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Abstract

Current research efforts are being directed to commit with the long-term view of
self-management properties for telecommunications networks. One of the key approaches
that have been recognised as an enabler of such a view is policy-based management. Pol-
icy-based management has been mostly acknowledged as a methodology that provides
flexibility, adaptability and support to automatically assign network resources, control
Quality of Service and security, by considering administratively specified rules. The hype
of policy-based management was to commit with these features in run-time as a result of
changeable network conditions resulting from the interactions of users, applications and
existing resources. Despite enormous efforts with policy languages, management archi-
tectures using policy in different application domains, standardisation and industrial ef-
forts, policy-based management is still not a reality. One reason behind the reticence for
its use is the difficulty to analyse policies that guarantee configuration stability. In addi-
tion to policy conflict analysis, a key issue for this reticence is the need to derive en-
forceable policies from high-level administrative goals or from higher level policies,
namely the policy refinement process.

This Thesis deals with the critical nature of addressing the policy refinement
problem. We provide a holistic view of this process, from formal analysis to its practical
realisation, identifying the key elements involved in each step of such critical process.

We initially propose a policy refinement framework relying on Linear Temporal
Logic (LTL), a standard logic that allows analysis of reactive systems. Based on the for-
mer logic, we lay down the process of representing policies at different levels of abstrac-
tion. Following on with this, we develop the mechanisms that enable the abstraction of
enforceable policies from hierarchical requirements in a fully automatic manner, making
use of Linear Temporal Logic-based state exploration techniques. In addition, we clarify
and identify the activities and management tasks that the administrative parties should
carry out during the life cycle of the policy-based management system, from the perspec-
tive of the policy refinement process.

This Thesis provides the guidelines to address policy refinement in network
management contexts. Concretely, we take one step ahead in the materialisation of the
policy refinement process by exploiting inherent containment properties of network
management systems. For this purpose we provide the methodology to apply the concepts
introduced in the policy refinement framework developed in this Thesis in the above
context.

In this Thesis we also execute a complete and rather detailed policy refinement
process for a successful policy-based management solution. Taking the intra-domain
Quality of Service Management application domain as background, we clarify and pre-
sent the implications of the policy refinement problem in such a concrete application do-
main.



Resumen

En la actualidad se estan realizando diversos esfuerzos para realizar la vision fu-
turista de las redes de telecomunicacion autogestionadas. La gestion basada en politicas
ha sido reconocida como una herramienta potencial para habilitar esta vision. Mayorita-
riamente, ésta técnica ha sido reconocida como proveedora de flexibilidad, adaptabilidad
y soporte para asignar recursos, controlar Calidad de Servicio y seguridad, de una manera
automatica y de acuerdo a reglas administrativas. Adicionalmente, se ha considerado que
la gestion basada en politicas proveeria tal flexibilidad en tiempo de ejecucién y como
resultado de cambios en la red, interacciones entre usuarios, aplicaciones y disponibilidad
de recursos. A pesar de enormes esfuerzos realizados con lenguajes de especificacion de
politicas, arquitecturas de gestion en diversos dominios y estandarizacion, la gestion ba-
sada en politicas aun no es una realidad. Una de las razones para la reticencia en su utili-
zacion es la dificultad para analizar politicas que garanticen estabilidad en el sistema.
Ademas de la problematica asociada a la gestion de conflictos entre politicas, otro obsta-
culo para su utilizacion es la dificultad de derivar politicas ejecutables alineadas a objeti-
vos administrativos o a otras politicas de alto nivel. Este ultimo es el problema del refi-
namiento de politicas.

Esta Tesis aborda el problema critico de refinamiento de politicas. Damos una vi-
sion completa del proceso de refinamiento, desde el analisis formal hasta su realizacion
préctica, identificando los elementos que intervienen en cada paso de tal proceso.

Inicialmente, proponemos un marco de trabajo para refinamiento de politicas ba-
sado en Logica Lineal Temporal, una logica estandar que permite el analisis en sistemas
reactivos. Esta técnica es utilizada para representar politicas a diferentes niveles jerar-
quicos de abstraccion. Acto seguido desarrollamos mecanismos que habilitan la obten-
cién de politicas ejecutables a partir de ciertos requerimientos mediante la utilizacion de
técnicas de exploracion de estados basados en Logica Lineal Temporal. Adicionalmente,
aclaramos e identificamos las actividades y tareas de gestion de las partes administrativas
durante el ciclo de vida de un sistema de gestion basado en politicas, desde la perspectiva
del proceso de refinamiento de politicas.

Esta Tesis presenta también directrices para abordar el proceso de refinamiento de
politicas en contextos de gestion de red. Damos un paso adelante en la materializacion de
este proceso mediante la utilizacion de propiedades estructurales inherentes a sistemas de
gestion de red. Proveemos, en fin, una metodologia para aplicar los conceptos introduci-
dos en el marco de trabajo desarrollado en esta Tesis en sistemas de gestion de red.

En esta Tesis también realizamos un proceso de refinamiento de politicas com-
pleto. Detallamos la realizacion de tal proceso en una solucion exitosa de gestion basada
en politicas. Tomando como base el dominio de Gestion de Calidad de Servicio, aclara-
mos y presentamos las implicaciones del problema de refinamiento en este dominio de
aplicacion.
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Chapter 1 Introduction

In the recent years, the research community has put efforts in new paradigms that
allow installing, configuring, optimising and maintaining next generation networks. In
management terms, these efforts are directed to provide self-management features to cur-
rent telecommunication infrastructures [Ibm01], [Kep03]. Future communications will be
self-configuring, self-optimising, self-healing, and self-protecting. Autonomous commu-
nications is the commonly term accepted for this view and is a long term view challenge
still under research [KepQ7].

Nowadays, the research community is concentrating in developing the technolo-
gies that will enable autonomicity to future systems. Future communication systems will
have to adapt their behaviour according to changing performance conditions, and looking
after service level agreements. In management terms, a policy is a directive that is ad-
ministratively specified to manage certain aspects of desirable system behaviour resulting
from the interactions of users, applications and existing resources [Ver00]. Policies are
implemented with the philosophy, if “event” and “conditions™ then “actions™, which in
turn prescribes that if certain conditions are present under the occurrence of a specific
event, then specific actions must be taken in a policy-controlled environment.

Policy-based Management is meant to provide support to automatically assign
network resources, control Quality of Service and security, by considering the previously
defined set of policies. Also, it has been proposed to allow system scalability and adapta-
bility to changeable network conditions and different QoS requirements of multimedia
applications, virtual systems and other complex application processes that take place in
real time. This management methodology has been acknowledged as one of the key en-
ablers of self-healing properties, i.e. a key enabler of the future autonomic communica-
tions.

1.1 Policy-based Management Architecture

Policy-based Management involves policy creation, the translation of these poli-
cies into device specific configuration, and its application to enforce network behaviour
according to the specified policies [Ver00]. Policy-based management has been used in
different research projects and prototypes and consequently, we could say that there are
several architectures tailored to address the peculiarities of each application domain in
which policy has been used. Moreover, the background architecture mostly accepted by
the research community is the architecture proposed by the Internet Engineering Task
Force (IETF) [IETFPol], [IETFRap] which is graphically shown in Figure 1. A brief de-
scription of this architecture is provided thereafter.

Introduction 1
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Figure 1.  IETF policy architecture
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The management of policies is executed through the Management Console. The
latter acts as a user interface to allow constructing policies, deploying policies, and
monitoring the status of the policy-managed environment. A Policy-based management
system needs tools for policy specification. A Policy Definition Language (PDL) is used
to define new policies in terms of policy rules with events, conditions and action lists.
The language to use is very controversial, and the IETF [IETFPol], [IETFRap] has not
reached consensus in standardising a Policy Definition Language.

The Policy Decision Point (PDP) is typically referred to as the Policy Server (PS).
It is the entity that decides if the conditions of a policy are fulfilled and as a consequence,
triggers the actions involved in that policy. Besides this function that is considered the
main one, we can also attribute to this component the detection of policy conflicts, the
retrieval of the relevant policy when required by an external trigger event and the interac-
tion with the PEP component.

Policy Enforcement Points (PEPs) are basically network elements and are the en-
tities that ensure that the actions ordered by the PDP are executed. It has also the role of
metering and monitoring for auditing of policy compliance. The Policy Repository is
used to store the policies with which the system works.

1.2 Policy Refinement Paradigm

The claim of policy-based management is that an ideal policy system might permit the
definition of high-level policy description, enable their translation into lower-level ones
and map them into commands that configure the managed devices properly. While the
high-level policies would reflect the “business” criteria of the network administrator, the
lower-level ones would mean to cope with device-level configuration.
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Policy refinement is the process of transforming a high-level, abstract policy
specification into low-level, concrete ones [Mof93]. The main objectives of this activity
are:
¢ Determine the resources that are needed to satisfy the requirements of the policy
o Translate high-level policies into operational policies that the system can enforce
o Verify that the lower-level policies actually meet the requirements specified by the
high-level policy.

1.3 Motivations of the Thesis

Despite having been introduced in different application domains through various
research projects, several standardisation efforts and substantial interest from industry,
policy-based management is still not widespread used. One reason behind the reticence
for its use is the difficulty to analyse policies that guarantee configuration stability. Poli-
cies may have conflicts leading to unpredictable effects, and also, the number of policies
necessary to control medium- to large-scale systems may be in the order of thousands. In
this sense, in addition to policy conflict analysis, a key issue for the reticence to use Pol-
icy-based management is the need to derive policies from high-level administrative goals
or from higher level policies, namely the policy refinement process.

Although policy refinement has been recognised as crucial for the success of pol-
icy-based management, it has been severely dismissed due probably to its inherent com-
plexity. The main motivation of this Thesis is to identify and to address the key elements
confronting the solution of the policy refinement process. We are moved by the current
situation of the policy refinement process where for instance, it is still rather unclear how
to address the refinement problem and the implications that it has on network manage-
ment environments. To the time of the publication of this Thesis, there is not a clear un-
derstanding of the implications and future directions of the refinement problem, at least
from what it is presented in the literature.

1.4 Contributions of the Thesis

In this Thesis we deal with the critical nature of addressing the policy refinement
problem. We provide a holistic view of this process, namely from formal analysis to its
practical realisation, identifying the key elements involved in each step of such critical
process.

An initial contribution with this regard is a policy refinement framework relying
on Linear Temporal Logic (LTL), a standard logic that allows analysis of reactive sys-
tems. Considering powerful analysis techniques from the Requirements Engineering area
based on the former logic, we lay down the process of representing policies at different
levels of abstraction. This way, the framework proposes the formalisation of high-level
requirements and their translation into lower-level ones by means of LTL.

The Linear Temporal Logic foundations have made it possible to propose a
framework that includes formal analysis techniques that enable the production of en-
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forceable polices from formal hierarchical requirements in a fully automatic manner.
Namely, the framework makes use of Linear Temporal Logic-based state exploration
techniques to find restricted system behaviour that should commit to the previously for-
malised requirements.

Finally, the framework proposes ad-hoc machinery to abstract enforceable poli-
cies that should force the underlying system to behave the same way as the restricted
system behaviour found in advance. In addition to laying down the above formalisms into
a policy refinement framework, we clarify and identify the activities and management
tasks that the administrative parties should carry out during the life cycle of the pol-
icy-based management system, from the perspective of the policy refinement process and
the proposed framework.

Another contribution of the Thesis is a methodological approach to apply the pol-
icy refinement framework to network management contexts. The claim is that the tech-
niques applied in the framework are mostly application-domain independent, and it is
necessary to set up the guidelines to use them in network management contexts for prac-
tical use and to consider it a problem-solving approach. In addition, the techniques used
in the framework are at some point novel for network management practitioners, and its
utilisation may be unclear. With this regard, having defined a policy refinement frame-
work, we provide general guidelines of its application to real-life management systems.
The key contribution with this regard consists of a set of guidelines to drive the refine-
ment process making use of the composition hierarchy of the management systems.

Finally, a substantial contribution of the Thesis is the execution of a complete re-
finement process in a successful policy-based management solution. To the best of our
knowledge, no other work in the literature has provided a complete refinement scenario
applied to real-life management situations and consequently it has been unclear at what
extent the refinement problem is feasible in complex environments, or the overall impli-
cations for its assessment.

For this purpose we execute policy refinement for intra-domain Quality of Service
Management, based on the principles developed in the context of the European IST pro-
ject TEQUILA - Traffic Engineering for Quality of Service for the Internet at Large Scale
[Tri01]. We make use of our framework and the methodological approach to address the
policy refinement problem in this concrete application domain.

We must acknowledge that the policy refinement area has received very little at-
tention from the research community. No other work in the literature has provided a ho-
listic view of the refinement problem and consequently, we think that the ideas presented
in this Thesis may encourage policy designers and researchers to address the policy re-
finement process in different application domains, We are not claiming to have solved the
policy refinement problem because we think it is still at its initial stage and substantial
efforts should be made to solve it.
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1.5 Structure of the Thesis

This Thesis is composed by seven Chapters and three Appendixes.

Chapter 1 introduces the Thesis providing a general outline of policy-based man-
agement and the refinement problem. We also state the motivations of the Thesis and its
main contributions to the state of the art.

Chapter 2 presents some background material that constitutes the foundations of
the Thesis. Concretely, we present some crucial material on Requirements Engineering
Techniques, namely the Goal-oriented Requirements Engineering foundations, method-
ology and practicality. Finally, we provide some technical background on Analysis of
Reactive Systems techniques that include their objectives, analysis and tool support.

Chapter 3 describes one of the contributions of the Thesis, our policy refinement
framework. We describe the rationale of the approach and present a functional prototype
aligned to the former for proof of concept tests.

Chapter 4 presents another contribution of the Thesis. This Chapter provides the
guidelines to address policy refinement in network management contexts. It provides a
self-contained example that illustrates how to lay down the use of the policy refinement
framework by making use of inherent features of hierarchical management systems.

Another contribution of the Thesis is provided in Chapter 5. This Chapter outlines
a holistic policy refinement scenario. We make use of a Quality of Service Management
solution and detail the refinement process as a whole.

Chapter 6 surveys the related work on policy refinement. We provide general
analysis of goal-oriented management approaches, analysis techniques and functional
prototypes targeting the refinement problem, and other efforts presented so far in the re-
finement area.

The Summary Conclusions of the Thesis are provided in Chapter 7. We review
the contributions of the Thesis, provide additional discussion of relevant issues of the
Thesis and provide some directions for future work.

Appendix A includes examples of PROMELA specifications exemplified
throughout the body of the Thesis. Appendix B describes the Lucent Technologies Dis-
tributed Software Components toolkit used for the implementation of our functional pro-
totype. Appendix C includes a detailed description of the main methods, classes and in-
terfaces of our policy refinement prototype. Finally, Appendix D references the author’s
publications related to this Thesis.

Introduction 5



Introduction



Chapter 2 Technological Background

2.1 Introduction

In this Chapter we provide some background material that constitutes the founda-
tions of the work. Specifically, we present the Requirements Engineering Techniques and
the Reactive Systems Analysis.

The formalization of the rationale to identify, organise and manage the capabili-
ties of a system is of pivotal importance in our analysis. In the context of system design
and operation, a lot of efforts have been directed to formalise the requirements a system
should handle. For this reason, we outline the rationale of requirements engineering tech-
niques and highlight the foundations and the practicality of this view of requirements
formalisation.

Reactive systems have been traditionally represented by means of Finite State
Machines (FSM) that are based on a strong formal support [Mea55]. The general "on-event
and if-condition then action" structure of policy rules makes it possible to consider pol-
icy-based systems as reactive systems and hence use formal methods to analyze their be-
haviour. More importantly policy is represented as a means to control when a managed
object transitions to a new state [Str04]

In the context of policy analysis, the representation of individual or several man-
aged objects is possible by defining finite state machines (FSMs) that describe the multi-
ple states in which such managed objects can be [Str04]. In this sense, it is possible to
relate the behavior of an object or a set of objects to the value of one or more attributes
that are used to characterize the states of the system. State transitions hence, are directly
related to changes of attributes, which policies configure and control. The general
"on-event and if-condition then action" structure of policy rules makes it possible to con-
sider policy-based systems as reactive systems and hence use formal methods to analyze
their behaviour. For this reason, we describe the objectives and the rationale of reactive
systems analysis techniques.

2.2 Requirements Engineering Techniques

The requirements engineering area has been focused on formalising and docu-
menting system requirements as the achievements of the envisioned systems. The system
achievements have been traditionally been acknowledged as goals. For this, a lot of ef-
forts have been made to develop the so-called Goal-Oriented Requirements Engineering
(GORE) [Lam01] methods.

This Section provides some background material in the area of GORE methods.
We initially provide general issues of these methodologies and then describe the scope of

Technological Background 7



specific areas like goal modelling, goal specification and goal-based reasoning. Due to
the importance of goal-based reasoning in this Thesis we give some details on the foun-
dations of goal elaboration processes and their potential use. We finally describe the
practicality of Goal-oriented methods, we give a general description of the facilities of
Objectiver [Obj], a tool that provides support for GORE methods.

2.2.1 Scope of Goal-oriented Requirements Engineering

Goals capture the various objectives the system under consideration should
achieve [Lam01]. Goals may be formulated at different levels of abstraction ranging from
high-level concerns such as “number of real-time service subscriptions maximised ” for a
service management system, to lower-level technical concerns such as ‘“conservative
thresholds set” for a subscription control system.

The reasons for focusing on goals, found in the GORE literature [LamO1] are manifold,
these include:

e Achieving requirements completeness; goals provide a precise criterion for sufficient
completeness of a requirements specification.

e Explaining requirements to stakeholders; goals provide the rationale for requirements
in a way similar to design goals in design process.

¢ Goal refinement provides a natural mechanism for structuring complex requirements
documents for increased readability. A goal refinement tree provides traceability links
from high-level strategic objectives to low-level technical requirements.

e During the goal elaboration process the requirements engineer is faced with many al-
ternatives that provide some level of abstraction to validate choices or to suggest al-
ternatives.

e Separating stable from volatile information. A requirement represents one way of
achieving a specific goal, but there may be other ways of achieving the same goal. In
this view, High-level Goals re-use is pivotal to formulate evolving requirements. This
may result in systems sharing single goal models i.e. goal generalisations.

e Goals drive the identification of requirements to support them, they have been shown
to be the driving force for systems requirements elaboration.

GORE methods are concerned with the use of goals for eliciting, elaborating,
structuring, specifying, analysing, negotiating, documenting, and modifying requirements
[LamO1]. Several GORE methods have been defined which give more attention to one or
more of these aspects [Reg05] but in general, major efforts are devoted to the Goal Mod-
eling, Goal Specification and Goal-based Reasoning areas.

2.2.2 Goal Modeling and Specification

Goals are modeled and specified to provide support to formal reasoning schemes
during the requirements engineering process.
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2.2.2.1 Goal Modelling

Goals are generally modelled by intrinsic features such as their type, attributes,
and by their links to other goals and to other elements of a requirements model.

Regarding goal types, the literature [LamO1] has identified two main types:

e A classification considering functional and non-functional goals. Functional goals
[Dar93] underlie services that the system is expected to deliver, e.g. satisfaction and
information goals. Non-functional goals [Chu00] refer to expected system qualities
such as security, safety, performance, usability, flexibility, customisability, interop-
erability, and so forth.

e A second classification considering the temporal behaviour prescription. This classi-
fication identifies four different types of goals: Achieve, Cease, Maintain and Avoid.
While Achieve and Cease goals obey to system behaviours that require some target
property to be eventually satisfied or denied respectively, Maintain and Avoid goals
restrict behaviours in that they require some target property to be permanently satis-
fied or denied respectively.

Regarding attributes of goals, goals can be characterised by attributes such as the
name and other specification. Also, priority is another important attribute that can be at-
tached to goals. Qualitative values for this attribute allow mandatory or optional goals to
be modelled with various degrees of optionality. Other goal attributes that have been pro-
posed include goal utility and feasibility.

Regarding goal links, these are introduced to relate goals with each other and with
other modelling elements. Such links form the basis for defining goal structures. Links
between goals are aimed at capturing situations where goals support other goals. Directly
borrowed from problem reduction methods in Artificial Intelligence, AND/OR graphs
may be used to capture goal refinement links [Dar93]. The latter results in the formalisa-
tion of AND/OR goal graph structures that may be useful to represent alternative goal
refinements, to identify potential conflicts of goals, and to prove the correctness of goal
refinements.

GORE methods could be applied to any discipline that may take advantage of
formalising requirements. In consequence, we could find Goal Modelling processes tar-
geting the formalisation of systems of any kind. GORE projects have been undertaken in
various industrial domains that include telecom, aerospace, automotive industry, press,
pharmaceutics, health care, air traffic control, etc [Lam04]. In this sense, the precise
types, attributes and links that may result in the elaboration of goal graph structures de-
pends on the domain in which goals are modelled and consequently there is not a generic
goal information model that captures the requirements for systems of any kind.

2.2.2.2 Goal Specification

The target of Goal Specification is to provide an alternative to formalise require-
ments amenable to Goal-based Reasoning during the requirements specification itself and
for further management tasks like verification, validation, conflict management and so
forth. For this reason, semi-formal specifications of goals can be attached to more formal
notations that enable systematic Goal-based Reasoning.
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Semi-formal specifications [Dar98] generally declare goals in terms of their type,
attribute, and links. Such declarations may in general be provided alternatively using a
textual or graphical syntax. For example, consider the need to specify the requirement
that a passenger in a lifting system will be satisfied once the elevator is called and the
passenger is transported to the destination. A textual semi-formal Goal Specification for
the latter requirement may be integrated by three goals; “Passenger Satisfied”, “Elevator
Called” and “Passenger Transported”. This basic Goal Specification may be completed
by indicating that the “Passenger Satisfied” goal is the parent goal of the refinements
“Elevator Called” and “Passenger Transported”. A graphical syntax of a Goal Specifica-
tion becomes a goal graph structure. The Figure 2 shows the goal graph structure of our
basic Goal Specification. Obviously, a complete specification for a lifting system may be
integrated by more requirements and consequently, the graphical syntax may result in a
more complex goal graph structure than the one shown in the Figure 2.

Semi-formal

22816 IRCUI IS Goal Specification

i Passenger |<—— p |
A passenger will be ‘ Satisfigd ’ arent goal

satisfied once the
elevator is called and the
passenger is transported
to the destination ‘ Elevator ’
Called

Figure 2. Semi-formal Goal Specification for a Basic Requirement

Passenger
Transported

Goal refinements
’

In order to enable formal notations from semi-formal notations, goals may include
keyword verbs with some predefined semantics or may be formalised with logical ex-
pressions. For example, a formal Goal Specification for the above requirement would be
formalised by the following logical expression:

“Passenger Satisfied is true” IF “Elevator Called is fulfilled” AND ““Passenger
Transported is fulfilled”

The most relevant approach combining semi-formal and formal specifications of
goals is the KAOS (Knowledge Acquisition in autOmated Specification ) methodology
[Dar96]. Due to the relevance of the KAOS methodology in our work the next
sub-Section provides the principles of Goal-based Reasoning with the KAOS methodol-

ogy.

2.2.3 KAOS Goal-based Reasoning

Goal-based reasoning techniques are applied to all system requirements activities:
requirements elaboration, verification, validation, conflict management, negotiation, ex-
planation and evolution. In terms of relevance, requirements elaboration plays a crucial
role given that the remaining activities rely on it. KAOS is a methodology to implement
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goal-based reasoning. In particular, it supports requirements elaboration. In this context,
requirements are elaborated as a two-step process. First of all, a goal graph structure
(semiformal specification) is elaborated from which its formal notations are obtained
making use of Linear Temporal Logic [Man92]. Therefore, we first provide some back-
ground material on Linear Temporal Logic (LTL) and then describe the principles for the
elaboration of KAOS goal graph structures. We finally give a general outline of the po-
tential use of KAOS goal graph structures.

2.2.3.1 Background on Linear Temporal Logic

The branch of logic that allows one to reason about causal and temporal relations
of system properties is called temporal logic [Man92]. Temporal logic allows to formal-
ise the properties of a system execution with the help of temporal operators. In this work
we use the classical temporal operators: ¢ eventually in the future, 0 always in the future,
U always in the future until and W always in the future unless. We also use the classical

logic connectors A and, v or, — not, — logical implication, <> equivalence, and so
forth.

Linear Temporal Logic is used to express system properties where observations
are extended with temporal connections such as “eventually in the future” or “always in
the future”. The following are typical examples of frequently used LTL formulae de-
scribing system properties or temporal prescriptions:

e “Op” captures the notion that the system property p is guaranteed to eventually be-
come true at least once throughout the system execution.

e “Op” captures the notion that the system property p remains invariantly true through-
out the system execution.

e “p—0q” captures the notion that if the system property p holds at some point of the
system execution, the system property q will eventually hold in the future of the sys-
tem execution.

o “Op—0q” captures the notion that if the system property p eventually holds, the sys-
tem property q will eventually hold as well.

In conclusion, Linear Temporal Logic (LTL) enables to establish formal proper-
ties of systems and hence enables to carry out formal reasoning of systems features with
respect to their temporal relationships. The next sub-section provides a view of the
KAOS Support for Requirements Elaboration in terms of goals. For a complete summary
of Linear Temporal Logic the interested reader may refer to [Man92] and for a complete
summary of typical system properties formulae to reference [Dwy98].

2.2.3.2 KAOS Support for Requirements Elaboration

In general the KAOS methodology can be used upstream in the specification
process as it supports formal reasoning about goals. It suggests ways of refining goals to
make up correct goal graph structures at reasonable cost, as it hides proofs and their un-
derlying mathematics [Dar96].

In KAOS, there is a two-level specification process; namely, semi-formal and
formal. While the semi-formal approach copes with graphical and textual definitions, the
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formal approach is inspired in Linear Temporal Logic (LTL) [Man92]. In this view, goals
are defined with a specific temporal prescription that can be represented with LTL logic
formulae.

2.2.3.2.1 Basic definitions for goal refinement and refinement pattern

Definition 1: The goal assertions G1, G2,...,Gn are complete goal refinements of
a goal assertion G iff the following conditions hold:
. GIAG2A...AGn|=G  (entailment)

2. Vij:jAH — Gj [£Gi (minimality)
3. GIAG2A...AGn [# false (consistency)
4. n>1 (nonequivalence)

The “entailment” condition refers to the fact that the intersection of the fulfillment
of every goal refinement (G1, G2,...,Gn) should imply the fulfillment of the parent goal
(G). The “minimality” condition refers to the fact that every goal refinement should be
different in comparison with the rest. The “consistency” condition refers to the fact that
the intersection of the temporal prescriptions of each goal refinement (G1, G2,...,Gn)
should not conflict. Finally, the “nonequivalence” condition is set to avoid trivial refine-
ments consisting in rewriting G into logically equivalent forms.

Definition 2: A refinement pattern is a one-level AND-tree of abstract goal assertions
such that the set of leaf assertions is a complete refinement of the root assertion. In other
words, a refinement pattern is a proposition of how a root goal assertion should be ful-
filled by a complementary set of goal assertions. In the KAOS method a refinement pat-
tern is propositional in the sense that it suggests the temporal prescription of the parent
goal and that of its refinements. A refinement pattern in KAOS is applied at different lev-
els during the formalisation of the goal graph structures, namely refinement patterns are
applied to decompose a parent goal into goal refinement which in turn may be refined by
applying a refinement pattern.

2.2.3.2.2 Domain independent goal refinement patterns

The basic idea of the KAOS methodology is to provide formal support for build-
ing goal graph structures by the use of domain-independent refinement patterns. For this
purpose the methodology provides a set of domain independent refinement patterns
[Dar96] that have been previously proved to be correct. The refinement patterns are
grouped by the behaviour prescription of four High-level Goals, namely Achieve, Cease,
Maintain and Avoid. For example, Table 1 shows some KAOS Refinement Patterns (RPs)
that represent different ways to decompose the high-level Achieve parent goal into their
respective sub-goals i.e. different goal refinements.
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RP Sub-goals
RP1 P A R—0Q P —0R P—>PWQ
RP2 P — 0R R—-RUQ
RP3 P — 0R R —0Q
RP4 P A P1—0Q1 P A P2—0Q2 o(P1v P2)
Ql v Q2-Q
RP5 PA —=R—0R PAR—0Q P—oP
RP6 —R— 0R PAR—0Q P—0oP
Tablel Some refinement patterns for the Achieve goal

The parent Achieve goal is formally expressed as P—0Q. This expression states
that ““If a property P occurs at some point, then property Q would eventually hold in the
future”. Here, the different refinement patterns provide some guidelines on how to de-
compose this parent goal. For example, let us establish a differentiation between the in-
stantiations of RP3, RP4, RP5 and RP6:

e RP3 states that a parent goal P—0Q could be refined into sub-goals with the follow-
ing temporal prescriptions: P — OR, R — 0Q.
o P — OR implies that “under the occurrence of a state satisfying P, the state
satisfying R must eventually be reached”.
o R — 0Q implies that “under the occurrence of a state satisfying R, the state
satisfying Q must eventually be reached”.

The semantics of the intersection of the temporal prescriptions “P — OR” and “R —
0Q” is as follows: “on the occurrence of a state P, an intermediate state satisfying R
must first be reached from which a goal state Q must eventually be reached”. In other
words, the instantiation of RP3 would formalise the fact that a milestone refinement
tactic of fulfillment for the two sub-goals should be applied as to consider that our
parent goal is properly fulfilled.

e RP4 states that a parent goal P—0Q could be refined into sub-goals with the follow-
ing temporal prescriptions: P APl — 0Q1, PAP2 — 0Q2, o(P1v P2), and
Qlv Q2 —Q.

0 PAPI—0QI implies that “on the occurrence of a state satisfying P and an
alternative state satisfying P1, the state satisfying Q1 must eventually be
reached”.

0 PAP2—0Q2 implies that ““on the occurrence of a state satisfying P and an
alternative state satisfying P2, the state satisfying Q2 must eventually be
reached”.

o o(P1v P2) implies that “either a state P1 or a state P2 must always be satis-
fied”

0 Qlv Q2—Q implies that “either a state satisfying Q1 or a state satisfying Q2
implies that Q is reached”

The semantics of the intersection of the temporal prescriptions “P A P1—0Q1”,
“P A P2—0Q2”, “n(P1v P2)”, and “Q1 v Q2 —Q” is as follows: ““on the occurrence
of P, an alternative sate satisfying either P1 or P2 will eventually satisfy the goal
states Q1 or Q2 respectively which in turn suffices to satisfy the state Q. In other
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words, the instantiation of RP4 would formalise a case-driven refinement tactic of
fulfillment in which either one sub-goal P1 or the other sub-goal P2 suffices to con-
sider our parent goal as fulfilled.

e RPS5 states that a parent goal P—0Q could be refined into sub-goals with the follow-
ing temporal prescriptions: P A - R—0R, P A R— 0Q, and P—roP.
0 PA—-R—OR implies that “on the occurrence of a state satisfying P, if a state
satisfying R does not hold, the state R must eventually hold”’.
0 PAR— 0Q implies that “on the occurrence of a state satisfying P, if a state
satisfying R holds, the goal state Q must eventually be reached”.
0 P—0oP implies that ““the occurrence of a state satisfying P must always hold”.

The semantics of the intersection of the temporal prescriptions “P A - R—OR”,
“P A R— 0Q”, and “P—0P” is as follows: ““on the occurrence of P and the absence of
the state R, the latter must hold together with P so that the goal state Q eventually
holds”. In other words, RP5 requires that on the occurrence of state P, if the state R
does not hold, the goal state Q will not be satisfied unless states P and R are both
reached.

e RPO6 states that a parent goal P—0Q could be refined into sub-goals with the follow-
ing temporal prescriptions: —R— OR, P A R— 0Q, and P—0OP.
0 —R— OR implies that ““if a state satisfying R does not hold it must eventually
hold™.
0 PAR— 0Q implies that “on the occurrence of a state satisfying P, if a state
satisfying R holds, the goal state Q must eventually be reached”.
0 P—aoP implies that ““the occurrence of a state satisfying P must always hold”.

The semantics of the intersection of the temporal prescriptions “— R— OR”,
“P A R— 0Q”, and “P—roP” is as follows: ““on the absence of a state satisfying R, the
latter must hold when P occurs so that the goal state Q can be eventually reached”.
In other words, RP6 proposes that it is mandatory that the property R holds by the
time of the occurrence of P so that the goal state Q is satisfied.

Any of these refinement patterns [Dar96] may be used in accordance with user
requirements.

2.2.3.2.3 Using domain-independent refinement patterns

The KAOS methodology proposes the general principle of using the above do-
main-independent refinement patterns and instantiate them with appropriate do-
main-dependent information. In addition, all these patterns have been proved to be cor-
rect and complete. In this sense, KAOS provides the necessary support to build up hier-
archical goal graph structures in which the lower-level sub-goals i.e. goal refinements,
logically entail the parent goals. In this view the user would be enabled to build goal
graph structures that are complete and correct without the need of carrying out logical
proofs. The remaining of this section provides a brief example of this approach. A more
extended description of this approach can be found in [Dar93], [Lam95].

Let us consider the case where a user defines the requirements for a system in
charge of accommodating traffic load predictions to network resources. For the envi-
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sioned system the user considers two requirements: (1) Maximise the Resources Utilisa-
tion; and (2) Control Dynamic Fluctuations of Traffic Load. This basic scenario is shown
in the left part of Figure 3. The intent is to formalise these requirements into a KAOS
goal graph structure in which this information is modeled, specified and amenable for
goal-based reasoning. In order to meet these requirements, Achieve prescriptions will be
used to specify the goals in the graph structure. Let the administrator identify the parent
goal “Traffic Predictions Accommodated” and link it to two sub-goals “Resources Utili-
sation Maximised” and “Dynamic Fluctuations Controlled”. The administrator should
identify then the appropriate refinement pattern that would formalise the aforementioned
information into a goal graph structure. The refinement patterns shown in Table 1 are
suggestions of how to refine an Achieve parent goal. Moreover the selection of one re-
finement pattern depends on administrative criteria.

Taking the patterns of Table 1 into account in this example, it is appropriate that
the administrator selects the instantiation of RP3 since it considers that the parent goal
“Gj: Traffic Predictions Accommodated” is refined into the sub-goal refinements “Gy;:
Resources Utilisation Maximised” and “Gj,: Dynamic Fluctuations Controlled”, making
use of the aforementioned milestone refinement tactic. This formalises the goal graph
structure of the right part of Figure 3, which includes the formal temporal logic formulae
(shaded in Figure 3) for every goal of the graph structure. The meaning of all this goal
graph structure would be “Traffic Predictions would be accommodated by maximising
the resources utilisation and controlling dynamic fluctuations of traffic load”.

Accommodate G,: Traffic
Traffic Predictions Predictions Goal
Accommodated Specification

P—-0OR

Goal
Link

KAOS
Approach

Refinement
RP Pattern
Maximise Control Dynamic Formal
Resources Fluctuations of . Specification
Utilisation Traffic Load Gyy: Resources G,,: Dynamic

Utilisation
Maximised

P—-0Q

Fluctuations Controlled

Q- 0R

Figure 3.  Goal Modeling, Specification and Goal-based Reasoning

At this stage the administrator has formalised the first level of a goal graph struc-
ture. Going further in the process and in a similar manner as for G;, the administrator
may formalise a second level of the goal graph structure by instantiating the appropriate
patterns to refine Gi; and Gj,. A third level of the graph may be formalised by refining
the resulting goal refinements of G;; and G, as graphically illustrated in Figure 4.
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Figure 4.  Levels of a goal graph structure

2.2.3.3 Potential Use of KAOS Goal-graph Structures in the Requirements Engi-
neering area

The goal graph structures are elaborated until implementable constraints are
reached, namely until the lowest-level goals are represented by actions. Once this is ful-
filled, the next step is how to use the goal model. Goals are prescriptive statements of in-
tentions whose satisfaction requires the cooperation of managed entities or active com-
ponents. In this sense, goal graph structures are potential source for two key activities of
the Requirements Engineering field [LamO1]: Responsibility Assignment and Operation-
alisation.

e The aim of the Responsibility Assignment activity is to explore the underlying system
and define the precise responsibilities that each managed object should take as to ful-
fill the goal specifications. In addition to the underlying system specification or
model, the input of this activity are the goal graph structures for which additional
analysis is necessary to identify the managed entities, assign responsibilities to them,
derive the managed entities’ interfaces with other managed entities for mutual col-
laboration, and so forth. The analysis applied for the Responsibility Assignment is
domain-dependent which means that there is not a unified method or procedure rely-
ing on a generic goal-based reasoning technique for this activity.

e The aim of the Operationalisation activity is to identify the precise actions that the
managed entities of the underlying system should take as to fulfill the goal specifica-
tions. Same as for the Responsibility Assignment, the Operationalisation activity
handles with the specification of the underlying system and the goal graph structures.
The analysis carried out with this activity should evaluate the pre-conditions, the
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triggering conditions and post-conditions of the operations from the goal specifica-
tions to make sure that the operations are complete and consistent with the operation
of the underlying system.

In summary, the goal graph structures are potential source of information to apply
goal-based reasoning techniques that allow defining the managed entities and the precise
operations that such managed entities should take as to fulfill the requirements of a target
system. For this purpose the applied techniques should handle the model of the target
system and the goal graph structures.

In the context of our example the goal-based reasoning analysis for the Responsi-
bility Assignment activity should target the deduction of managed entities in charge of
accommodating traffic predictions. On the other hand, the analysis applied for the Opera-
tionalisation activity should cope with the identification of the precise operations that the
aforementioned managed entities should take as to fulfill the goal specifications. The
context of these two activities is graphically presented in Figure 5. A more detailed de-
scription of the Responsibility Assignment and Operationalisation activities can be found
in [LamO1].

KAOS Goal-based

‘ Methodology Reasoning
: 1] Goal graph structures

Accommodate
Traffic Predictions

Target system requirements

Responsibility Assignment

Agents in charge of
Accomodatting Traffic

Predictions Y
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_ that the Agents should

Requirements for Requirements

Resources for Dynamic Ly take to Accommodate |||

Traffic Predictions

Utilisation Fluctuations
Maximisation Control

Figure 5.  Potential use of KAOS goal graph structures

2.2.4 Objectiver. A supporting tool for goal-oriented processes

The successful use of Goal-oriented Requirements Engineering techniques re-
quires tool support that scale up to the size of large-scale systems throughout the specifi-
cation and evolution of the requirements. Developing high-quality requirements specifi-
cations is mandatory for a number of critical industrial processes. The KAOS goal-driven
methodology has been successfully implemented in Objectiver [Obj] and has been vali-
dated in many industrial projects [Del03].

Objectiver is a tool that supports the KAOS notation and has been specially tai-
lored for the creation of requirements models and documents. It contains the same com-
ponents found in most IDE (Integrated Development Environment) tools such as an ex-
plorer, a graphical editor, a query and check tool, a property editor and a text editor. Fig-
ure 6 is a snapshot of the the Objectiver environment.
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The Graphical Editor is the space used by the stakeholder to represent the con-
cepts (e.g. goals) and their relationships (e.g. link refinements). This is the space used to
elaborate goal graph structures following the KAOS methodology. The Text Editor al-
lows the developer to record design notes or to associate descriptive texts to diagrams. It
allows foreign texts (such as interview transcripts or other source material) to be inte-
grated, edited and hyperlinked to model elements. The Property Editor is used to specify
predefined attribute values or user-defined attribute-value pairs of the concepts. For ex-
ample, for a goal concept, these attributes include the name, the purpose of the goal, the
refinement pattern used to decompose it, and the formal definition or temporal prescrip-
tion of the goal. The Explorer is used to manage hierarchical views with drag-and-drop
facilities. It is used to retrieve goal graph structures, text documents, and concepts by
names, types or occurrences from the internal goal database. The Query and Check Tool
is a cross-reference navigator that goes back and forth through all traceability and refer-
ence links between existing concepts and documents. It is used to carry out analysis on
the goal graph structures by allowing queries about the details of the goal graph structures
(e.g. find goals not refined, find concepts by name, find all the descendants of a goal,

etc).
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One of the major advantages of Objectiver is that foreign components can be
tightly integrated through a meta-model based open Application Programming Interface
(API). This makes Objectiver an excellent platform for structuring models in a
user-readable way and exchanging these with the most powerful third parties formal
tools. This capability makes it possible to develop extensions to Objectiver to allow for-
mal analysis of the goal-oriented requirements.

One of the most prominent efforts in integrating formal tools in Objectiver is the
FAUST toolbox [Pon05]. By the time of the publication of this thesis, the FAUST toolkit
is still under development. The aim of FAUST is to allow formal modelling activity with
user-oriented interfaces, easy understanding and that allows user validation.

2.3 Analysis of Reactive Systems

In this section we describe the objectives of reactive systems analysis techniques
and the principles and usage of finite-state Behavioural Properties (BP). We finally pro-
vide some background on automated support for reactive systems analysis.

2.3.1 Objectives of Reactive Systems Analysis

Broadly speaking, reactive systems analysis is intended to verify that the system
specification satisfies some properties and/or to acquire meaningful system behaviour.
One of the most successful approaches targeting this issue is the Model Checking tech-
nique [Cla99]. Model Checking is a formal and automated application of computational
logic with high relevance in concurrent and distributed systems verification. As shown in
Figure 7, it consists of three main processes: modeling system behaviour, modeling the
system requirements specification and the verification process.

Different formalisms have been proposed to model system behaviour, each tai-
lored for specific domains. This is because each domain might involve different issues,
like concurrency, distribution, object-orientation, etc. Amongst the most common for-
malisms, Labelled Transition Systems (LTS) are typically used. In general terms, a LTS
is a set of states together with a transition set modeling how a system can change its state.
In addition, a labelling function is used to relate states and transitions with observations.
This activity has received tremendous attention in the modelling community and cur-
rently there are solutions that allow expressing LTSs by means of UML state charts, col-
laboration diagrams, sequence diagrams, class diagrams, etc [Bal04].

Technological Background 19



/~ System Behaviour Model I

Expressed by means of:
\p *UML state charts

«Collaboration diagrams

/Outputs of the \
Verification Process

+Sequence diagrams Verify whether the system
+Class diagrams satisfies behavioural
k properties

A

Model Checking Activity

* span the entire state space

« verify every possible combination of
inputs (events/conditions)

\ 4

System Requirements Specification ) || Report system executions

associated to meaningful
Observables - TEMPORAL
about System | [J[][ specification LOGIC

behavioural properties
Behaviour PROPERTIES/ \\ /

Figure 7. General outline of Model Checking techniques

The second process of Model Checking corresponds to the modeling of require-
ments specifications. At this stage, system observables like events, value of variables or
the processes responsible of the transitions are crucial when one wants to specify the re-
quirements specifications. In this sense, a fundamental dimension is time and how ob-
servables are time-related. In many cases, an explicit treatment of real time is not re-
quired and it just suffices to have a mechanism that allows one to express the ordering of
events in time. This is precisely the aim of Temporal Logics [Man92]. The requirements
of a system then should be acknowledged as the means to specify the ongoing behaviour
of an event/state-based system for which temporal logics provide an expressive and natu-
ral language for specifying this behaviour.

The third process of Model Checking is the verification of the properties. It at-
tempts to span the entire state space and verify every possible combination of inputs
(events and conditions). The success of the Model Checking technique relies in two main
abilities; on one hand, its ability to verify that a system satisfies some Behavioural Prop-
erties (BP); and on the other hand its ability to find and report system executions associ-
ated to meaningful Behavioural Properties. The system executions are reported as traces
that show the conditions, events/states and the managed objects involved in such condi-
tions and events/states. This in fact is the ability that has made Model Checking so suc-
cessful for reactive system analysis. Due to the relevance of the specification of Behav-
ioural Properties in our analysis, the following section clarifies the nature of finite-state
properties for Model Checking usage.
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2.3.2 Specialisation of Behavioural Properties

In terms of finite-state system verification, a specification pattern is a generalised
description of a commonly occurring requirement on state/event sequences in a system
execution [Dwy98]. In order to use these patterns in Model Checking tools, they should
be expressed as formal specifications. In this sub-Section we provide some background
on the nature of patterns to specify Behavioural Properties (BP) and describe an approach
to represent these into formal logic specifications suitable to use with Model Checking
techniques.

2.3.2.1 Patterns for Behavioural Properties specification

Figure 8 shows a classification of design patterns for the specification of Behav-
ioural Properties [Dwy98]. This classification takes into account two major groups: Oc-
currence and Order.

Occurrence patterns are used to identify behaviours in which a specific state/event
takes place. Occurrence patterns are in turn classified in Existence, Absence, Universality
and Bounded Existence. Existence patterns deal with situations in which the most impor-
tant is to specify that a state/event occurs. Absence patterns instead deal with situations in
which it is necessary to specify that a state/event does not occur. Universality patterns are
meant to specify situations of occurrence of states/events throughout a scope. Finally,
Bounded Existence patterns are used to specify the situations of occurrence of
states/events for a number of k times within a scope.

Order patterns deal with prescribed behavioural arrangement of states/events in
time sequence. These are classified in Response and Precedence patterns; Response pat-
terns are used to represent constraints in the order of states/events. Precedence patterns
are concerned with the specification of a given state/event P to be always preceded by a
state/event Q within a scope.

[ Patterns for Behavioural Properties |

[ Patterns dealing with Occurrence | | Patterns dealing with Order |

Existence Absence Universality E:i:'t‘:::e Response  Precedence

T ANNNNNANN AN NN NRANNANNNN AN

Pattern O AN AAARRAANARRRANAARRANNN

Scopes

Between Q and R |— NN {NENNNNRRRY
After Q until R SXRRN)——— (RRNKRENRRY XN

State/event sequence __ Q R Q Q R Q
Figure 8.  Behavioural pattern classification and scopes
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The patterns for Behavioural Properties (BP) have a scope — the extent of system
execution over which the pattern must hold. The lower part of Fig. 8 shows a graphical
representation of the five possible scopes: Global, Before, After, Between and After-until.
The scope Global prescribes that a pattern holds for the entire system execution; A Be-
fore scope is used to indicate that a pattern holds throughout the execution of the system
up to a given state/event (state/event Q in Figure 8). The scope After is used in situations
where the pattern must hold after a given state/event (state/event Q in Figure 8) and
throughout the execution of the system. The Between scope helps to define behavioural
situations in which a pattern must hold at any part of the execution of the system from
one given state/event (state/event Q in Figure 8) to another state/event (state/event R in
Figure 8). Finally the scope After-until is like Between with the difference that in the
former the designated part of the execution continues even if the second state/event does
not occur (state/event R in Figure 8).

The combination of patterns and scopes provides the sufficient support to express
any kind of behaviour description. Broadly speaking, we can say that any behavioural
system requirement can be mapped to their respective pattern/scope. For example, a
combination of the Existence pattern with the Global scope would be used to specify the
“occurrence of an event/state during the entire execution of the system”. In other words,
this combination would represent that a state/event is kept throughout all the lifecycle of
the system. The other way around, any behaviour description can be mapped to their cor-
responding pattern/scope; for example two concrete examples would be the following

requirements R; and Ry:
R, - “state/event B is reached After state/event A”
R, - “state/event B is not reached After state/event A” (R, is the opposite of R;)

The requirement R; corresponds to an EXistence-based property pattern since the
statement demands the condition “state/event B is reached” to occur. Additionally, R,
clearly prescribes the After scope. The requirement R, instead corresponds to an Ab-
sence-based pattern since the statement demands the non-occurrence of a condition
“state/event A is not reached”. This requirement also prescribes the After scope.

2.3.2.2 Formal specification of Behavioural Properties

The requirements for reactive systems and their representation into different tem-
poral logics have been the subject of research for some time. This has been influenced by
the high relevance of representing behavioural requirements with formal specifications
suitable for use with reactive systems analysis like Model Checking, theorem proving,
etc. The research community has identified several potential combinations of pat-
tern/scopes of Behavioural Properties and their representation into different logics. Cur-
rent approaches have been proposed to classify this information in databases and hence to
relate formal representations with behavioural requirements in a systematic manner

[Dwy98].

Consider the selection of Behavioural Properties shown in Table 2. Due to the
relevance of our study we concentrate on Linear Temporal Logic (LTL) representations.
As in previous sections we use the classical temporal operators: ¢ eventually in the fu-
ture, 0 always in the future, and the classical logic connectors A and, v or, — not,
— logical implication, «» equivalence, and so forth. A more detailed description of pat-
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terns for the specification of Behavioural Properties and practical database systems can
be found in [Dwy] and [Dwy98].

Id Pattern Scope LTL representation
BP1 Absence Globally a(—P)
BP2 Absence After Q o0(Q—o(—P))
BP3 Universality After Q o(Q—o(P))
BP4 Response Globally ag(P— ¢ S)
BP5 Response After Q 0(Q—o(P—0 S))

Table2  Selection of behavioural pattern/scope database entries

The LTL representation of BP1 “o(—P)” is as follows: “property P is always ab-
sent”. BP1 is used to express situations in which a property is globally absent

The LTL representation of BP2 “c(Q—uo(—P))” is as follows: “It always holds that
after the occurrence of Q, the property P never holds”. BP2 is used to express situa-
tions in which a property P is always absent after a property Q.

The LTL representation of BP3 “0(Q—u0o(P))” is as follows: “It always holds that on
the occurrence of Q, the property P will always occur’. BP3 is used to express situa-
tions in which a property P always holds after a property Q.

The LTL representation of BP4 “o(P— ¢ S)” is as follows: “It always holds that on
the occurrence of Q, the property P eventually occurs”. BP4 is used to express situa-
tions in which the occurrence of a property P always causes the eventual occurrence
of property S.

The LTL representation of BP5 “0(Q—o(P—¢ S))” is as follows: “The occurrence of
Q always implies that the occurrence of P always causes the eventual occurrence of
S”. BPS is used to express situations in which a property S responds to P after the
occurrence of a property Q.

We have described a reduced number of behavioural properties (BP). The above

is illustrative given that we can express an unlimited number of combinations of Pattern
and Scopes. Moreover the most relevant of the above analysis is the possibility to express
behavioural properties in LTL representations following a pre-established identification
of Patterns and their application Scopes. For example, consider the requirements Rq; and
qui

Rq; - “state/event B is always reached After state/event A”

Rq; - “state/event B is never reached After state/event A”

For Rq; we could consider that the state/event B always holds after the occurrence of
state/event A, and then instantiate BP3 to represent Rq; in LTL notations. In this
view, the LTL representation of Rq; is as follows: o(state/event A—n(state/eventB))

For Rq, we could consider that state/event B is always absent after the occurrence of
event/state A, and then instantiate BP2 to represent Rq, in LTL notations. In this
view, Rq2 is represented as follows in LTL: o(state/event A—0( — state/event B)).
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Following this approach we may use combinations of patterns/scopes to formulate
requirements that specify “particular” behavioural aspects of system executions. More-
over, this approach enables to represent those requirements into formal specifications
suitable for use with automated verification tools applying Model Checking techniques.

2.3.3 Automated Support for Reactive Systems Analysis

One of the main advantages of analysing reactive systems using Model Checking
techniques is that there are several off-the-shelf tools available [Cla99]. Tools like SPIN
(Simple PROMELA Interpreter) [Hol04] and NuSMV [Cim99] have enabled systematic
analysis for different applications such as the verification of large-scale software specifi-
cations [Cha98], use of Model Checking as planning [Cim03], generation of test-cases
through Model Checking [Amm99] and others. Due to the high relevance of linear tem-
poral analysis in this work, we provide the general outline of SPIN [Hol04], a tool that
provides support for linear temporal analysis.

As tool applying Linear Temporal Model Checking techniques, SPIN concerns
with the three main activities: Modeling System Behaviour, Modeling System Require-
ments and the Verification Process. The verification process can consist of two options;
(1) verify that a system satisfies some behavioural properties; and (2) find/report system
executions associated to meaningful behavioural properties. The Figure 9 shows a
graphical representation of these three activities for which a brief rationale is given here-
after.
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Figure 9.  General Outline of SPIN support
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2.3.3.1 Modeling System Behaviour: an Overview of PROMELA

For this fist activity SPIN uses PROMELA as specification language [Hol04].
PROMELA stands for Process Meta-Language and is not considered as an implementa-
tion language like Java or C but as a system description language. The emphasis on the
language is on the modeling of process evolution, synchronisation and coordination, and
not on computation. For example, it would be relatively hard to model the computation
of, say, a square root but relatively easy to model the behaviour of clients and servers in
distributed systems. This is deliberately designed to encourage the user to abstract from
the purely computational aspects of a design, and to focus on the specification of proc-
esses evolution and interaction at system level. A PROMELA model represents an ab-
straction of design that contains only those aspects of a system which are relevant to the
features to be modelled. For example, PROMELA emphasises on modeling how a man-
aged entity changes from one state to other, or how a managed entity receives or sends
information to other managed entity. In conclusion PROMELA has been designed to
model processes that would be implemented by managed entities and hence to model the
behaviour of such managed entities in collaborative environments. For this, the language
includes a rich set of primitives for process modelling and inter-process communication
to exchange information between processes.

2.3.3.1.1 An illustrative collaborative scenario

Consider two collaborative entities, Managed Object 1 (MO1) and Managed Ob-
ject 2 (MQO?2) exhibiting the behaviour illustrated in Figure 10. In this basic example, the
Managed Object 2 issues three events (event 1, event 2, and event 3) which in turn have
some effect in the state transitions of Managed Object 1. Note for example that when
MO?2 transitions from state “MO2_Statel” to state “MO2_State4” (occurrence of event 1
in MO2), MO1 is obligated to transition from state “MO/1 _statel” to state “MO1_State4”.
Similar effects are caused when MO2 issues the events event 2 and event 3: the MO
transitions from MO1_State2 to MO1_State4 and from MO1_State3 to MO1_State4 re-
spectively.

MANAGED MANAGED

OBJECT 1 OBJECT 2
MO1Transition1 MO1Transition3 MO2Transition1 MO2Transition3
MO1Transition2 MO2Transition2
ot st ot sues) oz st s
event_1 event 2 event 3 event_1 event 2 event_3

MO1_Stated MO2_Stated

Figure 10.  Example of collaborative behaviour
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2.3.3.1.2 The Process element in PROMELA

PROMELA derives many of its notational conventions from the C programming
language. In PROMELA, processes are used to define the body of the managed entities’
behaviour. They are identified by proctype instantiations. There must be at least one
proctype declaration in a model. Since we are modelling the behaviour of two managed
objects, the specification of our example integrates two proctype instantiations: proc-
type ManagedObject2 and proctype ManagedObjectl. The Figure 11 shows the body
of the proctype ManagedObjectl declaration of our example.

Process declarations are followed by typical declarations of variables. Besides the
typical declarations like byte, bool, int, etc, PROMELA introduces the concept of
communication channel. The purpose of communications channels is to handle relevant
information that causes state transitions in a state machine and amongst state machines.
Communication channels are identified with the keyword chan. In our model example we
have used two types of communications channels: A channel for internal communications
declared as chan internal_queue and channels for communications amongst processes
declared as chan ack_in and chan ack_out.

Since PROMELA emphasises on modeling how a managed entity changes states
from one state to other, the actual state of every managed object are modeled with values
of variables. In this basic example we have considered the variable stateO. Note for in-
stance that this variable takes different values that represent the evolution of the managed
entities (MO1 and MO2). In this basic model, state transitions are modelled in two ge-
neric groups: Transitions without relevant information and Transitions with relevant in-
formation.

The Transitions without relevant information are characterised by the absence of
information linked to state transitions. In our basic model these correspond to the transi-
tions from Initial state to Idle and the transitions to the Final state of MO1 and MO2.
Even in these circumstances the value of the state0 variable changes as illustrated by the
pointer “Transitions without relevant information” in Figure 11.

On the other hand, the Transitions with relevant information take into account the
events/actions that cause the state transition like MOI1Transitionl and event 1 in our
running example. These transitions should consider the information of the channels. The
pointer “Transitions with relevant information” in Figure 11 shows the six relevant tran-
sitions of MO1. Note the assignations of values to the state0 variable in the six shaded
regions. Particularly relevant is the modelling of the conditions that make these transi-
tions to occur. In our example, this issue has been modelled by classical “if” clauses that
consider the current state of the managed entity and the information of the channels.

For example, the transition from MO1_Statel to MO1_State 4 (see Fig. 10) oc-
curs if the actual value of the variable state0O is MO1_Statel and the MO1 has received
through its channels, the send_event_1 notification (received from the MO2). At this
point of the evolution, the value of the variable stateO is set to MO1_State4 by the sen-
tence stateO = MO1_State4. After this the channels are updated as to make it official that
the system has transitioned to MO1_State4. The above is modeled in the content of Fig-
ure 11 as follows:
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:: state0 == MOl _Statel && current_event == send_event 1 && true .. ->
state0 = empty;
state0 = MO1l_State4;
completed[cmpIMO1l_State4] = true;
internal_queuelcompletion_MO1l_State4;
goto main

Other parts of the body of proctype declarations in PROMELA include the ini-
tialisation of the process evolution and the channel management declarations. These are
also shown in Figure 11. A complete description of the PROMELA modelling language
can be found at [Hol0O4]. The popularity of SPIN (Simple PROMELA Interpreter) has
enabled the development of other tools intended for analysis of reactive systems. With
this regard we can find translators of UML models into PROMELA code [Val04] which
makes it much friendly and intuitive the use of PROMELA. The complete PROMELA
representation of the example presented here is provided in the first part of Appendix A.
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proctype ManagedObjectl(chan event_queue; byte this; byte initialiser_M020) { %‘:{:;Z?:ﬁon

chan ack_out;
chan internal_queue = [completion_queue_size] of {byte};

byte stateO;

byte stateO_transition; Variables declaration
bool completed[1];

byte current_event;

byte M02;

Xr event_queue;
atomic {
MO2 = initialiser_M020;
state0 = top_initial0_GO;
stateO_transition = top_initialO2ldle_G1; Initialization of references to collaborative entities e.g. MO2
}_gOtO transitionFiring and the variable that keeps record of MO1 behaviour -
main:
current_event = empty;
if
:: internal_queue?[current_event] ->
internal_queue?current_event
:: else —>
if Channel management
:: event_queue?[current_event, ack_out] ->
event_queue?current_event,ack_out
i else —>
event_queue?current_event,ack_out
i
fi;
atomic {
if
:: state0 == Idle_G2 && current_event == completion_Ildle_G3
&& completed[cmplldle_G4] == true && true && true ->
completed[cmplldle_G4] = false;
state0 = empty;
state0 = MO1_State2;
goto main
:: state0 == Idle_G2 && current_event == completion_Ildle_G3
&& completed[cmplldle_G4] == true && true && true ->
completed[cmplidle_G4] = false;
state0 = empty;
state0 = MO1l_Statel;
goto main
:: state0 == Idle_G2 && current_event == completion_Ildle_G3
&& completed[cmplldle_G4] == true && true && true ->
completed[cmpllidle_G4] = false;
state0 = empty;
state0 = MO1_State3;
goto main
:: state0 == MO1_Statel && current_event == send_event_1 && true && true -> Transitions
state0 = empty; with
state0 = MO1l_State4;
completed[cmpIMO1_State4] = true; relevant_
internal_queue!completion_MO1_State4; information
goto main
:: state0 == MO1l_State2 && current_event == send_event_2 && true && true ->
state0 = empty;
state0 = MO1_State4;
completed[cmpIMO1_State4] = true;
internal_queue!completion_MO1_State4;
goto main
:: state0 == MO1_State3 && current_event == send_event_3 && true && true ->
state0 = empty;
state0 = MO1_State4;
completed[cmpIMO1_State4] = true;
internal_queue!completion_MO1_State4;
goto main
:: state0 == MO1l_State4 && current_event == completion_MO1l_State4
&& completed[cmpIMO1l_State4] == true && true && true ->
stateO_transition = MO1_State42top_finalO;
goto top_label
: else

:hl..
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top_label:
skip;
transitionFiring: N\
do
:: stateO_transition == top_initial02ldle_G1 ->
stateO_transition = empty;
state0 = empty;
state0 = Idle_G2;
completedfcmplldle G4] = true; > Transitions without relevant information
internal_queue!completion_Ildle_G3
: stateO_transition == MO1_State42top_final0 ->
state0_transition = empty;
completed[cmpIMO1_State4] = false;
state0 = empty;
state0 = top_final0_G5 J
i else —>
break
od; R
if
:: stateO != top_finalO_G5 ->
goto main
i else —>
goto end_machine 5 LT .
fi > Declaration of end state if exists

;
end_machine:
success

J
Figure 11.  Fraction of PROMELA specification

2.3.3.2 Modeling System Requirements

For this second activity of the Model Checking technique, SPIN interprets Linear
Temporal Logic (LTL) formulae. As we mentioned earlier, LTL formulae provide the
means to specify any behavioural aspect of system executions. Consequently, SPIN can
be seen as an interpreter of system behaviour.

2.3.3.3 Verification Process

This is the third activity of the Model Checking technique. In SPIN the Verifica-
tion Process may consist of two options; (1) verify that a system satisfies some behav-
ioural properties; and (2) find/report system executions associated to meaningful behav-
ioural properties. Due to the relevance of the second option in our work, the remaining of
this sub-Section focuses on the SPIN capabilities to find/report system executions

SPIN works producing system execution traces. These traces are sequences of
inputs that indicate the conditions, events and states during system execution. In addition,
SPIN reports how the managed entities collaborate during the execution trace. Given that
the reports are associated to the provided LTL properties, the nature or the interpretation
of the reports depends on the nature of those properties. LTL properties can be cast as
either as a positive (desired) or a negative (undesired) property of the system model
[Hol04].

e For “positive” properties, the reports provided by SPIN can be of two different types:

1. Statements that the positive property is certainly satisfied.

2. System executions that represent the behaviour that the system should exhibit

so that the corresponding “negated” (undesired) property is satisfied.
e For “negative” properties, the reports provided by SPIN can be also of two different

types:
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1. Statements that the negative or undesired property never occurs during the
system execution.

2. System executions that represent the behaviour that the system should exhibit
so that the corresponding “positive” system property is satisfied.

Therefore note that there is the possibility to obtain execution traces that make a
requirement property R not to hold, and the possibility to obtain execution traces that
make a requirement property R to hold. From the above description we could summarise
that if we provide R, SPIN would generate a system trace report (or all the execution re-
ports if desired) in which R’ is satisfied. On the other hand, if we provide R’, SPIN would
generate a system trace report (or all the execution reports if desired) in which R is satis-
fied. As a consequence of this, the resulting execution trace depends only on the type of
requirement that the user provides

For instance, consider from our running example, Managed Object 1 (MO1) and
its states MO1_Statel and MO1_State4 as we showed earlier in Figure 10. Assume the
following positive/desired requirement R and its corresponding negative/undesired re-
quirements R’:

R: “MO1_State4 is reached After MO1_Statel”.
R’: “MO1 _State4 is not reached After MO1_Statel”

With the above requirements if we were to provide R as input to SPIN, we would
obtain a system trace execution that would make R not to hold. In other words, we would
obtain a system trace execution (or all the execution reports if desired) in which
MO1 _State4 is not reached After MO1_Statel. Moreover, if we were to provide R’ as
input to SPIN, we would obtain a system trace execution that would make the require-
ment R to hold. In other words, we would obtain a system trace in which MO1_State4 is
reached After MO1_Statel.

The central part of Figure 12 shows the visual representation of the system trace
execution obtained when providing R’ to SPIN in our example. This represents the sys-
tem trace executions that both, MO1 and MO2 should exhibit so that MO1 State4 is
reached after MO1_Statel. The left and right parts of Figure 12 show the interpretation of
such execution with respect to the behaviour of MO1 and MO?2, initially shown in Figure
10. Note for instance that the left part of Figure 12 shows the restricted behaviour of
MOT1 in which MOI1 _State4 is certainly reached after MO1_Statel.

In addition, SPIN includes the provisioning of the details of the system execution
expressed in terms of the PROMELA specification. The Figure 13 shows part of the
execution report of our example. These reports show the actual lines of the PROMELA
specification that are executed the by the corresponding Managed Objects. The complete
execution report of this example is presented in the second part of Appendix A.
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1) [MO1 = initialiser_M010] <merge 83 now @2>
2) [stateO = 1] <merge 83 now @3>
3) [stateO_transition = 1] <merge 83 now @83>

70) [((stateO_transition==1))] <merge O now @71>
71) [stateO_transition = 0] <merge 75 now @72>
72)[state0 = 0] <merge 75 now @73>
73)[state0 = 2] <merge 75 now @74>

74) [completed = 1] <merge 75 now @75>

-) [values: 510]

75) [internal_queue!0]

81)[else]

86) [((state0!=7))] <merge O now @6>

6) [current_event = 0]

1) [MO2 = initialiser_M020] <merge 71 now @2>
2) [stateO = 1] <merge 71 now @3>

3) [stateO_transition = 1] <merge 71 now @71>

58) [((stateO_transition==1))] <merge O now @59>
59) [stateO_transition = 0] <merge 63 now @60>

60) [state0 = 0] <merge 63 now @61>
61)[state0 = 2] <merge 63 now @62>

62) [completed = 1] <merge 63 now @63>

-) [values: 313]

63) [internal_queue!3]

69) [else]

74)[((state0!=7))] <merge O now @6>
6) [current_event = 0]

Fragment of detailed execution report

In conclusion, the Model Checking technique provides the means to acquire the
necessary system trace executions in accordance with specific LTL requirements proper-
ties characterising requirements of behavioural aspects of a reactive system. In addition,
SPIN allows to achieve this in a fully automatic manner. The execution reports show the
managed entities behaviour as a collaborative sequence of conditions, states and actions
that the involved entities should exhibit as to commit with the LTL characterisation. For a
detailed description of SPIN and its reference manual, please refer to [Hol04].
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2.4 Conclusions

In this Chapter we have provided background material on two technical issues
that concern with our policy refinement analysis; (1) the principles to formalise system
requirements, concretely we have described the principles, the scope, activities, founda-
tions and the practicality of Goal-oriented Requirements Engineering techniques; and (2)
a general description on the utilisation of reactive systems analysis techniques, more spe-
cific we have provided the general outline of Model Checking techniques.

The Goal-oriented Requirements Engineering techniques provide support to es-
tablish formal representations, at different levels of abstraction, of the requirements that
an envisioned system should fulfill. Concretely, we have outlined the KAOS goal elabo-
ration method. This method provides the means to carry out goal-based reasoning activi-
ties grounded in Linear Temporal Logic (LTL). KAOS proposes to use goal refinement
patterns as a standard method to identify and make decisions on the achievements of the
target systems. The system requirements are formalised into goal-graph structures that
may represent either the different strategies with which the envisioned system may fulfill
specific requirements, or the necessary requirements that a system may include to fulfill
the high-level administrative needs.

While KAOS provides support to document and elaborate goal graph structures
through the Requirements Elaboration process, it does not provide support to relate man-
aged objects’ behaviour to goal fulfillment finding. In this sense, the goal graph struc-
tures elaborated with KAOS should be acknowledged as a potential source of information
to overcome these limitations. With this regard, we have provided the principles of the
Responsibility Assignment and Operationalisation activities. While the former is meant
to identify the agent objects and their responsibilities as to guarantee the system require-
ments, the latter is meant to identify the operations and their domain pre- and
post-conditions of such agent objects. These two activities are completely dependant on
the application domain and should be supported by the information formalised with the
KAOS goal graph structures.

Another technical issue that we have outlined in this Chapter concerns with the
analysis of reactive systems, more concretely we have provided the principles of verifica-
tion techniques through Model Checking. The key for the success of the latter technique
relies on the accuracy to asses two major aspects for analysis: (1) the verification that the
specification of a system fulfills specific properties; and (2) the acquisition of meaningful
system behaviour as a response to the input of behavioural properties. With this regard, a
key issue is the specification of behavioural properties and their representation with for-
mal notations suitable to use with automated Model Checking engines.

We have outlined the principles of specification of behavioural properties for LTL
and the corresponding linear temporal Model Checking process, effectively assessed with
the SPIN searching engine. We have demonstrated the feasibility to express behavioural
properties in LTL and the capability of the SPIN searching engine to acquire and report
meaningful system behaviour committing to such behavioural specifications. The system
behaviour is reported as a collaborative sequence of events, conditions and actions that
specific managed entities may exhibit in runtime. It is worth noticing that this is achieved
by a fully LTL-based state exploration process.

Technological Background 32



Chapter 3 A Policy Refinement Framework

3.1 Introduction

Policy-based management has been regarded as a potential approach to allow the
management tasks in complex environments in network and service management. De-
spite having been introduced in different application domains through various research
projects, several standardisation efforts and substantial interest from industry, pol-
icy-based management is still not widespread used. The number of policies necessary to
control medium- to large-scale systems may be in the order of thousands and these poli-
cies are likely conflicting. In addition to policy conflict analysis techniques, a key issue is
the need to derive policies from high-level administrative goals or from higher level poli-
cies.

Policy refinement is understood as the process aimed to derive lower-level poli-
cies from higher-level ones so that the former are better suited for use in different execu-
tion scenarios. Although policy refinement has been recognised as crucial for the success
of policy-based management, it has been severely dismissed due probably to its inherent
complexity. In this sense, a holistic approach to the policy refinement process still re-
mains unclear.

The main motivation of this chapter is to provide a framework that considers the
different aspects involved in the policy refinement process. One of these aspects is the
need to represent the aim of policies at different levels of abstraction. For this, we con-
sider the aim of policies as goals [Lam99], [Ban04] and hence we use goal refinement
methodologies as the means to ground of the policy refinement process. In this way, the
proposed framework is built upon goal-oriented requirements engineering methodologies.
In other words, this framework is intended to specialise the GORE (Goal-Oriented Re-
quirements Engineering) into a policy authoring environment.

In addition to laying down the aforementioned formal concepts into a policy re-
finement framework, another aspect that we address in this chapter is the identification of
the processes and activities involved in the refinement paradigm. This is, we clarify the
nature of the different tasks that the administrative parties should carry out during the life
cycle of the policy-based management system.

The goal elaboration process in our framework relies on the KAOS approach
[Dar96], [Dar98], [Lam99]. As presented in Chapter 2, KAOS provides the theoretical
support to formalise the requirements of a target system into goal graph structures. Nev-
ertheless, it doesn’t provide support to relate systems’ behaviour to goal fulfillment. An-
other aspect that we address in this chapter is the need to produce enforceable/deployable
policies from High-level Goals in a systematic manner. This is, we formalise the neces-
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sary mechanisms that assess the Responsibility Assignment and Operationalisation ac-
tivities of the KAOS GORE approach in our policy authoring environment.

We support Responsibility Assignment and Operationalisation activities by means
of Linear Temporal Logic and Model Checking verification techniques [Rub05]. These
techniques are applied in the policy refinement mechanisms as the means to provide a
formal procedure to obtain runtime system trace executions aimed at fulfilling
lower-level goals, and consequently the fulfillment of High-level Goals.

Besides the framework addressing the holistic implications of the policy refine-
ment process, this Chapter also provides the overall implementation of a solution for
generating policies following this one framework [Rub06a], [Rub06b]. This is a step
ahead towards the materialisation of the policy refinement paradigm based on the
framework proposed.

After this Introduction, this Chapter is sectioned in three parts: Section 3.2 pro-
vides the rationale of the policy refinement framework; Section 3.3 describes a prototype
solution that entails the former; and Section 3.4 provides the conclusions on our proposal.

3.2 Rationale of the Policy Refinement Framework

In policy authoring contexts, there is a need to formalise the aim of policies.
Having adopted the view of considering the aim of policies as goals [Lam99], [Ban04],
the general idea behind the policy framework is to specialise the GORE concepts of Re-
quirements Elaboration, Responsibility Assignment and Operionalisation into a policy
authoring environment. In this sense, the final outcome of the process would be a set of
deployable and enforceable policies committing with high-level administrative goals. The
following is the overall rationale of the elements and activities involved in the policy re-
finement process.

3.2.1 Actors and roles

In a policy authoring environment, policies are refined before and/or during the
operation of the system by an administrative party. Moreover, in order to refine policies
in a systematic manner, previous supporting activities should be carried out during the
design and implementation of the management system. In this sense, we consider two
administrative parties; an Administrator Developer and an Administrator Consultant. On
the one hand, the Administrator Developer carries out the supporting activities during the
design and implementation, and on the other hand, the Administrator Consultant carries
out the refinement-aware activities during the start-up and operation of the policy system.
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Figure 14.  Overall Policy Refinement Framework

The framework shown in Figure 14 provides support for both, Administrator De-

veloper and Administrator Consultant. In administrative terms, the framework considers
the following activities:

Goal Refinement. This activity is intended to elaborate goal graph structures of the
High-level Goals that the system can handle. These goal-graphs represent both, the
requirements and the different options with which the High-level Goals could be
achieved. This activity is application-dependent and is carried out by the Administra-
tor Developer, and consequently this activity is carried out during the design and im-
plementation of the system.

Goal Selection. This activity is meant to define the Administrator Consultant’s “par-
ticular” goals' for the functional policy-based system. This activity is achieved by se-
lecting, from the different options represented in the goal-graph structures, the goal
strategies that better reflect the Administrator Consultant’s criteria. We should point
out that Goal Selection is carried out at the beginning of the operation of the system
operation and at service operation time.

Enforceable Policies Acquisition. This activity is meant to produce a set of low-
est-level policies that would fulfill the “particular” High-level Goals resulting from
the Goal Selection activity. The acquired policies should include meaningful elements
of policies like subjects, targets, events and actions. It is worth mentioning that these
policy fields should commit with the managed system capabilities i.e. these should

! During this work the term “particular” goals is used to denote the goals defined by the Administrator
Consultants which are in turn reproductions of the goals defined by the Administrator Developer.
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produce enforceable policies. This activity uses the System Model. The later includes
the detailed behaviour of the managed elements through finite state machines, class
and collaboration models of the management system, and their object distribution
within the managed system. In this sense, the acquired policies should commit with
the actual object distribution of the managed system so that not only the policies can
be enforced but also for further deployment of these policies onto the managed sys-
tem. The System Model is provided by the Administrator Developer at de-
sign/implementation time.

3.2.2 Goal Refinement Support

Figure 15 shows the general outline of the Goal Refinement Support function
whose general objective is to allow the Administrator Developer to elaborate the goal
graph structures that the policy driven system can handle. The challenge in this activity is
to make use of KAOS [Dar96], [Dar98], an application independent refinement approach,
in order to build an application-dependent refinement graph.

The Administrator Developer uses the KAOS application-independent refinement
patterns combined with the managed system features (i.e. the managed system capabili-
ties) to drive the goal refinement process. Once the High-level Goals have been defined,
these are further refined through the instantiation of refinement patterns that enable the
developer to identify lower-level goals. After the goal graph structures have been elabo-
rated, these are stored in a goal database for eventual use and/or maintenance. This activ-
ity should be accomplished during the design and development phase of the system.
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Figure 15.  Goal graph structure elaboration outline

In order to understand better the Goal Refinement Support function, consider for
instance a policy-driven Network Dimensioning (ND) system for which the Administra-
tor Developer wants to elaborate the goal graph structure within this framework.
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3.2.2.1 Identification of Managed System Features

Consider that the developer has identified the following features of the system:

e General purpose: The ND sub-system is in charge of assigning network resources
according to given traffic predictions in the network. This is our policy-driven ele-
ment or managed system

e Input: It receives a traffic estimation matrix that defines the minimum and maximum
values for traffic estimations.

e Output: It produces configuration sets that may eventually be propagated to enforce
the traffic allocation calculations.

e Capabilities: It basically integrates policy-based dimensioning mechanisms that in-
fluence the allocation of resources. These mechanisms include functions affecting the
following parameters: limit of hop-counts, overall utilisation of the network,
hop-count estimation for delay and packet loss estimations, explicit allocations, dis-
tribution/reduction of extra link capacity.

3.2.2.2 Defining the nature of High-level Goals

Consider the case where the administrator must ensure a given system behaviour;
this is, the way it will assign network resources according to specific traffic distributions.
The above could be interpreted as a High-level Goal, identified as ConfigurationDirectives-
Set and formalised in Linear Temporal Logic as follows:

G1 ConfigurationDirectivesSet: ND_Request—0DirectConfig&Propagated

In the context of the goal refinement process, the semantics of administrator’s
goal G1 is “when a network dimensioning request is received, the configuration direc-
tives should be generated and eventually stored and propagated to the underlying com-
ponents”. Other High-level Goals could be defined for the ND system for which the in-
tersection of all would become the different targets of interest that the Administrator De-
veloper has envisaged as controllable for the ND system.

3.2.2.3 Goal refinement assisted by refinement patterns

Once the High-level Goals like G1 have been identified, they are decomposed
into offspring goals. The KAOS method prescribes to tackle this issue by asking HOW
questions. In the context of our ND example this is equivalent to figure out how the sys-
tem can configure dimensioning directives. The ultimate objective is to achieve some
behaviour in the envisioned system. For this purpose, different propositional patterns
would be useful. For example, consider the selection of KAOS patterns to refine the ap-
plication-independent Achieve goal P —0Q shown in Table 3.

ID Formal Representation of sub-goals Description
RP3 | P—>0R R — 0Q Milestone-driven refinement
RP4 | PA P1—-0QI1 P A P2—0Q2 o(P1v P2) Case-driven refinement

Ql vQ2-Q
RP5 | PA - R—0R PAR—0Q P—oP | Conditional milestone-driven
RP6 | =R— 0OR PAR—0Q P—oP | Inconditional milestone-driven

Table 3  Different patterns to refine the Achieve goal P —0Q
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The use of one pattern instead of another depends indeed on the capabilities of the

system and the criteria of the developer. Following on with our sample, suppose P stands
for “ND_Request” (reception of a network dimensioning request) and Q stands for “Di-
recConfig&Propagated” (ND directives generated and propagated). Suppose also that R
stands for “TM_reception” (reception of the traffic matrix). The patterns shown in Table
3 are brought to this specific application domain as follows:

The “Milestone-driven refinement” pattern, identified as RP3 proposes that “on the
occurrence of a state P, an intermediate state satisfying R must first be reached from
which a goal state Q must eventually be reached”. In our ND example this pattern
proposes that on the occurrence of “ND Request” state, a state prescribing
“TM_reception” may first be reached from which the goal state “DirecCon-
fig&Propagated” must be reached. In other words, two goals would be necessary to
fulfill the original G1 ConfigurationDirectivesSet goal.

The “Case-driven refinement” pattern, identified as RP4 proposes that ““on the oc-
currence of P, an alternative sate satisfying either P1 or P2 will eventually satisfy the
goal states Q1 or Q2 respectively which in turn suffices to satisfy the state Q. In our
ND example this pattern proposes that on the occurrence of an “ND_Request” state, it
is possible to take two alternative intermediate goal states P1 or P2 which in turn
should eventually satisfy the goal states Q1 or Q2 respectively. Also, either Q1 or Q2
would yield to the “DirecConfig&Propagated” goal state. In other words, the admin-
istrator should identify two alternatives to satisfy the G1 ConfigurationDirectivesSet
goal.

The “Conditional milestone-driven* pattern, identified as RP5 proposes that ““on the
occurrence of P and under the absence of the state R, it is a requirement that state R
and state P both hold so that the goal state Q eventually holds”. “In addition, state P
should hold ““always™ during the execution of the system. In our ND example, RP5
proposes that on “TM_reception”, it should hold that both “TM_Reception” and
“ND_Request” to be present at the same time as for the goal state “DirecCon-
fig&Propagated” to eventually hold. Also, this pattern proposes that the state
“ND_Request” to be present “always” until the goal state “DirecConfig&Propagated”
is reached.

The “Inconditional milestone-driven” pattern, identified as RP6 proposes that “on the
absence of a state satisfying R, the latter must hold when P occurs so that the goal
state Q can be eventually reached”. In our ND example, RP6 proposes that on the
absence of “TM_Reception”, the latter must eventually hold so that on the occurrence
of “ND Request” both hold and consequently, the goal state “DirecCon-
fig&Propagated” can be eventually reached.

Continuing in the ND example, the developer evaluates how the above four alter-

natives can match the capabilities and the operation of the ND system to decide which
refinement pattern is better suited to use to decompose the G1 ConfigurationDirectivesSet
goal.
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For instance, RPS5 is discarded because the reception of a configuration request
(ND_Request) is a discrete event that cannot happen continuously until the traffic matrix
(TM_reception) is received nor until the directives are configured and propagated (Di-
recConfig&Propagated). RP6 is also discarded because the reception of a traffic matrix
(TM_reception) is also a discrete event that cannot hold until the “ND_Request” state is
reached.

The two remaining options are then a milestone-driven tactic (refinement pattern
RP3) and a refinement by cases (refinement pattern RP4). The decision of which pattern
to apply to refine the original G1 ConfigurationDirectivesSet goal is taken by the Adminis-
trator Developer following the propositions of the two alternatives (RP3 and RP4) and
the design/capabilities of the policy system. With regard to the latter, let us assume that
the dimensioning of the network can be achieved in two ways: (1) considering the alloca-
tion of minimum demand or (2); considering the allocation of minimum demand plus the
usage of the remaining physical network resources. These two options are exclusive one
from the other and both can be used to configure the directives in the ND system. For this
reason, the milestone-driven pattern RP3 is discarded as it may imply that both options
are necessary to fulfill G1. In other words, bringing RP3 into this application at this stage
may imply that the ND system should be configured considering the allocation of mini-
mum demand and also, considering again the allocation of minimum demand, plus the
usage of the remaining physical resources.

Finally, bringing the case-driven refinement pattern RP4 into our Network Di-
mensioning example formalises two different alternatives of how to refine the original G1
ConfigurationDirectivesSet goal. More concretely, the developer brings the case-driven RP4
pattern to refine G1 as he considers that the High-level Goal G1 could be fulfilled in two
ways which in turn define the goals G2 and G3 respectively: G2 opts to dimension the
network considering the allocation of minimum demand; G3 opts for network dimen-
sioning considering the allocation of minimum demand plus the usage of the remaining
physical network resources. These two refinements are graphically represented in the
upper part of Figure 16 and are formally expressed as follows:

G1 ConfigurationDirectivesSet: ND Request — ¢ DirectConfig&Propagated
G2 MinDemandStrategy: ND Request /\ minDemandStrategy — ¢ DirectConfig&Propagated
G3 MinWExtraCapStrategy: ND Request A minWExtraCapStrategy— ODirectConfig&Propagated

G2 should be interpreted as follows; “when a network configuration request is re-
ceived, configuration directives for the minimum demand will be eventually generated,
stored and propagated”. Similarly, G3 should be interpreted as follows; “when a network
configuration request is received, configuration directives for the minimum demand plus
the usage of the remaining physical resources will be eventually stored and propagated”.

We must acknowledge that the Goal Refinement process is aimed at elaborating
goal graph structures of High-level Goals that the system can handle. These represent
both, the requirements and the different options with which the High-level Goals could be
achieved. As we will describe latter, one of the above two options to generate the con-
figuration directives would be selected by means of the Goal Selection process during the
start up and/or the operation of the system.
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Figure 16.  Initial goal graph structure elaboration process

The patterns shown in Table 3 can be extended to make them suitable for use in
particular application domains. For instance, RP3 and RP4 could be extended to deal with
multiple milestone-driven and multiple case-driven situations as shown in Table 4.

RP Formal Representation of sub-goals Description
RP3* | P> 0R R —0S S —0Q Multiple ~ milestone-driven
refinement
RP4> | PAP1—-0Q1, P A P2—0Q2, P A P3—50Q3, Multiple case-driven refine-
oPlvP2vP3), QlvQ2vQ3-—-Q ment

Table 4 Extension of the refinement patterns RP3 and RP4

Going further in the refinement process of our example, G2 MinDemandStrategy
and G3 MinWExtraCapStrategy should be further refined. For G2 MinDemandStrategy, the
developer considers that this requirement must be accomplished in two steps: (1) a
pre-calculation of resources; (2) a processing step that should take into account the
pre-calculations. Consequently, the goal G2 MinDemandStrategy is refined into the
sub-goals G4 PreCalculation and G5 Processing by bringing the pattern RP3 into the context
of the refinement of G2 (see graphical representation in Figure 16). This goal sub-tree
formalises the requirement of achieving network dimensioning configurations in two
steps; a pre-calculation AND the processing step properly said.
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Similarly, for the goal G3 MinWExtraCapStrategy, the developer considers that in
addition to calculating the allocation of the minimum demand, G3 requires a
post-processing step to allocate the remaining capacity in the core links of the network
and to reduce the capacity when the links are over-provisioned. Consequently the goal G3
MinWExtraCapStrategy is refined into the sub-goals G6 PreCalculation, G7 Processing and G8
PostProcessing, by the bringing the extended pattern RP3’ into the context of the refine-
ment of G3 (see graphical representation in Figure 16). The sub-tree defined by G3 for-
malises the requirement of having a processing step AND an additional post-processing
calculation step. The above mentioned processes yield the third level in the refinement
graph shown in Figure 16. These third level goals are formally represented in KAOS as
follows:

G4: ND_Request /A minDemandStrategyReq /\ preCalculation — ¢ Processing
GS5: Processing — ¢ DirectConfig&Propagated

G6: ND_Request A minWExtraCapStrategyReq /\ preCalculation — ¢ Processing
G7: Processing — O PostProcessing

G8: PostProcessing — ¢ DirectConfig&Propagated

The semantics of the above abstractions is as follows:

G4.- “When a Network Dimensioning process is Requested (ND_Request) and the minimum de-
mand strategy is required (minDemandStrategyReq), a pre-calculation process for dimensioning
(preCalculation) will eventually result in a processing step (Processing)”.

GS5.- “A Processing step (Processing) will eventually result in directives being configured and
propagated (DirectConfig&Propagated)”.

G6.- “When a Network Dimensioning process is Requested (ND_Request) and the minimum de-
mand with extra capacity strategy is required (minWExtraCapStrategyReq), a pre-calculation proc-
ess for dimensioning (preCalculation) will eventually result in a processing step (Processing)”.

G7.- “A Processing step (Processing) will eventually result in a post-processing step (PostProcess-
ing)”.

G8.- “A post-processing step (PostProcessing) will eventually result in directives being configured
and propagated (DirectConfig&Propagated)”.

At this stage of the goal refinement process, the developer determined the initial
steps and alternatives by means of which the ND system would be able to generate net-
work configuration primitives. At the same time, this intermediate steps have been for-
malised in terms of temporal logic, which will be important for subsequent stages. Nev-
ertheless, the developer still needs to identify and formalise the requirements and options
for each lower-lever refinement (G4 to G8 in Fig. 16). In other words, a similar procedure
has to be carried out to refine each lower-level goal.

For example, the PreCalculation sub-goal (G4 and G6 in Figure 16) is refined into
two alternative cases ; an alternative that considers estimations for delay/loss purposes
(G9 delayLossEstimated), and another alternative that considers delay/loss estimations with
explicit resources allocation (G10 delayLossEstimationWithExplicitAllocation). The result is a
goal graph structure linked to the PreCalculation goal as shown in Figure 17. For each of
these two lower-level goals (G9 and G10 in Figure 17), further refinements are necessary
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until the developer finds it feasible to relate the refinements with a specific state of the
system. In fact, the KAOS methodology estates that a goal that is identifiable with a state
of the system can be considered as a lowest-level goal. The later situation is exemplified
hereafter with the refinement applied to the G9 delayLossEstimated sub-goal.

G4, G6:
PreCalculation

Instantiation of RP4;
either G9 OR G10
suffices to satisfy G4, G6

G10: delayLossEstimation
WithExplicitAllocation

Instantiation of RP4’:
either Gy, OR G4, OR Gg; -+~
suffices to satisfy G9

Tactics and

/ alternatives
Q R for G10

‘ Gy;: Average

‘ Gy,: Optimistic

S = OO

Gy,: Conservative

Lowest-level goals

Figure 17.  Goal graph sub-tree for the PreCalculation sub-goal

The sub-goal G9 is further refined into three alternative cases by means of the ex-
tended refinement pattern RP4’. The result is a set of three refinements expressed as Gy,
Conservative, Gy, Optimistic and Gy; Average. Gy, proposes to consider the maximum delay
and the maximum packet-loss recorded in the network as the base to estimate the delay
and packet loss during the dimensioning process; taking the maximum values for each
link is considered to be a conservative tactic in the pre-calculation process. On the other
hand, Gy, considers the minimum values for delay and packet loss; this is considered an
optimistic tactic. Finally Go; proposes a tactic that considers the average values of delay
and packet losses in every link of the network, as the base to estimate the delay and
packet loss during the calculation process. These three goal refinements (Gy,;, Gy, and G;)
are specific enough to relate them to states of the system; these are considered as low-
est-level goals given that there is not further tactic to refine them. The sub-goal G9 delay-
LossEstimated and its refinements G,, Conservative, Gy, Optimistic and Go; Average are
graphically represented in Figure 17 and are formally represented as follows:

G9: PreCalculated N delayLossEstimatedReq— ¢ Processed

Goy;: PreCalculated /\ delayLossEstimatedReq /\ conservativeReq — ¢ Processed
Gy,: PreCalculated /\ delayLossEstimatedReq /\ optimisticReq — ¢ Processed
Goj3: PreCalculated /\ delayLossEstimatedReq /\ averageReq — ¢ Processed

The semantics of the above abstractions is as follows:

GY.- “When a pre-calculation step is requested (PreCalculated), a delay/loss estimation process
(delayLossEstimatedReq) will eventually result in a processed state (Processed)”.

Gy;.- “When a pre-calculation step is requested (PreCalculated) and a delay/loss estimation process
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is under request (delayLossEstimatedReq), a conservative selection of settings (conservativeReq) will
eventually result in a processed state (Processed)”.

Gy,.- “When a pre-calculation step is requested (PreCalculated) and a delay/loss estimation process
is under request (delayLossEstimatedReq), an optimistic selection of settings (optimisticReq) will
eventually result in a processed state (Processed)”.

Gos.- “When a pre-calculation step is requested (PreCalculated) and a delay/loss estimation process
is under request (delayLossEstimatedReq), an average selection of settings (averageReq) will even-
tually result in a processed state (Processed)”.

The goal refinement process is finalised when the lowest level goals for all possi-
ble links in the graph are identified. Therefore, in our example, the developer should
carry out a refinement procedure for the sub-goal G10 delayLossEstimationWithExplicitAllo-
cation similar to the one carried out for the sub-goal G9 delayLossEstimated. Likewise, the

developer should proceed with the remaining refinements of the highest-level goal G1
ConfigurationDirectivesSet

3.2.3 Goal Selection Support

Once system goals refinement is completed, the goal graph structures should be
stored in databases for further use and maintenance. Having in mind that goal graph
structures formalise potential requirements and options to fulfill High-level Goals, they
will be used to select a concrete one among the different available alternatives.

Goal Selection Support consists of browsing through the previously elaborated
goal graph structures stored in the goal database and selecting the strategies that better
reflect the consultant administrative criteria.

Following with our scenario example, consider the case where the consultant
wants to provide configuration directives only for the minimum demand estimations.
Consider also the situation where the consultant wants to have better chances to fulfill the
SLAs of real-time services. This is his particular administrative guideline to navigate
through the graph that finally yields to the selection of the path reflected in Fig 17 with
shadow boxes.
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Figure 18.  Sample of a Goal Selection action

3.2.4 Policy Refinement Mechanisms

The Policy Refinement Mechanisms supports the Enforceable Policies Acquisi-
tion activity of the policy refinement framework (see Figure 14). The target of these
mechanisms is to determine policies fulfilling the goals resulting from the Goal Selection.
With this aim, we make use of the logical foundations of the goal elaboration methodol-
ogy, reactive systems analysis techniques and novel concepts developed on purpose to
make the policy refinement activity a systematic process. In this sub-section we first pro-
vide a general outline of the policy refinement mechanisms and then we describe the in-
volved sub-processes.

3.2.4.1 General Outline of the Policy Refinement Mechanisms

The principle of the policy refinement mechanisms is to abstract enforceable poli-
cies that can be deployed onto the managed system to commit with a given goals selec-
tion. The whole process can be decomposed into four sequential steps as follows: (1) Es-
tablishment of Temporal Relationships; (2) Enforcement of System Behaviour; (3) Trans-
lation Process; (4) Encoding of Deployable policies. These processes are graphically
represented in Figure 19 and are briefly outlined hereafter.
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1. Establishment of Temporal Relationships. This process is aimed at characterising the
lowest-level goals as system specifications that are suitable for use with automated
analysis techniques.

2. Enforcement of System Behaviour. This process is aimed at forcing the underlying
managed system behaviour so that the specifications provided by the “Establishment
of Temporal Relationships™ process can be fulfilled.

3. Translation Process. This process is aimed at identifying a subset of transitions in the
restricted system behaviour as event-condition-action policies.

4. Encoding of Deployable policies. This process produces the policies that should be
deployed onto the actual managed system from the policy-controlled transitions pro-
vided in the previous step.

Policy Refinement Mechanisms ]

Goal || Establishment of : Enforcement : Translation \| Encoding of Enforceable

Selection Temporal of System Deployable -deployable
Relationships Behaviour i 14 Policies /

Policies

System Model,
Object Distribution

Figure 19.  Policy Refinement Mechanisms

3.2.4.2 Establishment of Temporal Relationships for Refined Goals

The main activities behind this process can be summarised in two: (1) Identifica-
tion of temporal relationships between refined goals (lowest-level goals), and (2) repre-
sentation of these temporal relationships by means of suitable formats for use with auto-
mated analysis techniques. This approach is similar to the principle of using temporal lo-
gics to express search control knowledge for planning techniques [Bac00]. The following
is the rationale of these two activities.

For the identification of temporal relationships between refined goals, we use the
fact that the selected goals are a sub-set of KAOS goal graph structures and as such, they
are intrinsically time-related. Consider for example a parent goal G; refined into G;; and
G, according to the refinement pattern RP3 as shown in Figure 20. For this refinement,
the KAOS methodology establishes the temporal prescriptions of the parent goal (tp;) and
of its corresponding refinements (tp;; and tp;,) as follows:

tp1, formally expressed as P—0Q, identifies that ““under the occurrence of a state P, the
state Q must eventually be reached™.
tp11, formally expressed as P—OR, identifies that “under the occurrence of a state P, the
state R must eventually be reached”.
tp12, formally expressed as R—0Q), identifies that “under the occurrence of a state R, the
state Q must eventually be reached”.
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Central to our study are the Temporal Relationships (TR) between the goal re-
finements: in this particular example between G;; and Gi,. In a strict temporal ordering
of properties, the temporal prescriptions of these refinements (tp;; and tp;») suggest that
property P should hold before property R from which property Q should eventually hold.
In other words, this ordering of properties implies that G, should be fulfilled after Gy;.
The latter is in fact a temporal relationship between these two goal refinements. Figure 20
shows the Temporal Relationship TR; which formally states that ““on the occurrence of a
state P, an intermediate state R must first be reached from which a goal state Q will
eventually be reached”.

— Parent Goal G, -
Temporal Prescription
tp:P—-0Q
AN

)

— Goal Refinement G, — — Goal Refinement G, —
Temporal Prescription Temporal Prescription
tp;: P—O0R tp,: R—0Q
A A

Temporal Relationship TR,

l

TR, - G,, should be fulfilled after G,,:
On the occurrence of a state P, an intermediate state R must first be
reached from which a goal state Q will eventually be reached

Figure 20.  Temporal Relationships of Goal Refinements

Having identified the temporal relationships between goal refinements, the second
key aspect is the characterisation of these temporal relationships with formal representa-
tions that are suitable for use with automated analysis techniques. In other words, we
need a formalism to express the ordering of events in time. To this aim we have followed
the principles of Finite-state specification patterns [Dwy98]. It is worth noticing that
these patterns are different from the patterns used to refine goals. The Finite-state speci-
fication patterns are used to specify behavioural properties of reactive systems.

Finite-state specification patterns are classified in two main groups [Dwy98]:
Occurrence Patterns and Order Patterns. While Occurrence Patterns are used to identify
behaviours in which a specific state/event takes place, Order Patterns deal with pre-
scribed behavioural arrangement of states/events. A complete classification of these pat-
terns is shown in the upper-left part of Figure 21.

Occurrence Patterns are classified in Existence, Absence, Universality and
Bounded Existence. Existence patterns should be used in cases where the most important
is to specify that a state/event occurs. Absence patterns should be used when it is neces-
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sary to specify that a state/event does not occur. Universality patterns are meant to spec-
ify that states/events occur always throughout a given scope. Bounded Existence patterns
should be used in situations where it is important to specify the number of times a
state/event occurs within a scope.

Order Patterns are classified in Response and Precedence. Response patterns are
used to represent constraints in the order of states/events. Precedence patterns are con-
cerned with the specification that a given state/event P must be always preceded by a
state/event Q within a scope.

In this context, a scope represents a restriction on the time a given property must
hold. For example, with regard to an Existence Pattern, a scope would be used to define
whether the occurrence of a state/event holds either globally throughout the execution of
the system, or before, or after or between other situation(s). The literature [Dwy98] has
identified five possible scopes: Global, Before, After, Between and After-until. A graphi-
cal representation of these scopes is shown in the upper-right part of Figure 21.

A Global scope prescribes that a pattern holds for the entire system execution; A
Before scope is used to indicate that a pattern holds throughout the execution of the sys-
tem up to a given state/event. The After scope is used in situations where the pattern must
hold after a given state/event and throughout the execution of the system. The Between
scope helps define behavioural situations in which a pattern must hold at any part of the
execution of the system from a given state/event to another state/event. Finally the scope
After-until is like Between with the difference that in the former the designated part of
the execution continues even if the second state/event does not occur.

The study of the above patterns, scopes and their representation in different logics
has been the subject of research for some time [Dwy98]. Thousands of combinations of
pattern/scopes have been identified in the literature and practical approaches have been
proposed to elaborate databases that classify combinations of patterns/scopes [Dwy]. The
classification of pattern/scopes with their corresponding logical representations enables to
find the formal representation of practically any requirement in a systematic manner. The
following presents how these concepts have been laid down in our approach.

Consider G;; and G, from our previous Goal Selection example and two tempo-
ral relationships as follows:
e TRI: “Gy; is always fulfilled after G;;”
e TR2: “Gy; is never fulfilled after G,”

The Figure 21 shows how the process that formalises the process of specifying
TR1 and TR2 making use of the pattern/scope approach described above. By means of
behavioural patterns/scopes we could express such temporal relationships as formal
specifications of Linear Temporal Logic (LTL) in a systematic manner [Dwy]. As in pre-
vious sections we use the classical temporal operators: ¢ eventually in the future, o al-
ways in the future, and the classical logic connectors A and, v or, — not, — logical
implication, <> equivalence, and so forth.
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Figure 21.  Establishment of Temporal Relationships rationale

The key issue here is then to define which combination of pattern/scope to re-
trieve from the database of pattern/scopes. Pattern/scopes databases contain entries of
pattern/scopes combinations as shown in the Selection of Entries in Property Pattern
Database in the central part of Figure 21.

e For TR1 we could consider that G, always holds after the fulfillment of Gy;. This
temporal relationship fits into the prescription of a Universally/After Pattern/Scope
combination and then we instantiate BP3 to represent TR1 in LTL notations. The
LTL representation of TR1 is as follows: o( G1;—o( G12))

e For TR2 we could consider that G, is always absent after the fulfillment of G;. This
temporal relationship fits into the prescription of a Absence/After Pattern/Scope
combination and then we instantiate BP2 to represent TR2 in LTL notations. TR2 is
represented as follows in LTL: o( G;1—o(— Gi2)).

So far we have described the process to identify temporal relationships between
refined goals and the characterisation of these relationships with LTL representations
with an illustrative example of two selected goals (G;; and G;). Moreover the target of
the Establishment of Temporal Relationships activity up to the lowest-level goals for
which the same principle is applied as described hereafter.

For example, consider the composite Goal Selection shown in Figure 22. Given
that G;; and G, are not lowest-level goals, the fulfilment of the highest-level goal G,
should consider not only the temporal relationship TR; but also the temporal relationship
of the lowest-level goals, TR;; and TR;,. Consider that the temporal relationship TR
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prescribes that “Gj, should be fulfilled after G;,”; that TR,; prescribes that “Gy;» should
be fulfilled after G;,”; and that TR, prescribes that “G),, should be fulfilled after Gz,
Under these circumstances, the temporal relationship that characterises the fulfillment of
G; may prescribe that the lowest-level goals should be fulfilled in the following ordering:
G111, Gii2, Gi21 and Gy, for which a similar approach may be followed to characterise
this temporal relationship with formal LTL representations.

In our approach, by using the KAOS methodology, we establish a hierarchy
amongst goals, formalised through goal graph structures. This concept has been crucial to
consider the fulfillment of High-level Goals as the combination of the fulfillment of low-
est-level goals. Given that lowest-level goals are connected or linked through temporal
relationships, we propose viewing the fulfillment of High-level Goals by sequences of
lowest-level goals. This KAOS-based approach is different to traditional plan-based
techniques in which a goal is identified by mere state predicates [Lam01] or other tradi-
tional approaches in which goals have been acknowledged as a set of desirable final
states [Bac98]. Our approach takes advantage of temporal relationships to carry out
automated analysis techniques.

Figure 22.  Temporal Relationships for composite Goal Selections

3.2.4.3 Enforcement of System Behaviour

This process is aimed at determining the necessary system behaviour that the un-
derlying managed entities should exhibit as to accomplish with the specifications pro-
vided by the “Establishment of Temporal Relationships™ process.

This sub-process relies on automated mechanisms grounded in Al planning tech-
niques, particularly through Model Checking [Giu99], [Cim03]. More concretely, as our
“Establishment of Temporal Relationships” technique is by means of LTL, we use the
concept of Planning as Model Checking with LTL in the context of our refinement
framework [Rub05].
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In general terms, plans are understood as sequences of actions that lead one sys-
tem from an initial state to a target state [Giu99]. In the Planning as Model Checking with
LTL technique, a goal can be expressed as an LTL formula and LTL Model Checking is
used to determine plans that indicate how such system should behave for satisfying the
goal [Kab97], [Bac98], [Thi06]. The Figure 23 shows a graphical representation of how
we have laid down this concept in our policy refinement framework for which we provide
an explanation thereafter.
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LTL MODEL CHECKING

Translation of UML

model into Search Report System
PROMELA through state Plans Behaviour
exploration

Figure 23.  The Planning as Model Checking approach in our framework

As a Model Checking-based approach, the Enforcement of System Behaviour
process has two inputs; namely the System Model and the established temporal relation-
ships amongst lowest-level goals, i.e. the output of the process Establishment of Tempo-
ral Relationships. Regarding the System Model, we consider that the Administrator De-
veloper uses for this purpose standard UML notations such as class diagrams, collabora-
tion diagrams, state charts and sequence diagrams. Given that the main process relies on
LTL-based state exploration via Model Checking, this process includes a translation
mechanism of the UML models into PROMELA, the language interpreted by the SPIN
Model Checking engine, as shown in Figure 23.

The SPIN searching engine explores the state space finding the necessary transi-
tions the system must take to reach the sequence of states as prescribed by the LTL for-
mulae (see Search through state exploration Fig. 23). The SPIN searching engine then
provides a plan of transitions to be executed by the model entities. The process ends
verifying that the plan includes the states prescribed by the lowest-level goals and that
these states are reported in the ordering prescribed by the LTL formulae (see Report
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Plans in Fig. 23). Figure 24 shows a graphical representation of a plan obtained in the
Enforcement of System Behaviour sub-process’ which in turn corresponds to a SPIN sys-
tem trace report.

State
transitions

Collaboration of
managed
entities

Figure 24.  An output of the Enforcement of System Behaviour process

The system trace executions provided by the SPIN searching engine allow to
identify the managed entities in charge of executing the plan of actions (see Managed en-
tities pointers in Figure 24). In addition, the traces allow to identify the state transitions,
at every point of the execution, that the corresponding Managed entities should take dur-
ing the plan (see State transition pointers in Fig 24). In addition, in the context of our re-
finement framework, plans satisfying the established temporal relationships of low-
est-level goals may require the action of several model entities and, more important, their
collaboration. The plans reported by the SPIN searching engine allow identifying how the
model entities collaborate during state transitions. This situation occurs for example when
an entity transitions from one state to another as a result of the reception of a notification
from another entity as illustrated by the pointer Collaboration of model entities in Figure
24,

The plans provided by the Enforcement of System Behaviour process indicate the
behaviour that the managed entities should exhibit in runtime to fulfill the High-level
Goals i.e. the goal selection. Since the plans include every transition at every point of the
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execution, the Model Checking reports do not identify the state transitions that should be
controlled by policies from those inherent of the system functioning. As a consequence, it
is impossible to find meaningful policy information from the execution reports produced
by SPIN. Therefore, further analysis is necessary to acquire meaningful policy informa-
tion from the reported trace execution. The following section introduces the concept of
Translation Process [Rub0O6a], [Rub06b] that we have developed on purpose to abstract
policy information from system trace executions.

3.2.4.4 Translation Process

This process is intended to identify the policies that would be necessary to repro-
duce the system trace execution reported by the Enforcement of System Behaviour proc-
ess. This process relies on the principle that policies control system state transitions
[Str04] and that the reported plans above mentioned include, among others, the pol-
icy-controlled state transitions. A Translation Process [Rub06a], [Rub06b] is used to
abstract the policy-related information from policy-controlled transitions. In this sense, it
is mandatory that the developer provides the state transitions that are controlled by poli-
cies during the design/development of the system.

The first step towards the application of Translation Process is the identification
of transition plans. A transition plan (TP) is a sub-section of a system trace execution
that includes a policy-controlled state transition and that is characterised as follows:

e PSi a pre-condition in a managed entity S

e PQi a pre-condition in a managed entity Q

e Tsj,si+1 a state transition in the managed entity S

e Toi,gi+1 a policy-controlled state transition in the managed entity Q as a result of
transition Tsj si+1

Then, the transition plan TP is represented as TP=[PS;,Ts;si+1 = PQi,Tqiqit1] and its se-
mantics is: “on the occurrence of PSi in the managed object S, preceding the transition
Tsi,si+1, the managed object Q must enforce the transition Tgi qi+1”. A graphical repre-
sentation of a transition plan TP is illustrated in the left part of Figure 25.

The Translation Process materialise the above prescription with
Event-Condition-Action (ECA) policies. For this, we have used the Ponder obligation
policy structure [Dam01]. Obligation policies are event-triggered Condition-Action rules
that define the activities subjects must perform on objects in a target domain.

In the context of our refinement approach we consider that a policy-controlled
transition is the result of an action enforcement within the target domain. Hence, transi-
tions are interpreted as actions executed on a managed object. A graphical representation
of the Translation Process is shown in the right part of Figure 25. This mapping is done
following the Ponder prescription that Obligation policies are event triggered and that
define the actions that subjects must perform on objects of the target domain.
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Figure 25.  Representation of the Translation Process

Typical outputs of the Enforcement of System Behaviour process may include
more than one policy enforceable transition (e.g. transition Te; o;.; in Fig. 25) and conse-
quently multiple transition plans. The transition plans are mapped to their corresponding
policy fields by applying the Translation Process. Consequently, the result of the Trans-
lation Process sub-process is a set of policy fields (e.g. policy Qi enforcedin Fig. 25),
one for each policy-controlled transition.

3.2.4.5 Encoding of Deployable Policies

In order to deploy the abstracted policies onto the managed system, subjects and
targets identified above must be matched to the actual object distribution of the system.
This is the aim of this final refinement process.

The policy refinement framework considers that the Administrator Developer
should document the Object Distribution during system design and development as part
of the System Model. The Encoding of Deployable Policies process makes use of this
information to encode deployable policies from the policy fields provided by the Trans-
lation Process. Figure 26 shows a graphical representation of final step within the re-
finement process scenario. This process is achieved in a fully automated manner once the
object distribution documentation is available during the operation of the system.
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Figure 26.  Encode Deployable Policies sub-process within framework

3.3 A Functional Prototype for Policy Refinement

Whereas in Section 3.2 we have described a policy refinement framework detail-
ing its different constituent functional components, this section deals with how to provide
an implementable solution [Rub0O6a] [Rub06b] based on the former.

3.3.1 General outline of the prototype

3.3.1.1 Components of the solution

From a functional point of view, we distinguish three main functions in the re-
finement process; (1) Goal Refinement Support; (2) Goal Selection; and (3) Policy Re-
finement Mechanisms. Other supporting functions help in documenting the System
Model. Concerning the epoch in the execution of these functions, we differentiate be-
tween functions that are carried out during the development/design of the system, and
functions that are carried out during the start up/operation of the system.

Our solution has been designed and implemented as a multi-component architec-
ture, in the framework of the DSC platform [Mee0O]. A total of seven DSC components
have been identified as depicted in Figure 27. The Objectiver Package and the Goal
Manager implement the Goal Refinement Support and the Goal Selection Support func-
tions, whereas the Requirements Manager, the Search Manager and the Policy encoder do
the Policy Refinement Mechanisms. The Behaviour Manager and the Inventory Manager
are supporting components that handle information related to the System Model.
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The Figure 28 shows a sequence diagram involving the above mentioned compo-
nents in a typical refinement scenario that will be referenced in the subsequent compo-

nent description.
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3.3.1.2 Goal Management components

The Goal Management components are the Objectiver Package and the Goal
Manager. Figure 29 shows these two components in context.
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The Objectiver package consists of the Objectiver toolkit [Obj]. The Objectiver
toolkit provides a GUI from which the Administrator Developer is enabled to carry out
the goal refinement process during the development/design of the system. In this sense,
the Objectiver package is used to specialise the Goal Refinement Support function of the
refinement process (elaborateGoals interaction in Fig. 28).

During the operation of the system, the Objectiver GUI is used to define the ad-
ministrative guidelines that the Consultant wants to fulfill with the policies. For this, we
take advantage of the Objectiver explorer facility as the means to browse through the goal
libraries and to select the strategies that better reflect a given administrative view. In this
sense, the Objectiver package is used to carry out the Goal Selection Support function of
the refinement process (selectGoals interaction in Fig. 28).

Once the Consultant has selected the goals that better reflect his/her administra-
tive criteria, the Goal Manager receives the order to start the policy refinement process
from the Goal Selection (startPolicyRefinement interaction in Fig 28). This order will be
called “Request for Policy Refinement (RPR) submission” in the remaining of the Thesis.
It is worth mentioning that for large-scale refinements, the prototype can handle multiple
RPR submissions at a time.

When the Goal Manager receives a RPR, it queries the relevant information af-
fecting the Goal Selection from the goal database in the Objectiver package (getObjec-
tiverData interaction in Fig 28). The aim is to make sure that the Goal Selection is logi-
cally complete in the sense that the selected goals entail the higher-level goal fulfillment
(verifyGoalSelection interaction in Fig 28). In order to carry out this analysis the Goal
Manager retrieves information like goal names, temporal prescription of goals, refine-
ment patterns used to decompose each parent goal, etc.

Worthy to mention is the Open API that has enabled the use of Objectiver as a
server within our prototype. In fact, the Goal Manager implements the Objectiver Open
API to perform queries to the Objectiver toolkit.

3.3.1.3 Components specialising the Policy Refinement Mechanisms

The Policy Refinement Mechanisms are specialised by the Requirements Man-
ager, the Search Manager and Policy encoder components. The target of these compo-
nents is to produce deployable/enforceable policies in a fully automated manner from the
Goal Selection produced by the Goal Manager. Figure 30 shows the layout of these
components in the context of our policy refinement framework. The figure also shows the
supporting components that make possible the automation of the Policy Refinement
Mechanisms, namely the Behaviour Manager and the Inventory components.
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e The Requirements Manager implements the Establishment of Temporal Relation-
ships process. It receives the Goal Selection provided by the Goal Manager (formu-
lateRequirements interaction in Fig 28). This component is aimed at producing the
LTL formulae that characterise goal fulfillment. Generally speaking, this component
implements algorithms that first abstract the temporal relationships between low-
est-level goals and then characterises those relationships by means of LTL formal
representations. Internally it implements a database of patterns for finite-state verifi-
cation that allows producing LTL formulae from specific requirements in a fully
automatic manner.

e The Search Manager is in charge of producing policy fields from the LTL formulae
(searchPolicyFields interaction in Fig 28). It implements the Enforcement of System
Behaviour and Application of Translation Process mechanisms of our framework.
For this purpose it integrates a SPIN [Hol04] search engine to acquire the system
trace executions that commit with the LTL goal characterisation. This component
uses the PROMELA code (getPromelaCode interaction in Fig. 28), generated by the
support component Behaviour Manager (described below). In order to produce
Event-Condition-Action (ECA) policies automatically, this component implements an
algorithm that applies Translation Process to the system trace executions. For this, the
Search Manager handles the policy-controlled transitions documented through the
Behaviour Manager.

e The Policy encoder implements the Encoding of Deployable Policies process of the
overall policy refinement process (encodePolicies interaction in Fig. 28). It follows
the syntax of the Ponder specification language [Dam02] to encode ECA deployable
policies committing to the actual object distribution (getObjectDetails interaction in
Figure 28). This component includes a Ponder syntax parser and an adapted Ponder
compiler to automate the compilation process.
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e The Behaviour Manager is a supporting component that handles the System Model
with regard to the behaviour of the managed objects. It translates UML specifications
into PROMELA code (the language used by SPIN) and manages this information
during the refinement process, i.e. it povides information related to the system speci-
fication (getPromelaCode interaction of Fig. 28). This component provides the means
to document the behaviour of the managed objects of the System Model with UML
representations as active classes, state machines, collaborations and interactions
(documentSystemBehaviour interaction in Fig. 28). The Behaviour Manager imple-
ments the libraries provided by HUGO/RT [Bal04]. HUGO/RT is a UML model
translator that allows translating UML models into code for SPIN and other
off-the-shelf tools.

e The Inventory Manager is also a supporting component that handles the object dis-
tribution of the actual managed objects of the System Model. A well-defined structure
of this information is necessary to automate the policy refinement mechanisms. The
Inventory implements a database for the Administrator Developer to document this
information during the design of the system (populateObjectDistribution in Fig. 28).
During system operation the latter information is made available to other components
like for instance to the Policy Encoder.

Our policy refinement prototype has been implemented as a distributed environ-
ment [Rub06a], [Rub06b] making use of the Distributed Software Component (DSC)
development framework [Mee00]. The DSC SDK is a development environment for
building CORBA (Common Object Request Broker Architecture)-based, distributed
component applications. It includes useful tools for developing and testing distributed
applications. A brief description of the capabilities of the DSC toolkit can be found in the
Appendix B. Also, a detailed description of our prototype can be found in Appendix C.
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3.4 Conclusions

This Chapter has provided two main contributions to the policy refinement area.
(1) we have provided a holistic approach to policy refinement grounded in requirements
engineering and planning by means of Model Checking principles [Rub05], and (2) we
have materialised the concept of the proposed approach with a novel and practical solu-
tion that makes it possible to address the policy refinement problem [Rub0O6a],[Rub06b].
The peculiarities of the assessments of these two contributions and some future directions
are provided hereafter.

The crucial aspects of our approach are the following three key issues:
e The representation of the aims of policies at different levels of abstraction to ground
the policy refinement process.
e The definition of mechanisms that make possible the production of enforce-
able/deployable policies from high-level abstract requirements.
e The identification of the administrative tasks that should be carried out throughout the
life cycle of a policy-based system.

For the first key issue we have borrowed the idea of considering the achievements
of policies as goals [Lam99], [Ban04] and therefore we can make use of Requirements
Engineering techniques [Dar96] to formalise the representation of the aims of policies at
different levels of abstraction. Moreover, we have adopted the KAOS goal-oriented
methodology [Dar96] and made use of its technical foundations to ground the analysis
techniques on which our refinement approach relies.

The second key aspect of the refinement framework overcomes the limitations of
the adopted goal elaboration method such as the lack of support to relate goal fulfillment
to system’s behaviour and consequently with the abstraction of policies that make possi-
ble such a goal fulfillment. For this purpose we have taken advantage of the logical
foundations of the KAOS methodology, which is grounded in Linear Temporal Logic,
combined with the use of LTL-based state exploration through Model Checking. So far,
these logical foundations have not been exploited in policy refinement contexts and con-
sequently their potential to systematise the policy refinement process have remained un-
exploited or unconsidered. Specifically, the contributions can be stated as follows:

e We have introduced the use of specification patterns for behavioural properties as the
means to represent the fulfillment of High-level Goals, namely establishing temporal
relationships amongst lowest-level goals. This has allowed us to represent goal ful-
fillment with formal notations. Given that our analysis technique relies on the Plan-
ning as Model Checking approach, we have used Linear Temporal Logic notations to
specify the Establishment of Temporal Relationships. It must be realised that without
formal relationships between goals at different levels of abstraction, it would be prac-
tically impossible to systematise the policy refinement process.

e We have introduced the planning as Model Checking approach as the means to ac-
quire the behaviour that a managed system should exhibit as to fulfill High-level
Goals. In addition, we have provided the methods that should be considered when
adopting Model Checking searching engines, as the means to systematise the abstrac-
tion of policy-aware information from runtime system execution traces. We have
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presented the description and the considerations to produce enforceable/deployable
policies from abstract requirements making use of the above techniques.

With regard to the third key aspect of the refinement framework, we have clari-
fied the nature of the activities that the administrative parties should carry during the life
cycle of the policy system. It is imperative that, during the design/development of the
system, the administrative parties should document the System Model and assess the
Goal Refinement process. In this approach, there is no means to delegate these two ac-
tivities on automated processes and hence human intervention is mandatory. During the
start up/operation of the system, through Goal Selection, the framework provides the
means to abstract automatically policies aligned to high-level administrative guidelines.

Work done so far is open ended. We outline some of the most relevant directions
that could be explored with regard to the framework presented in this Chapter.

Our policy refinement process has been limited to consider exclusively Achieve
goals, thus leading to relate the concept of achievable goals with obligation policies. Fu-
ture work could be directed to explore the usefulness and implications of other goals
supported by the KAOS methodology like Cease, Maintain and Avoid goals. We envis-
age that the consideration of these types of goals may enable to carry out analysis for ap-
plication domains in which authorisation, access control and security issues have special
relevance.

A key concept that has enabled us to systematise the policy refinement process is
the Translation Process [Rub06b] concept by means of which we derive policies from
system state transitions. So far we have considered unconditional executions of actions,
namely we have considered that all states and transitions are permitted in a policy-based
system. Future work could be directed to consider non permitted states likely dictated by
Maintain/Avoid goals. In this sense, our Translation Process could be extended to con-
sider the generation of actions based for example on guard conditions. On the other hand,
so far we have considered only situations where the Model Checking approach reports
single system behaviour traces. Nevertheless, considering multiple traces would allow
choosing between different transition plans, possibly for different conditions and hence to
encode policies for different sets of conditions.

The policy refinement framework described in this Chapter provides the means to
carry out analysis to bridge the gap between High-level Goal fulfillment and the acquisi-
tion of enforceable/deployable policies. Moreover we are still far away from proposing a
generic solution that bridges the gap between SLA fulfillment and the formulation of
High-level Goals. This is a critical and challenging issue that may possibly imply to adapt
other mechanisms to relate service management, system performance, goal specialisation
and feedback mechanisms for particular application domains.

A Policy Refinement Framework 61



A Policy Refinement Framework

62



Chapter 4 A Systematic Approach to Goal Re-
finement

4.1 Introduction

In the previous chapter we have presented the decomposition of system goals at
different levels of abstraction. As goals can be seen as the aims to be fulfilled by policies,
the above implies a mechanism to find enforceable policies that finally should accom-
plish the system goals. In addition we have also proposed the steps of a systematic re-
finement process.

The main motivation of this Chapter is to provide a self-contained example of
how the goal refinement process can be assessed in management environments. Our
claim is that the framework and the techniques we use are application-domain independ-
ent. Therefore, the above mentioned example is illustrating a systematic approach to goal
refinement. The key concept consists of driving the goal refinement process by the com-
position hierarchy of the managed system.

This Chapter is divided in four parts. After this Introduction, Section 4.2 provides
the principles to define a hierarchical composition of the managed system; Section 4.3
describes how to assess goal refinement based on the hierarchical composition of the
system. Finally Section 4.4 provides the conclusions on this systematic approach.

4.2 ldentifying the System Composition Hierarchy

We consider a management system as providing a service (or even a set of ser-
vices) and that the management system relies on system components supporting this ser-
vice. Then we propose to drive the goal refinement process making use of the managed
system composition. The idea behind the use of this service decomposition is to allow the
establishment of a parallelism between the component system functions and the goals
coming out of a refinement cycle process. In other words, it seems reasonable to decom-
pose a goal in sub-goals according to the system composition architecture. To better de-
scribe this approach we will provide a running example that is formulated based on the
principles developed in the context of the IST project WINMAN — WDM and IP Net-
work Management [Kar05]. A High-level architecture of the WINMAN system is shown
in Figure 31 for which a brief description is provided thereafter.
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Figure 31.  WINMAN high-level architecture

WINMAN is a management-plane-based solution for the provisioning of IP over
WDM connectivity services with guaranteed quality of service. The WINMAN architec-
ture adopts a multilayer model spanning different management functional areas. The ser-
vice management layer (SML) supports the visibility of only service-related managed
objects (e.g., service-related connection termination points). In the network management
layer (NML) the system view consist of connections with characteristic QoS parameters.
Finally, in the element management layer (EML), equipment-related information (e.g.,
ports, cards) is represented. WINMAN focuses on the network management layer
(NML), covering three management functional areas: configuration management (CM),
fault management (FM), and performance management (PM). The NML is further subdi-
vided in two sub-layers, one being the integrated or inter-technology network manage-
ment sub-layer, with the corresponding network management system (INMS), and the
other being the technology-dependent sub-layers, comprising the IP network management
system (IP NMS) and WDM network management system (WDM NMS). Each of these
NMSs consists of the specialization of a generic network management system, perform-
ing configuration, fault and performance management tasks accordingly.

Figure 32 shows a generic system composition hierarchy and an instantiation for
the WINMAN management system. The following are the proposed guidelines to define
the composition hierarchy shown in the aforementioned figure:

1.- Identification of the service provided by the managed system. Considering that any
management system provides a service, the top level of the system composition hierarchy
will be represented by the service that such system provides. In the left part of Figure 32
we identify this highest-level of the system composition hierarchy as “Service to be pro-
vided”. For example, an IP over WDM connectivity service is the basic service provi-
sioned by the WINMAN system. The highest-level composition of the WINMAN system
will then be defined as “IP over WDM Connectivity Service”.

A Systematic Approach to Goal Refinement 64



Generic System Composition Hierarchy Sub-section of the WINMAN Composition Hierarchy

‘ Service to be Provided ‘ ‘ IP over WDM Connectivity Service ‘

Configuration Performance Fault Management
Management Function| | Management Function Function

‘ System Function A

! !
T Il ) 5 [ \ 5
[ [ QoS Threshold

Performance
System Sub-function AA‘ ‘ System Sub-function AB‘ Management || Management Collection
1 Sub-function Sub-function || Sub-function

i
[ [ ' : : INMS PerfCol Sub-function ‘
Sub-function AAl‘ Sub-function AAZ‘

System Function B

‘ WDM PerfCol Sub-function ‘

Parameter AAL.1 ‘ IP PerfCol Sub-function ‘
: Parameter AA1.2 ParamToRetrieve

Collection Interval

Granularity
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2.- Identification of the system functions. Linked to the highest-level of the system com-
position mentioned above, there would be as many lower-level system functions sup-
porting the “Service to be Provided”. In other words, the next level of the system compo-
sition hierarchy would be defined by the system functions on which the service provi-
sioning relies. Each function of the system is represented as “System Function” as we
show in the left-part of Figure 32. In our example, the WINMAN system implements
functions of Configuration, Performance and Fault Management. Consequently, the
aforementioned functions would define the *“Configuration Management Function”,
“Performance Management Function” and “Fault Management Function” which are in
turn linked to the “IP over WDM Connectivity Service” identified above.

3.- ldentification of the system sub-functions. Each function should be linked to the
sub-functions that integrate the corresponding system function as we show in Figure 32.
The “System Function A” in our composition hierarchy is in turn integrated by “System
Sub-function AA”, System Sub-function AB, etc. For instance, in the WINMAN exam-
ple, we show that the Performance Management function is sub-divided in three
sub-functions; QoS Managent, Performance Collection, and Threshold Management be-
cause has been decided that way by the WINMAN system developer. These three mod-
ules will then define the “QoS Management Sub-function”, “Performance Collection
Sub-function”, and “Threshold Management Sub-function” respectively.

This third step should be carried out repetitively in the cases where a System
Sub-function is integrated by other sub-functions. The later sub-functions will build up
the lower level composition hierarchy of the System Sub-functions identified above, e.g.
the “Sub-function AA1” and “Sub-function AA2” represent two sub-functions that com-
pose the “System Sub-function AA” as we show in Figure 32. In our example, WINMAN
has been designed to integrate sub-functions well defined by technological domain,
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namely IP domain, WDM domain, and an Inter-technological Network Management
(INMS) domain. Each of these sub-functions will define one level below the correspond-
ing WINMAN System Sub-functions. A more concrete example is the “Performance Col-
lection Sub-function” that is carried out by the “INMS PerfCol Sub-function”, “WDM
PerfCol Sub-function”, and “IP PerfCol Sub-function” as we show in the right-part of
Figure 32.

5.- Identify the parameters that influence each Sub-function in a every System Module.
This identification step will define the lowest-level of the system composition hierarchy.
These parameters will represent the parameters that have some impact on the execution
of the corresponding sub-functions. In our system composition hierarchy for example,
“Parameter AA1.1” is a parameter that influences the execution of “Sub-function AA1”
which in turn is part of the “System Sub-function AA” as we show in the left part of Fig-
ure 32. In our WINMAN example, consider the case of the Performance Collection Mod-
ule in the IP sub-function of the WINMAN approach. Here, the data to collect from the
IP network is controlled by three parameters; namely “parameters to retrieve”, “time in-
tervals of the collection”, and “granularity of the collection”. In this case, the “IP PerfCol
Sub-function” would yield three lower-level parameters in the system composition hier-
archy, namely the “ParamToRetrieve”, “Collection Interval”, and “Granularity” as we
show in the right part of Figure 32.

4.3 Addressing the Goal Refinement Process

We describe the general guidelines to carry out Goal Refinement driven by the
hierarchical composition of the system in the context of our policy refinement frame-
work.

4.3.1 Defining High-level Goals

In addition to defining the composition hierarchy of the managed system, another
aspect to be addressed is the definition of the High-level Goals that such system can han-
dle. Generally speaking, it is a matter of realistic judgment to decide which High-level
Goals should be defined in the target system [Mof93]. Several methods have been pro-
posed to specify High-level Goals and to provide indicators to assess IT performance re-
lated to them [Bar06]. Although this is an application-oriented issue, it is imperative to
express and represent High-level Goals in a feasible manner.

It is the Administrator Developer who should define the High-level Goals that the
system can handle. A key issue during the definition of High-level Goals is the associa-
tion of High-level Goals with the system functionality. Namely, it is imperative that
High-level goals should be aligned with the scope of the target system. For this reason, it
is justifiable that the Administrator Developer defines the High-level Goals during the
design of the system. In addition, High-level Goals should be consistent with the func-
tionalities designed/implemented by the target system.

Following on with the WINMAN approach, it is comprehensible that the Admin-
istrator Developer defines goals that allow him control the way that connectivity services
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are provisioned with the network managed with WINMAN. High-level Goals will be set
in correspondence to the main WINMAN system function (connectivity service provi-
sioning) as well as with the three main sub functions, namely configuration management,
fault management and performance management. It is worthy to mention in this example
that it would be impossible to think of High-level Goals to commit with billing or pricing
of the connectivity services due to its lack of functionalities to handle those High-level
Goals.

From the above, three basic High-level Goals for the WINMAN system could be
defined as “Connectivity Configuration Set”, “Fault Handling Set”, “Service Perform-
ance Set”. While the “Connectivity Configuration Set” High-level Goal sets the ground to
control the way that connections are configured in the network, the “Fault Handling Set”
High-level Goal is defined to control the way WINMAN should react when faults occur
in the underlying network. Finally, the “Service Performance Set” High-level Goal tar-
gets the assurance of QoS metrics in the connectivity services provisioned with WIN-
MAN.

4.3.2 Assessing the Goal Refinement Process

Coming back to what we stated before, Goal refinement is an activity designated
to elaborate the goal graph structures to which the system must be adhered. These
goal-graphs represent both, the requirements and the different options through which they
could be achieved. This activity is application-dependent and should be carried out by the
Administrator Developer at system design.

4.3.2.1 Starting the refinement process

The goal refinement process starts with the definition of the root goal for the goal
graph structure. The root goal should be defined taking into account the basic functional-
ity of the target system. As we described earlier, the basic functionality of the system can
be controlled with the High-level Goals that the developer has defined. We propose to
refine a root goal with the High-level Goals of the system. For this initial step, refinement
patterns should be brought into the context of the application domain.

Another way is to skip this initial process and directly start refining each
High-level Goal independently and then consider as many goal graph structures as
High-level Goals. Nevertheless, we will exemplify the policy refinement process consid-
ering root goals. For this, let us consider the WINMAN system introduced in advance.

The root goal could be formalised as “IP over WDM Connectivity Set” since
WINMAN is aimed at provisioning IP connectivity services making use of underlying
managed sub-systems. This process is graphically illustrated in Figure 33 in which we
make use of our prototype to exemplify this initial step of the goal refinement process.

Having defined the root goal “IP over WDM Connectivity Set”, the next step is to
bring a refinement pattern into the WINMAN context to refine it. Here, the nature of the
system requires that the three functionalities, Configuration, Performance and Fault,
should be set to provision WINMAN services. In turn, each of these functionalities is
achieved by the corresponding High-level Goals “Connectivity Configuration Set”,
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“Fault Handling Set”, and “Service Performance Set”. In order to achieve this, the Ad-
ministrator Developer brings a multiple-milestone refinement pattern into this particular
context as shown in Figure 33 (see note “Bringing refinement patterns into domain con-
text™).

Consequently, the root goal “IP over WDM Connectivity Set” is refined into the
goals “Connectivity Configuration Set”, “Fault Handling Set”, and “Service Performance
Set” altogether with a multiple-milestone refinement pattern. The outcome of this initial
process is a goal-graph structure that consists of three sub-trees defined by the High-level
Goals of the system as illustrated in the Objectiver GUI of our prototype (Fig. 33).
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Figure 33. Starting the Goal Refinement Process

4.3.2.2 Goal refinement driven by the system composition hierarchy

In this second phase of Goal Refinement, the system composition hierarchy is
used to drive the refinement of the High-level Goals that define the trees of the initial
goal graph structure. Same as the initial phase, refinement patterns are brought into the
context of each application domain to formalise the refinements at each level of the re-
finement. This process is also exemplified making use of our WINMAN example.

For the “Service Performance Set” High-level Goal, the Administrator Developer
should look at the composition hierarchy in that particular node. In this particular exam-
ple this composition has been defined as “Performance Management Function” which in
turn will be used to define the achieve goal “Performance Management Function Set”.
Consequently, the “Service Performance Set” High-level Goal is refined into the goal
“Performance Management Function Set” as we show in Figure 34. The same principle
applies to the Configuration and Fault management functions which would yield to the
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refinements “Configuration Management Function Set” and “Fault Management Function
Set” as shown in Figure 34.

IP over WDM Connectivity Set
7

( )

niguraion
Configuration Set Fault Handling Set Senice Perfmance Set
A

=,

Following on with the sub-tree defined by the “Performance Management Func-
tion Set” achieve goal, according to the WINMAN composition hierarchy, the “Perform-
ance Management Function” is achieved by the “Performance Collection Sub-function”
and other sub-functions. The “Performance Collection Sub-function” is composed by the
“INMS PerfCol Sub-function”, “WDM PerfCol Sub-function” and “IP PerfCol
Sub-function” (see composition hierarchy in Figure 32). Taking this into account, the
goal refinement process should consider that the “Performance Management Function
Set” achieve goal would be refined into the achieve goals “Performance Collection Set”
as shown in Figure 35, and other goals defined by the rest sub-functions in charge of
achieving the Performance Management Function. The later goals are all represented as
“Other Requirements for Performance Management” in Figure 35. Going a step further,
the “Performance Collection Set” goal would be refined into the “INMS PerfCol Set”,
“WDM PerfCol Set”, and “IP PerfCol Set”. For the above refinements the Administrator
Developer brings milestone refinement patterns into the context of the WINMAN ap-
proach. This level of the refinement process is graphically shown in Figure 35.
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Figure 35. Refining the goal Performance Management Function Set

Going a step further in the goal refinement process guided by the WINMAN
composition hierarchy, the “IP PerfCol Set” goal is refined into the goals “Parameters To
Retrieve Set”, “Interval Collection Set”, and “Collection Granularity Set”. The Adminis-
trator Developer brings milestone refinement patterns into this particular context as we
show in Figure 36. Further refinements for these goals would represent the alternatives to
fulfill the corresponding goal as we explain hereafter.

The alternatives to achieve the “Parameters To Retrieve Set” achieve goal are,
amongst others, “Average Delay Set“, or “E2E Pkt Loss Set“, or “Available BW Set”, or
“Explicit Params Set”. These goals are representative of the different alternatives for
performance parameters that can be retrieved from the network with WINMAN. The
lower part of Figure 36 shows this refinement level together with the resulting refine-
ments for the “Interval Collection Set” goal and the “Collection Granularity Set” goal. In
all these cases, the Administrator Developer brings “case-driven” patterns into the con-
text of the WINMAN solution.

The goal refinement process ends when each sub-tree emerging from the root goal
“IP over WDM Connectivity Set” is refined up to the lowest level similar as the ones de-
scribed above. The goal graph structures should be available for further use.
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4.4 Conclusions

This Chapter has presented how the high-level goals that a system designer estab-
lishes for a policy driven system and the system compositional hierarchy should be used
to systematise the goal elaboration process. To the best of our knowledge, no other work
has defined generic guidelines to take advantage of hierarchical relationships of policy
systems in favour of the policy refinement problem in management contexts. As we de-
scribed in Chapter 3 the outcome of the goal refinement is essential for the acquisition of
enforceable policies from given High-level Goals. Therefore, the contribution of this
Chapter is the methodology to address the goal refinement process in management sys-
tem contexts [Rub06c]. To this aim we considered the following key issues: The defini-
tion of the management system hierarchical composition, the definition of high-level
goals to which the target system must be adhered and finally, the assessment of the goal
refinement process making use of the former.

The outcome of this methodological approach is a goal graph, which integrates
goal refinement patterns, that mimics the management system composition hierarchy. In
this sense, system compositional hierarchies are essential to formalise the goal refinement
process. In addition, it would be very difficult, if not impossible, to achieve systematic
goal refinement without specifying High-level Goals and their relationships with the lev-
els of the system compositional hierarchy.

The main advantage of our approach is that it makes use of information and con-
cepts that are necessary for the design and implementation phases of the managed system.
In fact, our proposal organises and formalises information to address the policy refine-
ment problem that anyway should be used for system design purposes. The incremental
effort for a system designer shouldn’t be significant.

On the other hand, this methodology is clearly application-domain independent
and we can claim it as an advantage as well. Nevertheless, it is a fact that applying it to
specific refinement problem solving requires a deep knowledge of the target system
and/or the application domain. This has been made clear in the above subsections, where
each step of the process is driven by decisions that only the system designer can adopt.
Anyhow, we consider that this is an affordable price to systematise the goal refinement
process and consequently, the policy refinement problem.
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Chapter 5 Application Scenario

5.1 Introduction

Policy refinement has been regarded as a crucial process for policy-based man-
agement although the research community has remained reticent to analyse its overall
implications in complex environments. For instance, previous works presenting models,
methodologies, or approaches addressing the refinement problem have not been yet
evaluated in complex or real-life environments and as such, their feasibility to address
realistic refinement scenarios is questioned.

The main motivation of this Chapter is to provide a complete view [Rub06¢] of a
refinement scenario in management solutions. For this purpose we deal with the critical
nature of addressing the overall implications to refine enforceable policies from abstract
requirements intended to manage Quality of Service provisioning.

In this Chapter we address policy refinement for intra-domain Quality of Service
Management based on the principles developed in the context of the IST project
TEQUILA - Traffic Engineering for Quality of Service for the Internet at Large Scale
[Tri01]. We demonstrate the feasibility of our refinement framework and our systematic
approach with a real and complete scenario applied to this domain. To the best of our
knowledge, no other work in the literature has provided a complete refinement scenario
applied to real-life management situations.

We initially describe the QoS Management approach on which our scenario re-
lies; we describe the TEQUILA solution which provides an overall architecture for QoS
support in IP Networks by bringing Service Management and Traffic Engineering func-
tionalities together in a collaborative environment. For this management solution we ap-
ply our systematic approach that consists on the definition of a QoS-aware policy hierar-
chy and the definition of QoS-aware High-level Goals, both tailored to address policy
refinement following the principles developed in our refinement framework. Following
on, we provide the execution of our refinement scenario making use of our prototype im-
plementation, and provide the result of its execution.

Due to the broad scope and the complexity of the policy refinement process, this
Chapter is sectioned in eight parts: following this Introduction, Section 5.2 provides the
rationale of the application domain on which our scenario relies; Section 5.3 describes a
QoS-aware system composition hierarchy and Section 5.4 presents the goal refinement
process for QoS Management. In Section 5.5 we assess goal selections tailored to QoS
Management, making use of our prototype implementation. We provide a description of
the automated acquisition of policies of our refinement scenario in Section 5.6. Section
5.7 describes the policies refined through the scenario and Section 5.8 provides a brief
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analysis of the enforcement of the policies refined in the scenario. Finally Section 5.9
concludes this chapter providing some future work in the policy refinement area.

5.2 Quality of Service Management Application Domain

In order to support the Quality of Service (QoS) guarantees for the forthcoming
services, Next Generation IP Networks will make use of technologies such as Differenti-
ated Services (DiffServ) and Multi-Protocol Label Switching (MPLS) for traffic engi-
neering and network-wide resource management. In addition, the volume and type of the
traffic injected by these services will need to be controlled as the means to both, prevent
QoS degradation of active services, and verify that clients inject traffic in accordance
with pre-agreed Service Level Agreements (SLAS). In order to address the challenge of
QoS delivery in Next Generation IP Networks, the research community has envisaged the
integration of Service Management and Traffic Engineering functions [Tri01].

In this Section, we present an approach for intra-domain QoS Management based
on the principles developed in the context of the IST project TEQUILA - Traffic Engi-
neering for Quality of Service for the Internet at Large Scale [Tri0O1]. To the best of our
knowledge, this is the only approach that brings together Service Management and Traf-
fic Engineering functionalities to provide an overall architecture for QoS support in IP
Networks. We initially present the generic concept of this approach, and we then lay
down the use of policies as a means of extending the programmability for both, Service
Management and Traffic Engineering functions.

5.2.1 Bidirectional Approach for QoS Management

A simplified representation of the TEQUILA approach is depicted in Figure 37,
which demonstrates the integration of Service Management and Traffic Engineering
functions to achieve Quality of Service provisioning.

The Service Management part has two objectives: the maximisation of traffic en-
tering the network, and the commitment of the service provider’s QoS guarantees. As the
traffic entering the network is a function of the number of subscribed contracts and active
services, admission control mechanisms are defined for service subscriptions and invoca-
tion requests. QoS commitment is addressed by enforcing preventive and corrective ac-
tions as a means to police misbehaving users, and also to resolve potential cases of net-
work congestion.

The Traffic Engineering functionality is concerned with the management of
physical network resources. An off-line dimensioning process is responsible for mapping
the predicted traffic demand to the physical network resources. In addition, real-time op-
erations are implemented as the means to first, balance the load amongst the established
Label Switched Paths (LSPs) in the network, and second, to ensure that link capacities
are appropriately distributed among the different Per-Hop-Behaviours (PHBs) sharing
each link. These real-time operations react dynamically to statistical traffic fluctuations.
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Figure 37.  Bidirectional approach for intra-domain QoS management

In general terms, the Service Management function abstracts and classifies the
traffic demand into QoS classes, i.e. traffic streams sharing the same edge-to-edge QoS
requirements (packet loss, delay, and throughput), and generates a Traffic Estimation
Matrix (TEM). The latter provides the bounded demand (i.e. minima and maxima), for
each QoS class, on a per-Traffic Trunk fashion. In the sequel, a traffic trunk (TT) will be
considered as an ingress/egress node pair.

The TEM is in turn passed to the Traffic Engineering functions which accommo-
date the traffic estimation demands into the physical network resources. This process re-
sults in a Resource Availability Matrix (RAM) that contains the available resources again,
for each QoS-class, and for each traffic trunk of the network. Finally, the RAM is passed
to the Service Management function, where it is used for subscription and invocation
control. The exchange of the aforementioned matrices between the two sub-systems of
the architecture, takes place in long-term periods which are known as Resource Provi-
sioning Cycles (RPCs).

5.2.2 Service Management Functionality

In this section we describe the policy-influenced processes of the Service Man-
agement functionality of TEQUILA. The Figure 38 depicts the sub-functions that inte-
grate it, namely Service Subscription, Service Invocation and Traffic Forecast. A brief
description of these components is described hereafter. A detailed description of the Pol-
icy-based Service Management functionality can be found in [MykO03].
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Figure 38.  Service management functionality of TEQUILA

The Service Subscription (SLS-S) sub-function is carried out by a centralized
component that manages Service Level Specifications (SLSs) subscription requests. It
maintains databases for subscribed services and service-related historical data. It ac-
cepts/negotiates subscriptions based on policies that define some degrees of confidence
with which the subscribed services would enjoy their contractual traffic rates. In this
sense, the SLS-S addresses the trade-off between the number of subscriptions and the
confidence for ensuring QoS.

The Service Invocation (SLS-1) sub-function is carried out by distributed compo-
nents located at the edges of the network. It controls the number and type of active ser-
vices and consequently, the volume of injected traffic. SLS-1 addresses the trade-off be-
tween maximizing the number of admitted invocations and preventing QoS degradation
by overloading the network. For this, it integrates three policy-based mechanisms: First,
SLS-1 performs admission control based on policy-based levels that define when the like-
lihood to overwhelm the network is considered critical. With this regard, service invoca-
tions are accepted when the actual measured level is below this critical level. Second, the
SLS-I components prevent QoS degradation by carrying out proactive actions based on
policy-based precaution levels. The enforcement of these proactive actions may either
result in service rate allocation re-adjustments, and/or admission control re-adjustments
for new invocations. Third, when congestion occurs in the network, SLS-I applies differ-
ent penalties defined by policies. Again, the result of these penalties may affect either
service rate re-allocation and/or admission control re-adjustments.
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The Traffic Forecast (TF) sub-function is dedicated to translate the SLS cus-
tomer-oriented information into resource-oriented data. It deduces the traffic demand
based on subscribed SLSs, and generates the Traffic Estimation Matrix (TEM). For this,
TF applies service mapping algorithms to adapt the service-oriented information into the
appropriate resource-oriented format. In addition, it uses policy-defined multiplexing fac-
tors to derive the minimum and maximum demand for each QoS class and traffic trunk.
These factors specify the criteria by which a service is considered to enjoy almost satis-
fied and fully satisfied rates, which are eventually used to define the minimum and
maximum values for the traffic demand.

5.2.3 Traffic Engineering Functionality

In this section we describe the policy-influenced processes of the Traffic Engi-
neering functionality of TEQUILA. The Figure 39 depicts the sub-functions that integrate
this functionality, namely Network Dimensioning (ND), Dynamic Resource Management
(DRsM) and Dynamic Route Management (DRtM). A brief description of these
sub-functions is provided hereafter. A detailed description of the Traffic Engineering
functionality can be found in [Tri03] and [Fle02].
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Figure 39.  Traffic engineering functionality of TEQUILA
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The Network Dimensioning sub-function is in charge of accommodating the traf-
fic estimations into the physical network resources. To accomplish this, ND uses the
Traffic Estimation Matrix generated by the Service Management function. The purpose
of the Network Dimensioning sub-function is twofold: First, to produce the Resource
Availability Matrix (RAM) which contains the calculated available resources for the
forthcoming Resource Provisioning Cycle, and second, to provide the lower-level TE
components (DRtM and DRsM) with resource management guidelines.

With respect to the Resource Availability Matrix (RAM), ND calculates on a
per-QoS-class fashion, the minimum *“always” available allocation of resources and the
sustainable throughput (BW available above the minimum available resources).

Regarding the resource management guidelines provided to the TE sub-functions,
Dynamic Resource Management (DRsM) and Dynamic Route Management (DRtM),
these are calculated based on historical data and customer subscriptions. For the DRtM
and DRsM sub-functions, these guidelines represent “nominal” values within which they
will work. For instance, the DRsM receives from the ND different estimates of the re-
quired resources for each Per-Hop-Behaviour (PHB).The DRtM instead receives the dif-
ferent LSP paths for the multiple traffic trunks of the network. The DRsM sub-function is
assessed through the core routers of the underlying network. The DRtM sub-function in-
stead is assessed by ingress/egress nodes.

In the Network Dimensioning sub-function, policies are used to extend the pro-
grammability in the following aspects.

e Delay and packet loss estimation requirements. Policies define the criteria of how to
consider hop-count with respect to delay and packet loss constraints.

o Explicit resource allocation. Policies define explicit LSP routes and/or explicit BW
allocations during the dimensioning process.

e Alternative path and Hop-count bounds. Policies define the limits on the number of
alternative paths for the traffic trunks and the limit on the number of hops for the
LSPs.

e Network utilisation. Policies are used to provide guidelines on how to proceed with
the distribution of resources with respect to the overall network utilisation.

e Extra and over provisioned capacity distribution. Once the minimum demands have
been allocated, there may be remaining capacity in some or all network links. Policies
are used to define the criteria of how the remaining capacity may be distributed
amongst the different PHBs. In addition, these policies define how to reduce the ca-
pacity allocation amongst the different PHBs under over-provisioning states.
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5.3 A System Composition Hierarchy for QoS Management

In this sub-Section we follow the guidelines of our systematic approach to define
a system composition hierarchy for QoS Management. We exploit the hierarchical rela-
tionships of the TEQUILA approach and consider both, Service Management and Traffic
Engineering. These two system functions are in turn in charge of controlling the QoS
Provisioning Management service delivered by the TEQUILA approach. The Figure 40
depicts the system composition hierarchy of this application domain for which a general
description is given hereafter.

’QoS Provisioning Management‘

’Service Management Function‘ ’ Traffic Engineering Function ‘
[ I | %
SLS'S_ SLs . TF ) ’ND Sub-function‘ ’ DRsM Sub-function ‘
Sub-function Sub-function Sub-function

%

Minimum Demand | | Extra Capacity
Sub-function Sub-function

Threshold
Setting

Path-hop
Limit Allocation
QoS Commitment Network Modification
Sub-function Utilization

Hop-Count | | Distribution
[ | Estimation Capacity

Satisfaction Target Critical
Level Level
Max Admission
Subscription Threshold

AS Factor

FS Factor
Admission
Sub-function

Max Subscription
Threshold Congestion Solving
- i
Anticipated Sub-function

Demand
Sub-function |

Total AD
AS Factor
Total AD
FS Factor

Figure 40.  System composition hierarchy for QoS Management
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5.3.1 Service Management Function

In the TEQUILA architecture, the Service Management Function is integrated by
Service Subscription (SLS-S) Sub-function, Service Invocation (SLS-I) Sub-function,
and Traffic Forecasting (TF) sub-function. These sub-functions define the next level in
the composition hierarchy of the Service Management Function as we show in Figure 40.

As we described earlier, the SLS-S Sub-function is in charge of executing the ser-
vice subscription functions of TEQUILA. This sub-function is influenced by a parameter
used to define degrees of confidence for service fulfilment, namely the “Satisfaction
Level”, and a sub-function dedicated to control the subscription’s admissions defined as
“Subscription Admission Sub-function” of the composition hierarchy shown in Fig. 40.
The “Subscription Admission Sub-function” is in turn influenced by a parameter that de-
fines an admission control for subscriptions identified as “Max Subscription Threshold”,
and a sub-function that defines the total anticipated demand strategy to follow for sub-
scription admissions’ control identified as “Anticipated Demand Sub-function”. The lat-
ter sub-function is influenced by two parameters that are used to calculate the total an-
ticipated demand with regard to the satisfaction factors almost satisfied (AS) and fully
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satisfied (FS). These two parameters are identified as “Total AD AS Factor” and “Total
AD FS Factor” in the composition hierarchy shown in Fig. 40.

Coming back to what we described earlier, the SLS-I Sub-function is in charge of
executing the service invocation functions of TEQUILA. The composition hierarchy for
this sub-function is defined by a parameter that is used to define the likelihood of over-
whelming the network identified as “Target Critical Level”, and another parameter that
defines the admission functionalities of the SLS-I Sub-function identified as “Max Ad-
mission Threshold”. In addition, the SLS-I1 Sub-function is integrated by a sub-function
that achieves the programmability of configuring the proactive actions when statistical
fluctuations of the traffic load occur. This is identified as “QoS Commitment
Sub-function” in the composition hierarchy shown in Fig. 40. In addition, the SLS-I
Sub-function is integrated by a sub-function that deals with proactive actions commited
to resolve congestion states in the network. This is identified as “Congestion Solving
Sub-function” in Fig. 40. Both of the latter two sub-functions are influenced by two pa-
rameters that deal respectively, with service rate adjustments and admission control ad-
justments. These two are identified as “Service Rate Change” and “Admission Control
Change” in the composition hierarchy of Fig. 40.

Finally, as we described earlier, the TF Sub-function of the Service Management
Function provides the programmability to define the multiplexing factors for traffic de-
mand estimations. This sub-function is influenced by two parameters that specify the cri-
teria by which a service is considered to enjoy almost satisfied and fully satisfied rates.
These two are identified as “AS Factor” and “FS Factor” respectively in the composition
hierarchy shown in Figure 40.

5.3.2 Traffic Engineering Function

In the TEQUILA architecture, the Traffic Engineering Function is integrated by
the Network Dimensioning (ND) Sub-function and Dynamic Resource Management
(DRsM) Sub-function. These two define the next level in the composition hierarchy of
the Traffic Engineering Function shown in Figure 40.

As we described earlier, the ND Sub-function is in charge of accommodating traf-
fic estimations into the physical network resources. The system composition with this
regard is integrated by first, a sub-function that assesses the programmability to influence
the qualitative calculation of the resources to satisfy the minimum anticipated demand.
This sub-function is defined as “Minimum Demand Sub-function” in the composition
hierarchy shown in Figure 40. Following on with the latter sub-function, it is influenced
by four parameters that define the next level of the composition hierarchy. The “Path Hop
Limit” parameter is defined to cope with administrative constraints of the number of hops
for the LSPs. The “Network Utilization” parameter of the hierarchy defines the criteria of
the utilization of the overall network. The “Hop-count Estimation” parameter of the
composition hierarchy is defined to address the considerations of hop-count as the means
to estimate link delay and packet losses. Finally, the “Explicit Allocation” parameter in-
fluencing the Minimum Demand Sub-function has been defined to assess administrative
decisions regarding explicit LSP, and BW allocation in the core network.
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Following on with the “ND Sub-function” of the TEQUILA approach, this is in-
tegrated by a sub-function that influences the distribution of resources once the ND has
allocated the minimum demand during the ND process. This sub-function defined as
“Extra Capacity Sub-function”, together with the “Minimum Demand Sub-function” de-
scribed above, both compose the next level from the “ND Sub-function” of the hierarchy
shown in Figure 40. The “Extra Capacity Sub-function” is influenced by two parameters;
first, the “Distribution Capacity” parameter which is defined to influence the resource
calculation of spare capacity in the core links; and second, the “Reduction Capacity” pa-
rameter that achieves the programmability on how to reduce the capacity allocated to
each PHB under link capacity shortage.

Finally, the “DRsM Sub-function” of the Traffic Engineering Function is influ-
enced by two parameters. The parameter “Threshold Setting” is used to define reactions
to statistical fluctuations of traffic load. Finally, the parameter “Allocation Modification”
is defined to cope with the actual allocation as a result of statistical fluctuations. These
representations are also shown in the hierarchical composition of Figure 40.

5.4 Goal Refinement for QoS Management

With this Sub-section we start the execution of the policy refinement process for
QoS Management. Namely, we describe the goal refinement process for the TEQUILA
approach. Throughout this Chapter, we make use of our prototype implementation to
carry assess the refinement process.

5.4.1 Starting Goal Refinement for QoS Management

It is a matter of realistic judgment to decide which high-level guidelines should
define the view of QoS delivery. Different methods and mechanisms can be found in the
literature [Bar06] to specify High-level Goals and to provide indicators to assess IT per-
formance related to them. In the context of our scenario, these represent the High-level
Goals with which the Administrator Developer intends to control QoS provisioning. As
our methodological approach prescribes, a key issue during the definition of High-level
Goals is the association of High-level Goals with the system functionality. Namely, it is
imperative that High-level goals should be aligned with the scope of the target system, in
this case with the TEQUILA approach. In addition, High-level Goals should be consistent
with the functionalities designed/implemented by the TEQUILA approach. In our QoS
management scenario the Administrator Developer starts the goal refinement process de-
fining the following High-level Goals, following the functionality of the TEQUILA ap-
proach:

e Number of Subscriptions Controlled

e Traffic Injection Controlled

e QoS Degradation Prevented

e Traffic Demand Estimated

e Available Resources per-Traffic Trunk Calculated
e Dynamic Traffic Fluctuations Managed
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The next Section assesses goal refinement for the above High-level goals follow-
ing the guidelines of our methodological approach, and making use of our prototype im-
plementation.

5.4.2 Assessing Goal Refinement for QoS Management

Having defined the to-be-refined High-level goals, these are linked to the root
goal of the goal graph structure. For this, the Administrator Developer defines the “QoS
Provisioning Management” root goal. The developer makes use of the Objectiver support
to store this goal in the database for further use; see Package View box in the upper-left
part of Figure 41. At this initial step of the refinement process the administrator devel-
oper follows the KAOS methodology to bring a milestone-driven refinement pattern to
link the root goal with the six High-level goals defined to control QoS provisioning de-
scribed earlier. This allows systematising goal refinements for QoS Management and es-
tablishing pre-defined temporal prescription of goals; see the Properties box in the bot-
tom-left part of Figure 41, specially the Achieve pattern formalisation for the “QoS Pro-
visioning Management” goal. Every goal instance throughout the goal-graph contains
similar properties like temporal prescription, refinements, etc. The goal graph structure is
then built upon six sub-trees for which further refinements are carried out taking into ac-
count the system composition hierarchy. The following is a brief description of the com-
position-aware refinement level shown at the bottom of the goal graph shown in Fig. 41.

File Edit View Tools Document Windows Help \
e 0B|c2%800/2ceaiolfemki Zoom: [100 |

[P s s O L iR B cheL e il SRR RS R s e e e e Z

e vew IR !
=] =[] =1Er]
Concept Inciex
(Goal) QoS PROVISIONING AN,
4

£ QoS PROVISIONING MANAGEMENT G,

| Meignoorhwod Docunerts |

Praperties
MAMAGEMENT |~
oL |
The root goal of the

TEQUILA epprosch  |]
This gosl I
rescrices the

nnnnnnnnnnnnnnn AVAILABLE DY I
SUBSCRIPTIONS INJEGTION RESOURCES PER FLUCTUATIONS
CONTROLLED CONTROLLED (MMM  PREVENTED @R  ESTIMATED TRAFFIC TRUNK MANAGED

S S I

&2 1 Pe0 BEelloipn

resuirements and
sermatives to

Pattern Achieve -

ategory Satisfaction hd
Priority High -
FormalDet J

NG DYNAWIG RESOURGE
13 MANAGEMENT
COMFIGURED CONFIGURED

1. Goal graph for the QoS Provisioning Management goal

NN

Figure

The High-level Goal Number of Subscriptions Controlled has direct impact on
traffic predictions. In addition, it is directly influenced by the “Service Subscription
Sub-function” of the TEQUILA approach given that the latter is used to control the ac-
ceptance, rejection/negotiation of service subscriptions. This way, the developer refines
the “Number of Subscriptions Controlled” into the “Subscription Logic Configured”
goal.

Regarding the Traffic Injection Controlled goal, this has been established to ad-
dress the trade-off between maximizing the traffic entering the network and the quality of
service enjoyed by the active services. In the context of our QoS Management scenario,
this aspect is influenced by the “Target Critical Level” and the “Max Admission Thresh-
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old”, both parameters of the SLS-I Sub-function of TEQUILA. For this reason, the ad-
ministrator developer refines the “Traffic Injection Controlled” High-level Goal is refined
into the goals “Target Critical Level Set” and “Admission Control Set”.

The High-level Goal QoS Degradation Prevented is defined to guarantee active
services to enjoy their contracted Quality of Service. In order to prevent QoS degrada-
tion, the QoS management approach implements active services rate change and conges-
tion avoidance mechanisms, both controlled by the QoS Commitment Sub-function and
Congestion Solving Sub-function of the TEQUILA approach. In this sense, the Adminis-
trator Developer refines the “QoS Degradation Prevented” goal into the “QoS Commit-
ted” and “Congestion Solved” goals.

Following on, the High-level Goal Traffic Demand Estimated has been defined to
influence the allocation of physical resources given that the dimensioning process con-
siders minimum and maximum bounds of traffic estimations. Once the latter bounds are
influenced by the multiplexing factors defined by the TF Sub-function of TEQUILA, the
“Traffic Demand Estimated” is refined into the goal “Multiplexing FactorsConfigured”
by the Administrator Developer.

Regarding the Available Resources per-Traffic Trunk Calculated High-level Goal,
it has direct impact on the subscription and invocation admission control mechanisms in
the sense that these calculations are contained in the Resource Availability Matrix pro-
vided by the Traffic Engineering Function to the Service Management Function. More-
over, a key role for the calculation of these resources is the ND Sub-function and its as-
sociated sub-functions. For instance, ND Sub-function influences the qualitative way to
allocate both, the minimum demand, and the remaining resources of the network. For this
reason, the developer refines the “Available Resources per-Traffic Trunk Calculated”
High-level Goal into the “ND Configured” goal as we show in the lower part of Fig. 41.

Finally, the High-level Goal Dynamic Traffic Fluctuations Managed has direct
impact on how the core network reacts to statistical traffic fluctuations. The QoS Man-
agement approach considers dynamic threshold and allocation management mechanisms
to deal with these situations. This aspect is controlled by the DRsM Sub-function of the
TEQUILA approach and consequently, the developer refines the former goal into the
“Dynamic Resource Management Configured” goal as we show in the lower part of Fig.
41.

For the next phase of the goal refinement process we have elaborated three ge-
neric goal-graph structures driven by the QoS-oriented system composition hierarchy of
our application domain. The Figure 42 shows the Service Management Configured
goal-graph which has been refined considering the Service Management Sub-function of
the TEQUILA approach. The goal graph represents the different strategies that the sys-
tem is capable to achieve for the Service Management Function. Basically, this goal
graph structure has been built upon three sub-trees defined by the SLS-S Sub-function,
SLS-1 Sub-function, and TF Sub-function. For this level of refinement, the administrator
developer brings into this specific context a milestone-driven refinement pattern for goal
refinement (see Fig. 42).
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Figure 42.  Service Management Configured goal graph

Similar goal-graphs have been defined for the Traffic Engineering Function. More
specifically, the Figure 43 shows the Network Dimensioning Configured goal-graph
structure that incorporates the requirements and alternatives to dimension both, the
minimum traffic estimations and the extra remaining capacity for the links of the physical
network. This goal graph has been built upon the composition hierarchy for the ND
Sub-function of the TEQUILA approach. On the other hand, the Figure 44 shows the cor-
responding Dynamic Resource Management (DRsM) Configured goal graph, based on
the DRsM Sub-function of the TEQUILA approach. This goal graph formalises the re-
quirements and alternatives to control statistical fluctuations of traffic in the core links of
the physical network. The DRsM Configured goal graph structure is built upon two
sub-trees that correspond to threshold monitoring and BW re-allocation tasks.
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Figure 44.  Dynamic Resource Management Configured goal graph

5.5 Executing Goal Selection for QoS Management

The above High-level Goals formalise the guidelines that the Administrator De-
veloper has defined to manage QoS provisioning. During the operation of the policy sys-
tem, the Administrator Consultant should acknowledge these guidelines to define the op-
erative or “particular” view of QoS provisioning through Goal Selection. Similar to the
definition of High-level Goals, the operative or “particular” view of QoS provisioning
depends on realistic judgement, statistical data or previous administrative experiences.
This section describes a goal selection process tailored to mange QoS provisioning. This
section is divided in two sections. We first provide a holistic and realistic view of QoS
provisioning and finally, we use our prototype implementation to assess Goal Selection
aligned to the former.

5.5.1 Defining a Holistic View for QoS Management

We have defined a holistic view for QoS Management following the principles of
the TEQUILA approach. Basically, this view is a reproduction of the High-level Goals
that define an operative or “particular” view of QoS provisioning. This operative particu-
lar view is summarised in Figure 45 for which a brief description is provided thereafter.
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Figure 45.  Particular view of QoS provisioning

The first column concerns with the view of QoS delivery with respect to the
Number of Subscriptions Controlled and the Traffic Injection Controlled. In this example
the consultant opts to maximise the number of subscriptions at the Highest Confidence
levels of providing the agreed Quality of Service. This High-level Goal implies that the
underlying components of the TEQUILA system would make sure that most of the ac-
cepted subscriptions will enjoy their contracted rates and then congestion occurrence
would be highly unlikely. Under these circumstances the administrator opts to maximize
the Traffic Injected into to the network given that the latter is linked to the accepted sub-

scriptions whose QoS satisfaction is highly likely.

Regarding the High-level Goal Calculated Available Resources per-TT, the con-
sultant defines the view on how to influence the calculation algorithms of the Network

Dimensioning process.

e For delay and losses purposes, the administrator opts for considering the average de-
lay and packet loss induced by the links along the paths as the base to establish

hop-count constraints for every link along the network.

e Regarding resource allocation, the administrator opts for uniformly distributing the
predicted load amongst all the available links in the network; namely, minimizing that

some links become overloaded while others are under-loaded.

e Finally, once the minimum estimated demand has been allocated, the administrator
opts to distribute the over-provisioned and spare capacity proportionally to every

PHB.
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Regarding the High-level Goal QoS Degradation Prevented, the consultant opts
to enforce “mild” proactive actions when the traffic injected into the network is between
the available resources at congestion and the maximum available resources for the Traffic
Trunks (TT). In addition, “Prime” proactive actions should take place during congestion.

For the High-level Goal Traffic Demand Estimated, the consultant defines multi-
plexing factors that define how clients are to enjoy Almost Satisfied (AS) and Fully Sat-
isfied (FS) rates. This particular administrative view opts to differentiate between service
types, providing 100% of the subscribed rates to AS and FS in case of real-time traffic. In
contrast, 60% and 85% of the subscribed rates may be considered for AS and FS respec-
tively for other types of traffic.

Finally, with regard to the Dynamic Traffic Fluctuations Managed, the consultant
opts to increase or decrease resources allocations when traffic fluctuations are worth no-
ticeable of about 10% the dynamic range provided by Network Dimensioning (ND). In
this sense, the consultant opts for allocation changes in ratios of 10% the range provided
by ND. In addition, the consultant opts to decrease/increase the previously in-
creased/decreased resources, proportionally to every PHBs sharing the core links. Finally,
the spare link capacity is distributed proportionally amongst the PHBs.

5.5.2 Assessing Goal Selection for QoS Management

As we mentioned earlier, Goal graph structures provide potential information for
interpretation about how goals should be achieved. Interpretations are materialised with
Goal Selections. In this sub-Section we describe the selections that materialise the ad-
ministrative view of QoS Management in our application scenario.

Our prototype provides the means to browse through goal graph structures. Since
the target is to refine a holistic view for QoS Management. For this, the consultant should
interpret the options for each goal sub-tree of the QoS Provisioning Management goal,
and select the options that better reflect the administrative view of QoS Management.

For the sub-tree defined by the High-level Goal Number of Subscriptions Con-
trolled shown in the left part of Figure 46, the system guides the consultant to the “Ser-
vice Subscription Configured” goal, the latter included in the Service Management goal
graph. At this moment of the selection, the consultant interprets that selecting “Conserva-
tive Satisfaction Settings” for both, the “Satisfaction Level Set” goal and the “Subscrip-
tion Admission Controlled” goal, reflects the view “Maximize subscriptions with the
Highest Confidence to provide the agreed QoS”. For this selection the consultant selects
the pattern of goals marked with dotted lines in Figure 46.

For the sub-tree defined by the High-level Goal Traffic Injection Controlled
shown in the right part of Figure 46, the system guides the consultant to the goals “Criti-
cal Level Set” and “Invocation Admission Control Set”, the latter goals included in the
Service Management goal graph. At this moment of the selection, the consultant inter-
prets that selecting “Minimum Precautions Taken” reflects the view “Maximize the Traf-
fic injected into the network™. The consultant correlates this selection to the fact that ser-
vice subscriptions are only accepted with the highest confidence to provide the agreed
QoS. Given that service invocations are directly influenced by the number of subscribed
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customers, the consultant opts to take minimum precautions concerning service invoca-
tions control. This selection would cause that the traffic injected into the network due to
invocations is maximized. For this selection the consultant selects the pattern of goals
marked with discontinuous lines in Figure 46.

Traffic
Injection
Controlled

Number of
Subscriptions
Controlled

Maximise
the Traffic
injected
into the
network

Maximise
subscriptions
with the Highest|
Confidence to
provide the
agreed QoS

Figure 46. Selections for controlling subscription and traffic injection

The same approach is taken for the remaining selections. The pattern of goals
marked with dotted lines shown in the left part of Figure 47 shows the selection concern-
ing with the High-level Goal QoS Degradation Prevented. Here the consultant selects
two strategies; a mild proactive selection deals with reactions to the critical level settings.
The prime action selection instead handles potential congestion situations. Both selec-
tions involve service rate and admission control settings.

Similarly, the discontinuous lines shown in the right part of Figure 47 show the
selection of goals for the High-level Goal Traffic Demand Estimated. In this case, the se-
lection is constrained with specific values introduced as attributes for the lowest-level
goals, e.g. the Almost Satisfied Factors Configured goal would have as attribute the value
of 100% for real-time traffic, and 60% for other type of traffic.
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Figure 47.  Selection for controlling QoS degradation and traffic estimations

For the High-level Goal Available Resources per-Traffic Trunk Calculated, the
system guides the consultant to the ND Configured goal, which has been elaborated in
the Network Dimensioning Configured goal graph. The pattern of selected goals shown
in the Figure 48 specialises the “particular” view of the consultant with this regard: (1)
the bottom-left part shows the selection that specialises the sub-view “Allocate minimum
demand with average hop-count estimations”, i.e. “Average Estimated” selection for the
“Delay and Loss Estimated” goal; (2) the sub-view “Minimize link overloading” is in
turn covered with the selection of “Minimise Links Overloaded” in the sub-tree defined
by the “Load Network Compromised” sub-goal; (3) finally, the sub-view “Redistribute
over-provisioning and spare capacity proportionally” is specialised by the selection “Split
Proportionally” and “Proportionally Redistributed” respectively for the goals “Spare Ca-
pacity Allocated” and “Over Provisioning re-Allocated”, both refinements of the “Extra
Capacity Processed” goal.
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Finally for the High-level Goal Dynamic Traffic Fluctuations Managed, the sys-
tem guides the consultant to the graph elaborated for the “DRsM Configured” goal. The
selection for this goal with respect to the “particular” view of our scenario is shown with
dotted lines in Figure 49. The goal graph suggests that the management of traffic fluctua-
tions should involve monitoring and re-allocation tasks, both assessed by the sub-trees
defined by the “Monitoring Directives Configured” and “DRsM Main Configured” goals.
The selections for the former target the configuration of thresholds to react to statistical
fluctuations of traffic in the core routers’ links. In other words, this selection is intended
to determine when the system should increase or decrease resources as stated by the first
sub-view shown in the upper-right part of Figure 49. Traffic fluctuations are policed ei-
ther as increments or decrements for which upper and lower threshold selections are re-
quired. The consultant selects then the goals “Lwr Thr Incrsd Rel Value”, “Lwr Thr
Decrsd Rel Value”, “Uppr Thr Incrsd Rel Value”, “Uppr Thr Decrsd Rel Value”. The
latter goals are associated with an attribute specifying the relative value of configuration
as prescribed by the sub-view (10% of the range provided by the ND service).
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Figure 49.  Selection for “Dynamic Traffic Fluctuations Managed”

For the sub-views concerning reallocation of resources, the consultant is guided to
achieve the selection to increase the resources for the PHBs sharing the core router’s
links by selecting the “Bw Req Incrsd Rel Val” goal, and also to deduce these resources
from the complementary PHBs sharing each core router’s link by selecting the “Bw Req
Decrasd Rel Val” goal. Both goals are associated with an attribute specifying the relative
value of these modifications as prescribed by the sub-view (10% of the range provided by
the ND service). For the sub-views concerning the redistribution of resources, the con-
sultant is guided to achieve this proportionally amongst the PHBs sharing the core router

links by selecting the goals “Spare Cap Proportionally Split” and “Red Over Cap
Proptly”.

In this sub-Section we have outlined a complete Goal Selection process for a real-
istic view of QoS Management. In a policy creation environment the target prototype
should enable this view to be effectively translated into enforceable policies aligned to

these High-level Goals. This process of our application scenario is described in the fol-
lowing sections.
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5.6 Automated Acquisition of Enforceable Policies

This Section describes the automated acquisition of enforceable policies of our
application scenario. We initially describe the pre-conditions for this process and then
present the execution of the application scenario up to the acquisition of enforceable
policies.

5.6.1 Pre-conditions for Automated Policy Acquisition

As we described earlier, the following information should be provided to auto-
mate the acquisition of policies. A brief description of these is provided thereafter.

e Documentation of the goal graph structures for the managed system
e Documentation of the System Model

5.6.1.1 Documentation of the goal graph structures

The elaboration of the goal graph structures is a process that has been extensively
described in the last sections. Moreover, it is mandatory that this information should be
available when the automated acquisition of policies action is required. For the execution
of our policy refinement scenario we have provided the Objectiver [Obj] model that cor-
responds to the KAOS goal graphs “QoS Provisioning Management”, “Service Manage-
ment”, “Network Dimensioning” and “DRsM Monitoring” described in Section 5.4. This
scenario of preconditions is graphically illustrated in the upper part of Figure 50.

5.6.1.2 Documentation of the System Model

The System Model is also a mandatory pre-condition to automate the acquisition
of policies. This is assessed by documenting the managed objects’ behaviour and provid-
ing their object distribution within the managed system.

5.6.1.2.1 Documentation of the behaviour of the managed objects

This data is provided using standard UML notations. This is an added value of our
solution given that the Administrator Developer is enabled to document the System
Model using standard modelling techniques such as class diagrams, collaboration dia-
grams and state charts. For example, the left-lower part of Figure 50 shows a simplified
representation of a selection of class diagrams of the TEQUILA architecture together
with a simplified representation of the behaviour of the DRsM Monitoring components of
the TE functionality, represented as a state chart. For instance, the left part of the state
chart shows the different strategies with which the component calculates new thresholds
for statistical fluctuations of traffic; strategies are represented as states for which different
actions should be taken to lead the monitoring component to the corresponding states.
The right part of the state chart demonstrates for example the handling of violations when
the constraints imposed by the Network Dimensioning component are breached. Similar
representations to the above have been modeled for the rest TE components and the Ser-
vice Management components of TEQUILA. ArgoUML [Arg06] models are direct inputs
for our policy refinement prototype. The Behaviour Manager component of our solution
internally translates these into code for automated reactive analysis.
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5.6.1.2.2 Documentation of the Object Distribution

The Object Distribution, part of the System Model, is also a mandatory
pre-condition for the automated acquisition of policies. It is necessary for the appropriate
operation of the system and to make sure that the refined policies to be appropriately de-
ployed onto the policy system.

The principle for the formalisation of this information in the context of TEQUILA
approach is that enforceable policies are deployed onto two main branches of objects;
centralised managers represented by the Domain Scope Expression /TEQUILA/Managers
and distributed managed objects represented by the Domain Scope Expression
ITEQUILA/ManagedObjects. We have populated the inventory component with a very
basic distribution coping with the functionality ad-hoc to the execution of our application
scenario. The basic distribution of these two main branches is shown in Figure 51. The
centralised managers are those components achieving the Network Dimensioning
Sub-function and the Service Subscription Sub-function of TEQUILA, both formalised
with as /TEQUILA/Managers/ND and /TEQUILA/Managers/SSM respectively. The
components assessing the Dynamic Resource Management Sub-function pertain to the
ITEQUILA/ManagedObjects/Links/Router branch. Similarly, the objects achieving the
Service Invocation Sub-function are included in the /TEQUILA/ManagedObjects/Routers
domain.

ManagedObjects

Managers

D SSM

HopCount SLSServSatisfMO
SLSSPMA
Optimisation SLSBufferMO
PostProcessing -TF

DRsMPMA

it
:

",

SLSIMonitor
SLSIMain

SLSIPMA
SLSIAdmission

Figure 51.  Object Distribution for our refinement scenario

For this application scenario we have documented this information making use of
the inventory component interface. For example, the information introduced to the
i_Inventory interface shown in Figure 52 formalises two basic domains of our scenario;
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TEQUILA/Managers and TEQUILA/ManagedObjects/Routers. A similar approach has
been carried out to populate the rest branches of the distribution shown in Figure 51.

Object Distribution Population

£ dscitfs.Goremoch.i_inventory i_inventory = =}

|__| operation Goremoch.i_inventory setObjectDetails
[=__| Goremoch InvertoryObjectDatalist_T Goremoch InvertoryObjectDatalist_T (in) object2Populate: 2
= | struct Goremoch InvertoryObjectData_T[0]
= __| gobaldefs MamingAttributes_T globaldefs NamingAftributes _T inventoryObjectDescription: 1
(=] struct globaldets NamendStringValue _T[0]
— @ string name; managedObject
— @& string value: domain
=] gobaldets NamingAttributes_T globaldets Narmingatiributes_T objectDetails: 2
- __| struct globaldets NameAndString'alue_T[0]
— & string name: root
® string value: TEQUILA,
=] struct globaldets NameAndStringValue_T[1]

— & string name: cn i Inventor
® string value: Managers - y POLICY
-] struct Goremoch InvertoryObjectData_T[1] > Qj REFINEMENT
[=H__] globaldefs MamingAttributes_T globaldefs Namingatiributes_T inventoryObjectDescription: 1
(=] struct globaldets Name&ndStringValus_T[0] ENVIRONMENT
—® shring name; managedObject PROTOTYPE

—® shring value: domain
[E__] globaldets NamingAttributes_T globaldefs NamingAttributes_T objectDetails: 3

[=F_ ] struct globaldets NameAndStringValues_T[0]
— @ shring name: root
@ string value: TEQUILA,

[=__| struct globaldets NameAndStringVaiue_T[1]
—® shring name: cn
@ string value: ManagedObjects

[=__| struct globaldets NameAndStringValue_T[2]
— @ shring name: cn
— @ string value: Routers

invoke To file. |

Figure 52.  Documentation of managed Object Distribution

[ show inherited Methods e oty ~ |

5.6.2 Managing Goal Selections

The automated acquisition of policies starts when Goal Selections are provided to
the implementation prototype by the Administrator Consultant. The selections could be
provided in two fashions:

1. From the Objectiver tookit. The selection of goals is documented in the Objectiver
toolkit and an internal application (plug-in) is in charge of providing the selection to
the prototype implementation as generic Objectiver objects through the
i_GoalManager interface.

2. From the Goal Manager. The selection of goals is also documented in the Objectiver
toolkit but the acquisition of policies is started in the Goal Manager by pointing out
the highest-level goal of the goal selection.

For the execution of our application scenario we have opted for the second option.
Having documented the Goal Selection described in Section 5.5 which defines the opera-
tive or “particular” view of QoS provisioning, we have pointed out the “QoS Provision-
ing Management Goal” to the Goal Manager through the i_GoalManager interface. It is
worth mentioning that large-scale refinements could involve several Goal Selections
committing to several views of QoS Management, most probably involving different
constraints or situations of applicability. For this application scenario we have only pro-
vided the Goal Selection of our application scenario.
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For the above Goal Selection, the prototype implementation integrates the
Goal-aware information that it will use to acquire enforceable policies aligned to such
selection. This Goal-aware information is integrated in an object-oriented entity referred
to as “GoalMetaData_List”. The following is a brief description of the “GoalMetaData_List” ac-
quired during the execution of our application scenario. The fragments shown throughout
this brief explanation have been obtained making use of the facilities provided by the
Distributed Software Component (DSC) development framework [Mee00] on which our
prototype was implemented.

The execution of the application scenario has involved altogether the goal graph
structures for the QoS Provisioning Management, Service Management, Network Di-
mensioning, and DRsM-Monitoring. The Figure 53 shows for example a fragment of the
GoalMetaData_List structure that belongs to the Network Dimensioning Goal Graph. This
fragment shows the object-oriented composition of the “NETWORK DIMENSIONING
CONFIGURED” goal (see goal name pointer in Fig. 53). The composition is integrated by
relevant information that is further used to establish relationships amongst the goals. For
example, the “Achieve” temporal prescription (see temporal prescription pointer in Fig. 53),
and the “MultipleMilestone” refinement pattern (see refinement pattern pointer in Fig. 53),
prescribe that the NETWORK DIMENSIONING CONFIGURED goal should be achieved in multiple
phases. The refinements of this particular goal are also included in the composition (see
Link refinements pointer in Fig. 53). In this particular case of our application scenario the
refinements are the goals MINIMUM DEMAND PREPROCESSED, MINIMUM DEMAND PROCESSED, and EXTRA
CAPACITY PROCESSED. Similar compositions for the latter refinements and for the rest goals
belonging to the Network Dimensioning goal-graph have been integrated in the “Goal-
MetaData_List” acquired during the execution of our application scenario.
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it dscitfs.Goremoch.i_RequirementsMgr i_RequirementsMgr -|EI|5|

_] operation Goremoch i_Requirementsigr . fcn'mulateﬂequlrements =
J Gaoremoch GoalMetaDatalist_T Goremoch GoalletaDatalist_T (in) goalMetaDatalist: 34

[=F J globaldets | Nammgmtnmes T globaldets MamingAtributes T goallame: 1

Goal name:ss=s=fsesssees =i~ _] struct globaldefs NameAndStringyalue_T[0]
: L smmg name; GoalMame

=[] struct g]obalclefs NameAndS‘trlngValue T[]

@ siring name; refinement_01

® string value: MINIMUM DEMAND PREPROCESSED
=1 __| struct globaldets NameAndStringValue_T[1]
Linked refinements ««==f-xs=s==s i ® string name: refinement_02
: ® string value: MINIMUM DEMAND PROCESSED
+ = ] struct globaldets NameAndStringValue_T[2]

L &h'mg name; relinemenl_02

=) struct gjobaldefs Name.&nds’tnng\-’slue o :
Refinement pattern ceasfleian g . simg rame; R&ilnemempatt.em _ =

=] _ngobaldefs NamlngAﬂrlbules _T globaldets | NamlngAlInbutes T goalDetals: 4
=] struct globaldets Name AndStringWalue_T[0]
~— @ shring name: GoalHierarchy
® string value: Highest
=) struct globaldets MameAndStringyalue_T[1]
® string name: AdminOption
@ string value: Selected
=) struct globaldets NameAndStringValue_T[2]
® shring name: Admin&ction
@ siring value, RefinePolicies
=) struct globaldets NameAndStringyalue_T[3]
L ﬁmg name; BehawcuSpeuln:atian

= J globaldets | NammgAﬂnMes T globaldets MamingAttributes_T temporalPrescription: I

Temporal prescription ______________ =1 __| struct globaldefs Name AndStringValue _T[0] :
@ siring name GoalType H
e O, IO, YONEL ASDIENS 1 e sneennesnnsnssnssnesnssnssssssnssnsen [Lr'd

Figure 53.  Fragment of the NETWORK DIMENSIONING CONFIGURED goal

Following on with the content of the “GoalMetaData_List” of our application scenario,
the prototype handles the graph’s relevant information of the QoS Provisioning Man-
agement, Service Management, and DRsM-Monitoring. This information contains the
information necessary to automate the acquisition of enforceable policies. For example,
during the goal selection, some goals admit specific values ad-hoc to the administrative
criteria. This is the case for example of the goal “LwR THR INCRSD REL VALUE” Which has been
selected as part of the High-level Goal “Dynamic Traffic Fluctuations Managed” in our
application scenario. A fragment of this goal composition is shown in Figure 54. Here the
ad-hoc value is integrated in the GoalAttribute field of the composition (see goal attribute
pointer in Fig. 54). The latter specialises the relative value with which the threshold set-
tings will be increased in the DRsSM Sub-function of the TEQUILA approach. In addi-
tion, lowest-level goals are identified with system state predicates. This information is
also handled for the “LwR THR INCRSD REL VALUE” (See system state pointer in Fig 54), and for
the rest lowest-level goals of the application scenario.

Similar to the two examples provided above, the prototype has produced a total of
118 goal compositions for our application scenario. The following Section provides the
execution of the Requirements Manager once this information is submitted through its
i_RequirementsMgr interface.
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[=1-__| struct Goremoch GoalMetaData_T[11] &
] slobsldets Namingafiributes T gjobaidets NamingAftrioutes._T goalName: 1
= | struct globaldefs Naimne A ndStringValues _T[0]
Goal name:s==spsr=ss=es ’ - string name: GoalName :
Euvess @, SHNG vaier LV THR INGRSD REL VALUE :
| globaldets MamingAttributes T globsldefs MamingAttributes T refinedSons: 0
| globaldets Namingatributes T globaldefs NamingAttributes T tempRelstionshiy: 0
=L, ) giobaidefs Namingatirioutes, T, giohaldefs Namingatirioutes_T goalDetails: 6
T struct globaldefs Name AndStringValue_T[0]:
: ® string name: GoalHierarchy :
System state =x=sp=resseeees > ® string value: Lowest :
.:-. __| struct globaldefs NameAndStringValue_T[1 ]
@ string name; SpecificationStateld
el G )
=] struct globaldefs MameAndStringValue_T[2]
o gtring name: AdminOption
ool gtring value: Selected
=l struct globakdefs NameAndStringValue _T[3]
® string name: BehaviourSpecification

. = ® string name: GoalAttribute_ 01 .
sesdunnnnnnnsn > - .
Goal attrIbUte = i string value O& bwthr = QA bwihr + 0 1*Link dynamicRanges :

=] struct globaldefs MameAndStringValue_T[5]
Figure 54.  Fragment of the LWR THR INCRSD REL VALUE goal

5.6.3 Establishing Temporal Relationships

Coming back to the principles of our refinement framework, the Requirements
Manager uses the information included in the “GoalMetaData_List” structures to establish
temporal relationships between lowest-level goals. These relationships logically entail the
fulfillment of higher-level goals. Following on, this manager produces a representation of
these relationships with formal notations suitable for use with automated analysis tools.

In Figure 55 we show fragments of the temporal relationships produced in
run-time by the Requirements Manager during the execution of our application scenario.
The most relevant are the formal definitions of these relationships expressed in Linear
Temporal Logic (see formal definition pointers in Fig 55). In practical terms, these LTL
(Linear Temporal Logic) behavioural formulae represent the ordering in the fulfillment of
lowest-level goals or the ordering in which system states should be reached. In other
words, these represent the ordering of system states that the corresponding sub-systems
should commit to as to fulfill with the “particular” view of QoS Management of our sce-
nario.

For example, the formal representation shown in Figure 55a (see formal definition
pointer in Fig. 55a) characterises the temporal ordering of four specific goal states of the
Service Subscription Sub-function of the TEQUILA architecture. These goal states are
also abstracted and shown as arguments in the figure (see LTL formula arguments pointer
in Fig. 55a). These arguments correspond to the actual system state identifications of the
lowest-level goals within the System Model. Similarly, the Requirements Manager pro-
duces the representations and arguments for the Service Invocation function (Fig 54b),
the Network Dimension (Fig. 55c), and the Dynamic Resource Management function
(Fig. 55d) accordingly.

Application Scenario 98



ggdscitfs,Gorenmch,i_Searl:hHauag:rf_Eemh"lm.
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[® string name: m5
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truct globaldets NameAndString'alue_T[5]

|® string name: m6
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Figure 55.  Fragment of temporal relationships of application scenario

5.6.4 Enforcing System Behaviour

In the context of our refinement framework, the main purpose of abstracting tem-
poral relationships of goals and representing them with formal notations such as LTL, is
to enable the Search Manager to apply automatic analysis techniques to find the neces-
sary behaviour that the managed system should exhibit as to commit with the high-level
goals adhered to the system. In the context of our application scenario, this corresponds
to the system behaviour that the internal components of the Service Subscription, the Ser-

vice Invocation, Network Dimensioning,

and Dynamic Resource Management

Sub-functions should exhibit as to commit with our “particular” view of QoS Manage-

ment.
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A brief example is the partial representation of system behaviour shown in the left
part of Figure 56, produced by the Search Manager during the execution of our applica-
tion scenario. This corresponds to the Dynamic Resource Management (DRsM)
Sub-function. More concretely, it shows the restricted behaviour that the components as-
sessing the DRsM Sub-function, should exhibit to fulfill the milestone goals m4 “DecUp-
prThRel” and m5 “AllocincrsdRel” included in the temporal relationships provided by the Re-
quirements Manager described above.

For instance, in order to better describe the restricted system behaviour of the
left-part of Fig. 56, we show its interpretation as state changes in the right-part of the
same Fig. 56. For instance, in order for the milestone goal m4 “DecUpprThRel” to be
achieved, the following state changes should be exhibited:

The Monitor component should exhibit a transition from state thresholdCrossingDwn to state

thrCrossdDwnAlarmRaised as a result of the event thrsCrossingAlarmDwn (See pointer to thrsCross-
ingAlarmDwn in Fig. 56). In other words, the Monitor component must detect a downwards
threshold crossing and it should issue the event thrsCrossingAlarmDwn.

As a consequence of this previous event, the DRsMPMA component must enforce the

action decrUpprThRel to transition from the drsmAlarmRaised State to the target “DecUpprThRel”
state. In other words, the DRSMPMA must enforce decrements of the upper threshold
by a relative value.

Note that the event “notification for decrupprThRel” generated in the DRSMPMA en-

ables the Monitor component to transition from the state thrCrossdDwnAlarmRaised t0 Up-

prThrDecreased.

m4:
DecUpprThRel

. Pointer to
-~ thrUpAlarmProcessing
v

Pointer to reception of
hrUpAlarmProcessing

Notification for
incrAllocRel

Figure 56.

Application Scenario
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The same applies for the milestone m5 “AllocincrsdRel”. In this case the DMain com-
ponent should issue the event thrupAlarmProcessing for which the DRsMPMA must enforce the
incrAllocRel action to commit with the target goal state “AllocincrsdRel”. In other words, the
BW allocation should be re-allocated by a relative value when an upper threshold is
crossed.

Similarly to m4 and m5, the Search Manager has acquired the restricted behaviour
for the remaining milestones of the DRsM Sub-functions and the other sub-functions of
our application scenario.

5.6.5 Applying the Translation Process

Following the principles of our policy refinement framework, having obtained the
restricted system behaviour that the managed objects should exhibit, the Search Manager
takes the first step towards the acquisition of enforceable policies. It identifies the transi-
tion plans that should reproduce such restricted behaviour in the policy system and ap-
plies a translation process to produce structures of the format Event-Condition-Action. In
our framework we defined a transition plan as a sub-section of a system trace execution
that includes a policy-controlled state transition. In this Section we show this step of the
refinement process for our application scenario.

The Figure 57a shows the transition plan belonging to the policy-controlled tran-
sition “decrUpprThRel” which was committed to fulfil the goal state m4 in our previous de-
scription. This transition plan prescribes that on the occurrence of a “thresholdCrossingDwn”
state in the Monitor component, preceding the transition “thrsCrossingAlarmDwn”, the DRsMPMA
must enforce the transition “decrUpprThRel”. This information is specialised in an ob-
ject-oriented composition by the Search Manager and is represented in Fig. 57b. Basi-
cally, the transition plan is specialised into the key attributes “Issuer_Precondition_State, Is-
suer_Transition, IssuedBy, Transition_Receptor, Receptor_Transitions_States, and Receptor_Transition”. In the
transition plan “decrUpprThRel”, the former attributes have been assigned to “thresholdCross-
ingDwn”, “thrsCrossingAlarmDwn”’, “Monitor”, “DRsMPMA”, “drsmAlarmDwnRaised -> DecUpprThRel”, and
“decrUpprThsRel” respectively. Similar to this process, the rest of the transition plans of our
validation scenario have been produced. It is worth noticing that this information has
been acquired automatically by the implementation prototype during the execution of our
application scenario.

Application Scenario 101



= __| globaldefs NamingAttributes_T globaldefs NamingAttributes_T policyAttributes: 6 | A
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a) b)
Figure 57. A transition plan of our validation scenario

Following on with the scenario execution in the context of our refinement frame-
work, the information described above is further used to acquire Event-Condition-Action
(ECA) obligation policies. For this, the Translation Process considers that the managed
object that exhibited the triggering state transition is mapped to the subject; that Actions
are interpreted as transitions executed on a managed object; and that the managed object
that reacted to the triggering condition is mapped to the target. A graphical representation
of the Translation Process and their application to the transition plan “decrUpprThRel” of our
scenario are shown in Figure 58. In a similar manner, the rest of the transition plans of
the DRsM Sub-function and the rest Sub-functions of our application scenario have been
processed automatically by the prototype implementation.

policy decrUpprThRel_enforced{
event thrCrossingAlarmDwn
subject Monitor
target DRsMPMA
action decrUpprThRel

Transition plan for decrUpprThRel
TP=[thresholdCrossingDwn, thrsCrossingAlarmDwn
— drsmAlarmDwnRaised, decrUpprThRel]

Translation Process —>

3
Figure 58. A translation process in our application scenario

5.6.6 Encoding Policies

Finally, the Policy Encoder produces the enforceable Ponder policies of the ap-
plication scenario taking as input the result of the translation process described above.
The Policy Encoder maps the subject and target attributes to the managed entities ac-
cording to the Object Distribution of the application scenario. It also includes the events
that the policy system reacts to, and the actions that the policy system is capable of en-
forcing. The Figure 59 shows the two policies that have been encoded to commit with m4
and m5 of the DRsM Sub-function described in previous sections. It is worth mentioning
that these policies have been retrieved from the policy repository after the completion of
the scenario, making use of the Ponder GUI attached to the Policy Encoder component.
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The first policy, namely “/ManagedObjects/Links/DecUpprThRel”, is the lowest level pol-
icy refined to enforce the transition “decrUpprThRel” of our scenario. In the TEQUILA ap-
proach, this policy is triggered when a threshold is crossed downwards, namely when the
event “thrCrossingAlarm( down , utilValue , Link , OA)”” occurs in the Monitoring components of the
internal routers “subject =/ManagedObjects/Links/Router/Monitor”. Under these circumstances, the
Policy Manager Agents of the DRsM components, namely the target
“/ManagedObjects/Links/Router/DRsMPMA” modifies the threshold settings reducing its value by a
relative value equivalent to the 10% of the dynamic range provided by the Network Di-
mensioning (ND) component. This is achieved with the action *“decrUpprThs ( Link , OA, OA .
bwthr = OA . bwthr - 0.1 * Link . dynamicRanges ). Similar encodings were carried out for the rest of
the policies in the application scenario for which the next section provides a detailed de-
scription.

=4 Ponder - Untitled
File Edit Build Tools Polices Options ‘Window Help

B EH & BR B &

Source | Code

1 inst oblig /Managedibijects/Links/DecUpprThRel { (s
2 on thrirossingAlarm | down , utbtilValue , Link , OA ) ;

2 subject 3 = /ManagedChiects/Links/Router/Monitor ;

4 target t = /ManagedChjects/Links/Router/DRsMPMA ;

5 do decrUpprThs ( Link , ©A , OA . bwthr = OA . bwthr - 0.1 * Link . dynamicRanges ) ;

[ i =
7 inst oblig /Managedchjects/Links/AllocIncrsdRel |

& on thriUpalarwProcessing | Link , lwr , uppr , O& |} ;

2 subject = = /ManagedChjects/Links/Router/DMain ;

10 target t = /ManagedChjects/Links/Router/DRsMFMA ;

11 do incrAlloc [ Link , OA , OA . bw = CA . bw + 0.1 * Link . dynamicRanges | ;

1z} Il
] ]

Figure 59.  Selection of refined policies of our scenario

5.7 Results

Having gone through the refinement process for our application scenario, driven
by the principles of our refinement framework, a total of 28 Ponder Obligation policies
have resulted from its execution. These policies have been obtained and stored in the pol-
icy repository attached to the refinement framework. The population of the repository
before and after the execution of this application scenario is shown in Figure 60 for
which a general description is provided thereafter. In order to better describe these poli-
cies, we have sectioned this description taking as reference the high-level goals for QoS
Management defined for the TEQUILA approach.
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Figure 60.  Policy repository before and after the execution of the scenario

5.7.1 Number of Subscriptions Controlled

The policies involved in realising this goal are “conservativeSubsSatisfaction” and “con-
servativeSubsAdmission”. The Ponder representations of these policies are shown in Figure 61.

inst oblig /Managers/conservativeSubsSatisfaction {

on SRFactrsSet ( TT, serviceType ) ;

subject s =/Managers/SSM/SLSServSatistMO ;

target t = /Managers/SSM/SLSSPMA ;

do setSatisfLevl ( serviceType . PHB , serviceType. SL =1 );
}
inst oblig /Managers/conservativeSubsAdmission {

on ramRecvd ( TT, SRamin , SRwmin , SRmax , serviceType ) ;

subject s =/Managers/SSM/BufferMO ;

target t = /Managers/SSM/SLSSPMA ;

do setMaxAccpt ( serviceType . PHB, serviceType . TDtmax < serviceType . Rwmin ) ;
}

Figure 61.  Policies involved in the goal Number of Subscriptions Controlled

The policy “conservativeSubsSatisfaction” is triggered when there is a need to set the
satisfaction level for potential subscriptions in the service subscription sub-system of
TEQUILA. This occurs when the Satisfaction Rate factors have been set (event SRFac-
trsSet) in the Service Subscription Manager (subject /Managers/SSM/SLSServSatistMO). The pol-
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icy itself is used to define appropriate values on which the service admission mechanisms
would rely; namely, the Satisfaction Level. The action enforced by this policy, and basi-
cally the value assigned to the Satisfaction Level (serviceType.SL = 1) ensures that the active
SLSs under TEQUILA would enjoy their QoS at their almost satisfied rates even at con-
gestion. Other policies described in Section 5.7.4 are used to define almost/fully satisfied
rates. The subject and target objects of this policy belong to the service subscription
manager components of the TEQUILA approach (/Managers/SSM/).

The policy “conservativeSubsAdmission” is triggered when the Resource Availability
Matrix has been received from the Traffic Engineering function of the TEQUILA ap-
proach, namely when the event “ramRecvd(TT, SRamin, SRwmin, SRmax , serviceType)” occurs in the
buffer control of the SSM (subject /Managers/SSM/BufferMO). The policy is used to specify an
acceptable area in the calculated available resources per-TT. The action enforced by this
policy defines a threshold to decide whether to accept an incoming request or not. More
concretely, this policy ensures that the maximum estimated demand of the active sub-
scriptions is lower than the resources previously calculated to guarantee the almost satis-
fied rates of the previously subscribed services, which is practically defined by the policy
action “setMaxAccpt (serviceType.PHB, serviceType. TDtmax < serviceType.Rwmin)” of this policy.

5.7.2 Traffic Injection Controlled

The policies involved in realising this goal are “minCriticalLevelPrecautions” and “minin-
vocationPrecautions”. The Ponder representations of these policies are shown in Figure 62.

inst oblig /ManagedObjects/Routers/minCriticalLevelPrecautions {
on newConfigRecvd ( TT ) ;
subject s =/Managers/Routers/SLSIMonitor ;
target t = /Managers/Routers/SLSIPMA ;
do setTCL (TT, TT . tcl =s. Rmax ) ;}

inst oblig /ManagedObjects/Routers/minlnvocationPrecautions {

on newConfigRecvd ( TT ) ;

subject s =/Managers/Routers/SLSIAdmission ;

target t = /Managers/Routers/SLSIPMA ;

do setAC (TT,s.ACmin=0, s. ACmax =s. Rmax ) ;
}

Figure 62.  Policies involved in the goal Traffic Injection Controlled

The policy “minCriticalLevelPrecautions” is triggered when there is a need to set the
Target Critical Level (TCL) in the service invocation sub-systems of TEQUILA, namely
when new Traffic Trunk (TT) configurations are received (event newConfigRecvd(TT)) in the
Service Invocation Monitor (s=/Managers/Routers/SLSIMonitor) components. The action en-
forced by this policy is used to specify the level at which the likelihood of overwhelming
the network is considered critical. In this particular case, the policy sets the higher value
that can be assigned to the TCL by executing the policy action “setTCL(TT, TT.tcl = s.Rmax)”.
In this case, the precautions taken will be the lowest as the target critical level is equal to
the maximum available resources. The subject and target objects of this policy belong to
the service invocation components of the TEQUILA approach. This policy has some im-
pact on the enforcement of the policies described in Section 5.7.3.
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The policy “mininvocationPrecautions™ is triggered when new Traffic Trunk (TT) con-
figurations are received (event newConfigRecvd(TT)) in the Service Admission controls of the
SLS-I modules (s=/Managers/Routers/SLSIAdmission). The policy is used to position thresholds
between Rmin and Rmax iN the Resource Allocation Buffer (RAB) for invocation purposes.
While the Rwin are the resources always available for the TT even at congestion, the R
are the maximum resources available for the corresponding TT. For our application sce-
nario, the threshold is set to the maximum available resources calculated per Traffic
Trunk, given by the policy action “setAC(TT, s.ACmin=0, s. ACmax=s.Rmax)”.

5.7.3 QoS Degradation Prevented

This goal is realised by the policies “mildSRProactiveAction”, “mildACProac-
tiveAction”, “tclCleardSRAction”, “tclCleardACAction”, “primeSRCongProactiveAc-
tion”, “primeACCongProactiveAction”, “congSolvdSRAction”, and “congSolvdACAc-
tion”. The Ponder representations of these policies are shown in Figure 63.

inst oblig /ManagedObjects/Routers/mildSRProactiveAction{ inst oblig /ManagedObjects/Routers/primeSRCongProactiveAction{
on tclAlarmRaised (up, TT ) ; on congAlarmRaised ( TT ) ;

subject s =/Managers/Routers/SLSIMain ; subject s =/Managers/Routers/SLSIMain ;

target t = /Managers/Routers/SLSIPMA ; target t = /Managers/Routers/SLSIPMA ;

do setSR (TT,s.SR=s.SRas + (s.SRfs -s.SRas)/2);} do setSR(TT,s.SR=s.SRas); }

inst oblig /ManagedObjects/Routers/mildACProactiveAction { inst oblig /ManagedObjects/Routers/primeACCongProactiveAction{
on tclAlarmRaised (up, TT ) => setSR () ; on congAlarmRaised ( TT ) => setSR () ;

subject s =/Managers/Routers/SLSIMain ; subject s =/Managers/Routers/SLSIMain ;

target t = /Managers/Routers/SLSIPMA ; target t = /Managers/Routers/SLSIPMA ;

do setAC (TT,s. ACmax =s. Rwmin ); } do setAC (TT,s.ACmax=0);}

inst oblig /ManagedObjects/Routers/tclCleardSRAction { inst oblig /ManagedObjects/Routers/congSolvdSRAction {

on tclAlarmRaised ( down, TT ) ; on congResolvdAlarmRaised(TT) ;

subject s =/Managers/Routers/SLSIMain ; subject s =/Managers/Routers/SLSIMain ;

target t =/Managers/Routers/SLSIPMA ; target t = /Managers/Routers/SLSIPMA ;

do setSR (TT,s.SR=s.SRfs );} do setSR(TT,s.SR=s.SRfs): }

inst oblig /ManagedObjects/Routers/tclCleardACAction { inst oblig /ManagedObjects/Routers/congSolvdACAction {

on tclAlarmRaised ( down, TT ) —> setSR () ; on congResolvdAlarmRaised(TT) => setSR () ;

subject s =/Managers/Routers/SLSIMain ; subject s =/Managers/Routers/SLSIMain ;

target t = /Managers/Routers/SLSIPMA ; target t = /Managers/Routers/SLSIPMA ;

do setAC (TT,s. ACmax = s. Rmax ) ;} do setAC (TT, s. ACmax =s.Rmax); }

Figure 63.  Policies involved in the goal QoS Degradation Prevented

The “mildSRProactiveAction” policy is triggered when the target critical level is crossed
in the SLSI components, namely when the event “tclAlarmRaised(up, TT)” occurs in the SLSI
Main component (s = /Managers/Routers/SLSIMain). The action enforced by this policy, namely
“setSR (TT, s.SR=s.SRas + (s.SRfs - s.SRas) / 2)”, is used to reduce the service rates half-way be-
tween the calculated resources meant to provide fully satisfied rates (SRfs), and almost
satisfied rates (SRas) to active services in the Resource Allocation Buffer (RAB) of the
respective traffic trunks.

The “mildACProactiveAction” policy is triggered when the target critical level is crossed
and new service rates have been assigned in the SLSI components, namely when the
event “tclAlarmRaised (up, TT) -> setSR ()" is registered in the SLSI Main components. This pol-
icy is used to set up a threshold for new invocations up to minimum resources always
available, even at congestion state (Rnn) in the Resource Allocation Buffer (RAB).
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The “tcICleardSRAction” and “tciCleardACAction” policies assess the restoration of service
rate and admission control adjustments once the target critical level alarm has been
cleared. On the one hand, the former policy is committed to adjust the service rate to the
fully satisfied rates for each TT by executing the action *“setSR(TT, s.SR = s.SRfs)”, once the
target critical level alarms have been cleared up in the corresponding traffic trunk in the
SLSI components (event tclAlarmRaised(down, TT)). On the other hand, the “tcICleardACAction”
policy adjusts the admission control mechanisms again, to the maximum available re-
sources for each traffic trunk by executing the policy action “setAC (TT, s.ACmax = s.Rmax)”,
once the target critical level alarm has been cleared up and the service rate adjustments
have taken place in the SLSI components (event tclAlarmRaised(down, TT) -> setSR ()).

The “primeSRCongProactiveAction” and “primeACCongProactiveAction” policies drive the
congestion resolution mechanisms in the traffic trunks of the network. The former policy
commits with this task by limiting active users to enjoy rates aligned to their almost satis-
fied rates. This is achieved by enforcing the policy action setSR(TT, s.SR = s.SRas), under TT
congestion events “congAlarmRaised(TT)” occurring in the SLSI components. In addition,
admission control actions are enforced by the policy “primeACCongProactiveAction” in the
sense of rejecting new invocations. This is achieved by setting up of the control thresh-
olds to zero with the policy action “setAC(TT, s.ACmax = 0)”. This policy is triggered when the
congestion alarm has been issued and the SLSI has taken service rate adjustments (event
congAlarmRaised ( TT) -> setSR ().

Finally, the “congSolvdSRAction” and “congSolvdACAction” policies drive the restoration
of service rate and admission control mechanisms when the congestion states have been
resolved in the SLSI components. On the one hand, the former policy is committed to
restore the rates-to-enjoy by active users, to those aligned to their fully satisfied rates by
enforcing the policy action “setSR (TT, s.SR = s.SRfs)”. On the other hand, the policy “cong-
SolvdACAction” restores the admission control mechanisms to allow new invocations up to
the maximum available resources in corresponding traffic trunk, by executing the policy
action “setAC(TT, s.ACmax = s.Rmax)”.

5.7.4 Traffic Demand Estimated

The policies involved in realising this goal are “asConfigured”, “asConfigured_real”,
“fsConfigured”, and “fsConfigured_real” whose Ponder representations are shown in Figure 64.

inst oblig /Managers/asConfigured { inst oblig /Managers/fsConfigured {

on newRPC ( TT, serviceType, TD ) ; on newRPC ( TT, serviceType, TD ) —> setAlmstSatisfFactr () ;
subject s =/Managers/SSM/TF ; subject s =/Managers/SSM/TF ;

target t = /Managers/SSM/TFPMA ; target t =/Managers/SSM/TFPMA ;

do setAlmstSatisfFactr ( serviceType . PHB , serviceType . do setFulSatisfFactr ( serviceType . PHB, serviceType .
FactrSRAS =60 ) ; } FactrSRFS =85 ) ; }

inst oblig /Managers/asConfigured_real { inst oblig /Managers/fsConfigured_real {

on newRPC ( TT, serviceType, TD ) ; on newRPC ( TT, serviceType, TD ) => setAlmstSatisfFactr () ;
subject s =/Managers/SSM/TF ; subject s =/Managers/SSM/TF ;

target t =/Managers/SSM/TFPMA ; target t = /Managers/SSM/TFPMA ;

do setAlmstSatisfFactr ( serviceType . PHB = "real", serviceType. do setFulSatisfFactr ( serviceType . PHB = "real", serviceType .
FactrSRAS =100 ) ; } FactrSRFS =100 ) ; }

Figure 64.  Policies involved in the goal Traffic Demand Estimated
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The policies “asConfigured” and *“asConfigured_real” are triggered when there is a new
Resource for Provisioning Cycle (RPC) in the Traffic Forecast (TF) component of
TEQUILA. This event is represented as “newRPC(TT, serviceType, TD)” in Fig. 64. These two
policies are used to drive the percentage of the traffic rate, which if offered to an SLS, the
SLS is thought to be *“almost satisfied”. The “asConfigured_real” policy takes care of
real-time services for which the percentage rate is set to 100%. This is achieved by en-
forcing the policy action “setAlmstSatisfFactr (serviceType.PHB = “real”, serviceType.FactrSRAS = 100)” in
the TF module of TEQUILA. The “asConfigured” policy takes care of the rest of the ser-
vices. For these the *“asConfigured” policy sets the percentage rate to 60% by enforcing the
action “setAlmstSatisfFactr (serviceType.PHB, serviceType.FactrSRAS = 60)”.

The policies “fsConfigured” and “fsConfigured_real” are triggered when there is a new
Resource for Provisioning Cycle (RPC), followed by a setting up of the almost satisfied
percentages described above. The values enforced with the “fsConfigured_real” policy are
100% for real-time services, enforced with the action “setFulSatisfFactr (serviceType.PHB = "real",
serviceType.FactrSRFS = 100)”. On the other hand, the percentage rate enforced by the “fsConfig-
ured” for the rest of the services is 85%. This situation is achieved by enforcing the action
“setFulSatisfFactr (serviceType.PHB, serviceType.FactrSRFS = 85)”.

5.7.5 Available Resources per-Traffic Trunk Calculated

The policies involved in realising this goal are “AvgDelayLoss”, “MinLinkOverLoad”,
“SpareCapPropSplit” and ““OverCapPropSplit”. The Ponder representations of these policies are
shown in Figure 65.

inst oblig /Managers/AvgDelayLoss { inst oblig /Managers/SpareCapPropSplit {
on doRPC (OA , bw, links ) ; on runPostProcessing ( TTs, TEM, OA ) ;
subject s =/Managers/ND/NDPMA ;; subject s =/Managers/ND/NDPMA ;
target t = /Managers/ND/HopCount; target t = /Managers/ND/PostProcessing ;
do calculateHopCount ( OA , links . hopConstraint ="avg" ) ;}  do allocSpareBW ( OA . bw = "prop" ) ;}
inst oblig /Managers/MinLinkOverLoad { inst oblig /Managers/OverCapPropSplit {
on startingOptimisation ( TEM , TTs, Links ) ; on redistributeSpare ( TTs, TEM, OA ) ;
subject s =/Managers/ND/NDPMA ; subject s =/Managers/ND/NDPMA ;
target t = /Managers/ND/Optimisation ; target t = /Managers/ND/PostProcessing ;
do setCostFunctionE (s. OA, s. exp = "max" ) ; do reduceOverBW ( OA . bw = "prop" ) ;

} i

Figure 65.  Policies involved in the goal Available Resources per-TT Calculated

The above policies modify the behaviour of the internal components of the Net-
work Dimensioning module for resources allocation tasks. The “AvgDelayLoss” policy is
triggered when a new Resource Provisioning Cycle (RPC) occurs in the Network Dimen-
sioning module (ND) of the TEQUILA system. This policy sets the strategy to follow for
the expected traffic calculations in terms of delay and loss requirements. In other words,
this policy enforces that the HopCount manager of the ND, to consider the average delay
and packet loss introduced by the links of the underlying network as the default for the
maximum hop-count constraints. This is achieved by enforcing the policy action calculate-
HopCount (OA, links.hopConstraint = "avg") as shown in Figure 65.

The policy “MinLinkOverLoad” is triggered when the network calculation process
starts, namely when the event “startingOptimisation (TEM, TTs, Links)” is registered in the ND
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module of the TEQUILA system. This policy enforces that the network utilization shares
the load throughout the links of the underlying network, hence avoiding that some links
end-up overloaded after the calculation of resources. This is achieved by enforcing the
policy action “setCostFunctionE (s.0A, s.exp = "max")” in the Optimisation module of the ND
system (t = /Managers/ND/Optimisation).

The policy “spareCapPropSplit” is triggered when the ND is forced to define how to
handle the remaining resources of the network, once the calculation of the resources has
been carried out. This situation occurs when the event “runPostProcessing (TTs, TEM, OA)” IS
registered in the ND module. This policy enforces to redistribute the usage of additional
resources proportionally amongst the OAs sharing the corresponding traffic trunk. This is
achieved when the action “allocSpareBW (OA.bw = "prop")” is executed in the PostProcessing
module of the ND system (t = /Managers/ND/PostProcessing).

Finally, the policy “OverCapPropSplit” is triggered when the ND defines the way it
will handle resources reductions in case of over-provisioning BW. This situation occurs
when the event “redistributeSpare (TTs, TEM, OA)” is registered in the ND module. This policy
enforces that in all cases, the reductions will be “proportional” to the resources reserved
for each OA in the TEQUILA system. This is, by enforcing the policy action “reduce-
OverBW (OA. bw="prop")” in the ND PostProcessing module (t = /Managers/ND/PostProcessing).

5.7.6 Dynamic Fluctuations Managed

This goal is realised by the policies “IncLwrThRel”, “DecLwrThRel”, “IncUpprThRel”,
“DecUpprThRel”, “AllocincrsdRel”, “AllocDecrsdRel”, “SplitSpareCapProp”, and “DecOverCapProp”. The
Ponder representations of these policies are shown in Figure 66 for which a brief descrip-
tion is provided thereafter.

inst oblig /ManagedObjects/Links/IncLwrThRel { inst oblig /ManagedObjects/Links/AllocIncrsdRel {

on thrCrossingAlarm (up , utilValue , Link , OA ) ; on thrUpAlarmProcessing (utilValue , Link , OA ) ;

subject s =/ManagedObjects/Links/Router/Monitor ; subject s =/ManagedObjects/Links/Router/DMain ;

target t =/ManagedObjects/Links/Router/DRsMPMA target t =/ManagedObjects/Links/Router/DRsMPMA ;

do incrLwrThs ( Link , OA, OA . bwthr = OA . bwthr + 0.1 * Link do incrAlloc (Link , OA, OA. bw =0A . bw + 0.1 * Link .
. dynamicRanges ) ; dynamicRanges ) ;

} }

inst oblig /ManagedObjects/Links/DecLwrThRel { inst oblig /ManagedObjects/Links/AllocDecrsdRel {

on thrCrossingAlarm ( down , utilValue , Link , OA ) ; on thrDwnAlarmProcessing (utilValue , Link , OA ) ;
subject s =/ManagedObjects/Links/Router/Monitor ; subject s =/ManagedObjects/Links/Router/DMain ;

target t =/ManagedObjects/Links/Router/DRsMPMA target t = /ManagedObjects/Links/Router/DRsMPMA ;

do decrLwrThs ( Link , OA , OA . bwthr = OA . bwthr - 0.1 * Link do decrAlloc (Link , OA, OA . bw =0A . bw - 0.1 * Link .
. dynamicRanges ) ; dynamicRanges ) ;

} }

inst oblig /ManagedObjects/Links/IncUpprThRel { inst oblig /ManagedObjects/Links/SplitSpareCapProp {

on thrCrossingAlarm (up , utilValue , Link , OA ) ; on postProcessingRequest ( Link , OA , BW ) ;

subject s =/ManagedObjects/Links/Router/Monitor ; subject s =/ManagedObjects/Links/Router/DMain ;

target t =/ManagedObjects/Links/Router/DRsMPMA target t =/ManagedObjects/Links/Router/DRsMPMA ;

do incrUpprThs (Link , OA , OA . bwthr = OA . bwthr + 0.1 * do splitSpareCap ( Link , OA , s. LinkBWalloc = "proportionally" ) ;
Link . dynamicRanges ) ; }

} inst oblig /ManagedObjects/Links/DecOverCapProp {

inst oblig /ManagedObjects/Links/DecUpprThRel { on postProcessingRequest ( Link , OA , BW ) ;

on thrCrossingAlarm ( down , utilValue , Link , OA ) ; subject s =/ManagedObjects/Links/Router/DMain ;
subject s =/ManagedObjects/Links/Router/Monitor ; target t = /ManagedObjects/Links/Router/DRsMPMA
target t = /ManagedObjects/Links/Router/DRsMPMA ; do decrOverBW ( Link , OA , s. LinkBWred = "proportionally" ) ;
do decrUpprThs ( Link , OA , OA . bwthr = OA . bwthr = 0.1 * }

Link . dynamicRanges ) ;

}
Figure 66.  Policies involved in the goal Dynamic Fluctuations Managed
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The policies shown on the left part of the Figure 66 handle the management of
threshold crossings in the Monitoring components of the DRsM modules of the
TEQUILA system. DRsM modules are attached to every link interface of the core routers
pertaining to the underlying network, which are in turn defined as Monitor in the subject
field of these policies. These policies are triggered when threshold crossing alarm
(thrCrossingAlarm) ~ events  are  registered in the Monitor components  (s=
IManagedObijects/Links/Router/Monitor). The enforcement of the policies “IncLwrThRel”, and “IncUp-
prThRel” results in threshold adjustments covering, respectively, lower and upper threshold
settings for upwards threshold crossings.

Similarly, downwards threshold crossings are handled by the policies
“DecLwrThRel”, and “DecUpprThRel”, both for lower and upper threshold crossings respec-
tively. In all these cases, the threshold adjustments are 10 percent the dynamic range pro-
vided by the ND module, this is 10% of the difference between the maximum and mini-
mum values that the DRsM can drive for dynamic traffic fluctuations. A concrete exam-
ple is the action enforced by the policy “DecLwrThRel”, namely “decrLwrThs (Link, OA, OA. bwthr =
OA.bwthr - 0.1 * Link.dynamicRanges )” which decreases 10% of the dynamic range, the lower
threshold in the DRsM module. Similar actions are enforced for the other policies shown
in the left part of Fig. 66 to cope with the corresponding threshold crossings.

The policies “AllocincrsdRel” and “AllocDecrsdRel” shown in the upper-right part of
Figure 66 handle the increment of resources allocation. These policies are triggered by
the upper and lower threshold crossing handlings respectively. These triggering events,
namely “thrUpAlarmProcessing (utilValue, Link, OA)”, and “thrDwnAlarmProcessing (utilValue, Link, OA)” are
registered in the DMain components of the DRsM modules of the TEQUILA system. The
policy actions in these two policies are enforced to increase/decrease the allocated re-
sources for the corresponding OA for which the threshold crossing was issued. For ex-
ample, the policy “AllocDecrsdRel” enforces the action “decrAlloc (Link, OA, OA.bw = OA. bw - 0.1 *
Link.dynamicRanges)” to reduce the allocated bandwidth by a relative value equivalent to the
10% of the dynamic range provided by the ND component.

The policy “splitSpareCapProp” is triggered by events signalling resources
re-allocations in the DRsM, namely by means of post processing events occurring in the
Main components (see postProcessingRequest(Link, OA, BW) event in Fig. 66). This policy en-
forces the action “splitSpareCap (Link, OA, s.LinkBWRed = "proportionally”)” which ensures that the
spare resources of the link are used proportionally amongst all the OAs sharing the link to
which the DRsM module is attached.

Finally, the policy “DecOverCapProp” is also triggered after resource re-allocations.
Nevertheless, it enforces the policy action “decrOverBW(Link, OA, s.LinkBWRed = "proportionally")”” to
make sure over-provisioned resources are decreased proportionally amongst the OAs
sharing the link to which the corresponding DRsM belong to.
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5.8 Analysis of the managed system behaviour

In this Section we provide information regarding the policy-guided behaviour of
the TEQUILA approach taking as reference the refined policies of our application sce-
nario. It is not our intention to validate the TEQUILA approach or the enforcement of the
refined policies, as this may lead to statistical results that lay out of the scope of this The-
sis. Our objective is to point out the constrained behaviour obtained through the execu-
tion of available refined policies. The results acquired through this validation scenario
have been verified with the ones obtained as part of the final TEQUILA dissemination
results [Damil02]. The interested reader may use this reference for a detailed description
of the validation results produced for the execution of scenarios involving quantitative
data regarding service subscriptions, traffic injection, and network topologies.

5.8.1 System behaviour based on traffic input

The policies refined in our application scenario enable the functional operation of
the TEQUILA system as a result of the holistic view of policy refinement for QoS Man-
agement [Rub06¢]. The following is the behaviour of the traffic input points that is con-
trolled by policies refined in this application scenario. To better describe this aspect, we
make use of the summarised representation of system behaviour shown in Figure 67.
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Figure 67.  Summarised representation of system behaviour due to traffic input
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As we have described earlier, for every traffic input point, the TEQUILA system
calculates three key values that define the Resource Allocation Buffer per-TT (RABty);
maximum resources (Rmax), minimum always available even at congestion (R"min) and
minimum always available (R®min). The traffic input (TRy) in the system is referred to
the RABtr and its evolution is depicted in Fig. 67.

The refined policies constrain the relevant TEQUILA components and subse-
quently define three operational zones for the traffic input points. For better explanation
these are referred to as “non-congested normal”, “non-congested prevention”, and “con-
gestion solving”. These zones are graphically presented in the upper-part of Figure 67.

The system works in “non-congested normal” mode when the traffic injected in
the network ranges from zero to the maximum resources for a specific TT and no conges-
tion alarms are reported from the monitoring sub-system. In this mode, the service rate
adjustments allow active users to send traffic up to their fully satisfied rates (SRgs) and
the admission control threshold is set to Rmax.

As depicted in Figure 67, the system works in “non-congested prevention” mode
when the traffic injected in the network has reached the maximum resources of a TT
(Rmax), and no congestion alarms are reported from the monitoring sub-system. In this
case the service rate adjustments reduce the traffic injection of active users, half-way
between fully satisfied rates (SRgs) and almost satisfied rates (SRas). Also, in this mode
the admission control adjustments reduce the threshold up to R"min. Eventually, the traf-
fic input is reduced until its value crosses downwards R"min in the RAB+r. At this point,
the system is considered to shift to “non-congested normal” mode.

Similarly, the system works in “congestion solving” mode when, irrespective of
the traffic input, the monitoring subsystem reports congestion in the system. By irrespec-
tive, we mean that the traffic input (TRy) in the system can be located in any point of the
RAB+T as we represent with the three dotted lines of TRy in the central part of Figure 67.
More concretely, note that in the non-congested area, TRy can be in any part of the
RAB+T, same as within the congestion-solving area, see the evolution of the three dotted
lines in Figure 67. This means that the “congestion solving” area can occur irrespective
of the traffic input. In the “congestion solving” operational mode the admission control
rejects any potential invocation (threshold set to 0) and the service rate of active users is
reduced up to almost satisfied rates (SRas). The traffic input is reduced as a consequence
of the former adjustments. Eventually, the congestion alarms are cleared thus shifting the
traffic input point to “non-congested normal” mode.

5.8.2 System behaviour based on inner observed load

This section illustrates the behaviour of the system with respect to the inner ob-
served load, this is, we show the internal rearrangements of resources to the different
Per-Hop-Behaviours (PHBs) of the network as a result of the policies refined in this ap-
plication scenario. To better describe this aspect, we make use of the summarised repre-
sentation of system behaviour shown in Figure 68.
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As we have described earlier, the TEQUILA system calculates, on a
Per-Hop-Behaviour (PHB) basis, three key values; maximum, minimum and congestion
required resources at each network interface represented as PHBmax, PHBmin and PHBong
in Figure 68. In the text below, we consider a network interface shared by three PHBs.

The system is forced to rearrange resources based on observed load fluctuations
based on policy rules. For instance, should PHB1 be under-utilised as we show in Figure
68, the system reduces its BW allocation so that spare BW can be allocated to other
PHBs, for example PHB2 and PHB3 (see PHB1 under-utilised circle in Figure 68).
Should PHBL1 be over-utilised as we show in Figure 68, the system increases its BW al-
location if sufficient link capacity is available, for example, from PHB2 and PHB3 in
Figure 68 (see PHB1 over- utilised circle in Figure 68).
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Figure 68.  Summarised s;féfem behaviour due to inner observed load

The network interfaces react to observed load fluctuations within the maximum
and minimum resources estimated for each PHB. The later is identified as dynamic range
in Figure 68. The reactions are carried out in a discrete manner, this is, they take place
when the load reaches specific points within the dynamic range. In this case, the system
detects load fluctuations in ten symmetrical points within the dynamic range. Similarly,
the system is forced to vary BW allocations in steps given by ten symmetrical points
within the dynamic range for the corresponding PHB as we graphically show on the right
part of Figure 68.
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5.9 Conclusions

This Chapter has presented the applicability of a holistic refinement approach in
the quality of service (QoS) management domain. Namely, we have presented how the
policy refinement framework and the methodological approach to goal refinement de-
scribed in Chapter 3 and Chapter 4 respectively, can be used to refine enforceable poli-
cies from QoS-oriented administrative views in a systematic manner. We have presented
a holistic and realistic application scenario of policy refinement, capturing the require-
ments, processes, actors and phases involved in such a critical process. As far as we
know, no other work has explicitly addressed the policy refinement problem in any ap-
plication domain in such a complete view.

The contribution of this Chapter is itself the assessment of a policy refinement
process in a holistic view, for a network management domain [Rub06c], namely for the
QoS Management domain. This achievement has not represented significant administra-
tive efforts as we have handled information that has been used during the design, imple-
mentation, and the operation of the TEQUILA approach. The following are some conclu-
sions drawn after executing the refinement process in this concrete application domain.

We can conclude that the high-level goals definition is one of the most important
steps for the assessment of the QoS-oriented refinement process. This step, which we
suggest to be carried out during the design of the system, pre-establishes the way the ad-
ministrator consultant will define operative views of QoS Management at runtime as
these are generated through the high-level goals. In this sense, a remarkable issue of the
methodological approach is that all the refinement process relies on administrative deci-
sions. Nevertheless, policy authoring environments and policy-based management itself
are driven by administrative decisions. Hence, we can conclude that the methodological
approach does not substitute the administrative parties to be the most important sources
for decisions of how to control QoS provisioning. Moreover, we have provided the ad-
ministrative parties with an affordable approach to control QoS provisioning. We ac-
knowledge that additional analysis techniques should be integrated to reduce or to avoid
if possible, potential mistakes that the administrative parties could make during the re-
finement process.

Regarding the system composition hierarchy, the Service Management and the
Traffic Engineering functions of the TEQUILA approach do not work isolated. Hence, a
remarkable issue here is that the system composition hierarchy should integrate the de-
tails of these two functionalities which in turn should be used to drive the QoS-oriented
goal refinement process. On the other hand, the administrator developer should also pro-
vide a complete and correct System Model for the managed system involved in the
TEQUILA approach. It is mandatory that the administrator developer should provide
complete and correct specifications for the former two issues. Again, the administrative
parties are responsible for the definition and for checking the completeness of the infor-
mation provided for these purposes. Additional analysis techniques should be figured out
to reduce or to avoid if possible, potential mistakes that the administrative developer
could make at these stages.
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The policies refined in our application scenario enable the functional operation of
the TEQUILA system to control QoS provisioning aligned to a QoS-oriented operative
view. Regarding this issue, the methodological approach worked out in this Thesis has
provided the means to define operative views for QoS management and/or modify current
ones in a systematic manner. Moreover the application scenario has not evaluated under
which conditions of user demands this operative view should be changed to allow a better
performance of the network controlled with the TEQUILA approach. This may involve
carrying out dense statistical analyses, with diverse network topologies, user demands,
etc, which is out of the scope of the Thesis. Contrary, our methodological approach en-
ables the administrator consultant to define operative views for QoS management and/or
modify current ones in a systematic manner. We can conclude then, that our methodo-
logical approach can contribute to the development of statistical and feedback analysis
techniques in favour of QoS provisioning.

Linked to the above issue and inspired in situations where a QoS-oriented opera-
tive view is no longer valid or that it should be changed, we could relate these situations
to the fact that goals should evolve. Most probably, this goal evolution should be influ-
enced by statistical changes of user load, topology changes, etc. So far, we have consid-
ered and provided a framework that considers static high-level goals and consequently
static QoS-oriented operative views. Moreover, it is highly desirable to consider mecha-
nisms that enable goal evolution. In this sense, we can conclude that our approach could
be used as a starting point to address this challenging issue that may probably enable the
policy refinement process to shift into a cyclic and continuous process in which contex-
tual information could be used to drive the refinement process.

Another conclusion drawn from the execution of the scenario presented in this
Chapter is that policy refinement demands a deep knowledge of the application domain at
every stage of the refinement process. In this case, a deep knowledge of the QoS Man-
agement domain has been needed to carry out the validation scenario presented in this
Chapter. We could conclude then that it is impossible to think of a simplistic solution to
the policy refinement problem since it is a complex issue that certainly deserves more
attention. Significant efforts are still necessary toward the solution of the refinement
problem, most probably targeting specific application domains to identify its peculiarities
and implications. In the QoS Management domain, future work could be directed to ex-
plore the implications of inter-domain QoS Management for which the research commu-
nity has envisaged necessary to solve still open issues like that of the policy refinement
problem. Application-wise we are currently exploring the implications of the refinement
problem applied to pricing environments [Gut07].
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Chapter 6 Related Work on Policy Refinement

6.1 Introduction

Policy refinement is a sub-field of policy-based management that has been rather
dismissed, most probably due to its inherent complexity. In this sense, related work ex-
plicitly committing this open problem is scarce. In this Thesis, we have dealt with the
critical nature of providing a complete approach to the policy refinement process, pro-
posing all the necessary elements involved in this critical aspect of policy-based man-
agement. The following are the elements addressed in this Thesis, which are in turn rep-
resented in Figure 69 together with the techniques/principles on which such key elements
rely:

e Formalising goal-oriented high-level requirements and goal refinement
e Link between goal fulfillment and system behaviour finding
e Abstraction of enforceable policies from system behaviour findings

e Functional prototype that provides support during the goal-oriented refinement proc-
ess

e Application of the methodology to a concrete management application domain

FORMALISING GOAL ORIENTED LINK BETWEEN GOAL ABSTRACTION OF
REQUIREMENTS AND GOAL FULFILLMENT AND SYSTEM ENFORCEABLE POLICIES FROM
REFINEMENT BEHAVIOUR FINDING SYSTEM BEHAVIOUR FINDINGS
Requirements Engineering State Exploration Via Event-Condition-Action
Methodologies Model Checking Translation Process
FUNCTIONAL PROTOTYPE THAT APPLICATION OF THE METHODOLOGY
PROVIDES SUPPORT DURING THE GOAL- TO A CONCRETE AND REALISTIC
ORIENTED REFINEMENT PROCESS MANAGEMENT DOMAIN
Component—based DiStributed QOS Management Domain:
Systems The TEQUILA approach

Figure 69. Key elements of the Thesis

Although some relevant contributions have been provided in the refinement area,
to the best of our knowledge, by the time of the publication of this Thesis, there is no
evidence of any complete approach to goal-oriented policy refinement, addressing the
above key elements in such a holistic manner.

This Section presents the related work on policy refinement. For this purpose we
divide the related work in six sub-Sections. Section 6.2 presents related work on
goal-oriented management. Section 6.3 presents an abduction and Event Calculus ap-
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proach to policy refinement. Section 6.4 presents work done to generate policies from
process specifications. Section 6.5 describes practical efforts carried out with refinement
prototypes and finally, Section 6.6 describes other general efforts in the refinement area.
We conclude this Chapter with Section 6.7.

6.2 Goal-oriented management

6.2.1 Specification of goal-oriented network management systems

The first approach addressing the need to design, implement and operate network
management system by means of goals was work by Bean et. al [Bea93]. The authors
proposed the first approach to turn the design of network management systems into a
formal engineering discipline based on Requirements Engineering principles.

Starting from the view that Requirements Engineering is an activity of knowledge
acquisition and formalization, the authors propose that such activity must not only de-
scribe the current and future system and its goals, but also its domain and range of influ-
ence. To this end, requirements engineering requires the cooperation of various members
with expertise in the various aspects of network management and general system theory.
Due to their very different backgrounds, these participants may have different perceptions
of the goals of the future system and its environment. The challenge of the authors was to
define a theoretically sound system and interface design framework, which would foster
an orderly cooperation among the members participating in the requirements engineering
activity and lead them to the production of a precise and complete set of end-user re-
quirements. Team effort within the systems design framework is illustrated in Figure 70
as described in [Bea93].

l—{ Statement of Intention li

The client expresses
informal requirements The “System Architect”
Required knowledge:
Formal basis

*Automatic control
*Petri nets
*Logic Programming

Team working

Formal specification of the
clients requirements

|

Execution of
formal specifications

Figure 70.  System design team model
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The starting point of this view is a “statement of intention,” which describes the
overall goal of the system to be designed and the domain in which it must operate. There
are some properties that user requirements must have. They should be executable. Al-
though the end-user requirements would likely be described in textual format, the idea of
the authors was to transpose these into executable code and to test them as part of the ap-
proval process. The executability of the requirements should facilitate the emergence of a
common understanding among the team members, who will likely have very different
backgrounds. User requirements should be verifiable. The execution of user requirements
should be a simulation.

However, it was envisaged that more powerful methods should be used to ascer-
tain that the requirements are reasonably complete and precise. In fact, the team members
should be able to obtain answers to questions about the behaviour of the specified system.
In general, these questions raised the concerns addressing the evaluation, the satisfiabil-
ity, and the validity of the user requirements.

The authors considers that the Evaluation for example should find the state in
which the system will be given a state of the system and a sequence of events. Satisfiabil-
ity should deal with finding for example, which sequences of events change the system
from the first state into the second, given two states of a system. At last but not least, va-
lidity should deal with situations where for example it was needed to verify that given
two states of the system and a (possibly infinite) set of sequences of events, it was true
that all the sequences of events in the set certainly change the system from the first state
into the second.

The framework developed by Bean et al. considers that the tasks of writing and
verifying user requirements should be carried out in parallel. For this, they considered
that the structure of user requirements should be inspired by automatic control theory.
Since real-time network management systems are control systems, the authors envisaged
that philosophy and methods of automatic control theory should be used for their design.

According to this philosophy, user requirements should clearly specify two com-
ponents: the controlled domain whose behaviour is being impacted by the future system
(the controller), and the goal to be achieved by the controlled domain working in coop-
eration with the future system. This same concept applies when defining the interfaces
between the cooperating systems and the information that must be defined specifically for
this communication. The overall view of Bean et al., is graphically shown in Figure 71.
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Figure 71.  Overall view of a network management system

The team model proposed in this framework considers that the System Architect
should manipulate an integrated design framework that integrates three mathematical
techniques (see system design model in Fig. 70):

e automatic control theory
e Predicate-transition Petri net theory
e logic programming.

Automatic control theory for discrete-event systems [Ram89] provides the unify-
ing theme that binds the various parts of the global system. It was envisaged that this the-
ory would provide a formal framework for the design of large systems with feedback
control. For instance, Figure 71 shows this overall view of a network management system
structured according to the concepts of automatic control theory. This system is com-
posed of three parts: (1) the controlled domain, which consists of network elements, op-
erations support systems, and network operators equipped with computer terminals. (2)
the controller that must be designed and implemented so that the global system, which is
composed of the controller working in conjunction with the controlled domain, achieves
a specified goal, and (3) the interfaces and interconnections that exist between the various
components for which communication information must be defined.

According to the authors view, Predicate-Transition Petri Net Theory [Gen86]
should be used to describe both the structure of processes (how processes are linked to-
gether) and their behaviour (how processes change their state). This is, Predi-
cate-transition Petri enables the framework to introduce, in a formal manner, the concepts
of individuals with changing properties and changing relations into the Petri net theory.
Intuitively, predicate-transition Petri nets would provide a dynamic perspective of the
common notion of a relational structure. A structure is a tuple of objects comprising a set
of individuals, called the domain of the structure, together with functions and relations in
that domain. Operators (function symbols) and predicates (relation symbols) should form
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the vocabulary of the language in which one talks formally about structures, i.e., about
the properties and relations of the individuals. The language used is first-order predicate
logic. A dynamic structure is characterized by the fact that some relations are variable in
the sense that their extensions (i.e., the set of individuals for which the corresponding
predicates are true) may vary from state to state due to the occurrence of processes in the
modelled system. The changes in the relation extensions are defined by transition
schemes.

Finally, Bean et al.’s framework integrated Logic Programming (Prolog) [Ster86]
as a feasible formalism to provide the descriptive framework. Logic programming is
based on the concept of using predicate logic as a programming language [Ster86]. Logic
programming languages have more natural semantics than other programming languages.
Due to their high-level declarative semantics, they are “almost” specification languages.
Moreover, they also have an operational meaning. In addition, the logic programming
language Prolog provides a suitable framework for the realization of meta-linguistic ab-
stractions, i.e., the establishment of new descriptive languages that are particularly well
suited to the problems at hand. For example, such a meta-linguistic abstraction can be
achieved by constructing a specialized language in Prolog. This is done by writing a
Prolog interpreter for the specialized language. This interpreter then, when applied to an
expression of the specialized language, would perform the actions required to evaluate
the expression. User requirements must contain the interpreter defining the language used
for the description of the controlled domain and the goals. Since the interpreter is written
in Prolog, this language plays the role of a lingua franca, i.e., a language that is assumed
to be understood by everyone.

Although these efforts were aligned with the TMN (Telecommunications Man-
agement Network) standards, these initiatives do not provide any clue about how these
goal-oriented requirements could be addressed in policy-based systems or the implica-
tions for its application to such systems, amongst other reasons because by the early nine-
ties, the idea of policy-based management was not as mature as we could consider it by
the time of the publication of this Thesis. In addition, there is no evidence of any imple-
mentation that brings all the concepts considered in the authors’ framework, or a per-
formance evaluation that makes their proposals trustworthy. In conclusion, there is not
explicit evidence of the evolution of this initiative.

Our holistic view of policy refinement could be considered as a specialisation of
the above initiative, narrowed down to address the refinement process in policy-based
network management systems. We provide a methodological approach and a functional
solution that makes a collaborative environment for shared work amongst the actors in-
volved in the policy refinement process, from the design/implementation of the system,
up to the operation of such system.
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6.2.2 The KAOS methodology

Since the early stages of policy-based management, the research community en-
visaged the need to specify policies at an abstract level and progressively refine them into
enforceable policies. The KAOS methodology approach was first brought into the policy
community by van Lamsweerde [Lam99] as an alternative to ground the policy refine-
ment problem. The KAOS approach [Dar93], [Dar95], [Dar98], [Lam95] used in this
Thesis is one of the most extended approaches in the Requirements Engineering area as it
provides support to formalise goal-oriented requirements specifications, and a rather
complete and mature goal-based reasoning technique to refin