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Abstract
Handling the tsunami of multimedia content is a big challenge for heterogeneous cel-
lular networks. Serving large volumes of content from the central system to end-users,
through a bandwidth-limited network, at peak time leads to network congestion. Typ-
ically, popular contents impede network performance and incur a high cost because
they are redundantly transmitted to users. Also, some contents are too far from users,
causing service delays. Owing to the above reasons, the network performance dete-
riorates, and meeting the required quality of experience becomes difficult. One way
to improve HCN performance is through the use of caching of popular contents. This
research proposes and analyzes content caching optimization strategies for several sce-
narios of cellular networks enhanced with multi-access edge computing.

Several studies have shown that backhaul congestion and service latency can be
reduced by applying efficient content caching policies. However, a challenging issue
is that the network edges have limited resources, such as cache size and computation.
Due to such limitations, how to effectively exploit the available network resource and
cache contents optimally remains an open-ended question. Content caching strategies
have been the subject of several research efforts; however, in most works, the accurate
modeling of the caching problem is a challenging open problem. In addition, most of
them employ intractable optimization tools, which depend on greedy algorithms and
heuristics. Most strategies must also be scaled into large networks with computation-
ally feasible solutions. More specifically, the complex joint-caching problem remains
open.

This dissertation aims to fill these gaps and contribute to modeling real-network
characteristics using advanced combinatorial optimization tools. We propose differ-
ent content caching formulations and design novel optimization strategies. The gen-
eral approach is to effectively model caching schemes using popularity-based selec-
tion problems and solve the models using efficient algorithms. We devise an optimal
caching scheme using dynamic programming. A more complex but exact caching strat-
egy is proposed, where heterogeneous caching edges are clustered to offload the cen-
tral system. Furthermore, we propose three demand-aware caching strategies, where
a source caches contents to multiple caching edges, and the content popularity differs
for each edge. Finally, we propose a demand-aware joint caching problem modeling
where the content placement and delivery are mutually optimized.

The performances of the proposed strategies are thoroughly evaluated using exten-
sive system-level simulations, comparing them with existing content caching strate-
gies. The numerical results show that the proposed strategies outperform baseline
strategies in terms of relevant key performance indicators. Also, the associated MEC
functionalities are computationally feasible. Finally, useful cache design guidelines are
set for various wireless network scenarios, contributing to the future design of emerg-
ing technologies and practical business models.





Resumen
Gestionar el tsunami de contenidos multimedia existente en la actualidad es un gran
reto para las redes celulares heterogéneas. Dar servicio a grandes volúmenes de con-
tenidos desde un sistema central para los usuarios finales, a través de una red de ancho
de banda limitado y en hora punta, puede provocar la congestión de la red. Normal-
mente, los contenidos más populares complican el rendimiento de la red y suponen un
alto coste dado que se transmiten redundantemente a los diferentes usuarios. Además,
algunos contenidos están físicamente lejos de los usuarios, lo que provoca retrasos en
el servicio. Por todo ello, el rendimiento de la red se deteriora y resulta difícil ofre-
cer la calidad de experiencia requerida. Una forma de mejorar el rendimiento de las
llamadas HCN es mediante el uso de la caché de contenidos populares. Esta investi-
gación propone y analiza nuevas estrategias de optimización del almacenamiento en
caché de contenidos para varios escenarios de redes celulares mejoradas incluyendo
Edge Computing multiacceso.

Varios estudios han demostrado que la congestión del backhaul y la latencia del
servicio pueden reducirse aplicando políticas eficientes de almacenamiento de con-
tenidos en caché. Sin embargo, un problema es que los bordes de la red tienen recursos
limitados, como el tamaño de la caché y la capacidad de cómputo. Debido a estas lim-
itaciones, sigue siendo una cuestión pendiente estudiar cómo explotar eficazmente los
recursos de red disponibles y almacenar en caché los contenidos de forma óptima. Las
estrategias de almacenamiento en caché de contenidos ya han sido objeto de varios
trabajos de investigación; sin embargo, en la mayoría de ellos, el modelado preciso del
problema de almacenamiento en caché es un problema abierto y desafiante. Además,
la mayoría de ellos emplean herramientas de optimización intratables en la práctica,
que dependen de algoritmos heurísticos que requieren recursos de computación ina-
sumibles. Además, la mayoría de las estrategias deben poder escalarse a redes de gran
tamaño y tener soluciones factibles desde el punto de vista computacional. Más conc-
retamente, el complejo problema del caché conjunto sigue sin resolverse.

Esta tesis pretende cubrir parcialmente estas lagunas y contribuir a modelar las
características de las redes reales mediante herramientas avanzadas de optimización
combinatoria. Proponemos diferentes formulaciones de almacenamiento en caché de
contenidos y diseñamos novedosas estrategias de optimización. El enfoque general
consiste en modelar eficazmente los esquemas de almacenamiento en caché mediante
problemas de selección basados en la popularidad y resolver los modelos mediante
algoritmos eficientes. Ideamos un esquema óptimo de almacenamiento en caché me-
diante programación dinámica. Se propone una estrategia de caché más compleja pero
exacta, en la que se agrupan datos de caché heterogéneos almacenados en los bordes
de la red para descargar el sistema central. Además, proponemos tres estrategias de
almacenamiento en caché en función de la demanda, en las que una fuente almacena
contenidos en caché en múltiples bordes de almacenamiento en caché y la populari-
dad del contenido difiere para cada borde. Por último, proponemos una modelización
de problemas de caché conjunta en la que la ubicación y la entrega de contenidos se
optimizan mutuamente.



x

Las prestaciones de las estrategias propuestas se evalúan exhaustivamente medi-
ante extensas simulaciones a nivel de sistema, comparándolas con las estrategias de
almacenamiento en caché de contenidos existentes. Los resultados numéricos mues-
tran que las estrategias propuestas superan a las estrategias de referencia en términos
de indicadores clave de rendimiento. Además, las funcionalidades MEC asociadas son
factibles desde el punto de vista computacional. Por último, se establecen directrices
útiles de diseño de cachés para diversos escenarios de redes inalámbricas, lo que con-
tribuye al futuro diseño de tecnologías emergentes y modelos de negocio prácticos.
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Chapter 1

Introduction

The current heterogeneous cellular networks (HCN) is becoming complex in kind and
the service types it delivers. It incorporates diversified devices with different com-
putational capabilities and service quality requirements. In addition, the demand for
traffic-intensive applications is increasing on the user side, which operates resource-
consuming smart devices. Though HCN will be a major component of the Internet,
due to its flexibility and low cost of deployment, some of its outstanding performance
bottlenecks remain unresolved [1].

The monthly traffic volume of multimedia contents (e.g., video, photos, and audio)
in mobile networks, including fixed wireless access (FWA), is steadily plunging at an
exponential rate. The mobility report by Ericsson showed that the monthly global mo-
bile data traffic exponentially increased from 13.5 exabytes in 2018 to 100 Exabytes (EB)
in 2022. This figure is double mobile traffic in 2021 and is predicted to reach 300 EB
by 2026. The current annual mobile data traffic growth is 40% [2]. In addition, due
to dynamic situations such as the COVID-19 pandemic, services such as video con-
ferencing, streaming, office software suites, and web browsing have become unprece-
dentedly common and have accelerated the extensive use of online video streaming
services and teleworking.

This mobile data traffic proliferation is triggered by an explosive surge of smart
devices in the market and fast subscriptions to services that are running on cellular
devices. It is further enhanced by the emerging Internet of Things (IoT) development.
The wide penetration of smart devices, with various computational and storage ca-
pacities, has led to the exponential release of multimedia content [3]. In parallel, we
are witnessing an overwhelming growth of traffic-demanding applications that deliver
complex multimedia services such as video on demand (VoD), augmented reality, im-
mersive media formats, and online gaming. For example, the current average monthly
data usage is 10 GB per user and is predicted to be 35 GB by 2026 [4], where the fifth
generation (5G) network will cover nearly 53% of total traffic.

The future generation cellular networks, hit hard by the tsunami of Internet con-
tent, must have orchestrated communication lines to avoid performance marring is-
sues. To that extent of orchestration, several standardizations are set as a reference to
various performance indicators, which are becoming hard to meet practically. Among
many efforts, an application-layer traffic management has been the central focus of the
research in wireless communication for the past decade. It ranges from understanding
the contextual growth of data traffic to alleviating network congestion.
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From an application-layer perspective, we need to improve the performance of cel-
lular networks’ traffic management by applying advanced content processing tech-
nologies, but not limited to, that help meet the required quality of experience (QoE) [5].
Among some potential technologies, content caching is proposed as a radical approach
to alleviating the foreseen content traffic problems [6]. It has substantially boosted the
network performance metrics such as throughput, spectrum usage, per-link spectral
efficiency, and spatial reuse. In short, caching refers to prefetching contents from the
central head of mobile network operators (MNO) library to the timely storing caching
edges, close to end users. The source of contents might be the main base station (MBS),
while the caching edge can be any cache-capable network device called a mobile helper
(MH). Though a well-studied topic in the case of content delivery networks (CDN) and
the Internet, cellular content caching is an open-ended research topic; in fact, one of the
disruptive technologies to actualize the 5G and beyond cellular networks.

Actually, not alone the content caching brings the required QoE, but there are other
key enabling technologies and network-edge capabilities. For that matter, the 5G net-
work edges are becoming capable of caching large components of the traffic and ex-
ecuting content processing and computing tasks on the radio metadata. In the near
future, the third-generation chipsets will enable performance-optimized 5G devices
to reach the low-cost network segments. This refers to multi-access edge computing
(MEC) technology that exploits the devices’ resources, such as storage and computa-
tion, which significantly enhances the content caching in the HCN [7].

The MEC was introduced by European Telecommunications Standards Institute
(ETSI) for leveraging the 5G network where the edge devices provide IT service en-
vironments and computing capabilities [8]. This technology brings the computational
capacity of the central system (CS), of distant processors in the classical network, to
the very close proximity of end users. It reduces the computation efforts for content
caching and optimization so as to achieve ultra-low latency and high bandwidth re-
quirements [9]. In addition, the real-time preprocessing of contents and reactive infor-
mation processing services boost the practicability of caching for service providers and
application developers who can embed it into the network.

Recently, distributed content clouds and caching devices have been adapted to fetch
contents from the network CS to last-mile edges. Thankfully, these cloud architec-
tures and caching devices are emerging with higher capabilities to ease the commu-
nication strains among devices without central auspices. While enjoying the merits
of distributed caching, it is also worth setting up a cooperative system. This research
aims at exploiting optimization techniques on cooperative content caching to reduce
network resource consumption while improving QoE.

1.1 Motivation and Objectives

In this section, the problem statement and motivation of the research are explained,
followed by the research objectives.
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1.1.1 Problem statement and motivation
Multimedia content service through the cellular infrastructure has seen a paradigm
shift due to the tsunami of mobile video traffic generated by billions of smart devices
populating the network. As a result, Internet service providers (ISP) and content de-
livery networks (CDN) have seen the unprecedented challenges of maintaining the
esteemed QoE. From a traffic content management point of view, it is important to
mention a few challenges that need to be addressed in future cellular networks.

The first challenge arises from the explosive release of traffic data being held on
a non-flexible and resource-constrained network. Mainly, the backhaul and fronthaul
networks have limited link capacity, which is the main obstruction to getting the re-
quired user QoE and network quality of service (QoS). The huge data traffic that is
simultaneously circulating in this network creates drastic congestion and download
delay, which is an ever-prevailing challenge.

The second challenge is imposed by most frequently requested, identified as pop-
ular, contents that dominantly exploit the cellular network. A critical mass of mobile
content requests refers to the level of consumption of the same popular content by
different end devices spanning small geographical regions. Such a concentrated crit-
ical mass of requests puts a tremendous burden on the backhaul of content-agnostic
cellular networks. Upon requests, these popular video contents are redundantly re-
transmitted from the backhaul server, alternatively called the central system, to the
end user equipment (UE), using the bandwidth-limited backhaul at peak time. This
incurs higher transmission costs to the constrained network.

The third challenge comes from the unbeatable distances between the CDN and
user UEs across the corners of the globe. This is contrary to the need for extremely low
latency service applications, still poising overwhelmingly increasing traffic demand.
Unlikely, contents served from the backhaul CS, which are quite distant servers on the
Internet, pass through multiple routers before they are delivered to users. This process
forces the real network to exhibit a high response delay of up to seconds, which is far
from the set goal of 1 ms or less latency for the 5G and beyond networks.

The last foreseen challenge is that intensive end-user applications are creating big-
sized and dynamically changing contents that consume the network resources. Unlike
the CDN protocol, these contents are produced in a dispensed manner, so they make
the caching process more complex. One viable solution is applying appropriate con-
tent preprocessing on network edges before caching. However, the network and the
edges have finite resources, such as storage memory and computing. Hence, the HCN
needs processing techniques that effectively exploit these scarce resources to reduce
the burden of huge contents while guaranteeing QoE.

In contrast to the above-mentioned challenges, in-network storage technologies are
exponentially advancing while their price is decaying fast. Having this opportunity
against the defined bottlenecks, content caching becomes a viable solution to offload-
ing network congestion, reducing retransmission costs, and avoiding service latency.
However, the caching strategy should take into consideration of the limited resources
of the network. Therefore, we inevitably question: ‘Which contents to cache in prior-
ity?’, ‘where to cache the content?’, ‘when to make the caching process?’.
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Although vast research has been done in the state of the art, the caching models
have gaps in effectively capturing the true nature of the cellular network. Because of
the complexity of the caching problem, we notice that the existing problem represen-
tations focus on probabilistic and intractable models. In addition, most of them model
the content caching process with a single decision-based strategy for the sake of end-
to-end optimization, which becomes an unsolvable NP-hard problem. Even though
some solid works propose two decision-based joint caching strategies, they apply a
duality property of the content placement and delivery phases’ nested relationship.
However, the phases’ relationship does not fulfill a dual-nested property. On the other
hand, some existing strategies fail to treat heterogeneities in network attributes such
as content popularity, content size, and cache sizes. On top of the modeling gaps, most
strategies employ greedy and heuristic solutions, which are far from optimality. Other
solutions have limitations of scalability for large real networks. To address these press-
ing issues of caching in the HCN, we conduct extensive research on content caching
scenarios in increasing order of their complexity.

1.1.2 Research objectives

Having a list of motivating factors and the throttles of expected QoE, the thesis aims
to propose practical and cooperative caching optimization strategies for cluster-centric
5G and beyond cellular networks. Specific objectives of the research are:

• analyze the state-of-art content caching and resource utilization problems, model
strategies, and respective optimization solutions,

• design an optimal content caching strategy for the MEC-enabled 5G and beyond
cellular networks, considering their future capabilities and limitations. Scale up
the proposed strategy to other communication protocols and industrial use cases,

• design a novel resource utilization strategy for constrained MEC-enabled cellu-
lar networks, with different collaboration schemes, which is an extensional opti-
mization of the caching for classic cellular networks,

• research on an alternative and future caching policy and exploit opportunities of
convenient protocols for enhancing its performance.

1.2 Related Works on Caching to Improve QoE

Because content caching at cellular networks has been a point of attention for nearly a
decade, we have sufficient literature on the strategies. Besides, content caching remains
an active research topic due to its complexity and continuing proliferation of traffic.
The ultimate goal of caching strategies is to increase the performance of the HCN, in
terms of key performance indicators (KPI), and to satisfy users’ aggressive demand for
data traffic. For a better insight into the literature, we explain the cooperative caching
strategy and build it up with joint and independent caching schemes. Side-by-side, we
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revise the mathematical tools used to model caching problems. Following it, we review
the optimization tools that are used to solve these models. In the end, we review the
MEC-based caching strategies.

1.2.1 Cooperative and non-cooperative caching
There are two categories of caching processes in existing modeling and performance
analysis for any caching system. The first category is non-cooperative, which acts that
each MH autonomously selects its content to the cache using its algorithm. The second
one is cooperative, which assumes centrally planned content placement and delivery
across multiple caching edges. The authors in [10], [11] have shown that cooperative
caching improves network performance due to the enhanced utilization of edge com-
puting and storage resources. However, they have short of assuming content size di-
versity and random request distribution. Under the same assumptions, authors in [12]
achieve a lower download latency and better storage utilization, where the femto-base
stations (FBS) and UEs act as MH.

The work in [13] maximizes the area spectral efficiency by using an independent
caching strategy to offload the backhaul capacity for dense networks, where missed
contents are directly served from the CS. However, this approach was spearheaded
by cooperative caching, which helps the network edges to leverage the distribution
of contents within a specified cellular network area and brings a shared workload or
congestion offloading [14]. In cooperative caching, the entire decision in the system is
made by a central entity, called central head. Hence, caching mobile helpers cooperate
to cache required files and pass them to the user [15]–[19].

Authors in [16] focus on a cooperative caching strategy to show that, by caching
files at an off-peak time, it is possible to enhance the network performance through a
broadcasting technique. Also, authors in [20], [21] use this caching strategy to exploit
the scarce edge storage and resource allocation in device-to-device (D2D) communica-
tion. Mainly, the work in [22] analyses the impact of cooperative caching and devised
cache refreshment in D2D communication with data-intensive applications. In [23],
the authors propose a cooperative and hierarchical caching strategy for the cloud RAN
(C-RAN) case, where contents are jointly cached at the central baseband unit (BBU)
and at the remote radio head (RRHs).

Within the cooperative scheme, some techniques use further clustering of the net-
work devices based on parameters such as the requested file or the cooperation dis-
tance [18], [19], [24]. In light of the forthcoming MEC-RAN integration, several clus-
tering techniques exist in the literature. These techniques consider different objective
functions such as minimizing end-to-end service delay [25], reducing traffic conges-
tion within the MEC cluster [26], enhancing MEC service coverage [27], and offload-
ing core network traffic to the edge MEC edges [28]. Other strategies streamline dis-
tributed caching where the required files are stored at the different tiers of the network
to increase the areal spectral efficiency, as shown in [29] and [17]. In [29], the authors
develop a contention-based multimedia content delivery protocol, which avoids pos-
sible collision among concurrent transmissions by different active transmitters. This
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maximizes the successful content delivery probability to the user equipment and the
coverage probability.

1.2.2 Joint and separate caching
From a design perspective, the optimization of content placement and delivery phases
have distinct interdependence. However, solving a joint optimization problem with
an end-to-end approach is quite complex. In general, two methods are applied: joint
optimization where content placement and delivery are treated simultaneously, and
separate optimization where the placement is managed and the delivery process is
optimized with a different scheme.

The authors in [10] propose a joint caching and delivery policy by transforming the
nested-dual problem to an equivalent mixed integer non-linear programming (MINLP)
problem that can be solved using the advanced branch-and-bound method. In this
case, each MH decides its own content to the cache. Also, [30] proposed a joint and
cooperative caching scheme to maximize the number of requests to be served without
accessing the central head.

Other works propose independent optimization such that they mainly emphasize
content placement and apply delivery enhancement methods. The work of [31] pri-
oritizes finding an optimal cooperative content placement strategy. In [24], authors
focus on proposing a near-optimal solution, using multicast, and they achieved better
performance at a manageable complexity in the general region under mild conditions.

1.2.3 Caching-problem modeling tools

Content caching is a constrained problem usually modeled using different mathemat-
ical tools, based on the network architecture and considered objective functions [32].
These tools can be grouped into four categories.

The first and dominant category of content cache modeling is by optimization prob-
lems, various in type. The work in [33], [34] uses the knapsack problem to formulate
content caching. Mainly, authors in [35] map the video caching to a multiple Knapsack
problem, where the UEs have access to associated MH. Other optimization problems
include mixed integer programming [36], linear integer programming [12], and mixed
integer non-linear programming [10]. In [37], the authors model the content place-
ment problem using the index coding algorithm, which assumes uncoded placement
and coded delivery and derives an optimal lower-bound transmission rate. Authors in
[38] use the Lyapunov model to optimize the average data rate with limited delay.

The second category of caching models uses probabilistic approaches, mainly stochas-
tic geometry. The work in [11], [14], [24] uses stochastic modeling to increase the per-
formance of HCN, in terms of a cache hit probability, area spectral efficiency, and ser-
vice delay. The work in [39] applies stochastic geometry expression to improve the cov-
erage probability. The third modeling category is using machine learning, which helps
the CS make decisions based on information processing as analyzed in [40]. They ap-
ply machine learning tools to learn the content popularity and make proactive caching,
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FIGURE 1.1: Summary table of proposed caching in the literature.

which resulted in a very high cache hit rate and backhaul offloading. Authors in [41],
use transfer learning to train the content popularity and apply predictive and cooper-
ative caching. Similarly, the Markov process is used in [42] to capture the dynamics of
the network usage by the mining user’s profile, such as location and request pattern,
and predict the future behavior of network usage. Recent work in [43] uses deep learn-
ing to retrieve the content demand and proactively cache in a MEC-assisted network,
to improve download delay for mission-critical services. However, from a business
standpoint, it is yet under anticipation that pushing the MEC processing to the edge
creates an over cost to the subscriber and affects the market.

The last cache modeling category uses game theory, which takes UEs as the player
parties and objective functions as gains. Authors in [44] demonstrate that cost-effective
and proactive caching schemes can be implemented using game theory, which reduces
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the impact of UE selfishness. Authors in [45] exploit the Stackelberg game to model
the interaction between caching edges and restrain their selfishness.

1.2.4 Constrained resource optimization solutions
Depending on the placement model type, different solving algorithms are also pro-
posed. Theoretically, some of these problems are solved using closed-form techniques.
Needless to say, most solutions to cache optimization problems rely on greedy and
heuristic solutions. The work in [36] applies the Lagrangian relaxation and solves it
using a heuristic approach, which gives a suboptimal solution.

On a popularity-based caching strategy in [14], they optimize caching using greedy
solutions while [46] uses a greedy heuristic. Though the greedy and heuristic algo-
rithms are simpler, they are sub-optimal in a practical sense [33]. In addition, they can
not deal with the spatial difference of content popularity, capacity limitedness, and
heterogeneity of caching edges. To cope with these factors, researchers propose more
complex solutions. In [10], authors use branch-and-bound to transform a dual-nested
problem into a MILP. In [12], the authors use Lagrangian relaxation and hierarchical
prime-dual decomposition to decouple the ILP problem into two-level. In [35], and
[33], authors use full polynomial time approximation methods. But these solutions
are still sub-optimal at a price of complexity. For a deeper understanding, a detailed
comparative analysis for content caching is tabulated in Fig. 1.1.

1.2.5 MEC-assisted caching strategies

The MEC is an emerging technology that sheds light on the 5G era with the cloud-
computing capability of network edges. The survey [47] explores the benefits of MEC-
based content caching by easing information processing within the cellular radio access
network (RAN), without passing it to the CS. A comprehensive survey on resource
management and edge computing paradigms is made in [48], [49]. In addition, the
MEC helps with dynamic data rendering it helps to boost content placement and de-
livery. They suggest that MEC can be used to compute the location of UEs, preprocess
the data, refresh the data, and predict the requests and location of users. The work in
[50] shows the usefulness of MEC features while applying Dynamic Adaptive Stream-
ing over HTTP (DASH) video caching to reduce staling, starting time, and better video
quality. Many works such as [51], and [5] justify the outperforming of learning-based
proactive caching strategies with the MEC excelling effectiveness.

As explained in the last paragraph of Subsection 1.1.1, the caching strategies had
experienced gaps in handling network heterogeneity and modeling ineffectiveness. In
addition, the cooperative caching strategies either allow content repetition or partition
them. In the case of joint caching, they consider placement and delivery at the same
time period and also have short of attaining updated user statistics. To address these
holes, we develop comprehensive caching strategies that apply MEC-assisted data an-
alytics, subjected to a list of constraints.
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1.3 Possible Cache Edge Collaborations

Multiple caching edges that compound the cluster form a horizontal collaboration that
varies based on the degree of communication freedom. These collaborations will be
one of the following three schemes:

Tight collaboration

In this scheme, the caching edges have full cooperation where so that only one copy of
the content is placed at only one of the collaborating MHs. This helps exploit cellular
resources, their resources such as storage and computing capacity, to increase network
performance [10], [11]. This scheme is more practical in the case of D2D communi-
cations. While edges share contents, the fronthaul bandwidth is not a limit, and the
content transfer cost is zero; thus, content redundancy at multiple MHs is useless.

Cost-based collaboration

This scheme assumes that some resources are shared among the caching edges at un-
avoidable costs. That means, even though each edge can access resources from other
edges, there is a recurring cost due to network limitations. However, the transfer cost is
insignificant compared to the fetching cost from the CS. On the other hand, another hi-
erarchical collaboration is established when commonly requested contents are shared
freely while others are shared at a high cost.

Cost-barred collaboration

In this collaboration, the caching edges share resources at a very high cost. This implies
the edges are not open for cooperation, so they probably have content redundancy.
That means multiple MHs can cache content independently, and the performance gain
of the network is measured for each MH. This scenario best works when the interest of
each MH towards the contents is fully independent and different.

Taking the number of content sources (e.g., the MBS), and destination caching edges
referred to as the MHs, four vertical collaboration types are shown in Table 1.1. The
first vertical collaboration is created when a single source MBS caches contents to a
single MH. The second one is when a single MBS caches to multiple MHs, which is
complex and gets worse based on the type of content popularity and horizontal co-
operation. The third vertical is when multiple MBSs cache contents to a single MH,
which is also complex due to conflict of interest among the sources such as CDNs. The
fourth collaboration is where multiple MBSs cache contents to multiple MHs. This case
is extraordinarily complex to solve optimally and is not covered in this dissertation.



10 Chapter 1. Introduction

1.4 Contributions of the Dissertation

In this dissertation, we have deeply studied content caching problems and resource
optimization strategies: the modeling schemes and their solving algorithms. The main
contributions of this dissertation are concisely explained in the following paragraphs.

In Chapter 3, a dynamic programming (DP) based content caching strategy is pro-
posed, called 0/1-single Knapsack Problems (DP-ZoSKP). The DP-ZoSKP caching strat-
egy aims to place contents from a single MBS to an MH, with different content sizes and
popularity. The caching problem is efficiently modeled by the 0/1-single Knapsack
Problems (ZoSKP), subjected to cache size constraint. Then, the model is optimally
solved, at a pseudo-polynomial time complexity, by the proposed novel algorithm that
applies dynamic programming. The DP-ZoSKP strategy is proven to outperform base-
line strategies for various network parameters. This strategy is scalable to other net-
work types thus, functions as a building block to other caching strategies. Besides,
introducing combinatorics and DP to cellular optimization is a unique supplement.

In Chapter 4, an exact cooperative caching strategy is proposed, called bound-and-
bound 0/1-Multiple Knapsack Problems (BB-ZoMKP). The strategy aims to cache con-
tents at a cluster of heterogenous MHs, controlled by a central head. In this strategy,
the aggregate popularity of contents is taken for each MH, and the caching problem is
uniquely modeled using the 0/1-Multiple Knapsack Problems (ZoMKP). It effectively
works for contents of diversified sizes, without partitioning and without overlapping
over the MHs. This super complex NP-hard problem is reduced into several ZoSKP
subproblems sequentially and optimally solved. Then, an advanced bound-and-bound
algorithm that effectively handles the heterogeneity of network parameters is applied
to solve the main problem. Each iteration of the algorithm is solved using the DP,
making it more efficient than the baseline strategies. An exhaustive system-level sim-
ulation is made to examine the performance of ZoMKP, and useful design guidelines
are proposed for different scenarios.

In Chapter 5, three innovative cooperative caching strategies are separately pro-
posed. The strategies commonly aim at making a demand-aware content caching to
multiple heterogenous MHs, as explained in the following paragraphs.

The first section proposes a non-partition caching strategy, called demand-aware
0/1-Separable Assignment Problems (D-ZoSAP). The D-ZoSAP is a very efficient caching
strategy that applies a recursive method for the most realistic cellular network designs.
This strategy effectively handles network heterogeneity where each MH has a different
interest in each content. The placement problem is modeled using the binary Separable
Assignment Problem (ZoSAP) by taking a series of constraints such as cache size, non-
overlapping and non-partitioning content placement, and preserving the demand of
each MH. For the first time in its kind, the strategy enables us to cache contents at the
MHs where they are most ’demanded’, answering the two interdependent questions:
‘Where to cache a content?’ and ‘Which content/s to cache at an MH?’. This strategy
profoundly outperforms at a very low computing cost.

The second section proposes an efficient and partition-based caching strategy, called
the demand-aware MKP (D-MKP), after modeling the caching scheme using Special
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Multiple Knapsack Problems (SMKP). It is a highly-cooperative strategy where con-
tents are allowed to be partitioned based on their request rate from the MHs. The
strategy virtually pools all available cluster cache, using standard relaxation and then
optimally cache contents using the ZoSKP strategy. The D-MKP strategy applies mul-
tiple content partitioning approaches based on the number of chunks we want to pro-
duce. However, the proposed strategy focuses on the full partitioning of contents,
giving the best cluster performance of fair placement across MHs and load balancing.

The third section models a comprehensive, demand-aware joint caching system us-
ing the bilevel optimization problem (BOP). The BOP formulation is a mutual exten-
sion of the ZoMKP and ZoSAP formulations. Following the modeling, a novel caching
strategy, called demand-aware joint caching using BOP (DJ-BOP), is proposed. In this
strategy, the nested problems of content placing and delivery are jointly optimized.
This proceeding proposal marks the most realistic but complex scenario of content
caching in the HCN, where two-level combinatorial decisions are made like the Stack-
elberg game. The leader’s decision is to maximize content availability at the caching
edges, and the followers’ decision is to ensure minimized delivery costs.

Single MBS
Content

Partitioned
Content

not partitioned

Model
Caching
Strategy

Model
Caching
Strategy

Single MH
Similar content
popularity (ρm)

-
ZoSKP DP-ZoSKP

Chapter-3

Multiple
MHs

Similar content
popularity (ρm)

SMKP D-MKP ZoMKP BB-ZoMKP
Section-5.2 Chapter-4

Different content
popularity (ρm,n)

-
ZoSAP D-ZoSAP
BOP DJ-BOP

Chapter-5

TABLE 1.1: Studied vertical collaborations and proposed contributions.

1.4.1 Publications from the dissertation

The content of the dissertation is extracted from the following list of publications.

• T. M. Ayenew, D. Xenakis, L. Alonso, N. Passas and L. Merakos, “Demand-aware
Cooperative Content Caching in 5G/6G Networks with MEC-enabled Edges,” in
IEEE Networking Letters, 2022, doi: 10.1109/LNET.2022.3192173.

• T. M. Ayenew, D. Xenakis, N. Passas and L. Merakos, “Cooperative Content
Caching in MEC-Enabled Heterogeneous Cellular Networks,” in IEEE Access,
vol. 9, pp. 98883-98903, 2021, doi: 10.1109/ACCESS.2021.3095356.
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• T. M. Ayenew, D. Xenakis, N. Passas and L. Merakos, “A Novel Content Place-
ment Strategy for Heterogeneous Cellular Networks With Small Cells,” in IEEE
Networking Letters, vol. 2, no. 1, pp. 10-13, March 2020,
doi: 10.1109/LNET.2019.2950990.

• T. M. Ayenew, D. Xenakis, N. Passas and L. Merakos, “Dynamic Programming
Based Content Placement Strategy for 5G and Beyond Cellular Networks,” 2018
IEEE 23rd International Workshop on Computer Aided Modeling and Design of
Communication Links and Networks (CAMAD), 2018, pp. 1-6, doi: 10.1109/CA-
MAD.2018.8514960.

• S. Sánchez, T. M. Ayenew, and M. Mehrabi, “Cloud-Based Content Management
for B5G Networks,” in Enabling 6G Mobile Networks, Vol. 1, J. Rodriguez et al:
Springer, Nov. 2022, pp. 501–537, doi: 10.1007/978-3-030-74648-3_15.

1.5 Organization of the Dissertation

The remainder of this dissertation has organized as follows.
Chapter 2 explains the basics of content caching for MEC-enabled HCN. It covers

the main concepts of caching techniques, cache-enabling technologies, and KPIs. Apart
from cellular networks, for a broader sense of understanding, the chapter gives a sum-
mary of content caching in other networks. In the end, the main challenges of content
caching are expounded.

Chapter 3 details the first proposed content caching strategy. The first section
presents an introduction and related works about similar schemes, followed by the
proposed system design and model formulation, where the physical protocol and com-
puting process are briefed. The fourth section explains the proposed DP-based content
placement (DP-ZoSKP) strategy. The last section discusses some of the application-
level numerical results and useful design guidelines.

Chapter 4 presents the second proposed caching strategy for the case of MEC-
enabled multiple MHs. The first section is an introduction to the cluster-based cooper-
ative content placement strategies, followed by the research motivation in the second
section. The third section explains the studied system design, where physical coop-
eration and system-level MEC computing are detailed. The caching problem is mod-
eled in the fourth section, by mapping the problem to multiple Knapsack problems
(MKP) subject to constraints. The fifth section contains a step-by-step explanation of
the proposed exact bound-and-bound strategy, which is evaluated in-depth using sev-
eral system-level simulations, as discussed in the sixth section. Several design guide-
lines and key performance and cost trade-offs are discussed.

Chapter 5 explains a set of demand-based content caching strategies, in three sec-
tions. These sections explore more complex and real-network scenarios for two definite
cases. Section 5.1 explains the case where contents are not partitioned during caching
such that the content placement problem is modeled using the separable assignment
problem (SAP). The section orderly explains the proposed powerful solving algorithm,
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a content-selecting strategy called D-ZoSAP. In the end, the section makes simulation-
based explanations for the reason behind the high performance of the caching strategy
in 5G/6G MEC-enabled networks. Section 5.2, briefs a similar demand-preserving
scenario but exceptionally with a content partitioning option. Its numerical analysis
subsection discusses the service reward due to partition-based caching. In the end,
Section 5.3, explains the cost-effective and end-to-end content caching scheme, as an
extension to the scheme in Subsection 5.1. The section briefs joint caching system de-
sign, with complex MEC computations and a weak nested relation of cache phases,
using the SAP formulation. Additionally, the content delivery utility cost is mathe-
matically expressed. Selected simulation results and insightful design perspectives are
explained in its numerical analysis subsection.

Chapter 6 concludes the dissertation and outlines future prospects. The first section
summarizes the key contributions and findings of the research, with a glimpse of key
analysis results. The second section gives insights into two major extension prospects
to further augment the performance of proposed caching strategies.
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Chapter 2

Fundamentals of Caching in Cellular
Networks

In today’s network, content caching is ubiquitous and a fundamental resource man-
agement technique to improve performance. For completeness, this chapter briefly
discusses the basics of caching (Section 2.1), including modeling approaches and their
solving algorithms (Section 2.2). In addition, some cache-enhancing technologies are
explained that are strongly related to content caching (Section 2.3). It also shortlists
caching scalability in other network types (Section 2.4) and concludes with a briefing
on persisting challenges to content caching in HCN (Section 2.5).

2.1 Basics of Caching to Improve QoE

This section describes caching performance metrics, QoE and QoS, and its principal
caching architecture with attributes such as popularity. We also describe key perfor-
mance indicators (KPI) that are widely used in caching evaluations.

2.1.1 QoE and QoS concepts

The QoE is a new term of reference, broadly used in recent works, for measuring the
performance of certain services from the user’s perspective. It indicates the level of
satisfaction users can get with a specific service. The QoE is strongly connected to the
perception and experience of users, so this measurement is complex because it uses
subjective measures such as users reporting their opinion to a controlled laboratory
test. Poor QoE leads to the unsubscribing of dissatisfied customers from the services
provided by network operators.

In contrast, the QoS is the measurable capability of a network to provide improved
service over a set of network infrastructures. QoS can be parameterized by perfor-
mance metrics such as link bandwidth, throughput, delay, delay variation, loss and
error rates, security guarantees, reliability, audio and video confidentiality, and others.
An effective QoS measurement is the backbone of an improved QoE, which is con-
trolled and analyzed using network performance parameters such as application-layer
information processing schemes and radio network access (RAN) statistics. Indirectly,
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the QoE is the perceptual interpretation of the QoS from the user side. For that rea-
son, a quantitative relationship is needed to match the natural-perception QoE and the
statistically measurable QoS [52].

The QoS itself is delimited by the proficiency of two functionalities: multimedia
applications, such as information coding techniques, and network automation, such as
power resilience, congestion offloading, and error avoidance. But there is no unique
convention on the views of QoS. For example, the International Telecommunications
Union (ITU) has a user-centric view, which means that the network or application qual-
ity is contrasted towards the user side [53]. On the other hand, the Internet Engineer-
ing Task Force (IETF) has a network-centered view, which means that the quality of the
service is evaluated by the efficacy of transmitting the packets to end users [54].

Rather than avoiding the complexity of subjective measures to quantify QoE, re-
searchers propose objective quality models, most of which are based on how the hu-
man visual system perceives video signals. In addition, data-driven quality analysis
improves the impact of distortions on videos to make subjective tests and gives better
models which do not rely on those subjective tests [55]. Recent works are considerably
advanced in estimating the QoE for new constraints of future HCN [56].

In summary, the research focuses on two interdependent techniques to improve
user QoE: quality-based content’s chunk representation and content caching. In the
first method, video contents are chopped into chunks and stored with different reso-
lutions. Each resolution gives different quality levels where the user can download its
preference, based on the network condition, and maximize the playback effectiveness.
A good example of this method is video streaming using the DASH video standard
[57]. In the second method, complementing the first method, various content caching
methods reduce the stalling duration and frequency, suppress the video quality varia-
tion, and improve video quality by maximizing channel utilization [58].

2.1.2 Content popularity

Content popularity refers to the degree of a request to be forwarded to particular con-
tent. It always takes higher attention in network optimization, where popularity-based
content caching is widely used. After the analytical cache operation, a performance
evaluation can be done using important performance metrics.

Content popularity can be mathematically estimated from the user request rate,
every content receives from UEs, within a specific period of time [59]. The popularity
of content is usually represented by the well-known Zipf distribution; however, not
the only model. All contents are ranked based on their requested profile to estimate
their popularity. Denoting any mth ranked content by fm, in a superset of contentsM
(m ∈ M), their individual popularity (ρm) is given by:

ρm =
m−γ

∑|
M|

j=1 j−γ
(2.1)
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where j is rank of contents (j = 1, 2, · · · , m, · · · , |M|) and γ ≥ 0 is the Zipf parameter,
also called skewness index of the distribution [29]. This parameter indicates the skew-
ness regarding the recorded content request rates. The γ values close to zero indicate
uniform content requests while the higher value, such as γ=2, shows that only a small
number of contents account for the majority of the popularity sum.

The caching policy is deterministic when content popularity is known before caching
and static. However, the content popularity is an uncertain value over a period of time
[60]. For that matter, several caching policies have addressed this dynamic behavior,
such as content popularity and user location, using learning algorithms. These algo-
rithms take input of content profile, from RAN information, such as request rate to
specific CDN website, and predict the popularity of contents [5].

2.1.3 Caching architecture
From the caching point of view, the mobile network has two main parts: the core net-
work (CN) and the radio access network (RAN). The caching procedure mainly con-
cerns where to cache contents and which device must deliver the content. Since mobile
users tend to access similar content repeatedly, caching it in the cellular network can
be done at either of the two parts- with different features.

FIGURE 2.1: Simplified representation of a content caching system.
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Fig. 2.1 shows a simplified caching architecture in the RAN, where cache-enabled
devices, including the central MBS, are employed at different layers of the HCN hierar-
chy. For the caching purpose, a list of mobile and fixed edge devices such as sub-base
stations (SBS), femto-base stations (FBS), and smart UEs are deployed, mainly in the
RAN. These devices are deployed in different tiers of cooperation modalities, where
their local distribution in the RAN is usually modeled independent Poisson point pro-
cess (PPP) [32]. The caching devices are becoming computationally strong to process
network information and have large enough storage to cache contents [3]. Once the
contents are brought closer to users, they can be delivered to UEs at a low transmission
cost and latency. For better insight, a comparative summary of the caching architec-
tures is tabulated in Fig. 2.2, and system parameters are tabulated in Fig. 2.3.

The content caching framework in cellular networks has two distinct phases: con-
tent placement and content delivery. These steps are interdependent such that optimiz-
ing the placement directly determines the performance of the delivery process while
optimizing the delivery affects where contents should be placed. This dependency
makes the caching process a complex nested-dual problem [10]. In the middle of these
phases, the content transmission technologies such as multipath [61] and multicast[62]
play a significant role in the QoE. Over time, a content update or cache refreshment is
taken as a compliment. In addition, the channel allocation and frequency usage also
greatly contribute to the content delivery performance by eliminating interference in
the RAN [63] or within a D2D communication[64].

Content placement

This process includes content screening, mostly based on their popularity level, and
pre-fetching of contents into convenient caching devices. Alternatively, we call these
devices cache-enabled cellular network edges (CNE) or mobile helpers (MH). They ex-
ecute some tasks such as relaying contents from the CS to the UEs, gathering network
information from the RAN, and making data analytics.

Content placement is often done during the off-peak time period; for example, at
night when the backhaul network is less congested. This proactive measure helps re-
duce the stress on the network due to the simultaneous downloading of massive and
big contents. However, in the case of time-critical services, the placement could be
done as soon as the user requests. Having a prioritization among the two options be-
comes a complement to congestion management and cost optimization.

An efficient content placement strategy helps to improve the QoE, with constrained
and non-flexible network infrastructure. The strategies are of many types based on as-
pects such as the level of cooperation among MHs, dynamics of content popularity,
the interdependence of placement and delivery phases, mobility of MHs, and the in-
formation coding process. Henceforth, the placement strategies vary by the tools used
to model the problem and the algorithms to solve them.
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FIGURE 2.2: Comparative analysis of cache system designs.
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Deterministic 
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User requests modelled   ✔ ✔  ✔ ✔  ✔ ✔ ✔ 

 

FIGURE 2.3: Comparative of system parameter assumptions.
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Content delivery

This phase refers to the techniques used to serve cached contents from MHs to UEs. It
includes the transmission process and decoding of requested content by the receiver
side. Devising an efficient delivery strategy improves the downloading latency over
cache memories. Hence, it depends on the technology we deploy, such as the trans-
mission rate and the assigned spectrum. Especially the time-related human percep-
tions and most of the QoE-related indicators, such as delay and jitter, are impacted by
the content transmission technique. However, valid interpretations are not yet fully
defined to know the optimal transmission techniques [65].

When a request is made by a UE to an associated MH, the content is transferred
to the UE if found in the MH library. Otherwise, the search for contents extended to
other MHs or the CS. Whichever edge has the content, passes to the UE based on the
cooperation protocols of the delivery. In fact, only if the content is not found in a cluster
will it be served from the CS. In some cases, the request comes from the caching device
itself so that the response is immediate.

The content delivery phase depends on physical layer-related factors such as power
consumption. As such energy-efficient delivery strategies reduce the costs of high data
rates and distributed caching in HCN, which improves the QoE [66]. This process is
also affected by information-level processing algorithms, i.e., encoding and decoding
schemes. Some delivery techniques use coded caching [67] while others apply un-
coded delivery schemes [35].

2.1.4 Key performance indicators (KPI)

Key performance indicators are metrics used to evaluate the performance of network-
specific optimization techniques such as content caching. Setting up a relevant KPI
needs to address the difficulties of the chosen scenario and applied technology. In this
subsection, we explain some KPIs linked to content caching, defined by standardizing
institutes and research initiatives such as the 5G Infrastructure Public Private Partner-
ship (5GPPP), the 3G Partnership Project (3GPP), and IETF.

Playback experience

The playback experience is conceptualized using the QoE and is inspected by the bit
rate loss of the transmission. This metric is complex and depends on other parame-
ters such as video download start-up time, buffering level, and video resolution. The
buffering plays a key role in resuming the anticipated video quality when users play
unfinished content while simultaneously downloading the remaining part [68]. Exper-
imental improvements have been developed using content placement techniques for
mobile users in web services like Netflix, Amazon, and YouTube, where content place-
ment and delivery are the basis of their efficiency. In urban crowded scenarios, this
technique is efficient. However, it fails when the content cache hit ratio is degraded.
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Throughput

The network throughput is the amount of the relevant data that is successfully trans-
mitted from a sender and output at the receiver, using the cellular connection. Its
performance depends on the applied delivery techniques and is typically measured in
bits per second (bps). Throughput is a critical system design parameter, which highly
influences the user experience towards a service [32]. From this perspective, the main
optimization objectives are designing throughput fairness among competing UEs or
maximizing throughput [69]. Several closed-form expressions are developed for vari-
ous network scenarios [70].

Response delay

This performance metric shows the service latency from the content request until the
user gets the requested content. The network delay strongly affects the QoE and very
essential in the case of time-critical services [71]. The delay in the RAN varies depend-
ing on the mobile devices, where the round trip time (RTT) latency will drop to 1 ms
for the fifth generation cellular (5G) and beyond networks [72]. The response delay
includes three time periods: the period used to process the content at the CS, the pe-
riod required for queuing, and the one spent for transmitting to UE. Various strategies
are proposed to reduce these time segments. For example, content caching eliminates
the first two time segments and reduces the third. In a more advanced case, apply-
ing the MEC-capable MH in large density helps to significantly reduce the latency by
offloading the network congestion [73].

Area spectral efficiency

This metric is traditionally linked with the experienced user data rate; however, a con-
crete definition is not yet set. Most often, area spectral efficiency (ASE) refers to the
maximum data rate that a specific bandwidth unit can support in a given period of
time and coverage area, with a unit of bps/(Hz.m2). It indicates the efficiency of spec-
tral utilization and transmission power over a link [74].

Content providers and network operators are experiencing difficulties in maximiz-
ing the ASE with physical resources. New spectrum bands have been considered to
improve network resource management in high data rate scenarios. Careful design
perspectives, such as trading off MH cache capacity to MH density and popularity-
based caching strategy, help maximize the ASE in cellular networks [75].

Energy efficiency

Energy efficiency (EE) quantifies the power consumption rate in the network infras-
tructure. Shortly, it is the ratio of the total transferred bits to the total power consump-
tion [76]. The EE is a widely used metric, predominantly expressed in the bit-per-Joule
unit, to evaluate the energy consumption for the 4G-LTE and beyond cellular systems.
For example, the network system that can deliver higher data at lower energy con-
sumption is efficient for a given frequency bandwidth, and time-period [72].
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The EE includes the power consumption of the core system, the network edges in
RAN, and UEs, which means the power bill of the mobile operator and the user. Hence,
the network design considers optimizing all these energy consumption components so
that the energy efficiency is maximized and achieves green communication [77]. The
EE maximization is done by modeling the power consumption in closed form and
solving it using various algorithms, such as approximations, while applying content
caching technology. For example, eliminating transmission redundancy of contents
reduces the energy consumption at the CS and the MHs, hence improving EE [78]. In
another case, devising an optimal queuing scheme while multicasting to multiple MHs
enhances the number of users served and the EE [79].

Cache hit probability

The cache hit probability (CHP) shows the availability of contents in the RAN and con-
ceptualizes the necessity of content placement. This performance parameter is defined
as the probability that a requested content, by a user, can be found stored at an eligible
cluster of MHs [29]. From the end-to-end view, it is also defined as the probability of
content being successfully delivered to the requesting UE [33]. From a set of contents
M in the CS, where the popularity of each content fm is denoted by ρm, the simplified
CHP of cached contents is expressed as:

ΨM =
|M|

∑
m=1

ρm · xm (2.2)

where xm is the content placement indicator. In more complex closed-form expression,
the CHP depends on many factors such as physical-layer parameters, content-level
parameters, and type of MH cooperation [75].

Coverage probability

Coverage probability is the probability that a random request from UEs is successfully
served by the associated MH in the network. It is estimated by comparing the attained
signal-to-interference ratio (SIR) to a threshold of the required transmission rate by
the user [80]. Coverage probability also indicates the successful decoding of content
at the end user [29]. Researches show that the coverage probability increases with
the deployment of advanced techniques such as contention-based controls, content
popularity-based caching, cooperative caching, and clustering. The coverage proba-
bility depends on many factors, such as the content popularity, the MH density, the
required transmission rate, cache sizes, and other physical-layer parameters [39].

Cache hit ratio

The cache hit ratio (CHR) parameter shows how many content requests can a caching
system fulfill successfully. It is broadly used to measure the performance of any cache
scenarios. A cache hit happens when the requested content is fulfilled by the cache
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instead of the remote server, the CS [68]. Hence, the CHR is calculated by dividing
the number of the occurred cache hit events over the total number of requests [81],
sometimes expressed in percentages for some network types such as CDNs [82].

The CHR indicates the mass and load distribution of contents arriving at the caching
system [14]. It is also considered a ‘reward function’ that indicates the instant traffic
demand while downloading a file from a server [30]. Due to such broad considera-
tions, CHR is a more general performance measure parameter. It is formulated for
each placement strategy and specific scenarios, where also complex utility functions
can be characterized using it. Most often, the CHR value (Φ) of a specific caching
strategy § is expressed as:

Φ(§) =
1
|U |

|U |

∑
u=1

|M|

∑
m=1

rm · hum (§) (2.3)

where U is set of users, rm is request rate or probability, and hu,m(§) is the probability
that user u can be satisfied by requested content fm under placement strategy § [83].

2.2 Caching Models and Solving Tools

Mathematically, many caching techniques have been proposed in the area of network
optimization. Setting aside many network types, we focus on content caching strate-
gies applied to only cellular networks. Yet, caching in cellular networks is a complex
process, and a wide range of modeling and solving tools are used [32].

While designing caching for HCN, we consider a list of parameters and their dy-
namic variations that can be evaluated numerically or analytically. The most common
input parameters to treat are content popularity, transmission rates, content size, coop-
eration distance, SIR, and coding rate. Having the parameters, the aim is to meet the
QoE, such as traffic offloading, service delay, energy consumption and efficiency, area
spectral efficiency, network edge densification, cache hit probability, utility cost, and
others. However, the HCN network is non-flexible and with a bunch of constraints to
deal such as network bandwidth, cache size, and channel capacity [7], [84].

Based on the type and nature of caching models, convenient solving algorithms
are suggested, such as random, DP, Linear programming, MILNP, Hungarian algo-
rithm, greedy and approximations, heuristics, genetic algorithms, and others [32]. The
caching models can be categorized into three main types, as described below.

2.2.1 Stochastic geometry

It is a statistical method used to model and design cellular network features such as
content caching. Many authors adopted such probabilistic and stochastic expressions
to give detailed intuitive models for content caching, not only for large-scale HCN
designs [11], [14], [24], [85]. It is widely used for effective resource allocation and
improving content caching gains.
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The stochastic expressions are tractable and strong enough to capture the dynamic
behavior of caching environments but always depend on strong assumptions on criti-
cal cache system attributes, such as equal content sizes, uniform popularity, and static
content location models [86]. These assumptions are mainly taken to reduce the com-
plexity of analytical stochastic expressions and solutions.

2.2.2 Game theory
This is a mathematical tool where UEs or MHs as players compete for resources, such
as cache space, to maximize their objective functions by rational decisions [87]. While
maximizing the user QoE using caching, the competing parties prioritize increasing
their benefits and should carefully limit their costs, such as energy consumption and
cache size. The system achieves the Nash Equilibrium when non of the players can
individually maximize its profit. The game theory approach is practically essential for
the case of proactive caching, where the playing devices extensively interact [44], [45].

There are many game types to model caching process, both centralized and dis-
tributed, with various scenarios in the HCN. For example, if we apply the centralized
caching perspective and when the players are the ISPs, to cache their contents on MHs
and effectively share the limited cache size, we can model and solve it using auction
game [49]. In another case, when the caching helpers in the RAN are movable MHs,
within the predicted route and maintain the pricing fairness for buffered QoS levels,
we can apply the contract game. Differently, suppose we apply a decentralized caching
system such as on D2D communication, where the devices form a cost-effective and
cooperative caching cluster. In that case, we can use the coalition game [88], [89]. In
a similar but more complex scenario, if we choose to cache contents at moving edges
that use the vehicle-to-vehicle (V2V) protocol, we can apply evolutionary game [44].

2.2.3 Optimization

In this category of content caching model (convex and non-convex optimization or
a range of heuristics), various techniques are included, where their common goal is
using optimization algorithms to solve the model. Combinatorial optimization, linear
programming, non-linear programming, Lyapunov optimization, index coding, and
general assignment problems are some of them [11].

Based on the models, the optimization problems are solved either theoretically
with closed-form expressions or heuristic methods. To that extent, many solutions
are commonly used, such as greedy, relaxation, approximation, branch and bound,
subgradient optimization, Karush–Kuhn–Tucker (KKT) method, and random selec-
tion algorithms. Each of these approaches does have several ways of applying tech-
niques. Many proprietary and open-access standard optimization solvers also deploy
advanced versions of these algorithms.

Others use complex placement matrices to optimally solve the content caching by
modeling it by convex functions so that it is numerically solved using standard convex-
optimization solvers [90]. In this work, the single-tier HCN is a convex function solved
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by setting the derivative of its Lagrangian expression to zero, which gives the optimal
Lagrange multiplier. However, for the multi-tier case, the optimal content placement
probability is done by approximating the hit probability such that the effect of one tier
is neglected on the other.

2.3 Cache Enhancing Technologies

As a promising technology of network performance enhancement, content caching
itself can be underpinned by advanced technologies such as massive machine type
communication (mMTC), D2D communication, popularity prediction strategies, mul-
tipath, MEC, and cache replacement, as discussed below.

2.3.1 Massive machine type communication
The 5G system is orchestrated to bring a wide range of communication services and
applications under the same umbrella, from individual mobile applications to smart
cities. These applications and services are shown in the triangle of Fig. 2.4, whose
three extreme edges indicate three pillars: i) Enhanced mobile broadband, ii) Massive
machine type communication (mMTC), and iii) Ultra-reliable and low latency commu-
nication (URLLC) [72]. The ITU-T Study Group 13 proposes that future data-aware
networking (information-centric) will achieve 5G ultra-low latency by enabling proac-
tive in-network data caching and limiting redundant traffic in core networks.

Setting the Scene for 5G: Opportunities & Challenges

7

Figure 3: 5G usage scenarios

eMBB is expected to be the primary use case for 5G in its early deployments, according to wireless 
operators. eMBB will bring high-speed mobile broadband to crowded areas, enable consumers to 
enjoy high-speed streaming for in-home, screen and mobile devices on demand, and will allow en-
terprise collaboration services to evolve. Some operators are also considering eMBB as the last-mile 
solution in those areas lacking copper or fibre connections to homes.

5G is also expected to drive the evolution of smart cities and IoT through the deployment of a consid-
erable number of low-power sensor networks in cities and rural areas. The security and robustness 
built into 5G will make it suitable for public safety as well as for use in mission-critical services, such 
as smart grids, police and security services, energy and water utilities, and healthcare. Its low latency 
performance characteristics make it suitable for remote surgery, factory automation and the control 
of real-time processes.

5G’s low latency and safety characteristics will play well in the evolution of intelligent transport 
systems, enabling smart vehicles to communicate with each other, and creating opportunities for 
connected, autonomous cars and trucks. For example, an autonomous vehicle (AV) operated via a 
cloud-based, autonomous driving system must be able to stop, accelerate or turn when told to do 
so. Any network latency or loss in signal coverage preventing the message from being delivered could 
result in catastrophic consequences. However, wireless operators believe that AVs have a significant 
way to go before they come into service, despite ongoing pilots and trials. 

2. 5G overview

FIGURE 2.4: Some of outlined 5G use cases [72].
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Machine-type communication incorporates a massive number of smart devices,
which are resource constrained. The devices have different communication layers and
protocols. This mMTC technology can be effectively used to enhance content caching
performance. A robust deployment and cooperation of these intelligent devices mit-
igates several 5G network constraints. For example, having a border router, such as
ZigBee, enables one to connect devices in an mMTC environment. Then, a smart home
with devices connected to the core network via a border router can cache the most
required contents. It also fosters high-speed video streaming of different resolution
levels and QoE requirements.

2.3.2 D2D communication
The HCN’s communication includes a device-to-device (D2D) communication where
a cache-enabled user device serves a content request from another co-located device in
its proximity. While using the D2D communication, one user may not ask for content
from the backhaul network but easily takes it from another neighboring device [20],
[21]. This collaboration can bolster content caching in the mMTC environment [91].
This protocol helps offload content to the RAN, reducing the traffic during peak times.
However, it is hard to guarantee user privacy and fewer tractability challenges.

While applying the D2D in a cellular network, we must take care of the spatial
distribution of the devices and optimize the distances to maximize caching gain. A
family of admissible protocols by which users are spatially clustered based on their
distance is used, such as the type-II Matern hard-core Poisson process (PP), and the
translated PP [15]. These protocols optimize users’ distance in a stochastic cluster to
reduce the attenuation and improve performance. With such analysis, a substantial
number of requests can be served through a distributed caching strategy through the
D2D without having a dedicated caching infrastructure such as CDN.

The D2D is applied for low-latency and high-data-rate demanding applications.
The locally cached content is served within the communication link of smart devices
in the ecosystem without the direct involvement of the BS. Hence, the D2D link reduces
the network response time. Since there is no need to fetch the content from the back-
haul for every request, it minimizes the backhaul congestion. The D2D also reduces
the redundant demand of contents to the backhaul network. This reduction avoids the
computational consumption for every request. This process improves the frequency
reuse, energy efficiency, and coverage extension and reduces backhaul load [18], [29].
However, D2D has unresolved drawbacks, such as high signal wastage, higher battery
drains, cross-interference, and optimal spectral efficiency.

2.3.3 Learning strategies

Many learning strategies are used to enable dynamic caching based on predictive ap-
proaches to user statistics and content attribute predictions. In dynamic caching, the
bulk of user information is collected by network servers and computed by the MEC
to learn about the network’s dynamic behavior. Many predictive caching models use
machine learning (ML), deep learning, entropy-based, and other learning strategies.
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The critical role played by ML comes with the idea of learning from the network in-
formation to make optimal caching decisions. For instance, many works propose ML-
based caching strategies to increase the mobile network operator revenue [92], [93], by
using the machine learning methods such as the Markov decision process to reach the
best set of feasible solutions. Also, some proactive and reactive proposals have been
proposed based on reinforcement learning algorithms [51].

In learning-based caching, the type of contents, location, and edge network are pre-
dicted based on statistical information. To that end, the MEC system can take real-time
network information and make cost-effective big data analytics to decide to route and
control the content assignment. For example, many relevant works propose the imple-
mentation of clustering and regression techniques to predict the position of the users
[94]. However, predictive caching needs huge data and a long-time learning process.
It also needs highly correlated network data, which is the constraint of the scheme that
most network variables, such as content popularity and user location, are stochastic.
In the same way, the high-data dimensional and sparsity, such as hyperspectral multi-
media contents, are very complex to train.

2.3.4 Multi-access edge computing (MEC)

With the integration of multi-access edge computing (MEC) capabilities in 5G mobile
cellular networks, mobile network operators can place popular video content closer to
the network edge. They can do this at off-peak times by predicting user requests that
exhibit a high correlation over smaller geographical regions for a given time interval.

The MEC is an emerging technology that sheds light on the 5G era with the cloud-
computing capability of network edges. This protocol brings the centralized content
processing task into distributed network edges or MHs, with a solicited decoding ca-
pability. Hence, these MHs can run applications and information within the cellular
radio access network without passing it to the central server. Comprehensive surveys
on resource management and edge computing paradigms are made in [48], [49].

While benefiting from MEC capabilities, it helps meet ultra-low latency require-
ments, real-time processing, location awareness, and personalized high QoE to a large
crowd of users [95]. Some MEC platforms also solve the requirements for accelerated
content delivery, and timely data usage [96]. In addition, it helps dynamic data render-
ing that boosts the placement process. This data processing is vital for content delivery,
as well, because the network edges can take a share of expensive preprocessing during
the transfer of content[51], and optimizes based on given information from the user ra-
dio interface. More technically, the MEC features are helpful to have reduced staling,
faster starting time, and better video quality [50].

The MEC helps to handle mission-critical applications, value chains, and real-time
network services such as augmented reality, intelligent video acceleration, connected
cars, and IoT. In other words, mobile caching is a fundamental technology for these
critical services, influenced by the MEC technology for the service to be maximally
effective. Since MEC is close to the user, it reduces the end-to-end computation time.
That means it reduces the response delay and relieves the network congestion [96]. For
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example, the newly emerging augmented reality needs a high data rate and low latency
content delivery. Hence, MEC can be used to compute the user’s location, preprocess
and refresh the data, and predict the requests and location of users [51].

2.3.5 Cache refreshment techniques
To avoid the overflow of cached contents and the fact that not all files are kept in
the cache forever, the caching strategy needs an efficient and real-time replacement
or refreshment algorithm, where less popular or contents whose popularity period has
expired have to be removed from the memory stack [3].

There are several cache replacement strategies proposed in the state-of-the-art. Some
works focus on the data-structure perspective, such as first-in-first-out (FIFO) replace-
ment, where the first cached content will be evicted from the cache. This approach
is the easiest and most popular strategy; however blind to the future demand of the
content [97]. Alternatively, the frequency-based FIFO replacement method is used,
where variable-sized content segments are stored in the cached, and the FIFO strat-
egy is applied based on usage pattern [98]. The other cache refreshment categories are
content popularity-based dynamics, such as the aging popularity-based cache replace-
ment strategy that combines the timing and updated popularity statics. In this case,
old and unpopular files will be evicted from the cache [99]. Separately, some tech-
niques rely on the least frequently used (LFU) content replacement approach [97] and
the least recently used (LRU) content replacement technique [100].

2.3.6 Multipath protocols

Multipath caching is where contents are placed into caching edges through multiple
traditional protocols, such as the user datagram protocol (UDP) and transport control
protocol (TCP). This is approach is the adoption of multipath data transport protocols
such as multipath transport control protocols (MPTCP) and multipath transport quick-UDP
Internet Connection (MP-QUIC) [101]. A few studies showed that multipath protocols
enhance sustainable communication and reduce segment loss; hence, it presumably
enables caching across cellular networks. Especially this mechanism is useful for con-
tent showering, instantly storing traffic contents to a bulk of users, such as in a stadium.

The multipath protocols for cellular networks bring the capability of regular TCP
between multiple caching hosts. In doing so, the multipath protocols help us access
one network node (resource) via multiple paths over the Internet or private networks.
In this scheme, the contents can be synthesized as frames appropriately at the source,
scheduled to transmit through various paths, and reordered at the receiver side. This
gives considerable gains in increasing network performance, but each path option has
different path characteristics, and there should be an optimization technique.

What matters for the performance of this multipath caching is how the transmit-
ter manages the content, such as segmenting, framing, packeting, and stream form-
ing from the CDN. Thus, information-aware and optimized content management help
achieve the required QoE. When a request (to any chunk) is received from UEs, the
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receiving server creates a number of coefficients that are linearly independent of the
code in the request. After having the coefficient, the server encodes the chunks to the
same number of blocks. Then, the server selects the block and transmits it with an
appropriate interest forwarding scheme.

In the current HCN, creating a multipath protocol is a viable option due to the
convergence of several network types, such as 3G UMTS, 4G LTE, 5G NR, WiFi, and
MiFi, into the 5G NR architecture. These networks serve as alternative paths where
the content chunks can be transmitted. However, integrating these heterogeneous net-
works becomes a fatal threat because they have different protocols, leading to inef-
ficient handover and lossy connectivity. Standardization bodies have reached a sub-
stantial milestone in devising advanced techniques that achieve seamless integration,
such as dual connectivity, non-3GPP Interworking function (N3IWF), and access traffic
steering switching and splitting (ATSSS).

2.4 Caching in Other Networks

Content caching strategies are also employed in other networks to maintain their QoE–
like cellular networks. In this section, we shortlist some of those network types for
better insight into caching strategy scopes and envision the technological scalability.

Caching in IoT networks

It is well anticipated that the IoT network will have a low traffic rate. Still, due to bil-
lions of networked things over the entire Internet, its aggregated traffic data creates a
significant load on the backhaul network [102]. However, note that the heterogeneous
IoT data traffic behaves quite differently than the traffic in cellular networks. The IoT
network deploys devices that use low-power, low-rate communication and produce
limited packet size. In addition, the IoT data is transient, and its content popularity
does not follow widely accepted distributions as they have a short stay. This means
a unique caching strategy is needed to reduce network traffic, maintain content fresh-
ness, and reduce energy consumption [103].

The research on IoT caching has been nearly a decade where, in most cases, cache-
enabled IoT devices and dynamic routers are used as caching helpers [104]. These
helpers take the trade-off between multi-hop traffic load and data freshness, which
users need to have [105]. Recently, the information-centric network (ICN) architecture
for caching in IoT networks is becoming dominant [106]. In this scheme, contents
are uniquely identified by named data networking (NDN) and stored in a distributed
manner. This naming makes data access easy, scalable, energy-efficient, and highly
mobile. The NDN is very effective for IoT caching, and MEC-enabler towards reducing
retrieval latency [102]. In addition, the ICN approach helps guarantee secure data
communication, one of the most challenging limitations of caching.
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Caching in vehicular communication
Due to the recent development of mobile operating systems that mirror mobile appli-
cations to the car dashboards, such as Android Auto and Apple CarPlay, vehicles’ sur-
plus content demand is observed. For example, smartphones can mirror video games
and resource-demanding applications on car screens. Thus, vehicular communication
is becoming a potential caching protocol where medium-level contents can be fully
distributed and delivered to passing-by users [107]. By exploiting vehicle-to-vehicle
communication, contents can be exchanged among their cache-limited edges.

In this platform, the caching edges at roadsides are supposed to cooperate with
the onboard vehicular content caching edges, thus offloading the backhaul. Many
vehicular network frameworks have been proposed, such as crowdsourced vehicular
content-centric networking, WiFi-based moving, parked, and coalition-based vehicles
[107]. This proliferation of vehicles is forming an Internet of vehicles with different
velocities, where the traditional TCP/IP protocols need to maintain scalability and re-
liable addressing of moving vehicles. Instead, the ICN networks are getting better
attention to curve these dynamic natures, among which the newly dominating NDN
technology is much preferable. This approach helps users to request the content us-
ing its unique identifier without worrying about the source and destination IPs and
content source edge. This new technology provides secure, reliable, and robust com-
munication among the vehicles that are supposed to enhance onboard caching [108].

Caching in satellite communications

Currently, several Internet satellite constellations such as Telesat, OneWeb, and Star-
link are being built, which is a promising platform to deliver broadband connectivity
to inaccessible areas. In advance, the current 5G wireless and the future 6G technolo-
gies must seamlessly integrate terrestrial-satellite communication systems. However,
it has a large coverage area and high data rate, and the long propagation delay (whose
round-trip delay is up to 270 ms) is the gridlock to the QoE of the satellite communica-
tion, which can be enhanced using distributed content caching [109].

Unlike in the conventional terrestrial-satellite networks, where the satellites serve
as backhauls and contents are placed only at the main base stations, the integrated-
satellite network can cache at edges such as MBS, satellite, and gateway that cooperate
to serve users at ground [110]. In some cases, load-balancing schemes protect overflow
due to the limited storage by exploiting the vast cache resource in multi-layered satel-
lite constellation [111]. Applying the MEC and storage pooling, both at the satellites
and terrestrial edges, helps to reduce service delays [110]. Recent works also show that,
by taking advantage of three-layer cooperation, the hybrid satellite-aerial-terrestrial
communication is a disruptive strategy to maintain enhanced mobile broadband and
also confining construction costs [112].
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Caching in Ad-hoc networks
Mobile caching for ad-hock networks, where all the nodes in the wireless network can
serve as cache-routing edges and UEs, has taken some attention from the research com-
munity. However, the characteristics of this network face hurdles, such as the caching
sizes of the edges being minimal, so it needs a centrally controlled optimization mecha-
nism. However, unlike other networks, the active ad-hoc edges are self-organizing and
join the network randomly, but the edge association fluctuates quickly. These proper-
ties cause the network dynamics to be relatively high so caching for ad-hoc networks
becomes more complex than conventional networks. To manage secured and reliable
caching in the dynamic nature of the ad-hoc, content-centric networks are preferable
[113]. Among them, the NDN technology is promising in that it can keep cached con-
tents longer, regardless of caching edge loss from the connection [114].

2.5 Challenges of Content Caching

Though the literature on content caching in cellular networks counts decades back, due
to its dire complexity and challenge, it continues to attract the attention of researchers.
This section explains some of the tempting challenges.

2.5.1 Content popularity variation

The vast majority of the proposed caching strategies are popularity-based. Still, not
all contents are cached, such as real-time applications and control signals, as users do
not frequently retrieve them. These contents have nearly zero popularity but are ac-
tive in the network, creating contention among MNO and CDNs. More severe than
that, the popularity of contents encounters frequent spatial-temporal variation [115].
As a result, neither static nor dynamic modeling tools, such as learning and predictive
approaches, can effectively characterize content popularity. Even with suppressive as-
sumptions, the caching problem becomes NP-hard. These setbacks unfold the ineffec-
tiveness of existing content caching strategies. On top of that, the popularity of content
greatly varies among users, which forces researchers to shift to clustering mechanisms
while the optimization problem is practically unsolvable.

2.5.2 Edges’ mobility
Mobility is one of the main challenges in cellular networks since UEs and some MHs
are non-fixed. Mobility of these edges causes a sudden change in popularity and con-
nection [116]. Both causes, popularity disruption and mobility of entities lead to tough
challenges in caching. It highly affects content placement by impacting selection and
routing processes. Mobility also defects content delivery by causing a high cache miss
rate, network topology variation, and route changes.
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Several studies have attested to find tractable expressions for device mobility, such
as stochastic geometry models for realistic scenarios [116], [117] and machine learn-
ing techniques for patterning big data generated by users’ mobility [118]. In the first
model, UEs are treated with parameters such as arrival time, departure, and pause in-
side a specific region. However, it comes out with highly complex mobility patterns. In
a more complex way, some techniques apply dynamic modifications to trace the UEs
for their trajectories along known and distributed hot spots. Other modeling schemes
use machine learning algorithms to train the network and capture UE mobility corre-
lation. So, they can predict a set of key mobility parameters: the velocity of UEs and
their pause periods, and their usage behavior when they regularly visit specific clus-
ters [118]. But, these mobility tracking techniques need to be revised to alleviate the
challenges caused by mobile network entities.

2.5.3 Limited capacity and storage space
Contrary to the extremely high data rate and content proliferation, the backhaul ca-
pacity and storage space are limited in the HCN and remain bottlenecks for the 5G
performance. Thanks to disruptive technologies that improve the network ASE and al-
location of wide spectrum chunks at high-frequency bands, along with network densi-
fication in the RAN, they have brought the capacity of the backhaul and fronthaul links
to their capacity limits. From a caching perspective, this maximum-capacity achieve-
ment is sufficient because the process happens at an off-peak time. However, the chan-
nel capacity gets exhausted at peak times and remains a cache constraint. Much worse,
storage resources are limited and frequently run off while caching.

Conversely, caching is proposed to offload backhaul capacity, using several opti-
mization techniques to exploit these two constraints. For real networks, many links
exist with different bandwidths and storage capacities. When we try to establish coop-
erative caching without content duplication in a cluster, it ends up with an exponential
number of constraints and is quite hard to solve optimally.

2.5.4 Heterogeneity of the network
As its name indicates, the current 5G heterogeneous cellular network experiences many
diversities regarding protocol types, network attributes, and service requirements. From
the attributes perspective, the 5G new radio (NR) will host real network properties
such as different content sizes and cache spaces, varying popularity towards each
MH, and different bandwidth and computational capacity. As such, content caching
in multi-layered and heterogeneous architecture poses an unarguable challenge that
limits the degree of freedom: where to cache, which size of objects and storage to use,
and which connection capacity.

From a protocols perspective, the anticipated 5G accompanies multiple 3GPP and
non-3GPP network types, which have different frequencies and standardizations. Hav-
ing such heterogeneity, it is yet unclear how to create seamless integration, where
apparently, multiple path connections needed to be established using these network
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types. Although having multipath is an opportunity to enhance the content caching
process, the uncertain integration of heterogeneous networks becomes highly prob-
lematic for the placement and delivery phases. That means a sudden change in the
placement and delivery paths incurs a service cost and a cache miss. A few techniques
are under experimentation to seamlessly integrate these technologies into one umbrella
of the 5G NR without hardware changes, featured in Subsection 6.2.1.

2.5.5 Computational limitation
The computationally demanding caching solutions are implemented in parallel with
real-time operations, while the computational consumption is high for selection al-
gorithms and content preprocessing to enhance the QoE. Hence, the services such as
adaptive video streaming, online gaming, telemedicine, IoT applications, and other
mission-critical operations scramble with the caching process.

Distributed caching strategies need to make task-optimization such that ‘which
edge server is the most appropriate to run a specific task’. Some novel works have
proposed jointly offloading the computation and caching strategy, using MEC [119].
While MEC is a promising solution to enhance the performance of caching strategies,
the computational limitation still poses challenges to achieving it practically. In addi-
tion, network slicing and network function virtualization (NFV) are other technologies
to relieve the computation constraints and support mission-critical services [120].

2.5.6 Content Encryption

While trying to guarantee user security and privacy in cellular networks, content en-
cryption becomes an undeniable challenge to content caching because they need to be
encrypted. For that purpose, most current CDNs use the secured Hypertext Trans-
fer Protocol Secure (HTTPS), which makes content invisible to the MNOs and CDN
providers. This complexity worsens when using multiplexed transport protocols like
QUIC, higher rate application encryption. In addition, the new Internet privacy ser-
vices, such as virtual private networks (VPN) and Apple iCloud Private Relay, make
visibility and management by service providers more difficult. They cannot consent
to the property of the content and manage the caching. Thus, it is hard to deal with
encrypted content via the traditional caching mechanism, so examining the trades-off
privacy of the users and the QoE became very interesting.
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Chapter 3

Dynamic Programming-based Caching
in Cellular Networks

This chapter explains the developed content caching strategy to serve content re-
quests effectively. It begins with an introductory background and presents re-

search motivation in Section 3.2. Section 3.3 explains a simplified system model formu-
lation, while Section 3.4 details the proposed DP-based strategy. Section 3.5 explains
the performance of the DP-ZoSKP strategy using extensive system-level simulations.

3.1 Background

Due to the fast development of the wireless infrastructure and having an elastically
swelling number of smart devices, its multimedia content delivery is increasing yearly.
In addition, the emergence of new technologies such as the IoT, M2M, e-health, and
vehicular communications has pushed cellular traffic much higher than anticipated,
with the explosive growth of video traffic [49]. A large portion of the mobile data traffic
is video content, which accounts for 69% of the total traffic and is predicted to exceed
79% by 2027 [2]. Such a tsunami of video traffic has instantiated a paradigm shift in
the design and implementation of mobile networks, bringing edge content caching
capabilities to the research community’s center of attention. Notably, the network data
traffic is dominated by a few popular videos (compared to the full list of available
contents) that users frequently request.

A critical mass of content requests goes to popular ones, often consumed by differ-
ent end users spanning many mobile helpers and wider geographical regions. Such
requests place a great burden on the backhaul of cellular networks by: i) creating re-
dundant re-transmissions of the same content from a central server to the network
edge, which creates service cost, ii) using the bandwidth-limited backhaul, and iii) at
the peak time, so that causes congestion and transmission failure. As a relief, with the
integration of the MEC capabilities in the 5G mobile cellular networks, CDN operators
can place popular contents closer to the network edge at an off-peak time. Accord-
ingly, caching these contents into the network edge brings them closer to the end users,
avoiding fetching the same content multiple times from the backhaul network.
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The content placement strategy is usually formulated as a constrained problem,
modeled using different mathematical frameworks. Depending on the proposed place-
ment model, different algorithms are used to solve it. The survey work in [32] reviews
the most widely used modeling methods, including game-theoretic, stochastic, and
predictive approaches. The authors in [34] use Multiple-choice Knapsack Problems
to model a cooperative placement problem in large instances. The emphasis was on
caching layered videos using a fully polynomial time approximation (FPTA) algorithm.
The authors in [30] model content placement as a reward maximization problem and
solve it by reducing it to solvable linear programs. Similarly, the authors in [36] use
mixed integer programming to model the cooperative content placement and employ
greedy algorithms to solve it. In [12], the authors use linear integer programming to
model the content placement problem and apply Lagrangian relaxation with hierar-
chical prime-dual decomposition to decouple its structure into two levels, enabling
solutions using the sub-gradient method. However, calculating optimal multipliers
for the Lagrangian relaxation and the sub-gradient methods in large-scale networks
is computationally intensive. Other interesting works, such as [46] and [34], model
the caching process by the Knapsack problem. In contrast, authors in [12] use inte-
ger linear programming with an end-to-end approach which is impractical to solve
optimally. Authors in [121] use the Markov decision process and solve it by dynamic
programming for cloud resource management.

3.2 Research Motivation

So far, many caching strategies have been proposed to boost the effectiveness of mobile
data delivery in cellular networks. However, most of these strategies focus on heuristic
methods of traffic characterization, which are inaccurate in representing real networks.
Also, to solve them analytically, most research works use greedy methods, which fail
to tackle practical constraints of the content placement, e.g., varied content size and
popularity, and limited cache size. Though we do not rule out these approaches, as
they are computationally lighter, they do not give an optimal solution. Some other
strategies rely on information processing techniques, e.g., interference cancellation, and
modulation, to improve physical layer performance [90] but do not substitute caching.

The content caching, whose placement and delivery phases are interdependent, is
widely believed to be a dual-nested problem. Thus several types of mutually plac-
ing and delivering optimization schemes are proposed[10]. However, we stick to the
fact that we can achieve efficient content caching mainly by optimizing the placement
phase for three reasons: i) the placement is done at an off-peak time and may wait for
multiple epochs, while delivery is an instant action [122], ii) due to extremely dynamic
behavior of UEs, the placement is done almost without knowing current statistics of
the UEs, iii) the placement is content-centric while delivery is user-centric , i.e., as we
focus on caching contents at MHs, making MEC decisions based on its aggregated
RAN data analytics is more effective than using individual UE data.
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Rather than exhausting the intractable end-to-end optimization approach, we re-
sorted to the dual-nested formulation to solve the content placement phase by maneu-
vering an efficient modeling tool. We can then apply an optimal algorithm to achieve
the required QoE. The complement intuition is that if we work on placing contents
at their closest local MH (, i.e., the UE associated to), it is expected to have the lowest
service cost and maximum request probability. This low cost is because, without loss
of generality, the cost is a function of key parameters such as energy consumption and
delay, which depend on the distance between an MH and requesting UE.

We need to apply an effective model that accurately represents content caching
from a single source to a single destination with diversified attributes and scarce re-
sources. We typically modeled the content placement problem by the 0/1-Knapsack
Problems method. In addition, we aim to achieve an optimal solution to the model to
meet the required QoE. Then, we optimally solved the problem with the powerful DP
algorithm using the tabular approach. The performance of the proposed novel place-
ment strategy is evaluated, in terms of a cache hit probability at the network edge, by
comparing it with the widely used baseline strategies.

3.3 System Model Design

We consider the downlink direction of a heterogeneous cellular network, as shown in
Fig. 3.1. The network has several macro base stations (MBS), acting as a source of con-
tent to small base stations within their coverage area (i.e., two-tier content placement
hierarchy). While making cache placement, the SBSs act as mobile helpers, which is
a relay in the network. The MBS and MHs are the first and second network tiers, re-
spectively. Each user equipment is assumed to be associated with a nearby SBS (i.e.,
the MH). The UE requests contents independently from the appropriate cache-enabled
MH, where contents are cached based on popularity.

An MBS is assumed to have a complete list of popular contents that we denote by
M, M={( fm, sm) : 1 ≤ m ≤ |M|}, where fm is the unique identifier (e.g., URL) and
sm is the size of the content fm, measured in bits. The size of these contents is not
necessarily equal. We further assume that each MH has its known local popularity
vector (LPV), denoted as P={ρ1, ρ2, · · · , ρ|M|}. Here, content popularity (ρm) refers
to the probability that an associated UE requests the respective content (i.e., different
areas may have different popularity vectors). Without loss of generality, we assume
that the LPV is derived through localized estimation techniques employed by each
MH, e.g., based on the frequency of requests per content.

In this chapter, we focus on the caching process taking place at tagged MH with
its LPV. The LPV is normalized to the number of contents of in M, i.e., ∑|M|m=1 ρm=1.
We assume that content placing processes at one MH is independent of any other MH.
That means there is centrally controlled caching in the MHs. Let C denote the set of
contents eventually cached at the tagged MH (C ⊆ M). The logical representation of
content caching is shown in Fig. 3.2.
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FIGURE 3.1: Content caching system model.

Our objective function is cache hit probability of eventually cached contents at the
MH. The CHP refers to the probability that content requested by a UE is found cached
and can be retrieved from the located MH. Given the available P and list of cached
contents C at the MH, the CHP is given as follows:

ΨM (P , C) = ∑
fm∈C

ρm (3.1)

Our goal is to select an optimal list of contents from the main libraryM and place it
in C that maximizes the CHP at the tagged MH with minimized computational time.
While doing so, we assume the contents cannot be partitioned, and only one copy of
each is cached. However, the sum of all contents should not exceed the cache size of
the MH. We can define the combinatorial problem in terms of maximizing the objective
function CHP as follows:

P1.1 : max
C∈2|M|

ΨM (P , C) (3.2a)

subject to:
|M|

∑
m=1

xm · sm ≤ L (3.2b)

xm,n ∈ {0, 1} , 1 ≤ m ≤ |M| (3.2c)
|M|

∑
m=1

ρm ≤ 1 (3.2d)
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FIGURE 3.2: A caching scheme that selects contents to maximize the CHP.

where the parameter xm is a cache decision indicator that shows whether fm ( fm ∈ M
is selected to be cached. That means, xm=1 if the event fm ∈ C holds true and xm=0,
otherwise. The optimization problem in Eq. 3.2 is mapped to the well-known 0/1-
Knapsack Problem with a few constraints. In Eq. 3.2a, the term 2|M| denotes the power
set of content combinations in M, within which an optimal solution is found. The
constraint (3.2b) shows that the total size of cached contents per MH should not violate
its cache size, while constraint (3.2c) ensures that contents are not partitioned during
caching. The last constraint (3.2d) indicates that the LPV of contents in the library is
normalized to one, as seen with respect to each MH.

3.4 DP-based Caching Strategy

Recall that while caching, we do not partition contents into chunks, i.e., contents are
considered indivisible objects that are either cached as a whole or not cached at all.
Instead, using their size and popularity, we enumerate all possible combinations of
contents that can fit the cache size. Among the combinations, we take the one that
gives the maximum CHP value. The problem P1.1, modeled in formulation Eq. 3.2, can
be optimally solved using brute force (exhaustive search of the optimal CHP) on the
power set of M. But this approach has O(2|M|) time complexity, which is not com-
putationally achievable and also not scalable as |M| increases. Instead, the problem is
solved using dynamic programming by breaking the original problem into subprob-
lems and solving them sequentially. In this approach, the solution of every subprob-
lem is memorized and reused to solve other subproblems, while the global solution is
found by combining these multiple sub-optimal solutions.
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Algorithm 1: Dynamic programming bottom-up computation
1 Input:M,P ,S , L
2 Output: Ψ∗Cn

, x
3 Function: DP-ZoSKP(M,P ,S , L)
4 V = Zeros(|M|, L);
5 x = Zeros(1, |M|);
6 for 1 ≤ m ≤ |M| do
7 for 0 ≤ j ≤ L do
8 if j ≥ sm then
9 V[m, j] = max(V[m− 1, j], ρm + V[m− 1, j− sm]);

10 else
11 V[m, j] = V[m− 1, j];
12 end
13 end
14 end
15 Ψ∗ = V[|M|, L];
16 m = |M|+ 1, j = L + 1;
17 temp = V[m, j];
18 while m > 0 && j > 0 do
19 if temp ̸= V[m− 1, j] then
20 xm = 1, x← xm;
21 j = j− sm;
22 m = m− 1;
23 temp = V[m, j];
24 else
25 m = m− 1;
26 end
27 end
28 return Ψ∗, x
29 end

Though there are various ways of applying the DP, we chose the memoization method
for its simplicity in tracing back. The DP pseudocode shown in Algorithm 1 is a tabular
memoization method that iteratively examines different content combinations versus
the cache size. It begins by initializing the CHP table V[m, j], for m=0, which means
no item is selected (lines 4-5). In addition, vector of decision indicators x is initialized,
x={xm : 1 ≤ m ≤ |M|}. Lines 6-14 constitute a loop to sequentially calculate all con-
tents, starting from one to the entire set inM. It saves the corresponding CHP value in
the array. The algorithm increments the objective value only if the examined content
brings a better CHP value (line 11). Then, the optimal CHP value (Ψ∗M(P , C)) is the
last entry of the table, i.e., V[|M|, L] (line 15). In lines 16-17, we initialize the neces-
sary parameters to trace the contents that lead to the optimal CHP value. Meanwhile,
the optimal set of contents is traced back to points where the content examination had
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brought a change and registered them (lines 18-27). In the end, the bottom-up compu-
tation returns the set of contents with its optimal CHP value.

The caching process using the DP method takes a pseudo-polynomial time of O(|M| ·
L)) complexity, which is very low compared to the optimal solution called brute-force
time complexity. This approach gives an optimal solution at trading off computation
cost, mainly the memory for processing large library and cache size. Because the strat-
egy is DP-based and modeled by the 0/1-Knapsack problem, we call this proposed
content caching a ’zero-and-one knapsack problem’ DP-ZoSKP strategy.

3.5 Results and Discussion

In this section, we evaluate the performance of the proposed content placement strat-
egy (i.e., the DP-ZoSKP) by comparing it with two baselines: Greedy and Random, which
are very common in state-of-the-art. The Greedy strategy orders the contents in de-
scending of their popularity and caches the most popular first to the MH until no other
(complete) content can fit into the cache. The Random strategy selects contents arbi-
trarily and caches them in the MH until the storage is fully utilized.

Unless otherwise stated, for this simulation, we consider the number of popular
contents inM to be |M|=100. Depending on the scenario under the scope, we inves-
tigate the performance of the content placement strategies under two different popu-
larity distributions which are widely used in the literature: the uniform and the Zipf
[46]. Uniform popularity assumes contents of equal popularity (i.e., ρm= 1

|M| for every

m ∈ M). In contrast, Zipf popularity assumes that the popularity of the mth ranked
content fm is expressed as ρm= m−γ

∑
|M|
j=1 j−γ

, where γ ≥ 0 is the Zipf parameter that indi-

cates the popularity skewness. Zipf popularity is widely used as the reference model
for YouTube videos [33]. Note that as the value of γ increases, a smaller amount of
videos inM exhibit high popularity, and thus, the popularity is concentrated in a few
videos. For example, if the popularity skewness parameter γ=0, the contents have uni-
form popularity inM. On the other hand, as the value of γ decreases, the popularity
is distributed in more videos, and thus, a larger number of videos of lower popularity
are encountered. For this work, we chose the Zipf parameter γ=1, which means that
the popularity is highly concentrated in fewer number contents, and since γ ≥ 1, the
network will have a higher successful transmission probability [17], [24].

One step further, the size of popular contents in M is adapted according to the
Google bitrate recommendation for Standard Dynamic Range (SDR) video upload in
YouTube [123], and the NTT-DOCOMO guideline for video delivery in mobile net-
works [124]. In particular, depending on the scenario under simulation, we consider
two different content size values: 1.23 Gb, which corresponds to a video duration of
4 minutes with 720p resolution at a 5 Mbps rate, or 8.43 Gb, which corresponds to
a video duration of 4 minutes with 2160p resolution at 35 Mbps rate. Note that the
duration has been selected in line with the study in [125], which reported that video
duration of 1 and 4 minutes are among the most common in video consumption. Sub-
ject to changes for some scenarios, we further consider that the sm is either fixed or
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FIGURE 3.3: Popularity distribution (left) and Exponential content size.

exponentially distributed with a mean value of 1.23 or 8.42 Gb. The characteristics of
the content popularity Zipf distribution and content size exponential distribution, as a
reference for all related sections in this dissertation, are shown in plots in Fig. 3.3.

In the following subsections, we investigate the performance of the content place-
ment strategies assuming: i) uniform content popularity with exponentially distributed
size (Section 3.5.1), ii) Zipf content popularity with equal content size (fixed) (Section
3.5.2) and, iii) Zipf content popularity with exponentially distributed content size (Sec-
tion 3.5.3). For the first two scenarios, our analysis aims to reveal the conditions under
which the Greedy content placement is sufficient to achieve optimal performance. The
third scenario assesses the performance gains attained under more realistic network
deployments (Zipf popularity and varying content size).

3.5.1 Uniform popularity & exponential size distribution
In Fig. 3.4, we evaluate the performance of the three content placement strategies un-
der the scope, assuming that: i) all contents have uniform popularity and, ii) their size
is exponentially distributed with mean values (µ)=1.23 Gb (4 minutes video at 720p
with 5 Mbps rate), or µ=8.43 Gb (4 minutes video at 2160p with 35 Mbps rate). Since
all contents have equal popularity, in this analysis, we differentiate the performance
of the Greedy strategy depending on the logic used to prioritize contents of different
sizes. For that, we used three terms: i) Greedy-ascending-size, the greedy strategy where
videos of lower content size are given higher priority of selection; ii) Greedy-descending-
size, the greedy strategy where videos of higher content size are given higher priority
and; iii) Greedy-random-size, the greedy strategy where the content size is not taken into
account when caching popular contents at the MH. First, let us focus on the group
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of results for the mean content size µ=1.230 Gb. As expected, the proposed content
placement strategy attains optimal performance, improving quickly as the cache size
increases. The performance of the Greedy-ascending-size strategy, which prioritizes
content of lower content size, matches the proposed strategy (optimal performance).
This readily follows from the fact thatM includes videos of equal content sizes, so the
prioritization of contents with smaller sizes gives optimal performance as well (by the
principle of bin packing problem).

The plots in Fig. 3.4 also show that the proposed and the Greedy-ascending-size
strategies outperform the Random and the Greedy-random-size strategies, attaining
even a triple-fold increase in the cache hit probability (e.g., for L=10 Gb). The two ran-
dom strategies on size (Random and Greedy-random-size) perform equally because
they do not treat the size constraints. However, the performance gap between the opti-
mal (proposed and Greedy-ascending-size) and the Random strategies decrease fast as
the available cache size becomes comparable with the content library size (close to the
value of |M| · µ). On the other hand, prioritizing large content sizes with equal popu-
larity (Greedy-descending-size) is shown to attain very low performance compared to
other strategies because the cache gets fully utilized with only a few contents.

Second, we focus on the case µ=8.43 Gb results. Similar performance trends are
shown for this case in all content placement strategies under the scope. However, it
further tells us that when there are large contents, the cache storage is exhausted with
a few numbers of contents. Interestingly, by comparing the results of the proposed
strategy for µ=1.23 Gb and µ=8.43 Gb, we observe that a multi-fold increase in the
mean content size does not decrease the CHP proportionally with the same rate (i.e.,
the CHP does not decrease with the rate of 8.43

1.23=6.85).
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The main contribution of this scenario is, of the two cases, that if the content pop-
ularity is uniform, but we cache shorter files first, optimal caching is found, which
equally performs with the proposed DP-based strategy.

3.5.2 Zipf popularity & equal content size

In this scenario, we assess the performance of the content placement strategies assum-
ing Zipf popularity distribution and equal content size. Note that an increase in the
value of the Zipf parameter γ (higher skewness) corresponds to a decrease in the num-
ber of contents that account for the same aggregate popularity in the library. For exam-
ple, in the case, γ=0.6, only 10% of the contents account for 32.12% of the popularity in
M. When we increase the skewness value, say γ=1.2, only 10% of the library contents
account for a higher value of 68.5% popularity in M. The simulation results of this
scenario are plotted in Fig. 3.5, in descending order of performance. The plots, three
per strategy, indicate the impact of the γ and content size sm.

The proposed DP-ZoSKP content placement strategy leads the performance under
all scenarios within the scope. The greedy strategy, which prioritizes contents with
higher popularity, equally outperforms the proposed strategy, given that all contents
have equal sizes. This result is, in effect, independent of the γ value because both
strategies attract the most popular ones, but the size is not a contesting parameter
among contents. In contrast to the random strategy, the performance gains attained by
the proposed and the greedy strategies are very high, especially when the cache size
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is small and comparable to the size of popular contents (fixed to 1.23 Gb- 4 minutes,
720p, 5 Mbps and 8.43 Gb- 4 minutes, 2160p, 35 Mbps videos).

Going deeper by doubling γ from 0.6 to 1.2, for sm=1.23 Gb, gives up to a dou-
bling CHP value, subjected to cache size. But, interestingly, the performance of the
random strategy is not affected by the γ parameter (i.e., similar performance for γ=0.6
and γ=1.2) because the performance of a random selection of cached contents remains
unaffected by the skewness.

Once again, increased content size is shown to reduce the CHP performance; but
for this case, as compared to the results of the proposed strategy in Fig. 3.4, the per-
formance gap between cases µ=1.23 and µ=8.43 is lower due to the nature of the Zipf
(instead of uniform) popularity distribution. This gap gets lower when the cache size
is larger, meaning more contents have a chance to be cached. In all use cases, an in-
crease to the Zipf parameter greatly improves the performance of the proposed and
the greedy strategies, indicating that a higher skewness in the distribution of popular
contents is highly beneficial for the CHP performance provided the employed content
placement strategy can leverage this feature (e.g., random strategies can not).

3.5.3 Zipf popularity & exponential size distribution

In this scenario, we focus on the most realistic cases of the HCN where the popularity
of video libraryM is characterized by the Zipf distribution, and content size is mod-
eled using the Exponential distribution of mean µ=1.23 Gb (4-minute video of 720p at
5 Mbps rate). We evaluate the performance of the three main content placement strate-
gies under three different γ values. Note that γ=1.8 corresponds to the scenario where
roughly 10% of the library contents account for 91.4% of the popularity inM.

As observed in Fig. 3.6, the proposed optimal content placement strategy outper-
forms all competing strategies. However, the performance gap between the proposed
and the greedy strategies is very small for skewed popularity (such as γ=1.8) but in-
creases when the skewness decreases (i.e., for γ=1.2, the proposed outperforms the
greedy strategy by an average of 50%). This trend follows from the fact that as a
smaller number of contents in the video libraryM dominate the popularity distribu-
tion (γ is high), selecting only a few of these files gives high CHP, which also achiev-
able by the greedy prioritization. However, when the popularity distribution exhibits
a lower skewness, the performance gap between the greedy and the proposed strategy
increases rapidly (for a proportional reduction of the Zipf parameter γ), reaching up
to 118% for γ=0.6. Similar to the results of Fig. 3.5, the CHP of the random strategy
increases linearly with the cache size but remains unaffected by an increase of the γ.

3.5.4 Cache buffer utilization

Before caching buffer utilization as a resource, let us take a deeper insight into content
size diversity by comparing Fig. 3.5 (where sm=1.23 Gb) and 3.7 (where µ=1.23 Gb),
at γ=1.2. The same parameters, in the second case, show that content size is diversi-
fied, where the proposed strategy outperforms the greedy one by an average of 104%
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improvement. This outcome implies that the proposed strategy is much preferable for
the case of higher content diversity because it selects contents that bring better CHP
for available cache space.
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As shown in Fig. 3.7, the proposed strategy outperforms at a lower expense of
cache buffer, regardless of the γ value, which gives effective resource utilization. This
performance is because the proposed strategy fills the cache space more effectively
than the baseline strategies. However, the residual buffer has no relation to the cache
hit probability. The two baseline strategies have nearly equal buffer size usage.

3.6 Summary

In this chapter, we have studied optimal content placement strategies in cellular net-
works where small cells act as relays by caching contents to offload macro cell base
stations. We modeled the popular content caching strategy within a limited cache size
resource using the 0/1-Knapsack problem. We then used dynamic programming to
solve it optimally. The performance of the obtained optimal solution is evaluated and
compared with other baseline placement strategies. Useful guidelines for the design
of cache-enabled cellular networks are also given.

The main contribution of this chapter is we have delivered an optimal and enumer-
ative caching strategy. Very useful design guidelines are given where the proposed
strategy is recommended, such as for real networks, γ close to 1, and µ=1.23 Gb. The
impact of critical system parameters on the CHP performance has also been thoroughly
investigated in practical network deployment scenarios where the content popularity
follows the Zipf distribution, and the size is exponentially distributed. Both content
popularity and size diversities, as part of the HCN heterogeneous property, are effec-
tively managed by the proposed strategy. This contribution is a building block for the
extension works, explained in the next consecutive chapters. Future work includes de-
ploying the strategy using collaboration across the MHs and other evaluation metrics
such as success probability.
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Chapter 4

Cooperative Caching to Multiple
MEC-enabled Edges

In this chapter, we describe the proposed content caching strategy in multi-tier HCN
where several caching edges cooperate in a cluster to serve correlated video re-

quests. The introductory note in Section 4.1 summarizes related works of the topic,
highlighting modeling and optimization approaches. Section 4.3 introduces the system
description and the problem formulation for cluster-based caching. Similarly, Section
4.5 presents the proposed bound-and-bound ZoMKP (BB-ZoMKP) placement strategy
in a block-by-block fashion. In the end, Section 4.6 briefs the performance evaluation
of the proposed strategy using extensive system-level comparative simulations.

4.1 Introduction

The HCN is often upgraded to accommodate the offered mobile data traffic load, e.g.,
by deploying new generation backhaul and fronthaul technologies. However, the ex-
ponential increase of mobile content traffic still brings the utilization of the existing
mobile backhaul links to their capacity limit. This limit raises questions about the scal-
ability of existing systems to meet the ever-increasing demand for seamless content
delivery. Mobile network traffic is also overwhelmed by multiple requests for some
popular content, creating a redundant end-to-end content delivery chain from the re-
questing UEs to the CS. Thus, contents are repeatedly re-transmitted from the CS on the
far Internet, causing unnecessary utilization of intermediate network resources. This
problem is further exacerbated in the 5G and beyond mobile networks, where low la-
tency requirements of less than 1 ms and a very high level of reliability of 99.99% are
targeted for specific service types that co-utilize the wireless medium [126]. So con-
tent caching becomes a robust method to meet the high-end performance targets set
for future mobile networks of higher deployment density as a cost-effective capacity-
boosting network-layer solution [127], [128].

Besides the caching technology, MEC integration into RAN overplays the caching
performance by enabling the MNOs to cope with content popularity dynamics over
time and across geographical regions. The MEC executes cache computations in the
actual HCN topology and improves its performance, especially for the seamless deliv-
ery of personalized video content. In doing so, MEC-enabled MHs can [129]: i) predict
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content popularity to store videos locally in the user area and offload the RAN dur-
ing peak periods (reducing user-perceived latency), ii) employ local transcoding on
high-resolution videos to match the screen resolution of mobile terminals (enhancing
user-perceived rate) and, iii) move relevant content and context closer to the end user
(increasing the user-perceived content availability) [3]. In the sense of cooperation, if a
requested content is found in the cluster, all corresponding MHs share resources with
the local MH (i.e., the edge where the original request made by the UE) [11]. Accord-
ingly, requested contents are relayed from a caching MH to the serving MH (the edge
that finally delivers the content to the user).

In [46], authors describe a cooperative multi-tier caching system decomposed into a
series of independent Knapsack subproblems, which are solved using greedy methods.
Focusing on adaptive streaming, the authors in [130] use a polynomial time greedy
method to solve a series of knapsack problems to cache different video versions at the
network edge. Authors in [33] model the content placement problem using a stochastic
approach and have applied a fully polynomial time approximation method where a
random set of contents is cached to the network edge, placement probabilities within
a tier are considered to be the same. In [14], the authors employ stochastic geometry
under fixed cache size and bandwidth constraints, assuming a greedy method to solve
the proposed problem. In [38], authors apply the Lyapunov function to allow hybrid
cloud and edge content caching using greedy and heuristic placement algorithms. In
[35], authors model the placement using the Multiple Knapsack Problem. They apply
the DP to solve the uncoded caching case, but this profit maximization problem still
depends on scaling approximations before the DP is applied.

4.2 Why Need Another Strategy?

The widely used greedy and heuristic approximation algorithms could be computa-
tionally feasible for large-scale networks but exhibit sub-optimal performance. This
gap shows that extra effort is required to deal with the inhomogeneous content pop-
ularity, content size, and caching storage over large geographical areas. In addition,
we need to deal with the HCN heterogeneity in sizes and capabilities, e.g., a different
number of edges per MEC cluster, and a mixture of MEC edge types.

Unlike many works, we want to manage the no-partition and no-repetition constraints.
Both constraints result in a mathematically complex problem but are of high practical
interest in realistic MEC-enabled setups for some reasons. Firstly, adding and fetch-
ing cached segments of a given content from the cache of multiple edges increases the
communication and intra-cluster transmission costs and cache monitoring overheads.
Also, distributed caching in the MEC cluster requires perfect tracking of cached seg-
ments and sophisticated multi-source transmission schemes. Secondly, even though
redundant caching of the same content at different MEC edges increases the avail-
ability of popular contents within the same cluster, it under-utilizes the cache pool so
that the probability of a cache hit events degrades. Accordingly, the two requirements
of no-partition and no-repetition are in line with MEC-enabled service provisioning,
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which primarily aims to leverage edge network resources and avoids using end-to-
end links to the far Internet through the backhaul network.

This chapter investigates how content placement can be formulated and optimized
under the emerging MEC integration scenario, where the MNO can pool the network’s
computation and storage resources to form joint MEC service clusters (areas). Al-
though not included here, the formation of MEC service areas shall enable the MNOs to
better adapt: i) the local spatiotemporal user density and request correlation in smaller
geographical areas, and ii) the actual information of the RAN topology and capabil-
ities. In such an assumption, the key requirement is that the MEC clustering is per-
formed with insignificant intra-cluster content transmission cost. As an optimization
objective function, we use the cache hit probability (CHP) at the cluster level, subjected
to a set of constraints such as the limited cache sizes, the unique and non-redundant
placement of contents per cluster, and without content partitioning.

4.3 System Model Design

We focus on an error-free downlink direction of a three-tier MEC-enabled HCN, where
each tier consists of HCN edges of similar networking capabilities. The MNO employs
a MEC-cluster formation algorithm to group a heterogeneous set of cache-enabled
edges that carries out the edge network caching process.

FIGURE 4.1: System model for multiple edge caching.

A cache-enabled MEC cluster can comprise HCN edges belonging to different net-
work tiers. In Fig. 4.1, we provide an illustrative example of a three-tier system model
instance where a MEC cluster is formed by MBS, SBS-1, SBS-2, UE-1, UE-2, and UE-3.
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Without loss of generality, for each MEC-enabled cluster, we consider that a cluster
head (e.g., an MBS) centrally controls the content placement. Cache-enabled edges be-
longing to the same MEC cluster may have different cache sizes (i.e., storage capacity),
where they are considered to follow the instructions of the cluster head to fill their
cache with the allocated content during off-peak periods.

We focus on the content placement process for a given period, termed as time epoch
in a tagged cache-enabled MEC cluster. Let N denote the set of caching edges and
|N | represent their number in the tagged MEC cluster, and let Ln denote the cache size
(in bits) of the nth edge with n ∈ {1, ..., |N |}. And letM={ fm : 1 ≤ m ≤ |M|} denote
the set (list of size |M|) of popular video contents, where fm is the unique identifier
of the mth content . Also let ρm and sm denote the popularity and size of a target
content fm ∈ M, respectively. The popularity is evaluated on a per epoch and cluster
basis, while it can match the user request ratio on a per cluster basis for the given
popular videos. Accordingly, we define the set of content sizes S=

{
s1, s2, ..., s|M|

}
and the set of popularity values (i.e., the popularity vector) P=

{
ρ1, ρ2, ..., ρ|M|

}
, where

∑|M|m=1 ρm=1. The content popularity values are assumed to be normalized over the set
M. In addition, the ρm value is estimated by taking the aggregated number of content
requests from all UEs through all MHs in a MEC cluster and using Eq. 2.1.

For a tagged epoch, we consider that the MEC cluster head decides on a list of
target popular contents, with known popularity and size. The MH deploys its policy to
estimate the popularity distribution and infer a list of popular contents. It governs the
list within its coverage area, potentially encompassing information from the MNO’s
core network (e.g., using traffic tracing and popularity estimation techniques [115]).
The UEs are associated with a local MH, using the Radio Access Technology (RAT)
network discovery and attachment protocols [76]. Then, the local MH first examines
whether the requested video is found in its local cache. If a local cache hit event happens,
it acts as the serving MH and directly transmits the video to requesting UE. If not
found, the local MH searches for the requested content within the MEC cluster, e.g., by
querying the MH or utilizing an intra-cluster cache map to all MHs.

If the content is found in another MH, called hosting MH, a cluster cache hit event
happens. Then, we must deploy in-cluster content delivery methods to relay the re-
quested fm to the serving MH. Finally, the serving MH serves content, as shown in Fig.
4.2. Subject to no-partition and no-repetition constraints, in-cluster content delivery
becomes effective by implementing direct or multi-hop links between the serving and
hosting MHs, depending on the technologies available in the cluster. If the fm cannot
be found in the cache of any cluster edge, then the serving MH shall establish an end-
to-end connection to the CS, generally thought to contain the requested content. For
example, in Fig. 4.2, the UE requests MH1 for videos f1, f6, and f10. The MH1 forwards
the request for f10 to MHN, which relays f10 to MH1 using in-cluster content delivery.
Then, the UE receives f6 and f10 from MH1 while it gets f1 directly from MH2.

At the beginning of each epoch, the MEC cluster head is assumed to be aware of
the network information, such as a list of popular contents M, the size of popular
contents in S , their popularity values in P , as the set of N, their cache size values Ln.
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FIGURE 4.2: A logical representation of content caching.

The cluster head implements its content placement algorithm to decide the popular
contents that have to be cached in the buffers of all |N | edges. For a given epoch, the
content placement strategy should take into consideration that: i) the number of MHs
in the cluster is fixed (|N |), ii) the cache size available per edge is fixed (Ln), iii) the size
and popularity of contents inM are fixed and known (using sets S and P), iv) cluster
edges can relay contents between them only after user requests, and v)M can contain
a much larger set of contents than all requested contents.

After the content placement process, let Cn denote the set of cached contents at
the nth MH for a given epoch. Let also C represent the full set of cached contents in
the MEC cluster. Here, C=

⋃|N |
n=1 Cn, Cn ⊆ M, and C ⊆ M. Given the system model

constraints mentioned above, it readily follows that: Ci ∩ Cj=∅, ∀i, j ∈ N , i ̸= j and
∑ fm∈Cn sm ≤ Ln. In the sequel, the indicator parameter xm,n denotes the event where
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the nth MH, in the MEC cluster, has cached content fm ( fm ∈ M and n ∈ N ). That
means, xm,n=1 if the event fm ∈ Cn holds true and xm,n=0, otherwise. All the cluster-
wide decision parameters are stored in a lookup table, denoted by x and defined as:
x={xm,n : ∀ fm ∈ M, ∀n ∈ N}. Accordingly, the cluster head requires to maximize the
cluster cache hit probability (CHP, described in subsection 2.1.4) of ultimately cached
content, a metric that we define based on the popularity distribution onM as follows:

ΨM (P , C) =
|N |

∑
n=1

|Cn|

∑
m=1

ρmxm,n (4.1)

4.4 Multiple Knapsack Problem Formulation

Recall that the CHP is defined as the probability that requested video content is found
in the cache of any MH belonging to the MEC cluster where the original video request
has been made. Provided that content partitioning is not allowed and that MHs be-
longing to the same cluster cannot cache the same popular video content, it follows
that ∑|N |n=1 xm,n ≤ 1 for 1≤ m ≤ |M|. Accordingly, we present the ZoMKP formulation
in the context of MEC-enabled cluster-based edge content placement as:

P4.1 : max
xm,n∈x

|N |

∑
n=1

|M|

∑
m=1

ρm · xm,n (4.2a)

subject to:
|M|

∑
m=1

sm · xm,n ≤ Ln, 1 ≤ n ≤ |N | (4.2b)

|N |

∑
n=1

xm,n ≤ 1, 1 ≤ m ≤ |M| (4.2c)

xm,n ∈ {0, 1} , 1 ≤ n ≤ |N |, 1 ≤ m ≤ |M| (4.2d)
|M|

∑
m=1

ρm ≤ 1 (4.2e)

In Eq. 4.2a, the xm,n values (1 ≤ n ≤ |N |, 1 ≤ m ≤ |M|) should be adopted by the con-
tent placement strategy to maximize the cluster-wide CHP under the constraints (4.2b)-
(4.2e). Constraint (4.2b) formalizes that the total size of video contents placed per MH
cannot exceed its cache size limit. Constraint (4.2c) limits that popular video contents
cannot be cached in more than one MH in the same MEC-cluster (no-repetition) while
constraint (4.2d) ensures that content partitioning is not allowed (i.e., no intermediate
chunks are enabled). Constraint (4.2e) follows by the construction of the content pop-
ularity values summing up to one for all fm ∈ Mmeans that the popularity of content
is similar towards all MHs in a cluster.

It is worth noting that if we remove constraint (4.2e), we allow the popularity values
to vary towards different MHs and redefined to ρm,n (∀ fm∈M, ∀n ∈ N |) so that the
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edges have different interest for content and not be normalized as probabilities given a
distribution over the state spaceM. This scenario dramatically extends to real network
behavior but is extremely complex. On such occasions, the CHP no more works as an
objective function while others, such as CHR and utility (reward) functions, should be
considered, as discussed in Chapter 5.

4.5 Proposed Combinatorial Optimization

The ZoMKP formulated in problem P4.1 (4.2) is an NP-hard problem that is widely
applied in operational research and optimization fields [131], unlike in the cellular
network area. In the case of such a problem, solving it optimally is almost surely im-
possible. Rather, some heuristic and recursive methods are used, which give either
sub-optimal or exact solutions. In this section, we introduce an exact bound-and-bound
(BaB)-based method, originally structured by authors in [132], to the network opti-
mization field by adapting it to the context of our content caching Problem in Eq. 4.2.
As a branch, we consider a content placement chain where: i) the placement of a given
number of contents has been fixed to the cache of some MHs and ii) multiple options
exist for fixing the remaining contents to the cache of some MHs with a non-full buffer.

The proposed BaB-based content placement strategy is a modification of a typi-
cal state space exploration technique that progressively fills the caches of MHs, con-
sidering both upper and lower performance bounds to avoid evaluating inefficient
branches. We consider that the MHs are sorted in increasing order of their cache size,
i.e., L1 ≤ L2 ≤, ...,≤ L|N |. In contrast, the popular videos in |M| are sorted in decreas-
ing order of their ’popularity per size unit’, i.e., ρ1/s1 ≥ ρ2/s2 ≥ .... ≥ ρ|M|/s|M|.

The BB-ZoMKP strategy calculates the upper CHP performance bound (the UB) of
the original problem, assuming an ideal scenario where contents are placed into a sin-
gle knapsack of size L=∑|N |n=1 Ln. This size means that the MEC cluster forms a virtual
aggregate pool of all MH’s cache resources, similar to the surrogate relaxation. The
problem above is equivalent to the ZoSKP for which optimal solution algorithms exist
using the DP method. On the other hand, a lower performance bound is calculated by
iteratively fixing contents into the caches of the MHs. The edges are optimally filled
after modeling them with the ZoSKP Problem. Individual formulations are progres-
sively solved (i.e., the MHs are filled one by one, in increasing order of cache sizes)
using DP based algorithm, discussed in Chapter 3. In the sequel, popular contents
assigned to any MH in previous iterations are excluded from the next iterations.

Based on the LB and UB, the proposed strategy is capable of rejecting infeasible
solutions: i) progressively placings contents into the cache of MHs, ii) calculating the
corresponding UB and LB performance values conditioned on the above placements,
and iii) rejecting solution branches that exhibit poorer CHP performance than the LB,
through the use of a backtracking process. A different data stack is used per MH to
enable effective backtracking of the partial solution and the exploration of new solution
branches (including the re-calculation of upper and lower performance bounds).
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In the following subsections, we explain the building blocks of the BaB-based caching
strategy to solve the ZoMKP. We progressively present the strategy. The subsection
4.5.1 discusses an optimal content placement strategy for a single MH– the ZoSKP for-
mulation. Subsection 4.5.2 presents the proposed solution for the ZoMKP formulation.
Interested readers for more details on why the BB-ZoMKP strategy is exact, if not op-
timal, are referred to [132] and [133].

4.5.1 Optimal solution for ZoSKP formulation
The content placement to a single MH is modeled by the 0/1-Knapsack Problems and
optimally solved using DP [31], [133]. Adapted from the DP-ZoSKP strategy, Algo-
rithm 2 provides the pseudocode of the content placement strategy to solve the ZoSKP
for each MH. The algorithm uses as input: a library of free popular videosM, a vector
of corresponding popularity Pn and a vector of content sizes S , and available cache
size Ln. We take a two-dimensional matrix V of size (|M|+ 1)× (Ln + 1) to memorize
different solution branches and infer the optimal solution. Each column-j of V corre-
sponds to a ‘unit cache size’ of target MH, whereas each row-m indicates the instant
evaluation of given fm. The values of V[m, j] record the highest CHP value that can be
attained for the instance where the first m popular contents are to be placed into j cache
unit size of MH n. Accordingly, the optimal CHP value is given by V[|M|+ 1, Ln + 1].

Apart from obtaining the V[|M|+ 1, Ln + 1] value of each iteration, the algorithm
also makes a backtracking process. It traces back and identifies the optimal set of con-
tents, given V, that accounted for the maximum CHP value. This selection indicates
which contents have to be cached per MH. Starting from the last entry of V, the back-
tracking process skips rows (in the current column) that have the same value with
V[|M|+ 1, Ln + 1]. When a different value is found: i) the content corresponding to
the respective row is included in the solution set, ii) the current row is updated to a
new value, and iii) the current column is left-shifted by an equal number of columns
with the size of the respective content. The three steps are repeated unless it reaches
the first content ( f1) and unit cache size j=1.

The algorithm’s output is the optimal content placement for each MH, which is
indexed by a global vector xm,n of size |M|. The index vector shows whether fm is
selected for nth target MH such that xm,n=1 or not; xm,n=0. Lines 4 initializes the tab-
ular matrix (V) while line 5 initializes the 1 × |M|-dimensional vector of zeros and
ones, where n value is fixed per MH. Lines 6-14 calculate the optimal CHP value in a
content-by-content fashion and get the optimal value Ψ∗n in line 15. With minor viola-
tions to notations, line 16 reassigns the temporary variables. Lines 18-27 conclude the
algorithm by backtracking, from matrix V, the content assignment xm,n for tagged n.
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Algorithm 2: Optimal solution for ZoSKP
1 Input:M,P ,S , Ln
2 Output: Ψ∗n, x
3 Function: DP-ZoSKP(M,P ,S , Ln)
4 V = zeros(|M|, Ln);
5 x = zeros(1, |M|);
6 for 1 ≤ m ≤ |M| do
7 for 0 ≤ j ≤ L do
8 if j ≥ sm then
9 V[m, j] = max(V[m− 1, j], ρm + V[m− 1, j− sm]);

10 else
11 V[m, j] = V[m− 1, j];
12 end
13 end
14 end
15 Ψ∗n = V[|M|, Ln];
16 m = |M|+ 1, j = Ln + 1;
17 temp = V[m, j];
18 while m > 0 && j > 0 do
19 if temp ̸= V[m− 1, j] then
20 xm,n = 1;
21 j = j− sm;
22 m = m− 1;
23 temp = V[m, j];
24 else
25 m = m− 1;
26 end
27 end
28 return Ψ∗n, x← xm,n
29 end

4.5.2 Exact solution for ZoMKP formulation

In this subsection, we present the proposed BaB-based strategy, an enumerative and
iterative content selection procedure, for the cluster-wide ZoMKP formulation where
the caches of all MH are filled progressively. For that purpose, there are a few global
input parameters such as the {Ln} that refers to the list of free cache sizes in all MHs,
and {Dn} that denotes the array (i.e., temporary stack) of cache decision vectors taken
by up to nth MHs, n ∈ {1, ..., N}. The temporary allocation matrix x̂, defined as: x̂ =
{x̂m,n : ∀ fm ∈ M, n ∈ N}, is a two-dimensional array of size |N | × |M| that indicates
whether content fm is allocated to the cache of n during the recursion time.
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The strategy is detailed in a sequence of subtopics such that the upper performance
bound is calculated using Algorithm 3 whereas the lower performance bound is es-
timated using Algorithm 4. The calculation of both upper and lower performance
bounds are found by applying ZoSKP (i.e., Algorithm 2). The main body of the place-
ment strategy is displayed in Algorithm 5, which combines all these algorithms.

Upper bound calculation

The upper bound of caching at multiple caching edges is assumed to be the maximum
CHP gain by the cache sizes of the sum of all MHs. Algorithm 3 is used to calculate
the UB performance, conditioned on the placement of a given subset of video contents
in M, and aggregate of available free spaces. This algorithm is frequently called in
intermediate steps of the BB-ZoMKP strategy to evaluate the CHP outcomes of each
branch, with a subset of contents marked in x̂. Also, the identifier of the current MH (i)
is passed as an input to calculate its free cache sizes; by this step, the proposed strategy
fills only part of the target i.

Algorithm 3: CHP Upper bound calculation
1 Input:M,P ,S ,N , {Ln}, {Dn}, i, x̂
2 Output: ΨU
3 Function: UB-MKP(M,P ,S , {Ln}, {Dn}, i, x̂)
4 L̄ = ∑|N |n=i Ln −∑ fm∈Di

sm · x̂i,m;
5 M̄ = { fm : ∀ fm ∈ M, x̂m,n = 0 for n = 1, ..., i};
6 P̄ = {ρm : ∀ρm ∈ P , x̂m,n = 0 for n = 1, ..., i};
7 S̄ = {sm : ∀sm ∈ S , x̂m,n = 0 for n = 1, ..., i};
8 [Ψ̄U,∼] = DP-ZoSKP

(
M̄, P̄ , S̄ , L̄

)
;

9 ΨU = Ψ̄U + ∑i
n=1 ∑ fm∈Dn x̂m,n · ρm;

10 return ΨU
11 end

In Algorithm 3, at Line 4, it calculates the available cache size of MHs that have not
yet been examined (i.e., helpers i + 1, ..., |N |), plus the residual cache size of helper i
following the placement decisions of previous iterations, depicted by input x̂m,n values.
In line 5, the algorithm identifies the set of free videos that have not been fixed to MHs
(including i) in previous iterations. At line 6 and 7, the respective popularity and sizes
of videos in M̄ are filtered that have not yet been placed in any MH.

After calculating the free cache space and non-cached contents M̄, together with
the respective sets of content popularity P̄ and sizes S̄ , Algorithm 3 deploys the ZoSKP
method (Algorithm 2). Mind that each time, allocation of contents from M̄ into a
cache of L̄ is considered as a single knapsack problem, as shown in line 8. At line 9,
the algorithm calculates the current achievable ultimate upper bound of the ZoMKP
formulation by including the sum of CHPs of all placement decisions indicated by x̂m,n,
x̂m,n ∈ x̂. To this end, line 9 adds: i) the maximum CHP that can be obtained from the
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ZoSKP subproblem with M̄ and L̄ inputs to, ii) the CHP value from the placement
decision performed in previous iterations.

Lower bound calculation

The calculation of the lower bound (ΨL) is based on sequentially solving about |N |
independent ZoSKP subproblems for each MH, starting from the lowest size. Techni-
cally, it calculates the LB value by summing up all optimal CHP gains from individual
allocations until i and predicted gains at the unfilled MHs. The performance gap be-
tween the UB and LB is because, for the case of UB, the individual constraint in (4.2b)
is relaxed to a single cache size constraint, which is simply the surrogate sum of all
caches of the MHs (supposed to be similar with 3.2b).

Algorithm 4: Lower CHP bound calculation
1 Input:M,P ,S ,N , {Ln} , {Dn} , i, x̂
2 Output: ΨL, x̃
3 Function: LB-MKP(M,P ,S , {Ln} , {Dn} , i, x̂)
4 Ψ̄L = ∑i

n=1 ∑ fm∈Dn ρm · x̂m,n;
5 M̂ = { fm : fm ∈ M, x̂m,n = 0, for n = 1, ..., i};
6 M̄ = M̂ \ Di;
7 P̄ = {ρm : ρm ∈ P and fm ∈ M̄};
8 S̄ = {sm : sm ∈ S and fm ∈ M̄};
9 L̄ = Li −∑ fm∈Di

sm · x̂i,m;
10 for n=i to |N | do
11

[
Ψ̃L, y

]
= DP-ZoSKP(M̄, P̄ , S̄ , L̄);

12 ΨL = Ψ̄L + Ψ̃L;
13 for m = 1 to |M| do
14 x̃m,n = ym;
15 end
16 M̄ = M̂ \ { fm : x̃m,n = 1};
17 P̄ = {ρm : ρm ∈ P and fm ∈ M̄};
18 S̄ = {sm : sm ∈ S and fm ∈ M̄};
19 L̄ = Ln+1;
20 end
21 return ΨL, x̃ ← x̃m,n
22 end

Algorithm 4 implements the procedure above to calculate a tight lower CHP perfor-
mance bound, including the gain by previously allocated contents- indicated in matrix
x̂. After declaring the input and output variables, it starts at line 4 to evaluate the ex-
isting cluster-wide CHP, which is the result of allocating contents into all caches up to
the current MH i- which is partially filled. In line 5, the algorithm identifies the set of
contents that have not yet been assigned to any MH (i.e., 1, ..., i). At line 6, free contents
from the previous iteration that did not improve the LB when examined for the tagged
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MH (i.e., not stacked in Dn) are uselessly excluded from the next iteration. For the next
iteration, also the content popularity (line 7) and size (line 8) vectors and the available
cache at the current MH (line 9) are filtered.

From lines 10-20, the algorithm progressively adds the CHP gain (Ψ̃L) from assign-
ing contents to free MHs, starting from available space at the current MH. In more
detail, lines 11-12 solve the ZoSKP problem for the residual cache size of i and add
the CHP with the cluster-wide lower bound (Ψ̄L). At line 14, the placement decision
vector (ym) for the residual cache are copied to x̃m,n, where ym ∈ y. Starting from line
15-20 the input parameters M̄, P̄ , and S̄ are updated while L̄ is set to next MH for its
iteration. The content selection decision after running Algorithm 4 are returned in a
two-dimensional matrix x̃={x̃m,n : ∀ fm ∈ M, n ∈ N}, which is used in Algorithm 5.

BaB-ZoMKP content placement method

The main recursive enumeration of the proposed content placement strategy to solve
the ZoMKP formulation is detailed in this subsection. The thematic aspect of the strat-
egy is that, per each iteration, it evaluates whether a free content fm can be cached to
the current MH. Contents that have been decided for nth MH are stacked into respec-
tive data structure Dn. The two-dimensional indicator matrix (x̂) is used to store the
recurring (might be partial) cache solutions of the ZoMKP instances, where x̂m,n=1 if
content m is temporarily fixed to MH n and x̂m,n=0, otherwise.

The main function of the BB-ZoMKP strategy is an advanced bound-and-bound
search mechanism, so we termed this caching policy as the ‘bound-and-bound 0/1-
Multiple Knapsack Problem’ (BB-ZoMKP) strategy, whose pseudocode is presented in
Algorithm 5. The BB-ZoMKP consists of four blocks: Initialize (lines 5-8), BaselinePlace-
ment (lines 10-24), ContentPlacement (lines 26-40) and Backtrack (lines 42-56). While the
BB-ZoMKP selection strategy evaluates for nth MH, caches of 1, ..., n-1 are assumed to
be filled, but caches of n, ..., |N | are empty. The recursion frequently calculates the LB
and UB by calling respective functions to omit content search branches that lead to
lower performance bounds.

The Initialize block sets the global parameters (lines 5-6) and calculates the ideal
upper CHP bound (ΨUB), at line 7, over the original content libraryM and total size of:
L = ∑|N |n=1 Ln, using the optimal ZoSKP allocation in Algorithm 3. This UB value is the
ideal maximum CHP performance, so we call it tightest (ΨUB) because it is estimated
when all MHs are initially free. In contrast, other consecutive upper bounds (ΨU) are
calculated while some MHs are filled with contents, where unusable residual spaces
will be left behind. Therefore, the tightest ΨUB performance bound is stored (line 8) for
future comparison. It is worth noting that other blocks never call back to the Initialize,
even though they make extensive inter-block looping.

The BaselinePlacement block is responsible for calculating the lower bound (ΨL) and
evaluates the performance of each branch recursion. It decides whether LB is im-
proved, approaching the ΨUB, and defines the corresponding placement decision x̃
(line 10), given a problem instance where the list of free MHs’ to be filled. It takes in-
put parameters of current helper i, the stack (Dn) of previously fixed contents, and the
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Algorithm 5: BaB Caching Strategy
1 Input:M,P ,S ,N , {Ln}
2 Output: Ψ∗C , x
3 Function: BB-ZoMKP(M,P ,S , {Ln})
4 [Initialize]
5 for n = 1 to |N | do Dn = ∅ end;
6 x̂ = zeros(N, |M|); ψ = 0; i = 1;
7 ΨU = UB-MKP(M,P ,S , {Ln} , {Dn} , i, x̂);
8 ΨUB = ΨU ;
9 [BaselinePlacement]

10 [ΨL, x̃] = LB-MKP(M,P ,S , {Ln} , {Dn} , i, x̂);
11 if ΨL > ψ then
12 ψ = ΨL; x = x̂;
13 for n = i to |N | do
14 for m=1 to |M| do
15 if x̃m,n = 1 then xm,n = 1; end
16 end
17 end
18 if ψ = ΨUB then
19 Ψ∗C = ΨUB; return Ψ∗C , x← xm,n
20 end
21 if ψ = ΨU then
22 Go to Backtrack;
23 end
24 end
25 [ContentPlacement]
26 repeat
27 F = {δ : x̃i,δ = 1};
28 while F ̸= ∅ do
29 m = min {δ : δ ∈ F};
30 F = F \ {m};
31 Di = Push (Di, fm);
32 x̂i,m = 1;
33 ΨU = UB-MKP(M,P ,S , {Ln} , {Dn} , i, x̂);
34 if ΨU ≤ ψ then
35 Go to Backtrack;
36 end
37 end
38 i = i + 1;
39 until i=N;
40 i = i− 1;
41 [Backtrack]
42 repeat
43 while Di ̸= ∅ do
44 Let m be content on top of Di;
45 if x̂i,m = 0 then
46 Di = Pop(Di, fm)
47 else
48 x̂i,m = 0;
49 ΨU = UB-MKP(M,P ,S , {Ln} , {Dn} , i, x̂);
50 if ΨU > ψ then
51 Go to BaselinePlacement;
52 end
53 end
54 end
55 i = i− 1;
56 until i=0;
57 end



62 Chapter 4. Cooperative Caching to Multiple MEC-enabled Edges

existing allocation vector x̂. For a given iteration, if the placement solution found by
the LB-MKP algorithm results in improved CHP, compared to the previous LB (ψ), then
the ψ value is updated to ΨL (line 12). In addition, the final decision indicator matrix
(x) is updated from the previous allocation indicator (x̂) and from the new placement
decision matrix (x̃) of the LB-MKP function (lines 13-17), the last case is for n ≥ i.

Accordingly, if the updated LB performance matches with the tightest ΨUB, the
BB-ZoMKP strategy concludes the selection process (lines 18-20). Thus, it returns the
exact cluster-wide CHP gain (Ψ∗C) and its final caching decision table (x), that contains
all xm,n values. But if the updated LB does not match the tightest ΨUB and still has
free MHs to asses, the selection strategy continues to examine other instances. Note
that after Initialize block, it holds ΨU ≤ ΨUB so that the next ‘if-condition’ (lines 21-23)
refers to only recursion that came from the Backtrack block. Hence, it checks whether
the updated LB and current UB match. If so, the Backtrack of the strategy is called. This
step enables the strategy to search for other instances that improve the upper bound
ΨU and explore solutions with higher CHP gains (i.e., closer to the tightest ΨUB). If the
two conditions do not happen, the procedure stacks contents to Dn in the next block.

The ContentPlacement block of the strategy is the part where the content assignment
solution, derived from the LB-MKP function of BaselinePlacement, is stacked to Dn and
further assessed. In this case, the assignment solution gives the condition of: ψ ≤
ΨU ≤ ΨUB. The respective cache temporary decisions (x̂) is updated for the current
MH i and repeats for all MHs, in the ascending order of cache size (lines 26-39). Note
that the contents are already in the order of their ’value per unit size’ so that contents
are pushed to the stack, starting from the highest efficiency. Each time a content fm is
stacked, its impact on the UB is checked (line 33). If it is lower than the current CHP
performance ψ (line 34), some of the instances are pruned off using the Backtrack block
(lines 34-36). The procedure resumes after corrective measures are taken using the
Backtrack logic, potentially running recursively part of the strategy again to identify a
better content placement solution. It is worth noting that, given x̂m,n, n = 1, ..., |N |-1 is
settled, the allocation by the LB-MKP function is optimal. Therefore, we do not need
to make backtracking for the last MH (i.e., it is done starting from i = |N |-1, line 40).

The Backtrack block of the strategy is called under occasions when the selected
solution either does not improve the performance bounds of the previous allocation
(ψ = ΨU) or it not giving a feasible solution (i.e., ΨU ≤ ψ) after an iteration. In such
cases, its main role becomes pruning off such allocations that deteriorate the perfor-
mance UB of the conditional (partial) solution to the problem as depicted by the allo-
cations Dn. To this end, it starts removing contents from the MHs’ cache (line 48) that
triggered the Backtrack call and then evaluates if the upper bound CHP performance
is improved through this action (line 49). If not, the Backtrack recursion continues
to remove contents from the Dn of the current MH (line 55) and also may continue
to other MHs (line 56) until the old feasible instances are traced back. In this case, a
new BaselinePlacement is triggered to make other feasible allocations (lines 50-52). The
BB-ZoMKP content placement strategy terminates either when a solution is shown to
attain the tightest CHP probability ΨUB (lines 20), or when no further improvements
can be achieved on the CHP ψ attained by the current solution x (lines 57).
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4.6 System-level Simulation and Analysis

In this section, we assess the performance of the proposed BB-ZoMKP content place-
ment strategy and compare it to that of two widely used strategies: the Random and
the Greedy placement strategies, using cluster CHP (ΨC) as the KPI parameter. Different
variants of the two strategies are found in the state-of-the-art, e.g., for Random in [33],
[134]–[136] and for Greedy in [14], [130], [137], [138]. The Random strategy arbitrarily
selects content from the libraryM of popular contents and places it without repetition
in the caches of all MHs belonging to the cluster. The Greedy strategy orders videos
in M in descending order of their popularity and places them in the cache of MHs
sequentially, i.e., the cache of the first MH is filled by skipping contents that cannot fit;
then, the second MH is filled with the free contents, etc., until no other content can fit
into the cache of any MH. For all strategies, the MHs are sorted in ascending order of
their cache size and filled by keeping the no-repetition and no-partition policies.

We investigated the performance of the BB-ZoMKP, Random, and Greedy con-
tent placement strategies using extensive system-level simulations. To this end, we
consider a multi-tier HCN that includes two types of cache-enabled MHs of SBSs
and FBSs. Accordingly, we consider a MEC cluster of N1 sets of SBSs and N2 FBSs.
The cache size of each MH type is modeled by a normal distribution of mean cache
size ξ1 GB with standard deviation σ2

1 , and ξ2 GB with σ2
2 , respectively. Thus, for

a tagged SBS i the cache size is given as Li ∈ L1 ≃ norm(ξ1, σ2
1 ), whereas for a

tagged FBS j the cache size Lj ∈ L2 ≃ norm(ξ2, σ2
2 ) such that L1x120 = {Ln : n =

1, ..., |N |} = L1 ∪ L2. Accordingly, the total cluster cache size is modeled as: L ≃
|N1| · norm

(
ξ1, σ2

1 ) + |N2| · norm(ξ2, σ2
2
)
.

Regarding the libraryM, we consider that there are |M| number of video contents,
where the size of each video is assumed to follow an exponential distribution of mean
size µ GB (i.e., sm ∈ S1x5000 ≃ exp(µ), ∀ fm ∈ M). This gives us on the average a
total size (of all videos) of E

[
∑|M|m=1 sm

]
=|M| · µ. The popularity distribution of video

contents inM is assumed to follow the widely-accepted Zipf distribution according to
which, the popularity value ρm of the mth most popular content inM is given by Eq.
2.1, where γ ≥0 is the Zipf parameter (popularity skewness) and fm ∈ M.

Unless differently stated, the values for the main simulation parameters discussed
above are fixed as in Table 5.1. According to the average bit rate values recommended
by Google for video uploads in YouTube [123] and the NTT-DOCOMO guideline for
video delivery in mobile data networks in [124], the µ depends on the video codec
type, the video bit rate and the type of the application (e.g., gaming, music video clips).
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TABLE 4.1: CHP numerical parameter values

Parameters Values Distribution
Number of SBS (N1) 20 Fixed
Number of FBS (N2) 100 Fixed
Mean SBS cache size (ξ1) 20 · ξ2 GB Normal
SBS cache size variance (σ1) 10 GB Normal
Mean FBS cache size (ξ2) 10 GB Normal
FBS cache size variance (σ2) 2 GB Normal
Content library size |M| 5000 videos Fixed
Mean content size (µ) 4 GB Exponential
Popularity parameter (γ) 1.0 Zipf

TABLE 4.3: Major social media video limits, May 2021.

Social Media
Platform

Maximum Video
Size (GB)

Maximum
Duration

Maximum
Resolution

Facebook 10 GB 240 min. 4096x2048
Instagram 4 GB 1 min. 1080x1080
Pinterest 2 GB 30 min. 640x640
Snapchat 1 GB no limit 1080x1290
YouTube 128 GB 12 hrs. 3840x2160
LinkedIn 5 GB 10 min. 1920x1080

In Table 4.2, we summarize some common YouTube video types and their respec-
tive size. In Table 4.3, we overview the limitations adopted by major social media
providers on uploading videos to their platforms. According to the values presented
in this table, we fix the mean content size value µ to 4 GB, which corresponds to an
HDR (4K) YouTube video of display resolution 3840x2160 (2160p) at a High Frame
Rate and length of approximately 8 minutes, at bit rate 66 Mbps. Such types of videos
currently dominate Internet traffic. When we fix γ=1.0, it corresponds to the case that
10% of videos account for 75% of the popularity.

4.6.1 Impact of the MH mean cache size

We begin the performance evaluation of the strategies under increasing mean SBS
cache size ξ1. Note that in our simulations, we have set the FBS mean cache size ξ2
to be proportional to the respective ξ1 as: ξ1 = 20 · ξ2 (Table 5.1); thus, an increase to
the mean SBS cache size proportionally increases both the FBS cache size and the total
MEC cluster cache size (i.e., L ≃ |N1| · norm

(
20 · ξ2, σ2

1
)
+ |N2| · norm

(
ξ2, σ2

2
)
.
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TABLE 4.2: Sample content statistics calculated from YouTube video up-
load recommendation.

Codec type Frame Rate
Video
Bit rate
(Mbps)

Type of application
Gaming, films,
(18.9 min.)
average

VIP people,
music videos
(aver. 8.2 min.)

SDR(4K)
(2160p)

Standard
Frame Rate

35-45 5.67 GB 2.46 GB

High
Frame Rate

53-68 8.6 GB 3.7 GB

HDR(4K)
(2160p)

Standard
Frame Rate

44-56 7.1 GB 3 GB

High
Frame Rate

66-85 10.7 GB 4.6 GB

Audio bitrate =192 Kbps is considered for all video bit rates

In Fig. 4.3, we plot the cluster-wide mean CHP for increasing size ξ1 under three
different mean content sizes µ. Recall that the cache size of the SBS i is distributed ac-
cording to a normal distribution Li ≃ norm(ξ1, σ2

1 ) and that the content size of popular
videos follows an exponential distribution sm ≃ exp (µ). We notice that for a fixed
library size (M=5000-Table 5.1), increasing the SBS cache size improves the mean CHP
value of the cluster for all content placement strategies. The improvement for the Ran-
dom strategy is linear due to the random utilization of the available cache size, whereas
a logarithmic increase is observed for the proposed and Greedy strategies in the case
of low ξ1 values. This indicates that both strategies can better exploit the additional
buffer available to the cluster by the SBS MHs.

From the plot, we observe that for a given set of fixed system parameters and a
mean content size µ, the performance of the proposed and Greedy strategies is similar
when the mean SBS cache size ξ1 is small (e.g., ξ1<20 GBs). Nonetheless, the respec-
tive performance gap grows rapidly as the SBS cache size increases for all µ values
under the scope. The performance improvement attained by the proposed strategy is
due to considering the full state space of the ZoMKP content placement tree, where
each branch instance fixes a candidate set of contents to a specific MH. This strategy
explores the solution tree by moving in depth to assess the CHP performance of every
solution branch by the UB and LB limits to eliminate sub-branches with sub-optimal
instances, using the backtracking of the current optimal solution. In this fashion, the
proposed strategy can smartly explore the full state space and identify the exact, not
the only optimal, placement solution. The Greedy performs behind the proposed strat-
egy because it always picks contents with the currently highest popularity and skips
to the next one when the file does not fit.

Regarding the combined impact of µ and ξ1 parameters, Fig. 4.3 illustrates that a
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FIGURE 4.3: The CHP outcome for increasing SBS cache size under three
content mean sizes.

lower mean content size µ (e.g., µ=4 GB) enables all strategies to attain higher CHP,
especially when ξ1 increases. This directly follows from the fact that for M, a larger
cache size increases the probability of all strategies making a massive allocation in
the cluster, provided that a larger volume of popular contents can fit in the existing
MH cache. Besides, this is why for a lower µ=4 GB, the Random exhibits a rapid
increase in its performance as compared to higher (e.g., µ=8, 12). Interestingly, the
proposed strategy for µ=12 GB is shown to attain a similar CHP with the Greedy for
µ=8 GB, highlighting that the proposed strategy enables an enhanced cache capabilities
utilization in the MEC cluster even when larger contents are considered.

The superior performance of the proposed strategy is also highlighted in Fig. 4.4
as well, in terms of available resource utilization, on a cluster-wide scale for different
µ values. In Fig. 4.4, the proposed strategy attains a utilization close to 100% in all
scenarios under the scope. In contrast, the Greedy and Random strategies are shown
to leave a small number of cache resource utilization. Unlike the big CHP performance
gap, shown in 4.3, all strategies almost closely utilize the cache resource. This happens
regardless of mean content size µ is negligible to the utilization of the available cluster-
wide cache size, i.e., the different µ values considered in the legend result in a similar
performance for each strategy.

Let us now investigate the impact of a different mixture of cache sizes across the
SBS and the FBS on the cluster CHP performance, assuming that the ξ1 of an SBS MH
is proportional to the ξ2 of FBS, with ratio β; i.e., ξ1=β · ξ2. Fig. 4.5 plots the impact
of the SBS/FBS cache size ratio, in the cluster-wide CHP, under different µ values for
the FBS tier ξ2=4, 8, 20 GB. For β=0, the CHP performance is the result of utilizing
only the N2 FBS (i.e., no SBSs since ξ1=0 GB). As expected, the performance of all



4.6. System-level Simulation and Analysis 67

20 40 60 80 100 120 140 160 180 200
0.95

0.96

0.97

0.98

0.99

1

C
lu

st
er

 c
ac

he
 u

til
iz

at
io

n 
(%

)

FIGURE 4.4: Percentage of total used cache size for increasing SBS cache
size and different content sizes.

content placement strategies increases with ξ2 and β. In fact, for ξ2=50 GB and β=50,
the available cache size in the MEC cluster is sufficient to store the entire set of video
contents inM, enabling all strategies to attain a CHP close to 1.

Similar to Fig. 4.3, the CHP of the Random strategy increases linearly with the
available cache size, modeled by the ratio β in Fig. 4.5. However, the ratio of the CHP
improvement strongly depends on the mean cache size ξ2 assumed for the FBS. For
β=0 (i.e., no SBS), we observe that the Random performs poorly independent of the µ,
whereas the proposed and Greedy strategies exhibit similar performance as far as they
are able to exploit the available cache size, fitting popular contents with better popu-
larity (e.g., for ξ2=4 GB, they may fit at least one popular content on the µ=4 cache). As
the β increases and the ξ2 gets higher, e.g., β>40 and ξ2=20 GB, the CHP performance of
the Random is shown to close fast the CHP gap with the proposed and Greedy strate-
gies. This indicates that random content placement can provide comparable benefits
with a more sophisticated and large volume of storage resources, which can be useful
in the case of MEC clusters with low processing capabilities.

Nonetheless, the random content placement performs poorly when the MEC clus-
ter consists of SBS with low storage capacity (e.g., β<20). On the contrary, both the
proposed and the Greedy strategies exhibit high CHP performance gains even when
the available cache size at the FBS is low (e.g., ξ2=4 GB) and when the cache size of
the SBS is large (e.g., β>20). In both cases, the proposed content placement strategy
outperforms the Greedy, enabling the MEC cluster to attain 3-5% better CHP perfor-
mance, especially when the total cluster size cannot support caching of a large volume
of popular video contents (i.e., CHP is lower than 1).
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FIGURE 4.5: The CHP outcome for a different mixture of SBS and FBS
MHs’ cache size in the MEC cluster.

In Fig. 4.6, we investigate the interplay between increasing the mean SBS cache
size under different popularity distribution skewness levels. Interestingly, the perfor-
mance of the Random is shown to remain unaffected by the popularity parameter γ.
This follows from the fact that random content placement, the average of thousands
of simulations, takes contents from any corner of the Zipf distribution- independent of
skewness level. The plot also illustrates that with a lower popularity parameter γ (e.g.,
by comparing γ=1.2 to γ=0.4), the performance of all strategies deteriorates.

However, the performance gap between the proposed and the Greedy strategies
increases fast as the value of γ is decreased (e.g., compare γ=0.8 and γ=0.4). This is
because a lower popularity skewness γ spreads the popularity to more content leading
to a large number of contents with comparable popularity but different size. Provided
that the Greedy strategy is size-agnostic and assigns popular video contents based
on only the popularity of the contents in M, it is clear that popularity-based greedy
content placement is unable to infer an appropriate combination of video contents to
each MHs. This is the result of the heterogeneity in content size and MH cache size.

On the contrary, the proposed strategy better adapts to the heterogeneity of both the
content sizes inM and the cache size of the cluster, enabling enhanced performance.
In particular, when the popularity is spread to a larger number of videos (i.e., low
skewness index like γ=0.4) and the cluster cache size is more diverse (e.g., for this case,
when ξ1=100 GB, we have 95 GB more cache available in the SBSs compared to ξ2 of
the FBS), the performance gap between the proposed and the Greedy strategies largely
increases. For ξ1=100 GB, we observe that the respective performance gap reaches up
to a 20% CHP improvement on an absolute scale and 40% on a relative scale.
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FIGURE 4.6: The CHP outcome for increasing SBS cache size and Zipf
popularity skewness.

As a takeaway result, we conclude that the proposed BB-ZoMKP strategy can better
exploit the cache resource of the MEC clusters with higher heterogeneity in terms of
content size and cache size per MH, enabling the MEC cluster to attain a higher CHP
performance. This performance improvement is even more evident when the content
popularity is spread over a large list of video contents (e.g., when the Zipf parameter γ
is lower). Taking into consideration that the performance of the proposed and Greedy
strategies is comparable for a higher value of γ, such as γ>1.2, another interesting
observation is that the MEC cluster head may choose to run the Greedy strategy instead
of the proposed one to optimize computational resources.

4.6.2 Impact of the content popularity

Given a list of system parameters, in Fig. 4.7, we assess the impact of the popular-
ity distribution γ parameter on the CHP performance under different µ. As an inde-
pendent variable, the popularity skewness parameter ranges from γ=0 (which means
that the contents have uniform popularity) to γ=2 (which means that only a few con-
tents account for the very large portion of the popularity value). For example, in our
case of |M|=5000, for γ=0.2 indicates that 1% of contents account for 2.8% popularity)
whereas for γ=2 only 1% contents account for about 98.8% of popularity. Similar to
Fig. 4.6, we observe that γ has a negligible impact on the performance of the Random
strategy but with small deterioration for smaller µ, such as 3 GB, due to the fact that
while a very small number of videos in M concentrate high popularity (i.e., high γ
values), the Random strategy selects a subset of contents with lower popularity (i.e.,



70 Chapter 4. Cooperative Caching to Multiple MEC-enabled Edges

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

FIGURE 4.7: The CHP outcome for increasing popularity skewness under
different mean content sizes.

the most popular, but a few contents, will be dominated by least popular contents so
the Random strategy favors for this larger number of contents).

On the contrary, the performance of both the proposed and the Greedy strategies
amass cluster CHP with the increase in popularity parameter γ. More interestingly,
we get nearly ΨC=1 for γ>1.4 under the fixed system parameters. This performance
trend is due to the fact that a higher γ parameter translates to the concentration of
the popularity inM to a smaller volume of video contents, enabling popularity-aware
strategies to fill the caches of the MEC cluster by including those highly popular con-
tents and leaving unpopular contents does not affect the result. Another interesting
observation is that for the proposed and Greedy strategies, the impact of the popu-
larity parameter γ on the CHP performance strongly depends on the mean cache size
µ for low popularity values γ (e.g., γ<0.8). This readily follows that even though the
popularity is evenly distributed, as the µ decreases, the number of cached contents in-
creases so that the CHP value increases in the cluster. From the same plot, we observe
that for low popularity values of γ, the proposed strategy attains the highest CHP
gains as compared to the Greedy strategy. On the other hand, for high γ, the CHP
performance of the Greedy and the proposed strategies are comparable. This trend is
useful in scenarios where the MEC cluster head identifies that the popularity of con-
tents concentrates on a small number of video contents, enabling it to save processing
resources by employing greedy methods instead of the proposed (exact) one.

The proposed strategy is shown to outperform the Greedy strategy in terms of CHP
probability, especially when the content size of popular videos is large. For example,
for µ=9 GB, the proposed strategy is shown to double the Greedy strategy, in terms of
the CHP, when the Zipf parameter is very low (e.g., γ=0.2). Once again, the proposed
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strategy is shown to better handle the cache available in the MEC cluster even for larger
video contents, which is observed that the CHP of the proposed strategy for µ=9 GB is
higher than the CHP performance of the Greedy strategy for µ=6 GB, for all γ.
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FIGURE 4.8: The CHP outcome for increasing popularity skewness and
different number of SBS and FBS.

In Fig. 4.8, we investigate the impact of the popularity skewness γ under a different
number of SBS and FBS MHs. Note that as the number of SBS and FBS MHs increases,
the available cluster cache size is considered to increase proportionally. Similar to Fig.
4.7, for all strategies, a two-fold increase in the number of large-sized MHs (i.e., with
large cache capacity like SBS) is shown to provide significantly better CHP gain as
compared to the gain attained by doubling the number of small-sized MHs (i.e., MHs
with small cache capacity like FBS). This is because SBSs have 20x higher cache capacity
than FBSs, enabling the strategies to handle lots of popular contents.

The CHP performance gap between the proposed and the Greedy strategies is also
seen decreasing fast as γ increases for all MH heterogeneity scenarios. In Fig. 4.8, in-
creasing the number of large-sized MHs can play a key role when the popularity of
video contents is spread across M. But adding more MHs will have a lower impact
on the CHP performance when the popularity is concentrated in a smaller number of
contents (i.e., for higher γ values). This performance trend can be used to adjust the
MEC cluster size dynamically in view of characterizing the popularity distribution in
the library of videos. With this regard, a MEC cluster with a smaller number of large-
sized cooperative MHs is needed when lesser spatial diversity in content popularity is
observed. On the other hand, if a lower amount of contents account for higher pop-
ularity, but the popularity distribution changes fast across the geographical areas, the
MNO can cluster a larger number of smaller-sized MHs.

Another interesting observation is that the proposed content placement strategy
can better adapt to the existence of a limited number of MHs in the MEC cluster while
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attaining a similar performance to the Greedy strategy, with even much better gain
for smaller γ values. In particular, we observe that the proposed strategy for |N1|=10
attains better (for γ<0.6) or comparable performance with that of the Greedy strategy
for |N2|=20 (a double-fold increase of large-sized MHs).

4.6.3 Impact of the mean content size
In this subsection, we analyze the impact of content mean size (µ) under two cases:
i) varying γ and, ii) cache size heterogeneity, as shown in Fig. 4.9 and Fig. 4.10, re-
spectively. For this purpose, while other necessary parameters are fixed, the mean size
ranges from µ=2 GB to µ=12 GB.

As seen from Fig. 4.9, when µ is larger, the cluster CHP result deteriorates for all
strategies. This mainly follows from the fact that the available cache size, per each MH
and also cluster-wide, remains fixed while the content size bursts out. We observe a
roughly linear performance deterioration for all strategies above the mean content size
µ=4 GB value because the number of fitting contents decreases.
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FIGURE 4.9: The cluster CHP for increasing content mean size under
different popularity skewness.

The performance deterioration is shown to strongly depend on the popularity dis-
tribution. For different γ values plotted in Fig. 4.9, we observe that the performance
of the Random strategy remains almost unaffected by γ, while a constant increase of
the γ (e.g., from 0.4 to 0.8, or 0.8 to 1.2), increases the CHP performance of both the
proposed and Greedy strategies. This happens in a constant rate (e.g., for µ=4 the CHP
of the proposed increases by roughly 20% when γ increases by 0.4). The performance
gap between the proposed and Greedy strategies increases with µ, highlighting that
the proposed strategy can better cope with larger contents as compared to the Greedy.
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The CHP performance of caching strategies in the case of increasing µ is impacted
by the cache size heterogeneity, as shown in Fig. 4.10. For all spans of content mean
size, having large-sized SBS is preferable to having many small-sized FBS. From this
plot, we observe that the impact of the number of FBS is not significant on the CHP
performance of both the proposed and the Greedy strategies when a large number of
large-sized SBSs are considered (i.e., |N1|=20). However, when the number of large-
sized MHs is lower (|N1|=10), the respective CHP improvement observed by increas-
ing two-fold the number of small-sized MHs is significant for both strategies. On the
other hand, for the Random strategy, we observe that the CHP performance shows no-
table improvement with a two-fold increase of either the SBS or the FBS helpers. This
improvement is shown to be similar between the two scenarios (i.e., a two-fold increase
of |N1| results in similar improvements with a two-fold increase of |N2|).
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FIGURE 4.10: The CHP outcome for increasing content size and different
numbers of SBSs and FBSs.

Interestingly, the impact of increasing |N1| and |N2| is roughly independent of con-
tent mean size for the proposed and Greedy placement strategies, and they show uni-
form performance gaps. This performance trend indicates that increasing the number
of MHs in the MEC cluster will result in the same CHP improvement, independent of
the mean content size µ characterizing the contents inM. A similar situation happens
to the Random for increasing |N2|; however, the performance gap between |N1|=10
and |N1|=20 declines when µ gets larger due to its poor handling to the available cache.

4.6.4 Impact of the number and type of cache-enabled MHs

In this subsection, we analyze the impact of the number of caching edges, on the con-
tent placement performance, by fixing cache mean sizes of ξ1=200 GB, ξ2=10 GB, and
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cache size normal distribution variances: σ1=10, σ1=2, with content mean size µ=4 GB.
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FIGURE 4.11: The CHP outcome for an increasing number of SBSs under
a set of FBSs without fixing cluster cache size.

As can be seen in Fig. 4.11, increasing the number of larger-sized MHs, means the
SBS improves the performance of the strategies because more caching space is avail-
able. Here the main observation is that while there are few SBSs (such as |N1|=1), the
impact of increasing the number of FBSs (such as the increment |N1|=40 to 100) gives a
significant CHP gain. This case gets narrowed when the number of SBSs is high, such
as |N1|=20, for both the proposed and the Greedy strategies. This performance trend
highlights that the addition of only a few large-sized MHs has a high added value on
the CHP performance, especially when the size of the MEC cluster is small.

A similar performance trend is observed in all caching strategies for increasing |N2|.
However, as the |N1| value increases, the proposed and Greedy strategies are shown to
improve the CHP at a lower rate for the same increase of |N2|, which is not the case for
Random strategy. For example, while |N1|=2, we observe a greater CHP improvement
for change of |N2|=10 to 40 as compared to that obtained for |N1|=16 with the same
|N2| increase. This performance trend is useful, from the cluster design perspective,
to have a higher number of large-sized MHs rather than small-sized MHs. To that
extent, the MNO has to trade-off between cache edge densification by having multiple
FBS and performance gain, which is examined given the current mixture of MHs to
maximize the added value following the formation of a larger cluster.

4.6.5 Impact of the library size of contents
In this subsection, we inspect the impact of having a number of popular contents in the
system, which indirectly shows the geographical content usage statistics. In some areas
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such as modern cities, a huge number of early-adopting users request an overwhelm-
ing range of contents while in other areas, such as underdeveloped regions, there could
be a very low range of popular contents to request. To justify this with simulations, de-
picted in Fig. 4.12, we fixed certain system parameters: |N1|=20, |N2|=100, ξ1=200 GB,
ξ2=10 GB, σ1=10, σ2=2, and spanned the library size |M|=500 to 5000.
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FIGURE 4.12: The CHP outcome for an increasing number of contents in
the library and different Zipf parameters.

From the respective plot, we observe that an increaseM=500 to 5000 declines the
CHP performance; intuitively, this also shows the MEC-computational efficiency. This
relationship implies that caching in dense and modern cities is more challenging than
in underdeveloped regions. Another important observation is that when γ is higher,
the performance of the Greedy strategy outperforms nearly equal to the proposed (ex-
act) one. This trend can be exploited to save computations at the MEC cluster head
while making content placement for large γ values (e.g., γ>1.2). Nonetheless, when the
popularity is spread across more videos inM (such as γ<0.8), the CHP performance
of all strategies drops rapidly as the result of two difficulties: i) there are no outliers
of viral contents and, ii) a huge number of contents are requested in the cache-limited
network, which highlights the importance of employing sophisticated planning of the
cluster-based content placement. As compared to the baseline strategies, the proposed
strategy is shown to be highly robust against an increase |M| as well as to very high
popularity heterogeneity (lower γ). Justifiably, the gap between the proposed and the
Greedy increases with the |M|
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4.6.6 Analyzing computation costs and overheads
In this section, we evaluate the cost-wise performance of the proposed strategy in
terms of the computation time necessary to complete the content placement. Recall
that this operation shall be deployed on an epoch-by-epoch basis, where each epoch
is expected to last for at least a few hours or days. For our evaluations, we used a
PC equipped with the spec: Intel(R) Core i7-8550U CPU, 3.9 GHz, 20 GB RAM DDR3,
64-bit Windows 10 operating system. All strategies were implemented using a 64-bit
version of Matlab R2018b, and the respective computation time measurements were
averaged over multiple samples (more than 100 iterations per tick). Most of the com-
putation results have been derived in line with the system parameter values used to
derive the CHP measurement results of the previous subsections.

Impact of library size and number of MHs on computation

System parameters similar to the case in Fig. 4.12, the library size impacts computation
time. As seen in Fig. 4.13, though |M| is increased from 500 to 5000, the computation
time is in the range of sub-seconds, and it increases proportionally to |M| for all strate-
gies under the scope.
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FIGURE 4.13: Computation time for increasing |M| under γ.

The computational performance of the BB-ZoMKP is dependent on the number of
all types of MHs. As seen in Fig. 4.14, higher |N2| costs higher computation time
because it increases both the cluster cache size (mainly seen due to increasing N1) and
the number of iterations per each helper edge (observed by increasing N2). Apart
from that, the computation cost of the proposed strategy remains in a sub-seconds
margin even when the number of SBS reaches |N1|=20 and the number of FBS is set
to |N2|=100. This setup indicates that we can deploy the BB-ZoMKP strategy in the
medium to large-sized MEC clusters.
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FIGURE 4.14: The computation time for an increasing number of SBS
under different numbers of FBS.

Regardless of the number of caching edges, in both N1 and N2, the performance of
the Greedy and Random very low and unaffected because, in the Greedy strategy, the
main processing overhead comes from only sorting contents. In contrast, the Random
strategy makes an arbitrary selection. This indicates the potential deployment of the
Greedy strategy when it closely performs with the proposed strategy, such as when
content popularity is highly skewed, or a large cache size is available.

Impact of MHs’ cache size on computation

Before deploying the caching strategy, it is imperative to consider the available content
size compared to the library size. For example, as shown in Fig. 4.15, the computation
expense is very high when there is no sufficient cache size. Using ratio parameter β
such that ξ1=β · ξ2, to increase the SBS mean cache size ξ1 in proportion to the ξ2, the
MEC cluster consists of only FBS MHs for the case of β=0. At this point, there is a very
low cache available, and it takes a huge amount of time to select optimal subsets from
a large M. When ξ1 ≃ µ or ξ2 ≃ µ, the computation time exceeds several seconds
because of the increased number of branches and bounds.

The other interesting design perspective is that when β=1, i.e., the SBS and FBS
mean cache sizes are similar or less heterogeneous, the computation time is high. This
high computation is because the search state space is dominated by a vast volume of
solutions with similar CHP performance. That involves the placement of only a few
contents into the caches of similar-sized MHs, which means extensive iterations have to
be made to eliminate sub-optimal solutions. This computation effect is alleviated when
the available cache size ξ2 is larger, enabling an enhanced content placement diversity
per MH. However, the computation cost of the Greedy and Random strategies drops
when the available cache size in the MEC cluster is high in both types of MHs.
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FIGURE 4.15: Computation time for increasing SBS/FBS rate under differ-
ent FBS cache size values.

Impact of Zipf parameter and mean content size on computation

As the caching process is popularity-based, the computation time depends on the pop-
ularity distribution under certain cache and content size conditions. The plots in Fig.
4.16 show the mutual impact of the γ and µ values on the computation time under an
increasing ξ1. The computational complexity of the Greedy and Random strategies is
roughly unaffected by γ and µ values.

The performance of the proposed content placement strategy above a certain ξ1
value (such as double of ξ2) and above, the computation time remains roughly un-
affected by the γ and the µ. Similar to what we have observed in Fig. 4.15, this
result follows from the fact that above a certain sufficient cache space, ξ1 value, the
content placement state-space includes solution branches exhibiting a diverse CHP
performance and easily eliminates sub-optimal branches without going deeper roots.
Accordingly, as shown in a similar figure, the impact of µ and γ becomes negligible for
the proposed strategy, but its computation time scales up by the mean cache size ξ2.

From the deployment perspective of the proposed BB-ZoMKP, it is wise to note
that less heterogeneous MH cache sizes are computationally expensive. Similar to our
findings from Fig. 4.15, when the mean SBS cache size value ξ1 is comparable with
the FBS mean cache size value of ξ2 (which is set to 10 GB in this setup), an additional
computation overhead is observed for the proposed strategy, in Fig. 4.16. A resem-
bling overhead happens when ξ1=0, which means there are only likely equal size FBS.
The other observation is that, given γ=1.2, the computation time for µ=4 GB drops at
ξ1=20 GB and increases then after while it drops at ξ1=60 GB for µ1=8 GB, and increases
equally with other cases. Both cases imply that when there is no sufficient cache size,
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FIGURE 4.16: Computation time for increasing SBS mean cache size under
two Zipf parameters and content sizes.

the iteration phase takes a long time because several instance branches are highly di-
verse. But after sufficient cache size, the computation complexity increases with the
cache size due to the DP algorithm, i.e., O(|M| · Ln)) complexity.

In some cases, the computation complexity also depends on popularity skewness γ
such as when ξ1 is small-sized. As shown in Fig. 4.16, given µ=8 GB, the computation
drops lowest at γ=0.8 rather than γ=1.2 because of the heavy tail of the popularity
distribution leading to large state-space. However, the Zipf parameter does not impact
the computation time for small content mean size, µ=4 GB. This performance trend
follows from the fact that a higher µ reduces the average number of contents cached
per MH. For γ=1.2, it enforces the proposed strategy to explore solution branches with
similar CHP performance in-depth, i.e., branches that involve the placement of video
contents with low popularity. Also, note that a very low computation time is required
in scenarios where the proposed strategy exhibits superior performance.

4.7 Chapter Summary

In this chapter, we proposed a novel content placement architecture in which cache-
enabled mobile helpers are grouped into MEC-enabled clusters and perform coopera-
tive content placement, given a library of popular videos with defined size and pop-
ularity distribution. The caching process is modeled using the 0/1-MKP formulation,
subjected to a set of cache constraints. To solve the formulation, we presented an exact
placement strategy that employs the bound-and-bound enumeration, which discards
solution branches that lead to sub-optimal performance.
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The proposed bound-and-bound strategy exploits upper and lower performance
bounds to eliminate sub-optimal branches without making deeper evaluations. Each
iteration of the branches is optimally solved using the DP algorithm, which gives a
pseudo-polynomial computational complexity. Here, the main objective is to maximize
the placement of very popular contents into a cluster of several MHs. In doing so, the
contents are placed at only one ’best’ MH such that the combination instance brings
the optimal solution. Once contents are efficiently placed at a hosting MH, thanks to
its cooperation with the serving MH, it becomes straightforward to deliver them to
requesting users at minimized service cost.

Using extensive system-level simulations, we have shown that the employment of
the proposed bound-and-bound exact strategy is both efficient and computationally
feasible in the context of content placement in realistic MEC-enabled HCN. Several
design guidelines and best practices have been recommended through the simulation
analysis, highlighting key performance trade-offs for MEC cluster formation and effi-
cient content placement. The other important aspect of the proposed strategy is that
the selection algorithm is scalable to any level of the HCN topology for predefined sys-
tem parameters, such as content popularity, using any dynamic technique. The main
drawback of this system model is that each content has equal popularity value among
all MHs, which suppresses the individual interest of each MH in content. This limita-
tion is solved using a novel formulation in the following chapter.
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Chapter 5

Demand-aware Content Caching in
MEC-enabled Cellular Networks

Because billions of smart devices are releasing an overwhelming amount of traffic
content, the performance of the HCN is deteriorating. Another critical cause for

content proliferation is the surge in data consumption per subscriber. As a mitigation
mechanism, several caching strategies are proposed. Therefore, we need novel cache
optimization techniques for the case where the demand of one content differs at each
MH. Quite different from the state-of-the-art, these caching schemes must maintain the
individual popularity of contents towards each MH. When we refer to ’demand-aware’
caching, it is a tactical way to place contents at a caching edge that needs the content to
the highest level. That specific placement instant ultimately contributes to maximizing
an objective function. Generally speaking, ’demand’ refers to the cumulative impact of
both the intra-MH and the inter-MH popularity of contents.

In three sections, this chapter explains our cooperative demand-aware content caching
strategies. The first section (5.1) covers a demand-aware caching strategy that does not
allow content partitioning, while ensuring the individual interest of MHs towards each
content. The second section (5.2) explains demand-aware caching, where contents can
be systematically partitioned. The last section (5.3) covers a joint caching strategy that
optimizes the end-to-end content placement and delivery phases.

5.1 Demand-aware Caching without Content Partition

This section dedicates to the scenario where demand-aware content caching is pro-
posed under non-partitioning conditions. The placement problem is modeled using
Separable Assignment Problems (SAP), where only one copy of the content is cached
in a cluster of heterogeneous MHs. This strategy is a substantial extension of the BB-
ZoMKP strategy, explained in Chapter 4, for being demand-aware, so it makes content
delivery a trivially easy process.

5.1.1 Introduction
The ever-increasing content proliferation in the HCN continues to pose unavoidable
challenges in meeting user expectations for seamless connectivity, high transfer rate,
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and ultrafast responses. Still, powerful content caching strategies are needed to offload
backhaul congestion, reduce service latency, and minimize utility costs in emerging
networks [131], [139]. This effect is becoming a reality because powerful MEC compu-
tation is distributed in the RAN. When the MEC is integrated with the caching system,
it reduces the completion latency and eases data analytics of the radio resource [140].

The performance of content caching strongly depends on its modeling tool and the
effectiveness of the solution deployed, as seen in recent works. For example, authors
in [34] use Multiple-choice Knapsack Problem to model cooperative content caching,
while the authors in [30] model a cooperative caching strategy using a reward maxi-
mization problem. Authors in [141] propose cooperative caching using the Multiple
Knapsack Problem and solve it using a bound-and-bound algorithm to maximize the
cache hit probability in a cluster of heterogeneous MHs. However, these caching strate-
gies are often modeled by misrepresenting system parameters, e,g., content popularity,
and solved mainly approximation algorithms and heuristics.

Though content caching is well-investigated, nearly all popularity-based strategies
assume global popularity of contents, i.e., by aggregating all requests received through
all caching edges. It directly means that contents have similar popularity towards all
MHs, which contradicts the real network behavior. This assumption underestimates
the individual interests of MHs towards each content. This conjecture implies that the
modeling tools used in the plethora of cache problem formulations misrepresent the
characteristics of the real network. Therefore, contents are forced to be placed at MHs
where they are not most ‘demanded‘, increasing the intra-cluster service cost.

To address the above-mentioned critical issues, we develop a demand-aware caching
strategy where content popularity varies at each MH. This novel work answers the fol-
lowing interlaced questions: i) Which content should we prioritize while caching at an
MH? ii) At which MH should a video be cached to maximize its impact? These real
problems are jointly modeled by the SAP [142], after making mathematically cumulat-
ing the analytics of the questions. The problem is solved optimally using an iterative
algorithm. In this algorithm, contents are placed at the MH where they are most ‘de-
manded‘ and maximize the cache hit ratio (CHR)– an objective function.

5.1.2 System model design

For this caching system, we focus on the downlink of a three-tier HCN, represented
in Fig. 5.1 where several MHs prefetch popular contents from a huge content library
in the first tier. As can be seen in the figure, the first tier refers to a set of network
edges with the same content management that includes an MBS. Any MBS in this tier
directly connects with the CS on the far Internet, using unlimited capacity links. It
serves as a central head to the MEC-enabled cluster and has higher computation and
content caching capability. The MBS gets frequently requested videos from the service
providers and forms a huge libraryM, as defined in Section 4.3. The second tier refers
to a setN of multiple caching edges such as SBS, FBS, and smart UEs that are connected
to an MBS using a capacity-limited fronthaul. These edges relay contents from the MBS
to users, so they are the MH. Like the MBS, edges at the second tier have caching and
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MEC-processing capabilities but are resource constrained. Each nth MH has a set Un
of active users associated to it (n=1, 2, ..., |N |). The third tier includes many UEs that
request contents from their associated MH but can not cache or relay.
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FIGURE 5.1: Cooperative demand-aware caching system.

We assume that an MBS has enough storage to contain a large library of popu-
lar video contents, M={ fm : 1 ≤ m ≤ |M|}. Here, fm is a unique content identi-
fier, e.g., Uniform Resource Identifier (URI), or Uniform Resource Locator(URL). Each
content’s popularity (ρm,n), which shows the popularity of content fm at nth edge, is
different towards each MH. More importantly, the popular contents have different re-
quest probability (ϕm,n) across the MHs (both parameters described in subsection 5.1.4).
This difference means that fm is highly demanded at one MH but not important at
another. However, the content size (sm) does not differ and is stored in a size vector
S={s1, s2, · · · , s|M|}.

5.1.3 System MEC computation
For scaling convenience, we only focus on optimizing content caching in a single clus-
ter where a subset (Cn) of contents is to be selected for each MH as a result of some
computing tasks. Here, the caching system is a bidirectional MEC process where con-
tents are prefetched from a single source (mainly the MBS but also the CS) to multiple
destinations (heterogeneous MHs). At the same time, services and outputs are uploaded
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to central MBS. The computing processes, whose flow diagram is detailed in Fig. 5.2,
are done in every epoch but independent of the transmitting tasks to another tier.

The multi-task MEC computation starts by collecting the RAN data from all UEs,
including the request rate that fm receives through nth MH and edge’s temporal-spatial
information (info) such as the location of UEs (MH process ① - ④). At a fractional time
interval of the epoch, the MH updates its request profile (Rn). At least once before the
epoch time ends, the MH calculates its local popularity (Pn). Then, the MH transmits
these outputs to the first tier and uploads them to the central MBS. Within a new epoch,
the MBS updates its request matrix (R); then after, it computes the spatial request ratio
(H) and request probability (Φ) of the cluster. After the data analytics, the central head
applies the proposed content selection strategy (see details in Subsection 5.1.8). While
doing so, it centrally controls the cache decision (MBS compute process ➊-➎). As a
result, the MBS transmits the selected subset of contents (Cn) and its cache-decision
lookup table (x) to respective MHs (detailed in Subsection 5.1.5).
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FIGURE 5.2: MEC computing processes and cooperative cluster caching.
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5.1.4 MEC radio information analytics
Recall that every MEC-enabled MH stores content request profile can perform data
analytic tasks on the radio information, and transmits computed results to the MBS.
Independently, the MBS collects all request ratesR={rm,n : ∀ fm∈M, ∀n∈N} and com-
putes the last two of the following three important parameters.

Local popularity

It refers to the probability of contents that associated UEs request, compared to the set
of contents in an edge. The local popularity (ρm,n) helps to answer the question: which
popular content should be prioritized while caching at a specific MH? By ranking the
contents in descending order of their local request profile, contents popularity is mod-
eled using the Zipf distribution. Let mn denote the rank of content in the request rate
vector of nth MH, then the edge forms its local popularity vector (LPV) {ρm,n} after
computing file popularity, by redefining Eq. 2.1, as:

ρm,n =
m−γ

n

∑|
M|

j=1 j−γ
n

, ∀n ∈ N (5.1)

where γ ≥ 0 is the Zipf parameter of the popularity distribution respective to each MH.
Likewise, in the ZoMKP case, the γ=0 indicates that all contents have equal popularity
in an MH and follow a uniform distribution. In contrast, higher values such as γ=2
show that only a few contents are highly popular in that particular MH. For computa-
tional convenience, γ value is assumed to be similar in all MHs and ∑|M|m=1 ρm,n=1, ∀n ∈
N . The MBS forms a popularity matrix P={ρm,n : m = 1, ..., |M|, ∀ fm ∈ M, ∀n ∈ N},
which is an equivalent matrix to a vector defined in Section 4.3.

Spatial request ratio

This metric refers to the spatial demand of content across a series of MHs in the MEC
cluster. It is the relative demand that determines: at which MH is the content most
demanded? Let rm,n denote the total number of requests that fm received from all
active users through their common local MH (n). Its spatial request ratio (ηm,n) at n is
estimated by the central MBS, as:

ηm,n =
rm,n

∑|N |n=1 rm,n
, ∀ fm ∈ M (5.2)

where it is clear that ∑|N |n=1 ηm,n=1, ∀ fm ∈ M. Then, it establishes the request ratio
matrixH such thatH={ηm,n : ∀n ∈ N , fm ∈ M}.
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Request probability

The request probability (ϕm,n) is the linear cumulative impact of the above two factors
on a content, i.e., spatial request rate across MHs, and relative demand of contents
within each MH. It shows the real demand level of video content that a specific helper
n and the access probability in a system. The ϕm,n value of content fm at serving helper
n is estimated as:

ϕm,n = ρm,n · ηm,n (5.3)

and a matrix of request probabilities (Φ), Φ={ϕm,n : ∀ fm ∈ M, ∀n ∈ N} is formed to
be used by the demand-aware content selection algorithms for the placement.

5.1.5 Content placement phase

Cache-enabled clusters of |N | cooperative MHs, that are governed by one MBS, are
formed at the second tier. The MHs are dynamically admitted to each cluster using any
convenient policy. The MHs are meshed through a broadband connection, either wired
or wireless, but not all are necessarily interconnected. All MHs bounded in a cluster
cooperatively cache subsets of popular video contents (Cn), from the MBS, during off-
peak periods. Here, we focus on cache optimization in a single cluster, within which
a subset of contents is placed at each MH until its cache Ln[bits] is full, and it serves a
maximum of |Un| active UEs at a time.

After making the cache decision, based on results from data analytics, the MBS
places a subset of contents Cn at nth MH, where Cn={ fm : 1 ≤ m ≤ |Cn|, fm ∈ M}. The
superset of cached contents in the cluster is C, C=

⋃|N |
n=1 Cn, where Cn⊆ C⊆ M. Again

worth noting that during caching, we consider: i) contents are not partitioned, i.e.,
either an entire part is cached or not selected at all, ii) there is no content overlap
across all MHs in a cluster, i.e., Cn ∩ Ck=∅, n ̸= k, k ∈ N , iii) the popularity ρm,n
and demand ϕm,n of content differs towards each MH, i.e., ρm,n ̸= ρm,k and ϕm,n ̸=
ϕm,k, n ̸= k, ∀n, k ∈ N . Meanwhile, whether a content is found in the cache of an MH
is indicated by the cache-decision parameter xm,n such that the MBS passes the matrix
(x) to all MHs, x = {xm,n : ∀ fm ∈ M, ∀n ∈ N}. This is an intra-cluster cache lookup
table to enhance the cooperation among the MHs during content delivery (detailed in
Subsection 5.1.6) to requesting UEs.

Meanwhile, the availability of video contents in the cluster is measured by cache
hit ratio (Φ), which is the ratio of ’the requests of contents having successful cache hit
event’ and the ’total received requests by all contents’ [81], [108]. Given |Un| active
users and request probability (ϕm,n) of contents, the weighted number of requests to-
wards fm is estimated by: rm,n=|Un| ∗ ϕm,n [30]. Having this, the CHR in the cluster,
defined over x, is estimated as:

Φ(x) =
∑|N |n=1 ∑|M|m=1 xm,n · rm,n

∑|N |n=1 ∑|M|m=1 rm,n
(5.4)
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5.1.6 Content delivery phase
Once the contents are placed on the network edge, they are served to users whenever
lively requested. Let us look at the logical diagram in Fig. 5.2, which displays the
data analytics, MEC computations, and bidirectional caching protocol. Recall that,
from their cooperative service perspective, there are three functionality types of MHs.
The first one is a local MH, with which the UE is associated. The second type is the
hosting MH, which contains the requested content. The third type is serving MH, which
ultimately delivers the content to the requesting UE. But mind that the MHs might
have multiple roles, e.g., a local MH might be the serving and hosting MH.

We assume that every UE, falling within the MEC-cluster coverage, issues request
rm,n for a content fm only through its local MH (n). Then, the local MH checks the
whereabouts of fm from its lookup table (x). As a result, one of the following three
events happens: i) a local cache hit happens (xm,n=1), meaning that fm is found at n and
immediately served to UE, ii) a local cache miss happens, meaning that fm is not found
in n but at any other hosting MH k (xm,k=1, n ̸= k). In this case, the local MH forwards
rm,n and radio information to k so that the hosting MH sends the content to the serving
MH, iii) a cache miss happens (xm,n=0, ∀n ∈ N ), meaning that fm is not found in any of
MHs in the cluster. So, the local MH forwards the rm,n and information to the central
MBS, which is supposed to have the content in itsM.

In the event of a cache miss, the content delivery is not subjected to any optimiza-
tion sphere so that the requested fm is directly served to UE via the established down-
link. In addition, its request history is registered for future data analytics by the ap-
propriate network edge. Intermediately, if the content is required to be placed in the
cluster, any convenient cache refreshment techniques can be used [3]. Due to handover
overheads, the content delivery link is still limited to only via the serving MH.

5.1.7 Problem formulation

In this section, we focus on cluster-wise optimization of content placement of (detailed
in Subsection 5.1.5). Hereof, the objective function of the MEC system is to maximize
the availability of popular contents, in terms of the CHR, at the network edges but
without violating their cache limit. To maximize content availability, we aim at select-
ing |N | number of non-overlapping subsets (Cn) of highly popular contents, that will
be cached at appropriate MH. As a result, the objective function is globally optimized.
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Subjected to some constraints, the maximization problem is given as:

P5.1 : max
∀xm,n∈x

Φ(x) (5.5a)

subject to:
|M|

∑
m=1

xm,n · sm ≤ Ln, 1 ≤ n ≤ |N | (5.5b)

|N |

∑
n=1

xm,n ≤ 1, 1 ≤ m ≤ |M| (5.5c)

|M|

∑
m=1

xm,n · ρm,n ≤ 1, 1 ≤ n ≤ |N | (5.5d)

|N |

∑
n=1

xm,n · ηm,n = 1, 1 ≤ m ≤ |M| (5.5e)

xm,n ∈ {0, 1} , 1 ≤ n ≤ |N |, 1 ≤ m ≤ |M| (5.5f)

Here, constraint (5.5b) indicates that the sum of sizes of all contents in each MH
should not exceed its cache size and (5.5c) limits that content is cached at only one
MH. The constraint in (5.5d) indicates that the popularity of cached contents at each
MH does not exceed 1 and it may have different distribution among MHs. Constraint
(5.5e) shows the normalized demand rate and cached content should be requested by
at least one MH. Lastly, the constraint in Eq. 5.5f limits that contents should not be
partitioned during the placement process.

In the formulated problem (5.5), the objective function Φ(x) is globally maximized
over an extremely huge number of combinatorial subsets, from which the final caching
decision table x is chosen. The most important and realistic aspect of this content
caching formulation, with regard to cellular network behaviors, is that both ρm,n and
ηm,n, collectively ϕm,n, vary for different MHs. Using the ϕm,n, to capture both impacts,
we modeled it using the 0/1-Separable Assignment Problem (ZoSAP).

5.1.8 Proposed SAP-based solution

Problem P5.1 in Eq. 5.5a is an NP-hard and extremely difficult to solve optimally, in this
form; meaning, to get an optimal content placement decision xm,n. Instead, we reduced
the problem into |N | subproblems and solve them with an iterative approach. Each
subproblem is modeled by the ZoSKP formulation (Subsection 4.5.1) and solved using
the DP-ZoSKP strategy at a pseudo-polynomial time of O(|M| · Ln). Then, an iterative
filtering mechanism is superimposed on the solutions of each subproblem.

In the proposed cache content selection procedure, represented in Algorithm 6,
we first run the Initialize function where variables are defined, such as cache-decision
(xm,n) and subset of contents in the cluster (C). Then, using Availability function (lines
5 to 11), we calculate the available free cache sizes from all MHs in the cluster and yet
unassigned contents from libraryM.
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Algorithm 6: Proposed D-ZoSAP caching strategy
Input:M,R,S ,N , {Ln}
Result: xm,n

1 [Initialize]
2 xm,n = zeros(|N |, |M|);
3 C = ∅;
4 Function: D-ZoSAP(R,S ,M, {Ln})
5 [Availability]
6 for n = 1 to |N | do
7 L̄ =

{
L̄n : L̄n = Ln −∑|Cn|

m=1 sm · xm,n

}
;

8 M̄ = { fm : xm,n = 0, fm ∈ M, ∀n ∈ N};
9 R̄ =

{
ϕm,n : ϕm,n ∈ R, ∀ fm ∈ M̄

}
;

10 S̄ =
{

sm : sm ∈ S , ∀ fm ∈ M̄
}

;
11 end
12 [Round]
13 x̂m,n = zeros(|N |, |M|);
14 for n = 1 to |N |, ∀m ∈ M do
15 x̂m,n = DP-ZoSKP(M̄, R̄(∀m, n), S̄ , L̄n) (apply Algorithm-2);
16 end
17 for m = 1 to |M| do
18 if (∑|N |n=1 x̂m,n > 1) then

19 x̂m,n =

{
1, at n : ϕm,n = maxn∈N R̄(m, n)
0, else;

20 end
21 end
22 xm,n = xm,n ⊕ x̂m,n;
23 Call Availability;
24 for n = 1 to |N | do
25 if (L̄n ≥ min(sm), ∀sm ∈ S̄) then
26 L̄ = L̄ ∪ {L̄n};
27 end
28 end
29 repeat
30 Go to Round;
31 until (L̄n < min(sm), ∀L̄n ∈ L̄, ∀sm ∈ S̄);
32 return xm,n;
33 end

In the Round step (lines 14-16), every MH gets its candidate subset of contents Cn
by the temporary decision matrix x̂m,n, using DP algorithm (as explained in Subsection
4.5.1 and Algorithm 2). After candidate subsets selection, if any content fm exists in
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multiple subsets, it is assigned to only the subset, i.e., x̂m,k=0, where fm has the high-
est ϕm,n value (lines 17-21). Therefore, they are removed from all other subsets, i.e.,
x̂m,k=0,∀k ̸= n. The decision matrix xm,n is updated by bitwise XOR with x̂m,n (line
22). All resulting subsets so far are feasible but not optimal until all MHs can no longer
accept contents. Rather, the expected value of rounded CHR is at least (1-(1- 1

|N | )
|N |)

times the optimal objective value (interested readers are referred to [142] for the proof).
Still, there could be available cache space and free contents after each xm,n update

step, so Availability function is called, and only relevant spaces are considered (lines
23-28). Then, the content selection is repeated whenever there is space and unassigned
content (line 30). The final caching decision of all iterations in an epoch is found when
there is no space to cache any content. This strategy can also be used for cache refilling
after a profile update– an intermediary step before full-scale caching.

The proposed content caching strategy for multiple heterogeneous MHs, decides
whether any free fm is placed at its most ‘demanding’ MH but without partitioning. We
call this policy as demand-aware zero/one separable assignment problem (D-ZoSAP) caching
strategy. It gives an optimal content selection at a pseudo-polynomial time complexity
of O(|M̄| ·∑|N |n=1 L̄n) for each iteration. This time complexity vanishes very fast because
the number of free contents and the size of space decay exponentially per iteration.

5.1.9 Numerical results and discussions

In this subsection, we evaluate the performance of the D-ZoSAP placement strategy by
comparing it to the state-of-the-art that assumes equal content popularity for each MH.
Thus for the two baseline strategies, the popularity of content does not change towards
all MHs but their global popularity is estimated by taking the aggregated request rate
from the cluster. These baseline strategies: i) bound-and-bound zero/one-Multiple Knap-
sack Problem (BB-ZoMKP) caching, an exact strategy that models the content caching by
MKP and iteratively solves each iteration using DP (details in [141]), ii) Greedy-MKP
caching that selects the most popular contents after sorting them in non-increasing or-
der of their popularity, which is very often used [138]. It sequentially fills each MH
using available free contents per iteration.

We evaluate the performance of the D-ZoSAP caching strategy in terms of CHR
(see Eq. 5.4), which shows the percentage of content requests successfully served by
the helpers compared with the total number of requested contents in the cluster. The
CHR is the expectation of user request to be a cache hit event, so it is a more general
performance measuring metric [143]. We have two CHR in kind: one-hop CHR (Φ) and
local CHR (Φ̂). The one-hop CHR (OCHR) is a cluster-wise success ratio, including
those served by the hosting MHs (i.e., after cluster cache hit events). The local CHR
(LCHR) is part of the OCHR but is specific to the direct success rate by the local MHs
only (i.e., after local cache hit events). An OCHR value close to the LCHR implies
that UEs’ interest is concentrated on associated MHs and provides remarkable latency-
sensitive applications with guaranteed latency. It enhances content local availability
and boosts data retrieval from the most convenient location. On the other hand, an
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OCHR value much higher than the LCHR shows that the UEs’ interest is spread to
multi-hop edges, thus aggravating network traffic overhead during delivery [108].

We did extensive system-level MATLAB simulations (on 20 GB RAM, Intel i3-7100
CPU) for several network scenarios. We considered a 3-tier MEC-cluster which con-
tains three types of computing and caching edges: one central MBS at the first tier, 20
SBS (N1), and 100 femto-base stations (FBS) (N2) at the second tier; i.e., |N1|+|N2|=120
MHs. The cache size sets of the SBS and FBS, L1 and L2, follow a normal distribu-
tion with mean and variance pairs of (ξ1, σ2

1 ) and (ξ2, σ2
2 ), respectively. That is, L1 ≃

norm(ξ1, σ2
1 ) and L2 ≃ norm(ξ2, σ2

2 ), while L1x120 = {Ln : n = 1, ..., |N |} = L1 ∪L2. In
simulation cases where these parameters have to be fixed, we take ξ2 = 20 GB, σ2

1 = 10,
and σ2

2 = 2, which give us the required network heterogeneity. The number of active
UEs associated with each serving MH is represented by an exponential distribution:
Un ≃ exp(δ), with mean value δ=10.

We consider a huge library with |M| = 5,000 contents, at the MBS, such that their
size {sm} follow an exponential distribution of mean µ, i.e., S1x5000 ≃ exp(µ). Worth to
note that L ≪ ∑|M|m=1 sm, where L = ∑|N |n=1 Ln. The local content popularity (ρm,n), with
respect to each MH, is modeled by the Zipf distribution, where all demanded contents
are ranked based on the number of requests they received in that MH at a given time
epoch. For that, we fixed γ=1.0, which shows that 10% of contents account for 75%
of the local popularity in our |M|. On the other hand, the request ratio of a content
(ηm,n) follows a Poisson distribution with rate parameter λ=100 requests per epoch.
The spatial request probability (ϕm,n) is the expectation of the product distribution of
the two independent variables, i.e., ϕm,n=E[ρm,n.ηm,n].

Technically, we focus on analyzing large videos that greatly burden the network
performance. These are long-lasting popular videos, such as the 4K types, whose con-
tent size is adapted according to average bit rate values in ’recommended upload en-
coding settings for YouTube’ (by Google company, [123]) and ’guidelines for video
delivery over a mobile network’ (by NTT-DOCOMO company, [124]). Based on these
guidelines and a survey on size specifications from a few contents delivery companies
(look at Table 4.3), we fixed µ=4 GB, which corresponds to an HDR (4K) video of reso-
lution 3840×2160 (2160p) at High Frame rate, the average length of 8 minutes, and bit
rate of 66 Mbps (look at Table 4.2).

In the following subsections, we explain the impacts of system parameters on caching
performance, using some of the extensive simulations, in a side-by-side plot: i) a CHR
value (Φ) for the entire cluster and, ii) a local mean CHR value (Φ̂) for an MH. Recall
that Φ indicates the availability of all requested contents in the cluster, regardless of the
MH they are placed; maybe, not in serving MH but in hosting MH. A very high CHR
value, let’s say Φ=0.95, means that almost all requested contents are available in the
MEC cluster (a high cache hit event happens). More specifically, the local (Φ̂) shows
the availability of requested contents within each associated MH (which the UE makes
the request through). This value is calculated by taking the mean CHR of all MHs so
that, in contrast with the Φ, it shows the degree of demand-based content placement.
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Impact of cache size on cache hit ratio

For this scenario, the ξ1 value stepped from ξ1=0 GB (means there no SBS) to ξ1=500
GB, while ξ2=20 GB for all FBSs. Thus, at every stage, the cluster cache size is esti-
mated as: L = |N1| · norm(ξ1, σ2

1 ) + |N2| · norm(20, σ2
2 ) GB. We popularity distribution

parameter γ=1.0 and contrasting content mean sizes µ=4 GB and µ=8 GB.
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FIGURE 5.3: For increasing cache size: a) CHR for the cluster (left), b)
Mean CHR for each helper (right).

The two plots in Fig. 5.3 indicate the CHR of a cluster (left) and the mean local
CHR (right) per MH. As can be seen, the Φ̂ is as large as the Φ, indicating that al-
most all contents are placed at MHs through which they were highly requested. This
proves that contents are placed based on their demand level. We also notice that, for
all strategies, as the cache size increases, both cluster and local CHRs increase. This is
because the cluster gets sufficient cache space to place more contents. However, as µ
steps up from 4 GB to 8 GB, the performance gap between corresponding Φ outcomes
linearly widens (a similar pattern is seen for Φ̂). At an equal level of CHR or content
availability, doubling the µ value needs about 2.5× ξ1 cache space. This indicates that
only enlarging cache size does not bring the expected network performance but also
depends on content sizes.

In all cases, the proposed D-ZoSAP caching strategy outperforms baseline strate-
gies. It is extremely useful when we have smaller cache sizes; e.g., at ξ1=50 GB, it gives
a 150% hit ratio than the BB-ZoMKP and 260% than the Greedy-MKP strategies, both
locally and globally. This is achieved because the D-ZoSAP algorithm places every
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content at the MH that demands it the most, while the baseline strategies do not han-
dle this content spatial demand. The D-ZoSAP might not be required when the cluster
cache size is very large. We separately proved that D-ZoSAP and BB-ZoMKP strate-
gies equally perform for L ≥ 0.70 · ∑|M|m=1 sm. Here, the BB-ZoMKP outperformed the
Greedy-MKP strategy.

Impact of content size on cache hit ratio

The availability of contents after a caching process depends on the content size under
some system parameters. The two plots in Fig. 5.4 give us more details on the relation
of both Φ and Φ̂ with µ, under two popularity skewness γ=0.4 and γ=1.2. The video
content mean size (µ) of the exponential distribution is increased µ=2 GB to µ=16 GB
while the cache size of MHs is fixed with ξ2=20 GB and ξ1=20·ξ2.
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FIGURE 5.4: For increasing content size: a) CHR for the entire cluster
(left), b) Mean CHR for each helper (right).

The straightforward observation is that Φ and Φ̂ show a similar pattern, so the
CHR at each MH is nearly equal. For both cases, we observe that all strategies hav-
ing small-sized (µ=2 GB) video contents give a very high hit ratio, e.g., from Φ=0.85
(Greedy-MKP) to Φ=0.95 (D-ZoSAP). When content size gets bigger to µ=16 GB, this
performance exponentially decays to Φ=0.15 and Φ=0.51, respectively. This is because
the cache size becomes a severe constraint to caching larger contents.

In another comparison, the CHR value generally declines when the popularity in-
dex gets lower from γ=1.2 (highly skewed) to γ=0.4 (close to uniform). For example,
when the proposed strategy is applied on nearly uniform popularity but large-sized
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contents (e.g., µ=16 GB), their availability decreases from 52% to 40% while the BB-
ZoMKP drops from 41% to 33% because the content size constraint becomes tougher
while the request probability of requested content decreases due to the dispersion of
content popularity to a larger number.

In all cases of this scenario, the D-ZoSAP outperformed the baselines by far. Mainly,
when we have highly skewed popularity (γ=1.2) and content size of µ=2 GB, it outper-
forms by 102% BB-ZoMKP and increases to 125% at µ=16 GB. This is achieved because
the D-ZoSAP strategy places contents at MH where they are most ‘demanded’. The
BB-ZoMKP showed better performance than the Greedy-MKP since the algorithm can
cache more contents and get an exact solution per multiple MHs, without being aware
of spatial demand. The Greedy-MKP has the lowest performance since it can’t deal
with the size constraints of the problem.

Impact of popularity skewness on cache hit ratio
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FIGURE 5.5: The CHR with increasing popularity index for a cluster of
MHs: a) varying ξ1 (left), b) varying µ (right).

The impact of the popularity index on cluster CHR is shown in plots of Fig. 5.5
for the global Φ of the cluster under: a) two cache size values of ξ1=50 GB and ξ1=400
GB, at µ=4 GB; b) two content sizes of µ=4 GB and 8 GB, at ξ1=400 GB. The popularity
index γ ranges from 0 (uniform popularity) to 2.0 (very few videos are very popular).
In both cases, the FBS edges have cache mean size ξ2=20 GB. The result shows that
larger video contents have less CHR in the cluster for all strategies due to MHs cache
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size limitation. This effect is noticed either when ξ1 is reduced from 400 GB to 50 GB
for fixed µ (left plot) or µ is increased from 4 GB to 8 GB for fixed ξ1 (right plot).

Interestingly, the performance of the proposed strategy varies over a range of skew-
ness levels. Looking at the left plot of Fig. 5.5, the D-ZoSAP performs almost equally
with the BB-ZoMKP strategy at ξ1=400 GB for γ ≤0.5. Even when we have sufficient
cache size (e.g., ξ1≥400 GB) for γ≤0.8, the BB-ZoMKP is preferred, however more com-
plex and computationally costly. Based on mean cache size (µ), the D-ZoSAP gives an
exponentially increasing CHR after some popularity index such as γ=0.5 for ξ1=50 GB
or γ=0.8 for ξ1=400 GB. The CHR value for ξ1=50 GB case drastically increases close
to the ξ1=400 GB case for γ=2. From this plot, we understand that γ has a significant
relation with ξ1, unlike the case of changing the content mean size, such as from µ=4
GB to µ=8 GB (right plot). In general, for real cellular networks, with γ >0.8, the pro-
posed strategy is quite useful. This high performance is achieved because D-ZoSAP
caches contents at serving MHs, through which they receive the highest demand rate
from active users.

Though the BB-ZoMKP strategy gives high CHP performance [141] (only focuses
on choosing very popular ones), its CHR slightly decreases across γ values because the
γ seen in each MH is counterbalanced at the MBS, so the popularity is less affected. The
strategy disregards the demand of individual MHs so that highly popular and impact-
ful contents are displaced from their destined serving MH. In contrast, but with lower
performance, the Greedy-MKP strategy increases with skewness because it places free
video content at higher-demanding MH and succeeds in a cache hit.

Computation cost analysis

We analyzed the computation cost of the D-ZoSAP strategy by the time the algorithm
takes to accomplish a single-round selection. The following two plots indicate the
time: 1) under an increasing cluster cache size of ξ2=0 GB (there is no SBS) up to 500
GB, ξ2=20 GB, where γ=1.0, µ=4 and µ=8 GB; ii) under increasing content popularity
indexes of γ=0.1 up to γ=2.0, where ξ1=400 GB, ξ1=400 GB, µ=4 GB, and µ=8 GB.

In Fig. 5.6, the computation time increases over the cache sizes except for all strate-
gies except the Greedy-MKP. The cost of the proposed strategy is slightly higher than
the Greedy-MKP because of extra iterations to assign contents at the most demanding
MH. Still having great CHR performance, the proposed strategy’s computation time
is below 1 second for most cases and less costly than the BB-ZoMKP. From the plot,
we notice that larger contents seem less costly to assign using the proposed strategy.
However, the content size has an insignificant impact on the computation time.

Similarly, Fig. 5.7 indicates that the content popularity index almost does not affect
the computation time for baseline strategies. Also, the impact of the content size is
not that relevant. In contrast, the time for the proposed strategy goes up 2.6 seconds
for γ=0.1 because the contents are nearly uniformly popular, which is not practically
happening, so the number of iterations increases. For the same reason, smaller content
sizes are computationally more demanding than bigger ones. Interestingly, the compu-
tation cost for the proposed strategy significantly drops over the increasing popularity
index, e.g., the computation time goes below 1 second for γ ≥1.0 and µ=8 GB. This
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FIGURE 5.6: Computation time under increasing cluster cache size.

achievement is crucial to employ the strategy in real networks with highly skewed
popularity indexes.
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FIGURE 5.7: Computation time under increasing popularity index.
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5.1.10 Section summary
In this section, we have studied a novel cooperative content caching system in a clus-
ter of MEC-enabled edges, which are densely deployed to offload the central MBS. The
most important aspect of this scenario is that contents have different popularity and
request probability for each MH edge. We focused on assigning contents to the MHs
where they are most ‘demanded’. Using the combined impact of the local parame-
ters of the request probability, the local popularity, and the spatial request ratio, we
have modeled the caching scheme using the Separable Assignment Problem. We then
proposed an iterative combinatorial content placement strategy, where an optimal so-
lution is found for each MH, sequentially using DP, in each iteration. The outcomes of
subproblems are merged to a filtering instance where overlapping contents are fixed
to only the edge where they have maximum request probability.

The simulation results show that the proposed demand-based caching strategy out-
performs baseline strategies. However, the performance is influenced by critical sys-
tem parameters such as library size, cache size distribution, and content size and pop-
ularity distributions. Since the contents are found in its heavily requesting MH, the de-
livery cost is lessened. In addition, the MEC functionality in the enabled MHs makes
RAN data analytics easier than the centrally-processed standard protocols so that the
computation cost is highly minimized. This caching scheme can be scaled up to a joint
caching to optimize the delivery cost at the cost of system complexity.
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5.2 Cooperative Caching with Partitioning

This section details a caching strategy applied to a mutual concurrent scenario of three
important models: multiple knapsack problems using the ZoMKP formulation, demand-
aware caching using the SAP formulation, and content partitioning. Like in other sce-
narios, numerous MHs are clustered around a central MEC-enabled head, the MBS,
which controls the caching process. The MHs try to maximize their benefit in this case,
so they need a ’demand-aware’ caching strategy.

5.2.1 Caching system model
The system model is similar to the one defined in Section 4.3, where the MBS has a
list of video contents, defined as: M={ fm : 1 ≤ m ≤ |M|}. All cache-capable SBSs
and FBSs have different cache sizes and serve as MH. For each computation epoch,
content popularity vector P={ρ1, ρ2, ..., ρ|M|} is known (which holds ∑|M|m=1 ρm=1), that
can be derived by any popularity estimation technique using the aggregate of request
rate towards each content. Unlike the MKP, this problem tries to maximize the gain of
each MH, so it becomes quite complex to reach any feasible solution. Again, unlike the
MKP formulation, content partitioning is encouraged in this design. Hence, contents
are cached by taking them entirely or fragmenting them into subcontents, also called
chunks (w), using any convenient compression algorithm.

With the permission of content partitioning, based on the request rates from the
MHs, we devise a technique that provides a suboptimal result. For that matter, this
formulation aims to select a set of chunks (Wn), Wn={wm,n : m ∈ M, 1 ≤ n ≤ |N |},
and used to populate each MH. However, the sum of their size should not exceed the
cache size of the respective MH. Given library M, P , and S , the CHP maximization
problem is formulated in Eq. 4.2, subjected to constraints of Eq. 4.2b-4.2e. Because of
its variety in partitioning, this problem is modeled by the Special Multiple Knapsack
Problem (SMKP). It is logically represented in Fig. 5.8, with chunk placement format.

Once the caching process is completed and when a new request comes from a UE,
the MHs strongly cooperate to deliver sufficient chunks to UEs through the appropri-
ate path. Hence, the requesting UEs can decode the content from the chunks. If no
trace of the content is found in any of the MHs, it is served from the MBS.

5.2.2 Proposed simplified method
This simplified content caching technique is a demand-aware MKP (D-MKP) strategy
that has two independent steps: i) content selection by relaxation, to choose the most
popular contents fromM and, ii) content assignment, which assigns selected contents
to the MHs based on their interest.
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FIGURE 5.8: The MBS places non-overlapping chunks to cooperating
MHs.

Content selection by relaxation

The straightforward task to maximize the problem P4.1 (Eq. 4.2) is selecting the most
popular contents from M, assuming a single cache. Hence, we apply a combinato-
rial selection method at the MBS by first relaxing the constraint (4.2b) and getting the
tightest upper bound. For that purpose, the surrogate relaxation, which is very practi-
cal for the case, is chosen in that: i) contents can be easily partitioned, and ii) there are
many items to be placed at a few MHs. To apply the standard surrogate relaxation, let
(π1, ..., πn) be a vector of positive multipliers which satisfies: ∑|N |n=1 πn ∑|M|m=1 xm,n · sm ≤
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∑|N |n=1 πn · Ln, so that the ZoMKP formulation in Eq. 4.2 is redefined as:

P5.2 : max
xm,n∈X

|N |

∑
n=1

|M|

∑
m=1

ρm · xm,n (5.6a)

subject to:
|N |

∑
n=1

πn

|M|

∑
m=1

xm,n · sm ≤
|N |

∑
n=1

πn · Ln (5.6b)

4.2c− 4.2e (5.6c)

This relaxation has to select a set of cluster contents (C) for further process. This
relaxation is done by minimizing the upper bound of problem P5.2, which means the
tightest UB. Hence, reducing the constraint violation. For any feasible solution with
decision xm,n̄ such that: n̄ = arg min{πn : n ∈N}, constraint (5.6b) is equivalent to:

∑|M|m=1 xm,n̄ · sm ≤ ⌊∑|N |n=1
πn·Ln

πn̄
⌋. This inequality is required to be minimized and since

∑|N |n=1 Ln ≤ ⌊∑|N |n=1
πn·Ln

πn̄
⌋, any positive constant π gives minimum capacity. As proved

in [133], this is the optimal vector of multipliers that gives the tightest upper bound, i.e.,
when π1 = · · · = πn=π>0. Hence, taking any constant π and setting ym=∑|N |m=1 xm,n,
problem (5.6) is further reduced to a ZoSKP as follows:

P5.3 : max
ym∈Y

|M|

∑
m=1

ym · ρm (5.7a)

Subject to:
|M|

∑
m=1

ym · sm ≤
|N |

∑
n=1

Ln (5.7b)

ym ∈ {0, 1}, 1 ≤ m ≤ |M| (5.7c)

The constraint in Eq. 5.7b is the cluster cache size. The simplified placement problem
P5.3 in Eq. 5.7 can be optimally solved using the DP-ZoSKP Algorithm (Section 3.4).
We allow the partitioning of selected contents into fitting chunks so that it fills all MHs
cache spaces. Hence, this objective function is almost equal to the optimal value of the
ZoMKP formulation in Eq. 4.2.

Balanced content assignment to MHs

The MHs have strong cooperation to deliver chunks to UEs, and each content has
unique global popularity ρm at the MBS. Once we optimally select the candidate con-
tents (get the C from the above step), we can partition them using any coding scheme
and assign chunks to the MH caches.

(a) Minimized contents’ partitioning: we sequentially choose a set of contents to place
into all MHs. After fitting as many contents as possible to a cache Ln, the over-
head portion of the first breaking content ( fb), which does not fit the remaining
space, i.e., fb = min

{
b : ∑b

m=1 sm > Ln

}
. Hence, the residual space of Ln is filled
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by partitioning fb into two chunks. That means, a size portion of sb − (Ln −
∑b−1

m=1 sm) and respective popularity portion of (Ln − ∑b−1
m=1 sm) ∗ ρb/sb is added

to the Ln and the remaining portion is placed at Ln+1. This process continues to
all MHs, but no content breaking for L|N | because we have no space for the over-
head chunk of the last content. Thus, the maximum number of contents that will
be partitioned is |N |-1. This number can be further reduced by re-selecting com-
binations whose sum of content sizes closely fits with Ln, using the Subset-sum
Problem (SSP), as follows.

P5.4 : max
|C|

∑
m=1

smxm (5.8a)

subject to:
|C|

∑
m=1

smxm ≤ Ln (5.8b)

xm ∈ {0, 1} , fm ∈ C, m = 1, 2, ..., |C|, n = 1, ..., |N | (5.8c)

Since we take only exactly fitting subsets, we take the equality sign in the con-
straint (5.8b), and an optimal solution is obtained using DP. While using the SSP,
if all contents are assigned to MHs, no content is partitioned. This combination
gives the optimal solution to the main problem. However, the SSP minimizes
cache space loss (reducing residual buffer), suppressing the individual interests
of MHs towards each content, and the traffic load will be unbalanced.

(b) All contents partitioning: we partition almost all contents to wm,n, as shown in
Fig. 5.8. For that, we use the ratio of the number of all requests to every con-
tent. Further assumptions: i) partitioning content fm in terms of its size has
the same partitioning effect on its popularity, ii) there is no redundant request
to a single fm from the same UE through different MHs. Let rm,n be the num-
ber of requests to fm through nth MH in a specific epoch. Then, the total re-
quest to fm is rm=∑|N |n=1 rm,n at the MBS. The contents are partitioned using a rate

κm, κm=rm,n/rm where ∑|N |n=1 κm=1, and determine chunk parameters: size (wm,n),
popularity (ρ̂m,n), and decision parameter (ŷm,n). A proportional popularity vec-
tor Pn = {ρ̂1,n, ρ̂2,n, ..., ρ̂m,n} is created for each nth MH chunks wm,n. Hence, the
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demand-aware placement per MH is formulated as follows:

P5.5 : max
|Cn|

∑
m=1

ŷm,n · ρ̂m,n (5.9a)

Subject to:
|Cn|

∑
m=1

ŷm,n · wm,n ≤ Ln (5.9b)

|Cn|

∑
n=1

ρ̂m,n = ρm,n (5.9c)

|Cn|

∑
n=1

wm,n = sm (5.9d)

|Cn|

∑
n=1

ŷm,n = {0, 1} (5.9e)

The D-MKP, with an ’all contents partitioning’ scheme, allows UEs to get the dominant
chunk of content from the MH, where it is most popular. On the contrary, another MH
might cache no chunk because it did not receive any request. This chunk assignment
indicates that the D-MKP strategy is demand-aware, which brings a fair availability of
chunks at MHs. Upon request from users, all chunk-hosting MHs cooperatively serve
them to the UEs through a convenient protocol.

5.2.3 Numerical results and discussion

The performance of the proposed placement strategy (i.e., DP-MKP with all content
partitioning) is evaluated by comparing it with iterative baseline strategies. The MHs
are sorted in increasing order of their cache sizes to avoid bias in all strategies. For
easiness, system parameters are: |M|=100, γ=1.0, and sm is exponentially distributed
with µ=1.23 Gb (corresponds to a 4-minutes video [125] with 720p resolution, at a rate
of 5 Mbps), |N |=3. The cluster cache size (L) ranges from 10 Gb to 100 Gb. Wherein
the MHs’ cache sizes share is: L1=0.2 · L, L2=0.35 · L, and L3=0.45 · L.

Performance in terms of CHP

The two plots in Fig. 5.9 evaluate the performance of the three algorithms over the
relaxed problem P5.3 (i.e., Eq. 5.7). Since we can partition contents and use the en-
tire L, using this D-MKP strategy, a nearly optimal solution is found for the ZoMKP
formulation, a reference for further analysis.

Proving the performance of DP (left plot), the right plot in Fig. 5.9 depicts that
the proposed D-MKP caching strategy outperforms the other three baseline strategies.
The baseline strategies sequentially fill the caches, without content partitioning, us-
ing methods: i) the DP algorithm (for DP-ascending), ii) greedy selection (for Greedy-
ascending), and iii) random selection (for Random-ascending). It is worth noting that
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FIGURE 5.9: CHP performance: a) relaxed problem solved with three
methods (left), b) D-MKP compared to baselines (right).

the D-MKP is even better than DP-ascending because it can break contents and place
them in cache buffers. But when the cache sizes are relatively larger, also the baselines
perform well because there is enough space for caching more contents.

Performance in terms of load balancing

The result in Fig. 5.10 compares the impacts of the partitioning in the D-MKP itself.
The CHP values for each MHs are close to each other when we make ’all partitioning’,
unlike in the case of the ’minimized partitioning’ scheme. This shows that the D-MKP
with chunks synthesized based on the request ratio (κ) caches contents in a fair fashion.
In contrast, the minimized partitioning scheme, which breaks less than |N | contents,
incurs a very wide performance gap among the MHs. This shows that the contents
are biased to some MHs, and the performance depends on the MH cache size and the
order of filling. Interestingly, the performance gap between MHs for the proposed
assignment method is consistent with increasing the L because the parameters of the
assigned chunks are delimited by the independent request profile from each MH.

Performance in terms of service reward

The service reward is the amount of data downloaded, or the required data capacity,
at the instant of serving a request. Since the popularity distribution is known and
contents have no redundancy in the cluster, we can adapt the average service reward
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different content partitioning schemes.

(Ω) of all cached contents from [30], as follows.

ΩM =
|N |

∑
n=1

|Cn|

∑
m=1

ρ̂m,n · wm,n (5.10)

The plot in Figure 5.11, by computing Eq. 5.10, depicts that the D-MKP with a
’full partitioning’ scheme highly reduces the link capacity budget by a factor of 1/3 to
serve the contents for each MH. In this case, the total Ω is very high (which means the
downloading requirement is reduced) due to the ability to partition contents by a scale
of not more than |N |. In addition, the proposed strategy fairly balances the capacity
load to the edges, in contrast to the ’minimized partitioning’ scheme. Harnessing this
straightforward strategy reduces the backhaul load of cellular networks, particularly
when a content placement happens over a congested backhaul or during delivery.

5.2.4 Section summary
In this section, we have studied a content caching strategy where multiple network
edges can cooperatively cache contents with freedom of partitioning. The content
caching is modeled by special generalized knapsack problems that allow item par-
titioning, and it is reduced to a single knapsack problem using standard relaxation.
The DP optimally solves the relaxed problem while the candidate contents are syn-
thesized into chunks and assigned to MHs based on the request rates. This scheme
increases the availability of chunks, or the entire content, at the MHs in a balanced
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fashion of the service load. When necessary, the placement process can be updated
with the computational capacity of caching edges. Such straightforward and very effi-
cient optimization methods boost the performance of both the content caching process
and the enabling technologies. The proposed D-MKP caching strategy needs multi-
path for synchronous transmission, so it is worth integrating the D-MKP strategy with
multipath caching, prompted in Subsection 6.2.1.
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5.3 Demand-aware Joint Content Caching

This section explains an outstanding extension to Section 5.1, where the caching pro-
cess is to be optimized in an end-to-end approach. This section presents a joint caching
formulation, mainly focusing on the delivery phase, with appropriate modifications to
the content placement formulation. This section’s relevant system model is the same as
the design detailed in Subsection 5.1.2. The system’s MEC computation processes and
radio information analytics are explained in Subsections 5.1.3 and 5.1.4, respectively.

5.3.1 Introduction
A joint caching procedure is a method where the content placement and delivery phases
are mutually optimized using an end-to-end approach. This scheme is extremely com-
plex because the two phases have a strong relationship, each with a different objective.
Their relationship is that the MBS (i.e., the leader) makes its own content placement de-
cision to maximize the content availability, in the cluster, by anticipating the possible
gains of the content delivery decision. On the other hand, the MHs (i.e., the followers)
make their own delivery decision, after the leader’s placement decision. Followers
have the objective of minimizing service utility costs. Hereof, the objective of the en-
tire MEC system is to maximize the CHR by the leader, subject to a layer of constraints,
and minimize delivery cost by followers, subject to their constraints.

So far, several joint caching approaches anticipated end-to-end optimization. The
authors in [12] decouple the original joint content placement and delivery problem: i)
using integer linear programming for solving the content placement problem and ii)
employing unbalanced assignments for solving the content delivery problem. How-
ever, they rely on a single-level decision by moderating the placement problem into
a delivery problem in an intractable formulation. Another remarkable work in [10]
formulates a joint content and delivery scheme as a nested dual optimization problem,
where the two phases are strongly interdependent. Accordingly, authors relax the orig-
inal nested dual problem to a mixed integer non-linear program (MINLP) and employ a
branch-and-bound method to enable MHs to decide independently. Although the re-
spective formulation and methodology are equipped with strong mathematical formu-
lations, the proposed system-wide centralized optimization faces significant scalability
challenges when having many MHs and centralized aggregation of RAN information.
Regardless of this limitation, authors claim that ’where to cache contents is influenced
by delivery decisions while how to deliver them is impacted by the content placement’,
which is a slip to HCN real property.

Acknowledging the mathematically sounding relationship of the two caching phases,
we argue that the content delivery phase does not strongly influence the content place-
ment due to the following characteristics of caching: i) the content placement is usu-
ally done at an off-peak time, and the decision is expected to wait for several min-
utes or hours (multiple epochs) while content delivery is an instant decision [122], ii)
because the UEs are extremely dynamic, the placement decision is made using MEC
analytics on past data and almost without knowing current statistics of the UEs, iii)
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the content placement decision is information-centric while the delivery decision is a
user-centric process, i.e., making content placement decision based on its RAN data
analytics is more effective than based on individual UE data. Therefore, treating the
content caching problem as a dual-nested problem is ineffective modeling. Rather, us-
ing hierarchical decisions by the leader and the follower players is much better.

In our novel approach, we assume a weak influence of the content delivery decision
over the content placement decision. This is only because the leader has to foreknow
the outcome of followers’ actions. That means the delivery problem is an embedded
constraint to the content placement problem. Once the contents are optimally placed at
the cooperative network edges, each serving MH decides on its delivery path to users
at a minimized service cost for each lively requested content.
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FIGURE 5.12: Joint content placement and delivery scheme.

5.3.2 Content delivery scheme

Due to the heterogeneous nature of the 5G architecture, the computational complexity
associated with caching is not trivial. Far from its simple representation in Fig. 5.12,
contents are distributively placed in different network types: some are in the 5G-NR,
some are in the 4G-LTE, and some other contents might be in the WiFi network [144].
On top of that, due to the very dynamic nature of users, they may change their profile
after requesting content. For example, they move away (like UE2 moved from MH1 to
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MH2), switch to another network (like the UE2 switched from the 4G LTE network to
the 5G NR), or change their path. When necessary and cognizant of applied handover
policies, the MEC functionality determines a user-to-MH association by applying util-
ity minimization approaches. Thus, the requesting UE might be re-associated to a new
local MH (recall, also called local MH), and the central MBS is informed. In such a case,
one UE may be associated with different MHs for the uplink and downlink services
[80]. That allows the MEC system to establish a new downlink path and directly serve
contents from caching MH to the requesting UE.

In the case of content delivery, the intelligent MHs in the MEC system determine
the transport routes that reduce the cluster cost. Again having a close look into Fig.
5.12 and referring to Fig. 5.2, and the xm,n as an indicator of content availability, the
content delivery phase is explained as follows. Any UE requests content ( fm) through its
associated local MH and, by checking from the lookup table (i.e., the MH compute pro-
cess ① in Fig. 5.2), one of the following three events occurs: i) a cache hit event happens,
means that fm is found at local MH (xm,n=1), with access probability ϕm,n thus fm is
immediately delivered to u, ii) a local cache miss happens, means that fm is not found in
its cache (xm,n=0) but at a neighboring helper k (xm,k=1, k ̸=n), with access probability
ϕm,k. In this case, the local MH forwards the request ID and location information (in f o)
to hosting edge k, so the content is served through the best MH [122], which delivers
fm to u through the established downlink, iii) a cache miss happens (xm,n=0, ∀n∈N ),
which means that fm is not found in the cluster, with access probability (1-ϕm,n-ϕm,k).
For this case, the local MH forwards the request and in f o to the central MBS. So, fm is
directly downloaded from the MBS to the associated MH. In this communication pro-
tocol, since the 5G NR architecture uses the Control and User Plane Separation (CUPS)
strategy [145], the upper-level packet processing and data aggregation are evenly dis-
tributed to network edges and ease packet forwarding.

Delivery utility cost analytics

Utility cost (υm,u) refers to the content serving cost incurred when delivering fm in the
downlink after being requested through local MH. The cost may include time taken
and power consumption, which depend on various physical-layer factors such as edge
density and the serving distance between u and MH.

For a requesting user (u), the cache decision variable xm,n indicates the availability
of content fm at its local MH (n). Let xm,k refer to content availability at any neighboring
MH. Thus, corresponding with the above three cache events (subsection 5.3.2), the
delivery cost model is given as follows:

υm,u =


υn

m,u; if xm,n = 1

υk
m,u; if

⋃|N |
k=1
k ̸=n

xm,k = 1

υM
m,u; if

⋃|N |
n=1 xm,n = 0

(5.11)

where
⋃

is operator such that
⋃|N |

n=1 xm,n=xm,1 ⊕ xm,2 ⊕ ... ⊕ xm,|N |. In Eq. 5.11, the
notation of instantly delivering cost (υm,u) varies based on the edge type. Here, cost



5.3. Demand-aware Joint Content Caching 109

segment υn
m,u occurs when content is delivered from the local MH (i.e., fm∈Cn) to the

user while υk
m,u is incurred when it is served from hosting MH (i.e., fm∈C\Cn), includ-

ing forwarding cost (υ f
n,k). This υ

f
n,k is the cost of MEC signaling overhead to k and

forwarding cost to the serving MH. Lastly, the cost segment υM
m,u is incurred when the

content is served from the MBS, i.e., fm∈M\C.
The total content delivery cost of the system is estimated by taking the sum of all

service costs for each u through all three events and associated costs. In this regard,
we consider contents requested only through respective local n, whose event status is
known by xm,n and {xm,n}⊆x. Let ym,u indicate that fm is served to u by its serving
edge, regardless of request route, such as yn

m,u is for local MH, yk
m,u is for other hosting

MH, and yM
m,u is for the MBS, where yn

m,u∈{0, 1}. Let also Ũn represent the set of UEs,
among active UEs associated with the MH, that instantly request fm. It is worth noting
that a single fm might be simultaneously served to many UEs from the hosting MH.
Given the cache hit event access probability ϕm,n and cost υm,u; defined on librariesM,
N , and Un, the total delivery cost of the system (Υ(x, yn

m,u)) is expressed in Eq. 5.12.

Υ(x, yn
m,u) =

|N |

∑
n=1

|M|

∑
m=1

xm,n · ϕm,n

|Ũn|

∑
u=1

yn
m,u · υn

m,u


︸ ︷︷ ︸

First Case

+
|N |

∑
n=1

|M|

∑
m=1

 |N |⋃
k=1
k ̸=n

xm,k

 · ϕm,k ·

|Ũn|

∑
u=1

yk
m,u · υk

m,u


︸ ︷︷ ︸

Second Case

+

|N |

∑
n=1

|M|

∑
m=1

1− xm,n − (
|N |⋃
k=1
k ̸=n

xm,k)

 · ϕm,n

|Ũn|

∑
u=1

yM
m,u · υM

m,u


︸ ︷︷ ︸

Third Case
(5.12)

=
|N |

∑
n=1

|M|

∑
m=1

|Ũn|

∑
u=1

yM
m,u · ϕm,n · υM

m,u −
|N |

∑
n=1

|M|

∑
m=1

xm,n · ϕm,n

 ˜|Un|

∑
u=1

yn
m,u · υM

m,u

+

|N |

∑
n=1

|M|

∑
m=1

xm,n · ϕm,n

 ˜|Un|

∑
u=1

yn
m,u · υn

m,u

− |N |∑
k=1

|M|

∑
m=1

 |N |⋃
k=1
k ̸=n

xm,k

 · ϕm,k

 ˜|Un|

∑
u=1

yn
m,u · υM

m,u

+

|N |

∑
k=1

|M|

∑
m=1

 |N |⋃
k=1
k ̸=n

xm,k

 · ϕm,k

 ˜|Un|

∑
u=1

yn
m,u · υk

m,u


(5.13)

Here, the expression
⋃|N |

k=1
k ̸=n

xk,m = x1,m ⊕ ... ⊕ x|N |,m indicates the placement of con-

tent at unique MH, in the cluster MHs, except the local MH. Also note the value ϕm,n
changes over the edge type. By the assumption of non-repetition of contents in the
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cluster,
⋃|N |

k=1
k ̸=n

xk,m={0,1}. By the expansion of system service cost in Eq. 5.12, and sort-

ing as shown in Eq. 5.13, we get the expression for the delivery utility cost in Eq. 5.14,
which comprises two gains of G1(xm,n, yn

m,u) and G2(xm,k, yk
m,u).

Υ(x, yn
m,u) =

|N |

∑
n=1

|M|

∑
m=1

˜|Un|

∑
u=1

yM
m,u · ϕm,n · υM

m,u︸ ︷︷ ︸
Cost if all served from MBS

−
|N |

∑
n=1

|M|

∑
m=1

xm,n · ϕn,m

 ˜|Un|

∑
u=1

yn
m,u ·

(
υM

m,u − υn
m,u

)
︸ ︷︷ ︸

G1(xm,n, yn
m,u): Gain from demand-aware caching

−
|N |

∑
k=1

|M|

∑
m=1

 |N |⋃
k=1
k ̸=n

xm,k

 · ϕm,k

 ˜|Un|

∑
u=1

yk
m,u ·

(
υM

m,u − υk
m,u

)
︸ ︷︷ ︸

G2(xm,k, yk
m,u): Gain from cooperative caching

(5.14)
In Eq. 5.14, the first term indicates the delivery cost if all the contents are served
from the central head, meaning that content caching is not applied. The second term
G1(xm,n, yn

m,u) indicates the utility gain from the demand-aware content caching scheme,
served through all local MHs. Mainly, this gain is from the first sub-objective vector of[
υM

m,u − υn
m,u

]
values. The third term, G2(xm,k, yk

m,u), indicates the gain when contents
are accessed from the neighboring MHs in the cluster but not in their local MH. There-
fore, this gain is entirely from the cooperative caching scheme, mainly attained from
the sub-objective vector of

[
υM

m,u − υk
m,u

]
.

In the above formulation, Eq. 5.14, the required cost optimization of Υ(x, yn
m,u)

can be achieved by maximizing the two gains. However, it is not trivial because the
two gains are also influenced by the accessibility of contents, which means the ϕm,n.
Therefore, maximizing the two gains becomes a binary nonlinear integer programming
problem that can be treated with some solvers.

5.3.3 Joint caching formulation

The joint placement and delivery process is a nested and complex problem. To com-
plement the duality nature of the joint caching process, we sorted into a bilevel opti-
mization problem. To that end, we pivoted on optimizing the two objective functions
by two decisions: maximizing the availability of contents by leader entity and mini-
mizing its total utility cost Υ(x, yn

m,u) by the follower entities.

Content placement decision by the leader

The MBS centrally makes decisions on content placement to maximize the availabil-
ity of popular contents at the caching edges without violating their size limit. For
that matter, we aim at selecting |N | number of non-overlapping subsets of contents
Cn, i.e., Cn∩Ck=∅, n ̸= k, k ∈ N . These subsets are placed at appropriate MH to op-
timize the objective function globally. The upper-level content placement problem is
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expressed in Eq. 5.5, where the non-repetition constraint in Eq. 5.5c is modified as:
xm,n ⊕

⋃|N |
k=1
k ̸=n

xm,k ≤ 1, ∀m : fm ∈ M.

Content delivery decision by followers

Once contents are optimally placed at the caching edges, the system chooses the cost-
effective path to deliver them to requesting UEs at a peak period. That means the
central head must consider the delivery cost while making the content placement de-
cision. This consideration shows that the optimization problem P5.6, in Eq. 5.5, has an
embedded objective function of globally minimizing the delivery cost. In addition, it is
worth noting the assumptions that, at a given instant of delivery: i) several UEs might
request for one content, ii) each UE gets only one content, iii) for any route choice
and the number of transporting hops from caching MH to the UE, there is tolerable
cost threshold (υ̃), which we assumed to be equal for all subcarriers. Then, the cost
minimization problem is given as shown in Eq. 5.15.

In Eq. 5.15, the first constraint (5.15b) shows that the number of active UEs served
by each MH is limited by its subcarrier capacity threshold (ỹn), pursuant to resource
optimization in the RAN. The constraint (5.15c) indicates that the total utility cost,
which is the consequence of the delay and energy consumption, for delivering content
should be less than the acceptable cost threshold. Lastly, constraint (5.15d) shows that
any UE is assigned and served by only one MH at any delivery moment [122].

P5.6 : min
{xm,n⊕xm,k}⊆x

fm∈M,∀n∈N ,∀u∈U

Υ(xm,n, yn
m,u) (5.15a)

subject to:
|Un|

∑
u=1

yn
m,u ≤ ỹn, ∀n ∈ N (5.15b)

|Un|

∑
u=1

υm,u ≤ υ̃, ∀n ∈ N (5.15c)

|N |

∑
n=1

ym,n ≤ 1, ∀m : fm ∈ M (5.15d)

Recall that the main objective function P5.1 typically represents the placement opti-
mization while the nested function P5.6 refers to the delivery optimization. Thus, the
joint caching expression is given as follows, where placement and delivery phases are
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mutually optimized:

P5.7 : max
∀xm,n∈x

Φ(x, yn
m,u) (5.16a)

subject to: 5.5b-5.5f (5.16b)
min

{xm,n⊕xm,k}⊆x
fm∈M,∀n∈N ,∀u∈U

Υ(x, yn
m,u) (5.16c)

subject to: 5.15b-5.15c (5.16d)

In Eq. 5.16, the set of constraints in (5.16b) are system limits for the cache placement
process. In contrast, constraint (5.16c) is incorporated to anticipate the optimal deci-
sion by the follower entity. Generally, any placement decision without considering
the nested delivery optimization will bring higher utility costs and deteriorated QoE.
Again, the constraints in (5.16d) act as second-order limitations, but the placement is
not directly limited. Since the placement decision tries to assist the delivery decision,
they have an optimistically nested relationship.

The problem formulated in Eq. 5.16 is mapped to the bilevel optimization problems
(BOP), and thus, let us call the caching method as demand-aware joint caching using the
BOP strategy (DJ-BOP). Although the BOP outstandingly represents joint caching, this
problem is very complex to solve. However, there are several attempts in economics
and defense areas of operational research that solve them near-optimally. The majority
of the techniques lie in the game theory, and reformulations by Extended Mathematical
Programming (EMP) approaches. Specifically, this BOP is reformulated to mathemati-
cal programs with equilibrium constraints (MPEC) and can be solved using one of the
non-linear solvers, such as general algebraic modeling systems (GAMS).

5.3.4 Numerical results and discussions

In this subsection, we evaluate the performance of the proposed DJ-BOP strategy in
terms of energy consumption for making content delivery. In this analysis, we limit
the simulation of the joint caching: i) applying the D-ZoSAP strategy (Section 5.1.8) for
the leader decision process, and ii) using the cost estimation in Eq. 5.14 for followers’
delivering process. Its energy cost is compared to the cost incurred while using base-
line strategies, which are not demand-aware. The cost of baseline strategies is due to:
i) BB-ZoMKP, a caching strategy that applies the MKP for modeling and DP for solving
each iteration; ii) Greedy-MKP, a caching strategy that applies MKP for modeling and
selects contents in decreasing order of their popularity. Unlike the DJ-BOP strategy, the
global popularity of each content is similar to all MHs in the case of baseline strategies.

The simulation setup is basically similar to the one used in subsection 5.1.9 while
numerical parameters described in Table 5.1 are assumed [146], [147]. However, these
critical parameters need experimental justifications. The additional assumption here is
that the Un follows a normal distribution with mean UE density of δ while each content
receives requests from all MHs based on Poisson distribution, with mean request λ.
For better understanding, the simulation is made for all files inM where all instantly
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active UEs request to a content. Both cases lead to a high total system cost. The essence
is that we want to analyze the delivery cost if all of the contents are requested. Note
that a single content might be served to several UEs.

According to the utility model in Eq. 5.11, the unit cost of serving contents to re-
questing UEs is estimated as the energy consumption [Joule/bit] based on how they
are delivered. If the content is delivered: i) from local MH, the consumption will be
only en; ii) from other hosting MH, the cost will be (ek + en + e f k + elk), iii) from central
MBS, the unit consumption will be (ec + e f m + elc + en). For the two cases, the request
forwarding and link costs are added. In the last case, i.e., when a cache miss event
happens, contents are served from the MBS through at least one serving node, which
instantly becomes local MH. Note that the utility cost directly depends on the size of
contents and frequency of requests in a given epoch, so the unit costs are multiplied
with sm and rm,n.

TABLE 5.1: MEC task processing simulation parameters

Parameter description Values
Content processing energy density by local MH (en) 2.0×10−8 J/bit
Content forward energy density by neighboring MH (ek) 2.0×10−9 J/bit
Content processing energy density by a central MBS (ec) 4.0×10−8 J/bit
Content forwarding energy density to hosting MH (e f k) 1.5×10−10 J/bit
Content forwarding energy density to central MBS (e f c) 4.5×10−9 J/bit
Content serving energy density of a link from central MBS (elc) 4.5×10−7 J/bit
Content serving energy density of a link from hosting MH (elk) 1.5×10−9 J/bit
Mean number of actively requesting UEs (δ) 10, 20
Mean request rate to a content (λ) 100

As explained in the following two subsections, the analysis focuses on the impact
of certain parameters such as caching size, content size, content popularity index, and
user density on system cost reduction. It also shows the fundamental utility cost gain
of content caching in the RAN architecture.

Impact of content and cache sizes on delivery cost

This analysis increases the cluster cache size by spanning the ξ1 from 0 to 500 GB, ξ2 is
set to 20 GB, under two mean content size values. As can be seen in Fig. 5.13, the utility
cost decreases due to caching technology because the contents are placed very close to
the user. More importantly, increasing cluster cache size gives higher cost relief to the
system. Again, contrasting the two sets of plots shows that smaller contents, µ=4 GB,
cost much lower than larger contents, µ=8 GB. In general, caching smaller contents in
a large caching system gives multiple-fold delivery cost reduction.
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FIGURE 5.13: System utility cost for an increasing cluster cache size.

In the same plot, we observe that the proposed strategy is more effective in cost
reduction than baseline strategies for all scenarios. This is because the D-ZoSAP al-
gorithm can place contents in the most requesting node, while other strategies cache
contents without prioritizing content demand. In contrast, the two baseline strategies
are almost equally costly unless we have smaller size contents, whereas the Greedy-
MKP slightly outperforms because it takes short but unpopular files.

Impact of UE density and popularity index on delivery cost

In this analysis, the content popularity parameter (γ) is spanned from 0 (uniform pop-
ularity) to 2 (very highly skewed popularity) under two δ values, where γ values are
similarly applied for each MH. Other system parameters are fixed to identify the im-
pact of the content popularity index and the active user density. Hence, the active UEs
are exponentially associated with each serving MH: |Un| ≃ exp(δ), where δ=10, 20.

From the plots in Fig. 5.14, we observe that content caching relieves the system
cost by more than half. This is more important when the popularity index increases,
which leads to more frequent fetching of popular contents from the central system. In
addition, having highly dense active UEs is more costly, except for higher γ in the case
of DJ-BOP. For all cases of baseline strategies (and γ ≤ 0.7 for DJ-BOP), doubling the
density of active UEs, say from δ=10 to δ=20, leads to doubling the delivery cost. This
is because active users increase content requests’ frequency and redundancy, reducing
repeated content serving to the active UEs.

All caching strategies equally perform in delivering cost optimization when con-
tents are nearly uniform in popularity, such as γ ≤ 0.6. The utility cost of baseline
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strategies is almost unaffected by γ because they place contents to MHs based on ag-
gregate popularity. But the cost of the DJ-BOP strategy deteriorates when the popu-
larity index increases, which is the real network property. The proposed strategy is
extraordinarily important when we have highly popular files. This achievement is be-
cause demand-aware caching can place contents at the MHs, where many active users
can access them easily. Interestingly, the impact of user density diminishes when con-
tents have skewed popularity distribution because the cache hit ratio increases.

We also observe that the Greedy-MKP strategy very slightly outperforms the BaB-
ZoMKP strategy. This outcome is because the greedy approach only optimizes caching
process based on content popularity, while BaB-ZoMKP optimizes based on popularity
and size. It means that, though the BaB-ZoMKP strategy performs better in CHR,
it places many contents in neighborhood MHs, creating a higher intra-MH link cost.
This intuitive observation recommends applying the BaB-ZoMKP strategy for the joint
caching optimization by taking content delivery cost as the objective function.
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FIGURE 5.14: System utility cost for an increasing popularity index.

5.3.5 Section summary
In this section, we have studied the concept of cooperative joint caching, where both
the placement and delivery processes are mutually optimized. In this case, the content
placement targets optimizing the availability of contents while the content delivery
process aims at reducing the service cost. It means that we have to consider the best
possible decisions for the delivery process while optimizing the content placement,
which gives a duality nature.

The utility cost is modeled based on how the content is delivered to active users and
depends on parameters such as service distance, content size, UE density, and caching
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size. Taking some numerical assumptions, critical parameters which should be veri-
fied by experimental data, for the MEC-computing tasks, we did simulations to ana-
lyze the performance of the proposed DJ-BOP strategy. Taking specific scenarios, we
have shown that the proposed strategy outperforms the baseline system service cost
reduction strategies. The proposed strategy is highly recommended in case of larger
caching and smaller content sizes. More importantly, the DJ-BOP strategy dramatically
reduces the utility cost when the content popularity index is higher.

5.4 Chapter Summary

In this chapter, we have studied cooperative content caching systems for MEC-enabled
caching edges centrally controlled by the central head. The chapter had three sections
that have various aspects of demand-aware content caching. The most important as-
pect of this chapter is that contents have different popularity towards different MHs,
which makes the most comprehensive use cases of the HCN. We focused on assigning
contents to the MHs where they are most ‘demanded’.

In the first section, based on the request probability distribution, we modeled the
caching scheme by the Separable Assignment Problems. This scenario is dedicated to
the case where the non-partition concept applies. We then proposed an iterative combi-
natorial content selection algorithm, where an optimal solution is found for each MH.
The outcomes of subproblems are merged such that the overlapping contents are fixed
to only the edge where they have maximum demand. The obtained simulation re-
sults show that the proposed caching strategy outperforms profoundly. However, the
performance alterations show that the network design is influenced by system param-
eters such as popular content library size, edges’ cache size distribution, and content
size and request probability distributions.

In the second section, we apply the caching strategy to multiple MHs that cooper-
atively cache contents by fragmenting. The level of content fragmenting depends on
the application-level content synthesis and packet transmission protocols. The free-
dom to partition contents eases solving the demand-aware content caching by model-
ing with Special Generalized Knapsack Problems. Using simple relaxations, we assign
’top’ chunks to MHs based on the weight of received request rates so that these top
chunks can be served to requesting UE while other chunks are fetched from collaborat-
ing MHs. These top chunks are expected to increase the playback time and reduce jitter
to improve the QoS. The more cooperative collaboration among the MHs and robust
transmission protocol allows the partitioning of contents into the maximum possible
number of chunks, which means when contents are fragmented to |N | chunks, it gives
the best load balance and service reward. With the computational capacity of caching
edges, the placement process can be updated when necessary. Such straightforward
and very efficient optimization methods boost the performance of content caching.

Several use cases studied in this dissertation have room to extend into a more com-
prehensive network design perspective, such as the one modeled in Section 5.3. It
aims to develop a more realistic caching approach where the content placement and
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delivery processes are jointly optimized. This joint optimization is treated as a nested-
constrained problem where the delivery decision is embedded into the placement de-
cision. The content placement decision maximizes content availability, while the con-
tent delivery decision is made to minimize the delivery cost to end users. It addresses
many constraints, such as the limited cache size, content non-partitioning, content non-
repetition, different content popularity towards each MH, different content size, and
preserving content demand for each MH. Numerical results show that the proposed
DJ-BOP strategy reduces delivery costs by placing contents at the closest MH, which
means the caching edge that demands the content higher than others.
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Chapter 6

Conclusions and Future Prospects

The ever-increasing tsunami of content traffic in the HCN stems from the strong adop-
tion of smart devices and the fast growth of high-bandwidth multimedia services. In
addition, the high data consumption per subscriber to access resource-demanding ser-
vices such as VoD, augmented reality, immersive media formats, and others continue to
create a performance hurdle for the cellular network. To mitigate the pressing burden
and meet the required QoE, this dissertation has focused on deeply studying existing
works and proposing novel content caching frameworks.

This chapter summarizes the findings of the proposed caching strategies to enhance
the performance of the HCN. The first section briefs our conclusions and main contri-
butions, outlined in Section 1.4. The second section highlights future prospects, which
had substantial progress during the research time.

6.1 Conclusions

Unlike the state-of-the-art, we have employed various combinatorial optimization tech-
niques to uniquely model the content caching problems. Following implicit modeling
for each scenario, appropriate optimal and exact algorithms are used to solve the for-
mulated caching problem.

In Chapter 3, we study the problem of optimal content caching in cellular networks
where MHs act as relays by caching video contents to offload MBSs. We design a
novel caching strategy, DP-ZoSKP, to place contents from a single MBS to a single
MH, with different content sizes and popularity. This caching problem is modeled by
the 0/1-Knapsack Problems to optimally cache popular contents by taking the cache
size and non-partitioning as constraints. Then, we delivered an optimal and enumera-
tive caching strategy by introducing the tabulated dynamic programming method at a
pseudo-polynomial time of complexity.

The DP-ZoSKP strategy outperforms baseline strategies for various network sce-
narios, considering CHP as an objective function. From the application-level simu-
lation, we suggest useful design guidelines about the proposed strategy for real and
heterogeneous network parameters, such as γ close to 1 and µ=1.23 Gb. The impact
of these critical system parameters on CHP performance has been thoroughly inves-
tigated. The proposed strategy outperforms the baselines triple-fold in the case of
contents having uniform popularity. In practical network deployment scenarios where
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content popularity is Zipf distributed, and the content size is exponentially distributed,
the DP-ZoSKP strategy outperforms up to 118% baselines. Both content popularity and
size diversities, as part of the HCN heterogeneous property, are effectively managed
by the proposed strategy. This work is a building block for other complex scenarios,
investigated in consecutive chapters.

In Chapter 4, a more complex content caching strategy is investigated where mul-
tiple MEC-enabled MHs cache contents are uncoded. An exact caching strategy, BB-
ZoMKP, is proposed using an advanced bound-and-bound algorithm that effectively
handles the heterogeneity of network parameters. This caching system is comprehen-
sive because multiple heterogeneous MHs are deployed, and contents have diversified
sizes and defined popularity. We uniquely modeled the cooperative content placement
problem using MKP formulation, subjected to practical constraints concerning the het-
erogeneity of cache sizes of cluster edges, the no-repetition of popular contents within
the same cluster, and the no-partition of contents. To solve the proposed ZoMKP for-
mulation, we propose an exact bound-and-bound search strategy. It employs a highly-
effective methodology that explores the full state-space of the problem smartly. The
most complex ZoMKP is reduced into several 0/1-Single Knapsack Problems (ZoSKP)
formulations. A lower bound (LB) of the ZoMKP is obtained by sequentially fixing
contents to each MH using the ZoSKP. On the other hand, an upper bound (UB) is
obtained by assuming a cluster cache size equal to the sum of individual cache sizes
of the MHs, by the standard surrogate relaxation. We then directly employ the ZoSKP
formulation, whereas all ZoSKP formulations are solved using the tabular DP algo-
rithm. Once contents are placed at the right edge, the hosting MH cooperates with a
serving MH to serve the contents straightforwardly at minimized service cost.

Using extensive system-level simulations, we validate that the proposed bound-
and-bound content placement strategy is efficient and computationally feasible under
realistic MEC system setups. Its performance depends on the size distribution of con-
tents and their popularity skewness. Several design guidelines and best practices are
recommended through the simulation analysis, highlighting key performance trade-
offs for MEC cluster formation and efficient content placement. The most important
aspect of the proposed strategy is that the content selection algorithm can be scaled
to any level of the HCN topology for predefined system parameters, such as content
popularity predicted using any dynamic technique. We highlight the key performance
trade-offs that govern the caching phases while we also derive a set of design guide-
lines and best practices for content placement in multi-tier MEC-enabled HCNs.

In the first section of Chapter 5, we analyze a caching strategy where content popu-
larity varies towards each MH in a MEC cluster. This variation means each MH has dif-
ferent interest or demand level towards each content, typically the real HCN property.
This placement problem is modeled using the ZoSAP by taking a series of constraints
such as cache size, non-overlapping and non-partitioning of contents, and preserving
the demand of each MH. We then provided a novel and efficient cooperative caching
strategy using the recursive method at a very low cost, where each iteration is solved
using the DP-ZoSKP algorithm. The outcomes of each subproblem are outfitted to get
an instance where overlapping contents are fixed to maximally requesting MH. This
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caching strategy, called D-ZoSAP, enables us to cache contents at MHs where they are
most ’demanded’ after the caching edges make RAN data analytics. For the first time
in its kind, the strategy answers the two interdependent questions of caching: ’Where
to cache a content?’ and ’Which content to prioritize caching at an MH?’.

Our application-level analysis shows that the demand-aware D-ZoSAP caching
strategy outperforms baseline caching strategies regarding content availability in the
MEC cluster. Without loss of generality, the performance is influenced by critical sys-
tem parameters such as library size, cache size distribution, and content size and pop-
ularity distributions. The demand-based placement places contents at MHs associated
with heavily requesting UEs; thus, delivery cost overhead is minimized. In addition,
the MEC functionality reduces the computation cost since the enabled MHs can per-
form data analytic tasks.

In the second section of Chapter 5, we give insight into the ZoMKP formulation
but breaching the non-partition constraint. A powerful caching strategy is proposed
by virtually pooling the available cluster cache size using relaxation techniques. The
simplified form of the MKP is then solved using the DP-ZoSKP algorithm. In this
scenario, contents can be freely partitioned into necessary chunks and placed at the
target MH. Meanwhile, we propose the D-MKP partitioning strategy, where almost all
contents are segmented into several chunks, whose attributes are determined in line
with the level of content requests from corresponding MH. The D-MKP strategy gives
a demand-based and fair content placement across MHs and excels the fronthaul load
balancing at a very low computational cost. During content delivery, the MHs that
host the chunks of the content cooperate to serve a sufficient number of chunks so that
the UE can easily decode the content.

In the third section of Chapter 5, we heightened into a more comprehensive caching
approach where the content placement and delivery are simultaneously optimized us-
ing a joint optimization scheme. This caching strategy ought to be the most complex
scenario where several system constraints are considered, such as cache size, non-
partitioning, non-repetition, different content popularity towards each MH, different
content size, and preserving demand for each MH. It is overly complex because the
content delivery problem is jointly embedded into the placement problem. In this
setup, the content placement decision poses to maximize content availability, in terms
of CHR, in the cluster while the content delivery decision stands to minimize the deliv-
ery cost to UEs. Until this time, we have modeled the content placement and delivery
phases separately, with respective objectives. For the placement phase, we used the
ZoSAP formulation to maximize the content availability (in terms of CHR) while for
the delivery phase, we devised a cost model to minimize the end-to-end utility service
cost. We then formulated a joint caching model called DJ-BOP, using bilevel optimiza-
tion problems. Once the modeling is mathematically defined, it can be solved using
either reduction methods or existing non-linear solver tools.
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6.2 Future Prospects

The proposed caching strategies also inspire new research outlooks for the design of
advanced MEC-enabled caching and communication schemes. In particular, we have
been studying the following two caching prospects at different levels.

6.2.1 Caching with multipath protocols
Beyond the traditional protocols of UDP and TCP, there are newly developed mul-
tipath protocols such as multipath TCP (MPTCP) and multipath QUIC (MP-QUIC).
Thus, multipath caching using these protocols is the anticipated technique where con-
tents are cached into distributed network edges and served to users through defined
multiple paths. This technique helps to simultaneously transport several content chunks
during the placement and delivery phases. This approach executes extensive MEC
tasks: contents are synthesized as frames at the source edge, frames scheduled to trans-
mit through multiple paths, and frames are reordered at the receiver.

Given that the caching strategies use either a coded or uncoded form of content, as
far as both caching cases deploy a content segmentation, the caching performance may
not vary by using either way through multipath caching. However, uncoded caching is
essential for the asynchronous transmission of frames in a distributed manner without
increasing the communication rate [148]. Therefore, multipath caching conjoins the
benefits of both coded and uncoded caching strategies.

Multipath caching is vital when delivering content to meet the expected QoE pa-
rameters, such as buffer, playback time, and service time. It also boosts the content
placement process in case of occasional backhaul congestion. By exploiting the po-
tential of the multipath protocols to access the content library via multiple routes,
we can improve the network QoE at a reduced overhead compared to the cost of
traditional caching. Again, the anticipated multipath caching is thought to merge
caching schemes into the adaptive streaming technology with a small cache size de-
mand. While applying the multipath technology, neither edge clustering nor coded
caching is requisite, while demand-aware information-centric networking is very con-
sequential for caching security and robustness.

As a big opportunity for multipath caching, from a protocols perspective, the ex-
pected 5G architecture is rich with several 3GPP and non-3GPP network types that can
be used as servicing paths such as 3G UMTS, 4G LTE, 5G NR, WiFi, and MiFi. How-
ever, they have sizable heterogeneity in frequencies and standardization, which is an
obstructive challenge. Fortunately, standardization entities are developing motivating
techniques, such as dual connectivity, N3IWF, and ATSSS, to seamlessly integrate these
technologies into one umbrella of the 5G NR [149].

Dual connectivity refers to the condition where one UE can simultaneously connect
to multiple network interfaces and use radio resources without human interference,
as detailed in the 3GPP technical specification (TS), Release 15 [150]. These devices
use software interfaces to adapt the connectivity across broader generations. The dual
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connectivity may operate in different frequencies from two base stations. Beyond es-
tablishing multipath, dual connectivity also helps switch a line-of-sight (LOS) path
when a non-LOS occurs, a more severe problem in mmWave technology.

The N3IWF technology, recently detailed in Release 17 [151], is the technology that
manages the interworking of untrusted-3GPP networks (basically the WLAN) with the
3GPP network (mainly the 5G core network) by transitioning the protocol data unite
(PDU) sessions. The N3IWF helps as a gateway to use the 5GC through non-3GPP
access or vice-versa. We may exploit the chance of creating multipath using multiple
PDU sessions to support the ATSSS further and improve the QoE through network
offloading, mobility engagement, and better coverage in dense areas.

The ATSSS functionality, introduced in Release 15 [152], is the technique that helps a
UE to have simultaneous access to several 3GPP and non-3GPP networks, which might
be trusted or untrusted-3GPP networks through multi-access PDU services. The traffic
steering refers to the automatic selection of the best network type to use; the switching
refers to the seamless handover from one network to the other, and traffic splitting refers
to the network aggregation. These three sub-functionalities are used to decide on the
active and inactive paths or best path characteristics and create load balances.

As explained above, these and other integration technologies open the way for im-
plementing the futuristic multipath content caching, which will bring a paradigm shift
in caching contents without placing the entire part. After deeply exploring disruptive
multipath caching, we pioneered archiving a draft of an on-demand caching strategy.
In an on-demand caching scheme, a preamble of the selected content is cached at edges,
and its remaining portion is retrieved from the CS upon a request using the promis-
ing MP-QUIC protocol. However, choosing the integration technology and caching
strategy need further investigation.

6.2.2 Demand-aware joint caching strategy
A novel joint and cooperative caching strategy, called DJ-BOP, is formulated in Sub-
section 5.3.5. In this scheme, the relationship between content caching and delivering
processes is weakly interdependent. With different objective functions, since they are
nested functions, they are jointly treated in a hierarchical formulation.

The placement problem without analytically optimizing the delivery phase could
be easier, as it is already solved in Subsection 5.1. However, the BOP approach is very
complex to solve optimally because it is lower-level constrained by delivery optimiza-
tion. As a solution, this BOP is usually reformulated into mathematical programs with
equilibrium constraints to solve it using existing non-linear solvers such as general
algebraic modeling systems. Whereas there are several algorithms to solve it near-
optimally, using reduction methods, we did not apply the actual bilevel optimization
algorithms due to resource limitations. Instead, we heuristically analyzed the joint
caching performance in terms of utility cost reduction. Therefore, future research is to
devise an efficient and near-optimal algorithm to solve our BOP formulation. It also
needs a consistent MEC task allocation technique, followed by an end-to-end numeri-
cal analysis and performance evaluation.
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[22] S. S. Kafıloğlu, G. Gür, and F. Alagöz, “Cooperative caching and video char-
acteristics in d2d edge networks,” IEEE Communications Letters, vol. 24, no. 11,
pp. 2647–2651, 2020. DOI: 10.1109/LCOMM.2020.3009279.

https://doi.org/10.1109/TVT.2019.2941115
https://doi.org/10.1109/TMC.2016.2597851
https://doi.org/10.1109/TIT.2013.2281606
https://doi.org/10.1109/TIT.2013.2281606
https://doi.org/10.1109/TMC.2017.2780834
https://doi.org/10.1109/TWC.2015.2430341
https://doi.org/10.1109/TWC.2015.2430341
https://doi.org/10.1109/TWC.2015.2468220
https://doi.org/10.1109/MCOM.2013.6495773
https://doi.org/10.1109/MCOM.2013.6495773
https://doi.org/10.1109/ACCESS.2017.2743778
https://doi.org/10.1109/TWC.2017.2682240
https://doi.org/10.1109/TWC.2017.2682240
https://doi.org/10.1109/LCOMM.2017.2664805
https://doi.org/10.1109/JSAC.2017.2720818
https://doi.org/10.1109/JSAC.2017.2720818
https://doi.org/10.1109/LCOMM.2020.3009279


Bibliography 127

[23] T. X. Tran, A. Hajisami, and D. Pompili, “Cooperative hierarchical caching in 5g
cloud radio access networks,” IEEE Network, vol. 31, no. 4, pp. 35–41, 2017. DOI:
10.1109/MNET.2017.1600307.

[24] Y. Cui and D. Jiang, “Analysis and optimization of caching and multicasting in
large-scale cache-enabled heterogeneous wireless networks,” IEEE Transactions
on Wireless Communications, vol. 16, no. 1, pp. 250–264, 2017. DOI: 10.1109/TWC.
2016.2622236.

[25] Y. Nam, S. Song, and J. Chung, “Clustered NFV service chaining optimization
in mobile edge clouds,” IEEE Commun. Lett., vol. 21, no. 1, pp. 350–353, 2017.
DOI: 10.1109/LCOMM.2016.2618788. [Online]. Available: https://doi.org/10.
1109/LCOMM.2016.2618788.

[26] C. S. M. Babou, D. Fall, S. Kashihara, et al., “Hierarchical load balancing and
clustering technique for home edge computing,” IEEE Access, vol. 8, pp. 127 593–
127 607, 2020. DOI: 10.1109/ACCESS.2020.3007944. [Online]. Available: https:
//doi.org/10.1109/ACCESS.2020.3007944.

[27] W. You, C. Dong, X. Cheng, X. Zhu, Q. Wu, and G. Chen, “Joint optimization
of area coverage and mobile-edge computing with clustering for fanets,” IEEE
Internet Things J., vol. 8, no. 2, pp. 695–707, 2021. DOI: 10.1109/JIOT.2020.
3006891. [Online]. Available: https://doi.org/10.1109/JIOT.2020.3006891.

[28] M. Bouet and V. Conan, “Mobile edge computing resources optimization: A
geo-clustering approach,” IEEE Trans. Netw. Serv. Manag., vol. 15, no. 2, pp. 787–
796, 2018. DOI: 10.1109/TNSM.2018.2816263. [Online]. Available: https://doi.
org/10.1109/TNSM.2018.2816263.

[29] X. Song, Y. Geng, X. Meng, J. Liu, W. Lei, and Y. Wen, “Cache-enabled device
to device networks with contention-based multimedia delivery,” IEEE Access,
vol. 5, pp. 3228–3239, 2017. DOI: 10.1109/ACCESS.2017.2664807.

[30] A. Sengupta, S. Amuru, R. Tandon, R. M. Buehrer, and T. C. Clancy, “Learning
distributed caching strategies in small cell networks,” in 2014 11th International
Symposium on Wireless Communications Systems (ISWCS), 2014, pp. 917–921. DOI:
10.1109/ISWCS.2014.6933484.

[31] T. Mihretu Ayenew, D. Xenakis, N. Passas, and L. Merakos, “A novel content
placement strategy for heterogeneous cellular networks with small cells,” IEEE
Networking Letters, vol. 2, no. 1, pp. 10–13, 2020. DOI: 10.1109/LNET.2019.
2950990.

[32] L. Li, G. Zhao, and R. S. Blum, “A survey of caching techniques in cellular net-
works: Research issues and challenges in content placement and delivery strate-
gies,” IEEE Communications Surveys Tutorials, vol. 20, no. 3, pp. 1710–1732, 2018.
DOI: 10.1109/COMST.2018.2820021.

https://doi.org/10.1109/MNET.2017.1600307
https://doi.org/10.1109/TWC.2016.2622236
https://doi.org/10.1109/TWC.2016.2622236
https://doi.org/10.1109/LCOMM.2016.2618788
https://doi.org/10.1109/LCOMM.2016.2618788
https://doi.org/10.1109/LCOMM.2016.2618788
https://doi.org/10.1109/ACCESS.2020.3007944
https://doi.org/10.1109/ACCESS.2020.3007944
https://doi.org/10.1109/ACCESS.2020.3007944
https://doi.org/10.1109/JIOT.2020.3006891
https://doi.org/10.1109/JIOT.2020.3006891
https://doi.org/10.1109/JIOT.2020.3006891
https://doi.org/10.1109/TNSM.2018.2816263
https://doi.org/10.1109/TNSM.2018.2816263
https://doi.org/10.1109/TNSM.2018.2816263
https://doi.org/10.1109/ACCESS.2017.2664807
https://doi.org/10.1109/ISWCS.2014.6933484
https://doi.org/10.1109/LNET.2019.2950990
https://doi.org/10.1109/LNET.2019.2950990
https://doi.org/10.1109/COMST.2018.2820021


128 Bibliography

[33] J. Wen, K. Huang, S. Yang, and V. O. K. Li, “Cache-enabled heterogeneous cellu-
lar networks: Optimal tier-level content placement,” IEEE Transactions on Wire-
less Communications, vol. 16, no. 9, pp. 5939–5952, 2017. DOI: 10.1109/TWC.2017.
2717819.

[34] K. Poularakis, G. Iosifidis, A. Argyriou, I. Koutsopoulos, and L. Tassiulas, “Caching
and operator cooperation policies for layered video content delivery,” in IEEE
INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer
Communications, 2016, pp. 1–9. DOI: 10.1109/INFOCOM.2016.7524427.

[35] A. Khreishah and J. Chakareski, “Collaborative caching for multicell-coordinated
systems,” in 2015 IEEE Conference on Computer Communications Workshops (IN-
FOCOM WKSHPS), 2015, pp. 257–262. DOI: 10.1109/INFCOMW.2015.7179394.

[36] R. Liu, H. Yin, X. Cai, et al., “Cooperative caching scheme for content oriented
networking,” IEEE Communications Letters, vol. 17, no. 4, pp. 781–784, 2013. DOI:
10.1109/LCOMM.2013.020513.121680.

[37] K. S. Reddy and N. Karamchandani, “On the exact rate-memory trade-off for
multi-access coded caching with uncoded placement,” in 2018 International Con-
ference on Signal Processing and Communications (SPCOM), 2018, pp. 1–5. DOI:
10.1109/SPCOM.2018.8724457.

[38] J. Kwak, Y. Kim, L. B. Le, and S. Chong, “Hybrid content caching in 5g wireless
networks: Cloud versus edge caching,” IEEE Transactions on Wireless Communi-
cations, vol. 17, no. 5, pp. 3030–3045, 2018. DOI: 10.1109/TWC.2018.2805893.

[39] S. A. R. Zaidi, M. Ghogho, and D. C. McLernon, “Information centric modeling
for two-tier cache enabled cellular networks,” in 2015 IEEE International Confer-
ence on Communication Workshop (ICCW), 2015, pp. 80–86. DOI: 10.1109/ICCW.
2015.7247159.

[40] M. A. Kader, E. Bastug, M. Bennis, et al., “Leveraging big data analytics for
cache-enabled wireless networks,” in 2015 IEEE Globecom Workshops (GC Wk-
shps), 2015, pp. 1–6. DOI: 10.1109/GLOCOMW.2015.7414014.

[41] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role of proactive
caching in 5g wireless networks,” IEEE Commun. Mag., vol. 52, no. 8, pp. 82–89,
2014. DOI: 10.1109/MCOM.2014.6871674. [Online]. Available: https://doi.
org/10.1109/MCOM.2014.6871674.

[42] T. Hou, G. Feng, S. Qin, and W. Jiang, “Proactive content caching by exploiting
transfer learning for mobile edge computing,” in GLOBECOM 2017 - 2017 IEEE
Global Communications Conference, 2017, pp. 1–6. DOI: 10.1109/GLOCOM.2017.
8254636.

[43] A. Ndikumana, N. H. Tran, D. H. Kim, K. T. Kim, and C. S. Hong, “Deep learn-
ing based caching for self-driving cars in multi-access edge computing,” IEEE
Transactions on Intelligent Transportation Systems, vol. 22, no. 5, pp. 2862–2877,
2021. DOI: 10.1109/TITS.2020.2976572.

https://doi.org/10.1109/TWC.2017.2717819
https://doi.org/10.1109/TWC.2017.2717819
https://doi.org/10.1109/INFOCOM.2016.7524427
https://doi.org/10.1109/INFCOMW.2015.7179394
https://doi.org/10.1109/LCOMM.2013.020513.121680
https://doi.org/10.1109/SPCOM.2018.8724457
https://doi.org/10.1109/TWC.2018.2805893
https://doi.org/10.1109/ICCW.2015.7247159
https://doi.org/10.1109/ICCW.2015.7247159
https://doi.org/10.1109/GLOCOMW.2015.7414014
https://doi.org/10.1109/MCOM.2014.6871674
https://doi.org/10.1109/MCOM.2014.6871674
https://doi.org/10.1109/MCOM.2014.6871674
https://doi.org/10.1109/GLOCOM.2017.8254636
https://doi.org/10.1109/GLOCOM.2017.8254636
https://doi.org/10.1109/TITS.2020.2976572


Bibliography 129

[44] Z. Hu, Z. Zheng, T. Wang, L. Song, and X. Li, “Game theoretic approaches
for wireless proactive caching,” IEEE Communications Magazine, vol. 54, no. 8,
pp. 37–43, 2016. DOI: 10.1109/MCOM.2016.7537175.

[45] Q. Xu, Z. Su, and R. Lu, “Game theory and reinforcement learning based secure
edge caching in mobile social networks,” IEEE Transactions on Information Foren-
sics and Security, vol. 15, pp. 3415–3429, 2020. DOI: 10.1109/TIFS.2020.2980823.

[46] X. Li, X. Wang, K. Li, Z. Han, and V. C. M. Leung, “Collaborative multi-tier
caching in heterogeneous networks: Modeling, analysis, and design,” IEEE Trans-
actions on Wireless Communications, vol. 16, no. 10, pp. 6926–6939, 2017. DOI:
10.1109/TWC.2017.2734646.

[47] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A survey on mo-
bile edge networks: Convergence of computing, caching and communications,”
IEEE Access, vol. 5, pp. 6757–6779, 2017. DOI: 10.1109/ACCESS.2017.2685434.

[48] C. Hong and B. Varghese, “Resource management in fog/edge computing: A
survey on architectures, infrastructure, and algorithms,” ACM Comput. Surv.,
vol. 52, no. 5, 97:1–97:37, 2019. DOI: 10 . 1145 / 3326066. [Online]. Available:
https://doi.org/10.1145/3326066.

[49] J. Yao, T. Han, and N. Ansari, “On mobile edge caching,” IEEE Communications
Surveys Tutorials, vol. 21, no. 3, pp. 2525–2553, 2019. DOI: 10.1109/COMST.2019.
2908280.

[50] S. Kumar, D. S. Vineeth, and A. F. A, “Edge assisted dash video caching mecha-
nism for multi-access edge computing,” in 2018 IEEE International Conference on
Advanced Networks and Telecommunications Systems (ANTS), 2018, pp. 1–6. DOI:
10.1109/ANTS.2018.8710106.

[51] T. Hou, G. Feng, S. Qin, and W. Jiang, “Proactive content caching by exploiting
transfer learning for mobile edge computing,” in GLOBECOM 2017 - 2017 IEEE
Global Communications Conference, 2017, pp. 1–6. DOI: 10.1109/GLOCOM.2017.
8254636.

[52] M. Fiedler, T. Hossfeld, and P. Tran-Gia, “A generic quantitative relationship
between quality of experience and quality of service,” IEEE Network, vol. 24,
no. 2, pp. 36–41, 2010. DOI: 10.1109/MNET.2010.5430142.

[53] ITU, “Quality of service regulation manual,” 2017. [Online]. Available: https:
//www.itu.int/dms_pub/itu-d/opb/pref/D-PREF-BB.QOS_REG01-2017-PDF-
E.pdf.

[54] A. Lior, M. Jones, M. Arumaithurai, H. Tschofenig, and J. Korhonen, “Traffic
classification and quality of service (qos) attributes for diameter,” 2010. [On-
line]. Available: https://datatracker.ietf.org/doc/rfc5777/.

[55] Y. Chen, K. Wu, and Q. Zhang, “From qos to qoe: A tutorial on video quality
assessment,” IEEE Communications Surveys Tutorials, vol. 17, no. 2, pp. 1126–
1165, 2015. DOI: 10.1109/COMST.2014.2363139.

https://doi.org/10.1109/MCOM.2016.7537175
https://doi.org/10.1109/TIFS.2020.2980823
https://doi.org/10.1109/TWC.2017.2734646
https://doi.org/10.1109/ACCESS.2017.2685434
https://doi.org/10.1145/3326066
https://doi.org/10.1145/3326066
https://doi.org/10.1109/COMST.2019.2908280
https://doi.org/10.1109/COMST.2019.2908280
https://doi.org/10.1109/ANTS.2018.8710106
https://doi.org/10.1109/GLOCOM.2017.8254636
https://doi.org/10.1109/GLOCOM.2017.8254636
https://doi.org/10.1109/MNET.2010.5430142
https://www.itu.int/dms_pub/itu-d/opb/pref/D-PREF-BB.QOS_REG01-2017-PDF-E.pdf
https://www.itu.int/dms_pub/itu-d/opb/pref/D-PREF-BB.QOS_REG01-2017-PDF-E.pdf
https://www.itu.int/dms_pub/itu-d/opb/pref/D-PREF-BB.QOS_REG01-2017-PDF-E.pdf
https://datatracker.ietf.org/doc/rfc5777/
https://doi.org/10.1109/COMST.2014.2363139


130 Bibliography

[56] J. Nightingale, P. Salva-Garcia, J. M. A. Calero, and Q. Wang, “5g-qoe: Qoe mod-
elling for ultra-hd video streaming in 5g networks,” IEEE Transactions on Broad-
casting, vol. 64, no. 2, pp. 621–634, 2018. DOI: 10.1109/TBC.2018.2816786.

[57] C. Li, L. Toni, J. Zou, H. Xiong, and P. Frossard, “Qoe-driven mobile edge caching
placement for adaptive video streaming,” IEEE Transactions on Multimedia, vol. 20,
no. 4, pp. 965–984, 2018. DOI: 10.1109/TMM.2017.2757761.

[58] R. Coutinho, F. Chiariotti, D. Zucchetto, and A. Zanella, “Just-in-time proactive
caching for dash video streaming,” in 2018 17th Annual Mediterranean Ad Hoc
Networking Workshop (Med-Hoc-Net), 2018, pp. 1–6. DOI: 10.23919/MedHocNet.
2018.8407087.

[59] X. Chen, L. He, S. Xu, S. Hu, Q. Li, and G. Liu, “Hit ratio driven mobile edge
caching scheme for video on demand services,” in 2019 IEEE International Con-
ference on Multimedia and Expo (ICME), 2019, pp. 1702–1707. DOI: 10.1109/ICME.
2019.00293.

[60] H. Feng, Y. Jiang, D. Niyato, F.-C. Zheng, and X. You, “Content popularity pre-
diction via deep learning in cache-enabled fog radio access networks,” in 2019
IEEE Global Communications Conference (GLOBECOM), 2019, pp. 1–6. DOI: 10.
1109/GLOBECOM38437.2019.9013376.

[61] Q. Wu, Z. Li, G. Tyson, S. Uhlig, M. A. Kaafar, and G. Xie, “Privacy-aware multi-
path video caching for content-centric networks,” IEEE Journal on Selected Areas
in Communications, vol. 34, no. 8, pp. 2219–2230, 2016. DOI: 10.1109/JSAC.2016.
2577321.

[62] K. Poularakis, G. Iosifidis, V. Sourlas, and L. Tassiulas, “Exploiting caching and
multicast for 5g wireless networks,” IEEE Transactions on Wireless Communica-
tions, vol. 15, no. 4, pp. 2995–3007, 2016. DOI: 10.1109/TWC.2016.2514418.

[63] J. Cui, D. Wu, and Z. Qin, “Caching ap selection and channel allocation in wire-
less caching networks: A binary concurrent interference minimizing game solu-
tion,” IEEE Access, vol. 6, pp. 54 516–54 526, 2018. DOI: 10.1109/ACCESS.2018.
2871142.

[64] W. Jaafar, A. Mseddi, W. Ajib, and H. Elbiaze, “Content caching and channel
allocation in d2d-assisted wireless hetnets,” IEEE Access, vol. 9, pp. 112 502–
112 515, 2021. DOI: 10.1109/ACCESS.2021.3103415.

[65] A. R. Elkordy, A. S. Motahari, M. Nafie, and D. Gündüz, “Cache-aided combina-
tion networks with interference,” IEEE Transactions on Wireless Communications,
vol. 19, no. 1, pp. 148–161, 2020. DOI: 10.1109/TWC.2019.2942913.

[66] T.-X. Zheng, H.-M. Wang, and J. Yuan, “Secure and energy-efficient transmis-
sions in cache-enabled heterogeneous cellular networks: Performance analysis
and optimization,” IEEE Transactions on Communications, vol. 66, no. 11, pp. 5554–
5567, 2018. DOI: 10.1109/TCOMM.2018.2873359.

https://doi.org/10.1109/TBC.2018.2816786
https://doi.org/10.1109/TMM.2017.2757761
https://doi.org/10.23919/MedHocNet.2018.8407087
https://doi.org/10.23919/MedHocNet.2018.8407087
https://doi.org/10.1109/ICME.2019.00293
https://doi.org/10.1109/ICME.2019.00293
https://doi.org/10.1109/GLOBECOM38437.2019.9013376
https://doi.org/10.1109/GLOBECOM38437.2019.9013376
https://doi.org/10.1109/JSAC.2016.2577321
https://doi.org/10.1109/JSAC.2016.2577321
https://doi.org/10.1109/TWC.2016.2514418
https://doi.org/10.1109/ACCESS.2018.2871142
https://doi.org/10.1109/ACCESS.2018.2871142
https://doi.org/10.1109/ACCESS.2021.3103415
https://doi.org/10.1109/TWC.2019.2942913
https://doi.org/10.1109/TCOMM.2018.2873359


Bibliography 131

[67] R. Pedarsani, M. A. Maddah-Ali, and U. Niesen, “Online coded caching,” IEEE/ACM
Transactions on Networking, vol. 24, no. 2, pp. 836–845, 2016. DOI: 10.1109/TNET.
2015.2394482.

[68] K. Poularakis, G. Iosifidis, A. Argyriou, I. Koutsopoulos, and L. Tassiulas, “Dis-
tributed caching algorithms in the realm of layered video streaming,” IEEE
Transactions on Mobile Computing, vol. 18, no. 4, pp. 757–770, 2019. DOI: 10.1109/
TMC.2018.2850818.

[69] M.-C. Lee and A. F. Molisch, “Caching policy and cooperation distance design
for base station-assisted wireless d2d caching networks: Throughput and en-
ergy efficiency optimization and tradeoff,” IEEE Transactions on Wireless Commu-
nications, vol. 17, no. 11, pp. 7500–7514, 2018. DOI: 10.1109/TWC.2018.2867596.

[70] N. Pappas, Z. Chen, and I. Dimitriou, “Throughput and delay analysis of wire-
less caching helper systems with random availability,” IEEE Access, vol. 6, pp. 9667–
9678, 2018. DOI: 10.1109/ACCESS.2018.2801246.

[71] M. Agiwal, A. Roy, and N. Saxena, “Next generation 5g wireless networks: A
comprehensive survey,” IEEE Communications Surveys Tutorials, vol. 18, no. 3,
pp. 1617–1655, 2016. DOI: 10.1109/COMST.2016.2532458.

[72] ITU, “Setting the scene for 5g: Opportunities & challenges,” 2018. [Online].
Available: https://www.itu.int/en/ITU- D/Documents/ITU_5G_REPORT-
2018.pdf.

[73] H. Wang, R. Li, L. Fan, and H. Zhang, “Joint computation offloading and data
caching with delay optimization in mobile-edge computing systems,” in 2017
9th International Conference on Wireless Communications and Signal Processing (WCSP),
2017, pp. 1–6. DOI: 10.1109/WCSP.2017.8171178.

[74] L. Zhang, H.-C. Yang, and M. O. Hasna, “Generalized area spectral efficiency:
An effective performance metric for green wireless communications,” IEEE Trans-
actions on Communications, vol. 62, no. 2, pp. 747–757, 2014. DOI: 10.1109/TCOMM.
2013.122913.130138.

[75] D. Liu and C. Yang, “Caching policy toward maximal success probability and
area spectral efficiency of cache-enabled hetnets,” IEEE Transactions on Commu-
nications, vol. 65, no. 6, pp. 2699–2714, 2017. DOI: 10.1109/TCOMM.2017.2680447.

[76] D. Liu and C. Yang, “Energy efficiency of downlink networks with caching at
base stations,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 4,
pp. 907–922, 2016. DOI: 10.1109/JSAC.2016.2549398.

[77] Y. Duan, J. Zhang, W. Xia, and H. Zhu, “Energy efficiency of downlink c-ran
with edge caching and fronthaul compression,” IEEE Communications Letters,
vol. 22, no. 12, pp. 2527–2530, 2018. DOI: 10.1109/LCOMM.2018.2873625.

[78] X. Zhang, T. Lv, W. Ni, J. M. Cioffi, N. C. Beaulieu, and Y. J. Guo, “Energy-
efficient caching for scalable videos in heterogeneous networks,” IEEE Journal
on Selected Areas in Communications, vol. 36, no. 8, pp. 1802–1815, 2018. DOI: 10.
1109/JSAC.2018.2844998.

https://doi.org/10.1109/TNET.2015.2394482
https://doi.org/10.1109/TNET.2015.2394482
https://doi.org/10.1109/TMC.2018.2850818
https://doi.org/10.1109/TMC.2018.2850818
https://doi.org/10.1109/TWC.2018.2867596
https://doi.org/10.1109/ACCESS.2018.2801246
https://doi.org/10.1109/COMST.2016.2532458
https://www.itu.int/en/ITU-D/Documents/ITU_5G_REPORT-2018.pdf
https://www.itu.int/en/ITU-D/Documents/ITU_5G_REPORT-2018.pdf
https://doi.org/10.1109/WCSP.2017.8171178
https://doi.org/10.1109/TCOMM.2013.122913.130138
https://doi.org/10.1109/TCOMM.2013.122913.130138
https://doi.org/10.1109/TCOMM.2017.2680447
https://doi.org/10.1109/JSAC.2016.2549398
https://doi.org/10.1109/LCOMM.2018.2873625
https://doi.org/10.1109/JSAC.2018.2844998
https://doi.org/10.1109/JSAC.2018.2844998


132 Bibliography

[79] S. Nath, J. Wu, and J. Yang, “Optimum energy efficiency and age-of-information
tradeoff in multicast scheduling,” in 2018 IEEE International Conference on Com-
munications (ICC), 2018, pp. 1–6. DOI: 10.1109/ICC.2018.8422521.

[80] Y. Lin, W. Bao, W. Yu, and B. Liang, “Optimizing user association and spectrum
allocation in hetnets: A utility perspective,” IEEE Journal on Selected Areas in
Communications, vol. 33, no. 6, pp. 1025–1039, 2015. DOI: 10.1109/JSAC.2015.
2417011.

[81] A.-T. Tran, D. S. Lakew, T.-V. Nguyen, et al., “Hit ratio and latency optimiza-
tion for caching systems: A survey,” in 2021 International Conference on Informa-
tion Networking (ICOIN), 2021, pp. 577–581. DOI: 10.1109/ICOIN50884.2021.
9334019.

[82] D. F. de Almeida, J. Yen, and M. Aibin, “Content delivery networks - q-learning
approach for optimization of the network cost and the cache hit ratio,” in 2020
IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), 2020,
pp. 1–5. DOI: 10.1109/CCECE47787.2020.9255813.

[83] L. Zhong, X. Zheng, Y. Liu, M. Wang, and Y. Cao, “Cache hit ratio maximization
in device-to-device communications overlaying cellular networks,” China Com-
munications, vol. 17, no. 2, pp. 232–238, 2020. DOI: 10.23919/JCC.2020.02.018.

[84] H. Jin, D. Xu, C. Zhao, and D. Liang, “Information-centric mobile caching net-
work frameworks and caching optimization: A survey,” EURASIP J. Wirel. Com-
mun. Netw., vol. 2017, p. 33, 2017. DOI: 10.1186/s13638-017-0806-6.

[85] H. ElSawy, E. Hossain, and M. Haenggi, “Stochastic geometry for modeling,
analysis, and design of multi-tier and cognitive cellular wireless networks: A
survey,” IEEE Communications Surveys Tutorials, vol. 15, no. 3, pp. 996–1019,
2013. DOI: 10.1109/SURV.2013.052213.00000.

[86] Y. Wang, W. Wang, Y. Cui, K. G. Shin, and Z. Zhang, “Distributed packet for-
warding and caching based on stochastic network utility maximization,” IEEE/ACM
Transactions on Networking, vol. 26, no. 3, pp. 1264–1277, 2018. DOI: 10.1109/
TNET.2018.2825460.

[87] V. S. Varma and T. Q. S. Quek, “Congestion games in caching enabled heteroge-
neous cellular networks,” in 2015 IFIP Networking Conference (IFIP Networking),
2015, pp. 1–6. DOI: 10.1109/IFIPNetworking.2015.7145294.

[88] Z. Zhao, M. Peng, Z. Ding, W. Wang, and H. V. Poor, “Cluster content caching:
An energy-efficient approach to improve quality of service in cloud radio ac-
cess networks,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 5,
pp. 1207–1221, 2016. DOI: 10.1109/JSAC.2016.2545384.

[89] Z. Su, Q. Xu, F. Hou, Q. Yang, and Q. Qi, “Edge caching for layered video con-
tents in mobile social networks,” IEEE Transactions on Multimedia, vol. 19, no. 10,
pp. 2210–2221, 2017. DOI: 10.1109/TMM.2017.2733338.

https://doi.org/10.1109/ICC.2018.8422521
https://doi.org/10.1109/JSAC.2015.2417011
https://doi.org/10.1109/JSAC.2015.2417011
https://doi.org/10.1109/ICOIN50884.2021.9334019
https://doi.org/10.1109/ICOIN50884.2021.9334019
https://doi.org/10.1109/CCECE47787.2020.9255813
https://doi.org/10.23919/JCC.2020.02.018
https://doi.org/10.1186/s13638-017-0806-6
https://doi.org/10.1109/SURV.2013.052213.00000
https://doi.org/10.1109/TNET.2018.2825460
https://doi.org/10.1109/TNET.2018.2825460
https://doi.org/10.1109/IFIPNetworking.2015.7145294
https://doi.org/10.1109/JSAC.2016.2545384
https://doi.org/10.1109/TMM.2017.2733338


Bibliography 133

[90] J. Wen, K. Huang, S. Yang, and V. O. K. Li, “Cache-enabled heterogeneous cellu-
lar networks: Optimal tier-level content placement,” IEEE Transactions on Wire-
less Communications, vol. 16, no. 9, pp. 5939–5952, 2017. DOI: 10.1109/TWC.2017.
2717819.

[91] O. Bello and S. Zeadally, “Intelligent device-to-device communication in the
internet of things,” IEEE Syst. J., vol. 10, no. 3, pp. 1172–1182, 2016. DOI: 10.
1109/JSYST.2014.2298837.

[92] S. O. Somuyiwa, A. György, and D. Gündüz, “A reinforcement-learning ap-
proach to proactive caching in wireless networks,” IEEE J. Sel. Areas Commun.,
vol. 36, no. 6, pp. 1331–1344, 2018. DOI: 10.1109/JSAC.2018.2844985.

[93] A. Sadeghi, F. Sheikholeslami, and G. B. Giannakis, “Optimal and scalable caching
for 5g using reinforcement learning of space-time popularities,” IEEE J. Sel. Top.
Signal Process., vol. 12, no. 1, pp. 180–190, 2018. DOI: 10.1109/JSTSP.2017.
2787979.

[94] R. Singh, M. Srinivasan, and C. S. R. Murthy, “A learning based mobile user
traffic characterization for efficient resource management in cellular networks,”
in 12th Annual IEEE Consumer Communications and Networking Conference, CCNC
2015, Las Vegas, NV, USA, January 9-12, 2015, IEEE, 2015, pp. 304–309. DOI: 10.
1109/CCNC.2015.7157993.

[95] K. Zhang, S. Leng, Y. He, S. Maharjan, and Y. Zhang, “Cooperative content
caching in 5g networks with mobile edge computing,” IEEE Wireless Commu-
nications, vol. 25, no. 3, pp. 80–87, 2018. DOI: 10.1109/MWC.2018.1700303.

[96] Y. Yu, “Mobile edge computing towards 5g: Vision, recent progress, and open
challenges,” China Communications, vol. 13, no. Supplement2, pp. 89–99, 2016.
DOI: 10.1109/CC.2016.7833463.

[97] M. Garetto, E. Leonardi, and V. Martina, “A unified approach to the perfor-
mance analysis of caching systems,” ACM Trans. Model. Perform. Evaluation Com-
put. Syst., vol. 1, no. 3, 12:1–12:28, 2016. DOI: 10.1145/2896380.

[98] H. Gomaa, G. G. Messier, C. Williamson, and R. Davies, “Estimating instan-
taneous cache hit ratio using markov chain analysis,” IEEE/ACM Transactions
on Networking, vol. 21, no. 5, pp. 1472–1483, 2013. DOI: 10.1109/TNET.2012.
2227338.

[99] Z. Ming, M. Xu, and D. Wang, “Age-based cooperative caching in information-
centric networking,” in 2014 23rd International Conference on Computer Communi-
cation and Networks (ICCCN), 2014, pp. 1–8. DOI: 10.1109/ICCCN.2014.6911725.

[100] J. Liu, G. Wang, T. Huang, J. Chen, and Y. Liu, “Modeling the sojourn time of
items for in-network cache based on lru policy,” China Communications, vol. 11,
no. 10, pp. 88–95, 2014. DOI: 10.1109/CC.2014.6969797.

https://doi.org/10.1109/TWC.2017.2717819
https://doi.org/10.1109/TWC.2017.2717819
https://doi.org/10.1109/JSYST.2014.2298837
https://doi.org/10.1109/JSYST.2014.2298837
https://doi.org/10.1109/JSAC.2018.2844985
https://doi.org/10.1109/JSTSP.2017.2787979
https://doi.org/10.1109/JSTSP.2017.2787979
https://doi.org/10.1109/CCNC.2015.7157993
https://doi.org/10.1109/CCNC.2015.7157993
https://doi.org/10.1109/MWC.2018.1700303
https://doi.org/10.1109/CC.2016.7833463
https://doi.org/10.1145/2896380
https://doi.org/10.1109/TNET.2012.2227338
https://doi.org/10.1109/TNET.2012.2227338
https://doi.org/10.1109/ICCCN.2014.6911725
https://doi.org/10.1109/CC.2014.6969797


134 Bibliography

[101] Q. D. Coninck and O. Bonaventure, “Multipath QUIC: design and evaluation,”
in Proceedings of the 13th International Conference on emerging Networking EXper-
iments and Technologies, CoNEXT 2017, Incheon, Republic of Korea, December 12 -
15, 2017, ACM, 2017, pp. 160–166. DOI: 10.1145/3143361.3143370.

[102] M. Amadeo, C. Campolo, G. Ruggeri, and A. Molinaro, “Beyond edge caching:
Freshness and popularity aware iot data caching via ndn at internet-scale,”
IEEE Transactions on Green Communications and Networking, vol. 6, no. 1, pp. 352–
364, 2022. DOI: 10.1109/TGCN.2021.3124452.

[103] J. Yao and N. Ansari, “Caching in dynamic iot networks by deep reinforcement
learning,” IEEE Internet of Things Journal, vol. 8, no. 5, pp. 3268–3275, 2021. DOI:
10.1109/JIOT.2020.3004394.

[104] S. Zhang and J. Liu, “Optimal probabilistic caching in heterogeneous iot net-
works,” IEEE Internet of Things Journal, vol. 7, no. 4, pp. 3404–3414, 2020. DOI:
10.1109/JIOT.2020.2969466.

[105] S. Vural, P. Navaratnam, N. Wang, C. Wang, L. Dong, and R. Tafazolli, “In-
network caching of internet-of-things data,” in IEEE International Conference on
Communications, ICC 2014, Sydney, Australia, June 10-14, 2014, IEEE, 2014, pp. 3185–
3190. DOI: 10.1109/ICC.2014.6883811.

[106] M. Meddeb, A. Dhraief, A. Belghith, T. Monteil, and K. Drira, “How to cache
in icn-based iot environments?” In 14th IEEE/ACS International Conference on
Computer Systems and Applications, AICCSA 2017, Hammamet, Tunisia, October
30 - Nov. 3, 2017, IEEE Computer Society, 2017, pp. 1117–1124. DOI: 10.1109/
AICCSA.2017.37.

[107] Z. Su, Y. Hui, Q. Xu, T. Yang, J. Liu, and Y. Jia, “An edge caching scheme to
distribute content in vehicular networks,” IEEE Transactions on Vehicular Tech-
nology, vol. 67, no. 6, pp. 5346–5356, 2018. DOI: 10.1109/TVT.2018.2824345.

[108] C. Chen, C. Wang, T. Qiu, M. Atiquzzaman, and D. O. Wu, “Caching in ve-
hicular named data networking: Architecture, schemes and future directions,”
IEEE Communications Surveys & Tutorials, vol. 22, no. 4, pp. 2378–2407, 2020. DOI:
10.1109/COMST.2020.3005361.

[109] G. Zhong, J. Yan, and L. Kuang, “Qoe-driven social aware caching placement
for terrestrial-satellite networks,” China Communications, vol. 15, no. 10, pp. 60–
72, 2018. DOI: 10.1109/CC.2018.8485469.

[110] X. Zhu, C. Jiang, L. Kuang, and Z. Zhao, “Cooperative multilayer edge caching
in integrated satellite-terrestrial networks,” IEEE Transactions on Wireless Com-
munications, vol. 21, no. 5, pp. 2924–2937, 2022. DOI: 10 . 1109 / TWC . 2021 .
3117026.

[111] E. Wang, H. Li, and S. Zhang, “Load balancing based on cache resource allo-
cation in satellite networks,” IEEE Access, vol. 7, pp. 56 864–56 879, 2019. DOI:
10.1109/ACCESS.2019.2914167.

https://doi.org/10.1145/3143361.3143370
https://doi.org/10.1109/TGCN.2021.3124452
https://doi.org/10.1109/JIOT.2020.3004394
https://doi.org/10.1109/JIOT.2020.2969466
https://doi.org/10.1109/ICC.2014.6883811
https://doi.org/10.1109/AICCSA.2017.37
https://doi.org/10.1109/AICCSA.2017.37
https://doi.org/10.1109/TVT.2018.2824345
https://doi.org/10.1109/COMST.2020.3005361
https://doi.org/10.1109/CC.2018.8485469
https://doi.org/10.1109/TWC.2021.3117026
https://doi.org/10.1109/TWC.2021.3117026
https://doi.org/10.1109/ACCESS.2019.2914167


Bibliography 135

[112] X. Zhang, B. Zhang, K. An, G. Zheng, S. Chatzinotas, and D. Guo, “Stochas-
tic geometry-based analysis of cache-enabled hybrid satellite-aerial-terrestrial
networks with non-orthogonal multiple access,” IEEE Transactions on Wireless
Communications, vol. 21, no. 2, pp. 1272–1287, 2022. DOI: 10.1109/TWC.2021.
3103499.

[113] S. Soleimani, X. Tao, and Y. Li, “Cooperative group caching strategy in content-
centric wireless ad hoc networks,” in 2018 IEEE/CIC International Conference on
Communications in China (ICCC), 2018, pp. 793–797. DOI: 10.1109/ICCChina.
2018.8641166.

[114] T. Zhang, X. Xu, L. Zhou, X. Jiang, and J. Loo, “Cache space efficient caching
scheme for content-centric mobile ad hoc networks,” IEEE Systems Journal, vol. 13,
no. 1, pp. 530–541, 2019. DOI: 10.1109/JSYST.2018.2851394.

[115] N. Carlsson and D. Eager, “Ephemeral content popularity at the edge and im-
plications for on-demand caching,” IEEE Transactions on Parallel and Distributed
Systems, vol. 28, no. 6, pp. 1621–1634, 2017. DOI: 10.1109/TPDS.2016.2614805.

[116] X. Ge, J. Ye, Y. Yang, and Q. Li, “User mobility evaluation for 5g small cell net-
works based on individual mobility model,” IEEE Journal on Selected Areas in
Communications, vol. 34, no. 3, pp. 528–541, 2016. DOI: 10.1109/JSAC.2016.
2525439.

[117] H. ElSawy, A. Sultan-Salem, M.-S. Alouini, and M. Z. Win, “Modeling and anal-
ysis of cellular networks using stochastic geometry: A tutorial,” IEEE Commu-
nications Surveys & Tutorials, vol. 19, no. 1, pp. 167–203, 2017. DOI: 10.1109/
COMST.2016.2624939.

[118] J. Riihijarvi and P. Mahonen, “Machine learning for performance prediction
in mobile cellular networks,” IEEE Computational Intelligence Magazine, vol. 13,
no. 1, pp. 51–60, 2018. DOI: 10.1109/MCI.2017.2773824.

[119] L. N. T. Huynh, Q.-V. Pham, T. D. T. Nguyen, M. D. Hossain, Y.-R. Shin, and
E.-N. Huh, “Joint computational offloading and data-content caching in noma-
mec networks,” IEEE Access, vol. 9, pp. 12 943–12 954, 2021. DOI: 10 . 1109 /
ACCESS.2021.3051278.

[120] M. Roddy, T. Truong, P. Walsh, et al., “5g network slicing for mission-critical
use cases,” in 2019 IEEE 2nd 5G World Forum (5GWF), 2019, pp. 409–414. DOI:
10.1109/5GWF.2019.8911651.

[121] A. Pietrabissa, F. D. Priscoli, A. D. Giorgio, A. Giuseppi, M. Panfili, and V.
Suraci, “An approximate dynamic programming approach to resource manage-
ment in multi-cloud scenarios,” Int. J. Control, vol. 90, no. 3, pp. 492–503, 2017.
DOI: 10.1080/00207179.2016.1185802. [Online]. Available: https://doi.org/
10.1080/00207179.2016.1185802.

https://doi.org/10.1109/TWC.2021.3103499
https://doi.org/10.1109/TWC.2021.3103499
https://doi.org/10.1109/ICCChina.2018.8641166
https://doi.org/10.1109/ICCChina.2018.8641166
https://doi.org/10.1109/JSYST.2018.2851394
https://doi.org/10.1109/TPDS.2016.2614805
https://doi.org/10.1109/JSAC.2016.2525439
https://doi.org/10.1109/JSAC.2016.2525439
https://doi.org/10.1109/COMST.2016.2624939
https://doi.org/10.1109/COMST.2016.2624939
https://doi.org/10.1109/MCI.2017.2773824
https://doi.org/10.1109/ACCESS.2021.3051278
https://doi.org/10.1109/ACCESS.2021.3051278
https://doi.org/10.1109/5GWF.2019.8911651
https://doi.org/10.1080/00207179.2016.1185802
https://doi.org/10.1080/00207179.2016.1185802
https://doi.org/10.1080/00207179.2016.1185802


136 Bibliography

[122] M. Moghimi, A. Zakeri, M. R. Javan, N. Mokari, and D. W. K. Ng, “Joint radio
resource allocation and cooperative caching in pd-noma-based hetnets,” IEEE
Transactions on Mobile Computing, vol. 21, no. 6, pp. 2029–2044, 2022. DOI: 10.
1109/TMC.2020.3034618.

[123] YouTube, “Recommended upload encoding settings,” 2021. [Online]. Available:
https://support.google.com/youtube/answer/1722171?hl=en.

[124] NTT-DOCOMO, “Guidelines for video delivery over a mobile network-version
1.0,” 2014. [Online]. Available: https : / / www . nttdocomo . co . jp / english /
binary/pdf/service/developer/smart_phone/technical_info/etc/mobile_
movie_guide_1_0_En.pdf.

[125] X. Che, B. Ip, and L. Lin, “A survey of current youtube video characteristics,”
IEEE MultiMedia, vol. 22, no. 2, pp. 56–63, 2015. DOI: 10.1109/MMUL.2015.34.

[126] I. T. U. (ITU), “Setting the scene for 5g: Opportunities & challenges,” 2020. [On-
line]. Available: https://www.itu.int/en/ITU- D/Documents/ITU\_5G\
_REPORT-2018.pdf.

[127] M. A. Salahuddin, J. Sahoo, R. Glitho, H. Elbiaze, and W. Ajib, “A survey on con-
tent placement algorithms for cloud-based content delivery networks,” IEEE
Access, vol. 6, pp. 91–114, 2018. DOI: 10.1109/ACCESS.2017.2754419.

[128] H. S. Goian, O. Y. Al-Jarrah, S. Muhaidat, Y. Al-Hammadi, P. Yoo, and M. Dia-
nati, “Popularity-based video caching techniques for cache-enabled networks:
A survey,” IEEE Access, vol. 7, pp. 27 699–27 719, 2019. DOI: 10.1109/ACCESS.
2019.2898734.

[129] ETSI, “Mec in 5g networks, etsi white paper no.28,” 2018. [Online]. Available:
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp28_mec_in_
5G_FINAL.pdf.

[130] C. Li, L. Toni, J. Zou, H. Xiong, and P. Frossard, “Qoe-driven mobile edge caching
placement for adaptive video streaming,” IEEE Transactions on Multimedia, vol. 20,
no. 4, pp. 965–984, 2018. DOI: 10.1109/TMM.2017.2757761.

[131] T. X. Tran, A. Hajisami, and D. Pompili, “Cooperative hierarchical caching in 5g
cloud radio access networks,” IEEE Network, vol. 31, no. 4, pp. 35–41, 2017. DOI:
10.1109/MNET.2017.1600307.

[132] S. Martello and P. Toth, “A bound and bound algorithm for the zero-one mul-
tiple knapsack problem,” Discret. Appl. Math., vol. 3, no. 4, pp. 275–288, 1981.
DOI: 10.1016/0166-218X(81)90005-6. [Online]. Available: https://doi.org/
10.1016/0166-218X(81)90005-6.

[133] P. H. Vance, “Knapsack problems: Algorithms and computer implementations
(S. martello and p. toth),” SIAM Rev., vol. 35, no. 4, pp. 684–685, 1993. DOI:
10.1137/1035174.

[134] A.-T. Tran, N.-N. Dao, and S. Cho, “Bitrate adaptation for video streaming ser-
vices in edge caching systems,” IEEE Access, vol. 8, pp. 135 844–135 852, 2020.
DOI: 10.1109/ACCESS.2020.3011517.

https://doi.org/10.1109/TMC.2020.3034618
https://doi.org/10.1109/TMC.2020.3034618
https://support.google.com/youtube/answer/1722171?hl=en
https://www.nttdocomo.co.jp/english/binary/pdf/service/developer/smart_phone/technical_info/etc/mobile_movie_guide_1_0_En.pdf
https://www.nttdocomo.co.jp/english/binary/pdf/service/developer/smart_phone/technical_info/etc/mobile_movie_guide_1_0_En.pdf
https://www.nttdocomo.co.jp/english/binary/pdf/service/developer/smart_phone/technical_info/etc/mobile_movie_guide_1_0_En.pdf
https://doi.org/10.1109/MMUL.2015.34
https://www.itu.int/en/ITU-D/Documents/ITU\_5G\_REPORT-2018.pdf
https://www.itu.int/en/ITU-D/Documents/ITU\_5G\_REPORT-2018.pdf
https://doi.org/10.1109/ACCESS.2017.2754419
https://doi.org/10.1109/ACCESS.2019.2898734
https://doi.org/10.1109/ACCESS.2019.2898734
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp28_mec_in_5G_FINAL.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp28_mec_in_5G_FINAL.pdf
https://doi.org/10.1109/TMM.2017.2757761
https://doi.org/10.1109/MNET.2017.1600307
https://doi.org/10.1016/0166-218X(81)90005-6
https://doi.org/10.1016/0166-218X(81)90005-6
https://doi.org/10.1016/0166-218X(81)90005-6
https://doi.org/10.1137/1035174
https://doi.org/10.1109/ACCESS.2020.3011517


Bibliography 137

[135] X. Zhang, T. Lv, W. Ni, J. M. Cioffi, N. C. Beaulieu, and Y. J. Guo, “Energy-
efficient caching for scalable videos in heterogeneous networks,” IEEE Journal
on Selected Areas in Communications, vol. 36, no. 8, pp. 1802–1815, 2018. DOI: 10.
1109/JSAC.2018.2844998.

[136] B. N. Bharath, K. G. Nagananda, and H. V. Poor, “A learning-based approach to
caching in heterogenous small cell networks,” IEEE Transactions on Communica-
tions, vol. 64, no. 4, pp. 1674–1686, 2016. DOI: 10.1109/TCOMM.2016.2536728.

[137] X. Zhong, X. Wang, L. Li, et al., “CL-ADMM: A cooperative-learning-based opti-
mization framework for resource management in MEC,” IEEE Internet Things J.,
vol. 8, no. 10, pp. 8191–8209, 2021. DOI: 10.1109/JIOT.2020.3043749. [Online].
Available: https://doi.org/10.1109/JIOT.2020.3043749.

[138] D. T. Hoang, D. Niyato, D. N. Nguyen, E. Dutkiewicz, P. Wang, and Z. Han, “A
dynamic edge caching framework for mobile 5g networks,” IEEE Wireless Com-
munications, vol. 25, no. 5, pp. 95–103, 2018. DOI: 10.1109/MWC.2018.1700360.

[139] N. Giatsoglou, K. Ntontin, E. Kartsakli, A. Antonopoulos, and C. Verikoukis,
“D2d-aware device caching in mmwave-cellular networks,” IEEE Journal on Se-
lected Areas in Communications, vol. 35, no. 9, pp. 2025–2037, 2017. DOI: 10.1109/
JSAC.2017.2720818.

[140] L. N. T. Huynh, Q. Pham, T. D. T. Nguyen, M. D. Hossain, Y. Shin, and E. Huh,
“Joint computational offloading and data-content caching in NOMA-MEC net-
works,” IEEE Access, vol. 9, pp. 12 943–12 954, 2021.

[141] T. M. Ayenew, D. Xenakis, N. Passas, and L. Merakos, “Cooperative content
caching in mec-enabled heterogeneous cellular networks,” IEEE Access, vol. 9,
pp. 98 883–98 903, 2021. DOI: 10.1109/ACCESS.2021.3095356.

[142] L. Fleischer, M. X. Goemans, V. S. Mirrokni, and M. Sviridenko, “Tight approxi-
mation algorithms for maximum separable assignment problems,” Math. Oper.
Res., vol. 36, no. 3, pp. 416–431, 2011. DOI: 10.1287/moor.1110.0499. [Online].
Available: https://doi.org/10.1287/moor.1110.0499.

[143] N. K. Panigrahy, J. Li, and D. Towsley, “Hit rate vs. hit probability based cache
utility maximization,” SIGMETRICS Perform. Eval. Rev., vol. 45, no. 2, 21–23,
2017, ISSN: 0163-5999. DOI: 10.1145/3152042.3152050.

[144] D. Zhao, Z. Yan, M. Wang, P. Zhang, and B. Song, “Is 5g handover secure and
private? a survey,” IEEE Internet of Things Journal, vol. 8, no. 16, pp. 12 855–
12 879, 2021. DOI: 10.1109/JIOT.2021.3068463.

[145] B. Yang, X. Yang, X. Ge, and Q. Li, “Coverage and handover analysis of ultra-
dense millimeter-wave networks with control and user plane separation archi-
tecture,” IEEE Access, vol. 6, pp. 54 739–54 750, 2018. DOI: 10.1109/ACCESS.
2018.2871363.

[146] M. Yan, C. A. Chan, W. Li, L. Lei, A. F. Gygax, and C.-L. I, “Assessing the energy
consumption of proactive mobile edge caching in wireless networks,” IEEE Ac-
cess, vol. 7, pp. 104 394–104 404, 2019. DOI: 10.1109/ACCESS.2019.2931449.

https://doi.org/10.1109/JSAC.2018.2844998
https://doi.org/10.1109/JSAC.2018.2844998
https://doi.org/10.1109/TCOMM.2016.2536728
https://doi.org/10.1109/JIOT.2020.3043749
https://doi.org/10.1109/JIOT.2020.3043749
https://doi.org/10.1109/MWC.2018.1700360
https://doi.org/10.1109/JSAC.2017.2720818
https://doi.org/10.1109/JSAC.2017.2720818
https://doi.org/10.1109/ACCESS.2021.3095356
https://doi.org/10.1287/moor.1110.0499
https://doi.org/10.1287/moor.1110.0499
https://doi.org/10.1145/3152042.3152050
https://doi.org/10.1109/JIOT.2021.3068463
https://doi.org/10.1109/ACCESS.2018.2871363
https://doi.org/10.1109/ACCESS.2018.2871363
https://doi.org/10.1109/ACCESS.2019.2931449


138 Bibliography

[147] A. Vishwanath, F. Jalali, K. Hinton, T. Alpcan, R. W. A. Ayre, and R. S. Tucker,
“Energy consumption comparison of interactive cloud-based and local applica-
tions,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 4, pp. 616–
626, 2015. DOI: 10.1109/JSAC.2015.2393431.

[148] K. S. Reddy and N. Karamchandani, “On the exact rate-memory trade-off for
multi-access coded caching with uncoded placement,” in 2018 International Con-
ference on Signal Processing and Communications (SPCOM), Bangalore, India, July
16-19, 2018, IEEE, 2018, pp. 1–5. DOI: 10.1109/SPCOM.2018.8724457.

[149] V. Agarwal, C. Sharma, R. Shetty, A. Jangam, and R. Asati, “A journey towards a
converged 5g architecture & beyond,” in 2021 IEEE 4th 5G World Forum (5GWF),
2021, pp. 18–23. DOI: 10.1109/5GWF52925.2021.00011.

[150] 3GPP, “Technical Specification Group Services and System Aspects,” 3rd Gen-
eration Partnership Project (3GPP), Technical Specification (TS) 21.915, Jan. 2019,
Version 15.0.0. [Online]. Available: https://portal.3gpp.org/desktopmodules/
Specifications/SpecificationDetails.aspx?specificationId=3389.

[151] 3GPP, “Security Assurance Specification for Non-3GPP InterWorking Function
(N3IWF),” 3rd Generation Partnership Project (3GPP), Technical Specification
(TS) 33.520, Aug. 2021, Version 17.3.0. [Online]. Available: https://portal.
3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?
specificationId=3748.

[152] 3GPP, “Access Traffic Steering, Switching and Splitting (ATSSS),” 3rd Genera-
tion Partnership Project (3GPP), Technical Specification (TS) 24.193, Sep. 2019,
Version 16.4.0. [Online]. Available: https://portal.3gpp.org/desktopmodules/
Specifications/SpecificationDetails.aspx?specificationId=3607.

https://doi.org/10.1109/JSAC.2015.2393431
https://doi.org/10.1109/SPCOM.2018.8724457
https://doi.org/10.1109/5GWF52925.2021.00011
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3389
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3389
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3748
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3748
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3748
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3607
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3607

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Motivation and Objectives
	Problem statement and motivation
	Research objectives

	Related Works on Caching to Improve QoE
	Cooperative and non-cooperative caching
	Joint and separate caching
	Caching-problem modeling tools
	Constrained resource optimization solutions
	MEC-assisted caching strategies

	Possible Cache Edge Collaborations
	Contributions of the Dissertation
	Publications from the dissertation

	Organization of the Dissertation

	Fundamentals of Caching in Cellular Networks
	Basics of Caching to Improve QoE
	QoE and QoS concepts
	Content popularity
	Caching architecture
	Key performance indicators (KPI)

	Caching Models and Solving Tools
	Stochastic geometry
	Game theory
	Optimization

	Cache Enhancing Technologies
	Massive machine type communication
	D2D communication
	Learning strategies
	Multi-access edge computing (MEC)
	Cache refreshment techniques
	Multipath protocols

	Caching in Other Networks
	Challenges of Content Caching
	Content popularity variation
	Edges' mobility
	Limited capacity and storage space
	Heterogeneity of the network
	Computational limitation
	Content Encryption


	Dynamic Programming-based Caching in Cellular Networks
	Background
	Research Motivation
	System Model Design
	DP-based Caching Strategy
	Results and Discussion
	Uniform popularity & exponential size distribution
	Zipf popularity & equal content size
	Zipf popularity & exponential size distribution
	Cache buffer utilization

	Summary

	Cooperative Caching to Multiple MEC-enabled Edges
	Introduction
	Why Need Another Strategy?
	System Model Design
	Multiple Knapsack Problem Formulation
	Proposed Combinatorial Optimization
	Optimal solution for ZoSKP formulation
	Exact solution for ZoMKP formulation

	System-level Simulation and Analysis
	Impact of the MH mean cache size
	Impact of the content popularity
	Impact of the mean content size
	Impact of the number and type of cache-enabled MHs
	Impact of the library size of contents
	Analyzing computation costs and overheads

	Chapter Summary

	Demand-aware Content Caching in MEC-enabled Cellular Networks
	Demand-aware Caching without Content Partition
	Introduction
	System model design
	System MEC computation 
	MEC radio information analytics
	Content placement phase
	Content delivery phase
	Problem formulation
	Proposed SAP-based solution
	Numerical results and discussions
	Section summary

	Cooperative Caching with Partitioning
	Caching system model
	Proposed simplified method
	Numerical results and discussion
	Section summary

	Demand-aware Joint Content Caching
	Introduction
	Content delivery scheme
	Joint caching formulation
	Numerical results and discussions
	Section summary

	Chapter Summary

	Conclusions and Future Prospects
	Conclusions
	Future Prospects
	Caching with multipath protocols
	Demand-aware joint caching strategy


	Bibliography

