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1  Introduction  

Data communications are developing very quickly and new applications 

demand a redesign of the access network infrastructures in order to fulfill new 

bandwidth and latency requirements. At present, there is an important 

bottleneck in the communication between local area networks and core 

networks due to the low data rate transmission capabilities of access networks. 

xDSL technologies present a temporary solution, as xDSL transmission 

capabilities rely on the copper infrastructure, deployed several decades ago, 

set up to carry voice services. Copper wires do not have enough bandwidth for 

high data bit services and therefore xDSL technologies require advanced signal 

processing and modulation techniques to exploit the available bandwidth to 

the limit. Also, xDSL compromise between distance and data rate is very 

limiting, so when data rate is increased to the tenths of Mbps the distance of 

the data link needs to be reduced to less than 500m to be able to establish a 

reliable transmission. 

Wireless communications is another competitor of fiber in access. The main 

advantage of wireless networks is its quick deployment and low cost 

implementation. However, the main problem of wireless data transmission is 

robustness, added to the fact that the available bandwidth is limited and many 

times regulated by national government bodies. Also, applications with high 

demanding bandwidth or low latency requirements are difficult to deploy on 

wireless networks due to the variability of the transmission media together 

with limited bandwidth availability. 

Access optical networks overcome all the problems of both xDSL and wireless 

technologies by offering immense bandwidths over long distance links solving 

all present and future bandwidth requirements for present and future 

applications. The main difficulty of optical networks to become the chosen 
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technology for access relies on their higher deployment costs. xDSL 

technologies use an infrastructure which has already been deployed and 

wireless communications do not require any infrastructure at all. Nevertheless, 

once the optical network infrastructure is deployed there is no other 

transmission media that can compete against fiber in terms of bandwidth or 

distance. Also, optical access solutions are the best economic model for green 

field deployments. 

There are of special interest optical network architectures based on passive 

devices. These networks are called Passive Optical Networks (PONs) and 

constitute the most advanced access topology so far. As PONs do not use any 

powering in field, PONs are very reliable. Also, network maintenance costs are 

low as PONs do not require any environmentally-controlled location in field to 

install active equipment. 

The objective of this thesis is to evaluate different network topologies for 

passive optical networks in access focusing on efficiency and cost effectiveness 

in order to find a realistic approach that can compete against other access 

technologies in terms of costs. Also, a realistic upgrade path from a copper-

based infrastructure to a completely optical access solution will be described. 

Transmission distance is another parameter that is considered together with 

the ability to serve as many subscribers as possible from a unique Exchange 

Center. The limit of this is the Long-reach PON concept, which merges the 

Metropolitan Area Network (MAN) and the access network into one. 

All these concepts will be explored and analyzed in the present document, 

which has been classified as follows: 

Chapter 2, State of the art, will describe the present developments in access 

networks and will help the reader to get focus into the work. After a brief 

description of different FTTx scenarios, the long-reach PON concept will be 

presented and described. Then, different media access control (MAC) 

protocols and multiplexing techniques will be described and the commercial 

standards that are being deployed at present will be presented.  

Chapter 3 will describe the components that are required to deploy an 

advanced network infrastructure, from optical routers based on arrayed-

waveguide gratings (AWG) to tunable sources for agile wavelength tuning and 

reflective receivers and modulators based on reflective semiconductor optical 

amplifiers (RSOA). 
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Chapter 4 analyses the commercial viability of a gradual upgrade path, from 

the existing copper-based infrastructure to a totally optical outside plant, by 

incorporating two intermediate stages, the first one based on VDSL and the 

second one based on switched Ethernet. 

Chapter 5 will dive us into advanced topologies for FTTx, where different 

outside plants and multiplexing techniques will be described, analyzed and 

experimentally demonstrated. 

Chapter 6 will develop advanced MAC protocols for FTTx to optimize available 

bandwidth on high-density access networks. 

Finally, the conclusions section will summarize the work and present future 

research lines to continue developing this topic. 
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2  State of the art  

The concept of optical access networks is very wide and has many different 

approaches. Fiber-To-The-x (FTTx) includes all the possible cases of deploying 

optical fiber from the Central Office (CO), also known as Optical Line Terminal 

(OLT) to the end user subscribers. “x” is a variable that could be “H” for home 

(FTTH), “B” for business/building (FTTB) and “C/Cab” for curb/cabinet 

(FTTC/Cab). These terms pertain to several “last mile” network access 

applications, involving typically single fiber telemetries between a remote 

terminal (at the OLT / CO) and the subscriber premises (ONT: Optical Network 

Terminal or ONU: Optical Network Unit). 

Advances in single fiber, full duplex, transceiver technology has enabled 

several important “last mile” network access applications including FTTB, FTTC, 

and FTTH. Typically, FTTB networks transport bi-directional, high data rate 

voice and data signals to businesses, whereas FTTC and FTTH support 

bidirectional high data rate voice, data and broadcast video signals for 

bundled residential subscriber services. 

Fiber To The Home (FTTH) is the most advanced of these applications, typically 

using a single optical fiber to directly connect the subscriber’s home to the 

network. This provides a truly “future proof” network with no electrically active 

components, since passive, single mode fiber optic telemetry supports virtually 

unlimited signal bandwidth. No changes to the outside cable plant would then 

be required as new services, which require increasingly higher digital data rate 

and analog bandwidth, are developed. Telephony, voice over IP, very high 

data rate internet access, CATV, Direct Broadcast Satellite, HDTV are among 

the most popular services being offered today. 

However, there is a further evolution stage to FTTH which is Fiber To The 

Desktop (FTTD). This would be the final evolution of the fiber deployment, 
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deploying fiber inside the house to interconnect all the equipment of the 

home by means of optical fiber. 

Another classification in today’s FTTx network architectures is the type of 

connection between the CO and the ONUs. 

This can be PTP (Point to Point) in which a direct fiber link connects each end 

user to the local network node, and PTMP (Point to MultiPoint) in which the 

signal is divided between several end users (the number of users depends on 

the characteristics of the application: distance, optical loss budget, 

wavelength…). When PTMP networks have a passive outside plant are named 

PONs (Passive Optical Networks) and are the ideal solution to deliver 

advanced services to end users, due to its multicast nature and high sharing 

factors of the optical equipment located at the CO, together with relatively 

low deployment costs [Green05]. 

2.1  Passive and Active Access Networks  

A Passive Optical Network (PON) consists of an optical line terminator (OLT) 

located at the Central Office (CO) and a set of associated optical network 

terminals (ONT), also known as optical network units (ONU) to terminate the 

fiber. In at FTTH deployment, ONUs are located at the customer’s premise but 

in the other FTTx approaches, ONUs are located in an intermediate point 

between the CO and the end user. Both of these devices require power. 

PON gets its name because instead of using powered electronics in the 

outside plant, it instead uses passive splitters and couplers to divide up the 

bandwidth among the end users – typically 16/32 or 64 over a maximum 

distance of 10-20 km. 

 

Fig 2.1  PON architecture 
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Active networks look very similar to PONs; however, there are several 

important differences. The most relevant one is that instead of having passive 

splitters in the field, it uses electronics to provide fiber access aggregation. At 

the RN, there is then a dedicated connection between the OLT and each of the 

ONTs by means of an active electric switch. Because of this, this type of 

architecture is sometimes referred to as Point-to-Point (P2P). Distances in 

active networks are greater than in PONs because all the links are P2P and just 

limited by power budget constraints. Active networks can then reach 50 km in 

the feeder fiber link and up to 10-20 km in the distribution links. The number 

of ports is limited by the switch employed and not by the infrastructure itself. 

However, the price to pay to have this distance extension and added number 

of connection ports is the use of active equipment in the field. This is a very 

limiting factor due to the requirement of an environmentally controlled 

location to place the switching equipment. Also, at the remote node there is a 

mirror optical interface for each ONU so the total number of optical interfaces 

is higher than in the PON approach. 

 

Fig 2.2  Active architecture 

The main advantage of active networks is that the link between the remote 

node and the ONUs is dedicated and, therefore, it is possible to use simple 

electrical/optical devices at the ONU. In the passive networks, all the devices 

transmit at of the optical channel data rate in burst mode, so electronics are 

more complex.  

Although active networks have some advantages, the limitations make them 

less attractive than PONs. Outdoor power supplying, the requirement of 

environmentally controlled locations for the equipment, higher maintenance 

costs of the network, less reliability due to the use of electronics at the remote 

node and higher number of optical interfaces make active networks not 

attractive for a future proof deployment.  
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Network scalability is also more complicated and costly for active networks, 

since it is generally necessary to change RN electronics to adequate new 

capacities and modulation formats. A passive network is completely 

transparent to these changes and only the ONUs and the OLT need the new 

capacity features to be modified. In addition, passive networks can be 

extended to all available optical bands. 

Network Advantages Disadvantages
Optics/electronics at end user data rate Low interface utilization

Dedicated link between RN and ONU no burst-mode available

P2P links Bit rate-dependent infrastructure

Simple network standards Active equipment in field

Not future proof

Efficient for burst traffic shared transmission media

Reliable MAC required

Passive outside plant (not powered) burst mode equipment

Transparent bit rates & modulation

Easy to upgrade

Passive access networks 

(PONs)

Active access networks

 

Table 2.1  Comparison between active and passive access networks 

Another interesting solution is a hybrid extended topology, where passive 

optical splitters and an active remote node are used on the same network. This 

approach is very flexible and allows high density and, at the same time, cost 

effectiveness.  

 

Fig 2.3  Hybrid architecture  

The idea is to deploy an outside part based on two stages: the first stage an 

active point-to-point link between the CO and the first remote node, offering 

a high bandwidth connection. The second stage is n passive networks to 

interconnect the remote node with the end users. This approach is a good 

solution for long reach access networks as it allocates simple powered 
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equipment in field but provides high number of connections and long 

distances. 

2.2  FTTx  

Having presented passive and active access networks, this section will describe 

different approaches to interconnect the CO with the end users under the FTTx 

concept. FTTx was coined to describe the progressive progress of migration 

from a copper-based access network to a fiber-based one, to deploy fiber 

from the CO to the users gradually, by adapting the outside plant in stages so 

the required investment to totally exchange the copper infrastructure by fiber 

is spread in time. 

There are mainly four different FTTx approaches. 

 

Fig 2.4  FTTx approaches  

2.2.1 FTTCab  

 

Fig 2.5  FTTCab block diagram  

FTTCab architecture runs an optical fiber from the CO to the neighborhood 

cabinet, where the signal is converted to feed the subscriber over a twisted 

copper pair. Typically, the neighborhood cabinet is about 1 km from the 

subscriber's home or business. In the cabinet, a Digital Subscriber Line Access 

Multiplexer (DSLAM) distributes and aggregates traffic to / from the end users 
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[ITUTG995.1].  From that point to the end subscriber, the twisted pair transmits 

data to the end subscriber normally using ADSL technology [ITUTG992.x, 

x=1..5]. Data rates are mainly limited by the product bandwidth per distance 

of the copper cable. HFC networks also use this approach, but in this case, the 

copper media is a coaxial cable and the transmission protocol is based on 

DOCSIS standards [DOCSIS]. 

2.2.2 FTTC  

 

Fig 2.6  FTTC block diagram  

FTTC architecture runs an optical fiber from the CO to a small curb-located 

cabinet, which is nearer (typically within 150 – 200 m) to the subscriber than in 

FTTCab approached. It is then converted to twisted copper pair. As the DSLAM 

is now located nearer the end users datarates can be higher and thus, VDSL 

[ITUTG993.1] solutions at higher data rate can be deployed. Using this 

approach, bidirectional 100Mbps per user can be transmitted using VDSL2+ 

[ITUTG993.2] standards on some links. However, data rates depend on the 

copper link characteristics. 

2.2.3 FTTH/B  

 

Fig 2.7  FTTH block diagram  

The PON, when included in FTTH/B architecture, runs an optical fiber from a 

CO to an optical splitter and on into the subscriber's home or building. The 

optical splitter may be located in the outside plant or in a building. This is the 

last stage of the evolution as optical fiber runs all the way between the CO and 

the end subscribers. In this scenario, the network infrastructure has unlimited 
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transmission capabilities, which are just limited by the technology used for the 

data transmission and the electronics used for its implementation. 

A PON deployment can be common to all of these architectures. However, it is 

only in the FTTH/B configurations that all active electronics are eliminated 

from the outside plant. The FTTCab and FTTC architectures require active 

outside-plant electronics in a neighborhood cabinet or curb, which increases 

maintenance and operational costs. Also, those electronics are complex, 

especially for VDSL transmission due to the complex data modulation formats 

required to exploit the available electrical bandwidth. Power dissipation 

becomes also an issue in this case. 

When fiber is used in a passive point-to-multipoint (PON) fashion, the ability 

to eliminate outside plant network electronics is realized, and the need for 

excessive signal processing and coding is eliminated. This signal processing 

was required in the xDSL scenarios in order to exploit all the available 

bandwidth of the twisted pair in an effective way because it was a very limited 

resource. 

The PON, when deployed in a FTTH/B architecture, eliminates outside plant 

components and relies instead on the system endpoints for active electronics. 

These endpoints are located at the CO, at the local exchange, and the ONU, at 

the end subscriber premises. 

Fiber-optic networks are simple, more reliable, and less costly to maintain than 

copper-based systems. When these components are ordered in volume for 

potentially millions of fiber-based access lines, the costs of deploying 

technologies such as FTTH/B, FTTCab and FTTC become economically viable. 

This is especially true on green field deployments, where several economic 

studies show that fiber is the most cost effective solution when a new network 

is deployed [Lin06, Park01, Vetter00]. 

2.3  Long reach PONs 

The concept of long reach PONs define an access network of at least 100 km, 

with data rates starting at 2.5Gbps and giving connectivity to +1,000 users. 

This design parameters require the development of advanced transmission 

techniques to fulfill all the specifications at a reasonable cost.  

A possible architecture of a long reach PON (LR-PON) is shown in Fig. 8. The 

headend of the LR-PON is located in the metro node instead of in the CO and 
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the idea is to cover a complete metropolitan area from a single headend. 

Amplification in field is almost mandatory so transmitters should work in the 

1550 nm window, where erbium doped fiber amplifiers (EDFAs) can be are 

used at the headend and at intermediate local exchange locations to extend 

the reach to at least 100 km. The 100 km reach is required to allow dual 

parenting of local exchanges onto metro nodes. 

 

Fig 2.8  Long reach PON system architecture  

LR-PONs are primary targeted for FTTH applications. However, they could 

equally be used to feed VDSL cabinets or radio base-stations and as such 

provide a flexible, future-proof solution. 

As mentioned above one of the objectives of LR-PONs is to reduce the 

amount of equipment in nodes. Related to this, power consumption is another 

characteristic to minimize in future access solutions. Therefore, LR-PONs also 

targets the development of low-power equipment  

2.3.1 Long reach PON – technical chal lenges  

LR-PONs are not commercially available and are as yet a research concept. 

Nevertheless the potential benefits they offer are such that they are a very 

worthy research topic.  

Given the large span losses involved, the first issue is whether adequate signal 

to noise performance can be achieved. Amplification in field will be required 

but this reduces signal to noise ratio, so amplification can not be infinite. 

Another issue is compatibility with commercial standards and whether the 

various PON protocols will scale to long lengths and high split. Long lengths in 

themselves are not an issue for existing GPON systems, as ranging protocol 

logically adjust distances between two consecutive ONUs by means of guard 

bands. A question which remains to be answered is the impact on system 

performance of bursty upstream data passing through erbium doped fiber 

amplifiers. Further work is also needed to develop a suitable 10 Gbit/s burst-

mode receiver for the LR-PON headend. Cost reduction of the ONU 

transmitter is clearly another key area.  
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In order to further improve fiber efficiency, wavelength division multiplexing 

(WDM) could increase transmission capabilities of the LR-PON between the 

metro node and local exchange.  

In conclusion, in order to economically support significant bandwidth growth, 

it is necessary to simplify networks. This can be accomplished by deploying LR-

PONs. The concept is very wide and in the longer term, LR-PONs will provide 

further network simplification and so cost reduction [Talli06, Nessett04].  

2.4  Multiplexing strategies  

The Passive Optical Network concept, which has already been introduced in 

previous sections, define an access network without active devices between 

the Central Office and the end user. In any case, this definition is very wide and 

allows different technologies and access methods to be developed.  

As in PONs there is a shared resource (the fiber), which is used for all the users 

to connect to the CO, a Media Access Control (MAC) needs to be established 

in order to guarantee the integrity of the information that is exchanged 

between the CO and each of the ONUs connected to the network.  

There are many ways to multiplex different users on a common transmission 

channel. Sub-Carrier Multiplexing (SCM), Code Division Multiplexing (CDM), 

Time Division Multiplexing (TDM) and finally Wavelength Division Multiplexing 

(WDM) are the classical multiplexing techniques. There are many variants of 

each technology and also hybrid solutions combining two or more techniques 

are possible.  

From the optical domain perspective, the two protocols that are more 

interesting are TDM and WDM. CDM is also becoming more attractive in the 

research field but with no commercial implementation yet. In this section we 

will mainly discuss TDM and WDM PONs and hybrid solutions combining both 

techniques.  

2.4.1 Time Division Multiplexing  

The principle of TDM PONs is to share a single laser source among the users 

connected to the network on time basis, assigning to each used a time slot, 

which can be dynamic or fixed. The information on a TDM PONs is 

broadcasted which means that all ONUs have access to the information sent 

from the CO. ONUs receive all the data streams and reject the ones which are 
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not addressed to them. This feature is interesting for multicast transmission 

(like video broadcasting) but turns into a drawback when transmitting unicast 

traffic due to security inconsistencies.  

 

Fig 2.9  TDM PON 

The most critical aspect of TDM PONs is however upstream transmission. 

Downstream transmission has just one emitter and several receivers so 

collisions of packets are not possible as they are just sent from a single source. 

However, the upstream transmission has several emitters (each ONU) and just 

one receiver (the CO) so in this case, collisions may occur if two emitters 

transmit at the same time. Therefore, synchronization of the upstream channel 

is critical on TDM PONs. Commercial standards and research groups have 

developed optimized upstream synchronization protocols, which can be easily 

implemented on the firmware of ONUs.  

Another important consideration of TDM PONs is that the available bandwidth 

is shared among the ONUs connected to the network. The ability to share this 

bandwidth to the ONUs in an effective way is another important specification 

of TDMA PONs, which is currently under study and has different approaches.  

The main advantages of TDM PONs arise when analyzing the economics of the 

implementation. The optical transmission is carried by a single laser at the CO 

shared among the ONUs connected to the network. Also, the power splitter 

located at the outside plant is relatively inexpensive when compared to 

wavelength-selective devices and furthermore, ONU laser equipment is simple 

and optical transmission requirements are not strict. This leads to a 

configuration that can be deployed at present and is commercially available. 

However, pure TDM PONs do not exploit the full potential of optical fiber, as 

just a very small portion of the available bandwidth is used.  
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2.4.2 Wavelength Division Multiplexing  

To exploit more of the fibers THz bandwidth there are solutions that 

complement or even replace TDM as multiplexing technique. One obvious 

choice is WDM (wavelength division multiplexing), in which several baseband-

modulated channels are transmitted along a single fiber but with each channel 

located at a different wavelength. Each of n different wavelength lasers is 

operating at the slower Gbps speeds, but the aggregate system is transmitting 

at n times the individual laser speed, providing a significant capacity 

enhancement [Park04].  

The WDM channels are separated in wavelength to avoid cross-talk when they 

are demultiplexed by an optical fiber. The wavelengths can be individually 

routed through a network or individually recovered by wavelength-selective 

components. WDM allows using more of the fiber bandwidth than in a TDM 

PON. Note that each WDM channel may contain a set of even slower time-

multiplexed channels.  

 

Fig 2.10  WDM PON 

Pure WDM PONs are based on multiplexing users using a specific wavelength 

for each ONU. This technique creates a virtual point-to-point connection that 

allows full duplex transmission independently from the traffic of the rest of the 

users. As each ONU is connected on a specific channel, there is no need for 

any MAC protocol to assure correct transmission.  

The main advantage of WDM is the very high transmission capabilities that the 

network can offer, together with the flexibility to use different data rates and 

network interfaces on each transmission channel.  

However, the advantages of TDM PONs turn into disadvantages for WDM 

PONs. The main drawback of WDM PONs is the higher cost of 

implementation. First of all, at the CO there is the need to install one optical 
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transceiver for each ONU, increasing the number of optical devices at the CO 

side. Also, in the outside plant, a wavelength router is required to route each 

wavelength to each of the ONUs connected to the network and finally, each 

ONU needs to transmit its upstream channel on a specific and unique 

wavelength. For that last purpose, if we want all ONUs to be the same, 

wavelength agnostic sources are needed.  

Transmission requirements of WDM devices are very strict and require thermal 

stabilization to avoid crosstalk between adjacent channels (each dense-WDM 

channel is normally separated 0.8nm and defined on ITU-T G.984.1 grid). A 

more cost effective approach is to use Coarse-WDM, which relaxes the 

requirements of the devices by separating the channels to 20nm. However, 

this limits the number of channels that a single fiber can accommodate to 18, 

as per ITU-T G984.2 grid, and thus reduces the number of ONUs per fiber.  

2.4.3 Combined WDM / TDM PONs  

To overcome the problems of WDM PONs, in the last years some research has 

been develop in the field of combined WDM / TDM solutions. The idea is to 

mix both concepts to try to offer the best of both. The most accepted 

approach is to concatenate a WDM PON with a TDM PON, leading to a very 

dense network capable of offer connectivity to a very large number of users.  

 

Fig 2.11  Combined WDM / TDM topology  

The characteristics of the WDM stage allow low losses as thus the possibility to 

transmit long distances on the fiber feeder extension. Then, the WDM router 

at an intermediate remote node routes each wavelength to a outside port 

which interconnects the end user in a TDM PON. The principle is identical to 
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the LR-PON but without using active equipment and any amplification. 

However, distances are not as high as in the LR-PON case. A very interesting 

approach is to combine C-WDM in the WDM and TDM to achieve so good 

compromise between cost and performance is achieved.  

Another interesting approach that uses a combined WDM / TDM access 

method consists of sharing a laser stack at the CO among the ONUs 

connected to the network. In that case, each tunable laser located at the CO 

switches to different wavelengths sending data on TDM basis to the different 

ONUs. This alternative also reduces costs because there is no need to allocate 

one laser for each ONU at the CO. As ONUs are not transmitting all the time, 

network performance is not severely affected.  

 

Fig 2.12  WDM / TDMA topology with a laser stack at the CO 

The concept of this approach is to create a pure WDM-PON and reduce the 

equipment at the CO and do not use one transmitter per ONU. This reduces 

the cost of the equipment located at the CO but increments the complexity of 

the laser control and management.  

 

Fig 2.13  Open-access network solution 

Finally, there is another approach based on offering different services on 

different wavelengths. This is sometimes called open-access networks and is an 

interesting model for municipalities, which deploy their own fiber and then 

give access to different operators. Open-access networks are based on a 

classical TDM-PON outside plant with a power splitter but transmitting several 

wavelengths on the fiber (tentatively a wavelength per operator). Then, at the 
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end user side, by means of an optical filter, the end user selects the service 

that they want to receive (see Fig. 2.13)  

2.4.4 SubCarrier Multiplexing  

Another method conceptually related to WDM is subcarrier multiplexing 

(SCM). Instead of directly modulating a ~terahertz optical carrier wave with 

~100s Mbps baseband data, the baseband data are impressed on a ~gigahertz 

subcarrier wave that is subsequently impressed on the THz optical carrier. 

Figure 2.14 illustrates the situation in which each channel is located at a 

different subcarrier frequency, thereby occupying a different portion of the 

spectrum surrounding the optical carrier. SCM is similar to commercial radio, 

in which many stations are placed at different RF (Radio Frequency) such that a 

radio receiver can tune its filter to the appropriate subcarrier RF. The 

multiplexing and demultiplexing of the SCM channels is accomplished 

electronically, not optically.  

 

Fig 2.14  SCM principle, multiplexing and demultiplexing  

The obvious advantage of cost-conscious users is that several channels can 

share the same expensive optical components; electrical components are 

typically less expensive than optical ones. Just as with TDM, SCM is limited in 

maximum subcarrier frequencies and data rates by the available bandwidth of 

the electrical and optical components. Therefore, SCM must be used in 

conjunction with WDM if any significant fraction of the fiber bandwidth wants 

to be utilized, but it can be used effectively for lower-speed, lower-cost 

multiuser systems [Ho98].  
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2.4.5 Code Divis ion Mult iplexing  

Another method is the code-division multiplexing (CDM). Instead of each 

channel occupying a given wavelength, frequency or time slot, each channel 

transmits its bits as a coded channel-specific sequence of pulses.  

This coded transmission typically is accomplished by transmitting a unique 

time-dependent series of short pulses. These short pulses are placed within 

chip times within the larger bit time. All channels, each with a different code, 

can be transmitted on the same fiber and asynchronously demultiplexed. One 

effect of coding is that the frequency bandwidth of each channel is 

broadened, or spread.  

If ultra-short (<100 fs) optical pulses can be successfully generated and 

modulated, then a significant fraction of the fiber bandwidth can be used. 

Unfortunately, it is difficult for the entire system to operate at these speeds 

without incurring enormous cost and complexity, at least at present 

[Kitayama06].  

 

Fig 2.15  CDM transmission concept 

2.5  Commercial solutions  

The two commercial solutions for PONs that are offered at present work on 

TDM basis. Ethernet passive optical networking (EPON) [IEEE802.3ah] and 

Gigabit passive optical networking (GPON) [ITUTG984.x] are the solutions 

presented by IEEE and ITU-T under IEEE802.3ah and ITU-T G.984 respectively 

to provide connectivity for last mile access using optical fiber and a passive 

outside infrastructure. GPON defines also a completely new protocol designed 

to support multiple services in their native formats.  
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The development of both standards has been parallel. The starting point for 

GPON was ATM-based passive optical networking (APON), and subsequently 

BPON, both included on the ITU-T G.983 standard. In January 2003, ITU 

ratified GPON, but in 2006 was modified to define new classes of optical 

equipment transmitters and receivers.  

Meanwhile, in June 2004, the IEEE ratified EPON as the IEEE802.3ah standard. 

Since then, it has been rapidly adopted in Japan. EPON is also gaining 

momentum with carriers in China, Korea, and Taiwan.  

While GPON promoters argue that the ITU standard is approaching maturity 

faster than the IEEE EPON standard, EPON advocates cite the recent 

emergence of the IEEE standard, deployments of EPON underway, and 

announced deployment plans by carriers as strong evidence of EPON's 

acceptance. Additionally, EPON partisans note that most data begins and ends 

its life as IP/Ethernet traffic, and they ask the question of why to interpose still 

another protocol encapsulation.  

2.5.1 GPON and EPON  

Perhaps the most dramatic distinction between the two protocols is a marked 

difference in architectural approach. GPON provides three Layer 2 networks: 

ATM for voice, Ethernet for data, and proprietary encapsulation for other 

services. EPON, on the other hand, employs a single Layer 2 network that uses 

IP to carry data, voice, and video. 

 

Fig 2.16  Diagram showing a typical GPON network 
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A multiprotocol transport solution supports the GPON structure. Using ATM 

technology, virtual circuits are provisioned for different types of services sent 

from a central office location primarily to business end users. This type of 

transport provides high-quality service, but involves significant overhead 

because virtual circuits need to be provisioned for each type of service. 

Additionally, GPON equipment requires multiple protocol conversions, 

segmentation and reassembly (SAR), virtual channel (VC) termination and 

point-to-point protocol (PPP). 

EPON provides seamless connectivity for any type of IP-based or other 

"packetized" communication. Since Ethernet devices are ubiquitous from the 

home network all the way through to regional, national and worldwide 

backbone networks, implementation of EPONs can be highly cost-effective. 

Furthermore, based on continuing advances in the transfer rate of Ethernet-

based transport — now up to 10 Gigabit Ethernet — EPON service levels for 

customers are scalable from T1 (1.5 Mbit/s) up through 1 Gbit/s. 

 

Fig 2.17  Diagram showing a typical EPON network  

2.5.1.1  Comparisons and Contrasts  

There are some distinct differences between EPON and GPON at Layer 2. 

However, these are not the only differences between the technologies. 

Designers will also find differences in terms of bandwidth, reach, efficiency, 

per-subscriber costs and management.  



38 Upgrade paths from existing access solutions to advanced passive optical networks 

2.5.1.2  Usable Bandwidth  

Bandwidth guarantees vary between the two protocols: GPON promises 1.25-

Gbit/s or 2.5-Gbit/s downstream, and upstream bandwidths scalable from 155 

Mbit/s to 2.5 Gbit/s. EPON delivers 1-Gbit/s symmetrical bandwidth. EPON's 

Gigabit Ethernet service actually constitutes 1 Gbit/s of bandwidth for data 

and 250 Mbit/s of bandwidth for encoding. The approach of EPON, as part of 

the Gigabit Ethernet standard, parallels that of Fast Ethernet, which also uses 

25 percent for encoding.  

GPON's 1.25-Gbit service specifies a usable bandwidth of 1.25 Gbit/s, with no 

requirement for encoding. Will the additional 250 Mbit/s promised by GPON 

promoters stand as a clear advantage for GPON? The answer may lie not in 

the sheer bandwidth comparisons, but in the practicality of 1.25-Gbit uplinks.  

Gigabit Ethernet interfaces to the aggregation switch, central office, and metro 

are currently the cost-effective way to aggregate 1-Gbit ports for transport. 

With no cost-effective switches for 1.25 Gbit available, the added bandwidth 

promised by GPON, although measurable, could come at a significant 

premium over the price of EPON equipment. In other words, the low-cost 

uplink for the foreseeable future is likely to be Gigabit Ethernet, which is the 

exact bit rate of EPON. In that light, GPON's "added" bandwidth may not 

prove advantageous for carriers.  

2.5.1.3  Reach  

With either protocol, the practical limitation to reach comes from the optical-

link budget. With the reach of both protocols currently specified at 

approximately 20 kilometers, the difference in split rates — the number of 

optical network units (ONUs) supported by one optical line terminal (OLT) — is 

a point of differentiation.  

GPON promises to support up to 128 ONUs. With the EPON standard, there is 

no limit on the number of ONUs. Depending on the laser diode amplitude, 

when using low-cost optics, EPON can typically deliver 32 ONUs per OLT, or 

64 with forward error correction (FEC).  

In any case, power losses are the limiting factor to increase reach and splitting 

ratios.  

2.5.1.4  Per-subscriber costs  

The use of EPON allows carriers to eliminate complex and expensive ATM and 

SONET/SDH elements and to simplify their networks, thereby lowering costs to 
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subscribers. Currently, EPON equipment costs are approximately 10 percent of 

the costs of GPON equipment, and EPON equipment is rapidly becoming cost-

competitive with VDSL.  

2.5.1.5  Efficiencies of Each Standard  

With both PON protocols, a fixed overhead is added to convey user data in 

the form of a packet. In EPONs, data transmission occurs in variable-length 

packets of up to 1518 bytes according to the IEEE 802.3 protocol for Ethernet. 

In ATM-based PONs, including GPONs, data transmission occurs in fixed-

length 53-byte cells (with 48-byte payload and 5-byte overhead) as specified 

by the ATM protocol. This format makes it inefficient for GPONs to carry traffic 

formatted according to IP, which calls for data to be segmented into variable-

length packets of up to 65,535 bytes.  

For GPONs to carry IP traffic encapsulated into ATM frames, the packets must 

be broken into the requisite 48-byte segments with a 5-byte header for each. 

This process is time-consuming and complicated and adds cost to the central-

office OLTs as well as the customer premise-based ONUs. Moreover, 5 bytes of 

bandwidth are wasted for every 48-byte segment, creating an onerous 

overhead that is commonly referred to as the "ATM cell tax". This is the case 

with GPON's ATM encapsulation mode. In its other encapsulation mode, called 

GEM (Generic Encapsulation Method), the ATM cell tax does not apply and 

packets are transmitted in the “Ethernet way” so the excess bandwidth lost to 

control ATM cells is avoided.  

By contrast, using variable-length packets, Ethernet was made for carrying IP 

traffic and can significantly reduce the overhead relative to ATM. One study 

shows that when considering trimode packet size distribution, Ethernet packet 

encapsulation overhead was 7.42 percent, while ATM packet encapsulation 

overhead was 13.22 percent.  

In addition, since Ethernet frames contain a vastly higher ratio of data to 

overhead than GPON, that high utilization can be reached while using low-

cost optics. The more precise timing required with GPON results in more 

expensive optics. High-precision optics are mandatory as part of the GPON 

standard.  

2.5.1.6  Management systems  

EPON requires a single management system, versus three management 

systems for the three Layer 2 protocols in GPON, which means EPON results in 
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a significantly lower total cost of ownership. EPON also does not require 

multiprotocol conversions, and the result is a lower cost of silicon.  

GPON does not support multicast services, which makes support for IP video 

more bandwidth-consuming.  

2.5.1.7  Support for CATV Overlay  

Both protocols support a cable television (CATV) overlay, which meets 

requirements for a high-speed downstream video service. EPON wavelengths 

are 1490 nanometers downstream and 1310 nanometers upstream, leaving 

the 1550-nanometer wavelength for a CATV overlay — similar to the specified 

wavelengths for BPON and GPON.  

In this matter, there is a consensus to develop similar specifications so 

development costs of optical equipment and reduced and thus 

implementation becomes more cost effective.  

2.5.1.8  Encryption  

With GPON, encryption is part of the ITU standard. However, GPON 

encryption is downstream only.  

EPON, on the other hand, uses an AES-based mechanism, which is supported 

by multiple silicon vendors and deployed in the field. Furthermore, EPON 

encryption is both downstream and upstream.  

2.5.1.9  Network Protect ion  

Both protocols provide vendor-specific and carrier-specific protection. This 

includes support for vendor-specific and carrier-specific operations, 

administration and maintenance (OAM).  

EPON GPON

Standard IEEE 802.3ah ITU-T G.984

Data rate 1Gbps bidirectional 2.5Gbps down / 1.25Gbps up

Distance < 20km < 60km

Splitting ratio 16 / 32 64

Encapsulation Ethernet frames Ethernet over GEM or ATM

Layer Layer 2 Layer 2 + extra functionality

Higher cost

Stricter specifications
Comments Lower cost

 

Table 2.2  GPON/EPON comparison  

From the summary above, it can be clearly seen, that GPON and EPON will 

compete to establish as the prevalent solution for PONs. Each of them has its 
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advantages and drawbacks, mainly determined by the protocol from which 

they have evolved. GPON, coming from ATM standards is more focused on 

services and specifically tailored for carrier while EPON, an evolution of 

Ethernet for PONs, implements the same functionalities from the network 

operator perspective.  

2.6  Worldwide deployments  

Present evolution of FTTH in the world is mainly focused in Asia, where Korea 

and Japan are leading the evolution of FTTH in both, numbers of subscribers 

and bandwidth per user. Competition is encouraging the increase in data rates 

together with a reduction in price fees. This positive cycle in increasing the 

number of connections thus the access network requires more transmission 

capabilities and therefore new topologies and technologies are being 

implemented. The following list summarizes the situation in countries where 

remarkable FTTH deployments have been reported (in alphabetic order): 

2.6.1 China 

Since 2002, several field trials have been implemented in China. The first one 

was the Wuhan Changfei FTTH project in 2002 which wanted to demonstrate 

the feasibility of deploying FTTH, with a tested of 87 users in three buildings.  

The first commercial FTTH network was the Zisong FTTH project in Wuhan by 

Wuhan Telecom, which consisted of 420 subscribers, connected by GE-PON 

with video overlay features.  

In Aug. 2005, Wuhan South Lake FTTH network deployed. This commercial 

FTTH network was commercially operated by China Netcom for new buildings 

in Wuhan. This project had about 700 subscribers, and the services that were 

offered where the same as in Zisong project.  

Beijing FTTH network deployed in July 2005 and commercially operated by 

China Netcom in Beijing provided triple-play with GEPON. In addition to this, a 

bigger FTTH project has been planned. It is an FTTH network for combined 

residential and business users. The district occupies about 7 square kilometers 

with a population of 160,000 inhabitants.  
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2.6.2 Denmark 

In Denmark, the northern parts of Zealand north and west of Copenhagen, the 

Power Company DONG Energy is providing FTTH to areas where they are 

laying airborne power cables in the ground, with 100 Mbit/s connection. The 

services on the FTTH will be provided by external providers. The plan is to have 

all of these areas provided with FTTH by 2010 and then follow up on those 

areas that haven't been giving the opportunity during that time.  

Prices are approximately 30$/month for the fiber installation itself (charged by 

DONG Energy) and approximately 30$/month additionally for a 2/2 Mbit/s link 

provided by an external provider. 10/10 Mbit/s can be had for a price of 

approx. 50$ per month. 20/20 and 25/25 is also available for higher prices. 

100/100 is available from Jay.net (for approx. 33$/month), but is not flat-rate 

priced, as all data above 10 Gigabytes per month is charged 16 cents pr. 

Gigabyte transferred.  

2.6.3 France 

A residential fibre service has been deployed in the 15th Arrondissement 

(borough) of Paris by Cité Fibre. Bandwidth allocated to each user is 100 

Mbit/s with 30 Mbit/s reserved for internet traffic. The package includes Digital 

Television and VoIP Telephone services along with the above-mentioned 

unlimited internet starting at 49! per month. The 15th arrondissement was 

probably selected for its comparatively high residential population.  

The Cité Fibre website also contains an excellent comparison of residential 

fibre technology with existing cable and DSL/ADSL.  

In June 2006, France Telecom/Orange SA launched a test program for FTTH in 

some arrondissements of Paris. It proposes up to 2,5 Gbit/s upstream and 1,2 

Gbit/s downstream per 30 users using PON for 70! a month.  

In September 2006, Free announced a !30 a month quadruple play offer 

including 50 Mbit/s Internet connection, free phone calls to 28 countries and 

high-definition television.  

2.6.4 Iceland 

In Iceland, FTTH deployment has begun by Orkuveita Reykjavikur (Reykjavik 

Power Company), they have already begun connecting the towns of 
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Seltjarnarnes, Akranes and parts of Reykjavík, with estimated 50% of Reykjavik 

connected by 2008 and all of Reykjavík, Seltjarnes, Akranes, Mosfellsbær, 

!orlákshöfn and Hverager"i connected by 2012, other areas are pending an 

agreement by the city officials. OR only owns the FTTH network; ISP services is 

provided by HIVE, Sk#rr, Vortex and VoIP service is now available from HIVE 

and video will be provided by other third party providers. As time passes, it is 

expected that other companies will also take part of OR FTTH network. The 

monthly cost of having the FTTH in house is 1.990 ISK (approx $26 US dollars) 

which is a little more then having a phone line in the house which costs 1.340 

ISK (approx $18 US dollars); this does not include any services. All FTTH 

connections are 100 Mbit/s but today ISP services offer speeds of 10Mbit/s, 20 

Mbit/s and 30 Mbit/s.  

2.6.5 Italy 

The Italian environment for broadband is oriented around DSL and FTTH. With 

regards to fibre, Italy is one of the most advanced countries in Europe in 

developing fibre-to-the-building technology and services.  

The country had 7.4 million broadband connections at the end of March 2006 

and it increased from 5.20 million connections at the end of 2005. This was in 

line with the government’s expectations to reach 7.1 million connections by 

mid 2006.  

The broadband penetration reached 26.76 percent of the households, 37 

percent of the companies and 61 percent of the government in June 2005.  

With no major cable operators or cable infrastructure, the Italian broadband 

market is dominated by DSL and FTTH services. Especially in highly dense 

areas where a large number of apartment blocks were built with direct fibre 

access to the building, FTTH service becomes highly desirable and results in 

the significant growth in the Italian market and also an upcoming trend in 

Europe. .  

Fixed-line penetration in the country stands at around 48 percent and a 

subscriber base of around 26.59 million at the end of March 2006.  

2.6.6 Japan 

FTTH, often called FTTP in Japan, was first introduced in 1999, and did not 

become a large player until 2001. In 2003-2004, FTTH grew at a remarkable 
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rate, and DSL's growth slowed. 4.63 million FTTH connections (includes 1.99 

million FTTX for multifamily housing) are reported in March, 2006 in Japan.  

FTTH first started with 10Mbit/s (at end-user rate) passive optical network 

(PON) by Nippon Telegraph and Telephone (NTT), and 100Mbit/s (at end-user 

rate) with GEPON (Gigabit Ethernet-PON) or broadband PON is major one in 

2006. PON is major system for FTTH by NTT, but some competitive services 

present 1Gbit/s (at end-user rate) with SS (Single Star).  

Major application services on fibers are voice over IP, video-IP telephony, IPTV 

(IP television), IPv6 services and so on [Shinohara05].  

2.6.7 Kuwait 

South Surra, in four cities, Alsalam, Hutteen, Alshuhada, and future Seddeek. 

The project started on 2003, and hasn't finished yet as of September 2006. The 

equipment is from Alcatel.  

2.6.8 Netherlands 

In The Netherlands in the city Eindhoven and a nearby village called Nuenen, 

there is a large network with 15 000 connections. triple play is offered. Houses 

and companies are connected with single-mode fibre. The network is owned 

by the members itself, who did form a corporation. The first European FTTH 

project was also in Eindhoven in a neighborhood known as the "Vlinderflats". 

This was a multi-mode fibre but was in 2005 changed to single-mode fibre. 

FTTH resulted in new broadband services; the inhabitants started their own 

broadband TV station called VlinderTV.  

2.6.9 New Zealand 

Telecom New Zealand (dominant telco) is starting a FTTP trial in a new 

subdivision (Flat Bush) in Manukau city in May 2006. Pricing isn't yet set. 

Vector Communications provides fiber to premises in very limited Auckland 

CBD and Wellington CBD for around NZ$329 unlimited per month. You can 

also get fiber to premises services from Citylink in Wellington - price suggests 

this is for businesses only.  
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2.6.10  South Korea 

Korea is one of the most wired nations in the world, with over 85% of the 

population having access to broadband with speeds of 10 Mbps to 1000 

Mbps.  

In 2001, the government of Korea and telecom providers became actively 

involved in bringing fiber to the home as a result of an initiative to improve 

the lives and circumstances of their people. With a national broadband policy 

to guide them, Korea sought partners to underwrite the cost of deployment. 

AIG Consortium, an American insurance company, contributed $1 billion 

toward the deployment project for one telecom provider, Hanaro Telecom.  

The first installations of 100 Mbps fiber to the home began in Gunpo City, 

Korea in 2001. Installation of fiber to the home meant that Korean 

entrepreneurs could begin to develop online businesses at lower costs.  

Fiber to the Home is also affecting economy in Korea with new and 

inexpensive telephone, television, internet and video on demand services and 

products. With FTTH, content is produced at an accelerated rate for millions of 

digital hungry consumers. Forrester Research, a highly regarded research 

company, recently projected that by 2007, video on demand will attract 7.5 

million users spending approximately $700 million annually with the total 

market for on-demand television weighing in at about $6 billion. The Korean 

VOD market has already achieved this goal in 2004.  

New businesses are also emerging in the biomedical and technical fields. 

Fueled by the ability to work with other scientists, researchers and technicians 

across the country and the world, new products are being developed rapidly.  

Korea has become the world’s most enthusiastic adopter of broadband. There 

are no 56K phone modem users left in Korea. Korean Photonic R&D centers 

are now investing billion dollar budgets to develop FTTH parts cheaply for the 

world market. They are now going towards 10 Gbps FTTH.  

By 2007, all the households across the country will be able to access between 

100~1,000 Mbps broadband Internet. Korean condos and home buildings are 

being designated as Super class who have 1,000 Mbps wiring, 1st class who 

have 100 Mbps wiring and 2nd class who have 10 Mbps wiring.  
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2.6.11  Sweden 

Sweden is often classified as one of the most developed nations in the world. 

When it comes to broadband in particular, Sweden has a quite unique history. 

In the year of 1999, several Swedish FTTH projects were initiated. One of them 

was Svenska Bredbandsbolaget, B2, the largest project of its kind in the world. 

B2 today has over 270.000 homes passed and over 100.000 paying customers.  

2.6.12  United Arab Emirates 

Dubai Internet City, formally Sahm Technologies offer triple play services to 

properties within the Emaar properties, Dubai Marina, Emirates Lakes, Hills 

development.  

2.6.13  United States 

In the United States, the largest FTTP deployment to date is Verizon's FiOS. 

Verizon is the only Regional Bell Operating Company thus far to deploy FTTP 

on a large scale.  

With its U-Verse product, AT&T (formerly SBC) has pursued a strategy of Fiber 

to the Neighborhood (FTTN) and is now delivering Fiber to the Premises 

(FTTP) to select areas. AT&T has deployed FTTN in the Dallas, Texas area, 

including Richardson, Texas. The company is now upgrading the telephone 

and broadband Internet network to deliver FTTP in this area.  

Broadweave Networks has multiple FTTP installations in new or greenfield 

communities in the west, including a contract with the Utah State Trust Lands 

Administration for up to 21,000 units in Washington County, Utah.  

EATEL offers FTTP in the Ascension Parish, Louisiana area. Services currently 

available via their fiber-optic network include telephone, broadband Internet 

and television, which includes video on demand and regular broadcasts.  

T! Communications of Holland, MI has deployed Fiber to the Home in order to 

deliver phone, television (IPTV) and Internet services, and is actively building 

its own fiber network.  

Several carriers, municipalities, and planned communities across America are 

deploying their own fiber networks [Batson04], [Whitman04], [Jianli05], 

[Montagne05]. 



 

 

3  Optical devices for advanced 

network topologies 

Requirements of advanced network topologies in terms of optical equipment 

encourage the development and redesign of optical devices that are able to 

perform advanced routing and modulation features. At present, optical 

devices of TDM-PONs are just emitters and receivers that directly modulate 

data streams on a single wavelength and transmit it along the fiber in a very 

basic approach. However, future access networks will optically implement 

features that are now implemented in the electrical domain on the optical 

domain, so the development and refinement of advanced optical devices will 

be a requirement.  

This section will describe in detail the specifications and characteristics of 

future access network optical devices. Tunable laser sources to provide 

bandwidth on demand in an agile and flexible way, wavelength routers to 

route data streams depending on their wavelength and wavelength-agnostic 

receivers and modulators for WDM PONs will be described, together with their 

requirements and future viability.  

3.1  Tunable lasers  

Tunable lasers are not used at present in access networks because of its cost 

but are a key component in future access networks, as they can offer many 

advantages to advanced topologies in terms of optimization of resources and 

transparency [Lee03].  

The definition of a tunable laser is a laser the output wavelength of which can 

be tuned. This tuning can be on a wide range of accessible wavelengths, while 

in other cases it is sufficient that the laser wavelength can be tuned to a 
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certain value. Some single-frequency lasers can be continuously tuned over a 

certain range, while others can access only discrete wavelengths or at least 

exhibit mode hopping when being tuned over a larger range.  

Tunable lasers are usually operating in a continuous fashion with a small 

emission bandwidth, although a Q-switched or mode-locked laser can also be 

wavelength-tuned. In the latter case, one may either spectrally shift the 

envelope of the frequency comb or the lines in the spectrum.  

3.1.1 Wavelength tuning  

The wavelength of the output of a laser can be tuned by inserting an element 

with tunable wavelength-dependent losses in the laser cavity. The laser will 

then usually operate on the wavelength where the inversion level of the gain 

medium required for lasing (i.e., for generating a gain which equals the cavity 

losses) is at its minimum. In the steady state, the light at the laser wavelength 

has zero round trip net gain, and all other wavelengths experience a negative 

net gain.  

A wide wavelength tuning range of a laser requires a wide gain bandwidth of 

the gain medium. Some broadband gain media such as Ti:sapphire or Cr:ZnSe 

allow tuning over hundreds of nanometers. The obtained tuning range is 

usually the wavelength range in which sufficient net gain can be achieved. Its 

limits are often set by the points where the emission cross sections get too low 

or the cavity losses get too high. In some cases, the tuning range may be 

smaller because there is excited state absorption, or because emission at 

wavelengths with maximum laser gain can not be fully suppressed. In some 

fiber lasers, for example, the inversion level (and thus the gain at extreme 

wavelengths) is limited by amplified spontaneous emission near the 

wavelength of maximum gain.  

Frequently used tuning elements in laser cavities are:  

! a prism pair in combination with a movable aperture  

! a single prism in combination with and end mirror which can be tilted 

to adjust the wavelength for which the cavity alignment is good  

! a holographic grating as an end mirror (! Littrow configuration), which 

is rotated for tuning, or a fixed grating within the cavity combined with 

a movable end mirror (! Littman configuration)  
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! an etalon (Fabry-Perot interferometer) or a birefringent tuner (Lyot 

filter) which can be rotated to adjust the wavelength of maximum 

transmission  

! a movable output coupler for fine tuning of the output of a single-

frequency laser within the free spectral range of the laser cavity  

A single-frequency laser can often be wavelength-tuned over some fraction of 

the free spectral range of the laser cavity simply by tuning the cavity length. If 

one tries tuning beyond this (typically rather small) range, one obtains mode 

hops. Relatively wideband mode-hop-free tunability can be obtained with very 

short laser cavities. This is used e.g. with MEMS VCSELs, having a separate 

output coupling mirror the position of which can be tuned via thermal 

expansion, electrostatic forces, or a piezoelectric element.  

Wavelength-tunable radiation can also be obtained with alternative 

techniques:  

! with tunable gain, achieved by changing the temperature of the gain 

medium (via the drive current of a laser diode)  

! with synchrotron radiation sources (wigglers and undulators, free 

electron lasers)  

! with an optical parametric oscillator (also having tunable gain, although 

not from stimulated emission)  

! with an optical parametric amplifier, which amplifies a selectable part of 

a very broad spectrum (a supercontinuum)  

! by Raman self-frequency shift in an optical fiber, where the amount of 

shift is controlled via the launched power of the pulses 

[Buus06]  

3.1.2 Applications in access networks  

The applications of tunable lasers are wide in access networks and their 

specifications are completely different depending on the case. Mainly, a 

tunable laser source can have two functionalities: it can be used for routing 

purposes in a WDM-routed access network or it can be used as a wavelength 

agnostic device to simplify stocks and reduce the complexity of the 

wavelength assignation.  

The requirements for both solutions are different. If the tunable laser is just 

used as a wavelength-agnostic device, tuning speed is not a crucial factor. This 
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is the main application of tunable lasers in ONUs at present. However, if the 

tunable laser source is used to route packets on a WDM network, then tuning 

speed becomes a crucial parameter. Therefore, depending on the application, 

the tunable laser technology will be completely different.  

This is also applicable at the CO side. There, tunable laser sources can be used 

to reduce the number of transmission interfaces and to provide advanced 

bandwidth on demand functionalities [Bock05] or to perform as a simple 

backup device for a WDM system. In the first case, tuning time is critical, while 

in the second one it is not a design criterion at all. At present, the main 

application of tunable lasers at the CO is as back-up wavelength-agnostic 

transceivers but this will change in the future with the development and 

deployment of routed-WDM PONs.  

To have an order of magnitude of required tuning ranges and tuning times in 

advanced WDM applications, tuning time should be in the range of 30nm in 

case we use a single D-WDM transmission band and tuning speed below 1!s 

to achieve a good compromise between network throughput and network 

delay [Bock05b]. 

3.1.3 Laser characterization 

This section presents the experiments that were carried out to characterize a 

Grating Assisted Coupler with Sampled rear-Reflector (GCSR) laser. A GCSR 

laser consists of four sections, i.e. a gain block, a phase module, a coupler and 

a Bragg grating. The coupler acts as a coarse tuner, transferring power 

vertically between the two waveguides, one that runs forward to the gain 

block, and another one, above it, that runs backward into the phase and Bragg 

grating sections. Increasing Coupler current the filter shifts to shorter !, this is 

a kind of coarse tuning. As reflector current increases, the comb filter shifts to 

shorter wavelengths. Fine-tuning is done by current injection on Phase section 

(see Fig. 3.1), what tunes all cavity modes simultaneously. 

 

Fig 3.1  Detail of the 4-sections of a GCSR  
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 The 4-sections Grating assisted Coupler with Sampled rear-Reflector (GCSR) 

laser source, makes possible fine and stable wavelength tuning with a tuning 

range of about 40 nm, covering the whole C-Band required for optical 

communications and allowing efficient use of spectral bandwidth 

[Fukashiro00]. Its low tuning currents requirements and fast tuning properties 

make the GCSR a good candidate for switching applications [Rigole97]. Also its 

relative fabrication simplicity, its good Side Mode Suppression Ratio (SMSR) 

and its potential low cost make possible its application in future WDM 

environments. Channel selection for continuous wavelength transmission is 

done by biasing the three tuning electrodes of the GCSR laser to a steady-

state current. 

A map of the static tuning currents of one GCSR unit is shown in Table 3.1, 

showing output frequency, output power and Side Mode Suppression Ratio 

(SMSR) versus gain, coupler, reflector and phase currents. The maximum 

deviation of the measured output wavelength des-alignment from the 

standard ITU channel wavelength is of about ±0.005 nm. 

ITU 

Channel
Freq.

Wavelength 

channel 

(nm)

Tuned 

wavelength 

(nm)

Iactive 

(mA)

Icoupler 

(mA)

Ireflect 

(mA)

Iphase 

(mA)

58 195.8 1531.12 1531.15 100 14.2 18 2.7

57 195.7 1531.9 1531.91 100 13.9 14.1 1.5

56 195.6 1532.68 1532.66 100 13.6 11.1 2.6

55 195.5 1533.47 1533.49 100 13.3 8.4 1.1

54 195.4 1534.25 1534.27 100 12.7 6.6 1.8

53 195.3 1535.04 1535.09 100 12.7 4.8 2.9

52 195.2 1535.82 1535.85 100 12.1 18.3 2.8

51 195.1 1536.61 1536.62 100 11.8 14.4 1.5

50 195 1537.4 1537.39 100 11.5 11.1 3

49 194.9 1538.19 1538.13 100 11.2 8.7 2.6

48 194.8 1538.98 1539.00 100 10.9 6.6 1.8

47 194.7 1539.77 1539.76 100 10.9 5.1 3

46 194.6 1540.56 1540.57 100 10.6 3.6 1.6

45 194.5 1541.35 1541.35 100 10 14.4 1.8

44 194.4 1542.14 1542.15 100 9.7 11.4 2.6

43 194.3 1542.94 1542.94 100 9.7 8.7 1.2

42 194.2 1543.73 1543.75 100 9.4 6.6 2

41 194.1 1544.53 1544.50 100 9.1 5.1 1.1

40 194 1545.32 1545.35 100 8.8 18.9 2.6

39 193.9 1546.12 1546.18 100 8.5 14.7 4.2

38 193.8 1546.92 1546.85 100 8.5 11.7 3.6

37 193.7 1547.72 1547.72 100 7.9 8.7 1.4

36 193.6 1548.51 1548.56 100 7.9 6.6 1.7

35 193.5 1549.32 1549.31 100 7.9 5.1 3.4

34 193.4 1550.12 1550.16 100 7.6 3.6 1.5

33 193.3 1550.92 1550.92 100 7.3 15.3 1.3

32 193.2 1551.72 1551.75 100 7 11.7 2.1

31 193.1 1552.52 1552.51 100 6.7 9 1.3

30 193 1553.33 1553.33 100 6.7 6.9 1.6

29 192.9 1554.13 1554.18 100 6.4 5.1 2.5

28 192.8 1554.94 1554.98 100 6.1 20.1 2.1

27 192.7 1555.75 1555.82 100 6.4 2.4 2.1

26 192.6 1556.55 1556.62 100 6.1 1.2 1.15

25 192.5 1557.36 1557.31 100 5.5 9.3 1.4

24 192.4 1558.17 1558.21 100 5.5 6.9 1.4

23 192.3 1558.98 1559.04 100 5.5 5.1 2.2

22 192.2 1559.79 1559.77 100 5.2 3.9 1.5

21 192.1 1560.61 1560.63 100 4.9 16.2 3

20 192 1561.42 1561.41 100 4.9 12.6 1.6

19 191.9 1562.23 1562.26 100 4.9 9.3 2.4

18 191.8 1563.05 1563.06 100 4.6 7.2 1.2

17 191.7 1563.86 1563.84 100 4.6 5.4 2.4  

Table 3.1  Static tuning currents of a GCSR sample 
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3.2  Arrayed Waveguide Gratings  

Wavelength routers are another key component of future access networks. 

Wavelength routers can be divided into three categories depending on their 

application:  

! Multiplexers  

! Demultiplexers  

! NxN router  

Multiplexers are used to combine different wavelengths from different fibers 

into a single fiber, demultiplexers perform the opposite task: they separate 

incoming wavelengths from the input fiber to different fibers. Finally, NxN 

routers perform both actions simultaneously and act as optical cross-connects. 

 

Fig 3.2  Different wavelength routers  

To implement multiplexers, demultiplexers and routers one can use different 

techniques.  

! angular dispersion using prisms  

! concatenation of optical filters  

! arrayed-waveguide gratings  

! Angular dispersion MUX  

! Concatenation of filters MUX  
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We will focus in this section on arrayed-waveguide gratings (AWGs) because it 

is the technology which offers more benefits, as AWG can be integrated thus 

its potential cost is low.  

Fig. 3.3 shows the schematic layout of a AWG. The operation is understood as 

follows. When the beam propagating through the transmitter waveguide 

enters the free propagation region (FPR) it is no longer laterally conned and 

becomes divergent. On arriving at the input aperture the beam is coupled into 

the waveguide array and propagates through the individual array waveguides 

to the output aperture. The length of the array waveguides is chosen such that 

the optical path length difference between adjacent waveguides equals an 

integer multiple of the central wavelength of the demultiplexer. For this 

wavelength the fields in the individual waveguides will arrive at the output 

aperture with equal phase (apart from an integer multiple of 2!), and the field 

distribution at the input aperture will be reproduced at the output aperture. 

The divergent beam at the input aperture is thus transformed into a 

convergent one with equal amplitude and phase distribution, and an image of 

the input field at the object plane will be formed at the center of the image 

plane. The dispersion of the AWG is due to the linearly increasing length of the 

array waveguides, which will cause the phase change induced by a change in 

the wavelength to vary linearly along the output aperture. As a consequence, 

the outgoing beam will be tilted and the focal point will shift along the image 

plane. By placing receiver waveguides at proper positions along the image 

plane, spatial separation of the different wavelength channels is obtained.  

 

Fig 3.3  Structure of an arrayed waveguide grating 

The design of AWGs allow them to perform as multiplexers, demultiplexers 

and wavelength routers.  

3.2.1 Wavelength router functionality  

Wavelength routers were first reported by Dragone [Dragone91], 

[Dragone91a]. They provide an important additional functionality as compared 
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to multiplexers and demultiplexers and play a key role in more complex 

devices as add-drop multiplexers and wavelength switches. Fig. 3.4 illustrates 

their functionality. Wavelength routers have N input and N output ports. Each 

of the N input ports can carry N different frequencies. The N frequencies 

carried by input channel 1 are distributed among output channels 1 to N, in 

such a way that output channel 1 carries frequency N and channel N 

frequency 1. The N frequencies carried by input 2 are distributed in the same 

way, but cyclically rotated by 1 channel in such a way that frequencies 1–3 are 

coupled to ports 3 – 1 and frequency 4 to port 4. In this way each output 

channel receives N different frequencies, one from each input channel. To 

realize such an interconnectivity scheme in a strictly nonblocking way using a 

single frequency a huge number of switches would be required. Using a 

wavelength router, this functionality can be achieved using only one single 

component.  

A wavelength router is obtained by designing the input and the output side of 

a AWG symmetrically, i.e., with N input and N output ports. For the cyclical 

rotation of the input frequencies along the output ports, as described above, it 

is essential that the frequency response is periodical as shown in Fig. 3.4(b), 

which implies that the FSR should equal N times the channel spacing.  

 

Fig 3.4  Schematic diagram of the wavelength router operation: (a) Interconnectivity scheme 

and (b) frequency response  
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3.2.2 Applications in access networks  

The typical application of AWGs in access is to deploy a combined WDM / 

TDM PON, having a feeder fiber on which several WDM channels are 

transmitted and then an AWG to separate each channel and distribute it on a 

classical TDM-PON topology. 

 

Fig 3.5  AWG in a WDM / TDM PON approach 

However, NxN AWGs have many applications in access due to the cyclical 

periodicity of their routing profile. In [Bock06f] we present an advanced 

dynamic bandwidth allocation algorithm that uses an NxN AWG to avoid 

correlatation among traffic sources. Further explanation about applications of 

NxN AWGs in access are described in [Bock04],[Bock05a], [Tsalamanis04]. 

3.2.3 AWG characterization 

Several AWG characterizations have been carried out during this thesis project. 

1x8, 1x32 and 1x40 AWGs have been parameterized together with 8x8, 16x16 

and 18x18 AWG-based routers. The main parameters to be measured on 

AWGs are: 

! Insertion losses 

! The H(f) response type (Gaussian or flatted) 

! The wavelength plan of each output port 

! Number of free spectral ranges (FSR) 

! Thermal stability 

Fig 3.6 presents the response of a 1x40 AWG that was parameterized in our 

labs. 
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Fig 3.6  1x40 AWG channels 

Channels were chosen to be ITU-T grid compliant [ITUTG694.1] and the 

maximum drifts were measured to be 0.02nm. The response was Gaussian and 

insertion losses were between 7.67 and 6.41dB. No FSR were recorded as the 

AWG encapsulation had a pre-filtering stage that suppressed any wavelength 

out of the AWG main FSR range. Further parameters are detailed in the 

following table 3.2: 

Parameter Spec Units
Channels 40 Ch

Channel Spacing 100 GHz

ITU Frequency 196.0 to 192.1 THz 

Center Wavelength Accuracy -0.035 +0.035 nm 

Reference Passband -12.5 +12.5 GHz 

Insertion Loss ! 7.0 dB 

Insertion Loss Uniformity 1 dB

Ripple 0.4 dB

PDL ! 0.3 dB

0.5 dB Bandwidth* " 0.25 nm

1dB Bandwidth " 0.4 nm

3dB Bandwidth* " 0.55 nm

Adjacent Channel Isolation " 26 dB

Non-Adjacent Channel Isolation " 33 dB

Total Crosstalk " 23 dB

Return Loss " 45 dB

Chromatic Dispersion -10 .. 10 ps/nm 

Polarization Mode Dispersion 0.5 ps  

Table 3.2  1x40 AWG specifications 

Further to the parameters described above, NxN AWGs require the 

specification of the routing matrix. Table. 3.3 presents the routing matrix of a 

8x8 AWG. NxN AWGs are very rare devices, which are not commercially 

distributed but just produced as custom designs. Typically, they do not have 

any pre-filter so FSRs can be clearly measured. This is presented in Fig. 3.7 
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I/O 1 2 3 4 5 6 7 8

1
1589.02    

4.03dB 2.8

1584.68    

5.15dB 2.8

1580.9    

6.04dB 2.8

2
1588.88   

3.72dB 2.52

1584.82   

3.86dB 3

1580.76   

4.78dB 2.8

1576.98   

5.57dB 2.52

3
1588.88   

3.39dB 2.52

1584.96   

3.19dB 2.8

1580.9    

3.53dB 2.8

1576.7   

4.29dB 2.8

1572.92    

5.21dB 2.8

4
1588.88  

2.76dB 2.52

1584.96  

2.54dB 2.8

1580.9  2.88dB 

2.8

1576.98  

3.14dB 2.52

1572.78   

3.76dB 2.52

1568.86  

4.52dB 2.8

5
1588.88  

3.68dB 2.52

1584.96   

3.05dB 2.8

1580.9 3.28dB 

2.8

1576.98  

3.32dB 2.52

1572.78  

3.28dB 2.8

1568.72  

3.76dB 2.8

1564.94  

4.56dB 2.52

6
1589.02  

4.65dB 2.8

1584.96    

3.84dB 2.8

1580.9  3.28dB 

2.8

1576.98   

3.21dB 2.52

1572.78  

3.11dB 3

1568.72  

3.00dB 2.8

1564.66   

3.49dB 2.8

1560.74    

4.41dB 3

7
1584.82  

5.75dB 2.8

1580.76  

5.11dB 2.8

1576.84   

4.26dB 2.52

1572.64  

3.76dB 2.8

1568.72  3.8dB 

2.8

1564.66  

3.88dB 2.8

1560.6  5.01dB 

2.8

1556.68  

5.79dB 2.8

8
1581.04  

6.63dB 2.52

1576.84  

5.79dB 2.8

1572.78   

4.95dB 2.8

1568.86  

4.29dB 2.8

1564.80  

4.54dB 2.8

1560.74   

4.95dB 2.8

1556.82  

5.79dB 2.52

1552.9   

6.26dB 2.52

1 1575.86  

6.96dB  2.8

1571,94     

4.88dB  2.8

1568.02     

4.46  2.8

1564.1     

3.71dB 2.8

1560.18    

3.97dB  2.8

1556.26    

3.45dB  2.52

1552.34    

4.27dB 2.52  

1548.56   

4.97dB 2.52

2 1572.08    

5.61dB   2.8

1568.16    

4.46dB  2.52

1564.24    

3.77dB  2.52

1560.32   

3.39dB 2.52

1556.4      

3.6dB 2.52 

1552.34   

3.71dB 2.8
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Table 3.3  8x8 AWG routing matrix 

 

Fig 3.7  8x8 AWG free spectral range 
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This 8x8 AWG had insertion losses between 5.16 and 2.71 dBs in a Gaussian 

profile, with a 3-dB passband of between 2.52 and 2.8 nm depending on the 

channel. FSR was measured to be 32.5nm. 

3.3  Reflective receivers and modulators  

At present, in commercial implementations there is always a laser diode at the 

ONU side that sends upstream data. This is a good approach for single 

wavelength PONs there is just one wavelength used for upstream transmission 

and VCSELs can be used, which are very cheap. However, when WDM PONs 

are deployed a wavelength-specific emitter is then needed. The use of 

wavelength-specific lasers for each ONU is not manageable because it 

generates huge stock problems, as each ONU of the WDM PON would need 

different equipment.  

To solve this, there are two approaches:  

! To use a tunable source: this is an option, which is under study at 

present, because the cost of tunable sources is high now, however, it is 

a future option if cost-effective tunable lasers can be designed. 

! To use an optical modulator or a reflective device at the ONU and send 

the optical carrier from the CO. This option is very interesting from the 

research point of view because it opens a wide range of possibilities. 

However, there is no commercial product with these features as it is not 

cost-effective at present.  

Tunable sources have already been described in this chapter.  

An optical modulator is a device that allows manipulating a property of light 

(typically a laser beam). Depending on which property of light is controlled, 

one talks about intensity modulators, phase modulators, polarization 

modulators, etc. 

Optical modulators can be divided in the following categories:  

! acousto-optic modulators, used for switching or continuously adjusting 

the amplitude of a laser beam, for shifting its optical frequency, or its 

spatial direction  

! electro-optic modulators, used for modifying the polarization, phase or 

power of a beam, or for pulse picking in the context of ultrashort pulse 

amplifiers  
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! electroabsorption modulators, used for transmitters in optical fiber 

communications  

! interferometric modulators, e.g. Mach-Zehnder modulators, often 

realized in integrated optical circuits and used in optical data 

transmission  

! liquid crystal modulators, used e.g. in optical displays and in pulse 

shapers; often used as spatial light modulators, i.e., with a spatially 

varying modulation  

! chopper wheals for periodically switching or modulating the power of a 

light beam  

! fiber-optic modulators, often being fiber pig-tailed bulk components  

! micromechanical modulators (which are MEMS = 

microelectromechanical systems), e.g. silicon-based light valves and 

two-dimensional mirror arrays  

This section will analyse electroabsorption modulators (EAM) and 

semiconductor optical amplifiers (SOA) [Simon83], [Saitoh87] and reflective 

SOAs (RSOAs) [Shin04] as they offer very good specifications to be used in 

wavelength-agnostic ONUs. 

SOAs and RSOAs are not formal modulators, but can be used as modulators by 

controlling their bias current and thus, their amplification. All of them are 

integrable, which means that their potential cost is low. Furthermore, EAMs 

can be modulated at high data rates. SOAs and RSOAs cannot go so high in 

datarate but offer amplification capabilities.  

3.3.1 ElectroAbsorption Modulator (EAM)  

 

Fig 3.8  Electroabsorption modulator schematic 
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An electroabsorption modulator is a semiconductor device that allows 

controlling the intensity of a laser beam via an electric voltage. Its operation 

principle is based on the Franz-Keldysh effect, a change of the absorption 

spectrum caused by an applied electric field, which usually does not involve 

the excitation of carriers by the electric field. 

Most electroabsorption modulators are made in the form of a waveguide with 

electrodes for applying an electric field in a direction perpendicular to the 

modulated light beam. For achieving a high extinction ratio, one usually 

exploits the quantum confined Stark effect in a quantum well structure.  

Compared with electro-optic modulators, electroabsorption modulators can 

operate with much lower voltages (a few volts instead of hundreds of 

thousands of volts). They can be operated at very high speed; a modulation 

bandwidth of tens of gigahertz can be achieved, which makes these devices 

useful for optical fiber communications. A convenient feature is that an 

electroabsorption modulator can be integrated with a distributed feedback 

laser diode on a single chip to form a data transmitter in the form of an 

photonic integrated circuit. Compared with directly modulating the laser 

diode, one can in this way obtain a higher bandwidth and reduced chirp.  

3.3.2 Semiconductor Optical Amplif iers  

Semiconductor optical amplifiers (SOAs) have a similar structure to Fabry-

Perot laser diodes but with anti-reflection design elements at the endfaces. 

Recent designs include anti-reflective coatings and tilted waveguide and 

window regions to eliminate endface reflection almost perfectly. This 

effectively prevents the amplifier from acting as a laser. 

 

Fig 3.9  Semiconductor Optical Amplifier  

The semiconductor optical amplifier is of small size and electrically pumped. It 

can be potentially less expensive than the EDFA and can be integrated with 

semiconductor lasers, modulators, etc. However, the performance is still not 

comparable with the EDFA. The SOA has higher noise, lower gain, moderate 
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polarization dependence and high nonlinearity with fast transient time. This 

nonlinearity presents the most severe problem for optical communication 

applications.  

High optical nonlinearity makes semiconductor amplifiers attractive for all 

optical signal processing like all-optical switching and wavelength conversion. 

There has been much research on semiconductor optical amplifiers as optical 

computing components. 

3.3.3 RSOA  

The Reflective Semiconductor Optical Amplifier (RSOA) [Prat05] consists of a 

conventional SOA in combination with a rear facet mirror such that the 

amplified lightwave is retro-reflected. This characteristic provides an increased 

gain from the device due to the double pass of the light through the gain 

region; an additional characteristic is their ability to modulate the incoming 

signal, removing the need for a local light source. 

 

Fig 3.10  Reflective Semiconductor Optical Amplifier  

3.3.3.1  RSOA characterization 

RSOA response depends on the incoming signal power and the bias current 

that is injected to the device. Figure 3.11 presents the output power of an 

RSOA that has been characterized in our labs. 

From the figure below it can be seen that the RSOA has different performance 

regions, which are the linear and the saturation response regions. The linear 

region is preferred to use the RSOA as a modulator, as offers the highest 

extinction ratio. On the other hand, the saturation region is preferred when 

RSOA performs as a photo receiver. This means that if the RSOA needs to be 

used as both, modulator and photo received [Prat05a], a compromise should 

be met to achieve correct performance on both tasks. 
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Fig 3.11  RSOA response  

3.3.3.2  Applications in access networks  

The use of reflective modulation techniques, RSOAs and EAMs is gaining 

attention in access due to the evolution of WDM PONs. As said in the 

introduction, in WDM PON systems each ONU requires a specific wavelength 

for upstream transmission and the use of wavelength-specific sources is not 

viable due to stock problems.  

The use of an RSOA, or a combination of SOA+EAM or the use of a modulator 

to transmit upstream by modulating an optical carrier sent from the CO 

[Kang06], [Prat05], [Prat05a], [Takesue06] allows the design of wavelength 

agnostic ONUs, which is now the most relevant application of SOAs and EAMs 

in access at present. 



 

 

4  Upgrade paths to FTTH  

In previous chapters we have presented the state of the art of FTTx and the 

optical device requirements that are need to deploy advanced access 

networks. However, if there is no justification for the change, this will not take 

place as access networks are a very competitive market, which is mainly driven 

by deployment costs and end users requirements.  

End user requirements and new applications are the main justification for 

investment in access networks. New applications with higher transmission 

requirements are encouraging operators to increase the bandwidth that they 

offer to the end users and this is causing the fiber infrastructure and xDSL 

technologies to reach their limit. This is what justifies the progressive upgrade 

path from the existing copper-based infrastructure to a totally optical one.  

This chapter will focus on this. First, we will introduce new applicatons and 

their bandwidth and latency requirements and afterwards we will present an 

upgrade path that is based on two steps: a first FTTC VDSL stage and a second 

FTTB Ethernet stage. The evolution will conclude with a totally optical 

deployment, which will be described in the next chapter.  

4.1  Justif ication: new applications and more bandwidth 

requirements  

The justification for an upgrade path from the existing copper based 

infrastructure to an optical FTTH outside plant is one main driver, which is the 

possibility to deploy new applications that require more bandwidth. 

The following list present advanced broadband applications and their 

transmission requirements, in terms of bandwidth, latency and transmission 

paths [Ransom92]. 
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Table: New applications for future access networks 

Video broadcasting and Video-on-Demand (VoD): video streaming is 

becoming the killer application that is encouraging the development of FTTH 

at present. MPEG standards are used to stream video on access networks, 

using MPEG-2 and MPEG-4/h.264 technologies. MPEG-2 has as main 

advantage the wide deployment of MPEG-2-capable equipment, as this is the 

standard used on DVDs and DVB. HDTV videos codified on MPEG-2 have 

bitrates around 20Mbps. On the other hand, MPEG-4 and h.264 standards 

offer more compression than MPEG-2 but require new equipment to decode 

the streams. MPEG-4 standards are used at present on peer-to-peer (P2P) 

networks thus devices capable of decode those streams and display them on 

TVs are becoming more popular now. An HDTV video on h.264 is about 7-

8Mbps. 

When one talks about video streaming, there is however a clear distinction 

between the offered service that influences on the network requirements to 

support it. This is whether multicast streaming or video-on-demand services 

are offered. If the network just multicasts several video channels, the required 

transmission capacity is n times the data bit rate. In this case, the network is 

dimensioned depending on the video channels. On the other hand, if the 

network offers VoD videos, the dimensioning will be done depending on the 

concurrent video streams, as one stream is required for each user that wants 

to watch a movie [Chan01]. 

Requirements in video streaming are mainly high and sustained data rate, 

together with constant latency. Network delay is relatively important, as the 

communications is just one way. 

Videoconference: high-quality videoconference is an application that is very 

difficult to deploy on present access networks because of its tight transmission 

requirements. The characteristics of videoconference are that it is a 

bidirectional communication that requires high bandwidth (in case of high-

quality video), low latency and very low network delay (under 80ms). High-

quality video requires sustained video flows of 1-2 Mbps, which are difficult to 

transmit on present xDSL infrastructures especially on the upstream channel 

[Kim05]. 

Audio streaming: due to the proliferation of the digital world and P2P 

networks, audio streaming and online purchasing of multimedia content are 

becoming a very profitable business. Apple is leading the market with iTunes 

(www.itunes.com) but now many other players want also to enter into the 
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business. Transmission requirements are not huge so present access networks 

can already offer this service with guarantees. The improvement on data rate 

would just reduce the time to download songs, which is now not a dramatic 

delay at present anyway. 1Mbps would allow reception of songs in a few 

minutes. 

Online gaming: this is a huge market, especially in Asia, where online gaming 

is one of the main drivers of broadband, on both, fixed and mobile access 

[Xiang05]. Transmission requirements of online gaming applications depend 

on the middleware design [Hsiao05], [Bauer02]. However, the mores available 

bandwidth, the more interactivity and reality can be achieved, specially in the 

recreation of virtual worlds, were the transmission requirements can be as high 

as the required for virtual reality (VR) applications. 

Teleworking: teleworking is a business model that is gaining popularity lately 

due to the economic and personal advantages that it offers to both, 

employers and employees. Employers can reduce their offices size while 

employees have a more user-friendly work environment, which increases 

productivity and also improves quality lifestyle, as no time I required to 

commute from home to work [Grozdanovic01]. Transmission requirements 

vary depending on the application but in general, to achieve total teleworking, 

data rates should be comparable to those of LANs, at least in peak mode. 

Anyway, 10Mbps are enough for present teleworking requirements and allows 

similar network experience as if the teleworker would be physically in the 

company’s premises. 

eLearning: eLearning an the recreation of educational environments is another 

interesting application on future access networks [Zahariadis02]. To recreate 

such an environment, the transmission requirements are similar to 

videoconference together with teleworking, as the learner needs a way to 

interact with the teacher and also a way to exchange information in a flexible 

way. There are also approaches that try to virtually recreate auditoriums to 

offer a more realistic approach, the requirements of which are similar to VR 

applications [Dong05] 

Peer-to-peer: P2P traffic is at present the higher load of the Internet. The 

increase of broadband datarates and 24h connectivity has dramatically 

changed the traffic patterns of the Internet. In terms of bandwidth per user, 

network utilization follows a 80/20 Pareto law, and 20% of the network users 

allocate 80% of the bandwidth, mainly because P2P applications. Without 

entering in legal issues, the more bandwidth the network offers, the more P2P 

applications use it so there is no point in giving a figure to P2P traffic 
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requirements, as all available bandwidth on future access networks could be 

used to P2P traffic. However, what one should guarantee is that traffic 

priorities do not allow P2P to cannibalize all the bandwidth. 

Telemedicine: under telemedicine, one can identify two main applications: 

remote doctor practice and medical collaborative work [Kohli89]. Their 

transmission requirements are very different, as the first one is a virtual 

presence application, where the objective is to give a framework of interaction 

between the patient and the doctor. Requirements are similar than 

videoconference applications. On the other hand medical collaborative work 

has higher transmission requirements. In diagnostics, the network should 

support transmission of high quality images in order to diagnose with the 

highest resolution. Additionally, in remote surgery applications, further to high 

quality video streaming to watch the operation, in case of remote tool usage, 

then resilience and security should be 100% guaranteed. In terms of available 

bandwidths, one can think on 10 to 100Mbps depending on the video quality.  

Virtual Reality: This application has the highest transmission requirements but 

at the same time is the most difficult to predict when trying to present any 

figures in terms of transmission requirements. Those requirements depend on 

the quality of the virtual world that one wants to recreate and the interaction 

between the VR environment and the user. In VR applications, network delay, 

latency and jitter are critical parameters to provide a correct interaction 

between the virtual world and the user while bandwidth determines the 

quality of the recreated world. Bandwidths can go up to +Gbps while jitter, 

network delay and latency should be kept under 3.5ms to offer correct 

interaction experience. [Nishino06]. 

High-speed Internet: The higher the datarate, the better the surfing experience 

on the Internet. Traditional services, like email, news browsing and WWW do 

not have excessive bandwidth requirements. However, attachments in emails 

and complex WWW pages are quicker transferred when datarate is high. 

Anyway, constant data rates are not required unless file transfer. Except for this 

last case and the transmission of large emails, high-speed Internet do not 

require more than 10Mbps per user. 

From the list, above one can see that present xDSL solution will not be able to 

cope with the required transmission bandwidths, especially when applications 

are used simultaneously. However, they are a viable solution now and can be 

seen as a transition to a fully optical infrastructure. 
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Video applications and virtual reality (VR) are the hungriest players in terms of 

network requirements. Although advanced compression protocols are under 

development to increase resolution while keeping data rates low, fiber 

becomes almost a requirement in VR environments. The recreation of virtual 

worlds require 3-D renderings and high-quality audio which are also difficult 

to transmit on present PONs due to the huge transmission requirements of VR 

[Ishida05]. 

4.2  FTTC: Combined WDM / SCM network to deliver 

VDSL signals  

This section describes two possible schemes developed to carry very high data 

rate DSL signals over a fibre to the cabinet architecture for the upgrade of 

legacy copper networks.  

The first technique has been developed to exploit the sub-carrier bandwidth 

of un-cooled semiconductor lasers for the transmission of multiple VDSL 

signals using inexpensive interfacing hardware in the optical networking unit 

(ONU).  

Using a hybrid fibre/copper link comprising >100m of twisted pair copper 

cable and up to 45 km of SMF, data transmission comparable to FTTH is 

achieved. In an extension to this design, we further demonstrate a system 

using a reflective semiconductor optical amplifier (RSOA) in a carrier-less 

remote ONU configuration [Prat05a]. Such a design might enable wavelength 

agility in the fibre access network for the purpose of signal routing or active 

bandwidth allocation.  

4.2.1 Introduction  

Fibre-to-the-home (FTTH) provides the ultimate wireline access medium due 

to its effectively unlimited bandwidth. However, without significant 

opportunity for new revenue generation, for example through high uptake 

rates of triple play services, the economic model for wide-scale FTTH 

deployment remains weak at present [Frigo04, Monath03]. The business case 

for fibre-to-the-curb or cabinet (FTTC) deployments is however much stronger 

now as copper-based infrastructure is still able to cope with the transmissions 

requirements of present applications. Here the fiber cable replaces much of 

the existing copper link but leaves the final copper drop-link untouched. The 

cost advantages are therefore drawn from increased sharing of the fibre plant, 

greater reuse of existing infrastructure and lower installation and purchase 
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costs of the end user (CPE) equipment. Moreover, data rates of very high rate 

digital subscriber line (VDSL) and the spectrally enhanced VDSL2 technologies 

can now exceed 100MBps symmetric transmission over relatively short 

distances (up to ~300m), making it an ideal transmission format for FTTC 

deployments.  

One considerable expense in deploying DSL over FTTC architectures is the 

requirement for the installation of a remote digital subscriber loop access 

multiplexer (DSLAM), often deployed in the optical networking unit (ONU). 

The heavy power requirement and increased footprint of such systems places 

a significant burden on both the CAPEX and OPEX of this architecture, and 

alternatives are sought [Silverman04].  

This section presents a network topology together with the results of 

experiments on a scheme to provide fiber optic extended DSL signals over an 

FTTC architecture with inexpensive low power (<600mW) ONU interfacing 

equipment whilst retaining the DSLAMs at the CO. Furthermore, provision for 

multi-dwellings or multiple CPEs is afforded through the use of sub-carrier 

multiplexing in the ONU/OLT interfacing equipment [Penty02]. A noteworthy 

advantage of this system is that it provides a readily deployable upgrade path 

for fiber penetration into legacy copper-based access networks. This could 

form part of a staged upgrade solution that, with sufficient uptake of triple 

play services, could culminate in an FTTH network.  

We study two ONU hardware architectures; the first uses a conventional 

optoelectronic interface comprising a laser and photo receiver. This could, for 

example, consist of a BiDi optical transceiver or of a photo receiver and laser 

pair. A particularly suitable choice of laser for this application would be the 

VCSEL as it is inherently inexpensive and suited to integrated circuit design. 

For the purpose of demonstration we use a DFB laser operating at ~1544nm.  

In a further implementation of the ONU hardware, we describe an optical 

interface consisting of a photo receiver and a reflective semiconductor optical 

amplifier (RSOA), which has already been described in the previous chapter.  

4.2.2 DSL over FTTC architecture  

Figure 4.1 presents the link structure used to carry multiple DSL signals over a 

fibre to the curb (FTTC) network. The network contains some key features, 

amongst which are the compatibility with PON architectures and retention of 

the Central Office DSLAM equipment. OLT/ONU hardware has been designed 

to operate at low power with a small footprint, offering compatibility with the 
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legacy cabinet and distribution point infrastructures. An ONU multiplexes each 

of the DSL signals from the customer premises equipment (CPE), with a 

maximum of 24 VDSL bandwidth signals expected to be contained within a 1 

GHz modulation bandwidth optical carrier using the current implementation. 

Future designs may encompass single/vestigial sideband techniques to 

improve the spectral efficiency of the subcarrier signals. 

 

Fig 4.1  Network architecture used for DSL over optics solution 

4.2.3 Local carrier ONU design  

 

Fig 4.2  VDSL over FTTC experimental setup  

Fig. 4.2 shows a schematic of the experimental setup. The system comprises a 

DSL modem at the CPE carrying 100BASE-T fast Ethernet traffic over a VDSL 

band 998 compliant channel. This is connected by 106m of UTP (unshielded 



70 Upgrade paths from existing access solutions to advanced passive optical networks 

twisted-pair) cable with a loss of ~8dB at 10MHz to the ONU equipment. Such 

a distance would be representative of a final drop UTP cable from a 

cabinet/distribution point. The UTP from each CPE terminates in the hardware 

represented by the ONU in Fig. 4.2. The line initially terminates into an 

electronic directional coupler to split the upstream and downstream signals. 

The design of the directional coupler consists of a lossless differential balanced 

op-amp pair with a measured isolation of 23dB in the forward direction and 

>80dB in the return direction. The directional coupler has been further 

designed to be frequency independent, thereby allowing for a band-plan 

agnostic ONU solution capable of carrying both QAM and DMT based signals. 

This design characteristic of both the OLT and ONU equipment makes the 

scheme capable of carrying true interoperable universal-DSL signals. Other 

designs for the directional coupler were considered; amongst which are the 

transformer based hybrids and directional couplers, however these suffer from 

limited up/downstream isolation and significantly higher losses. 

The differential output of the directional coupler is converted to a common-

mode signal before being upconverted to a channel within the sub-carrier 

multiplexed (SCM) spectrum. A passive high-pass filter is used after the mixer 

to remove the residual baseband signal that results from imperfect conversion. 

In the forward path, the upconverted signal is combined with the other SCM 

channels before being used to directly modulate a semiconductor laser. 

Frequency up-conversion of the DSL signals enables multiple signals to be 

combined within the ~1GHz modulation bandwidth of the optical 

components. In the current scheme, the VDSL signals have a baseband spectral 

width of 12 MHz (24 MHz including both sidebands). With the 998 spectral 

band plan this offers a maximum 67 Mbps upstream and 40 Mbps 

downstream data transmission rate. Given the spectral width of the up-

converted signal, a 1 GHz modulation spectrum in the optical carrier would 

permit 40 VDSL channels, however with the inclusion of 16 MHz guard-bands 

the channel count would be reduced to ~25.  

In the return path, the output of the circulator is connected to a photodiode 

before being passively split, down-converted and re-applied as the return 

signal to the directional coupler. The output of the laser is connected by a 

circulator to the fibre link, which consists of an unamplified section of NZDSF 

SM fibre with various lengths. The fibre carries the signal to the OLT terminal 

equipment, which comprises an identical circuit to the ONU, the output of 

which connects directly to the CO modem (or DSLAM). For experimental 

purposes both OLT and ONU transmitters operate within the 1550nm band.  
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Results obtained demonstrate two key experimental observations. Firstly, the 

transmission performance of the each VDSL signal over a range of subcarrier-

multiplexed channels can be assessed. This was performed across the 

approximate frequency range 50 - 1000MHz, principally governed by the 

mixer bandwidth. Secondly, performance across increasing optical distance 

can be observed. Fig. 4.3 shows baseline performance of the modem 

transmission rate through the ONU/OLT equipment for a range of subcarrier 

frequencies implemented. 

 

Fig 4.3  Baseline data rate versus subcarrier frequency though the OLT+ONU interface 

(DS: downstream; US: upstream)  

The results of Fig. 4.3 indicate a mean downstream rate of 46.4 Mbps and an 

upstream rate of 24.1 Mbps, these compare to the 67 Mbps and 40 Mbps 

respectively available to the fast-998 band plan used, corresponding to 

transmission efficiencies of 69% and 60% respectively. The decreased 

efficiency results almost exclusively from the up- and down-conversion 

processes, namely the conversion loss of the mixers. It is expected that this 

efficiency could be improved with linearised mixers. As a measure of the 

unconverted efficiency, transmission of base band signals through the same 

circuit (i.e. bypassing the mixers) produced data transmission efficiencies of 

91% and 97% for the down- and upstream signals respectively. This resulted in 

transmission rates of 96 Mbps and 48.5 Mbps over a 105/50 extended-998 

band plan.  

To measure transmission performance over the fibre optic extended link, the 

setup of Fig. 4.2 was used with increasing lengths of NZDSF fibre and again 

performance was measured as an average across the full subcarrier spectrum. 
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The results for baseline optical (i.e. a patchlead), 20 km and 45 km of the SM 

fibre are plotted in Fig. 4.4. 

The results, as expected, show a gradual decrease in the data rate with 

distance reducing the mean downstream rates to 37 and 28 Mbps for 20 km 

and 45 km respectively whilst the upstream rates are reduced 24 and 12 Mbps 

for the same respective distances. In keeping with the expected access 

topologies, no optical amplification was used. The results therefore follow a 

predictable degradation due to the increased losses and their consequent 

reduced SNRs as received by the modems.  

 

Fig 4.4  Mean data rate across subcarrier spectrum over increasing transmission distance  

4.2.4 Carrierless ONU design  

For the second part of this work, the design of the ONU equipment has been 

altered to include the RSOA device (as shown in Fig. 4.5). 

 

Fig 4.5  RSOA based ONU hardware 
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The OLT equipment remains the same as that shown in Fig. 4.2. In this ONU 

configuration, the RSOA is used as a carrierless transmitter, in that it amplifies 

and modulates the reflected light beam rather than generating a new light 

beam. This potentially extends the functionality of the RSOA-based ONU to 

wavelength assignment or routing architectures [Tsalamanis04a].  

As the nature of the DSL signal is such that downstream and upstream data 

are frequency division multiplexed (FDM), the residual downstream signal that 

is amplified and reflected is effectively filtered by the DSLAM. A separate 

photodiode is used for detection of the downstream carrier signal. The up and 

downstream paths are power split using a 3dB coupler, with care taken to 

ensure that Fresnel reflections (which may lead to optical feedback in RSOA) 

are minimised. As with the previous setup, the DSL signal used is the 998 

compliant VDSL standard with a 12 MHz spectral bandwidth and a maximum 

67 Mbps downstream and 40 Mbps upstream data rate.  

Both base band and SCM-based transmission tests were conducted to validate 

the operation of the RSOA-ONU architecture. The device had a threshold 

current of 50 mA and was biased at 80 mA; the upstream data modulated on it 

at 40 mA peak-to-peak. Under these conditions, the RSOA provided a gain of 

~8dB, which is sufficient to ensure transparency of the ONU with ~1.5 dB of 

additional gain. The modulation bandwidth of the RSOA was ~1.5 GHz, 

although the end-to-end bandwidth of the optical system was restricted to ~1 

GHz by the OLT components.  

First, the ONU was operated in the subcarrier-multiplexing mode using an 

upconversion frequency of 260 MHz and the 998 67/40-band plan. With an 

unamplified 20 km section of SMF fibre separating the ONU and OLT, the data 

rates achieved were 38 Mbps downstream and 24 Mbps upstream, giving data 

transmission efficiencies of 57% and 60% respectively. Then, with the mixer 

circuit bypassed to transmit in base band mode, the data transmission rates 

were 48 Mbps downstream and 25 Mbps upstream, demonstrating data 

transmission efficiencies of 72% and 63% respectively.  

4.2.5 Conclusions  

The practical results of a novel subcarrier multiplexing scheme for transmission 

of multiple band-plan agnostic universal-DSL signals over a fibre optic 

extended network show good performance over the full subcarrier spectral 

range and distances of up to 45 km of single-mode fibre span, making this a 

possible solution for X-Large PON networks. By using these low power 

ONU/OLT interfaces in FTTC/FTTN architectures we propose an inexpensive 
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upgrade solution for staged fibre penetration into legacy access networks. 

Fibre optic extended solutions such as this enable FTTH comparable data rates 

with maximal infrastructure reuse. 

We have further extended the scheme by developing a carrierless ONU 

transceiver using an RSOA device. This provides a colourless ONU architecture 

with its potential flexibility in wavelength assignment and routing. Both 

solutions demonstrate triple-play capable bandwidth over X-Large PON 

distances and, through the incorporation of SCM, enable multi-user scalability 

from the distribution point.  

4.3  FTTB: Switched Ethernet services over WDM /SCM 

access networks  

In this section, a hybrid optical/copper access network designed for Fiber-To-

The-Building (FTTB) implementing switched Ethernet (10/100/1000Base-T) 

services is presented and evaluated. The optical distribution is based on 

bidirectional WDM to establish virtual point-to-point connections between the 

Central Office (CO) and the Optical Network Units (ONUs) through Arrayed 

Waveguide Gratings (AWGs). Optical transmission is implemented with single 

fiber outside plant, using two different wavelengths to transmit upstream and 

downstream signals matching the cyclic free spectral range of the AWG. By 

means of Sub-Carrier Multiplexing (SCM), several switched Ethernet channels 

are multiplexed and transmitted on the same optical wavelength to the ONU. 

This acts as a multipoint transceiver from the optical link to the standard UTP 

infrastructure used to distribute the signal inside the building to the end users.  

The advantages of this technique are simplicity, cost effectiveness and 

increased network security compared to PON standards. Switching of Ethernet 

signals is performed at the OLT and data from/to one user is isolated from the 

others. This establishes a transparent point-to-point connection from the OLT 

to the end user based on LAN Ethernet Services, via a bidirectional 

WDM+SCM path. The use of LAN Ethernet services makes the topology cost 

effective. Furthermore, the optical equipment is shared among all the users 

connected to the same ONU, with up to 96 possible depending on the 

Ethernet service that is deployed. 

Bandwidth demands for new applications require an upgrade on existing 

copper access infrastructure to be able to accommodate these new services. 

Optical fiber and more specifically passive optical networks are an effective 

approach to deploy cost-effective networks [Prat02]. A/GPON and EPON are 
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two alternatives that are currently on the market. GPON ITU-T G.984.3 offers 

asymmetrical bandwidth up to 2.5Gbps downstream / 1.25Gbps upstream 

while EPON IEEE 802.3ah offers symmetrical 1Gbps [ITUTG984.x, IEEE802.3ah], 

both having been analyzed in Chapter 2. The available bandwidth is shared on 

a TDM basis among the users connected to the network segment, which 

means that end user practical bandwidth depends on the network utilization. 

Also, the equipment required at the user premises requires packet processing 

to control OAM and from the transceiver point of view, a laser and photo 

receiver for each end user. 

This section proposes an alternative broadband approach based on a hybrid 

fiber / copper topology to transmit switched Ethernet signals from the Central 

Office to the end users achieving high density and long reach. WDM transport 

technology is used for the optical links and SCM to multiplex several Ethernet 

connections on the same wavelength [Penty02]. In this approach, the WDM 

and SCM stages are transparent to the Ethernet protocol, so we can transmit 

standard electrical 10/100/1000Base-TX signals using inexpensive LAN cards at 

the end user side and position the switch and processing equipment at the 

CO. This approach is especially interesting for FTTB applications in highly 

populated areas such as condominium buildings. Here, the ONU would be 

located at the building basement and the copper infrastructure would run 

from there to each of the end-user Costumer Premises Equipment (CPE). 

4.3.1 Network architecture  

 

Fig 4.6  Network architecture  

One of the features of the network is that the processing equipment is entirely 

located at the CO, while there is no active equipment in the outside plant 

except for the ONU. The use of passive components in the outside plant 

reduces mainly OPEX because no special environment-controlled spaces are 

required to place the equipment. Additionally, failure probability is much 
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lower on passive than on active equipment. Figure 4.6 presents the proposed 

outside plant. As the optical, electrical and Ethernet domain are completely 

transparent, they will be described in separate subsections. 

4.3.1.1  Optical layer access topology  

In order to provide connectivity in the optical domain, we propose the use of a 

standard WDM-PON topology, based on an AWG at the remote node to route 

wavelengths to the appropriate ONU. Each ONU has a dedicated wavelength, 

connecting it to the OLT in a point-to-point configuration. To reduce outside 

plant size, we use a single fibre to transmit both, downstream and upstream. 

Although we could transmit both on the same wavelength [Prat04a], in order 

to reduce Rayleigh backscattering and reflections, we separate upstream and 

downstream on different wavelengths matching the free spectral range (FSR) 

of the AWG [Smit96] to achieve correct connectivity (Fig. 4.7). 

 

Fig 4.7  AWG routing plan 

The OLT is based on an array of lasers. A laser for each ONU is needed, as 

constant connectivity is required to establish the Ethernet links. To multiplex 

all the lasers, an AWG identical to the one used at the remote node is used. 

After the multiplexing stage, an optical circulator (or, alternatively, by a coarse 

DeMUX) separates upstream and downstream transmissions. The upstream 

reception branch is formed by an AWG (identical to the others) and an array of 

photo-receivers.  

The ONU is based on a coarse demultiplexer to isolate downstream and 

upstream traffic. Downstream traffic is then photo-received and upstream 

traffic is sent to the OLT by directly modulating the laser.  

Fig. 4.8 depicts the outside plant, OLT and ONU designs.  
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Fig 4.8  Optical layer design 

4.3.1.2  Sub Carrier multiplexing stage  

In order to multiplex the Ethernet services that will be offered to the end users, 

we use sub carrier multiplexing. The objective is to efficiently use the available 

electrical spectrum of the laser, to transmit the number of channels needed at 

that ONU location. As we are transmitting many channels, we propose to 

perform this action in the digital signal processing (DSP) domain, to avoid the 

necessity to have N local oscillators, where N is the number of services that we 

are multiplexing on the same laser. This concept is applicable on both, the OLT 

and the ONU. Therefore, we propose a Field-Programmable Gate Array (FPGA) 

to perform all the functions that are required, which are: A/D conversion, up 

and down converting, filtering and D/A conversion. Fig. 4.9 presents a block 

diagram of the functional blocks and the equivalent process in the analogical 

domain.  

 

Fig 4.9  SCM stage 
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The advantage of using digital processing to perform the sub-carrier 

multiplexing is also the easier implementation of the filters required to filter 

the channels located in the upper frequencies. To implement sharp-edge 

filters of a few MHz on a GHz band is a challenging task in the analogue 

domain.  

4.3.1.3  Ethernet service layer  

By using the hybrid technique described above for multiplexing channels 

using WDM on the optical domain and SCM on the electrical links, a 

transparent point-to-point connection from the OLT to the end subscriber can 

be established. The limiting factor is the available bandwidth of the SCM 

channel, which will define the services that can be deployed. The channel 

count limitation is the available electrical bandwidth of the laser and the DSP. 

A cost effective approach is to use 2.5GHz lasers. As cost is a limiting factor, we 

propose to use direct modulation of the laser, instead of external modulation, 

although this second technique can increase electrical bandwidth up to 

approximately 10GHz. To calculate the number of Ethernet signals that can be 

accommodated on a single wavelength, we assume that 10% excess spectrum 

is required for filtering purposes. Table 4.1 presents the three Ethernet services 

that are proposed (10/100/1000Base-T) and their coding and spectrum 

specifications [IEEE802.3], including the number of services that can be 

multiplexed. Figure 4.10 presents the spectrum of the three Ethernet services 

under analysis.  

 

Fig 4.10  Spectrum of 10/100/1000Base-T services 

With DSP one can have full control of the service bandwidths and the sub-

carrier frequencies, thus automatically reconfigure the electrical spectrum and, 
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in consequence, the service level to the individual users, featuring SLA. Also, 

different advanced modulation formats can be implemented in order to 

increase bandwidth efficiency and multiplex more channels. 

Service Data rate Line rate Modulation BW # channels (*)

10BaseT 10Mbps 10Mbps Manchester 20MHz 113

100Base-TX 100Mbps 125Mbps 4B/5B,3-MLT 125MHz 20

1000Base-TX 1000Mbps 1.25Gbps 5-level PAM 4x 125MHz 5

(*) Assumptions: 2.5GHz BW with IM modulation, 10% excess spectrum for 10BaseT  

Table 4.1  Ethernet services  

4.3.1.4  Dimensioning, applications and users  

The number of users that can be served by a single feeder fibre run from the 

OLT depends on two factors: the wavelengths on the WDM optical link and 

the number of SCM on each wavelength. This last parameter also depends on 

the Ethernet service that is delivered, which requires a compromise between 

bandwidth per user and number of users connected to the network. As we are 

using digital processing to SCM, the network can switch between different 

speeds depending on the user demands and on the use of the electric 

spectrum, which is affected by the number of simultaneous links. Noting that 

the price of 10/100/1000Base-T LAN cards is now very economic, this feature 

does not increment the network cost.  

ONUs are deployed with the maximum number of ports (defined by the 

number of simultaneous 10Base-T connections). This is set at 96 to be a 

multiple of the Ethernet switching standards (2x 48) although it is theoretically 

>100. Depending on the number of simultaneous connections, the 2.5GHz 

available bandwidth is tailored to serve the end users, by limiting the links 

from GbE to Fast Ethernet and from Fast Ethernet to Ethernet services. 

Obviously, this feature can be adapted to a SLA for specific end users.  

On the subject of dimensioning, noting that the maximum number of users 

served by a single ONU is 96, and that a commercially-available AWGs offers 

40 ports, the network can offer 10Mbps full-duplex connectivity to 3,840 users 

in a very cost effective way. If we guarantee 100Mbps Fast Ethernet service, 

800 users can be simultaneously connected. This means that by deploying 

3,840 ports we are guaranteeing 100Mbps if the simultaneity factor is 20%. 

Finally, Gigabit services can be offered to 200 users at the same time. An 

important feature is that we can combine different services on the same 

network in a straightforward way. Only the ONU has to be configured so as 

not to exceed the available electric bandwidth.  
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4.3.2 Experiments  

In order to demonstrate the feasibility of our proposal, we implemented a 

WDM PON and modulated a laser accommodating several Ethernet services. 

The network test bed is presented in Fig. 4.11. We used IM analogue 

techniques to multiplex two Fast Ethernet services and modulated a DFB laser 

at the OLT to transmit 3dBm output power at 1543.73nm. Between the OLT 

and the remote node, 20 km of SMF were added to emulate a real FTTH 

implementation. An athermal 32-port AWG with 100-GHz channel spacing was 

used as a remote node. Losses of the AWG were 3.9 dB. The ONU was based 

on a 30-nm CWDM two-port demultiplexer to separate downstream and 

upstream transmissions. A PIN photodiode receiver was used.  

The SCM stage was implemented by transmitting one channel on baseband 

and another one upconverted to 500-MHz. A 125-MHz low pass filter was 

used to avoid any overlap between the two transmitted signals. We used a 

pattern generator to simulate Fast Ethernet data (data rate = 125 Mbps) in 

order to be able to obtain sensitivity and BER results. 

 

Fig 4.11  Network testbed 

Transmission and reception were achieved without problems having a receiver 

sensitivity (BER=10-9) of -30 dBm for the baseband modulated signal and of -

26 dBm for the 500-MHz upconverted one. This degradation on the sensitivity 

is due to the mixing process involved in the frequency shifting of the signal. 

Fig. 4.12 depicts spectrums of the transmitted signals in different points. 
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Fig 4.12  Spectrum of the transmitted signals; a: 125-Mbps PRBS Data input, b: SCM signal at 

OLT laser input, c: received signal after down converting and filtering  
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4.3.3 Conclusions  

This section presents an innovative way to transmit electric switched Ethernet 

signals over an access infrastructure. With this technique, the distance 

limitations of electric transmission are avoided and the switched environment 

sets no logical distance limitation due to the CSMA/CD or TDM-PON access 

protocols.  

The network is based on a hybrid WDM/SCM technique and is able to offer up 

to 3,840 ports using 40 optical carriers and IM SCM, achieving efficient 

resource sharing of the optical equipment. Furthermore, by optimizing the 

electric bandwidth channel allocation using advanced digital modulation 

formats the system capacity can be further increased. A testbed 

implementation demonstrates the validity of the proposal. 

4.4  Conclusions 

An economically viable upgrade path is mandatory to offer a gradual 

transition from the existing copper infrastructure to a passive optical access 

network. As existing xDSL copper-based standards cannot provide the 

required bandwidth for future applications, so the migration is inevitable. 

However, this migration should be done gradually, so network operators can 

justify the investment. 

A FTTC model using xDSL for the last segment of the network reduces the 

copper link thus offers higher transmission datarates and at the same time 

closes the fiber to the end users. We have presented two possible 

implementations of the system, both of them offering low power consumption 

requirements in field, as powering in field is a critical issue. 

Another step that further reduces the copper segment is presented in a FTTB 

approach for condominium buildings based on SCM of switched Ethernet 

signals. This system further increases transmission capabilities and prepares the 

outside plant for a complete FTTH upgrade in the short term. 
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5  Advanced Topologies for FTTH 

This section presents different topologies to deploy high-density access 

networks for a complete FTTH deployment. Three different topologies will be 

analyzed in detail, two of them based on a combined ring + tree infrastructure 

and another one based on a tree outside plant. Each of them has special 

features and peculiarities and offer different access solutions depending on 

transmission, quality and topology requirements. 

The main characteristics of the network topologies that will be presented, 

which constitutes the base of this thesis, are: 

! Combined WDM / TDM access 

! Passive outside plant 

! High-density (+1,000 users) 

! Possibility to use reflective and wavelength agnostic ONUs 

! Optimized CO design to optimize utilization of optical resources 

! Simple ONU design for cost-effectiveness 

The election of the features listed above is because we believe those are the 

requirements for future access networks in order to provide the highest 

performance at the lowest cost. 

5.1  AWG2 WDM/TDM PON in a tree configuration 

(RAFOH Tree) 

This section presents an advanced Time/Space/Wavelength Division 

Multiplexing architecture. A shared tunable laser and photo receiver stacks 

offer dynamic bandwidth allocation and remote modulation are used for 
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transmission and reception in order to optimize utilization of optical resources. 

The network topology is based on a concatenation of two stages of AWGs. 

Transmission tests show proper operation at 2,5 Gbps to 30 km reach, and 

network performance calculations using queue modeling demonstrate that 

high-bandwidth-demanding application could be deployed on this network. 

5.1.1 Introduction  

Optical Access Networks present the future-proof alternative to the currently 

deployed copper access infrastructure. With the standardization of TDM-

PONs, a cost effective access technology based on optics has been developed. 

However, further development needs to be done in order to fully exploit the 

benefits of optical fiber technology. WDM-PONs is an option, where capacity 

per user can be very high, but their cost does not make them attractive for a 

practical implementation nowadays [Maier00]. Other references of network 

topologies combining WDM and TDM to optimize network performance and 

resource utilization can be found on [An04] and [Tsalamanis04]. 

The architecture that we propose finds a compromise between WDM-PONs 

and TDM-PONs in terms of capacity and cost while offering centralized 

management and bandwidth allocation from the Optical Line Terminal (OLT), 

simplifying the TDM upstream protocol. This is possible by using wavelength 

routing, based on two stages of matched AWGs, which create a virtual point-

to-point connection between the OLT and the Optical Network Unit (ONU). 

Another advance is the introduction of agile WDM, which combined with TDM 

leads to a promising level of capacity and resource utilization efficiency. Also, 

convenient characteristics are the use of one single fiber for both up- and 

down-stream transmission, to reduce the size of the external plant and the 

complexity of the Optical Network Unit (ONU) at the Customer Premises 

Equipment (CPE).  

5.1.2 Network design  

Network architecture is depicted in Fig. 5.1. It is based on two cascaded AWGs. 

The first stage is an M x M AWG, located at the OLT or outdoor. The 

functionality of this AWG is to route optical signals generated by the OLT laser 

stack to each of the network branches to which the OLT will serve. The second 

stage is a 1xN AWG located at the remote node. Its task is to demultiplex the 

N incoming wavelengths to each of the output ports, which connect to the 
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ONUs. The entire network routing intelligence is located at the OLT in order to 

provide easy upgradeability and easy integration with the backbone. 

 

Fig 5.1  Network architecture 

We here make use of the FSR periodical routing property of AWGs [Smit96], to 

route more than one wavelength to each output port. This offers an extra 

degree of flexibility, more scalability and does not restrict the topology to the 

case where N = M [Parker00]. The use of the FSR for routing purposes requires 

that both the central and remote AWGs are designed to match the band pass 

wavelengths. 

Also, we propose a tunable laser stack that is shared among the N x M ONUs. 

This laser stack can be dimensioned and scaled depending on the bandwidth 

requirements of the users. 

The combination of these two ideas makes this topology flexible, innovative 

and future proof. Also, dynamic bandwidth allocation is possible as the lasers 

can serve specific ONUs from different remote AWG segments depending on 

the network load [Bock04]. 

The lasers generate N wavelengths. Each ONU has an assigned wavelength 

that connects it to the OLT (this is comparably more secure than a classic 

TDM-PON scheme where ONUs listen to a broadcasted transmission). We 

propose that the ONU operates in reflection mode based on remote re-

modulation [Takesue03], [Hung03], [Koonen01], [Prat05]. We used both an 

optical LiNbO3 modulator and a Reflective Semiconductor Optical Amplifier 

[Prat05a]. 
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The use of reflective ONUs has the advantage that with such devices, all ONUs 

can be identical no matter which port of the AWG they are attached to. 

Parameters to be designed are the number of lasers at the OLT (typically this 

value should be the same as the input ports of the first AWG), number of input 

& output ports of the central AWG (M) and number of ports of the distribution 

AWG (N). For cost sharing purposes, the number of lasers, and thus the 

number of ports of the central AWG (M) is much smaller than the number of 

users connected to each remote AWG (N). This is achieved by using multiple 

FSRs of the central AWG as a multiplying factor for wavelength routing, 

defined as N / M = K ! " (Number of used FSRs). The explanation of this 

routing technique can be better understood by analyzing the routing plan of 

Fig. 5.2. Each laser alternatively serves K·M = N ONUs connected to all the 

remote AWGs; K users connected to each remote AWG are served by the same 

laser. 

 

Fig 5.2  Routing plan 

Since each laser is shared among N ONUs, a dynamical time allocation 

protocol can be used (although static TDM is also possible). The OLT has the 

control of the assigned bandwidth by offering the laser source to a specific 

ONU during a certain period of time. There is also the need to tune to each 

ONU regardless of the fact they have data to be transmitted or not. This is 

because they are designed to work in reflective mode, without any light 

source, which means that the optical carrier needs to be sent from the Central 

Office. Prior to the laser stack, a data switch is required to route the 

information to the corresponding laser depending on the ONU. 

This time slot duration is shared between downstream data and upstream 

carrier transmission as can be seen in the downstream signal plot in Fig. 5.3. 

ONUs cannot generate light so it needs to be sent from the OLT. The solution 
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of sending the downstream data and the upstream carrier from the OLT is 

interesting because collisions in the upstream are avoided as the OLT has 

information about all the data and time references sent to all ONUs and, at the 

same time, no grant and request packets need to be sent between ONU and 

OLT. 

 

Fig 5.3  Downstream and upstream slot assignation 

In a real implementation, we propose the use of a dynamic bandwidth 

assignment protocol, which would vary window time accordingly, adjusting it 

to network conditions and user requirements [Kramer02]. As ONUs do not 

have any light sources, the access protocol needs to send discovery packets 

regularly in order to detect whether the ONU is online or switched off. In the 

network performance section, this aspect will be developed.  

Another important consideration about laser assignment is the transmission 

versus tuning time ratio. Each laser switches to N wavelengths in order to 

reach all ONUs it serves. Tlaser is defined as the time required to process and to 

tune a desired wavelength. Depending on laser technology there is a 

compromise between tuning speed and tuning range [Su04]. Tlaser in the range 

of 1 to 10 !s is required in order to offer good performance using data rates 

of 1 to 2.5 Gbps as we will show later. For higher data rates, tunable lasers with 

tuning capabilities in the range of hundreds of nanoseconds are required. 

Considering this, the minimum bandwidth per user that could be offered in a 

saturated scenario, where ONUs transmit at their maximum capacity:  
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where L is the number of lasers at the OLT (typically L = M), b is the data rate 

and T is the time slot assigned to each ONU in time units. To reduce the effect 

of Tlaser the solution is to increase T. However, in that case, the interval of 

service to serve the same ONU (latency) may be too high for certain 
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applications (e.g. real time applications). Therefore, a compromise must be 

met combining BWuser and latency parameters. Maximum latency, also called 

Twindow, is:  
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 (5.2)  

These equations have been developed supposing a deterministic situation 

where the users are transmitting at full rate under TDM conditions. 
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Fig 5.4  Bandwidth per user depending on laser tuning time and time window (other 

parameters: L=16 lasers, b=2.5 Gbps, N·M=512 ONUs) 

Fig. 5.4 presents the relationship between the guaranteed bandwidth per user 

and the average time slot assigned to each user. The conclusion from this 

figure is that tuning times in the range of !s offer good network performance 

at data rates of 2.5 Gbps. Slower lasers in the range of ms should not be used 

because network performance would be degraded to very poor levels. 

Fig. 5.5 presents average maximum network latency against time slot duration. 

There is a minimum in time window time, which is N·Tlaser and the 

supposition that no user is transmitting (Ttx = 0). This minimum, when using a 

laser with tuning time of 1ms is simply too long for real time applications and 

therefore, not suitable for being used in our network. 
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Fig 5.5  Time window per user depending on laser tuning time and time window (other 

parameters: L=16 lasers, b=2.5 Gbps, N·M=512 ONUs) 

Finally, it should be noted that these results are based on the assumption that 

ONUs are equidistant from the OLT, so no ranging strategy is required. To 

consider different distances among ONUs, Tlaser, which is the guard time 

between two consecutive transmissions, needs to be adapted to guarantee 

that there are no collisions at the OLT photo receiver once the upstream data 

is transmitted. The time margin for ranging purposes is Tlaser+Tdown, where 

Tdown is the time slot assigned to downstream transmission, as downstream 

data is not sent back to the OLT [Bock05b], The condition to avoid collisions at 

the OLT photo receiver is then:  

2

prop down
prop laser

v b
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r

! "
# $ % +& '

( )  (5.3)  

where vprop is the propagation speed, bdown is the bit length assigned to 

downstream transmission and r is the data rate. As an example, with Tlaser = 1 

!s and a downstream burst of 50,000 bits at 2.5 Gbps the parameter !dprop is 

2.1 km. 

As a general guide to time slot duration, with Tlaser = 1 !s a value between 50 

and 100 kbits is a good compromise for both time window and network 

performance. Maximum time window is in the range of 1 to 2 ms and network 

utilization in the range of 85 to 99%. 
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5.1.3 Network scalability  

Bandwidth scalability and addition of new users are among the most 

important features that an access network must provide in order to be future 

proof. In this section, we propose several strategies in order to increase 

network performance and the number of connected users once the 

infrastructure has already been deployed. 

 

Fig 5.6  Bandwidth increase by means of addition of more lasers 

In order to increase the bandwidth per user, we have two basic alternatives: to 

increase data rate or to increase the number of lasers. The first one would 

need major investment as all ONUs should be adapted to the new data rate. 

To add more lasers at the OLT is the best solution from the cost and 

performance point of view and is completely transparent from the user side 

Since the M ports of the first AWG would be already in use, we would need to 

add a coupler to install additional lasers. All the lasers connected to a same 

coupler would serve the same ONUs so bandwidth would be incremented on 

those ONUs by a factor equal to the number of lasers connected to the same 

coupler. In addition, the number of photo detectors at the OLT would need to 

be increased to match the number of lasers. Also tunable filters would need to 

be added before the photo detectors to receive data transmitted on different 

wavelengths simultaneously from different lasers (see Fig. 5.6). This strategy 
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allows network design depending on the end user bandwidth requirement 

needs, being the limit one laser per subscriber. This limit, however, is just 

theoretical because would lead us to a standard WDM PON solution. Finally, 

the laser control protocol should guarantee that two or more lasers connected 

to the same port do not tune the same wavelength simultaneously, as this 

would cause collisions between the optical signals and thus improper system 

operation. Another advantage of this approach is that by adding more lasers, 

we are also adding redundancy to the system so in case of a laser failure, the 

network could continue working. This is an important feature, which is not 

present nor on the initial architecture, nor on TDM or WDM PONs neither. 

As far as the addition of new users is concerned, when all the output ports of 

the remote AWGs are full and further ONUs need to be connected to the 

network, we can go for two different alternatives: to change the central AWG 

for another one with more ports and then add extra remote AWGs or to 

substitute an ONU by an optical splitters in a TDM-PON approach. The first 

solution is the best one in terms of performance but its cost may be 

prohibitive. 

 

Fig 5.7  Addition of more users dynamically on a TDM-PON approach 

This second solution, which is presented in Fig 5.7, presents a very easy 

upgrade path in case the number of users increases. The addition of power 

splitters to the network greatly increases network connectivity. If 100% of the 

ports were scaled, an access network of M x N x K users would result, where K 

is the splitting ratio. If we take M, to be 16, N to be 32 and K to be 16 or 32 
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(realistic values), then 8,192 or 16,384 users respectively could be served. Also, 

this strategy allows having different types of users with different transmission 

requirements. For instance, businesses could be directly connected to the RN1 

to have greater bandwidth, on the other hand, home users could be 

connected to the TDM-PON branches, to have reduced transmission 

capabilities at a lower price. 

If we use TDM after the final AWG to increase the number of users, we led to a 

hybrid WDM/TDM2 topology where MAC of TDM-PON standards can be easily 

implemented [Kramer02a], [ITUTG683.1]. 

5.1.4 Comparison with WDM and TDM PONs  

To justify the proposed network topology, in this section we will compare it 

with a pure TDM PON and with a pure WDM PON. The comparison will be 

done in terms of transmission capabilities and in terms of network 

performance. Also some costs considerations will be taken into account. Note 

that the logical comparison in terms of costs is to compare our network with 

M TDM or M WDM PONs. In terms of network performance, the results are the 

same for the case of 1 or M.  

Optical transmission capabilities of our topology are very similar to a pure 

WDM PON. It offers the advantage of lower loses, when routing the different 

wavelengths, in comparison with the use of optical splitters. An average 40-

port AWG offer insertion loses in the range of 5 to 7 dB, while the equivalent 

32-port splitter has insertion loses of 16 to 17 dB. This fact is very relevant as 

we are using reflective ONUs without light sources and therefore optical 

power budget is critical. The 10 dB extra power budget turns into 20 dB if we 

take into account down and upstream transmission.  

Another important benefit of our topology is security. As each ONU received a 

single and dedicated wavelength, the rest of the ONUs cannot gain access to 

the communication between another ONU and the OLT. This is not the case in 

TDM PONs, as on those networks, the ONUs listen to a broadcast channel and 

receive the information that it is sent to all the rest of the ONUs.  

In terms of network performance, the first thing to mention is that while on a 

pure WDM PON there is a permanent point to point connection between the 

OLT each ONU, on both, our hybrid network and TDM PON, transmission 

resources are shared among a number of users. Therefore, the network 

solution that offers the best network performance is the pure WDM solution, 

where there is a dedicated laser for each ONU.  
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When we compare the pure TDM solution and the hybrid network that we 

propose, it is important to note that network performance mainly depends on 

the logical protocol that it is chosen to assign the time slots to each ONU. 

Implementation of this protocol however, is much simpler on our proposed 

network as the algorithm needs just be run on the OLT. Another advantage of 

our topology is bandwidth scalability. We can easily add more lasers to 

increase network performance while on the pure TDM PON just one laser is 

used for the transmission. Therefore, while on a TDM PON the theoretical 

bandwidth per user is BW / N, on our proposed network it is L · BW / N, where 

L is the number of lasers dedicated to one network segment. Also, dynamic 

assignation of resources is more efficient on our hybrid topology as we can 

concentrate bandwidth on specific network segments depending on the user 

needs by assigning wider time slots to the ONUs connected on a specific 

network segment. We call this concept Geographical Bandwidth Allocation 

(GBA). 

The impact of GBA on network performance is very noticeable, especially 

when the traffic patterns for the different subnets is heavily unbalanced. We 

simulated the difference of using GBA and a statistical allocation protocol 

using M/M/c/k queue models with variable Tserve and found a throughput gain 

of GBA under high load conditions of 30% when input traffic has a deviation 

of 0.5 among subnets (see Fig. 5.8). Network delay performs in the same way. 

GBA optimizes laser assignation thus reduces delay when non-uniform traffic is 

transmitted (20% improvement for 0.5-deviation on subnet inputs). Further 

analysis is developed in the next chapter. 
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Fig 5.8  Network performance comparison with / without GBA 

Finally, as a guide to costs, the solution that is most cost effective is the pure 

TDM PON. On the other hand, the most expensive one is the WDM PON as 

one dedicated laser is needed for each ONU. Also, the WDM equipment 

located at the outside plant (AWGs) is more expensive than optical splitters. 

The solution that is proposed is an intermediate point between TDM and 
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WDM in terms of costs. The outside plant is similar to a WDM PON but on the 

OLT side, there is no need to have one laser for each ONU. It is true that the 

cost of the tunable lasers that we need for the transmission is higher than fixed 

WDM ones but on the other hand, the number of devices that we need is 

much lower (L << N).  

In conclusion, when compared to M pure WDM and TDM PONs, our topology 

presents the following advantages: more secure, scalable and flexible than 

TDM PONs also offering higher network performance. At the same time, it is 

less costly than a pure WDM PON implementation, whereas offering good 

transmission capabilities. Finally, it also features the novelty of geographical 

dynamic bandwidth allocation. 

5.1.5 Transmission experiments  

Optical transmission tests were implemented to demonstrate optical 

transmission capabilities using the following routing devices: an athermal 

16x16 AWG (M = 16) with 100GHz channel spacing as central router and an 

athermal 1x32 AWG (N = 32) as remote node. The use of athermal AWGs is 

recommended in the outside plant in order to avoid powering them. These 

kind of AWGs have improved their performance greatly recently and offer 

similar performance as powered AWGs with temperature control. Compete 

network testbed can be seen in Fig. 5.9. 

 

Fig 5.9  Network testbed 

The AWG main pass band first wavelength was 1542.40 nm and the last one 

1554.59 nm. The first FSR extended from 1555.40 nm to 1567.59 nm. The key 

of this configuration is that the output ports of the remote AWG and the ports 

of the central AWG have a relation 2 to 1 which means that the main pass 

band and one FSR of the central AWG are used. So, as discussed in the 

previous section, K = N / M = 2. It is also essential that output wavelengths of 
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the central AWG match with the routing scheme of the secondary AWG in 

order to achieve the desired wavelength routing. 

Tests on optical connectivity were performed in order to demonstrate that the 

outputs of the central AWG router were periodic in terms of wavelength 

(periodicity was 16 x 0.8nm = 12.8nm), and that tuning lasers reach the 

different access ports. These tests were done using optical carriers in order to 

obtain specific channel losses depending on input port and wavelength. We 

obtained insertion losses of 7.10dB for the central AWG and 2.98dB for the 

remote one. Routing loses ar then of 10.08dB, which is a very good figure 

considering the very high splitting ration of our network (16 x 32 = 512 users). 

AWG’s FSR

 

Fig. 5.10  Central AWG wavelength routing (FSR = 12.8nm) 

Data transmission tests have been performed to verify that transmission was 

satisfactory. A Grating-assisted co-directional Coupler with rear Sampled 

Reflector laser (GCSR) was used as light source, providing WDM tuning 

capabilities. To modulate data, a LiNbO3 modulators was used 

A PIN photo receiver was used for downstream detection. A RF amplifier was 

inserted after the photo receiver once the data was in the electrical domain. 

An alternative testbed using a Reflective Semiconductor Optical Amplifier as a 

reflective ONU was also implemented to modulate upstream data. 

2.5 Gbps data has been sent both, upstream and downstream, using several 

wavelengths. Sensitivity in the range of !30dBm was achieved on all the 

wavelengths of the main pass-band of the AWG. Consistency among all 

wavelengths was very good and the response of all of them was very similar. 

Fig. 5.11 depicts BER against received power for several wavelengths (worst & 

best cases). 
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Fig. 5.11  Transmission results for best and worst wavelengths 

Back-to-back and 30 km SMF results are almost identical in unidirectional 

transmission as fiber dispersion is negligible at those data rates and distances. 

Also bidirectional transmission tests using a single fiber have been performed, 

using the RSOA. Due to Rayleigh scattering [Gysel90] additional penalty of 4 

dB in sensitivity has been measured when transmitting the upstream signal. At 

the OLT, sensitivity of -24 dBm was obtained. This last result was obtained 

sending unmodulated optical carrier pulses together with downstream data 

and modulating upstream data using the RSOA. 

5.1.6 Network performance analysis  

To calculate network performance, an analysis based on queue modeling was 

implemented. M/M/k/c models were used as a starting point and improved to 

implement advanced functionalities. We simulated a network based on the 

specifications of the test bed: a central AWG of 16x16 and remote AWGs of 

1x32. The total number of users connected to the network was 16x32 = 512 

users. We assumed a basic scenario with 16x 2.5Gbps tunable lasers (one laser 

per input port of the central AWG). We implemented a Dynamic Bandwith 

Allocation (DBA) algorithm in order to maximize network equipment 

utilization.  

The calculations that were done supposed a markovian queue model with a 

variable time of service (Tservice), being equal to Tlaser + Ttx, where Ttx is the time 

needed to transmit a data packets. The election of Ttx or, what is the same, the 

length of the time slot assigned to each ONU is critical and compromises 
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network latency against network performance, as has already been explained 

this same chapter. As the laser is switching among different wavelengths to 

reach different ONUs, each switching implies that Tlaser is required for tuning 

purposes  

We evaluated network throughput and network latency, taking into account 

time between accesses to the same ONU. It is important to note that one laser 

serves N ONUs. There is no total connectivity from the M lasers to the N·M 

ONUs because of the routing properties of the two AWG stages of the 

network. Thus, the performance analysis can be reduced to one laser serving N 

ONUs.  

In order to simulate the performance of the network on a scenario offering 

triple play services (voice, video and data). We categorized traffic, marking it as 

high priority voice traffic, medium priority video traffic and low priority data 

traffic. Voice traffic demands low bandwidth but requires very low latency and 

is bidirectional. Video traffic requires high bandwidth, latency is not as critical 

but must remain constant and it is an asymmetric downstream service. As far 

as data traffic is concerned, it was considered best effort, without any 

bandwidth, latency or losses restrictions.  

The simulations were implemented considering Tlaser of 1!s. The three different 

services offered on the network were encapsulated on different packet 

structures in order to improve network performance. Voice packets had a 

length of 3,200 bits (1.28 !s @ 2.5 Gbps), Video data was encapsulated using 

packets of 80,000 bits (32 !s @ 2.5 Gbps) and finally, generic best effort data 

traffic used packets of 160,000 bits (64 !s @ 2.5 Gbps). Traffic was considered 

to be 2% voice traffic, 43% video traffic and 55% best effort traffic. We used a 

classical priority model offering the highest priority to voice and the lowest to 

data.  

We considered the three services to be independent and we did not 

implement any aggregation technique among different services to reduce the 

number of laser tuning switches. This fact affects network performance but 

guarantees low latencies for voice and video communications as voice 

requests were served independently from the rest of the traffic. However, 

packet aggregation inside each service was used to increase network 

throughput.  
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Fig. 5.12  Latency vs network throughput for the three classes of services 

Fig. 5.12 presents the latency results obtained for the simulation depending on 

the network throughput considering both, upstream and downstream traffic. 

The two conclusions that can be derived from the figure are that the use of 

priorities really improves the performance of voice and video traffic, allowing 

latencies below 1ms even under congestion situations. This justifies the use of 

different queues for data and the rest of the traffic. The other conclusion is 

that the use of a separate queue for voice and video is not justified because 

the improvement on voice traffic latency in comparison to video traffic is 

almost negligible. The reason for this effect is the duration of Twindow. As we 

need to switch to all active ONUs on the network segment, there is a delay 

between the packet generation and the moment when the system is prepared 

to process it defined as  

( )
2

window tx
laser

N
T T T!= " " +

 (5.4) 

where ! is the network utilization, N the number of users and Ttx the average 

time slot per user. This parameter is also known as network latency. Note that 

this equation describes the average time window duration and not the 

maximum time window under deterministic situations as in (5.2) and is 

particular for the case where the number of lasers serving a network segment 

is equal to 1.  

The results also reaffirm the ability of our network to handle a triple play 

solution, offering voice, video and data services to the users. In a saturated 
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environment, the network can offer up to 100Mbps to each of the 512 users 

under QoS basis using 16 x 2.5 Gbps lasers.  

5.1.7 Conclusion 

An advanced access topology based on spatial and wavelength multiplexing 

using the inherent periodicity of AWGs and a shared tunable laser stack has 

been presented. By means of optical transmission tests and network traffic 

analysis we demonstrated that this architecture is feasible and offers good 

performance for applications demanding both, low latency and high 

bandwidth. It presents low optical loss and simple control, compared to other 

PON architectures.  

Transmission tests showed that the communication between the Central Office 

and the end users was possible at data rates of 2.5 Gbps and distances up to 

30 km offering good levels of sensitivity.  

Network simulations demonstrated the capability of the proposed network to 

offer triple play services to 16 network segments of 32 users sharing a single 

laser (512 ONUs). Even under high occupation environments, network latency 

for voice and video remains below 1 ms, offering 100 Mbps per user. The only 

traffic that was affected by network occupancy was data traffic, which 

operated under best effort basis and is much more tolerant to delays and 

loses. Results showed the capabilities of the network to deliver multimedia, 

voice and data contents to the end users using 3-class priority. 

Finally, the network is very easy to scale in number of users thus provides a 

future-proof platform that can be dimensioned on demand depending on the 

end user requirements. In this direction, different TDM-PON subsegments can 

be deployed to different types of users depending on their transmission 

requirements thus businesses and end users can easily coexist on the same 

infrastructure. 

5.2  AWG2 WDM/TDM PON in a combined ring - tree 

configuration (RAFOH Ring) 

This section presents a combined WDM and TDMA access network based on a 

combined ring-tree outside plant. This is an extension of the AWG2 

WDM/TDM PON to a ring topology and using TDM-PON subsegments to 

increase the total number of users.  
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The benefits of this network architecture are high density of users and an 

optimal allocation of network resources together with resilience in case of a 

fiber cut in the main ring. It is implemented by means of an advanced routing 

profile at the Central Office (CO) and two outside plant multiplexing stages.  

5.2.1 Introduction  

End user bandwidth requirements are growing dramatically lately and this is 

encouraging the development of advanced access solutions that can provide 

high bandwidth while keeping costs low. End users demand more bandwidth 

but they are not prepared to pay on bit/$ basis so future access networks need 

to be simple and efficient in order to maximize bandwidth utilization. To 

maximize efficiency while keeping costs low, highly shared optical interfaces 

serving a large number of users represent a good solution [Davey05]. 

Several combined ring-trees topologies have been presented, offering 

resilience capabilities and high density [An04], [Wang06]. However, those 

topologies do not have a totally passive outside plant and do not implement 

mechanisms to maximize network utilization.  

In this section, we present a high-density access ring able to serve a very large 

number of users (from 8,192 to 65,536) by means of a physical ring-tree low-

loss topology and a reduced number of network interfaces. As sharing factors 

are high, the network proposes an efficient use of optical resources by means 

of a dynamic bandwidth allocation. Also, as a large number of users are 

connected, resilience in case of a link failure is also implemented. 

5.2.2 Network design and dimensioning  

A primary distribution ring and secondary trees to reach the end users 

compose the outside plant (see Fig. 5.13). A combined Wavelength, Space, 

Time multiplexing scheme gives connectivity to the users. The dimensioning of 

the system is quite strict and required a concrete number of wavelengths, 

fibers and remote nodes to perform correctly. There is a direct relationship 1:1 

between the number of fibers of the primary ring, the number of remote 

nodes, the number of wavelengths and the number of trees (also called TDM 

PON subsegments) that are attached to each remote node. This design 

parameter (M), together with the splitting ratio of the TDM PON subsegments 

(K) determines the number of users that the network serves, being the total 

number of users M 2 x K. 
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Fig 5.13  Network topology and CO equipment  

The number of optical transmission interfaces that are required at the CO is 2 x 

M, so each laser is shared among M/2 x K users. Two MxM AWGs are used at 

the CO to interconnect the lasers to the remote nodes combining wavelength 

and space multiplexing. 

5.2.3 Advanced features  

Lasers are tunable so depending on the wavelength, the data stream is routed 

to a different output fiber and thus, to a different remote node. Depending on 

the network load, transmission resources can be directed to concrete remote 

nodes offering dynamic bandwidth allocation capabilities. End users 

connected to the same remote nodes are served by different network 

interfaces and as the remote nodes are geographically distributed, the 

network can concentrate bandwidth to different locations depending on the 

time of the day and the network load by changing the laser assignation times 

to each network subsegment (see Fig. 5.14). 

 

Fig 5.14  Plot of a dynamic laser assignation trace 

Each remote node can be reached from both directions of the ring. A 3dB 

coupler connects the ring to a 1 x M AWG that connects to M x TDM PON 

network subsegments, each of them serving K users on TDM basins. Upstream 
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transmission is symmetrical and uses the free spectral range feature of AWGs 

transmitting upstream data on a different wavelength. At the RN, the 3dB 

coupler transmits the upstream signal along both fiber directions so it is 

redundantly received at the CO. In case of a fiber cut in the ring there is always 

a path to reach every single remote node. This ensures total network 

connectivity. Under those circumstances, the laser assignation times have to be 

readjusted to minimize the impact of a fiber cut on the overall network 

throughput. 

Additional power losses introduced by the routing and protection profile on 

the outside plant are due to the 3dB coupler and the 1xM AWG at the first 

remote node stage. Typical losses of AWGs are between 3 and 6dB so the 

reduction on the power budget margin over a classical TDM PON is of just 6 

to 9dB. 

As a guide to realistic design values, one can suggest M = 16 / 32 and K = 32 / 

64. With these parameters, the number of users would be from 8,192 (M = 16, 

K = 32) to 65,536 (M = 32, K = 64). 

5.2.4 Compatibility with existing standards  

The presented network topology combines WDM and TDMA but its 

compatibility with existing IEEE802.3ah Gigabit Ethernet PON and ITU-T G.984 

Gigabit PON is straightforward. 

At the ONU side the major change is the laser transmitter replacement to 

make it compatible with the upstream WDM channel that is assigned to the 

network segment. In this sense, there are several options to make the ONU 

wavelength agnostic, using reflective and remodulation techniques [Genay05]. 

Then minor modifications on the logic of the downstream reception part 

should be programmed to allow burst mode reception.  

At the OLT side, tunable laser sources should be used and advanced switching 

protocol logic and equipment should be implemented to assign bandwidth on 

demand to the different remote nodes, manage laser tuning times and 

monitoring link status. In any case, as this is a centralized location owned by 

the network operator, a custom CO design is not a major drawback to make 

the topology commercially feasible.  

The advantages of this network topology in comparison to a classical PON 

deployment are the minimization of optical resources offering similar network 
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performance. A simple design with M = 8 and K = 32, dimensioned for 2,048 

subscribers would require 64 transmission interfaces. In our network, just 16 

interfaces are needed with the additional benefit of the network resilience 

feature. Transmission equipment sharing ratios are higher in our network but 

this can be compensated by the advanced routing profile that interconnects 

each network interface with a virtual-TDM PON of users with very different 

traffic patters, so simultaneity factors are reduced [Hajduczenia06]. However, 

the reduction of the simultaneity factor depends on every single 

implementation so it can just be calculated by means of empiric analysis.  

In terms of power loss penalties, our proposed network design adds on the 

outside plant insertion losses due to the addition of RN1.i. This is a totally 

passive device built by a 3-dB power coupler and a 1xM AWG with typical 

insertion losses of 3 to 4 dB and 3 to 6 dB respectively. This means that power 

penalty to the power budget is just between 6 and 10 dB, which is perfectly 

acceptable taking into account the advanced benefits of the topology. 

5.2.5 Network experiments and result  

To demonstrate the correct performance of the network, a network testbed 

was implemented to verify correct optical connectivity (see Fig. 5.15). The test 

bed was implemented to serve a population of 2,048 users, with M = 8 and K 

= 32 as design parameters. This design requires 8x RN1.i remote nodes, 16 

transmission interfaces and 2 x 8x8 AWGs. A classical TDM-PON approach 

would require 64x standard-TDM PONs. 

2x Tunable GCSR lasers transmitting at 2.5Gbps were used for the experiments 

transmitting on different wavelengths to reach the same primary ring but in 

different directions. Data rate is, in any case, totally independent of the 

network topology so 1Gbps or 10Gbps transmissions are also possible using 

the adequate transmission and reception equipment. 

A 16x16 AWG was used to interconnect the transmission equipment to both 

directions of the ring. It was split into 2 x 8x8 AWG’s using the cyclical routing 

properties of the device [Smit96]. Then, ports 1 and 9 of the AWG were 

coupled using the 3dB coupler and then connected to a 1x8 AWG. This AWG 

located at the first Remote Node (RN1.i) would route each incoming 

wavelength to an outgoing port thus transmitting a single wavelength to each 

TDM PON subsegment. A 1:32 power splitter at the second RN provided then 

connectivity to all the users of the sub network. Between the remote nodes 

and between the first remote node and the CO a 5 km and 20 km single fiber 

spools were inserted to obtain more realistic values. 
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Fig 5.15  Network testbed 

The wavelengths used were from the 100-GHz ITU-T G.694.1 DWDM grid, 

from 1,550.12 to 1,555.75 for downstream and from 1,543.73 to 1,549.32 for 

upstream. 

Output power at the OLT was 8 dBm for each channel, after passing through 

the 16x16 AWG. Power losses along the 20 km SMF spool were of 4.2 while 

losses at the first remote node (RN1.i) were of 6.1 dB, split into 3.12 dB for the 

3-dB coupler and 2.98 dB for the 1x8 AWG respectively. The 5 km SMF spool 

between the first and second remote nodes had 1.1 dB losses. Finally, power 

losses at the 1:32 splitting stage were of 16.05 dB. 
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Fig 5.16  Downstream and Upstream BER results 
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Fig. 5.16 presents downstream and upstream transmission results. All the 8 

wavelengths were monitored and the worse downstream sensitivity at the 

ONU side was measured to be -28 dBm. ONUs were implemented with a PIN-

TIA photo receiver. Taking into account that overall losses were of -27.45 dB 

and that output power at the OLT was 8 dBm, the system power budget 

margin was 8.55 dB for downstream transmission. For upstream transmission, 

outside plant power losses were almost identical, as the optical path was 

symmetric. However, upstream laser output power was limited to 0 dBm. To 

compensate this, an APD photo detector was used at the CO. A sensitivity of -

32.2 dBm was achieved. Upstream power budget margin was then 4.75 dB. All 

these results are fully compatible with ITU-T G.984 GPON Class-B+, which 

recommend a power budget of 28 dB. 

To make both transmission paths symmetric in terms of power budget margin, 

output power at the OLT could be reduced to 4dBm. This is really 

recommended because to reach an outside power level of 8dB at the OLT 

required the use of boosters between the GCSRs and the M x M AWG, while if 

output power at the OLT is of 4 dBm those boosters are not required. 

Laser switching time was achieved to be as low as 15 ns, which allows fast 

tuning of short packets with no penalty on network throughput. 

5.2.6 Conclusion 

This section presents a low-loss high-density access network based on a 

primary ring and secondary trees. By means of an advanced routing profile 

using cascaded AWGs the network provides dynamic bandwidth allocation 

features. At the same time, the primary ring topology provides resilience 

capabilities in case of a fiber cut. Furthermore, using ring overlay the network 

can be dimensioned to serve a very large number of users with very limited 

optical equipment. 

Optical transmission experiments show correct transmission and reception up 

to 2.5Gbps showing total compliance with ITU-T G.984 GPON Class-B+ 

transmission recommendations in both, standard and resilient-mode 

operation. 

This network topology has the advantage compared to a classical PON 

deployment that the number of optical interfaces required to provide service 

is lower, as bandwidth can be routed on demand to the different remote 

nodes depending on the network utilization. 
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This network topology can be seen as an extension to the tree-based AWG2 

WDM/TDM PON that was presented in the previous section, with the addition 

of resilience and higher density of users. 

5.3  WDM/TDM PON in a combined ring - tree 

configuration with transparent passive remote nodes 

(RA4D Ring SARDANA)  

This section describes a novel single-fiber ring-tree topology overlying 

multiple Time-Division-Multiplexed (TDM) Passive Optical Networks (PON). 

Each TDM service is overlaid on a different Wavelength Division Multiplexing 

(WDM) channel. 

A concatenation of advanced coupler-based remote nodes distributes the 

channels in an optimal geographical distribution to secondary trees, which 

connect to the end users. With the proposed configuration, the network 

features flexible deployment and provides resilience capabilities in case of a 

fiber cut. To compensate power losses and fulfill ITU-T G.984 / IEEE 802.3ah 

recommendations in terms of power budget and sensitivity; remote 

amplification is implemented at the remote nodes. This technique amplifies 

the dropped wavelengths at each remote node while keeping a totally passive 

outside plant. A power budget study together with optical transmission 

experiments and network dimensioning simulations demonstrate the feasibility 

of the network design.  

5.3.1 Introduction 

Passive Optical Networks (PONs) are becoming consistent alternatives to offer 

access solutions in a fibre to the home (FTTH) environment. PONs offer more 

bandwidth than copper-based solutions and they are substantially more 

inexpensive than optical point-to-point solutions [Sananes05]. Also, PONs are 

based on a totally passive outside plant, requiring no external powering thus 

there is no need to find environment-controlled facilities to install equipment 

in the field.  

Ethernet PON (EPON) and Gigabit PON (GPON) are the two standards that are 

competing now to have a predominant position in the FTTH market. GPON, 

developed by the ITU-T (FSAN), delivers up to 2.488 Gpbs of downstream 

bandwidth and 1.244 Gbps of upstream bandwidth. One of its main features is 

that GPON Encapsulation Method (GEM) allows efficient packaging of user 

traffic, with frame segmentation to allow Quality of Service (QoS) which 
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prepares the network to deliver multimedia content, such as voice and video 

streaming. On the other hand, EPON standard (IEEE 802.3 ah), developed by 

the IEEE and based on Ethernet, delivers 1 Gbps symmetrically transmitting 

Ethernet frames. It is not as efficient as GPON in terms of bandwidth 

management and QoS provisioning but can provide a more cost effective 

solution.  

PON standards have been developed for tree physical topologies. Tree 

topologies offer a good power balance and assure that all the users have 

similar power budget requirements although the quantity of deployed fiber is 

not optimal and does not provide any resilience in case of a fiber cut. On the 

other hand, rings offer a more optimized deployment in terms of fiber 

quantity but are not a power budget optimal solution when there are many 

nodes, due to accumulative losses when passing nodes. Rings, on the other 

hand, offer resilience in case of fibre cuts as there are always two ways to 

interconnect the nodes with the CO.  

In this section, we present an extended hybrid ring-tree infrastructure 

overlaying EPON/GPON services. The network design is protocol independent 

and requires minor modifications of the optical transmission equipment of 

commercial devices, which are due to the use of WDM to overlay the different 

services.  

The proposed topology offers high density on the trunk fiber and resilience 

capabilities in the distribution ring. Scalability is also guaranteed, as adding 

additional remote nodes is a simple task. Also, different services can be 

accommodated on different wavelengths to serve different users with different 

transmission requirements, offering a very flexible network.  

From the technical point of view, the remote nodes are coupler-based and 

totally wavelength transparent in the passing way, offering low passing losses. 

Dropping wavelengths, however, require optical amplification, which is 

performed using erbium-doped fibers that are remotely pumped.  

5.3.2 Network Architecture  

Fig. 5.17 presents the network topology. Two PON trees are connected to the 

central distribution ring by each remote node (RN). As downstream and 

upstream are wavelength multiplexed, each RN drops two downstream 

wavelengths and inserts two upstream ones from / to the ring. Thus, the 

relationship between the number of RNs (N) and the number of wavelengths 

(M) is a fixed design parameter, which is M / N = 4. 
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Fig 5.17  Network architecture 

The remote node design is presented in Fig. 5.18. RNs are based on three 

power couplers and wavelength filters. Power couplers that are connected to 

the ring are x / y (x + y = 1), which are designed depending on the number of 

remote nodes to minimize power losses. The design parameters x and y are 

fully analyzed in section 4. The third coupler, which ensures connectivity to the 

two directions of the ring, is 50/50. At the output of the 50/50 coupler, two 

filters (thin film specifically in our set-up) select the specific downstream and 

upstream wavelengths for the two tree PON sections that are connected to the 

RN. With this design, the remote node performs transparently independent of 

the direction of the incoming downstream light and transmits upstream signal 

to both directions of the ring. This feature is the key to provide resilience in 

case of a fiber cut in the central ring. 

 

Fig 5.18  Remote Node (RN) design and wavelength routing profile 
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At the Central Office (CO), two lasers and four photo-receivers compose each 

remote node interface (RNI), as presented in Fig. 5.19. Each laser is coupled to 

both directions of the ring by means of an optical interleaver. By fine adjusting 

of the laser transmission wavelength the interleaver routes the signal to the 

direction of the ring that maximizes the power budget margin, depending on 

the number of passed remote nodes. This can be done by monitoring the 

upstream power levels and switching to the direction that offers higher 

received power. The redundant photo receivers detect the incoming signals 

from both directions of the ring and select the one with better power level. 

This feature also possibilities to offer resilient capabilities. In case of a fiber cut, 

the laser will change the transmission wavelength to select the only possible 

direction to serve the RN while one of the photo receivers will still receive the 

upstream transmission signal. 

On the Optical Network Unit (ONU) side, the only changes that is required to a 

commercially available EPON/GPON ONU is the substitution of the 1310nm 

upstream transmission laser by a laser to transmit on the wavelength assigned 

to that specific PON segment. The rest of the equipment and logical control 

remains invariant. 

 

Fig 5.19  Central Office (CO) remote node interfaces 

An important design parameter to make the network compatible with 

EPON/GPON standards is related to power budget restrictions. In addition to 

the tree splitting stage, the proposed network adds pass-through and 
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dropping losses, together with wavelength filter insertion losses. To overcome 

those losses in the main ring while keeping a passive outside plant, remote 

amplification is convenient [Lazaro06]. For this purpose, two 1480 nm 

pumping lasers (one at each ring direction for resilience) are included in the 

CO of Fig. 5.19. 

5.3.3 Resilience and power budget optimization 

The proposed network design provides resilience and power budget 

optimization features by means of an optical interleaver and fine adjustment 

of the transmission wavelength at the RNI at the CO. Each remote node has a 

default path that is selected when the system is powered up. This default path 

corresponds to the path with lower losses and it is measured by monitoring 

the received power coming from both directions of the ring. This determines 

the default transmission wavelength. In case of a fiber cut affecting the 

connectivity to the RN, the RNI slightly changes the transmission wavelength 

and reaches the RN though the other direction of the ring. 

 

Fig 5.20  Power budget optimization and resilience mechanisms 

The wavelength plan for upstream and downstream transmissions and the 

resilience mechanism are described in Fig. 5.20. The network interleavers have 

to be half of the wavelength channel spacing so both default/protected and 

upstream transmission wavelengths pass through the filters to reach the 

appropriate network subsegment. The selection of the output port of the 

interleaver is done by finely tuning the laser-emitting wavelength. This 

functionality does not require the use of a tunable source as adjusting the 

temperature of the laser can do the tuning.  

5.3.4 Network analysis and experiments  

An analysis of power budget margins was performed to demonstrate the 

feasibility of the proposed network. As WDM is totally transparent to 

TDM/TDMA protocols of G/EPON, the optical experiments have been 
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addressed to verify correct reception of pattern-generated data streams while 

calculations have been done to verify correct power levels at the receivers.  

5.3.4.1  Network dimensioning 

The number of remote nodes (N) is a key parameter in terms of network 

performance because it determines the number of wavelengths (M) of our 

network and thus, the total network capacity. Other parameters that also affect 

on the network performance is the data rate and the splitting ratio (K) of the 

network subsegments but those parameters are intrinsic of each network 

subsegment and do not affect the design of the number of nodes.  

The total number of users (U) is determined by the number of remote nodes 

and the splitting ratio in the network subsegment: U = 2·N·K and both, N and 

K affect on the power losses, total network capacity and bandwidth per user. 

When N increases the network can offer more bandwidth because more 

wavelengths are transmitted but at the same time, power losses increases. In 

order to minimize power losses, total link losses presented in Equation 5.5 

should be minimized.  

LT = N !1( ) " 20 " log x!1 +10 " log y!1 + N " LEX + 3 " log2K + LS  (5.5) 

where Ls are additional losses due to fiber, insertion losses of optical 

equipment and wavelength filtering. The x and y are the coupling factors for 

the coupler pass-through and drop branch respectively. The relationship 

between them is x + y = 1; finally, LEX represents coupling excess losses of each 

RN due to manufacturing, aligning and installing processes. The number of N 

that minimizes (5.5) is:  

N =
3

ln2
! 20 ! log x"1 + L

EX( )
"1

 (5.6)  

The most important conclusion of (5.6) is that the optimal number of nodes is 

independent from the total number of users (U). This means that U is just 

limited by the power budget and that to increase the number of users it is 

more efficient, from the power losses point of view, to increase the splitting 

ratio than to insert additional remote nodes. However, this reduces network 

capacity because then the sharing factor per laser increases. Therefore, when 

designing a network deployment, a compromise should be met between 

optimizing power losses and optimizing network performance. Fig. 5.21 

presents losses as a function of the number of N for different coupling factors. 
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Fig 5.21  Power losses as a function of N for x = 0.95 … 0.7 

From (5.5), it can be demonstrated that an increase of the number of users (U) 

in the system for a given number of RNs adds a vertical offset to power losses 

and thus reduces power budget margin in a constant value. Also it can be seen 

from Fig. 5.21 that when coupling factor x tends to 1 the curve flattens and to 

increment the number of RNs does not affect power losses dramatically. So, if 

we plan that the network will grow in the number of remote nodes due to an 

increase in the number of users or in the network bandwidth requirements, to 

choose x close to 1 is the long-term preferred option. 

Realistically, the number of RN (N) is also determined by the geographical 

distribution of end users so the best option to design the network is to fix the 

number of RN (N) and the network bandwidth per user and to calculate the 

other design parameters accordingly.  

Network capacity is related to the splitting ratio (K) in each network 

subsegment. Each wavelength is assigned to a network subsegment so 

network performance for a given splitting ratio is just related to the chosen 

PON protocol. Based on [Angelopoulos04], depending on K, bandwidth per 

user for K = 16, K = 32 and K = 64 are respectively 125, 62.5 and 32.25 Mbps 

in a GPON at 2.5Gbps in case of network saturation. K = 64 is the largest 

splitting ratio that GPON supports up to now, hence in case we want to 

exceed this value, the addition of remote nodes is obligatory. Fig. 5.22 

presents the total number of users depending on the number of remote nodes 

for different values of K.  
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Fig 5.22  Number of users depending on K and N 

The last parameter to be optimized is the coupling factor of the main ring 

couplers. Minimizing LT with respect to x in (5.5) leads to the following results:  

x =
2 ! N

2 ! N +1       
y =

1

2 ! N +1  (5.7) 

which are represented in Fig. 5.23. 

 

Fig 5.23  Optimal splitting factors as a function of the number of remote nodes 
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Results from Fig. 5.23 show a tendency to stabilize for N ! 4. This is consistent 

with the results of Fig. 5.21 and confirms that the use of commercial 90/10 (x = 

0.9 and y = 0.1) couplers offers a good compromise between having a flexible 

and scalable solution while keeping total losses low. 

The results from Fig. 5.23 do not take into account transmission constraints 

and losses. Additional power losses due to passing through RNs reduce power 

budget and limit the network size. By working out (1) incorporating the 

remote amplification gain (G) and restricting losses to be less than power 

budget (PB) we can express it as:  

PB ! N "1( ) # 20 # log x"1 +10 # log y"1 + N # LEX + 3 # log2
U

2 # N
+ LS "G

(5.8) 

Values of PB are in the range of 20 to 30dB for commercial equipment 

following both ITU / IEEE recommendations, proposing PB = 20 dB for Class A 

to PB = 30 dB for Class C equipment. A realistic value for Ls is 10 dB. Fig. 5.24 

presents the power budget margin depending on K and G using the optimal 

design parameter of x and y. Horizontal lines represent the PB for different 

classes of equipment.  

 

Fig 5.24  Total number of users as a function of G and K 

All the points that are above the class A/B/C lines correspond to combinations 

that can be deployed using Class A/B/C equipment. Using class C equipment 

offers a vast number of combinations but this equipment is also more 

expensive than class A devices. There is also a balance between remote 

amplification gain, number of nodes and class of equipment to achieve a valid 
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configuration. For a number of nodes N > 8 the use of G = 20 dB and class C 

equipment is very recommendable but for smaller configurations, a more cost 

effective approach can be implemented.  

As an example, if the deployment consists in an access network to offer service 

to 1,024 users the network would be optimally deployed using K = 64 splitting 

ratio and N = 8. This would lead to an optimal coupling factor of x = 0.94; y = 

0.06 (typically 0.9 / 0.1 couplers will be used) and to achieve correct 

transmission, we can amplify with G = 20 dB and use class B equipment or 

amplify with G = 15 dB and use class C equipment.  

Remote optical amplification makes available lager PBs in passive optical 

networks, but it also produces a reduction of the Optical Signal to Noise Ratio 

(OSNR). Making use of [Desurvire02] and results form (1), it can be deduced 

that the OSNR is always higher than 26 dB for the downstream and higher that 

34 dB for the upstream. Such OSNR values do not significantly affect the 

sensitivity of the receivers, still mainly limited by thermal noise and being the 

PB calculations still valid. 

5.3.4.2  Optical transmission experiments 

To demonstrate the feasibility of the network and corroborate the calculations 

of the previous section, a network testbed was implemented and analyzed to 

measure transmission losses and remote amplification gains. Fig. 5.25 presents 

this testbed. The number of remote nodes was chosen to be N = 8 and the 

splitting ratio K = 64, leading to a configuration to serve 1,024 users. 

Output power at the OLT was +10 dBm. A 20 km fiber spool was inserted in 

the primary ring to simulate a realistic deployment. Remote amplification was 

implemented using 12-meter erbium-doped fiber (HE980 EDF) segments at 

each remote node. This erbium-doped fiber provided 1.4dB/m of gain, 

although this gain was variable depending on the received power from the 

1480-nm pumping lasers located at the CO. Optical output power of pumping 

lasers at the CO was 20dBm. These lengths of erbium-doper fiber and 

pumping laser output power were designed to compensate drop losses at the 

RN, providing with G of approximately 15 dB. Finally, a 1:64 power splitter 

distributed the dropped wavelength among the ONUs connected to the PON 

subnetwork. 
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Fig 5.25  Network testbed 

Downstream and upstream transmission experiments were carried out to verify 

correct reception. Downstream and upstream path is totally equivalent so 

results for both directions are almost identical. Fig. 5.26 presents BER upstream 

transmission results at the critical remote nodes and in a back-to-back 

configuration. 

 

Fig 5.26  Transmission measurements 
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In standard operation, the node that has more losses is RN4, as is has three 

pass-through stages. In case of a fiber cut, the most critical case is RN8 when 

the fibre cut happens in the link between the CO and RN8. Therefore, RN4 

corresponds to the highest losses in standard operation and RN8 to the 

highest losses in resilient mode. 

BER decreases when more RNs are passed, as can be seen in Fig. 5.26 but in 

any case, no BER floor was found. 

5.3.5 Conclusions  

This network topology is presented as an extension for EPON/GPON services 

in a combined ring – tree topology. The extension is based on a single fibre 

ring and a totally passive outside plant providing overlay capabilities and 

resilience to increase both, the number of users and the robustness of the 

system. The network is flexible as each wavelength can deliver different 

services to different types of users using different data rates and splitting 

ratios. 

By choosing optimal design parameters, the network can offer service to a 

large number of users (more than 1,024) in a cost effective way. Many 

combinations are possible and scalability is guaranteed. 

A simulated network to give access to 1,024 users was designed, using N = 8 

and K = 64 and a testbed was implemented to demonstrate correct optical 

connectivity. Experimental results showed correct functionality in both, 

standard and resilient mode operation. No BER floor was found so 

configurations with more remote nodes and higher splitting ratios are also 

possible. 
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6  Advanced Media Access Control 

protocols for FTTx  

This section presents combined WDM / TDMA access protocols specifically 

designed for access networks. Two different versions will be discussed, the first 

one targeted for access networks with reflective devices and the second one 

with tunable laser sources. The peculiarity of the first approach is that each 

packet sent from the CO is divided in two sections: the downstream data and 

an optical carrier signal to modulate upstream data. On the other hand, the 

second approach just sends downstream data and grants for upstream 

transmission. 

By using shared tunable laser sources located at the Central Office (CO) and a 

dynamic time assignation protocol there is no need to synchronize upstream 

transmission as the CO gives access to the shared media. This hybrid access 

protocol is scalable in terms of number of lasers and offers flexible bandwidth 

allocation and is suitable for all wavelength-selective network topologies, 

including the ones presented in the last chapter.  

These protocols were evaluated by means of mathematical analysis and 

simulations. A network simulator based on NS–2 was implemented in order to 

obtain results about throughput and network delay. 

If the proposed protocol is implemented in a AWG2 WDM/TDM PON, the 

network can offer bandwidth on demand to different locations, leading to the 

concept of geographical bandwidth allocation (GBA), which is demonstrated 

to be more effective than classical TDM-PON approaches on both, throughput 

and network latency. 
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6.1  Optimized protocols for access networks combining 

WDM and TDM media access controls 

Many investigations have described the benefits of combining these two 

technologies (TDM and WDM) to optimize network performance and resource 

utilization. This architecture is known as hybrid WDM/TDM PON and mainly 

offer centralized management and bandwidth allocation in the CO, simplifying 

the upstream protocol. Although TDM PONs are the most cost effective 

solution, from the performance point of view TDM-PONs have several 

drawbacks. Bandwidth scalability is not easy once the network is deployed, it 

does not offer secure connections due to its broadcast nature and upstream 

transmission requires complex synchronization between the CO and each of 

the ONUs connected to the network [Jang00], [Ma03]. 

On the other hand Wavelength Division Multiplexing (WDM) PONs solve the 

drawbacks of TDM-PONs offering virtual point-to-point connections and 

assigning a specific wavelength to each ONU but the costs are nowadays very 

high. Also, light sources are not efficiently used. 

Here in this section we propose an access protocol for PONs which tries to 

overcome the above limitations by means of a combined Wavelength Division 

Multi-Access (WDMA) / Time Division Multi-Access (TDMA), using tunable 

laser sources at the CO and ONUs which use remote modulation without 

active light sources to transmit upstream data [Frigo94]. Another version for 

tunable lasers will also be discussed. This access protocol is a solution in 

between TDM/PONs and WDM/PONs in terms of both, cost effectiveness and 

network performance. 

The network topology is flexible and both ring and tree topologies are 

suitable. However, it is interesting to note that wavelength selectivity at the 

ONU is a requirement to ensure correct performance. This can be achieved by 

means of multiplexers at the outside plant or optical filters at the ONU side. 

6.2  Network Architecture 

The access protocol that is proposed locates all the intelligence and costly 

optical equipment at the CO, in order to share it among all the users 

connected to our network. This allows creating a cost effective and easily 

upgradeable infrastructure. 
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The protocol is based on the use of a tunable laser stack in order to have 

simultaneous transmissions to several users at the same time. To avoid 

collisions, each ONU needs to be wavelength selective. There are several 

options to fulfill this criterion. Dynamic ones based on tunable filters are the 

most flexible but they are also the most expensive. Static ones like fixed optical 

filters or the use of a wavelength router at the remote node presents less 

flexibility but are much more cost effective. As routing flexibility can be 

implemented at the CO, the second option is preferred from the costs point of 

view. 

Each tunable laser at the OLT is shared among the ONUs connected to the 

network in time-slotted basis. This means that the total bandwidth that can be 

allocated depends on the number of lasers (L) that are present at the OLT. 

Other important parameters that are involved in bandwidth allocation are the 

number of ONUs connected to the network (N), the data rate (r) and the laser 

tuning time (Tlaser). Bandwidth allocation equations will be presented further in 

this chapter. 

To achieve a cost effective approach, L needs to be much smaller than N. L = 

N is the case of one laser assigned to each ONU so there is no sharing of light 

resources and we have then a classic WDM-PON. On the other hand, L = 1 

represents the TDM-PON scenario. On both cases, no tunable sources would 

be needed because we would have pure WDM or TDM access protocols 

respectively. 

 

Fig 6.1  OLT design using tunable filters for the reception section 

To receive data from the ONUs a photo detector stack is required at the OLT 

side. The number of photo detectors needs to be equal to the number of 

lasers (L). Also, in order to avoid interferences among different signals arriving 

at the same time, tunable filters are required to separate optical signals being 

transmitted at different wavelengths. Another option would be to locate N 
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photo detectors at the OLT and an Arrayed Waveguide Grating (AWG). In that 

case, each ONU would have a dedicated receiver at the OLT. The main 

advantage of this second option is that control and management is much 

simpler. A complete schematic of the OLT can be seen in Fig. 6.1. 

As far as the ONU is concerned, it can work in reflective mode without any 

light source or with a tunable laser [Schneider02], [Takesue02], [Prat05a]. Also, 

it is convenient to be wavelength independent (colorless) in order to simplify 

stocks and management. 

When a reflective device is used, the ONU has two modes of operation: 

reception of downstream data and modulation of upstream data using an 

optical carrier sent from the CO. This means that the time slot that is assigned 

to each ONU is divided in two sections: downstream traffic and unmodulated 

optical carrier for upstream remote modulation purposes. These two sections 

are transmitted with a guard band (Tguard) which is the time required to switch 

between the two modes of operation. 

 

Fig 6.2  Suitable access network topologies (ring, tree and AWG
2
 PON) 

Any network topology featuring colorless ONUs receiving a single wavelength 

are feasible to deploy the proposed access protocol. On a tree topology, this 

can be easily achieved by locating an Arrayed Waveguide Grating (AWG) at 

the remote node. This is a very interesting option because power loses at the 

AWG are much lower than using optical splitters (specially for high splitting 

ratios) and allows also secure connections between the ONU and the OLT as 

other users do not have access to the data that are being transferred by other 

ONUs because it is being sent on different wavelengths.  
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A ring topology is also possible. In this case, each ONU requires a specific 

wavelength to be added and dropped. This can be done using tunable Bragg 

gratings or fixed ones. This topology may offer resiliency capabilities and more 

flexibility in terms of bandwidth allocation as we can use both directions of the 

fiber to transmit data. However, the cost that we have to pay is more complex 

equipment at the end user premises. 

In any case, the best network topology to implement the combined 

WDM/TDMA protocol is in a AWG2 WDM/TDM PON, where Geographic 

Bandwidth Allocation can be implemented and the overall network 

performance increased (see Fig. 6.2). 

6.3  Frame structure for reflective ONUs 

One of the benefits of the proposed access protocol is that no upstream 

synchronization is required. In the reflective ONU case, this is due to the fact 

that the ONU is unable to transmit data if it is not provided with an optical 

carrier sent from the CO. This optical carrier is sent after the downstream data. 

It is then modulated with the upstream data and sent back to the CO. 

The limiting factors and parameters that have to be taken into account are the 

round trip time (RTT), the propagation time difference between ONUs and the 

number of tunable lasers at the OLT. 

Fig. 6.3 presents the typical frame structure and the guard times required for 

proper operation. There are two relevant guard times: between the 

transmission of the downstream data and the unmodulated carrier (Tguard) and 

between the transmission to two consecutive ONUs (Tlaser). 

Tguard depends on the switching specifications of our ONU electronics. On the 

other hand, Tlaser depends on the tuning speed capabilities of the lasers at the 

CO and also on the RTT difference between two consecutive ONUs. This is 

crucial in order to avoid collisions at the CO photo detectors. Due to different 

propagation times, upstream data could collision at the photo detector 

avoiding proper reception of one of the upstream signals. In order to avoid 

this to happen, Tlaser should be extended. As the downstream signal is not sent 

back to the OLT, the margin for the RTT difference between two consecutive 

ONUs (n and n+1) is Tlaser + TdownONUn+1. In case RTT difference were extremely 

high, nesting strategies could be used. This consists in sending data for the 

nearest ONU after the farthest and receive the nearest upstream data before 

the farthest. This concept is more widely explained further in this chapter. 
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Fig 6.3  Frame structure and transmission diagram 

6.3.1 ONU Discovery procedure 

The CO needs to periodically search for ONUs as they are unable to send data 

without an optical carrier sent from the OLT. The discovery procedure consists 

on sending an unmodulated optical carrier pulse on each wavelength used in 

the system and wait for the reply from the ONUs (see Fig. 6.4). By doing this, 

the CO registers the active ONUs on the system and calculates the RTT to each 

ONU. To obtain RTT, the ONU measures the time needed to transmit the 

discovery packet and receive the reply from the ONU. These are the two 

parameters required to synchronize the network. Note that Tlaser in this case 

needs to be much wider than in the case of working on standard transmission 

mode. This is because there is no information about the RTT. The time margin 

(Tguard) between consecutive pulses limits the logical range of our network, 

which depends on the following equation: 

Tguard !
2 " d

vprop
 (6.1) 

where d is the maximum logical distance and vprop the propagation speed, 

typically !2·108 m/s. This means that for an access network of 30 km, Tguard 

should be of 300 !s, 400 !s for 40 km and so on. 

 

Fig 6.4  Polling cycle to detect live ONUs 
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Polling cycles can be done each k seconds. ONUs are fixed and do not move 

so by establishing polling cycles each k=1 to 5 seconds the network monitors 

the status of all ONUs without severely affecting network throughput. Also, the 

network needs to poll just the ONUs that are disconnected, as online ONUs 

are already registered with information about activity and RTT. 

6.3.2 Control Data 

Further to the optical signals that are transmitted along the network, inside 

each time slot, control data need to be sent in order to provide robustness 

and flexibility. These data are inserted by the ONU on the upstream data 

packet. The parameters are: ONU_ID, Window Request (request for x bits to 

transmit on the next packet) and a timestamp. The first one is required to 

determine which ONU is transmitting, the second determines the duration of 

the optical carrier pulse that is sent from the CO. The time stamp is required to 

monitor RTT. From the OLT to the ONU ONU_ID, Window Granted (duration of 

the carrier pulse allowed to transmit upstream data) and a timestamp need to 

be sent. 

 

Fig 6.5  Control Data fields 

The discovery packet data sent from the ONU to the CO are identical to the 

one sent during standard operation. 

Not all the parameters are mandatory but with the described control fields, 

the transmission from the OLT to the ONUs and from the ONUs to the CO is 

symmetric. 

The precision of the time stamp, and in general of all the timings of the 

network, depends on the data rate and average time slot we allocate to each 

ONU. As an example, using laser sources @ 1Gbps, average time slots of 

64kbits and laser tuning times of between 1 and 10!s, a time stamp precision 

of 0.5!s would be enough to guarantee correct performance (RTT error 

compared to transmission time less than 1%). 

6.4  Frame structure for ONUs with tunable sources 

All the parameters and distance calculations for the reflective mode are valid 

when the ONU is equipped with a tunable laser source. The only difference is 
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that there is no need to transmit the upstream carrier from the CO, which 

means that the system can operate in full duplex mode, thus network 

performance increases by 100%. In any case, Tguard should be maintained to 

avoid collision at the CO’s photo receiver side. 

 

Fig 6.6  Frame structure and transmission diagram 

6.5  Network Performance 

In order to evaluate the network performance of the proposed protocol, both 

mathematical analysis and performance simulations were implemented. 

6.5.1 Available bandwidth and network latency 

The calculations that were done supposed a markovian queue model and L 

lasers with Tservice being exponential and equal to Tlaser + Tdown + Tguard + Tup 

were Tdown is the time needed to transmit downstream data and Tup the time 

assigned for the upstream transmission. 

6.5.1.1  Reflective ONUs 

With these parameters, guaranteed bandwidth per user is: 

BWuser =
L

N
! r !

Tup + Tdown

Tservice
 (6.2) 

where L is the number of lasers, N the number of users and r the data rate. 



  Advanced media access control protocols for FTTH 1127 

Tlaser in the range of 1 to 10!s is realistic taking into account nowadays 

technology (some examples of tunable lasers in the range of nanoseconds 

have already been reported [Su04]). Tguard depends on the data rate. 10 bits 

should be enough to commute between the two operation modes. Tup and 

Tdown can be dynamically defined depending on network congestion and 

ONUs transmission requirements. In any case, on a saturated environment, 

where ONUs transmit at their maximum data rate, time window needs to be 

much wider than Tlaser + Tguard in order to increase network performance. 

 

Fig 6.7  BW per user (fixed parameters: L=8lasers, N=128users, 1/T=1Gbps) 

Fig. 6.7 presents bandwidth per user on a saturated scenario depending on Tup 

+ Tdown. With Tlaser in the range of 1 to 10!s, available bandwidth is acceptable 

for short time windows. On the other hand, Tlaser in the range of 100!s to 1ms 

are simply too long. More time is required to tune from one wavelength to 

another than to transmit data. It is also important to mention that if data rate 

is increased, laser tuning time must be reduced. Transmitting at data rates of 

10Gbps means to use tunable lasers tuning in the range of 1!s to 100ns. 

The theoretical maximum throughput is defined by the following equation: 

! =1"
Tguard + Tlaser

Tservice
 (6.3) 

Network latency is another important parameter, especially for real-time 

applications. A very important parameter is the time we require to serve the 

same ONU after being served. This limits real time applications and determines 
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maximum network latency in the case of full buffers. We define this parameter 

as Twindow and in a saturated scenario it follows the equation: 

T
window

=
N

L
!T

service
 (6.4) 

 

Fig 6.8  Time window per user depending on laser tuning time and time window (other 

parameters: L = 8 lasers, b = 1 Gbps, N = 128 ONUs) 

Fig. 6.8 presents the time that an ONU has to wait between transmissions. 

There is a hard implication of the laser tuning time on the results. Also note 

that depending on the time slot duration time window increases. We arrived 

to the same conclusion for the bandwidth per user analysis. Laser tuning times 

need to be in the range of 1 to 10!s or below for data rates of 1Gbps. Also, 

variable time slots ranging 10,000 to 100,000 bits are preferred as they offer 

good balance between network performance and latency. 

6.5.1.2  Tunable lasers 

When ONUs have tunable lasers there is no need to transmit the optical carrier 

from the CO. This increases throughput as now the laser can use the time that 

was reserved to just transmit an optical carrier to transmit data. Tservice is now 

defined as Tdown + Tlaser and there is no need to have a guard time between 

transitions, so Tguard is not required. 

In this scenario, the new equations that parameterize network performance 

are: 
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BW
user

=
L

N
! r !

T
down

T
service

 (6.5) 

for downlink and 

BWuser =
L

N
! r !

Tup

Tservice
 (6.6) 

 for uplink transmission. This means that bandwidth per user is increased by a 

factor of 2. Network throughput is increased to: 

! =1"
T
laser

T
service

 (6.7) 

Again, this is indistinctively for downstream and upstream transmission. 

Finally, Twindow has the same mathematical expression as in (6.4) but one should 

note that now Tservice is just Tdown + Tlaser so Twindow is reduced by a factor of 2. 

In general, throughput is increased by a factor of 2 while latency is reduced in 

the same way. This is because now transmission equipment is increased and 

no transmission time of the CO lasers is used to send unmodulated carriers to 

the ONUs to allow upstream transmission. 

6.5.2 Ranging  

In order to avoid collisions at the CO photo receptors, distance difference 

between two consecutive ONUs can not be longer than the guard time 

between received packets (see Fig. 6.9). 

6.5.2.1  Reflective ONUs 

When we have reflective ONUs, he guard band is defined as Tlaser plus the time 

required for downstream transmission: 

!dprop "
vprop

2
# Tlaser +

bdown

r

$ 

% 
& 

' 

( 
)  (6.8) 

where vprop is the propagation speed, bdown is the bit length assigned to 

downstream transmission and r is the data rate (this restriction only applies 

when the second ONU is farther than the first one). If a dynamic bandwidth 

allocation protocol is implemented, the system needs to guarantee that the 

above restriction is fulfilled in order to achieve proper network operation. 
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Fig 6.9  Minimum distance to avoid collisions 

As an example, with Tlaser = 1!s and a downstream burst of 32,000 at 1Gbps 

the parameter !dprop is 6.6 km. 

If the distance difference between ONUs were very large (the second farther 

than the first one), then nested ranging protocols cold be used. This strategy 

consists on sending before information to the ONU that is farther and later to 

the one that is closer. If the propagation difference is large enough, data from 

the closest ONU will be received before data from the farthest one. Fig. 8 

depicts both cases, standard and nested ranging. For a nested strategy, the 

relationship between the distance difference and the transmission parameters 

is: 

2

prop down up

prop laser

v b b
d T

r

+! "
# $ % +& '

( )
 (6.9) 

Note that we did not consider Tguard in the above expressions because it is 

much shorter and therefore can be ignored in comparison to the other terms. 

 

Fig 6.10  Standard (i to k) and Nested (j to i&k) 



  Advanced media access control protocols for FTTH 1131 

The OLT should schedule the time to serve to each ONU depending on their 

relative distances in order to maximize network utilization and reduce waiting 

times. Fig. 6.10 presents a general example in which the OLT uses nesting 

between ONU j and ONUs k and i and Tlaser extension between ONU i and k. 

6.5.2.2  Tunable lasers 

However, in the case we have ONUs with tunable lasers, there is no need to 

have any guard time in downstream transmission. Upstream and downstream 

are uncorrelated an as there is a laser at the ONU side, the network has just to 

inform when the ONU can start transmitting to avoid an upstream collision 

(see Fig. 6.11). Tguard in each case is send in the head of the incoming 

downstream packet. 

 

Fig 6.11  Ranging in tunable-laser based network 

This simplifies the transmission protocol and enhances network performance, 

as no guard time is required in downstream to avoid upstream collisions. 

6.5.3 Network simulations 

In order to simulate the network performance of the protocol we modeled an 

access network based on the following parameters: 128 users, 8 lasers @ 

1Gbps with tuning time of 1!s. A markovian G/G/c/k simulator, defining Tserve 

exponential of duration Tup + Tguard + Tdown + Tlaser, was used to determine 

network latency and throughput. As Tguard is much smaller than the rest of the 

times for some calculations it was not considered. 

The queues were limited to allow maximum delay of 2ms, which is an 

adequate value in an access network to allow real-time applications. 

To obtain network latency we took into account time at the queue, time at 

service and ONU time slot window waiting time. This last parameter is defined 

as: 
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( )_
2

w slot up guard down laser

N
T T T T T

L
!= " " + + +

"
 (6.10) 

where ! is the network throughput, N the number of users and L the number 

of lasers. 

Network latency results against throughput are depicted in Fig. 6.12 for several 

average time slot durations (10, 64 and 100!s) and two laser tuning times (1 

and 10!s). It can be clearly seen that throughput is affected by the relationship 

between the average time slot duration and the laser tuning speed. If Ttx = Tup 

+ Tdown is reduced, throughput limit is also reduced, limiting transmission 

capabilities of the network. 

 

Fig 6.12  Network latency results 

A good compromise is to keep Ttx in the range between 25,000 and 75,000 

bits. In this range, network latency is in the range of hundreds of 

microseconds, a very acceptable value for real time applications in an access 

environment, and network maximum throughput between 0.8 and 0.95. 

6.6  Geographic Dynamic Bandwidth allocation 

GBA stands for Geographic Bandwidth Allocation. Optimization of tunable 

laser utilization by sharing it for different traffic patterns is the main goal of 

this novel concept. 

GBA is based on the concept that the geographic distribution of users in an 

area is similar to their traffic patterns. This is, users with similar traffic patters 



  Advanced media access control protocols for FTTH 1133 

are concentrated in short distances and thus connected to the same remote 

node. This creates a throughput problem as they have similar resource 

necessities along similar periods of times, thus their traffic patters are similar. 

If this is extended to a wider area, i.e. a city, one can find different locations 

with different types of users. We will distinguish three main categories: home 

users, businesses and commercial users. Each of them have their characteristic 

traffic patters which vary from one group to the other but are more or less 

similar inside the group. 

In a classical network approach, users with similar traffic patters are connected 

to the same remote nodes (see Fig. 6.13). This is not optimal as during the day, 

network occupancy varies depending on the types of users that are connected 

to the remote node. As an example, in the mornings remote nodes that 

connect businesses will have much higher occupancies than home users’ 

remote nodes while in the evening the behavior will be the opposite. 

 

Fig 6.13  GBA principle 

The solution to this would be to interconnect different types of users to the 

same remote node, with complementary traffic patterns that compensate one 

with the other to have overall constant bandwidth requirements. However, this 

is not feasible in most cities as users are normally aggregated in neighborhood 

basis. 

To overcome this and offer higher network performance while keeping costs 

low, we presented in the last chapter the AWG2 WDM/TDM PON network 

topology, which allows the GBA concept. The main idea is to use a NxN AWG 

to uncorrelate the transmission interfaces with the output ports, thus all the 

remote nodes are accessed by all the network interfaces (see Fig. 6.14). This, 

together with a dynamic TDM bandwidth allocation protocol offers to the 

network the possibility to assign bandwidth on demand to all the remote 

nodes. 
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Fig 6.14  AWG
2
 WDM/TDM PON routing profile 

Each transmission interface servers a subnetwork in each remote node, thus 

each transmission interface cyclically transmits to one subnetwork from each 

remote node, sharing the bandwidth in TDM basis. By adjusting the TDM slots, 

the network can then concentrate bandwidth on demand and at the same 

time, improve resource allocation and network performance. 

GBA then, is a combination of the WDM/TDM that has already described and 

analyzed in this chapter, implemented in an AWG2 WDM/TDM PON and 

constitute one of the main contributions of this thesis, together with the 

advanced topologies described in the previous chapter. 

The next section covers the simulations that have been carried out to justify 

and demonstrate the GBA concept. 

6.7  Network performance 

A basic scenario with is an AWG2 WDM/TDM PON in a tree ouside plant, with 

16 tunable lasers @ 2.5Gbps and 16x remote nodes implemented by 1x16 

AWGs. Design paramenters of the topology are then L = M = N =16 (see 

previous chapter for further reference). The splitting ratio (k) was chosen to be 

32. The resulting access network is then of 8,192 users (M x N x k), and each 

laser serves N x k = 512 ONUs. 

Three classes of users were simulated: business customers, commercial 

customers and home users. From the total 8,192 ONUs, 37’5% of them were 

businesses, 18’75% were commercial customers and finally 43’75% were 

homes users. This distribution represents a typical mid-size town with a 

broadband penetration factor of 70%. 

Each class of users has their own traffic patterns (see Fig. 6.15), which is 

distributed along the day in the following way: network occupancy in home 

user’s network branches in the morning (in working days) will be low. 
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However, in businesses segments there will be heavy traffic. In the evenings 

the traffic patterns will be opposite, with businesses having low load and home 

users with high bandwidth requirements. Commercial users requirements are 

similar to businesses with the difference that during weekends their 

transmission requirements are higher.  

From this, one can clearly see that to user dedicated and separate lasers to 

homes users and will not optimize laser utilization Thus, a dynamic assignation 

of resources is more efficient as bandwidth can be concentrated on specific 

network segments depending on the user needs, by assigning wider time-slots 

to the customers connected them.  

 

Fig 6.15  Traffic patterns for each class of user 

In terms of classes of services, triple-play services traffic (voice, video, and 

data) were offered. These different flows are marked as high-priority voice 

traffic (packets of 64 bytes length), medium-priority video traffic (500 B), and 

low-priority data traffic (1500 B) in class-based queues. Their traffic patters are 

very different and their network requirements, too. Voice requires low latency 

but not huge bandwidth. Video is very bandwidth hungry (depending on the 

quality) and requires a constant latency (constant jitter). Finally, data traffic is 

considered best effort with no restrictions. 
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6.7.1 Classes of services 

In order to evaluate the benefits of GBA, three traffic distributions have been 

designed by simulating different situations: morning, evening and weekend. 

Under a high utilization of laser equipment, morning scenario supposes a 

business segment heavy occupancy with 60% of total traffic, 30% for 

commercial segment and 10% for homes segment. Evening scenario is defined 

as 30% for business segment, 10% for commercial as well as 60% for homes 

segment. Finally, in weekend there is a traffic distribution of 10% for business 

segment, 40% for commercial segment and 50% for homes segment (see table 

6.1). 

Timeframe Traffic type % occupancy
business 60

commercial 30

homes 10

business 30

commercial 10

homes 60

business 10

commercial 40

homes 50

weekend

evening

morning

 

Table 6.1  traffic distributions 

Results of the simulations are shown in Figs. 6.16-6.19. We have found a gain 

in laser equipment utilization using GBA under high-load conditions when 

input traffic is heavy unbalanced, while in pure TDM-PONs this is not possible 

as bandwidth can not be shared between different PON sub networks.  

  

Fig 6.16  Impact of GBA for different traffic profiles 
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Fig 6.17  Network latency for different traffic profiles, with and without GBA 

Available bandwidth for each type of customers is dynamically distributed 

depending on their necessities on the three simulated network traffic 

scenarios. Figure 6.16 shows bandwidth allocation with and without GBA. Gain 

with GBA is possible because heavy-loaded segments are balanced with lower 

ones and available bandwidth is distributed. One can see for instance that 

using GBA in business links increase bandwidth per user from 78 to 125Mbps 

(60% increase) in the mornings and that home users increase their 

transmission capabilities from 78 to 108 Mbps (38% increase) in the evenings 

when GBA is implemented.  

Furthermore, results obtained in (6.2) and shown in Fig. 6.7 are improved, 

because with GBA unused bandwidth from low-loaded segments can be used 

to serve higher-loaded ones. However, this improvement in bandwidth per 

user has its payback in higher latencies for lower-loaded traffics. As shown in 

Figure 6.17, in low occupancy segments latency will increase if GBA is 

implemented. This is because Twindow becomes wider due to the insertion of 

traffic for heavy-loaded segments from other remote AWG segments. On the 

other hand, in heavy-loaded segments latency is reduced on base of the same 

principle, and almost all situations improve the previous network latency 

results. 

Simulations results also verify the theoretical traffic patterns presented in Fig. 

6.15. As can be seen in Fig. 6.18, business customers require high bandwidth 

during the morning that decreases in the evenings and at weekend. On the 

other hand, home users demand more bandwidth during weekends and in the 
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evening and decreases during mornings. Commercial customers have an 

almost independent-with-time demand. 

 

Fig 6.18  Tendency of the three traffic patterns 

As far as triple-play services is concerned, results demonstrate that the use of 

priorities improves the performance of voice and video traffic. An analysis in a 

heavy-loaded scenario is showed in Figure 6.19; voice and video traffic 

transmission are prioritized over data traffic. While time slot is shorter, these 

priority levels accentuate the differences between each service parameters in 

network. However, when time slots increase latency is not further improved, as 

latency is then mainly due to the time required to pool the rest of users served 

by the same laser. Also, simulations demonstrate that to use separate queues 

for voice and video traffic is not fully justified as the improvement in voice 

traffic latency in comparison to video traffic (with low priority) is negligible. 

 

Fig 6.19  Latency depending on Qos and traffic pattern tendency 
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6.8  Conclusions 

This section presents a protocol combining WDMA and TDMA for PON is 

presented. It offers a compromise between high transmission capabilities of 

WDM-PONs and simple and cost effective TDM-PONs. It solves the TDM 

upstream synchronization problem of TDMA and allows flexible bandwidth 

assignation by means of a centralized control protocol at the CO. 

The topology is easily scalable by adding more lasers at the OLT without the 

need of any change at the ONU side. Another important consideration is that 

the protocol can be implemented on any access network topology. The only 

restriction that is required is that each ONU needs to receive a unique 

wavelength. 

Mathematical analysis and simulations show that a compromise needs to be 

met when deploying the network in terms of laser tuning time and average 

time slot assignation per ONU. Ideally, laser tuning times need to be as small 

as possible while time slot duration needs to be narrow enough to allow low 

latency but wide enough to be much wider than Tlaser to spend as less time as 

possible switching between ONUs. 

This WDM/TDMA protocol can be implemented on an AWG2 WDM/TDM PON, 

offering Geographic Bandwidth on Demand. 

This technique combines the proposed WDM/TDM access protocol with an 

advanced access topology based of a concatenation of an MxM AWG and a 

1xN AWG to uncorrelate laser interfaces and end users in order to 

homogenize traffic patterns. 

By sharing each laser to different network geographic branches, different 

traffic pattern customers are served, which is optimizes laser utilization along 

periods of times when some users had low latencies while other high 

transmission requirements.  

Network delay and throughput improvements depend on traffic correlation 

between users. The most different the traffic patterns, the most improve in 

network throughput when using GBA is reported. 

Simulations on a realistic deployment to serve +8,000 users show that GBA can 

improve bandwidth per user up to 60%, taking advantage of unused 

bandwidth from lowly occupied PON segments. 
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7  Conclusions 

This thesis presents an upgrade path from the existing copper-based access 

infrastructure to an all-optical access solution. The investment that is required 

has to be done gradually and this is the main reason to present the upgrade 

path in several intermediate stages. 

First, a FTTC / FTTCab combined optical / VDSL solution would incorporate 

fiber in access and adequate the truck segment of the access infrastructure. 

Then, a second upgrade will deploy fiber to the building (FTTB) using a 

combination of FTTB + Ethernet. With this stage, most of the access 

infrastructure will be already prepared for FTTH. 

Combined FTTC/Cab with final VDSL links have been demonstrated to offer 

relatively high transmission capabilities but their active-in-field nature makes 

them unattractive for the long run as maintenance costs will go high if this 

solution is deployed massively, due to the footprint required to install the 

aggregation equipment, which needs to be installed in the field, near the end 

users. We have demonstrated correct transmission of VDSL links on distances 

of 45 km with datarates up to 40Mbps.  

FTTB with final switched Ethernet links is a more refined solution that reduces 

the existing copper link and would be the last fiber-copper combined stage. It 

is a potential long-term solution for condominium buildings, where optical 

equipment would be installed in the basement and then distributed to the 

apartments by UTP cables. Our experiments have demonstrated Fast Ethernet 

(100Mbps) services on optical links up to 20 km. 

Finally, the last upgrade will drop fiber to every single home offering almost 

unlimited transmission capabilities to the user. In this scenario, due to the 

highest costs of optical components in comparison with electric ones, 
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advanced algorithms to manage the equipment in order to increase utilization 

are very recommended. Therefore, advanced topologies using combined 

access control based on WDM and TDM have been developed. By using agile 

routing and dynamic assignation of optical resources the proposed networks 

offer high transmission capabilities with minimum number of optical devices. 

This, together with the use of reflective ONUs make the topologies very 

interesting for future deployments of access networks, going one step further 

than present TDM-PON solutions. 

This combined WDM/TDM protocol, together with the AWG2 PON topologies 

that have been developed offer the possibility to develop the Geographic 

Bandwidth Allocation concept, which offers dynamic bandwidth assignation to 

different RNs of the access infrastructure by combining the routing features of 

AWGs with agile laser tuning at the CO. 

To verify the correctness of the results, laboratory testbeds have been 

developed for all the presented topologies, which demonstrate that all the 

proposed topologies are feasible from the optical-connectivity point of view, 

achieving correct transmission and reception up to 2.5Gbps in 30 km links, 

which corresponds to the datarate and distance of the most advanced PON 

protocol at present. Furthermore, network simulations have been developed 

to corroborate that the GBA concept works and offers real improvement over 

classical TDM bandwidth assignation protocols. Improvements of up to 60% 

have been measured by means of simulation implementing a realistic traffic 

profile on an advanced network serving to different classes of users. 

However, the success of the upgrade path is also linked to the evolution of 

optical devices, both in terms of costs and performance, especially of tunable 

lasers and reflective modulators. These two components, together with AWGs 

are the main pillars of the topologies that are presented. AWGs offer at 

present good performance and with the late deployment of athermal AWGs, 

AWGs can be installed in field without restrictions. The only evolution on 

AWGs should be a reduction of their cost. AWGs are integrated devices so due 

to economies of scale; it is reasonable to expect their price to approximate to 

the cost of power couplers. 

Tunable lasers require further improvement, especially on tuning speed. Agile 

WDM tuning requires stable tuning between wavelengths in timescales of 

hundreds of nanoseconds in order not to degrade network performance due 

to excessive guard times. Also, their cost should be reduced to be similar to 

fixed lasers. This is especially important if tunable lasers are used on the ONU 

side as price is one of the main issues on the end-user equipment. 
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Finally, the devices that require more development are reflective-type devices 

for ONUs. In this direction, two approaches are gaining momentum: RSOAs 

and the combination of SOA+EAM. These two devices offer modulation 

features and can be integrated. RSOAs have been developed intensively in the 

last years and offer good specifications as reflective modulators but they are 

limited on bandwidth so they are not the right choice for +2.5Gbps data 

streams. SOA+EAMs offer much higher bandwidth +10Gbps but are now in a 

more incipient developing stage. 

All this effort is developed to offer higher transmission capabilities so new 

applications can be developed on access networks. This is in reality what 

justifies the entire work, because the network by itself has no sense if there are 

no applications to run on those networks to give added value to the end 

customers and make their lives easier and more comfortable. 

This thesis then tries to establish a realistic and feasible upgrade path to 

deploy the information highways of the future.  
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