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Abstract

To streamline the implementation of sixth-generation (6G) network slicing, algorithmic and

architectural innovations are needed to transition from being AI-native to becoming intrin-

sic trustworthy automation-native. In this context, network slicing is viewed as a disruptive

technology and the backbone of future communication systems, creating an all-encompassing

environment that extends tenancy to the end consumer through advanced digital use cases.

Specifically, in the upcoming 6G networks, network slicing will play a crucial role in almost ev-

ery aspect of life, society, and industry, enabling network operators and service providers to meet

the communication needs of humans and intelligent machines at any time and place. Indeed,

network slicing is a powerful technology that allows for the creation of multiple virtual networks

tailored to meet diverse service requirements, such as low latency, high throughput, and high

reliability, across different network deployments. Vertical tenants can rent and manage isolated

logical networks, or slices, on top of a physical operator’s network, either fully or partially.

This is made possible by employing softwarization and virtualization technologies, including

software-defined networking (SDN) and network functions virtualization (NFV), to enable the

necessary flexibility and programmability required for network slicing. Network slicing holds

immense potential to boost revenue while minimizing the capital and operational expenditure

(CAPEX and OPEX) of service providers.

While the advent of fifth-generation (5G)/6G technologies with network slicing promise to revo-

lutionize digital society, one of the main challenges of this deployment for multi-tenancy is radio

access network (RAN) slicing. It poses a significant complexity in configuring and managing

various RAN operations; therefore, legacy solutions cannot handle this dynamic environment

and satisfy stringent service level agreements (SLAs). To close this gap, zero-touch network

slicing, as a fully-automated management and orchestration (MANO) scheme, supports fully

automated operations and on-demand configuration without needing fixed contractual agree-

ments and manual intervention. One of the main components of this technology is the decision

engine, to determine the action that needs to be taken based on the issues detected by other

components. In this context, algorithmic innovation can be employed to optimize the allo-

cation of network resources to different network slices to address the fundamental challenges

associated with RAN slicing, such as i) energy-aware, ii) latency-aware, iii) scalability, and iv)

trustworthiness issues. In this regard, lifelong reinforcement learning is paramount to learning

continuously and accumulating past knowledge to assist future learning and problem-solving

because it is tough to collect a large number of training examples in each complex RAN in-

teractive environment. This thesis will address these challenges by designing, developing, and

assessing innovative and intelligent resource allocation schemes.

In fact, efficient allocation of resources, such as computing and network bandwidth, to network

slices is necessary to minimize energy consumption or latency, while maintaining acceptable
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performance and meeting quality of service (QoS) requirements. Adopting a joint optimiza-

tion approach to energy/latency and resource allocation considering a trade-off to optimize

both factors simultaneously. Concretely, we propose a stochastic Actor-Critic approach to sup-

port continuous state and action spaces in telecommunication while stabilizing the learning

procedure, improving time efficiency, and reducing the need for hyperparameter tuning in an

energy-aware network slicing setup. Moreover, we investigate the feasibility of a multi-objective

and multi-action approach where model-free agents learn to jointly allocate optimal power and

computing resources to minimize the latency of service provisioning under long-term statistical

SLA, namely, Q-th delay percentile. In particular, we propose a massive deep reinforcement

learning (DRL)-based actor-learner framework dubbed CS-AC. The CS-AC is a software frame-

work for designing and training DRL agents that attempts to address complexity issues. To

cope with control challenges in network slicing, such as increased dynamism, heterogeneity, and

extended training time of slice instances, we separate the actor from the learner where the

proposed approach can be scaled up to several thousand parallel actors-learners across a large

collection of tasks without sacrificing data efficiency.

On the other hand, the temporal variations of the traffic demand deeply complicate resource

planning and allocation tasks, especially in the RAN domain where resource allocation decisions,

e.g., in terms of bandwidth, must cope with the additional variability inherent of the wireless

channel and end-user’s mobility. To solve this, we propose a distributed architecture for RAN

slice resource orchestration based on DRL, composed of multiple AI-enabled decision agents that

perform local radio allocation decisions without needing a centralized control entity. We design

a federated learning (FL) scheme consisting of multiple parallel layers, one for each slice, to

enhance the capabilities of the local decision-making process following the recent development

of the Open RAN (O-RAN) architecture and solve scalability issues in network slicing. We

further improve the decision process by dynamically defining the subset of decision agents to be

involved in the federation process based on long-term slice traffic demand variations and their

temporal similarities.

Despite the impressive performance of AI/machine learning (ML) solutions, there is a growing

concern about the lack of transparency in deep neural networks (DNNs), which are often viewed

as opaque models. This issue is particularly critical when reliability and security are crucial in

real-world network scenarios, and it undermines users’ trust in the trained agents and predicted

results in the network slicing ecosystem. Following the European Commission’s (EC) technical

report on ethics guidelines for trustworthy AI, proposed AI solutions should prioritize trustwor-

thiness. However, due to the lack of transparency and trust in AI models, telecommunication

operators are hesitant to widely deploy AI models in their networks, especially when such de-

cisions have financial and service quality implications. To address this challenge, we introduce

the architecture of SliceOps, where explainable ML operations are consolidated in a standalone

slice that provides AI services to other slices. This continuous delivery (CD) and continuous
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integration (CI) of ML models enhances reliability and interpretability while quickly deploying

AI models in the network with greater consistency. By transitioning from an AI-native zero-

touch to an automation-native zero-touch approach, the framework can manage not only service

functions but also the underlying AI functions, allowing the full potential of slicing in RAN to

be harnessed and reducing the complexities involved.



Resumen

Para agilizar la implementación del slicing de redes de sexta generación (6G), se necesitan

innovaciones algoŕıtmicas y arquitectónicas que habiliten una transición de redes nativas en in-

teligencia artificial (IA) a redes nativas en automatización confiable intŕınseca. En este contexto,

el slicing de redes se considera una tecnoloǵıa disruptiva y la columna vertebral de los futuros

sistemas de comunicación, habilitando un entorno integral que extiende la tenencia (en inglés,

tenancy) al consumidor final a través de casos de uso digitales avanzados. Espećıficamente, en

las próximas redes 6G, el slicing de redes jugará un papel crucial en casi todos los aspectos de

la vida, la sociedad y la industria, permitiendo a los operadores y proveedores de servicios de

red satisfacer las necesidades de comunicación de humanos y máquinas inteligentes en cualquier

momento y lugar. De hecho, el slicing de redes es una tecnoloǵıa que permite la creación de

múltiples redes virtuales adaptadas para satisfacer diversos requisitos de servicio, como baja la-

tencia, alta capacidad y alta confiabilidad, en diferentes implementaciones de red. Los tenants

verticales pueden alquilar y administrar redes lógicas aisladas, o ”slices”, en la red f́ısica del

operador, ya sea completa o parcialmente. Esto es posible mediante el empleo de tecnoloǵıas

de virtualización y software, como la red definida por software (SDN) y la virtualización de

funciones de red (NFV), que dotan a las redes de flexibilidad y programabilidad. A su vez, el

slicing de redes tiene un inmenso potencial para aumentar los ingresos al tiempo que minimiza

el gasto de capital y operativo (CAPEX y OPEX) de los proveedores de servicios.

Si bien el advenimiento de las tecnoloǵıas de quinta generación (5G)/6G con slicing de redes

promete revolucionar la sociedad digital, uno de los principales desaf́ıos de esta implementación

en cuanto a multi-tenancy es el slicing de la red de acceso por radio (RAN). Esto plantea

una complejidad significativa en la configuración y gestión de diversas operaciones de RAN;

las soluciones heredadas no pueden manejar este entorno dinámico y cumplir con los estrictos

acuerdos de nivel de servicio (SLAs). Para cerrar esta brecha, el slicing de redes sin intervención,

como un esquema de gestión y orquestación completamente automatizado (MANO), respalda

operaciones completamente automatizadas y una configuración bajo demanda sin necesidad de

acuerdos contractuales fijos ni intervención manual. Uno de los principales componentes de esta

tecnoloǵıa es el motor de decisión, que determina la acción que debe tomarse en función de

los problemas detectados por otros componentes. En este contexto, la innovación algoŕıtmica

se puede emplear para optimizar la asignación de recursos de red a diferentes slices con tal

de abordar los desaf́ıos fundamentales asociados con el slicing de RAN, como i) enerǵıa, ii)

latencia, iii) escalabilidad y iv) confiabilidad. En este sentido, el aprendizaje de refuerzo (en

inglés, reinforcement learning) es fundamental a lo largo de la vida útil de la red para aprender de

manera continua y acumular conocimientos pasados para ayudar al aprendizaje y la resolución de

problemas futuros. Esta tesis abordará estos desaf́ıos mediante el diseño, desarrollo y evaluación

de esquemas de asignación de recursos innovadores e inteligentes.
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En este sentido, la asignación eficiente de recursos de red a slices, como la computación y el

ancho de banda de red, es necesaria para minimizar el consumo de enerǵıa o la latencia, al

tiempo que se mantiene un rendimiento aceptable y se cumplen los requisitos de calidad de

servicio (QoS). Adoptar un enfoque de optimización conjunta de consumo energético/latencia

y asignación de recursos considerando el equilibrio entre ellos para optimizar ambos factores si-

multáneamente. Concretamente, proponemos un enfoque estocástico Actor-Critic para soportar

espacios continuos de estados y acciones en escenarios de telecomunicaciones con tal de estabi-

lizar el procedimiento de aprendizaje, mejorando la eficiencia temporal y reduciendo la necesidad

de ajustar hiperparámetros en una configuración de slicing de red enfocada al ahorro energético.

Además, investigamos la viabilidad de un enfoque multiobjetivo y de múltiples acciones donde

los agentes sin modelo aprenden a asignar conjuntamente recursos óptimos de potencia y com-

putación para minimizar la latencia de aprovisionamiento de servicios bajo un SLA estad́ıstico

a largo plazo, es decir, relativo al percentil de demora Q. En particular, proponemos un marco

de trabajo basado en el aprendizaje profundo masivo de refuerzo (DRL) denominado CS-AC. El

CS-AC es un marco de trabajo de software para diseñar y entrenar agentes de DRL que intenta

abordar problemas complejos. Para enfrentar los desaf́ıos de control en el slicing de redes, como

el aumento de la dinamicidad, heterogeneidad y tiempo de entrenamiento extendido de instan-

cias de slices, separamos el actor del aprendiz, donde el enfoque propuesto puede ampliarse

a varios miles de actores-aprendices paralelos en una gran colección de tareas sin sacrificar la

eficiencia de los datos.

Por otro lado, las variaciones temporales de la demanda de tráfico complican profundamente las

tareas de planificación y asignación de recursos, especialmente en el dominio de RAN donde las

decisiones de asignación de recursos, por ejemplo, en términos de ancho de banda, deben lidiar

con la variabilidad adicional inherente al canal inalámbrico y la movilidad del usuario final.

Para resolver esto, proponemos una arquitectura distribuida para la orquestación de recursos

de slices de RAN basada en DRL, compuesta por múltiples agentes de decisión habilitados para

IA que realizan decisiones de asignación de radio locales sin necesidad de una entidad de control

centralizada. A este respecto, diseñamos un esquema de aprendizaje federado (FL) que consta

de múltiples capas paralelas, una para cada slice, para mejorar las capacidades del proceso de

toma de decisiones local, siguiendo el desarrollo reciente de la arquitectura Open RAN (O-

RAN), y para resolver problemas de escalabilidad en el slicing de redes. Mejoramos aún más el

proceso de toma de decisiones definiendo dinámicamente el subconjunto de agentes de decisión

que participarán en el proceso de federación en función de las variaciones de la demanda de

tráfico de slices a largo plazo y sus similitudes temporales.

Por último, a pesar del rendimiento demostrado por las soluciones de IA/aprendizaje automático

(ML), existe una creciente preocupación por la falta de transparencia en las redes neuronales

profundas (DNN), que a menudo se consideran modelos opacos. Este problema es particular-

mente cŕıtico cuando la confiabilidad y la seguridad son cruciales en escenarios de red del mundo
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real, y socava la confianza de los usuarios en los agentes entrenados y los resultados predichos

en el ecosistema de slicing de redes. Siguiendo el informe técnico de la Comisión Europea sobre

pautas éticas para la IA confiable, las soluciones de IA propuestas deben priorizar la confia-

bilidad. Sin embargo, debido a la falta de transparencia y confianza en los modelos de IA, los

operadores de telecomunicaciones dudan en implementar ampliamente modelos de IA en sus

redes, especialmente cuando tales decisiones tienen implicaciones financieras y de calidad de

servicio. Para abordar este desaf́ıo, presentamos la arquitectura de SliceOps, donde las opera-

ciones de ML explicables se consolidan en un slice independiente que proporciona servicios de IA

a otros slices. Esta entrega continua (CD) e integración continua (CI) de modelos de ML mejora

la confiabilidad y la interpretabilidad al implementar rápidamente modelos de IA en la red con

mayor consistencia. Al pasar de un enfoque nativo IA sin intervención (en inglés, zero-touch)

a un enfoque zero-touch nativo de automatización, el marco propuesto puede gestionar no solo

las funciones de servicio sino también las funciones de IA subyacentes, permitiendo aprovechar

todo el potencial del slicing en RAN y reducir las complejidades involucradas.
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Chapter 1

Introduction

Digital cellular data communications refer to data traffic exchange over a cellular telecom-

munications network and require the presence of an underlying physical data communications

infrastructure layered upon a cellular network, such as that first evidenced by 4G cellular com-

munications and, more recently, by the substantially more robust and reliable 5G networks. In

5G, the network architecture supports the connectivity of UE to different base stations (gNBs)

clustered in different RANs, with each RAN coupled to the CN. Whereas 4G represented a

giant leap in performance over 2G and 3G networks, 5G represents an enormous improvement

over 4G. Capitalizing on Massive MIMO antenna arrays in each base station, the utilization of

millimeter wave radio communications, beamforming for direct wireless communications with

individual UE, and a bifurcated CU and DU architecture, 5G can achieve a data exchange ca-

pacity of nearly thirteen terabytes–almost a twenty times improvement over 4G LTE. The CN

of the 5G architecture reflects a substantial change over the EPC of 4G. In the CN of 5G, the

changes have been reduced, abstractly, into what has been referred to as the “Four Moderniza-

tions”. The first is “information technology” or “IT”, the second is the “Internet”, the third

is “extremely simplified”, and the fourth is “service-based”. The most typical change in the

network architecture of the CN is the service-based network architecture to separate the control

plane from the user plane. Other technologies support network slicing and edge computing.

As to IT modernization, the essential characteristic of the 5G architecture is the notion of

NFV. Indeed, NFV decouples software from hardware by replacing various network functions

such as firewalls, load balancers, and routers with virtualized instances running as software.

This eliminates the need to invest in many expensive hardware elements and can also accelerate

1
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installation times, thereby providing revenue-generating services to the customer faster. NFV

enables the 5G infrastructure by virtualizing appliances within the 5G network. This includes

the network slicing technology that enables multiple virtual networks to run simultaneously.

NFV can address other 5G challenges through virtualized computing, storage, and customized

network resources based on the applications and customer segments.

Network slicing adds an extra dimension to the NFV domain by allowing multiple logical net-

works to run simultaneously on top of a shared physical network infrastructure. As such, network

slicing becomes integral to 5G architecture by creating end-to-end virtual networks that include

both networking and storage functions. Operators of a 5G network then can effectively manage

diverse 5G use cases with differing throughput, latency, and availability demands by partition-

ing network resources to multiple users or “tenants”. With strategically tuned network slicing

and optimized allocation of VNF instances, the cost of operating a 5G architected network can

be optimized.

This thesis aims to tackle the implementation of network slicing in the RAN through the de-

velopment of customized mechanisms and AI/ML solutions for allocating resources to slices in

a zero-touch manner. However, during the design process of these policies and mechanisms, it

became clear that there is a requirement for more precise definitions of the slicing concepts and

a more accurate problem description and formulation. As a result, this thesis also incorporates

an elaboration on these matters.

Further details on the objectives and contributions covered in this thesis are provided in the

subsequent sections.

1.1 Objectives

The incorporation of AI into 5G/6G networks can substantially boost network performance, el-

evate dependability, and facilitate novel applications and services that were previously unattain-

able. Nevertheless, further research and development are required to completely comprehend

the possibilities of AI in 5G/6G networks and establish the requisite technologies and proto-

cols to facilitate these advancements. Since B5G/6G natively underpins AI, the main objective

of this thesis is to introduce new technology and a revolutionary approach to transform from

AI-native to automation-native network slicing. The network slicing ecosystem needs algorith-

mic and architectural innovations and adjustments to embed AI solutions into the network and
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maintain AI/ML pipelines in production. This thesis design and develop zero-touch automation

techniques (in decision engine), frameworks, and mechanisms to pave the way for implementing

fully-automated network slicing in 5G/6G. The developed resource allocation mechanisms are

expected to automate procedures efficiently and guarantee different performance requirements

while bringing openness, transparency, reliability, and robustness into network slices.

In pursuit of this objective, we follow a feasibility study, including theoretical and empirical

parts, to answer the following question: Is it possible to design and implement a trustable

lifelong zero-touch mechanism for controlling RAN slicing resources in 5G/6G?

In this regard, we pursue a set of steps based on the literature survey and study SoA, modeling,

designing DRL algorithms, simulation, and performance analysis. The obtained results are both

qualitative and quantitative. The research started with a comprehensive study and analysis of

the slicing concepts and main challenges. Then it follows with a thorough study of the SoA,

emphasizing algorithmic innovation. Afterward, novel DRL approaches and frameworks are de-

signed and developed for studying the specific problems according to energy-aware, low-latency,

scalability, and explainability issues in RAN slicing. Later, the strategy consists of develop-

ing new techniques and mechanisms with complementary approaches to test in simulation and

frameworks. A reproducible process is followed to design, implement, and analyze the solutions

to attain SoA performance. For the assessment of the proposed solutions, specific evaluation

scenarios are defined. Moreover, the evaluation and validation of AI and network metrics are

considered to analyze the results.

1.2 Contributions

This thesis delves into algorithmic innovations, focusing on deep reinforcement learning (DRL)

techniques to enhance the decision engine in the closed-loop of zero-touch network slicing.

The primary objective is to control resource allocation in a manner that prioritizes energy-

efficiency, low-latency, scalability, trustworthiness, and interpretability. This research aims to

drive automation-native transformation within the context of 5G and forthcoming 6G mobile

networks. The main ideas, proposed algorithms, figures, tables, and presented results in this

thesis are derived from several scientific publications, listed in Chapter 6, published or sub-

mitted in international peer-reviewed conferences and journals. The following is a summary of

the main contributions of this thesis:
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• Continuous DRL approach for multi-objective resource allocation in RAN slic-

ing setup. The DRL typically benefits from continuous action spaces due to increasing

flexibility, precision, and providing robust performance compared to discrete action spaces.

Discrete action spaces limit the agent to a fixed set of actions, resulting in suboptimal

behavior if the optimal action falls between the available options. In contrast, continuous

action spaces allow the agent to choose any action within a range of values (e.g., CPU

allocation), resulting in higher precision and the ability to select the optimal action, even

if it falls between discrete actions. Additionally, continuous action spaces are better suited

for complex tasks such as resource allocation in network slicing because they capture a

more comprehensive range of behaviors and experiences. By leveraging this technique and

complementary approaches such as reward shaping and parallelism, we solved resource al-

location optimization while minimizing energy consumption and incurred latency within

network slices in Chapter 3.

• An FDRL framework for managing and orchestrating scalable and distributed

RAN slicing in 6G. The early stages of creating a scalable and distributed 6G network

involve designing the frameworks to manage substantial data traffic and dynamically al-

locate resources to meet changing demand in real-time. Planning and allocating resources

in the RAN domain, particularly regarding bandwidth, is complex due to fluctuating traf-

fic demand over time. This is further compounded by the additional variability inherent

in the wireless channel and end-user mobility, which adds another layer of variability to

resource allocation decisions. To cope with this challenge in Chapter 4, we proposed a

distributed and hierarchical scheme for managing RAN slice resource orchestration using

DRL. It involves deploying several decision agents, each enabled with AI, to carry out

localized radio allocation decisions. By adopting this approach, a centralized control en-

tity will not be required. To improve the effectiveness of the decision-making process, we

have designed an FL solution comprising several layers where each layer corresponds to

a specific slice, following the advancements made in the O-RAN architecture. This FL

scheme will help to address scalability challenges experienced in network slicing. Besides,

the framework dynamically determines which subset of decision agents should participate

in the federation process based on long-term variations in slice traffic demand and their

temporal similarities that further enhance the decision-making process.

• A framework for RAN slices based on OpenAI Gym towards openness B5G/6G
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technology. In the context of B5G/6G, openness pertains to the ability of diverse tech-

nologies, devices, and services to interoperate without closed or proprietary interfaces

seamlessly. An open B5G/6G framework would enable various devices, applications, and

services to communicate with each other irrespective of their origin or brand. In this intent

and following open-source and fulfill reproducible experiments for algorithmic innovation

in network slicing, we designed and implemented a software platform based on OpenAI

Gym and in compliance with O-RAN in Chapter 4, which includes virtual transmission

queues and main PHY/MAC/RLC functionalities and enables slice networking statistics

to be collected.

• A revolutionary approach for transforming from AI-native to Automation-

native B5G/6G networks. Since B5G/6G natively supports AI, the stakeholders in

structuring B5G/6G network slices need innovations and adjustments to embed AI solu-

tions into the network. In Chapter 5, we propose a revolutionary approach for B5G/6G

networks, called SliceOps to concentrate AI/ML operations (MLOps) in standalone slices,

which manages the whole lifecycle of AI models separately beside the underlying service

functions. It pushes AI models into production, i.e., helps telecom companies or service

providers to maintain ML pipelines in a production environment to proactively moni-

tor, unveil, and measure ML models’ quality to improve the network’s automation while

providing AI services to the main B5G/6G slices.

• An explanation-guided framework for transparent, trustworthy, and inter-

pretable DRL-based resource allocation in the B5G/6G network slicing. Trans-

parency and trustworthiness in B5G/6G networks are essential to maintain users of net-

work slicing ecosystem confidence in the applied AI technologies. To this end, we proposed

an explanation-guided DRL scheme to enable the agent to scrutinize each feature and its

impact on the output of the DNN model and enable to observe the factors that either pos-

itively or negatively impact the performance of DRL for resource allocation. The Sparse

rewards and a lack of interpretability hamper the accuracy and reliability of estimating

state-action pairs in DRL. To cope with this problem, we proposed an Explainer in Chap-

ter 5 that uses the SHAP importance values to generate a probability distribution over

a batch of state-action data by applying the softmax function to the SHAP values. An

Entropy Mapper then calculates the entropy, which reflects the uncertainty of the selected

action given the input state. The inverse of the maximum entropy value is then used as the

XAI reward. We validated that this approach can reduce the uncertainty of state-action
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pairs and encourages the agent to choose the best actions for specific network states. It

helps to clarify the learning process while guiding the learning towards making explain-

able decisions for a given state. This framework is integrated into the training phase of

SliceOps with an attention-based submodule to inspect the contribution and impact of

network slice states on decision-making and choice of particular actions.

1.3 Thesis Outline

Fig. 1.1 illustrates the general organization and interconnections between chapters within this

thesis. The remaining outline of the thesis is organized as follows:

Chapter 2 contains an overview of the relevant SoA on zero-touch 5G/6G network slicing and

algorithmic innovation to fulfill zero-touch decision engine. We target energy, low-latency, scala-

bility, trustworthiness, and explanation scopes in the future generation of mobile communication

networks. It details DRL solutions and complementary approaches to solving the problems and

challenges of the considered scopes in this thesis.

Chapter 3 targets novel energy-aware and latency-aware resource allocation solutions based

on actor-critic algorithms. Optimizing energy consumption and reducing latency based on

intelligent resource allocation mechanisms is crucial for ensuring energy efficiency and supporting

low-latency services of 5G/6G networks. One effective method for achieving this goal is using

actor-critic techniques that support continuous action while providing more reliable and robust

results. Actor-Critic methods involve an actor network that takes actions based on the current

state of the environment and a critic network that evaluates the actions taken by the actor. The

critic provides feedback to the actor to improve its future actions. To apply actor-critic methods

in energy-aware and latency-aware resource allocation, an actor network can be utilized to

allocate resources such as frequency bands, transmission power, and CPU resources to each user

or slice, while a critic network evaluates the energy consumption or incurred latency associated

with each allocation. We have developed an approach that separates the actor from the learner

to address the control challenges that arise with network slicing, such as greater dynamism,

heterogeneity, and longer training times for slice instances. This approach allows us to scale up

to thousands of parallel actors-learners across various tasks while maintaining data efficiency.

Chapter 4 deals with scalability and distributed challenges in the next generation of network

slicing in 6G. We investigate the application of FDRL in 5G/6G network slicing and elaborate
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on the proposed framework that deploys a set of traffic-aware local decision agents within the

RAN, which adapt their resource allocation strategy based on the long-term trends in traffic.

These decentralized DEs establish specialized clusters facilitating faster training and reducing

communication overhead. With the assistance of a traffic-aware agent selection algorithm, our

FDRL approach can respond rapidly to changes in end-user mobility patterns, resulting in

higher resource efficiency compared to benchmark solutions while reducing the need for costly

interactions with centralized controllers.

Chapter 5 delves into proposing a new technology to transform from AI-native to automation-

native 6G network aims to, besides handling the service functions, enable the network to control

underlying AI functions, i.e., push AI/ML models into production. Moreover, since 6G networks

are anticipated to serve as the foundation of critical services such as healthcare, transportation,

and energy management, ensuring high reliability, availability, and security with trustworthy

solutions is vital. Consequently, any breakdowns or disturbances in the 6G network could

have serious ramifications, from financial losses to jeopardizing people’s lives. To solve this, we

proposed an explanation-guided AI framework in this chapter to enhance the reliability and

interpretability of ML models by implementing CI and CD methodologies.

Chapter 6 aims to provide results to those who can best benefit from them, including the sci-

entific community, industry, policymakers, and other commercial players. Dissemination serves

several purposes, including demonstrating the broad relevance of science to society, garnering

support for future research and innovation funding, ensuring that findings are utilized within

the scientific community, and creating opportunities for new products or services. Furthermore,

the goal is to consider the utilization of results and findings in the development, enhancement,

marketing, or refinement of a product, process, or service, as well as in standardization efforts

or policy formation. This can involve commercial, societal, political, or educational purposes

and promote public knowledge and action. Exploitation concentrates on transforming research

ideas into tangible solutions that benefit people’s quality of life.

In conclusion, Chapter 7 of this thesis summarizes the presented work and debates the limita-

tions of the contributions. Additionally, potential areas and directions for future research and

expansion of the topics covered in this thesis are discussed.
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Chapter 2

Zero-Touch Network Slicing

2.1 5G/6G RAN Slicing Overview

Due to the exponential growth in the demand for service provisioning and immense challenges in

5G/6G, it is necessary to adopt network slicing technology as a key enabler. Specifically, zero-

touch RAN slicing is a significant step towards the evolution of 5G/6G and future networks, and

it holds great promise for mobile network operators (MNOs) operating in the 5G/6G network

environment. By utilizing RAN slicing technology, MNOs can create several virtual RANs on

a single physical infrastructure, allowing them to offer personalized connectivity services and

optimize their network resources. A slice instance is self-contained in terms of traffic flow and

operation which has its architecture and specific characteristics that lead to support manifold

use case realization. It provisions the functionality of the whole C-RAN sites and cloud-native

core that is bolstered up through multifarious technological advances and platforms such as

cloudification. In this regard, network slicing can provide better performance, flexibility, and

scalability compared to one-size-fit-all networks. This technology enables MNOs to optimize

network resources, reduce costs, and enhance operational efficiency. To implement RAN slicing,

MNOs require SDN and NFV technologies to segment the RAN infrastructure into virtual

RANs. Once segmented, the virtual RANs can be independently managed and configured with

different policies and performance characteristics. RAN slicing can be implemented through

various methods such as dedicated physical resources, time or frequency resources, or network

slicing over the same physical resources.

9
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Figure 2.1: Network slicing background.

Fig. 2.1 presents the E2E network slicing scheme based on O-RAN slicing related use cases,

requirements and architecture [2], which encompasses the RAN slicing and the core network

slicing with CP and UP network functions within the physical infrastructure of a mobile network.

A network slice spans the network domains on shared physical infrastructure resources. We

consider slice-enabling RAN (gNB) with 3GPP CU-DU functional split. The network slice

identification is made through the single-NSSAI, where NSSAI signaling message is allowed to

send a collection of up to eight S-NSSAIs between the user and the network1. The S-NSSAI

consists of a SST and an optional SD, where SST refers to expected specific features and

services. The SST includes URLLC, eMBB, and mMTC. The SD is an additional differentiator

for multiple network slices with the same SST value. Indeed, standardized S-NSSAI has only

SST value.

The UE sends configured or allowed NSSAI to the RRC and NAS signaling as part of registra-

tion. NSSAIs are managed at the tracking area level (RAN) and registration area level (core).

According to NSSAI, the CU-CP selects a specific AMF during the PDU setup procedure. No-

tice that UE can use multiple network slices; therefore, AMF can be shared between slices. For

example, the AMF for an eMBB user selects a specific SMF, and thereby SMF chooses a spe-

cific UPF according to location and load information. The UPF connects mobile infrastructure

to the DN or application server. The common core is a cost-efficient approach for 4G to 5G

migration where LTE and 5G NR and non-3GPP accesses (e.g., Wi-Fi and fixed broadband)

1https://www.etsi.org/deliver/etsi_ts/124500_124599/124501/16.11.00_60/ts_124501v161100p.pdf

https://www.etsi.org/deliver/etsi_ts/124500_124599/124501/16.11.00_60/ts_124501v161100p.pdf
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are integrated via a common interface to underpin multi-RAT. The RAN and core maintain

and deploy a set of VNFs and CNFs to serve the users of distributed RUs. They host agents to

facilitate the training process to learn the best policies and actions for scaling the resources ver-

tically and consequently scaling horizontally for VNFs and CNFs instances according to system

states.

To fully automate network slicing management, ETSI has introduced the ZSM reference frame-

work [3]. It is paired with the use of intent-based interfaces, closed-loop operation, and AI tech-

niques to empower the full-automation of network slicing, which are cutting-edge technologies

that streamline creating and managing network slices without requiring manual intervention.

By leveraging zero-touch technology, virtual networks can be created and managed automati-

cally, making deploying new applications and services more straightforward and quicker. The

main principle underlying zero-touch is to automate network slice creation and management. It

leads to cost and time savings; a critical requirement in industries such as telecommunications,

where service providers need to quickly deploy new services and applications to meet evolving

customer needs. Zero-touch technology can also enhance network efficiency by dynamically

allocating resources, ensuring that each network slice has the resources it needs to operate effi-

ciently. As demand for new services and applications continues to grow, zero-touch is poised to

become increasingly crucial for service providers and other organizations seeking to deploy and

manage complex network environments.

To this end, the ZSM architecture supports a set of architectural design principles, including:

• Modularity aspects for creating self-contained and loosely-coupled services to prevent

monoliths and tight coupling.

• Extensibility enables the network to extend new services and service capabilities.

• Scalability fulfills increasing or decreasing demands to deploy managed entities, and mod-

ules can be independently scaled.

• Resilience aspects cope with the degradation of the infrastructure and other management

services as well as simplicity makes minimal complexity while still meeting the functional

and non-functional requirements.

The modular characteristic is paired with intent-based interfaces, closed-loop operation, and

AI/ML techniques to empower the full automation of management operations.
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The architectural building blocks consist of i) management services, ii) management functions,

iii) management domains, iv) integration fabric, and v) data service. The management services

are main pivotal in ZSM framework reference architecture that federate together management

domains, including a set of capabilities for communication purposes, automation orchestration,

and managing one or more entities such as infrastructure resources that can be physical (e.g.,

physical network functions ), virtual (e.g., VNFs or software-based services) and/or cloud-based

(e.g., “X-as-a-service” (XaaS) resources). Each management domain is split into sub-domain to

consider different management concerns. The integration fabric is a special management func-

tion that enables the communication between management functions within management do-

mains while offering a set of communication capabilities, such as synchronous and asynchronous

communication. The data service allows us to separate data storage from data processing and

support different types of storage mechanisms and database technologies to provide current

management data such as configuration data, performance/fault alarm events, and topology

data for AI-based closed-loop automation procedures.

Within the ZSM architecture, closed-loop may exist in each management domain. The func-

tional scheme of the closed-loop depicted in Fig. 2.2, highlights the importance of the ’Decision’

stage. Fig. 2.2 consists of four stages in addition to the Knowledge functional block. The moni-

Figure 2.2: Functional view of a closed-loop [1].

toring/collection stage collects and preprocesses raw data from various sources such as services,
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managed resources, or closed-loops. Since the raw data can have different formats, it is trans-

formed to enable its analysis with data from other sources. The Analysis stage provides insights

from the available data obtained from the Monitoring stage. The Decision stage determines the

action that needs to be taken based on the issues detected by the analysis block, which can be

reactive, proactive, or predictive. The Decision stage only decides which actions are necessary,

while the Execution stage is responsible for executing the necessary workflows to implement

the actions determined by the Decision stage. This execution may involve other management

domains and interactions with other closed-loops. Therefore, multiple distributed closed-loops

are required for end-to-end service management. The Knowledge block in the Fig. 2.2 is not

technically a stage of the closed-loop. It refers to the storage and retrieval of historical, config-

uration, and operational data shared between the stages of a closed-loop and between different

closed-loops in the network. The Decision stage encompasses several key flows or interfaces:

• A2D interface: Connects the Analysis function to the Decision stage, providing historical

and/or real-time information from the collection/monitoring stage to inform the analytic

models and decision processes.

• D2E interface: Used by the Decision stage to generate action plans through workflows,

such as configuring changes or onboarding services and resources. This interface can also

be used to fine-tune decision models and initiate or terminate decision processes.

• E3 external interface: Manages data and control inputs and outputs from/to external

entities or closed-loops. This interface can start or stop decision processes, adjust Decision

stage settings and model attributes, retrieve historical or real-time data from the function

(such as logs or outcomes), and export resulting data to authorized external management

systems or other closed-loops within the ZSM framework.

• K3 interface: Represents a knowledge-enabled flow for data-related inputs and outputs

from the Decision stage, allowing data from the Knowledge functional block (historical or

real-time workflows) to be incorporated into decision-making processes. Data from the

Knowledge block may further supplement these primary interfaces to enhance decision-

making capabilities.

To attain closed-loop operation, a management framework must offer a way to systematically

invoke the different steps or phases of the closed-loop (such as observe and decide) in a specific

sequence; therefore, we should boost and tune the current dominant AI paradigm to improve
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learning in complex telecommunications environments for intelligent control and decision. This

thesis focuses on the decision in closed-loop and algorithmic innovation for RAN slicing.

2.1.1 Algorithmic Innovation

Network slicing has a dynamic, heterogeneous, and decentralized nature. Emerging use cases

and applications with different stringent requirements pose new challenges to algorithm design-

ing in network slicing. Implementing 5G/6G network slicing is anticipated to facilitate various

use cases that demand different network performance characteristics, such as URLLC, mMTC,

and eMB). To accommodate these use cases, network operators must develop and deploy net-

work slices tailored to each use case’s needs. Algorithmic innovation can significantly contribute

to efficient and effective network slicing in 5G/6G. By utilizing advanced algorithms and tech-

niques, network operators can tailor network slicing to accommodate the diverse requirements

of various use cases and applications. Examples of how algorithmic innovation can be employed

in network slicing in 5G/6G include:

• Resource allocation algorithms: These algorithms can optimize the allocation of network

resources to different network slices based on factors such as network load, available band-

width, and quality of service requirements of each network slice.

• Virtual network function placement algorithms: These algorithms can determine the opti-

mal placement of network functions, such as firewalls, routers, and load balancers, in the

network to minimize latency and maximize the throughput of the network slices.

• Dynamic slice management algorithms: These algorithms can facilitate the automatic

scaling of network slices based on traffic demand and support the creation and deletion of

network slices based on application requirements.

• Predictive analytics algorithms: These algorithms can aid network operators in forecast-

ing traffic patterns and performance characteristics of different network slices based on

historical data, allowing proactive optimization of the network slices and early detection

of potential issues.

ML algorithms can optimize resource allocation, network function placement, and dynamic slice

management in network slicing. They can also detect anomalies and security threats in network

slices for faster response times and better network protection. Algorithmic innovation can
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unleash the potential of network slicing and supports progressive change across all stakeholders.

Designing intelligent algorithms can potentially yield benefits in terms of reliability, convergence,

and network performance optimization in a large-scale network slicing environment. Initial

results have shown that AI can solve problems that are difficult to address and not be easily

modeled concerning wireless communication uncertainties. AI/ML methods exploit the huge

volumes of data that are produced by the network monitoring entities (such as centralized OSS

platforms and virtual probes) to control and manage the sophisticated and complex nature of

the 5G/6G environment through an analytics platform. This big data creates unprecedented

opportunities for MNOs to discern the requirements and predict the behavior of demands.

In a challenging situation where prediction modeling faces several limitations, RL provides a

promising technique to be incorporated in mobile communication systems as an elegant and

SON solution for solving many resource management and other optimization issues. Indeed, RL

acquires new behaviors and skills cumulatively, so its agent does not require complete view or

control of the network.

In this thesis, we leverage proposed DRL solutions to enhance network slicing in 5G/6G, ex-

plicitly focusing on resource allocation algorithms to address the subsequent challenges.

2.1.1.1 Energy Scope

Managing energy consumption is crucial in network slicing as it is a critical factor in network in-

frastructure operations. Energy scope in network slicing refers to managing energy consumption

at various levels of the network slice in the entire network. One way to optimize energy consump-

tion is to leverage SDN and NFV technologies, which allocate network resources dynamically

based on demand, reducing energy consumption during low utilization. Another approach is

to use energy-efficient hardware and equipment, such as low-power processors, energy-efficient

switches, servers, and renewable energy sources. Using energy-efficient technologies and equip-

ment can help reduce the environmental impact of network operations while also improving

the overall efficiency and profitability of the network slice. In this context, [4]-[5] have pre-

sented softwarization approaches in network slicing. In [6], the authors have proposed vrAIn

as a dynamic resource controller based on DRL for optimal allocation of computing and radio

resources. Li et al. have proposed a DDPG-based solution to enhance energy efficiency and

obtain the optimal power control scheme [3]. Correspondingly, [7] has proposed a method to

learn the optimum solution for demand-aware resource management in C-RAN network slicing.
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They have developed a DRL method as GAN-DDQN to handle resource management in net-

work slicing. In [8], it has leveraged A2C and incorporated the LSTM to track the user mobility

and improve the system utility. More recently, Liu et al. have proposed a DRL-based method

called, DeepSlicing where they decompose network slicing problem into a master problem and

several slave problems wherein DDPG agents learn the optimal resource allocation policy [9].

In Chapter 3, we propose a novel approach to optimizing energy consumption and VNF

instantiation cost using continuous model-free DRL. We introduce a new method called TDSAC,

which is an actor-critic-based network slicing approach that enables continuous learning to

minimize future NS costs. The TDSAC method is designed to stabilize learning, allowing

the CU to accumulate knowledge learned in the past and apply it to future network slicing

decisions. The use of DRL in this approach means that the system does not require a model

of the environment to learn, making it more flexible and adaptable to changes in the network.

This approach can be particularly useful in dynamic network environments, where the system

needs to adapt quickly to changes in traffic or network conditions.

2.1.1.2 Low-Latency Scope

In network slicing, a low-latency slice pertains to a network slice specifically engineered to of-

fer low-latency connectivity for particular applications or services. Real-time and low-latency

communication is indispensable for applications that require it, such as augmented reality, vir-

tual reality, gaming, and self-driving vehicles. Creating a low-latency slicing involves assigning

network resources and prioritizing low-latency traffic over other traffic types. This can be ac-

complished by utilizing specialized networking protocols, optimized equipment to lessen latency,

and latency-aware resource allocation. Latency-aware resource allocation is a technique utilized

in network slicing to guarantee that low-latency applications and services have the necessary

network resources to minimize latency. By applying latency-aware resource allocation, service

providers can prioritize low-latency traffic and ensure that the essential resources are assigned

to support these applications and services. Koo et al., have proposed a DRL-based network

slicing method and improved resource utilization and latency performance with time-varying

traffic [10]. In [9], the authors have proposed a scheme to allocate network resources effectively.

The authors have integrated the alternating direction method of multipliers (ADMM) and DRL,

where they exploit the DDPG [11] as a SoA actor-critic technique to learn the optimal policy.
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Pujol Roig et al. have proposed an actor-critic, called parameterized action twin (PAT) deter-

ministic policy gradient algorithm where automated MANO allows a CU to learn to re-configure

resources autonomously [12]. Liu et al. have studied a new decentralized DRL-based resource

orchestration system to automate dynamic network slicing in wireless edge computing networks

[13]. In [8], the authors have investigated a demand-aware inter-slice resource management

solution based on A2C as a DRL algorithm. In [14], the authors have proposed two centralized

scheduling algorithms that take into account latency and SLA requirements in terms of minimal

demand and allocate resources in network slicing systems.

From this SoA overview, it turns out that there is no actor-critic-driven network slicing resource

allocation strategy that integrates long-term practical SLA constraints with respect to some

KPIs while also optimizing service cost. Without loss of generality, Chapter 3 investigates a

multi-tenant network scenario with a developed variant of mMIMO [15] and edge computing

approach as promising B5G/6G wireless access technologies.

2.1.1.3 Scalability Scope

AI-driven approaches applied to mobile networks have recently gained momentum in distributed

resource control and management tasks. In this context, DRL and FDRL stand out among a

multitude of different approaches and are at the center of a strong research interest, especially

in the field of automated resource orchestration.

The authors of [16] consider the sum power minimization problem based on jointly optimiz-

ing resource allocation, user association, and power control in a MEC system. In this intent,

they propose a multi-agent federated RL algorithm to solve centralized method limitations and

privacy concerns. The simulation results shown that the proposed approach provides lower max-

imal latency, lower maximal computation capacity, higher CPU cycles for the tasks, and higher

data rate. Due to enhancing spectrum utilization in new generation wireless communication

technologies, the authors in [17] invoke an FDRL approach to accelerate learning convergence

in edge nodes.

In [18], the authors investigate the decentralized joint optimization of channel selection and

power control for V2V communication, proposing a federated multi-agent DRL (Fed-MARL)

approach to satisfy the reliability and latency requirements of V2V communication, and max-

imize the transmit rates of cellular links. The results have shown how the federation of local
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DRL models coming from different V2V agents can tackle the limitations of partial observability

of the entire network, resulting in superior performances over baseline approaches in terms of

communication rate and packet delivery rate.

Targeting at implementing the O-RAN with virtualized network components, the authors of [19]

proposed an FDRL-based with a global model server installed in the RIC to update the DQN

parameters. This approach can mitigate load balancing and frequent handovers in the massive

base station deployment. Following O-RAN standardization, the numerical results have demon-

strated the proposed method enables UE to maximize the long-term throughput and avoids

frequent handovers. The authors of [20] develop a DRL algorithm for resource allocation in a

mobility-aware FL network, optimizing the number of successful transmissions while minimizing

energy and channel costs. In [21], the authors propose a federated network slicing scheme based

on DRL techniques for channels and bandwidth allocation in the context of IIoT, highlighting

significant performance improvements when compared against centralized strategies.

In [22], the authors model the network utility maximization problem and exploit DRL techniques

such as deep Q-learning to solve the decision-making task. Their work highlights significant

improvements over KPIs and networking metrics, such as throughput and latency. This solution

exploits a centralized approach that aims to solve a global optimization, therefore limiting the

individual network slices in the management of their own resources. A similar problem has been

addressed by [13], which proposes a decentralized resource orchestration system to automate

dynamic end-to-end network slicing resource management in wireless edge computing networks.

The proposed architecture makes use of a central performance coordinator entity and multiple

orchestration agents. This work provides limited details on inter-agent information exchange

aspects. Also [23] proposes a DRL approach for the orchestration of service function chains in

NFV-enabled networks, addressing both placement-error-rate-based and reward-based federated

weighed strategies, showing significant convergence performance, higher average reward, and

smaller average resource consumption in a variety of networking scenarios.

From the viewpoint of real-time inter-slice resource management and yield an intelligent strategy,

the authors of [24] design a graph attention multi-agent RL to cope with frequent BS handover.

The simulation results have demonstrated that the proposed approach effectively enhances the

cooperation for the multi-BS system in RAN while satisfying the strict SLA requirements.

In [25], the authors propose a multi-agent RL approach for RAN capacity sharing, showcasing

better scalability and faster learning in comparison to single-agent approaches. More recently,
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the authors of [26] developed an FL framework in the context of fog computing, focusing on

the distribution of training tasks. The numerical results show that the proposed network-aware

scheme significantly improves network resource utilization while achieving comparable accuracy.

Following this SoA overview, the key novelty of our approach in Chapter 4 relies on the

exploitation of distributed RAN information to design a new class of specialized agents that

collaborate in homogeneous clusters via a federation layer, which leads to scalable and sta-

ble decision under highly dynamic traffic conditions and then the proposed framework is also

mapped to O-RAN. To the best of our knowledge, this is the first work to propose an FDRL

framework in the context of distributed radio resource management, by adopting dynamic agent

selection to improve the specialization of agents and reduce communication overhead.

2.1.1.4 Automation-Native and Trustworthiness Scope

The MLOps practice is an iterative process to push the best ML models into software solution

production by bridging ML applications with DevOps principles. The authors in [27] developed

an edge MLOps framework for automating and more efficient AIoT operations and decision-

making. The proposed framework aims to operationalize the CD and CI of ML models to the

nodes as an essential part of DevOps. They successfully implemented the scheme in a real-life

scenario by automating workloads assisted an MLOps approach. Samaras et al. [28] proposed

a cloud-native MLOps automation platform for automated and optimized network slice LCM.

This QoS monitoring and prediction platform (QMP) proactively detect and mitigate QoS vio-

lation in network slice operation. This event-based framework is a zero-touch MLOps platform

that automatically analyzes its accuracy performance and adapts itself automatically through

the training job. In [29], the authors presented an ML-as-a-Service (MLaaS) approach for 5G

IoT based on a TinyMLaaS (TMLaaS) architecture to improve future IoT deployments in terms

of energy consumption, security, and privacy. They leveraged an MLOps framework for unifying

ML systems to implement, deploy, and maintain operations. The authors in [30] described two

levels of MLOps in O-RAN. They considered a DL-based MLOPs and leveraged the DevOps

principles to ease ML system development (Dev) and ML system operation (Ops) for O-RAN

automation. Correspondingly, [31] proposed an MLOps lifecycle based on RL aiming to auto-

mate and reproducible model development process in the O-RAN deployment. The proposed

scheme introduces principles and practices for developing data-derived optimal decision-making

strategies integrated with the digital twins and the network analytics platform. Tsourdinis et
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al. [32] developed a service-aware dynamic slice allocation scheme. The proposed AI/ML unit

in the pipeline follows an MLOps-based distributed ML architecture where the validity and

efficiency of the entire framework are evaluated by LSTM model assessment. The results have

shown the solution can allocate the proper resources to the network in real time through open

APIs.

DECODER2 is an H2020-EU project that aims to develop a methodology and tools to increase

the productivity of the software development process for IoT, cloud computing, and operating

systems. The project focuses on the automate the transformation steps using existing techniques

from big data (knowledge extraction), model-driven engineering (knowledge representation and

refinement), and formal methods. The project revisits the software development lifecycle to pro-

pose practical tools for a systematic approach to develop and safely reuse components and their

associated knowledge in software production. Different use cases have been defined targeting

the IoT and embedded systems, AI, and enterprise computing based on a cloud environment.

InSecTT3 is an ECSEL-JU project that creates trust in AI-based intelligent systems aiming

to design AI and ML-based systems trustable, explainable, and not just a black box. The

project identified 16 use cases based on AI-supported embedded processing for industrial tasks

and AI-enhanced wireless transmission and also worked on an MLOps framework for managing

intelligent algorithms. AITHENA 4 researches on three main AI aspects: data (real/synthetic

data management), models (data fusion, hybrid AI approaches), and testing. The project

methodology is defined in four critical use cases for an XAI approach in 5G connected and

cooperative automotive mobility, namely: (i) perception (what does the AI perceive, and why),

(ii) situational awareness (what is the AI understanding about the current driving environment),

(iii) decision (why a specific decision is taken), and (iv) traffic management (interoperate with

AI-enabled systems). The project defines a scalable MLOps approach for testing the above use

cases.

Alongside research contributions, some organization and industry initiatives are relevant for

MLOps components in telecommunications. The ETSI-ENI5 is defining a cognitive network

management architecture leveraging AI techniques. The architecture targets all networks, in-

cluding 5G networks aims to provide fully-automated service provision, operation, and assur-

ance. ENI has also launched PoCs to demonstrate the potential of AI solutions to assist network

2https://www.decoder-project.eu
3https://www.insectt.eu
4https://cordis.europa.eu/project/id/101076754
5https://www.etsi.org/technologies/experiential-networked-intelligence

https://www.decoder-project.eu
https://www.insectt.eu
https://cordis.europa.eu/project/id/101076754
https://www.etsi.org/technologies/experiential-networked-intelligence
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operation, such as optimized slice management and resource orchestration. ENI focuses on us-

ing closed-loop AI mechanisms based on context-aware, metadata-driven policies to pave the

way for making actionable intelligent decisions. It can adopt the closed-loop AI mechanisms to

the feedback system in the MLOps lifecycle. Unlike ETSI ENI, which focuses on AI techniques,

ETSI-ZSM6 is investigating automation challenges faced by operators and vertical industries.

The group was formed in December 2017 to work on E2E architecture and services automation

to solve radical changes in the way networks are managed and orchestrated in the pivotal de-

ployment of 5G and network slicing. To fulfill the unprecedented operational agility required of

network slicing and control network without further human intervention, the group is working

on a new horizontal and vertical E2E architecture framework based on closed-loop automa-

tion and optimized for AI/ML algorithms. In this intent, an MLOps approach with lifecycle

management of ML models for reproducible ML pipelines can be necessary. 3GPP RAN37

has studied a functional framework to guide how different AI/ML functions interwork to solve

the challenge of leveraging AI and ML in current 5G architecture. The framework consists

of data collection, model training, model inference, and actor. This RAN-centric data collec-

tion and utilization approach identified three prominent use cases based on AI/ML solutions,

including network energy saving, load balancing, and mobility optimization. The outcomes

influence work in similar activities such as 3GPP SA28. The system architecture and services

specification group has specified the network data analytics function (NWDAF). NWDAF can

be distributed or centrally located, aiming to guide how data analytics can be derived from

the industry’s collected data of 5G core network functions, applications, and the OSS. This

standalone core network feature can solve the absence of an effective network analytics solution

in MLOps to utilize optimized data collection with training and ML model retrieval. ITU-T

SG13 ML5G9 targeted an architectural framework with ten technical specifications for ML in

future networks, including interfaces, network architectures, protocols, algorithms, and data

formats. This framework aims to abstract ML workflow (ML pipeline) and required function-

ality. NGMN alliance10 has published an E2E architecture framework for 6G use cases, and

analysis leverages an autonomous system, based on cognitive awareness and AI/ML closed-loop

feedback learning models. This framework aims to fulfill self-CHOP (configuration, healing,

optimizing, and protecting) behaviors in E2E network slicing. O-RAN Alliance11 emphasizes

6https://www.etsi.org/technologies/zero-touch-network-service-management
7https://www.3gpp.org/3gpp-groups/radio-access-networks-ran/ran-wg3
8https://www.3gpp.org/3gpp-groups/service-system-aspects-sa/sa-wg2
9https://www.itu.int/en/ITU-T/focusgroups/ml5g/Pages/default.aspx

10https://www.ngmn.org/
11https://www.o-ran.org/

https://www.etsi.org/technologies/zero-touch-network-service-management
https://www.3gpp.org/3gpp-groups/radio-access-networks-ran/ran-wg3
https://www.3gpp.org/3gpp-groups/service-system-aspects-sa/sa-wg2
https://www.itu.int/en/ITU-T/focusgroups/ml5g/Pages/default.aspx
https://www.ngmn.org/
https://www.o-ran.org/
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evolving 3GPP access with openness, virtualized, fully interoperable, and AI-enabled RAN. The

O-RAN describes RIC as non-realtime RIC and near-realtime RIC to provide the foundations

to control and manage 3GPP-defined RANs intelligently.

In this intent, we propose a revolutionary scheme in Chapter 5 to break ground for adopting

SDLC and MLOps approaches in telecommunication to enable fully-automated service provi-

sioning from management to maintenance while transforming AI-native 6G to automation-native

6G networks.

2.2 Reinforcement learning (RL)

RL technique is evaluative feedback-based learning and a branch of ML to optimize the accu-

mulated long-term reward (average return). It automates complex sequential decision-making

tasks of an agent without a priori knowledge of the system through interaction with the envi-

ronment. To enable the agent to take the right actions, it should spend time in a certain part

of the environment. Generally, all the sequences of actions, rewards and observation time up to

time step t is called the history

Ht = [O1, A1, R1, ..., Ot, At, Rt]. (2.1)

MDP’s mathematical context can be considered a formal framework to formalize diverse RL

methods for learning optimum decision-making policies in a fully or partially observable envi-

ronment. One of the important issues is the intelligent agent can dynamically make decisions

based on actions, states, and rewards where the states refer to possible network configurations,

and reward (or penalty) stands for feedback signal from the network (environment) that implies

the agent’s performance. The agent observes the network state at each time step t and acts on

that network to transit from one state to another. Typically, an MDP is defined by a 5-tuple

(S,A, P, γ,R) where S is a set of state (state space), A refers to a set of action (action space),

P denotes the transition probability from current state s to the next state s′ where they gov-

ern rules of state transitions and define our dynamics. The R notation stands for the reward

function. The agent obtains an immediate reward by taking action at in state st. Unlike finite

or episodic tasks, the total reward can be infinite in continuing tasks. The γ defines a reward

discounting hyperparameter that results in significant deviations in the agent’s performance

where the future agent values rewards will turn to less and less. Indeed, it is a real-valued
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discount factor weighting to determine the importance of future rewards as a short-sighted or

myopic agent (γ = 0), i.e., agent aims to maximize its current/immediate rewards, or far-sighted

agent (γ = 1) that strives to accumulate long-term higher rewards. The γ is often chosen in

[0.95, 0.99]. The total discounted rewards from time step t is given by

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ...
∞∑
n=0

(γnRt+n+1) . (2.2)

We can derive useful recursive relation between rewards and subsequent time step, Gt = Rt+1 +

γGt+1 that it can attenuate computational complexity and memory requirements. However,

there is one more piece we need to complete the MDP. The key term of MDP is the decision.

Indeed, the way we make decisions for what actions to do in what states is called a policy

which denotes with the symbol π that it is usually a probabilistic function as mapping states

to actions.

Technically, the policy is not part of the MDP itself but part of the solution along with the

value function. Unlike supervised and unsupervised learning, the agent in RL banks on reward

signals to evaluate the effectiveness of actions and enhance the improvement of the policy. The

excellence of each state or state-action pair can be determined by how large the future reward

of the agent is. The state value function for the policy π is an explicit measure of how good the

state is or how much reward to expect

Vπ(s) = Eπ

[ ∞∑
n=0

(γnRt+n+1|St = s)

]
, (2.3)

and expectation value of the reward at time t is defined as the action value function

Qπ(s, a) = Eπ

[ ∞∑
n=0

(γnRt+n+1|St = s,At = a)

]
. (2.4)

According to total expectation in reverse and nested expected value, we can define Bellman

equation by the assumption of MDP

Vπ(s) =
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a)[r + γVπ(s′)]. (2.5)

The above recursive relationship between each value function and the successor state’s value

function is considered the heart of RL to solve stochastic and non-deterministic search problems

where agents encounter random events. In deterministic policy, there is just one action with
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π(a|s) = 1, and the rest receive 0. Some algorithms specifically apply to only the state-value or

action-value functions. Let suppose we have two policies π1 and π2 and π1 is better than π2, if

expected return of π1, Vπ1(s) greater than or equal to the expected return of π2, Vπ2(s) for all

states

∀ s ∈ S, if Vπ1(s) ≥ Vπ2(s) → π1 ≥ π2 (2.6)

The optimal policy in RL is the best one for which no greater value function exists. The optimal

value functions are optimal but optimal policies are not necessarily unique. Due to designing

the RL program, there are two different problems we should try to solve. The finding V (s) given

a policy is called the prediction problem, and finding the optimal policy for a given environment

refers to control problems. The prediction problem is easier than the control problem, and the

job is single thing to find the value function based on the algorithm.

In the parlance of RL, the agent engages in exploration and exploitation, where exploitation

or greed refers to taking the best-known action while taking sub-optimal action is called explo-

ration (i.e., the way of exploring the environment). This process of exploration and exploitation

enables the agent to refine its model and gradually find the true estimate of the value function.

The control algorithms with a model-based (planning) approach constitute a set of distributed

computations in the network to build a model of how the environment works, which is re-

ferred to the decision-making of agents in the control theory domain. The agents don’t need

to learn network dynamics to adopt this scheme, but assuming some network parameters and

configurations (e.g., channel information) is necessary. In contrast, black-box network optimiza-

tion/control works without a priori network model, namely model-free methods where it relies

on a trial and error approach to learn the state transition probabilities to solve the Bellman

equation and try to figure out a policy of how to behave optimally while the aim of this trade-off

of the time is ease computational complexity and yield controller convergence. The tendency

towards fulfilling fully automated operations and limited computational resources in wireless

networks has aroused intensive research interest in working on model-free problems.

Q-learning is a model-free approach in the class of temporal difference (TD) learning algorithms

where it has an online nature and updates the agents’ estimate of value function at each time

step. To update the value function concerning TD, we have

V (st) = V (st) + α[Rt+1 + γV (st+1)− V (st)] (2.7)
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where α denotes exponentially smooth mean approach to deal with non-stationary distribu-

tions instead of calculating the sample mean inefficiently, and Rt+1 + γV (st+1) is the tar-

get of TD method and V (St) refers to old estimate. Moreover, the quantity in the brack-

ets Rt+1 + γV (st+1) − V (St) is called TD error, and therefore we have squared error E =

[Target − Prediction]2 with pursuing a gradient descent approach. The aim is the prediction

value to be closer to the target value. This approach that uses one estimate to update another

estimate is called bootstrapping. The updated Q-value (quantifiable value for more lucrative

action) in Q-learning as the off-policy method is given by

Q(st, at) = Q(st, at) + α[Rt+1 + γmax
a
Q(st+1, amax) − Q(st, at)]. (2.8)

Q-learning alternates between policy evaluation and, thereby, policy improvement where select

an action greedily concerning the current value estimate. Unlike on-policy methods in which

one policy generates actions and updates the value function, Q-learning is an off-policy method

that uses one policy to generate actions and another to update the value function. For example,

Q-learning uses ϵ− greedy policy to choose an action while it updates the action-value function

according to purely greedy action.

2.2.1 Deep Q-Learning (DQN)

The Q-learning works in a very simplistic environment. In practice, communication network

problems have complicated system models with large and continuous state spaces that can have

infinite states. Therefore, the tabular representation of the action-value function in the previous

section leads to computational complexity and training time limitation problems. Unlike the

tabular and non-parametric approach, RL is assisted with DNN in DRL to surmount the curse

of dimensionality concerning inordinate large state spaces. Indeed, It is possible to model

Q(s, a) based on simple linear regression, but another new approach is the DNN that benefits

from crafting inductive biases to overcome the curse of dimensionality effectively and thereby

enables RL to scale the decision-making problems for intractable high-dimensional state and

action spaces through approximate the Q-value function. The DQN takes the state as input

and returns approximated Q-functions of all actions under the input state. In this regard,

finding a convincing solution for the instability of function approximation techniques in RL-

based agents is necessary. We parameterize the value function with linear regression or a neural

network. Let define V (s) = θT s where s is a feature vector representing the state and in linear



Chapter 2. Zero-Touch Network Slicing 26

regression for calculating the value function prediction θ refers to the weights. According to

the previous section, we apply gradient descent using squared error between the target and

prediction. Instead of updating V (s) directly, the goal is to update the parameters of V that

according to the chain rule and multiply to the gradient of V (s) we have

θ ← θ + α[r + γV (s′)− V (s)]
∂V (s)

∂θ
(2.9)

and in linear regression, we have a simple update rule

θ ← θ + α[r + γV (s′)− V (s)]s (2.10)

with the same logic for Q−updating, we consider s as input, and for infinite action, the number

of outputs is equal to the number of possible actions

θ ← θ + α[r + γmax
a
Q(s′, amax)−Q(s, a)]

∂Q(s, a)

∂θ
. (2.11)

This approach is unable to support infinite or continuous action space. However, DRL can solve

problems with gradient-free approaches.

2.2.2 Policy Gradient

Another approach to solving the control problem is called the policy gradient method, where

we also parameterize the policy. Q-learning is a value-based method where the policy is just to

take the action which gives the best value

a∗ = arg max
a

Q(s, a). (2.12)

In this case, the return is a probability distribution and determines what is the best action for

a given state π(a|s). Indeed, we just sample from π(a|s) because the policy has probabilistic

nature, and there is no need to pursue the strategies such as ϵ−greedy. It makes more flexibility

and chance for exploration with sampling from policy distribution and more control over the

amount of randomness. In deep Q-learning, the neural network has one output for each action,

and thereby it can support infinite or discrete action spaces. In contrast, the output of policy

networks is a probability distribution. Unlike the value-based method, in the policy-based

method, instead of directly considering objective function, the main objective is the integral of
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gradient called policy gradient. The aim is to maximize the sum of total rewards, but there is no

functional dependence on the policy parameters θ, and thereby there is no formula where reward

depends on neural network weights. We pursue this approach to improve policy gradients while

reducing variance with a baseline to increase stability because we don’t care about the absolute

reward. Due to calculating V (s), we use another neural network.

2.2.3 Actor-Critic

The actor-critic method is a DRL algorithm that blends value-based and policy-based ap-

proaches to enhance decision-making in a specific environment. It comprises two components:

the actor, which chooses actions based on the current policy, and the critic, which evaluates

the value of state and action pairs. This on-policy algorithm learns directly from the executed

policy, as the actor takes actions based on the current policy and receives rewards as feedback.

The critic utilizes this feedback to update its estimate of the value function, which the actor then

uses to refine its policy. Various variations of the actor-critic method exist, which differ in how

they update the policy and value function and incorporate DNNs for function approximation.

Actor-Critic methods balance exploration and exploitation, handle continuous action spaces,

and converge more quickly than other methods. The TD3 [33] is one of the main actor-critic

algorithms that consists of a set of techniques, and we leverage them in the proposed methods

in Chapter 3.

The basic idea behind policy-based algorithms is to adjust the parameters ϕ of the policy in

the direction of the performance gradient ∇ϕJ(πϕ). The fundamental result underlying these

algorithms is the policy gradient theorem [34]: ∇ϕJ(πϕ) =
∫
S pπ(s)

∫
A∇ϕπϕ(a|s)Qπ(s, a)dads.

We can parameterize policy like value function, and the goal is to find the optimal policy πϕ

where ϕ includes updating the weight of the policy. The expected return can be approximated

in many ways. We calculate the gradient of expected return according to parameters of ϕ as

∇ϕJ(ϕ). We use gradient ascent as opposed to gradient descent for updating the parameters,

ϕt+1 = ϕt + α∇ϕJ(πϕ)|ϕt.

In the actor-Critic method, we have two models that work concurrently where the actor is a

policy taking the state as input and delivering actions as output, while the critic takes states

and actions concatenated together and return the Q-value and a policy that can be updated
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Figure 2.3: Training flow process between different DNNs.

through the deterministic policy gradient[33], ∇ϕJ(ϕ) = Es∼pπ
[
∇aQπ(s, a)|a=π(s)∇ϕπϕ(s)

]
.

where Qπ(s, a) = Esf∼pπ∼af∼π [Rt|s, a] is known as value function or critic.

Initially, we should store random experiences in the buffer β. In the other words, we store

(st, at, rt, st+1) to train Deep Q-Network. We take a random batch B, and for all transitions

(stB , atB , rtB , stB+1) of β, the predictions are Q(stB , atB ) and the targets consider as optimal

immediate return that are the exactly first part of temporal difference learning (TD) error

as R(stB , atB ) + γmaxa(Q(stB+1,a)). Over the whole batch B, we calculate the loss between

predictions and the targets in the batch B. Another target network is used instead of using

Q-network to calculate the target to fulfill more stability for the learning algorithm. As shown

in Fig. 2.3, the TD3 is based on the actor-critic model that leverages three tricks to improve

the algorithm:

1. Clipped double Q-learning with pair of critic networks: We denote two DNNs as

two actor networks by ϕ as the actor network and ϕ′ as the actor target. In addition, we

create two pairs of critic networks and denote them by θ1,θ2 for parameterization of value

network and θ′1,θ
′
2 as critic targets. Indeed, two learnings happen simultaneously, namely,

Q-learning and Policy learning, and they address approximation error, reduce the bias,

and find the highest Q-value. This was inspired by the technique seen in [35] as Double-Q

Learning. For each element and transition of the batch, the actor target plays a′ based

on s′ while we add Gaussian noise to this a′. The critic targets takes the couple (s′, a′)
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and return two Q-values Q′
t1 and Q′

t2 as output. Then, the (minQ′
t1,Q

′
t2) is considered as

an approximated value for critic networks. In [36] has proposed using the target network

as one of the value estimates. Given that we calculate the final target of the two value

networks, we have the following:

Qt = r + γ ∗min(Q′
t1, Q

′
t2) (2.13)

then the two critic networks return two Q-values asQ1(s,a) andQ2(s,a). Next, we calculate

the loss based on two critic networks and with mean squared error (MSE). To minimize

the loss over iterations via the back-propagation technique, we use an efficient optimizer

called Adaptive Moment Estimation (Adam) [37] in our code:

L = lMSE(Q1, Qt) + lMSE(Q2, Qt) (2.14a)

∇ϕJ(ϕ) = N−1
∑[

∇aQθ1(s, a)|a=π(ϕ)∇ϕπϕ(s)
]

(2.14b)

In the next step, we explain how we update the target networks.

2. Delayed policy updates and target networks: The main idea is to update the policy

network less frequently than the value network since we need to estimate the value with

lower variance [38]. Polyak Averaging gives the update rule, so we update parameters by:

θ′f ←− τθf + (1− τ)θ′f (2.15a)

ϕ′ ←− τϕ+ (1− τ)ϕ′ (2.15b)

where τ ≤ 1 is a hyperparameter to tune the updating speed.

3. Target policy smoothing and noise regularisation: When updating the critic, a

learning target using a deterministic policy is highly susceptible to inaccuracies induced

by function approximation error, increasing the variance of the target. This induced

variance can be reduced through regularization [33] to be sure of the exploration of all

possible continuous parameters. We add Gaussian noise to the next action a′ to prevent

two large actions played and disturbing the state of the environment:

ã←− πϕ′(s′) + ϵ, ϵ ∼ clip(N (0, σ̃),−c, c) (2.16)
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, where the noise ϵ is sampled from a Gaussian distribution with zero and certain stan-

dard deviation and clipped in a certain range of value between −c and c to encourage

exploration. Due to avoid the error of using the impossible value of actions, we clip the

added noise to the range of possible actions (min action, max action). The TD3-based

NS method is summarized in Algorithm 1.

Algorithm 1: TD3-based network slicing with OpenAI Gym

Initialize actor network ϕ and critic networks θ1, θ2
Initialize (copy parameters) target networks ϕ′, θ′1, θ

′
2

Initialize replay buffer β
Import network slicing environment (‘smartech–v0’)
while t ¡ max timesteps do

if t ¡ start timesteps then
a = env.action space.sample()

else
a←− πϕ(s) + ϵ, ϵ ∼ N (0, σ)

end
next state, reward, done, = env.step(a)
store the new transition (st, at, rt, st+1) into β
if t ≥ start timesteps then

sample batch of transitions (stB , atB , rtB , stB+1)
ã←− πϕ′(s′) + ϵ, ϵ ∼ clip(N (0, σ̃),−c, c)
Qt = r + γ ∗min(Q′

t1, Q
′
t2)

L = lMSE(Q1, Qt) + lMSE(Q2, Qt)
θf ←− argminθfN−1

∑
(L−Qθf (s,a))

2

if t%policy freq == 0 then
∇ϕJ(ϕ) = N−1

∑[
∇aQθ1(s, a)|a=π(ϕ)∇ϕπϕ(s)

]
θ′f ←− τθf + (1− τ)θ′f
ϕ′ ←− τϕ+ (1− τ)ϕ′

end

end
if done then

obs, done = env.reset(), False
end
t=t+1

end

2.2.4 Lifelong Reinforcement Learning

Lifelong deep reinforcement learning involves employing reinforcement learning algorithms to

enable an agent to continuously learn and adapt to new tasks over its entire lifespan. Un-

like conventional reinforcement learning, which focuses on training an agent for a specific task,

lifelong reinforcement learning equips the agent to explore new environments and acquire new
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skills while leveraging its existing knowledge to perform well in previously learned tasks. A sig-

nificant challenge in lifelong reinforcement learning is balancing exploration and exploitation.

The agent needs to continually explore new tasks and environments while utilizing existing

knowledge to excel in tasks it has already learned. In the context of dynamic environments like

network slicing, lifelong reinforcement learning faces various challenges related to the allocation

of RAN resources. These challenges encompass dealing with sparse rewards, efficiently trans-

ferring knowledge from prior tasks to new ones, optimizing the use of computational resources

for faster learning, the ability to prioritize important or relevant experiences or tasks, and diag-

nosing of undesired behaviors. Moreover, the limited availability of a large number of samples

further amplifies the complexity of the problem. Overcoming these obstacles is essential for

enhancing the effectiveness and efficiency of lifelong reinforcement learning in the context of

RAN slicing. As shown in Fig. 2.4, we proposed innovative and complementary approaches to

address these challenges and discussed them in subsequent sections.
C
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Figure 2.4: Lifelong DRL resource allocation challenges and solutions.

2.2.4.1 Statistical and Parallel

Reward shaping is used in lifelong DRL by modifying the reward function that the agent re-

ceives during training to improve the learning process and speed up convergence to optimal

policies. The traditional approach is to provide a scalar reward signal based on the state of

the environment and actions taken by the agent. However, this signal may need to provide
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more guidance, particularly when it is sparse or delayed. Reward shaping involves introduc-

ing additional rewards into the environment to guide the agent toward better behavior. These

rewards can be based on various metrics relevant to the task, such as heuristics or expert knowl-

edge. For instance, for an agent in network slicing, the standard reward may only be given for

reaching the objective, but reward shaping may involve: i) Adding rewards for avoiding SLA

degradation, ii) Exploring new areas, and iii) Moving closer to the goal. To improve learning

performance and accelerate convergence to optimal policies, reward shaping techniques can be

used in combination with lifelong DRL algorithms, such as DQN, policy gradient, and meth-

ods. However, designing the reward-shaping functions carefully is crucial to prevent unintended

biases and distortions in the learning problem. The parallelization involves executing multiple

computations simultaneously, leading to a substantial acceleration of lifelong DRL training and

inference processes. The agents continuously acquire knowledge from various tasks by training

on multiple experiences concurrently. This efficient utilization of computational resources en-

ables faster learning and better retention of previous knowledge, facilitating quick adaptation

to new tasks without forgetting the knowledge gained from past experiences.

In Chapter 3, we proposed a reward shaping approach specifically based on statistical latency

states in the network. Statistical lifelong DRL aims to create algorithms that can use the experi-

ence to make the best decisions in an environment that is not entirely predictable. This requires

the algorithms to understand the inherent uncertainty in the data and to develop models of the

relationship between the agent’s actions and the rewards it receives. Additionally, it involves

modeling the distribution of data that arises from the environment. Furthermore, we intro-

duced a parallelized actor-learner framework that harnesses the power of distributed computing

or multi-core processing to train the agent concurrently on multiple tasks or experiences. This

approach facilitates faster and more efficient learning in lifelong DRL.

2.2.4.2 Specialization of Multi-Agent and Federated Learning

Multi-agent DRL addresses scenarios where multiple agents interact with both the environment

and each other, learning individual policies to enhance their overall collective performance.

These agents might engage in competition, cooperation, or even both within a complex environ-

ment. FDRL is an ML approach incorporating three fundamental techniques: FL, DL, and RL.

In FDRL, DRL trains agents to make decisions that optimize a shared reward signal, usually a

measure of global system performance. FDRL offers several benefits compared to conventional
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DRL methods. For instance, it allows agents to learn from diverse datasets, leading to better

generalization and improved performance. Furthermore, FDRL addresses data privacy and dis-

tribution issues, as agents only require access to their own local data and do not need to share

it with other learners.

In this regard, we propose a framework based on Multi-agent DRL and FDRL in Chapter 4.

In this framework, each agent trains a local DRL model and shares its experience, in the form

of model hyperparameters, with the entities belonging to the corresponding federation layer

within the FDRL context. This iterative training approach allows each federation layer to

combine the collected knowledge of individual agents into a global updated model, which is

usually stored in a cloud platform or a nearby edge platform to facilitate faster feedback. To

enhance efficiency and avoid communication overhead, we allow the federation layer to collect

and share the local models (and updated models) only every T̂ decision interval, which we

refer to as a federation episode. Different strategies can be used to derive the global federated

model, each implementing a predefined federation strategy function fstrategy(·). For example,

the Average federation strategy computes the collective federation model for the next time

interval as the simple average of the incoming model weights from all the agents. Aggregated

mobile traffic demands exhibit repetitive spatio-temporal trends due to human activities. It is

necessary to characterize these processes comprehensively to achieve more accurate forecasting

of network utilization and enable efficient resource allocation planning. However, more than

leveraging the base stations’ geographical locations and spatial proximity is required to obtain

a comprehensive view of traffic demands, as the land usage of the slice resources may differ even

within base stations belonging to the same geographical area. This introduces an additional

issue in our framework, as only some of the federated agents should exchange knowledge with

each other, nor should this be restricted to only nearby entities. To address this issue, we

propose a clustering algorithm based on network monitoring traces and their similarity to guide

the definition of DA subsets.

The integration of Multi-agent learning and federated learning in lifelong DRL enables agents

to collectively enhance their performance in their respective environments. Leveraging the iter-

ative process of federated learning, agents can continuously update their policies and exchange

knowledge across various domains. As a result, the agents become more adaptive and skilled at

generalizing to new tasks or domains, exemplifying the essence of meta-learning. This collabo-

rative approach fosters improved cooperation and knowledge sharing among agents, ultimately

leading to enhanced performance in complex and diverse environments.
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2.2.4.3 Explanation-Guided

The concept of XAI involves creating artificial intelligence systems that are transparent, inter-

pretable, and capable of explaining their decisions and actions. Unlike traditional AI systems

that often operate with opaque algorithms and models that are difficult for humans to com-

prehend, XAI seeks to address the growing concerns around accountability and transparency of

AI systems that are increasingly integrated into our daily lives. XAI is crucial in high-stakes

applications, such as healthcare, finance, or legal systems, where the lack of transparency can

lead to distrust and potential errors. XAI techniques enable humans to better comprehend AI

systems by visualizing how decisions are made, providing scores on feature importance, and

generating natural language explanations of the decision-making process. This allows humans

to identify potential biases or errors in the system, leading to greater trust and confidence in

the technology.

In this intent, XRL is considered a trustworthy and responsible ML approach that can be

integrated into the AI lifecycle in network slicing environment. Lifelong DRL agent interacts

with the network to generate the dataset on the fly. This evaluative and feedback-based learning

method optimizes long-term rewards to solve complex control tasks in network slicing. The

recent advancements in deep learning have helped DRL overcome the challenges of dealing with

large state spaces, but the opacity of DNNs raises concerns regarding the reliability and security

issues for the trained agents and predicted results. Additionally, the complex relation between

state and action selection can hinder the effectiveness of RL solutions in automated network

slicing. To address these issues, we propose an interpretability approach based on EGL in the

training phase of our proposed SliceOps agent in Chapter 5. The interpretability solution

is categorized into reward, state, action, model, and task, which should be examined before

deployment. By utilizing XAI, we can extract more relevant state-action pairs, which can help

make prompt and robust decisions, especially in time-sensitive applications such as URLLC.

Through the integration of reward shaping, feature importance, and attention mechanisms, the

lifelong DRL agent gains the ability to prioritize learning from specific experiences or tasks

based on their significance and relevance. This targeted approach helps overcome catastrophic

forgetting, where learning new tasks can erase knowledge of previously acquired ones. The agent

effectively retains knowledge across tasks by selectively attending to task-specific information.

Moreover, these explanations play a crucial role in diagnosing potential biases or undesired

behaviors in the agent’s decision-making process, thereby enhancing trust in lifelong DRL.



Chapter 3

Energy-Aware and Latency-Aware

Zero-Touch Network Slicing

This chapter begins by showcasing how network slicing allows MNOs to manage energy usage

with precision. Next, we introduce a DRL framework that emphasizes network slicing solutions

that prioritize low-latency and high-capacity services for end-users in the next generation of

mobile networks. To this end, we propose a novel KP-based MANO framework that leverages

recent network slicing technologies, named KB5G. Our focus is on algorithmic innovation and

AI in KB5G. We apply a continuous model-free DRL method to minimize energy consumption

and VNF instantiation costs. Additionally, we present a new Actor-Critic-based network slic-

ing method, known as twin-delayed double-Q soft Actor-Critic (TDSAC), to stabilize learning.

Specifically, TDSAC enables CU to learn continuously to accumulate the knowledge learned

in the past to minimize future network slicing costs. Finally, we present numerical results to

showcase the gain of the adopted approach and verify the performance in terms of energy con-

sumption, CPU utilization, and time efficiency. Furthermore, proposed a novel model-free DRL

framework, called CS-AC that enables a scalable and farsighted slice performance management

in a 6G-like RAN scenario that is built upon mobile MEC and mMIMO. In this regard, the

proposed CS-AC targets the optimization of the latency cost under a long-term statistical SLA.

In particular, we consider the Q-th delay percentile SLA metric and enforce some slice-specific

preset constraints on it. Moreover, we propose a developed variant of SAC to implement dis-

tributed learners with less hyperparameter sensitivity. Finally, we present numerical results to

showcase the gain of the adopted approach on our built OpenAI-based network slicing environ-

ment and verify the performance in terms of latency, SLA Q-th percentile, and time efficiency.

35
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3.1 Energy Management in Network Slicing

The management of energy in network slicing involves optimizing the energy consumption of

the physical infrastructure while guaranteeing the performance and QoS of the different virtual

networks. Several techniques can be utilized to achieve energy management in network slicing,

including efficient resource allocation, dynamic scaling, energy-efficient hardware, energy-aware

routing, and traffic management. Efficient resource allocation involves mapping virtual resources

to physical resources to minimize energy consumption. Dynamic scaling allows for resources to

be added or removed based on the traffic load of the virtual network, thereby avoiding over-

provisioning of resources that leads to energy wastage.

Furthermore, energy-efficient hardware should be utilized in the physical infrastructure for net-

work slicing, such as low-power processors, reducing cooling requirements, and using renewable

energy sources. Energy-aware routing algorithms should be designed to consider energy con-

sumption, which can reduce overall energy consumption by routing traffic through paths that

consume less energy. Traffic management techniques, such as reducing unnecessary traffic or

using compression techniques, can also reduce energy consumption. Network operators must

adopt a comprehensive approach to manage energy in network slicing that considers the various

layers of the network architecture. By implementing these techniques, network operators can

minimize energy consumption while maintaining the virtual networks’ performance and QoS.

In the following, we highlight the efficient resource allocation solution.

To automate network slicing orchestration, ZSM framework reference architecture [39] has been

designed by ETSI, but the closed-loop operation of its building blocks is still an open research

problem to fulfill an efficient and robust zero-touch management. Indeed, we still need a KP that

plays the role of a pervasive system within the network by building and maintaining high-level

models of what the network is supposed to do, in order to provide services and advice to other

elements of the network [40]-[41]. Specifically, the quest of automation and optimal control in

dynamic telecommunication environments has aroused intensive research on the applications of

DRL. The DRL can provide a promising technique to be incorporated in network slicing and

solve the control and optimization issues, specially in energy management.
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3.1.1 Knowledge-Based Slicing

As depicted in Fig. 3.1, the KP encompasses ML and intelligent decisions to handle knowledge

discovery, data analysis, and optimization. In what follows, we elaborate on the steps in KB5G:

3.1.1.1 Network Twin → Analytics Platform

The analytics platform is gathering enough information to offer a complete view of the network

(slicing environment) and provide current and historical data for feeding learning algorithms.

This data is categorized into two types, namely, users’ data and operators’ data, where both

can be either local data or global data. This platform can rely on protocols and functions, such

as NETCONF1 and NWDAF [42].

3.1.1.2 Analytics Platform → ML → Intelligent Decision

Cloud computing platforms utilize the collected data to feed learning algorithms for knowledge

discovery, data analysis, optimization, and generally manage and control the network to facili-

tate inferencing. The data analysis represents hidden patterns in big data and can predict and

model the future behavior of the network. The KB5G benefits from some indicative abilities of

intelligent behavior like learning from experience.

3.1.1.3 Intelligent Decision → SDN Controller(s)

In SDN, the northbound APIs present an abstraction of network functions with a programmable

interface to dictate the behavior of the network at the top of the SDN stack. Using declarative

languages for the SDN northbound interface and translating intelligent decisions to specific

control directives is an open research question yet. The SDN controller receives the declarative

primitives through its northbound interface and then renders the intent-driven language into

specific imperative control actions [41].

1https://wiki.onap.org/display/DW/5G+-+Configuration+with+NETCONF
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3.1.1.4 SDN Controller(s) → Network Twin

Due to robustness issues, we can consider the distributed control logic [43]. The distributed SDN

consists of multiple interconnected network domains. In network slicing, we have SDR for C-

RAN, transport controllers, and NFVO for cloud-native core. The SDN concept can be applied

in the KB5G through PFCP instead of OpenFlow-enabled protocol. Indeed, OpenFlow does

not support all aspects of QoS issues and it is also packet-based, while PFCP is session-based

[44]-[45].

Figure 3.1: Proposed zero-touch KB5G network slicing.

3.1.2 Energy-Aware Network slicing Setup

Fig. 3.1 shows the considered C-RAN CU-DU split-based network architecture. A total of N

APs are covering M single-antenna users in a downlink setup, and are connected to CU hosting

control agents and running as a set of VNFs of the same type. We define L ∈ N as the number

of slices in the network, and assume that the MNO collects the free and unused resources from

the tenants and allocates them to the needy slices in a periodic fashion to avoid over-heading.

A maximum of X ∈ N VNFs can be deployed on top of the cloud, endowed with Z (z =

1, . . . , Z) active CPUs having a processing capability of Pz MOPTS [46]. Let us denote hm =

[h1,m, h2,m, ..., hN,M ]H ∈ CN×1 as vector of channel gains from the N APs to the M users, where

(·)H is the conjugate transpose and C represents the complex set. Moreover, we consider the

optimal beamforming vector vm = [v1,m, v2,m, ..., vN,M ]H ∈ CN×1 associated with user m and

whose expression is given by [47] as vm =
√
pm

(
IN+

∑M
j=1

1
σ̂2

hjh
H
j

)−1
hm(

IN+
∑M
j=1

1
σ̂2

hjhHj

)−1
hm

, where pm is beamforming

power, IN denotes the N ×N identity matrix and σ̂2 is the noise variance. Therefore we model
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the received signal rm ∈ C at userm as rm = hHmvmsm+
∑M

j ̸=m hHmvjsj+nm, where sj ∈ C is data

signal to user m and received noise nm is the white Gaussian noise with zero mean and variance

σ2. Let define the following channel model [48], hn,m = 10−L
∗(dn,m)/20

√
ϑn,mΘn,mgn,m, where

L∗(dn,m) denotes the path loss with a distance of dn,m. Moreover, ϑn,m is the antenna gain, Θn,m

is the shadowing coefficient and gn,m is the small-scale fading coefficient. Then the achievable

rate for user m is given by Rm = log(1+
hHmvm

2∑M
j ̸=m hHmvj

2 + σ2︸ ︷︷ ︸
SINRm

), where SINR stands for signal-to-

interference-plus-noise ratio. Let define Gn ∈ C1×N as Gn = [0,...,0,︸ ︷︷ ︸
n-1

1, 0, ..., 0], n > 0. Then

the power consumption for AP n serving all potential m users can be written as [49],

Enw =
M∑
m=1

vHmGH
n Gnvm. (3.1)

Note that the circuit power and fronthaul power consumption can be neglected because they

are small compared with transmit power. Moreover, we consider energy consumption incurred

by the running processors. The computing resource model follows that in [50]. We suppose ∆m

is a fraction of a CPU core,

∆m = θ̂Rm + C0︸ ︷︷ ︸
baseband

+ δ
N∑
n=1

Υvn,m︸ ︷︷ ︸
transmission

, (3.2)

where baseband processing refers to coding, modulation and FFT. Furthermore, θ̂ is experimen-

tal value, C0 denotes constant complexity for FFT, δ > 0 is slope parameter and Υ(·) denotes

the step function. The energy consumed by processor z in Watts is given by ιP 3
z , where ι pa-

rameter denotes the processor structure [51]. We define constant value ψ for VNF deployment

and then compute energy consumption in CU with respect to total ∆m. Therefore, the whole

energy consumption in network is given by

E(t)Net =
Z∑
z=1

ιP 3
z +

X∑
x=1

ψx︸ ︷︷ ︸
baseband

+
N∑
n=1

M∑
m=1

vHmGH
n Gnvm︸ ︷︷ ︸

transmission

. (3.3)

The objective is to minimize the overall network cost with respect to the incurred computing
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resources and energy consumption at each decision time step, and thereby the continuous model-

free DRL optimization is given by

min
1

M (t)
(E(t)Net) (3.4a)

subject to pm ≤ Pmax, m ∈M, (3.4b)

SINRm ≥ SINRth,l, m ∈M, l ∈ L, (3.4c)

∆m ≤ ∆th,l, m ∈M, l ∈ L. (3.4d)

Note that higher traffic can induce higher costs. We consider the number of users (M (t)) at each

decision time step to normalize and balance network cost with respect to heavy and low traffic

periods. Moreover, Pmax is an experimental value while SINRth,l and also ∆th,l are predefined

thresholds for slice l.

3.1.2.1 MDP Problem Formulation

Problem (3.4) can be formulated from an MDP perspective, where the objective is to achieve

lower total costs under user QoS, predefined thresholds, and computing resource constraints.

This reflects the correlation between energy consumption and CPU usage, where beamforming

power pm for each user affects SINR, that in turn influences computing resource consumption.

The MDP can be solved by finding an optimal policy for selecting the best actions with respect

to beamforming power and computing resource allocation. Indeed, the MDP is mathematically

characterized by a 5-tuple (S,A, P, γ,R) where S is the state space, A refers to the action

space, P denotes the transition probability from current state s to the next state s′, γ is

the reward discounting hyperparameter, and R stands for the reward function. The state

value function for the policy π is an explicit measure of how much reward to expect, Vπ(s) =

Eπ [
∑∞

n=0 (γnRt+n+1|St = s)] and is defined as action-value function (referred as Q-Function)

Qπ(s, a) = Eπ [
∑∞

n=0 (γnRt+n+1|St = s,At = a)]. The concerned MPD problem is defined as

follows:

-State space: The state space provides input data about possible network configurations for

agent via interaction with network slicing environment parameters. In our scenario, the state

transits to the next state at each time step t by S(t) = {S(t)
1 , S

(t)
2 , S

(t)
3 , S

(t)
4 }, where (S

(t)
1 ) is the

number of arrival requests for each slice corresponding to each VNF, (S
(t)
2 ) refers to computing

resources allocated to each VNF, (S
(t)
3 ) shows energy status, (S

(t)
4 ) refers to number of users
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being served in each slice.

-Action space: We consider vertical scaling for computing resources consists of either scaling

up or down procedure. The CU selects continuous value action with respect to traffic fluctuations

to learn how to scale up/down a VNF properly and thereby according to time step, we have

A(t)
CPU ∈ {o|o ∈ R,−C(t)Net ≤ o ≤ C(t)Z − C

(t)
Net}, where A(t)

CPU is vertical scaling action for CPU

resources, C(t)Z is CPU capacity and C(t)Net denotes the total CPU requirements. Moreover, we

assign beamforming power according to SINR constraint, A(t)
P ∈ {o|o ∈ R, 0 ≤ o ≤ P(t)

max} the

complete continuous multi-action space is given by A ≜ A(t)
CPU ∪ A

(t)
P .

-Reward: Due to to guide the agent for learning good results, we define χ
(t)
T as constraints

function that is given by the following piecewise function,

χ
(t)
T =

 0, if SINRm ≥ SINRth,l and ∆m ≤ ∆th,l

1, otherwise
(3.5)

Accordingly, we define the penalty function as ε
(t)
m = −ϱm1

(
χ
(t)
T = 1

)
, where ϱm is the penalty

coefficient for not fulfilling constraints and ϱSINRm > ϱCPUm . The objective is maximize the total

return R(t),

R(t) =

1
1

M(t)
(E(t)
Net)

+
∑M

m=1 ε
(t)
m

ω̂
(3.6)

where ω̂ is a hyperparameter that guarantees R(t) ∈ [−1, 1]. DNN uses this return function for

training while satisfying the main goal of overall objective function.

3.1.2.2 Proposed Soft Actor-Critic

Actor-Critic methods are a combination of policy optimization and Q-Learning. We use ρπ(st)

and ρπ(st, at) to denote the state and state-action distribution respectively that induced by

policy π in network slicing environment π(at|st). Unlike the DDPG [11] and TD3 [33], the

TDSAC benefits from stochastic policy gradient. The basic idea behind policy-based algorithms

is to adjust the parameters ϕ of the policy in the direction of the performance gradient ∇ϕJ(πϕ)

concerning the policy gradient theorem [52]. The goal in standard RL is to learn a policy

π(at, st), which maximizes the expected sum of rewards. We consider a more general entropy-

augmented objective concerning stochastic policies approach where augments the objective with

a policy entropy term H over ρπ(st). Maximum entropy RL can optimize the expected return

and entropy of the policy, thereby improving the policy’s exploration efficiency. The objective for

finite-horizon MDPs is given by, Jπ = E
[∑T

i=t γ
i−t[ri + αH(π(·|si))]

]
. As we mentioned before,

γ is the discount factor. The temperature parameter α determines the relative importance of
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the H against the reward, thereby handling the stochasticity of the optimal policy. Maximum

entropy RL gradually proceeds toward the conventional RL α→ 0.

Let us define entropy-augmented accumulated return or soft return as Gt =
∑T

i=t γ
i−t[ri −

α log π(ai|si)]. Then we can define soft Q-value with respect to policy π as Qπ(st, at) = E[r] +

γE[Gt+1]. We use soft policy iteration method for learning optimal maximum entropy policies

that alternates between soft policy evaluation and soft policy improvement. In the soft policy

iteration, we wish to compute the value of a policy π according to the maximum entropy

objective [53], thus the soft Q-value can be learned by applying a Bellman operator T π under

policy π repeatedly as, T πQπ(s, a) = E[r] + γE[Qπ(s′, a′) − α log π(a′|s′)], the optimality and

convergence of soft policy iteration have been verified in [54]. The main goal is to find a new

policy πnew that is better than the current policy πold and thereby Jπnew ≥ Jπold . This particular

choice of update can be accomplished by maximizing the entropy-augmented objective (Jπ) with

respect to soft Q-value, πnew = arg max
π

E[Qπold(s, a)− α log π(a|s)].

Our method (TDSAC) incorporates the following key approaches. The main aim is to stabi-

lize the learning and improve time efficiency while mitigating very high sample complexity and

meticulous hyperparameter tuning: 1) The (clipped) double Q-learning technique [33] param-

eterizes critic networks and critic targets by θ1, θ2 and θ′1,θ
′
2 respectively. Unlike the TD3 in

TDSAC, the next state-actions used in the target come from the current policy (ϕ) instead of

a target policy. 2) The target in Q-learning depends on the model’s prediction, so cannot be

considered as a true target. To address this problem, we use another target network instead

of using Q-network to calculate the target. 3) In TDSAC, the delayed strategy updates the

policy, temperature, and target networks less frequently than the value network to estimate the

value with a lower variance to have a better policy [33]. 4) Experience replay enables RL to

reuse and also memorize past experiences to solve the catastrophic interference problem. In our

method, we store (st, at, rt, st+1) to train deep Q-Network and sample random many batches

from the experience replay β (buffer/queue) as training data. We take a random batch B for

all transitions (stB , atB , rtB , stB+1).

Let us define Qθ(s, a) and πϕ(a|s) as parameterized functions to approximate the soft Q-value

and policy, respectively. We consider a pair of soft Q-value functions (Qθ1 , Qθ2) and separate

target soft Q-value functions (Qθ′1 , Qθ′2). We calculate the update targets of Qθ1 , Qθ2 according

to y = r + γ(min
i=1,2

Qθ′i(s
′, a′)) − α log πϕ(a′|s′), a′ ∼ πϕ we can train soft Q-value by directly
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Algorithm 2: TDSAC-based Network slicing

Initialize actor network ϕ and critic networks θ1, θ2
Initialize (copy parameters) target networks θ′1, θ′2
Initialize learning rate ℓα, ℓQ, ℓπ
Initialize replay buffer β
Import custom gym network slicing environment (‘smartech–v2’)
while t ¡ max timesteps do

if t ¡ start timesteps then
a = env.action space.sample()

else
Select action a ∼ πϕ(a|s)

end
next state, reward, done, = env.step(a)
store the new transition (st, at, rt, st+1) into β
if t ≥ start timesteps then

sample batch of transitions (stB , atB , rtB , stB+1)
θi ←− θi − ℓQ∇θiJQ(θi), i=1,2 #Update soft Q-function
if t mod freq then

ϕ←− ϕ+ ℓπ∇ϕJπ(ϕ) #Update policy weights
α←− α− ℓα∇αJ(α) #Adjust temperature
θ′i ←− τθi + (1− τ)θ′i i=1,2 #Update target network

end

end
if done then

obs, done = env.reset(), False
end
t=t+1

end

minimizing,

JQ(θi) = E[(y −Qθi(s, a))2], i = 1, 2 (3.7)

To obtain lower variance estimates, we use the reparameterization trick [53] and reparameterize

the policy using a neural network transformation where a = fϕ(ξ; s). Therefore, the policy

update gradients with respect to experience replay (β) is given by

∇ϕJπ(ϕ) = E[−∇ϕα log(πϕ(a|s)) + (∇aQθ(s, a)− α∇a log(πϕ(a|s))∇ϕfϕ(ξ; s))] (3.8)

We can update temperature α by minimizing the following objective

J(α) = E[−α log πϕ(a|s)− αH] (3.9)

To enforce action bounds in algorithms with stochastic policy, we use an unbounded Gaussian

as the action distribution [54]. The proposed approach is summarized in Algorithm 2.



Chapter 3. Energy-Aware and Latency-Aware Zero-Touch Network Slicing 44

Table 3.1: Comparison of hyperparameters tuning in simulation.

Architecture SAC TD3 our Method (TDSAC)

Method Actor-Critic Actor-Critic Actor-Critic
Model Type Multilayer perceptron Multilayer perceptron Multilayer perceptron
Policy Type Stochastic Deterministic Stochastic
Policy Evaluation Double Q-learning Clipped double Q-learning Clipped double Q-learning
No. of DNNs 6 6 5
No. of Policy DNNs 1 1 1
No. of Value DNNs 2 2 2
No. of Target DNNs 3 3 2
No. of hidden layers 2 2 5
No. of hidden units/layer 256 400/300 128
No. of Time Steps 2e6 2e6 2e6
Batch Size 256 100 128
Optimizer ADAM ADAM ADAM
ADAM Parameters (β1, β2) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)
Nonlinearity ReLU ReLU GELU [55]
Target Smoothing (τ) 0.005 0.005 0.001
Exploration Noise None N (0, 0.1) None
Update Interval (freq) None 2 2
Policy Smoothing None ϵ ∼ clip(N (0, 0.2),−0.5, 0.5) None
Expected Entropy(H) -dim(Action) None -dim(Action)
Actor Learning Rate 0.0001 0.001 0.001
Critic Learning Rate 0.0001 0.001 0.001
Discount Factor 0.99 0.99 0.99
Replay Buffer Size 1e6 1e6 1e6

3.1.3 Network Performance

We use a PyTorch2 custom environment for network setup interfaced through OpenAI Gym

as the most famous simulation environment in the DRL community and evaluate our method

described in Sec. 3.1.2.2 against other SoA DRL approaches, namely, TD3 [33], DDPG [11], and

SAC [54] with a minor change to keep all algorithms consistent. PyTorch is a popular open-

source ML framework used extensively for training and developing DNNs. We consider three

slices (A, B, and C) with different constraints where the number of new service requests for

VNFs follows a distributed homogeneous Poisson process. There exist 20 APs and a maximum

of 50 registered subscribers assigned to different slices randomly, and the algorithm computes the

computing requirements to allocate to the relevant VNF. The dedicated subscribers to Slice-A

are less than Slice-B and Slice-C. Table 3.1 provides a comparison of architectures and hyperpa-

rameters, while Table 3.2 presents network parameters. The DNNs structure for the actor-critic

networks and target networks are the same. We have set the hyperparameters following exten-

sive experiments [56]. The evaluation computes every 20000 iterations concerning the average

return over the best 3 of 5 episodes. The start timesteps denotes the initial time steps for

random policy to fill the buffer with enough samples. Moreover, the curves are smoothed for

visual clarity in terms of the confidence interval.

2https://pytorch.org

https://pytorch.org
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Table 3.2: Network parameters in simulation.

Network Parameter Value

Channel bandwidth 10 MHz
Background noise (σ2) -102 dBm
Antenna gain (ϑn,m) 9 dBi
Log-normal shadowing (Θn,m) 8 dB
Small-scale fading distribution (gn,m) CN (0, I)
Path-loss at distance dn,m (km) 148.1+37.6 log2(dm,n) dB
Distance dm,n distributed uniformly [0, 600]
(ι, Pz) (10−26, 109)

3.1.3.1 Learning Curve

As shown in Fig. 3.2, the learning curve of TDSAC outperforms all other algorithms in the

final performance. Note that the scenario has a big and complex state space. The learning

Figure 3.2: Learning curves of the smartech-v2 network slicing environment and continuous
control benchmarks.

procedures are based on interaction with the network slicing environment. The network slicing

has different network configurations and parameters (states), and thereby the curves experience

high fluctuation during learning. We use a reward-penalty approach for constraints and thresh-

olds in Problem (3.4). Indeed, this experimental approach can lead the agent to good results

because the problem formulation (3.4) is general.

3.1.3.2 Time Efficiency

Fig. 3.3 demonstrates the time efficiency of the different algorithms in terms of the wall-clock

time consumption on the custom network slicing environment (smartech-v2). The results show

that the TDSAC method yields performance improvement, and it has comparable performance

to TD3 and lower than SAC. Note that DDPG uses four DNNs in its architecture and this

results in lower wall-clock time consumption compared to other methods, but it has the lowest

average return between methods, and thereby we should compare wall-clock time with average
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Figure 3.3: Time efficiency comparison of different algorithms on the custom environment
(smartech-v2).

return. All evaluations were run on a single computer with a 3.40 GHz 5-core Intel CPU and

evaluation is according to the average per 50 time steps and based on 100 evaluations.

3.1.3.3 Energy Consumption and CPU Utilization

By defining a cross-layer and correlated cost function, we consider the trade-off between CPU

resource usage and energy consumption. Fig. 3.4a, 3.4b, and 3.4c show that the performance of

TDSAC is better than other approaches. The agent learns to decrease VNFs instantiation and

thereby reduce energy in the baseband part while tuning optimal wireless transmission power.

Indeed TDSAC has better performance for dynamic resource allocation and adaptive scaling.

In some scenarios, DDPG cannot learn perfectly because of some issues, such as overestimation

and lack of stable learning behavior. In contrast, the TDSAC, TD3, and SAC used the referred

techniques (see Sec. 3.1.2.2) to reduce overestimation, stabilize the training, surmount the curse

of dimensionality, solve gradient explosion, and mitigate catastrophic forgetting problems. Note

that a large part of energy consumption is constant, and the agent cannot minimize these values.

In Fig. 3.4d and 3.4e, we consider MNO and slices (tenants) as a unified network where slices

are isolated and trade-off computing resources with MNO. As shown in Fig. 3.4d and 3.4e, the

TDSAC performs better than other methods. The TDSAC has better resource control between

MNO and tenants. We consider CPU utilization efficiency as the ratio of exploited computing

resources concerning the total available CPU for the execution of a VNF.
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(a) Energy (Slice A) (b) Energy (Slice B) (c) Energy (Slice C)

(d) Energy (Network) (e) CPU utilization

Figure 3.4: Network performance and costs comparison between TDSAC and other DRL
benchmarks. The curves are smoothed for visual clarity. The solid lines demonstrate the mean

and the shaded regions correspond to the confidence interval over three trials.

3.2 Network Slicing for Low-Latency Services

In the context of 5G/6G networks, a low-latency slice refers to a virtual network that facilitates

prompt and low-latency communication. Low-latency slices play a crucial role in 5G/6G net-

works by providing real-time applications that require instantaneous communication, such as

remote surgery, autonomous vehicles, and industrial automation. These applications necessitate

high reliability and ultra-low latency to guarantee the speedy and accurate execution of com-

mands. Several optimization techniques are employed to minimize latency in a network slice,

such as minimizing packet loss, reducing network congestion, optimizing routing, and optimal

resource allocation. Additionally, edge computing technologies like edge servers and edge caches

are deployed to reduce latency by bringing computing resources closer to the end-users. In this

section, we focus on the algorithmic innovation and solution aspects of the ZSM standard. The

SLA guarantees that slice-level QoS is fulfilled by automating the control of underlying perfor-

mance metrics [57]. Automated MANO operations require a flexible and scalable design that
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considers long-term performance to account for the plethora of user patterns over different slices

and handle such a heterogeneous and complex network.

This tendency towards fully automated MANO has aroused intensive research interest in ap-

plying AI and DRL to tackle challenging NP-hard tasks. We propose a novel model-free DRL

framework, called collaborative statistical Actor-Critic (CS-AC), that enables a scalable and

farsighted slice performance management in a 6G-like RAN scenario. The proposed CS-AC

aims to optimize latency cost under a long-term statistical SLA. Specifically, the SLA metric

used is the Q-th delay percentile, enforcing some slice-specific preset constraints on it. To im-

plement distributed learning, we proposed a developed variant of SAC that is less sensitive

to hyperparameters. Finally, we present numerical results that demonstrate the effectiveness

of our approach in an OpenAI-based network slicing environment, validating its performance

concerning latency, SLA Q-th percentile, and time efficiency.

3.2.1 Slice-Enabling Cell-Free

As shown in Fig. 3.5, we consider a slice-enabling cell-free mMIMO network scheme with edge-

cloud computing (central unit/central processing units) capability and distributed APs con-

nected to a central server via serial fronthaul links. Let us define the RAN environment con-

sisting of N APs that cover M single-antenna users in a downlink setup. The network slicing

architecture consists of L ∈ N slice instances where each slice accommodates Ml users with∑L
l=1Ml = M . Each user M sends NSSAI to assist the network in selecting a particular net-

work slice where it may be served by a maximum of eight network slices simultaneously [58].

We suppose each user just requests one type of service and thereby one slice instance at each

decision time step.

Figure 3.5: The slice-enabling cell-free mMIMO scheme.

We consider resource allocation (in NFV) tasks where the MNO collects the free and unused

resources from the tenants and allocate them to the needy slices. It is done either periodically
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to avoid over-heading or based on requests of tenants. Moreover, we consider another action

concurrently to allocate power to different users. We assume that all the APs are connected to

a central server that maintains and deploys a set of VNFs to serve the users of distributed APs

and also hosts agents for the training process to learn the best policies and actions for scaling

the computing resources vertically and consequently scale horizontally for VNFs instantiation

to minimize the latency according to system states.

We follow a slotted resource allocation scheme, where the central server allocates resources to

new arriving users at the start of the next slot. Indeed, the time horizon is discretized into the

decision time step where t ∈ N+. We define ȷ
(t)
l as number of new service requests from all APs

for l-th slice at time step t where it follows an independent and identically distributed Poisson

process with parameter λ
(t)
l . Therefore, the probability of new demands to arrive at the central

server for time-slot of duration T is given by, P (ȷ
(t)
l = ȷ) =

(λ
(t)
l T )ȷ

ȷ! e−λ
(t)
l T , where λ

(t)
l = max{x ∼

N (µl, σl, ), 0} is time-varying value to capture slow variations of network traffic over time by

sampling a Gaussian distribution with parameters µl and σl [12]. Let us define vector of channel

gains from the all N APs to the user m as hm = [h1,m, h2,m, ..., hN,m]H ∈ CN×1, where (·)H is

the conjugate transpose and C represents the complex set. Let consider the following channel

model [48], hn,m = 10−L
∗(dn,m)/20

√
ϑn,mΘn,mgn,m, where L∗(dn,m) denotes the path loss with

a distance of dn,m. Moreover, ϑn,m is the antenna gain, Θn,m is the shadowing coefficient, and

gn,m is the small-scale fading coefficient. The beamforming vector vm = [v1,m, v2,m, ..., vN,m]H ∈

CN×1 is associated with user m and whose expression is given by [47],

vm =
√
pm

(
IN +

∑M
j=1

1
σ2
v
hjh

H
j

)−1
hm(

IN +
∑M

j=1
1
σ2
v
hjhHj

)−1
hm

, (3.10)

where pm is beamforming power, IN denotes the N × N identity matrix and σ2v is the noise

variance. Then we define approximate data rate for user m with respect to channel bandwidth

B̂ and signal-to-interference-plus-noise ratio as follow,

R(t)
m = B̂ log2

(
1 +

hHmvm
2∑M

j ̸=m hHmvj
2 + σ2

)
. (3.11)

We suppose each user m has a task to be executed. Let define data size of task m as d
(t)
m =

R
(t)
m k

(t)
m , where k

(t)
m denotes the transmission time and we consider the coefficient ζm to compute

the required computing CPU frequency cycles ∆
(t)
m as proportional to data size of corresponding
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task, ∆
(t)
m = ζmd

(t)
m . Then the computing delay is given by,

D(t)
m,1 =

ζmdm
Fm

, (3.12)

where Fm is computing speed of the edge central server. The n-th fronthaul satisfies, χn,m =∑
m∈M Rm [1(χ̂n,m = 1)] ≤ φn,th capacity constraint, where χ̂n,m ∈ {0, 1} is a binary variable

to determine the association between the n-th AP and the m-th user. Let us define g-th flow

as a competitive flow for f -th flow, and then the f -th flow should wait for transmission of the

g-th flow. To compute the queuing delay n-th link we have,

D(t)
n,2 =

ψλD,n
φn,th

, (3.13)

where ψ denotes the maximum burst size in a fronthaul network [59], and λD,n denotes the

number of competitive flows at n-th link. Therefore, the total delay for each task m and

corresponding fronthaul link n is given by,

D(t)
n,m = D(t)

m,1 +D(t)
n,2, (3.14)

and thereby, the optimization problem is defined as,

min
N∑
n=1

M∑
m=1

D(t)
n,m (3.15a)

subject to p(t)m ≤ Pmax, ∀m ∈M, (3.15b)

∆(t)
m ≤ ∆th,l, ∀m ∈M,∀l ∈ L, (3.15c)

χ(t)
n,m ≤ φn,th, ∀n ∈ N, ∀m ∈M (3.15d)

f lQ

(
D(1)
n,m, ...,D(t)

n,m

)
≤ ηl, ∀l ∈ L (3.15e)

where Pmax is the maximum allowable power level and {∆th,l} is the maximum CPU cycles

threshold which can be set based on MNO’s preferences and policies.

3.2.2 Long-Term Statistical SLA

A typical latency SLA between slice l tenant and the MNO consists on imposing a long-term

statistical constraint on the distribution of latency values. In this regard, we invoke the Q-th

percentile metric f
(t)
Q that captures, at each step t, the actual latency value below which Q%
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of latency samples over the measurement interval i = 1, . . . , t are located. We then enforce

a slice-specific upper bound ηl on it. To calculate f
(t)
Q (·) over set Yl =

{
D(1)
n,m, ...,D(t)

n,m

}
, the

elements thereof are sorted in the ascending order, i.e., Yl = {z1, . . . , zt | zi < zi+1}, and then

the Q-th percentile is derived as,

f lQ

(
D(1)
n,m, ...,D(t)

n,m

)
= zj , j = ∗Q× (t+ 1)

100
. (3.16)

In this constrained optimization problem, the system latency closely depends on date rate

R
(t)
m , and the underlying computing resources delay D(t)

m,1, as well as transmission delay D(t)
n,2.

Specifically, user m allocated power pm has a direct impact on the achieved data rate, thereby

the required computing resources for VNFs as well as the resulting computing delay. This

approach presents correlated models where the main aim is to find the best policy for jointly

allocating power and computing resources to minimize the service provisioning latency while

respecting the long-term statistical SLA. Following model-free DRL-based approaches [12]-[13],

we formulate the problem from an MDP perspective and develop a new DRL scheme to cope

with the underlying high dimensional state and action spaces as detailed in the sequel.

3.2.3 Collaborative Statistical Actor-Critic

Fig. 3.6 presents the proposed cross-platform framework (CS-AC) concerning the RAN data

center. The architecture consists of six main components: i) The network slicing environment

(smartech-v4 ), ii) The slice-level SLA buffer that stores the historical SLA-related metrics,

namely, latency states in the current scenario, to instantly calculate their empirical distribu-

tion, such as the Q-th percentile, and feed it to the DRL block, iii) The parallel actors typically

run on CPUs and interact with network environment to generate new experiences and behaviors

(st : state, at : action, rt : reward, st+1 : next− st) asynchronously and enforce the best actions,

iv) The experience replay (buffers) to store past experiences while coping with catastrophic in-

terference, v) The parallel learners to train and optimize the model on GPUs where they sample

a random batch Bi, i ∈ N for all transitions (stB , atB , rtB , stB+1) of βi, and vi) The memories

(Mi) for sharing the parameters and models where mitigate the load on learners for model

update request and also lessens the average read latency related to the actors. The memories

share the policy model of learners (ϕ) with actors to update their policy (µϕ). Moreover, the

memories can solve the problem of parameter synchronization of actors and learners because
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they are asynchronous. Indeed, the policy gradient parallelization approach that initially has

proposed in A3C [60] can reduce computation time and stabilizes the learning.

Figure 3.6: The proposed software-based framework for massive network slicing.

Separating actors from learners in a network slicing is motivated by improving the learning

efficiency by referring to other high-throughput learning frameworks, such as Gorila [61] and

Impala [62]. Unlike the previous works, the inference model in CS-AC is executed centrally

by the learners. This approach can reduce bandwidth requirements for transferring updated

model parameters from learners to actors while the multiple buffers and memories mitigate

read latency. We can classify slices according to different scenarios and metrics (e.g., QoS,

priority, and tenant ID) and assign each class (ci) to a collection of actors and learners. The

CS-AC can support unbounded limit actors for a massive network, such as network slicing. To

reduce waiting time, the CS-AC ignores the slowest actors. Following MDP in RL parlance, the

state (st), action (at) and proposed reward function (rt) are defined as follows:

1) State space: The state space provides some information about different possible network

configurations. Indeed, it helps to learn the best policy (mapping states to actions) through

interaction with network slicing parameters. In our scenario, the state transits to the next state

at each time step t as input can be characterized by S(t) = {S(t)
1 , S

(t)
2 , S

(t)
3 , S

(t)
4 }, where (S

(t)
1 ) is

the number of arrival requests for each slice, (S
(t)
2 ) is data rate status, (S

(t)
3 ) refers to computing

resources allocated to each slice, and (S
(t)
4 ) is latency status with respect to latency cost for

each slice.

2) Action space: We define a continuous multi-action space in telecommunication environment

and pursue an experimental approach aiming to allocate power and computing resources to each

slice and scrutinize the learning behaviour of the agent in terms of minimizing latency for service
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provisioning where the allocated power is given by,

A(t)
P ∈ {o|o ∈ R, 0 ≤ o ≤ P(t)

max}, (3.17)

where P(t)
max is an experimental value. Moreover, we consider vertical scaling consists of ei-

ther scaling up or down, i.e., increasing or decreasing the computing resources respectively.

Therefore, the agents allocate computing resource according to each time step,

A(t)
CPU ∈ {o|o ∈ R,−

M∑
m=1

∆(t)
m ≤ o ≤ ∆max −

M∑
m=1

∆(t)
m }, (3.18)

where A(t)
CPU is vertical scaling action for CPU resources. Note that vertical scaling is limited

with respect to the amount of free computing resources available ∆max on the physical server

hosting the virtual machine. The complete action space is given by, A(t) ≜ A(t)
CPU ∪ A

(t)
P .

Note that we do not consider horizontal scaling and server selection because it requires another

algorithm with discrete action space.

3) Reward: The total network cost (Problem (3.15)) is an imprecise and very general metric

to guide the agents to learn the best policy and thereby select the best actions. To enforce both

the statistical and punctual constraints, we introduce the piecewise function Ω
(t)
l,m,

Ω
(t)
l,m = −ϱl,m1

(
∆(t)
m > ∆th,l ∪ f lQ

(
D(1)
n,m, ...,D(t)

n,m

)
> ηl

)
, (3.19)

where ϱl,m is the penalty coefficient for violating either the CPU constraint or the Q-th percentile

SLA, which can be fine-tuned. Consequently, the total return is given by,

r(t) =
1

1
M(t)

∑N
n=1

∑M
m=1D

(t)
n,m

+
L∑
l=1

M∑
m=1

Ω
(t)
l,m. (3.20)

We consider the number of users at each decision time step (M (t)) to make a balance and

normalize the network cost between heavy and low traffic. This return function is used in DNN

training. We propose this reward-penalty technique to increase the expected return (reward, in

RL parlance) while minimizing the latency cost.

The learner part of CS-AC uses an actor-critic setup based on a developed variant of SAC [54].

The DQN and policy gradient are fundamentals of actor-critic methods where the actor is a

DNN to parameterize the policy and critic is another DNN to parameterize the value function.
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Note that the actor task in actor-learner is different from actor task in actor-critic method.

Unlike the DDPG [11] method, the SAC benefits from stochastic policy gradient based on policy

gradient theorem [52]. The main goal in standard RL is to learn a policy π(at, st) to maximize

the expected sum of rewards. The SAC method [54] benefits from a policy entropy term H.

Maximum entropy RL improves the exploration efficiency of the policy. The objective for finite-

horizon MDPs is given by, Jπ = E
[∑T

i=t γ
i−t[ri + αH(π(·|si))]

]
, where γ is the discount factor

and α denotes a temperature parameter to determine the relative importance of the H against

the reward and handle the stochasticity of the optimal policy.

We use the soft policy iteration method to learn the optimal maximum entropy policies. The

convergence and optimality of this approach have been verified in [53]. Our proposed SAC

method incorporates a set of techniques such as double (clipped) Q-learning technique [33],

target DNN to compute true target in DQN, the experience replay to memorize past experiences

and solve the catastrophic interference issues, and the delayed strategy [12] to update the

policy, target networks and temperature less frequently than the value network. The goal is to

mitigate very high sample complexity and meticulous hyperparameter tuning and also stabilize

the learning.

We parameterize functions Qθ(s, a) and πϕ(a|s) to approximate the soft Q-value and policy

where (Qθ1 , Qθ2) are soft Q-value functions and (Qθ′1 , Qθ′2) are target soft Q-value functions.

The updates of Qθ1 , Qθ2 based on targets is given by,

y = r + γ(min
i=1,2

Qθ′i(s
′, a′))− α log πϕ(a′|s′), a′ ∼ πϕ. (3.21)

To train the soft Q-value, we can directly minimize,

JQ(θi) = E[(y −Qθi(s, a))2], i = 1, 2. (3.22)

The SAC method leverages a reparameterization trick [53] to reduce variance estimates where

reparameterizes the policy using a neural network transformation a = fϕ(ξ; s). The policy

update gradients based on experience replay (β) is given by,

∇ϕJπ(ϕ) = E[−∇ϕα log(πϕ(a|s)) + (∇aQθ(s, a)

−α∇a log(πϕ(a|s))∇ϕfϕ(ξ; s))]
(3.23)



Chapter 3. Energy-Aware and Latency-Aware Zero-Touch Network Slicing 55

The temperature α can be updated through the following objective J(α) = E[−α log πϕ(a|s)−

αH]. The proposed approach for a single agent of network slicing is summarized in Algorithm 3

(actor) and Algorithm 4 (Learner).

Algorithm 3: Actor

Initialize replay buffer βc
Import network slicing environment (‘smartech–v4’)
Initialize action space A and state space S
t=0
while t < max timesteps do

if t < start timesteps then
Initial action a = env.action space.sample() to fill buffer

else
Select action using the updated network parameters a ∼ µϕ(a|s) w.r.t. Algorithm 2

end
Apply the action in the network slicing
Observe next state, reward, done, = env.step(a)
store the new transition (st, at, rt, st+1) into βc
if done then

obs, done = env.reset(), False
end
Obtain latest network parameters from Mc periodically
t=t+1

end

Algorithm 4: Learner

Initialize actor network ϕ, critic network θ, and temperature α
Initialize (copy parameters) target networks θ′1, θ′2
Initialize learning rate ℓZ , ℓπ, ℓα
Initialize memory Mc

while t ¡ max timesteps do
if t ≥ start timesteps then

sample batch of transitions (stB , atB , rtB , stB+1)
θi ←− θi − ℓQ∇θiJQ(θi), i=1,2 #Update soft Q-function
if t mod freq then

ϕ←− ϕ+ ℓπ∇ϕJπ(ϕ) #Update policy weights
α←− α− ℓα∇αJ(α) #Adjust temperature
θ′i ←− τθi + (1− τ)θ′i i=1,2 #Update target network

end
Update memory Mc periodically
Obtain updated parameters from Mc periodically

end

end

3.2.4 Performance Evaluation

To evaluate our method (CS-AC) described in Sec. 3.2.3, we use our PyTorch-based custom

environment (smartech-v4 ) with a multi-processing approach interfaced through OpenAI Gym

[63] and compare this method against other SoA DRL approaches, namely, SAC [54] and DDPG
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[11]. Note that the benchmarks have a minor change to make algorithms consistent and all of

them support continuous action space and state space. We consider a class of slices with three

different slices (A, B, and C). The corresponding class consists of three actors, three learners,

and two buffers. Moreover, the size of each task is in the range [2, 20] Mb that is generated

uniformly. There exist 10 APs and a maximum of 17 registered subscribers that are assigned

randomly to different slices in each decision time step, where the number of subscribers of slice-A

is less than slice-B and slice-C. The adopted percentile value during the training is Q = 95%.

Table. 3.2 presents the network parameters. We set hyperparameters of DNNs through extensive

experiments [56]-[64] and adopt a similar architecture for both actor-critic and target DNN

models. We use five hidden layers and 128 units per layer with batch size 128. Unlike SAC and

DDPG methods that use ReLU, CS-AC leverages GELU [55] for non-linearity. We compute the

performance of the algorithms based on the total of 25 × 104 decision time steps and evaluate

the average over each 104 iterations with regard to the best three of the five average return

episodes. In algorithm. 4, freq = 2 refers to update interval for updating policy and target soft

Q-value networks. Moreover, τ = 0.001 denotes the target smoothing coefficient [33]. Note that

the curves are smoothed for visual clarity based on confidence interval over three trials.

3.2.4.1 Convergence Performance

In Fig. 3.7, the learning curve of CS-AC outperforms other approaches in the final performance.

Indeed, the CS-AC leverages a parallel rollouts technique via following parallel multiple samples

or batch gradient descent simultaneously. As we mentioned in Sec. 3.2.3, the reward function

benefits from a reward-penalty technique, and agents learn to maximize the average reward

while minimizing the constrained latency optimization task.
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Figure 3.7: Learning curves of smartech-v4 network slicing based on continuous control bench-
marks.
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3.2.4.2 Time Efficiency

As shown in Fig. 3.8, the parallelization approach in CS-AC yields performance improvement

significantly compared to SAC and DDPG methods in terms of wall-clock time consumption on

the network slicing environment. Note that the actor-critic architecture in CS-AC consists of
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Figure 3.8: Time efficiency comparison.

five DNNs, while SAC and DDPG have six and four DNNs, respectively, which is the reason

for the lower wall-clock time of DDPG compared to SAC. This evaluation was carried out 100

times over averaging of 50 time steps. To analyze the final performance of algorithms, we should

consider both average return and wall-clock time.

3.2.4.3 Network Latency

Fig. 3.9 demonstrates the performance of CS-AC in terms of latency. The agents learn to tune

optimal power and computing resources to minimize the latency concerning different traffic de-

mands and network configurations (states). Fig. 3.9a, 3.9b, and 3.9c show that the performance

of CS-AS is better than other approaches for slice-A, slice-B, and Slice-C. Indeed, the CS-AS

can surmount the curse of dimensionality while coping with the overestimation problem [33] in

actor-critic methods and stabilize the learning procedure.

3.2.4.4 Latency Percentile

Fig. 3.9d presents the latency percentile vs. Q after the training, i.e., in evaluation mode with

η = [10, 20, 15] ms latency upper thresholds for slice-A, slice-B, and slice-C, respectively. The

Qth latency percentile is a metric for assessing the QoS and performance of the network, as it

signifies the highest latency experienced by a specific percentage of requests or transactions.

This metric is instrumental in identifying bottlenecks, performance issues, and optimizing the
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(d) Latency percentile in evaluation mode

Figure 3.9: Network latency performance for CS-AC, η = [10, 20, 15] ms.

system’s QoS. Since the CS-AC has been trained with 95%-perectile statistical constraints, we

remark that the three slices are approximately respecting the enforced latency upper bound at

Q = 95, i.e., the long-term percentile-based SLA is respected.

3.3 Summary

To fulfill zero-touch network slicing, a knowledge-based scheme with an efficient resource pro-

visioning ability should be adopted. We have proposed a KP for B5G network slicing called,

KB5G and elaborated on how KP can solve control and optimization problems in network slic-

ing. Specifically, we have deliberated on algorithmic innovation and AI-driven approach and also

proposed a continuous model-free DRL method called, TDSAC to minimize energy consump-

tion and VNF instantiation cost. Meanwhile, we have compared the network performance and

costs between TDSAC and other DRL benchmarks. We have shown that the proposed solution

outperforms other DRL methods. In this chapter, we present the following contributions:
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• We propose a KP for B5G network slicing dubbed KB5G and elaborate on how KP can

join the architectural aspects of network slicing to make a harmonization in a continuous

control setting through revisiting ZSM operational closed-loop building blocks. Specifi-

cally, we consider CPU and energy consumption control and optimization.

• We propose TDSAC as an algorithmic innovation in network slicing. This stochastic

actor-critic approach supports continuous state and action spaces in telecommunication

while stabilizing the learning procedure and improving time efficiency in B5G. Moreover, it

benefits from a model-free approach to underpin the dynamism and heterogeneous nature

of network slicing while reducing the need for hyperparameter tuning.

• We develop a 5G RAN network slicing environment called smartech-v2. It integrates

both CPU and energy consumption simulators with an OpenAI Gym-based standardized

interface to ensure reproducible comparison of different DRL algorithms.

Also, we have presented a novel AI-driven software-based framework for controlling massive

network slicing in B5G/6G, dubbed CS-AC. Specifically, we have considered a slice-level statis-

tical DRL method based on the SAC algorithm for allocating power and computing resources

dynamically to minimize a latency-aware cost optimization under Q-th delay percentile SLA

metric. The numerical results of the proposed actor-learner approach have shown that the tar-

get Q-th percentile is respected while also guaranteeing better performance in terms of latency

and time efficiency compared to other SoA DRL benchmarks. Specifically, in this section, we

present the following contributions:

• We investigate the feasibility of a multi-objective and multi-action approach where model-

free agents learn to jointly allocate optimal power and computing resources to minimize

the latency of service provisioning under long-term statistical SLA, namely, Q-th delay

percentile.

• We propose a massive DRL-based actor-learner framework dubbed CS-AC. The CS-AC

is a software framework for designing and training DRL agents that attempts to address

complexity and scalability issues. To cope with control challenges in network slicing, such

as increased dynamism, heterogeneity, and extended training time of slice instances, we

separate the actor from learner where CS-AC can be scaled up to several thousand parallel

actors-learners across a large collection of tasks without sacrificing data efficiency.
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• To implement distributed learners, we combine DQN and policy gradients in the form of

actor-critic [65] approach and propose a developed variant of SAC [54] to reduce the need

for hyperparameter tuning and stabilize the learning procedure.

• We develop a 5G RAN network slicing environment called smartech-v4 where we consider

both power and CPU resources in a simulator interfaced through OpenAI Gym [63], which

is the most famous toolkit in the DRL community.



Chapter 4

Scalable and Distributed Zero-Touch

Network Slicing

Most of the network slicing solutions that are available today face scalability issues when con-

sidering massive slices, due to centralized controllers requiring a holistic view of the resource

availability and consumption over different networking domains. In this chapter, we tackle this

challenge and design a hierarchical architecture to manage network slices resources in a federated

manner. Driven by the rapid evolution of DRL schemes and the O-RAN paradigm, we propose a

set of traffic-aware local DAs dynamically placed in the RAN. These federated decision entities

tailor their resource allocation policy according to the long-term dynamics of the underlying

traffic, defining specialized clusters that enable faster training and communication overhead

reduction. Indeed, aided by a traffic-aware agent selection algorithm, the proposed Federated

DRL approach provides higher resource efficiency than benchmark solutions by quickly reacting

to end-user mobility patterns and reducing costly interactions with centralized controllers.

4.1 Distributed Multi-Tenant RAN Slicing

V2X communication, IoT, AR/VR, are just some examples of emerging use-cases in 5G/6G

verticals that need to co-exist over a common physical infrastructure. However, the highly

heterogeneous performance requirements in terms of bandwidth, latency, and reliability, exac-

erbate the need for orchestration solutions able to accommodate such services in a resource and

cost-efficient manner. Network slicing represents a promising technology able to address such a

61
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challenging scenario, by enabling the setup of multiple logical and virtualized network instances,

namely slices, on top of a common physical mobile network infrastructure [66]. Given the cloud

nature of these resources, the networking resources associated to each slice can be dynamically

orchestrated and tailored to meet the performance requirements of running services.

In this context, temporal variations of the traffic demand deeply complicate resource planning

and allocation tasks, especially in the RAN domain where resource allocation decisions, e.g., in

terms of bandwidth, must cope with the additional variability inherent to the wireless channel

and end-user’s mobility. Traditional RAN slicing solutions envision a centralized controller with

a holistic and real-time view of the network, especially about resource utilization, availability,

and real-time wireless channel statistics, as depicted in Fig. 4.1. However, similar approaches

suffer from scalability issues in real deployments, where the amount of monitoring information to

be exchanged, together with the large number of base stations BSs, make it practically impossi-

ble to devise optimal resource allocation schemes in a timely and resource-efficient manner [67].

Motivated by the need for a more cost-effective and agile RAN, the O-RAN Alliance recently

RAN MonitoringSlice Scheduler

Resource 
Allocation KPI

Monitoring 
Database

RAN

Base Station

Figure 4.1: RAN resource allocation in network slicing.

presented a vendor-neutral alternative way of building mobile networks [68], based on disag-

gregated hardware and interoperable interfaces that allow secure network sharing by means of

virtualization.

Despite the revolutionary approach, it is still not clear how to efficiently support slicing scenar-

ios [69] characterized by a large number of vertical services. Therefore, we take on this challenge

and propose a hierarchical architecture for network slice resource orchestration. In particular,
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given the variable spatio-temporal distribution of mobile traffic demands [70], we envision the

dynamic setup of a network of local DAs as virtual software instances co-located within the Near-

RT RIC premises, able to access local RAN monitoring information and extract local knowledge

without the need of a centralized entity performing decisions on aggregated information. Our

framework leverages a dynamic agent selection mechanism based on local traffic conditions sim-

ilarity, which enables more efficient information exchange and collaboration among groups of

local DAs, while specializing their decision policy.

The benefit coming from our approach are several: i) it enables resource allocation at the edge

of the network, thus accounting for more timely and accurate information, ii) the amount of

control information that needs to cross the network to reach the central controller dramatically

decreases, thus reducing overhead towards the core network, iii) by allowing information ex-

change among local DAs, we enable the provisioning of federated learning schemes to further

enrich the capabilities of the DAs. In fact, DAs will not only learn from a local observation

space, but also leverage information coming from other (statistically different) RAN nodes, thus

improving the generalization of the learning procedure.

The remainder of this Chapter is as follows: Sec. 4.2 formulates our problem and describes

the considered scenario. Sec. 4.3 presents the main building blocks of our solution, describing

the interaction among the different entities. Sec. 4.4 highlights the compliance of our solution

with respect to the O-RAN architecture. Sec. 4.5 validates the design principles of our solution

through a comprehensive simulation campaign. Finally, Sec. 4.6 provides the final remarks and

concludes this chapter.

4.2 Framework Overview

Our solution builds on the concept of slicing-enabled mobile networks [71], wherein multiple net-

work tenants are sharing a portion, namely a slice, of a common mobile network infrastructure,

each one with predefined and dedicated networking resources to satisfy an SLA. Within the

context of this Chapter, we focus on the RAN domain and consider the SLAs to be expressed in

terms of maximum slice throughput and transmission latency. We define transmission latency

as the average time the traffic belonging to a certain slice needs to wait within the base station
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transmission buffers before being served due to inter-slice scheduling procedures. In the follow-

ing, we overview the main system building blocks and model assumptions, finally introducing

the mathematical formulation of the RAN resource allocation problem.

Let us introduce a mobile network infrastructure composed of a set B of BSs, wherein a set of

slices I is deployed. Each BS b ∈ B is characterized by a capacity Cb, expressed in terms of a

discrete number of PRBs of a fixed bandwidth. This resource availability must be divided into

subsets of PRBs, and dynamically assigned to each network slice according to their real-time

traffic demand and SLA requirements.

As part of the SLA between the network operator and the slice owner, we assume each network

slice to come with predefined latency and throughput requirements defined by the variables Λi

and λi, respectively. In the context of our work, we focus on the RAN domain, and therefore

consider as latency the queueing delay time experienced by the traffic while flowing through the

scheduling processes of each base station. Let us consider a time-slotted system where time is

divided into decision intervals t ∈ T = {1, 2, . . . , T}. The PRB allocation decisions can be taken

only at the beginning of each decision interval, whose duration ϵ may be decided according to

the infrastructure provider policies, ranging from few seconds up to several minutes.

We assume the presence of a preliminary admission and control mechanism, e.g., the one pre-

sented in [72], to verify the admissibility of the current network slice setup within the available

networking capacity, and focus our effort on meeting the resource allocation for the downlink

traffic. We envision the allocation of radio resources towards the end-users as a two-step pro-

cess [73]. Initially, once network slices are admitted into the system, the infrastructure provider

schedules the assignment of slots of radio resources for each of the tenants. Then, based on the

slice resource availability, each tenant may decide to enforce proprietary scheduling solutions

towards its end-users, depending on use-case or business requirements [71].

Given the plethora of user to base station association and scheduling algorithms addressing the

end-user resource allocation task [74], we do not address the intra-slice scheduling issue, but

rather focus on the correct and fair dimensioning of the inter-slice PRB allocation.

To this aim, we denote with the variable a
(t)
i,b the PRB allocation decision for the i-th slice under

the b-th BS taken at t-th decision time interval, and with σ
(t)
i,b the SNR value expressing the

wireless channel quality, averaged over the duration of a decision time interval ϵ, and over the

end-users of the i-th slice attached to the b-th BS. Similarly, we introduce φ
(t)
i,b as the aggregated
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downlink traffic demand generated by the users of the i-th slice under the coverage area of the

b-th BS within the t-th time interval.

All together, we can formalize our problem as:

Problem RAN Resource Allocation:

min lim
T→∞

T∑
t=1

E

[∑
i∈I

d
(t)
i,b

]
(4.1)

subject to:

E
(t)
i,b ≤ Λi, ∀t ∈ T ,∀i ∈ I, ∀b ∈ B; (4.2)∑
i∈I

a
(t)
i,b ≤ Cb, ∀t ∈ T , ∀b ∈ B; (4.3)

a
(t)
i,b ∈ Z+, d

(t)
i,b ∈ R+, ∀t ∈ T ,∀i ∈ I, ∀b ∈ B; (4.4)

where E
(t)
i,b = E

[
φ
(t)
i,b

Γ
(
a
(t)
i,b ,σ

(t)
i,b

)
+d

(t)
i,b

]
defines the expected transmission latency, and Γ(a, σ) is a

function that translates the PRB allocation a in the equivalent transmission capacity, given

the experienced channel quality σ. The traffic demand generated within a decision interval

might not be fully satisfied due to erroneous PRB allocation estimations, incurring in additional

transmission latency due to traffic queuing at the BS. Therefore, we introduce the variable d
(t)
i,b

as a deficit value indicating the volume of traffic not served within the agreed slice latency

tolerance Λi, and that is therefore dropped.

Due to fast traffic variations, slice resource allocation decisions at the RAN domain should be

taken in a dynamic, proactive, and flexible way to avoid service and performance degradation.

While advanced admission and control mechanisms could select the set of slices to be admitted

to the system, and provide static resource allocation boundaries to satisfy the available capac-

ity, the dynamic nature of the slice’s traffic load and wireless channel statistics may lead to

suboptimal performances.

Additionally, the optimization problem underlying RAN resource allocation, that is, fitting

the requests of the slices maximizing the overall utilization by considering the limited resource

availability of a BS, has been proven to be NP-Hard [72]. In fact, this problem can be easily

mapped into a knapsack problem instance, wherein the sum of allocated resources is bounded

by the capacity of the radio interface, and the experienced latency, i.e., the cost, is minimized.

This family of problems is well-known to be NP-Hard [75], resulting in a time complexity of
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O(ICb) in our scenario, where I is the cardinality of the set I, and Cb is the base station resource

availability in number of PRBs.

In order to obtain a solution for the overall RAN deployment, the same problem should be

solved for all the nodes in the network, therefore introducing scalability issues. Moreover, the

centralization of all the necessary up-to-date monitoring information further exacerbates the

complexity of this problem, which becomes impractical in real mobile networks characterized

by thousands of RAN nodes [76].

4.3 A Multi-Agent Architecture for RAN Resource Allocation

In this chapter, we advocate for the adoption of an FDRL-based architecture to address the

RAN slicing scenario. In particular, we rely on local DAs running as software instances within

the premises of each BS, as shown in Fig. 4.2. Each agent is in charge of performing slice PRB

allocation decisions based on local monitoring information coming from the underlying network

monitoring system, or BS context. We provide the details of our local decision algorithm later

in Sec. 4.3.1.

Nevertheless, the distributed nature of RAN deployments, as well as the varying spatio-temporal

behavior of mobile traffic traces [77], make it difficult for an agent trained exclusively on complex

and multi-variate monitoring metrics to address unknown statistical distributions of its base

station context.

To concurrently address the above issues, we introduce an FL layer that allows inter-agent in-

formation exchange, and expedites the learning procedure local knowledge sharing. We provide

the details of our FL approach in Sec. 4.3.2.

4.3.1 Local RAN Slicing via DDQN Agent

DQN is a popular RL [78] algorithm that evolves from the well-known concepts of Q-learning

and neural network function approximation. DQN represents a model-free approach. It stores

the trajectory of experiences for each interaction with the environment in a replay buffer, as to

update the network parameters without prior knowledge of the underlying environment statis-

tics. In the following, we will use the i index interchangeably while referring to slices and DAs,

assuming a one-to-one mapping of each DA with the corresponding network slice. With focus
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Figure 4.2: Generic Federated DRL architecture for RAN slicing.

on a single BS and a single decision interval the design choices of our DQN model are as follows:

State Space S: We define the state of the i-th agent associated to the b-th BS as a tuple

of local monitoring information s
(t)
i = {(σ(t)i , λ

(t)
i , ν

(t)
i ) | ∀i ∈ I}, where σ

(t)
i is the SNR value,

averaged over the duration of a decision time interval experienced by the users of the i-th slice,

λ
(t)
i is the aggregated traffic volume generated by the i-th slice over the time decision duration

ϵ, and ν
(t)
i is the amount of available capacity left by the previous decisions of other agents.

Action Space A: Without loss of generality, we define ι as the minimum PRB allocation step,

or chunk size, and assume that the PRB allocation decision of the i-th agent can only take

values that are an integer multiple of ι. It results that A = {ι · k | k = {0, 1, . . . , Cι }}. Such

discrete action space allows controlling the dimensionality of the action space and positively

influences the learning process [79].

Reward R: We adopt an iterative reward-penalty approach to guide the agent learning proce-

dure, which translates into maximizing a reward function. An accurate PRB allocation should

concurrently guarantee the satisfaction of transmission latency Λi and the traffic requirements

λ
(t)
i , while avoiding both under-provisioning and over-provisioning of resources. Given the in-

stantaneous slice traffic volume φ
(t)
i , and the corresponding allocation decision a

(t)
i ∈ A, we can

identify an allocation gap α
(t)
i = Γ(a

(t)
i , σ

(t)
i )− φ(t)

i . To measure the goodness of the action, we

therefore introduce two variables, namely ρ
(t)
up and ρ

(t)
lower, which characterize the upper and lower

boundaries of the allocation gap as ρ
(t)
up = 2 ·Γ(ι(t), σ

(t)
i ) and ρ

(t)
lower = −Γ(ι(t), σ

(t)
i ). Accordingly,

we define the instantaneous reward r
(t)
i ∈ R of the i-th agent as:
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r
(t)
i =


α
(t)
i − 4ρ

(t)
lower if α

(t)
i < ρ

(t)
lower,

(1− α
(t)
i

ρ
(t)
up

)
α
(t)
i

ρ
(t)
up

if ρ
(t)
lower ≤ α

(t)
i ≤ ρ

(t)
up,

−(α
(t)
i − ρ

(t)
up) if α

(t)
i > ρ

(t)
up.

(4.5)

Notably, the first case linearly penalizes the occurrence of under provisioning decisions, while

the third case acts in a similar way on the over-provisioning cases. The middle case is the target

scenario, which assumes correct PRB allocation decisions in response to the instantaneous slice

traffic request.

We envision the multi-agent RAN slicing problem as a sequential procedure, where at the

beginning of each decision interval t, the different agents perform local decisions according

to a priority value µi. Nevertheless, multiple and independent agents may perform inaccurate

decisions and leave the subsequent agents with no spare resources, specially in the initial training

phase. Therefore, at the end of each training period, we calculate a penalty

P
(t)
i = −ηi1

(
a
(t)
i > ν

(t)
i

)
, (4.6)

where ηi is the penalty coefficient of the i-th slice, and 1 denotes the logical operator. This

penalty overrides the instantaneous agent reward ri if the decision a
(t)
i is greater than the amount

of spare resources left by the previous decisions of the other agents, that in turn prevents the

agents to exceed the available resources at the base station. This design choice is justified by

the results provided in Sec. 4.5.1.

Training of Agents The training of the local agent implies the characterization of the action-

value function Q : S → A. Let us define the policy π as a probabilistic function mapping

states to actions. The agent makes decisions and selects the corresponding actions based on π,

determining the best action for each state. Under a given policy π, the action-value function can

be defined as, Qπ(s(t), a(t)) = Eπ
[∑∞

n=0

(
γnr(t+n+1)|(s(t), a(t))

)]
, where γ ∈ [0, 1] is a discount

factor that weights the short-sighted and far-sighted reward, and n is the temporal index.

According to Bellman’s equation [80], the optimal state-action value function can be expressed

as Q⋆(s(t), a(t)) = E
[
r(t) + γmax

a(t+1)
Q⋆(s(t+1), a(t+1)|s(t), a(t))

]
, and thereby the Q-learning update
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Figure 4.3: An illustration of DDQN workflow.

rule based on temporal difference (TD) [81] is given by,

Q(s(t), a(t)) ← Q(s(t), a(t)) + ξ[r(t) + γmax
a(t+1)

Q(s(t+1), a(t+1)) − Q(s(t), a(t))], (4.7)

where ξ is the learning rate. DQN adopts DNN to approximate the state-action value and

surmount the curse of dimensionality concerning inordinate large state spaces. To limit the

catastrophic interference problem [82], which is the tendency of a neural network to forget

about previously learned information upon learning new ones, we adopt an experience replay

strategy. In particular, let us introduce βi as the experience buffer. As depicted in Fig. 4.3,

in every training interval, we store the tuple (s
(t)
i , a

(t)
i , r

(t)
i , s

(t+1)
i ) describing the instantaneous

experience generated by the agent while interacting with the environment, and sample from βi

a random batch of past experiences to regularize the training.

Additionally, DQNs are well known to provide an overoptimistic value estimation. We alleviate

this problem by leveraging an additional DQN network, in the form of DDQN [83]-[84]. With

a slight abuse of notation, let us introduce Q(s
(t)
i , a

(t)
i ; θ

(t)
i ) and Q(s

(t)
i , a

(t)
i ; θ̃

(t)
i ) as the online

network and target network respectively, where θ
(t)
i and θ̃

(t)
i denote the model parameters. To

optimize the parameter set θ
(t)
i and approximate the optimal action-value function Q⋆(s

(t)
i , a

(t)
i ),
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we use the following loss function,

L(θ
(t)
i ) = E[y

(t)
i −Q(s

(t)
i , a

(t)
i ; θ

(t)
i )]2, (4.8)

where y
(t)
i = r

(t)
i + γmax

a
(t+1)
i

Q(s
(t+1)
i , a

(t+1)
i ; θ̃

(t)
i ) and θ̃

(t)
i is copied from θ

(t)
i at the end of each

episode. Finally, the objective function of the DDQN model can be written as,

y
(t)
i = r

(t)
i + γQ(s

(t+1)
i , arg max

a
(t+1)
i

Q(s
(t+1)
i , a

(t+1)
i ; θ

(t)
i ); θ̃

(t)
i )), (4.9)

where θ
(t)
i is a local training model used for selecting actions, and θ̃

(t)
i is used to evaluate their

values according to a different policy, thus mitigating over-estimations issues and improving

the decision agents’ performances [83]. The loss function estimates the difference between true

action-value and target action-value. As the overall training procedure aims at minimizing

this loss function, we adopt SGD approach [85] to pursue this goal. The local agent training

procedure is summarized in Algorithm 5. The overall local process is aided by a federation

scheme described in details in the following subsection.

Algorithm 5: DRL RAN resource allocation for the i-th slice

Input : t, T, T̂ , i ∈ I, θ(t)i,b ,Ω
(t)
k ;

Output : Improved DDQN model θ
(t+1)
i,b ;

Initialize: θ
(0)
i,b ,∀b ∈ B, t = 0;

if mod(t, T̂ ) == 0 ∧ t > 0 then

Upload θ
(t)
i,b ;

Wait for Algorithm 6;
#Get FL model and update the local one;

θ
(t+1)
i,b ← Ω

(t)
k ;

end
for b ∈ B, in parallel do

∇L(θ
(t)
i,b )← Local model training;

θ
(t+1)
i,b ← θ

(t)
i,b +∇L(θ

(t)
i,b );

end

4.3.2 Federated DRL for RAN Slicing

FL allows training machine learning models across multiple decentralized entities which have

access to a limited set of the overall data available. Conversely to multi-agent reinforcement

learning, which defines a set of autonomous agents that observe a global state (or partial state)
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Algorithm 6: RAN resource orchestration for the i-th federation layer

Input : t, T, θ
(t)
i,b ∀b ∈ B, τ

(t)
i,b ∀b ∈ B, ϵd, nmin

Output: Improved federation models Ω
(t+1)
i,k ,∀Ψk ∈ Ψ

#Define clusters and send initial/updated model ;

Collect τ
(t)
i,b , ∀b ∈ B ;

Compute D = (DTW (j,z)),∀j, z ∈ B;
Ψk ∈ Ψ← DBSCAN(D, ϵd, nmin);
while t < T do

if mod(t, T̂ ) == 0 ∧ t > 0 then
for each Ψk ∈ Ψ, in parallel do

Collect θ
(t)
i,k,∀b ∈ Ψk;

#Derive FL models based on Fed. strategy ;

Ω
(t+1)
i,k ← fstrategy(θ

(t)
i,b ,∀b ∈ Ψk);

θ
(t+1)
i,b ← Ω

(t+1)
i,k ∀b ∈ Ψk;

end
#Return updated local models;

return : θ
(t+1)
i,b ,∀b ∈ B

end
Run Algorithm 5;

end

of the system, select individual actions and receive individual rewards, FL allows to collab-

oratively learn a shared prediction model by iteratively aggregating multiple model updates,

thus decoupling the learning procedure from the need of centralized data sources. A refined

version of the original models, combination of multiple local models according to specific feder-

ation strategies, is then shared to the agents allowing to significantly improve the learning rate,

ensure privacy [86] and provide better generalization [87].

As depicted in Fig. 4.2, within the context of our FDRL-based framework each agent trains a

local DDQN model θ
(t)
i,b and shares its experience, under the form of model hyperparameters, to

those entities belonging to the corresponding federation layer. This iterative training approach

enables each federation layer to aggregate the collected knowledge of single agents into a global

updated model Ω
(t+1)
i , usually stored into a cloud platform or a nearby edge platform to allow

faster feedbacks. In order to enhance efficiency and avoid communication overhead, we allow the

federation layer to collect the local models (and share the updated ones) only every T̂ decision

intervals, defining this time period as federation episode. Different strategies can be adopted

to derive the global federated model, each one implementing a predefined federation strategy

function fstrategy(·).

In Average federation strategy, dubbed as FDRL in the following of this work, the collective

federation model for the next time interval Ω
(t+1)
i is derived as the simple average of the incoming
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model weights belonging to all the agents, as

Ω
(t+1)
i =

1

B

∑
b∈B

θ
(t)
i,b . (4.10)

Aggregated mobile traffic demands follow repetitive spatio-temporal trends due to human ac-

tivities [88]. In this context, it is expected that a good characterization of such processes would

allow more accurate forecasting of the network utilization and, in turn, enable an efficient and

even proactive planning of the resource allocation.

However, as highlighted in [89], it is not enough to leverage the geographical locations and

related spatial proximity of the BS to obtain a comprehensive view of traffic demands, as

the land usage of the slice resources may differ even within base stations belonging to the same

geographical areas. This introduces an additional issue in our framework, as not all the federated

agents should exchange knowledge with each other, nor this should be restricted to only nearby

entities. To address this fundamental issue, in the following we propose a clustering algorithm

to guide DA subsets definition, based on network monitoring traces and their similarity.
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Figure 4.4: Example comparison of Euclidean distance against Dynamic Time Warping dis-
tance over traffic demand time series.

4.3.3 Dynamic Traffic-Aware Agent Selection

Given the rapid spatio-temporal variation of the traffic demand due to end-user mobility, we

advocate for the setup of a clustering algorithm to derive the subset of slice agents that should

exchange their local knowledge, while considering both mobility and traffic demand variations.

Let us introduce τi,b as the time series describing the downlink traffic demand of the i-th slice
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instantiated over base station b. Then, for each pair j, z ∈ B, we can compute the similarity of the

recorded monitoring information as DTW (j,z) = fDTW (τi,j , τi,z), where fDTW (·) is the Dynamic

Time Warping distance [90], a state-of-the-art distance metric for time series analysis1. DTW

is particularly suitable in our scenario as it allows, conversely to standard distance metrics, e.g.,

Euclidean distance, to calculate accurate similarity value even in presence of differently sized

sequences, and independently of their time shift. An example of DTW distance calculation

is depicted in Fig. 4.4, where it can be noticed how maximum and minimum values of the

traces are correctly mapped to each other. The pairwise distances are then collected into the

distance matrix D = (DTW (j,z)) ∈ R|B|×|B|, and provided as input of our clustering algorithm.

DTW has linear space complexity, but quadratic time complexity. To reduce the latter, a

number of options are available. In our case, we limit the maximal shift by setting a fixed

time a window of few hours, thus reducing the complexity even in case of long sequences.

Nevertheless, recent work from [91] proposed a novel efficient implementation which breaks the

quadratic time complexity to O(n2 log n), where n is the length of the sequence. To perform

the final classification, we rely on an extended version of the Density-based spatial clustering of

applications with noise (DBSCAN) algorithm, introduced in [92]. DBSCAN is a non-parametric

density-based clustering algorithm that allows finding the most representative points within a

dataset (also known as core samples) based on their density in a multi-dimensional space, and

expands clusters from them. It expects two inputs: ϵd, representing the maximum distance

between two samples for one to be considered as in the neighborhood of the other, and nmin,

which defines the minimum number of samples in a neighborhood of a point to be considered

as a core sample.

Given the above, at the end of each federation episode, we can derive in a dynamic way (and

based on updated mobile monitoring information) the clusters Ψk ∈ Ψ, k = {1, . . . , |I|}, where

Ψ is the cluster set. Each cluster includes the set of base station b ∈ Ψk that should be involved

in the following model update procedure. Therefore, the framework spawns multiple federation

models Ωk, one for each detected cluster k, which evolve in parallel till the next federation

episode. The pseudocode of our FDRL-based approach for RAN slicing resource orchestration

is listed in Algorithm 6. We remark that in our framework multiple instances of Algorithm 6,

i.e., one for each slice i ∈ I, are deployed to build the corresponding FL domain for a given

federation strategy fstrategy(·). It follows that the updated federation model, combination of the

information coming from the elements of the cluster Ψk (described in line 10), can be derived

1We refer the reader to [90] for an exhaustive explanation.
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following the Full-Cluster strategy, namely fFC(·), as:

Ω
(t+1)
i,k =

1

|ψk|
∑
b∈ψk

ω
(t)
i,b θ

(t)
i,b , ∀ψk ∈ ψ (4.11)

where |ψk| is the cardinality of ψk , and ω
(t)
i,b =

r̂
(t)
i,b∑

b∈ψk
r̂
(t)
i,b

is a weight parameter. It should be

noted that within these settings, the federation step will occur among models with high degree

of similarity, thus favoring the specialization of the agents towards the most common traffic

statistics.

Other complementary approaches can be defined to guide the agent selection and subsequent

federation model update. In particular, upon the definition of the cluster set Ψ, we intro-

duce Random Representative strategy fRR(·) as a baseline approach, which randomly selects

a representative from each cluster:

ψrandom = {x|x = rand(ψk), ∀ψk ∈ ψ} (4.12)

and consequently defines the updated federated model as:

Ω
(t+1)
i =

1

|ψrandom|
∑

b∈ψrandom

ω
(t)
i,b θ

(t)
i,b . (4.13)

Similarly, let us introduce the Best Representative strategy, as a method that derives the

updated federation model by selecting a representative agent from each cluster as follows:

ψbest = {x|x = arg maxRk
k

, ∀ψk ∈ ψ} (4.14)

where Rk is the cumulative reward within the past federation episode. Thus, the model update

strategy Best Representative fBR(·), can be defined as:

Ω
(t+1)
i =

1

|ψbest|
∑
b∈ψbest

ω
(t)
i,b θ

(t)
i,b . (4.15)

By combining single models derived from each cluster, we can pursue higher generalization of

performances, i.e., aim at a federated model able to deal with heterogeneous traffic statistics.
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Figure 4.5: O-RAN compliant system architecture.

4.4 O-RAN Compliance

The design of our solution closely follows the O-RAN framework [93]. O-RAN represents a

worldwide effort to reach new levels of openness in next-generation vRANs. Driven by major

carriers, it aims at disrupting the vRAN ecosystem traditionally dominated by a small set of

player by breaking vendors’ lock-in and opening the business market [94]. The most important

functional components introduced by O-RAN are the non-RT RIC and the near-RT RIC [95].

The main functionality provided by the Non-RT RIC it to support RAN optimization over

relatively large time scales (e.g., seconds or minutes). This often implies machine ML model

training and subsequent control policy definition, to be enforced via the A1 interface towards the

distributed Near-RT RICs. The Near-RT RIC is a logical function that enables near-real-time

optimization and control, as well as data monitoring of O-CU and O-DU nodes (which support

eNBs/gNBs deployment as VNFs) in near-RT timescales (between 10 ms and 1 s). Fig. 4.5

depicts a high-level view of the O-RAN architecture, highlighting the synergies with respect to

our proposed approach. In particular, we envision our federated learning and dynamic agent

selection module as co-located with Non-RT RIC, which handles the A1’s Policy Management

Service to enforce radio policies. On the other side, local agents co-located with the Near-RT

RICs collect this information, perform local decisions, and exploit the E2 interface to forward
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Figure 4.6: Software architecture and protocol stack overview.

resulting radio policies to the base station. The same E2 interface would allow the local agent

to gather base station KPIs for the purpose of model training and monitoring.

As depicted in Fig. 4.6, we implement our framework in Python programming language, exploit-

ing OpenAI Gym library [96] and interfacing DRL agents with a custom base station simulator

environment, which includes virtual transmission queues and main PHY/MAC/RLC function-

alities, together with O-RAN E2 interface to allow gathering the slice networking statistics from

each O-DU, and to enforce PRB policy decisions in the BS slice scheduler based on defined state

space and action space in Sec. 4.3.1. Finally, as described in Sec. 4.3.2, a federation layer con-

nects the DRL agents of the i-th slice to enable inter-agent information exchange and expedite

the overall learning procedure. The procedure is summarized in Algorithm 5 and 6.

4.5 Performance Evaluation

In this section, we evaluate our proposed architecture numerical simulations on a dedicated

server, equipped with two Intel(R) Xeon(R) Gold 5218 CPUs @ 2.30GHz and two NVIDIA

GeForce RTX 2080 Ti GPUs. Moreover, the DNNs are implemented based on TensorFlow-

GPU version 2.5.0. In neural network architecture, we use two fully connected layers with 24

neurons activated by ReLU function for each layer where the target network is updated per

episode and each episode consists of 5 decision intervals, or epochs. Each decision interval has a



Chapter 4. Scalable and Distributed Zero-Touch Network Slicing 77

duration of ϵ = 60 seconds, during which local monitoring information is collected to build the

local agent state. Online and Target networks are characterized by the same DNN structure.

The hyperparameter tuning depends highly on capability, scenario, and technology used [56].

The network parameters are updated using the Adam optimizer [37]. The discount factor γ and

learning rate ξ are set to be 0.99 and 0.001 respectively. The replay buffer size of each agent

βi,b is set to 20000 samples, out of which a batch of 32 samples is extracted for each training

interval. Without loss of generality, We set ηi = 100 as penalty value for all the slices. In order

to provide a comprehensive overview, we first evaluate single base station settings, focusing on

the capabilities of single agents to deal with RAN resource allocation. Then, we address a more

realistic scenario considering a multi-slice deployment over several RAN nodes, accounting for

end-user mobility and variable traffic demands.

4.5.1 Local Agent Performance Assessment

In our proposed framework, DRL agents optimally allocate radio resources to each slice, while

a federation layer enables a periodical exchange of the DRL’s parameter values to improve the

learning process across multiple agents of the same slice.
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Figure 4.7: The convergence performance of different local decision algorithms and an FDRL
approach for a single decision agent.

First, we compare the performances of different RL algorithms when dealing with radio resource

allocation, without involving federated learning. To this aim, we consider a base station scenario

including 3 network slices, i.e., a URLLC kind of slice, an eMBB, and one dedicated to mMTC

traffic, each one characterized by the SLA latency values of Λi = [10, 40, 20] ms, respectively [7].

Regarding the throughput requirements, we do not assume any fixed value as it would depend
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on the random mobility pattern of the end users and their generated traffic. Instead, we enforce

(with a slight abuse of notation), λ
(t)
i,b = φ

(t)
i,b for every decision interval to let the agents adapt

their decisions to the instantaneous traffic volumes. We instantiate a DA in every base station for

each slice. We model the instantaneous traffic demand of each slice as the realization of a Poisson

distribution with mean value λi, and emulate the SNR variability extracting its instantaneous

values from a Rayleigh distribution with the average value set to 25 dB. Moreover, we set ι = 10

PRBs as the minimum resource allocation step. Fig. 4.7 depicts the training procedure for the

eMBB slice, comparing different local decision algorithms. In particular, we consider the single

DQN approach, which implements standard Q-Learning procedures, d-DDPG a popular RL

algorithm [34], and our DDQN scheme.

We let the scenario run for 800 federation episodes, and depict the results in terms of cumulative

reward, as defined in Eq. (4.5). The variability of the network slicing environment leads to

experience learning curves with high fluctuations. For visual clarity, results are averaged over

10 simulations. As expected, the DQN approach hardly copes with the definition of suitable

PRB allocation policies, providing lower performances both in terms of cumulative reward and

convergence time. Similarly, d-DDPG suffers the temporal periodicity of the traffic demand,

resulting in a steep learning curve that soon saturates to suboptimal performances. Conversely,

after an initial exploration phase, the DDQN approach is able to allocate in a more consistent

way correct amount of PRBs to each slice according to the corresponding real-time traffic and

latency demands. It is worth highlighting that in terms of convergence time, in general, FDRL

schemes do not necessarily provide better performances when compared against standard DRL

approaches. In fact, one of the main features of FL is that it allows local DRL agents to indirectly

gain knowledge on a wider state space, extending the local experience with that coming from

other decision entities deployed within the same environment. This enables the DAs to provide

more robust performances when deployed in realistic environments. Nevertheless, the same

Fig. 4.7 provides an overview of the local model training procedure, with and without the

adoption of FL schemes. In our considered scenario, it can be noticed how DRL curves (dashed

lines in the plot) present slower convergence time and higher fluctuations when compared against

Federated DDQN approach (solid line in the plot). Additionally, DRL curves present lower

cumulative reward after 400 episodes, suggesting a lower capability of the DAs to adapt their

decisions at the fast-changing network slicing environment considered in our work.



Chapter 4. Scalable and Distributed Zero-Touch Network Slicing 79

0 5
Radius of Gyration (km)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Users Mobility

URLLC
eMBB
mMTC

URLLC mMTC eMBB

25 50 75 100
BS ID

20

40

60

80

100

BS
 ID

25 50 75 100
BS ID

25 50 75 100
BS ID

Clustering URLLC

0.0

0.2

0.4

0.6

0.8

1.0

DT
W

 d
ist

an
ce

Figure 4.8: Mobility Statistics for different network slices. (Left) CDF of end-users radius
of gyration, (Center) Average Spatial distribution of slice users over 24h time span, and corre-
sponding DTW distance matrix. (Right) Example of resulting clustering for the URLLC slice

case, each color defines a different cluster.

4.5.2 System-level Simulations

4.5.2.1 Mobility and Traffic Demand Characterization

In order to validate our framework in realistic settings, we consider the city of Milan, Italy, as

scenario of study. We collect city-wide RAN deployment information including more than 50 BSs

from publicly available sources2, and simulate realistic human mobility patterns leveraging the

work of [97]. The d-EPR algorithm allows capturing mobility patterns by specifying as input

the geographical position of the base stations together with several probabilistic parameters.

We let the model evolve adopting the default parameters described in [98]. By defining the

location relevance on the mobility space, we can influence the next-hop selection of each end-

user, therefore emulating a higher concentration of mobile devices in specific areas of the city

over time, e.g., the daily commuting over the city center during working days. Fig. 4.8 (Left)

depicts the CDF of the resulting radius of gyration per slice, aggregating the results over 15000

end-users equally distributed among the different slices. Without loss of generality, we consider

the set of BSs characterized by the same radio capacity Cb = 100 PRBs, and assume the same

3 slices introduced above simultaneously running over all the BSs. Fig. 4.8 (Center) depicts the

resulting spatial distribution of the end-users, accounting for a temporal time span of a full day.

From the picture, it can be noticed how the spatial distribution of slice users is actually similar

along with the slice set, and influenced in specific areas of the city by the high density of RAN

nodes. This is due to the d-EPR algorithm, which favors the next-hop destination of each user to

2https://opencellid.org/
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happen towards a nearby point of interest, or, in our settings, the closest base station location.

The instantaneous traffic demand of each end-user is derived starting from the values reported

in Sec. 4.5.1, weighted by a temporal factor to account for the traffic demand fluctuations typical

of mobile network scenarios, as those presented for example by [76] and [99]. In the lower part

of Fig. 4.8, we depict the resulting distance matrix D of each, i.e., per slice, downlink traffic

demand, calculated at the beginning of every federation episode for each base station pair over

the past 24 hours. As detailed in Sec. 4.3.3, this matrix is used as input to an instance of

the DBSCAN algorithm to derive the set of DAs (belonging to the i-th slice) which should be

involved in the next federation episode and model exchange. Fig. 4.8 (Right) shows the resulting

output clustering for the URLLC slice case, using ϵd = 0.06 and nmin = 2 as parameters. Such

values have been empirically selected following the sensitivity analysis depicted in Fig. 4.9, which

certifies that along the evaluation timeline and across the different running slices, the selection

algorithm identified on average 3 clusters populated by 15 agents each. The resulting behavior

of DAs is heavily affected by the entities participating in the federation process. Therefore, such

kind of characterization is fundamental to ensure performances.
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Figure 4.9: Sensitivity analysis performed on the clustering parameters and generated traffic
traces.

4.5.2.2 Effects of Different PRB Action Space

The size of the action space is well-known to affect the learning curve of any reinforcement

learning algorithm. In Fig. 4.10, we investigate this aspect by varying the minimum PRB

chunk size ι = 2, 5, 10 of the URLLC slice, while fixing T̂ = 5 decision epochs per federation

episode and adopting the full-cluster federation strategy. The plot shows how increasing the
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Figure 4.10: Learning curve for different action spaces.

PRB chunk size, i.e., adopting smaller action spaces, actually influences the reward of the

URLLC slice type and its stringent SLA requirements, with larger PRB chunk values achieving

satisfactory performances in a faster way, with about 25% performance gap with respect to

ι = 2. Nevertheless, a too broad PRB chunk allocation may result in resource wastage, with

portions of the radio resources being under-utilized by the running slices. Such a trade-off should

be carefully investigated according to both slice and system requirements. In the following, we

will adopt ι = 10 PRBs whenever not specified otherwise.

4.5.2.3 Comparison of Different Federation Strategies

Given the particular nature of the network slicing scenario, in this paper we advocate for a

dynamic agent selection method based on the time similarity of traffic demands, dubbed as DC.

As discussed in Sec. 4.3.3, several strategies can be adopted to combine local models into fed-

erated ones, pursuing generalization and performance improvements. In this paper we consider

three DC aided approaches, namely FC, BR and RR, and compare their performances against

a standard strategy which simply derives a new federated model accounting for all the available

local models, without adopting any dynamic agent selection scheme, dubbed as FDRL. The

benchmark FDRL approach exploits all the local trained models and the respective knowledge

from the agents, and would theoretically allow for the best generalization of performances [100].

Interestingly instead, from our experiments it turns out that aggregation of widely heteroge-

neous local models actually limits the capability of the global federated model to converge to
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a one-fits-all unified model, motivating our dynamic agent selection approach which favors the

specialization of federated agents working under similar RAN and mobility contexts.
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Figure 4.11: Comparison of global performances for different dynamic and non-dynamic fed-
eration approaches.

Fig. 4.11 provides a comparison of learning performances for different federation strategies in

terms of average reward and for T̂ = 5. The agent’s action selection follows a greedy approach

which balances exploration of new actions and exploitation of already known decision policies.

We gradually limit the exploration capabilities in favour of the adoption of the learned policies,

such that around half of the overall simulated time span, the possibility that the agent will

explore new actions given a known instantaneous context is in the order of 2%. From the

figure, we can observe how FC approach achieves better generalization of the learning policies,

resulting in stable performances. Conversely, BR, RR and FDRL suffer the dynamic behavior

of the underlying traffic conditions, presenting inconsistent reward traces.

4.5.2.4 Latency Analysis for Different Federation Strategies

We continue our performance evaluation by considering the experienced transmission latency.

We recall that as mentioned in Sec. 4.2, we define latency as the time spent by the slice traffic

within transmission buffer of the base station. Fig. 4.12 depicts the CCDF [101] [102] of the

latency experienced by the URLLC and eMBB slices, resulting by different federation strategies.

For the both slices, this latency is directly proportional to the traffic demand and the degree of

contention of resources among the different slices, as well as to the resource allocation decisions

taken by the agents. From the results, it can be noticed that the FDRL strategy leads to the
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Figure 4.12: CCDF of transmission latency for URLLC and eMBB slices.

worst performances, as having all the BSs involved in the learning process results in a slow

adaptation of the decisions of the agents to the local traffic conditions, therefore leading to

sub-optimal resource allocation and higher latency. In contrast, FC presents a good trade-off in

terms of collaboration among agents and specialization to the local traffic conditions, resulting

in a more efficient PRB allocation and lower perceived latency. Finally, RR and BR federation

strategies achieve performances comparable with the FDRL method, resulting from the limited

cooperation in learning that leads these federation approaches to suffer more from the dynamic

behavior of the underlying traffic conditions.

4.5.2.5 Effects of Different Network Loads and Mobility

We continue our analysis investigating the performances of the FC method in heterogeneous

traffic conditions. To this aim, we generate traffic and mobility dataset for an increasing number

of end-users, namely 15k, 20k, and 25k. As highlighted in [103], a non-linear relationship

characterizes end-user mobility and throughput performances in crowded scenarios. Clearly,

this also affects the communication latency, as a higher number of users will be simultaneously

active under the same radio access node. In the context of RAN slicing resource allocation,

this translates to finding the best DA logic to efficiently address such variability. In Fig. 4.13,

we focus our analysis on the dropped traffic, i.e., the volume of traffic that did not meet the

latency requirements due to wrong PRB allocation decisions, measured in percentage of the

offered traffic volume of each federation episode. From the picture, we can notice how during

the initial exploration phase inexperienced PRB allocation decisions performed by the DAs

heavily affect the latency requirements of all network slices, with peaks of dropped traffic that

increase with the growing number of end-users. Nevertheless, this trend improves over time as
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Figure 4.13: Performance evaluation for different network loads derived by an increasing
number of end-users in Full-Cluster settings.

the agents gain knowledge over the underlying scenario and get trained, finally converging after

policy switch, i.e. after episode 400, towards values in the order of 2% for the eMBB slice, and

0,32% for the URLLC slice.

4.5.2.6 Communication Overhead for Different Federation Strategies

Federated Learning aims at building global knowledge from the exchange of multiple locally

trained models towards a centralized entity. Such a frequent model exchange however introduces

significant communication overhead and synchronization issues, specially in wide scenarios as

those considered in our work. Fig. 4.14 compares the model exchange overhead per federation

episode resulting from our experiments for a different number of base stations while running

the same 3 slices. In the upper part we focus on the overhead statistical distribution. The

benchmark FDRL approach assumes the exchange of all the locally trained model weights to

derive the federated ones, which implies the highest communication overhead. The BR and

RR approaches (depicted in the center of the image, and referred to as Representative) allow

reducing the uplink information exchange by selecting a single representative of each cluster,

regardless of the dimensions of the group itself, thus minimizing the communication overhead

in each federation episode. It results in less than 800 kBytes in our settings. Finally, the FC

approach is characterized by an intermediate average value but higher variance. This is due

to the variable size of the DAs clusters, which follows the real-time traffic variations, and the

need to exchange the local model weights of each element of the cluster, saving communication

resources from those base stations that presented peculiar traffic traces and remain unclustered.

On the lower part of the picture, we differentiate between uplink and downlink model exchange

overhead. The FDRL approach presents a symmetric behavior matching the model exchange of
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Figure 4.14: Communication overhead per federation episode for different federation strategies
(top-part) and for different number of BSs deployed (bottom-part). RR and BR federation

strategies are referred as Representative.

all the running DAs, in both directions. Conversely, the RR/BR approaches show an asymmetric

behavior that favors the upload communication with respect to the downlink one, as only

a single DA per cluster shares its local model during the federation process, resulting in a

logarithmic trend (with respect to the number of BSs) characterizing the overhead in uplink.

This would guarantee better scalability, at the expense of suboptimal performances, as shown

in our evaluation. Finally, the FC approach shows a sublinear trend, with a slower growth rate

than the benchmark FDRL, but with significant better performances thanks to the specialization

of the DAs. It is safe to assert that the proposed dynamic clustering approach enhances the

efficiency of the federated learning scheme, limiting the overall communication overhead with

respect to traditional approaches, while providing better performances.

4.5.2.7 Power Consumption Comparison

Energy consumption is an important factor in federated learning schemes. In Fig. 4.15, we

compare the power consumption of the different DRL strategies during training both in terms

of CPU (left-hand side) and GPU (right-hand side), assuming they use the same computational

platform as specified at the beginning of Sec. 4.5. We use nvidia-smi command line utility3 to

3Part of the NVIDIA management library (NVML). Online available at https://developer.nvidia.com/

nvidia-management-library-nvml

https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
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Figure 4.15: CPU and GPU power consumption for different federation strategies during
agent training.

retrieve in real-time the energy consumption of the device, whereas for the CPU consumption

we monitor the CPU utilization during the training, and consider a proportional fraction of

the absorbed power at full computational load as declared by the vendor4. As we leverage the

GPU hardware to train the models, the different federation strategies exhibit a similar impact

on the power consumption of the CPU. Therefore, we focus on the GPU power consumption

to better highlight their behavior. The obtained CDFs show that RR/BR schemes present

lower consumption compared to FC and FDRL. Besides being positively influenced by the

communication overhead variation depicted in Fig. 4.14, such reduced power consumption also

results from the limited number of RR/BR agents involved in the federation process (selected

through accurate clustering procedures, as shown in Sec. 4.3.3), when compared against baseline

approaches.

4.6 Summary

Major research efforts in the network slicing orchestration area focus on designing solutions

able to concurrently and efficiently deal with both spatial and temporal aspects of users’ traf-

fic demand. Due to the distributed nature of the RANs domain, centralized approaches are

doomed to provide suboptimal performance and introduce significant communication overhead

towards holistic resource controllers. In this Chapter, we addressed such challenging scenario

4https://ark.intel.com/content/www/us/en/ark/products/192437/intel-xeon-gold-6230-processor-27-5m-
cache-2-10-ghz.html
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and proposed an FDRL-based architecture for network slice resource orchestration, where clus-

ters of decision agents are dynamically instantiated as virtualized instances with control over

base stations radio resources. Enabled by the latest developments in federated learning, our

approach allows building specialized knowledge from traffic and mobility patterns by exploit-

ing similarity metrics. Our results show that the proposed FDRL-based architecture poses a

trade-off involving the minimization of the communication overhead and the specialization of

the decision agents, which in turn affects their accuracy along the resource allocation process.

The main contributions in this chapter can be summarized as follows:

• We cast the RAN resource allocation problem as an optimization problem, focusing on

minimizing the traffic exceeding SLA and assessing its complexity.

• We propose a distributed architecture for RAN slice resource orchestration based on DRL,

composed of multiple AI-enabled decision agents that perform local radio allocation deci-

sions without the need for a centralized control entity.

• We design a FL scheme composed of multiple parallel layers, one for each slice, to enhance

the capabilities of the local decision-making process, following the recent development of

the Open RAN architecture.

• We further improve the decision process by dynamically defining the subset of decision

agents to be involved in the federation process, based on long-term slice traffic demands

variations and their temporal similarities.

• We validate our hierarchical architecture and assess its capabilities in realistic scenarios

by means of an exhaustive simulation campaign, accounting for a wide geographical area

and thousands of end-users.



Chapter 5

Explainable Zero-Touch Network

Slicing

Since 6G inherently underpins AI, we propose in this chapter a systematic and standalone slice

termed SliceOps that is natively embedded in the 6G architecture, and which gathers and man-

ages the whole AI lifecycle through monitoring, re-training, and deploying the ML models as a

service for the 6G slices. By MLOps in conjunction with XAI, SliceOps strives to cope with the

opaqueness of black-box AI using XRL to fulfill transparency, trustworthiness, and interpretabil-

ity in the network slicing ecosystem. This chapter starts by elaborating on the architectural and

algorithmic aspects of SliceOps. Then, the deployed cloud-native SliceOps working is exempli-

fied via a latency-aware resource allocation problem. The DRL-based SliceOps agents within

slices provide AI services aiming to allocate optimal radio resources and impede service quality

degradation. Simulation results demonstrate the effectiveness of SliceOps-driven slicing.

5.1 Explainable Machine Learning Operations (MLOps)

6G slicing is envisioned as a disruptive technology to support massive slicing with micro or macro

services. Consequently, the complexity of automated MANO operations would rise dramatically.

When it comes to catering to the services with strict reliability and latency requirements, 5G

NR falls under the URLLC services that have gained traction in industry and academia. The

URLLC slice is mandated to address the sporadic nature of this time-critical traffic by relying

on Gbps data rates and millisecond latency.

88
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The tendency towards fully automated MANO in B5G/6G has spurred intensive research in-

terest in applying AI and ML as an ideal solution for various nonlinear problems. The main

challenge for adopting dominant AI methods in telecommunication environments is the need for

AI models tailored to specific services and requirements. Notably, novel practices are required

to deploy ML solutions into production, keeping the ML models relevant and re-training them

to cope with potential change of conditions, as well as providing a trustworthy, highly accurate,

timely, and actionable AI-driven slicing environment. In this intent, the ML model deployed in

production should inescapably undergo the combination of DevOps processes. While DevOps

is an outgrowth of agile software development accelerated with the cloud-native environment, it

is called ML Operations (MLOps) when applied to ML, where telecom companies must main-

tain ML pipelines in a production environment to proactively monitor, unveil, and measure ML

models’ quality to improve the network’s automation.

On the other hand, following the technical report of the EC on “Ethics guidelines for trustworthy

AI” [104], AI solutions should pursue trustworthiness. Due to a lack of transparency and trust

in AI models, telecommunication operators are wary of widespread AI model deployment in

their networks, especially when the decisions thereof have both financial and service quality

implications. Thus, an open challenge is to integrate explainability with MLOps, to ensure

explanation-guided learning. Indeed, the XAI approach scrutinizes each feature and its impact

on the output of the AI model, enabling to observe the factors that either positively or negatively

impact the AI model prediction.

In this regard, XRL is viewed as a responsible and trustful ML approach that can be combined

with MLOps lifecycle. Indeed, in the RL method, the agent generates the corresponding dataset

on the fly by interacting with the network. This method is an evaluative and feedback-based

learning to optimize the accumulated long-term reward. It is assisted with DL in DRL to

surmount the curse of dimensionality concerning large state spaces. To fully exploit the potential

of the DRL algorithm, we need to streamline the conflict-prone nature of action selection due

to the complex relation of state-action. This defect can be highly crippling the promising RL

solutions in automated network slicing. In this intent, XAI can assist DRL to extract more

relative state-action pairs where it explains which state or input of agent has the most positive

impact on action or decision. This solution can pave the way to apply the DRL models for time-

sensitive applications such as xURLLC, where the decision should be enforced to the network

promptly and robustly.
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To incorporate these principles into a single design while ensuring a separation of concerns, this

chapter introduces SliceOps, an XAI-empowered MLOps framework that is natively embedded

in the 6G network architecture as a standalone slice. To illustrate its operation, we consider

a latency-aware resource allocation problem where each slice registers to the corresponding

SliceOps instance which provides AI services via a SliceOps agent. The main goal is to allocate

optimal radio resources to the slices while minimizing the latency to meet the SLAs.

5.2 Explainable Automation-Native Slicing (SliceOps)

The orchestration of large-scale network slices across multiple domains needs AI solutions. Since

6G natively supports AI, we propose—as a separation of matters—to concentrate AI/ML oper-

ations (MLOps) in a standalone slice called SliceOps, which manages the whole lifecycle of AI

models separately and provides AI services to the main 6G slices.
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Figure 5.1: The SliceOps workflow comprises of monitoring, re-training, and deploying ML
model as a service.

5.2.1 SliceOps Lifecycle

The SliceOps foundation relies on a practice aiming to standardize production methods through

incorporating the concept of CI and CD, producing thereby reliable software and AI solutions in

short cycles. In 6G AI-native networks, SliceOps modular design allows the evolution, upgrade,

and scaling of the MLOps layer and its AI functions separately from the service layers. Fig. 5.1
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depicts the pictorial representation of an operationalizing AI-native slice deployed at the top

of the network slicing environment with multiple SliceOps instances. The instances provide AI

services to the corresponding slice (e.g., URLLC), and they can collaborate for specific tasks

like resource allocation, where resources are generally shared between service slices. On the

other hand, SliceOps guarantees AI performance isolation through triggering re-training, which

means that if a sliceOps instance degrades for one slice, it will have minimum effect on the

other slices. This is in line with containerized solutions that decouple the execution of iterative

processes which is a necessity in ML pipelines. The SliceOps adheres to the below fundamental

pipeline principles based on RL algorithms:

5.2.1.1 Monitoring System and Data Collection (1)

It is considered as a backbone step in ML practices where data acquisition is utilized for data

preparation and model design processes. It allows SliceOps agents that run as container in-

stances within slices to collect real-time monitoring data from the gNB platform of multiple

KPIs, encompassing available resources, number of connected devices, bandwidth utilization,

channel quality, etc. This component can store structured and unstructured data on a very

large scale. Such data is streamed through, e.g., a Kafka bus to which the SliceOps AI functions

can subscribe and fetch the relevant data under a specific Kafka topic name. The obtained

data is used as input of the pipeline to guide the definition of policy in the form of service

prediction. The SliceOps RL-based agent collects data on-the-fly (online RL) interacting with

the slice environment or initializes the process with a pre-collected dataset (offline RL) stored

in an internal database. The online RL can bring additional risks in terms of interacting with

live environment and collected data. To solve this, we consider steps 2, 6, and 8.

5.2.1.2 Data Engineering and Model Loading (2, 3)

This component is responsible for data preprocessing or preparation. Different optimization

targets and AI services require heterogeneous training data for neural networks. This process

takes raw data from the monitoring system and transforms it into an understandable format

for RL, such as OpenAI Gym. The raw data contains errors and inconsistencies while having

various attributes or patterns. For example, the monitored data of different slice domains

can be non-Euclidean or not meet IID dataset features. With the various forms of data in

network slicing, pursuing the techniques such as assessment of data quality, data cleaning, data
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transformation, reduction of data, etc., is a vital step for better learning performance. The next

step is to create neural network architecture and hyperparameters tuning before compiling and

loading them into a model. The hyperparameter tuning depends highly on capability, scenario,

and technology used [56]. Different datasets require setting different hyperparameters to guide

the model to predict accurately in the following steps.

5.2.1.3 Model Training, Evaluation and Saving (4, 5, 6)

This module of SliceOps is segregated into a set of processes for the execution of continuous

model training automatically with processed data. The ML model training runs a local opti-

mization task, while the model explanation involves an explainer, either attribution-based (e.g.,

Integrated Gradient, Saliency Maps) or perturbation-based (e.g., SHapley Additive exPlana-

tions (SHAP) [105]). Upon the evaluation of RL reward, including interpretability metric, the

model retraining is triggered whenever there is a model performance deterioration following new

training data arrival (new unexplored states). Note that the reward should also correlate with

slice targets (SLA, KPIs, etc.), while the interpretability refers to XAI metrics (attributions-

based entropy, confidence, log-odds, fidelity, etc.) depending on the SLA adopted by the slice

tenant. In this respect, a feedback loop between the explainer and the model is necessary to

feed the model optimizer with the measured XAI metrics, thereby enabling explainability-aware

learning. Finally, in case the model fulfills the target performance, it will be registered and

stored in the model registry to be promoted into production later on.

5.2.1.4 AI Service Provisioning (7, 8)

The next step after training and evaluation is to retrieve the registered model for encapsulation

and move to the production stage in the form of a model prediction service. The trained model

is continuously exposed and delivered to slices as REST API assisted with SliceOps agents. The

framework considers continuous monitoring in different steps to ensure model performance.

5.2.2 Explainability in RL

The aforementioned agents are assumed to be DRL-based. Unlike the conventional DRL where

there is no causal relation between the input state parameters and the output action, this paper

introduces an attention mechanism based on SHAP explainer, which quantifies the relevance of
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Figure 5.2: The workflow of SliceOps model training based on explainable DRL.

a state to the action and guides the XRL agent to perform explainable decisions through XAI-

augmented reward shaping. The training workflow of the proposed XRL scheme is illustrated

in Fig 5.2, which is composed of the following main components,

5.2.2.1 Explainer

It explains the DRL decision by assigning high scores (in absolute value) to the most influencing

input state parameters. The score corresponds to the SHAP value, which is computed using, e.g.,

a perturbation-based approach. Specifically, each feature is perturbed or modified while keeping

other features fixed at their baseline values (e.g., white noise, zero). The model’s response is

observed by evaluating the perturbed instances and recording the corresponding predictions.

The differences between the predictions of the perturbed instances and the baseline prediction

are computed to capture the contribution of each feature when changed from the baseline value.

In Sec. 5.3.2, we demonstrate these contributions are aggregated across different perturbations

to estimate the SHAP values. Following the DRL agent interaction with the Environment

Twin, it temporarily saves the experiences and observations in a replay memory/buffer which

is steadily updated. Then, it generates the SHAP importance values over an extracted batch

dataset of state-action.

5.2.2.2 Entropy Mapper

It applies a softmax layer to the SHAP values provided by the Explainer and consequently gen-

erates a probability distribution, which is used afterward to calculate the entropy that measures

uncertainty of the taken action given the input state.
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5.2.2.3 Composite Reward Signal

The obtained multiplicative inverse of the maximum entropy value is used as XAI reward. In

Sec. 5.3.2, we showcase that the composite reward—which is a sum of the SLA reward (based

on meeting or violating the SLA requirements) and the XAI reward—results in minimizing

the uncertainty of state-action pairs and encouraging the agent to select the best actions for

specific network state values. This approach can elucidate the learning process while directing

the learning toward making explainable decisions concerning a specific state.

5.2.3 Benefits of SliceOps

The main objectives of segregating the control plane from the user plane in 5G and beyond

5G networks encompass scalability, flexibility, and agility to streamline the development of new

services and use cases. The proposed SliceOps approach aligns with this philosophy by creating

an innovative standalone AI plane to independently provide AI services and functions to the

rest of the network slices. It eliminates the necessity to modify the underlying AI functions and

structure of network slice instances for new services. By a decoupled AI plane from the control

plane and user plane, the network can upgrade or add new AI and automation functions without

impacting other planes. This flexibility and mentioned explainability features of SliceOps pave

the way for faster deployment and trustworthy network optimizations in network slicing.

5.2.4 ETSI ZSM Compliance

The design of SliceOps solution closely adheres to the ZSM framework. The standardization

process for ETSI ZSM is still in its early stages, with preliminary specifications based on a high

level of abstraction. The core concept of the closed-loop AI system is to utilize context-aware

and metadata-driven policies to more efficiently and quickly identify and incorporate new while

updating knowledge and making robust and actionable decisions. As shown in Fig. 5.1, SliceOps

is a practice toward deploying a more realistic closed-loop scheme to fulfill viable automation

solutions for network slicing control. SliceOps manages the lifecycle of AI models in a closed-

loop way that includes model performance monitoring, re-training, and delivery. It extends the

ZSM framework to manage, besides the service functions, the underlying AI functions, which

are natively supported in a standalone slice. Moreover, the SliceOps agents are based on the

closed-loop workflow in Fig. 5.2.
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5.2.5 O-RAN Slicing Compliance

The SliceOps framework can be adapted to use case 3 of open radio access network (O-RAN)

slicing, which is related to resource allocation optimization, requirements, and architecture [2].

Specifically, SliceOps layer can be developed as rApps at the non-real-time (Non-RT) radio

intelligent controller (RIC). Thanks to its architecture that brings valuable differentiators by

leveraging XAI and CI/CD, SliceOps would implement new use cases with agility and automate

network operations. In this respect, rApps need to access abundant monitoring data—such as

traffic load, latency, and signal strength—through the O1 interface to efficiently carry out their

designated functions in time-demanding training procedures. Then, the model or policy trained

by SliceOps can be packaged as an artifact and delivered via the A1 interface to run on the

Near-RT RIC interface as xApp. For dynamic network optimization purposes, this xApp would

control the underlying O-RAN components, namely, the central unit-control plane (O-CU-CP),

different slice open central unit-user plane (O-CU-UP), and open distributed unit plane (O-DU)

by using the E2 interface.

5.3 SliceOps Use Case

The next important step after introducing the key elements of the proposed framework is to

exemplify the SliceOps approach and evaluate the performance to verify the benefits of XAI

in the MLOps pipeline. In this section, we demonstrate the implementation of the small-scale

of SliceOps framework for network slicing. Then the effectiveness of the model is validated in

terms of ameliorating the long-term revenue (average reward), transmission latency, dropped

traffic, and XAI metric.

5.3.1 Network Architecture and Experiment Parameters

For the sake of validating the SliceOps framework in realistic settings, we consider a gNB sce-

nario, wherein a set of slices I is deployed. The scenario includes three slices, i.e., URLLC,

eMBB, and mMTC. The slices are characterized by the SLA latency Λi = [10, 40, 20] ms, re-

spectively. Without loss of generality, the considered gNB is characterized by the radio capacity

C = 100 PRBs of a fixed bandwidth and assumes the slices running over gNB simultaneously.

The slice traffic demand is modeled as the realization of a Poisson distribution with mean value
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λi and emulates the SNR variability extracting its instantaneous values from a Rayleigh dis-

tribution with the average value set to 25 dB. We set ι = 10 PRBs as the minimum resource

allocation step. The framework leverages Python programming language, exploiting OpenAI

Gym library [69] and interfacing DRL agents with a custom gNB simulator environment [106].

The simulator consists of virtual transmission queues and main PHY/MAC/RLC functionalities.

Each SlicOps agent is endowed with a DDQN[7]. The agents interact with each other and

O-DU through the O-RAN E2 interface to gather the slice networking statistics (e.g., channel

quality, served traffic, consumed resources, etc.). Then, they enforce PRB policy decisions

provided by the corresponding SliceOps layer in the gNB slice scheduler. We use a dedicated

server equipped with two Intel(R) Xeon(R) Gold 5218 CPUs @ 2.30GHz, two NVIDIA GeForce

RTX 2080 Ti GPUs, and the DNNs are implemented based on TensorFlow-GPU version 2.5.0.

The neural network architecture uses two fully connected layers with 24 neurons activated by

ReLU function. The network parameters are updated using the Adam optimizer. The discount

factor γ and learning rate ξ are set to be 0.99 and 0.001, respectively. The replay buffer size

of each agent βi is 20000 samples, out of which a batch of 32 samples is extracted for each

training interval. To deploy the solution in the cloud-native mode, we leveraged a containerized

approach where a cloud server hosts SliceOps instances and corresponding modules responsible

for providing AI service for different problems in slices. On the other hand, SliceOps agents of

slices run by using the Docker compose tool and communicate with the server through FastAPI

as a REST API.

The operational training phases are discussed in Sec. 5.2.2. All together, we formulate the local

optimization task as:

Problem RAN Slice Resource Allocation:

min lim
T→∞

T∑
t=1

E

[∑
i∈I

d
(t)
i,b

]
(5.1)

subject to:

E
(t)
i,b ≤ Λi, ∀t ∈ T ,∀i ∈ I, ∀b ∈ B; (5.2)∑
i∈I

a
(t)
i,b ≤ Cb, ∀t ∈ T , ∀b ∈ B; (5.3)

a
(t)
i,b ∈ Z+, d

(t)
i,b ∈ R+, ∀t ∈ T ,∀i ∈ I, ∀b ∈ B; (5.4)
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Table 5.1: DRL Parameters

Parameter Type Description

s
(t)
i = {(σ(t)

i , λ
(t)
i , ν

(t)
i ) | ∀i ∈ I}, State Space At a given time t, σ

(t)
i is the average SNR value

experienced by the users in the i-th slice over

a decision time interval. λ
(t)
i is the total traffic

volume generated by the i-th slice during this

time interval, and ν
(t)
i represents the remain-

ing available capacity after considering previ-
ous allocation decisions made by other agents.

A = {ι · k | k = {0, 1, . . . , C
ι
}} Action

Space
We set ι as the smallest unit of PRB allocation,
also known as the chunk size. The PRB allo-
cation decisions made by the i-th agent must
be in multiples of ι, creating a discrete action
space.

r
(t)
i =


α
(t)
i − 4ρ

(t)
lower if α

(t)
i < ρ

(t)
lower,

(1− α
(t)
i

ρ
(t)
up

)
α
(t)
i

ρ
(t)
up

if ρ
(t)
lower ≤ α

(t)
i ≤ ρ

(t)
up ,

−(α
(t)
i − ρ

(t)
up ) if α

(t)
i > ρ

(t)
up .

Reward We assess the quality of the action by introduc-
ing two variables, ρ(t)up and ρ(t)lower, which
define the upper and lower bounds of the al-

location gap as ρ(t)up = 2 · Γ(ι(t), σ(t)
i ) and

ρ(t)lower = −Γ(ι(t), σ
(t)
i )

where E
(t)
i,b = E

[
φ
(t)
i,b

Γ
(
a
(t)
i,b ,σ

(t)
i,b

)
+d

(t)
i,b

]
defines the expected transmission latency, and Γ(a, σ) is a

function that translates the PRB allocation a in the equivalent transmission capacity, given

the experienced channel quality σ. The traffic demand generated within a decision interval

might not be fully satisfied due to erroneous PRB allocation estimations, incurring in additional

transmission latency due to traffic queuing at the base station. Therefore, we introduce the

variable d
(t)
i,b as a deficit value indicating the volume of traffic not served within the agreed slice

latency tolerance Λi, and that is therefore dropped.

The abovementioned optimization task can be solved by invoking the DRL framework, wherein

the state and action spaces as well as the reward are summarized in Table 5.1.

A novel approach to measure the confidence of DRL decisions is to observe the distribution of

state-features SHAP values in the replay buffer dataset. Specifically, the probability distribution

of the states-features is generated as,

pl,k =
exp
{
|αl,k|

}
∑L

l′=1 exp
{∣∣αl′,k∣∣} , l′ = 1, . . . , L, (5.5)

where αl,k stands for the SHAP value corresponding to state l of sample k in the replay buffer

dataset. The decision is viewed as certain when high attributions (in absolute value) are more
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concentrated in some features, thereby minimizing the Shannon entropy,

Hk = −
L∑
l=1

pl,k log(pl,k). (5.6)

In this respect, we introduce what we call XRL reward, which is defined as the multiplicative

inverse of the entropy, i.e.,

r
(t)
XRL =

1

maxkHk
(5.7)

Finally, the composite reward fed back to the DRL agent is given by,

r
(t)
i,b,c = r

(t)
i,b + µr

(t−1)
XRL (5.8)

The single agent training procedure is summarized in Algorithm 7.

5.3.2 Latency-Aware Resource Allocation

Acquiring swift and constructive resource allocation in network slicing is precluded due to the

lack of dynamic traffic steering. We cast the radio resource allocation problem in gNB as an

optimization problem, emphasizing on minimizing allocated resources and latency to meet the

SLA. We consider the transmission latency as the average time that traffic of a slice experiences

before being served within the gNB transmission buffers due to the inter-slice scheduling process.

The radio resource availability for the downlink traffic is divided into subsets of PRBs. The

provided AI model by SliceOps instances lets the SliceOps agent dynamically assign the optimum

PRBs to each network slice following the real-time traffic and SLA requirements. In this scenario,

we consider correct and fair dimensioning of the inter-slice PRB enforcement instead of focusing

on the intra-slice scheduling issue.

5.3.2.1 Long-Term Revenue (Average Reward)

As shown in Fig. 5.3, the designed composite reward function (XRL strategy) assisted by the

SHAP approach guarantees better learning generalization and robust performance compared
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Algorithm 7: Single XRL-Agent Resource Allocation

Initialize primary network θ and target network θ̃, and replay buffer β,
Import network slicing environment (‘XRL–v2’),
Initialize action space A and state space S
t=0
while t ¡ max timesteps do

if t ¡ start timesteps then
Initial buffer filling: a

(t)
i,b = env.action space.sample()

else

Observe state s
(t)
i,b and select a

(t)
i,b ∼ π(s

(t)
i,b , a

(t)
i,b )

end

Execute a
(t)
i,b and observe s

(t+1)
i,b and r

(t)
i,b + µr

(t−1)
XRL :

next state, reward, done,

Store new transition (s
(t)
i,b , a

(t)
i,b , r

(t)
i,b , s

(t+1)
i,b ) into βi,b

if t ≥ start timesteps then

Sample batch of transitions β̃i,b

Calculate XRL reward r
(t)
XRL according to (5.7)

Compute target Q value

Perform a gradient descent step on: (y
(t)
i,b −Q(s

(t)
i,b , a

(t)
i,b , θ

(t)
i,b ))2

Update target network parameters: θ̃
(t)
i,b ←− τθ

(t)
i,b + (1− τ)θ̃

(t)
i,b

end
if done then

obs, done = env.reset(), False
end
t=t+1

end

Figure 5.3: Convergence performance of the RL and XRL approaches. For the sake of visual
clarity, the curves are smoothed concerning confidence bands and standard deviation.

to the RL method (SLA reward) as the baseline. In around half of the overall training, the

eMBB SliceOps agent inspects action space (PRBs) that initially leads to high fluctuations

in learning curves, i.e., exploration, and then strives to achieve the right trade-off between

the learned decision policies and varying network states, i.e., exploitation. It is safe to assert

that the composite reward based on the proposed explanation-guided action-selection strategy

enhances the performance of SliceOps agents. The SHAP explainer extracts the features and



Chapter 5. Explainable Zero-Touch Network Slicing 100

their importance values from the batch dataset for a particular prediction in conjunction with

the entropy mapper to provide a reward metric to guide the agent with more relevant state-

action pairs.

Figure 5.4: The XAI waterfall plot illustrates the contribution (either positive or negative) of
a given input state parameter to the output decision for URLLC slice. (Up) Exploration phase,

(Down) Exploitation phase.

5.3.2.2 Explaining Feature Importance

In Fig. 5.4, we observe that f(x) represents the predicted action taken by the XRL agent, which

involves allocating PRBs to the URLLC slice. Meanwhile, E[f(x)] represents the expected

value or the average of all possible actions. The absolute SHAP value provides insights into the

influence of a single state on the action taken. During the initial stages of training, the agent

behaves as a Max C/I scheduler, resulting in a penalty for URLLC users experiencing a low SNR

state (SHAP value = −1.77). Consequently, this leads to a relatively low allocation of PRBs

per slice, specifically 8.99 PRBs. Contrastingly, in episode 500, which signifies the exploitation

phase where the agent has learned the optimal policy, the agent’s action primarily depends on

the served traffic (SHAP value = 10.34). As a result, a higher allocation of PRBs, specifically

17.99 PRBs, is observed. In Fig. 5.4 (Up), the exploration entails engaging in actions with

uncertain PRBs allocation policy aims to acquire deep insights about the network environment

to learn better optimal strategies. Fig. 5.4 (Down) presents the results in the exploitation phase,

where the agent leverages the learned knowledge in the exploration phase and executes PRB

actions that are estimated to yield the highest rewards.
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Figure 5.5: Network performance comparison for RL and XRL settings. (Up) The transmis-
sion latency CDF for URLLC slice, (Down) The performance evaluation in terms of dropped

traffic for mMTC slice.

5.3.2.3 Transmission Latency

Fig. 5.5 (Up) depicts the cumulative distribution function (CDF) of the time that URLLC traffic

experiences within the gNB transmission buffer, resulting from RL and XRL-based SliceOps

resource allocation. From the results, it can be noticed that the XRL approach leads to higher

performance where 50% of perceived latencies in the URLLC slice is less than 1.5 ms, whereas

this value for the RL solution is 3.75 ms. The performance of XRL-SliceOps agents reveals that

they allocate adequate radio resources proportional to the traffic demand while handling varying

resource contention among slices. In contrast, the defective collaboration among agents in the

RL strategy and the erroneous trade-off between resource allocation and network conditions

(state-action pairs) result in higher incurred latency.

5.3.2.4 Dropped Traffic

We continue the performance analysis on the proposed XRL approach by shedding light on

the volume of dropped traffic that does not meet latency SLA requirements owing to mistaken

radio resource allocation policies, as showcased by Fig. 5.5 (Down). The box plot illustrates the

highest value of mMTC dropped traffic, excluding outliers for the XRL scheme, is 4.8%, whereas

this value for the RL method is 11.7%. Besides, the lopsided box plot of XRL is positively skewed

where the mean value is greater than the median, i.e., the majority of the values are located on
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the left side (lower dropped traffic values). In contrast, mMTC slice experiences higher dropped

traffic by RL solution where the box plot indicates a few exceptionally small dropped traffic

and most values are large, which results in the mean being pulled to the left.
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Figure 5.6: Comparison of algorithms in terms of time efficiency on the network slicing setup.

5.3.2.5 Time Efficiency

Fig. 5.6 reflects about time efficiency comparison among RL and XRL algorithms during the

whole training operation. The box plot illustrates that the median line of the box for RL and

XRL is at 7.5s and 17.5s, respectively. At a glance, we can explicate that the RL algorithm

takes less processing time to complete episodes than XRL. However, as shown in Fig. 5.3, XRL

converges faster, which can compensate this higher complexity compared to the RL approach.

Note that there are some outliers for each box between 2.5s and 4s, which is the period of filling

the replay buffer initially as a part of training different DRL algorithms.

5.4 Summary

Algorithmic and architectural innovations are required to streamline 6G slicing automation in

future networks. This chapter has introduced SliceOps, a framework for automation-native 6G

networks, where the AI operations (MLOps) are gathered in a standalone slice that provides

AI service to the rest of slices. This AI slice extends the ZSM closed-loop to the AI lifecycle

management. Moreover, explainability-guided learning is adopted in SliceOps to ensure trust

in and robustness of the DRL agents. Both AI and network performance results underpin the

proposed framework. The following contributions are presented in this chapter:

• We introduce the architecture of SliceOps, where the explainable ML operations are gath-

ered in a standalone slice providing AI services to the rest of the slices. This continuous
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delivery (CD) and continuous integration (CI) of ML models enhances reliability and

interpretability while quickly deploying AI models in the network with higher consistency.

• As a use case of SliceOps, a RAN resource allocation problem is defined, aiming at reducing

SLA violations.

• To solve this problem, SliceOps agents are proposed, which are based on a novel explanation-

guided DRL (XRL) scheme that is assisted with SHAP importance values and an entropy

mapper to guide the agent in reducing uncertainty in its actions across various network

states.

• The AI and network analysis demonstrate the superiority and faithfulness of the proposed

explanation-guided DRL approach compared to the RL baseline.
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Chapter 7

Conclusions and Future Work

The technology of network slicing is seen as a significant advancement in the upcoming 5G mobile

networks and beyond, which has the potential to introduce new participants into the mobile

ecosystem and facilitate innovative business models. It is a promising solution for the challenges

faced by modern networks, such as increasing traffic demands, diverse service requirements, and

the need for efficient resource utilization. With network slicing, network operators can partition

their infrastructure into multiple virtual networks, each tailored to meet the specific needs of

different use cases and customers. This enables greater flexibility, agility, and customization in

network management and service delivery. Furthermore, network slicing can provide significant

benefits to various industries by enabling the deployment of specialized network slices optimized

for their unique requirements. However, network slicing also presents several technical and

operational challenges, such as the need for effective slice orchestration, security, and scalability.

Overall, the potential benefits of network slicing outweigh its challenges, making it a promising

technology for the future of networking. As network operators continue to embrace this approach

and work towards developing robust network slicing solutions, we can expect to see significant

advancements in network performance, reliability, and innovation in the coming years. We

summarized the conclusions and contributions of this thesis in Sec. 3.3, Sec. 4.6, Sec. 5.4.

The results of this thesis revealed some challenges and limitations for transforming AI-native to

automation-native RAN network slicing while presenting new opportunities that should be con-

sidered carefully in future research. The following sections bring attention to various challenges

and opportunities.
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7.1 Challenges and Limitations

Time-Sensitive Slicing

Network slicing should fulfill innovative services with time-critical characteristics requiring real-

time or near-real-time management operations and decision-making. AI enables 5G/6G net-

works to become functional through predictive and proactive abilities. By fusion of ML models

and processes in 6G technology, the telecom domains can make intelligent decisions indepen-

dently, improving slices’ latency and reliability. MLOps can speed up the different steps of AI

operations in slices, such as data collection and preparation process, and provide faster response

to changed conditions of the network. However, it needs an extensive process and long-time

E2E procedure, and this issue becomes more critical for highly dynamic slice environments with

big data. Thus, optimizing the training time and ameliorating inference model performance is

necessary to harness the full potential of MLOps into a slice instance.

Secure Slicing

Network slicing may introduce new vulnerabilities, while the stringent performance of slices

in a shared infrastructure environment requires a secure E2E network. In [107], the paper

has identified security issues of network slicing and associated technologies. In this intent, slice

isolation play a vital role in guaranteeing safe and accurate operations. In contrast, the AI model

in automated slices needs to be protected from unauthorized access and usage. MLOps pipeline

collects data from online sources and traffic which increases the risk of data poisoning. This

vulnerability can corrupt or manipulate the data used for training ML models while engendering

confidentiality damages and changing expected responses to slices. The secure data pipelines in

MLOps are challenging and need to consistently set governance rules in each pipeline step to

protect against different data attacks.

Collaborative Slicing

The learning procedure for establishing large-scale intelligent network slicing is not trivial since

it is time-consuming and computationally complex, especially if each slice is independently

trained for the same tasks. Relying on invoking transfer learning with a collaborative approach

between slice agents, a partially trained AI model can be distributed to the same deployed slices
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or different slices with the same tasks. The shared trained model can be re-trained to satisfy

particular requirements of slices, accelerate learning of subsequent tasks, and reduce training

load and time. Exploiting prior learned knowledge and the weight of different DNN models can

improve generalization for different slice settings. The transfer learning for slicing is an open

research area while pursuing MLOps-driven slicing is more challenging. MLOps is demanding,

and the sheer number of model transfers can raise privacy and isolation concerns.

7.2 Future Research Directions

6G Sustainability

In 6G, we will witness a massive number of slices that deal with significantly more data at faster

rates than the current network’s deployment. It is of utmost importance to derive more suitable

power-optimized solutions to ensure the long-term sustainability of AI-driven slicing. In this

respect, challenges of designing sustainable intelligent slices might surface in deploying MLOps

pipeline solutions to fulfill the network energy mitigation. Therefore, more research should be

conducted to reduce computations and energy consumption in different steps of MLOps-driven

slicing.

6G O-RAN

The softwarization and programmability within cellular networks play a vital role in 6G RAN

slicing to ensure efficient and flexible sharing of network resources. In this regard, a promising

direction to enable this transformation is O-RAN solutions. O-RAN slicing approach can cause

greater agility, faster innovation, and support verticals to capture requirements. It represents a

considerable challenge due to the current lack of principles and distributed architecture for AI-

driven optimal decision-making strategies to underpin massive 6G slicing. However, correlating

the MLOps-driven O-RAN with network slicing constitutes a higher challenge, but it is an

exciting line of research to achieve reproducible model deployment.
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6G Immersive Services

In the ambitious vision of 6G, the coined xURLLC will become conflated with both eMBB and

mMTC [108]. The xURLLC paves the way for the implementation of immersive and Metaverse

services. Designing a lifelong predictive and proactive solution is necessary to fulfill the re-

quirements of xURLLC services, such as latency, bandwidth, throughput, and QoS. Therefore,

feasible MLOps solutions need more study and analysis to satisfy requirements.
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