategy is refined into the sub-goals G6 PreCalculation, G7 Processing and G8 
PostProcessing, by the bringing the extended pattern RP3’ into the context of the refine-
ment of G3 (see graphical representation in Figure 16). The sub-tree defined by G3 for-
malises the requirement of having a processing step AND an additional post-processing 
calculation step. The above mentioned processes yield the third level in the refinement 
graph shown in Figure 16. These third level goals are formally represented in KAOS as 
follows: 

 
G4: ND_Request /\ minDemandStrategyReq /\ preCalculation → ◊ Processing 
G5: Processing → ◊ DirectConfig&Propagated 
G6: ND_Request /\ minWExtraCapStrategyReq /\ preCalculation → ◊ Processing 
G7: Processing → ◊ PostProcessing 
G8: PostProcessing → ◊ DirectConfig&Propagated 
 
 
The semantics of the above abstractions is as follows:  
G4.- “When a Network Dimensioning process is Requested (ND_Request) and the minimum de-
mand strategy is required (minDemandStrategyReq), a pre-calculation process for dimensioning 
(preCalculation) will eventually result in a processing step (Processing)”.  
G5.- “A Processing step (Processing) will eventually result in directives being configured and 
propagated (DirectConfig&Propagated)”.   
G6.- “When a Network Dimensioning process is Requested (ND_Request) and the minimum de-
mand with extra capacity strategy is required (minWExtraCapStrategyReq), a pre-calculation proc-
ess for dimensioning (preCalculation) will eventually result in a processing step (Processing)”.  
G7.- “A Processing step (Processing) will eventually result in a post-processing step (PostProcess-
ing)”.  
G8.- “A post-processing step (PostProcessing) will eventually result in directives being configured 
and propagated (DirectConfig&Propagated)”. 
 

At this stage of the goal refinement process, the developer determined the initial 
steps and alternatives by means of which the ND system would be able to generate net-
work configuration primitives. At the same time, this intermediate steps have been for-
malised in terms of temporal logic, which will be important for subsequent stages. Nev-
ertheless, the developer still needs to identify and formalise the requirements and options 
for each lower-lever refinement (G4 to G8 in Fig. 16). In other words, a similar procedure 
has to be carried out to refine each lower-level goal. 

 

For example, the PreCalculation sub-goal (G4 and G6 in Figure 16) is refined into 
two alternative cases ; an alternative that considers estimations for delay/loss purposes 
(G9 delayLossEstimated), and another alternative that considers delay/loss estimations with 
explicit resources allocation (G10 delayLossEstimationWithExplicitAllocation). The result is a 
goal graph structure linked to the PreCalculation goal as shown in Figure 17. For each of 
these two lower-level goals (G9 and G10 in Figure 17), further refinements are necessary 
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until the developer finds it feasible to relate the refinements with a specific state of the 
system. In fact, the KAOS methodology estates that a goal that is identifiable with a state 
of the system can be considered as a lowest-level goal. The later situation is exemplified 
hereafter with the refinement applied to the G9 delayLossEstimated sub-goal. 

 

G9: delayLossEstimated G10: delayLossEstimation
WithExplicitAllocation

G4, G6:
PreCalculation

Instantiation of RP4;
either G9 OR G10 
suffices to satisfy G4, G6

Instantiation of RP4’:
either G91 OR G92 OR G93

suffices to satisfy G9

G92: OptimisticG91: Conservative G93: Average

Tactics and
alternatives
for G10

Lowest-level goals  
Figure 17. Goal graph sub-tree for the PreCalculation sub-goal 

 

The sub-goal G9 is further refined into three alternative cases by means of the ex-
tended refinement pattern RP4’. The result is a set of three refinements expressed as G91 
Conservative, G92 Optimistic and G93 Average. G91 proposes to consider the maximum delay 
and the maximum packet-loss recorded in the network as the base to estimate the delay 
and packet loss during the dimensioning process; taking the maximum values for each 
link is considered to be a conservative tactic in the pre-calculation process. On the other 
hand, G92 considers the minimum values for delay and packet loss; this is considered an 
optimistic tactic. Finally G93 proposes a tactic that considers the average values of delay 
and packet losses in every link of the network, as the base to estimate the delay and 
packet loss during the calculation process. These three goal refinements (G91, G92 and G93) 
are specific enough to relate them to states of the system; these are considered as low-
est-level goals given that there is not further tactic to refine them. The sub-goal G9 delay-
LossEstimated and its refinements G91 Conservative, G92 Optimistic and G93 Average are 
graphically represented in Figure 17 and are formally represented as follows: 
 
 
G9: PreCalculated /\ delayLossEstimatedReq→ ◊ Processed 
G91: PreCalculated /\ delayLossEstimatedReq /\ conservativeReq → ◊ Processed 
G92: PreCalculated /\ delayLossEstimatedReq /\ optimisticReq → ◊ Processed 
G93: PreCalculated /\ delayLossEstimatedReq /\ averageReq → ◊ Processed 
 
The semantics of the above abstractions is as follows:  
G9.- “When a pre-calculation step is requested (PreCalculated), a delay/loss estimation process 
(delayLossEstimatedReq) will eventually result in a processed state (Processed)”.  
G91.- “When a pre-calculation step is requested (PreCalculated) and a delay/loss estimation process 
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is under request (delayLossEstimatedReq), a conservative selection of settings (conservativeReq) will 
eventually result in a processed state (Processed)”.  
G92.- “When a pre-calculation step is requested (PreCalculated) and a delay/loss estimation process 
is under request (delayLossEstimatedReq), an optimistic selection of settings (optimisticReq) will 
eventually result in a processed state (Processed)”. 
G93.- “When a pre-calculation step is requested (PreCalculated) and a delay/loss estimation process 
is under request (delayLossEstimatedReq), an average selection of settings (averageReq) will even-
tually result in a processed state (Processed)”. 

The goal refinement process is finalised when the lowest level goals for all possi-
ble links in the graph are identified. Therefore, in our example, the developer should 
carry out a refinement procedure for the sub-goal G10 delayLossEstimationWithExplicitAllo-
cation similar to the one carried out for the sub-goal G9 delayLossEstimated. Likewise, the 
developer should proceed with the remaining refinements of the highest-level goal G1 
ConfigurationDirectivesSet  
 

3.2.3 Goal Selection Support 

Once system goals refinement is completed, the goal graph structures should be 
stored in databases for further use and maintenance. Having in mind that goal graph 
structures formalise potential requirements and options to fulfill High-level Goals, they 
will be used to select a concrete one among the different available alternatives.  

Goal Selection Support consists of browsing through the previously elaborated 
goal graph structures stored in the goal database and selecting the strategies that better 
reflect the consultant administrative criteria.  

Following with our scenario example, consider the case where the consultant 
wants to provide configuration directives only for the minimum demand estimations. 
Consider also the situation where the consultant wants to have better chances to fulfill the 
SLAs of real-time services. This is his particular administrative guideline to navigate 
through the graph that finally yields to the selection of the path reflected in Fig 17 with 
shadow boxes.  
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G2: MinDemandStrategy G3: MinWExtraCapStrategy

G1: ConfigurationDirectivesSet

G5: ProcessingG4: PreCalculation

G9: delayLossEstimated G10: delayLossEstimation
WithExplicitAllocation

G92: OptimisticG91: Conservative G93: Average

Selection 1

Selection Selection

Selection

Selection

Selection

Processing Tactics

 
Figure 18. Sample of a Goal Selection action 

 

3.2.4 Policy Refinement Mechanisms 

The Policy Refinement Mechanisms supports the Enforceable Policies Acquisi-
tion activity of the policy refinement framework (see Figure 14). The target of these 
mechanisms is to determine policies fulfilling the goals resulting from the Goal Selection. 
With this aim, we make use of the logical foundations of the goal elaboration methodol-
ogy, reactive systems analysis techniques and novel concepts developed on purpose to 
make the policy refinement activity a systematic process. In this sub-section we first pro-
vide a general outline of the policy refinement mechanisms and then we describe the in-
volved sub-processes. 

3.2.4.1 General Outline of the Policy Refinement Mechanisms 

The principle of the policy refinement mechanisms is to abstract enforceable poli-
cies that can be deployed onto the managed system to commit with a given goals selec-
tion. The whole process can be decomposed into four sequential steps as follows: (1) Es-
tablishment of Temporal Relationships; (2) Enforcement of System Behaviour; (3) Trans-
lation Process; (4) Encoding of Deployable policies. These processes are graphically 
represented in Figure 19 and are briefly outlined hereafter. 
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1. Establishment of Temporal Relationships. This process is aimed at characterising the 
lowest-level goals as system specifications that are suitable for use with automated 
analysis techniques. 

2. Enforcement of System Behaviour. This process is aimed at forcing the underlying 
managed system behaviour so that the specifications provided by the “Establishment 
of Temporal Relationships” process can be fulfilled.  

3. Translation Process. This process is aimed at identifying a subset of transitions in the 
restricted system behaviour as event-condition-action policies.  

4. Encoding of Deployable policies. This process produces the policies that should be 
deployed onto the actual managed system from the policy-controlled transitions pro-
vided in the previous step. 

 

System Model,
Object Distribution

Goal 
Selection

Enforceable
-deployable 

Policies

Establishment of 
Temporal 

Relationships

Enforcement 
of System 
Behaviour

Translation
Process

Encoding of  
Deployable 

Policies

Policy Refinement Mechanisms

 
Figure 19. Policy Refinement Mechanisms 

 

3.2.4.2 Establishment of Temporal Relationships for Refined Goals 

The main activities behind this process can be summarised in two: (1) Identifica-
tion of temporal relationships between refined goals (lowest-level goals), and (2) repre-
sentation of these temporal relationships by means of suitable formats for use with auto-
mated analysis techniques. This approach is similar to the principle of using temporal lo-
gics to express search control knowledge for planning techniques [Bac00]. The following 
is the rationale of these two activities.  

For the identification of temporal relationships between refined goals, we use the 
fact that the selected goals are a sub-set of KAOS goal graph structures and as such, they 
are intrinsically time-related. Consider for example a parent goal G1 refined into G11 and 
G12 according to the refinement pattern RP3 as shown in Figure 20. For this refinement, 
the KAOS methodology establishes the temporal prescriptions of the parent goal (tp1) and 
of its corresponding refinements (tp11 and tp12) as follows: 

 
tp1, formally expressed as P→◊Q, identifies that “under the occurrence of a state P, the 
state Q must eventually be reached”.  
tp11, formally expressed as P→◊R, identifies that “under the occurrence of a state P, the 
state R must eventually be reached”. 
tp12, formally expressed as R→◊Q, identifies that “under the occurrence of a state R, the 
state Q must eventually be reached”. 
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Central to our study are the Temporal Relationships (TR) between the goal re-
finements: in this particular example between G11 and G12. In a strict temporal ordering 
of properties, the temporal prescriptions of these refinements (tp11 and tp12) suggest that 
property P should hold before property R from which property Q should eventually hold. 
In other words, this ordering of properties implies that G12 should be fulfilled after G11. 
The latter is in fact a temporal relationship between these two goal refinements. Figure 20 
shows the Temporal Relationship TR1 which formally states that “on the occurrence of a 
state P, an intermediate state R must first be reached from which a goal state Q will 
eventually be reached”. 

– Parent Goal G1 –
Temporal Prescription

tp1: P → ◊ Q

RP3

– Goal Refinement G11 –
Temporal Prescription

tp11: P → ◊ R

– Goal Refinement G12 –
Temporal Prescription

tp12: R → ◊ Q

TR1 - G12 should be fulfilled after G11:
On the occurrence of a state P, an intermediate state R must first be 

reached from which a goal state Q will eventually be reached

Temporal Relationship TR1

 
Figure 20. Temporal Relationships of Goal Refinements 

 

Having identified the temporal relationships between goal refinements, the second 
key aspect is the characterisation of these temporal relationships with formal representa-
tions that are suitable for use with automated analysis techniques. In other words, we 
need a formalism to express the ordering of events in time. To this aim we have followed 
the principles of Finite-state specification patterns [Dwy98]. It is worth noticing that 
these patterns are different from the patterns used to refine goals. The Finite-state speci-
fication patterns are used to specify behavioural properties of reactive systems.  

Finite-state specification patterns are classified in two main groups [Dwy98]: 
Occurrence Patterns and Order Patterns. While Occurrence Patterns are used to identify 
behaviours in which a specific state/event takes place, Order Patterns deal with pre-
scribed behavioural arrangement of states/events. A complete classification of these pat-
terns is shown in the upper-left part of Figure 21.  

Occurrence Patterns are classified in Existence, Absence, Universality and 
Bounded Existence. Existence patterns should be used in cases where the most important 
is to specify that a state/event occurs. Absence patterns should be used when it is neces-
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sary to specify that a state/event does not occur. Universality patterns are meant to spec-
ify that states/events occur always throughout a given scope. Bounded Existence patterns 
should be used in situations where it is important to specify the number of times a 
state/event occurs within a scope. 

Order Patterns are classified in Response and Precedence. Response patterns are 
used to represent constraints in the order of states/events. Precedence patterns are con-
cerned with the specification that a given state/event P must be always preceded by a 
state/event Q within a scope.   

In this context, a scope represents a restriction on the time a given property must 
hold. For example, with regard to an Existence Pattern, a scope would be used to define 
whether the occurrence of a state/event holds either globally throughout the execution of 
the system, or before, or after or between other situation(s). The literature [Dwy98] has 
identified five possible scopes: Global, Before, After, Between and After-until. A graphi-
cal representation of these scopes is shown in the upper-right part of Figure 21. 

A Global scope prescribes that a pattern holds for the entire system execution; A 
Before scope is used to indicate that a pattern holds throughout the execution of the sys-
tem up to a given state/event. The After scope is used in situations where the pattern must 
hold after a given state/event and throughout the execution of the system. The Between 
scope helps define behavioural situations in which a pattern must hold at any part of the 
execution of the system from a given state/event to another state/event. Finally the scope 
After-until is like Between with the difference that in the former the designated part of 
the execution continues even if the second state/event does not occur. 

The study of the above patterns, scopes and their representation in different logics 
has been the subject of research for some time [Dwy98]. Thousands of combinations of 
pattern/scopes have been identified in the literature and practical approaches have been 
proposed to elaborate databases that classify combinations of patterns/scopes [Dwy]. The 
classification of pattern/scopes with their corresponding logical representations enables to 
find the formal representation of practically any requirement in a systematic manner. The 
following presents how these concepts have been laid down in our approach. 

Consider G11 and G12 from our previous Goal Selection example and two tempo-
ral relationships as follows: 

• TR1: “G12 is always fulfilled after G11” 
• TR2: “G12 is never fulfilled after G11” 

The Figure 21 shows how the process that formalises the process of specifying 
TR1 and TR2 making use of the pattern/scope approach described above. By means of 
behavioural patterns/scopes we could express such temporal relationships as formal 
specifications of Linear Temporal Logic (LTL) in a systematic manner [Dwy]. As in pre-
vious sections we use the classical temporal operators: ◊ eventually in the future, □ al-
ways in the future, and the classical logic connectors ∧  and, ∨  or, ¬  not, → logical 
implication, ↔ equivalence, and so forth. 
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Figure 21. Establishment of Temporal Relationships rationale 

 

The key issue here is then to define which combination of pattern/scope to re-
trieve from the database of pattern/scopes. Pattern/scopes databases contain entries of 
pattern/scopes combinations as shown in the Selection of Entries in Property Pattern 
Database in the central part of Figure 21.  

• For TR1 we could consider that G12 always holds after the fulfillment of G11. This 
temporal relationship fits into the prescription of a Universally/After Pattern/Scope 
combination and then we instantiate BP3 to represent TR1 in LTL notations. The 
LTL representation of TR1 is as follows: □( G11→□( G12)) 

• For TR2 we could consider that G12 is always absent after the fulfillment of G11. This 
temporal relationship fits into the prescription of a Absence/After Pattern/Scope 
combination and then we instantiate BP2 to represent TR2 in LTL notations. TR2 is 
represented as follows in LTL: □( G11→□(¬  G12)). 

 

So far we have described the process to identify temporal relationships between 
refined goals and the characterisation of these relationships with LTL representations 
with an illustrative example of two selected goals (G11 and G11). Moreover the target of 
the Establishment of Temporal Relationships activity up to the lowest-level goals for 
which the same principle is applied as described hereafter.    

For example, consider the composite Goal Selection shown in Figure 22. Given 
that G11 and G12 are not lowest-level goals, the fulfilment of the highest-level goal G1 
should consider not only the temporal relationship TR1 but also the temporal relationship 
of the lowest-level goals, TR11 and TR12. Consider that the temporal relationship TR1 
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prescribes that “G12 should be fulfilled after G11”; that TR11 prescribes that “G112 should 
be fulfilled after G111”; and that TR12 prescribes that “G122 should be fulfilled after G121“. 
Under these circumstances, the temporal relationship that characterises the fulfillment of 
G1 may prescribe that the lowest-level goals should be fulfilled in the following ordering: 
G111, G112, G121 and G122 for which a similar approach may be followed to characterise 
this temporal relationship with formal LTL representations.  

In our approach, by using the KAOS methodology, we establish a hierarchy 
amongst goals, formalised through goal graph structures. This concept has been crucial to 
consider the fulfillment of High-level Goals as the combination of the fulfillment of low-
est-level goals. Given that lowest-level goals are connected or linked through temporal 
relationships, we propose viewing the fulfillment of High-level Goals by sequences of 
lowest-level goals. This KAOS-based approach is different to traditional plan-based 
techniques in which a goal is identified by mere state predicates [Lam01] or other tradi-
tional approaches in which goals have been acknowledged as a set of desirable final 
states [Bac98]. Our approach takes advantage of temporal relationships to carry out 
automated analysis techniques. 

 

TR11 TR12

TR1

G1

G11 G12

G111 G112 G121 G122
 

Figure 22. Temporal Relationships for composite Goal Selections 

 

 

3.2.4.3 Enforcement of System Behaviour 

This process is aimed at determining the necessary system behaviour that the un-
derlying managed entities should exhibit as to accomplish with the specifications pro-
vided by the “Establishment of Temporal Relationships” process. 

This sub-process relies on automated mechanisms grounded in AI planning tech-
niques, particularly through Model Checking [Giu99], [Cim03]. More concretely, as our 
“Establishment of Temporal Relationships” technique is by means of LTL, we use the 
concept of Planning as Model Checking with LTL in the context of our refinement 
framework [Rub05].  
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In general terms, plans are understood as sequences of actions that lead one sys-
tem from an initial state to a target state [Giu99]. In the Planning as Model Checking with 
LTL technique, a goal can be expressed as an LTL formula and LTL Model Checking is 
used to determine plans that indicate how such system should behave for satisfying the 
goal [Kab97], [Bac98], [Thi06]. The Figure 23 shows a graphical representation of how 
we have laid down this concept in our policy refinement framework for which we provide 
an explanation thereafter. 
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Figure 23. The Planning as Model Checking approach in our framework  

 

As a Model Checking-based approach, the Enforcement of System Behaviour 
process has two inputs; namely the System Model and the established temporal relation-
ships amongst lowest-level goals, i.e. the output of the process Establishment of Tempo-
ral Relationships. Regarding the System Model, we consider that the Administrator De-
veloper uses for this purpose standard UML notations such as class diagrams, collabora-
tion diagrams, state charts and sequence diagrams. Given that the main process relies on 
LTL-based state exploration via Model Checking, this process includes a translation 
mechanism of the UML models into PROMELA, the language interpreted by the SPIN 
Model Checking engine, as shown in Figure 23. 

The SPIN searching engine explores the state space finding the necessary transi-
tions the system must take to reach the sequence of states as prescribed by the LTL for-
mulae (see Search through state exploration Fig. 23). The SPIN searching engine then 
provides a plan of transitions to be executed by the model entities. The process ends 
verifying that the plan includes the states prescribed by the lowest-level goals and that 
these states are reported in the ordering prescribed by the LTL formulae (see Report 
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Plans in Fig. 23). Figure 24 shows a graphical representation of a plan obtained in the 
Enforcement of System Behaviour sub-process` which in turn corresponds to a SPIN sys-
tem trace report. 
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Figure 24. An output of the Enforcement of System Behaviour process  

 

The system trace executions provided by the SPIN searching engine allow to 
identify the managed entities in charge of executing the plan of actions (see Managed en-
tities pointers in Figure 24). In addition, the traces allow to identify the state transitions, 
at every point of the execution, that the corresponding Managed entities should take dur-
ing the plan (see State transition pointers in Fig 24). In addition, in the context of our re-
finement framework, plans satisfying the established temporal relationships of low-
est-level goals may require the action of several model entities and, more important, their 
collaboration. The plans reported by the SPIN searching engine allow identifying how the 
model entities collaborate during state transitions. This situation occurs for example when 
an entity transitions from one state to another as a result of the reception of a notification 
from another entity as illustrated by the pointer Collaboration of model entities in Figure 
24.  

The plans provided by the Enforcement of System Behaviour process indicate the 
behaviour that the managed entities should exhibit in runtime to fulfill the High-level 
Goals i.e. the goal selection. Since the plans include every transition at every point of the 
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execution, the Model Checking reports do not identify the state transitions that should be 
controlled by policies from those inherent of the system functioning. As a consequence, it 
is impossible to find meaningful policy information from the execution reports produced 
by SPIN. Therefore, further analysis is necessary to acquire meaningful policy informa-
tion from the reported trace execution. The following section introduces the concept of 
Translation Process [Rub06a], [Rub06b] that we have developed on purpose to abstract 
policy information from system trace executions.  

 

3.2.4.4 Translation Process 

This process is intended to identify the policies that would be necessary to repro-
duce the system trace execution reported by the Enforcement of System Behaviour proc-
ess. This process relies on the principle that policies control system state transitions 
[Str04] and that the reported plans above mentioned include, among others, the pol-
icy-controlled state transitions.  A Translation Process [Rub06a], [Rub06b] is used to 
abstract the policy-related information from policy-controlled transitions. In this sense, it 
is mandatory that the developer provides the state transitions that are controlled by poli-
cies during the design/development of the system.  

The first step towards the application of Translation Process is the identification 
of transition plans. A transition plan (TP) is a sub-section of a system trace execution 
that includes a policy-controlled state transition and that is characterised as follows:   
Be  
• PSi a pre-condition in a managed entity S 
• PQi a pre-condition in a managed entity Q 
• TSi,Si+1 a state transition in the managed entity S 
• TQi,Qi+1 a policy-controlled state transition in the managed entity Q as a result of 

transition TSi,Si+1 

Then, the transition plan TP is represented as TP=[PSi,TSi,Si+1 => PQi,TQi,Qi+1] and its se-
mantics is: “on the occurrence of PSi in the managed object S, preceding the transition 
TSi,Si+1, the managed object Q must enforce the transition TQi,Qi+1”. A graphical repre-
sentation of a transition plan TP is illustrated in the left part of Figure 25. 

The Translation Process materialise the above prescription with 
Event-Condition-Action (ECA) policies. For this, we have used the Ponder obligation 
policy structure [Dam01]. Obligation policies are event-triggered Condition-Action rules 
that define the activities subjects must perform on objects in a target domain.  

In the context of our refinement approach we consider that a policy-controlled 
transition is the result of an action enforcement within the target domain. Hence, transi-
tions are interpreted as actions executed on a managed object. A graphical representation 
of the Translation Process is shown in the right part of Figure 25. This mapping is done 
following the Ponder prescription that Obligation policies are event triggered and that 
define the actions that subjects must perform on objects of the target domain.  
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Figure 25. Representation of the Translation Process  

 

Typical outputs of the Enforcement of System Behaviour process may include 
more than one policy enforceable transition (e.g. transition TQi,Qi+1 in Fig. 25) and conse-
quently multiple transition plans. The transition plans are mapped to their corresponding 
policy fields by applying the Translation Process. Consequently, the result of the Trans-
lation Process sub-process is a set of policy fields (e.g. policy Qi_enforced in Fig. 25), 
one for each policy-controlled transition.  

3.2.4.5 Encoding of Deployable Policies 

In order to deploy the abstracted policies onto the managed system, subjects and 
targets identified above must be matched to the actual object distribution of the system. 
This is the aim of this final refinement process.  

The policy refinement framework considers that the Administrator Developer 
should document the Object Distribution during system design and development as part 
of the System Model. The Encoding of Deployable Policies process makes use of this 
information to encode deployable policies from the policy fields provided by the Trans-
lation Process. Figure 26 shows a graphical representation of final step within the re-
finement process scenario. This process is achieved in a fully automated manner once the 
object distribution documentation is available during the operation of the system. 
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Figure 26. Encode Deployable Policies sub-process within framework  

 

 

3.3 A Functional Prototype for Policy Refinement 

Whereas in Section 3.2 we have described a policy refinement framework detail-
ing its different constituent functional components, this section deals with how to provide 
an implementable solution [Rub06a] [Rub06b] based on the former.  

3.3.1 General outline of the prototype 

3.3.1.1 Components of the solution 

From a functional point of view, we distinguish three main functions in the re-
finement process; (1) Goal Refinement Support; (2) Goal Selection; and (3) Policy Re-
finement Mechanisms. Other supporting functions help in documenting the System 
Model. Concerning the epoch in the execution of these functions, we differentiate be-
tween functions that are carried out during the development/design of the system, and 
functions that are carried out during the start up/operation of the system.  

Our solution has been designed and implemented as a multi-component architec-
ture, in the framework of the DSC platform [Mee00]. A total of seven DSC components 
have been identified as depicted in Figure 27. The Objectiver Package and the Goal 
Manager implement the Goal Refinement Support and the Goal Selection Support func-
tions, whereas the Requirements Manager, the Search Manager and the Policy encoder do 
the Policy Refinement Mechanisms. The Behaviour Manager and the Inventory Manager 
are supporting components that handle information related to the System Model.  
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Figure 27. Class Diagram of our Solution  

 

The Figure 28 shows a sequence diagram involving the above mentioned compo-
nents in a typical refinement scenario that will be referenced in the subsequent compo-
nent description.  
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Figure 28. Sequence Diagram of our Solution  

 

3.3.1.2 Goal Management components 

The Goal Management components are the Objectiver Package and the Goal 
Manager. Figure 29 shows these two components in context.  
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Figure 29. Goal Management Components of the prototype  
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The Objectiver package consists of the Objectiver toolkit [Obj]. The Objectiver 
toolkit provides a GUI from which the Administrator Developer is enabled to carry out 
the goal refinement process during the development/design of the system. In this sense, 
the Objectiver package is used to specialise the Goal Refinement Support function of the 
refinement process (elaborateGoals interaction in Fig. 28).  

During the operation of the system, the Objectiver GUI is used to define the ad-
ministrative guidelines that the Consultant wants to fulfill with the policies. For this, we 
take advantage of the Objectiver explorer facility as the means to browse through the goal 
libraries and to select the strategies that better reflect a given administrative view. In this 
sense, the Objectiver package is used to carry out the Goal Selection Support function of 
the refinement process (selectGoals interaction in Fig. 28). 

Once the Consultant has selected the goals that better reflect his/her administra-
tive criteria, the Goal Manager receives the order to start the policy refinement process 
from the Goal Selection (startPolicyRefinement interaction in Fig 28). This order will be 
called “Request for Policy Refinement (RPR) submission” in the remaining of the Thesis. 
It is worth mentioning that for large-scale refinements, the prototype can handle multiple 
RPR submissions at a time. 

When the Goal Manager receives a RPR, it queries the relevant information af-
fecting the Goal Selection from the goal database in the Objectiver package (getObjec-
tiverData interaction in Fig 28). The aim is to make sure that the Goal Selection is logi-
cally complete in the sense that the selected goals entail the higher-level goal fulfillment 
(verifyGoalSelection interaction in Fig 28). In order to carry out this analysis the Goal 
Manager retrieves information like goal names, temporal prescription of goals, refine-
ment patterns used to decompose each parent goal, etc. 

Worthy to mention is the Open API that has enabled the use of Objectiver as a 
server within our prototype. In fact, the Goal Manager implements the Objectiver Open 
API to perform queries to the Objectiver toolkit.  

3.3.1.3 Components specialising the Policy Refinement Mechanisms 

The Policy Refinement Mechanisms are specialised by the Requirements Man-
ager, the Search Manager and Policy encoder components. The target of these compo-
nents is to produce deployable/enforceable policies in a fully automated manner from the 
Goal Selection produced by the Goal Manager. Figure 30 shows the layout of these 
components in the context of our policy refinement framework. The figure also shows the 
supporting components that make possible the automation of the Policy Refinement 
Mechanisms, namely the Behaviour Manager and the Inventory components.  
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Figure 30. Components specialising the Policy Refinement Mechanisms   

 

• The Requirements Manager implements the Establishment of Temporal Relation-
ships process. It receives the Goal Selection provided by the Goal Manager (formu-
lateRequirements interaction in Fig 28). This component is aimed at producing the 
LTL formulae that characterise goal fulfillment. Generally speaking, this component 
implements algorithms that first abstract the temporal relationships between low-
est-level goals and then characterises those relationships by means of LTL formal 
representations. Internally it implements a database of patterns for finite-state verifi-
cation that allows producing LTL formulae from specific requirements in a fully 
automatic manner.  

• The Search Manager is in charge of producing policy fields from the LTL formulae 
(searchPolicyFields interaction in Fig 28). It implements the Enforcement of System 
Behaviour and Application of Translation Process mechanisms of our framework. 
For this purpose it integrates a SPIN [Hol04] search engine to acquire the system 
trace executions that commit with the LTL goal characterisation. This component 
uses the PROMELA code (getPromelaCode interaction in Fig. 28), generated by the 
support component Behaviour Manager (described below). In order to produce 
Event-Condition-Action (ECA) policies automatically, this component implements an 
algorithm that applies Translation Process to the system trace executions. For this, the 
Search Manager handles the policy-controlled transitions documented through the 
Behaviour Manager. 

• The Policy encoder implements the Encoding of Deployable Policies process of the 
overall policy refinement process (encodePolicies interaction in Fig. 28). It follows 
the syntax of the Ponder specification language [Dam02] to encode ECA deployable 
policies committing to the actual object distribution (getObjectDetails interaction in 
Figure 28). This component includes a Ponder syntax parser and an adapted Ponder 
compiler to automate the compilation process. 
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• The Behaviour Manager is a supporting component that handles the System Model 
with regard to the behaviour of the managed objects. It translates UML specifications 
into PROMELA code (the language used by SPIN) and manages this information 
during the refinement process, i.e. it povides information related to the system speci-
fication (getPromelaCode interaction of Fig. 28). This component provides the means 
to document the behaviour of the managed objects of the System Model with UML 
representations as active classes, state machines, collaborations and interactions 
(documentSystemBehaviour interaction in Fig. 28). The Behaviour Manager imple-
ments the libraries provided by HUGO/RT [Bal04]. HUGO/RT is a UML model 
translator that allows translating UML models into code for SPIN and other 
off-the-shelf tools. 

• The Inventory Manager is also a supporting component that handles the object dis-
tribution of the actual managed objects of the System Model. A well-defined structure 
of this information is necessary to automate the policy refinement mechanisms. The 
Inventory implements a database for the Administrator Developer to document this 
information during the design of the system (populateObjectDistribution in Fig. 28). 
During system operation the latter information is made available to other components 
like for instance to the Policy Encoder. 

Our policy refinement prototype has been implemented as a distributed environ-
ment [Rub06a], [Rub06b] making use of the Distributed Software Component (DSC) 
development framework [Mee00]. The DSC SDK is a development environment for 
building CORBA (Common Object Request Broker Architecture)-based, distributed 
component applications. It includes useful tools for developing and testing distributed 
applications. A brief description of the capabilities of the DSC toolkit can be found in the 
Appendix B. Also, a detailed description of our prototype can be found in Appendix C.  
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3.4 Conclusions 

This Chapter has provided two main contributions to the policy refinement area. 
(1) we have provided a holistic approach to policy refinement grounded in requirements 
engineering and planning by means of Model Checking principles [Rub05], and (2) we 
have materialised the concept of the proposed approach with a novel and practical solu-
tion that makes it possible to address the policy refinement problem [Rub06a],[Rub06b]. 
The peculiarities of the assessments of these two contributions and some future directions 
are provided hereafter. 

The crucial aspects of our approach are the following three key issues:  
• The representation of the aims of policies at different levels of abstraction to ground 

the policy refinement process. 
• The definition of mechanisms that make possible the production of enforce-

able/deployable policies from high-level abstract requirements. 
• The identification of the administrative tasks that should be carried out throughout the 

life cycle of a policy-based system. 

For the first key issue we have borrowed the idea of considering the achievements 
of policies as goals [Lam99], [Ban04] and therefore we can make use of Requirements 
Engineering techniques [Dar96] to formalise the representation of the aims of policies at 
different levels of abstraction. Moreover, we have adopted the KAOS goal-oriented 
methodology [Dar96] and made use of its technical foundations to ground the analysis 
techniques on which our refinement approach relies.  

The second key aspect of the refinement framework overcomes the limitations of 
the adopted goal elaboration method such as the lack of support to relate goal fulfillment 
to system’s behaviour and consequently with the abstraction of policies that make possi-
ble such a goal fulfillment. For this purpose we have taken advantage of the logical 
foundations of the KAOS methodology, which is grounded in Linear Temporal Logic, 
combined with the use of LTL-based state exploration through Model Checking. So far, 
these logical foundations have not been exploited in policy refinement contexts and con-
sequently their potential to systematise the policy refinement process have remained un-
exploited or unconsidered. Specifically, the contributions can be stated as follows:  

• We have introduced the use of specification patterns for behavioural properties as the 
means to represent the fulfillment of High-level Goals, namely establishing temporal 
relationships amongst lowest-level goals. This has allowed us to represent goal ful-
fillment with formal notations. Given that our analysis technique relies on the Plan-
ning as Model Checking approach, we have used Linear Temporal Logic notations to 
specify the Establishment of Temporal Relationships. It must be realised that without 
formal relationships between goals at different levels of abstraction, it would be prac-
tically impossible to systematise the policy refinement process. 

• We have introduced the planning as Model Checking approach as the means to ac-
quire the behaviour that a managed system should exhibit as to fulfill High-level 
Goals. In addition, we have provided the methods that should be considered when 
adopting Model Checking searching engines, as the means to systematise the abstrac-
tion of policy-aware information from runtime system execution traces. We have 



A Policy Refinement Framework   61

presented the description and the considerations to produce enforceable/deployable 
policies from abstract requirements making use of the above techniques. 

With regard to the third key aspect of the refinement framework, we have clari-
fied the nature of the activities that the administrative parties should carry during the life 
cycle of the policy system. It is imperative that, during the design/development of the 
system, the administrative parties should document the System Model and assess the 
Goal Refinement process. In this approach, there is no means to delegate these two ac-
tivities on automated processes and hence human intervention is mandatory. During the 
start up/operation of the system, through Goal Selection, the framework provides the 
means to abstract automatically policies aligned to high-level administrative guidelines.  

Work done so far is open ended. We outline some of the most relevant directions 
that could be explored with regard to the framework presented in this Chapter. 

Our policy refinement process has been limited to consider exclusively Achieve 
goals, thus leading to relate the concept of achievable goals with obligation policies. Fu-
ture work could be directed to explore the usefulness and implications of other goals 
supported by the KAOS methodology like Cease, Maintain and Avoid goals. We envis-
age that the consideration of these types of goals may enable to carry out analysis for ap-
plication domains in which authorisation, access control and security issues have special 
relevance.  

A key concept that has enabled us to systematise the policy refinement process is 
the Translation Process [Rub06b] concept by means of which we derive policies from 
system state transitions. So far we have considered unconditional executions of actions, 
namely we have considered that all states and transitions are permitted in a policy-based 
system. Future work could be directed to consider non permitted states likely dictated by 
Maintain/Avoid goals. In this sense, our Translation Process could be extended to con-
sider the generation of actions based for example on guard conditions. On the other hand, 
so far we have considered only situations where the Model Checking approach reports 
single system behaviour traces. Nevertheless, considering multiple traces would allow 
choosing between different transition plans, possibly for different conditions and hence to 
encode policies for different sets of conditions.  

The policy refinement framework described in this Chapter provides the means to 
carry out analysis to bridge the gap between High-level Goal fulfillment and the acquisi-
tion of enforceable/deployable policies. Moreover we are still far away from proposing a 
generic solution that bridges the gap between SLA fulfillment and the formulation of 
High-level Goals. This is a critical and challenging issue that may possibly imply to adapt 
other mechanisms to relate service management, system performance, goal specialisation 
and feedback mechanisms for particular application domains. 
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Chapter 4  A Systematic Approach to Goal Re-
finement  

4.1 Introduction 

In the previous chapter we have presented the decomposition of system goals at 
different levels of abstraction. As goals can be seen as the aims to be fulfilled by policies, 
the above implies a mechanism to find enforceable policies that finally should accom-
plish the system goals. In addition we have also proposed the steps of a systematic re-
finement process. 

The main motivation of this Chapter is to provide a self-contained example of 
how the goal refinement process can be assessed in management environments. Our 
claim is that the framework and the techniques we use are application-domain independ-
ent. Therefore, the above mentioned example is illustrating a systematic approach to goal 
refinement. The key concept consists of driving the goal refinement process by the com-
position hierarchy of the managed system.  

This Chapter is divided in four parts. After this Introduction, Section 4.2 provides 
the principles to define a hierarchical composition of the managed system; Section 4.3 
describes how to assess goal refinement based on the hierarchical composition of the 
system. Finally Section 4.4 provides the conclusions on this systematic approach. 

4.2 Identifying the System Composition Hierarchy 

We consider a management system as providing a service (or even a set of ser-
vices) and that the management system relies on system components supporting this ser-
vice. Then we propose to drive the goal refinement process making use of the managed 
system composition. The idea behind the use of this service decomposition is to allow the 
establishment of a parallelism between the component system functions and the goals 
coming out of a refinement cycle process. In other words, it seems reasonable to decom-
pose a goal in sub-goals according to the system composition architecture. To better de-
scribe this approach we will provide a running example that is formulated based on the 
principles developed in the context of the IST project WINMAN – WDM and IP Net-
work Management [Kar05]. A High-level architecture of the WINMAN system is shown 
in Figure 31 for which a brief description is provided thereafter.  
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Figure 31. WINMAN high-level architecture   

WINMAN is a management-plane-based solution for the provisioning of IP over 
WDM connectivity services with guaranteed quality of service. The WINMAN architec-
ture adopts a multilayer model spanning different management functional areas. The ser-
vice management layer (SML) supports the visibility of only service-related managed 
objects (e.g., service-related connection termination points). In the network management 
layer (NML) the system view consist of connections with characteristic QoS parameters. 
Finally, in the element management layer (EML), equipment-related information (e.g., 
ports, cards) is represented. WINMAN focuses on the network management layer 
(NML), covering three management functional areas: configuration management (CM), 
fault management (FM), and performance management (PM). The NML is further subdi-
vided in two sub-layers, one being the integrated or inter-technology network manage-
ment sub-layer, with the corresponding network management system (INMS), and the 
other being the technology-dependent sub-layers, comprising the IP network management 
system (IP NMS) and WDM network management system (WDM NMS). Each of these 
NMSs consists of the specialization of a generic network management system, perform-
ing configuration, fault and performance management tasks accordingly. 

Figure 32 shows a generic system composition hierarchy and an instantiation for 
the WINMAN management system. The following are the proposed guidelines to define 
the composition hierarchy shown in the aforementioned figure: 

1.- Identification of the service provided by the managed system. Considering that any 
management system provides a service, the top level of the system composition hierarchy 
will be represented by the service that such system provides. In the left part of Figure 32 
we identify this highest-level of the system composition hierarchy as “Service to be pro-
vided”. For example, an IP over WDM connectivity service is the basic service provi-
sioned by the WINMAN system. The highest-level composition of the WINMAN system 
will then be defined as “IP over WDM Connectivity Service”. 
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Figure 32. Generic system composition hierarchy and a WINMAN sub-section 

 

2.- Identification of the system functions. Linked to the highest-level of the system com-
position mentioned above, there would be as many lower-level system functions sup-
porting the “Service to be Provided”. In other words, the next level of the system compo-
sition hierarchy would be defined by the system functions on which the service provi-
sioning relies. Each function of the system is represented as “System Function” as we 
show in the left-part of Figure 32. In our example, the WINMAN system implements 
functions of Configuration, Performance and Fault Management. Consequently, the 
aforementioned functions would define the “Configuration Management Function”, 
“Performance Management Function” and “Fault Management Function” which are in 
turn linked to the “IP over WDM Connectivity Service” identified above. 

3.- Identification of the system sub-functions. Each function should be linked to the 
sub-functions that integrate the corresponding system function as we show in Figure 32. 
The “System Function A” in our composition hierarchy is in turn integrated by “System 
Sub-function AA”, System Sub-function AB, etc. For instance, in the WINMAN exam-
ple, we show that the Performance Management function is sub-divided in three 
sub-functions; QoS Managent, Performance Collection, and Threshold Management be-
cause has been decided that way by the WINMAN system developer. These three mod-
ules will then define the “QoS Management Sub-function”, “Performance Collection 
Sub-function”, and “Threshold Management Sub-function” respectively.  

This third step should be carried out repetitively in the cases where a System 
Sub-function is integrated by other sub-functions. The later sub-functions will build up 
the lower level composition hierarchy of the System Sub-functions identified above, e.g. 
the “Sub-function AA1” and “Sub-function AA2” represent two sub-functions that com-
pose the “System Sub-function AA” as we show in Figure 32. In our example, WINMAN 
has been designed to integrate sub-functions well defined by technological domain, 
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namely IP domain, WDM domain, and an Inter-technological Network Management 
(INMS) domain. Each of these sub-functions will define one level below the correspond-
ing WINMAN System Sub-functions. A more concrete example is the “Performance Col-
lection Sub-function” that is carried out by the “INMS PerfCol Sub-function”, “WDM 
PerfCol Sub-function”, and “IP PerfCol Sub-function” as we show in the right-part of 
Figure 32. 

5.- Identify the parameters that influence each Sub-function in a every System Module. 
This identification step will define the lowest-level of the system composition hierarchy. 
These parameters will represent the parameters that have some impact on the execution 
of the corresponding sub-functions. In our system composition hierarchy for example, 
“Parameter AA1.1” is a parameter that influences the execution of “Sub-function AA1” 
which in turn is part of the “System Sub-function AA” as we show in the left part of Fig-
ure 32. In our WINMAN example, consider the case of the Performance Collection Mod-
ule in the IP sub-function of the WINMAN approach. Here, the data to collect from the 
IP network is controlled by three parameters; namely “parameters to retrieve”, “time in-
tervals of the collection”, and “granularity of the collection”. In this case, the “IP PerfCol 
Sub-function” would yield three lower-level parameters in the system composition hier-
archy, namely the “ParamToRetrieve”, “Collection Interval”, and “Granularity” as we 
show in the right part of Figure 32. 

4.3 Addressing the Goal Refinement Process 

We describe the general guidelines to carry out Goal Refinement driven by the 
hierarchical composition of the system in the context of our policy refinement frame-
work. 

4.3.1 Defining High-level Goals 

In addition to defining the composition hierarchy of the managed system, another 
aspect to be addressed is the definition of the High-level Goals that such system can han-
dle. Generally speaking, it is a matter of realistic judgment to decide which High-level 
Goals should be defined in the target system [Mof93]. Several methods have been pro-
posed to specify High-level Goals and to provide indicators to assess IT performance re-
lated to them [Bar06]. Although this is an application-oriented issue, it is imperative to 
express and represent High-level Goals in a feasible manner.  

It is the Administrator Developer who should define the High-level Goals that the 
system can handle. A key issue during the definition of High-level Goals is the associa-
tion of High-level Goals with the system functionality. Namely, it is imperative that 
High-level goals should be aligned with the scope of the target system. For this reason, it 
is justifiable that the Administrator Developer defines the High-level Goals during the 
design of the system. In addition, High-level Goals should be consistent with the func-
tionalities designed/implemented by the target system. 

Following on with the WINMAN approach, it is comprehensible that the Admin-
istrator Developer defines goals that allow him control the way that connectivity services 
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are provisioned with the network managed with WINMAN. High-level Goals will be set 
in correspondence to the main WINMAN system function (connectivity service provi-
sioning) as well as with the three main sub functions, namely configuration management, 
fault management and performance management. It is worthy to mention in this example 
that it would be impossible to think of High-level Goals to commit with billing or pricing 
of the connectivity services due to its lack of functionalities to handle those High-level 
Goals.  

From the above, three basic High-level Goals for the WINMAN system could be 
defined as “Connectivity Configuration Set”, “Fault Handling Set”, “Service Perform-
ance Set”. While the “Connectivity Configuration Set” High-level Goal sets the ground to 
control the way that connections are configured in the network, the “Fault Handling Set” 
High-level Goal is defined to control the way WINMAN should react when faults occur 
in the underlying network. Finally, the “Service Performance Set” High-level Goal tar-
gets the assurance of QoS metrics in the connectivity services provisioned with WIN-
MAN. 

4.3.2 Assessing the Goal Refinement Process 

Coming back to what we stated before, Goal refinement is an activity designated 
to elaborate the goal graph structures to which the system must be adhered. These 
goal-graphs represent both, the requirements and the different options through which they 
could be achieved. This activity is application-dependent and should be carried out by the 
Administrator Developer at system design. 

4.3.2.1 Starting the refinement process 

The goal refinement process starts with the definition of the root goal for the goal 
graph structure. The root goal should be defined taking into account the basic functional-
ity of the target system. As we described earlier, the basic functionality of the system can 
be controlled with the High-level Goals that the developer has defined. We propose to 
refine a root goal with the High-level Goals of the system. For this initial step, refinement 
patterns should be brought into the context of the application domain. 

Another way is to skip this initial process and directly start refining each 
High-level Goal independently and then consider as many goal graph structures as 
High-level Goals. Nevertheless, we will exemplify the policy refinement process consid-
ering root goals. For this, let us consider the WINMAN system introduced in advance.  

The root goal could be formalised as “IP over WDM Connectivity Set” since 
WINMAN is aimed at provisioning IP connectivity services making use of underlying 
managed sub-systems. This process is graphically illustrated in Figure 33 in which we 
make use of our prototype to exemplify this initial step of the goal refinement process. 

Having defined the root goal “IP over WDM Connectivity Set”, the next step is to 
bring a refinement pattern into the WINMAN context to refine it. Here, the nature of the 
system requires that the three functionalities, Configuration, Performance and Fault, 
should be set to provision WINMAN services. In turn, each of these functionalities is 
achieved by the corresponding High-level Goals “Connectivity Configuration Set”, 
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“Fault Handling Set”, and “Service Performance Set”. In order to achieve this, the Ad-
ministrator Developer brings a multiple-milestone refinement pattern into this particular 
context as shown in Figure 33 (see note “Bringing refinement patterns into domain con-
text”).  

Consequently, the root goal “IP over WDM Connectivity Set” is refined into the 
goals “Connectivity Configuration Set”, “Fault Handling Set”, and “Service Performance 
Set” altogether with a multiple-milestone refinement pattern. The outcome of this initial 
process is a goal-graph structure that consists of three sub-trees defined by the High-level 
Goals of the system as illustrated in the Objectiver GUI of our prototype (Fig. 33).  

 

Bringing goals into
domain context

Bringing refinement patterns
into domain context

 
Figure 33. Starting the Goal Refinement Process  

 

4.3.2.2 Goal refinement driven by the system composition hierarchy 

In this second phase of Goal Refinement, the system composition hierarchy is 
used to drive the refinement of the High-level Goals that define the trees of the initial 
goal graph structure. Same as the initial phase, refinement patterns are brought into the 
context of each application domain to formalise the refinements at each level of the re-
finement. This process is also exemplified making use of our WINMAN example. 

For the “Service Performance Set” High-level Goal, the Administrator Developer 
should look at the composition hierarchy in that particular node. In this particular exam-
ple this composition has been defined as “Performance Management Function” which in 
turn will be used to define the achieve goal “Performance Management Function Set”. 
Consequently, the “Service Performance Set” High-level Goal is refined into the goal 
“Performance Management Function Set” as we show in Figure 34. The same principle 
applies to the Configuration and Fault management functions which would yield to the 
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refinements “Configuration Management Function Set” and “Fault Management Function 
Set” as shown in Figure 34. 

 

 
Figure 34. Refining the High-level Goals of WINMAN  

 

Following on with the sub-tree defined by the “Performance Management Func-
tion Set” achieve goal, according to the WINMAN composition hierarchy, the “Perform-
ance Management Function” is achieved by the “Performance Collection Sub-function” 
and other sub-functions. The “Performance Collection Sub-function” is composed by the 
“INMS PerfCol Sub-function”, “WDM PerfCol Sub-function” and “IP PerfCol 
Sub-function” (see composition hierarchy in Figure 32). Taking this into account, the 
goal refinement process should consider that the “Performance Management Function 
Set” achieve goal would be refined into the achieve goals “Performance Collection Set” 
as shown in Figure 35, and other goals defined by the rest sub-functions in charge of 
achieving the Performance Management Function. The later goals are all represented as 
“Other Requirements for Performance Management” in Figure 35. Going a step further, 
the “Performance Collection Set” goal would be refined into the “INMS PerfCol Set”, 
“WDM PerfCol Set”, and “IP PerfCol Set”. For the above refinements the Administrator 
Developer brings milestone refinement patterns into the context of the WINMAN ap-
proach. This level of the refinement process is graphically shown in Figure 35.  
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Figure 35. Refining the goal Performance Management Function Set  

 

Going a step further in the goal refinement process guided by the WINMAN 
composition hierarchy, the “IP PerfCol Set” goal is refined into the goals “Parameters To 
Retrieve Set”, “Interval Collection Set”, and “Collection Granularity Set”. The Adminis-
trator Developer brings milestone refinement patterns into this particular context as we 
show in Figure 36. Further refinements for these goals would represent the alternatives to 
fulfill the corresponding goal as we explain hereafter. 

The alternatives to achieve the “Parameters To Retrieve Set” achieve goal are, 
amongst others, “Average Delay Set“, or “E2E Pkt Loss Set“, or “Available BW Set”, or 
“Explicit Params Set”. These goals are representative of the different alternatives for 
performance parameters that can be retrieved from the network with WINMAN. The 
lower part of Figure 36 shows this refinement level together with the resulting refine-
ments for the “Interval Collection Set” goal and the “Collection Granularity Set” goal. In 
all these cases, the Administrator Developer brings “case-driven” patterns into the con-
text of the WINMAN solution.  

The goal refinement process ends when each sub-tree emerging from the root goal 
“IP over WDM Connectivity Set” is refined up to the lowest level similar as the ones de-
scribed above. The goal graph structures should be available for further use. 
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Figure 36. Refining the IP PerfCol Set goal of WINMAN  
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4.4 Conclusions 

This Chapter has presented how the high-level goals that a system designer estab-
lishes for a policy driven system and the system compositional hierarchy should be used 
to systematise the goal elaboration process. To the best of our knowledge, no other work 
has defined generic guidelines to take advantage of hierarchical relationships of policy 
systems in favour of the policy refinement problem in management contexts. As we de-
scribed in Chapter 3 the outcome of the goal refinement is essential for the acquisition of 
enforceable policies from given High-level Goals. Therefore, the contribution of this 
Chapter is the methodology to address the goal refinement process in management sys-
tem contexts [Rub06c]. To this aim we considered the following key issues: The defini-
tion of the management system hierarchical composition, the definition of high-level 
goals to which the target system must be adhered and finally, the assessment of the goal 
refinement process making use of the former.  

The outcome of this methodological approach is a goal graph, which integrates 
goal refinement patterns, that mimics the management system composition hierarchy. In 
this sense, system compositional hierarchies are essential to formalise the goal refinement 
process. In addition, it would be very difficult, if not impossible, to achieve systematic 
goal refinement without specifying High-level Goals and their relationships with the lev-
els of the system compositional hierarchy.  

The main advantage of our approach is that it makes use of information and con-
cepts that are necessary for the design and implementation phases of the managed system. 
In fact, our proposal organises and formalises information to address the policy refine-
ment problem that anyway should be used for system design purposes. The incremental 
effort for a system designer shouldn’t be significant. 

On the other hand, this methodology is clearly application-domain independent 
and we can claim it as an advantage as well. Nevertheless, it is a fact that applying it to 
specific refinement problem solving requires a deep knowledge of the target system 
and/or the application domain. This has been made clear in the above subsections, where 
each step of the process is driven by decisions that only the system designer can adopt.  
Anyhow, we consider that this is an affordable price to systematise the goal refinement 
process and consequently, the policy refinement problem. 
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Chapter 5  Application Scenario 

5.1 Introduction 

Policy refinement has been regarded as a crucial process for policy-based man-
agement although the research community has remained reticent to analyse its overall 
implications in complex environments. For instance, previous works presenting models, 
methodologies, or approaches addressing the refinement problem have not been yet 
evaluated in complex or real-life environments and as such, their feasibility to address 
realistic refinement scenarios is questioned.   

The main motivation of this Chapter is to provide a complete view [Rub06c] of a 
refinement scenario in management solutions. For this purpose we deal with the critical 
nature of addressing the overall implications to refine enforceable policies from abstract 
requirements intended to manage Quality of Service provisioning.  

In this Chapter we address policy refinement for intra-domain Quality of Service 
Management based on the principles developed in the context of the IST project 
TEQUILA - Traffic Engineering for Quality of Service for the Internet at Large Scale 
[Tri01]. We demonstrate the feasibility of our refinement framework and our systematic 
approach with a real and complete scenario applied to this domain. To the best of our 
knowledge, no other work in the literature has provided a complete refinement scenario 
applied to real-life management situations. 

We initially describe the QoS Management approach on which our scenario re-
lies; we describe the TEQUILA solution which provides an overall architecture for QoS 
support in IP Networks by bringing Service Management and Traffic Engineering func-
tionalities together in a collaborative environment. For this management solution we ap-
ply our systematic approach that consists on the definition of a QoS-aware policy hierar-
chy and the definition of QoS-aware High-level Goals, both tailored to address policy 
refinement following the principles developed in our refinement framework. Following 
on, we provide the execution of our refinement scenario making use of our prototype im-
plementation, and provide the result of its execution. 

Due to the broad scope and the complexity of the policy refinement process, this 
Chapter is sectioned in eight parts: following this Introduction, Section 5.2 provides the 
rationale of the application domain on which our scenario relies; Section 5.3 describes a 
QoS-aware system composition hierarchy and Section 5.4 presents the goal refinement 
process for QoS Management. In Section 5.5 we assess goal selections tailored to QoS 
Management, making use of our prototype implementation. We provide a description of 
the automated acquisition of policies of our refinement scenario in Section 5.6. Section 
5.7 describes the policies refined through the scenario and Section 5.8 provides a brief 
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analysis of the enforcement of the policies refined in the scenario. Finally Section 5.9 
concludes this chapter providing some future work in the policy refinement area. 

5.2 Quality of Service Management Application Domain 

In order to support the Quality of Service (QoS) guarantees for the forthcoming 
services, Next Generation IP Networks will make use of technologies such as Differenti-
ated Services (DiffServ) and Multi-Protocol Label Switching (MPLS) for traffic engi-
neering and network-wide resource management. In addition, the volume and type of the 
traffic injected by these services will need to be controlled as the means to both, prevent 
QoS degradation of active services, and verify that clients inject traffic in accordance 
with pre-agreed Service Level Agreements (SLAs). In order to address the challenge of 
QoS delivery in Next Generation IP Networks, the research community has envisaged the 
integration of Service Management and Traffic Engineering functions [Tri01].  

In this Section, we present an approach for intra-domain QoS Management based 
on the principles developed in the context of the IST project TEQUILA - Traffic Engi-
neering for Quality of Service for the Internet at Large Scale [Tri01]. To the best of our 
knowledge, this is the only approach that brings together Service Management and Traf-
fic Engineering functionalities to provide an overall architecture for QoS support in IP 
Networks. We initially present the generic concept of this approach, and we then lay 
down the use of policies as a means of extending the programmability for both, Service 
Management and Traffic Engineering functions. 

5.2.1 Bidirectional Approach for QoS Management 

A simplified representation of the TEQUILA approach is depicted in Figure 37, 
which demonstrates the integration of Service Management and Traffic Engineering 
functions to achieve Quality of Service provisioning. 

The Service Management part has two objectives: the maximisation of traffic en-
tering the network, and the commitment of the service provider’s QoS guarantees. As the 
traffic entering the network is a function of the number of subscribed contracts and active 
services, admission control mechanisms are defined for service subscriptions and invoca-
tion requests. QoS commitment is addressed by enforcing preventive and corrective ac-
tions as a means to police misbehaving users, and also to resolve potential cases of net-
work congestion. 

The Traffic Engineering functionality is concerned with the management of 
physical network resources. An off-line dimensioning process is responsible for mapping 
the predicted traffic demand to the physical network resources. In addition, real-time op-
erations are implemented as the means to first, balance the load amongst the established 
Label Switched Paths (LSPs) in the network, and second, to ensure that link capacities 
are appropriately distributed among the different Per-Hop-Behaviours (PHBs) sharing 
each link. These real-time operations react dynamically to statistical traffic fluctuations. 
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Service Management 

Traffic Estimation Matrix
• Bounds of Traffic Demand
• Demand classified by QoS classes
• Demand for each traffc trunk

Resource Availability Matrix
• Bounds of Available Resources
• Availability classified by QoS classes
• Availability for each traffic trunk

Gereral Objectives
• Maximisation of traffic entering the network
• Commitment of Service Provider guarantees
Instruments
• Service Subscription Control (SLS-S):

• Trade-off between subscriptions
and resources

• Service Invocation Control (SLS-I):
• Active services management
• Quality of Service Commitment

• Traffic Forecast (TF):
• Mutiplexing Factors for Estimations

Traffic Engineering

Gereral Objectives
• Cost-effective physical resources management
• Adjust to statistical load fluctuations

Instruments
• Off-line Network Dimensioning (ND):

• Accomodation of Predicted Load
• Dynamic management of resources (DRsM):

• Load balancing between routes
• Allocation of link resources between

Per-Hop-Behaviors

 
Figure 37. Bidirectional approach for intra-domain QoS management 

 

In general terms, the Service Management function abstracts and classifies the 
traffic demand into QoS classes, i.e. traffic streams sharing the same edge-to-edge QoS 
requirements (packet loss, delay, and throughput), and generates a Traffic Estimation 
Matrix (TEM). The latter provides the bounded demand (i.e. minima and maxima), for 
each QoS class, on a per-Traffic Trunk fashion. In the sequel, a traffic trunk (TT) will be 
considered as an ingress/egress node pair.  

The TEM is in turn passed to the Traffic Engineering functions which accommo-
date the traffic estimation demands into the physical network resources. This process re-
sults in a Resource Availability Matrix (RAM) that contains the available resources again, 
for each QoS-class, and for each traffic trunk of the network. Finally, the RAM is passed 
to the Service Management function, where it is used for subscription and invocation 
control. The exchange of the aforementioned matrices between the two sub-systems of 
the architecture, takes place in long-term periods which are known as Resource Provi-
sioning Cycles (RPCs). 

5.2.2 Service Management Functionality 

In this section we describe the policy-influenced processes of the Service Man-
agement functionality of TEQUILA. The Figure 38 depicts the sub-functions that inte-
grate it, namely Service Subscription, Service Invocation and Traffic Forecast. A brief 
description of these components is described hereafter. A detailed description of the Pol-
icy-based Service Management functionality can be found in [Myk03]. 
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Figure 38. Service management functionality of TEQUILA 

 

The Service Subscription (SLS-S) sub-function is carried out by a centralized 
component that manages Service Level Specifications (SLSs) subscription requests. It 
maintains databases for subscribed services and service-related historical data. It ac-
cepts/negotiates subscriptions based on policies that define some degrees of confidence 
with which the subscribed services would enjoy their contractual traffic rates. In this 
sense, the SLS-S addresses the trade-off between the number of subscriptions and the 
confidence for ensuring QoS. 

The Service Invocation (SLS-I) sub-function is carried out by distributed compo-
nents located at the edges of the network. It controls the number and type of active ser-
vices and consequently, the volume of injected traffic. SLS-I addresses the trade-off be-
tween maximizing the number of admitted invocations and preventing QoS degradation 
by overloading the network. For this, it integrates three policy-based mechanisms: First, 
SLS-I performs admission control based on policy-based levels that define when the like-
lihood to overwhelm the network is considered critical. With this regard, service invoca-
tions are accepted when the actual measured level is below this critical level. Second, the 
SLS-I components prevent QoS degradation by carrying out proactive actions based on 
policy-based precaution levels. The enforcement of these proactive actions may either 
result in service rate allocation re-adjustments, and/or admission control re-adjustments 
for new invocations. Third, when congestion occurs in the network, SLS-I applies differ-
ent penalties defined by policies. Again, the result of these penalties may affect either 
service rate re-allocation and/or admission control re-adjustments. 
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The Traffic Forecast (TF) sub-function is dedicated to translate the SLS cus-
tomer-oriented information into resource-oriented data. It deduces the traffic demand 
based on subscribed SLSs, and generates the Traffic Estimation Matrix (TEM). For this, 
TF applies service mapping algorithms to adapt the service-oriented information into the 
appropriate resource-oriented format. In addition, it uses policy-defined multiplexing fac-
tors to derive the minimum and maximum demand for each QoS class and traffic trunk. 
These factors specify the criteria by which a service is considered to enjoy almost satis-
fied and fully satisfied rates, which are eventually used to define the minimum and 
maximum values for the traffic demand. 

5.2.3 Traffic Engineering Functionality 

In this section we describe the policy-influenced processes of the Traffic Engi-
neering functionality of TEQUILA. The Figure 39 depicts the sub-functions that integrate 
this functionality, namely Network Dimensioning (ND), Dynamic Resource Management 
(DRsM) and Dynamic Route Management (DRtM). A brief description of these 
sub-functions is provided hereafter. A detailed description of the Traffic Engineering 
functionality can be found in [Tri03] and [Fle02].  
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Figure 39. Traffic engineering functionality of TEQUILA 

 

 



Application Scenario   78

The Network Dimensioning sub-function is in charge of accommodating the traf-
fic estimations into the physical network resources. To accomplish this, ND uses the 
Traffic Estimation Matrix generated by the Service Management function. The purpose 
of the Network Dimensioning sub-function is twofold: First, to produce the Resource 
Availability Matrix (RAM) which contains the calculated available resources for the 
forthcoming Resource Provisioning Cycle, and second, to provide the lower-level TE 
components (DRtM and DRsM) with resource management guidelines.  

With respect to the Resource Availability Matrix (RAM), ND calculates on a 
per-QoS-class fashion, the minimum “always” available allocation of resources and the 
sustainable throughput (BW available above the minimum available resources).  

Regarding the resource management guidelines provided to the TE sub-functions, 
Dynamic Resource Management (DRsM) and Dynamic Route Management (DRtM), 
these are calculated based on historical data and customer subscriptions. For the DRtM 
and DRsM sub-functions, these guidelines represent “nominal” values within which they 
will work. For instance, the DRsM receives from the ND different estimates of the re-
quired resources for each Per-Hop-Behaviour (PHB).The DRtM instead receives the dif-
ferent LSP paths for the multiple traffic trunks of the network. The DRsM sub-function is 
assessed through the core routers of the underlying network. The DRtM sub-function in-
stead is assessed by ingress/egress nodes. 

In the Network Dimensioning sub-function, policies are used to extend the pro-
grammability in the following aspects. 
• Delay and packet loss estimation requirements. Policies define the criteria of how to 

consider hop-count with respect to delay and packet loss constraints. 
• Explicit resource allocation.  Policies define explicit LSP routes and/or explicit BW 

allocations during the dimensioning process.  
• Alternative path and Hop-count bounds. Policies define the limits on the number of 

alternative paths for the traffic trunks and the limit on the number of hops for the 
LSPs.  

• Network utilisation. Policies are used to provide guidelines on how to proceed with 
the distribution of resources with respect to the overall network utilisation.  

• Extra and over provisioned capacity distribution. Once the minimum demands have 
been allocated, there may be remaining capacity in some or all network links. Policies 
are used to define the criteria of how the remaining capacity may be distributed 
amongst the different PHBs. In addition, these policies define how to reduce the ca-
pacity allocation amongst the different PHBs under over-provisioning states. 
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5.3 A System Composition Hierarchy for QoS Management 

In this sub-Section we follow the guidelines of our systematic approach to define 
a system composition hierarchy for QoS Management. We exploit the hierarchical rela-
tionships of the TEQUILA approach and consider both, Service Management and Traffic 
Engineering. These two system functions are in turn in charge of controlling the QoS 
Provisioning Management service delivered by the TEQUILA approach. The Figure 40 
depicts the system composition hierarchy of this application domain for which a general 
description is given hereafter.  

QoS Provisioning Management
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Figure 40. System composition hierarchy for QoS Management 

5.3.1 Service Management Function 

In the TEQUILA architecture, the Service Management Function is integrated by 
Service Subscription (SLS-S) Sub-function, Service Invocation (SLS-I) Sub-function, 
and Traffic Forecasting (TF) sub-function. These sub-functions define the next level in 
the composition hierarchy of the Service Management Function as we show in Figure 40. 

As we described earlier, the SLS-S Sub-function is in charge of executing the ser-
vice subscription functions of TEQUILA. This sub-function is influenced by a parameter 
used to define degrees of confidence for service fulfilment, namely the “Satisfaction 
Level”, and a sub-function dedicated to control the subscription’s admissions defined as 
“Subscription Admission Sub-function” of the composition hierarchy shown in Fig. 40. 
The “Subscription Admission Sub-function” is in turn influenced by a parameter that de-
fines an admission control for subscriptions identified as “Max Subscription Threshold”, 
and a sub-function that defines the total anticipated demand strategy to follow for sub-
scription admissions’ control identified as “Anticipated Demand Sub-function”. The lat-
ter sub-function is influenced by two parameters that are used to calculate the total an-
ticipated demand with regard to the satisfaction factors almost satisfied (AS) and fully 
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satisfied (FS). These two parameters are identified as “Total AD AS Factor” and “Total 
AD FS Factor” in the composition hierarchy shown in Fig. 40. 

Coming back to what we described earlier, the SLS-I Sub-function is in charge of 
executing the service invocation functions of TEQUILA. The composition hierarchy for 
this sub-function is defined by a parameter that is used to define the likelihood of over-
whelming the network identified as “Target Critical Level”, and another parameter that 
defines the admission functionalities of the SLS-I Sub-function identified as “Max Ad-
mission Threshold”. In addition, the SLS-I Sub-function is integrated by a sub-function 
that achieves the programmability of configuring the proactive actions when statistical 
fluctuations of the traffic load occur. This is identified as “QoS Commitment 
Sub-function” in the composition hierarchy shown in Fig. 40. In addition, the SLS-I 
Sub-function is integrated by a sub-function that deals with proactive actions commited 
to resolve congestion states in the network. This is identified as “Congestion Solving 
Sub-function” in Fig. 40. Both of the latter two sub-functions are influenced by two pa-
rameters that deal respectively, with service rate adjustments and admission control ad-
justments. These two are identified as “Service Rate Change” and “Admission Control 
Change” in the composition hierarchy of Fig. 40. 

Finally, as we described earlier, the TF Sub-function of the Service Management 
Function provides the programmability to define the multiplexing factors for traffic de-
mand estimations. This sub-function is influenced by two parameters that specify the cri-
teria by which a service is considered to enjoy almost satisfied and fully satisfied rates. 
These two are identified as “AS Factor” and “FS Factor” respectively in the composition 
hierarchy shown in Figure 40.  

5.3.2 Traffic Engineering Function 

In the TEQUILA architecture, the Traffic Engineering Function is integrated by 
the Network Dimensioning (ND) Sub-function and Dynamic Resource Management 
(DRsM) Sub-function. These two define the next level in the composition hierarchy of 
the Traffic Engineering Function shown in Figure 40. 

As we described earlier, the ND Sub-function is in charge of accommodating traf-
fic estimations into the physical network resources. The system composition with this 
regard is integrated by first, a sub-function that assesses the programmability to influence 
the qualitative calculation of the resources to satisfy the minimum anticipated demand. 
This sub-function is defined as “Minimum Demand Sub-function” in the composition 
hierarchy shown in Figure 40. Following on with the latter sub-function, it is influenced 
by four parameters that define the next level of the composition hierarchy. The “Path Hop 
Limit” parameter is defined to cope with administrative constraints of the number of hops 
for the LSPs. The “Network Utilization” parameter of the hierarchy defines the criteria of 
the utilization of the overall network. The “Hop-count Estimation” parameter of the 
composition hierarchy is defined to address the considerations of hop-count as the means 
to estimate link delay and packet losses. Finally, the “Explicit Allocation” parameter in-
fluencing the Minimum Demand Sub-function has been defined to assess administrative 
decisions regarding explicit LSP, and BW allocation in the core network.  
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Following on with the “ND Sub-function” of the TEQUILA approach, this is in-
tegrated by a sub-function that influences the distribution of resources once the ND has 
allocated the minimum demand during the ND process. This sub-function defined as 
“Extra Capacity Sub-function”, together with the “Minimum Demand Sub-function” de-
scribed above, both compose the next level from the “ND Sub-function” of the hierarchy 
shown in Figure 40. The “Extra Capacity Sub-function” is influenced by two parameters; 
first, the “Distribution Capacity” parameter which is defined to influence the resource 
calculation of spare capacity in the core links; and second, the “Reduction Capacity” pa-
rameter that achieves the programmability on how to reduce the capacity allocated to 
each PHB under link capacity shortage. 

Finally, the “DRsM Sub-function” of the Traffic Engineering Function is influ-
enced by two parameters. The parameter “Threshold Setting” is used to define reactions 
to statistical fluctuations of traffic load. Finally, the parameter “Allocation Modification” 
is defined to cope with the actual allocation as a result of statistical fluctuations. These 
representations are also shown in the hierarchical composition of Figure 40. 

5.4 Goal Refinement for QoS Management 

With this Sub-section we start the execution of the policy refinement process for 
QoS Management. Namely, we describe the goal refinement process for the TEQUILA 
approach. Throughout this Chapter, we make use of our prototype implementation to 
carry assess the refinement process.  

5.4.1 Starting Goal Refinement for QoS Management 

It is a matter of realistic judgment to decide which high-level guidelines should 
define the view of QoS delivery. Different methods and mechanisms can be found in the 
literature [Bar06] to specify High-level Goals and to provide indicators to assess IT per-
formance related to them. In the context of our scenario, these represent the High-level 
Goals with which the Administrator Developer intends to control QoS provisioning. As 
our methodological approach prescribes, a key issue during the definition of High-level 
Goals is the association of High-level Goals with the system functionality. Namely, it is 
imperative that High-level goals should be aligned with the scope of the target system, in 
this case with the TEQUILA approach. In addition, High-level Goals should be consistent 
with the functionalities designed/implemented by the TEQUILA approach. In our QoS 
management scenario the Administrator Developer starts the goal refinement process de-
fining the following High-level Goals, following the functionality of the TEQUILA ap-
proach:  

• Number of Subscriptions Controlled 
• Traffic Injection Controlled 
• QoS Degradation Prevented 
• Traffic Demand Estimated 
• Available Resources per-Traffic Trunk Calculated 
• Dynamic Traffic Fluctuations Managed 
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The next Section assesses goal refinement for the above High-level goals follow-
ing the guidelines of our methodological approach, and making use of our prototype im-
plementation. 

5.4.2 Assessing Goal Refinement for QoS Management 

Having defined the to-be-refined High-level goals, these are linked to the root 
goal of the goal graph structure. For this, the Administrator Developer defines the “QoS 
Provisioning Management” root goal. The developer makes use of the Objectiver support 
to store this goal in the database for further use; see Package View box in the upper-left 
part of Figure 41. At this initial step of the refinement process the administrator devel-
oper follows the KAOS methodology to bring a milestone-driven refinement pattern to 
link the root goal with the six High-level goals defined to control QoS provisioning de-
scribed earlier. This allows systematising goal refinements for QoS Management and es-
tablishing pre-defined temporal prescription of goals; see the Properties box in the bot-
tom-left part of Figure 41, specially the Achieve pattern formalisation for the “QoS Pro-
visioning Management” goal. Every goal instance throughout the goal-graph contains 
similar properties like temporal prescription, refinements, etc. The goal graph structure is 
then built upon six sub-trees for which further refinements are carried out taking into ac-
count the system composition hierarchy. The following is a brief description of the com-
position-aware refinement level shown at the bottom of the goal graph shown in Fig. 41. 

 

 
Figure 41. Goal graph for the QoS Provisioning Management goal 

 

The High-level Goal Number of Subscriptions Controlled has direct impact on 
traffic predictions. In addition, it is directly influenced by the “Service Subscription 
Sub-function” of the TEQUILA approach given that the latter is used to control the ac-
ceptance, rejection/negotiation of service subscriptions. This way, the developer refines 
the “Number of Subscriptions Controlled” into the “Subscription Logic Configured” 
goal. 

Regarding the Traffic Injection Controlled goal, this has been established to ad-
dress the trade-off between maximizing the traffic entering the network and the quality of 
service enjoyed by the active services. In the context of our QoS Management scenario, 
this aspect is influenced by the “Target Critical Level” and the “Max Admission Thresh-
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old”, both parameters of the SLS-I Sub-function of TEQUILA. For this reason, the ad-
ministrator developer refines the “Traffic Injection Controlled” High-level Goal is refined 
into the goals “Target Critical Level Set” and “Admission Control Set”. 

The High-level Goal QoS Degradation Prevented is defined to guarantee active 
services to enjoy their contracted Quality of Service. In order to prevent QoS degrada-
tion, the QoS management approach implements active services rate change and conges-
tion avoidance mechanisms, both controlled by the QoS Commitment Sub-function and 
Congestion Solving Sub-function of the TEQUILA approach. In this sense, the Adminis-
trator Developer refines the “QoS Degradation Prevented” goal into the “QoS Commit-
ted” and “Congestion Solved” goals. 

Following on, the High-level Goal Traffic Demand Estimated has been defined to 
influence the allocation of physical resources given that the dimensioning process con-
siders minimum and maximum bounds of traffic estimations. Once the latter bounds are 
influenced by the multiplexing factors defined by the TF Sub-function of TEQUILA, the 
“Traffic Demand Estimated” is refined into the goal “Multiplexing FactorsConfigured” 
by the Administrator Developer. 

Regarding the Available Resources per-Traffic Trunk Calculated High-level Goal, 
it has direct impact on the subscription and invocation admission control mechanisms in 
the sense that these calculations are contained in the Resource Availability Matrix pro-
vided by the Traffic Engineering Function to the Service Management Function. More-
over, a key role for the calculation of these resources is the ND Sub-function and its as-
sociated sub-functions. For instance, ND Sub-function influences the qualitative way to 
allocate both, the minimum demand, and the remaining resources of the network. For this 
reason, the developer refines the “Available Resources per-Traffic Trunk Calculated” 
High-level Goal into the “ND Configured” goal as we show in the lower part of Fig. 41. 

Finally, the High-level Goal Dynamic Traffic Fluctuations Managed has direct 
impact on how the core network reacts to statistical traffic fluctuations. The QoS Man-
agement approach considers dynamic threshold and allocation management mechanisms 
to deal with these situations. This aspect is controlled by the DRsM Sub-function of the 
TEQUILA approach and consequently, the developer refines the former goal into the 
“Dynamic Resource Management Configured” goal as we show in the lower part of Fig. 
41. 

 

For the next phase of the goal refinement process we have elaborated three ge-
neric goal-graph structures driven by the QoS-oriented system composition hierarchy of 
our application domain. The Figure 42 shows the Service Management Configured 
goal-graph which has been refined considering the Service Management Sub-function of 
the TEQUILA approach. The goal graph represents the different strategies that the sys-
tem is capable to achieve for the Service Management Function. Basically, this goal 
graph structure has been built upon three sub-trees defined by the SLS-S Sub-function, 
SLS-I Sub-function, and TF Sub-function. For this level of refinement, the administrator 
developer brings into this specific context a milestone-driven refinement pattern for goal 
refinement (see Fig. 42). 
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Figure 42. Service Management Configured goal graph 

 

Similar goal-graphs have been defined for the Traffic Engineering Function. More 
specifically, the Figure 43 shows the Network Dimensioning Configured goal-graph 
structure that incorporates the requirements and alternatives to dimension both, the 
minimum traffic estimations and the extra remaining capacity for the links of the physical 
network. This goal graph has been built upon the composition hierarchy for the ND 
Sub-function of the TEQUILA approach. On the other hand, the Figure 44 shows the cor-
responding Dynamic Resource Management (DRsM) Configured goal graph, based on 
the DRsM Sub-function of the TEQUILA approach. This goal graph formalises the re-
quirements and alternatives to control statistical fluctuations of traffic in the core links of 
the physical network. The DRsM Configured goal graph structure is built upon two 
sub-trees that correspond to threshold monitoring and BW re-allocation tasks. 

 

 
Figure 43. Network Dimensioning Configured goal graph 
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Figure 44. Dynamic Resource Management Configured goal graph 

 

5.5 Executing Goal Selection for QoS Management 

The above High-level Goals formalise the guidelines that the Administrator De-
veloper has defined to manage QoS provisioning. During the operation of the policy sys-
tem, the Administrator Consultant should acknowledge these guidelines to define the op-
erative or “particular” view of QoS provisioning through Goal Selection. Similar to the 
definition of High-level Goals, the operative or “particular” view of QoS provisioning 
depends on realistic judgement, statistical data or previous administrative experiences. 
This section describes a goal selection process tailored to mange QoS provisioning. This 
section is divided in two sections. We first provide a holistic and realistic view of QoS 
provisioning and finally, we use our prototype implementation to assess Goal Selection 
aligned to the former. 

5.5.1 Defining a Holistic View for QoS Management 

We have defined a holistic view for QoS Management following the principles of 
the TEQUILA approach. Basically, this view is a reproduction of the High-level Goals 
that define an operative or “particular” view of QoS provisioning. This operative particu-
lar view is summarised in Figure 45 for which a brief description is provided thereafter. 
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Figure 45. Particular view of QoS provisioning 
 

The first column concerns with the view of QoS delivery with respect to the 
Number of Subscriptions Controlled and the Traffic Injection Controlled. In this example 
the consultant opts to maximise the number of subscriptions at the Highest Confidence 
levels of providing the agreed Quality of Service. This High-level Goal implies that the 
underlying components of the TEQUILA system would make sure that most of the ac-
cepted subscriptions will enjoy their contracted rates and then congestion occurrence 
would be highly unlikely. Under these circumstances the administrator opts to maximize 
the Traffic Injected into to the network given that the latter is linked to the accepted sub-
scriptions whose QoS satisfaction is highly likely. 

Regarding the High-level Goal Calculated Available Resources per-TT, the con-
sultant defines the view on how to influence the calculation algorithms of the Network 
Dimensioning process.  
• For delay and losses purposes, the administrator opts for considering the average de-

lay and packet loss induced by the links along the paths as the base to establish 
hop-count constraints for every link along the network.  

• Regarding resource allocation, the administrator opts for uniformly distributing the 
predicted load amongst all the available links in the network; namely, minimizing that 
some links become overloaded while others are under-loaded. 

• Finally, once the minimum estimated demand has been allocated, the administrator 
opts to distribute the over-provisioned and spare capacity proportionally to every 
PHB.  
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Regarding the High-level Goal QoS Degradation Prevented, the consultant opts 
to enforce “mild” proactive actions when the traffic injected into the network is between 
the available resources at congestion and the maximum available resources for the Traffic 
Trunks (TT). In addition, “Prime” proactive actions should take place during congestion. 

For the High-level Goal Traffic Demand Estimated, the consultant defines multi-
plexing factors that define how clients are to enjoy Almost Satisfied (AS) and Fully Sat-
isfied (FS) rates. This particular administrative view opts to differentiate between service 
types, providing 100% of the subscribed rates to AS and FS in case of real-time traffic. In 
contrast, 60% and 85% of the subscribed rates may be considered for AS and FS respec-
tively for other types of traffic. 

Finally, with regard to the Dynamic Traffic Fluctuations Managed, the consultant 
opts to increase or decrease resources allocations when traffic fluctuations are worth no-
ticeable of about 10% the dynamic range provided by Network Dimensioning (ND). In 
this sense, the consultant opts for allocation changes in ratios of 10% the range provided 
by ND. In addition, the consultant opts to decrease/increase the previously in-
creased/decreased resources, proportionally to every PHBs sharing the core links. Finally, 
the spare link capacity is distributed proportionally amongst the PHBs. 

5.5.2 Assessing Goal Selection for QoS Management 

As we mentioned earlier, Goal graph structures provide potential information for 
interpretation about how goals should be achieved. Interpretations are materialised with 
Goal Selections. In this sub-Section we describe the selections that materialise the ad-
ministrative view of QoS Management in our application scenario.  

Our prototype provides the means to browse through goal graph structures. Since 
the target is to refine a holistic view for QoS Management. For this, the consultant should 
interpret the options for each goal sub-tree of the QoS Provisioning Management goal, 
and select the options that better reflect the administrative view of QoS Management.  

For the sub-tree defined by the High-level Goal Number of Subscriptions Con-
trolled shown in the left part of Figure 46, the system guides the consultant to the “Ser-
vice Subscription Configured” goal, the latter included in the Service Management goal 
graph. At this moment of the selection, the consultant interprets that selecting “Conserva-
tive Satisfaction Settings” for both, the “Satisfaction Level Set” goal and the “Subscrip-
tion Admission Controlled” goal, reflects the view “Maximize subscriptions with the 
Highest Confidence to provide the agreed QoS”. For this selection the consultant selects 
the pattern of goals marked with dotted lines in Figure 46. 

For the sub-tree defined by the High-level Goal Traffic Injection Controlled 
shown in the right part of Figure 46, the system guides the consultant to the goals “Criti-
cal Level Set” and “Invocation Admission Control Set”, the latter goals included in the 
Service Management goal graph. At this moment of the selection, the consultant inter-
prets that selecting “Minimum Precautions Taken” reflects the view “Maximize the Traf-
fic injected into the network”. The consultant correlates this selection to the fact that ser-
vice subscriptions are only accepted with the highest confidence to provide the agreed 
QoS. Given that service invocations are directly influenced by the number of subscribed 
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customers, the consultant opts to take minimum precautions concerning service invoca-
tions control. This selection would cause that the traffic injected into the network due to 
invocations is maximized. For this selection the consultant selects the pattern of goals 
marked with discontinuous lines in Figure 46. 
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Figure 46. Selections for controlling subscription and traffic injection 

 

The same approach is taken for the remaining selections. The pattern of goals 
marked with dotted lines shown in the left part of Figure 47 shows the selection concern-
ing with the High-level Goal QoS Degradation Prevented. Here the consultant selects 
two strategies; a mild proactive selection deals with reactions to the critical level settings. 
The prime action selection instead handles potential congestion situations. Both selec-
tions involve service rate and admission control settings.  

Similarly, the discontinuous lines shown in the right part of Figure 47 show the 
selection of goals for the High-level Goal Traffic Demand Estimated. In this case, the se-
lection is constrained with specific values introduced as attributes for the lowest-level 
goals, e.g. the Almost Satisfied Factors Configured goal would have as attribute the value 
of 100% for real-time traffic, and 60% for other type of traffic. 
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Figure 47. Selection for controlling QoS degradation and traffic estimations 

 

For the High-level Goal Available Resources per-Traffic Trunk Calculated, the 
system guides the consultant to the ND Configured goal, which has been elaborated in 
the Network Dimensioning Configured goal graph. The pattern of selected goals shown 
in the Figure 48 specialises the “particular” view of the consultant with this regard: (1) 
the bottom-left part shows the selection that specialises the sub-view “Allocate minimum 
demand with average hop-count estimations”, i.e. “Average Estimated” selection for the 
“Delay and Loss Estimated” goal; (2) the sub-view “Minimize link overloading” is in 
turn covered with the selection of “Minimise Links Overloaded” in the sub-tree defined 
by the “Load Network Compromised” sub-goal; (3) finally, the sub-view “Redistribute 
over-provisioning and spare capacity proportionally” is specialised by the selection “Split 
Proportionally” and “Proportionally Redistributed” respectively for the goals “Spare Ca-
pacity Allocated” and “Over Provisioning re-Allocated”, both refinements of the “Extra 
Capacity Processed” goal. 
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Figure 48. Selection for “Available Resources per-TT Calculated” 

 

Finally for the High-level Goal Dynamic Traffic Fluctuations Managed, the sys-
tem guides the consultant to the graph elaborated for the “DRsM Configured” goal. The 
selection for this goal with respect to the “particular” view of our scenario is shown with 
dotted lines in Figure 49. The goal graph suggests that the management of traffic fluctua-
tions should involve monitoring and re-allocation tasks, both assessed by the sub-trees 
defined by the “Monitoring Directives Configured” and “DRsM Main Configured” goals. 
The selections for the former target the configuration of thresholds to react to statistical 
fluctuations of traffic in the core routers’ links. In other words, this selection is intended 
to determine when the system should increase or decrease resources as stated by the first 
sub-view shown in the upper-right part of Figure 49. Traffic fluctuations are policed ei-
ther as increments or decrements for which upper and lower threshold selections are re-
quired. The consultant selects then the goals “Lwr Thr Incrsd Rel Value”, “Lwr Thr 
Decrsd Rel Value”, “Uppr Thr Incrsd Rel Value”, “Uppr Thr Decrsd Rel Value”. The 
latter goals are associated with an attribute specifying the relative value of configuration 
as prescribed by the sub-view (10% of the range provided by the ND service). 
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Figure 49. Selection for “Dynamic Traffic Fluctuations Managed” 

 

For the sub-views concerning reallocation of resources, the consultant is guided to 
achieve the selection to increase the resources for the PHBs sharing the core router’s 
links by selecting the “Bw Req Incrsd Rel Val” goal, and also to deduce these resources 
from the complementary PHBs sharing each core router’s link by selecting the “Bw Req 
Decrasd Rel Val” goal. Both goals are associated with an attribute specifying the relative 
value of these modifications as prescribed by the sub-view (10% of the range provided by 
the ND service). For the sub-views concerning the redistribution of resources, the con-
sultant is guided to achieve this proportionally amongst the PHBs sharing the core router 
links by selecting the goals “Spare Cap Proportionally Split” and “Red Over Cap 
Proptly”. 

In this sub-Section we have outlined a complete Goal Selection process for a real-
istic view of QoS Management. In a policy creation environment the target prototype 
should enable this view to be effectively translated into enforceable policies aligned to 
these High-level Goals. This process of our application scenario is described in the fol-
lowing sections. 
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5.6 Automated Acquisition of Enforceable Policies 

This Section describes the automated acquisition of enforceable policies of our 
application scenario. We initially describe the pre-conditions for this process and then 
present the execution of the application scenario up to the acquisition of enforceable 
policies. 

5.6.1 Pre-conditions for Automated Policy Acquisition 

As we described earlier, the following information should be provided to auto-
mate the acquisition of policies. A brief description of these is provided thereafter.  
• Documentation of the goal graph structures for the managed system 
• Documentation of the System Model  

5.6.1.1 Documentation of the goal graph structures 

The elaboration of the goal graph structures is a process that has been extensively 
described in the last sections. Moreover, it is mandatory that this information should be 
available when the automated acquisition of policies action is required. For the execution 
of our policy refinement scenario we have provided the Objectiver [Obj] model that cor-
responds to the KAOS goal graphs “QoS Provisioning Management”, “Service Manage-
ment”, “Network Dimensioning” and “DRsM Monitoring” described in Section 5.4. This 
scenario of preconditions is graphically illustrated in the upper part of Figure 50. 

5.6.1.2 Documentation of the System Model 

The System Model is also a mandatory pre-condition to automate the acquisition 
of policies. This is assessed by documenting the managed objects’ behaviour and provid-
ing their object distribution within the managed system. 

 
5.6.1.2.1 Documentation of the behaviour of the managed objects 

This data is provided using standard UML notations. This is an added value of our 
solution given that the Administrator Developer is enabled to document the System 
Model using standard modelling techniques such as class diagrams, collaboration dia-
grams and state charts. For example, the left-lower part of Figure 50 shows a simplified 
representation of a selection of class diagrams of the TEQUILA architecture together 
with a simplified representation of the behaviour of the DRsM Monitoring components of 
the TE functionality, represented as a state chart. For instance, the left part of the state 
chart shows the different strategies with which the component calculates new thresholds 
for statistical fluctuations of traffic; strategies are represented as states for which different 
actions should be taken to lead the monitoring component to the corresponding states. 
The right part of the state chart demonstrates for example the handling of violations when 
the constraints imposed by the Network Dimensioning component are breached. Similar 
representations to the above have been modeled for the rest TE components and the Ser-
vice Management components of TEQUILA. ArgoUML [Arg06] models are direct inputs 
for our policy refinement prototype. The Behaviour Manager component of our solution 
internally translates these into code for automated reactive analysis. 
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receive(thrCrossingAlarm: AlarmRaised) : void
receive(incrLwrThsRel: IncLwThr) : void
receive(incrLwrThsAbs: IncLwThr) : void
receive(incrLwrThsAlg: IncLwThr) : void
receive(incrUpprThsAbs: IncUppThr) : void
receive(incrUpprThsAlg: IncUppThr) : void
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receive(decrLwrThsAlg: DecLwThr) : void
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receive(splitSpareCapProp: SpitSpareCap) : void
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receive(thrCrossingAlarm: AlarmRaised) : void
receive(incrLwrThsRel: IncLwThr) : void
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receive(incrUpprThsAbs: IncUppThr) : void
receive(incrUpprThsAlg: IncUppThr) : void
receive(incrUpprThsRel: IncUppThr) : void
receive(decrLwrThsAlg: DecLwThr) : void
receive(decrLwrThsRel: DecLwThr) : void
receive(decrLwrThsAbs: DecLwThr) : void
receive(decrUpprThsAlg: DecLwThr) : void
receive(decrUpprThsRel: DecLwThr) : void
receive(decrUpprThsAbs: DecLwThr) : void
receive(incrAllocRel: IncrAlloc) : void
receive(incrAllocAlg: IncrAlloc) : void
receive(incrAllocAbs: IncrAlloc) : void
receive(decrAllocRel: DecrAlloc) : void
receive(decrAllocAlg: DecrAlloc) : void
receive(decrAllocAbs: DecrAlloc) : void
receive(splitSpareCapProp: SpitSpareCap) : void
receive/splitSpareCapEq: SplitSpateCap) : void
receive/splitSpareCapExp: SplitSpateCap) : void

Monitor

receive(configThs: ConfigThs) : void
+drsm +monitor

DMain

receive(configLink: ConfigLink) : void
receive(thrCrossingAlarm: AlarmRaised) : void

+drsm +dmain
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Processing_increase
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configThs

configThs

configThs  
Figure 50. Pre-conditions for Automated Policy Acquisition 
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5.6.1.2.2 Documentation of the Object Distribution 

The Object Distribution, part of the System Model, is also a mandatory 
pre-condition for the automated acquisition of policies. It is necessary for the appropriate 
operation of the system and to make sure that the refined policies to be appropriately de-
ployed onto the policy system.  

The principle for the formalisation of this information in the context of TEQUILA 
approach is that enforceable policies are deployed onto two main branches of objects; 
centralised managers represented by the Domain Scope Expression /TEQUILA/Managers 
and distributed managed objects represented by the Domain Scope Expression 
/TEQUILA/ManagedObjects. We have populated the inventory component with a very 
basic distribution coping with the functionality ad-hoc to the execution of our application 
scenario. The basic distribution of these two main branches is shown in Figure 51. The 
centralised managers are those components achieving the Network Dimensioning 
Sub-function and the Service Subscription Sub-function of TEQUILA, both formalised 
with as /TEQUILA/Managers/ND and /TEQUILA/Managers/SSM respectively. The 
components assessing the Dynamic Resource Management Sub-function pertain to the 
/TEQUILA/ManagedObjects/Links/Router branch. Similarly, the objects achieving the 
Service Invocation Sub-function are included in the /TEQUILA/ManagedObjects/Routers 
domain.  

TEQUILA

Managers

SSMND

SLSIMonitor

SLSIMain

SLSIPMA

SLSIAdmission

SLSServSatisfMO

SLSBufferMO

TF

SLSSPMA

HopCount

NDPMA

Optimisation

PostProcessing

ManagedObjects

Links

Router

Monitor

DRsMPMA

DMain

Routers

 
 

Figure 51. Object Distribution for our refinement scenario 

For this application scenario we have documented this information making use of 
the inventory component interface. For example, the information introduced to the 
i_Inventory interface shown in Figure 52 formalises two basic domains of our scenario; 
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TEQUILA/Managers and TEQUILA/ManagedObjects/Routers. A similar approach has 
been carried out to populate the rest branches of the distribution shown in Figure 51. 
 

Object Distribution Population

i_Inventory POLICY 
REFINEMENT

ENVIRONMENT 
PROTOTYPE

 
Figure 52. Documentation of managed Object Distribution 

5.6.2 Managing Goal Selections 

The automated acquisition of policies starts when Goal Selections are provided to 
the implementation prototype by the Administrator Consultant. The selections could be 
provided in two fashions:  
1. From the Objectiver tookit. The selection of goals is documented in the Objectiver 

toolkit and an internal application (plug-in) is in charge of providing the selection to 
the prototype implementation as generic Objectiver objects through the 
i_GoalManager interface. 

2. From the Goal Manager. The selection of goals is also documented in the Objectiver 
toolkit but the acquisition of policies is started in the Goal Manager by pointing out 
the highest-level goal of the goal selection. 

For the execution of our application scenario we have opted for the second option. 
Having documented the Goal Selection described in Section 5.5 which defines the opera-
tive or “particular” view of QoS provisioning, we have pointed out the “QoS Provision-
ing Management Goal” to the Goal Manager through the i_GoalManager interface. It is 
worth mentioning that large-scale refinements could involve several Goal Selections 
committing to several views of QoS Management, most probably involving different 
constraints or situations of applicability. For this application scenario we have only pro-
vided the Goal Selection of our application scenario. 
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For the above Goal Selection, the prototype implementation integrates the 
Goal-aware information that it will use to acquire enforceable policies aligned to such 
selection. This Goal-aware information is integrated in an object-oriented entity referred 
to as “GoalMetaData_List”. The following is a brief description of the “GoalMetaData_List” ac-
quired during the execution of our application scenario. The fragments shown throughout 
this brief explanation have been obtained making use of the facilities provided by the 
Distributed Software Component (DSC) development framework [Mee00] on which our 
prototype was implemented. 

The execution of the application scenario has involved altogether the goal graph 
structures for the QoS Provisioning Management, Service Management, Network Di-
mensioning, and DRsM-Monitoring. The Figure 53 shows for example a fragment of the 
GoalMetaData_List structure that belongs to the Network Dimensioning Goal Graph. This 
fragment shows the object-oriented composition of the “NETWORK DIMENSIONING 
CONFIGURED” goal (see goal name pointer in Fig. 53). The composition is integrated by 
relevant information that is further used to establish relationships amongst the goals. For 
example, the “Achieve” temporal prescription (see temporal prescription pointer in Fig. 53), 
and the “MultipleMilestone” refinement pattern (see refinement pattern pointer in Fig. 53), 
prescribe that the NETWORK DIMENSIONING CONFIGURED goal should be achieved in multiple 
phases. The refinements of this particular goal are also included in the composition (see 
Link refinements pointer in Fig. 53). In this particular case of our application scenario the 
refinements are the goals MINIMUM DEMAND PREPROCESSED, MINIMUM DEMAND PROCESSED, and EXTRA 
CAPACITY PROCESSED. Similar compositions for the latter refinements and for the rest goals 
belonging to the Network Dimensioning goal-graph have been integrated in the “Goal-
MetaData_List” acquired during the execution of our application scenario.  
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Goal name

Temporal prescription

Refinement pattern

Linked refinements

 
Figure 53. Fragment of the NETWORK DIMENSIONING CONFIGURED goal 

 

 

Following on with the content of the “GoalMetaData_List” of our application scenario, 
the prototype handles the graph’s relevant information of the QoS Provisioning Man-
agement, Service Management, and DRsM-Monitoring. This information contains the 
information necessary to automate the acquisition of enforceable policies. For example, 
during the goal selection, some goals admit specific values ad-hoc to the administrative 
criteria. This is the case for example of the goal “LWR THR INCRSD REL VALUE” which has been 
selected as part of the High-level Goal “Dynamic Traffic Fluctuations Managed” in our 
application scenario. A fragment of this goal composition is shown in Figure 54. Here the 
ad-hoc value is integrated in the GoalAttribute field of the composition (see goal attribute 
pointer in Fig. 54). The latter specialises the relative value with which the threshold set-
tings will be increased in the DRsM Sub-function of the TEQUILA approach. In addi-
tion, lowest-level goals are identified with system state predicates. This information is 
also handled for the “LWR THR INCRSD REL VALUE” (see system state pointer in Fig 54), and for 
the rest lowest-level goals of the application scenario.  

Similar to the two examples provided above, the prototype has produced a total of 
118 goal compositions for our application scenario. The following Section provides the 
execution of the Requirements Manager once this information is submitted through its 
i_RequirementsMgr interface.  
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Goal name

Goal attribute

System state

 
Figure 54. Fragment of the LWR THR INCRSD REL VALUE goal 

 

5.6.3 Establishing Temporal Relationships 

Coming back to the principles of our refinement framework, the Requirements 
Manager uses the information included in the “GoalMetaData_List” structures to establish 
temporal relationships between lowest-level goals. These relationships logically entail the 
fulfillment of higher-level goals. Following on, this manager produces a representation of 
these relationships with formal notations suitable for use with automated analysis tools.  

In Figure 55 we show fragments of the temporal relationships produced in 
run-time by the Requirements Manager during the execution of our application scenario. 
The most relevant are the formal definitions of these relationships expressed in Linear 
Temporal Logic (see formal definition pointers in Fig 55). In practical terms, these LTL 
(Linear Temporal Logic) behavioural formulae represent the ordering in the fulfillment of 
lowest-level goals or the ordering in which system states should be reached. In other 
words, these represent the ordering of system states that the corresponding sub-systems 
should commit to as to fulfill with the “particular” view of QoS Management of our sce-
nario.  

For example, the formal representation shown in Figure 55a (see formal definition 
pointer in Fig. 55a) characterises the temporal ordering of four specific goal states of the 
Service Subscription Sub-function of the TEQUILA architecture. These goal states are 
also abstracted and shown as arguments in the figure (see LTL formula arguments pointer 
in Fig. 55a). These arguments correspond to the actual system state identifications of the 
lowest-level goals within the System Model. Similarly, the Requirements Manager pro-
duces the representations and arguments for the Service Invocation function (Fig 54b), 
the Network Dimension (Fig. 55c), and the Dynamic Resource Management function 
(Fig. 55d) accordingly. 
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Figure 55. Fragment of temporal relationships of application scenario 

 

5.6.4 Enforcing System Behaviour 

In the context of our refinement framework, the main purpose of abstracting tem-
poral relationships of goals and representing them with formal notations such as LTL, is 
to enable the Search Manager to apply automatic analysis techniques to find the neces-
sary behaviour that the managed system should exhibit as to commit with the high-level 
goals adhered to the system. In the context of our application scenario, this corresponds 
to the system behaviour that the internal components of the Service Subscription, the Ser-
vice Invocation, Network Dimensioning, and Dynamic Resource Management 
Sub-functions should exhibit as to commit with our “particular” view of QoS Manage-
ment. 
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A brief example is the partial representation of system behaviour shown in the left 
part of Figure 56, produced by the Search Manager during the execution of our applica-
tion scenario. This corresponds to the Dynamic Resource Management (DRsM) 
Sub-function. More concretely, it shows the restricted behaviour that the components as-
sessing the DRsM Sub-function, should exhibit to fulfill the milestone goals m4 “DecUp-
prThRel” and m5 “AllocIncrsdRel” included in the temporal relationships provided by the Re-
quirements Manager described above.  

For instance, in order to better describe the restricted system behaviour of the 
left-part of Fig. 56, we show its interpretation as state changes in the right-part of the 
same Fig. 56. For instance, in order for the milestone goal m4 “DecUpprThRel” to be 
achieved, the following state changes should be exhibited: 
• The Monitor component should exhibit a transition from state thresholdCrossingDwn to state 

thrCrossdDwnAlarmRaised as a result of the event thrsCrossingAlarmDwn (see pointer to thrsCross-
ingAlarmDwn in Fig. 56). In other words, the Monitor component must detect a downwards 
threshold crossing and it should issue the event thrsCrossingAlarmDwn.  

• As a consequence of this previous event, the DRsMPMA component must enforce the 
action decrUpprThRel to transition from the drsmAlarmRaised state to the target “DecUpprThRel” 
state. In other words, the DRsMPMA must enforce decrements of the upper threshold 
by a relative value. 

• Note that the event “notification for decrUpprThRel” generated in the DRsMPMA en-
ables the Monitor component to transition from the state thrCrossdDwnAlarmRaised to Up-
prThrDecreased.  
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Figure 56. Enforcing system behaviour a) visual report b) interpretation 
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The same applies for the milestone m5 “AllocIncrsdRel”. In this case the DMain com-
ponent should issue the event thrUpAlarmProcessing for which the DRsMPMA must enforce the 
incrAllocRel action to commit with the target goal state “AllocIncrsdRel”. In other words, the 
BW allocation should be re-allocated by a relative value when an upper threshold is 
crossed.  

Similarly to m4 and m5, the Search Manager has acquired the restricted behaviour 
for the remaining milestones of the DRsM Sub-functions and the other sub-functions of 
our application scenario. 

 

5.6.5 Applying the Translation Process 

Following the principles of our policy refinement framework, having obtained the 
restricted system behaviour that the managed objects should exhibit, the Search Manager 
takes the first step towards the acquisition of enforceable policies. It identifies the transi-
tion plans that should reproduce such restricted behaviour in the policy system and ap-
plies a translation process to produce structures of the format Event-Condition-Action. In 
our framework we defined a transition plan as a sub-section of a system trace execution 
that includes a policy-controlled state transition. In this Section we show this step of the 
refinement process for our application scenario. 

The Figure 57a shows the transition plan belonging to the policy-controlled tran-
sition “decrUpprThRel” which was committed to fulfil the goal state m4 in our previous de-
scription. This transition plan prescribes that on the occurrence of a “thresholdCrossingDwn” 
state in the Monitor component, preceding the transition “thrsCrossingAlarmDwn”, the DRsMPMA 
must enforce the transition “decrUpprThRel”. This information is specialised in an ob-
ject-oriented composition by the Search Manager and is represented in Fig. 57b. Basi-
cally, the transition plan is specialised into the key attributes “Issuer_Precondition_State, Is-
suer_Transition, IssuedBy, Transition_Receptor, Receptor_Transitions_States, and Receptor_Transition”. In the 
transition plan “decrUpprThRel”, the former attributes have been assigned to “thresholdCross-
ingDwn”, “thrsCrossingAlarmDwn”, “Monitor”, “DRsMPMA”, “drsmAlarmDwnRaised -> DecUpprThRel”, and 
“decrUpprThsRel” respectively. Similar to this process, the rest of the transition plans of our 
validation scenario have been produced. It is worth noticing that this information has 
been acquired automatically by the implementation prototype during the execution of our 
application scenario.  



Application Scenario   102

threshold
CrossingDwn

thrCrossdDwn
AlarmRaised

MonitorthrsCrossing
AlarmDwn()

DRsMPMA

drsmAlarm
DwnRaised

thrsCrossing
AlarmDwn()

UpprThr
DecreaseddecrUpprThRel()

decrUpprThRel()

m4:
DecUpprThRel

TP for decrUpprThRel
TP=[thresholdCrossingDwn,thrsCrossingAlarmDwn

→ drsmAlarmDwnRaised, decrUpprThRel] 

Detecting
BWChanges

a) b)  
Figure 57. A transition plan of our validation scenario  

 

Following on with the scenario execution in the context of our refinement frame-
work, the information described above is further used to acquire Event-Condition-Action 
(ECA) obligation policies. For this, the Translation Process considers that the managed 
object that exhibited the triggering state transition is mapped to the subject; that Actions 
are interpreted as transitions executed on a managed object; and that the managed object 
that reacted to the triggering condition is mapped to the target. A graphical representation 
of the Translation Process and their application to the transition plan “decrUpprThRel” of our 
scenario are shown in Figure 58. In a similar manner, the rest of the transition plans of 
the DRsM Sub-function and the rest Sub-functions of our application scenario have been 
processed automatically by the prototype implementation.  

Transition plan for decrUpprThRel
TP=[thresholdCrossingDwn, thrsCrossingAlarmDwn

→ drsmAlarmDwnRaised, decrUpprThRel] 

policy decrUpprThRel_enforced{
event thrCrossingAlarmDwn
subject Monitor
target DRsMPMA
action decrUpprThRel

}

Translation Process

 
Figure 58. A translation process in our application scenario 

 

5.6.6 Encoding Policies  

Finally, the Policy Encoder produces the enforceable Ponder policies of the ap-
plication scenario taking as input the result of the translation process described above. 
The Policy Encoder maps the subject and target attributes to the managed entities ac-
cording to the Object Distribution of the application scenario. It also includes the events 
that the policy system reacts to, and the actions that the policy system is capable of en-
forcing. The Figure 59 shows the two policies that have been encoded to commit with m4 
and m5 of the DRsM Sub-function described in previous sections. It is worth mentioning 
that these policies have been retrieved from the policy repository after the completion of 
the scenario, making use of the Ponder GUI attached to the Policy Encoder component.  
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The first policy, namely “/ManagedObjects/Links/DecUpprThRel”, is the lowest level pol-
icy refined to enforce the transition “decrUpprThRel” of our scenario. In the TEQUILA ap-
proach, this policy is triggered when a threshold is crossed downwards, namely when the 
event “thrCrossingAlarm( down , utilValue , Link , OA )” occurs in the Monitoring components of the 
internal routers “subject =/ManagedObjects/Links/Router/Monitor”. Under these circumstances, the 
Policy Manager Agents of the DRsM components, namely the target 
“/ManagedObjects/Links/Router/DRsMPMA” modifies the threshold settings reducing its value by a 
relative value equivalent to the 10% of the dynamic range provided by the Network Di-
mensioning (ND) component. This is achieved with the action “decrUpprThs ( Link , OA , OA . 
bwthr = OA . bwthr - 0.1 * Link . dynamicRanges )”. Similar encodings were carried out for the rest of 
the policies in the application scenario for which the next section provides a detailed de-
scription. 

 

 
Figure 59. Selection of refined policies of our scenario 

 
 

5.7 Results 

Having gone through the refinement process for our application scenario, driven 
by the principles of our refinement framework, a total of 28 Ponder Obligation policies 
have resulted from its execution. These policies have been obtained and stored in the pol-
icy repository attached to the refinement framework. The population of the repository 
before and after the execution of this application scenario is shown in Figure 60 for 
which a general description is provided thereafter. In order to better describe these poli-
cies, we have sectioned this description taking as reference the high-level goals for QoS 
Management defined for the TEQUILA approach. 
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Figure 60. Policy repository before and after the execution of the scenario 

 

5.7.1 Number of Subscriptions Controlled 

The policies involved in realising this goal are “conservativeSubsSatisfaction” and “con-
servativeSubsAdmission”. The Ponder representations of these policies are shown in Figure 61.  

inst oblig /Managers/conservativeSubsSatisfaction {
on SRFactrsSet ( TT , serviceType ) ;
subject s = /Managers/SSM/SLSServSatisfMO ;
target t = /Managers/SSM/SLSSPMA ;
do setSatisfLevl ( serviceType . PHB , serviceType . SL = 1 ) ;

} 
inst oblig /Managers/conservativeSubsAdmission {

on ramRecvd ( TT , SRamin , SRwmin , SRmax , serviceType ) ;
subject s = /Managers/SSM/BufferMO ;
target t = /Managers/SSM/SLSSPMA ;
do setMaxAccpt ( serviceType . PHB , serviceType . TDtmax < serviceType . Rwmin ) ;

}  
Figure 61. Policies involved in the goal Number of Subscriptions Controlled 

 

The policy “conservativeSubsSatisfaction” is triggered when there is a need to set the 
satisfaction level for potential subscriptions in the service subscription sub-system of 
TEQUILA. This occurs when the Satisfaction Rate factors have been set (event SRFac-
trsSet) in the Service Subscription Manager (subject /Managers/SSM/SLSServSatisfMO). The pol-
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icy itself is used to define appropriate values on which the service admission mechanisms 
would rely; namely, the Satisfaction Level. The action enforced by this policy, and basi-
cally the value assigned to the Satisfaction Level (serviceType.SL = 1) ensures that the active 
SLSs under TEQUILA would enjoy their QoS at their almost satisfied rates even at con-
gestion. Other policies described in Section 5.7.4 are used to define almost/fully satisfied 
rates. The subject and target objects of this policy belong to the service subscription 
manager components of the TEQUILA approach (/Managers/SSM/).  

The policy “conservativeSubsAdmission” is triggered when the Resource Availability 
Matrix has been received from the Traffic Engineering function of the TEQUILA ap-
proach, namely when the event “ramRecvd(TT, SRamin, SRwmin, SRmax , serviceType)” occurs in the 
buffer control of the SSM (subject /Managers/SSM/BufferMO). The policy is used to specify an 
acceptable area in the calculated available resources per-TT. The action enforced by this 
policy defines a threshold to decide whether to accept an incoming request or not. More 
concretely, this policy ensures that the maximum estimated demand of the active sub-
scriptions is lower than the resources previously calculated to guarantee the almost satis-
fied rates of the previously subscribed services, which is practically defined by the policy 
action “setMaxAccpt (serviceType.PHB, serviceType.TDtmax < serviceType.Rwmin)” of this policy.  

5.7.2 Traffic Injection Controlled 

The policies involved in realising this goal are “minCriticalLevelPrecautions” and “minIn-
vocationPrecautions”. The Ponder representations of these policies are shown in Figure 62. 

inst oblig /ManagedObjects/Routers/minCriticalLevelPrecautions {
on newConfigRecvd ( TT ) ;
subject s = /Managers/Routers/SLSIMonitor ;
target t = /Managers/Routers/SLSIPMA ;
do setTCL ( TT , TT . tcl = s . Rmax ) ;} 

inst oblig /ManagedObjects/Routers/minInvocationPrecautions {
on newConfigRecvd ( TT ) ;
subject s = /Managers/Routers/SLSIAdmission ;
target t = /Managers/Routers/SLSIPMA ;
do setAC ( TT , s . ACmin = 0 , s . ACmax = s . Rmax ) ;

}  
Figure 62. Policies involved in the goal Traffic Injection Controlled 

 

The policy “minCriticalLevelPrecautions” is triggered when there is a need to set the 
Target Critical Level (TCL) in the service invocation sub-systems of TEQUILA, namely 
when new Traffic Trunk (TT) configurations are received (event newConfigRecvd(TT)) in the 
Service Invocation Monitor (s=/Managers/Routers/SLSIMonitor) components. The action en-
forced by this policy is used to specify the level at which the likelihood of overwhelming 
the network is considered critical. In this particular case, the policy sets the higher value 
that can be assigned to the TCL by executing the policy action “setTCL(TT, TT.tcl = s.Rmax)”. 
In this case, the precautions taken will be the lowest as the target critical level is equal to 
the maximum available resources. The subject and target objects of this policy belong to 
the service invocation components of the TEQUILA approach. This policy has some im-
pact on the enforcement of the policies described in Section 5.7.3. 
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The policy “minInvocationPrecautions” is triggered when new Traffic Trunk (TT) con-
figurations are received (event newConfigRecvd(TT)) in the Service Admission controls of the 
SLS-I modules (s=/Managers/Routers/SLSIAdmission). The policy is used to position thresholds 
between Rwmin and Rmax in the Resource Allocation Buffer (RAB) for invocation purposes. 
While the Rwmin are the resources always available for the TT even at congestion, the Rmax 
are the maximum resources available for the corresponding TT. For our application sce-
nario, the threshold is set to the maximum available resources calculated per Traffic 
Trunk, given by the policy action “setAC(TT, s.ACmin=0, s.ACmax=s.Rmax)”.  

5.7.3 QoS Degradation Prevented 

This goal is realised by the policies “mildSRProactiveAction”, “mildACProac-
tiveAction”, “tclCleardSRAction”, “tclCleardACAction”, “primeSRCongProactiveAc-
tion”, “primeACCongProactiveAction”, “congSolvdSRAction”, and “congSolvdACAc-
tion”. The Ponder representations of these policies are shown in Figure 63. 

inst oblig /ManagedObjects/Routers/mildSRProactiveAction{
on tclAlarmRaised ( up , TT ) ;
subject s = /Managers/Routers/SLSIMain ;
target t = /Managers/Routers/SLSIPMA ;
do setSR ( TT , s . SR = s . SRas + ( s . SRfs - s . SRas ) / 2 ) ; } 

inst oblig /ManagedObjects/Routers/mildACProactiveAction {
on tclAlarmRaised ( up , TT ) -> setSR ( ) ;
subject s = /Managers/Routers/SLSIMain ;
target t = /Managers/Routers/SLSIPMA ;
do setAC ( TT , s . ACmax = s . Rwmin ) ; } 

inst oblig /ManagedObjects/Routers/tclCleardSRAction {
on tclAlarmRaised ( down , TT ) ;
subject s = /Managers/Routers/SLSIMain ;
target t = /Managers/Routers/SLSIPMA ;
do setSR ( TT , s . SR = s . SRfs ) ;} 

inst oblig /ManagedObjects/Routers/tclCleardACAction {
on tclAlarmRaised ( down , TT ) -> setSR ( ) ;
subject s = /Managers/Routers/SLSIMain ;
target t = /Managers/Routers/SLSIPMA ;
do setAC ( TT , s . ACmax = s . Rmax ) ;} 

inst oblig /ManagedObjects/Routers/primeSRCongProactiveAction{
on congAlarmRaised ( TT ) ;
subject s = /Managers/Routers/SLSIMain ;
target t = /Managers/Routers/SLSIPMA ;
do setSR ( TT , s . SR = s . SRas ) ; } 

inst oblig /ManagedObjects/Routers/primeACCongProactiveAction{
on congAlarmRaised ( TT ) -> setSR ( ) ;
subject s = /Managers/Routers/SLSIMain ;
target t = /Managers/Routers/SLSIPMA ;
do setAC ( TT , s . ACmax = 0 ) ; } 

inst oblig /ManagedObjects/Routers/congSolvdSRAction {
on congResolvdAlarmRaised(TT) ;
subject s = /Managers/Routers/SLSIMain ;
target t = /Managers/Routers/SLSIPMA ;
do setSR ( TT , s . SR = s . SRfs ) ; } 

inst oblig /ManagedObjects/Routers/congSolvdACAction {
on congResolvdAlarmRaised(TT) -> setSR ( ) ;
subject s = /Managers/Routers/SLSIMain ;
target t = /Managers/Routers/SLSIPMA ;
do setAC ( TT , s . ACmax = s . Rmax ) ; }  

Figure 63. Policies involved in the goal QoS Degradation Prevented 

 

The “mildSRProactiveAction” policy is triggered when the target critical level is crossed 
in the SLSI components, namely when the event “tclAlarmRaised(up, TT)” occurs in the SLSI 
Main component (s = /Managers/Routers/SLSIMain). The action enforced by this policy, namely 
“setSR (TT, s.SR=s.SRas + (s.SRfs - s.SRas) / 2 )”, is used to reduce the service rates half-way be-
tween the calculated resources meant to provide fully satisfied rates (SRfs), and almost 
satisfied rates (SRas) to active services in the Resource Allocation Buffer (RAB) of the 
respective traffic trunks.  

The “mildACProactiveAction” policy is triggered when the target critical level is crossed 
and new service rates have been assigned in the SLSI components, namely when the 
event “tclAlarmRaised (up, TT) -> setSR ( )” is registered in the SLSI Main components. This pol-
icy is used to set up a threshold for new invocations up to minimum resources always 
available, even at congestion state (Rwmin) in the Resource Allocation Buffer (RAB). 
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The “tclCleardSRAction” and “tclCleardACAction” policies assess the restoration of service 
rate and admission control adjustments once the target critical level alarm has been 
cleared. On the one hand, the former policy is committed to adjust the service rate to the 
fully satisfied rates for each TT by executing the action “setSR(TT, s.SR = s.SRfs)”, once the 
target critical level alarms have been cleared up in the corresponding traffic trunk in the 
SLSI components (event tclAlarmRaised(down, TT)). On the other hand, the “tclCleardACAction” 
policy adjusts the admission control mechanisms again, to the maximum available re-
sources for each traffic trunk by executing the policy action “setAC (TT, s.ACmax = s.Rmax)”, 
once the target critical level alarm has been cleared up and the service rate adjustments 
have taken place in the SLSI components (event tclAlarmRaised(down, TT) -> setSR ()). 

The “primeSRCongProactiveAction” and “primeACCongProactiveAction” policies drive the 
congestion resolution mechanisms in the traffic trunks of the network. The former policy 
commits with this task by limiting active users to enjoy rates aligned to their almost satis-
fied rates. This is achieved by enforcing the policy action setSR(TT, s.SR = s.SRas), under TT 
congestion events “congAlarmRaised(TT)” occurring in the SLSI components. In addition, 
admission control actions are enforced by the policy “primeACCongProactiveAction” in the 
sense of rejecting new invocations. This is achieved by setting up of the control thresh-
olds to zero with the policy action “setAC(TT, s.ACmax = 0)”. This policy is triggered when the 
congestion alarm has been issued and the SLSI has taken service rate adjustments (event 
congAlarmRaised ( TT ) -> setSR ( )). 

Finally, the “congSolvdSRAction” and “congSolvdACAction” policies drive the restoration 
of service rate and admission control mechanisms when the congestion states have been 
resolved in the SLSI components. On the one hand, the former policy is committed to 
restore the rates-to-enjoy by active users, to those aligned to their fully satisfied rates by 
enforcing the policy action “setSR (TT, s.SR = s.SRfs)”. On the other hand, the policy “cong-
SolvdACAction” restores the admission control mechanisms to allow new invocations up to 
the maximum available resources in corresponding traffic trunk, by executing the policy 
action “setAC(TT, s.ACmax = s.Rmax)”.  

5.7.4 Traffic Demand Estimated 

The policies involved in realising this goal are “asConfigured”, “asConfigured_real”, 
“fsConfigured”, and “fsConfigured_real” whose Ponder representations are shown in Figure 64. 

inst oblig /Managers/asConfigured {
on newRPC ( TT , serviceType , TD ) ;
subject s = /Managers/SSM/TF ;
target t = /Managers/SSM/TFPMA ;
do setAlmstSatisfFactr ( serviceType . PHB , serviceType . 
FactrSRAS = 60 ) ; } 

inst oblig /Managers/asConfigured_real {
on newRPC ( TT , serviceType , TD ) ;
subject s = /Managers/SSM/TF ;
target t = /Managers/SSM/TFPMA ;
do setAlmstSatisfFactr ( serviceType . PHB = "real" , serviceType . 
FactrSRAS = 100 ) ; }

inst oblig /Managers/fsConfigured {
on newRPC ( TT , serviceType , TD ) -> setAlmstSatisfFactr ( ) ;
subject s = /Managers/SSM/TF ;
target t = /Managers/SSM/TFPMA ;
do setFulSatisfFactr ( serviceType . PHB , serviceType . 
FactrSRFS = 85 ) ; } 

inst oblig /Managers/fsConfigured_real {
on newRPC ( TT , serviceType , TD ) -> setAlmstSatisfFactr ( ) ;
subject s = /Managers/SSM/TF ;
target t = /Managers/SSM/TFPMA ;
do setFulSatisfFactr ( serviceType . PHB = "real" , serviceType . 
FactrSRFS = 100 ) ; }  

Figure 64. Policies involved in the goal Traffic Demand Estimated 
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The policies “asConfigured” and “asConfigured_real” are triggered when there is a new 
Resource for Provisioning Cycle (RPC) in the Traffic Forecast (TF) component of 
TEQUILA. This event is represented as “newRPC(TT, serviceType, TD)” in Fig. 64. These two 
policies are used to drive the percentage of the traffic rate, which if offered to an SLS, the 
SLS is thought to be “almost satisfied”. The “asConfigured_real” policy takes care of 
real-time services for which the percentage rate is set to 100%. This is achieved by en-
forcing the policy action “setAlmstSatisfFactr (serviceType.PHB = “real”, serviceType.FactrSRAS = 100)” in 
the TF module of TEQUILA. The “asConfigured” policy takes care of the rest of the ser-
vices. For these the “asConfigured” policy sets the percentage rate to 60% by enforcing the 
action “setAlmstSatisfFactr (serviceType.PHB, serviceType.FactrSRAS = 60)”. 

The policies “fsConfigured” and “fsConfigured_real” are triggered when there is a new 
Resource for Provisioning Cycle (RPC), followed by a setting up of the almost satisfied 
percentages described above. The values enforced with the “fsConfigured_real” policy are 
100% for real-time services, enforced with the action “setFulSatisfFactr (serviceType.PHB = "real", 
serviceType.FactrSRFS = 100)”. On the other hand, the percentage rate enforced by the “fsConfig-
ured” for the rest of the services is 85%. This situation is achieved by enforcing the action 
“setFulSatisfFactr (serviceType.PHB, serviceType.FactrSRFS = 85)”. 

5.7.5 Available Resources per-Traffic Trunk Calculated 

The policies involved in realising this goal are “AvgDelayLoss”, “MinLinkOverLoad”, 
“SpareCapPropSplit” and “OverCapPropSplit”. The Ponder representations of these policies are 
shown in Figure 65.  

inst oblig /Managers/AvgDelayLoss {
on doRPC ( OA , bw , links ) ;
subject s = /Managers/ND/NDPMA ;;
target t = /Managers/ND/HopCount;
do calculateHopCount ( OA , links . hopConstraint = "avg" ) ;} 

inst oblig /Managers/MinLinkOverLoad {
on startingOptimisation ( TEM , TTs , Links ) ;
subject s = /Managers/ND/NDPMA ;
target t = /Managers/ND/Optimisation ;
do setCostFunctionE ( s . OA , s . exp = "max" ) ;
}

inst oblig /Managers/SpareCapPropSplit {
on runPostProcessing ( TTs , TEM , OA ) ;
subject s = /Managers/ND/NDPMA ;
target t = /Managers/ND/PostProcessing ;
do allocSpareBW ( OA . bw = "prop" ) ;} 

inst oblig /Managers/OverCapPropSplit {
on redistributeSpare ( TTs , TEM , OA ) ;
subject s = /Managers/ND/NDPMA ;
target t = /Managers/ND/PostProcessing ;
do reduceOverBW ( OA . bw = "prop" ) ;
}  

Figure 65. Policies involved in the goal Available Resources per-TT Calculated 
 

The above policies modify the behaviour of the internal components of the Net-
work Dimensioning module for resources allocation tasks. The “AvgDelayLoss” policy is 
triggered when a new Resource Provisioning Cycle (RPC) occurs in the Network Dimen-
sioning module (ND) of the TEQUILA system. This policy sets the strategy to follow for 
the expected traffic calculations in terms of delay and loss requirements. In other words, 
this policy enforces that the HopCount manager of the ND, to consider the average delay 
and packet loss introduced by the links of the underlying network as the default for the 
maximum hop-count constraints. This is achieved by enforcing the policy action calculate-
HopCount (OA, links.hopConstraint = "avg") as shown in Figure 65.  

The policy “MinLinkOverLoad” is triggered when the network calculation process 
starts, namely when the event “startingOptimisation (TEM, TTs, Links)” is registered in the ND 
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module of the TEQUILA system. This policy enforces that the network utilization shares 
the load throughout the links of the underlying network, hence avoiding that some links 
end-up overloaded after the calculation of resources. This is achieved by enforcing the 
policy action “setCostFunctionE (s.OA, s.exp = "max")” in the Optimisation module of the ND 
system (t = /Managers/ND/Optimisation). 

The policy “SpareCapPropSplit” is triggered when the ND is forced to define how to 
handle the remaining resources of the network, once the calculation of the resources has 
been carried out. This situation occurs when the event “runPostProcessing (TTs, TEM, OA)” is 
registered in the ND module. This policy enforces to redistribute the usage of additional 
resources proportionally amongst the OAs sharing the corresponding traffic trunk. This is 
achieved when the action “allocSpareBW (OA.bw = "prop")” is executed in the PostProcessing 
module of the ND system (t = /Managers/ND/PostProcessing).  

Finally, the policy “OverCapPropSplit” is triggered when the ND defines the way it 
will handle resources reductions in case of over-provisioning BW. This situation occurs 
when the event “redistributeSpare (TTs, TEM, OA)” is registered in the ND module. This policy 
enforces that in all cases, the reductions will be “proportional” to the resources reserved 
for each OA in the TEQUILA system. This is, by enforcing the policy action “reduce-
OverBW (OA. bw="prop")” in the ND PostProcessing module (t = /Managers/ND/PostProcessing). 

5.7.6 Dynamic Fluctuations Managed 

This goal is realised by the policies “IncLwrThRel”, “DecLwrThRel”, “IncUpprThRel”, 
“DecUpprThRel”, “AllocIncrsdRel”, “AllocDecrsdRel”, “SplitSpareCapProp”, and “DecOverCapProp”. The 
Ponder representations of these policies are shown in Figure 66 for which a brief descrip-
tion is provided thereafter. 

inst oblig /ManagedObjects/Links/IncLwrThRel {
on thrCrossingAlarm ( up , utilValue , Link , OA ) ;
subject s = /ManagedObjects/Links/Router/Monitor ;
target t = /ManagedObjects/Links/Router/DRsMPMA ;
do incrLwrThs ( Link , OA , OA . bwthr = OA . bwthr + 0.1 * Link 
. dynamicRanges ) ; 
} 
inst oblig /ManagedObjects/Links/DecLwrThRel {
on thrCrossingAlarm ( down , utilValue , Link , OA ) ;
subject s = /ManagedObjects/Links/Router/Monitor ;
target t = /ManagedObjects/Links/Router/DRsMPMA ;
do decrLwrThs ( Link , OA , OA . bwthr = OA . bwthr - 0.1 * Link 
. dynamicRanges ) ;
} 
inst oblig /ManagedObjects/Links/IncUpprThRel {
on thrCrossingAlarm ( up , utilValue , Link , OA ) ;
subject s = /ManagedObjects/Links/Router/Monitor ;
target t = /ManagedObjects/Links/Router/DRsMPMA ;
do incrUpprThs ( Link , OA , OA . bwthr = OA . bwthr + 0.1 * 
Link . dynamicRanges ) ;
} 
inst oblig /ManagedObjects/Links/DecUpprThRel {
on thrCrossingAlarm ( down , utilValue , Link , OA ) ;
subject s = /ManagedObjects/Links/Router/Monitor ;
target t = /ManagedObjects/Links/Router/DRsMPMA ;
do decrUpprThs ( Link , OA , OA . bwthr = OA . bwthr - 0.1 * 
Link . dynamicRanges ) ;
} 

inst oblig /ManagedObjects/Links/AllocIncrsdRel {
on thrUpAlarmProcessing (utilValue , Link , OA ) ;
subject s = /ManagedObjects/Links/Router/DMain ;
target t = /ManagedObjects/Links/Router/DRsMPMA ;
do incrAlloc ( Link , OA , OA . bw = OA . bw + 0.1 * Link . 
dynamicRanges ) ;
} 
inst oblig /ManagedObjects/Links/AllocDecrsdRel {
on thrDwnAlarmProcessing (utilValue , Link , OA ) ;
subject s = /ManagedObjects/Links/Router/DMain ;
target t = /ManagedObjects/Links/Router/DRsMPMA ;
do decrAlloc ( Link , OA , OA . bw = OA . bw - 0.1 * Link . 
dynamicRanges ) ;
} 
inst oblig /ManagedObjects/Links/SplitSpareCapProp {
on postProcessingRequest ( Link , OA , BW ) ;
subject s = /ManagedObjects/Links/Router/DMain ;
target t = /ManagedObjects/Links/Router/DRsMPMA ;
do splitSpareCap ( Link , OA , s . LinkBWalloc = "proportionally" ) ;
} 
inst oblig /ManagedObjects/Links/DecOverCapProp {
on postProcessingRequest ( Link , OA , BW ) ;
subject s = /ManagedObjects/Links/Router/DMain ;
target t = /ManagedObjects/Links/Router/DRsMPMA ;
do decrOverBW ( Link , OA , s . LinkBWred = "proportionally" ) ;
}

 
Figure 66. Policies involved in the goal Dynamic Fluctuations Managed 
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The policies shown on the left part of the Figure 66 handle the management of 
threshold crossings in the Monitoring components of the DRsM modules of the 
TEQUILA system. DRsM modules are attached to every link interface of the core routers 
pertaining to the underlying network, which are in turn defined as Monitor in the subject 
field of these policies. These policies are triggered when threshold crossing alarm 
(thrCrossingAlarm) events are registered in the Monitor components (s= 
/ManagedObjects/Links/Router/Monitor). The enforcement of the policies “IncLwrThRel”, and “IncUp-
prThRel” results in threshold adjustments covering, respectively, lower and upper threshold 
settings for upwards threshold crossings.  

Similarly, downwards threshold crossings are handled by the policies 
“DecLwrThRel”, and “DecUpprThRel”, both for lower and upper threshold crossings respec-
tively. In all these cases, the threshold adjustments are 10 percent the dynamic range pro-
vided by the ND module, this is 10% of the difference between the maximum and mini-
mum values that the DRsM can drive for dynamic traffic fluctuations. A concrete exam-
ple is the action enforced by the policy “DecLwrThRel”, namely “decrLwrThs (Link, OA, OA. bwthr = 
OA.bwthr - 0.1 * Link.dynamicRanges )” which decreases 10% of the dynamic range, the lower 
threshold in the DRsM module. Similar actions are enforced for the other policies shown 
in the left part of Fig. 66 to cope with the corresponding threshold crossings. 

The policies “AllocIncrsdRel” and “AllocDecrsdRel” shown in the upper-right part of 
Figure 66 handle the increment of resources allocation. These policies are triggered by 
the upper and lower threshold crossing handlings respectively. These triggering events, 
namely “thrUpAlarmProcessing (utilValue, Link, OA)”, and “thrDwnAlarmProcessing (utilValue, Link, OA)” are 
registered in the DMain components of the DRsM modules of the TEQUILA system. The 
policy actions in these two policies are enforced to increase/decrease the allocated re-
sources for the corresponding OA for which the threshold crossing was issued. For ex-
ample, the policy “AllocDecrsdRel” enforces the action “decrAlloc (Link, OA, OA.bw = OA. bw - 0.1 * 
Link.dynamicRanges)” to reduce the allocated bandwidth by a relative value equivalent to the 
10% of the dynamic range provided by the ND component. 

The policy “SplitSpareCapProp” is triggered by events signalling resources 
re-allocations in the DRsM, namely by means of post processing events occurring in the 
Main components (see postProcessingRequest(Link, OA, BW) event in Fig. 66). This policy en-
forces the action “splitSpareCap (Link, OA, s.LinkBWRed = "proportionally")” which ensures that the 
spare resources of the link are used proportionally amongst all the OAs sharing the link to 
which the DRsM module is attached.  

Finally, the policy “DecOverCapProp” is also triggered after resource re-allocations. 
Nevertheless, it enforces the policy action “decrOverBW(Link, OA, s.LinkBWRed = "proportionally")” to 
make sure over-provisioned resources are decreased proportionally amongst the OAs 
sharing the link to which the corresponding DRsM belong to. 
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5.8 Analysis of the managed system behaviour 

In this Section we provide information regarding the policy-guided behaviour of 
the TEQUILA approach taking as reference the refined policies of our application sce-
nario. It is not our intention to validate the TEQUILA approach or the enforcement of the 
refined policies, as this may lead to statistical results that lay out of the scope of this The-
sis. Our objective is to point out the constrained behaviour obtained through the execu-
tion of available refined policies. The results acquired through this validation scenario 
have been verified with the ones obtained as part of the final TEQUILA dissemination 
results [Damil02]. The interested reader may use this reference for a detailed description 
of the validation results produced for the execution of scenarios involving quantitative 
data regarding service subscriptions, traffic injection, and network topologies.  

5.8.1 System behaviour based on traffic input 

The policies refined in our application scenario enable the functional operation of 
the TEQUILA system as a result of the holistic view of policy refinement for QoS Man-
agement [Rub06c]. The following is the behaviour of the traffic input points that is con-
trolled by policies refined in this application scenario. To better describe this aspect, we 
make use of the summarised representation of system behaviour shown in Figure 67. 
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Figure 67. Summarised representation of system behaviour due to traffic input 
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As we have described earlier, for every traffic input point, the TEQUILA system 
calculates three key values that define the Resource Allocation Buffer per-TT (RABTT); 
maximum resources (Rmax), minimum always available even at congestion (Rwmin) and 
minimum always available (Ramin). The traffic input (TRIN) in the system is referred to 
the RABTT and its evolution is depicted in Fig. 67. 

The refined policies constrain the relevant TEQUILA components and subse-
quently define three operational zones for the traffic input points. For better explanation 
these are referred to as “non-congested normal”, “non-congested prevention”, and “con-
gestion solving”. These zones are graphically presented in the upper-part of Figure 67.  

The system works in “non-congested normal” mode when the traffic injected in 
the network ranges from zero to the maximum resources for a specific TT and no conges-
tion alarms are reported from the monitoring sub-system. In this mode, the service rate 
adjustments allow active users to send traffic up to their fully satisfied rates (SRFS) and 
the admission control threshold is set to Rmax.  

As depicted in Figure 67, the system works in “non-congested prevention” mode 
when the traffic injected in the network has reached the maximum resources of a TT 
(Rmax), and no congestion alarms are reported from the monitoring sub-system. In this 
case the service rate adjustments reduce the traffic injection of active users, half-way 
between fully satisfied rates (SRFS) and almost satisfied rates (SRAS). Also, in this mode 
the admission control adjustments reduce the threshold up to Rwmin. Eventually, the traf-
fic input is reduced until its value crosses downwards Rwmin in the RABTT. At this point, 
the system is considered to shift to “non-congested normal” mode.  

Similarly, the system works in “congestion solving” mode when, irrespective of 
the traffic input, the monitoring subsystem reports congestion in the system. By irrespec-
tive, we mean that the traffic input (TRIN) in the system can be located in any point of the 
RABTT as we represent with the three dotted lines of TRIN in the central part of Figure 67.  
More concretely, note that in the non-congested area, TRIN can be in any part of the 
RABTT, same as within the congestion-solving area, see the evolution of the three dotted 
lines in Figure 67. This means that the “congestion solving” area can occur irrespective 
of the traffic input. In the “congestion solving” operational mode the admission control 
rejects any potential invocation (threshold set to 0) and the service rate of active users is 
reduced up to almost satisfied rates (SRAS). The traffic input is reduced as a consequence 
of the former adjustments. Eventually, the congestion alarms are cleared thus shifting the 
traffic input point to “non-congested normal” mode.  

5.8.2 System behaviour based on inner observed load 

This section illustrates the behaviour of the system with respect to the inner ob-
served load, this is, we show the internal rearrangements of resources to the different 
Per-Hop-Behaviours (PHBs) of the network as a result of the policies refined in this ap-
plication scenario. To better describe this aspect, we make use of the summarised repre-
sentation of system behaviour shown in Figure 68. 
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As we have described earlier, the TEQUILA system calculates, on a 
Per-Hop-Behaviour (PHB) basis, three key values; maximum, minimum and congestion 
required resources at each network interface represented as PHBmax, PHBmin and PHBcong 
in Figure 68. In the text below, we consider a network interface shared by three PHBs.  

The system is forced to rearrange resources based on observed load fluctuations 
based on policy rules. For instance, should PHB1 be under-utilised as we show in Figure 
68, the system reduces its BW allocation so that spare BW can be allocated to other 
PHBs, for example PHB2 and PHB3 (see PHB1 under-utilised circle in Figure 68). 
Should PHB1 be over-utilised as we show in Figure 68, the system increases its BW al-
location if sufficient link capacity is available, for example, from PHB2 and PHB3 in 
Figure 68 (see PHB1 over- utilised circle in Figure 68).   
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Figure 68. Summarised system behaviour due to inner observed load 

 

The network interfaces react to observed load fluctuations within the maximum 
and minimum resources estimated for each PHB. The later is identified as dynamic range 
in Figure 68. The reactions are carried out in a discrete manner, this is, they take place 
when the load reaches specific points within the dynamic range. In this case, the system 
detects load fluctuations in ten symmetrical points within the dynamic range. Similarly, 
the system is forced to vary BW allocations in steps given by ten symmetrical points 
within the dynamic range for the corresponding PHB as we graphically show on the right 
part of Figure 68. 
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5.9 Conclusions  

This Chapter has presented the applicability of a holistic refinement approach in 
the quality of service (QoS) management domain. Namely, we have presented how the 
policy refinement framework and the methodological approach to goal refinement de-
scribed in Chapter 3 and Chapter 4 respectively, can be used to refine enforceable poli-
cies from QoS-oriented administrative views in a systematic manner. We have presented 
a holistic and realistic application scenario of policy refinement, capturing the require-
ments, processes, actors and phases involved in such a critical process. As far as we 
know, no other work has explicitly addressed the policy refinement problem in any ap-
plication domain in such a complete view.  

The contribution of this Chapter is itself the assessment of a policy refinement 
process in a holistic view, for a network management domain [Rub06c], namely for the 
QoS Management domain. This achievement has not represented significant administra-
tive efforts as we have handled information that has been used during the design, imple-
mentation, and the operation of the TEQUILA approach. The following are some conclu-
sions drawn after executing the refinement process in this concrete application domain. 

We can conclude that the high-level goals definition is one of the most important 
steps for the assessment of the QoS-oriented refinement process. This step, which we 
suggest to be carried out during the design of the system, pre-establishes the way the ad-
ministrator consultant will define operative views of QoS Management at runtime as 
these are generated through the high-level goals. In this sense, a remarkable issue of the 
methodological approach is that all the refinement process relies on administrative deci-
sions. Nevertheless, policy authoring environments and policy-based management itself 
are driven by administrative decisions. Hence, we can conclude that the methodological 
approach does not substitute the administrative parties to be the most important sources 
for decisions of how to control QoS provisioning. Moreover, we have provided the ad-
ministrative parties with an affordable approach to control QoS provisioning. We ac-
knowledge that additional analysis techniques should be integrated to reduce or to avoid 
if possible, potential mistakes that the administrative parties could make during the re-
finement process. 

Regarding the system composition hierarchy, the Service Management and the 
Traffic Engineering functions of the TEQUILA approach do not work isolated. Hence, a 
remarkable issue here is that the system composition hierarchy should integrate the de-
tails of these two functionalities which in turn should be used to drive the QoS-oriented 
goal refinement process. On the other hand, the administrator developer should also pro-
vide a complete and correct System Model for the managed system involved in the 
TEQUILA approach. It is mandatory that the administrator developer should provide 
complete and correct specifications for the former two issues. Again, the administrative 
parties are responsible for the definition and for checking the completeness of the infor-
mation provided for these purposes. Additional analysis techniques should be figured out 
to reduce or to avoid if possible, potential mistakes that the administrative developer 
could make at these stages. 
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The policies refined in our application scenario enable the functional operation of 
the TEQUILA system to control QoS provisioning aligned to a QoS-oriented operative 
view. Regarding this issue, the methodological approach worked out in this Thesis has 
provided the means to define operative views for QoS management and/or modify current 
ones in a systematic manner. Moreover the application scenario has not evaluated under 
which conditions of user demands this operative view should be changed to allow a better 
performance of the network controlled with the TEQUILA approach. This may involve 
carrying out dense statistical analyses, with diverse network topologies, user demands, 
etc, which is out of the scope of the Thesis. Contrary, our methodological approach en-
ables the administrator consultant to define operative views for QoS management and/or 
modify current ones in a systematic manner. We can conclude then, that our methodo-
logical approach can contribute to the development of statistical and feedback analysis 
techniques in favour of QoS provisioning. 

Linked to the above issue and inspired in situations where a QoS-oriented opera-
tive view is no longer valid or that it should be changed, we could relate these situations 
to the fact that goals should evolve. Most probably, this goal evolution should be influ-
enced by statistical changes of user load, topology changes, etc. So far, we have consid-
ered and provided a framework that considers static high-level goals and consequently 
static QoS-oriented operative views. Moreover, it is highly desirable to consider mecha-
nisms that enable goal evolution. In this sense, we can conclude that our approach could 
be used as a starting point to address this challenging issue that may probably enable the 
policy refinement process to shift into a cyclic and continuous process in which contex-
tual information could be used to drive the refinement process.  

 

Another conclusion drawn from the execution of the scenario presented in this 
Chapter is that policy refinement demands a deep knowledge of the application domain at 
every stage of the refinement process. In this case, a deep knowledge of the QoS Man-
agement domain has been needed to carry out the validation scenario presented in this 
Chapter. We could conclude then that it is impossible to think of a simplistic solution to 
the policy refinement problem since it is a complex issue that certainly deserves more 
attention. Significant efforts are still necessary toward the solution of the refinement 
problem, most probably targeting specific application domains to identify its peculiarities 
and implications. In the QoS Management domain, future work could be directed to ex-
plore the implications of inter-domain QoS Management for which the research commu-
nity has envisaged necessary to solve still open issues like that of the policy refinement 
problem. Application-wise we are currently exploring the implications of the refinement 
problem applied to pricing environments [Gut07]. 
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Chapter 6  Related Work on Policy Refinement 

6.1 Introduction 

Policy refinement is a sub-field of policy-based management that has been rather 
dismissed, most probably due to its inherent complexity. In this sense, related work ex-
plicitly committing this open problem is scarce. In this Thesis, we have dealt with the 
critical nature of providing a complete approach to the policy refinement process, pro-
posing all the necessary elements involved in this critical aspect of policy-based man-
agement. The following are the elements addressed in this Thesis, which are in turn rep-
resented in Figure 69 together with the techniques/principles on which such key elements 
rely: 
• Formalising goal-oriented high-level requirements and goal refinement 
• Link between goal fulfillment and system behaviour finding 
• Abstraction of enforceable policies from system behaviour findings 
• Functional prototype that provides support during the goal-oriented refinement proc-

ess 
• Application of the methodology to a concrete management application domain 

FORMALISING GOAL ORIENTED 
REQUIREMENTS AND GOAL 

REFINEMENT

LINK BETWEEN GOAL 
FULFILLMENT AND SYSTEM 

BEHAVIOUR FINDING

ABSTRACTION OF 
ENFORCEABLE POLICIES FROM 
SYSTEM BEHAVIOUR FINDINGS

FUNCTIONAL PROTOTYPE THAT 
PROVIDES SUPPORT DURING THE GOAL-

ORIENTED REFINEMENT PROCESS

APPLICATION OF THE METHODOLOGY 
TO A CONCRETE AND REALISTIC 

MANAGEMENT DOMAIN

Requirements Engineering
Methodologies

State Exploration Via 
Model Checking

Event-Condition-Action 
Translation Process

Component-based Distributed 
Systems

QoS Management Domain: 
The TEQUILA approach

 
Figure 69. Key elements of the Thesis 

Although some relevant contributions have been provided in the refinement area, 
to the best of our knowledge, by the time of the publication of this Thesis, there is no 
evidence of any complete approach to goal-oriented policy refinement, addressing the 
above key elements in such a holistic manner.  

This Section presents the related work on policy refinement. For this purpose we 
divide the related work in six sub-Sections. Section 6.2 presents related work on 
goal-oriented management. Section 6.3 presents an abduction and Event Calculus ap-
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proach to policy refinement. Section 6.4 presents work done to generate policies from 
process specifications. Section 6.5 describes practical efforts carried out with refinement 
prototypes and finally, Section 6.6 describes other general efforts in the refinement area. 
We conclude this Chapter with Section 6.7. 

6.2 Goal-oriented management 

6.2.1 Specification of goal-oriented network management systems 

The first approach addressing the need to design, implement and operate network 
management system by means of goals was work by Bean et. al [Bea93]. The authors 
proposed the first approach to turn the design of network management systems into a 
formal engineering discipline based on Requirements Engineering principles.  

Starting from the view that Requirements Engineering is an activity of knowledge 
acquisition and formalization, the authors propose that such activity must not only de-
scribe the current and future system and its goals, but also its domain and range of influ-
ence. To this end, requirements engineering requires the cooperation of various members 
with expertise in the various aspects of network management and general system theory. 
Due to their very different backgrounds, these participants may have different perceptions 
of the goals of the future system and its environment. The challenge of the authors was to 
define a theoretically sound system and interface design framework, which would foster 
an orderly cooperation among the members participating in the requirements engineering 
activity and lead them to the production of a precise and complete set of end-user re-
quirements. Team effort within the systems design framework is illustrated in Figure 70 
as described in [Bea93].  

 

Team working

The client expresses 
informal requirements

Statement of Intention

The “System Architect”
Required knowledge:

Formal basis
•Automatic control
•Petri nets
•Logic Programming

Formal specification of the 
clients requirements

Execution of 
formal specifications  

Figure 70. System design team model 
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The starting point of this view is a “statement of intention,” which describes the 
overall goal of the system to be designed and the domain in which it must operate. There 
are some properties that user requirements must have. They should be executab1e. Al-
though the end-user requirements would likely be described in textual format, the idea of 
the authors was to transpose these into executable code and to test them as part of the ap-
proval process. The executability of the requirements should facilitate the emergence of a 
common understanding among the team members, who will likely have very different 
backgrounds. User requirements should be verifiable. The execution of user requirements 
should be a simulation.  

However, it was envisaged that more powerful methods should be used to ascer-
tain that the requirements are reasonably complete and precise. In fact, the team members 
should be able to obtain answers to questions about the behaviour of the specified system. 
In general, these questions raised the concerns addressing the evaluation, the satisfiabil-
ity, and the validity of the user requirements.  

The authors considers that the Evaluation for example should find the state in 
which the system will be given a state of the system and a sequence of events. Satisfiabil-
ity should deal with finding for example, which sequences of events change the system 
from the first state into the second, given two states of a system. At last but not least, va-
lidity should deal with situations where for example it was needed to verify that given 
two states of the system and a (possibly infinite) set of sequences of events, it was true 
that all the sequences of events in the set certainly change the system from the first state 
into the second. 

The framework developed by Bean et al. considers that the tasks of writing and 
verifying user requirements should be carried out in parallel. For this, they considered 
that the structure of user requirements should be inspired by automatic control theory. 
Since real-time network management systems are control systems, the authors envisaged 
that philosophy and methods of automatic control theory should be used for their design.  

According to this philosophy, user requirements should clearly specify two com-
ponents: the controlled domain whose behaviour is being impacted by the future system 
(the controller), and the goal to be achieved by the controlled domain working in coop-
eration with the future system. This same concept applies when defining the interfaces 
between the cooperating systems and the information that must be defined specifically for 
this communication. The overall view of Bean et al., is graphically shown in Figure 71. 
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“Actual controlled domain”
(Telco environment)

OSI interfaces

(commands) (events)

Controlled 
domain 
model

Decision Process

OSI interfaces

(commands) (events)

“Controller”
System

to be 
designed

Global system
must achieve

specified goals

 
Figure 71. Overall view of a network management system 

 

The team model proposed in this framework considers that the System Architect 
should manipulate an integrated design framework that integrates three mathematical 
techniques (see system design model in Fig. 70): 
• automatic control theory 
• Predicate-transition Petri net theory 
• logic programming. 

Automatic control theory for discrete-event systems [Ram89] provides the unify-
ing theme that binds the various parts of the global system. It was envisaged that this the-
ory would provide a formal framework for the design of large systems with feedback 
control. For instance, Figure 71 shows this overall view of a network management system 
structured according to the concepts of automatic control theory. This system is com-
posed of three parts: (1) the controlled domain, which consists of network elements, op-
erations support systems, and network operators equipped with computer terminals. (2) 
the controller that must be designed and implemented so that the global system, which is 
composed of the controller working in conjunction with the controlled domain, achieves 
a specified goal, and (3) the interfaces and interconnections that exist between the various 
components for which communication information must be defined. 

According to the authors view, Predicate-Transition Petri Net Theory [Gen86] 
should be used to describe both the structure of processes (how processes are linked to-
gether) and their behaviour (how processes change their state). This is, Predi-
cate-transition Petri enables the framework to introduce, in a formal manner, the concepts 
of individuals with changing properties and changing relations into the Petri net theory. 
Intuitively, predicate-transition Petri nets would provide a dynamic perspective of the 
common notion of a relational structure. A structure is a tuple of objects comprising a set 
of individuals, called the domain of the structure, together with functions and relations in 
that domain. Operators (function symbols) and predicates (relation symbols) should form 
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the vocabulary of the language in which one talks formally about structures, i.e., about 
the properties and relations of the individuals. The language used is first-order predicate 
logic. A dynamic structure is characterized by the fact that some relations are variable in 
the sense that their extensions (i.e., the set of individuals for which the corresponding 
predicates are true) may vary from state to state due to the occurrence of processes in the 
modelled system. The changes in the relation extensions are defined by transition 
schemes.  

Finally, Bean et al.’s framework integrated Logic Programming (Prolog) [Ster86] 
as a feasible formalism to provide the descriptive framework. Logic programming is 
based on the concept of using predicate logic as a programming language [Ster86]. Logic 
programming languages have more natural semantics than other programming languages. 
Due to their high-level declarative semantics, they are “almost” specification languages. 
Moreover, they also have an operational meaning. In addition, the logic programming 
language Prolog provides a suitable framework for the realization of meta-linguistic ab-
stractions, i.e., the establishment of new descriptive languages that are particularly well 
suited to the problems at hand. For example, such a meta-linguistic abstraction can be 
achieved by constructing a specialized language in Prolog. This is done by writing a 
Prolog interpreter for the specialized language. This interpreter then, when applied to an 
expression of the specialized language, would perform the actions required to evaluate 
the expression. User requirements must contain the interpreter defining the language used 
for the description of the controlled domain and the goals. Since the interpreter is written 
in Prolog, this language plays the role of a lingua franca, i.e., a language that is assumed 
to be understood by everyone. 

 

Although these efforts were aligned with the TMN (Telecommunications Man-
agement Network) standards, these initiatives do not provide any clue about how these 
goal-oriented requirements could be addressed in policy-based systems or the implica-
tions for its application to such systems, amongst other reasons because by the early nine-
ties, the idea of policy-based management was not as mature as we could consider it by 
the time of the publication of this Thesis. In addition, there is no evidence of any imple-
mentation that brings all the concepts considered in the authors’ framework, or a per-
formance evaluation that makes their proposals trustworthy. In conclusion, there is not 
explicit evidence of the evolution of this initiative.  

Our holistic view of policy refinement could be considered as a specialisation of 
the above initiative, narrowed down to address the refinement process in policy-based 
network management systems. We provide a methodological approach and a functional 
solution that makes a collaborative environment for shared work amongst the actors in-
volved in the policy refinement process, from the design/implementation of the system, 
up to the operation of such system.  
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6.2.2 The KAOS methodology 

Since the early stages of policy-based management, the research community en-
visaged the need to specify policies at an abstract level and progressively refine them into 
enforceable policies. The KAOS methodology approach was first brought into the policy 
community by van Lamsweerde [Lam99] as an alternative to ground the policy refine-
ment problem. The KAOS approach [Dar93], [Dar95], [Dar98], [Lam95] used in this 
Thesis is one of the most extended approaches in the Requirements Engineering area as it 
provides support to formalise goal-oriented requirements specifications, and a rather 
complete and mature goal-based reasoning technique to refine goals (which are related to 
abstract policies) into lower-level ones.   

We have described extensively the foundations and principles of the KAOS 
methodology throughout this Thesis, concretely in Section 2.2.3. The main limitation of 
this methodology is that it does not provide support to relate the target system behaviour 
to goal fulfillment finding. Consequently, the use of the KAOS methodology to refine 
policies as a stand-alone methodology has never been demonstrated in management con-
texts, more concretely in policy-based systems.  

The holistic nature of the work presented in this Thesis overcomes the limitations 
of the KAOS approach to refine enforceable policies from abstract goal-oriented re-
quirements in a systematic manner. In this sense, two key issues are particularly relevant: 
• Methodology-wise, we have extended the KAOS goal refinement process to make it 

suitable and affordable in network management systems. More concretely, we have 
provided generic guidelines to address goal refinement for the later systems. 

• Analysis-wise, we explicitly use the linear temporal logic foundations of the KAOS 
approach as the base for analysis techniques that enable automatic production of en-
forceable policies from goal graph structures elaborated through goal refinement. 
Hence, we make use of the KAOS foundations to overcome its limitations in favour 
of the policy refinement problem. 

 

Other efforts targeting the limitations of the KAOS approach to address the policy 
refinement problem are described in the following Section. 

6.3 Abduction and Event Calculus-based approach to Policy 
Refinement 

An effort that has taken the KAOS approach to address the policy refinement 
problem is work by Bandara et al., [Ban04]. The authors claim to have proposed a 
goal-based approach to policy refinement, grounded in the KAOS methodology. This ap-
proach proposes a formal specialisation of the ideas presented in [Lam99] to use the 
KAOS approach [Dar98] to produce Ponder policies from KAOS goal graph structures. 
In this sense, the contribution of Bandara et al., [Ban04] has been acknowledged as a 
substantial contribution to the policy refinement area. In [Ban04], the Event Calculus is 
used to model both system behaviour and policy such that formal reasoning techniques 
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can be used to analyse policy specifications. Event Calculus and Abduction are used to 
formalise the refinement analysis.  

The Event Calculus [Efs02], [Mil99] is a logic-based formalism that provides a 
theoretical framework for representing, specifying and reasoning about dynamic systems. 
The Event Calculus description includes a collection of axioms (sentences) that describe 
general principles for deciding specific features of event-based systems. Each specifica-
tion includes a collection of sentences, describing the particular effects of events or ac-
tions in an event-based system.  

The authors use a variation of Event Calculus consisting of (i) a set of time points 
(that can be mapped to the non-negative integers); (ii) a set of properties that can vary 
over the lifetime of the system, called fluents; and (iii) a set of event types. In addition the 
language includes a number of base predicates, initiates, terminates, holdsAt, happens, 
which are used to define some auxiliary predicates and domain independent axioms.  

These are summarised below [Ban04]: 

 
Base predicates: 
initiates(A,B,T)    event A initiates fluent B for all time > T 
terminates(A,B,T)    event A terminates fluent B for all time > T 
happens(A,T)     event A happens at time point T 
holdsAt(B,T)  fluent B holds at time point T. This predicate is useful for defining static rules 

(state constraints) 
initiallyTrue(B)    fluent B is initially true. 
initiallyFalse(B)    fluent B is initially false. 
 
Auxillary predicates: 
clipped(T1,B,T2)  fluent B is terminated sometime between time point T1 and T2 
declipped(T1,B,T2)  fluent B is initiated sometime between time point T1 and T2 
 
Domain independent axioms: 
holdsAt(B, T)∧ ¬ clipped(T, B, T1)∧ T<T1  → holdsAt(B, T1)    
initiates(A, B, T)∧ happens(A, T) 

∧ ¬ clipped(T, B, T1)∧ T<T1    → holdsAt(B, T1)    
¬holdsAt(B, T) ∧ ¬ declipped(T, B, T1)  

∧ T<T1        → ¬holdsAt(B, T1)    
terminates(A, B, T)∧ happens(A, T) 

∧ ¬ declipped(T, B, T1)∧ T<T1  → ¬holdsAt(B,T1) 

 

In the classical form of the Event Calculus used by Bandara et al., theories are 
written using Horn clauses and the frame problem is solved by circumscription, which  
according to the authors, allows the completion of the predicates initiates, terminates and 
happens, leaving open the predicates holdsAt, initiallyTrue and initiallyFalse. This approach 
allows the representation of partial domain knowledge (e.g. the initial state of the sys-
tem). Formulae derived from Event Calculus derived from the circumscription of the EC 
representation. To provide an implementation of such a Calculus in Prolog, the Bandara 
et al.’s approach uses pos and neg functors. The semantics of the Prolog implementation 
assumes the Close Word Assumption (CWA) and Herbrand models where predicates are 
appropriately completed. The use of pos and neg functions on the fluents allows the au-
thors to keep open their interpretation of being true/false, in the same way as circum-
scription does in the classical representation. In this way it is guaranteed that the imple-
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mentation of the Event Calculus is sound and complete with respect to the classical EC 
formalisation. The interested reader can find the correspondence between the classical EC 
with circumscription and the logic program implementation in [Mil99], [Mil02]. More-
over a brief description of how this classical EC is used in the context of refinement 
[Ban03] is described bellow.  

The reasoning used in the author’s approach is abduction. It is used to determine 
the sequence of events that need to occur such that a given set of fluents will hold at a 
specified point in time. The overall claim for refinement is that at a given level of ab-
straction, there will be some description of the system (SD) and the goals (G) to be 
achieved by the system. The relationship between the system description and the goals is 
the Strategy (S), i.e. the Strategy describes the mechanism by which the system repre-
sented by SD achieves the goals denoted by G. Formally this would be stated as [Ban04]: 

(1) - SDX, SX   GX 
X is a label denoting the abstraction level. 

As the authors certainly claim, in this approach it is expected that the user should 
provide a representation of the system description, in terms of the properties and behav-
iour of the components, together with a definition of the goals that the system must sat-
isfy. While the behaviour of the system is defined in terms of the pre- and post-conditions 
of the operations supported by the components, the goals to be satisfied can be defined in 
terms of desired system states. 

Once the user has provided this information, a transformation step is needed into a 
formal representation that supports automated analysis. Given the relationship between 
the system description, strategy and goal defined in (1) above, the authors propose abduc-
tion to programmatically infer the strategies that will achieve a particular goal as graphi-
cally shown in Figure 72 [Ban04]. Additionally, the properties of the goal decomposition 
approach described previously are used to decompose the system description and strate-
gies as follows:  (2) -  GX1, GX2, ... , GXN   |= GX Goal Decomposition 

(3) -  SDX1, SX1    |=  GX1 
SDX2, SX2    |=  GX2 ... 
SDXN, SXN    |=  GXN (from 1) 

S2

GX

GX1 GX2

S4 S5

Component
Properties

Capabilities Component
Properties

Capabilities

ABDUCTION ABDUCTION

GOAL REFINEMENT

ABDUCTION

 
Figure 72. Derivation of strategies from goals and system description 
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The authors claim that if there is some combination of lower level goals from 
which the original goal can be inferred, then for each of these sub-goals there must be a 
corresponding strategy and system description combination which will achieve it. There-
fore, provided the goal decomposition is correct, intuitively the combination of the lower 
level system descriptions should allow inference of the abstract system description and 
similarly the combination of the lower level strategies should allow inference of the ab-
stract strategy. The derived strategy can be represented using the following syntax 
[Ban05a]: 
 
      Strategy AchievedGoal 
           OnEvent         Events derived from transitions with system events. 
           DerivedActions  Actions derived from transitions with operation invocations. 
           Constraints     Constraints derived from guards. 
 

As the authors claim, the exact circumstances, in which a strategy should be en-
coded as a policy, rather than system functionality, will depend on the particular applica-
tion domain. Once a strategy is identified, the authors use it in the action clause of the 
final policy. The domain hierarchy is used to identify the exact objects in the system that 
correspond to those entities mentioned in the high-level policy which are used in the sub-
ject and target clauses of the final policy. Finally the event and constraints of the 
high-level policy are mapped, by the user, into the final policy. 

 

Clearly, the approach reported in [Ban03], [Ban04] and the work reported in this 
Thesis, both are committed to overcome the limitations of the KAOS methodology in fa-
vour of the policy refinement process. Moreover both approaches have remarkable dif-
ferences.  

In terms of the goal refinement methodology, we consider that [Ban04] does not 
make clear how the goal refinement process could be assessed in network management 
systems. In this Thesis we have proposed the guidelines to make use of inherent features 
of network management systems to drive, together with the KAOS refinement patterns, 
the goal refinement process.  

[Ban04] mainly concentrates on the analysis techniques aimed at acquiring the 
so-called strategies. Nevertheless, it is unclear how the linear temporal logic foundations 
of the KAOS goal graph structures are used in their analysis techniques to drive the ac-
quisition of policies from high-level abstract requirements. Namely, we find it unclear 
how the ad-hoc machinery developed to abduce strategies based on EC-based specifica-
tions work as the approach does not address explicit temporal execution of goals 
[Ban05a]. This makes it difficult to think of the scalability for large refinements whilst 
explicit execution of goals is pivotal in the work presented in this Thesis.  

Our framework has been conceived to define the behaviour of the system as a re-
active system, namely by finite state machines, collaboration diagrams, etc, compiled in 
standard UML standard notations, hence making it easier and friendly to use for network 
administrators and developers. More important, the analysis techniques used to abstract 
the system behaviour that should fulfill high-level goals, are different in nature. While 
Event Calculus and abduction is used in [Ban03],[Ban04] to infer the sequences of ac-
tions that achieve particular goals, our approach goes through pure LTL-based state ex-
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ploration to obtain the necessary system behaviour (actions, events and states) that the 
underlying managed entities should exhibit as to fulfill lower-lever goals elaborated 
through temporal refinement patterns.  

Finally, in terms of functionality, [Ban05b] acknowledges that the tool imple-
mentation developed on purpose to verify their analysis techniques, is not considered a 
fully functional system, whilst we have made evident the functionality of the prototype 
implementation to refine, enforceable policies from abstract KAOS goal graph specifica-
tions. To the time of the publication of this Thesis, there is no evidence of performance 
evaluation and consequently we cannot provide qualitative evaluations between the 
EC-based approach and the work carried out in this Thesis.  

6.4 Automated generation of policies from process specifica-
tions 

In our work we introduced an ad-hoc process aimed at abstracting enforceable 
policies from system behaviour findings. This key element of the refinement process has 
no precedent in the policy refinement area as it has been developed exclusively for our 
methodological approach. The closer concept related to the above is the automated gen-
eration of policies from process specifications [Dan04]. The following is work by Danciu 
et al with this regard.  

 

6.4.1 Process and Policy Characteristics 

Danciu et al., propose a set of patterns for the automated generation of policies 
from process specifications. To achieve the translation between process and policy speci-
fication, common characteristics of processes and policies should be leveraged. 

As the authors describe in [Dan04], processes are described as sets of entities, 
events and actions. Entities can be either human personnel or managed objects (MOs). 
Entities may generate events or execute actions. Examples for entities are: ’change man-
ager’, ’user’ and ’application server’. Events communicate a change of state in an entity 
that is relevant to management. Examples for events are: ’document changed’, ’user re-
quests service’ and ’application server restarted’. Actions are performed by entities in 
response to events. They can perform a change of state in entities. A special form of ac-
tion is the generation of an event. Examples for actions are: ’update document’, ‘authen-
ticate user’ and ’restart application server’. 

In addition, policies are also derived considering Subject, Target, Event, Action 
and Condition. Subject designates the entity to which the policy applies. Target identifies 
an entity that is affected by the policy (i. e. the target of the action of the policy). Event 
describes the event which causes the policy to be evaluated. Action is the operation per-
formed on a target to enforce the policy. Condition is the constraint under which the pol-
icy is enforced. While only the event, action and condition fields are ubiquitous, the in-
troduction of subjects and targets is necessary for referencing entities. 
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6.4.2 Mapping Management Process to Policies 

Having defined common characteristics of process and policies, mappings that 
serve as generic translation patterns should be defined.  

The characteristics of management processes are used as a common base for the 
targeted mapping. Figure 73 shows an overview of the mapping process to policy char-
acteristics as illustrated in [Dan04]. Entities are mapped to subjects and targets. Thus, 
persons or MOs can have policies specified for them (subject). They can also be affected 
by policies (target). Actions in process semantics correspond to actions of policies. An 
action can be anything between one single function call and entire scripts executed on a 
target MO.  Events in processes match the event-constraint-pair in policies. While it is 
common for process specifications to contain conditions, these can be represented using a 
sufficiently detailed typing of events. Such a typing will yield a very large number of 
event types and is, in consequence unsuited for implementation. An event is considered 
to have happened, when an event notification (e.g. a signal) has been received, and the 
conditions (if any) yield hue. 
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Figure 73. Mapping process to policy characteristics 

 

Relevant of this work are the translation patterns to generate policies from process. 
The most fundamental structure in an event-driven process is the unconditional execution 
of an action in response to an event. As shown in Figure 74a, several events can be speci-
fied to trigger the execution of the action (the comma in the event list implies or). In most 
cases, the entity responsible for the action and the target of that action need to be speci-
fied as well (Figure 74b). The first case results in a single policy with only the event and 
action fields present. In the second case, subject and target of the policy are determined 
by examining the direction of the arrows that connect the entities to the action. An entity 
having an arrow pointing towards it (UML output object) results in a policy target, while 
entities having arrows pointing away (input object) from them (and towards the action) 
result in policy subjects. The policies resulting from the patterns are shown in order on 
the right part of Figure 74. 
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Process1

(a)
myAction()

myEvent1

Process2

myEntity1

myEntity2
(b)

myAction()

myEvent

myEventN
policy {
event {myEvent1,…, myEventN}
action {myAction}
}

policy {
event {myEvent}
subject {myEntity1}
target {myEntity2}
action {myAction}
}

 
Figure 74. Basic patterns 

 

The process in Figure 75 chooses between two different actions depending on the 
value of a predicate. Two policies are generated from this process, differing at least in the 
condition field. The general case has several decision branches, each carrying its guard 
condition. In this case, a number of policies equal to the number of branches needs to be 
generated in such a way that every policy includes the condition of the decision branch it 
corresponds to. Any condition can be formulated for a decision branch; for clarity, Figure 
75 is constrained to an <expression> <operator> <expression> pattern as described in 
[Dan04]. 

 

myAction1()

myEvent policy {
event {myEvent}
action {myAction1()}
condition {variable1<value1}
}

myAction2()

variable1<value1

variable1>value1

policy {
event {myEvent}
action {myAction2()}
condition {variable1>value1}
}

 
Figure 75. Decision pattern 

 

As the authors certainly claim, this approach is committed to generate policies 
from process specifications. With this regard, the approach looks like a classic tem-
plate-based policy generation mechanism. This is, the attributes of the policy fields are 
restricted to pre-established values. Contrary, the policies produced in the work described 
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in this Thesis do not obey to any pre-established template. We encode policies system-
atically using a translation process applied directly over policy-restricted system behav-
iour. The authors in [Dan04] recognise their approach consists of mapping management 
process into operational policies although it has been acknowledged as a substantial con-
tribution to the policy-based management area since it enables the production of large 
amounts of policies. Another concern with this approach is that it is yet unclear how poli-
cies are committing to which or what administrative objectives. More concretely, it is not 
clear how the administrative parties should align process definition with business objec-
tives or administrative views. By the time of the publication of this Thesis, there is no 
evidence of performance data or dissemination results for further analysis to carry out 
comparisons between this approach and the work carried out in this Thesis. 

6.5 POWER Prototype 

Functional prototypes tailored explicitly to address the policy refinement problem 
are rather scarce and still lacking in the policy research community. Work by HP Labo-
ratories [Cas00] is one of the few policy refinement approaches hitherto implemented for 
this purpose.  

6.5.1 Refinement Philosophy 

POWER is developed from the idea that a policy should be looked upon as “the 
constraints and preferences on the state, or the state transition, of a system, and is a guide 
on the way to achieving the overall objective which itself is also represented by a desir-
able system state” [Goh97]. The authors use the concept of constraint for the components 
in policy description; the context in which a policy operates; the triggering event which 
kicks policy into consideration in the context; and the policy statement. In the POWER 
approach, the refinement of policy consists of two aspects: the refinement of policy con-
text by making constraints more specific, and refinement (constraining) of objects used in 
the policy.  

Similar as work by Bean et. al [Bea93], POWER separates responsibilities of pol-
icy making persons whom are respectively called expert and consultant. The “expert” is 
the person with deep domain knowledge, such as that in the field of security, or network 
QoS related mechanisms. A “consultant” is the person who has deep knowledge of the 
business for which policies are to be established. The expert deals mainly with policy 
function to mechanisms mapping and the consultant mainly deals with business to policy 
function mapping. With this separation, the expert creates policy templates, which will be 
used by the consultant to create policy according to the business needs.  

6.5.2 Prototype Architecture 

The architecture of POWER [Cass00] is graphically shown in Figure 76 for which 
a brief description is provided thereafter. 
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Figure 76. POWER Policy Authoring Environment Architecture 

 

A key component is the Policy Template Library. It is a collection of policy tem-
plates which have been created by the expert of the domain that the policies are meant 
for. Each template is a “package” that describes the policy according to certain principle, 
and the way a consultant, using the authoring environment, can refine it. The authors 
propose to achieve this through embedding the refinement steps and instructions in the 
template as components. The policy template is implemented with Prolog and can be ma-
nipulated by the Policy Wizard Engine. Its components can be classified accordingly to 
their usage [Cass00]: 
• Policy Statement: The description of the policy. These are predicate logic statements 

with several views, one of which is “natural-language like” and is exposed to the pol-
icy user. 

• Policy Context: The description of contextual constraints within which the policy will 
operate. The contextual information allows one to arbitrarily define a domain dy-
namically within which the policy statement is valid. 

• Informational components: they provide extra information to the policy user. For 
example the “abstract” and the “description” contain descriptive text about the mean-
ing of the policy. 

• Procedural components: they have embedded process instructions used to drive the 
“refinement flow”. For example the “sequence” component defines the steps the Pol-
icy Wizard Engine will lead the consultant through.  

Another key component is the Information and System Model ISM. It models the 
information in the underlying policy-controlled environment. It is implemented using the 
Common Information Model from the Distributed Management Task Force CIM 
[DMTF-CIM], with extensions in the area of business and organisation model. Included 
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with the implementation will be the low-level linkage of object classes to information 
sources that creates the mapping to managed objects. The authors implement this as a set 
of Prolog statements that can be easily accessed by the Policy Wizard Engine. 

The Policy Wizard Engine (PWE) is the heart of POWER. The authors acknowl-
edge it as the combination of: (i) A Prolog inference engine; (ii) An interpreter that ma-
nipulates a policy template according to the embedded information, and provide support 
to the graphical user interface; (iii) A module that interacts with the Information and 
System Model using a defined API; (iv) A module that deals with “deployable policies”: 
(v) Procedures that interact with the “Policy Deployer” using a defined API.  

The PWE loads policy templates from the library. Through the use of a GUI, a 
relevant template is selected, and by interpreting the embedded information in the tem-
plate, the PWE guides the consultant in the refinement process to ensure that: 
• Within an abstract policy, objects, which can be made more specific through the se-

lection of its sub-class 
• Legitimate additional constraint can be included as contextual information.  

At the end of the refinement process the PWE saves the policy either for further 
refinement or for it to be used in deployment. 

The Graphical User Interface hides the low-level policy details, such as the policy 
template infrastructure and Prolog programming language, in order to present an easy and 
simplified way to access the system functionality. 

Regarding the Deployable Policies Database, a policy is deployable only when a 
set of real world system objects can be found and for which configuration is specified. 
The system stores those policies in order to be uploaded by the “Policy Deployer” and be 
deployed, and/or to be available to the consultant or other system modules for further 
manipulations. 

The authors propose a device mapper that in turn uses the Information and System 
Model ISM to convert from a policy description in the form of a policy statement and 
context containing variables into a series of system specific function calls.  

The prototype implementation presented in this Thesis differs to POWER in the 
sense that the latter is an environment in which the user is guided to choose policies from 
pre-designed policy templates tailored for specific use. Instead, we use a pure 
goal-oriented approach in which the administrator developer documents both, the capa-
bilities of the target system and the options with which the administrator consultant can 
choose the administrative views of how to handle the system at operation time. Hence, 
we do not limit the options of the administrative parties to the use of templates of any 
kind. 

The major limitation of the POWER toolkit is its inherent template-like function-
ality which constrains it to work under limited scopes. In addition, there is no evidence of 
the implications of its use in a concrete application domain, or a fully implemented pro-
totype including all the architecture details described earlier. Consequently, to the time of 
the publication of this Thesis, there is no evidence of performance data that allow assess 
qualitative comparisons between POWER with our refinement approach. Apart from 
POWER, there is no evidence of any other functional solution to policy refinement. 
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6.6 Other refinement efforts 

By the time of the publication of this Thesis, we are being aware of a rather in-
creasing interest of analysis techniques tailored to tackle policy refinement. This is at 
some point needed for the success of policy-based management. The remaining of this 
section provides some recent advances on policy refinement.  

6.6.1 Automated Policy Refinement for Managing Composite Services  

Carey et al. [Car04], [Car05] propose to manage composite services automatically 
with the use of a policy refinement approach. In this context, policy refinement is applied 
to mapping high level goals of a composite service automatically down to low level poli-
cies which interact with the service and previously existing constituent services. The au-
thors propose an architecture that works as along side a workflow-style composite service 
execution engine. It also includes a policy refinement engine, a policy execution engine 
and a state machine. The policy refinement model described in [Car04] is graphically 
shown in Figure 77. 
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Figure 77. Policy refinement model for managing composite services 

 

The architecture of this work assumes that the execution of the service composi-
tion is performed by a workflow engine. This engine uses a sequence description for a 
composite service to create scripts with rules that activate the services according to the 
sequence description given. 

The authors propose that service implementers use Finite State Machinces (FSMs) 
to expose the, largely non-functional, elements of the implementation’s behaviour that 
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are intended to be managed via policy rules. The states of a FSM represent the 
non-functional aspect configurations of the service it describes. A transition between two 
states in a FSM represents an action needed to be performed in the service to move from 
one state to the other. For composite services, the service’s non-functional aspects are 
described in terms the non-functional aspects of its constituent services. The relationship 
information between the composite service’s states and the constituent service’s states is 
referred to as state relationship information. 

Policy is proposed in this work for managing the services by the use of the FSMs, 
where it can monitor for a specific state and when this state is reached, it can perform the 
necessary action to reach the desired state.  

Prior to the execution of the composite service, the state machine should load the 
FSM models for each of the constituent services together with a default state for each of 
the FSMs. During the composite service execution, the state machine changes the current 
state of a FSM when an action for that state transition occurs on an active service.  

The architecture of this proposal has a policy refinement engine. The authors ac-
knowledge a goal as a high level policy with event, condition and action, expressed only 
with the states defined in the FSM for the composite service. When applied to the 
framework along with a composite service, a goal is refined into intermediate policies 
and subsequently into service policies. This occurs prior to the execution of the compos-
ite service. 

In this refinement view, the refinement of a high level policy to an intermediate 
policy is achieved with the aid of the composite service map, which describes how the 
states in the composite service’s FSM are mapped to states of its constituent services. The 
high level policy is therefore refined into an intermediate policy, an aggregate policy ex-
pressed in terms of states from constituent services. The aggregate intermediate policy 
can have several events, conditions and action.  

The transformation of an aggregate intermediate policy into service policy is more 
complex, it entails the creation of a service policy, a low level policy, for each of the in-
termediate’s event, condition and action. The refinement of an aggregate intermediate 
policy also generates a service meta-policy. The service meta-policy is the backbone of 
the service policies as it ties them together. 

Regarding the conditions of the intermediate policy, for each of these conditions a 
service policy is generated and is triggered when the state specified by the intermediate 
condition is encountered. As its action, it sends a notification to a service meta-policy that 
this condition has been reached. The same applies to the intermediate policy’s events. For 
each action of the intermediate policy, a service policy is generated and is triggered when 
it receives a notification from a service meta-policy. As its action, it performs the action 
needed to attain the desired state specified by the intermediate policy action. The gener-
ated service meta-policy for the aggregate intermediate policy expects notifications from 
all the ‘condition’ service policy and ‘event’ service policy as its condition. As its action, 
it sends notifications to all the ‘action’ service policies. 
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By the time of the publication of this Thesis, to the best of our knowledge, there is 
no evidence of performance evaluations of the refinement approach nor details of the im-
plications of the approach towards solving the refinement problem in this application 
domain.  

6.6.2 Multi-layer modeling refinement for network security management 

Albuquerque et al. [Alb05] propose a refinement mechanism based also on a 
multi-layer system modeling approach addressing the network security management do-
main. The authors address the refinement problem by modeling security systems, based 
on the concepts of policy-based management and model-based management.  

Model-Based Management (MBM) is proposed to support policy-based manage-
ment by the use of an object-oriented model of the system to be managed. Based upon 
this model, policy refinement is accomplished such that configuration parameters for se-
curity mechanisms can be automatically derived. The structure of the model as provided 
in Alb05 is shown in Figure 78, where three abstraction levels can be distinguished: 
Roles & Objects (RO), Subjects & Resources (SR), and Processes & Hosts (PH). Each 
level is a refinement of the superior level in the sense of a “policy hierarchy”. 
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Figure 78. Overview of Model Based Management 

 

The higher level Roles & Objects (RO) offers a business-oriented view of the 
network whereas the lowest level is related to a technical view. The vertical subdivisions 
differentiate between the model of the actual managed system (with productive and con-
trol elements) and the policies that regulate this system. This last category encompasses 
requirement and permission objects, each of which refers to the model components of the 
same level and expresses security policies. 

The second level Subjects & Resources (SR) offers a system view defined from 
the standpoint of the services that the system will provide, and it thus consists of a more 
complex set of classes. In this view, objects of these classes represent: (a) people working 
in the modelled environment; (b) subjects acting on the user’s behalf; (c) services in the 
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network that are used to access resources; (d) the dependency of a service on other ser-
vices; and lastly (e) resources in the network.  

The lowest level Processes & Hosts (PH) is responsible for modelling the mecha-
nisms that will be used to implement the security services defined in SR. The PH level 
will have even more classes than before, representing for instance the hosts, with their 
respective network interfaces and processes.  

The claim is that Model-Based Management (MBM) also provides a support tool, 
which, at first, assists the user in the modeling of the system by means of a graphical edi-
tor with additional functions for the checking model-dependent constraints. Once the 
system modelling is finished, the tool performs an automatic refinement of the abstract 
security policies (in the RO level), through the intermediary levels (SR and PH), until 
achieving configuration files for the supported security mechanisms.  

The claim is that the above modeling technique makes it possible an automation 
of the building of a policy hierarchy on the basis of a system’s model that is structured in 
different abstraction levels. In this process, the analysis of the system’s objects, relation-
ships and policies at a certain abstraction level enables the generation of lower level poli-
cies, based also on the system’s model in the lower level and on the relations between 
entities of the two layers. As such, the model entities of a certain level and their relation-
ships supply the contextual information needed to automatically interpret and refine the 
policies of the same level. 

A relevant issue of this approach is that the administrative parties must manually 
establish relationships between entities of the different layers of the model. This is at 
some point unavoidable in any automated approach. Nevertheless, the implications of this 
policy refinement approach in a concrete application domain are still unclear. In addition, 
as a template-like approach, it is limited to pre-established conditions of policy refine-
ment.  

6.6.3 Automated decomposition of access control policies 

Access control policies are concerned with the definition of access control rules 
that define who is allowed to do what to which resources [SuL05]. In this domain, policy 
refinement is receiving some attention from the research community. For instance, Su et 
al. [SuL05] address resource management for distributed applications. In this domain 
Policy Decision Points (PDPs) can be used by each resource. From the view that each site 
can have its own PDP and that common policy can be distributed to each site based PDP, 
the claim is that a common high level policy for the application can be decomposed (re-
fined) into site-specific policies, which are then distributed to each site and only contain 
policy information relevant for controlling access to that site. 

The work introduce the concepts of abstract resource types, concrete resource 
types, resource type hierarchies, resource instances, policy hierarchies and policy de-
composition rules. The multiple resources of a distributed application are seen as having 
a hierarchical structure. Policies are needed to control access at each of the levels. At the 
highest level, the policy is concerned about controlling access to a single abstract re-
source, for example a particular Grid application. At the lowest level, the policy ad-
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dresses controlling access to specific concrete resources, such as servers and file stores 
which make up the abstract resource. 

Intermediate levels are possible, for example, a computer cluster or a distributed 
database. The claim is that policies at any level for whatever abstract or concrete re-
sources can be automatically produced from the high level policy based on policy de-
composition rules and resource type hierarchies. 

The authors propose resource type hierarchies that should describe how the high 
level abstract resources are constructed from their lower level concrete and abstract re-
sources. Resource type hierarchies also say what actions (or methods) each of the re-
sources support. A resource instance is an instance of a resource type hierarchy. Multiple 
instances of the same type hierarchy can occur.  

Refinement-wise, Policy decomposition rules define how high level policies 
transform into their low level ones so that the policy decomposition (refinement) is real-
ized based on these rules and a resource type hierarchy. By means of policy decomposi-
tion, see Figure 79 [SuL05], existing access control decision systems such as PERMIS 
and Akenti [Jho98] are able to be applied to multiple distributed resource applications. 
Based on an access control policy P for an abstract resource R, which is a distributed re-
source, a group of low level policies p1-p6 for each component of R can be produced. To 
do so, relationships between the resources are established. In the example shown in Fig-
ure 79, the resource R contains six sub resources, which may be decomposed further into 
other sub-resources (not shown). This process is carried out recursively until all 
sub-resources become site specific concrete resources, where the low level policies are 
then able to be used to control access to them. This resource decomposition and low level 
policy production defines a simple policy refinement process. This policy refinement 
process is claimed to produce a policy for any resource at any level and ensures that each 
stage of the decomposition is correct and consistent. 
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Figure 79. Producing Low-level Policies (p1 to p6) from a high level policy p 
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As for the description of the refinement rules, this approach is apparently inspired 
in classical template-based approaches although the authors have extended it to a hierar-
chy-like approach. The authors consider multiple resource types of distributed applica-
tions to build up a resource type hierarchy in distributed applications. From these hierar-
chies, policies belonging to a resource type are refined into policies applied to specific 
resource instances. The authors claim that low-level policies are simpler in terms of the 
number of policy components contained in them. The work reported in [SuL05] is an 
ongoing work and there is not evidence of a complete approach to policy refinement ap-
plied to this domain although the ideas presented above may pioneer future studies in this 
field. 

6.6.4 Synergy between conflict analysis and policy refinement  

More recently, the synergy between policy refinement and conflict analysis has 
received some attention from the research community. Work by Davy et al.[Dav06] de-
scribe an architecture for enabling application specific conflict prevention via model 
driven policy refinement. A refinement algorithm can retrieve relevant information from 
the information model based on defined policy so that it links loosely defined high level 
policy to behavioural constraints contained in the information model. This process en-
ables policy enforcement to be more aware of application specific constraints, leading to 
a more trustworthy and dependable policy based management system.  

In the above context, policy refinement involves the specification of additional 
condition clauses within the policy, which subsequently allows the detection of conflicts 
with other policies that would otherwise have gone undetected by standard policy conflict 
detection algorithms. In cases where system information models describe constraints re-
lating to the operation of managed entities, relevant policies are augmented with condi-
tions reflecting these constraints, so that they would not be enforced in a manner that re-
sults in these constraints being violated. System constraints in the information model are 
defined by the system architect who has expert knowledge in the functionality of the sys-
tem being modelled. These system constraints may come in the form of action 
pre-conditions, invariants, or post-conditions. System constraints defined within the in-
formation model supply implicit knowledge not usually available to the policy authoring 
process. The work introduce an automated policy refinement process which obviates the 
need for policy authors to be cognisant of the detailed constraints on system operation, 
but which outputs policies that are sufficiently well specified that policy conflict detec-
tion processes can be effective and efficient. Figure 80 illustrates a policy-based system 
incorporating model-driven conflict prevention as illustrated in [Dav06].  
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Figure 80. Policy system introducing model-driven conflict prevention 

 

In this view of conflict prevention during the refinement process, policies created 
or modified by policy authors are expressed in strict accordance with the terms used in 
the information model, since the policy GUI is tightly coupled to the information model. 
Once created/modified policies are passed to the Policy Analyser, which takes their sub-
jects and/or targets and queries the information model for relationships (and constraints 
on these relationships) for these subjects/targets. Using relationship and constraint infor-
mation the authors claim that it is possible to assess more precisely those circumstances 
in which the policy actions should be invoked. The authors propose a Policy Analyser 
that employs an algorithm that retrieves the relevant relationships and constraints from 
the information model given an arbitrary policy defined in accordance with that informa-
tion model. 

Once the associated relationships and constraints have been retrieved, the original 
policy should be refined. As there may be multiple action constraints to be added into the 
policy, they must first be checked against each other so that the resulting policy action 
constraints do not logically contradict [Dav06]. An example of this would be if two con-
straints were added to a policy specifying that the action may only be performed during 
daytime hours, and another constraint specifying that the action may only be performed 
during night time hours. This type of rule contradiction will cause the policy not be en-
forced at anytime, and so the policy can not be refined and is invalid against the refer-
enced information model. According to the authors view, the constraints should be 
checked against existing policy conditions for completeness. 

A more detailed description of this approach can be found in [Dav06]. The re-
finement process of the work described above is closer to policy conflict analysis. The 
work reported in this Thesis does not include conflict analysis although some comple-
mentary work in this area, related to the work presented in this Thesis can be found n 
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[Cha05], [Cha06]. We also envisage that policy refinement should be coupled to conflict 
analysis techniques. 

6.6.5 A Classification-Based Approach to Policy Refinement 

Classification of statistical data is used to ground the policy refinement problem 
by Udupi et al [Udu07].  As systems are typically designed based on high-level goals, 
this approach proposes deriving policy bounds on low-level metrics such that high-level 
goals are met. Low level metrics are measured at operation time, from which system ad-
ministrators or experts use domain knowledge to implicitly map bounds of these 
lower-level metrics such that the high-level performance goals are met. Refinement is 
carried out using a combination of data classification and test-and-development ap-
proaches. A system is deployed within a test-and-development environment and a data 
set containing values of low-level metrics is collected by placing appropriate workloads 
on the system. Policy bounds are derived by applying classification techniques on data-
sets. The classification rules are further refined using statistical distributions to arrive at 
certain low level rules that are useful for system monitoring and to check the system 
health when it is deployed and running.  

The main steps for policy refinement in this view are: (i) Test and Development 
Phase, (ii) Classification Phase, (iii) Policy Derivation and Refinement Phase. These 
steps are summarised in Figure 81 as graphically illustrated in [Udu07]. 

 
Test and Development Phase
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operation to obtain RESTRICTED 
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Figure 81. Classification-based policy refinement approach 
 

For the fist step of the refinement process [Udu07], an ad hoc system configura-
tion should be created on the basis of the given high-level SLA goals. A Test and Devel-
opment environment records values for the low level system attributes by placing work-
loads on the system that are spread around the ranges of the target workload [Udu07]. 
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Next, the data is pre-processed for classification. This phase involves applying a 
classification algorithm on the dataset, and deriving the policies that are useful for these 
purposes. In the dataset collected, for classification purposes the target variable computed 
should be included from the evaluation of the high-level SLA metrics. The target variable 
is a Boolean value taking either TRUE or FALSE as the possible values depending on 
whether the high-level SLA goals are satisfied or not. Classification techniques such as 
decision tree classification methods should be applied on the dataset for the given target. 
All the TRUE rules are collected and passed to the next phase.  

The Policy derivation and refinement phase derives policies from the output of the 
classification phase. Considering a decision tree approach for classification, policies 
should be derived from all the paths leading to TRUE leaves. These TRUE policies are a 
conjunction of inequalities on various attributes that are picked by the classification 
phase. A refinement strategy that is applied at this level uses the distribution statistics of 
the attributes on these TRUE paths. For all attributes in the TRUE tuples (tuples in the 
dataset that correspond to a TRUE high-level SLA value), distributions statistics such 
MINIMUM and MAXIMUM values are computed. The inequalities of attributes that ap-
pear on the TRUE policies are further refined by appending the MINIMUM and 
MAXIMUM values giving definite bounds for the attributes, resulting in the required 
TRUE REFINED policies. This process results in a set of TRUE REFINED policies, 
which can be used for monitoring system health as for designing subsequent configura-
tions. Further refined categories of policies are provided by aggregating the different 
policies generated to arrive at rules on individual attributes. Allowable and Restricted 
ranges are considered for these purposes.  

 

To our understanding, this classification approach could be considered as a tem-
plate-like approach in the sense that the models and algorithms developed for these pur-
poses are restricted to pre-defined situations i.e. classifications. Another issue that de-
serves more attention is the relationship between the refined policies and the goals that 
are linked to the formers. The authors claim to address SLA goal fulfillment and refine 
policies accordingly. To the best of our knowledge this is a very difficult and challenging 
issue that implies continuous monitoring and evaluation tasks (feedback mechanisms and 
analysis). Such mechanisms and their interaction with the refinement approach are un-
clear although the authors recognise the lack of a verification process for the low-level 
policies to be consistent. 

6.7 Conclusions 

In this Chapter we have reviewed related work on policy refinement. We must 
acknowledge that the refinement area is at its initial stage and explicit efforts to tackle it 
are rather scarce.  

Section 6.2 reviewed the related work concerning goal management. The efforts 
presented in this Section have been derived from the Requirements Engineering tech-
niques. Initially, by the early nineties, work by Bean et al. [Bea93] introduced the 
goal-oriented view into network management systems although this work has not been 
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widespread in the research community, most probably due to its lack of continuity in the 
sense of implementation or dissemination of the concepts developed in such an initia-
tives. The work presented in this Thesis could be considered as a specialisation of Bean et 
al.’s initiative, narrowed down to address the refinement process in policy-based network 
management in a goal oriented fashion. 

Regarding goal-oriented efforts, the KAOS approach has apparently been estab-
lished as one of the default methodologies to ground policy refinement, at least in the 
work reported by the research community so far and also in our work. The KAOS meth-
odology makes it a powerful support due to the goal-based reasoning techniques that it 
provides. Moreover, its main limitation is that that it does not provide support to relate 
the target system behaviour to goal fulfillment finding. Consequently, it does not allow 
refine enforceable policies from KAOS-like requirements. The methodology has never 
been demonstrated in management contexts i.e. policy-based systems. 

Section 6.3 reviewed the Abduction and Event Calculus (EC)-based approach to 
goal oriented refinement [Ban03], [Ban04]. The latter approach is committed to over-
come the limitations of the KAOS methodology in favour of the policy refinement proc-
ess. Moreover, it does not make clear how the goal refinement process could be assessed 
in network management systems. Nevertheless, it is considered a major contribution as it 
provides powerful analysis techniques aimed at acquiring strategies tailored to fulfilling 
previously identified goal states. Nevertheless, it is unclear how the linear temporal logic 
foundations of the KAOS goal graph structures are used in the analysis techniques to 
drive the acquisition of policies from high-level abstract requirements. To our under-
standing, it is unclear how the ad-hoc machinery developed to abduce strategies based on 
EC-based specifications work as the approach does not address explicit temporal execu-
tion of goals [Ban05a]. This makes it difficult to think of the scalability for large refine-
ments whilst explicit execution of goals is pivotal in the work presented in this Thesis. 
Finally, in terms of functionality, [Ban05b] acknowledges that the tool implementation 
developed on purpose to verify their analysis techniques, is not considered a fully func-
tional system.  

Section 6.4 reviewed a pioneer approach to generate policies from process speci-
fications [Dan04]. Contrary to our approach that generates policies from system behav-
iour, this template-like approach is restricted to pre-established settings as the authors 
recognise that it relies on a mapping process. More important, it is yet unclear how poli-
cies are aligned to administrative objectives.  

Section 6.5 reviewed the fist approach explicitly conceived to refine policies in a 
policy authoring environment. POWER [Cas00] is an environment in which the user is 
guided to choose policies from pre-designed policy templates tailored for specific use. 
The major limitation of POWER during the operation of policy systems is the restriction 
to the administrative parties to choose from pre-defined conditions (policy templates). 
Additionally, there is no evidence of performance data that allow assess qualitative com-
parisons between POWER with our refinement approach. Apart from POWER, there is 
no evidence of any other functional solution to policy refinement hence it is acknowl-
edged as a major contribution to the policy refinement area. 
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Finally, Section 6.6 reviewed some recent advances in the policy refinement area. 
With this regard, we could conclude that the policy refinement area is starting to receive 
an increasing interest from the research community. We could conclude that most of the 
work is still at the preliminary stage and that substantial efforts are still necessary to 
overcome all the implications confronting the policy refinement process in different ap-
plication domains. In addition, template-like approaches are still mostly used in the cur-
rent approaches and this is one of our major constraints with such solutions. In general, 
template-like refinements limit the refinement process to pre-established conditions of 
operation. More dynamic approaches are needed for consideration in future works. An-
other crucial issue for further considerations is the synergy between refinement and con-
flict prevention that in principle are the two major issues confronting the utilisation of 
policy-based management as a widespread technology. 
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Chapter 7  Summary Conclusions 

The following are the summary conclusions of the work presented in this Thesis.  

7.1 Review of Contributions 

In this Thesis we have addressed one of the most challenging and complex issues 
of policy-based management, the policy refinement process. The following are the con-
tributions we claim to have made with this regard. 

7.1.1 A Policy Refinement Framework and Prototype 

Following the idea that goals can represent the achievements of policies at differ-
ent levels of abstraction [Lam99], [Ban04], we have proposed a holistic goal-oriented re-
finement framework [Rub05] and prototype [Rub06a],[Rub06b] that provide support to 
address the policy refinement process. 

We have proposed a framework that, having adopted the KAOS goal elaboration 
method, overcomes its limitations to produce enforceable policies from KAOS goal graph 
structures. To accomplish this we have made use of inherent logical relationships of goal 
refinements which to the best of our knowledge, is a genuine advantage of the framework 
as it enables the automated acquisition of enforceable policies aligned to KAOS-defined 
goals. This general contribution yields to a number of novel contributions that we claim 
to have made: 

• We have defined appropriate mechanisms aimed at establishing temporal relation-
ships amongst lowest-level goals, and consequently to high-level goal fulfillments. 
We have exploited the logical foundations of the KAOS methodology, namely the 
Linear Temporal Logic formalism. These novel mechanisms exploit the potentiality 
of these foundations which have been unexploited or unconsidered to systematise the 
policy refinement process. 

• We have introduced the use of patterns for behavioural properties specification as the 
means to represent the fulfillment of lowest-level goals. This novel approach enables 
the representation of the fulfillment of lowest-level goals, with formal notations and 
more important, to use searching engines to acquire restricted system behaviour 
aligned to lowest-level goals fulfillment and consequently with the fulfillment of 
KAOS high-level goals.   

• We have introduced a scalable translation process that produces enforceable policies 
from restricted system behaviour.  
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• We have designed and implemented a prototype that enables the execution of the re-
finement process along the life cycle of a policy-based system; design, implementa-
tion, start-up, and operation. To the best of our knowledge, this is the first fully func-
tional approach to goal-oriented policy refinement presented in the literature. With 
this regard, there is no evidence of any other solution of this kind to provide com-
parative results of performance. 

 

From the above, we draw the general conclusion that in order to address the pol-
icy refinement problems, it is mandatory to be able to represent policies in hierarchical 
levels in an affordable manner, establish formal relationships amongst them for further 
analysis tailored at acquiring enforceable policies aligned to KAOS-defined goals. An-
other general conclusion is that it is feasible and practically achievable to produce en-
forceable policies aligned to high-level goals in a systematic manner. 

7.1.2 A Systematic Approach 

One of the most relevant steps of the policy refinement process is that of goal re-
finement. The KAOS methodology provides application-independent refinement patterns 
to assess goal refinement. A novel contribution of our work is a systematic approach to 
drive goal refinement in management contexts [Rub06c]. As far as we know, this is the 
first work that defines generic guidelines to exploit hierarchical relationships of policy 
systems in favour of the policy refinement problem. One of the advantages of this ap-
proach is that the guidelines can be used in management contexts irrespective of their ap-
plication domain as long as it is feasible to identify hierarchical relationships within the 
target system.  

With this regard, central to the goal refinement process are the high-level goals 
that the system designer should define. It is unavoidable and at some point, it would be 
impossible to systematise the goal refinement problem unless high-level goals are speci-
fied in advance. These high-level goals represent the most valuable information to start 
up the goal refinement process and also represent valuable information that should be 
used for system design, development, implementation, and operation. Nevertheless, the 
information handled in this crucial step is anyway used for system design purposes. The 
incremental effort for a system designer shouldn’t be significant. 

The result of the systematic approach can be seen as goal-graphs that integrate 
goal refinement patterns and that mimic the management system composition hierarchy. 
Moreover, we must acknowledge that it would be very difficult, if not impossible, to as-
sess goal refinement unless the administrative parties are able to establish relationships 
between the high-level goals and the levels of the system compositional hierarchy. Again, 
this is an affordable price that should be paid to systematise the goal refinement process. 

From all the above, a general conclusion is that as an application-domain inde-
pendent approach, the goal refinement process requires anyway a deep knowledge of the 
target system and hence of the application domain. We are still far away from providing a 
simplistic solution to goal refinement and consequently to policy refinement because 
most probably, such simplistic solution may not exist. Also, the control of administrative 
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decisions has not been shifted to any generic method but contrary, we have pointed out 
how the administrators can take advantage of information that system designers handle, 
in favour of the policy refinement problem. Consequently, each step of the goal refine-
ment process is yet driven by administrative decisions. 

7.1.3 Application Scenario 

We have executed a complete policy refinement process in the quality of service 
(QoS) management domain [Rub06c], considering all the requirements, processes, actors 
and phases involved in such a critical process. To the best of our knowledge, this is the 
first complete approach to policy refinement carried out in any concrete application do-
main. The following are some conclusions yielded from this overall achievement. 

The execution of the policy refinement process for the QoS Management domain 
does not represented significant work load as the information used for this achievement 
has been used for the design, implementation, and the operation of the TEQUILA archi-
tecture on which the refinement process has been executed.  

A crucial step is the definition of QoS-oriented high-level goals as it has a direct 
impact on the goal refinement process at design time. This step also pre-establishes the 
way the administrator consultant will define operative views of QoS Management at run-
time. The high-level goals should be representative of the most relevant aspects with 
which the administrator should control the underlying managed systems in favour of QoS 
provisioning. The administrative actors should agree on these high-level goals. It would 
be practically impossible to systematise the refinement process without a complete and 
rather concrete set of QoS-oriented high-level goals. 

Linked to the above remark, refinement-wise we have provided the administrative 
parties with an affordable systematic approach to define QoS-oriented high-level goals 
and assess their refinement. At the end of the refinement process we have successfully 
refined a complete set of policies that enable the functional operation of the TEQUILA 
system to control QoS provisioning aligned to a QoS-oriented operative view. The re-
fined policies have successfully addressed the synergy of the Traffic Engineering and 
Service Management functionalities of the TEQUILA approach since these two functions 
do not work isolated for QoS delivery. For this assessment, it is mandatory to having 
compiled complete and correct data concerning the hierarchical system composition and 
the system models for every sub-system involved in the TEQUILA system. Again, this is 
an affordable price that should be paid in favour of systematising the policy refinement 
process. 

A remarkable issue is that the QoS-oriented refinement process has demanded a 
deep knowledge of the QoS Management domain although the systematic approach and 
prototype described in this Thesis, makes policy refinement an affordable and feasible 
process. 
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7.2 Discussion and Future work 

This section provides a discussion and possible future work on relevant topics ad-
dressed in this Thesis. 

7.2.1 Framework and Prototype 

Regarding the framework and prototype described in this Thesis, a number of is-
sues deserve additional discussion.  

Regarding the prescription of the goals addressed in this Thesis, we have re-
stricted ourselves to study Achieve goals [Lam01], this is, we have forced the target 
managed system to behave to commit with some target behaviour. We have accom-
plished this by considering unconditional state transitions of the system model in re-
sponse to events, taking for granted that all states and transitions are permissible in the 
system model. This approach has enabled us to relate obligation policies with Achieve 
goals in a systematic manner. Further work could be directed to explore the implications 
of considering non-permissible states and their potential relationships with Maintain, 
Avoid and Cease goals [Lam01]. Moreover, we envisage that the principles of the 
framework and the prototype should be preserved since these goal prescriptions, the 
framework and prototype itself, all rely on Linear Temporal Logic formalisms. In addi-
tion, we envisage that the consideration of these types of goals may enable to carry out 
analysis for application domains in which authorisation, access control and security is-
sues have special relevance.  

One of the principles of the framework and prototype is the acquisition of system 
behaviour aligned to goal fulfillment, from which enforceable/deployable policies are 
eventually produced. This acquisition process is carried out through plain state space 
search. The main drawback of this approach is undoubtedly the state explosion problem 
for very-large scale System Model specifications. Although we have not experienced this 
situation in any of the scenarios that we have worked through this Thesis, we recognize 
that further work should be directed to review the implications of this approach. Most 
probably, a revisited framework and prototype may include additional System Model 
specification management procedures and/or revisited heuristic searching mechanisms 
[Ede01] intended to avoid the state explosion problem for ultra-large scale System Model 
specifications. 

Linked to the acquisition of system behaviour, we have initially considered situa-
tions where the searching engine provides only one report of system behaviour fulfilling 
the high-level goals. Moreover, we acknowledge that a more robust approach should con-
sider handling multiple behaviour traces (if existed also in more robust System Model 
specifications) which in turn would produce policies applicable to different conditions of 
system execution. Moreover, we envisage that the principles of the refinement approach 
should be preserved for each of the multiple restricted-system behaviour traces. The im-
plications of this could be part of future work.  
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Regarding the administrative tasks considered in the framework and prototype, 
namely documenting the System Model, and the assessment of goal refinement and goal 
selection. All these tasks are unavoidably assessed by the administrative parties. Future 
work could be directed to prevent potential mistakes that the administrators could make 
during the assessment of the aforementioned tasks.  

Another limitation of our current framework and prototype is that we have not 
considered the implications of run-time changes of the System Model. Future work could 
be directed to implement tracking mechanisms to police changes on this information and 
update the refined/deployed policies accordingly.  

Finally, we have provided the means to produce enforceable/deployable policies 
aligned to high-level goals. Moreover, we are still at the very initial stage of the policy 
refinement problem. Future work should be directed to explore the implications or the 
relationship between SLA fulfillment and the formulation of high-level goals. This is a 
critical and challenging issue that may possibly imply to adapt feedback mechanisms to 
our refinement framework as to involve service management, system performance, goal 
specialisation, etc, for particular application domains. Consequently, substantial efforts 
are still needed to solve the policy refinement problem. 

 

7.2.2 Applicability of the Methodological Approach 

We claim that a refinement framework could be considered useless unless we 
provide some guidelines to address the policy refinement problem in management con-
texts. The methodological approach that we have provided in this Thesis certainly helps 
in assessing goal refinement, and eventually enables the automated acquisition of en-
forceable/deployable policies aligned to high-level goals. Nevertheless some issues de-
serve additional discussion. 

The main drawback of the methodological approach is that applying it to specific 
refinement problem solving requires a deep knowledge of the target system or the appli-
cation domain. For example, the QoS Management domain in which we have applied our 
methodology has demanded a deep knowledge of the capabilities, design, implementation 
details, etc, of the TEQUILA approach. There is no solution that overcomes this draw-
back, the refinement problem demands a deep knowledge of the application domain. 

Our methodological approach prescribes that administrator developer establishes 
high-level goals from which that the administrator consultant could define QoS-oriented 
operative views in accordance with the former high-level goals. This issue deserves some 
additional discussion. For instance, the operative views can be seen as fixed declarations 
of the administrative view for controlling QoS delivery. It has been out of the Thesis 
scope to study under which conditions of user demands, these operative views should be 
changed to allow a better performance of the network controlled with the TEQUILA ap-
proach. This is a critical issue that may possible involve statistical analysis, several con-
ditions of user demands, and most probably, different scenarios applied to different net-
work topologies. Moreover, we must acknowledge that our methodological approach en-
ables the consultant to define new operative views and/or modify current ones in runtime.  



Summary Conclusions   148

Linked to the above issue, further work could be directed to integrate statistical 
and feedback analysis techniques in favour of QoS provisioning, and to enhance the 
framework itself. One way to accomplish this could be the consideration of evolving 
goals, i.e. goal evolution. We believe that goal evolution should be influenced by statisti-
cal changes of user load, topology changes, etc. This is a challenging issue, not only for 
the QoS Management domain, but for the policy refinement problem in general. We 
strongly believe that our framework could be revisited to address this challenging issue 
that may probably enable the policy refinement process to shift into a cyclic and con-
tinuous process in which contextual information could be used to drive the refinement 
process.  

A general conclusion and future work of this Thesis is that significant efforts are 
still necessary toward the solution of the refinement problem. We hope that the ideas de-
veloped in this Thesis may encourage policy designers and researchers to address the 
policy refinement problem and/or to revisit the policy refinement framework and meth-
odological approach presented in this Thesis. Policy refinement is still at its initial stage; 
hence, substantial efforts should be made to solve it. 
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Appendix A. PROMELA code examples 

PROMELA SPECIFICATION EXAMPLE  

This part of the Appendix shows the PROMELA specification for the two components, 
Managed Object 1 and Managed Object 2 exemplified in Section 2.3.3., and graphically 
shown in Figure 82 for better convenience.  
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Figure 82. Example of collaborative behaviour 

 

PROLEMA specification: 
#define top_initial0 1 
#define top_initial02Idle 1 
#define empty 0 
#define completion_queue_size 2 
#define Idle 2 
#define completion_Idle 0 
#define cmplIdle 0 
#define MO2_State3 3 
#define cmplMO2_State3 0 
#define completion_MO2_State3 1 
#define MO2_State1 4 
#define cmplMO2_State1 0 
#define completion_MO2_State1 2 
#define MO2_State2 5 
#define cmplMO2_State2 0 
#define completion_MO2_State2 3 
#define number_objects 2 
#define queue_size 5 
#define send_event_1 0 
#define MO2_State4 6 
#define cmplMO2_State4 0 
#define completion_MO2_State4 4 
#define send_event_2 1 
#define send_event_3 2 
#define MO2_State42top_final0 2 
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#define top_final0 7 
#define success 0 
#define top_initial0_G0 1 
#define top_initial02Idle_G1 1 
#define Idle_G2 2 
#define completion_Idle_G3 3 
#define cmplIdle_G4 0 
#define MO1_State2 3 
#define MO1_State1 4 
#define MO1_State3 5 
#define MO1_State4 6 
#define cmplMO1_State4 0 
#define completion_MO1_State4 4 
#define MO1_State42top_final0 2 
#define top_final0_G5 7 
#define obj_MO1 1 
#define obj_MO2 2 
 
chan event_queues[number_objects] = [queue_size] of {byte, chan}; 
 
pid processIds[number_objects]; 
 
proctype ManagedObject2(chan event_queue; byte this; byte initialiser_MO10) { 
  chan ack_in = [0] of {bit}; 
  chan ack_out; 
  chan internal_queue = [completion_queue_size] of {byte}; 
 
  byte state0; 
  byte state0_transition; 
  byte MO1; 
  bool completed[1]; 
  byte current_event; 
 
  xr event_queue; 
  atomic { 
    MO1 = initialiser_MO10; 
    state0 = top_initial0; 
    state0_transition = top_initial02Idle; 
    goto transitionFiring 
  }; 
  main: 
  current_event = empty; 
  if 
  :: internal_queue?[current_event] -> 
     internal_queue?current_event 
  :: else -> 
     if 
     :: event_queue?[current_event, ack_out] -> 
        event_queue?current_event,ack_out 
     :: else -> 
        event_queue?current_event,ack_out 
     fi 
  fi; 
  atomic { 
    if 
    :: state0 == Idle && current_event == completion_Idle && completed[cmplIdle] == 
true && true && true -> 
       completed[cmplIdle] = false; 
       state0 = empty; 
       state0 = MO2_State3; 
       completed[cmplMO2_State3] = true; 
       internal_queue!completion_MO2_State3; 
       goto main 
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    :: state0 == Idle && current_event == completion_Idle && completed[cmplIdle] == 
true && true && true -> 
       completed[cmplIdle] = false; 
       state0 = empty; 
       state0 = MO2_State1; 
       completed[cmplMO2_State1] = true; 
       internal_queue!completion_MO2_State1; 
       goto main 
    :: state0 == Idle && current_event == completion_Idle && completed[cmplIdle] == 
true && true && true -> 
       completed[cmplIdle] = false; 
       state0 = empty; 
       state0 = MO2_State2; 
       completed[cmplMO2_State2] = true; 
       internal_queue!completion_MO2_State2; 
       goto main 
    :: state0 == MO2_State1 && current_event == completion_MO2_State1 && com-
pleted[cmplMO2_State1] == true && true && true -> 
       completed[cmplMO2_State1] = false; 
       state0 = empty; 
       event_queues[MO1-1]!send_event_1,ack_in; 
       state0 = MO2_State4; 
       completed[cmplMO2_State4] = true; 
       internal_queue!completion_MO2_State4; 
       goto main 
    :: state0 == MO2_State2 && current_event == completion_MO2_State2 && com-
pleted[cmplMO2_State2] == true && true && true -> 
       completed[cmplMO2_State2] = false; 
       state0 = empty; 
       event_queues[MO1-1]!send_event_2,ack_in; 
       state0 = MO2_State4; 
       completed[cmplMO2_State4] = true; 
       internal_queue!completion_MO2_State4; 
       goto main 
    :: state0 == MO2_State3 && current_event == completion_MO2_State3 && com-
pleted[cmplMO2_State3] == true && true && true -> 
       completed[cmplMO2_State3] = false; 
       state0 = empty; 
       event_queues[MO1-1]!send_event_3,ack_in; 
       state0 = MO2_State4; 
       completed[cmplMO2_State4] = true; 
       internal_queue!completion_MO2_State4; 
       goto main 
    :: state0 == MO2_State4 && current_event == completion_MO2_State4 && com-
pleted[cmplMO2_State4] == true && true && true -> 
       state0_transition = MO2_State42top_final0; 
       goto top_label 
    :: else 
    fi; 
    top_label: 
    skip; 
    transitionFiring: 
    do 
    :: state0_transition == top_initial02Idle -> 
       state0_transition = empty; 
       state0 = empty; 
       state0 = Idle; 
       completed[cmplIdle] = true; 
       internal_queue!completion_Idle 
    :: state0_transition == MO2_State42top_final0 -> 
       state0_transition = empty; 
       completed[cmplMO2_State4] = false; 
       state0 = empty; 
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       state0 = top_final0 
    :: else -> 
       break 
    od; 
    if 
    :: state0 != top_final0 -> 
       goto main 
    :: else -> 
       goto end_machine 
    fi 
  }; 
  end_machine: 
  success 
} 
 
proctype ManagedObject1(chan event_queue; byte this; byte initialiser_MO20) { 
  chan ack_out; 
  chan internal_queue = [completion_queue_size] of {byte}; 
 
  byte state0; 
  byte state0_transition; 
  bool completed[1]; 
  byte current_event; 
  byte MO2; 
 
  xr event_queue; 
  atomic { 
    MO2 = initialiser_MO20; 
    state0 = top_initial0_G0; 
    state0_transition = top_initial02Idle_G1; 
    goto transitionFiring 
  }; 
  main: 
  current_event = empty; 
  if 
  :: internal_queue?[current_event] -> 
     internal_queue?current_event 
  :: else -> 
     if 
     :: event_queue?[current_event, ack_out] -> 
        event_queue?current_event,ack_out 
     :: else -> 
        event_queue?current_event,ack_out 
     fi 
  fi; 
  atomic { 
    if 
    :: state0 == Idle_G2 && current_event == completion_Idle_G3 && com-
pleted[cmplIdle_G4] == true && true && true -> 
       completed[cmplIdle_G4] = false; 
       state0 = empty; 
       state0 = MO1_State2; 
       goto main 
    :: state0 == Idle_G2 && current_event == completion_Idle_G3 && com-
pleted[cmplIdle_G4] == true && true && true -> 
       completed[cmplIdle_G4] = false; 
       state0 = empty; 
       state0 = MO1_State1; 
       goto main 
    :: state0 == Idle_G2 && current_event == completion_Idle_G3 && com-
pleted[cmplIdle_G4] == true && true && true -> 
       completed[cmplIdle_G4] = false; 
       state0 = empty; 
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       state0 = MO1_State3; 
       goto main 
    :: state0 == MO1_State1 && current_event == send_event_1 && true && true -> 
       state0 = empty; 
       state0 = MO1_State4; 
       completed[cmplMO1_State4] = true; 
       internal_queue!completion_MO1_State4; 
       goto main 
    :: state0 == MO1_State2 && current_event == send_event_2 && true && true -> 
       state0 = empty; 
       state0 = MO1_State4; 
       completed[cmplMO1_State4] = true; 
       internal_queue!completion_MO1_State4; 
       goto main 
    :: state0 == MO1_State3 && current_event == send_event_3 && true && true -> 
       state0 = empty; 
       state0 = MO1_State4; 
       completed[cmplMO1_State4] = true; 
       internal_queue!completion_MO1_State4; 
       goto main 
    :: state0 == MO1_State4 && current_event == completion_MO1_State4 && com-
pleted[cmplMO1_State4] == true && true && true -> 
       state0_transition = MO1_State42top_final0; 
       goto top_label 
    :: else 
    fi; 
    top_label: 
    skip; 
    transitionFiring: 
    do 
    :: state0_transition == top_initial02Idle_G1 -> 
       state0_transition = empty; 
       state0 = empty; 
       state0 = Idle_G2; 
       completed[cmplIdle_G4] = true; 
       internal_queue!completion_Idle_G3 
    :: state0_transition == MO1_State42top_final0 -> 
       state0_transition = empty; 
       completed[cmplMO1_State4] = false; 
       state0 = empty; 
       state0 = top_final0_G5 
    :: else -> 
       break 
    od; 
    if 
    :: state0 != top_final0_G5 -> 
       goto main 
    :: else -> 
       goto end_machine 
    fi 
  }; 
  end_machine: 
  success 
} 
 
init { 
  atomic { 
    processIds[obj_MO1-1] = run ManagedObject1(event_queues[obj_MO1-1], obj_MO1, 
obj_MO2); 
    processIds[obj_MO2-1] = run ManagedObject2(event_queues[obj_MO2-1], obj_MO2, 
obj_MO1) 
  } 
} 
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EXECUTION REPORT PROVIDED BY THE PROMELA INTERPRETER 

This part of the Appendix shows the complete execution report reported by the 
PROMELA Interpreter SPIN for the example provided in Section 2.3.3., and graphically 
shown in Figure 83 for better convenience.  
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Figure 83. Visual representation of execution report 

 

SPIN execution report: 

 
Starting :init: with pid 0 
spin: warning, "pan_in", global, 'byte  processIds' variable is never used 
spin: warning, "pan_in", proctype ManagedObject2, 'byte  this' variable is never used 
spin: warning, "pan_in", proctype ManagedObject1, 'byte  this' variable is never used 
spin: warning, "pan_in", proctype ManagedObject1, 'byte  MO2' variable is never used 
spin: couldn't find claim (ignored) 
Starting ManagedObject1 with pid 2 
  2: proc  0 (:init:) line 261 "pan_in" (state 1) [processIds[(1-1)] = run 
ManagedObject1(event_queues[(1-1)],1,2)] <merge 4 now @2> 
  queue 1 (event_queues[0]):  
  queue 2 (event_queues[1]):  
  processIds[0] = 2 
  processIds[1] = 0 
 
Starting ManagedObject2 with pid 3 
  2: proc  0 (:init:) line 262 "pan_in" (state 2) [processIds[(2-1)] = run 
ManagedObject2(event_queues[(2-1)],2,1)] <merge 4 now @4> 
  queue 1 (event_queues[0]):  
  queue 2 (event_queues[1]):  
  processIds[0] = 2 
  processIds[1] = 3 
4: proc  2 (ManagedObject2) line  61 "pan_in" (state 1) [MO1 = initial-
iser_MO10] <merge 83 now @2> 
4: proc  2 (ManagedObject2) line  62 "pan_in" (state 2) [state0 = 1] <merge 
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83 now @3> 
4: proc  2 (ManagedObject2) line  63 "pan_in" (state 3) [state0_transition = 1]
 <merge 83 now @83> 
5: proc  2 (ManagedObject2) line 135 "pan_in" (state 70)
 [((state0_transition==1))] <merge 0 now @71> 
5: proc  2 (ManagedObject2) line 136 "pan_in" (state 71) [state0_transition = 0]
 <merge 75 now @72> 
5: proc  2 (ManagedObject2) line 137 "pan_in" (state 72) [state0 = 0] <merge 
75 now @73> 
5: proc  2 (ManagedObject2) line 138 "pan_in" (state 73) [state0 = 2] <merge 
75 now @74> 
5: proc  2 (ManagedObject2) line 139 "pan_in" (state 74) [completed = 1] <merge 
75 now @75> 
6: proc  2 (ManagedObject2) line 140 "pan_in" (state -) [values: 5!0] 
6: proc  2 (ManagedObject2) line 140 "pan_in" (state 75) [internal_queue!0] 
7: proc  2 (ManagedObject2) line 146 "pan_in" (state 81) [else] 
8: proc  2 (ManagedObject2) line 150 "pan_in" (state 86) [((state0!=7))] <merge 
0 now @6> 
10: proc  2 (ManagedObject2) line  67 "pan_in" (state 6) [current_event = 0] 
12: proc  1 (ManagedObject1) line 172 "pan_in" (state 1) [MO2 = initial-
iser_MO20] <merge 71 now @2> 
12: proc  1 (ManagedObject1) line 173 "pan_in" (state 2) [state0 = 1] <merge 
71 now @3> 
12: proc  1 (ManagedObject1) line 174 "pan_in" (state 3) [state0_transition = 1]
 <merge 71 now @71> 
13: proc  1 (ManagedObject1) line 234 "pan_in" (state 58)
 [((state0_transition==1))] <merge 0 now @59> 
13: proc  1 (ManagedObject1) line 235 "pan_in" (state 59) [state0_transition = 0]
 <merge 63 now @60> 
13: proc  1 (ManagedObject1) line 236 "pan_in" (state 60) [state0 = 0] <merge 
63 now @61> 
13: proc  1 (ManagedObject1) line 237 "pan_in" (state 61) [state0 = 2] <merge 
63 now @62> 
13: proc  1 (ManagedObject1) line 238 "pan_in" (state 62) [completed = 1] <merge 
63 now @63> 
14: proc  1 (ManagedObject1) line 239 "pan_in" (state -) [values: 3!3] 
14: proc  1 (ManagedObject1) line 239 "pan_in" (state 63) [internal_queue!3] 
15: proc  1 (ManagedObject1) line 245 "pan_in" (state 69) [else] 
16: proc  1 (ManagedObject1) line 249 "pan_in" (state 74) [((state0!=7))] <merge 
0 now @6> 
18: proc  1 (ManagedObject1) line 178 "pan_in" (state 6) [current_event = 0] 
20: proc  2 (ManagedObject2) line  69 "pan_in" (state -) [5?0] 
20: proc  2 (ManagedObject2) line  69 "pan_in" (state 7) [(inter-
nal_queue?[current_event])] 
22: proc  2 (ManagedObject2) line  70 "pan_in" (state -) [values: 5?0] 
22: proc  2 (ManagedObject2) line  70 "pan_in" (state 8) [inter-
nal_queue?current_event] 
24: proc  2 (ManagedObject2) line  88 "pan_in" (state 25)
 [((((((state0==2)&&(current_event==0))&&(completed==1))&&1)&&1))] <merge 0 
now @26> 
24: proc  2 (ManagedObject2) line  89 "pan_in" (state 26) [completed = 0] <merge 
30 now @27> 
24: proc  2 (ManagedObject2) line  90 "pan_in" (state 27) [state0 = 0] <merge 
30 now @28> 
24: proc  2 (ManagedObject2) line  91 "pan_in" (state 28) [state0 = 4] <merge 
30 now @29> 
24: proc  2 (ManagedObject2) line  92 "pan_in" (state 29) [completed = 1] <merge 
30 now @30> 
25: proc  2 (ManagedObject2) line  93 "pan_in" (state -) [values: 5!2] 
25: proc  2 (ManagedObject2) line  93 "pan_in" (state 30) [internal_queue!2] 
26: proc  2 (ManagedObject2) line  94 "pan_in" (state 31) [goto main] 
28: proc  2 (ManagedObject2) line  67 "pan_in" (state 6) [current_event = 0] 
30: proc  2 (ManagedObject2) line  69 "pan_in" (state -) [5?2] 
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30: proc  2 (ManagedObject2) line  69 "pan_in" (state 7) [(inter-
nal_queue?[current_event])] 
32: proc  2 (ManagedObject2) line  70 "pan_in" (state -) [values: 5?2] 
32: proc  2 (ManagedObject2) line  70 "pan_in" (state 8) [inter-
nal_queue?current_event] 
34: proc  2 (ManagedObject2) line 102 "pan_in" (state 39)
 [((((((state0==4)&&(current_event==2))&&(completed==1))&&1)&&1))] <merge 0 
now @40> 
34: proc  2 (ManagedObject2) line 103 "pan_in" (state 40) [completed = 0] <merge 
42 now @41> 
34: proc  2 (ManagedObject2) line 104 "pan_in" (state 41) [state0 = 0] <merge 
42 now @42> 
35: proc  2 (ManagedObject2) line 105 "pan_in" (state -) [values: 1!0,4] 
35: proc  2 (ManagedObject2) line 105 "pan_in" (state 42)
 [event_queues[(MO1-1)]!0,ack_in] 
  queue 1 (event_queues[0]): [0,4] 
36: proc  2 (ManagedObject2) line 106 "pan_in" (state 43) [state0 = 6] <merge 
45 now @44> 
36: proc  2 (ManagedObject2) line 107 "pan_in" (state 44) [completed = 1] <merge 
45 now @45> 
37: proc  2 (ManagedObject2) line 108 "pan_in" (state -) [values: 5!4] 
37: proc  2 (ManagedObject2) line 108 "pan_in" (state 45) [internal_queue!4] 
38: proc  2 (ManagedObject2) line 109 "pan_in" (state 46) [goto main] 
40: proc  2 (ManagedObject2) line  67 "pan_in" (state 6) [current_event = 0] 
42: proc  2 (ManagedObject2) line  69 "pan_in" (state -) [5?4] 
42: proc  2 (ManagedObject2) line  69 "pan_in" (state 7) [(inter-
nal_queue?[current_event])] 
44: proc  2 (ManagedObject2) line  70 "pan_in" (state -) [values: 5?4] 
44: proc  2 (ManagedObject2) line  70 "pan_in" (state 8) [inter-
nal_queue?current_event] 
46: proc  2 (ManagedObject2) line 126 "pan_in" (state 63)
 [((((((state0==6)&&(current_event==4))&&(completed==1))&&1)&&1))] <merge 0 
now @64> 
46: proc  2 (ManagedObject2) line 127 "pan_in" (state 64) [state0_transition = 
2] 
47: proc  2 (ManagedObject2) line 132 "pan_in" (state 69) [(1)] 
48: proc  2 (ManagedObject2) line 141 "pan_in" (state 76)
 [((state0_transition==2))] <merge 0 now @77> 
 
48: proc  2 (ManagedObject2) line 142 "pan_in" (state 77) [state0_transition = 0]
 <merge 83 now @78> 
 
48: proc  2 (ManagedObject2) line 143 "pan_in" (state 78) [completed = 0] <merge 
83 now @79> 
 
48: proc  2 (ManagedObject2) line 144 "pan_in" (state 79) [state0 = 0] <merge 
83 now @80> 
 
48: proc  2 (ManagedObject2) line 145 "pan_in" (state 80) [state0 = 7] <merge 
83 now @83> 
 
49: proc  2 (ManagedObject2) line 146 "pan_in" (state 81) [else] 
 
50: proc  2 (ManagedObject2) line 152 "pan_in" (state 88) [else] 
 
51: proc  2 (ManagedObject2) line 153 "pan_in" (state 89) [goto end_machine] 
 
53: proc  1 (ManagedObject1) line 180 "pan_in" (state -) [3?3] 
53: proc  1 (ManagedObject1) line 180 "pan_in" (state 7) [(inter-
nal_queue?[current_event])] 
 
55: proc  1 (ManagedObject1) line 181 "pan_in" (state -) [values: 3?3] 
55: proc  1 (ManagedObject1) line 181 "pan_in" (state 8) [inter-



Appendix A. PROMELA code examples   157

nal_queue?current_event] 
 
57: proc  1 (ManagedObject1) line 197 "pan_in" (state 23)
 [((((((state0==2)&&(current_event==3))&&(completed==1))&&1)&&1))] <merge 0 
now @24> 
57: proc  1 (ManagedObject1) line 198 "pan_in" (state 24) [completed = 0] <merge 
6 now @25> 
57: proc  1 (ManagedObject1) line 199 "pan_in" (state 25) [state0 = 0] <merge 
6 now @26> 
57: proc  1 (ManagedObject1) line 200 "pan_in" (state 26) [state0 = 4] <merge 
6 now @6> 
59: proc  1 (ManagedObject1) line 178 "pan_in" (state 6) [current_event = 0] 
 
61: proc  1 (ManagedObject1) line 182 "pan_in" (state 9) [else] 
63: proc  1 (ManagedObject1) line 184 "pan_in" (state -) [1?0,4] 
63: proc  1 (ManagedObject1) line 184 "pan_in" (state 10)
 [(event_queue?[current_event,ack_out])] 
  queue 1 (event_queues[0]): [0,4] 
65: proc  1 (ManagedObject1) line 185 "pan_in" (state -) [values: 1?0,4] 
65: proc  1 (ManagedObject1) line 185 "pan_in" (state 11)
 [event_queue?current_event,ack_out] 
  queue 1 (event_queues[0]):  
67: proc  1 (ManagedObject1) line 207 "pan_in" (state 33)
 [(((((state0==4)&&(current_event==0))&&1)&&1))] <merge 0 now @34> 
67: proc  1 (ManagedObject1) line 208 "pan_in" (state 34) [state0 = 0] <merge 
37 now @35> 
67: proc  1 (ManagedObject1) line 209 "pan_in" (state 35) [state0 = 6] <merge 
37 now @36> 
67: proc  1 (ManagedObject1) line 210 "pan_in" (state 36) [completed = 1] <merge 
37 now @37> 
68: proc  1 (ManagedObject1) line 211 "pan_in" (state -) [values: 3!4] 
68: proc  1 (ManagedObject1) line 211 "pan_in" (state 37) [internal_queue!4] 
69: proc  1 (ManagedObject1) line 212 "pan_in" (state 38) [goto main] 
71: proc  1 (ManagedObject1) line 178 "pan_in" (state 6) [current_event = 0] 
 
spin: trail ends after 73 steps 
#processes: 3 
  queue 1 (event_queues[0]):  
  queue 2 (event_queues[1]):  
  processIds[0] = 2 
  processIds[1] = 3 
73: proc  2 (ManagedObject2) line 157 "pan_in" (state 93) 
73: proc  1 (ManagedObject1) line 179 "pan_in" (state 16) 
73: proc  0 (:init:) line 264 "pan_in" (state 4) 
3 processes created 
Exit-Status 0 
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Appendix B. DSC Platform Highlights 

This Appendix is aimed at providing the highlights of the DSC platform [Mee00] on 
which the refinement prototype was implemented. DSC stands for Distributed Software 
Component and is a general purpose framework to build distributed software based on a 
component design paradigm. We present a simple example to implement a very simple 
client server component application using DSC. The example has been chosen to be as 
simple as possible since the methodology is similar for developing large and complex 
component systems. 

In this example a client component will send a text message to a server compo-
nent, which will print the message “Hello World” to the console. Although this example 
is about as simple as it can get, it will be a fully distribution transparent application where 
the client and server part may be on different machines, on the same machine in separate 
containers, or on the same machine in a shared container. The component implementation 
and development process is independent of the chosen run time configuration. The over-
all methodology consists of the following steps: 

• System design. 
• Component implementation. 
• Component utilisation. 

SYSTEM DESIGN 

The design steps are as follows: 

1. Decomposition of the application in components and describe the function of each 
component  

2. Define the interfaces and interface operations that each component will provide. 
The interfaces may consist of (or inherit from) existing IDL interface, or may re-
quire new IDL specifications. IDL stands for Interface Definition Language. 

3. Define the component specification for each component.  

Design step 1: Decomposition 

For the Hello World example this results in the design as shown in Figure 84. The 
server component is named HelloWorld, the client component is named HelloAc-
tor. They both provide a component interface with the same name. This interface will 
be generated automatically and will provide standard operations. The HelloWorld 
component offers one additional facet named hello which provides one operation 
named print. The functionality of the HelloWorld component is to print any mes-
sage it receives to the console. The functionality of the HelloActor component is to 
send a message to the HelloWorld component. 
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Figure 84. Hello World design with DSC framework 

 
Design step 2: IDL Specification 

The next design step is to write the interface specifications in IDL. The IDL lan-
guage allows related interfaces to be grouped in modules. For the HelloWorld example 
the interface is placed in module “hello” as we show bellow: 
 
#ifndef _EXAMPLES_HELLO_IDL_ 
#define _EXAMPLES_HELLO_IDL_ 
/** 
 * Thisis the component specification for a simple component. 
 * @author Harold Batteram 
*/ 
module hello { 
    /** 
     * The i_Hello interface only has the print operation. 
     */ 
    interface i_Hello { 
        void print(in string message); 
    };  
}; 

#endif  
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The IDL file declares one interface of type hello::i_Hello which has one 
operation with signature void print(in string message).  

 
Design step 3: CSL Specification 

Each component must have a component specification written in the Component 
Specification Language (CSL). The CSL file will be used as input for the DSC toolkit to 
generate the necessary source files of the component. The CSL file declares the type of a 
component and lists the facets offered by the component. The CSL file for the Hel-
loWorld component shown below declares the HelloWorld component.  
 
#include <examples/Hello.idl> 
/** 
 * This is the component specification for the HelloWorld component. 
*/ 
component examples::Hello::HelloWorld { 
    /** 
     * There is just one facet. 
     */ 
    interface hello::i_Hello hello {} 

} 

The CSL for the HelloActor is even simpler since this component does not offer 
any facets itself but only uses the facets of the HelloWorld component. To make this de-
pendency explicit, the requires clause is used in the CSL file, shown below. 
 
#include <examples/Hello.idl> 
/** 
 * This is the component specification for the HelloActor component. 
*/ 
component examples::Hello::HelloActor { 
    /** 
     * The HelloActor component needs the HelloWorld component to obtain      
     * a reference to the hello facet. 
     * 
     * The use clause is used to declare dependencies on other components. 
     */ 
    uses { 
        examples::Hello::HelloWorld  
    } 
} 

Both CSL files start by including the Hello.idl file. 

 

COMPONENT IMPLEMENTATION 
 
Implementation step 1: Skeleton generation 

The DSC toolkit can be used to generate implementation skeletons. The imple-
mentation skeletons are generated as templates that can be copied for further develop-
ment. The DSC toolkit generates the component skeletons based on information obtained 
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from parsing the CSL and IDL files. For each component a component implementation 
skeleton and facet implementation skeletons for each supported skeletons are generated. 
These implementation skeletons need to be completed by the component developer. To 
complete the implementation, code for initialisations, lifecycle management and opera-
tion bodies need to be filled in. All generated skeleton coding have default implementa-
tions so that the component developer only needs to focus on the essentials. 

 
Implementation step 2: Skeleton completion 

Once the implementation skeletons have been generated we can modify the contents. For 
example, for the HelloActor component we only have to modify the implementation file of 
the HelloActor component, namely the HelloActorImpl.java. In the component imple-
mentation we have to accomplish three things: 

1. Obtain a reference to the HelloWorld server component.  
2. Use this reference to obtain a reference to the hello facet of the HelloWorld com-

ponent.  
3. Invoke the print operation on the hello facet. 

The pattern to obtain component references, facet references and invoking operations is 
very common and is a key pattern in the DSC Framework. The implementation of this 
pattern is shown in the content of the HelloActor.java file shown below. 

package examples.Hello.HelloActorPackage; 
public class HelloActorImpl extends examples.Hello.HelloActorPackage.HelloActorGen 
{ 
private dscitfs.hello.i_Hello helloFacet = null; 
/** 
* The following methods will be called by the component framework. 
* They may be overloaded and filled with your own lifecycle code. 
*/ 
// Called once when the component is constructed. 
public void init() { 
try { 
// First obtain a reference to the HelloWorld component. 
examples.Hello.HelloWorld helloWorldComponent = 
examples.Hello.HelloWorldHelper.narrow(m_container.findComponent( 
"examples.context/Hello.context/HelloWorld.component")); 
// We can now ask the HelloWorld component for a reference to the facet named hello. 
helloFacet = helloWorldComponent.provide_hello(); 
} catch (dsc.UnknownItem e) { 
trace("init", e); 
} 
}; 
// Called whenever the component is started. 
public void start() { 
helloFacet.print("Hello World!"); 
} 
//Called whenever the component is stopped. 
public void stop() { 
} 
//Called once when the component is destroyed. 
public void shutdown() { 
} 
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/** 
* Constructor. 
*/ 
public HelloActorImpl(String name, org.omg.PortableServer.POA poa) { 
super(name, poa);} 
} 

A private variable helloFacet is declared which will be used to hold the hello 
facet reference. The generated implementation skeleton contains four life cycle method: 
init(), start() stop() and shutdown(). Init() is called once during initialisation of 
the component and is commonly used to initialise global member variables that will be 
used during component operations. The start() method is called by the framework after 
initialisation of the component and its facets. Components can be stopped to suspend 
their operation and restarted by the framework. When a component is destroyed by the 
framework the stop method will be called for the component and all its facets followed by 
the shutdown method. In this example we will implement the init() method to initialize 
the helloFacet variable and implement the start() method to call the print operation 
on the helloFacet. 

The container implementation provides the findComponent() method which can 
be used to locate components that have been registered by the naming server using their 
component name. Component and facet references are ordinary CORBA object refer-
ences. The reference returned by findComponent() must be converted to a reference to 
the CORBA stub object using the standard CORBA narrow method provided by the 
Helper class for the specific CORBA object type.  

Once we have the reference to component HelloWorld we can request the facet 
reference using the standard provide_hello() operation. When the facet reference is 
assigned to variable helloFacet, the initialization of the component is finished and we 
are ready to use the facet. We implement the start method in which we call the print() 
operation on the helloFacet. This invocation will be sent to the server component 
through the CORBA ORB wherever the server is located. This completes the implemen-
tation of the client part. 

 

In order to complete the implementation of the HelloWorld server component we 
only have to make a few modifications in the facet implementation for the hello facet. 
This implementation is generated in the file produced for such a purpose,namely the hel-
loImpl.java file. The most relevant is the operation delegated for the print operation 
which must be modified as follows.  
FROM: 
public void print(java.lang.String message) { 
// TODO: replace with your method code 
reactor.print(message); 
} 

TO: 
public void print(java.lang.String message) { 
System.out.println(message); 
} 

This way, the two components are ready for compilation and use. 
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COMPONENT UTILISATION 

In order to utilise the HelloWorld component we need to invoke the print method 
on the hello facet. The DSC framework enables the utilisation of components as 
stand-alone for development purposes by the use of an actor tool. The actor component is 
a general purpose testing tool which can be used to invoke operation on selected compo-
nent facets and observe the result of the invocation. To test the HelloWorld component 
we must first start the component and then start the actor. This will show a window with 
the contents of the naming server. During its initialisation the HelloWorld component 
will have registered its component reference with the naming server. We can find this 
reference by browsing the actor window and selecting the HelloWorld component as 
shown in Figure 85.  

 

 
Figure 85. Actor object browser 

 

When the HelloWorld component is selected its contents can be seen by pressing 
the show button. This will present a window showing all the facets that the component 
has as we show in Figure 86. A target facet can now be selected and its operations can be 
seen by pressing show again. This will now present a window showing the selected op-
eration and allows its parameter values to be filled in a similar way to the reactor window 
discussed earlier. When the print method is selected on the hello facet we can fill in the 
message parameter and invoke the operation as shown in Figure 87. The HelloWorld 
server will receive this invocation and print the contents of the message to the console. 
We now show that the server part works too. 
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Figure 86. Component browser 

 
 

 
Figure 87. Operation browser 

 
 
 

In order to test both components together, we first start the HelloWorld server and 
then the HelloActor client component. The server should print the "Hello world!" mes-
sage again on the console. We must acknowledge that the principles of this simple exam-
ple are preserved for more complex distribution component scenarios. 
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Appendix C. Prototype Detailed Design 

The next sub-Sections provide the implementation issues of the DSC components that 
integrate our prototype. 

 

IMPLEMENTATION OF THE GOAL MANAGEMENT COMPONENTS 
 
Objectiver Interoperability Issues 

The Objectiver package and the Goal Manger are used to achieve the Goal Management 
tasks. The goal graph structures and the data handled by Objectiver represent the source 
of information for the analysis intended to accomplish with the administrative criteria de-
fined through this facility. In practice, it will be necessary to exchange information be-
tween the Objectiver package and the Goal Manager. To address this interoperability is-
sue we have made use of the DSC framework facilities.  

The DSC development framework provides means to specify data structures that 
help in formalising object-oriented interoperability between distributed components. In 
our solution we have used the MTNM (Multi-Technology Network Management) 
globaldefs::NamingAttributes_T structure [Mtnm] as the base of our naming schemes 
throughout our design and implementation. This structure is used to define identifiers for 
managed entities that are not instantiated as first class CORBA objects and thus do not 
have object identifiers. Regarding the Goal Management tasks, the above facilities have 
been used to define an object-oriented data structure that helps in representing the attrib-
utes of every goal within our solution, namely the Goal entity. 

Every Goal entity of our above structure is integrated by five NamingAttributes_T  
attributes. These attributes are the goalName, refinedSons, tempRelationship, goalDe-
tails, and temporalPrescription. Each Goal entity has a unique goalName and may have 
many refinedSons. At the same time, each Goal has a specific temporalPrescription that 
can be one of the four available types: Achieve, Cease, Maintain and Avoid. Each goal 
also has specific goalDetails as attributes. Available to these, for instance are the type 
GoalHierarchy that provides the level of a given goal within the hierarchy of a goal graph 
(i.e. between highest and lowest levels). Other type for this is the AdminOption that identi-
fies the action selected by the consultant (e.g. “refine” and “selected” are the most rele-
vant type instances). As in plan-based techniques [Lam01], lowest-level goals are identi-
fied by state predicates. For the later purposes, the BehaviorSpec and SpecStateId types 
are used to formalise these data. These latter are only used with lowest-level goals. Fi-
nally the temporalRelationship attribute can be either Milestone, MultipleMilestone or 
CaseDriven types, and are associated to the refinement pattern applied to parent goals.  
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The above five NamingAttributes_T attributes are integrated into a GoalMeta-
Data_T object. With regard to sets of Goal entities like Goal Selections, goal graph 
structures or goal sub-graphs, these are aggregated into GoalMetaDataList_T objects 
which are basically lists of GoalMetaData_T objects. The globaldefs::NamingAttributes_T 
structure has been used as the base to design and implement the Goal entity and the rest of 
our naming schemes throughout the prototype as IDL files.  

The Figure 88 shows a fragment of the meta data types IDL file (GoremochMeta-
DataTypes.idl) that defines the data structures of our distributed environment. The 
fragment shows the GoalMetaData_T structure that specialises the Goal entity described 
above. The GoalMetaDataList_T shown in the lower part of Figure 88 defines a sequence 
of GoalMetaData_T structures, namely to specialise Goal Selections, goal sub-graphs, etc. 

 

 
#ifndef        GoremochMetaDataTypes_idl 
#define        GoremochMetaDataTypes_idl 

 
#include <Mtnm/globaldefs.idl> 

 
module Goremoch{ 

 
/** 
* Used to specify the Goal entity to bring the gap between 
* Objectiver concepts and our policy refinement framework. 
* 
**/ 
struct GoalMetaData_T { 

 
globaldefs::NamingAttributes_T goalName; 
globaldefs::NamingAttributes_T refinedSons; 
globaldefs::NamingAttributes_T tempRelationship; 
globaldefs::NamingAttributes_T goalDetails; 
globaldefs::NamingAttributes_T temporalPrescription; 

   
}; 

   
/** 
* Sequence of GoalMetaData_T. 
*/ 
typedef sequence<GoalMetaData_T> GoalMetaDataList_T; 

 
Figure 88. Definition of Goal entity with the DSC framework 

 
Goal Management Components 

The Figure 89 presents the context of our Goal Management components. The Goal 
Manager component’s main class is identified as GoalManager. It provides the 
i_GoalManager interface and implements an internal class identified as ObjectiverCoor-
dinator. The Objectiver toolkit is identified as the ObjectiverService class and the inter-
face provided by this service is identified as i_Objectiver.  

When a Request for Policy Refinement (RPR) is submitted through the 
i_GoalManager interface, the Goal Manager is in charge of finding all the goals that are 
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influenced or affected by the Goal Selection. The latter goals are formalised into Goal 
entities specialised as GoalMetaData_T structures. In order for the Goal Manager to assess 
this, it executes iterative queries to Objectiver through the i_Objectiver interface. The re-
sulting Goal entities are compiled in a GoalMetaDataList_T. The following sub-Sections 
provide a brief description of the main methods illustrated in Figure 89. 

 

GUI ObjectiverService

getObjectiverData()

i_GoalManager

startPolicyRefinement()

i_Objectiver

getGoalSons()
getGoalsNotRefined()

getGoalDetails()

ObjectiverCoordinator

buildGoalGraph2Satisfy()
verifyGoalEntailment()

i_RequirementsMgr

formulateRequirements()

GoalManager

coordinatePolicyRefinement()
callRequirementsMgr()

Goal
Refinement

Administrator
Developer

Administrator
Consultant

Goal
Selection

 
Figure 89. Goal Management Components  

 
Goal Manager 
 
CLASS/INTERFACE 
NAME 

i_GoalManager 

Description The public interface of the Goal Manager. This is used to receive the Request for 
Policy Refinement (RPR) submissions 

 
Operation Name startPolicyRefinement 
Description This is used by the Administrator Consultant to submit the RPR and then to initiate 

the automatic acquisition of policies that may fulfill the Goal Selection.  

Argument Name Argument Type Description 

goalToSatisfy String When a RPR is submitted, the submission may include the 
High-level Goal that the consultant desires to fulfill. The Goal 
Selection has been documented in the Objectiver GUI. This 
argument is used to drive the querying process with the Objec-
tiver package. If null, the RPR is processed with the informa-
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tion provided by the objectiverData argument (explained bel-
low) 

objectiverData ObjectiverMeta-
DataList_T 

The consultant may provide Objectiver generic objects repre-
senting complete goal graph structures. The Goal Selection has 
been formulated through the Objectiver GUI and the goal 
graph structure of the selection is submitted through this ar-
gument. This is used to drive the querying process as well. If 
null, the RPR is processed with the information provided by 
the goalToSatisfy argument (explained above) 

adminConstraints Administrative-
ConstraintsList_T 

The applicability of the policies resulting from the refinement 
process may be restricted to administrative decisions. This ar-
gument is a list of administrative constraints that express the 
conditions on which the High-level Goals should be fulfilled.  

Returns Boolean 
 
 
 
CLASS/INTERFACE 
NAME 

GoalManager 

Description DSC Goal Manager Component. This class coordinates the Request for Policy Re-
finement (RPR) processing, the execution of queries to the Objectiver package and 
the submission of the verified Goal Selection to the Requirements Manager 

 
Operation Name coordinatePolicyRefinement 
Description Instantiates an ObjectiverCoordinator object which in turn processes the RPR. 

Argument Name Argument Type Description 

goalToSatisfy String This is used to drive the queries to the Objectiver package as 
the means to acquire the Goal entities/attributes involved in the 
Goal Selection. If null, the querying process is driven by the 
objectiverData argument (explained bellow) 

objectiverData ObjectiverMeta-
DataList_T 

This is used to drive the queries to the Objectiver package as 
the means to acquire the Goal entities/attributes involved in the 
Goal Selection. If null, the querying process is driven by the 
goalToSatisfy argument (explained above) 

adminConstraints Administrative-
ConstraintsList_T 

List that express the constraints of the applicability of the 
to-be-refined policies 

Returns Boolean 
 
Operation Name callRequirementsMgr 
Description This method is in charge of providing the verified goal sub-graph to the Require-

ments Manager. It also provides the administrative constraints that the consultant 
may have introduced during the RPR submission 

Argument Name Argument Type Description 

goalData GoalMetaDataL-
ist_T 

This is a list of logically-correct Goal Selection 

adminConstraints Administrative-
ConstraintsList_T 

A list of administrative constraints to express the conditions on 
which the verified Goal Selection should be fulfilled 
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Returns Boolean 
 
 
CLASS/INTERFACE 
NAME 

ObjectiverCoordinator 

Description This class is in charge of processing the Request for Policy Refinement (RPR). It 
builds a goal sub-graph according to the Goal Selection. It also verifies that the 
Goal Selection logically entails High-level Goal fulfillment. 

 
Operation Name buildGoalGraph2Satisfy 
Description Returns a GoalMetaDataList_T object that compiles the Goal entities that are af-

fected or that influence the Goal Selection. It coordinates and drives the interaction 
with Objectiver. It uses the getGoalsNotRefined, getGoalSons and getGoalDetails 
methods from the i_Objectiver interface 

Argument Name Argument Type Description 

goalToSatisfy String The Goal Selection has been documented in the Objectiver 
package. This argument is the highest-level goal that will be 
satisfied with the to-be-refined policies. Under these circum-
stances, the querying process is intended to acquire the goal 
sub-graph involved in the Goal Selection, namely the Goal 
entities that integrate the selection. If null, the querying proc-
ess is driven by the objectiverData argument (described bel-
low) 

objectiverData ObjectiverMeta-
DataList_T 

The Goal Selection is provided in this object from the Objec-
tiver GUI. Under this circumstance, the querying process is 
intended to map the submitted ObjectiverMedatata object (Ob-
jectiver goal sub-graph) into the goal-oriented information 
model of our prototype. If null, the querying process is driven 
by the goalToSatisfy argument (described above) 

Returns GoalMetaDataList_T 
 
Operation Name verifyGoalEntailment 
Description This method coordinates the verification of the correctness and consistency of the 

compiled Goal Selection. It uses the temporal prescription and the logical relation-
ships between goals to make sure that the Goal Selection logically entails the ful-
fillment of High-level Goals  

Argument Name Argument Type Description 

goalSelection GoalMetaDataL-
ist_T 

Acquired Goal Selection compiled into a Goal entity list.  

Returns Boolean 
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Objectiver Package 
 
CLASS/INTERFACE 
NAME 

i_Objectiver 

Description This is an interface intended to make systematic queries to the Objectiver toolkit. It 
implements the Objectiver Open API to access the Objectiver database. 

 
Operation Name getGoalSons 
Description Returns the list of refinements of a parent goal 

Argument Name Argument Type Description 

parentGoal String The parent goal for which the goal refinements are required  

Returns String [] 
 
Operation Name getGoalsNotRefined 
Description Returns the list of lowest-level goals from a goal graph 

Argument Name Argument Type Description 

goalGraph String The goal graph for which the lowest-level goals are required 

Returns String [] 
 
Operation Name getGoalDetails 
Description Returns the list of details of a specific goal. The details are compiled into a Goal-

MetaData_T object as Goal entities 

Argument Name Argument Type Description 

goal2Detail String The goal for which the details are required 

Returns GoalMetaData_T 
 
 

COMPONENTS OF THE POLICY REFINEMENT MECHANISMS 
 

This sub-Section describes the overall implementation of the Requirements Manager, 
Search Manager and Policy encoder. In addition, we describe the supporting components 
that make it possible to automate the process, namely the Inventory Manager and Behav-
iour Manager. 
 
Classes of the Policy Refinement Mechanisms components  

The Figure 90 illustrates the overall classes of the components specialising the Policy Re-
finement Mechanisms for which a brief description is provided in the following 
sub-Sections. 
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Figure 90. Class diagram of the Policy Refinement Mechanisms 

 
Refinement Manager Implementation  
The Requirements Manager is in charge of deducing goal fulfillment characterisations 
represented in Linear Temporal Logic (LTL) formulae. The component provides the 
i_RequirementsMgr interface to receive verified Goal Selections from the Goal Manager. 
It uses the i_SearchManager provided by the Search Manager to submit the LTL goal 
characterisations. 

 The management tasks of this DSC component are executed by the ReqCoordi-
nator class. It implements a database of behavioural properties classified by pat-
tern/scopes. The latter is identified as LTLCoordinator and allows producing LTL for-
mulae from behavioural properties in runtime. In order to produce meaningful and useful 
LTL goal characterisations, this component should provide the goal fulfillment charac-
terisations in terms of the actual PROMELA specification (input language of SPIN). In 
other words, the goal characterisation must make reference to states that can be inter-
preted by the SPIN searching engine in order to allow further analysis.  
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CLASS/INTERFACE 
NAME 

i_RequirementsMgr 

Description This is the public interface of the Requirements Manager component. It is the inter-
face between the Goal Management components and the components specialising 
the automated policy refinement mechanisms.  

 
Operation Name formulateRequirements 
Description Method provided to receive the verified Goal Selection from the Goal Manager 

Argument Name Argument Type Description 

goalMetaDataList GoalMetaDataL-
ist_T 

Verified Goal Selection with the meaningful information ab-
stracted from the Objectiver package 

adminConstraints Administrative-
ConstraintsList_T 

Administrative constraints to express the conditions on which 
the verified Goal Selection should be fulfilled 

Returns Boolean 
 
Operation Name updateSystemStates 
Description Receives the details of PROMELA specification that corresponds to the specifica-

tion of the lowest-level goals (used by the Behaviour Manager). 

Argument Name Argument Type Description 

goalMetaDataList GoalMetaDataL-
ist_T 

List of goals for which the update is provided 

systemDataList SystemDataList_T List of state IDs corresponding to the goals provided in the 
goalMetaDataList argument. The length of this argument 
should be the same as for the goalMetaDataList argument 

Returns Boolean 

 
 
CLASS/INTERFACE 
NAME 

RequirementsMgr 

Description DSC Requirements Manager Component. This class coordinates the deduction 
process of meaningful LTL goal fulfillment characterisations and their submission 
to the Search Manager. It also executes queries to the service provided by the Be-
haviour Manager to acquire the PROMELA state identifications for lowest-level 
goals.  

 
Operation Name coordinateCharacterisation 
Description Instantiates a ReqCoordinator object which in turn processes the verified Goal Se-

lection and coordinates the requirements characterisation step 

Argument Name Argument Type Description 

goalMetaDataList GoalMetaDataL-
ist_T 

The list of Goal entities for which the LTL goal characterisa-
tion will be coordinated 

adminConstraints Administrative-
ConstraintsList_T 

Administrative constraints on which the LTL goal characteri-
sation should be fulfilled 

Returns Boolean 
 
Operation Name callSearchManager 
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Description Submits the LTL goal fulfillment characterisation and the constraints on their appli-
cability to the Search Manager 

Argument Name Argument Type Description 

ltlPropertyList LTLPropertyList_T LTL goal characterisation to the Search Manager 

adminConstraints Administrative-
ConstraintsList_T 

Administrative constraints on which the LTL goal characteri-
sation should be fulfilled 

goal2Fulfill GoalMetaData_T The goal characterisation corresponds to a the fulfillment of 
High-level Goal which is provided by this argument 

Returns Boolean 
 
Operation Name callBehaviourMgr 
Description Updates the PROMELA specification for the lowest-level goal state identifications 

Argument Name Argument Type Description 

stateDetails GoalMetaData_T The lowest-level goals for which the PROMELA specification 
is required. The Behaviour Manager returns this data using the 
i_RequirementsMgr interface 

Returns Boolean 
 
 
CLASS/INTERFACE 
NAME 

ReqCoordinator 

Description This class coordinates the LTL goal characterisation process. The fulfillment of 
High-level Goals entails the fulfillment of lowest-level goals. Consequently, the 
LTL goal characterisation should be a correlation of the fulfillment of lowest-level 
goals. 
In order for this characterisation to be meaningful for further analysis, it should be 
expressed in terms of the actual PROMELA specifications. The main method of this 
class is the coordinateReqFormulation which in turn makes use of internal private 
methods to coordinate the following general process: 
Input: A verified Goal Selection [Goal1,..,Goalu]specialised in a Goal-
MetaData_List object 
Procedure: 
• Deduce the High-level Goal GoalHG for which the characterisation is processed 
• Deduce the lowest-level goals GoalLL that make GoalHG be fulfilled 
• Order lowest-level goals by a temporal fulfilment: 
    GoalLL = [GoalL1,...,GoalLv] 
• Establishing temporal relationships between lowest level goals is imperative to 

characterise goal fulfilment. This step formalises suitable groups of temporal 
relationships between lowest-level goals. This grouping step is driven by the 
feasibility to map temporal relationships to available pattern/scope properties in 
the database: TR[GoalLL] = [TR1,...,TRw] 

• Instantiate the temporal relationship that characterises goal fulfilment with the 
corresponding pattern/scopes of the property database:   

    LTL[TR1,...,TRw] = [ltl1,...,ltly] 
• Update the specification of the states prescribing the lowest-level goals with the 

actual PROMELA specification  
 
Output: Meaningful LTL formulae characterising goal fulfilment 
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Operation Name orderMilestoneGoals 
Description Deduces the lowest-level goals that make a higher-level goal be fulfilled. The 

method returns a list of goals ordered by temporal fulfilment 
Argument Name Argument Type Description 

goalMetaDataList GoalMetaData_T The list of goals from which the temporal order of fulfillment 
is required 

goal2Fulfill GoalMetaData_T The High-level Goal that will drive the ordering process 

Returns GoalMetaDataList_T 
 
Operation Name updateGoalsIDs 
Description Returns the PROMELA naming specification of every lowest-level goal of the pro-

vided goal list 

Argument Name Argument Type Description 

milestones2Fulfill GoalMetaDataL-
ist_T 

The list of goals for which the PROMELA specification is re-
quired 

Returns GoalMetaDataList_T 
 
Operation Name getSuitableCombinations 
Description Returns a list of suitable combinations to group the temporally-ordered goal list. For 

this task the method uses combinations of pattern/scope available in the LTL prop-
erty database implemented by the LTLCoordinator class. 

Argument Name Argument Type Description 

goals2Customise GoalMetaDataL-
ist_T 

List of temporally-ordered goals for which a suitable combina-
tion is required 

Returns String [] 
 
 
Operation Name instantiatePatternScope 
Description Returns the LTL formula characterising the fulfillment of the pattern/scope argu-

ment. It uses the getLTLSpecification method of the database LTLCoordinator 

Argument Name Argument Type Description 

patternScope String[] Pattern/scope combination  

Returns String 
 
 
Search Manager Implementation  

The Search Manager is in charge of producing policy fields from goal fulfillment charac-
terisations represented in Linear Temporal Logic (LTL). The component provides the 
i_SeachManager interface to receive the characterisations from the Requirements Man-
ager and uses the i_PolicyEncoder to submit the policy fields for further tasks. The policy 
fields produced by this component should reflect the actual events, conditions and actions 
implemented in the system. For this, the Search Manager makes use of the managed sys-
tem documentation handled by the Behaviour Manager. 
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The management tasks of this DSC component are executed by the SearchCoord 
class. It implements a SPIN search engine that allows finding the system behaviour nec-
essary to commit with the LTL characterisation in runtime. Once the system behaviour is 
acquired, the next step is to abstract the necessary policy fields that should reproduce 
such behaviour. In order to automate this process, the Search Manager applies the Trans-
lation Process which are in turn implemented by the TranslationPrimitive class. 
 
CLASS/INTERFACE 
NAME 

i_SearchManager 

Description The public interface of the Search Manager. This is used to receive the LTL goal 
fulfillment characterisations and to receive notifications about the managed system 
state transitions that are controlled by policies  

 
Operation Name searchPolicyElements 
Description Used to receive the goal fulfillment characterisations 

Argument Name Argument Type Description 

ltlPropertyList LTLPropertyList_T A list of states and their occurrence in temporal ordering.  

adminConstraints Administrative-
ConstraintsList_T 

Administrative constraints on which the refined policies should 
apply 

goals2Satisfy GoalMetaDataL-
ist_T 

For informative purposes, the verified selection of goals 

goal2Fulfill GoalMetaData_T For informative purposes, the High-level Goal to which the 
policy fields are correlated. 

Returns Boolean 
 
Operation Name updatePolicyControlledTransitions 
Description Receives the transitions that are controlled by policies in the managed system (used 

by the Behaviour Manager) 

Argument Name Argument Type Description 

candidateTransi-
tions 

PolicyAttributes-
List_T 

Lst of transitions that are controlled by policies. This is used to 
drive the application of the Translation Process 

Returns Boolean 
 
 
CLASS/INTERFACE 
NAME 

SearchManager 

Description DSC Search Manager Component. This class coordinates the abstraction of policy 
fields and their submission to the Policy Encoder.  

 
Operation Name coordinateSearch 
Description Instantiates a SearchCoord object which in turn coordinates the searching process 

Argument Name Argument Type Description 

ltlPropertyList LTLPropertyList_T List of states and their occurrence in temporal ordering. The 
searching process is coordinated to first search the system be-
haviour necessary to fulfil such ordering of states and eventu-
ally to abstract the policy fields that should reproduce that be-
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haviour in runtime 

adminConstraints Administrative-
ConstraintsList_T 

Administrative constraints on which the policy fields should 
apply 

goals2Satisfy GoalMetaDataL-
ist_T 

For informative purposes, the verified selection of goals 

goal2Fulfill GoalMetaData_T For informative purposes, the High-level Goal to which the 
policy fields are correlated 

Returns Boolean 
 
Operation Name callPolicyEncoder 
Description Submits the policy fields and the constraints on their applicability to the Policy En-

coder 

Argument Name Argument Type Description 

policies PolicyAttributes-
List_T 

List of ECA (Event-Condition-Action) policies that fulfill the 
temporal ordering of goals.  

constraints Administrative-
Constraints_T 

Administrative constraints on which the policy fields should 
apply 

goals2Satisfy GoalMetaDataL-
ist_T 

For informative purposes, the verified selection of goals 

goal2Fulfill GoalMetaData_T For informative purposes, the High-level Goal to which the 
policy fields are correlated 

Returns Boolean 
 
 
CLASS/INTERFACE 
NAME 

SearchCoord 

Description This class coordinates the searching process. The constructor receives a list of states 
and that must occur in a specific temporal ordering. With this information this class 
first coordinates the search of behaviour commiting to that specific ordering of 
goals and then it applies the Translation Process to abstract the policies that should 
reproduce such behaviour in runtime. The general process coordinated with this 
class is summarized as follows: 
 
Input: A LTL formula characterising goal fulfillment 
Procedure: 
• Produce a system execution trace K that satisfies the occurrence of states pre-

scribed by the LTL characterisation. The execution should be expressed in 
terms of events, conditions and actions implemented by the real system 

• From the system execution, identify a set of decision-based (i.e. enforceable) 
transitions T[K]=[T1,...,Tu]. 

• Apply Translation Process:  
     For (i = 1 to i=u ): 

Find the precondition event of Ti = eventTi 
Find the managed object MO issuing eventTi 
MO(eventTi) = subjectTi 
Find the managed object MO executing the enforceable transition Ti  

MO(Ti)= targetTi. 
Find the action A that represents the enforceable transition Ti  

A(Ti) = actionTi 
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Create a recipient PFTi for policy fields 
PFTi = [eventTi, subjectTi, targetTi, actionTi] 

Output: Policy fields PF=[PFTi ,…,  PFTu] 

 
Operation Name searchSystemBehaviour 
Description Produces an execution trace of system behaviour that commits with the temporal 

ordering of goals prescribed by the LTL goal characterisation. It uses the SPIN 
searching engine attached as an argument of the SearchCoord class 

Argument Name Argument Type Description 

ltlPropertyList LTLPropertyList_T Temporal ordering of goals that the execution trace should 
commit to 

goal2Fulfill GoalMetaData_T For informative purposes, the High-level Goal to which the 
policy fields are correlated 

Returns Boolean 
 
Operation Name getTransitionLinesFromTrace 
Description Returns pointers to the policy-controlled transition plans within the execution trace 

Argument Name Argument Type Description 

HLgoal GoalMetaData_T The High-level Goal to which the transition plans are returned 

Returns String [] 
 
Operation Name instantiateTranslationPrimitives 
Description Returns the policy fields involved in the system trace execution correlated with the 

fulfillment of the HLgoal argument. It instantiates the TranslationPrimitive class for 
every transition plan correlated with the HLgoal argument 

Argument Name Argument Type Description 

HLgoal GoalMetaData_T The High-level Goal for which the policy fields are returned 

Returns PolicyAttributesList_T 
 
 
 
Policy Encoder Implementation  

The Policy Encoder is in charge of producing deployable Ponder policies from the policy 
fields provided by the Search Manager. Although these policies reflect the actual event, 
conditions and actions implemented in the managed system, the policies produced by the 
Policy Encoder are ready to be deployed onto the managed objects which would enforce 
them in runtime. 

This component provides the i_PolicyEncoder interface to receive the policy 
fields and uses the i_Inventory interface to get the details of the actual Object Distribu-
tion of the managed objects and hence to store deployable policies in the LDAP (Light-
weight Directory Access Protocol) policy repository. Although the framework is not lim-
ited to any particular language, we have used the Ponder policy specification language 
[Dam02] given that the latter provides the means to implement the 
Event-Condition-Action general structure of policies. In order to automate the policy edi-



Appendix C. Prototype Detailed Design   180

tion and compilation step of our prototype, we have included a ponder syntax parser and 
a slightly modified Ponder compiler [Rub06b]. 
 
 
CLASS/INTERFACE 
NAME 

i_PolicyEncoder 

Description The public interface of the Policy Encoder. This is used to receive the policy fields 
from the Search Manager. 

 
Operation Name encodePolicies 
Description Starts the coding, compiling and storage of the Ponder policy 

Argument Name Argument Type Description 

policyAttributesList PolicyAttributes-
List_T 

The policy fields that would eventually result in deployable 
Ponder policies 

adminConstraints Administrative-
ConstraintsList_T 

Administrative constraints on which the policy instances 
should apply 

goals2Satisfy GoalMetaDataL-
ist_T 

The verified selection of goals for which the deployable poli-
cies are encoded 

goal2Fulfill GoalMetaData_T The correlated High-level Goal for which the deployable poli-
cies are encoded 

Returns Boolean 
 
Operation Name showPolicyEditor 
Description Instantiates a Ponder policy editor. The Ponder GUI facility is provided to edit poli-

cies explicitly i.e. not correlated with goals 

Argument Name Argument Type Description 

None None The method does not need any argument 

Returns Boolean 

 
 
CLASS/INTERFACE 
NAME 

PolicyEncoder 

Description DSC Policy Encoder component. It coordinates the encoding, parsing, and compil-
ing processes of the Policy Encoder component 

 
Operation Name getDomain 
Description Returns the directory on which the policies would eventually be deployed. This 

method is applied to find the Object Distribution of subjects and targets in the ldap 
repository 

Argument Name Argument Type Description 

policyAttributes PolicyAttributes_T The policy fields for which the directory of the corresponding 
subjects and targets are returned 

adminConstraints Administrative-
ConstraintsList_T 

The applicability of the policies resulting from the refinement 
process may be restricted to administrative decisions. This ar-
gument is a list of administrative constraints that may be used 
to abstract the domain of the subjects and targets on which the 
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policies may be enforced 

Returns String[] 
 
Operation Name getConstraint 
Description The applicability of the policies resulting from the refinement process may be re-

stricted to administrative decisions. This method abstracts the Ponder constraint 
field from the administrative constraints provided by the consultant when the Re-
quest for Policy Refinement (RPR) is submitted. 

Argument Name Argument Type Description 

adminConstraints Administrative-
ConstraintsList_T 

List of administrative constraints that express the conditions on 
which the Ponder policies should be enforced 

Returns String 
 
Operation Name encodePonderPolicy 
Description Parses the policy fields to Ponder syntax 

Argument Name Argument Type Description 

updatedPolicyFields PolicyAttributes_T Subjects, targets, events, actions to be parsed 

constraint String Administrative constraint (if any) 

Returns String 
 
Operation Name compilePolicy 
Description Compiles and stores the Ponder deployable policies 

Argument Name Argument Type Description 

ponderPolicyString String The Ponder string of the deployable policy 

Returns Boolean 

 
Supporting Components Implementation  

These components are the Behaviour Manager and the Inventory component. Both have 
been included to manage the System Model as to automate the generation of policies 
within our prototype. The former provides the means to translate UML standard repre-
sentations into PROMELA code, the input language of SPIN. This approach is an added 
value of our prototype since the administrative parties are free from using complex or 
proprietary notations. On the other hand, the Inventory component provides the means to 
keep updates of the logical representation of the object distribution. The Policy Editor for 
instance makes use of the inventory component as to find the details of the managed ob-
jects involved in the to-be-encoded policies. This information is crucial to deduce the 
subject and target directories over which the policies may be deployed/enforced. The in-
troduction of the Inventory Component has enabled to automate the policy refinement 
process considering that such database is populated for a specific policy applicability 
domain. The following is the outline of the services provided by the supporting compo-
nent, provided through the i_BehaviourManager and i_Inventory interfaces.  
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CLASS/INTERFACE 
NAME 

i_BehaviourManager 

Description The public interface of the Behaviour Manager. This is used to provide details about 
the System Model. The three methods provided by this interface are specialisations 
of the generic manageUMLSpec method implemented by the DSC Behaviour 
Manager component 

 
Operation Name uml2Promela 
Description Returns the PROMELA specification of the UML model argument 

Argument Name Argument Type Description 

model String Name of the UML model that will be translated into 
PROMELA code 

Returns File 
 
Operation Name getPolicyControlledTransitions 
Description Returns an updated list including the state transitions that are controlled by policies 

Argument Name Argument Type Description 

candidateTransi-
tions 

PolicyAttributes-
List_T 

List of objects for which the policy controlled transitions are 
required 

Returns PolicyAttributesList_T 
 
Operation Name getSystemStateDetails 
Description Returns an updated list including the PROMELA specification of the state predi-

cates that specialise the lowest-level goals of the list 

Argument Name Argument Type Description 

stateDetails GoalMetaDataL-
ist_T 

List goals for which the PROMELA specification is required 

Returns GoalMetaDataList_T 
 
 
CLASS/INTERFACE 
NAME 

i_Inventory 

Description The public interface of the Inventory component. This is used to provide details 
about the managed system Object Distribution during the operation of the system 
and also to keep an updated database of managed objects during the design of the 
policy system.  

 
Operation Name getObjectDetails 
Description Returns an updated list including the logic distribution of the managed objects that 

would specialise the subject/target fields of the deployed policies.  

Argument Name Argument Type Description 

objectDescription InventoryObject-
DataList_T 

The name of the object for which the directory representation 
is required 

Returns InventoryObjectDataList_T 
 
Operation Name setObjectDetails 
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Description This method is used to populate the internal database of managed objects. 

Argument Name Argument Type Description 

object2Populate InventoryObject-
DataList_T 

This contains attributes like object type, object ID, object do-
main, attributes, etc. 

Returns Boolean 
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