
PhD in Artificial Intelligence
Universitat Politècnica de Catalunya - BarcelonaTECH

ASSESSING BIASES THROUGH
MOSAIC ATTRIBUTIONS

Anna Arias Duart





ASSESSING BIASES THROUGH
MOSAIC ATTRIBUTIONS

A thesis submitted for the degree of
Doctor of Philosophy in Artificial Intelligence

Advisors
Ulises Cortés - Dario Garcia Gasulla

2023

Anna Arias Duart





A la meua mare, pel caliu i l’amor.





CONTENTS

Contents VII

List of Figures XI

List of Tables XXI

Abstract XXIII

Resum XXV

Acknowledgments XXVII

1 Introduction 1
Taxonomy of eXplainable AI . . . . . . . . . . . . . . . . . . . . . . . . . 3
Motivations for explainability . . . . . . . . . . . . . . . . . . . . . . . . 4
Scope of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Structure of this document . . . . . . . . . . . . . . . . . . . . . . . . . . 13

I State of the art 15

2 Explainability Methods 17
2.1 Feature-based methods . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Concept-based methods . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Counterfactual methods . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Summary of this chapter . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Feature Attribution Methods 23
3.1 Perturbation-based methods . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Backpropagation-based methods . . . . . . . . . . . . . . . . . . . . 24

VII



VIII CONTENTS

3.3 Activation-based methods . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Summary of this chapter . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Evaluation Methodologies 29
4.1 Quantitative evaluations . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 Localization methods . . . . . . . . . . . . . . . . . . . . . . 31
4.1.2 Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.3 Randomization tests . . . . . . . . . . . . . . . . . . . . . . 32
4.1.4 Perturbation methods . . . . . . . . . . . . . . . . . . . . . 33

4.2 Summary of this chapter . . . . . . . . . . . . . . . . . . . . . . . . 34

II Mosaics for XAI Evaluation 37

5 Initial exploration 39
5.1 Summary of this chapter . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Focus formalization 45
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3 Focus score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.4 Sanity checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.4.1 Mosaic construction . . . . . . . . . . . . . . . . . . . . . . . 50
6.4.2 Randomization test . . . . . . . . . . . . . . . . . . . . . . . 52

6.5 Summary of this chapter . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Focusing on XAI methods 55
7.1 Experiments details . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.1.1 Explainability methods . . . . . . . . . . . . . . . . . . . . . 55
7.1.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.1.3 Mosaics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2.1 Focus score relations . . . . . . . . . . . . . . . . . . . . . . 61

7.3 Summary of this chapter . . . . . . . . . . . . . . . . . . . . . . . . 63

8 Attribution Confusion Matrix 65
8.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.2 Experiment details and results . . . . . . . . . . . . . . . . . . . . . 67
8.3 Summary of this chapter . . . . . . . . . . . . . . . . . . . . . . . . 69



IX

9 TextFocus 71
9.1 Modality shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
9.3 TextFocus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
9.4 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . 75

9.4.1 Explainability methods . . . . . . . . . . . . . . . . . . . . . 75
9.4.2 Datasets, models and mosaics . . . . . . . . . . . . . . . . . 76

9.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
9.6 Summary of this chapter . . . . . . . . . . . . . . . . . . . . . . . . 78

III Mosaics for Bias Detection 79

10 Bias in data and models 81
10.1 Using Focus to automate the bias identification process . . . . . . . 82
10.2 Building a biased model . . . . . . . . . . . . . . . . . . . . . . . . 86

10.2.1 Dataset creation . . . . . . . . . . . . . . . . . . . . . . . . 87
10.2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
10.2.3 Sanity checks . . . . . . . . . . . . . . . . . . . . . . . . . . 89

10.3 Focus on a biased model . . . . . . . . . . . . . . . . . . . . . . . . 94
10.4 Summary of this chapter . . . . . . . . . . . . . . . . . . . . . . . . 96

11 Mosaics for context biases 99
11.1 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . 99

11.1.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
11.1.2 Training setup . . . . . . . . . . . . . . . . . . . . . . . . . . 101
11.1.3 Cross evaluation . . . . . . . . . . . . . . . . . . . . . . . . 101
11.1.4 Context biases and contextualized mosaics . . . . . . . . . . 103

11.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
11.2.1 Results checks . . . . . . . . . . . . . . . . . . . . . . . . . . 111

11.3 Summary of this chapter . . . . . . . . . . . . . . . . . . . . . . . . 114

IV Wrap-up 117

12 Conclusions 119
12.1 Explainability trends . . . . . . . . . . . . . . . . . . . . . . . . . . 120
12.2 XAI assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
12.3 Biased models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
12.4 Summary of this chapter . . . . . . . . . . . . . . . . . . . . . . . . 123



X CONTENTS

13 Related Contributions 125
13.1 The MAMe dataset [published] . . . . . . . . . . . . . . . . . . . . 125
13.2 The Focus [published] . . . . . . . . . . . . . . . . . . . . . . . . . 126
13.3 Focus and Bias [published] . . . . . . . . . . . . . . . . . . . . . . . 126
13.4 A Confusion Matrix [published] . . . . . . . . . . . . . . . . . . . . 126
13.5 Assessing Biases through Visual Contexts [published] . . . . . . . . 127
13.6 TextFocus [not yet submitted] . . . . . . . . . . . . . . . . . . . . . 127

Bibliography 129

Webpage References 143

Acronyms 145



LIST OF FIGURES

1.1 Results of text completion using GPT-3 (accessed 24 January 2023,
being the model used the text-davinci-001). The part highlighted in
green is the one completed by the model. We change the gender in
each prompt (a) every man wants. . . and (b) every woman wants. . . 2

1.2 Definitions used for interpretability and explainability in [34]. . . . . 4

1.3 Representational Spaces presented by Kim. . . . . . . . . . . . . . . 5

1.4 Three images of animals: (a) tiger, (b) zebra and (c) dolphin. Be-
side each animal three features that humans use to differentiate
them (e.g., the characteristic shape of feline eyes, the zebra stripes,
the dolphin fins, etc.). . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 VGG19 predictions for the hammer class presented in [13]: (a)
49.92%. (b) 18.03% (c) 0.13%. Note how the model is more sensi-
tive to contour perturbation than to the global shape of the object. 7

1.6 Possible explanation images for the (a) tiger, (b) zebra and (c)
dolphin. The backgrounds of the images are highlighted since the
model would have learned to differentiate the different animals by
the background colour instead of by the animal itself. . . . . . . . . 9

1.7 Example of a potentially unwanted bias that can go unnoticed. The
feature attribution method only highlights the wool (i.e., red areas).
This could mean that the model only focuses on the wool texture
to classify these images as sheep, without learning the other char-
acteristic patterns of the sheep class. . . . . . . . . . . . . . . . . . 10

1.8 Two instances where the unwanted bias can be noticed. (a) A false
positive, the lama would be classified as a sheep because of the
texture of the wool (red areas highlighting the wool). (b) A false
negative, the lamb will not be classified as a sheep, because the
model is not able to find the learned texture (i.e., the wool texture). 10

XI



XII LIST OF FIGURES

1.9 Different sources of biases within the pipeline. First, biased data.
Second, biased models (e.g., trained on biased data). Third, non-
reliable explainability methods that are not faithful to the model.
Finally, the interpretation by humans can also introduce biases into
the framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.10 Mosaic examples. (a) 2× 2 mosaic composed of three zebras and a
water image (i.e., potential bias). (b) 1×2 mosaic composed of one
tiger and one zebra, both surrounded by vegetation (i.e., potential
bias). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Different categories of explainability methods depending on when
the explanation is generated, on what kind of model it can be ap-
plied, the scope of the explanations and the data type they are
intended to explain. In this work, we focus on the explanations
subgroups highlighted in green. . . . . . . . . . . . . . . . . . . . . 18

2.2 A possible concept-based explanation for the tiger. The vegetation
concept is important for the prediction. However, the stripes, the
eyes or the nose are not considered important concepts for the model
decision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Possible counterfactual explanations for the (a) tiger, (b) zebra and
(c) dolphin. The background shown in each case is the one that
would have caused the image to be classified as another class. (a)
The tiger would be classified as a dolphin if the tiger were sur-
rounded by water. (b) The zebra would be classified as a tiger if
the zebra were surrounded by vegetation. (c) The dolphin would
be classified as a zebra if the dolphin were surrounded by a brown
background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Different ways of handling the ReLU non-linearity. (a) Forward
pass. (b) Backward pass: Deconvnet method [110] (c) Backward
pass: Saliency Map method [96]. (d) Backward pass: Guided Back-
propagation method [101]. Replicated image from [101]. . . . . . . . 25

4.1 Explanations obtained with different feature attribution methods
for the same instance. (a) Original image. And the corresponding
explanations obtained with: (b) GradCAM, (c) SmoothGrad (d)
LRP and (e) LIME. . . . . . . . . . . . . . . . . . . . . . . . . . . 29



XIII

4.2 Different classes used for categorizing quantitative evaluation meth-
ods. Those surrounded by the thick grey circle correspond to meth-
ods assuming an expected response of the feature attribution meth-
ods. Instead, those surrounded by the thin circle generate a pseudo-
ground truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 Examples of different MAMe instances. The first sample corre-
sponds to the etching class, the second to the graphite class and the
third to the ceramic class. Notice the difference in aspect ratio and
composition among the different images. . . . . . . . . . . . . . . . 39

5.2 On the left, an original image from the MAMe dataset. On the
right examples of both data types. The top right type corresponds
to a fixed shape (FS) image, with an aspect ratio (AR) of 1:1, being
65,536, the total number of pixels. On the bottom right, a variable
shape (VS) image, with an AR of 2:1 and a total of 500k pixels. . . 40

5.3 Examples of carved stucco images are shown in the first row. In the
second row, their corresponding feature attribution maps obtained
with the Composite LRP. Notice that red areas correspond to the
input features contributing to the carved stucco class. Instead, blue
areas correspond to features favouring other classes. . . . . . . . . . 41

5.4 A wood class image in high-resolution (HR) and low-resolution (LR).
Next to its corresponding LRP-based feature attribution map ob-
tained using the model trained on HR and LR images. . . . . . . . 42

5.5 Silk and metal thread HR image and its feature attribution map.
The ornamental motifs (red zones) positively contributed to that
class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1 Toy mosaic example. This mosaic is composed of images from a
three-class dataset: cats, dogs and rabbits. The target class of this
mosaic is the cat class; therefore, the mosaic is composed of two
cats, one dog and one rabbit. . . . . . . . . . . . . . . . . . . . . . 47

6.2 Focus obtained by GradCAM on a VGG16 trained for Dogs vs Cats
dataset (pre-trained on ImageNet), using different mosaic configu-
rations. Each box plot shows the distribution of Focus obtained
from evaluating 2,812 samples for each configuration (the cat being
the target class). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



XIV LIST OF FIGURES

6.3 Focus obtained by GradCAM on top of a VGG16 model fine-tuned
for Dogs vs Cats dataset. Two different mosaic variations are tested.
On the left, two target class images vs two non target class images
(i.e., two dogs vs two cats). On the right one target class image
vs three non target class images (i.e., one dog vs three cats or one
cat vs three dogs). . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.4 Histogram of Focus scores obtained by GradCAM from 2,812 mo-
saics, using a VGG16 trained on Dogs vs Cats and a randomized
VGG16 model. The corresponding PDF estimation is represented
by a contour line on top. . . . . . . . . . . . . . . . . . . . . . . . . 52

7.1 Mosaic samples used by the evaluation methodology, obtained for:
(a) Dogs vs Cats (b) MIT67 (c) ImageNet and (d) MAMe dataset. 57

7.2 Focus distribution boxplot for different XAI methods applied to
models trained for different datasets. The accuracy (acc) shown
under each model corresponds to the mean per class accuracy on
the validation set of the corresponding dataset. These datasets are
(a) the Dogs vs Cats dataset, (b) the MAMe dataset, (c) the MIT67
dataset and (d) the ImageNet dataset. LIME is only present in (a)
and (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.3 Model’s training curves as pink triangles, the median of the Focus
distribution in purple circles (variance as shaded area). Both curves
correspond to a ResNet-18 trained on the Dogs vs Cats dataset. The
top plot corresponds to a model pre-trained on ImageNet, while the
bottom plot corresponds to a model trained from a randomized
initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.4 Model accuracy (a) and model loss (b) vs median of the Focus
distribution for different experiments. Each architecture is shown
in a different colour, and each classification task is represented with
a different marker. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8.1 (a) Mosaic example made up of images from the Dogs vs Cats959dataset.
On the right, the explanations for the target class dog are obtained
with: (b) LRP (c) LIME and (d) GradCAM. Purple areas corre-
spond to positive attributions and orange to negative ones. No-
tice that GradCAM only provides positive attributions. The model
used was a ResNet-18 architecture pre-trained on ImageNet and
fine-tuned on the Dogs vs Cats dataset. . . . . . . . . . . . . . . . . 65



XV

9.1 (a) Two images from the MAMe dataset reshaped to the same size
(i.e., same number of pixels). (b) Two sentences from the SST-2
dataset of different lengths. The top one is made up of eight words
and the bottom one is of length four. . . . . . . . . . . . . . . . . . 72

9.2 Example of the structure of two textual mosaics. The first row
corresponds to a mosaic of size J = 2 and the second row shows
a mosaic of size J = 4. Each sentence is separated from the next
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ABSTRACT

Machine learning and, more specifically, deep learning applications have grown in
number in recent years. These intelligent systems have shown remarkable perfor-
mance across various domains, including sensitive areas like medicine and justice.
Nevertheless, these models remain opaque, and we need a complete understanding
of their internal process. Therefore, the deployment of these black box models can
pose risks. Firstly, it might not comply with the current legislation. Secondly, it
may lead to severe consequences. Let us consider a scenario in which a model used
in a medical application is gender-biased, yielding distinct predictions depending
on a person’s gender. This fact would perpetuate discrimination against certain
parts of the population and exacerbate existing inequalities.

To better understand the model’s behaviour, enabling the detection and miti-
gation of potential biases and ultimately achieving more trustworthy models, the
eXplainable AI (XAI) field is an active research domain which is growing and
receiving increasing attention. Various approaches have been proposed in the lit-
erature. Nevertheless, the most widely used are the post-hoc methods. These
approaches can be applied once the model is trained, thus preserving the model’s
original performance. By employing these post-hoc explainability methods to gain
insights into the model and identify biases within the datasets and models, we
realized that two other biases arise: XAI and human biases.

While different XAI methods exist, assessing their faithfulness becomes chal-
lenging due to the absence of a ground truth determining what the correct expla-
nation is. The uncertainty regarding whether the explanation accurately reflects
the model’s behaviour can lead to what we refer to as XAI biases. Is the model
biased or is it the explainability method that fails to reflect the model’s behaviour?

Human bias is another of the biases that emerge when applying these explain-
ability methods. How we show these explanations to humans can be misleading
or lead to incorrect conclusions. This can be due to confirmation or automation
biases. In addition, when domain experts are asked to review all the explanations,
the process can be time-consuming and may lead experts to overlook potential
biases in the data and models.

The main goal of this thesis is to mitigate the influence of these two new
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sources of biases (i.e., XAI and human) when explainability is used to detect
biases in datasets and models. First, we focus on mitigating XAI biases. To do so,
we propose a methodology to assess the reliability of XAI methods. Although our
primary goal was to use this methodology within the computer vision discipline, we
also demonstrated its applicability in other domains, such as the natural language
processing field. After selecting the most reliable XAI method according to our
proposed approach, we focus on mitigating human biases. With this objective
in mind, we present potential methodologies to semi-automate the detection of
data/model biases, thereby reducing the noise introduced by humans. Adopting
this approach limits the domain expert’s intervention to the final step, in which
experts assess whether the biases found are harmful or harmless.



RESUM

El camp de l’aprenentatge automàtic i, més concretament, el de l’aprenentatge
profund han anat creixent en els últims anys. Aquests sistemes intel·ligents han
demostrat un rendiment extraordinari en diversos àmbits, incloent-hi àrees sen-
sibles com la medicina i la justícia. No obstant això, aquests models continuen
sent opacs, no tenim una comprensió completa del seu procés intern. Per tant,
el desplegament d’aquests models, que també s’anomenen models de caixa negra,
pot plantejar nombrosos riscos. En primer lloc, podria no complir la legislació
actual. En segon lloc, podria tenir conseqüències greus. Considerem un escenari
en el qual un model utilitzat en una aplicació mèdica que presenta biaix de gènere,
produeix prediccions diferents depenent del gènere de la persona. Aquest fet per-
petuaria la discriminació contra determinades parts de la població i exacerbaria
les desigualtats existents.

Per entendre millor el comportament del model i així, permetre la detecció i
la mitigació de biaixos i aconseguir models més fiables, sorgeix el camp de la IA
eXplicable (en anglés, XAI). Es tracta d’un domini actiu de recerca que està creix-
ent i rebent cada vegada més atenció. Tot i que en la literatura s’han proposat
diversos enfocaments, els més utilitzats són els mètodes post-hoc. Aquestes tèc-
niques es poden aplicar una vegada que el model està entrenat, preservant així el
rendiment original del model. Utilitzant aquests mètodes d’explicabilitat post-hoc
per obtenir informació sobre el model i identificar biaixos dins dels conjunts de
dades i models, ens vam adonar que sorgeixen uns altres dos biaixos: biaixos de
l’explicabilitat i biaixos humans.

Tot i que existeixen diferents mètodes d’explicabilitat, el fet d’avaluar-ne la
fidelitat esdevé un repte a causa de l’absència d’una veritat fonamental que de-
termine quina és l’explicació correcta. La incertesa sobre si l’explicació reflecteix
amb precisió el comportament del model pot conduir al que anomenem biaixos
XAI. El model està esbiaixat o és el mètode d’explicabilitat que no reflecteix el
comportament del model?

El biaix humà és un altre dels biaixos que sorgeixen quan s’apliquen aquests
mètodes d’explicabilitat. La manera en què mostrem aquestes explicacions als
humans pot portar a conclusions enganyoses. D’una banda, això pot ser degut a
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biaixos de confirmació o automatització. D’altra banda, quan es demana als pro-
fessionals del domini que revisen totes les explicacions, aquest procés pot demanar
molt de temps i fer-los passar per alt els possibles biaixos en les dades i els models.

L’objectiu principal d’aquesta tesi és mitigar la influència d’aquestes dues noves
fonts de biaixos (XAI i humans) quan s’utilitza l’explicabilitat per detectar biaixos
en conjunts de dades i models. En primer lloc, ens centrem a mitigar els biaixos
XAI. Per a això, proposem una metodologia per avaluar la fiabilitat dels mè-
todes d’explicabilitat. Tot i que el nostre objectiu principal era utilitzar aquesta
metodologia dins de la disciplina de la visió per ordinador, també en demostrem
l’aplicabilitat en altres àmbits, com el camp del processament del llenguatge nat-
ural. Després de seleccionar el mètode d’explicabilitat més fiable segons la tècnica
proposada, ens centrem a mitigar els biaixos humans. Amb aquest objectiu a la
ment, presentem metodologies per semiautomatitzar la detecció de biaixos en les
dades i el model, i reduir així el soroll introduït pels humans. L’adopció d’aquest
enfocament limita la intervenció experta solament al pas final, en què s’avalua si
els biaixos trobats són perjudicials o inofensius.
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1 | INTRODUCTION

I am no longer accepting the
things I cannot change. I am
changing the things I cannot ac-
cept.

Angela Davis

Intelligent systems have shown outstanding results in complex problem-solving
tasks applied to a wide variety of areas. Domains that can range from the gaming
field to more sensitive disciplines such as the biomedical sector [95, 42]. How-
ever, these intelligent systems may have severe limitations. Limitations such as
the lack of generalization (i.e., these systems may not perform as expected in
unseen contexts), the lack of transparency (i.e., these systems usually provide lim-
ited interpretability) or the possibility of learning undesirable biases (i.e., these
systems may become discriminatory algorithms). Deploying these intelligent sys-
tems, which may be biased, can be dangerous and can ultimately result in major
consequences.

Unfortunately, there are examples of biased systems deployed in real scenarios.
A widely known case is the software to predict future criminals, which was racially
biased in the United States of America (USA). The system identified African
American people at higher risk of committing a crime [5]. Another well-known
example is Amazon’s experimental hiring tool which penalized applications that
contained the word woman [23].

These examples may seem odd and old, and one could argue that nowadays,
more attention is being placed on achieving fairer systems. However, finding those
behaviours in cutting-edge systems does not require much effort. We can perform
a simple experiment using a state-of-the-art model like Generative Pre-trained
Transformer 3 (GPT-3). One can start the sentence with every man/woman
wants . . . (we only change the gender) and let the model complete the sentence.
The results speak for themselves, see Figure 1.1.

While the man wants to be a king, happy, be successful, and sometimes he

1
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(a) every man wants. . .

(b) every woman wants. . .

Figure 1.1: Results of text completion using GPT-3 (accessed 24 January 2023,
being the model used the text-davinci-001). The part highlighted in green is the
one completed by the model. We change the gender in each prompt (a) every man
wants. . . and (b) every woman wants. . .
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wants a woman. The woman always wants a man or, in the best-case scenario,
to be beautiful. Even if the system seems to be somehow curated, sometimes this
sentence is added: this may be true for some women, but not all. What is clear
here is the presence of implicit biases in this model. On the one hand, the gender
stereotyping, the system perpetuate the preconceived roles assigned to men and
women (e.g., men want success and women want to be beautiful). And on the other
hand, the heterosexist bias, the system only considers heterosexual relationships
(e.g., men want women, and women want men) and therefore discriminating the
Lesbian, Gay, Bisexual, Transgender, and Intersex (LGTBI) community by making
them invisible.

These system failures are mainly due to the biases present in the data. One
could ask why these biases are learned by the systems. This occurs when the
Machine Learning (ML) system learns a shortcut solution [27], a solution that
works for the training data (and may even perform well for the test set) but differs
from the intended solution. These differences between our desire regarding how we
want the model to work and the actual functioning of the model are what Christian
[20] define as the Alignment Problem. This problem results in systems that are not
aligned with our values. Systems that can lead to serious consequences: ranging
from harming the most vulnerable groups and exacerbating inequalities, to not
detecting cancer.

The increasing penetration of intelligent systems in real-world scenarios has
boosted the need for accountability and model validation. Therefore, explanations
are a powerful tool to move towards these objectives. Areas as important and
sensitive as medicine, justice or the automotive industry must drive adoption of
Explainability in their intelligent systems to prevent models from behaving
unexpectedly, models that, in the worst-case scenario, could violate Human Rights.

TAXONOMY OF EXPLAINABLE AI

The term explainability is widely used throughout the document and needs to
be clarified since its use can be a source of confusion, particularly with the term
interpretability. These two terms are not used consistently across different domains
[34] (e.g., technical and social sciences) and not even within the same domain.
In the ML field, some authors use these two terms interchangeably [61, 1, 65].
However, most of the works in the field do make a distinction between the two
terms [64, 84, 11, 75] as described next. Some efforts have been made to try to unify
this terminology [34] to facilitate the development of the eXplainable Artificial
Intelligence (XAI) discipline and improve communication with other domains, such
as the social sciences community.

In this work, we will make the differentiation between the explainability and
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explainability
(noun)
eXplainable AI, also denoted as XAI, defines the branch of AI research
that focuses on generating explanations for complex AI systems

interpretability
(noun)
AI interpretability defines those AI systems for which it is possible to
translate the working principles and outcomes in human-understandable
language without affecting the validity of the systems

Figure 1.2: Definitions used for interpretability and explainability in [34].

interpretability term, following the definitions detailed by Graziani et al. [34], see
Figure 1.2. Therefore, when we refer to explainability, we refer to methods or
techniques that are applied to understand the model prediction. However, we do
not understand the complete decision procedure of the model. These methods are
called post-hoc methods, and they are applied when the model is already trained.
Instead, when we refer to interpretability, we refer to models where the decision-
making process can be identified. A simple decision tree can be an interpretable
model; we as humans can understand the decision process of the model. In this
work, from now on, we focus on explainability since our goal is to better understand
complex systems such as Deep Learning (DL) networks.

MOTIVATIONS FOR EXPLAINABILITY

As already anticipated, intelligent systems are applied in an increasing number of
domains that can be sensitive. We can no longer rely exclusively on current perfor-
mance metrics and continue to use these AI-based systems as black boxes. We can
not do it for ethical reasons (i.e., the system might not be aligned with our values).
But also in terms of compliance with the European Union (EU) legislation. Ac-
cording to the High-Level Expert Group on Artificial Intelligence (HLEG-AI) from
the EU, explicability is considered one of the four ethical principles for achieving
Trustworthy Artificial Intelligence (AI) [39]. Moreover, the General Data Protec-
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Figure 1.3: Representational Spaces presented by Kim [116].

tion Regulation (GDPR) creates a right to explanation [32] or right to be informed
[106]. Likewise, explainability is also included in the latest amendments to the AI
Act: transparency’ means that AI systems shall be developed and used in a way
that allows appropriate traceability and explainability (Article 4a) [120].

In practical terms, a powerful motivation is the need for a common language
between humans and AI, which allows for a reliable and practical interaction. This
perspective is introduced by Kim [116], where the current scenario is illustrated as
two representational spaces (see Figure 1.3): the Human’s Representation Space
(what humans know) and the Machine’s Representation Space (what machines
know). These two spaces may overlap, however, there is still a big gap between
them. According to Kim, this language to communicate with AI would pursue two
main objectives: to reflect the nature of machines (i.e., to study their behaviour)
and to learn from them (i.e., expand our knowledge). Therefore, if we better
understand the machines and expand what we know, we can increase this overlap
between the two spaces.

In summary, we have outlined various reasons for implementing explainability.
These include ensuring compliance with regulations, understanding and control-
ling these systems, as well as expanding and discovering new knowledge. These
motivations are summarized by Adadi et al. [1] into four reasons:

◦ Explain to justify. Meaning that we need and explanation for a decision.
Justifying the outcomes can help to ensure accountable models.

◦ Explain to control. Explaining the decisions may allow finding biases or
errors in the models. Controlling the behaviour can guarantee consistent
models.

◦ Explain to improve. By understanding the behaviour of the models, we will
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be able to improve them. Improving the learning process can lead to safer
models.

◦ Explain to discover. As already remarked, explanations can allow us to bring
to light new knowledge. Discovering new learning strategies can achieve more
efficient models.

Therefore applying explainability and making these AI-based systems more
accountable, consistent, safe and efficient, will be a step forward towards achieving
more trustworthy models.

SCOPE OF THIS THESIS

In this thesis, we focus on explainability applied to Neural Networks (NNs). As we
previously introduced, since we deal with complex systems (i.e., opaque systems),
we use the so-called post-hoc techniques. Since each data type (i.e., tabular, text
or images) may require a different kind of explanation (i.e., the most convenient
explanation for tabular data and images may not be the same), we focus our
research on one data type: Images. This work tackles the explainability topic
within the Computer Vision (CV) field, using mostly image classification models
due to their prevalence at this time. However, as we will see in Chapter 9, where
we apply it to a text modality, the contribution is versatile.

To better understand the purpose and complexity of explainability in CV, let us
formalize the image classification problem. To train, for example, a Convolutional
Neural Networks (CNN) for an image classification task, one needs a dataset D
composed by a set of images I = {img1, img2, . . . imgN} and a set of classes C =
{c1, c2, . . . cK}, where N is the total number of images, K is the number of classes,
and K < N . Each image of I will be labelled by a single class of C: c(img). The
idea is to learn a mapping function θ: I → C which minimizes misclassification.
Once the model is properly trained (i.e., the classification error is minimized), the
model will have learned some patterns to discriminate the K classes. Therefore,
if we fed the model with an image img belonging to the class c, the model will
classify it correctly, θ(img) = c, as long as the specific patterns of that class are
found by the model on the input image img.

Since humans are used to performing image classification, we expect that if a
model classifies an image as we do, the model will focus on the same features we
use. Examples of these distinctive features are shown in Figure 1.4. For humans,
some of the characteristics of the tiger are the shape of the nose, the feline eyes or
the black stripes on a brown background. Or, for example, in a zebra image, we
would look at the characteristic black and white stripes or perhaps at its muzzle.
Or instead, in the case of the dolphin, we would pay attention to its fins, small eyes
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(a) (b) (c)

Figure 1.4: Three images of animals: (a) tiger, (b) zebra and (c) dolphin. Beside
each animal three features that humans use to differentiate them (e.g., the char-
acteristic shape of feline eyes, the zebra stripes, the dolphin fins, etc.).

or characteristic snout. All these assumptions are biases, as these models could
use completely different characteristics to distinguish these animals.

Indeed, different works have shown that biological vision does not work in
the same sense as the perception of Convolutional Neural Networks (CNNs). For
example, while for humans, the global shape of the object is one of the most
important features for recognition, for CNNs the local shape features are more
important [13]. Or for example, while humans are robust to local perturbations
of contour features, these perturbations will drop the network’s performance (see
Figure 1.5). Reinforcing the hypothesis that the classification strategies followed
by the CNNs are different from those of humans, Geirhos et al. prove that CNNs
find easier to recognize textures rather than the shapes of objects [28], unlike
humans (i.e., humans are better at recognizing shapes than textures).

Another factor to consider, when comparing the patterns learned by models

(a) (b) (c)

Figure 1.5: VGG19 predictions for the hammer class presented in [13]: (a) 49.92%.
(b) 18.03% (c) 0.13%. Note how the model is more sensitive to contour perturba-
tion than to the global shape of the object.
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and those by humans, is selection bias. Models are trained with a finite number
of samples. Those limited samples may contain certain patterns (i.e., data bias)
that allow the model to learn a shortcut (i.e., model bias), instead of learning
the intended solution. And therefore, the network will fail to generalize when using
out-of-the-distribution samples. Let us imagine a simple example. Let us say we
want to train a model to classify tigers, zebras and dolphins. To do so, we use
images similar to those in Figure 1.4. It just so happens that all the tigers in our
training dataset are found in the rainforest (i.e., green background), the images of
the zebra are mostly taken in dry lands (i.e., brown background) and the dolphins
are surrounded by water (i.e., blue background). The shortcut for the model would
be to simply learn the background colour of the images. Therefore, if we were to
feed the model with an image of a tiger in the savanna (i.e., brown background),
the model would misclassify the image: the tiger would be classified as a zebra. A
more realistic example could be a model trained to classify wrist X-ray images as
fractured or not fractured. Let us say that most of the clinical images labelled as
broken wrists contain hands surrounded by plaster casts. The model could learn
to differentiate the two classes (i.e., broken vs not broken) by simply focusing on
the presence or absence of the cast. Thus, the model will be biased, unable to
identify a broken wrist if the hand is not in a plaster cast. These problems show
the importance of better understanding the model reasoning. Therefore, what we
expect from the explainability is to provide an explanation for why the model has
made its decision. Ideally, this will also allow us to identify unwanted biases (e.g.,
cast vs not cast) the model may have learned. Once identified, one can design a
plan to eliminate them (e.g., by altering the data or by altering the model).

Let us see how we can put explainability into practice. Let us imagine that
the expected explanation is provided in the form of an image, highlighting the
areas that contributed to the model’s prediction. Going back to the example of
the tigers, zebras and dolphins. Let us imagine the model has indeed learned to
differentiate the animals by the background. Therefore, the explanation provided
for the prediction of the tiger would be an image where the vegetation would be
highlighted, in the case of the zebra would be the dirt, and the water for the
dolphin (see Figure 1.6). These explanations would help us discover the shortcut
learned by the model (i.e., the background). In fact, these kinds of explanations
are widely used within the CV field. The methods providing these explanations
are the so-called: feature attribution methods. In short, these techniques try to
approximate the contribution of the input pixel to the output decision, under the
assumption that these areas are a reliable guide for the human interpretation of
the model behaviour (see Chapter 3 for further details).

The previous example illustrates how useful these explainability methods can
be in moving towards more reliable models. For this reason, different feature attri-
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(a) (b) (c)

Figure 1.6: Possible explanation images for the (a) tiger, (b) zebra and (c) dolphin.
The backgrounds of the images are highlighted since the model would have learned
to differentiate the different animals by the background colour instead of by the
animal itself.

bution methods have emerged in the literature. However, each one can generate a
different attribution map (for the same decision) and not always being the results
consistent among the different methods. Due to the lack of a ground truth defining
what is a correct explanation, it is difficult to know which explainability method
provides a more faithful explanation. This, introduces a new source of bias, is the
model that is biased? is the explainability method pointing out the actual bias?
or, on the contrary, is it not reflecting the model behaviour and therefore, the
explanation is misleading (i.e., XAI bias)?

Finally, how humans use explainability to find unwanted correlations in the
models could also be a new source of bias (i.e., human bias). We have seen
that explainability can help us find unwanted correlations in easy problems (e.g.,
the background colour learned by the model). However, a human inspection of
explanations can lead to misleading conclusions due to confirmation bias [71] in
more complicated settings. Let us take an example of this scenario to illustrate this
problem. Imagine we want to inspect the decisions of a model with respect to the
sheep class. The feature attribution method could highlight the sheep’s body (i.e.,
red areas), see Figure 1.7. A priori, one would think that the model is accurate
and that the model has learned the correct characteristics of the sheep class since
it is pointing to the sheep. However, if we were to analyse the explanation of
the two instances in Figure 1.8, we would realize that the model is not looking at
the sheep but at the texture of the wool. And therefore, the llama (or in a more
extreme setting, anyone wearing a wool jersey) would be a false positive since it
will be classified as a sheep. And the lamb on the right will be a false negative, it
will not be classified as a sheep. This shows that the detection of these unwanted
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Figure 1.7: Example of a potentially unwanted bias that can go unnoticed. The
feature attribution method only highlights the wool (i.e., red areas). This could
mean that the model only focuses on the wool texture to classify these images as
sheep, without learning the other characteristic patterns of the sheep class.

(a) (b)

Figure 1.8: Two instances where the unwanted bias can be noticed. (a) A false
positive, the lama would be classified as a sheep because of the texture of the
wool (red areas highlighting the wool). (b) A false negative, the lamb will not be
classified as a sheep, because the model is not able to find the learned texture (i.e.,
the wool texture).

correlations is not straightforward. Should we look at all the explanations? What
samples should we select? Should we use images out of the distribution? In order
to allow the end user to benefit as much as possible from these explanations,
we will need tools or methodologies that help or guide the human evaluator to
better understand the rationale behind the explanations, thus reducing the bias
introduced by the human (i.e., human bias).

To recap, let us summarize the main sources of biases introduced in this section
(see Figure 1.9). First, we presented how data and models can be biased (i.e.,



11

Figure 1.9: Different sources of biases within the pipeline. First, biased data.
Second, biased models (e.g., trained on biased data). Third, non-reliable explain-
ability methods that are not faithful to the model. Finally, the interpretation by
humans can also introduce biases into the framework.

data bias and model bias). Second, we introduced how explainability can
be useful to have a better understanding of the model behaviour and to detect
those biases. However, we also showed how this process of applying explainability
can also introduce even more noise into the pipeline. On the one hand, because
there are different explainability methods providing different explanations (i.e.,
XAI bias). On the other hand, because humans can also introduce biases when
interpreting those explanations (i.e., human bias).

RESEARCH QUESTION

As previously discussed, a challenge for the scientific community is to find which
undesirable biases lead the model to erroneous or unintended predictions, regard-
less of the source of such bias (i.e., data, model or XAI). Therefore, a research
question the community needs to tackle is:

Can we find methods to help locate, illustrate and evaluate
biases in either datasets, models or XAI methods without falling
into human biases?

METHODOLOGY

In this section, we briefly introduce the mosaic methodology to address the pre-
vious research question. Let us briefly present the mosaic concept, an original
idea and contribution from this thesis, to better understand the potential of this
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(a) (b)

Figure 1.10: Mosaic examples. (a) 2 × 2 mosaic composed of three zebras and a
water image (i.e., potential bias). (b) 1× 2 mosaic composed of one tiger and one
zebra, both surrounded by vegetation (i.e., potential bias).

tool for the task at hand. Mosaics have two inherent properties that make them
suitable for bias detection in explainability methods and in data and/or models.
First, mosaics maintain the visual patterns of the original distribution, reducing
the induced noise. Secondly, mosaics introduce a source of confusion in a control-
lable and scalable manner (mosaics are custom and easy to generate) while being
able to challenge the model.

Mosaics are built by combining images within a grid. The size and the configu-
ration of mosaics will depend on the target task. Let us imagine we are interested
in assessing whether water is a bias for the animal classification model previously
introduced (i.e., zebras, tigers and dolphins). We could create, for example, a mo-
saic of size 2× 2 by combining three images of zebra and one of water, see Figure
1.10 (a). Then, we could quantify the relevance of the water bias by analysing the
model’s response (i.e., with which certainty is the mosaic a zebra or a dolphin) or
by pinpointing the amount of explainability that falls into the water image within
the mosaic.

In a different scenario we could not know of any bias a priori. For example, let
us imagine that in the previous image classification model we notice that the model
gets confused when classifying the tiger and zebra classes. We could generate a
number of 1×2 mosaics by combining images from these two classes. And we
could fed the model with those mosaics. This would allow us to first confirm the
existence of a potential shared bias between some tiger and zebra images (e.g., we
realize that the model underperforms when fed with the mosaic shown in Figure
1.10 (b), where the vegetation is present in both images), and then, to analyze
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the impact of this bias (e.g., is the vegetation more relevant to the model than the
animal itself?). These and other related aspects of mosaics will be studied along
this thesis.

STRUCTURE OF THIS DOCUMENT

This document is divided into four main parts. In Part I, we present the related
work. This includes Chapter 2, 3 and 4. First, we introduce in Chapter 2 the
different types of explanations existing in the CV field for NNs. We delve into
feature attribution methods in Chapter 3. And finally, in Chapter 4, we present
different existing evaluation techniques for feature attribution methods.

In Part II, we focus on minimizing the xai biases. To do so, we evaluate
the explainability methods according to their reliability to the model behaviour.
We perform this assessment in a quantitative manner, avoiding the presence of
humans in this first evaluation. More concretely, in Chapter 5, we present how we
came to identify the research problem. In Chapter 6, we introduce the proposed
score —the Focus—to evaluate feature attribution methods. In Chapter 7, we
put into practice the Focus score, showing and analysing the results obtained. In
Chapter 8, we propose an extended framework to improve the Focus limitations.
Finally, in Chapter 9, we show how the Focus and mosaics can be applied to other
modalities such as the Natural Language Processing (NLP) domain.

In Part III, we introduce different ways of using the explainability along with
mosaics to identify and detect potential biases in data and models, while min-
imizing both xai biases (i.e., having selected the most faithful XAI method ac-
cording to the Focus) and human biases (i.e., semi-automating bias detection
reducing human intervention). More specifically, in Chapter 10 we introduce the
reason why the Focus together with mosaics is a powerful tool to help the au-
tomation of bias detection and we analyze the Focus behaviour on a biased model.
Finally, in Chapter 11, we also use mosaics to analyze the context bias learned
by the model, but in this case regardless of the use of explainability methods,
thus avoiding both XAI and human biases. To do so, we present a new way of
constructing mosaics in order to assess the relevance of biases known a priori.

Finally, Part IV ends this document with the conclusions in Chapter 12. And
in Chapter 13, we introduce the contributions related to this thesis.
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Part I.

State of the art

15





2 | EXPLAINABILITY METHODS

Sometimes, explanations give us
a sense of control.

Tania Lombrozo

Due to the growing attention towards explainability for ML methods in recent
years, the number of proposed techniques in the CV field is astonishing. Different
works have categorized these techniques in distinct ways [11, 1, 17]. Some of these
categories found in the literature are detailed below (see Figure 2.1). Coarsely,
explainability methods can be differentiated by being intrinsic or post-hoc methods.
In other words, the models can be transparent and therefore, they are interpretable
by design. Or, the explainability methods are applied a posteriori when the model
is already trained. One can distinguish between model-agnostic and model-specific
among the post-hoc methods. The former can be applied to any type of model. The
latter can only be applied to a specific one (i.e., for each model, the method should
be adapted). Depending on whether the explanation describes the general model
behaviour or explains a specific instance, we can differentiate between global or
local explanations. Another differentiation criterion [15] is the type of data these
explainability methods are intended to explain (i.e., images, text or tabular data).
Some of them are suitable for all types of data, others for a specific subset.

Within the large field of XAI, this thesis focuses on a subgroup of explainability
techniques. As previously introduced, since the target models are complex models
(i.e., NNs), we concentrate on post-hoc methods. We analyse the methods that are
either specific to images or data agnostic. And regarding the explanations gener-
ated, we tackle the XAI methods providing local explanations. Having introduced
the specific subgroups that we will focus on, let us review some of the most relevant
techniques. We group them into three families depending on which question they
try to answer, this includes feature-based methods (§2.1), concept-based methods
(§2.2) and counterfactuals methods (§2.3), which are discussed next.

17
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Figure 2.1: Different categories of explainability methods depending on when the
explanation is generated, on what kind of model it can be applied, the scope of
the explanations and the data type they are intended to explain. In this work, we
focus on the explanations subgroups highlighted in green.

2.1 | FEATURE-BASED METHODS

The explanations provided by these methods answer the question of what pat-
terns or parts of the input image are most relevant to the model decision.
As presented in the Introduction 1, these methods are also called feature attribu-
tion methods. And they provide feature attribution maps as explanations, where
the features that have been relevant to the model prediction are highlighted. A
toy example of this kind of explanation is shown in Figure 1.6: where the green
part of the tiger image is highlighted, meaning that that region was important for
the tiger prediction, just like the brown part for the zebra and the blue for the
dolphin. This family of methods are the most widespread and used in the CV
field. For this reason, we focus our research on this group of methods. As this is a
large category and also encompasses different subgroups, the whole next chapter
discusses them in more detail (see Chapter 3).

2.2 | CONCEPT-BASED METHODS

Instead of focusing on the contribution of low-level concepts, such as pixels, this
family of methods focuses on the importance of high-level concepts. Ghorbani et
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al. argue that individual pixels are not meaningful to humans [29]. However, a
group of pixels corresponding to a concept are more intuitive and understandable
to humans. Thus, this family of methods answer the question of which concepts
of the input image are important for the model decision. Going back to
the illustrative example of animals (i.e., tiger, zebra and dolphin), an example of a
concept-based explanation would be something similar to the one shown in Figure
2.2. Therefore, the vegetation concept will be considered important (remember
that the model had learned the context instead of the characteristics of each ani-
mal). However, the eyes, the stripes or the nose of the tiger would not be relevant
concepts to the model decision.

Kim et al. represent the concepts as a set of vectors, and they call it Concept
Activation Vector (CAV) [44]. In order to learn the CAV of a concept, for exam-
ple, the CAV for the eye concept, the system needs examples of eyes and random
examples. Then the activations for the two sets of images (through the trained
neural network) are collected, and a linear classifier is trained to separate the two
groups of images. The CAV vector is the orthogonal vector to the decision bound-
ary. To obtain the quantitative explanation of the concept, the authors compute
the Testing with Concept Activation Vector (TCAV) score, which is obtained by
computing the directional derivative of the logit with respect to the CAV. This
is done for many eyes images, and the final TCAV score is the ratio between the
positive directional derivatives and the total number of inputs.

Figure 2.2: A possible concept-based explanation for the tiger. The vegetation
concept is important for the prediction. However, the stripes, the eyes or the nose
are not considered important concepts for the model decision.
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One of the drawbacks of this method is that users must know the concepts a
priori and must have the necessary examples for training the classifier. To solve
this problem Ghorbani et al. propose a new algorithm called Average Causal Effect
(ACE) [29]. This algorithm consists of three steps: first, all images are segmented
at different resolutions. Then similar segments are clustered, and each cluster
corresponds to a different concept. In the last step, the TCAV score is computed
for each concept from the different examples of each cluster.

2.3 | COUNTERFACTUAL METHODS

These types of explanations address the question of what should be different in
the input image so that the output prediction X was Y . Continuing with
the toy example, examples of counterfactual explanations would be those shown
in Figure 2.3. The explanation (a) indicates that if the tiger were surrounded
by water, the tiger image would be classified as a dolphin. The image (b) shows
that the zebra would be classified as a tiger if the brown area were green. Or the
explanation (c) evidences that if a brown background surrounded the dolphin, the
dolphin would be classified as a zebra.

(a) (b) (c)

Figure 2.3: Possible counterfactual explanations for the (a) tiger, (b) zebra and
(c) dolphin. The background shown in each case is the one that would have caused
the image to be classified as another class. (a) The tiger would be classified as a
dolphin if the tiger were surrounded by water. (b) The zebra would be classified
as a tiger if the zebra were surrounded by vegetation. (c) The dolphin would be
classified as a zebra if the dolphin were surrounded by a brown background.

Let us now introduce some of the existing methods to provide a general overview
of these counterfactual techniques:
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PlausIble Exceptionality-based Contrastive Explanations (PIECE) [43]:
this technique first identifies the counterfactual class of a prediction. For exam-
ple, let us imagine an image img is predicted as c, but the original class was c′,
the counterfactual class of img would be c. Then, the method searches for the
exceptional features on the latent space with a low probability of occurrence in c′.
And finally, the explanation is generated using a Generative Adversarial Network
(GAN) [31] by progressively changing the exceptional features that will move the
prediction from c to c ′.

Contrastive Explanations Method (CEM) [25]: this method finds the per-
tinent positives (PP) and the pertinent negatives (PN) of each instance decision
and uses them as contrastive explanations. The PP are the minimally sufficient
pixels or regions for the prediction. And the PN are the ones whose absence is
necessary for the prediction.

Counterfactual Visual Explanations (CVE) [33]: this technique finds the
counterfactual explanation of an image img predicted as class c, by first selecting
an image img ′ predicted as class c ′. Then, the method searches for the minimum
region of img ′ that being replaced in img will change the prediction of img from
class c to class c ′.

Search for EviDence Counterfactual with Target counterfactual class
(SEDC-T) [105]: this method is based on the Search for Explanations for Doc-
ument Classification (SEDC) [59]. The SEDC algorithm searches the minimum
number of words that, when removed, would change the document classification.
The SEDC-T technique is based on the same idea but for image classification.
On the one hand, instead of working at the pixel level, they perform image seg-
mentation. Those segments will be combined until finding the minimum number
of segments that will change the image classification. Since image classification
problems are usually not binary, the authors add the possibility of specifying the
target counterfactual class.

Most of the proposed counterfactual techniques in the current literature are
not data agnostic and mostly are intended for tabular data [35]. However, as
the ones previously introduced, there are some designed for images (e.g., CVE,
SEDC-T or PIECE) or even data agnostic (e.g., CEM). Many of these methods
are only tested on simple datasets such as MNIST [52] or EMNIST [21], where those
counterfactual explanations (working at pixel level) may be interpretable (e.g., if
there is a horizontal stroke in the middle of a zero it will be an eight instead of
a zero). However, those abstractions are less interpretable in more complicated
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datasets such as ImageNet [85]. To get more interpretable explanations when
using complicated datasets, some methods use more abstract levels such as regions
instead of pixels. This is the case of the CVE and SEDC-T methods. The former
tested their method on the Caltech-UCSD Birds (CUB) 2011 Dataset [107], and
the latter on ImageNet. As also discussed by Vermeire et al. [105], one drawback
of most of these methods (e.g., PIECE, CEM or CVE) is that they require access
to the training data which may reduce the applicability of these approaches in real
case scenarios, where the data is not available.

2.4 | SUMMARY OF THIS CHAPTER

This chapter introduces the three large families of explainability methods in the CV
field. Feature-based methods are widely applied in many applications. Concept-
based methods are more recent and, therefore, still less used. And counterfactual
methods are not widespread in this field either, this is probably due to the disad-
vantages mentioned above (i.e., poorly interpretable in more complicated datasets
or access needed to training data). In addition, counterfactual methods are usually
computationally expensive.

Since each category answers a distinct question, each type of explanation pro-
vides different information, which at the same time may be complementary. There-
fore, the ideal scenario would be to have an explanation of each since we would
have information at a pixel level (i.e., same as the model reasoning process), at
a more abstract level (i.e., same as the humans reasoning process) and at the
counterfactual level (i.e., why was it not predicted differently?).
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Nothing in life is to be feared; it
is only to be understood.
Now is the time to understand
more, so that we may fear less.

Marie Curie

Many techniques have been proposed within the feature attribution category. In
this chapter, we will highlight the most relevant ones. Following the categorization
presented by Rao et al. [79], we divide these feature attribution methods into three
main groups depending on the technique used to generate the explanations: the
perturbation-based methods (§3.1), the backpropagation-based methods (§3.2) and
the activation-based methods (§3.3).

3.1 | PERTURBATION-BASED METHODS

The methods under this category obtain the attribution maps by perturbing the
input image and analyzing the change in the output. These methods treat the
model as a black box without needing to access the model’s internal parts. Some
of them are detailed below.

Occlusion [111]: in this technique, patches of the original image are turned off,
and the prediction variation is observed. The most important features for the
model will be those patches that influence the prediction most.

Local Interpretable Model-agnostic Explanations (LIME) [81]: this method,
instead of using patches, segments the input image into superpixels, and these su-
perpixels are turned off and on. This perturbed data is fed into the network. Then,
a weighted linear regression model is trained using the predictions obtained with
the perturbed data, the perturbations and the weights. Those weights are com-
puted with the distances between the perturbed images and the original image.

23
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Finally, the importance of each superpixel for the prediction is obtained with the
result of the linear regression.

Shapley Additive Explanations (SHAP) [56]: this method is based on Shap-
ley values [91] from game theory. The features of the input images are considered
players of the coalitions. Therefore the method estimates the contribution of each
feature to the model prediction using the Shapley values. This method has varia-
tions such as KernelSHAP, which uses LIME to compute the Shapley values.

Randomized Input Sampling for Explanation (RISE) [77]: this method
randomly masks the input and performs a forward pass through the network mul-
tiple times. A weighted sum of the masks is performed using the scores obtained
as weights to generate the feature attribution map.

3.2 | BACKPROPAGATION-BASED METHODS

The methods within this group compute the gradient of the prediction with re-
spect to the pixel values of the input image or backpropagate the contribution of
the neurons. Numerous techniques have been proposed in this category, the most
used are introduced below.

Saliency Map method [96]: this widely used technique generates the so-called
saliency maps. The authors obtain these explanations by computing the gradient
of the class score with respect to the pixels of the input image. The saliency map
shows how it affects if we change a pixel from the original image to the classifica-
tion score for the specific class.

Gradient×Input [94]: this approach is similar to the previous one but adds a
product by the input image on top of the gradients. Therefore, the explanation
is computed by performing an element-wise product of the input image with the
gradient of the class score with respect to the input image.

Deconvnet [110]: this technique maps the activations at high layers back to the
input pixel space using a Deconvnet [112]. This technique is quite similar to the
Saliency Map method. How the authors handle the Rectified Linear Unit (ReLU)
non-linearity is the main difference: the Deconvnet method only backpropagates
positive values, that is if the backward signal itself is positive. On the other hand,
the Saliency Map method does not backpropagate the backward gradient if the in-
put of the ReLU through the forward pass is negative. This difference is illustrated
in Figure 3.1, where a forward pass and three methods of backpropagating through
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ReLU non-linearity are shown. In (a), a forward pass is depicted: only positive
values are propagated (white cells). The Deconvnet backpropagation is illustrated
in (b): only positive values are backpropagated (white cells). The backpropaga-
tion of the Saliency Map method is shown in (c): the values, where the activations
in the forward pass where negative (green cells), are not backpropagated.

(a) (b) (c) (d)

Figure 3.1: Different ways of handling the ReLU non-linearity. (a) Forward pass.
(b) Backward pass: Deconvnet method [110] (c) Backward pass: Saliency Map
method [96]. (d) Backward pass: Guided Backpropagation method [101]. Repli-
cated image from [101].

Guided Backpropagation (GB) [101]: this technique handles the ReLU non-
linearity by combining the Saliency Map and the Deconvnet backpropagation ap-
proach. Thus, this method backpropagates positive values as long as the input of
the ReLU in the forward pass is positive; see Figure 3.1 (d).

SmoothGrad [99]: this method tries to improve the visualizations of the expla-
nations obtained with the aforementioned methods. Smilkov et al. argue that
this technique obtains less noisy and more sharpened explanations by averaging
different explanations obtained with small perturbations on the input image. The
authors tested this technique empirically with explanations obtained with different
methods, such as the Saliency Map or Guided Backpropagation methods.

Integrated Gradients (IG) [102]: instead of computing local gradients, this
method calculates the integral of gradients through the line joining a baseline x′

and input x. The idea is to start from an input having a near-zero score (i.e.,
absence of signal). For example, in CV the baseline could be a black image. And
then, the baseline would be interpolated in different steps until reaching the cur-
rent input x. The approximation of the integral is done by summation of the
gradient steps from the baseline x′ up to the input x.

Layer-Wise Relevance Propagation (LRP) [12]: this method, instead of us-
ing gradients as the previous methods, backpropagates the output prediction to
the input image by propagating the contribution of each neuron. To do so, Mon-
tavon et al. propose in [62] different propagation rules according to the depth of
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the layer. LRP−w2 and LRP−zB rules for the first layers. The LRP−αβ, LRP−γ
and LRP−flat rules for lower layers. And for upper layers, the LRP−0 rule.

Deep Learning Important FeaTures (DeepLIFT) [93]: this technique also
backpropagates a relevance score in a similar manner to LRP method. The impor-
tance scores in this method are computed from the difference between the output
obtained with the original input and some reference image (e.g., black image). The
rule used for the backpropagation is called Rescale rule.

3.3 | ACTIVATION-BASED METHODS

This family of methods is mainly based on the Class Activation Mapping (CAM)
[114] method. The CAM method requires a specific architecture, especially the
model needs a Global Average Pooling (GAP) just after the last convolutional
layer and just before the last layer. The feature activation map is computed by
a weighted sum of the feature maps of the last convolutional layer. Thus this
map highlights the discriminative region for the selected class. Different methods
have been proposed on top of this CAM method, some of them are described below.

Gradient-weighted Class Activation Mapping (GradCAM) [89]: it over-
comes the architecture limitation of the CAM method. The importance score used
to perform the weighted sum of the feature maps of the last convolutional layer is
obtained as follows: first, the gradients of the logits of the class with respect to the
feature maps of the final convolutional layer are computed. Then, these gradients
are averaged across each feature map. And finally, this score is used to perform
the aforementioned weighted sum of the feature maps to obtain the final feature
attribution map. Therefore, the GradCAM no longer requires a specific architec-
ture and thus, the GradCAM can produce visual explanations for any CNN.

Grad-CAM++ [18]: this method is a generalization of GradCAM and tries to
allow the feature attribution method to detect multiple occurrences of the target
object within an image. Instead of performing the average of gradients across each
feature map, this method proposes a weighted combination of the positive partial
derivatives.

Score-CAM [108]: it does not use the gradients to compute the weighted sum.
Instead, the weights are the scores obtained by passing the activation map, mul-
tiplied by the input image, through the network. These weights are then used to
perform the weighted sum of the activation maps as the previous methods do.
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3.4 | SUMMARY OF THIS CHAPTER

In this chapter, we discussed different feature attribution techniques grouped
into three distinct categories: perturbation-based, backpropagation-based, and
activation-based. The main advantage of the perturbation-based methods is that
they are model agnostic, meaning that they can be used in any model. The down-
side is their high computational cost: many forward passes are required for each
instance. Instead, the backpropagation techniques are generally faster since they
only require a single forward pass. As previously said, the most basic technique
of this group is the Saliency Map method. However, the explanations obtained
with this method are visually noisy. Much work has been done to improve these
explanations. For example, Deconvnet and GB tried to improve the clarity of
the produced Saliency Maps. Even if both techniques provide better explanations
(qualitatively speaking), Nie et al. [72] proved that both techniques are more inter-
pretable because they are (partially) making image recovery. Therefore, they are
less faithful to the model behaviour than the Saliency Maps. According to Shriku-
mar et al. [93], the noisiness of the Saliency Maps may be due to the gradient
saturation problem. In the saturated area, the gradients are small; therefore, im-
portant features may not be highlighted even if they are relevant to the prediction.
Trying to solve the saturation problem, other approaches have been proposed in
this direction (e.g., Gradient×Input, LRP, DeepLIFT or IG). However, it seems
that the saturation of the gradients still affects some of these methods. Miglani et
al. [60] showed how the explanations produced by IG are dominated by the gra-
dients from the saturated areas. Finally, a disadvantage of both backpropagation
and activation methods is that they are not model agnostic, and access to the
model is required to be able to compute the explanations. The main advantages
of these methods are summarized in Table 3.1.

Table 3.1: A brief summary of the advantages of each family of methods.

Method
family

Model
agnostic

One
forward pass

Post
hoc

Less noisy
explanations Methods

Perturbation
based ✓ ✓ ✓ [111], [81], [56], [77]

Backpropagation
based ✓ ✓

[96], [94], [110], [101]
[99], [102], [93], [12]

Activation
based ✓ ✓ ✓ [89], [18], [108]
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4 | EVALUATION METHODOLOGIES

We don’t see things as they are,
we see them as we are.

Anaïs Nin

As discussed in the previous chapter, there are many feature attribution meth-
ods, each one generating a different explanation for the same instance (see Figure
4.1). So the next question that one would ask is: how to select the best method?
To solve this question, different directions have been taken in this field of research.
We can group the techniques into two broad groups. Qualitative methods and
quantitative methods. The former includes the human in the evaluation process,
and the latter excludes the human from the loop. While the qualitative techniques
are suitable for measuring the degree of the interpretability of the explanations
as well as their usefulness for humans, the quantitative methods are suitable for
assessing the coherency of the explanations to the model behaviour.

An example of a qualitative evaluation technique consists of asking human eval-
uators to choose the best-performing model based on the explanations [81]. Or, for
instance, another example is to ask the evaluators which explanation (among ex-
planations generated with different XAI methods) they would prefer for a specific
model prediction [89]. This kind of evaluation is based on the human under-

(a) (b) (c) (d) (e)

Figure 4.1: Explanations obtained with different feature attribution methods for
the same instance. (a) Original image. And the corresponding explanations ob-
tained with: (b) GradCAM, (c) SmoothGrad (d) LRP and (e) LIME.
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standing of perception, and therefore potentially biased (e.g., automation bias,
confirmation bias). Furthermore, as previously mentioned (see Chapter 1), our
perception process might not be aligned with that of the model.

In short, these qualitative evaluation methods measure what Jacovi et al. [41]
called plausibility. This term refers to how convincing the explanations are to
humans. In contrast, what quantitative methods assess is the faithfulness. Ja-
covi et al. define this last term as how well the explanation reflects the model
behaviour. Plausibility is crucial since the end user of these methods are humans.
A non-plausible explanation for humans (i.e., an explanation that humans do not
understand) will be useless. However, before evaluating the plausibility, one must
check whether the method is faithful to the model behaviour, since an unfaithful
explanation, non-coherent with the model behaviour, could be misleading. And
this is the focus of this work: the quantitative evaluations (i.e., assessing the
faithfulness of the explanations).

4.1 | QUANTITATIVE EVALUATIONS

Different methodologies in the current literature try to quantitatively evaluate
feature attribution methods. There is not yet a community-accepted way to cate-
gorize these methods. The work of Anna Hedström et al. [37] divides the existing
methods into six categories: methods assessing the faithfulness, the robustness,
the localization capacity of the methods, the complexity (i.e., whether they are
concise), randomization methods and the axiomatic group (i.e., techniques propos-
ing axiomatic properties that should be satisfied by the XAI methods). Similarly,
Akhtar categorizes the evaluation techniques into four groups according to the
quantified properties [3]: methods quantifying the model fidelity, quantifying the
localization ability, the stability, and other desirable properties (e.g., axiomatic
properties).

However, the main challenge of these quantitative methods is the lack of a
ground truth specifying what defines a correct explanation. We found it more
convenient to group them according to the different approaches proposed to cir-
cumvent this problem (see Figure 4.2). Even though some methods overcome the
ground truth problem by generating a pseudo-ground truth (§4.1.1). The vast
majority of feature attribution methods accept the absence of the ground truth
and make an assumption of certain behaviours on the expected response of the
XAI methods. Examples of those approaches are methods defining axioms that
the feature attribution methods should fulfil (§4.1.2). Methods proposing random-
ization experiments (§4.1.3), assuming that a random behaviour should have an
effect on the explanation. Or techniques that perform perturbations on the input,
according to the explanation, and then analyse changes in the output (§4.1.4). Let
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Figure 4.2: Different classes used for categorizing quantitative evaluation methods.
Those surrounded by the thick grey circle correspond to methods assuming an
expected response of the feature attribution methods. Instead, those surrounded
by the thin circle generate a pseudo-ground truth.

us now take a closer look at some of the most relevant techniques within these
families of methods.

4.1.1 | LOCALIZATION METHODS

As previously introduced, this family of methods generates a pseudo-ground truth.
In other words, a part of the input image is assumed to be where the relevance
should be concentrated (e.g., object bounding box or segmentation masks), while
the rest are considered areas where no explanation can be found. The evaluation
is calculated based on the amount of XAI relevance lying in these ground truth
areas. Note that we refer to XAI relevance as the pixels attribution provided by
the feature attribution methods, representing the contribution of the pixels to the
model prediction. Some examples of these techniques are:

Pointing Game [113]: this technique evaluates whether the point of maximum
relevance lies in the object category. The authors compute the accuracy for each
object and average those accuracies among the different classes.

Attribution Localization [48]: the score proposed by Kohlbrenner et al. corre-
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sponds to the proportion of positive relevance that falls within the bounding box
of the target object with respect to the sum of the positive relevance of the image.
The authors also introduce a weighted version, where the score is weighted by the
bounding box size. The smaller the bounding box and the more relevance falls
into it, the higher the weighted score will be.

an8Flower [74]: in this work, a synthetic dataset is proposed where the discrimi-
nating features of each class are controlled. In this way, the ground truth is known
and thus, the Intersection Over Union (IoU) between this mask and the explana-
tion can be computed as a quantitative evaluation score.

4.1.2 | AXIOMS

This category encompasses evaluation methods defining axiomatic properties that
must be satisfied by the explainability techniques. Examples of these axioms are:

Sensitivity(a) [102]: if an input and a baseline differ in one feature and that dif-
ference changes the prediction. This axiom will be fulfilled if that specific feature
has assigned a non-zero attribution.

Sensitivity(b) [102]: this axiom verifies that if the function of the model does not
depend on a feature, that feature will have no explanation attributed. This axiom
is related to the Non-Sensitivity [69] axiom, which states that only the features on
which the model does not depend will have zero attribution.

Implementation invariance [102]: this axiom checks whether functionally sim-
ilar models produce equivalent attributions.

Completeness [102]: this axiom is satisfied when the sum of the attributions is
equal to the difference between the output of the input and a baseline.

Input Invariance [46]: this axiom is fulfilled when a transformation, which does
not affect the prediction nor the weights, is applied to the input image (e.g.,
constant input shift) and this transformation does not affect the attributions.

4.1.3 | RANDOMIZATION TESTS

The methods proposed within this category start from the premise that, if a feature
attribution method is explaining the model behaviour and we modify the model,
the resulting explanation should change coherently. Some of the randomization
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methods proposed in the literature are the following:

Model parameter randomization test [2]: this test compares explanations
generated with a trained model with the ones from a randomized model (e.g.,
where the weights of the deep model are initialized to random values). If the
explanation depends on the model, the explanation should be fundamentally dif-
ferent.

Data randomization test [2]: this test compares explanations generated from
two different supervised models. One correctly trained and another trained with
randomly permuted labels. If there is a relation between the explanation and the
labels, the explanations should differ.

Random Logit [98]: this test computes the difference between the explanation
using the ground truth logit and the explanation using a random logit, expecting
the explanation to be different.

4.1.4 | PERTURBATION METHODS

These methods are based on the premise that highly attributed features are ex-
pected to be more important for the model outcome. Therefore, if one perturbs
the inputs according to the explanations (i.e., taking into account the most highly
attributed features), the effect on the outcome should be maximized. Quantifying
this effect will allow us to evaluate the performance of these feature attribution
methods. Let us see some examples:

Pixel Flipping [12]: this method perturbs the input pixels (e.g., pixel·(-1)) ac-
cording to the attributions (in descending order) and assesses the impact produced
in the prediction score.

Region Perturbation [86]: this technique is similar to the Pixel Flipping tech-
nique, but instead of performing the perturbation at the pixel level, areas (e.g.,
local windows) are perturbed (e.g., with local randomization or blurring).

Sensitivity-N [4] this method calculates the correlation between the sum of the
attributions of a group of features with respect to the change produced in the
output if those features are perturbed.

Average Drop % metric [18]: this method compares the prediction when only
the attributed parts of the image are shown to the model with respect to the pre-
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diction with the whole image.

RemOve And Retrain (ROAR) [40]: this method evaluates the degradation
of the model performance when the model is trained with instances where the
most important features are removed. The authors re-train the model at different
degradation levels.

RemOve And Debias (ROAD) [83]: this approach also measures the accuracy
of the model when removing the most important features but avoids the re-training
step performed by ROAR. Instead of inputting a fixed value when removing the
pixels, the authors proposed a Noisy Linear strategy for the imputation.

4.2 | SUMMARY OF THIS CHAPTER

In this chapter, we presented the most relevant evaluation techniques in the current
literature, grouped into four classes. The localization techniques allow the evalua-
tion of the XAI methods capability to concentrate the relevance on specific regions
of interest. However, this will not always be correlated with the faithfulness of the
feature attribution methods. Let us imagine we explain the model introduced in
the Introduction 1, the one that learned to distinguish the three animals (i.e.,
tiger, zebra and dolphin) by the background colour. A reliable feature attribution
method should concentrate most of the relevance on the background and not on the
object. Therefore, the evaluation obtained with these localization techniques (i.e.,
assuming that the relevance should lie on the object), will generate a misleading
evaluation.

The methods proposing axioms allow us to check whether the feature attribu-
tion method fulfils these desirable properties or not (i.e., these methods produce
categorical evaluations). However, these axioms do not allow us to rank the XAI
methods according to their faithfulness.

The most used evaluation techniques are the perturbation methods. However,
these methods disturb the input images to perform the evaluation. Those dis-
turbed images become instances outside the original data distribution, which may
reduce the reliability of those approaches, and render the model behavior noisy
or unstable. One of the methods introduced in this section (ROAR), gets around
this problem by retraining the models at different degradation levels. However,
the out-of-distribution problem is solved despite a high computational cost.

Finally, randomization tests are required as sanity checks since a feature at-
tribution method producing the same explanation for a trained model as for a
random model will not be faithful to the model. However, while these tests are



4.2 SUMMARY OF THIS CHAPTER 35

necessary, they are also insufficient to assess faithfulness. These randomization
methods should be combined with other complementary assessment techniques.

Table 4.1: A brief summary of the main characteristics of each family of methods.

Method
family

Make an
assumption

Generate
pseudo-ground

truth

In-distribution
instances Score Methods

Perturbation ✓ ✓ [12], [86], [4], [18], [40], [83]

Localization ✓ ✓ ✓ [113], [48], [74]

Randomization ✓ ✓ ✓ [98], [2]

Axioms ✓ ✓ [46], [102]
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Part II.

Mosaics for XAI Evaluation
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5 | INITIAL EXPLORATION

All sorts of things can happen
when you’re open to new ideas
and playing around with things.

Stephanie Kwolek

This chapter explains the origin of the research question this doctoral thesis
tries to address. As discussed next, our first contact with explainability was with
the purpose of better understanding a new dataset that was about to be released:
the Museum Art Medium (MAMe) dataset.

The MAMe dataset is a public dataset, presented in [76] which consists of
images extracted from three different museums: The Metropolitan Museum of
Art of New York [119], Los Angeles County Museum of Art (LACMA) [118] and
The Cleveland Museum of Art [117]. MAMe contains images from 29 medium
classes validated by experts from Universitat de Barcelona (UB). These mediums
can range from material aspects, such as ceramic, to complex techniques, such as
etching, see Figure 5.1.

Figure 5.1: Examples of different MAMe instances. The first sample corresponds
to the etching class, the second to the graphite class and the third to the ceramic
class. Notice the difference in aspect ratio and composition among the different
images.
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Figure 5.2: On the left, an original image from the MAMe dataset. On the right
examples of both data types. The top right type corresponds to a fixed shape (FS)
image, with an aspect ratio (AR) of 1:1, being 65,536, the total number of pixels.
On the bottom right, a variable shape (VS) image, with an AR of 2:1 and a total
of 500k pixels.

The 37,407 images that compose MAMe have variable shape (VS) and high
resolution (HR). The average number of pixels per image is around 2, 350×2, 350.
For this work, two baseline models were created using a VGG11 [97] architecture
to highlight the proposed task’s feasibility and complexity. These two models were
trained for a classification task on two versions of the MAMe dataset:

◦ The first model was trained on images downsampled to 256 × 256. This
includes losing the original aspect ratio (see the top right image in Figure
5.2). This is the fixed shape (FS) model.

◦ The second model was trained to keep the original aspect ratio of the images.
To reduce the computational and memory costs, the smallest dimension of
the images was reduced to 500 pixels. The largest one was proportionally
diminished, thus keeping the original aspect ratio (see the bottom right image
in Figure 5.2). This is the VS model.

To inspect these baseline models and to gain insight into the relevant features
of the MAMe dataset, the Composite LRP method was implemented and applied
to these models. Following the recommendations of LRP’s authors [62], the LRP
rules were combined in this order: for the first layer of the network the LRP−zB,
for intermediate layers LRP−ϵ (ϵ = 0.25) and LRP−γ (γ = 0.25) and for last
layers the LRP−0. The explanations obtained with the Composite LRP were
presented to the art experts. The goal was for them to assess the consistency
of the important features considered by the model with respect to the features
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that the art experts use to discriminate between classes. This process led to the
following findings:

◦ Thanks to the assessment of the explanations, we discovered that the carved
stucco class was not suitable for the MAMe dataset. Many of the carved
stucco images appear with a ruler and a piece of paper with a number
(see the first row of Figure 5.3). As can be observed in the explanation
(second row of Figure 5.3), the positive relevance (i.e., red areas) is con-
centrated on the ruler, meaning that the model considers this a meaning-
ful feature for the prediction of the carved stucco class. In other words,
the model learnt this shortcut solution instead of learning the characteris-
tics of this medium. As a result, this class was removed from the dataset.

Figure 5.3: Examples of carved stucco images are shown in the first row. In
the second row, their corresponding feature attribution maps obtained with
the Composite LRP. Notice that red areas correspond to the input features
contributing to the carved stucco class. Instead, blue areas correspond to
features favouring other classes.

◦ In a second step, the art experts validated whether the differences between
the features learned by the models with HR images with respect to the
features learned by the models trained with low resolution (LR) images were
coherent with the features the experts considered important.
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Figure 5.4: A wood class image in high-resolution (HR) and low-resolution
(LR). Next to its corresponding LRP-based feature attribution map obtained
using the model trained on HR and LR images.

Figure 5.4 shows an example of how different can be the explanations de-
pending on the training resolution. According to the explanation, in HR,
the body of the guitar contributes positively to the prediction of the wood
class (see red areas of the explanation on the left). On the contrary, the neck
of the guitar contributes negatively (blue areas), that is, it is characteristic
of another class. On the other hand, in LR, according to the explanation,
the whole image shape is in favour of the wood class (see the explanation on
the right). This is likely to be caused by the loss of resolution, which makes
details like guitar strings impossible to distinguish.

◦ And last but not least, we discovered some shortcuts that the model had
learned instead of the proper features of the class, therefore not allowing the

Figure 5.5: Silk and metal thread HR image and its feature attribution map.
The ornamental motifs (red zones) positively contributed to that class.
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model to generalize correctly. For example, according to experts, the silk
and metal thread class can be distinguished from other textile fibres mainly
through the glitter of its metallic threads. However, neither of the two models
correctly differentiates these two classes. It seems that the models learned
the ornamental motifs as a relevant feature of the silk and metal thread class.
The experts got this from the explanations like the one shown in Figure 5.5.

5.1 | SUMMARY OF THIS CHAPTER

Performing explainability experiments gave us insights into this new dataset, the
MAMe dataset. It allowed us to find some biases present in the data: we drop the
carved stucco class because all the images had a ruler at the bottom and we found
that the ornamental motifs could be a shortcut learned by the model to classify the
silk and meta thread class. It also allowed to detect failures of the baseline models
when discriminating between certain classes due to a lack of resolution. From the
XAI perspective, at the end of this work several limitations were identified:

◦ Only one explainability method was used: the Composite LRP. However,
many other feature attribution methods could better approximate the model
behaviour (i.e., XAI bias).

◦ We checked with experts about the alignment of the explanations with their
expert knowledge. However, this could lead to human biases: reinforcing
their beliefs (i.e., confirmation bias) or over-relying on the explanations (i.e.,
automation bias). And what is more, this human-centric evaluation may not
be aligned with the model behaviour.

◦ The art experts’ evaluation was time-consuming. The experts had to carry
out an exhaustive analysis by checking multiple instances. This approach is
not scalable in terms of expert hours. The case of the carved stucco class illus-
trates the importance of speeding up and facilitating the review of datasets
and models for biases.

These issues highlight the importance of taking into account the noise intro-
duced by the XAI methods (i.e., XAI bias) as well as the biases introduced by
humans (i.e., human bias) while using explainability to detect data/model
biases. To rely on these explanations we first need to objectively assess the per-
formance of these feature attribution methods and thus reduce the XAI bias.
Only then, we could safely use these methods to detect biases present in the
models and/or datasets. In addition, semi-automating the detection of these
data/model biases will reduce the inspection time required by experts as well
as the noise introduced by them (reducing human bias).
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6 | FOCUS FORMALIZATION

Research is formalized curiosity.
It is poking and prying with a
purpose.

Zora Neale Hurston

In this chapter, we introduce the Focus score and its formulation. Focus is an
evaluation score for feature attribution methods we introduced in this work [8]1.
We first discuss the motivation for creating this new score (§6.1). Then, we intro-
duce the elements needed to calculate the Focus score (§6.2) and its formalization
(§6.3). Finally, we end the chapter with some experiments designed to test the
correct behaviour as well as the robustness of the proposed methodology (§6.4).

6.1 | MOTIVATION

One of the main limitations identified at the end of the previous chapter, as a
result of our work in the MAMe dataset is that of selecting a XAI method which is
reliable and appropriate for the problem at hand. The challenge of quantitatively
evaluating XAI methods lies in the absence of ground truth: we cannot be sure of
what a DL method is doing unless we understand the model parametrization itself
(at which point we would not need a XAI method). Nonetheless, we still want
to approximate the faithfulness of XAI methods with respect to the underlying
model, as this allows us to discern between accurate and misleading explanations.

Before evaluating the plausibility, we must evaluate the faithfulness of feature
attribution methods. Since explanations that are apparently inappropriate (e.g.,
the background of the object instead of the object itself) may be an accurate
portrait of the model’s behaviour, following a bias found and learnt from the data
(e.g., the zebra, tiger and dolphin example). As introduced in Chapter 4, the
most widely used group of evaluation techniques is the perturbation category (i.e.,
methods adding noise to the input instances). However, those disturbed images

1Part of this chapter can also be found in that work.
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which fall outside of the original data distribution may reduce the reliability of
the analysis because of the effect it may cause on the activations of the model
(i.e., are bad explanations caused by a bad method or by the corruption inserted
into the samples?). On the other hand, localization techniques assume that the
relevance must be on the object, an assumption that is not always true (i.e., are
bad explanations caused by a bad feature attribution method or by a shortcut
learnt by the model?).

To circumvent these two problems (i.e., the out-of-distribution problem and
the localization assumption), we propose a novel evaluation score for feature attri-
bution methods; we call it the Focus. First, instead of out-distribution noise, our
input alteration approach induces in-distribution noise into samples, that is, alter-
ations on the input but preserving the visual patterns found within the original
data distribution. With this, we expect to minimize the exogenous noise added to
the process. To do so, we modify the context of the sample instead of the content,
leaving the original pixel values untouched. Second, instead of assuming that the
relevance should fall on the object, we assume that the relevance should fall on
the sample containing the object. That is, it provides a pseudo-ground truth for
the localization of explanations. In practice, we create a new sample composed of
samples of different classes: a mosaic image (see Figure 6.1).

Using mosaics as input has a major benefit: each input quadrant is an image
from the original distribution, producing blobs of activations in each quadrant
which are consequently coherent. Only the pixels forming the borders between
images and the few corresponding activations may be considered out of distribu-
tion. By inducing in-distribution noise, mosaic images introduce a problem in
which XAI methods may objectively err (i.e., focus on something it should not be
focusing on).

On those composed mosaics, we ask a XAI method to provide an explanation
for just one of the contained classes and follow its response. In a sort of eye-tracking
game, we measure how much of the explanation generated by the XAI is located
in the areas corresponding to the target class, quantifying it through the Focus
score. This score allows us to compare methods in terms of explanation precision,
evaluating the capability of XAI methods to provide explanations related to the
requested class.

6.2 | METHODOLOGY

The Focus computation involves three elements. First, one needs an explainability
method to be evaluated. Second, the classification model to be explained. And
the last elements needed for the Focus calculation are the mosaic samples. Let us
start with these three ingredients:
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1. The explainability method A. This would be the specific technique the
Focus is expected to evaluate (e.g., any of the feature attribution methods
introduced in Chapter 3).

2. A trained classification model θ. This will be the model the feature attribu-
tion method is trying to explain. The model will have been trained from a
specific architecture on a dataset and using a certain training configuration.

3. And a set of mosaic samples. To formalize mosaics, let us remember the
formalization of the classification problem introduced in the Introduction 1.
Where a dataset D is composed by a set of images I = {img1, img2, . . . imgN}
and a set of classes C = {c1, c2, . . . cK}, N being the number of total images
and K the number of total classes. And every image in I has assigned a
unique class from C: c(img). From here we build a set of mosaics M =
{m1,m2, . . .mT} where T is the total number of mosaics in M. A mosaic m
is composed by J images m = {img1, img2, . . . imgJ} and characterized by
a target class tc = c(m), the specific class the XAI method is expected to
explain. While half of the images of the mosaic belong to the target class,
the other half will be randomly selected from the rest of the classes. A toy
example of a mosaic is shown in Figure 6.1: this mosaic comprises images
from a three-class dataset (cats, dogs and rabbits). The size of this mosaic
is four J = 4 (i.e., the mosaic is composed of a two by two non-overlapping

Figure 6.1: Toy mosaic example. This mosaic is composed of images from a
three-class dataset: cats, dogs and rabbits. The target class of this mosaic
is the cat class; therefore, the mosaic is composed of two cats, one dog and
one rabbit.
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grid of images). The target class of this mosaic is the cat class tc = cat.
Therefore, the mosaic is composed of two images of cats c(img1) = c(img2) =
tc and the other two images correspond to a dog c(img3) ̸= tc and a rabbit
c(img4) ̸= tc.

At this point, we have already introduced the different elements needed for the
Focus computation. Let us now present the Focus formulation.

6.3 | FOCUS SCORE

As previously introduced, when a feature attribution method is applied to an image
to explain the model’s prediction regarding a chosen class, it typically produces a
mapping from pixels to real values. In the XAI field this is referred to as feature
relevance. While some feature attribution methods also provide negative relevance
(i.e., the property of certain input features contributing against the prediction of
the target class), this is not generalized. Therefore, for this first definition of
the Focus, we only consider positive relevance. For XAI methods providing both
positive and negative relevance (e.g., LRP), only the positive relevance is used,
while negative values are treated as zero.

Intuitively, the output of a method is reliable (but not necessarily understand-
able) when higher values of relevance lie on pixels of the image that are visual
evidence toward the chosen class. We consider visual evidence any set of pixels
used by the model to distinguish the chosen class from any other class of the task.
To formalize this, we introduce a probability distribution Ptc over all possible pixels
given a target class tc. The probability of sampling a pixel from Ptc is proportional
to the pixel’s relevance toward tc attributed by an explainability method A and a
model θ. Then, we define the formal reliability Re(A, θ, tc) as the probability that
a pixel sampled from the distribution Ptc lies within visual evidence corresponding
to tc.

The definition of Re(A, θ, tc) over a method-model-class triplet can be extended
to evaluate a method-model pair as Re(A, θ). To do so, we take the expectancy of
reliability over all classes C: Re(A, θ) = Etc∈C[Re(A, θ, tc)]. More accurate models
and better feature attribution methods will result in Re(A, θ) values closer to 1.
The lower bound of Re(A, θ) is the probability that any pixel lies within evidence,
which is proportional to the number of pixels lying on visual evidence.

To obtain the Re(A, θ) metric, we would require a ground truth of which pixels
are evidence toward a class. A way to bypass this limitation is to take the assump-
tion that evidence toward a class is more prevalent in images labelled with that
class, this being the main assumption of the proposed approach. We thus define
the Focus as an estimator of the reliability computed over a dataset. The Focus
evaluates the expected probability that a pixel sampled from Ptc lies on an image
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of the target class tc. Notice the Focus underestimates the reliability, as evidence
toward a class can be present on samples of a different class of the dataset. We
leverage this to our advantage in §10.1, using it to detect biases in models and
datasets (be they desirable or undesirable biases).

Since this new score only requires image labelling instead of pixel labelling, we
transform the dataset into a set of mosaics as introduced in §6.2. As such, we
compute Focus on subsets of J images (i.e., each image composing the mosaic is
labelled) to estimate the Focus of a method and a model on the whole dataset. In
this context, the Focus score estimates the reliability of XAI method’s output as
the probability of the sampled pixels lying on an image of the target class of the
mosaic. This is equivalent to the proportion of positive relevance lying in those
images:

FocusA,θ(m) =
Rtc(img1) + . . .+Rtc(imgJ/2)

Rtc(m)
(6.1)

where Rtc(r) is the sum of positive relevance toward class c on the region of the
mosaic r. And {img1, img2, . . . imgJ/2} are the target class images withing the
mosaic.

This probability can be interpreted as the precision of the relevance. In prac-
tice, using the Focus is analogous to asking the XAI method “Why does mosaic
m belong to the target class? ” on a mosaic m which contains both samples be-
longing and not belonging to the target class. Given the previous question and
a good underlying model, a reliable feature attribution method should be able to
concentrate most of its explanation relevance on the appropriated images of the
mosaic.

As explainability becomes more reliable, the Focus will grow. As with relia-
bility, the theoretical upper bound of the Focus score is 1, but this is unrealistic:
visual evidence of a class appearing exclusively on images of that class is seldom
true. On the other hand, in the case of uninformed relevance attribution (i.e.,
unreliable explanations), the expected value of Focus is 0.5, since the probability
of picking a pixel of the correct class is just the prior probability of picking one of
the pixels of {img1, img2, . . . imgJ/2}, which amount to half of the total pixels in
the mosaic.

6.4 | SANITY CHECKS

In this section, we introduce different experiments performed with two main ob-
jectives: first, to reach the final Focus design and mosaic construction proposal,
and second, to test the robustness and consistency of the method.



50 CHAPTER 6. FOCUS FORMALIZATION.

6.4.1 | MOSAIC CONSTRUCTION

First, we conduct a randomization experiment to assess and decide the exact po-
sition of the target class images within the mosaic grid. This experiment uses
GradCAM [89] on top of a VGG16 [97] model trained for the Dogs vs Cats2

dataset (pre-trained on ImageNet [85]). We used mosaics of size four J = 4. The
six possible configurations of the two by two grid were tested, plus a seventh for
random positioning. For each configuration, 2,812 mosaics were created, using
cat class as the target class. The resulting Focus distributions are shown in Fig-
ure 6.2. Clearly, the positioning of target samples affects the Focus distribution.
Configurations where the two target class images (img1 and img2) are arranged
contiguously tend to be better. While this may be partially the result of expla-
nation relevance spilling over samples, it happens more prominently when correct
samples are placed on top. Meanwhile, the left-right configurations show a smaller
gain when placing the correct samples on the right. We hypothesize that such
variance in Focus performance is independent of the underlying XAI method and
is instead caused by particularities of the dataset and/or task. Since we cannot

Figure 6.2: Focus obtained by GradCAM on a VGG16 trained for Dogs vs Cats
dataset (pre-trained on ImageNet), using different mosaic configurations. Each
box plot shows the distribution of Focus obtained from evaluating 2,812 samples
for each configuration (the cat being the target class).

2https://www.kaggle.com/c/dogs-vs-cats/overview

https://www.kaggle.com/c/dogs-vs-cats/overview
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guarantee that these properties will hold among target classes, datasets or mod-
els, we propose to use a sampling approach hereafter. The exact position samples
within the composed grid are chosen randomly for every mosaic.

When building the mosaics, we must also set the number of target class images
within each mosaic. We decided to build the mosaics with half of the images
belonging to the target class and the other half not belonging to the target class.
This construction decision was motivated to avoid a low Focus due to missing
evidence in a particular instance. In other words, if the target class image of a
specific mosaic does not contain clear evidence for the target class, we will be
penalizing the evaluation of the feature attribution method, even though the XAI
method is being faithful to the model. To test this hypothesis, we perform the
following experiment. We created two mosaic variations of size four J = 4. The
first version with two images belonging to the target class and the second with
only one target class image. The results support our hypothesis (see Figure 6.3):
the Focus decreases when using the one vs three format. To prevent the evaluation

Figure 6.3: Focus obtained by GradCAM on top of a VGG16 model fine-tuned for
Dogs vs Cats dataset. Two different mosaic variations are tested. On the left, two
target class images vs two non target class images (i.e., two dogs vs two cats). On
the right one target class image vs three non target class images (i.e., one dog vs
three cats or one cat vs three dogs).
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from being penalized due to a lack of evidence in some instances, we use more than
one target class image within the mosaic.

6.4.2 | RANDOMIZATION TEST

In this test, we evaluated model randomisation’s effect on the Focus score. For
performing this experiment, we used two different models. A VGG16 pre-trained
on ImageNet and then fine-tuned for the Dogs vs Cats dataset and a totally ran-
domized VGG16 model. The experiment computes the Focus metric on the cat
target class (tc = cat) for the 2,812 mosaics with the random layout. The distri-
bution of Focus achieved by GradCAM on both models are shown as histograms
in Figure 6.4. While the mean of the Focus obtained with the pre-trained model
reaches a remarkable 0.94, the random model mean score is 0.49, roughly 50% of
the relevance lies on the wrong class quadrants.

To take the randomization analysis further, we replicate the experiment of
Adebayo et al. [2]. In it, the authors qualitatively pointed out how visual expla-
nations can be compelling to the eye even when randomizing one or more layers of
the underlying model. In this experiment, layers are randomized in cascade, start-
ing with only the top layer, and increasingly randomizing more layers one by one
until obtaining a fully randomized model. We use GradCAM on InceptionV3 [104]

Figure 6.4: Histogram of Focus scores obtained by GradCAM from 2,812 mosaics,
using a VGG16 trained on Dogs vs Cats and a randomized VGG16 model. The
corresponding PDF estimation is represented by a contour line on top.
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(like [2]) adding as well VGG16 and ResNet-18. Our results are straightforward:
simply randomizing the top layer (or any other set of layers) makes the Focus drop
to a 50% mean, the same score obtained by a purely random XAI method. This
illustrates how resistant the Focus score is against misleading explanations.

6.5 | SUMMARY OF THIS CHAPTER

In this chapter, we introduced the Focus : a new score to assess the reliability of fea-
ture attribution methods. As already discussed, the difficulty of evaluating those
XAI methods lies in the non-existence of ground truth. To overcome that barrier,
we defined a pseudo-ground truth by constructing new instances from samples of
different classes, we called them mosaic images. Given the mosaics, a model and
a reliable feature attribution method, the Focus computes the proportion of the
total explanation lying on the ground truth (i.e., in the target class images). Mo-
saics allow us to assess the faithfulness of the feature attribution methods without
disturbing the input image. In other words, the features found within the original
data distribution are preserved. Finally, we also performed some sanity checks to
verify the robustness of the Focus.
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7 | FOCUSING ON XAI METHODS

Science, for me, gives a partial
explanation for life. In so far as
it goes, it is based on fact, expe-
rience and experiment.

Rosalind Franklin

Considering the problems we had identifying the most appropriate XAI method
in the MAMe use case, in this chapter we tackle the assessment of different feature
attribution methods following the definition of the Focus and mosaics presented
in Chapter 6. This contribution was first introduced in [8]1.

7.1 | EXPERIMENTS DETAILS

As previously introduced, Focus requires an explainability method, a trained clas-
sification model and a set of mosaic samples. We detailed below the different
explainability methods evaluated (§7.1.1), the models explained (§7.1.2) and a
further explanation regarding the construction of the mosaics (§7.1.3).

7.1.1 | EXPLAINABILITY METHODS

Of all the feature attribution methods presented in Chapter 3, we select those
more frequently used. The details on each one of them being as follows:

◦ GradCAM [89], based on the Gildenblat et al. implementation2. We compute
the gradients of the logits of the class with respect to the feature maps of
the final convolutional layer. That is the 5th layer for AlexNet, the 13th for
VGG16 and the last layer from the 5th block for ResNet-18 (also known as
block E).

1Part of this chapter can also be found in that work.
2https://github.com/jacobgil/pytorch-grad-cam
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◦ LRP [12], based on the implementation of Nam et al. [66]. On the first layer,
we use the zB − rule [63], on fully connected layers, the LRP − ϵ [12], and
on convolutional layers, the LRP − αβ [12] with α = 1 and β = 0.

◦ SmoothGrad [99], based on the implementation of Nakashima et al.3. Ex-
planations are obtained by computing the gradient of the specific class score
with respect to the input pixels and adding small perturbations on the input
image (in our case Gaussian Noise).

◦ LIME [81], based on the implementation of Tulio et al.4. Each explanation is
computed considering 1,000 samples, and the final explanation only includes
the five top features, that is, the five most relevant superpixels.

◦ GradCAM++ [18], based on the implementation of Gildenblat et al.2. We
use the last convolutional layer to compute the GradCAM++ explanations.

◦ IG [102], based on the implementation of Kokhlikyan et al. [49]. We use
the black image as the baseline image and thirty steps to approximate the
integral.

7.1.2 | MODELS

One needs a model to explain to run a XAI method. One generated from an
architecture trained on a dataset through a specific training configuration. In
these experiments, we use the following:

◦ Architectures: AlexNet[51], VGG16[97] and ResNet-18 [36].

◦ Datasets: the Dogs vs Cats5, the MAMe [76], the MIT67 [78] and the
ILSVRC 2012 [85] (hereafter ImageNet).

Training configurations: During training, data augmentation is performed
and AMSGrad [80] is used to optimise weights. For the ImageNet dataset, we
use the pre-trained models in the subpackage torchvision.models6,7,8. For Dogs
vs Cats and MAMe datasets, we fine-tuned the ImageNet pre-trained models.
Finally, in the case of the MIT67 dataset, we fine-tune the model pre-trained on
Places365-Standard dataset [115] (models available in the official repository9).

3https://github.com/kazuto1011/grad-cam-pytorch
4https://github.com/marcotcr/lime
5https://www.kaggle.com/c/dogs-vs-cats/overview
6https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth
7https://download.pytorch.org/models/vgg16-397923af.pth
8https://download.pytorch.org/models/resnet18-5c106cde.pth
9https://github.com/CSAILVision/places365

https://github.com/kazuto1011/grad-cam-pytorch
https://github.com/marcotcr/lime
https://www.kaggle.com/c/dogs-vs-cats/overview
https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth
https://download.pytorch.org/models/vgg16-397923af.pth
https://download.pytorch.org/models/resnet18-5c106cde.pth
https://github.com/CSAILVision/places365
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7.1.3 | MOSAICS

The last elements required to compute the Focus score are the mosaics. In these
experiments, we set the size of the mosaics to four J = 4. Therefore, as defined
in §6.4.1, half of the mosaic will belong to the target class and the other half to
random classes. To maintain the resolution of visual patterns seen during their
training, all XAI evaluation experiments use 448×448 mosaics. That is four times
the size of the inputs the models were trained with. Also note that both AlexNet
and VGG16 architectures were not input-agnostic when originally proposed, being
limited by design to an input size of 224×224 pixels. Nowadays, these architectures
employ an Adaptive Pooling Layer to circumvent this problem.

We built thousands of mosaics using the four datasets introduced in §7.1.2.
Some examples are shown in Figure 7.1. Since the Dogs vs Cats dataset is a
binary dataset, the mosaics will be composed of two cats and two dogs, see Figure
7.1 (a). In (b), we show a mosaic made up of images from the MIT67 dataset.
The target class of this mosaic is the airport class, located in the top-left and
bottom-right images. The other two are randomly chosen, in this case belonging
to the staircase and greenhouse classes. In (c), the shown mosaic is from the
ImageNet dataset, where the target class is the lorikeet class. The last example
(d) is composed of images from the MAMe dataset, in this case, the target class
is the faience class. Note that the exact position of the target class images is not
always the same. As already said in §6.4.1, the position is chosen randomly for
each mosaic.

(a) (b) (c) (d)

Figure 7.1: Mosaic samples used by the evaluation methodology, obtained for: (a)
Dogs vs Cats (b) MIT67 (c) ImageNet and (d) MAMe dataset.

7.2 | RESULTS

Let us now put the Focus into practice. As previously introduced, we evaluate
GradCAM, LRP, SmoothGrad, LIME, GradCAM++ and IG, using three archi-
tectures (AlexNet, VGG16 and ResNet-18) and four target datasets (Dogs vs Cats,
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Table 7.1: Mean and standard deviation (in parenthesis) of the Focus distribution obtained by different XAI
methods (columns) on architectures trained for different datasets (rows). The accuracy shown beside each model
(acc) corresponds to the mean per class accuracy on the validation set. Best mean Focus per row in bold.

GradCAM LRP SmoothGrad GradCAM++ IntGrad LIME

Dogs vs. Cats
AlexNet - acc: 0.9644 0.9101 (± 0.0903) 0.9230 (± 0.1018) 0.5092 (± 0.0840) 0.7041 (± 0.0872) 0.5113 (± 0.0858) 0.8883 (± 0.1797)
VGG16 - acc: 0.9893 0.9446 (± 0.0577) 0.9526 (± 0.0877) 0.5035 (± 0.0854) 0.7574 (± 0.0777) 0.5108 (± 0.0849) 0.9724 (± 0.1024)
ResNet-18 acc: 0.9878 0.9725 (± 0.0320) 0.9741 (± 0.1018) 0.4970 (± 0.0677) 0.7484 (± 0.0456) 0.5037 (± 0.0976) 0.9735 (± 0.0809)

MAMe
AlexNet - acc: 0.7676 0.8292 (± 0.1346) 0.7237 (± 0.2359) 0.4962 (± 0.0515) 0.6117 (± 0.0879) 0.5138 (± 0.0825) 0.6695 (± 0.2819)
VGG16 - acc: 0.8069 0.8556 (± 0.1123) 0.7827 (± 0.2015) 0.4957 (± 0.0626) 0.6401 (± 0.0932) 0.5354 (± 0.1050) 0.7951 (± 0.2459)

ResNet-18 - acc: 0.8220 0.8941 (± 0.0938) 0.8864 (± 0.1268) 0.5257 (± 0.0521) 0.6874 (± 0.0665) 0.6076 (± 0.1213) 0.7937 (± 0.2533)

MIT67
AlexNet - acc: 0.5806 0.8133 (± 0.1401) 0.6864 (± 0.2545) 0.5017 (± 0.0415) 0.6037 (± 0.0773) 0.5121 (± 0.0736) —
VGG16 - acc: 0.6948 0.8230 (± 0.1088) 0.6033 (± 0.1978) 0.5079 (± 0.0522) 0.6441 (± 0.0776) 0.5340 (± 0.0809) —

ResNet-18 - acc: 0.7619 0.9248 (± 0.0818) 0.9162 (± 0.1265) 0.5682 (± 0.0807) 0.7027 (± 0.0702) 0.6892 (± 0.0865) —

ImageNet
AlexNet - acc: 0.3618 0.7866 (± 0.1179) 0.7345 (± 0.1442) 0.5194 (± 0.0644) 0.6018 (± 0.0797) 0.5342 (±0.0867) —
VGG16 - acc: 0.6350 0.8426 (± 0.0881) 0.7914 (± 0.1140) 0.5425 (± 0.0566) 0.6279 (± 0.0814) 0.5637 (± 0.0924) —

ResNet-18 - acc: 0.6072 0.8792 (± 0.0849) 0.8814 (± 0.1068) 0.5827 (± 0.0608) 0.6885 (± 0.0711) 0.6081 (± 0.0897) —
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(a) (b)

(c) (d)

Figure 7.2: Focus distribution boxplot for different XAI methods applied to models trained for different datasets.
The accuracy (acc) shown under each model corresponds to the mean per class accuracy on the validation set of
the corresponding dataset. These datasets are (a) the Dogs vs Cats dataset, (b) the MAMe dataset, (c) the MIT67
dataset and (d) the ImageNet dataset. LIME is only present in (a) and (b).
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MAMe, MIT67 and ImageNet). For the Dogs vs Cats dataset, the MAMe dataset
and the MIT67 dataset we use 100 mosaics per target class, a total of 200, 2,900
and 6,700 mosaics, respectively. In the ImageNet experiments, a total of 10,000
mosaics are used (ten per target class). Since the LIME method is computationally
expensive, we restricted the experiments with this method to the Dogs vs Cats (200
mosaics) and MAMe datasets (2,900 mosaics). For each experiment, Table 7.1
depicts the mean and the standard deviation of the Focus distribution. Figure 7.2
shows these distributions as box plots for further insides. Overall, Focus seems to
be correlated with model accuracy. As models get better, the mean Focus goes up,
and the standard deviation goes down. However, there are exceptions to this rule,
as the ResNet-18 outperforms the Focus of others consistently. This indicates that
certain architectures produce more precise explanations than others; we further
analyze these relations in §7.2.1.

According to these experiments, GradCAM results are the best on average.
Reaching a mean Focus above 81% in all experiments but one. And obtaining the
best results in two-thirds of the conducted experiments. This feature attribution
method is particularly robust to noisy models, performing competitively even with
36% accuracy models (AlexNet on ImageNet). GradCAM++ scores significantly
lower in every experiment we conducted, being the third or fourth in the overall
ranking. Still, its explanations are well above random behaviour.

LRP gets the second best Focus in eight of twelve experiments and the best
in three of the remaining four. LIME performs very well on the high accuracy
models of Dogs vs Cats, outperforming GradCAM. But on the other models, it is
able to beat the mean of GradCAM only once, while suffering from a significantly
larger variance. The worst results of LRP are obtained in the MIT67 experi-
ment for the AlexNet and VGG16 models. Notice these models were pre-trained
on the Places365-Standard dataset [115], which is noticeably narrower than Ima-
geNet (434 vs 1,000 classes). Overall, these results indicate LRP is a very good
methodology for explainability, particularly when applied to very accurate models.

LIME performs remarkably well for the Dogs vs Cats models, the ones with the
highest accuracy (pre-trained with ImageNet), and the only two-class classification
task. For lower accuracy models (AlexNet in this task, and all in MAMe task),
LIME becomes less reliable. Its mean Focus drops, and its standard deviation
becomes the largest of all XAI methods. The lack of hyperparameter tuning may
have penalized the results for MAMe.

SmoothGrad generally obtains a Focus of around 50%, showing close to random
precision in all experiments. Since this method uses the gradient of the output
with respect to the input pixels, misleading attribution scores could be caused by
discontinuous gradients or by saturation of gradients, as previously suggested [93].
The IG method tries to overcome these drawbacks and while its mean score is al-
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ways better than the SmoothGrad, it remains quasi-random in general. The cause
behind these noisy explanations may be the domination of gradients in saturated
areas, as shown by Miglani et al. [60].

7.2.1 | FOCUS SCORE RELATIONS

The previous experiments show a strong relationship between the model perfor-
mance and the Focus score. To further validate such correlation, we evaluate the
evolution of the Focus metric and its corresponding accuracy during a model train-
ing process. In particular, we extract Focus after every training epoch, plotting
the median of the corresponding distribution. The Focus metric is evaluated us-
ing the most stable explainability method according to our results, the GradCAM
method. Regarding the model, we use the ResNet-18 architecture trained with the
Dogs vs Cats dataset. This experiment is performed under two different setups:
training from scratch and training on top of an ImageNet pre-trained model. Re-
sults of this experiment are shown in Figure 7.3, illustrating a strong correlation
between Focus and model performance. For the training from a pre-trained model
(top plot), the Pearson correlation coefficient is 0.9939 and, for the training from
scratch case (bottom plot), the Pearson correlation coefficient is 0.9873. Addition-
ally, the variance is shown as a shaded area around Focus score. Notice how the
Focus metric reduces its variance while the model’s training converges.

Beyond the relation between Focus and model performance, there are other
factors affecting the Focus outcome. Among the ones we consider are architectures
and datasets (having fixed GradCAM as the XAI method). To assess their impact,
we look at all the experiments conducted in §7.2, plotting their median Focus scores
with respect to the model performance in two plots (Figure 7.4): one plotting Focus
versus accuracy (a) and another plotting Focus versus loss (b).

Let us first discuss model architecture. Focus typically grows with model per-
formance. However, there are cases where a better performance does not entail
a better Focus. The following examples illustrate such a scenario, always when
switching from VGG16 to ResNet-18 architecture while using the same dataset.
For the MAMe dataset (pink and grey circles), the accuracy slightly increases
when moving from VGG16 to ResNet-18 (+1.52%) while Focus grows consider-
ably (+3.39%). For the Dogs vs Cats dataset (pink and grey stars), the accuracy
remains roughly equal (-0.15%) while Focus increases (+1.77%). Finally, and
most remarkably, in the ImageNet dataset (pink and grey squares), the accuracy
degrades (-2.78%) when moving from VGG16 to ResNet-18 while the Focus sig-
nificantly improves (+4.03%). According to these results, when switching from
VGG16 to ResNet-18 we can expect an improvement in Focus, even when such
models are almost equally good at the underlying task. This particular experi-
ment showcases the relevance of architecture for the Focus, and for XAI.
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Figure 7.3: Model’s training curves as pink triangles, the median of the Focus
distribution in purple circles (variance as shaded area). Both curves correspond
to a ResNet-18 trained on the Dogs vs Cats dataset. The top plot corresponds to
a model pre-trained on ImageNet, while the bottom plot corresponds to a model
trained from a randomized initialization.

The other main factor influencing the Focus score according to our experiments
is the target task (i.e., the dataset). There are two cases where having the same
architecture but a different dataset, model performance degrades while Focus im-
proves, showing the effect of the dataset itself. The first example is for ResNet-18
trained for either MAMe or MIT67 (grey circle and grey triangle). While for the
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(a) (b)

Figure 7.4: Model accuracy (a) and model loss (b) vs median of the Focus distri-
bution for different experiments. Each architecture is shown in a different colour,
and each classification task is represented with a different marker.

MIT67 accuracy is worse (−6.02% acc), the same model outperforms the MAMe
one in terms of Focus (+2.98%). The second case involves VGG16 models trained
for MIT67 and ImageNet (pink triangle and pink square), where, when comparing
both models, the latter’s accuracy degrades by a -6.98% while its Focus score im-
proves a +1.71%. These results illustrate the impact of the dataset on the Focus
score. Several factors may be at play here, including the number of classes in the
task, how fine-grained or varied these are, the pre-training used, and the training
set size.

7.3 | SUMMARY OF THIS CHAPTER

In this chapter, we apply the Focus methodology introduced in Chapter 6. We
use the Focus to evaluate six feature attribution methods, using different configu-
rations (i.e., different architectures and different datasets).

The main findings described in this chapter are the following. When applied
to SmoothGrad or IG, Focus finds these methodologies as quasi-random in their
explanations with respect to the model. On the contrary, LRP and GradCAM are
both found to be consistently reliable methods. GradCAM performs well on all
experiments conducted, even when the underlying model is not particularly well fit
for the task. LRP performs very well for high-performing models, but it becomes
more unreliable on less accurate models. This also seems to be the case of LIME,
which suffers from an even larger variance. GradCAM++ performs better than
random, but not as well as GradCAM and LRP.

The Focus results are rather consistent across tasks and architectures, providing
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empirical evidence of their performance. The consistency of Focus is likely related
to the type of noise it induces. By altering the context and not the content of
samples, Focus adds and exploits in-distribution noise. Unlike out-distribution
noise, this is less prone to arbitrary model behaviour.

Notice that by selecting the method that best represents the model behaviour
according to the Focus (i.e., GradCAM in the case of the experiments conducted
in this chapter), would allow to reduce the xai bias present in the bias chain.



8 | ATTRIBUTION CONFUSION MATRIX

I think that little by little I’ll be
able to solve my problems and
survive.

Frida Kahlo

In previous chapters, we introduced Focus and showed how it can help re-
searchers choose the best feature attribution method according to this score, thus
reducing the xai bias. We also showed the relation between model performance
and Focus score, which supports the reliability of the method. However, the Focus
as previously proposed has two major limitations. On one hand, it only considers
the positive relevances: some of the feature attribution methods also provide neg-
ative relevances (i.e., features that provide evidence against the target class), see
Figure 8.1. On the other hand, the Focus may suffer from numerical instabilities
caused by zero divisions (e.g., when all the attributions are negative). In this chap-

(a) (b) (c) (d)

Figure 8.1: (a) Mosaic example made up of images from the Dogs vs Cats5 dataset.
On the right, the explanations for the target class dog are obtained with: (b) LRP
(c) LIME and (d) GradCAM. Purple areas correspond to positive attributions and
orange to negative ones. Notice that GradCAM only provides positive attributions.
The model used was a ResNet-18 architecture pre-trained on ImageNet and fine-
tuned on the Dogs vs Cats dataset.

65
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ter we introduce an improved version of the Focus to overcome these limitations.
This contribution was presented in [7]1.

8.1 | METHODOLOGY

By using mosaics, it is possible to generate a pseudo ground truth that allows us to
go from attributions to classification scores, categorizing the input mosaic regions
into relevant and non-relevant. Through the assumption that these labels align
with the positive and negative ground truth, we can derive the most commonly
used metrics in the evaluation of classification models. Let us first define T as the
set of images belonging to the target class within the mosaic, N as the set of images
not belonging to the target class, and αi as the feature attributions. Therefore,
for each mosaic, we define:

◦ True Positive evidence (TP) =
∑

i∈T max(0, αi)

◦ False Positive evidence (FP) =
∑

i∈N max(0, αi)

◦ True Negative evidence (TN) =
∑

i∈N |min(0, αi)|

◦ False Negative evidence (FN) =
∑

i∈T |min(0, αi)|

Having defined the TP, FP, TN and FN terms, the confusion matrix can be
used as a performance measurement tool. We redefine the existing metrics for
classification as Focus-X:

◦ Focus-Accuracy = TP+TN
TP+TN+FP+FN

◦ Focus-Precision = TP
TP+FP

◦ Focus-Recall = TP
TP+FN

◦ Focus-F1 = 2×TP
2×TP+FP+FN

The use of these metrics, adapted from classification, enriches the evaluation
of feature attribution models, detailing how different methods may hold greater
relevance in certain scenarios. For instance, in certain medical applications, we
could prioritize feature attribution methods which minimize the number of false
positives (i.e., high Focus-Precision) to avoid unnecessary treatments when these
are highly invasive. Or prioritize attribution which minimizes false negatives (i.e.,
high Focus-Recall) to avoid non-diagnosed pathological cases in a triage setting.

1Part of this chapter can also be found in that work.
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This enables a more informed and adecuate decision from practitioners when iden-
tifying the most suitable XAI method for their particular requirements. It is worth
noting that the original Focus metric is equivalent to Focus-Precision, thus inher-
iting its strengths and weaknesses.

8.2 | EXPERIMENT DETAILS AND RESULTS

Let us now use the metrics previously introduced to evaluate different feature at-
tribution methods. The experiments in this section use similar setups to those
detailed in Chapter 7 for the sake of consistency. We restricted the experiments
to two of the three models described in §7.1.2 (i.e., VGG16 and ResNet18) and to
three datasets Dogs vs Cats, MAMe and MIT67 dataset. The feature attribution
methods evaluated in this experiment are LIME, LRP, GradCAM and IG. The
implementation of the last three is the same as the one described in §7.1.1. Notice
that the LIME implementation has been modified to also generate negative rele-
vance, this is the main difference in the experimentation setup. It is also based
on the Tulio et al. implementation4, however in this case, for each explanation,
1000 samples are used, and only the six superpixels with the largest attribution in
absolute value are considered. Notice that while LIME, LRP and IG provide both
positive and negative relevance, GradCAM only generates positive attributions.
We used the GradCAM method as baseline given its top performance. The evalu-
ation results of the feature attribution methods following the detailed metrics are
shown in Table 8.1. For each target class: 100 mosaics were built for the Dogs vs
Cats dataset (a total of 200), 100 mosaics for the MAMe (a total of 2,900) and 10
mosaics for the MIT67 (670 in total).

Among the methods obtaining positive and negative relevance (i.e., LIME,
LRP and IG), for the Dogs vs Cats task (high-performing models with accuracies
of 98%) LIME consistently obtains the best scores on all measures. LRP gets the
second position obtaining competitive Focus-Precision scores, but lower Focus-
Recalls (thus making more false negative predictions). Lastly, IG gets random
results on all metrics. Note that IG results may vary depending on the number of
steps and the baseline image used (in this experiment we used 30 steps to approx-
imate the integral and the black image as baseline). For the MAMe results (i.e.,
models with lower accuracy, in the range 80-82%) LIME shows lower performance
in all the metrics with respect to the simpler Dogs vs Cats task, probably due
to model performance drop. This also affects the variance, which increases in all
metrics, particularly in Focus-Precision (unreliable amount of false positives). Re-
garding the Focus-Recall scores, both LIME and LRP maintain high mean values.
Finally, for the MIT67 task (i.e., models with the lowest performance, in the range
69-76%) LIME performs better than LRP for all metrics, particularly in VGG16,
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Table 8.1: Mean and standard deviation of the four metrics computed: Focus-Precision, Focus-Accuracy, Focus-
Recall and Focus-F1. Each metric is shown grouped by column and each row shows the results for a combination
of a feature attribution method, a specific architecture and a target task. For each model, the metric obtaining the
highest mean is highlighted in bold.

Focus-Precision Focus-Accuracy Focus-Recall Focus-F1

LIME 0.9935 (± 0.0724) 0.9913 (± 0.0435) 0.9863 (± 0.0746) 0.9855 (± 0.0859)
LRP 0.9526 (± 0.0877) 0.9343 (± 0.0835) 0.9011 (± 0.1707) 0.9141 (± 0.1290)
IG 0.4973 (± 0.0912) 0.5038 (± 0.0011) 0.5039 (± 0.0015) 0.4963 (± 0.0471)

VGG16
acc: 0.9893

GradCAM 0.9446 (± 0.0577) - - -

LIME 0.9913 (± 0.0739) 0.9853 (± 0.0786) 0.9796 (± 0.1131) 0.9776 (± 0.1154)
LRP 0.9741 (± 0.1018) 0.9729 (± 0.1012) 0.9690 (± 0.1142) 0.9707 (± 0.1066)
IG 0.4937 (± 0.0802) 0.5018 (± 0.0006) 0.5019 (± 0.0008) 0.4944 (± 0.0419)

Dogs
vs

Cats ResNet-18
acc: 0.9878

GradCAM 0.9725 (± 0.0320) - - -

LIME 0.7987 (± 0.2603) 0.8048 (± 0.2373) 0.9490 (± 0.1757) 0.8359 (± 0.2333)
LRP 0.7827 (± 0.2015) 0.7913 (± 0.1967) 0.9103 (± 0.2200) 0.8311 (± 0.2001)
IG 0.5354 (± 0.1050) 0.5043 (± 0.0023) 0.5065 (± 0.0035) 0.5152 (± 0.0512)

VGG16
acc: 0.8069

GradCAM 0.8665 (± 0.1123) - - -

LIME 0.8020 (± 0.2520) 0.7987 (± 0.2422) 0.9632 (± 0.1508) 0.8443 (± 0.2205)
LRP 0.8864 (± 0.1268) 0.8913 (± 0.1237) 0.9866 (± 0.0786) 0.9292 (± 0.0989)
IG 0.6076 (± 0.1213) 0.5027 (± 0.0015) 0.5041 (± 0.0024) 0.5452 (± 0.0526)

MAMe

ResNet-19
acc: 0.8220

GradCAM 0.8941 (± 0.0938) - - -

LIME 0.7800 (± 0.2585) 0.7823 (± 0.2319) 0.9390 (± 0.1823) 0.8218 (± 0.2280)
LRP 0.6012 (± 0.1918) 0.6132 (± 0.1898) 0.6886 (± 0.2231) 0.6367 (± 0.2022)
IG 0.5262 (± 0.0809) 0.5076 (± 0.0043) 0.5118 (± 0.0057) 0.5157 (± 0.0401)

VGG16
acc: 0.6948

GradCAM 0.8248 (± 0.1076) - - -

LIME 0.9543 (± 0.1102) 0.9302 (± 0.1347) 0.9611 (± 0.1282) 0.9492 (± 0.1220)
LRP 0.9136 (± 0.1434) 0.9169 (± 0.1417) 0.9736 (± 0.1240) 0.9397 (± 0.1307)
IG 0.6980 (± 0.0910) 0.5034 (± 0.0017) 0.5042 (± 0.0020) 0.5829 (± 0.0334)

MIT67

ResNet-18
acc: 0.7619

GradCAM 0.9302 (± 0.0749) - - -
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with only one exception (Focus-Recall for ResNet-18).
A consistent relevant finding across the experiments is the high Focus-Recall

score of LIME and LRP (obtaining a mean greater than 0.9 in all experiments
but one). That being said, underperforming models often yield lower precision
scores than recall scores, indicating higher reliability of negative relevances with
respect to positive relevances. However, in the case of LIME, this feature might
be a consequence of the superpixels selection of LIME, since the explanation will
only provide negative results, as long as these superpixels have high relevance in
absolute value (being among the top 6 most attributed superpixels). This could
be important for some case studies, and motivate their use in complement with
methods which only provide positive relevance (e.g., GradCAM).

GradCAM generates only positive relevances, so Table 8.1 displays Focus-
Precision, because other metrics would be misleading (e.g., since the false neg-
atives always are zero by definition the Focus-Recall score would be always one).
GradCAM performs well in all tasks, ranking as the top method in half of the
experiments, also obtaining a small variance in general. However, in cases where
negative relevance is important, GradCAM applicability is limited.

As stated before, the Focus-Precision (i.e., the Focus) sometimes encounters
numerical problems. This issue arises when all the attributions are negative, lead-
ing to a denominator of zero in Focus-Precision. Conversely, Focus-Accuracy only
suffers from this issue when all the attributions are zero. This is reasonable, as
the accuracy of an all-zero explanation remains ambiguous.

8.3 | SUMMARY OF THIS CHAPTER

In this chapter, we introduce an extension of the Focus score, where we use the
widely used metrics in the classification field to evaluate the reliability of the
feature attribution methods. The idea is to consider the target class images within
the mosaic as the correct class and the non-target class images as the incorrect
class. From this classification problem, we define:

◦ The TP as the amount of positive relevance that falls in the correct class.

◦ The FP as the amount of positive relevance that falls in the wrong class.

◦ The TN as the amount of negative relevance that falls in the wrong class.

◦ And FN the amount of negative relevance that falls in the correct class.

Then we use the Focus-Accuracy, Focus-Precision, Focus-Recall and Focus-F1
scores to compare and evaluate different existing feature attribution methods. In
that regard, we found that among the approaches that produce both positive and
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negative attributions, LIME consistently achieves the highest scores. IG produces
random-like results. And in general, LRP and LIME exhibit high Focus-Recall.

This framework improves some of the Focus drawbacks. First, the negative rele-
vance provided by the feature attribution methods can be taken into account. Also,
the Focus-Accuracy score overcomes the Focus numerical instabilities (e.g., when
only negative relevance is found in the explanations). And finally, this methodol-
ogy can be more suitable in specific use cases where the relevance of false negatives
and false positives is distinct (e.g., systems that provide support in analyzing im-
ages in medical domains).



9 | TEXTFOCUS

Language is the road map of a
culture. It tells you where its
people come from and where they
are going.

Rita Mae Brown

In previous chapters, we introduce the Focus, a score for assessing the reliability
of feature attribution methods in the CV field and applied it to image data through
the analysis of image classification models. However, the proposed methodology
is versatile and applicable to a wider variety of domains. Due to some similarities
among unstructured data (e.g., images and text), we consider the extension of
Focus to the NLP domain. This is what we call the TextFocus : an evaluation
score for feature attribution methods applied to text classification models. This
new score is introduced in [58]1.

9.1 | MODALITY SHIFT

TextFocus is similar to Focus, however, since the data type used for the former
(i.e., text) is different from the latter (i.e., images), the methodology must be
adapted to the properties of this new field. Let us start by formulating the text
classification problem to understand the differences that arise when calculating
the TextFocus. The datasets in this field, instead of being composed of images,
will be composed of a set of sentences S = {s1, s2, . . . sN} and a set of classes
C = {c1, c2, . . . cK}, where K < N and each sentence has a label assigned. Let us
imagine we train a model for a text classification task like sentiment analysis (i.e.,
positive/negative). If we feed the model with a sentence like by far the worst
movie of the year one would expect the model to classify it as a negative
sentence. Following the proposed methodology, we can use a feature attribution
method to understand which words are most relevant to the model’s decision. For

1Part of this chapter can also be found in that work.
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(a) (b)

Figure 9.1: (a) Two images from the MAMe dataset reshaped to the same size (i.e.,
same number of pixels). (b) Two sentences from the SST-2 dataset of different
lengths. The top one is made up of eight words and the bottom one is of length
four.

example, in the previous case, the word worst will probably be highlighted since
it will be favouring the negative class.

Up to this point, the problem seems analogous to image classification. However,
one of the main differences is the variable length of instances. In the case of images,
all the images in the training dataset are usually reshaped to the same number of
pixels (e.g., img1 = {px1, px2, . . . pxP} and img2 = {px1, px2, . . . pxP}, therefore
|img1| = |img2| = . . . = |imgN |). However, in the text datasets, sentences can
be composed by a highly variable number of words |s1| ≠ |s2| ≠ . . . ̸= |sN |(i.e., a
variable number of tokens), see Figure 9.1. To work around this particularity, the
TextFocus will be adapted as detailed in §9.3.

9.2 | METHODOLOGY

The elements involving the TextFocus computation are analogous to those of the
Focus. First, the explainability method A. Second, the trained classification model
θ. And third, the mosaics.

Let us delve into the textual mosaics construction since they present some
particularities with respect to the image mosaics. These mosaics are made up
of J sentences m = {s1, s2, . . . sJ}, where half of them correspond to the target
class tc = c(m) and the other half did not. To separate the different sentences
conforming the mosaic, we use a special token: the [SEP] token. And each mosaic
begins with a [CLS] token and ends with a [SEP] token. We use this configuration
since the text models used anticipate data in this format.

Examples of the textual mosaics structure are shown in Figure 9.2. The first
row shows a mosaic of size J = 2; a mosaic composed of two sentences. The
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sentence 1 corresponds to the target class of the mosaic c(sentence 1) = tc,
unlike sentence 2 c(sentence 2) ̸= tc. In the second row, an example of a
mosaic of size J = 4 is shown. In this case, we see how two sentences belong to
the target class (i.e., c(sentence 1) = c(sentence 4) = tc) and the other two
do not. Note that, same as for image mosaics, the position of the target class
sentences is not always the same, for each mosaic the position of the target class
sentences is chosen randomly.

Figure 9.2: Example of the structure of two textual mosaics. The first row corre-
sponds to a mosaic of size J = 2 and the second row shows a mosaic of size J = 4.
Each sentence is separated from the next by a [SEP] token and each mosaic starts
with a [CLS] token and ends with a [SEP] token. Notice that the target class
sentences are highlighted in turquoise.

9.3 | TEXTFOCUS

The TextFocus is based on the Focus idea: it computes the proportion of positive
explanation attribution falling on the target class sentences with respect to the to-
tal positive attribution of the mosaic. However, since the length of textual mosaics
can vary, the score may be affected by these differences resulting in a potentially
misleading evaluation.

To better illustrate this problem, we show in Figure 9.3 an example of a mosaic
of size J = 4 with its corresponding attributions. This textual mosaic is composed
of sentences from the Standford Sentiment (SST-2) dataset [100]. The target
class of the mosaic shown in Figure 9.3 is the negative class and the target class
sentences are highlighted in yellow: lacks dramatic punch and depth and
one of the most repellent things. The explanation’s attributions are shown
in the form of bars. On the right are the positive attributions (in this case tokens
that favour the negative class): the token lacks is highly attributed, which means
that this token has high relevance for the prediction of the negative class. On the
contrary, the bars on the left correspond to the negative attributions: the word
hilarious has assigned a high negative attribution, which is coherent since it is
going against the negative class. In this case, since it is a binary classification
problem, going against the negative class means favouring the positive class. This
example illustrates how each sentence may have a different number of tokens, being
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Figure 9.3: Example of a textual mosaic of size J = 4 being the target class the
negative class. The two target class sentences are highlighted in yellow. And each
sentence is separated from the next by a dashed line. The explanation attributions
for each token are shown in the form of bars. The bars on the right represent the
positive attributions (i.e., in favour of the target class, the negative class in this
example). On the left, the negative attributions (i.e., the tokens against the target
class, in this case against the negative class).

in this case the largest sentence of eight tokens and the shortest of three. To avoid
the TextFocus score being biased by the difference in sentence length, we normalize
the amount of attribution of each sentence.
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ηi :=
Rtc(si)

|si|
(9.1)

where Rtc(r) is the sum of positive relevance toward class c on the sentence of the
mosaic r and |si| corresponds to the size of the set si (i.e., the sentence length).
Using these normalized attributions we redefine the Focus formulation:

TextFocusA,θ(m) =

∑
i∈T ηi∑
i∈M ηi

(9.2)

where T is the set of sentences belonging to the target class, and M is the set
of sentences of the whole mosaic.

9.4 | EXPERIMENTAL DETAILS

This section details the experimentation setup used for the evaluation of different
feature attribution methods through TextFocus. First, the different XAI methods
evaluated are presented (§9.4.1), and then, the models these XAI methods try to
explain as well as the mosaics used are described (§9.4.2).

9.4.1 | EXPLAINABILITY METHODS

In these experiments, we use the XAI methods implemented in Captum (i.e.,
an open source library for explainability) available for NLP models. Calculating
gradients with respect to the input is essential for certain XAI methods, but this is
not possible with NLP models that take discrete tokens. To make these methods
work, token embeddings are used as inputs instead. The XAI methods evaluated
are the following:

◦ Gradient, a simple call to the gradient of the target function propagated
back to the input embeddings. Simonyan et al. [96] first used it to explain
predictions in CV (see §3.2). Different choices on how to aggregate the
attribution lead to different variants (e.g., L1 [53], L2 [10]). We use the L2
variant since it was the one obtaining the best results for discovering one- or
two-tokens shortcuts in NLP according to [14].

◦ Gradient X Activation [24] multiplies the gradient result by the input acti-
vation. This is done to represent the degree to which a signal is present or
absent.

◦ IG [102], as introduced in §3.2 this method calculates the integral of gradients
through the line joining a baseline x′ and input x.

https://captum.ai/
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◦ DeepLIFT [93], the relevance is assigned with respect to a baseline by back-
propagating a relevance score through the Rescale Rule (gradient formulation
from [4]).

◦ Gradient SHAP (implementation inspired by the work of [56]) first adds
multiple times Gaussian noise to each input instance. Secondly, a random
point is chosen along the path between the input and the baseline. Then, the
output gradients are computed with respect to the chosen points. Finally,
the SHAP values correspond to the multiplication of the difference between
the baselines and the inputs with the value of the expected gradients.

◦ LIME [81], as introduced in §3.1 this method produce perturbed samples of
the original dataset. To do so, instead of turning off the superpixels of the
input image, in the NLP field, random tokens are deleted from the instance
to be explained. These new instances, plus their predictions, are used to
train the linear model which approximates the original model locally. The
model coefficients include the final attribution scores.

◦ Feature Ablation first replaces some input values with a baseline and then
computes the difference induced in the output.

9.4.2 | DATASETS, MODELS AND MOSAICS

As previously introduced, we focus on the sentiment classification task. To perform
the experiments we use two datasets widely known in the NLP field:

◦ The SST-2 [100] is a binary sentiment classification dataset. The SST-2 is
composed of short sentences with a mean of 20 tokens per sentence, labelled
as positive or negative. The sentences correspond to parts of movie reviews
excerpted from rottentomatoes.com and labelled on Amazon Mechanical
Turk [100].

◦ The Internet Movie Database (IMDB) [57] is also a binary sentiment classi-
fication dataset. The length of the sentences is longer with a mean of about
300 tokens per sentence. The sentences also correspond to movie reviews
collected from imdb.com.

We use a DistilBERT model [87] fine-tuned on both the SST-2 dataset and the
IMDB [100]. The former reaches an accuracy of 98.9% on the test set and the
latter has an accuracy of 92.8%. The models are available in the official repository
of Hugging Face2,3.

2https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english
3https://huggingface.co/lvwerra/distilbert-imdb
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For the mosaic construction, we set J = 4 for the mosaics built with the SST-2
dataset and J = 2 for the mosaics made up with the sentences from the IMDB
dataset. This reduction in mosaic size is due to the limitation of DistilBERT
models, allowing a maximum input size of 512 tokens. Since the IMDB sentences
are on average of 300 tokens, we decided to reduce the size of the IMDB mosaics,
to avoid truncating them, and select only those that had a length of less than 256
tokens.

9.5 | RESULTS

We conducted the evaluation of the seven feature attribution methods detailed
in §9.4.1 using the proposed TextFocus score. For the XAI methods requiring
baselines, we selected the special tokens that yielded the best results: the [MASK]
token for Feature Ablation and the [UNK] token for IG, Gradient SHAP, and
DeepLIFT. For the experiments with the SST-2 dataset, we analyzed a total of
1,746 mosaics with a size of J = 4, while for the IMDB, we used 7,014 mosaics
with a size of J = 2. The results of TextFocus are depicted in Figure 9.4.

Figure 9.4: The TextFocus distributions for the seven XAI methods evaluated on
1,746 mosaics from the SST-2 dataset (left side) and 7,014 mosaics from the IMDB
(right side). The square brackets indicate the baselines used.

In both experiments, IG achieves the highest result, with a mean TextFocus
of 0.905 in the SST-2 case and 0.801 in the IMDB experiment. The LIME and
Gradient SHAP methods get the second and third positions, respectively, with
a closely mean TextFocus : 0.887 and 0.861 in the SST-2 dataset, and 0.789 and
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0.762 in the IMDB dataset. Feature Ablation attains a mean TextFocus of 0.741
for the SST-2 experiment and 0.569 for the IMDB dataset, ranking fourth overall
and being the last method to achieve a mean TextFocus above random.

Notice how the TextFocus results remain consistent across both datasets (i.e.,
SST-2 and IMDB). However, a minor decrease in the mean TextFocus is noticeable
when transitioning from the SST-2 to the IMDB experiment. This decline can be
attributed to the disparity in performance between the two models. Specifically,
the model fine-tuned on the SST-2 dataset achieves an accuracy of 98.9%, whereas
the model fine-tuned on the IMDB dataset achieves a slightly lower accuracy of
92.8%.

In contrast, Gradient L2, GradientXActivation, and DeepLIFT exhibit a mean
TextFocus of 0.5. This indicates that their explanations are unrelated to the labels
assigned to the data, suggesting a lack of effectiveness in attributing relevance to
the target class sentences.

9.6 | SUMMARY OF THIS CHAPTER

In this chapter, we introduce how the Focus methodology can also be applied in
other domains different from the CV field. Specifically, we present how it could be
adapted to the NLP domain. We show the main difference between the two data
types (i.e., images vs text) and how this affects both the construction of the textual
mosaics as well as the score computation. We refer to this new score adapted to
the characteristics of the NLP domain as TextFocus.

Finally, we evaluated seven feature attribution methods using the TextFocus
score. Among the XAI methods assessed Gradient L2, DeepLIFT, and Gradien-
tXActivation demonstrate random-like behaviour. IG with the [UNK] baseline is
the top-performing method according to TextFocus. LIME and Gradient SHAP
(utilizing the [UNK] token as baseline) also offer faithful explanations. It is worth
noting that LIME has an inherent characteristic where the explanations obtained,
although reliable, are not deterministic. This means that the specific tokens re-
moved during the computation can slightly alter the explanation. While this fea-
ture may not be a disadvantage for certain applications, it could be undesirable
for others, especially those that require high reproducibility.

Note that this methodology can be further improved by following the same
steps, as with Focus, described in Chapter 8. That is, considering the negative
attributions and avoiding the possible instabilities generated by the eventual di-
visions by zero. Implementing these steps will contribute to the refinement and
robustness of the methodology.



Part III.

Mosaics for Bias Detection

79





10 | BIAS IN DATA AND MODELS

When your big data is corrupted
by big silences, the truths you get
are half-truths, at best.

Caroline Criado Perez

The presence of bias in datasets and models is often inherent to their con-
struction. Those biases can be desirable, useful and harmless, or they can be
undesirable, useless, and harmful. To build reliable and fair models, we must
develop tools that facilitate bias detection so that experts can decide if the found
biases belong to the former (desirable) or latter (undesirable) category and then
take the measures that they deem appropriate.

Suresh and Guttag distinguish seven sources of harm in ML [103]: historical
bias, representation bias, measurement bias, aggregation bias, learning bias, evalu-
ation bias and deployment bias. In the CV field, powered by ML, the most common
sources are representation and evaluation biases. The first is due to the need for
large datasets that often lack representativeness [73]. The latter is due to a lack
of robust evaluations determining the model’s capability to correctly generalise in
real-world data.

Current data collection methods lead to non-random selection and make the
data unrepresentative of the total population. This is not a new problem faced
by DL techniques; a decade ago, Henrich et al. already claimed that most of the
psychological and behavioural studies were based on the Western, Educated, In-
dustrialized, Rich, and Democratic (WEIRD) societies [38]. And therefore, the
outcomes from these studies only represented a subpopulation and cannot be gen-
eralised to humans worldwide. In this regard, many examples already exist in the
DL and CV literature. Shankar et al. showed the lack of geo-representation within
the ImageNet [85] dataset (e.g., 45.5% of the images were from the United States
[90]). Many examples exist of systems which are racially and gender biased such as
the three commercial gender classifiers tested in [16], which performed better for
white males. The worst performance was obtained when classifying black women
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(i.e., belonging to two underrepresented populations: women and black). When
we use these biased datasets in sensitive fields such as medicine, the consequences
can be deadly, for example, diagnosing skin cancer in later stages in patients with
dark skin tones [22].

The previous examples are also a symptom of evaluation biases since a proper
assessment would have highlighted the biased behaviour of the model and pre-
vented its release. As introduced before, this second bias is common in the ML-
CV field. On the one hand, the model performance is usually evaluated in a test
partition, different from the training and validation sets. However, typically a
random split is obtained from the same distribution. Thus, the model is not being
evaluated in generalization capability. On the other hand, as also pointed out in
[103], the choice of the evaluation metrics could be another source of evaluation
bias. For example, choosing the method with the best accuracy does not ensure
that the method is capable of generalizing better to real-world data or that the
method is less biased.

The combination of representation biases and evaluation biases results in un-
safe models that contain an unknown amount of undesirable biases. And what’s
more, failure to detect these biases can lead models to perpetuate and/or exac-
erbate inequalities. To prevent that, we need methodologies for identifying and
illustrating biases, which experts can use to search and select biases in CV models.

Motivated by these needs, the XAI field has acquired relevant attention in
recent years, becoming a tool to provide insights into DL models’ behaviour, as we
have already introduced in the Introduction 1. However, these techniques present
limitations when it comes to detecting biases. These biases typically need to be
identified, found and verified by experts. Note that when we refer to experts, we
mean experienced people in the task we are trying to solve since they have the
available expert knowledge in that field. For example, in the case of the MAMe
dataset, these experts would be the art experts. Or, in a medical imaging use
case, the experts would be the medical practitioners. However, as we already
anticipated in §5.1, even for experts in the field, the manual identification process
is a time-consuming task that can induce subjective criteria and confirmation bias
(i.e., human bias). For this reason, automation of the bias identification process
is needed, on the one hand, to save the expert reviewers time and, on the other
hand, to prevent experts from overlooking unwanted biases.

10.1 | USING FOCUS TO AUTOMATE THE BIAS IDENTIFICATION PROCESS

As a first approach, we realized that Focus and mosaics together could be used to
automate the bias identification process while providing visual validation to the
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Figure 10.1: Possible explanations obtained with a model that has learned to
differentiate the sheep class based on the presence of wool texture. The target
class of these mosaics is the sheep class. Depending on whether or not the bias
is in the target class images or if it is in the non-target class images or not, the
Focus score will be higher or lower.

user. We introduced this approach in [8]1.
One could ask, how can the Focus help in this process? The main idea is

straightforward: since mosaics induce in-distribution noise, confused attribution
on the wrong regions may directly correspond to visual biases of the model. To
better illustrate this scenario, let us return to the sheep example. Let us imagine
we are analysing the mosaics shown in Figure 10.1, where the target class of those
mosaics is the sheep class, and red areas correspond to the positive attribution
towards the target class. If we compute the Focus score on those explanations, the
first one will obtain a high Focus score since the bias (i.e., the wool texture) is
present in the sheep instances. The second mosaic will obtain a lower Focus since
the bias is also in the non-target class image (i.e., in the lama image). And the
third mosaic will also obtain a lower Focus since the bias is neither present in the
target class images (i.e., lamb images) nor in the non-target class images.

Therefore, this inherent feature of mosaics and Focus can be used to automate
the selection process of those instances that may contain potential biases. This
process will depend on the specific use case we are interested in. For instance, if we
want to analyze the biases between two specific classes, we might prefer to create
2×1 mosaics. Or, we might be interested in looking for data-driven biases by
using images outside the original data distribution. Thus, we could build mosaics
by mixing images from the training dataset and images from other datasets.

1Part of this chapter can also be found in that work.
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Figure 10.2: Steps of the proposed approach. (a) First, compute pair-wise Focus. (b) Pick those pairs with the
lowest mean Focus. (c) From those pairs, get the mosaics with the highest and the lowest Focus. (d) Finally, present
the mosaics containing potential biases to the human evaluator.
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To illustrate this idea, we present a possible approach designed to find potential
biases between pairs of classes in any dataset or model (see Figure 10.2).

1. First, we use mosaics with two classes to better detect biases between pairs of
classes. Therefore, in the mosaics used for this experiment, samples different
from the target class actually belong to the same class: c(img3) = c(img4) ̸=
tc.

2. We concentrate on the most relevant biases by finding the pairs of classes
obtaining the lowest mean Focus in their joint mosaics.

3. Then, for each pair of classes, the approach extracts the mosaics with highest
and lowest Focus.

4. And finally, those mosaics are presented to a human evaluator who must
review the produced explanations. The evaluator’s role is to interpret the
rationale behind the explanations (both correct and incorrect) and the degree
of generalization for the task. Based on that assessment, corrective measures
can be implemented, as later discussed.

We follow this approach to identify potential biases in the widely known Ima-
geNet dataset. We use the GradCAM method and the ResNet-18 architecture for
this experiment, a particularly robust configuration according to our experiments
presented in §7.2 (with this choice we also reduce the XAI bias). An example is
shown in Figure 10.3, the top mosaic corresponds to a high Focus mosaic and the
bottom one to a low Focus mosaic. We can see how the model is able to correctly
attribute relevance to the peacock images on the upper mosaic, while, for the bot-
tom mosaic, some of the relevance incorrectly falls on the head of the common
iguana. The fact that most of the incorrect relevance in the common iguana falls
in the subtympanic shield (i.e., the characteristic circle in its jowl) seems to be
related to its visual similarity with the ocellus of the peacock (i.e., the circular
spot in the feathers). Notice the iguana’s subtympanic shield is hardly visible in
the top mosaic.

After identifying biases and assessing their impact, one could try to mitigate
their relevance for the model. For example, with more images of the target class
without the characteristic pattern found in the outer class could be added to the
training set (e.g., peacocks images where the ocellus is not visible). Or, more
images of the outer class where the characteristic pattern is present (e.g., common
iguana images where the subtympanic shield is visible) could be added. In either
case, the dependency of the target class with respect to the bias would be reduced,
increasing the robustness of the model.



86 CHAPTER 10. BIAS IN DATA AND MODELS.

Figure 10.3: In the first column, two examples of mosaics are depicted. The second
column shows the corresponding GradCAM explanations obtained with a ResNet-
18 architecture trained on ImageNet. In this case, the target class is the peacock
class, and the outer class is the common iguana class. The third column specifies
the positions of the classes within the mosaic. The mosaic above obtains a high
Focus score (0.818), and the one below a low Focus score analogous to a random
explainer (0.494).

This experiment shows how the Focus score seems a promising tool for the
selection of samples containing potential unwanted biases. However, in the model
of the previous example (i.e., trained on the ImageNet dataset), we had no control
over the existing biases. Instead, we decide to build a model trained on a dataset
in which we can control the level of unwanted correlations and therefore quantify
the bias introduced using the Focus. This approach was introduced in [9]. Let us
first train the biased model.

10.2 | BUILDING A BIASED MODEL

To train the biased model, we first created a biased dataset §10.2.1. Then, we
train the model on that biased dataset §10.2.2. And finally, we perform some
sanity checks to verify whether we managed to introduce an unwanted correlation
into the model §10.2.3.
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(a) (b) (c) (d)

Figure 10.4: Examples of indoor/outdoor images: (a) cat-indoor (b) cat-outdoor
(c) dog-indoor (d) dog-outdoor.

10.2.1 | DATASET CREATION

The dataset creation is motivated by the need to have control over some of the
dataset biases. To do so, we use the MetaShift [54] to induce a correlation that we
can quantify and control. This work clusters the images according to metadata.
An annotated graph is created where each node represents a class in a specific
context (e.g., dog frisbee). The distance between nodes represents the similarity
between those contexts (e.g., dog frisbee will be closer to dog grass than dog books).
The more contexts are shared within a class, the closer the nodes will be. Using
the construction proposed by [54], we create a dataset composed of two classes (cat
and dog) with two subclasses (indoor and outdoor), see Figure 10.4 for details.

We built the dataset with images from two well-known datasets, both providing
contextual information: the Common Objects in Context (COCO) dataset [55] and
the Visual Genome dataset [50]. Tables 10.1 and 10.2 show the exact contexts used

Table 10.1: Contexts included in each category for the Visual Genome dataset.
The first and second column corresponds to the cat-outdoor and cat-indoor
category. And the third and fourth column to the dog-outdoor and dog-indoor
categories respectively.

car, fence,
grass, roof,
bench, bird,

house

speaker, computer, screen, laptop,
computer mouse, keyboard, monitor,

desk, sheet, bed, blanket, remote control,
comforter, pillow, couch, books, book,

television, bookshelf, blinds, sink, bottle,
faucet, towel, counter, curtain, toilet, pot,

carpet, toy, floor, plate, rug, food, table, box,
paper, suitcase, bag, container, vase, shelf,

bowl, picture, papers, lamp, cup, sofa

house, grass, horse,
fence, cow, sheep, dirt,
car, motorcycle, truck,

helmet, snow, flag, boat,
rope, trees, frisbee, bike,
bicycle, sand, surfboard,
water, fire hydrant, pole,

skateboard, bench,
trash can

screen, shelf, desk, picture,
laptop, remote control,

blanket, bed, sheet, lamp,
books, pillow, curtain,
container, table, cup,
plate, food, box, rug,
floor, cabinet, towel,

bowl, television,
carpet, sofa
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Table 10.2: Contexts included in each category for the COCO dataset. The
first column corresponds to the outdoor contexts and the second to the indoor ones.

bicycle, car, motorcycle, airplane, bus, train,
truck, boat, traffic light, fire hydrant, stop sign,
parking meter, bench, frisbee, skis, snowboard,
sports ball, kite, baseball bat, baseball glove,

skateboard, surfboard, tennis racket

bottle, wine glass, cup, fork, knife, spoon, bowl,
chair, couch, potted plant, bed, dining table,
toilet, tv, laptop, mouse, remote, keyboard,
cell phone, microwave, oven, toaster, sink,

refrigerator, book, clock, vase, scissors,
teddy bear, hair drier, toothbrush

for the construction of the indoor and outdoor subclasses for both datasets, the
Visual Genome dataset and the COCO dataset respectively.

10.2.2 | MODEL

Next, we train a model using only samples from cats-indoor and dogs-outdoor. In
this way, we expect to introduce an unwanted correlation, which could, in fact,
occur in a real scenario: dog-outdoor images are more likely than cat-outdoor
images.

For training the model, we use a total of 1,060 images per class (cats-indoor
versus dogs-outdoor). Where 960 images per class were used for training and 100
for validation. We use the ResNet-18 [36] architecture, the AMSGrad [80] to opti-
mize weights and we perform data augmentation during training: random rotation
([-30, 30] degrees), random crop and random horizontal flip with a chance of 50%.
We reach a mean per class accuracy on the validation set of 87%, corresponding to
the model with the minimum validation loss. From here, we will call this model:
the biased model.

We also train a model which avoids those unwanted correlations for comparison
purposes. We use the same training size (1,060 images per class), but in this case,
both cats and dogs will be equally present in both contexts, 50% outdoors and 50%
indoors. We reach a mean per class accuracy on the validation set of 60.5%, using
the model with the minimum validation loss. Notice that the performance obtained
is much lower, indicating that the induced context was a successful shortcut to the
model. Without this added bias, the high variability (different breeds) and the low
quality (mislabeled samples or partially occluded animals) of the dataset limits the
model’s performance, which fails to learn to distinguish the two classes robustly.
From now on, we will refer to this second model as the non-biased model.
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10.2.3 | SANITY CHECKS

To empirically prove that the previous model, trained for the cats (indoor) and
dogs (outdoor) classification task, is indeed biased (i.e., it has managed to learn
the context instead of cat and dog characteristics patterns), we perform the fol-
lowing experiment. Starting from the hypothesis that images predicted with low
probability or that are predicted as the opposite class (in the case of a binary
classification problem) are likely to be those that have patterns of the opposite
class, we selected the three dog images with the lowest prediction and the three
worst cat image predictions, see Figure 10.5.

Before continuing with the hypothesis evaluation, it is worth mentioning how
samples predicted with the least certainty significantly differ between cats and
dogs. While for dogs, the lowest probability corresponds to 56.58% and the third
lowest to 82.11% (both of which account for a correct classification in a binary prob-

(a) (b) (c)

(d) (e) (f)

Figure 10.5: Examples of the worst predictions of the validation images set. Worst
dog predictions: (a) dog: 0.5658, (b) dog: 0.7948 and (c) dog: 0.8211. Worst cat
predictions: (d) cat: 0.0038, (e) cat: 0.4627 and (f) cat: 0.4729.
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lem), for cats, these probabilities drop to 0.38% the lowest, and the third lowest
to 47.29%. This is likely due to the prevalence of dog-related biases (i.e., outdoors
patterns) in the validation set with respect to cat-related biases. As shown in
Figure 10.5 (and mentioned before), the worst predicted cat sample seems to be
a labelling mistake (labelled as indoor when it seems to be outdoor). We do not
correct this mistake for the sake of methodological consistency. These results show
a higher performance when classifying dogs-outdoor than cats-indoor, suggesting
that the model has learnt to focus more on outdoor than indoor patterns. This
may be due to the fact that outdoor patterns are less variant and more frequent,
being a perfect visual pattern to discriminate between both classes.

Following the previous hypothesis: images predicted with a low probability are
likely to contain a pattern of the opposite class. We build a set of 2×1 mosaics by
combining those pairs of images (cats versus dogs) to apply a feature attribution
method. As we have already introduced in the previous chapter, using feature
attribution methods on top of the mosaics enhances the detection of biases.

For this experiment, we use the GradCAM attribution method. According
to the Focus results presented in Chapter 7, GradCAM is the method obtaining
better performance and therefore minimizing the noise introduced into the pipeline.
Results for both target classes are shown in Figure 10.6 and Figure 10.7. In
all mosaics with the target class being the dog (see Figure 10.6), the GradCAM
attribution focuses on areas where trees, leaves, or plants are present. Regardless
of whether these patterns appear in the cats’ or dog squares. Based on this, we
hypothesize that the model has learnt to detect vegetation instead of discriminating
between cats and dogs. Indeed, it seems reasonable to think that most dogs in
an outdoor context will be on meadows, fields or mountains (with a prominent
presence of vegetation), while indoor cats will lack such a pattern. This situation
would have made it easier for the model to distinguish between dogs and cats
by only learning the green context instead of learning the characteristic patterns
of these two mammals. Similarly, the attribution in Figure 10.7, with the cat
being the target class, falls on the wood or the brown areas (e.g., first column of
Figure 10.7). Although to a lesser extent than the vegetation, this pattern seems
to be learnt by the model as a characteristic pattern of the cat class.

In order to corroborate that the model has learnt to identify vegetation as a
characteristic pattern of the dog class and wood as characteristic of the cat class,
we perform another sanity check. We fed the model with the hand-selected images
shown in Figure 10.8, obtained from external sources. Image (a) is an image of
only grass, which is predicted as a dog with a probability of 99.98%. On the
contrary, Image (b) is a wood image which is predicted as a cat with a probability
of 96.30%. In the case of Image (c), both patterns are present, although the green
pattern is more prominent. This image is predicted as a dog with a probability of



10.2
B

U
ILD

IN
G

A
B

IA
S

E
D

M
O

D
E

L
91

Figure 10.6: Feature attribution maps obtained by GradCAM on the bias model (the dog being the target class).
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Figure 10.7: Feature attribution maps obtained by GradCAM on the bias model (the cat being the target class).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10.8: First row: hand-selected samples predicted by the biased model as (a) dog: 0.9998 (b) cat: 0.9630 (c)
and (d) dog: 0.9944. Second row: feature attribution maps obtained by GradCAM for the images of the first row
being the target class : (e) the dog class, (f) the cat class, (g) the dog class and (h) the cat class.
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99.44%. Notice how the attribution, being the target class the dog class (see
Image (g)), falls on the green part around the path. However, when we ask for the
attribution of the cat class (see Image (h)), the relevance focuses on the wooden
bridge.

These results validate our hypothesis: vegetation is the primary pattern learnt
by the model as characteristic of the dog class, and the wood pattern is learnt
as characteristic of the cat class. At this point, we can confirm that the model
is clearly skewed, it has learnt to differentiate the two classes mainly by context
and not by the animal, and furthermore, we are aware of the principal patterns
enabling such distinction.

10.3 | FOCUS ON A BIASED MODEL

This section evaluates the Focus behaviour when applied to the biased model and
the non-biased model. As previously introduced, we use the GradCAM method.
And for the mosaics, we build four sets of 2×1 mosaics, following all possible
combinations. Each set contains the same amount of mosaics (10,000):

1. cat-indoor versus dog-outdoor: Combines 100 cat-indoor images and 100
dog-outdoor images. Note that this set follows the same distribution used
for training the biased model.

2. cat-indoor versus dog-indoor: Combines 100 cat-indoor images and 100
dog-indoor images.

3. cat-outdoor versus dog-indoor: Combines 100 cat-outdoor images and
100 dog-indoor images. Note this set corresponds to a distribution comple-
mentary to the one used for training the biased model.

4. cat-outdoor versus dog-outdoor: Combines 100 cat-outdoor images and
100 dog-outdoor images.

Note that none of these sets corresponds to the distribution used for training
the non-biased model in which samples of all sets are used (cats and dogs equally
sampled from indoor and outdoor contexts). At this point, we can now compute
the Focus obtained by each of the two models on each of the four mosaic sets. The
resulting Focus distributions (including the 10,000 samples per set) are shown in
Figure 10.9.

In the experiments with the biased model, the highest Focus is expected to be
obtained with Set 1 since the images within this set follow the same distribution
in which the model has been trained. On the other hand, the Focus obtained with
Set 3 should be the lowest since the images correspond to the completely inverse
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(a)

(b)

Figure 10.9: Each box plot shows the Focus distribution for a different validation
set (evaluating 10,000 mosaics per set). The purple box plots correspond to the
cat-indoor and dog-outdoor set (Set 1). The yellow box plots correspond to the
cat-indoor and dog-indoor sets (Set 2). The green box plots to the cat-outdoor and
dog-indoor set (Set 3). And the red box plots to the cat-outdoor and dog-outdoor
set (Set 4). (a) Focus distributions obtained by GradCAM on the biased model
(b) Focus distributions obtained by GradCAM on the non-biased model.
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distribution. In this case, the mean Focus is expected to be between 0 and 0.5
since the learnt biases may be found on the non target class squares.

In the experiments with the non-biased model, we expect the Focus distribu-
tions to be similar to one another. The training distribution of this model avoids
biases regarding indoor and outdoor, which should prevent the model from focus-
ing on these properties. Thus, the four sets become analogous if the context is not
a factor.

Results follow our hypothesis as seen in Figure 10.9. The context (indoor-
outdoor) plays a significant role in the biased model and has a much weaker impact
on the results of the non-biased model. For the biased model, a mean Focus greater
than 0.8 is obtained when using the same context as in training (Set 1, see first box
plot in Figure 10.9 (a)). However, when the complementary distribution is used,
Set 3, the mean Focus falls below 0.4. As hypothesized before, this low Focus is
most likely due to the model finding patterns in the image of the opposite target
class. Finally, the two sets having at least one correct context (Set 2 and Set 4)
obtain a mean Focus in between the two mentioned above (see the second and the
fourth box plot in Figure 10.9 (a)).

We hypothesize that a significant amount of label noise is found (particularly in
the cat outdoor class, incorrectly labelling indoor cat images as outdoor samples).
This would explain the fact that outdoor cats and dogs (red box plot of Figure 10.9
(a)) obtain a higher Focus than indoor cats and dogs (yellow box plot of Figure 10.9
(a)) as well as why the inverse distributed set (green box plot of Figure 10.9 (a),
mean Focus of 0.3532) is not complementary of the equally distributed set (purple
box plot of Figure 10.9 (a), mean Focus of 0.8507).

In contrast, the Focus distributions obtained with the non-biased model have
a mean Focus close to each other. The mean Focus obtained with Set 1 is still
the highest, as shown in Figure 10.9 (b), and the mean Focus obtained with Set
3 is slightly the lowest. This is likely to be caused by label noise induced by the
natural predominance of cats to be indoors and dogs to be outdoors.

10.4 | SUMMARY OF THIS CHAPTER

In this chapter, we first introduce the sources of harm that lead to biases in the
data and models. Focusing on the most common in the CV area: representation
and evaluation biases.

As previously introduced, when using explainability to detect biases in data
and models other sources of biases can arise (e.g., human biases). That is why,
in this section, we explain the importance of providing tools that help experts use
explainability to find biases, minimizing both the xai biases (i.e., choosing the
XAI methods providing more faithful explanations) and human biases (i.e., semi-
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automating the detection task). To do so, we illustrate how the Focus together with
mosaics can be a powerful tool for automating the bias detection process. Then,
we propose an approach for finding biases in models and datasets by utilizing the
Focus and mosaics and we apply it to the widely known ImageNet dataset.

To better analyse the Focus behaviour when applied to a biased model, we
train a biased model to which we induce a controlled correlation: we only use cats-
indoor and dogs-outdoor. In this way, the model is forced to learn a bias, in this
case, the context. Then we perform a set of sanity checks to verify that this model
is indeed biased. Following that, an explainability method (GradCAM) is used on
top of mosaics. The nature of mosaics allows us to easily identify the biases found
within the model: the model learnt vegetation patterns as characteristic of the dog
class, while brown and wood patterns are learnt as characteristic of the cat class.
We use this biased model to analyze the behaviour of the Focus when applied to
the biased setting. Additionally, for comparison purposes, we also train a non-
biased model as a baseline. To perform this experiment, we use four mosaic sets:
cat-indoor vs dog-outdoor (Set 1), cat-indoor vs dog-indoor (Set 2), cat-outdoor
vs dog-indoor (Set 3) and cat-outdoor vs dog-outdoor (Set 4). Our findings show
how the presence of a shared bias is clearly reflected in the Focus distribution. The
Focus decreases when the context learnt by the model is present in both classes
within the mosaics. This shows again the potential of the Focus, together with the
mosaic structure, for detecting potential biases in datasets and models.



98 CHAPTER 10. BIAS IN DATA AND MODELS.



11 | MOSAICS FOR CONTEXT BIASES

Taken out of context I must seem
so strange.

Angela Maria DiFranco

In the previous chapter, we used mosaics in conjunction with Focus to detect
data and model biases. In this chapter, we propose to exploit mosaics for the
same purpose but without using explainability. In this way, we avoid both xai
biases and human biases. The main idea of this approach is to use mosaics built
by combining images of the original data distribution with images of potential
biases and then explore the models by directly observing their outputs. This
contribution was introduced in [6]1.

11.1 | EXPERIMENTAL DESIGN

First, the new synthetic datasets created for this work are presented (§11.1.1), then
the training configurations used (§11.1.2) and finally, the generalization capabilities
of all trained models are evaluated (§11.1.3).

11.1.1 | DATASET

An image diffusion model was used to create the datasets employed in these exper-
iments. With diffusion models, one can specify what to generate and guide it to
produce realistic images. The model used was a text-to-image diffusion model [82]:
from a text prompt, the model generates realistically looking images which are,
at the same time, faithful to the text. We generate three different datasets (see
Figure 11.1), each one composed of four classes: bench, fire hydrant, plane, and
mug. All of these are publicly available, and these are the details for its generation:

1. Context (C ): This dataset is composed of images corresponding to the four
objects in a typical context, according to the model’s representation. The

1Part of the content of this chapter can be found in that work.
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https://storage.hpai.bsc.es/object-datasets/context.zip
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Figure 11.1: Sample instances by class and dataset. Each dataset is shown in
a different column (from left to right): context (C ), no context (NC ) and white
background (WB) dataset. Class examples are separated by row (from top to
bottom): bench, plane, fire hydrant and mug.

exact prompt used to generate these images was: a green class on the
foreground. typical background. For each class, the word class is
replaced by the object: bench, fire hydrant, plane or mug.

2. No Context (NC ): This dataset contains images of the four same objects
but without a background. To that end, we slightly changed the prompt and
asked for a sketch of the object with uniform background. The exact prompt
used to generate these images was: no background. simple sketch of
a green class.

3. White Background (WB): For creating this dataset, we manually removed
the background of the C dataset images using a tool designed and provided
by Adobe2. Therefore, this dataset is composed of the same images as the
C dataset, but setting the background to white.

Notice that for each class of each dataset, 150 images were created. And in
order to prevent the model from learning to differentiate these classes by their

2https://www.adobe.com/express/

https://storage.hpai.bsc.es/object-datasets/no_context.zip
https://storage.hpai.bsc.es/object-datasets/white_background.zip
https://www.adobe.com/express/
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recurring colours (e.g., most fire hydrants are red) or by texture (e.g., benches are
often made of knotted wood), we set the colour of the four objects to green.

11.1.2 | TRAINING SETUP

We train six different models using the three datasets introduced before. Due to
the simplicity of the datasets, we use the AlexNet [51] architecture, a shallow archi-
tecture that can fit our data. Each dataset is used to train two models: one from
scratch and one pre-trained on ImageNet [85] and then fine-tuned for it. For the
pre-trained models, we use the AlexNet model available in the torchvision.models
subpackage3. We use a total of 100 images per class for training, 25 for validation
and 25 for the test. To avoid confusion, we will refer to them as follows:

1. model-C : model trained from scratch on the C dataset.

2. model-NC : model trained from scratch on the NC dataset.

3. model-WB : model trained from scratch on the WB dataset.

4. pt-C : model pre-trained on ImageNet and fine-tuned on the C dataset.

5. pt-NC : model pre-trained on ImageNet and fine-tuned on the NC dataset.

6. pt-WB : model pre-trained on ImageNet and fine-tuned on the WB dataset.

11.1.3 | CROSS EVALUATION

Potential biases that may appear in the previously trained models actually orig-
inated in the diffusion model, then recreated in the dataset and finally learnt by
the models. If we evaluate these models in a random split of the same dataset
in which it has been trained, we will probably obtain a high performance even
though these models have not learned the features of the four objects. However, if
we test the models in a partition of the other two datasets (both having the same
four classes), we will be able to evaluate the model’s generalization capabilities.

To do so, we cross-evaluate all six models with all three datasets. The accu-
racies and cross-accuracies obtained with the different models are illustrated in
Figure 11.2. Each histogram (i.e., group of three bars) corresponds to one of the
six models. Each bar corresponds to the accuracy obtained by using a different
test set. And each set is shown with a different colour: yellow corresponds to the
NC set, grey to the C and, green to the WB set.

First of all, models trained from a random state (first three histograms of
Figure 11.2) perform more poorly on all test settings than pre-trained models

3https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth

https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth
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Figure 11.2: Accuracies obtained with the six models (model-NC, model-C, model-
WB, pt-NC, pt-C and pt-WB) on the three test sets (NC, C, WB). Each set is
represented in a different colour and the results for each model are grouped in the
form of a histogram (group of three bars).

(three last histograms of Figure 11.2). The best accuracies of those non-pre-trained
models (model-NC, model-C and model-WB) are achieved when using the same
distribution as for training (i.e., 98%, 100% and 99% respectively). However, those
models struggle to correctly distinguish the classes when using cross-tests.

On the contrary, pre-trained models manage to generalize much better than
the models trained from scratch: the difference between the bars of histograms
fourth, fifth and sixth are less prominent than the differences seen in the first
three histograms. As expected, using pre-trained models prevents the model from
learning patterns, or better-called shortcuts, that are present in the small training
dataset, but they are not the patterns expected to be learned by the model. Also
note that the plane, the mug and the bench are also classes of the ImageNet dataset
(check here), which means that the pre-trained models knew the visual features
needed to identify the different classes before the fine-tuning process.

An interesting finding in this first analysis is the relevant role played by the
context. The only model that performs consistently well on all distribution shifts
for non-pre-trained models is the one trained with WB. Obtaining an accuracy of
89% when using the NC and 83% when using the C. This lower performance when
using the C set, despite being the same exact objects but with white background,
is most likely due to the large distribution shift that the presence of context (i.e.,
patterns surrounding the objects) supposes for a model not trained with a back-
ground. The same is observable for the models trained with NC where the worst
performance is obtained with the C set (first and fourth histogram of Figure 11.2).

On the other hand, the model trained from scratch with context images is
the one generalizing the worst, obtaining a performance of 70% when tested with
NC and a 65% accuracy when using the WB. The C model may have learnt
contextual biases. And thus, the model does not maintain the performance when
those context features are not present (e.g., within the NC and WB sets).

https://cs.stanford.edu/people/karpathy/ilsvrc/
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11.1.4 | CONTEXT BIASES AND CONTEXTUALIZED MOSAICS

As previously introduced, in this work, we focus on studying context biases: if
each context is specific to each class and it is not found in the rest of the classes,
the model will learn those contexts as shortcuts. As we empirically stated in the
previous section, these learned shortcuts lead to biased models that are not able
to generalize correctly.

To formalize the model predictive behaviour as a desirable causal model [30],
we build a Directed Acyclic Graph (DAG) to represent the problem. Each node in
this DAG represents the object present in the images (O), the context (C) and the
predicted class (Y). The desirable setting representing the relationship between
these nodes would be the one shown in Figure 11.3 (a). However, the graph
learned by the model is probably more similar to the one shown in Figure 11.3
(b). To assess the relationship between C and Y, that is, the relationship between
the context and the predicted class by the model (e.g., the relation between the
vegetation context for the bench class), we perform an intervention fixing C=c,
with four possible alternatives (i.e., one context per object): do(C = c1), do(C =
c2), do(C = c3) and do(C = c4). The new graph after the intervention will be the
one shown in Figure 11.3 (c). To perform the intervention, we construct what we
call the contextualized mosaics.

(a) (b) (c)

Figure 11.3: (a) Desired causal model representing the relationships between the
object within the images (O), the context (C) and the predicted class (Y) (b)
Actual graph learned by the model. (c) The modified graph after the intervention
(fixing C).

For the contextualized mosaics, apart from the set of images I = {img1, img2,
. . . imgN} and the set of classes C = {c1, c2, . . . cK}, we will also have a set of
contexts X = {ctx1, ctx2, . . . ctxK}, each context composed of a set of context
images. Note, that there will be the same number of contexts as classes, that is,
one potential bias context per class. For the mosaic construction, we fix the mosaic
size to J = 2 (mosaics of size 1 × 2), where each mosaic will be made up of an
image and a context m = {img, ctx} where c(img) ̸= c(ctx). In other words, the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 11.4: Contextualized mosaic examples of size 1×2 composed of object im-
ages with context images. Each row shows mosaics built from the same object
image with different contexts. The first row corresponds to a fire hydrant image
combined with a (a) wood context, (b) sky context and (c) park context. The
second row corresponds to mosaics built with a bench image along with a (d) wood
context, (e) sky context and (f) road context. Third-row mosaics are made up of
a plane image with a (g) wood context, (h) park context and (i) road context. In
the last row, mosaics of a mug image and a (j) sky context, (k) park context and
(l) road context are shown.

class assigned to the context has to be different from the class of the image (e.g.,
a mug will be combined with a sky, the sky being assigned the plane class since it
is a typical context of the plane and not of the mug). Examples of contextualized
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mosaics are shown in Figure 11.4.
Let us delve into how we build these contextualized mosaics. The mosaic design

is based on the assumption that target biases are known beforehand. This is a
realistic case, as the domain expert should have prior knowledge of the possible
biases that could exist. In our experiment, we can replace expert knowledge by
analyzing the text prompt used during the C dataset generation, the text prompt
included the sentence: typical background. From here, we observe the typical
contexts where the four objects (i.e., bench, plane, fire hydrant and mug) are
usually found according to the generative model used. And we use the same
diffusion model to obtain the context images with which we generated the training
datasets. The selected context per object and the prompts used to generate those
images are the following:

◦ A park for the bench class: a park with vegetation.

◦ Sky for the plane class: a clear blue sky.

◦ A road for the fire hydrant class: a realistic tarred road in a city.

◦ A piece of wood for the mug class: a piece of wood.

Once these context images have been generated (see Figure 11.5), we build the
mosaics by combining the original images of the different objects from the test set
with the different contexts within a 1×2 grid. For each of the 25 object images, we
combined them with five different samples obtained for each of the three contexts
not belonging to that class. That is, for an image of a plane, we will combine it
with five park images, five road images and five wood images. This results in a
total of 1,500 mosaics. Examples of these mosaics are shown in Figure 11.4.

(a) (b) (c) (d)

Figure 11.5: Examples of context samples generated for each class. (a) A park
for the bench class (a park with vegetation.) (b) Sky image for the plane
class (a clear blue sky.) (c) A road for the fire hydrant class (a realistic
tarred road in a city.) (d) And a piece of wood for the mug class (a piece
of wood.)
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11.2 | RESULTS

Let us analyse the results obtained using the contextualized mosaics to assess the
relevance of the context in the predictions of model-C, the one that may have
learnt context biases. When building the mosaics combining the original images
with the context images, we induce a source of confusion for the model. We assess
the impact of this noise (i.e., context noise) by comparing the model’s output of
the class object image along with the model’s output produced by the same image
when composed in a mosaic with a context image. Results of this analysis are
shown in Figure 11.6. For each possible combination of <class, context>, as long
as c(img) ̸= c(ctx), we show a 1D and 2D histogram. The 2D histogram colour
intensity represents frequency. The colour code used is green for bench images or
mosaics with a park context, orange for the mug images or mosaics with a wood
context, blue for the plane images or mosaics with a sky context and grey for the
fire hydrant images or mosaics with road context. We observe the change in model
probabilities induced by attaching a given context to an image of a given class. The
larger this change is, the stronger the bias. To obtain a better understanding of
Figure 11.6, we represent, in Figure 11.7, examples of images and mosaics utilized
to obtain the first row results in Figure 11.6 (i.e., using the sky context). The
rectangle colors in Figure 11.7 were also aligned to the colors used in Figure 11.6.
Let us now analyze the results in Figure 11.6 by context (i.e., by row).

Sky. According to these results, the sky seems to be a relevant feature learned
by the model. When the bench images are combined with the sky context, the
sky confuses the model, obtaining higher logits for the plane class than for the
bench class in 44 mosaics out of 125 mosaics (i.e., 35.2%). In the case of the fire
hydrant, the sky context also increases the logits of the plane class. However, the
fire hydrant image features seem to be more relevant for the model, maintaining
in 107 mosaics the highest logit values for the fire hydrant class. When combining
the mug with the sky, the model is completely confused, being the logits for the
plane class higher than the mug ones in more than half of the mosaics (64%).

Park. The vegetation also appears to be an important feature for the bench
class, even to a greater extent than the sky context for the plane class. Although
the lowest impact is for the mosaics with fire hydrant images, the park context still
has a huge influence being the bench logits higher than the fire hydrant logits in 50
mosaics. The park context also impacts the mug results, managing to drastically
shift the predictions towards the mug class in 115 mosaics (i.e., 92%). In the plane
case, 58 mosaics out of 125 obtain higher logits for the bench class (i.e., 46.4%).

Road. This context does not seem to be as decisive as the two previous
contexts (i.e., sky and park context). Combining the road context with the three
classes (i.e., bench, mug or plane) has a lesser impact on the prediction: less than
12% of the mosaics are predicted as fire hydrants.
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Figure 11.6: The logits obtained with the original images with respect to those
obtained with the images combined with the different contexts are shown as his-
tograms. In each row, the results are displayed for the mosaics composed of sky
images (in the first row), park images (in the second row), road images (in the
third row) and wood images (in the fourth row). The colour code used is the fol-
lowing: blue for mosaics with sky images and for plane images, green for mosaics
with park images and for bench images, grey for wood mosaics and for fire hydrant
images and orange for mosaics with wood context and mug images.
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Figure 11.7: Examples of images and mosaics used to obtain the results of the
first row of Figure 11.6: that is, using the sky context. The rectangle colors are
the same as those used in Figure 11.6. As these mosaics were built with the sky
context images (typical of the plane class), they are represented in blue. The single
images of benches are in green, those of fire hydrants are in gray and those of mugs
are in orange.

For the bench class, the road presence slightly reduces the confidence towards the
bench class, obtaining higher logits for the fire hydrant in 14 out of 125 mosaics. In
the mug case, only 9 mosaics obtained the fire hydrant logits greater than the mug
logits. Finally, the road context combined with plane images does not change the
prediction of any mosaic. This is likely due to the presence of the sky (i.e., which
is a very weighty feature for the model) in the plane images, and thus, favouring
the plane class.

Wood. Although not as influential as the sky and the park contexts, the
wooden context does seem to have a greater impact than the road context. When
combined with bench images, the wooden context increase the logits value towards
the mug class, obtaining 22 out of 125 mosaics greater logits for the mug class than
for the bench. The impact is higher when combined with the fire hydrant class
getting higher logits on the mug class in 38 mosaics (i.e., 30.4%). And 28 mosaics
combined with plane images get higher logits on the mug class.

In short, the main findings of these results are the following. The sky seems
to be a relevant feature for the model when predicting the plane class. The park
context (i.e., the vegetation) is clearly a relevant characteristic for the prediction
of the bench class: this could be a shortcut learned by the model. The road context
is a characteristic that favours the fire hydrant class, but it does not seem to be
so determinant for its prediction. Finally, the wood context is influential in the
prediction of the mug class, although not as relevant as the sky for the plane class
or the park for the bench class. We also observed that depending on the object
class with which the contexts are combined, they have a greater or lesser effect.
We observed how when contexts are combined with fire hydrant images the bias
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Table 11.1: Euclidean distance of the distributions means to the diagonal for each
of the combinations shown in Figure 11.6. The diagonal corresponds to the point
where the logit values for the two classes coincide. For better interpretation, when
the mean is located on the right of the diagonal, we present the results as positive.
Conversely, if the mean of the logits distribution is located on the left of the
diagonal, we show the results as negative. Mosaics with benches are highlighted in
green. In grey the mosaics with fire hydrants and in orange the mosaics with mugs.

Bench + Sky mosaics 0.7165 Fire hydrant + Sky mosaics 2.5436 Mug + Sky mosaics -0.7512
Bench images 7.9297 Fire hydrant images 8.7015 Mug images 5.6778

Fire hydrant + Park mosaics 0.7191 Mug + Park mosaics -2.8234 Plane + Park mosaics 0.3372
Fire hydrant images 7.3755 Mug images 5.8023 Plane images 8.6055

Bench + Road mosaics 2.3406 Mug + Road mosaics 3.7252 Plane + Road mosaics 5.6887
Bench images 8.4977 Mug images 6.4769 Plane images 12.0303

Bench + Wood mosaics 1.7755 Fire hydrant + Wood mosaics 0.8831 Plane + Wood mosaics 1.4188
Bench images 9.2526 Fire hydrant images 6.6443 Plane images 9.8776

Figure 11.8: Steps to compute the distances shown in Table 11.1 and Figure
11.9. In the first step, the distributions of the single images and the mosaic
distributions were calculated (i.e., the same as those shown in Figure 11.6). In
the second step, the distribution mean was obtained (filled triangle and star).
Finally, the Euclidean distance from the mean to the diagonal was computed.

effect is lower. Or for example, the sky present in the plane images within the
mosaics continue to favour the plane class.

Another way to reach these findings can be by analyzing the results of the
contextualized mosaics using Table 11.1. This table shows the Euclidean distance
of the means of the logit distributions of Figure 11.6 to the diagonal (see Figure
11.8, for a better comprehension of the steps followed). The diagonal is the point
where the logits towards the two classes coincide. To better understand the results,
we show the distances corresponding to the means in the part of the object class
as positive. And as negative when the mean is in the part of the context class.
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Figure 11.9: Visualization of the results of Table 11.1. The filled dots represent
the mosaics. The empty dots correspond to the results of the single images. The
diagonal is depicted by a dashed vertical line. The horizontal lines represent the
difference between the two distances (i.e., that of the single images to the diago-
nal and that of the mosaics to the diagonal). Greater values indicate a stronger
influence of the context.

That is, the more negative the value, the more predictions there will be towards
the context class. An illustration of these results is also shown in Figure 11.9.

As we already anticipated, if we look at the fire hydrant class (highlighted in
grey in Table 11.1), we can observe that this is the class where contexts have the
least influence. See how the distance is always positive and the greatest (among the
other objects) in the case of the sky and park contexts (i.e., 2.5436 and 0.7191).
This could be because the model has learned some pattern of the object itself
(or perhaps a bias from the fire hydrant context that we have not detected), and
therefore in most cases, the model continues to predict the mosaics as fire hydrants.
We can see that both the sky and the park context when combined with mug images
(highlighted in orange) manage to move the mean of the distribution towards the
prediction of the class of the context (i.e., -0.7512 and -2.8234). That is, mosaics
of mugs combined with sky images will be predicted mostly as planes, and mosaics
of mugs with parks will be predicted mostly as benches, see filled orange points on
the left side of Figure 11.9. On the other hand, the road context combined with
any object obtains a mean distribution still far from zero (third row). In other
words, the road context does not manage to move the distribution towards the
prediction of the fire hydrant class.

In this section, we show two ways to analyze and visualize the results of the
contextualized mosaics with the aim of evaluating the influence of context biases.
After this first analysis, measures could be applied to mitigate the effect of context
biases in this model-C if the domain expert considers it so.
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11.2.1 | RESULTS CHECKS

Taking advantage of the availability of the WB dataset, in this section, we perform
another experiment to further analyze the importance of the context and verify
whether the results are consistent with those obtained with the contextualized
mosaic methodology. To do so, for each context (i.e., park, sky, road and wood),
we paste an object of the remaining three classes, creating a total of 25 images per
context-object pair. And we calculate the performance of the model for those new
images. Notice that this is another way of performing the intervention explained
in §11.1.4, that is fixing the four contexts intending to analyze the relationship
between context C and the predicted class Y.

The results for each class are shown in the form of bar plots. For example,
Figure 11.10 shows the number of images predicted as plane: (a) using 25 only
context images, (b) 25 mug instances superposed to the sky context, (c) 25 fire
hydrant images with sky context and (d) 25 bench images superposed to the sky
context. The colour code of the following figures is green for the bench images
and the park context, orange for the mug images and the wood context, grey for
the fire hydrants and the road context, and blue for the plane images and the sky

(a) (b) (c) (d)

Figure 11.10: Number of images classified as plane with the sky context. The
blue bar corresponds to results with only sky images, orange to the mug with sky
context images, grey to a fire hydrant and green to the bench with sky context
images. Instance examples used for each bar plot are shown at the bottom of the
image (a) sky context image, (b) image of a mug superimposed on the sky context,
(c) a fire hydrant (d) and a bench also superimposed on the sky image.
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context. Let us now analyze the importance of context for each class.
Sky. These results confirm the findings obtained with the mosaics. It can be

seen in Figure 11.10 how 24 sky images out of 25 were classified as planes. This
means that the blue sky is an important feature for the plane class. Nevertheless,
with only that experiment, we cannot affirm that this is an unwanted shortcut.
However, 19 sky images with mugs (out of 25) were classified as planes and 21
with benches were also classified as planes. This, on the contrary, does confirm
that this correlation learned by the model is not the intended behaviour. Notice
that in the case of the fire hydrant, only 4 sky images with fire hydrant objects
were classified as planes. This is consistent with previous results obtained with
the mosaic analysis: the fire hydrant features are more relevant to the model than
the presence of the sky.

Park. Also consistent with the mosaic results, vegetation is shown to be im-
portant to the bench class; see Figure 11.11. 25 images of only parks were predicted
as benches. Also, the 25 mug objects superimposed on parks, 22 fire hydrants and
24 out of 25 planes over parks were classified as benches. That is to say, regardless
of the object present in the park images, almost all of them were predicted as
benches.

(a) (b) (c) (d)

Figure 11.11: Number of images classified as bench with the park context. The
green bar corresponds to results with only context images, orange to the mug with
park context images, grey to a fire hydrant with park and blue to the plane with
park context images. Same as before, instance examples used for each bar plot are
shown at the bottom of the image.
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(a) (b) (c) (d)

Figure 11.12: Number of images classified as fire hydrant with the road context.
The grey bar corresponds to results with only road images, green to bench images
and orange to mug images. The bar corresponding to the plane with road context
obtains an accuracy of zero.

(a) (b) (c) (d)

Figure 11.13: Number of images classified as mug with the wood context. The
orange bar corresponds to results with only wood images, green to bench images,
grey to fire hydrant images and blue to plane images.
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Road. As already anticipated with the contextualized mosaics, the road con-
text is not a relevant context for the fire hydrant class, or at least the model did
not rely solely on the context. This can be simply observed in the grey bar plot in
Figure 11.12: only 15 road images were predicted to be fire hydrants. In the case
of the benches, only 5 of them, for the mugs 9 and in the case of the planes, none
of the images were predicted as fire hydrants.

Wood. This context favours the mug class since as all the wooden images
were classified as mugs (see Figure 11.13). However, when the different objects
were pasted, the model was confused. The number of images classified as mugs
decreased drastically: 9 bench images, 6 fire hydrant images and 8 plane images
out of 25 were classified as mugs.

These findings are consistent with the contextualized mosaic outcomes, demon-
strating their reliability and usefulness. The difficulty of having the segmented
objects and being able to build the cross-context images makes this second ex-
periment not viable in a real use-case scenario, instead, the mosaic creation is
straightforward. Therefore, as long as we have identified possible sources of un-
wanted biases, we can build mosaics and use the proposed methodology to analyze
their impact.

11.3 | SUMMARY OF THIS CHAPTER

In this chapter, we introduce a new way of using mosaics to analyze the impact of
data/model biases. In the experiment previously detailed, we focus on assessing
the context influence on the model-C decisions. Unlike previous chapters, where
we use XAI methods to asses biases, here we only use the model’s output, avoiding
the noise introduced by those XAI methods, and consequently also avoiding the
bias introduced by humans (i.e., human bias).

First, we presented three new datasets generated with a diffusion model: Con-
text, No Context and White Background dataset. Then we introduce the con-
textualized mosaics methodology to analyse the relevance of context biases. The
different steps followed are detailed in Figure 11.14. We start by identifying four
potential context biases: the sky for the plane class, the park context for the bench
class, the road for the fire hydrant class, and the wood for the mug class. Then
we build the contextualized mosaics by combining those contexts with the original
images. And finally, after analyzing the impact produced on the output these are
the main findings. The park context was identified as a potential shortcut learned
by the model to predict the bench class. To mitigate this shortcut, one could try
to add more benches without a vegetation context, thus forcing the model to learn
the bench characteristics and rely less on the vegetation when predicting the bench
class. The sky also turned out to be an element that favoured the plane class. To
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Figure 11.14: Steps of the proposed methodology. Firstly, four potential biases
are identified: park for the bench class; road for the fire hydrant class; sky for the
plane class; and wood for the mug class. Next, we construct the contextualized
mosaics by combining each object with the three remaining contexts. Finally, the
influence of the context is analyzed, by comparing the output of the single images
with that of the mosaics.

prevent any object from being identified as a plane when having a sky in the back-
ground, one could add more images of the other classes with blue sky (i.e., benches
with a blue sky or mugs with a blue sky behind). The road does favour the fire
hydrant prediction since all the fire hydrants are on the street, nevertheless, this
bias could be considered not dangerous. This assessment of whether or not a bias
can be harmful must be decided ultimately by the domain expert. Finally, the
wood context does not seem to be a determinant shortcut in the prediction of the
mug class. Being these context biases mitigated, the model will learn the charac-
teristics of each object. Therefore, the model will generalize better, obtaining a
high performance when tested with images from outside of the distribution (e.g.,
when tested with the NC or WB sets).

To conclude, while this experiment focused on analysing the impact of context
biases using mosaics, this methodology can be extended to examine other types of
biases. For example, if textures could be a source of bias, mosaics could be created
by combining the objects with the textures identified as potential biases.
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Part IV.

Wrap-up
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12 | CONCLUSIONS

I have learned over the years that
when one’s mind is made up, this
diminishes fear; knowing what
must be done does away with
fear.

Rosa Parks

Throughout this thesis, we addressed the research question outlined in the
Introduction 1 by presenting various methodologies for identifying, visualizing,
and evaluating biases in datasets, models, and XAI methods. At the core of these
methodologies lies the construction of mosaics, which serves as a technique to
introduce a source of confusion. Leveraging this approach, we are able to assess
the presence of different biases and their impact. Throughout each chapter, we
already summarized the different conclusions of this thesis. Now, we aim to delve
deeper into them and discuss both our future work and that of the community.

We group the outcomes into three subsections. Firstly, we outline our con-
clusions regarding the direction in which the explainability field should progress
and the advancements that are essential to achieve the desired level of explainabil-
ity. Secondly, we detail the conclusions regarding the evaluation of explainability
methods. In order to reduce the noise introduced by these methods, we must eval-
uate them from two perspectives. Firstly, we must assess how effectively the XAI
methods reflect the model’s behaviour. Then, we must consider the level of inter-
pretability they offer to the end user. Although in this thesis we only focus on the
evaluation of faithfulness, in this chapter, we will also detail what are some of the
results of the literature in the area of plausibility to have a broader perspective of
the current state of this subfield, which is needed for the advancement of explain-
ability in the right direction. Lastly, we will explore various conclusions related to
biases and their detection. By understanding and mitigating biases effectively, we
can strive for fair and unbiased models in their decision-making processes.

119
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12.1 | EXPLAINABILITY TRENDS

Explainability is a growing area of research and development. The motivations
behind this field are diverse, including compliance with legislation, the aim of
building reliable and fair models, or the detection of biases and undesired be-
haviours in models. However, regardless of the underlying motivation, if the goal
of the community is to build trustworthy models, from now on, explainability will
be a requirement for any deployed model. Therefore, XAI should be integrated
into various stages of the model development process to enhance transparency and
interpretability: in the model design (i.e., choosing models which are more ex-
plainable), in the training phase (i.e., using XAI metrics to guide training) and in
the selection process (i.e., choosing the model also based on the quality of their
produced explanations).

In Part I, we explored different families of post-hoc explainability methods.
However, a key finding of this thesis is that relying solely on feature attribution
methods is insufficient. In fact, alternative techniques to feature attribution meth-
ods have recently gained popularity among the explainability community. This
trend reinforces the previous outcome.

As already discussed in Chapter 2, a way to enable us to gather more compre-
hensive insights into the model’s behaviour could be done by integrating different
types of post-hoc explanations (e.g., feature-based, concept-based, counterfactual,
etc.). In this direction, a recent work proposes a novel approach called CRAFT
[26]. This method not only identifies the important concepts but also shows where
these concepts are located in the input images.

This thesis focuses on post-hoc explainability, where explainability methods are
applied once the model is already trained. Post-hoc methods have been extensively
used in the literature since interpretable models were not as performant as black
boxes. However, the number of interpretable-by-design models with comparable
performance to opaque models is rising in the current landscape. Examples of
these approaches are models that use prototype representations [19, 68, 67] or the
Concept Bottleneck Models (CBM) [47, 88, 109] that map the input pixels to some
concepts and the concepts to the target classes.

To summarize, we first proposed that an advantageous approach towards ex-
plainability would involve combining post-hoc techniques to attain more compre-
hensive and interpretable explanations. Additionally, instead of choosing between
post-hoc explanations or inherently interpretable models, a beneficial approach
could involve the combination of both methodologies.
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12.2 | XAI ASSESSMENT

As outlined in this document, explainability methods have the potential to intro-
duce noise into the pipeline, making it essential to assess whether these methods
accurately represent the model’s behaviour. Or on the contrary, if the explana-
tions are misleading and cannot be utilized to comprehend the model’s behaviour
or identify biases in the data/models.

We first showed how the combination of Focus and mosaics serves as a tool to
evaluate the faithfulness of these explainability methods. We also demonstrated
the utility of this methodology not only in the CV domain but also across other
modalities. If a XAI technique gets a random Focus, this technique can be deemed
non-trustworthy. Nonetheless, to achieve a complete faithfulness assessment, we
propose integrating various evaluation methodologies, such as localization tech-
niques (e.g., Focus), randomization methods, and axioms, among others. This
integrated approach would contribute to standardizing evaluation metrics.

In this thesis, our primary focus lies in the initial part of the evaluation, which
involves assessing the faithfulness of the XAI methods. However, as discussed ear-
lier in this document, once we establish the technique’s reliability, the subsequent
step is to evaluate its plausibility. In other words, even if a method accurately
reflects the model’s behaviour, if it fails to help the end user comprehend the
model, it becomes useless in terms of interpretability. However, these two features
must be evaluated separately and do not have to be correlated. Indeed, existing
reliability metrics exhibit a weak correlation with plausibility metrics [70, 45].

Although it is not the focus of this thesis, there are already studies in the
literature that examine how useful explainability techniques are for the end user.
For instance, in this work [45], the authors show the existence of confirmation bias
when providing the users with explanations. Specifically, users tend to perceive
predictions as correct when they are presented with explanations. In the same
direction, this work [92] shows how the visual explanations tested did not help end
users comprehend the model failures in the image classification task. Indeed, users
exhibited better accuracy in predicting the incorrect class when the explanations
were not provided compared to when they were provided. This shows that there
is still room for improvement to achieve better XAI techniques.

To strike a balance between faithfulness to the model’s behaviour and user
usefulness, it is essential to work towards standardizing faithfulness and plausibility
metrics. This standardization will provide a common framework to ensure more
reliable approaches while facilitating end users’ comprehension of the model.
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12.3 | BIASED MODELS

All models exhibit biases. However, some of them are dangerously biased. Relying
solely on a model’s performance can be dangerous since DL models can often
discover shortcuts that deviate from the intended solution.

As previously discussed in this document, the sources of these biases are di-
verse. It may be due to biases in the data since the model tends to inherit biases
present in the training data. Algorithm biases can also emerge during model
training, influenced by the chosen parameters and methodologies. Additionally,
contextual biases arise from the attempt to create universal models, disregarding
the distinct societal contexts in which these models are trained and deployed. As-
suming a model trained in one context will apply to a completely different one can
be ambitious and, in some cases, unrealistic.

These are just a few examples of sources of biases. With this understanding,
the objective of the community is to identify and address these biases, aiming to
mitigate their impact on model decisions. To achieve this, there is a need for bias
localization and illustration methods that facilitate scalable and ongoing analysis
of models. Consequently, bias identification will provide us with a clearer un-
derstanding of the factors and attributes influencing the model’s decision-making
process. Additionally, it could open the door to improving data quality.

In this thesis, we first address bias detection using explainability. Since one of
the purposes of explainability is to uncover undesired biases. To achieve this, we
leverage the Focus technique in conjunction with mosaics. The main objective is to
semi-automate the bias detection process, minimizing human intervention until the
final step, where the decision on whether the bias is desired or unwanted is made.
We could improve the proposed automation techniques by trying to translate those
potential biases into concepts (e.g., through clustering) that are more human-
understandable. This would enable humans to make informed decisions regarding
the harmfulness of those biases.

We also explore an alternative approach to detect biases, circumventing the
use of explainability. Instead, we utilize mosaics by combining potential biases
with the original images to assess their impact on the final prediction. Although
this method requires prior knowledge of possible biases, its main advantage lies
in avoiding the noise introduced by explainability methods. In future work, we
could improve this method by automatically detecting possible biases and then
conforming the mosaics to analyze their relevance to the model.

Bias detection is crucial to achieve fair machine learning models and prevent
them from having negative and illegal consequences. In fact, the widespread irrup-
tion, adoption and deployment of the Large Language Model (LLM) have brought
the bias issue to the forefront of discussion. For instance, language models can
perpetuate and strengthen social biases, foster polarization by creating echo cham-
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bers, and contribute to the spread of misinformation, negatively impacting society
by deceiving public perception. As a result, the field of bias detection in AI,
particularly in DL, is an active and rapidly evolving area of research.

12.4 | SUMMARY OF THIS CHAPTER

This chapter provides an overview of the key conclusions drawn from this disserta-
tion. We first highlight the importance of explainability in developing trustworthy
models, emphasizing its integration at different stages.

While this thesis focuses on post-hoc methodologies, particularly feature attri-
bution techniques, we suggest combining various approaches for more comprehen-
sive insights. We also note in this chapter the rise of interpretable models with
performance comparable to black boxes.

Then, we discuss the potential noise introduced by explainability methods and
how we tackle this by proposing an evaluation approach using Focus and mosaics
to assess the faithfulness of the explanations. However, we also emphasize the
importance of striking a balance between explainability techniques that faithfully
mirror the model’s behaviour and those that facilitate user understanding.

Finally, in this chapter, we devote a part to biases, recognizing their diverse
sources and potential dangers. We explain how we leverage Focus and mosaics to
semi-automate the process of bias detection. And how we explore an alternative
method involving mosaics also to evaluate bias impact. Lastly, the significance of
bias detection, particularly in the context of language models, is also highlighted
due to their potential societal impact.

Overall, this chapter underscores the role of explainability and bias detection
in developing reliable and fair AI models while emphasizing the ongoing evolution
and future work of these research areas.
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13 | RELATED CONTRIBUTIONS

Women have an important con-
tribution to make.

Margaret Mead

The different works related to this thesis have been introduced throughout this
document. However, this chapter is devoted to listing the publications and briefly
explaining the contribution made.

13.1 | THE MAME DATASET [PUBLISHED]

In this work, we introduce a new dataset composed of images of artworks extracted
from different museums. This new dataset—the Museum Art Medium (MAMe)
dataset—comprises 29 medium classes (i.e., techniques and materials). We train
different models to check the feasibility and complexity of the proposed task and
the impact of high-resolution and variable-shaped images. And finally, we ap-
ply explainability to evaluate the coherence between the characteristics considered
important by the model and the characteristics that art experts consider impor-
tant when differentiating the different classes. My main contribution to this work
was the explainability part: planing the assessment, choosing the explainability
method, adapting and implementing it and executing the experiments. I also con-
tributed to the training of the models and the writing, visualization and reviewing
part.

Ferran Parés, Anna Arias-Duart, Dario Garcia-Gasulla, Gema Campo Francés,
Nina Viladrich, Eduard Ayguadé, and Jesús Labarta. The MAMe dataset: On
the relevance of High Resolution and Variable Shape image properties. Applied
Intelligence, pages 1–22, 2022.
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13.2 | THE FOCUS [PUBLISHED]

This paper presents the Focus score: an evaluation score for feature attribution
methods. We empirically prove the robustness of the methodology by performing
some sanity checks. We compare and evaluate different explainability techniques
using the Focus score. And finally, we introduce the Focus application for bias
detection. To facilitate the use of the Focus score we also added it to the Quantus
[37] toolkit. Quantus is a public library where different XAI evaluation metrics
have been implemented.

Anna Arias-Duart, Ferran Parés, Dario Garcia-Gasulla, and Victor Giménez-
Ábalos. Focus! Rating XAI Methods and Finding Biases. In 2022 IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE), pages 1–8. IEEE,
2022.

13.3 | FOCUS AND BIAS [PUBLISHED]

This work analyses the Focus behaviour when applied to a biased model. To train
the biased model, we first create a biased dataset. A dataset of cats and dogs in
two contexts, outdoor and indoor. To train the biased model, we only use dogs
outdoors and cats indoors. Once verified that the model is biased (i.e., it learns to
differentiate the classes by the context and not by the animal) we apply the Focus
on top of that biased model. The results show how the Focus score decreases with
the presence of the context bias.

Anna Arias-Duart, Ferran Parés, Dario Garcia-Gasulla and Victor Giménez-
Ábalos. Focus and Bias: Will it Blend? In Artificial Intelligence Research and
Development, pages 325–334. IOS Press, 2022.

13.4 | A CONFUSION MATRIX [PUBLISHED]

In this work, we improve two of the main Focus limitations. On the one hand, the
Focus presents some numerical instabilities due to divisions by zero (e.g., when
there is no positive relevance in the explanation). And secondly, the Focus does
not consider the negative relevance of those methods that provide them. In this
approach, we transform the evaluation problem into a classification problem, and
we leverage to redefine the classification metrics, such as Focus-Accuracy, Focus-
Recall, etc., to evaluate the feature attribution methods.

https://arxiv.org/pdf/2109.15035.pdf
https://github.com/understandable-machine-intelligence-lab/Quantus/
https://upcommons.upc.edu/bitstream/handle/2117/375991/FAIA-356-FAIA220355.pdf
https://xai4cv.github.io/assets/papers2023/P05_ConfusionMatrix.pdf
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Anna Arias-Duart, Ettore Mariotti, Dario Garcia-Gasulla and Jose Maria
Alonso-Moral. A Confusion Matrix for Evaluating Feature Attribution Meth-
ods. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, pages 3708-3713, June 2023.

13.5 | ASSESSING BIASES THROUGH VISUAL CONTEXTS [PUBLISHED]

In this paper, we propose a methodology to analyze context biases. For this
purpose, we use mosaics, but in this case, we avoid using explainability methods.
First, the datasets used in this work are generated using a diffusion model. All
three datasets are publicly available: Context dataset, No Context dataset and
White Background dataset. Then, we present the so-called contextualized mosaics,
which we use to illustrate and visualize the relevance of context biases to the
model. Finally, we also provide a public notebook tutorial for educational purposes
available on Kaggle.

Anna Arias-Duart, Victor Gimenez-Abalos, Ulises Cortés, and Dario Garcia-
Gasulla. Assessing Biases through Visual Contexts. Electronics, 12(14): 3066,
2023.

13.6 | TEXTFOCUS [NOT YET SUBMITTED]

In this work, we extend the Focus score to the NLP domain, and we call this
new score: the TextFocus. First, we present how we build the textual mosaics.
Then, we introduce the modifications that must be considered when calculating
the TextFocus, due to the requirements of textual mosaics (e.g., variable length).
Finally, we compare different explainability methods applied to text classification
models. My contribution to this work took place at various stages of the process.
I participated in conceptualising the methodology, part of the implementation and
in the text writing and revision part.

Ettore Mariotti, Anna Arias-Duart, Michele Cafagna, Dario Garcia-Gasulla
and Jose Maria Alonso Moral. TextFocus: Assessing the Faithfulness of Fea-
ture Attribution Methods in Natural Language Processing. [not yet submitted]

https://www.mdpi.com/2079-9292/12/14/3066
https://storage.hpai.bsc.es/object-datasets/context.zip
https://storage.hpai.bsc.es/object-datasets/no_context.zip
https://storage.hpai.bsc.es/object-datasets/white_background.zip
https://www.kaggle.com/code/annaariasduart/assessing-biases-through-visual-contexts
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