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Abstract

With the advance of unmanned aerial vehicle (UAV)-related technology using several drones in
the context of a single mission becomes more and more common. New problems and challenges
appear as a result.

When analyzing research works on using systems of multiple UAVs we could notice that the
majority of the authors provided few details on how the path planning or workspace division
was done. Out of those researchers who mentioned it, some pointed out that the planning or area
partitioning was performed by hand. Other researchers presented brief ideas of algorithms with
too little information to implement it them. In other research works very brief lists of algorithms
were given that could solve the problem. And even in those cases when the information on the
algorithms was provided, the algorithms themselves did not have any freely available implemen-
tations.

The purpose of this thesis is to fill the gap in the area of workspace division in order to
facilitate the usage of systems consisting of multiple UAVs.

In order to accomplish the aforementioned goal, in this thesis, we performed an analysis of
the literature on the subject of workspace decomposition between multiple robots and UAVs in
particular. As it will be shown later, there are almost no research works published in this area.

We implemented two state of the art state-of-the-art algorithms and shared information on
how we achieved that and what were the aspects that needed clarification or could be improved.
We analyzed thoroughly the produced results, and propose improvements to the algorithm that
yielded better results. And finally, we proposed, implemented, and analyzed two alternative al-
gorithms based on the obtained experience. These algorithms outperformed the algorithm from
the literature in terms of the quality of the resulting partition. One algorithm solves the parti-
tion problem for convex polygons and the other one solves the partition problem for non-convex
polygons. Finally, we have summarized a set of open problems that could be solved in the future.
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Resumen

Con el avance de la tecnología relacionada con UAV, el uso de varios drones en el contexto de una
sola misión se vuelve cada vez más común. Como resultado, surgen nuevos problemas y desafíos.

Al analizar los trabajos de investigación sobre el uso de sistemas de múltiples UAVs pudi-
mos notar que la mayoría de los autores proporcionaron pocos detalles sobre cómo se realizaba
la planificación de caminos o la división del espacio de trabajo. De aquellos investigadores que
lo mencionaron, algunos señalaron que la planificación o partición de áreas se realizaba a mano.
Otros investigadores presentaron breves ideas de algoritmos con muy poca información para im-
plementarlos. En otros trabajos de investigación se dieron listas muy breves de algoritmos que
podrían resolver el problema. E incluso en aquellos casos en los que se proporcionó información
sobre los algoritmos, los propios algoritmos no tenían implementaciones disponibles gratuitamen-
te.

El propósito de esta tesis es llenar el vacío en el área de la división del espacio de trabajo para
facilitar el uso de sistemas que consisten en múltiples UAVs.

Para lograr el objetivo antes mencionado, en esta tesis, realizamos un análisis de la literatu-
ra sobre el tema de la descomposición del espacio de trabajo entre múltiples robots y UAVs en
particular. Como se verá más adelante, casi no hay trabajos de investigación publicados en esta
área.

Implementamos dos algoritmos de última generación y compartimos información sobre có-
mo lo logramos y cuáles eran los aspectos que necesitaban aclaración o que podrían mejorarse.
Analizamos a fondo los resultados producidos y proponemos mejoras al algoritmo que arroja-
ron mejores resultados. Y finalmente, propusimos, implementamos y analizamos dos algoritmos
alternativos basados en la experiencia obtenida. Estos algoritmos superaron al algoritmo de la li-
teratura en términos de calidad de la partición resultante. Un algoritmo resuelve el problema de
partición para polígonos convexos y el otro resuelve el problema de partición para polígonos no
convexos. Finalmente, hemos resumido un conjunto de problemas abiertos que podrían resolverse
en el futuro.

xxi





Resum

Amb l’avenç de la tecnologia relacionada amb UAV, l’ús de diversos drones en el context d’una
sola missió esdevé cada cop més comú. Com a resultat, sorgeixen nous problemes i desafiaments.

En analitzar els treballs de recerca sobre l’ús de sistemes de múltiples UAVs vam poder no-
tar que la majoria dels autors van proporcionar pocs detalls sobre com es feia la planificació de
camins o la divisió de l’espai de treball. D’aquells investigadors que ho van esmentar, alguns van
assenyalar que la planificació o la partició d’àrees es feia a mà. Altres investigadors van presen-
tar idees breus d’algorismes amb molt poca informació per implementar-los. En altres treballs de
recerca es van fer llistes molt breus d’algorismes que podrien resoldre el problema. I fins i tot en
aquells casos en què es va proporcionar informació sobre els algoritmes, els mateixos algoritmes
no tenien implementacions disponibles gratuïtament.

L’objectiu d’aquesta tesi és omplir el buit a l’àrea de la divisió de l’espai de treball per facilitar
l’ús de sistemes que consisteixen en múltiples UAVs.

Per assolir l’objectiu abans esmentat, en aquesta tesi fem una anàlisi de la literatura sobre el
tema de la descomposició de l’espai de treball entre múltiples robots i UAVs en particular. Com
veurem més endavant, gairebé no hi ha treballs de recerca publicats en aquesta àrea.

Implementem dos algorismes d’última generació i compartim informació sobre com ho acon-
seguim i quins eren els aspectes que necessitaven aclariment o que es podrien millorar. Analitzem
a fons els resultats produïts i proposem millores a l’algorisme que van donar resultats millors. I fi-
nalment, vam proposar, implementar i analitzar dos algorismes alternatius basats en l’experiència
obtinguda. Aquests algoritmes van superar l’algorisme de la literatura en termes de qualitat de
la partició resultant. Un algorisme resol el problema de partició per a polígons convexos i l’altre
resol el problema de partició per a polígons no convexos. Finalment, hem resumit un conjunt de
problemes oberts que es podrien resoldre en el futur.
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Glossary

anchored area partition of a polygon P using a set of n points pi — such area partition that
∀i : pi ∈ Pi

area partition of a polygon P — a set of n nonoverlapping polygons Pi where n > 1 such that⋃n
i=1 Pi = P .

bounding box — rectangle covering all the points of a given geometry and having a minimum
possible size with each side collinear to one of the coordinate axis

convex polygon — a polygon intersection with which of any line results in not more than one
line segment.

multipolygon — a collection of non-overlapping polygons

predecessor of a given node in a directed and ordered graph is a node that is found before the
given node when iterating over the nodes in the order of the graph.

reflex angle — an angle greater than 180 deg and less than 360 deg

region-adjacency graph — a graph whose nodes represent polygons and whose edges represent
common borders between them

shoelace formula or in some sources also called shoelace method, shoelace algorithm, Gauss’s
area formula, and surveyor’s formula — a mathematical algorithm to calculate the area of a
simple polygon given the coordinates of its vertices

simple polygon — a polygon without holes and without self-intersections.

Steiner points — points that are originally not part of the given geometric object but are included
in the process of solving an optimization problem in order to obtain better results. Named
after Jakob Steiner, a Swiss mathematician.

well-known binary binary equivalent of the well-known text

well-known text markup language for representing geometry objects

workspace decomposition — a process or a result of dividing a space where a robot or multiple
robots operate into two or more smaller parts.
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I
Introduction

I.1 Motivation of this PhD

I.1.1 On UAVs and their applications

An unmanned aerial vehicle (UAV), frequently called a drone, as the name implies, is an aircraft
without a human on board. UAVs can be a part of unmanned aerial system (UAS) that apart from
the UAV also includes a communication system and the control system located on the ground.
UAVs may be operated by a human, be fully autonomous, or have some degree of autopilot assis-
tance (Fahlstrom et al., 2022; Skorobogatov et al., 2020).

UAVs have a wide range of applications such as surveying and mapping (Zahari et al., 2021),
construction and infrastructure inspection (Feretzakis & Badogiannis, 2021; Lebedev & Izhbold-
ina, 2022), search and rescue (Zimroz et al., 2021; Atif et al., 2021), reconnaissance (Jayaweera &
Hanoun, 2021; Gao et al., 2021), precision agriculture (Radoglou-Grammatikis et al., 2020), goods
delivery (Marintseva et al., 2021; Lv et al., 2021), road traffic monitoring (Byun et al., 2021; Gupta
& Verma, 2021) and many others (Shakhatreh et al., 2019).

I.1.2 Multi-UAV systems

In recent years there has been a growing number of UAV usage including the usage of multiple
UAS as shown in Skorobogatov et al. (2020). One can see in Fig. I-1 that the number of research
works covering experiments, simulations, and different concepts of multi-UAV missions has in-
creased significantly since the year 2013.

1



2 Chapter I - Introduction

Figure I-1: Yearly distribution of 65 publications discussing multiple UAVs covered in Sko-
robogatov et al. (2020)

I.1.2.1 Advantages of multiple UAS

The reason for this growth in recent years lies in the numerous advantages of using such systems.
Some of these advantages are discussed in Maza et al. (2015) and Chung et al. (2018), but after
having analyzed a number of papers about multiple UAVs, we can extend the advantages to the
following:

• Time efficiency: The mission operational time can be significantly reduced with the use of
multiple UAVs. The most drastic effect can be found in tasks such as target search, explo-
ration, etc. One of the examples is Han et al. (2013) addressing urgent detection of nuclear
radiation in a disaster and cooperatively building a contour map before deploying the sal-
vage. For another quantitative example, we could imagine a 50 ha field that is covered by a
single UAV in up to 15 minutes and a natural park of 13,000 ha. To cover the area of this park
with only one UAV it would require up to 64 hours excluding the time spent on recharging.
Introducing a team of 20 UAVs for this task would significantly reduce that time to only 3
hours.

• Cost: Sometimes having a single operating UAV could be an expensive solution when hav-
ing several small UAVs could be much cheaper and reduce the costs related to, for example,
power consumption. One could imagine a use case with goods deliveries. Having a team of
small UAVs will be a cheaper alternative to using a heavy (> 25kg) UAV due to the fact that
to use this type of UAVs one has to go through long and costly administrative procedures
with the final price being magnitudes higher.

• Simultaneous actions: A team of UAVs can accomplish tasks in different geographical lo-
cations at the same time contrary to a single UAV. This can be used when it is necessary to
collect information from the points that cannot be reached by a single UAV. This is the case
for the problems related to continuous coverage.

• Complementarity: In a team of UAVs each member can have a specific set of sensors. All
the sets would be complementary to each other. This separation could be done when all the
payload could not be physically located on a single UAV. Or when the mission goals demand
different types of sensors to be located in different areas. This, for example, was done in one
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of the experiments discussed in Merino et al. (2015) where one UAV was equipped with a
fire detector and the second one with an infrared camera.

• Fault tolerance: In the case of a single UAV, the loss of it means a termination of the mission.
But when there are multiple operating UAVs, the loss of a UAV could be mitigated by the
algorithm managing the flight by assigning additional tasks to other UAVs. For example,
in Scherer et al. (2015) one of the challenges for their system’s architecture was to be fault
tolerant. A search and rescue mission cannot be canceled if one of the UAVs in a team
malfunctions.

• Flexibility: single UAV can perform one task at a time, while a group of UAVs could be
dynamically allocated to different tasks at the same time and rearranged if necessary. As
an example, one could imagine a case of a group of UAVs performing an observation on a
crowd of people. If at some point there is a subgroup of people that separates from the main
group, and it is required to track their movement, the flexible task allocating system would
be able to rearrange the tasks and send one or more UAVs for tracking that subgroup.

I.1.2.2 Disadvantages of multiple UAS

As a result of this growth, new tasks and challenges are appearing. The disadvantages of using
these systems can be summarized as follows:

• Legal restrictions: using several UAVs at the same time may be not permitted in some juris-
dictions. For example, Shakhatreh et al. (2018) reports that in the United States, simultaneous
use of large numbers of autonomous UAVs for commercial applications is not allowed by
the Federal Aviation Administration.

• Piloting complexity: operating multiple UAVs can be challenging for a single pilot. As
the number of UAVs in a system increases, it becomes more difficult to manage them. To
facilitate the process of operating multiple UAVs, there is a need for advanced systems that
can automate some of the tasks involved.

• Safety issues: introducing several UAVs presents several issues related to safety. One of
them is collision avoidance which is also related to the piloting problem. With several vehi-
cles in the air, it is necessary that they do not go into each others’ buffer zones, otherwise,
they can collide and crash on the ground. Also, since several UAVs cover a larger area than
one vehicle, it becomes more difficult to avoid them in the air. There are many other things
to consider regarding safety such as no-fly zones, flying in dense urban areas, malfunction-
ing, and the possibility of hacking. And the more complex the system is, the more difficult
it is to account for all possible system failures.

I.1.3 On growing piloting complexity of multi-UAV systems

Operating multiple UAVs presents a number of challenges, including the growing complexity of
piloting. Piloting multiple UAVs requires careful coordination and planning to avoid collisions
and ensure that each vehicle is performing its intended mission. The survey by Skorobogatov
et al. (2020) provides insights into how piloting is performed with multiple UAVs.

It is reported that in more than 70% of research papers path planning was performed before
the launch of the UAVs, whereas in the remaining 30% of research papers, the UAVs were oper-
ated by users in real-time. The pre-planning can be performed in various ways. In some research
works, the planning was done by specifying areas to be observed on a digital map (Yahyanejad
& Rinner, 2015; Hattenberger et al., 2014) or by specifying no-fly zones (NFZs) (Chen et al., 2013).
In other research works, specially designed mission intent languages were used (Maza et al., 2011;
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Bailon-Ruiz et al., 2017; Muñoz-Morera et al., 2016; Maza et al., 2014; Torres-González et al., 2017).
Both ways, in fact, have the same underlying implementation as the information about check-
points on the map gets translated into those languages. Out of those 70% of works with mission
pre-planning more than 40% of research works reported that they performed the so-called "fixed
algorithm assignment". The fixed algorithm assignment implies that at any point in time, it is
possible to determine the exact location of a UAV.

With the growth of usage of multiple-UAV systems, new solutions will be required to facili-
tate their planning. For example, the goal of the FLOR project (Barrado et al., 2016) is to redefine
how pilots operate remotely piloted aircraft system (RPAS). If previously a dedicated crew had to
manage a single aircraft, this project proposes that a fleet of RPAS be operated by a team of remote
pilots. In this paradigm, each pilot would operate multiple aircraft during certain phases of flight,
and the responsibility would be transferred between the pilots as the operation advances. The
pilots then could be allocated to those tasks that fit better their capabilities and the tasks could be
dynamically adjusted over time. It is argued that this will lead to improved economic efficiency
and safety. Pilots would be able to supervise multiple RPAS when it is not required of them to
perform many actions and could focus on individual aircraft during the critical flight stages.

I.1.4 Workspace division problem

In many practical cases, when a mission requires several UAVs to be deployed, the workspace
has to be divided between them. Therefore, one of the tasks that have to be solved is workspace
division.

The workspace decomposition problem consists of the representation of the workspace using
such geometric objects as polygons or collections of polygons called multipolygons. In this thesis,
we do not consider disconnected workspaces represented by multipolygons. Polygons, however,
can contain holes that represent no-fly zones or obstacles. We do not consider nested polygons
where holes can contain other polygons inside.

The resulting decomposition of the input polygon will contain parts of various areas. These
areas are normally selected to represent the relative capabilities of UAVs and defined by so-called
area requirements.

The initial positions of UAVs can also define the resulting decomposition in the sense that the
points representing those locations should be included in the resulting areas corresponding to the
UAV.

Currently, there is a very small number of research works that discuss workspace division,
if we do not take into account works specifically about coverage path planning (CPP). Also, there
are no freely available tools that are capable of performing the polygon decomposition according
to the relative capabilities of several UAVs. In the following years, the usage of multiple UAVs
simultaneously will be even more common. Quick analysis at dimensions.ai (Hook et al., 2018)
shown in Fig. I-2 demonstrates that the number of research works mentioning the phrase "multiple
UAV" grew up more than twice from the year 2018 to the year 2022. Therefore, work has to be done
in the area of workspace division to facilitate the usage of multiple UAV systems.

In the majority of the analyzed research works where multiple UAVs were deployed, the
workspace decomposition was either performed manually or it was a by-product of CPP with
generated trajectories covering parts of the area.
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Figure I-2: Number of publications per year mentioning "multiple UAV" in their texts according
to dimensions.ai.

I.2 Objectives of this PhD Thesis

In research works that talk about using systems consisting of multiple UAVs the problem of
workspace division is barely discussed. Authors either send a reader elsewhere to read about
it, implement an algorithm but do not share it or in many cases do not mention the problem at
all. The main objective of this thesis is to fill the gap by providing algorithms and clear imple-
mentation instructions and examples for future researchers working on the problem of workspace
division with the ultimate goal in mind of facilitating the usage of multiple UAV systems.

Specific objectives of this thesis can be outlined as follows:

• Investigate how planning is currently done based on what other researchers describe in their
works.

• Analyse the algorithms in the literature that solve the polygon partition problem, classify
them, and provide an explanation of their specific use cases, advantages, and drawbacks.

• Implement algorithms for dividing convex and non-convex polygons, analyze and compare
produced results using various metrics, and improve the algorithms.

• Use extensive tests of the produced results using randomly-generated polygons to validate
the correctness of the algorithms.

• Outline potential future work and notable problems that arose during the time of prepara-
tion of the thesis.

I.3 Scope and Limitations of this PhD Thesis

For this thesis, only computer simulations of real-life scenarios were executed. The experiments
with real drones were not performed since the simulations are more general and could provide us
with more results.

All the simulations are performed in two-dimensional (2D). We consider three-dimensional
(3D) geometry to be out of the scope of the thesis.
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We also did not consider multipolygons for the simulations in this thesis. The problem of
multipolygon workspace decomposition at the moment never arose, and there was only one re-
search work that discussed CPP across multiple disconnected polygons that we could find (Chen
et al., 2021). Therefore, we decided to leave this specific case for future work.

It is also worth noting that unrealistic polygons were disregarded. More specifically, we
consider the polygons with a too-low ratio of area to perimeter unrealistic and not useful for
any practical usage. Nevertheless, the presented algorithms are able to work with these types
of geometries but we never considered them in our analysis. We also did not consider polygons
with more than 100 vertices and more than 10 holes. Similarly, we omitted the cases with a large
number of UAVs or, in other words, area requirements, and the cases when the relative difference
between the area requirements was too high. Nonetheless, the presented algorithms are capable
of solving such cases but it was necessary to choose a reasonable upper limit for these numbers.

Partition by arcs was also not considered. Only straight segments are used in this thesis to
divide polygons. In fact, the usage of arcs for workspace decomposition was never performed to
the best of our knowledge. There exist works, however, in the area of computational geometry
with the aim of performing polygon partitioning with arcs.

Another important note is that in this thesis we do not develop CPP algorithms and consider
them to be out of scope. Nonetheless, we use some metrics related to CPP algorithms to justify
using compactness as an appropriate metric for area partitioning.

All the implementations of the presented algorithms were tested using large numbers of
randomly generated polygons. There is an issue, though, that the term random polygon is not
well defined. There are various algorithms to generate them but due to their nature, they produce
bias to some types of polygons, or simply cannot generate some types. For example, some research
works reported that their algorithms cannot generate star-shaped polygons (Sadhu et al., 2013) or
polygons with complex holes (Hada, 2014).

Finally, the task of designing an algorithm that could find the best possible partition in terms
of a chosen metric is challenging. This is why in this thesis we propose solutions that produce
solutions close to optimal.

I.4 Outline of this PhD Thesis

The present thesis is organized into seven chapters. The following chapters are summarized as
follows:

• Chapter II presents the state of the art of different types of algorithms for workspace di-
vision. We review those research works that are regularly referenced as solutions for the
workspace division problem. We also provide information on more recent research works
discussing specifically the polygon decomposition. All the algorithms are classified into
different groups. In the end, we discuss the drawbacks that motivate the design of new
algorithms.

• Chapter III provides details about the methodology of implementing algorithms. The re-
quired functionality is covered as well as various libraries are compared. Brief information
was also provided about how the algorithms were tested. Finally, we describe how trajecto-
ries were generated that were necessary to measure several metrics of the quality of obtained
partitions.

• Chapter IV discusses two algorithms. One is presented by Hert & Lumelsky (1998) for con-
vex polygon decomposition and another one is a novel algorithm based on an analytical
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solution. Both algorithms are explained in detail and their implementation details are dis-
cussed.

• Chapter V discusses two algorithms. The first one is an algorithm from Hert & Lumelsky
(1998) for the decomposition of non-convex polygons. Another algorithm is a novel algo-
rithm for dividing non-convex polygons into multiple parts based on a bottom-up approach.
Likewise, a detailed description of the algorithms is presented and the results are shown and
compared with the other methods.

• Chapter VI presents conclusions of this thesis. Achievements of the work performed during
writing the thesis are discussed. Potential future work is also described in detail.





II
Previous Work

Algorithms for finding area partition between multiple unmanned aerial vehicles (UAVs) are im-
portant in many applications, such as search and rescue missions, surveillance, agriculture, and
others. These algorithms typically involve dividing a given area of interest into smaller regions,
which can be assigned to individual UAVs for efficient coverage. These algorithms can be divided
into several classes.

In Section II.1 we discuss several works about decomposition using Voronoi diagrams. In
Section II.2 the most common way found in the literature to split an area is shown — grid parti-
tioning. In Section II.3 we discuss algorithms using region-adjacency graph partitioning. Finally,
in Section II.4, algorithms for decomposing non-convex polygons into convex parts are covered as
they are frequently used as part of the workspace decomposition algorithms.

II.1 Voronoi diagram

Several works like (Kim & Son, 2020; Sun et al., 2018) use the Voronoi diagram to divide a polygon
into several pieces. The idea is as follows. First, a set of lattice points is constructed inside the
given polygon and several clusters are found based on the number of parts the polygon has to be
split into. A centroid point is found for each cluster. The resulting set of centroids is then used
to construct the Voronoi diagrams where the inner points of each resulting area are closer to the
corresponding centroid than to any other one. The complete system flowchart from Kim & Son
(2020) is shown in Fig. II-1.

The drawback of this algorithm is that it is not possible to specify the areas of the resulting
parts. In (Kim et al., 2020), authors proposed a weighted Voronoi diagram for a partition that takes
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Figure II-1: System flowchart from Kim & Son (2020).

into account the different capabilities of the UAVs. A weighted Voronoi diagram differs from a
regular Voronoi diagram in that the former considers both the spatial proximity and the weights
of the input points when partitioning the space. The weights associated with each input point, in
general, represent their importance or influence in the partitioning of the space. And in this case,
the weights were used to represent the capabilities of the UAVs. An example is shown in Fig. II-2.
The area proportions of the resulting parts will be closer to the given capabilities proportions but it
will be still impossible to specify precisely the areas of resulting parts. Moreover, these algorithms
were tested only on convex and close-to-convex polygons. There was no information provided on
how they will perform on more complex polygons.

Figure II-2: The area partition between three robots based on a weighted Voronoi diagram: (a)
the area divided into sub-areas by the same weights; (b) the area divided into sub-areas by the

weight of 1.4 for one sub-area. Numbers denote weights assigned to each area.

II.2 Grid partitioning

The most commonly used way to perform area decomposition found in literature is grid partition-
ing. This method consists in dividing an input polygon into multiple parts to form a grid. Cells
of this grid are then divided into several groups, one group per UAV. Usually, researchers con-
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sider rectangular areas of interest (Kapoutsis et al., 2017; Barrientos et al., 2011; Gao & Xin, 2019;
Dong et al., 2020; Ann et al., 2015; Xu et al., 2019). Most of the works, if not all, that perform grid
partitioning, build trajectories over the grids. While the coverage path planning (CPP) for a single
UAV is a more common task, there exist various research works on CPP for multiple UAVs as
well. An example of such partition with trajectories applied on top of the resulting parts is shown
in Fig. II-3. There, each color represents an area assigned to a UAV except the red color which
shows the no-fly zones.

Figure II-3: An example area partition from Ann et al. (2015) with applied trajectories.

As an example, Barrientos et al. (2011) discusses the use of a multiple unmanned aerial system
(UAS) that takes georeferenced pictures and creates a full mosaic. One of the main contributions
of that work is an automatic one-phase partition manager, which is based on the negotiation be-
tween UAVs taking into account their capabilities. When each UAV gets its task, a path planning
algorithm determines the best path for each UAV to follow. In this work, the authors used the cel-
lular decomposition of an area of interest and applied a flood-fill algorithm (Newman & Sproull,
1979) to obtain the subareas. This approach has several drawbacks, though. For example, this
approach will result in partial cells at the border of the area that will still have to be visited. The
algorithm will also restart when the flood fill cannot proceed. On the other hand, this algorithm
could be considered superior to exact-partition algorithms, specifically for tasks in which UAVs
have to visit each cell in their subareas and not intrude on neighboring subareas.

In some works, the authors step away from using conventional rectangular cells. For exam-
ple, Tang et al. (2020) used sensor footprints to cover the area. The set of footprints was divided
into several clusters of equal sizes, one cluster for one UAV, using an improved k-means cluster-
ing algorithm. The procedure is shown in Fig. II-4. This algorithm, though has a drawback, in
that the initial partitioning is done by a set of straight lines which will not necessarily give a valid
partition in terms of connectivity.

The research performed in Kapoutsis et al. (2017) focuses on solving the problem of path
planning for a group of mobile robots to cover an area with pre-defined obstacles. The authors
introduce a new algorithm that finds the best solution, or at least a close approximation of it, by
breaking down the original problem into smaller single-robot problems. The core of the approach
is a Divide Areas based on Robot’s initial Positions algorithm (DARP) which divides the grid into
equal-area parts based on distances to initial locations of the robots. Each area is then covered
by a minimum-spanning tree which ensures complete coverage without any backtracking. This
approach helps to reduce the computational complexity of the original problem, making it more
practical for real-world applications. The authors conducted an extensive numerical analysis to
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Figure II-4: Illustration of the algorithm from Tang et al. (2020).

evaluate the performance of the proposed algorithm, and their results indicate that polynomial
curves bound the algorithm’s computational complexity for practical input sizes. Overall, the
proposed algorithm offers a practical solution to the problem of path planning for mobile robots
in complex environments.

This work was later used in Apostolidis et al. (2022) discussing a cooperative multi-UAV
coverage mission planning platform for remote sensing applications. There the algorithm was
extended to take into account different requirements for areas for each UAV. An example of par-
titioning is shown in Fig. II-5. The only drawback of the approach could probably be the use of
a rectangular grid that requires careful consideration of areas’ borders as the representation of a
complex polygon using a grid can result in discontinuities. Nevertheless, since this is the only
open-source algorithm for polygon partitioning, we will use it in Chapter V when comparing the
results produced by our algorithms.

Figure II-5: Partitioning progress during the course of iteration as seen in Apostolidis et al.
(2022). The area requirements are chosen to be equal.

In Balampanis et al. (2017) the authors continue their work started in their previous papers.
Here, the area is proposed to be split into a mesh of triangles instead of a rectangular grid. These
triangles get constructed from the constrained Delaunay triangulation using Steiner points where
Steiner points are points located in a grid-like manner inside the polygon. The obtained grid is
then split by using wavefront propagation from the initial positions of UAVs. An adjustment
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algorithm for deadlock scenarios is used then.

Not really grid-based, but, probably the most fitting into this class, the algorithm proposed
by Pintado & Santos (2020). The idea of the algorithm is to split an area into a set of parallel
stripes. These stripes are then grouped together according to the given area requirements. For
convex polygons, this approach would yield sound results according to the performed analysis
in this paper. But, clearly, this approach has the drawback of producing disconnected areas in
many cases when the division is performed for complex polygons. While for some non-convex
polygons it is possible to achieve partition without discontinuous areas, this is not always the
case. An example of a polygon divided into eight parts with resulting discontinuities is shown in
Fig. II-6.

Figure II-6: Partition of a polygon into eight parts by using the algorithm from Pintado & Santos
(2020).

Wzorek et al. (2021) addressed the problem of partitioning a polygon into connected, dis-
joint sub-polygons, each with a specific area size constraint, for efficient terrain coverage appli-
cations in robotics. The proposed formulation included a compactness metric for the generated
sub-polygons, which affected the optimality of any generated motion plans, thus increasing the
efficiency of robotic tasks. The paper proposed a new algorithm, the AreaDecompose algorithm,
based on grid cell decomposition and a potential field model, which employed various optimiza-
tion techniques and post-processing methods. The algorithm’s performance was evaluated on
a set of randomly generated polygons and compared with a state-of-the-art algorithm (Hert &
Lumelsky, 1998) which we will cover in the following section, showing that the proposed algo-
rithm can efficiently divide polygons into regions more compact than the algorithm from Hert &
Lumelsky (1998). An example of the area decomposition is shown in Fig. II-7.

Figure II-7: Example of area decomposition using grid decomposition and potential fields from
Wzorek et al. (2021).

II.3 Sweep line-based algorithms

Hert & Lumelsky (1998) proposed two algorithms, an algorithm to divide convex polygons and
an algorithm to divide non-convex polygons. The algorithm for dividing a convex polygon does it
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in a recursive manner. A line with a fixed endpoint is swept until satisfying the area requirements.
The resulting two parts are then divided using the same procedure. The process repeats until the
polygon is completely divided into parts with areas corresponding to the input area requirements.
An example of the resulting partition can be seen at the top of Fig. II-8.

Xing et al. (2020) improved the algorithm by post-processing each obtained part. The lines
that divided the obtained sub-polygon from the rest of the polygon were moved until the two
angles introduced by each line were as close as possible to 90 degrees. The algorithm was tested
only on a single rectangle, so more tests are needed to understand if it works for more complex
cases. Fig. II-8 shows the test case analyzed in the paper.

Figure II-8: Test case of the algorithm from Xing et al. (2020).

The algorithm for dividing non-convex polygons proposed in Hert & Lumelsky (1998) is
based on their algorithm for dividing convex polygons. This algorithm represents a convex poly-
gon partition as a directed region-adjacency graph with nodes as its convex parts. The nodes of
the graph are then processed recursively and reorganized into parts according to the given area
requirements. When an area of a node is greater than the required area, a sweep-line algorithm
is used to get the necessary area. An example of obtaining the partition using the algorithm is
shown in Fig. II-9. It’s worth noting that the authors do not share how they produced convex
decomposition for non-convex polygons for their analysis.

These two algorithms by Hert & Lumelsky (1998) are, probably, the most popular choice in
the literature when dealing with workspace decomposition. However, it was noted in several
research works that the resulting parts can be of shapes that make them a poor choice for being
covered by UAVs.

Berger et al. (2016) considered the problem of scanning an area with a team of UAVs. It
reuses the algorithm from Hert & Lumelsky (1998) but adds optimization for weights and initial
positions on top. The main contribution is the formulation of an optimization problem following
the requirement established by an operator. The requirement could be either a minimum flight
time or to obtain a high point density within a time limit where point density represents the level
of details of the point cloud generated by the scanning mission. In this work, the algorithm runs
multiple iterations to optimize for the specified requirement. An example is shown in Fig. II-10.
While the algorithm performs well for the given task, in our work we consider the weights, or
area requirements, unlike in the given paper and, hence, we cannot use it.

Hert & Richards (2002) provide a similar algorithm to the one discussed in Hert & Lumelsky
(1998), but in this case, a slightly different task is solved. A polygon is split between n mobile
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Figure II-9: An example partition from Hert & Lumelsky (1998).

Figure II-10: Results of optimization from Berger et al. (2016).

robots into n + 1 parts where the last part should be connected to all the other n parts that are
assigned between the robots.

The paper by Hert & Lumelsky (1998) is probably the most popular choice in the literature
for the problem of workspace decomposition. We chose to implement both algorithms from that
paper and improve them where possible. In the next chapters, the algorithms will be discussed
in more detail. The results produced by them together with the comparison against alternative
algorithms will be shown in the following chapters.
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II.4 Decomposition non-convex polygons into convex parts

Decomposition of non-convex polygons into convex ones is often required by sweep-line-based
algorithms. It is also the first step of the algorithm in Hert & Lumelsky (1998). The authors refer
to several research works with the algorithms for this task (Chazelle, 1980; Greene, 1983; Hertel &
Mehlhorn, 1983; Keil, 1985; Levcopoulos & Lingas, 1984; Tor & Middleditch, 1984).

1. Chazelle (1980) proposed an algorithm that finds a minimum partition of a simple polygon
in O(n3) time where n is the number of vertices. The algorithm, to the best of our knowledge, was
never implemented probably due to its complex description. It was also designed for partitioning
polygons that do not contain holes.

2. The algorithm by Greene (1983) finds an optimal partition of a simple polygon in O(n4)
time and requires O(n3) space in the worst case. This algorithm has an implementation in CGAL
(The CGAL Project, 2022), but it does not support polygons containing holes.

3. The Hertel & Mehlhorn (1983) algorithm produces the results which are never worse than
2r + 1 pieces, where r is the number of reflex vertices. And the results are never worse than four
times the minimum. The algorithm has various implementations1,2. In CGAL3, for example, it
does not work with polygons that contain holes.

4. Keil (1985) presents a dynamic programming algorithm for finding the partition of a simple
polygon into convex parts in O(N2n log n) where n is the number of vertices and N is the number
of reflex angles. Similar to other algorithms, it does not work with polygons containing holes.

5. Levcopoulos & Lingas (1984) provides a heuristic for partitioning a polygon into convex
parts with a generalization to include polygons with polygonal holes. Both variants give mini-
mum line lengths and run in O(n log n) where n is the number of vertices.

6. Tor & Middleditch (1984) proposed an algorithm that can decompose concave polygons
into convex parts in linear time if the difference between the convex hull and the polygon itself is
a convex area itself. The algorithm is a difference-decomposition method meaning that it returns
the difference between the non-convex polygons and their corresponding convex hulls which is
not what we are looking for. In the worst case, the algorithm has quadratic complexity.

7. Finally, the paper Lien & Amato (2006) proposes an algorithm for an approximate convex
decomposition of polygons. And since the algorithm described in this chapter requires the parts
of the polygon to be strictly convex, this particular algorithm does not suit our needs.

Delaunay triangulation can also provide division of non-convex polygons into convex parts
but the number of resulting parts is far from optimal.

1https://github.com/ivanfratric/polypartition
2https://github.com/azrafe7/hxGeomAlgo
3https://doc.cgal.org/latest/Partition_2/group__PkgPartition2Ref.html

https://github.com/ivanfratric/polypartition
https://github.com/azrafe7/hxGeomAlgo
https://doc.cgal.org/latest/Partition_2/group__PkgPartition2Ref.html


III
Implementation and Evaluation

During the course of writing the thesis, we implemented several algorithms in the area of compu-
tational geometry. These algorithms were described in pseudocode in their respective papers. On
multiple occasions, the descriptions of these algorithms were too general, and details were missing
that could allow us easily to implement them. This is why we think that it is important not only
to show a general description of an algorithm but also to provide a sufficient amount of details
on how to implement it. In this chapter, we take a look at the functionality that will be required
when implementing the algorithms in Section III.1. In Section III.2 a comparison of different li-
braries will be shown. We discuss which libraries satisfy various requirements. In Section III.3,
we describe how the algorithms were tested. In Section III.4, it is explained how trajectories were
assigned to the resulting partitions in order to obtain various metrics. And in Section III.5, various
metrics are discussed that were used for validating the algorithms.

III.1 Required functionality

III.1.1 Shapes

The algorithms discussed in this thesis require the use of the same set of geometrical objects.
The central object is, of course, the polygon. We are interested in polygons that could contain any
number of holes since it is easy to imagine a real-life case where the area to be partitioned contains
obstacles or no-fly zones (NFZs). We will need the polygons to carry information about the area
they cover as well as the perimeter of the outer boundary of a polygon. The perimeter will be
used for checking the quality of obtained results.

Apart from the polygons, we will also need access to segments defining their boundaries. If

17
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a library does not provide the corresponding data type, it could, for example, give access to an
ordered list of points defining the border. The segments could be then reconstructed from these
points. And, finally, the points themselves should be a part of the library. In this thesis we consider
only planar geometry, hence if a library works with three or more dimensions, we could simply
omit the unnecessary ones.

III.1.2 Operations

Apart from the basic set of geometric objects, the library of interest should have implementations
of set-theoretic operations on these objects. These operations are summarized in the following list:

• polygon area calculation

• point-in-polygon — checks if a point is within a polygon

• segments intersection — while easy to implement, it is expected that a geometry-related
library has functionality that performs this check

• polygonal union — for adding polygons into a larger one

• polygonal difference — for subtracting parts of a polygon

• polygonal intersection — for obtaining a common area of two or more polygons

• calculating orientation — for a list of points we will need to check if they are oriented clock-
wise, counterclockwise, or if they are collinear

III.1.3 Precise calculations

An important requirement for a library in the area of computational geometry is precise calcula-
tions. That means that the coordinates of the geometric objects cannot be rounded or represented
imprecisely with floating point numbers. As it will be shown later, the majority of the libraries do
not support precise calculations.

A simple example to demonstrate a problem caused by precision would be as follows. The
Shapely library is used for the demonstration. Let us take a point defined as ‘Point(2/3, 2)‘ and a
triangular polygon defined as ‘Polygon([(0, 0), (1, 0), (1, 3)])‘ as depicted in Fig. III-1. It is clear that
the point should lie on one of the segments of the polygon. We can check the distance between
the polygon and the point as ‘Point(2/3, 2).distance(Polygon([(0, 0), (1, 0), (1, 3)]))‘ and the result
we get is satisfactory, ‘0.0‘. But, when checking if the point intersects the polygon by ‘Point(2/3,
2).intersects(Polygon([(0, 0), (1, 0), (1, 3)]))‘, the result will be incorrect, ‘False‘. These types of
errors tend to propagate through the run of the algorithms and can make it very hard to debug
them. If the library were to work with precise data types such as ‘Fraction‘, this problem would
not occur. Hence, it is very important that the calculations be precise.

For more information on what can go wrong and why with the algorithms in the area of
computational geometry due to using floating-point arithmetic, we refer an interested reader to
the works like (Schirra, 1998) and (Kettner et al., 2008). In the latter, the authors provide examples
of two algorithms, one for calculating Delaunay triangulation, and the other one for computing
the convex hull. It is shown how the algorithms can fail with different examples and how these
examples can be constructed.
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Polygon([(0, 0), (1, 0), (1, 3)])

Point(2/3, 2)

Figure III-1: In Shapely, due to precision errors, when checking if a point with coordinates
(2/3, 2) lies on a segment of a polygon defined by the coordinates [(0, 0), (1, 0), (1, 3)], the re-

sult unexpectedly will be False.

III.1.4 Graph-related computations and hashability

In the algorithms presented in this thesis, the input polygons are split into multiple parts, such
as convex parts or triangles from Delaunay triangulation. It is necessary that the neighbors of
each part could be easily retrieved as well as the edges between these parts. In order to do so, we
require data structures that act either like graphs or dictionaries. And in order to use geometric
objects as keys of these dictionaries or as nodes in the graphs, they should be hashable. It turns
out, as it will be shown later, there exist libraries that for various reasons use mutable geomet-
ric objects which makes them unhashable and, therefore, unusable for our purposes. And as for
graph-related computations, it will be shown later that there are no libraries in the area of compu-
tational geometry that provide functionality for planar region-adjacency graphs. For this reason,
the libraries that could be used in order to complement the missing functionality will be looked at
separately.

III.1.5 Tests

Even the most popular geometry-related libraries are not free of issues. Very simple input data
could result in incorrect results or simply crash the program. In order to avoid this, authors of
these libraries write tests to check the correctness of their code. But in the majority of cases, these
tests cover just a tiny fraction of possible input parameters that could be passed to the functions
of those libraries. When a bug is found, the authors simply add another test case, and the process
repeats. Alternatively, property-based testing can provide a better way to test the functionality
of the libraries. By generating multiple randomly-generated input parameters, and checking the
basic properties of the results from performed operations, one could find more hidden issues with
the code. We think that a good geometry-related library should be covered by tests, and ideally,
these tests should be property-based which, unfortunately, is a very rare occurrence.

All of the important functionalities required from the library are shown in Table III-1 together
with their brief descriptions.

III.2 Libraries comparison

One of the first challenges when implementing an algorithm is choosing a library that satisfies the
necessary requirements. There exist not many geometry processing libraries, so we can cover all
of them here. It is worth noting that we do not include libraries whose main goal is plotting such
as Matplotlib as they include a very limited number of tools to work with geometries.
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Table III-1: Description of required functionalities

Functionality Description

Point basic building block for geometric objects

Segment used for defining polygons’ boundaries
and polylines dividing the polygons

Polygon representation of workspace
holes representation of no-fly zones and obstacles

point-in-polygon common geometric query returning a boolean
segment intersection common geometric query returning a point
precise calculations ensures correctness

hashability allows unique identification by hash values
which allows fast data access

tests helps to ensure the reliability of the library

property-based tests helps to identify edge cases that may not
be covered by traditional unit tests

III.2.1 Shapely

Shapely1 is probably the most popular library used for set-theoretic analysis and operations on
planar geometry objects. The library uses heavily the GEOS library (GEOS contributors, 2021)
under the hood which is itself a port of the Java Topology Suite (JTS). It does provide all the
necessary geometry objects such as Point, Segment, Polygon, and others that will be required for
our use case. It also provides multiple set-theoretic functionality and various functions that we
could benefit from such as Delaunay triangulation. Unfortunately, apart from all the positive
things this library has to offer, it has multiple drawbacks. First of all, the geometries as of the
moment of writing the thesis are mutable and, therefore, unhashable. This makes it impossible
to use them as nodes in the region-adjacency graphs, as keys in dictionaries, or as items in sets.
This, though, should change as soon as Shapely 2.0 is published 2. Another drawback is the lack
of support for precise calculations. This and the lack of properly tested code causes multiple bugs
to emerge when testing the algorithms on multiple random input geometries. For example, when
using the Delaunay triangulation, we encountered multiple issues with it that did not let us use it
without causing too many problems 3.

III.2.2 PyGEOS

PyGEOS4 is a wrapper around the GEOS library (GEOS contributors, 2021) that uses NumPy to
provide performance boost when working with sequences of geometrical objects. The GEOS itself
(Geometry Engine - Open Source) is a C++ library for performing geometric operations on spatial
data. It is widely used in many popular open-source GIS software packages, such as PostGIS and
QGIS. It is worth noting that PyGEOS has been merged with Shapely in December 2021 and will
be released as a part of Shapely 2.0.

The library contains functions that create NumPy arrays of basic types such as points, poly-
gons, and segments. But, there is no way to, for example, instantiate a single polygon unless it
is wrapped in the array. This makes it not convenient for our use case. There is, however, a way
to simply use Geometry class, but it takes a well-known text (WKT) or well-known binary (WKB)

1https://shapely.readthedocs.io/
2Practical steps towards Shapely 2.0 — https://github.com/shapely/shapely-rfc/pull/1
3https://github.com/shapely/shapely/issues/764
4https://pygeos.readthedocs.io/

https://shapely.readthedocs.io/
https://github.com/shapely/shapely-rfc/pull/1
https://github.com/shapely/shapely/issues/764
https://pygeos.readthedocs.io/
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representation of a geometry object where WKT is a markup language for representing geometry
objects and WKB is its binary equivalent (Herring et al., 2011). The library has all the necessary
operations. The objects are hashable but the geometries are considered to be equal if and only if
their WKB representations are equal which has a negative effect on comparing identical geomet-
rical objects with different orders of vertices. Finally, the library has tests but not property-based
ones.

III.2.3 Geometry3D

The Geometry3D5 is a computational geographics library with all the computations performed
in three-dimensional (3D) space. It contains all the basic geometry classes but the polygons can
be only convex and cannot contain holes. Operations such as the intersection of two different
geometric objects are included. This library, however, makes an assumption that any two values
that are close to each other with some epsilon, the default being 1e-10 is the same value6. This is
not ideal and will cause problems in many cases. Finally, all the objects can be hashed, and the
library is tested but it does not use property-based tests.

III.2.4 pysal

PySAL7 is a spatial analysis library created for geospatial data science applications. It contains
several modules, one of which is libpysal.cg, a module with computational geometry functional-
ity. This module contains all the basic geometry types and the Polygon object can contain holes.
The Polygon also has a method contains_point. There exists a set of functions to get intersections
between two geometries, such as libpysal.cg.get_segments_intersect. The library does not support
precise calculations. In fact, all the coordinates passed to the objects’ constructors get immediately
converted to floating point values. The hashability is not supported for all the geometry objects.
Only a Point object is hashable. And, finally, the library does not have any tests implemented.

III.2.5 geometer

The geometer library8 is used for projective geometry — a study of properties of geometric objects
that are invariant with respect to projective transformations. The library supports all basic geom-
etry data types such as Point, Segment, and Polygon. Apart from two-dimensional (2D) shapes it
also provides support for various shapes in 3D space. The Polygon class does not support holes
which are required for our use case. The library supports such operations as point-in-polygon
check — ‘Polygon.contains(Point)‘, the intersection checks — ‘Segment.intersect(Segment)‘, ‘Seg-
ment.intersect(Polygon)‘. At the moment of writing the thesis, precise calculations are not im-
plemented. Though, there was an interest from the contributors of the library to add support of
Fraction data types 9. The data types of this library are unhashable and, therefore, cannot be used
inside sets or as keys of dictionaries which makes it troublesome to use them in graph-related
computations. Finally, the library is covered by tests but no property-based ones.

5https://github.com/GouMinghao/Geometry3D/
6https://geometry3d.readthedocs.io/en/latest/example_float.html
7https://pysal.org/libpysal/api.html
8https://geometer.readthedocs.io/en/stable/
9https://github.com/jan-mue/geometer/issues/18
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https://github.com/jan-mue/geometer/issues/18
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III.2.6 CGAL

CGAL10 (The CGAL Project, 2022) is a C++ library of a variety of computational geometry al-
gorithms. It also has Python bindings 11 that cover some parts of its original functionality. The
library contains all the basic geometry object classes including polygons with holes represented
by Polygon_with_holes_2 class. It also contains all kinds of operations including the ones such as
bounded_side_2 that checks point inclusion in a polygon and intersection to get an intersection of
any pair of geometry objects. CGAL does support precise calculations. It has various number
types that can be evaluated lazily. And, finally, the library is extensively tested, but without the
usage of property-based tests.

III.2.7 scikit-geometry

Scikit-geometry12 is a library for geometry-related computations that takes most of its function-
ality from CGAL The CGAL Project (2022). It implements the basic geometry types in both two
and three dimensions such as Point2, Segment2, Polygon, and specifically for polygons with holes
— PolygonWithHoles. All the geometry objects have basic operations implemented. The precise
calculations, however, are not supported unlike in the CGAL itself. The objects are hashable. And
the library is partially covered by tests, though not property-based.

III.2.8 SymPy

The SymPy13 library’s primary goal is to allow a symbolic mathematical computation. Among
others, it includes a geometry module that provides such objects as Point, Line, Segment, Ray, El-
lipse, Circle, Polygon, RegularPolygon, and Triangle. Unfortunately, the classes that define polygons
do not support holes. The library has the functionality for checking if a point is inside a poly-
gon provided by the encloses_point method of the polygon classes. To calculate the intersection
between any geometry objects one can use the intersection function from the util submodule.

Unlike many other libraries, this library does support precise calculations when using the
Rational class provided by SymPy itself. The objects are also hashable which makes it easy to use
them in dictionaries and graphs. And the library itself is covered by tests that are not property-
based, though. And since the library is very complex, the number of reported issues as of the time
of writing the thesis is almost four thousand.

III.2.9 gon

Gon14 is a relatively new and unknown library for processing planar geometry objects. It orig-
inated from the dissatisfaction caused by multiple disadvantages of other libraries. Unlike its
popular counterpart, Shapely, the geometries are immutable and hashable which allows us to use
them as, for example, dictionary keys or nodes in a graph. The library includes all the necessary
geometry data types as well as operations on them. Access to segments of the border of the poly-
gon is available, as well, though the library does not have any way of specifying which segment to
return first. The correctness of performed operations is ensured by property-based tests covering
it. And, finally, this library supports precise calculations. To enable them one would only have to
use integer coordinates or coordinates of Fraction data type.

10https://www.cgal.org/
11https://github.com/cgal/cgal-swig-bindings
12https://scikit-geometry.github.io/scikit-geometry/
13https://docs.sympy.org/
14https://gon.readthedocs.io/
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III.2.10 Other libraries

There is also a number of other well-known geometry-related libraries that have very limited
functionality. For example, the scipy-spatial15 submodule of SciPy library has a number of data
structures such as KDTrees, and spatial algorithms such as Delaunay tessellation in N dimensions
or Voronoi diagrams built on the surface of a sphere.

Polliwog16 is both 2D and 3D computational geometry library. It includes vectorized geomet-
ric operations implemented in pure NumPy which makes it fast when dealing with operations on
multiple geometry objects at once. It provides only such objects as polygonal chains, planes, lines,
and boxes, which makes it unsuitable for our use case.

III.2.11 Comparison

The table with the comparison of all the aforementioned libraries and their features can be seen in
Table III-2.

Table III-2: Feature comparison of various libraries working with geometry. The library that was
selected as the best fitting our purposes is highlighted.
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Geometry3D Yes Yes No No Yes Yes No Yes Yes No
geometer Yes Yes Yes No Yes Yes No No Yes No

PySAL Yes Yes Yes Yes Yes Yes No No No No
Shapely Yes Yes Yes Yes Yes Yes No No Yes No
SymPy Yes Yes Yes No Yes Yes Yes Yes Yes No
scikit-

geometry
Yes Yes Yes Yes Yes Yes No Yes Yes No

PyGEOS Yes Yes Yes Yes Yes Yes No Yes Yes No
CGAL Yes Yes Yes Yes Yes Yes Yes Yes Yes No

gon Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Given the results summarized in that table, it was decided to use the gon library as it fits best
for our purposes. It provides all the necessary data classes, operations on them, supports precise
calculation, and is thoroughly tested.

III.2.12 RAG functionality

As it will be shown later, we will need not only information about the coordinates and sizes of the
parts of the polygon but also their relative position in it. For each part, we will need to know what
its neighbor parts are and what common edge they have. Unfortunately, there are practically no
libraries that combine the functionality of computational geometry objects and algorithms with
that of graph theory. While the CGAL library has graph-related calculations, it does not include
region-adjacency graph (RAG) functionality. For this reason, NetworkX library (Hagberg et al.,
2008) was used for the implementation of a RAG. This library allows all the basic graph-related
tools which allowed for an easy process of extension of its functionality.

15https://docs.scipy.org/doc/scipy/reference/spatial.html
16https://polliwog.dev/

https://docs.scipy.org/doc/scipy/reference/spatial.html
https://polliwog.dev/
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III.3 Tests

The lifecycle of successful software products starts from the top-level system specification and
continues with the derivation of its subsequent requirements. Every requirement must be trace-
able and tested. Testing must examine code correctness for valid inputs, but also in the absence of
valid data or regions of discontinuity. For this, along with the software design, a test plan must be
developed (Spitzer & Spitzer, 2000).

The benefits of rigorous software development and testing include both functional and non-
functional software performance assurance. Effective software testing can ensure the software
quality as well as make the developer work more efficiently in their future developments (Wang,
2004).

In aeronautics and critical infrastructure software, testing is especially important. For this
reason, companies developing critical and certified software shall follow one of the existing stan-
dards to ensure software quality and compliance. In aeronautics, the RTCA DO-178 defines the
software considerations in airborne systems and equipment certification. In other areas, standards
like the ISO/IEC 9126 are known as one of the most robust software quality standards.

The area partition software proposed in this work is not safety-critical and does not need any
certification. Nevertheless, we have followed an exhaustive test methodology to prove, beyond
a reasonable doubt, that the code is error-free, reliable, and follows the planned specification and
requirements.

III.3.1 Property-based tests

Modern libraries that work with geometry-related computations check the correctness of the pro-
duced results using tests with fixed sets of input parameters. An alternative approach is to use
property-based tests where the input parameters are generated in a random fashion. This ap-
proach helps find the issues with the code that the regular tests with fixed input data cannot.

When implementing the algorithms shown in this thesis, we used the hypothesis18 Python
library (MacIver et al., 2019). This library can generate arbitrary data that matches specifications
provided by a user. It then takes the generated data and performs operations specified by a user.
If hypothesis finds an example that does not satisfy the tested condition, it simplifies the example
by size and value until a much smaller example is found that still causes the same problem. This
process is also called shrinking. It allows a developer to understand easier the root cause of a
failure which can save time and effort compared to manually trying to create a small test case
from scratch.

As an example, let us take a function that calculates the slope and the y-intercept values of a
line defined by two points. The function is shown in Listing III-1

A simple test that we could start with would check if the original points actually lie on the
line built with the obtained slope and intercept values. An implementation of this test is shown in
Listing III-2.

Running this test will result in an error when both the start and the end points are equal to
zero. A ZeroDivisionError will be thrown on the second line of Listing III-1 when calculating the
slope. To take into account the cases when X-coordinates of both points are equal we can update
the function as shown in Listing III-3 and the test to ignore from now on these cases as shown in
Listing III-4. After this update, the tests will pass.

18https://hypothesis.readthedocs.io/

https://hypothesis.readthedocs.io/
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Listing III-1: Function calculating slope and intercept values based on two points.
1 def slope_intercept(start: Point, end: Point
2 ) -> tuple[Fraction, Fraction]:
3 slope = (end.y - start.y) / (end.x - start.x)
4 intercept = end.y - slope * end.x
5 return slope, intercept

Listing III-2: Testing if points lie on the line.
1 from hypothesis import given
2
3 @given(start=points,
4 end=points)
5 def test_points_on_line(start: Point,
6 end: Point) -> None:
7 slope, intercept = slope_intercept(start, end)
8 assert start.y == slope * start.x + intercept
9 assert end.y == slope * end.x + intercept

Listing III-3: Updated function calculating slope and intercept values based on two points.
1 def slope_intercept(start: Point, end: Point
2 ) -> tuple[Fraction, Fraction]:
3 if start.x == end.x:
4 raise ValueError("The points cannot have equal x-coordinates.")
5 slope = (end.y - start.y) / (end.x - start.x)
6 intercept = end.y - slope * end.x
7 return slope, intercept

Listing III-4: Updated test for checking if points lie on the line.
1 from gon.base import Point
2 from hypothesis import given
3
4 @given(start=points,
5 end=points)
6 def test_points_on_line(start: Point,
7 end: Point) -> None:
8 assume(start.x != end.x)
9 slope, intercept = slope_intercept(start, end)

10 assert start.y == slope * start.x + intercept
11 assert end.y == slope * end.x + intercept

III.3.2 Random polygon generation

Since property-based testing relies on the generation of random data, it is necessary to use an al-
gorithm capable of producing random polygons. Strictly speaking, the phrase "random polygon"
does not have a proper definition. And there exist multiple algorithms to generate the random
polygons, such as Zhu et al. (1996); Auer & Held (1996); Dailey & Whitfield (2008); Sadhu et al.
(2013); Hada (2014); Gewali & Hada (2015); Pati et al. (2015); Nourollah & Movahedinejad (2017);
Zhigalova (2017).

In the course of writing this thesis, we used the hypothesis-geometry library (Ibrakov, 2022).
In this library, the generation of polygons is done by trial and error. Sequences of unique points
are generated of a specified data type. These sequences are then filtered according to the specified
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restrictions on the number of points in the border and in the holes. When necessary and if possible,
extra points are removed to satisfy the requirements. Examples of generated polygons are shown
in Fig. III-2.

(a) Convex polygon (b) Non-convex polygon (c) Polygon with holes

Figure III-2: Examples of randomly-generated polygons.

III.4 Trajectories assignment

In this thesis, in order to validate the results produced by the algorithms, we apply trajectories
over generated sub-polygons. For that, we generate trajectories of a back-and-forth pattern using
a ready program from Royo et al. (2014). The algorithm behind that program does not perform any
time or path length minimization, but simply generates the trajectory following input restrictions
on the course, track separation, and desired entry and exit sides of the polygon. A screenshot
of the program with the map and the GUI panel for the specification of trajectory parameters is
shown in Fig. III-3.

As can be seen, a part of the trajectory lies outside the polygon. This is undesirable since
when there will be multiple unmanned aerial vehicles (UAVs) covering adjacent areas, there will
be some overlapping which could result in a crash. In order to avoid it, we shrink the polygon by

Figure III-3: Screenshot of an application from Royo et al. (2014) that calculates trajectories for a
given polygon.
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a half-width of the track separation before generating the trajectories.

The course direction is chosen to be perpendicular to the direction of the polygon’s width as
this minimizes the number of turns (Nielsen et al., 2019). The track separation is calculated from
the width of the observed area. And the width of the observed area can be calculated from the
equation (1) of Maza & Ollero (2007):

w = 2z tan γ
[
sinα + cosα tan

(π
2
− α− β

)]
(III.1)

where z is the altitude of the UAV, β and γ are half of the horizontal and vertical field of view
respectively, and α determines the tilt of the camera.

III.5 Metrics

To evaluate the quality of obtained results we propose using compactness – a metric defining how
close the area is to a circle. Compactness was proposed as the primary metric in the paper Hert
& Lumelsky (1998). There the authors defined it as Area(P )/Perimeter(P ). This metric was also
proposed in Polsby & Popper (1991) and Schwartzberg (1965) discussing gerrymandering.

In this thesis, we slightly change the metric to make it unitless and define it as follows:

C(P ) =

√
Area(P )

Perimeter(P )
(III.2)

Alternatively, we define normalized compactness so that the best possible compactness for a
circle would be equal to one:

Cn(P ) =
2
√
πArea(P )

Perimeter(P )
(III.3)

Additionally, we propose the following metrics related to trajectories:

• time of flight – time that a UAV takes to cover an area following a generated trajectory from
start to finish;

• number of turns – how many turns a UAV has to make when following the generated tra-
jectory;

These metrics are calculated using the approach presented in Section III.4.





IV
Convex Polygon Decomposition

Convex polygons play a crucial role in workspace decomposition, as they represent simple and
obstacle-free geometric spaces. These regions can also emerge during the process of decomposing
non-convex areas among multiple UAVs. By developing algorithms specifically tailored for con-
vex areas, which yield superior results, their application can be extended to the decomposition
of non-convex spaces. Therefore, it is imperative that we address the challenge of decomposing
convex areas separately.

In this chapter, we present two algorithms, the IHLC algorithm which stands for Improved
algorithm by Hert and Lumelsky for convex polygons, and a novel algorithm capable of
workspace decomposition when the workspace is defined by a convex polygon. The first algo-
rithm is discussed in Section IV.1. The latter algorithm is based on an analytical solution for the
most compact partition of a convex polygon into two parts. This algorithm will be referred to as
PDAN standing for Polygon Decomposition based on ANalytical bi-partition. The algorithm is
explained in Section IV.2.1. In Section IV.3 results produced by both algorithms are analyzed in
terms of quality. The performance of the algorithms is also discussed.

IV.1 Improved Hert and Lumelsky’s algorithm for convex polygons

IV.1.1 Theory

The IHLC algorithm is based on a sweep-line algorithm that performs a sequence of splits into
two parts. The initial locations of the unmanned aerial vehicles (UAVs) can be taken into account
or ignored.

Given a convex polygon P , a set of q points also called sites S1..q located in the interior or

29
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on the boundary of the polygon, and a set of values c1..q with
∑

ci = 1, the task is to divide P
into q non-overlapping sub-polygons P1..q in such way that Area(Pi) = ciArea(P) and Si ∈ Pi
∀i ∈ [1, q]. A site represents an initial location of a robot or, generally speaking, a point that has
to be included in the resulting sub-polygon. The values c1..q represent the area requirements for
each part. For simplicity, a function AreaRequired is defined as taking a site as input and returning
the corresponding area requirement. And S(CP ) is defined as a set of sites assigned to a currently
analyzed polygon part, CP .

Hert & Lumelsky (1998) propose the partition to be achieved by a sequence of divisions into
two parts. The algorithm for dividing a polygon into two parts with several adjustments is shown
in Alg. IV.1.

Before providing the first algorithm, we explain the pseudocode nomenclature used in this
thesis. Every algorithm description starts with the list of input data denoted by the "Require"
keyword. Comments are added after the "▷" symbols. Keywords related to conditional clauses and
loops are highlighted using bold text, such as "while", "for", "do", "if", "else if", "then", and "else".
Keywords related to returning values are also highlighted using bold text such as "return" for
regular functions and "yield" for generator functions that allow for potential iteration over infinite
iterables and do not require storing every value in memory. Variables assignment is represented
by either← or = depending on the context. The function "next" is used to retrieve the next value
from the iterator passed to it. Values within square brackets represent an ordered array or a list.
Finally, negative numerical indices represent the position of the value in an array when counting
from the end. So, for example, V−2 is the penultimate element.

The algorithm takes as input parameters a polygon P , an ordered list of vertices and sites
W1..m where vertices define the polygon border, and separately a list of sites S1..q ordered accord-
ing to their appearance in W1..m.

First, a segment L = (Ls, Le) is initialized so that the starting point Ls is equal to W1 and the
endpoint Le is equal to S1. Then, while having fixed Ls, the point Le gets sequentially assigned to
all the vertices from W in the same order starting from S1 until one of three possible conditions is
satisfied:

1. Area on the right of the segment equals the total area requirement of all the sites on the right
side of the segment — Area(P r

L) = AreaRequired(S(P r
L)). In this case, the area requirement

is satisfied and both parts P r
L and P l

L have at least one site since the point Le never goes
beyond the last site on the border Sn.

2. There is only one site on the right side of the segment, and its corresponding requirement is
less than the area on the right side — S(P r

L) = S1 and Area(P r
L) > AreaRequired(S(P r

L)). In
this case, the point Ls is moved counterclockwise until the areas get equal.

3. The area on the right side of the segment contains all the sites, but it is less than their total
area requirement — Area(P r

L) < AreaRequired(S(P r
L)) and Le = Sq. In this case, Ls is

moved clockwise until reaching the division with the areas equal to corresponding area
requirements.

This algorithm is then can be called recursively for those obtained polygon parts that contain
more than one site.
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Algorithm IV.1: The algorithm for dividing a convex polygon into two smaller polygons

Require: P — convex polygon,
W1..m — ordered list of the vertices defining the border of P ,
S1..q — a list of sites ordered according to their order in the list W

1: Assume S1 = Wk; L← (W1,Wk)
2: S(P r

L)← {S1} ▷ sites that belong to P r
L — polygon to the right of L

3: while Area(P r
L) < AreaRequired(S(P r

L)) and Le ̸= Sq do
4: if k > 1 and (Wk−1 ∈ S1..q) then
5: S(P r

L)← S(P r
L) ∪Wk−1

6: k ← k + 1
7: Le ←Wk

8: if Le = S1 and Area(P r
L) > AreaRequired(S(P r

L)) then
9: Move Ls counterclockwise along the border of P until Area(P r

L) = AreaRequired(S(P r
L))

10: else if Le = Sq and Area(P r
L) < AreaRequired(S(P r

L)) then
11: Move Ls clockwise along the border of P until Area(P r

L) = AreaRequired(S(P r
L))

12: else
13: Find point t on (Wk−1,Wk) such that if Le = t then Area(P r

L) = AreaReqruired(S(P r
L))

14: Le ← t

15: P l
L = P − P r

L

16: S(P l
L) = S(P )− S(P r

L)
17: return P l

L, P r
L, S(P l

L), S(P
r
L)

IV.1.2 Algorithm

The implementation of the IHLC algorithm follows the pseudocode shown in Alg. IV.1 without
any changes. The implementation, however, was extensively covered by tests which allowed us
to ensure the correctness of the produced results.

During the process of the implementation, it became apparent that the input data which
includes the convex polygon and a list of sites have to be of a precise data type. When using
regular floating-point data types, the algorithm either resulted in the incorrect partition or simply
crashed. Fraction data type was used instead, and the extensive tests proved that only with this
type, we can ensure 100% of correct results.

IV.1.3 Examples

Fig. IV-1 shows an example polygon and various steps and cases from the IHLC algorithm. Fig. IV-
1(a) shows a convex polygon defined by eight vertices, W1..8. There are four sites, S1..4, located on
the border and ordered according to the order of vertices W . The line-splitter is initialized on the
vertices W1 and S1. The part that is on the right of this segment is denoted as P r

L, and the part on
the left is denoted as P l

L. The line-splitter rotates in counterclockwise order with the splitter tail
being fixed. The dashed lines show the next positions the splitter will take.

Fig. IV-1(b) shows the first case that can happen. In this case, the head of the splitter points
to the first encountered site, and the area on the right is greater than the area requirement of S1.
Therefore, to satisfy the area requirement, the line splitter gets rotated counterclockwise with the
head being fixed. The direction is shown by a dashed line.

Fig. IV-1(c) shows the second case that can happen. In this case, the head of the splitter points
to the last encountered site and the area on the right is less than the area requirement of the sites
S1..3. Therefore, to satisfy the area requirement, the line splitter gets rotated clockwise with the
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head being fixed. The direction is shown by a dashed line.

Finally, Fig. IV-1(d) shows the last case. In this case, moving the head of the splitter from one
position to another makes the area too large to satisfy the requirement which implies that there
exists a point T between these positions that will satisfy the area requirement.

W1 W2

W3

W4,S1

W5,S2W6,S4

W7

W8

S3

Pr
L

P l
L

(a) Notation and order of rotation

W1 W2

W3

W4,S1

W5,S2W6,S4

W7

W8

S3

(b) Case 1

W1 W2

W3

W4,S1

W5,S2W6,S4

W7

W8

S3

(c) Case 2

W1 W2

W3

W4,S1

W5,S2W6,S4

W7

W8

S3

T ?

(d) Case 3

Figure IV-1: Notation and three cases from IHLC

Fig. IV-2 shows an example partition from Hert & Lumelsky (1998). In the left figure, a convex
polygon is shown with seven sites that have various area requirements. The figure on the right
shows the final partition where each part assigned to the site has a corresponding area.

IV.2 Algorithm based on an analytical solution for bi-partition

IV.2.1 Theory

Next, we propose a different approach for the problem of convex polygon partition into multi-
ple parts. PDAN performs a recursive partition where on each step a polygon is split into two
parts according to the given area requirements and results in two sub-polygons with the highest
possible compactness. Compared to the IHLC algorithm discussed in the previous sections, this
algorithm would find the optimal solution for the task of splitting a polygon into two parts by
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Figure IV-2: Example partition from Hert & Lumelsky (1998).

directly solving the equations that maximize compactness. In this algorithm, the partition is per-
formed by straight lines. As it will be shown later, in this case, the partition into two parts can be
achieved in a linear time depending on the number of vertices. Also, we do not look into parti-
tioning by arcs in which case, as it was shown by Koutsoupias et al. (1992), the optimal partition
can be achieved in quadratic time, O(n2), where n is the number of vertices of the polygon’s bor-
der. We will call this algorithm PDAN which stands for Polygon Decomposition using ANalytical
approach.

IV.2.1.1 Problem definition

Let us define a convex polygon with perimeter P and its boundary defined by a list of n vertices
V ordered in counterclockwise order. Let us also define a positive value called "area requirement"
R that is less than the area of the polygon. When choosing randomly a point T on the polygon
border, only one point H exists such that when the polygon is split by a line TH , the part of the
polygon on the right will have the area equal to R. An example is shown in Fig. IV-3. We will
name a point T as the "tail", and a point H as the "head". Let us also define a countervetex a point
on the border of a polygon that when connected with any given point also lying on the polygon
border results in two sub-polygons with one of them having the given area R. That means that
any given point on the boundary always has two countervertices, with the exception of a case
when R is equal to half of the polygon area. Hence, H is a countervertex of T and vice versa.

The task is to find the location of points T and H so that the corresponding right part with
the area R would be the most compact. The compactness of a polygon is defined as the ratio of the
square root of its area to its perimeter P . Since the area requirement is fixed, and the only variable
part is the perimeter, the equation takes a form:

compactness =

√
polygon.area

polygon.perimeter
=

√
R

P (T )
(IV.1)

where P (T ) is a function of the perimeter of the part on the right of the line TH . Therefore we can
say that the problem of maximization of compactness is equivalent to the problem of minimization
of the perimeter. As an example, the function P (T ) for the polygon depicted in Fig. IV-4 is shown
in Fig. IV-5.

If we obtain this function, we can find its minima and the corresponding tail points T . These
tail points will correspond to those lines TH that split the polygon in such a way that the parts
on the right from these lines have the minimum perimeter and, correspondingly, maximum com-
pactness.
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T

H

Figure IV-3: In a convex polygonP with area A, for any given tail point T located on the polygon
border and for any value R ∈ (0, A) , there exists only one head point H such that the area on

the right of the segment TH is equal to R.

Figure IV-4: An example polygon defined by vertices V0 − V3. For an area requirement of
R=12.5%, the image shows those heads (HV 0, HV 1, HV 2, HV 3) where the corresponding tails
are original vertices and vice versa (TV 0, TV 1, TV 2, TV 3). Each directed line splits the polygon
into two parts. Dashed lines connect the tails lying on the original vertices with their correspond-
ing heads. Dotted lines connect the heads lying on the original vertices with their corresponding

tails.

In order to construct this function, two tasks should be solved:

1) Find the limits of the function domains: It is clear that P (T ) in a general case is a piecewise-
smooth function (see, for example, Fig. IV-5). The domain of each constituent function is defined
by those line positions where any of the endpoints T or H moves from one segment to another.
The task here is to find the limits of those domains. Our approach is presented in the next section
(Section IV.2.1.2).

2) Calculate the minimum of the perimeter function P (T ): For each part of this piecewise
function, we then need to find locations of T and H corresponding to the part with the minimum
perimeter. This can be done by calculating the derivative of a function P (T ) for the given domain.
This part is explained in Section IV.2.1.3.

It is worth noting that the number of domains does not depend only on the number of ver-
tices. One can imagine two cases with a square polygon and two area requirements: 12.5% and
50%. The case with 12.5% is depicted in Fig. IV-4 and the corresponding function in Fig. IV-5. One
can see that, in total, there are eight domains. But for the case with the area requirement equal to
50%, the number of domains would be only four as the countervertices of the original vertices of
the polygon would always point to the original vertices as well.
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Figure IV-5: Function P (T ) for the polygon given in Fig. IV-4 assuming the length of each side
to be equal to 1. Vertical dashed lines correspond to the locations of the lines TH containing the
original polygon vertices. Each dashed line is annotated with the vertices of the corresponding

line.

IV.2.1.2 Finding the domains

Finding the domains of the function P (T ) can be done in linear time O(n) depending on the
number of vertices n in the border of the polygon. In order to achieve that, we will take advantage
of linear equations for every segment of the polygon’s border as well as the shoelace formula to
relate the coordinates of the vertices with the area.

The shoelace formula relates the area of a simple polygon with the coordinates of its vertices:

A =
1

2

∣∣∣∣∣
n−1∑
i=1

xiyi+1 + xny1 −
n−1∑
i=1

xi+1yi − x1yn

∣∣∣∣∣
=

1

2
|x1y2 + x2y3 + ...+ xn−1yn + xny1

−x2y1 − x3y2 − ...− xnyn−1 − x1yn|

(IV.2)

Here, A is the area of a polygon, and x1..n and y1..n are coordinates of the vertices of the polygon
arranged in counterclockwise order with n being the number of vertices.

The first step of the algorithm is to choose an initial tail point T0 on the border of the polygon.
It can be any point but for simplicity, we will take one of the border vertices, Vi. Next, we want
to find its corresponding countervertex. We start iterating over vertices Vi+2, Vi+3, ... in counter-
clockwise order until reaching such vertex Vj so that Area(ViVi+1...Vj) ≥ R where R is the area
requirement.

In case the Area(ViVi+1...Vj) is equal to the area requirement R, then the head H0 correspond-
ing to T0 is the last seen vertex Vj . Otherwise, we calculate R′ — the difference between the area
covered on the last iteration and the given area requirement, i.e.:

R′ = Area(ViVi+1...Vj)−R (IV.3)

In such a case, the position of the head H0 is located somewhere on the last seen segment
Vj−1Vj and we can find its exact coordinates using the shoelace formula.

Having the initial pair of tail and head vertices (T0, H0), we can proceed to locate the next tail
T1 that will delimit the first domain [T0, T1] or the next head vertex H1. Which one of them will be
discovered first depends on the relative location of the vertices and the area requirement.
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The next tail T1 will be searched on the segment ViVi+1 excluding the Vi as it is already taken
by T0. Likewise, the next head H1 may be located somewhere on the segment H0Vj+1 excluding
H0.

Figure IV-6: a) T0H0 is the initial line-splitter where T0 = Vi is some vertex on the polygon
border, Vi+1 is the next vertex that follows after T0, and Vj is the next vertex that follows after
H0. Comparing the areas of triangles T0Vi+1H0 and Vi+1H0Vj can tell us about the location of
the next tail point T1 delimiting the current domain and its corresponding head point H1. b)
In the case when both triangles have equal areas, the next tail and head points are Vi+1 and Vj

respectively. c) If the area of T0Vi+1H0 is less than the area of Vi+1H0Vj , T1 will be found on
segment T0Vi+1 and H1 = Vj . d) If the area of T0Vi+1H0 is greater than the area of Vi+1H0Vj , H1

will be found on segment H0Vj and T1 = Vi+1.

In order to find the locations of the next head H1 and the next tail T1, we can compare the
areas of the triangles T0Vi+1H0 and Vi+1H0Vj as shown in Fig. IV-6. Three situations can arise:

1. Area(T0Vi+1H0) = Area(Vi+1H0Vj). In this case, the segment Vi+1Vj is already a line that makes a
right sub-polygon with the requested area. Therefore, T1 will be located at Vi+1 and the corresponding
head point H1 will be located at Vj .

2. Area(T0Vi+1H0) > Area(Vi+1H0Vj). In this case, the next head vertex H1 will be located at Vj and
we have to find T1 somewhere on the segment T0Vi+1 by using the shoelace formula and the linear
equation for this segment.

3. Area(T0Vi+1H0) < Area(Vi+1H0Vj). In this case, the next tail vertex T1 will be located at Vi+1

and its corresponding head vertex H1 will be located on the segment H0Vj and can be found by using
the shoelace formula and the linear equation for this segment.

Having obtained the first domain T0T1 and its corresponding "countersegment" H0H1, we
can now repeat the same procedure for the pair (T1, H1) and obtain the next domain T1T2 and
its corresponding countersegment H1H2. This process repeats until all the perimeter is covered.
While iterating in this manner over the polygon’s vertices, we will also get those fixed parts of the
polygon between the endpoint of the domain and the first point of the countersegment. So, for
example, for a domain TkTk+1 and its corresponding countersegment HkHk+1, this constant area
part will be delimited by vertices Tk+1..Hk which can be either empty or not. These polygon parts
will be later joined with "flexible" parts, triangles, or quadrilaterals, built on the domain segments
and countersegments.

The pseudocode of the algorithm is shown in Alg. IV.2. A part of the algorithm responsible
for finding the initial partition is written out separately in Alg. IV.6. The function to_segments
returns an iterator over segments built on pairs of input vertices. The shoelace function takes four
parameters: an area requirement and three fixed points forming a triangle. It returns a point found
on the segment built on the last two points such that the area of a new triangle built on the first
point, the second point, and the newly found point will be equal to the area requirement. Finally,
the remove_collinear function takes a list of points, checks if the last three points are collinear, and
removes the middle one if this is the case. Since it is easy to implement it, we do not show it here.
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Algorithm IV.2: The algorithm for calculating countersegments from a polygon’s border

Require: V — list of n vertices of polygon’s border,
R — area requirement

1: tail_segments = to_segments(V0..n + [V0])
2: head_segments = to_segments(V1..n + V0..n)
3: D = next(tail_segments) ▷ domain segment
4: VR, VL = initial_split(heads, V , D, R) ▷ See Alg. IV.6 for details
5: C = Segment(VRm, VL0) ▷ m - length of VR

6: while D is not None do
7: TT = Polygon(D.start, D.end, C.start) ▷ tail-based triangle
8: TH = Polygon(D.end, C.start, C.end) ▷ head-based triangle
9: VR.popleft()

10: VL.append(D.start)
11: if TT .area < TH .area then
12: C.end = shoelace(TT .area, D.end, C.start, C.end)
13: VL.prepend(C.end)
14: head_segments.prepend(Segment(VL0, VL1))
15: else if TT .area > TH .area then
16: ∆A = TT .area - TH .area
17: D.end = shoelace(∆A, C.end, D.end, D.start)
18: VR.prepend(D.end)
19: TT = Polygon(D.start, D.end, C.start)
20: tail_segments.prepend(Segment(VR0, VR1))
21: yield D, C, TT .area, VR, VL

22: VR.popleft()
23: VR.append(C.end)
24: remove_collinear(VR) ▷ if 3 last points collinear, remove the middle one
25: VL.popleft()
26: VL.append(D.end)
27: remove_collinear(VL)
28: D = next(tail_segments, on_exhaustion=None)
29: C = next(head_segments)

IV.2.1.3 Finding minimum for each domain

For each domain, we will have a situation like the one presented in Fig. IV-7. Let us denote the
domain segment now as SiSi+1 and its countersegment as EiEi+1. We search the position of the
splitter TH with the tail T between the endpoints of the domain SiSi+1 and the head H between
the endpoints of the corresponding countersegment EiEi+1 such that the polygon TSi+1EiH with
area R* is the most compact. R* is the difference between the area requirement R and the area of
the grey region RF . The grey region is fixed as well as Si+1Ei. It is also possible that the grey area
will be empty.

The following lemma will help later demonstrate that finding the minimum perimeter of a
polygon can be done by parts.

Lemma. Given two functions g(x) and h(x) with argmin(g(x)) = argmin(h(x)) = M , if f(x) =
g(x) + h(x) then argmin(f(x)) = M .

Proof. For all x: g(x) ≥ g(M) ⇔ g(x) − g(M) ≥ 0 and h(x) ≥ h(M) ⇔ h(x) − h(M) ≥ 0. And
since a sum of nonnegative functions is nonnegative⇒ (g(x)− g(M)) + (h(x)− h(M)) ≥ 0 which
gives g(x) + h(x) ≥ g(M) + h(M) and, finally, f(x) ≥ f(M) which corresponds to the definition
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Figure IV-7: We search for the position of the line-splitter TH where the tail point T is located on
the segment SiSi+1 and the head point H is located on the segment EiEi+1 so that the polygon
TSi+1EiH with area R* is the most compact. R* is the difference of the area requirement R with

the area of the grey region RF . The grey region is fixed as well as Si+1Ei for each domain.

of minimum. ■

In the following theorem, without loss of generality, we will rotate and translate the polygon
such that the origin of the coordinates is fixed at the intersection of the two rays on which SiSi+1

and EiEi+1 are lying. Then, in the following subsections, the specific formulae will be given for
the general case and for some specific cases where the formulae are undetermined.

Theorem. Minimizing the perimeter of a quadrilateral with a fixed area, one fixed side, and fixed nonpar-
allel rays on which the adjacent sides are located is equivalent to minimizing the total length of the adjacent
sides or minimizing the length of the opposite side.

Proof. Let us consider the example given in Fig. IV-7. We are searching for the location of points
T and H so that the quadrilateral TSi+1EiH has the smallest perimeter for a given area R*. The
side Si+1Ei is fixed as well as the rays on which the segments TSi+1 and EiH will be built. Let
us rotate and align the figure so that the intersection of rays based on the segments SiSi+1 and
EiEi+1 would be in (0, 0) and EiEi+1 would be aligned with X-axis. See Fig. IV-8. Let us also
rename the vertices Si+1 and Ei to S and E respectively to simplify the following equations.

Figure IV-8: A part of the polygon. We search for the position of the line-splitter TH such that
the quadrilateral TSEH with an area equal to a given area requirement is the most compact.

From the shoelace formula (IV.2) for the given case we have:

2R = TxSy +HxTy − SxTy − ExSy (IV.4)

Let Ty = kTx and Sy = kSx. Then:

Hx =
2R
k + ExSx

Tx
(IV.5)
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We define A as 2R
k + ExSx to simplify the following equations:

Hx =
A

Tx
(IV.6)

Let us analyze perimeters of TS + EH = P1 and TH = P2 separately. We assume that if
both minimal solutions are equal, then this solution will correspond to the minimum of the full
perimeter:

P = |SE|+ P1 + P2 (IV.7)

P1 = |TS|+ |EH| =
√

(Tx − Sx)2 + (Ty − Sy)2

+Hx − Ex = (Tx − Sx)
√
1 + k2 +

A

Tx
− Ex

(IV.8)

P2 = |TH| =
√
T 2
y + (Tx −Hx)2

=

√
k2T 2

x + (Tx −
A

Tx
)2

(IV.9)

Setting the derivative of P1 equal to zero:

dP1

dTx
=

√
1 + k2 − A

T 2
x

= 0 (IV.10)

gives the following Tx coordinate:

Tx = ±

√
A√

1 + k2
(IV.11)

For P2:

dP2

dTx
=

2(Tx − A
Tx
)(1 + A

T 2
x
) + 2k2Tx

2
√
k2T 2

x + (Tx − A
Tx
)2

= 0 (IV.12)

Tx −
A2

T 3
x

+ k2Tx = 0 (IV.13)

T 4
x (1 + k2) = A2 (IV.14)

we will get the same values for Tx as in Eq. (IV.11). We are interested in the positive solution only
as in our case Tx ≥ Sx ≥ 0.

Both derivatives of P1 and P2 are negative for Tx less than the obtained solution and positive
for Tx greater than the obtained solution, meaning that argmin(P1) = argmin(P2). And as it was
proved in the lemma above, it means that argmin(P ) = argmin(P1) = argmin(P2). So we can
say that minimizing all the perimeter is equivalent to minimizing either of these two parts, P1 or
P2.

Note that for the case with the negative slope of the ray based on the vertices Si and Si+1 the
equation will stay the same. ■
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A. General solution

We have shown that minimizing the perimeter of the quadrilateral in our task is equivalent
to minimizing just a part of the perimeter. We have used a simplified case where the area was
rotated and translated so that we could lose some terms in the equations. Let us now solve the
same task for a general case.

The shoelace formula (IV.2) gives:

2R =TxSy + SxEy + ExHy +HxTy − SxTy

− ExSy −HxEy − TxHy
(IV.15)

Let Ty = kTTx +mT and Hy = kHHx +mH :

Hx =
2R+ ExSy +mHTx + Sx(kTTx +mT )− TxSy − SxEy −mHEx

(Tx(kT − kH) + kHEx +mT − Ey
(IV.16)

Since Sy = kTSx +mT and Ey = kHEx +mH :

Hx =
2R+ ExSx(kT − kH) + (Ex + Sx − Tx)(mT −mH)

Tx(kT − kH) + (mT −mH)
(IV.17)

Let ∆k = kT − kH and ∆m = mT −mH :

Hx =
2R+ ExSx∆k + (Ex + Sx − Tx)∆m

Tx∆k +∆m
(IV.18)

Let H = 2R+ ExSx∆k + (Ex + Sx)∆m:

Hx =
H − Tx∆m

Tx∆k +∆m
(IV.19)

Since minimizing the perimeter is equivalent to minimizing the sum length of segments TS and
EH , let us consider the part of the perimeter containing these two segments:

P =
√
(Tx − Sx)2 + (Ty − Sy)2 +

√
(Hx − Ex)2 + (Hy − Ey)2 (IV.20)

Substituting the ordinate coordinates gives:

P = |Tx − Sx|
√
1 + k2T + |Hx − Ex|

√
1 + k2H (IV.21)

Since dP
dTx

= 0: √
1 + k2T ±

dHx

dTx

√
1 + k2H = 0 (IV.22)

From the Eq. (IV.19) we get:

dHx

dTx
=
−∆m(Tx∆k +∆m)−∆k(H − Tx∆m)

(Tx∆k +∆m)2
= − ∆m2 +∆kH

(Tx∆k +∆m)2
(IV.23)

And combining the Eq.(IV.22)) and Eq.(IV.23):

(Tx∆k +∆m)2 = |∆m2 +∆kH|

√
1 + k2H
1 + k2T

(IV.24)

From here:

Tx =
±|∆m2 +∆kH|

√
(1 + k2H)/(1 + k2T )−∆m

∆k
(IV.25)
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And the sign is chosen to be plus if:

Ty > kHTx +mH (IV.26)

and minus otherwise.

B. Domain segment parallel to countersegment Still, a particular case exists when the do-
main segment is parallel to its countersegment. Then we can substitute some terms in the Eq.
(IV.15) with Ty = kTx +mT , Sy = kSx +mT , Hy = kHx +mH , Ey = kEx +mH which will give:

Hx =
2R

mT −mH
+ Sx + Ex − Tx (IV.27)

The perimeter of the quadrilateral containing the SE, ST , EH , and TH segments is as follows:

P =|SE|+
√

1 + k2|(Tx − Sx) + (Hx − Ex)|

+
√

(Tx −Hx)2 + (kTx − kHx +mT −mH)2
(IV.28)

To calculate the location of Tx for the most compact partition, we calculate the derivative:

dP

dTx
=

2(Tx −Hx) + 2k(kTx − kHx +mT −mH)√
(Tx −Hx)2 + (kTx − kHx +mT −mH)2

= 0 (IV.29)

which gives:
(Tx −Hx)(1 + k2) + k(mT −mH) = 0 (IV.30)

and therefore:

Tx =
R

mT −mH
+

Sx + Ex

2
− k(mT −mH)

2(1 + k2)
(IV.31)

Hx =
R

mT −mH
+

Sx + Ex

2
+

k(mT −mH)

2(1 + k2)
(IV.32)

C. Both domain segment and countersegment are parallel to Y-axis In case both the domain
segment and its countersegment are parallel to Y-axis, then, from IV.15, the area of the quadrilat-
eral can be calculated as:

R = (Sx − Ex)
Ty − Sy +Hy − Ey

2
(IV.33)

From there:
Hy =

2R

Sx − Ex
+ Sy + Ey − Ty (IV.34)

The perimeter of the quadrilateral is calculated as:

P =|SE|+ |(Ty − Sy) + (Hy − Ey)|

+
√
(Ex − Sx)2 + (Hy − Ty)2

(IV.35)

And to get the location of both the tail point and the head point that correspond to the most
compact area, we calculate the derivative:

dP

dTy
=

−2(Hy − Ty)√
(Ex − Sx)2 + (Hy − Ty)2

= 0 (IV.36)

which gives us:

Ty =
R

Sx − Ex
+

Sy + Ey

2
= Hy (IV.37)
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D. Domain segment parallel to Y-axis In case it is only the domain segment that is parallel
to Y-axis, we can take the shoelace equation shown in Eq. (IV.15) and perform substitution Hy =
kHx +m and Ey = kEx +m. And since Tx = Sx, we will get:

Hx =
2R+ ExSy − kSxEx −mEx − SxSy + SxTy

−kSx −m+ Ty
(IV.38)

To simplify this equation, let B = kSx +m and A = 2R −BEx + Sy(Ex − Sy). Then the equation
takes the following simple form:

Hx =
A+ SxTy

Ty −B
(IV.39)

Next, we will analyze only the part of the perimeter that consists of TS and EH :

P = |Ty − Sy|+ |Hx − Ex|
√
1 + k2 (IV.40)

To get the locations of the tail and head points corresponding to the most compact partition, we
calculate the derivative of the perimeter function:

dHx

dTy
= − A+BSx

(Ty −B)2
(IV.41)

dP

dTy
= ±1− (A+BSx)

√
1 + k2

(Ty −B)2
= 0 (IV.42)

which gives:

Ty = B ±
√
|A+BSx|

√
1 + k2 (IV.43)

The sign here is chosen according to the location of S with respect to the intersection point B of
the rays. If Sy > B then we choose the positive solution and, on the other hand, if Sy < B then we
choose the negative solution.

E. Countersegment parallel to Y-axis In case it is only the countersegment that is parallel to
Y-axis, we take the Eq. (IV.15) and substitute Sy = kSx+m and Ty = kTx+m. And since Hx = Ex:

Hy =
2R+mSx + kSxEx + ExEy − SxEy − kExTx −mTx

Ex − Tx
(IV.44)

Let A = 2R +mSx + kSxEx + ExEy − SxEy and B = −kEx −m, then the equation above can be
rewritten like:

Hy =
A+BTx

Ex − Tx
(IV.45)

Next, we analyze the part of the perimeter consisting of TS and EH :

P = |Hy − Ey|+ |Tx − Sx|
√
1 + k2 (IV.46)

By taking its derivative we can find the location of the tail corresponding to the most compact
area:

dHy

dTx
=

A+BEx

(Ex − Tx)2
(IV.47)

dP

dTx
= ± A+BEx

(Ex − Tx)2
±
√
1 + k2 = 0 (IV.48)

Tx = Ex ±

√
|A+BEx|√

1 + k2
(IV.49)

And the sign is chosen according to if T is on the left or the right side of E.
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IV.2.2 Algorithm

Finally, finding the most compact part out of all obtained parts is trivial. The algorithm is shown
in Alg. IV.3.

It uses the to_domains algorithm that returns an iterator over domain segments, their corre-
sponding countersegments, area differences, and two lists containing vertices between the domain
segments and their countersegments on each side.

Then, the algorithm to_splitter is used. It encompasses all the algorithms discussed in the pre-
vious sections for finding a minimum perimeter for each domain including special cases. It takes
the domain segment, its corresponding countersegment, and an area requirement, and returns a
segment connecting the domain with the countersegment in such a way that the enclosed area has
the smallest perimeter.

The add_splitter_vertices (Alg. IV.7) is used to include the endpoints of the splitter segment to
the "right" and "left" vertices depending on if the endpoints coincide with the vertices of the poly-
gon border or not. During the course of iteration, the shortest contours are found and returned.

The algorithm to_domains shown in Alg. IV.4 uses the list of vertices of the polygon’s border
and the area requirement to return consecutive sets of domain segments, their corresponding
segments, the area differences, and lists with vertices between the segments on both sides.

First, two iterators over segments of the polygon’s border are created using to_segments func-
tion. This function simply takes a list of vertices and constructs segments out of consecutive pairs
of vertices. Its implementation is trivial, hence, we are not showing it here.

The first domain segment D is taken for which an initial split is performed using the ini-
tial_split algorithm. This algorithm is shown in Alg. IV.6 and its purpose is to iterate over the
vertices of the polygon’s border and find such a vertex when connected to the starting point of the
domain segment that would yield an area greater than the input area requirement. This function
returns two lists of vertices on both sides of the segments — "left" and "right" vertices as we call
them.

Having obtained both lists of the vertices after the initial split, the initial countersegment is
set to be a segment connecting the last point of the right-side vertices VR with the first vertex of
the left-side vertices VL. The first head point will be located somewhere on that segment.

From this point on, the main loop of the to_domains algorithm starts. On each iteration, two
triangles are built. The first triangle, TT or a tail-based triangle, is constructed on the endpoints
of the domain and the starting point of the countersegment. The other triangle, TH or a head-
based triangle, is constructed on the endpoints of the countersegment and the endpoint of the
domain. By comparing the areas of these triangles it can be determined if the domain and the
countersegment should be recalculated to account for the area difference or if they correspond
exactly to the segments obtained previously.

In order to split the polygon into multiple parts, we simply go over a list of area requirements
in the specified order and detach the most compact areas one by one. This is, of course, not the
most optimal solution. But the problem of finding the best order of splitting is complex and, hence,
we will not go into details on how to solve it in this paper.

The function to_splitter shown in IV.5 simply finds which of the cases from the previous sec-
tion we have for the given domain segment and its countersegment, and calls to the corresponding
function.
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Algorithm IV.3: The algorithm for finding the most compact bi-partition

Require: V — vertices of the polygon’s border oriented counterclockwise,
R — area requirement

1: Pmin =∞ ▷ shortest perimeter
2: for D, C, R*, VR, VL in to_domains(V , R) do ▷ See Alg. IV.4 for details on to_domains function
3: S = to_splitter(D, C, R*) ▷ find segment giving the most compact partition
4: VR, VL = add_splitter_vertices(VR, VL, S, D, C) ▷ add points of S to VR and VL if necessary
5: if length(VR)<Pmin then
6: Pmin = length(VR)
7: CR = VR ▷ shortest contour of a part with area R
8: CL = VL ▷ corresponding remaining contour
9: return CR, CL

Algorithm IV.4: to_domains

Require: V — list of n vertices of the polygon’s border oriented counterclockwise,
R — area requirement

1: tail_segments = to_segments(V0..n + [V0])
2: head_segments = to_segments(V1..n + V0..n)
3: D = next(tail_segments)
4: VR, VL = initial_split(heads, V , D, R) ▷ Alg. IV.6
5: C = Segment(VRm, VL0) ▷ m - number of vertices in VR

6: while D is not None do
7: TT = Polygon(D.start, D.end, C.start) ▷ tail-based triangle
8: TH = Polygon(D.end, C.start, C.end) ▷ head-based triangle
9: VR.popleft()

10: VL.append(D.start)
11: if TT .area < TH .area then
12: C.end = shoelace(TT .area, D.end, C.start, C.end)
13: VL.prepend(C.end)
14: head_segments.prepend(Segment(VL0, VL1))
15: else if TT .area > TH .area then
16: ∆A = TT .area - TH .area
17: D.end = shoelace(∆A, C.end, D.end, D.start)
18: VR.prepend(D.end)
19: TT = Polygon(D.start, D.end, C.start)
20: tail_segments.prepend(Segment(VR0, VR1))
21: yield D, C, TT .area, VR, VL

22: VR.popleft()
23: VR.append(C.end)
24: remove_collinear(VR) ▷ if 3 last points collinear, removes the middle one
25: VL.popleft()
26: VL.append(D.end)
27: remove_collinear(VL)
28: D = next(tail_segments, on_exhaustion=None)
29: C = next(head_segments)
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Algorithm IV.5: to_splitter

Require: D — domain segment,
C — countersegment,
R — area requirement

1: if D.start.x == D.end.x & C.end.x == C.start.x then
2: return vertical_segments_splitter(R, D, C) ▷ Section IV.2.2 — Case C.
3: if D.start.x == D.end.x then
4: return vertical_domain_splitter(R, D, C) ▷ Section IV.2.2 — Case D.
5: if C.start.x == C.end.x then
6: return vertical_countersegment_splitter(R, D, C) ▷ Section IV.2.2 — Case E.
7: mD, bD = slope_intercept(D.start, D.end) ▷ m — slope, b — intercept
8: mC , bC = slope_intercept( C.start, C.end)
9: δb = bD - bC

10: if mC = mD then
11: return parallel_inclined_segments_splitter(R, δb, D, bD, C, bC , mD) ▷ Section IV.2.2 —

Case B.
12: return general_case_splitter(R, δb, D, bD, mD, C, bC , mC) ▷ Section IV.2.2 — Case A.

Algorithm IV.6: initial_split

Require: head_segments — iterator over "head" segments,
V — vertices of the polygon’s border ordered counterclockwise,
D — initial tail segment,
R — area requirement

1: VR = [] ▷ a list of "right" vertices
2: VL = V1..n + [V0] ▷ a list of "left" vertices
3: A = 0 ▷ accumulated area
4: for C in head_segments do
5: VR.append(C.start)
6: VL.popleft()
7: dA = Polygon(D.start, C.start, C.end).area
8: A = A + dA
9: if A < R then

10: continue
11: else if A == R then
12: VR.append(C.end)
13: VL.popleft()
14: C = next(head_segments)
15: else
16: δA = dA+R−A
17: C.start = shoelace(δA, D.start, C.start, C.end)
18: VR.append(C.start)
19: return VR, VL
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Algorithm IV.7: add_splitter_vertices

Require: VR — vertices on the right side of the splitter,
VR — vertices on the left side of the splitter,
D — domain segment,
C — countersegment,
S — splitter

1: if len(VR) == 0 then
2: if S.start == D.start then
3: VR = [D.start, D.end, C.start]
4: else if S.start == D.end then
5: VR = [D.end, C.start, C.end]
6: else
7: VR = [S.start, D.end, C.start, S.end]
8: else
9: if D.end in Segment(S.start, VR1) then

10: VR = VR1..

11: if C.start in Segment(VR−2 , S.end) then
12: VR = VR..−2

13: VR = [S.start] + VR + [S.end]
14: if len(VL) == 0 then
15: if S.start == D.start then
16: VL = [C.start, C.end, D.start]
17: else if S.start == D.end then
18: VL = [C.end, D.start, D.end]
19: else
20: VL = [S.end, C.end, D.start, S.start]
21: else
22: if D.start in Segment(VL−2 , S.start) then
23: VL = VL..−2

24: if C.end in Segment(S.end, VL1) then
25: VL = VR1..

26: VL = [S.end] + VL + [S.start]
27: return VR, VL

IV.2.3 Examples

Let us see what the partition of a polygon into ten parts looks like for a different order of splitting.
Fig. IV-9 shows the partition of the same polygon into ten parts using different approaches. In this
case, the area requirements were ordered from the largest to the smallest and relatively scaled as
(10, 9, 8, ..., 1). We choose this order for demonstration purposes only. With any other order of area
requirements or their values, the resulting partitions for each approach will be similar in terms of
quality. And, as was mentioned previously, the problem of finding the best order of splitting is
complex and is left out of this work.

It can be seen in Fig. IV-9(a) and Fig. IV-9(b) that both the PDAN algorithm and the approach
with brute-force search result in a much better partition than what is shown in Fig. IV-9(c) built by
the IHLC algorithm. It is clear that the resulting areas in Fig. (IV-9(c) are far from being compact.
It can also be seen that in Fig. IV-9(b) there are some dents in the outer boundary of the polygon
due to its discretization. In some cases, this can be undesirable, and the effect will be more visible
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(a) PDAN (b) brute-force search (c) IHLC

Figure IV-9: Comparison of polygon partition using three different approaches.

for smaller numbers of vertices the border is discretized into. It is also important to note that with
the discretization it is impossible to have the exact partition, so the areas slightly differ from the
initial area requirements.

IV.3 Results

In this section, we show the quality of the results obtained with the presented algorithms as well
as the comparison of performance.

In order to test the proposed algorithm, we used extensive tests with multiple randomly-
generated polygons. To the best of our knowledge, few of the existing research works do the
same.

IV.3.1 Quality

The quality metrics were discussed in Section III.5. For evaluating PDAN we will compare the
compactness of the resulting parts.

Fig. IV-10 shows comparisons of averaged normalized compactness with three different ap-
proaches. Normalizing compactness was done in order to get the same values for polygons with
different areas but the same shapes, so that, for example, a square with an area R and a square
with an area 2R would have the same value of compactness. We normalized the values so that the
maximum possible value would be 1. And the average value was taken then over all the resulting
parts of the partition.

In Fig. IV-10(a) comparison of the compactness of the PDAN algorithm with the IHLC algo-
rithm is shown. Statistics over 100 random polygons are shown with a number of vertices ranging
from five to 100. The order of splitting is chosen the same as before, starting from the largest part
and ending with the smallest, where area requirements are relatively scaled as, for example (4, 3,
2, 1) for four parts. One can see that the quality of the resulting partition obtained by the IHLC
algorithm is significantly worse for this setup. We can also observe the quality of the obtained
result degrades with the number of parts, and more so for the IHLC algorithm.

In Fig. IV-10(b) comparison of the compactness of the proposed algorithm with the brute-
force approach is shown. Here we used only one polygon, the same as in Fig. IV-9, as the brute-
force search is very slow even for splitting into two or three parts. The partitions into two, three,
four, five, and ten parts were calculated. The area requirements are ordered and scaled in the same
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(a) PDAN vs. IHLC (b) PDAN vs. brute force

Figure IV-10: Comparison of normalized compactness for three different approaches.

way as was explained in the description for Fig. IV-9. For the brute-force approach, the polygon
was discretized into 100 vertices. One can see that the brute-force approach results in a bit worse
results than the proposed here approach. For a split into three parts, one can notice, though, that
brute force yields a better result. This can be explained by the fact that it returns the parts with
areas that slightly differ from the area requirements, and that due to discretization there can be
some discrepancies in the shape close to the original polygon vertices.

IV.3.2 Performance

Fig. IV-11 shows comparisons of the time to calculate the partition based on the number of vertices
defining a polygon and the number of parts the polygon is being split into. The area requirements
for each case were chosen equally. The statistics over 100 random polygons were collected for
both the PDAN and the IHLC algorithms.

In Fig. IV-11(a) one can see the times to calculate the partitions using the algorithm described
in this chapter. The times scale linearly depending on the number of vertices. It is important to
note that after each iteration of finding the most compact area for a given area requirement, the
coordinates of the part remaining for splitting were limited to 100 significant digits. If this was
not done, the time to calculate the consequent parts could grow significantly due to the increase
of significant digits after each split. So, for example, after the first iteration, if the remaining part
contained a coordinate with 100 significant digits, the next iteration could yield a part with a point
that had ten thousand significant digits, millions of significant digits on the next step, and so on.

Next, we check the performance of the IHLC algorithm. Fig. IV-11(b) shows that it also
linearly depends on the number of vertices the polygon is built on. But the algorithm spends
around three times more time on the same polygons. This comparison, though, is not entirely
fair since the calculations in the implementation of the IHLC algorithm are precise, while in the
implementation of PDAN we drop precision after each split. Dropping precision in the IHLC
algorithm was not necessary as the times taken to calculate the partition are reasonable.

Finally, we were also interested in how our approach would scale compared to the brute-
force search over a discretized polygon border. In Fig. IV-12 one can see the statistics for five
random polygons. We note that it does not matter how many vertices are contained in the border
of a polygon. The performance depends only on the number of vertices the polygon border is
discretized into. As can be seen in the figure, the performance with this approach is much worse,
even for the cases when the polygon is split into only two or three parts. This makes it barely
usable in any real-life scenarios.
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(a) PDAN

(b) IHLC

Figure IV-11: Comparison of performance for the PDAN and the IHLC algorithms.

Figure IV-12: Performance of brute-force approach depending on the number of vertices the
polygon border discretized into.





V
Non-convex Polygon Decomposition

It is clear that not every workspace that has to be covered by unmanned aerial vehicles (UAVs) can
be defined by a convex polygon. In general, the area of interest can be defined by both non-convex
and convex polygons and contain any number of obstacles and no-fly zones (NFZs) represented
as polygon holes. Trajectory generation can both take into account the non-convex features of the
area or ignore them. For example, non-convex areas can be easily closed into a convex surround-
ing polygon and the flight paths can be generated on this larger polygon. The extra-flight time, in
this case, can be compensated by the simplicity of the flight path generated, and the sensors could
be turned off when overflying parts out of the original non-convex polygon. This idea, however,
is only applicable if there are no obstacles or NFZs in the surrounding convex polygon.

Hert & Lumelsky (1998) presented an algorithm for the decomposition of convex polygons
which we covered in Chapter IV. This algorithm was then used by the authors as a basis for
another algorithm capable of the decomposition of non-convex polygons with or without holes.

Likewise, we initially assumed that having developed an analytical algorithm that we pre-
sented in Section IV.2.1 would open a door for implementing a better algorithm for partitioning
non-convex polygons as well. But after a process of trial and error designing such an algorithm, it
became clear that there are several obstacles preventing making a generalization. These obstacles
can be summarized as follows:

1. Maximizing compactness inside of one convex part disregards what is going to happen with
the rest of the polygon. A schematic image of such an occurrence is shown in Fig. V-1.
The figure shows a polygon split into three convex parts. These parts are processed one
after another by the algorithm. Their areas are checked against the given area requirement.
First, the algorithm visits the part on the bottom left and finds that its area satisfies the area
requirement exactly. It then returns that part which is highlighted by diagonal lines. What

51
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remains is a connected pair of convex parts where one of them is a long strip with very low
compactness.

The algorithm capable of splitting a non-convex area should either be able to look ahead
when detaching an area or, alternatively, it should be designed in such a way that it would
be guaranteed that when detaching any selected area, the remainder would still satisfy some
compactness-related criteria.

Figure V-1: Example of algorithm’s drawback.

2. Difference in size of the parts will negatively affect the resulting partition. This is also well
illustrated by Fig. V-1. If an initial partition into convex parts was to contain subpolygons
homogeneous in terms of their areas, the problem could be avoided as selecting large areas
is prone to leaving the remaining area of not optimal compactness.

3. There will be problems with the accumulation of multiple parts to satisfy the area require-
ments

• On each accumulation of an area only a local optimum is achieved which will not guar-
antee the achievement of the global optimum. This is demonstrated in Fig. V-2.

• There exists the same problem as with Hert’s algorithm — to avoid discontinuous areas,
some parts would be split into smaller sub-parts which will worsen the quality in many
cases. An example is shown in Fig. V-3(a). If the partitioning process starts with the part
on the top, it will pass through the central area which will have to be split into smaller
parts in order to avoid discontinuity. A different starting point could be chosen to avoid
this as shown in Fig. V-3(b).

Nevertheless, the analytical algorithm for convex polygons partitioning is still useful. It pro-
duces optimal results than the algorithm it was compared against, it is efficient, and it is always
possible to fall back to this very algorithm when performing partitioning of non-convex polygons
when, on some step, the remaining area to be split is convex. And for the non-convex polygons,
we came up with another novel algorithm that is not based on the analytical approach.

In this chapter, we propose two algorithms capable of workspace decomposition when the
area is defined by non-convex polygons that can contain an undetermined number of holes inside.
In Section V.1, the IHLN algorithm is presented which stands for Improved algorithm by Hert and
Lumelsky for decomposition of Non-convex polygons. We discuss the original algorithm as well
as our contributions that improved it. In Section V.2, a novel bottom-up algorithm is proposed
based on grid decomposition. Finally, in Section V.3, results are discussed for all the proposed
algorithms. We compare various metrics for the polygons produced by the algorithms as well as
their performance.
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1 2 3 4 5 6 7 8

(a) Accumulating a new area on each step only achieves
local optimum.

1
23

4 5 6
7
8

(b) Alternative solution with higher compactness.

Figure V-2: Example of the effect of the procedure of area accumulation on the final compact-
ness.

(a) The sub-polygon in the middle that has three neigh-
bors is split into two parts in the course of accumulating
area to satisfy an area requirement and connectivity of the
resulting parts which results in poor compactness.

(b) A different starting node of the area accumulation pro-
cess can result in better final compactness.

Figure V-3: Example of good and bad partition in terms of compactness.

V.1 Improved Hert and Lumelsky’s algorithm (IHLN)

The partition of non-convex polygons is obtained by dividing the input polygon into convex parts
and consecutive merging of the adjacent parts. The sweep-line algorithm is used to divide convex
pieces when adding another convex part would result in a polygon with a too-large area. The
sweep-line algorithm also ensures that the polygon will not become disconnected.

In Section V.1.1 we give the idea of the algorithm presented in Hert & Lumelsky (1998). In
Section V.1.2 we provide an algorithm with improvements. These improvements are: we proposed
a simple to-implement alternative algorithm for the decomposition of non-convex polygons into
convex parts; we proposed an algorithm for constructing directed region-adjacency graph (RAG);
we proposed an algorithm that unites two algorithms from Hert & Lumelsky (1998) and simplifies
the logic from mutual recursive calls to a simple iteration over nodes of RAG; we proposed an im-
provement that removes the necessity of specifying locations of sites and presented an algorithm
that assigns these locations in the course of running the algorithm.
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V.1.1 Theory

The first step of the algorithm is to split an input polygon into a set of convex parts. Hert & Lumel-
sky (1998) provides a list of research works describing algorithms that could do that (Chazelle
(1980); Greene (1983); Hertel & Mehlhorn (1983); Keil (1985); Levcopoulos & Lingas (1984); Tor &
Middleditch (1984)). These algorithms were already discussed in more detail in Section II.4.

After obtaining the convex pieces, they need to be ordered in such a way that when adding
the areas for each UAV with its corresponding area requirement, the remaining area of the original
polygon would remain connected. Hert & Lumelsky (1998) propose an algorithm that can achieve
that order. The algorithm starts at a random node and checks if it has been marked. If it hasn’t
been marked, it marks it and then checks if it is a leaf node (a node with no children). If it is a
leaf node, it outputs the convex part corresponding to that node and then proceeds to visit all of
its neighboring nodes. If this node is not a leaf node, it simply visits all of its neighboring nodes
first and then outputs the corresponding convex part. The algorithm repeats this process for each
unmarked node it encounters until all nodes in the graph have been marked and visited.

This algorithm operates on a RAG built on the input polygon. A RAG is a graph data struc-
ture where each node represents an area of interest of a polygon, and edges connect nodes that
correspond to adjacent areas. In other words, given a polygon that has been segmented into mul-
tiple areas, a RAG represents the spatial relationships between those areas by connecting neigh-
boring areas with edges. The resulting graph provides a way to process or analyze the structure
of the polygon and to extract information about the relationships between different areas.

Hert & Lumelsky (1998) do not provide any instructions on how a RAG can be built. There-
fore, we propose one way in the next section. The RAG has to contain information about parts of
the input polygon as well as their connections. The algorithm iterates over the nodes of the graph
and marks every node it visits. When a leaf node is encountered, it is appended to a resulting
ordered list of nodes. A leaf node, in this case, is a node that has all its neighbors marked.

An example image from Hert & Lumelsky (1998) is shown in Fig. V-4. If a node N1 is an
initial node, it is marked and now it is the turn of its neighbors to be ordered. In the case it is the
node N4 that is chosen as a neighbor of the N1, it is going to be marked and next, the function
will be called for the node N5. As the N5 has only one neighbor, it is returned as the first node in
the resulting ordering. The next node to be considered is N2 as it is the next unmarked neighbor
of N4. Since it has unmarked neighbors, the algorithm goes to the node N3. The node N3 is then
returned as the second node of the ordering since all its neighbors have been already marked.
Afterward, the N2 is returned as it doesn’t have any unmarked neighbor nodes anymore. Then,
the N4 is returned and, after it, the final node N1. From now on it will be assumed that the indices
of the pieces correspond to the resulting ordering produced by this function.

Figure V-4: A polygon split into convex parts and its corresponding RAG.

Next, the division process starts. The algorithm iterates over the convex parts CPj of the
input polygon and performs the following steps. For the given CPj a polygon containing the CPj

itself plus all its predecessors reachable from CPj without entering its successors is calculated.
Authors name this polygon PredPoly. Examples of PredPoly are shown in Fig. V-5.



V.1 Improved Hert and Lumelsky’s algorithm (IHLN) 55

Figure V-5: Examples of PredPoly(CPj) for j in [5, 4, 3, 2] from left to right.

Each piece CPj is processed by dividing the corresponding PredPoly into parts that either
will be assigned to some of the sites or stay attached to the remaining part of the original poly-
gon. These remaining parts will be assigned later for some other PredPoly(CPk) where k > j.
The division is proposed to be accomplished using recursion — PredPoly(CPj) is split into two
parts by a polyline, one of the parts is removed completely from the original polygon and then
each part gets to be divided until it is also split among the given sites. The authors propose two
recursive functions to obtain the division of a convex node and its predecessor nodes. The first
function, NonconvexDivide, shown in Alg. V.1 constructs the segments dividing PredPoly objects.
The purpose of the second function, DetachAndAssign, is to remove the polygons obtained by the
first function, assign them to corresponding sites, or continue their recursive division. It is shown
in Alg. V.2.

V.1.1.1 NonconvexDivide procedure

Similarly to the Alg. IV.1, convex pieces of the input polygon will be split by line segments sweep-
ing the areas counterclockwise. It is, however, necessary to make sure that the vertices are ordered
in such a way that when the line segment is constructed to divide PredPoly of a given convex piece,
resulting parts are not detached from the successor parts. This is done by ensuring the segment
(wm;w0) is connecting the current convex piece to its next neighbor. Vertices w0..m here define the
border of the current convex part. And in case there is no next neighbor, the vertices are ordered
such that the last vertex would be a site point.

The initial segment L is set to be (w1, wi) where wi corresponds to the first site point found
when iterating over the vertices in counterclockwise order starting from w1. The w1 point is fixed
and the segment is sweeping the area by updating the other endpoint until one of the following
conditions is satisfied:

1. Case 1. The area on the right side of L that is still not assigned to any of the sites is greater
or equal to the total area requirement of all the sites on the right side (Fig. V-6);

(a) Case 1.1. Area(P r
L1

+ T ) > AreaRequired(S(CP r
L)) (Fig. V-7);

(b) Case 1.2. Area(P r
L1

+ T ) ≤ AreaRequired(S(CP r
L))

and Area(P r
L1

+ PredPoly(CP, (t1, t2))) < AreaRequired(S(CP r
L)) (Fig. V-8);

(c) Case 1.3. Area(P r
L1

+ T ) ≤ AreaRequired(S(CP r
L))

and Area(P r
L1

+ PredPoly(CP ; (t1; t2))) ≥ AreaRequired(S(CP r
L)) (Fig. V-9);

2. Case 2. The line’s endpoint has reached wm (Fig. V-10).

In the first case either the line’s endpoint does not lie on a site point and therefore the end-
point has to be moved to satisfy the area requirement, or the line’s endpoint lies on a site that
is also the only site at the right part of the polygon. In this latter case, it is now the turn of the
starting point of a line to move counterclockwise along the border until the covered area on the
right is equal to the area requirement.
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Let L1 and L2 be segments obtained from rotating L as shown in Fig. V-6. These segments
will share a point, either Ls or Le, that does not change, and the other points are located at the
vertices of the border of the polygon in such a way that{

Area(P r
L1
) < AreaRequired(S(CP r

L1
))

Area(P r
L2
) > AreaRequired(S(CP r

L2
))

(V.1)

Here, CP r
L means the part of CP that is located on the right side of the segment L, including all

the predecessors accessible from the right side. A triangle T = (t1, t2, t3) is defined as a difference
between CP r

L1
and CP r

L2
with the segment (t1, t2) being the edge connecting L1 with L2 as shown

in Fig. V-6.

Figure V-6: Two cases of constructing a triangle T when either Ls or Le is fixed. T is highlighted.

In Case 1.1, only a part of T is needed to satisfy the area requirement. A point t can be found
on the segment (t1; t2) such that

Area(P r
L1

+ T ′ − PredPoly(CP ; (t1; t))) = AreaRequired(S(Cr
L)) (V.2)

where T ′ = (t1; t; t3) – a triangle lying inside T which will help to satisfy the area require-
ment. An example is shown in Fig. V-7. There exists a point t on the segment (w4;w5) such that
AreaRequired(S1) = Area((w1;w3;w4; t)). After removing this polygon, CP1 will still be attached
to the remaining polygon’s part. Both obtained polygons are then divided recursively.

Figure V-7: An example of Case 1.1. T is highlighted.

In Case 1.2, all the PredPoly(CP ; (t1; t2)) has to be used to satisfy the area requirement.
Likewise, we can locate a point t on the segment (t1; t2) that would give us the division of the
polygon. Next, polygons P r

L1
+T ′ and P l

L1
−T ′−PredPoly(CP ; (t1; t)) are processed in a recursive

manner. This case is shown in Fig. V-8.
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Figure V-8: An example of the Case 1.2. T is highlighted.

Finally, in Case 1.3, the area of the polygon PredPoly(CP ; (t1; t2)) is greater than the sum
of requirements of S(CP r

L). We need to extract only a part of the polygon that will be assigned
between these sites, and the remaining part will be left to be assigned later. Here, a pseudo-site
will be used to perform the division. This pseudo-site is simply a point on the edge between
the current polygon part CP and its neighbor. It acts as a real site during the processing of that
neighbor and later whatever area gets assigned to this pseudo-site will be reassigned back to the
original site. The exact location of the pseudo-site is not specified apart from that it should be
somewhere between the endpoints of the polygons’ common edge (t1, t2). The area requirement
of a pseudo-site is calculated as the difference of the sum of all the sites’ area requirements found
in CP r

L and the combined area of P r
L1

with T ′ where T ′ = Triangle((t1;PS; t3)) and PS is the
pseudo-site. Next, PredPoly(CP ; (t1;PS)) is partitioned and PS gets assigned its parts. Those
parts are added to the union of P r

L1
and T ′ and the obtained polygon which is area-complete gets

recursively divided. This case is shown in Fig. V-9.

Figure V-9: An example of the Case 1.3. T is highlighted.

In Case 2, if sweeping the line-splitter L around the polygon does never produce the satis-
factory area, pseudo-sites need to be created for each site of S(CP r

L) to get the missing areas from
the successor nodes. To add a new pseudo-site, a point t is created on the segment (wm;w1) that
connects the current part with its next neighbor. Let’s denote the first site encountered starting
from w1 as Si. Then let’s draw a line L = (t;Si). The vertices of P r

L are to be ordered in such a
way that w1 = t. As a result, a pseudo-site is created on (w1;w2) if the area of P r

L is not big enough
for the area requirement of Si, or a part of P r

L will be assigned to the site Si to satisfy the area
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requirement.

Figure V-10: Case 2.

In both cases, Case 1 and Case 2, when the P r
L is divided and one of its parts gets removed,

the leftover part will be divided. This implies that there is a possibility that multiple pseudo-sites
will be placed on the segment (wm;w1). DetachAndAssign function is responsible for the creation
of pseudo-sites and assigning polygon parts to the corresponding sites.

V.1.1.2 DetachAndAssign procedure

The purpose of the DeatachAndAssign procedure is to detach the parts of the polygon that were
created by the NonconvexDivide algorithm and either return them as a result along with some site
or call NonconvexDivide on it again. From now on we will refer to NextNeighbor as a neighbor of a
node "that is its most immediate successor".

There are three cases that dictate how the division should happen:

1. PredPoly(CP ) is area-complete (the area is equal to the sum of area requirements from the
sites)

2. Area(PredPoly(CP )) < AreaRequired(S(CP ))

3. Area(PredPoly(CP )) > AreaRequired(S(CP ))

In the first case, if the PredPoly(CP ) contains only one site, the PredPoly(CP ) can be as-
signed to this site, detached from the original polygon, and returned as a result. When there are
multiple sites, the PredPoly(CP ) is also detached from the original polygon and now should be
divided by the same algorithm.

In the second case, if there is only one site Si lying in CP , all of the parts of the PredPoly(CP )
should be assigned to that only site, and an additional area must be taken from neighbors of CP
to satisfy the area requirement. This is done by using pseudo-sites. A pseudo-site PSi should
be placed at the edge that connects CP to its NextNeighbor, and its area requirement should be
the one for the previous area minus the area of PredPoly(CP ). After further processing of the
NextNeighbor(CP ), the piece with the given area requirement will be assigned to the Si. In case
there are several sites lying in CP , it is necessary to divide the PredPoly(CP ). This division will
produce two or more pieces depending on the number of sites, and one of these pieces, CP ′ will
require more area than PredPoly(CP ) has. A pseudo-site will be created to connect this area with
the area of the NextNeighbor.
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In the last case, PredPoly(CP ) can satisfy the total area requirement of all the sites lying in
CP but some area will remain unassigned and left for the sites lying outside of CP .

Algorithm V.1: The original NonconvexDivide algorithm.

Require: CP — a convex piece of a polygon defined by vertices w1..k)
1: L← (w1, wk), where wk = Si — the first site counterclockwise from w1

2: S(P r
L)← {Si}

3: while Area(P r
L) < AreaRequired(S(CP r

L)) and Le ̸= wm do
4: if k > 1 and wk−1 ∈ S(CP ) then
5: S(CP r

L)← S(CP r
L) ∪ wk−1

6: k ← k + 1
7: Le ← wk

8: if Area(P r
L) > AreaRequired(S(CP r

L)) then
9: if Le = Si then

10: k1 ← 1
11: while Area(P r

L) > AreaRequired(S(CP r
L)) do

12: k1 ← k1 + 1
13: Ls ← wk

14: L1 ← (wk1 ;Le); T ← (t1; t2; t3)← (wk1 ;wk1 − 1;Le)
15: else
16: L1 ← (Ls;wk−1); T ← (t1; t2; t3)← (wk−1;wk;Ls)

17: if Area(P r
L1

+ T ) > AreaRequired(S(CP r)) then
18: Find point t on (t1, t2) by interpolation
19: T ′ ← triangle(t1; t; t3)
20: DetachAndAssign(P r

L1
+ T0 − PredPoly(CP ; (t1, t)) ▷ Alg. V.2

21: DetachAndAssign(P l
L1
− T ′)

22: else if Area(P r
L1

+ PredPoly(CP ; (t1; t2))) < AreaRequired(S(CP r)) then
23: Find point t on (t1, t2) by interpolation
24: T ′ ← triangle(t1; t; t3)
25: DetachAndAssign(P l

L1
+ T ′)

26: DetachAndAssign(P r
L1
− T ′ − PredPoly(CP ; (t1, t))

27: else
28: PS ← apointon(t1; t2);T

′ ← triangle(t1;PS; t3)
29: AreaRequired(PS)← AreaRequired(S(CP r

L))−Area(P r
L1

+ T ′)
30: Order W (PredPoly(CP ; (t1; t2))) such that w1 = PS if Le ̸= Si and wm = PS if Le = Si

31: DetachAndAssign(PredPoly(CP ; (t1; t2)))
32: DetachAndAssign(P r

L1
+ T ′)

33: DetachAndAssign(P l
L1
− T ′)

34: else
35: t← point on (wm;w1)
36: L1 ← (t;Si)
37: DetachAndAssign(P r

L1
)

38: DetachAndAssign(P l
L1
)
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Algorithm V.2: The original DetachAndAssign algorithm

Require: Poly(CP ) — polygon rooted at CP
1: if ||S(CP )|| = 0 then
2: return
3: if PredPoly(CP ) is area-complete then
4: if S(CP ) = {Si} for some i then
5: Assign PredPoly(CP ) to Si

6: Detach PredPoly(CP ) from Poly(CP )
7: else
8: Detach PredPoly(CP ) from Poly(CP)
9: Order W (CP ) so that wm = Si for some Si ∈ S(CP )

10: NonconvexDivide(CP ) ▷ Alg. V.1
11: else if PredPoly(CP ) is area-incomplete then
12: if S(CP ) = {Si} for some i then
13: Assign PredPoly(CP ) to Si

14: Detach PredPoly(CP ) from Poly(CP )
15: Make pseudo-site for Si on edge to NextNeighbor(CP )
16: else
17: Order W (CP ) so that edge (wm, w1) is the edge to NextNeighbor(CP )
18: NonconvexDivide(CP )
19: else
20: Order W (CP ) so that edge (wm, w1) is the edge to NextNeighbor(CP )
21: NonconvexDivide(CP )

V.1.2 Algorithm

V.1.2.1 Decomposition into convex parts

Hert & Lumelsky (1998) provided a list of research works capable of decomposing a non-convex
polygon into convex parts. We discussed all of those algorithms in Section II.4. As it was shown,
there are no available implementations of algorithms capable of partitioning non-convex polygons
with holes into convex ones in the public domain.

There is, of course, constrained Delaunay triangulation. But, as it will be shown later, it
does not produce the best results in terms of compactness. This is why we propose an algorithm
that joins triangles obtained from the regular constrained Delaunay triangulation to form larger
convex parts. We present this algorithm in Alg. V.3.

The algorithm receives a polygon as input that is split into a list of triangles by applying
constrained Delaunay triangulation. A random triangle is chosen and the process of accumulating
its neighbors starts. The algorithm attempts to join the neighbors of the selected triangle as long
as the resulting union is convex. Those neighbor triangles that would cause the union to be non-
convex are ignored. Upon exhausting all the possible neighbors, the algorithm starts with the
neighbors of the newly-added triangles. The process repeats until no triangles could be added
to the union that would result in a convex polygon. The resulting union is returned as a result
and the process repeats for the remaining part of the triangles until they are completely divided
and returned. The steps of the algorithm are shown in Fig. V-11. Currently selected triangles are
shown in blue and the already processed and returned parts of the polygons are shown in red.
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Algorithm V.3: The algorithm for joining together triangles obtained by Delaunay triangulation

Require: P — input polygon,
E — extra_points

1: extra_constraints = [polygon.holes, E]
2: triangles = delaunay_triangulation(polygon.border, extra_constraints)
3: initial_polygon = triangles.pop()
4: C = [] ▷ convex parts
5: while True do
6: resulting_polygon = initial_polygon
7: for index, polygon in enumerate(polygons) do
8: sides = set(polygon.edges)
9: common_side = resulting_polygon.edges ∩ sides

10: if common_side is None then
11: continue
12: if len(E ∪ common_side.points) > 0 then
13: continue
14: union = resulting_polygon + polygon
15: if union is Polygon and union.is_convex then
16: polygons.pop(index)
17: resulting_polygon = union
18: if resulting_polygon is not initial_polygon then
19: initial_polygon = resulting_polygon
20: continue
21: C.append(resulting_polygon)
22: if len(polygons) == 0 then
23: break
24: initial_polygon = polygons.pop()
25: return C

V.1.2.2 RAG construction

After dividing a non-convex polygon into convex parts, we need to construct a RAG out of them.
We propose Alg. V.4 that can achieve that.

This algorithm simply iterates over all combinations of pairs of convex parts and adds them
to an empty graph as an edge if their intersection is a segment.

Algorithm V.4: The algorithm for constructing a RAG

Require: P — input polygon,
S — sites,
CD — convex divisor function

1: G = Graph() ▷ construct an empty graph object
2: EP = S - P .vertices ▷ extra points
3: CP = CD(P , EP ) ▷ convex parts
4: for CP1, CP2 in combinations(CP ) do
5: intersection = CP1 & CP2

6: if intersection is Segment then
7: G.add_edge(CP1, CP2, intersection)
8: return G
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(a) Original polygon (b) constrained De-
launay triangulation

(c) First triangle is
selected

(d) First triangle
joined with its neigh-
bor

(e) The union is
joined with another
neighbor

(f) The first union is
returned, new trian-
gle is selected

(g) Adding neighbor
triangle.

(h) Returning the
second part.

(i) Returning the
third result.

(j) Final partition.

Figure V-11: Steps of the Alg. V.3.

V.1.2.3 Ordering nodes

The nodes of the graph then have to be ordered in such a way that when processing them, the
areas would stay connected. The algorithm that was proposed in Hert & Lumelsky (1998) is, in
fact, a simple post-order traversal of graph nodes.

We propose the construction of a directed RAG from the previously obtained RAG using the
algorithm shown in Alg. V.5.

The algorithm takes the nodes from the original undirected graph, orders them in a post-
order manner, and adds them to a new empty graph. Post-order graph traversal is a type of
depth-first traversal. In binary trees it is defined as follows: 1) recursively traverse the current
node’s left subtree; 2) recursively traverse the current node’s right subtree; 3) visit the current
node.

The next step is to take the edges representing the pairs of all neighbor nodes and put them
in order within each pair following the same order. These edges are then also added to the new
graph.

Then it is necessary to add information about the segments between the nodes. This is done
by a simple iteration over all the edges and the corresponding segments and adding them to the
new graph.

The final step is to remove edges between the nodes in such a way that the resulting graph
would become a binary tree. For that we iterate over each node, check if it has more than two
neighbors, and if it does, we retrieve its most immediate successor, obtain the remaining neighbors
of the node, and remove the edges between them. Setting an empty set of requirements for each
node is done in the end.
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Algorithm V.5: The algorithm for converting an undirected graph to an ordered and directed
one

Require: UG — undirected graph
1: G = Graph() ▷ empty graph
2: ordered_nodes = UG.postorder_nodes()
3: G.add_nodes(ordered_nodes)
4: directed_edges = [sorted(e, key=ordered_nodes.index) for e in graph.edges)]
5: G.add_edges(directed_edges)
6: for edge, side in G.edges.data(’side’) do
7: if edge in G.edges then
8: G.edges[edge][’side’] = side
9: else

10: G.edges[edge.reversed()][’side’] = side
11: for node in G do
12: if len(G.edges[node]) < 2 then ▷ There can’t be more than 2 outcoming edges
13: continue
14: most_immediate_successor = G.next_neighbor(node)
15: bad_edges_nodes = (set(G[node]) - set([most_immediate_successor]))
16: for neighbor in bad_edges_nodes do
17: G.remove_edge(node, neighbor)
18: for node in G do
19: G.nodes[node].update(’requirements’: frozenset())
20: return G

V.1.2.4 Main algorithm

The two algorithms proposed in Hert & Lumelsky (1998), NonconvexDivide and DetachAndAssign
were combined into a single algorithm. Instead of relying on recursive calls, this algorithm iterates
over nodes of a RAG. Since the resulting algorithm is too large to place on one page, we split it
into three parts shown in Alg. V.6, Alg. V.7, and Alg. V.8.

The algorithm takes the input polygon as input, a list of Requirement objects, and a function
for decomposing non-convex polygons into convex parts. We define a Requirement object as a tuple
of two values, an area requirement, and an optional point. It is necessary that the input geometry
objects would be of Fraction data type in order to ensure the correctness of the produced results.
The sum of all the requirements has to be equal to the area of the input polygon to ensure correct
results.

In Hert & Lumelsky (1998) algorithm, site assignments were always at fixed locations, but for
a drone operator, the initial location of the UAVs is not a hard restriction. With very little effort the
fleet can be located at any point in the area, before starting the survey flights. This constraint relax-
ation allows us to obtain better partitions. Thus, one of the improvements of this work proposed
to improve the original algorithm is making the sites optional and letting the algorithm decide
where to put them for a drone operator. The algorithm assign_requirements shown in Listing A-1
takes care of assigning sites and area requirements to parts of the polygons.

This algorithm checks if the input node of a graph already has a Requirement object assigned
to it. If the node does not have any, the algorithm assigns one from the remaining requirements
that do not have a location specified.
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Algorithm V.6: The IHLN algorithm

Require: P — input polygon,
R0..n — list of n Requirement objects (n > 1),
CD — function performing decomposition into convex parts

1: result = [None] * len(R)
2: Rref = R ▷ reference requirements
3: pseudo_to_original_requirements = {}
4: incomplete_parts = defaultdict(list)
5: site_points = [r.point for r in R if r.point is not None]
6: G = to_graph(P , site_points, CD) ▷ graph
7: G = to_directed(G)
8: remaining_nodes = iter(G.nodes)
9: while G is not empty do

10: CP = orient(next(remaining_nodes)) ▷ current polygon
11: PredPolys = G.PredPolys(CP )
12: CS, R = assign_requirements(CP , R, G)
13: if CS is empty then
14: continue
15: required_area = sum(r.area for r in CS)
16: if len(CS) = 1 and PredPolys.area < required_area then
17: Run code from Case 1 of Alg. V.7
18: else if len(CS) = 1 and PredPolys.area = required_area then
19: Run code from Case 2 of Alg. V.8
20: else
21: N = G.next_neighbor(CP )
22: extra_points = G.neighbor_edges_vertices(CP )
23: if N is None then
24: V = CP .border.vertices + CS + extra_points
25: if CS then
26: V = order_by_sites(V , CS0)
27: else
28: e = G[CP ][N ][’side’]
29: V = CP .border.vertices + extra_points + current_sites + e.start + e.end
30: V = order_by_edge(V , e)
31: parts = split(CP , V , CS, G)
32: G.remove_nodes_from(PredPoly)
33: G = (G.prepend_two(parts, N ) if len(parts) == 2 else G.prepend_three(parts, N ))
34: remaining_nodes = iter(G.nodes)
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Algorithm V.7: Case 1 of the IHLN algorithm

Require: G — graph,
CP — current polygon part,
CS — sites of CP ,
r — area requirement,
PredPolys — of CP ,
pseudo_to_original_requirements — mapping of pseudo-sites to original sites,
incomplete_parts — a list of incomplete parts

1: N = G.next_neighbor(CP ) ▷ neighbor
2: E = G[CP ][N ][’edge’] ▷ edge
3: r = CS[0]
4: pr = Requirement(r.area - PredPolys.area, E.centroid) ▷ pseudorequirement
5: PredPoly = unite(PredPolys)
6: original_requirement = pseudo_to_original_requirements.get(r, default=r)
7: incomplete_parts[original_requirement].append(PredPoly)
8: G.remove_nodes_from(PredPolys)
9: pseudo_to_original_requirements[pr] = original_requirement

10: G.nodes[N ][’requirements’] |= pr

Algorithm V.8: Case 2 of the IHLN algorithm

Require: G — graph,
CS — sites of CP ,
r — area requirement,
PredPolys — of CP ,
pseudo_to_original_requirements — mapping of pseudo-sites to original sites,
incomplete_parts — a list of incomplete parts

1: r = CS[0]
2: G.remove_nodes_from(PredPolys)
3: if r not in pseudo_to_original_requirements then
4: resulting_part = unite(PredPolys)
5: else
6: r = pseudo_to_original_requirements[r]
7: resulting_part = unite(PredPolys, incomplete_parts[r])
8: found = False
9: for i, (rref , part) in enum(zip(Rref , resulting_parts)) do

10: if r == rref and part is None then
11: resulting_parts[i] = resulting_part
12: found = True
13: break
14: if not found then
15: for i, (rref , part) in enum(zip(Rref , resulting_parts)) do
16: if r.area == rref .area and part is None then
17: resulting_parts[index] = resulting_part
18: break
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V.2 A bottom-up approach

In this section, we describe a completely new algorithm for the decomposition of non-convex
polygons. We call it a "bottom-up" algorithm due to its logic. In this section, we explain the idea
of the algorithm and provide details on how to implement it.

V.2.1 Theory

The idea of the algorithm is as follows. The algorithm receives the polygon representing the
workspace (Fig. V-12(a)) and the list of area requirements for each UAV. The polygon then has to
be split into a grid of convex parts. In our work, we used the constrained Delaunay triangulation
with the addition of extra points across the polygon (Fig. V-12(b)). This type of triangulation is also
called Delaunay triangulation with Steiner points. The result of the triangulation for the example
polygon is shown in Fig. V-12(c).

(a) Input polygon (b) Applying Steiner vertices (c) Constrained Delaunay triangu-
lation

Figure V-12: Partition by triangulation.

This mesh of triangles is converted into a hierarchical RAG (Fig. V-13(a)) where each node
can be either a simple polygon or another RAG. We call the nodes that are RAGs as "chunks". For
simplicity, we will refer to this type of hierarchical RAG simply as RAG or just a graph.

Next, an iterative process of accumulation of these chunks follows starting with those chunks
with the smallest number of triangles. For each chunk, such a neighbor is chosen so that the
compactness of the union would be the highest. Then the process repeats, each part is joined
with a such neighbor so that their united compactness is maximized, and so on. Examples of two
consecutive iterations are shown in Fig. V-13(b) and Fig. V-13(c). This process stops when one of
the parts has an area close to the initial area requirement. We defined the areas as "close enough"
when they are larger than half of the given area requirement. As shown later in the results, this
worked perfectly in performed tests.
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(a) RAG (b) RAG partition on some step N (c) RAG partition on the next step,
N + 1

Figure V-13: Partition by triangulation.

This process stops when one of the parts has an area close to the initial area requirement. We
defined the areas as "close enough" when they are larger than half of the given area requirement.
It was purely an implementation decision and, as it will be shown later in the results, this worked
perfectly in performed tests. The remaining chunks that are too small are then joined together
and the most compact chunk is selected to be returned (Fig. V-14(a)). The final readjustment of
triangles is performed to satisfy the area requirement exactly (Fig. V-14(b)). Finally, the triangles
of the resulting chunk are then joined together and returned as a result.

(a) A chunk with an area close to re-
quirement is found

(b) Result of final readjustment

Figure V-14: Steps of the Bottom-up algorithm.

After obtaining the part with the desired area, the process can be repeated further for other
area requirements using the already computed RAG. The flowchart of the proposed algorithm is
shown in Fig. V-15.

Optionally, a smoothing procedure could be added on each step for the obtained parts and
the corresponding remainders. Nonetheless, in this thesis, we do not consider the problem of
smoothing the borders between the polygons as some solutions have already been proposed and
worked well (Wzorek et al., 2021).

V.2.2 Algorithm
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• Polygon
• Area requirements

Cover polygon by triangular grid and
construct region-adjacency graph

Satisfactory chunk
is found

Join chunks that have the smallest
number of triangles with neighbors
to form the most compact pairs

Join remaining chunks
that are too small

Find the most compact pair
of chunk and leftover chunks

Swap and readjust triangles
between them to satisfy
the requirements

Return both parts
optionally smoothed

TRUE

FALSE

Figure V-15: Algorithm for splitting a non-convex polygon into multiple parts according to the
given area requirements

V.2.2.1 Generating a region-adjacency graph from a polygon and a grid of points

The first step is to convert the input polygon into a RAG. In order to do that, first, we need to
generate Steiner points inside the polygon. This can be done by generating a regular grid of
points with a given distance between them. The points lying outside of the polygon are filtered
out. At this step, a constrained Delaunay triangulation is used to obtain all the triangles that will
be used as nodes of the graph. This graph will have two inner structures to keep information on
both the unit triangles that we have just obtained and the collections of triangles that we will call
chunks. These chunks will be used later when searching for a compact solution with the given area
requirement.

The algorithm is shown in Alg. V.9.

Section V.2.2.2 will present the algorithm for obtaining the Steiner points. And, finally, Sec-
tion V.2.2.3 shows how the region-adjacency graph can be generated.

V.2.2.2 Steiner points

There are multiple ways to place the Steiner points in the polygon. For example, as it was men-
tioned earlier in Chapter II, Balampanis et al. (2017) used Lloyd optimization (Lloyd, 1982) to have
triangles of approximately the same size and the same angles close to 60 degrees. In this thesis, we
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Algorithm V.9: The algorithm for converting a polygon into a graph

Require: P — input polygon,
δ — distance between Steiner points

1: extra_points = steiner_points(P , delta)
2: T = constrained_delaunay_triangulation(P , extra_points) ▷ triangulation object
3: triangles = T .triangles
4: triangular_map = to_triangular_map(triangles)
5: node_map = to_node_map(triangular_map)
6: G = Graph(triangular_map, node_map, P .area)
7: return G

chose the simplest way by adding Steiner points at the lattice vertices of a grid constructed on top
of the polygon. It is efficient and, as it will be shown later, provides a good quality of the obtained
partition.

The idea of the algorithm is as follows. For a rectangle bounding the input polygon, all
possible coordinates are generated with the specified distance between Steiner points. A grid of
points is generated and only those points that are located within the polygon are left. Additionally,
some points are placed on the border of the polygon and its inner rings delimiting the holes.
Distance between the points on the segments defining those contours is chosen to be as close
as possible to the original distance between Steiner points. And the original distance itself is
chosen arbitrarily. In our experiments, we chose the distance to be around 1/50-1/100 part of the
polygon’s width.

The algorithms performing the constrained Delaunay triangulation are discussed in the lit-
erature (Sloan, 1993; Paul Chew, 1989; De Floriani & Puppo, 1992). These algorithms can either
return a set of triangles lying inside the input geometry or graphs containing extra information
about edges between triangles, neighbors of each triangle, and others. In the Alg:V.9 we assume
that the function constrained_delaunay_triangulation corresponding to this algorithm returns a Tri-
angulation object, a graph, containing all this extra information, but in general, any extra informa-
tion is not required, since the algorithm to_triangular_map recalculates all the necessary connec-
tions needed for our algorithm.

V.2.2.3 Triangular and chunk maps

Next, to create a hierarchical RAG, we need to create two structures carrying information about
areas inside the polygon and their common edges. The first structure is a basic RAG where the
nodes are triangles that we obtained in the previous step of generating the constrained Delaunay
triangulation. The second structure is also a RAG but with the nodes representing collections of
triangles which we will call chunks. During the course of running the algorithm, these chunks will
change their size by accumulating or detaching triangles or by merging with the neighbor chunks.

The Listing A-2 shows a function to create the first structure — a mapping of triangles to their
neighbors by their common edges. The function iterates over all triangles and creates three map-
pings with edges as keys and neighbor triangles as values. In the following iterations, if another
triangle has the same edge as one of the previous triangles, it will be added to that mapping and
vice versa.

The Listing A-3 shows a function that creates a chunk map — a graph-like structure that con-
tains information on the chunks, their neighbors, and their common edges. The function accepts
the triangular map calculated previously and then converts all the individual triangles into chunks
of size one. Then for each triangle and its neighbors, the function creates a mapping of chunks of
size one created previously to dictionaries with all the edges as keys and neighbor chunks of size
one as values.
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V.2.2.4 Bi-partition

The algorithm for splitting a graph into two parts, shown in Alg. V.10, can be summarized as
follows. On each step, it selects those chunks that consist of the smallest amount of triangles
on the current and joins these chunks with those neighboring chunks that would result in the
most compact union. The process is repeated until at least one chunk has an area close to the
given area requirement. The definition of being "close" here is not fixed and can be tuned. Then
all the remaining chunks that are too small get joined with those neighbor chunks so that the
compactness of their unions would be maximized. Finally, out of the resulting chunks such chunk
is chosen so that its compactness together with the compactness of the total remainder would be
the highest. The remainder consisting of multiple chunks is converted into a single chunk, and the
final readjustment takes place where triangles are being swapped between the chunks in order to
satisfy the given area requirement precisely.

The is_satisfactory_chunk_found function simply iterates over all the chunks and returns True
if at least one of them has an area close enough to the area requirement R. The closeness is defined
arbitrarily. For our purposes, the condition chunk.area ∈ [R2 ;

3R
2 ] worked fine.

Algorithm V.10: The algorithm for splitting a graph into two parts

Require: G — graph,
R — area requirement

1: while not is_satisfactory_chunk_found(G, R) do
2: join_pairs(G)
3: join_small_chunks(G, R)
4: chunk, remainder = most_compact_pair(G)
5: chunk, remainder = readjust(chunk, remainder, G, R)
6: return chunk, remainder

V.2.2.5 Iterative merging of chunks

In order to merge the chunks we propose the algorithm presented in Alg. V.11.

The idea of the algorithm is to find the smallest number of triangles a chunk has and mark
these chunks for joining them with other chunks. In the algorithm, this is done by collecting the
chunks satisfying the condition into a set. Then, all the chunks including the ones that were just
found are put into a set of potential targets for a join operation. And, as a final step, the algorithm
iterates over the chunks in the first set and tries to join them with an appropriate candidate from
the second set. The logic for this search and join is taken out into the Alg. V.12.

Algorithm V.11: The algorithm for joining pairs inside the graph

Require: G — graph
1: chunks = G.chunks
2: s = min(len(C.triangles) for C in chunks) ▷ smallest chunk size
3: potential_sources = OrderedSet(C for C in chunks if len(C.triangles) == s)
4: potetntial_targets = OrderedSet(chunks)
5: while potential_sources do
6: merge_least_compact(G, potential_sources, potetntial_targets) ▷ Alg. V.12
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Algorithm V.12: The merge_least_compact algorithm for merging least compact chunks

Require: G — graph,
S — potential sources,
T — potential targets

1: source = min(S, key=compactness)
2: best_target = None
3: max_compactness = 0
4: N = G.neighbors(source) & T ▷ neighbors
5: if len(N ) == 0 then
6: S.pop(source)
7: return
8: for neighbor in N do
9: A = source.area + neighbor.area ▷ area

10: P = G.union_perimeter(source, neighbor) ▷ perimeter
11: compactness =

√
A/P

12: if compactness > max_compactness then
13: best_target = neighbor
14: max_compactness = compactness
15: S.pop(source)
16: S.pop(best_target)
17: T .pop(source)
18: T .pop(best_target)
19: G.unite(source, best_target)

V.2.2.6 Merging remaining chunks

Once the iterative join of triangles is finished the process continues with three post-processing
steps. The first one consists in merging the remaining small chunks. In order to find the chunks
that are not close enough to the area requirement and join them with their neighbors to form larger
chunks is shown in Alg. V.13.

As the first step, the algorithm finds those chunks of the partition that do not satisfy the same
condition of closeness to the area requirement as the one mentioned in Section V.2.2.4. We call
these chunks "source" chunks and the chunks that can be united with "target" chunks. As long as
there is at least one such source chunk and the total number of chunks in the partition is greater
than two, we perform the joining process.

On each iteration of this process, we locate the source chunk with the minimum compactness
and find such a target chunk that is its neighbor and gives the highest possible compactness when
joined together. These chunks are joined and their union can be placed back into the set of source
chunks if it still does not satisfy the aforementioned area requirement.
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Algorithm V.13: The algorithm for joining chunks

Require: G — graph,
R — area requirement

1: sources = Set(chunk for chunk in G.chunks if not satisfies_area(chunk.area, R))
2: while len(sources) > 0 and len(G.chunks) > 2 do
3: source = min(sources, key=compactness)
4: best_target = None
5: max_compactness = 0
6: N̄ = G.chunk_neighbors(source) ▷ neighbor chunks
7: for N in N̄ do
8: area = source.area + N .area
9: if area - R > R - source.area then

10: continue
11: perimeter = G.union_perimeter(source, N )
12: c =

√
area/perimeter ▷ compactness

13: if c > max_compactness then
14: best_target = N
15: max_compactness = c

16: sources.pop(source)
17: sources.pop(best_target, None)
18: if best_target is not None then
19: union = G.unite(source, best_target)
20: if not satisfies_area(union, R) then
21: sources.add(union)

V.2.2.7 Readjustment algorithm

The readjustment algorithm is necessary to swap the triangles from one chunk to another in or-
der to satisfy the area requirement. The algorithm that performs this readjustment is shown in
Alg. V.14. It performs the reassignment of the triangles from one chunk to another until either the
area requirement is satisfied or it is impossible to move a triangle without decreasing the area of
a chunk below the area requirement, in which case only a part of a triangle is moved between the
chunks. The algorithm orders the triangles on the border between the chunks in such a way that
removing a triangle would not result in discontinuous areas.

The algorithm takes four inputs: G is the hierarchical RAG; R is the target area for each
chunk; C is the chunk being adjusted; and N is the neighboring chunk being compared to C. The
algorithm returns the modified chunks C and N .

The algorithm works by iteratively moving triangles from C to N , or vice versa, until the area
of C is within a desired range around R. The algorithm does this by identifying a "border triangle"
between C and N , which is a triangle that shares an edge with both C and N . The algorithm then
moves this triangle to N and repeats the process with the new border triangle between C and N .
If C becomes too small, the algorithm performs a final refinement step to ensure that C is not too
small.

The algorithm also keeps track of "dismissed neighbors", which are neighboring triangles that
have already been compared to C but were not suitable for adjustment. If the algorithm exhausts
all border triangles without finding a suitable one to move, it resets the dismissed neighbors and
tries again.
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Algorithm V.14: Neighbor chunks readjustment algorithm

Require: G — RAG,
R — area requirement,
C — chunk,
N — neighbor chunk

1: dismissed_neighbors = OrderedSet()
2: while True do
3: priority_triangles = filter(C.triangles, not in dismissed_neighbors)
4: prioritized_triangles = priority_triangles + dismissed_neighbors
5: border_triangles = filter(prioritized_triangles, touches N and not articulation triangle)
6: border_triangle = next(border_triangles)
7: if border_triangle is None then
8: if len(dismissed_neighbors) > 1 then
9: dismissed_neighbors = OrderedSet()

10: continue
11: divide_border_triangle(C, N , G)
12: border_triangles = filter(prioritized_triangles, touches N and not articulation triangle)
13: P .move(border_triangle, source=C, target=N )
14: for neighbor_triangle in P .triangle_neighbors(border_triangle) do
15: if neighbor_triangle in C.triangles then
16: dismissed_neighbors.add(neighbor_triangle)
17: if C.area == R then
18: return C, N
19: if C.area < R then
20: G.move(border_triangle, source=N , target=C)
21: final_refinement(border_triangle, R, C, N , G)
22: return C, N

V.2.2.8 Splitting into multiple parts

Having obtained the algorithm that can split a polygon into two parts depending on the area
requirements, it is trivial to extend it to split into a variable number of parts by recursively splitting
parts of the polygon into two parts. The algorithm is shown in Alg. V.15.

First, in order to keep track of the area remaining after each split, a polygon called "remain-
der" is initialized to be equal to the input polygon. Then, the requirements are sorted from lowest
to largest. For each requirement, the split_into_two function is called using the remainder polygon.
The function returns two parts — a part that satisfies the given area requirement and the remain-
ing part of the polygon. The remaining part is set to be a new "remainder" for a new iteration, and
the part satisfying the area requirement is saved to be returned in the end when all the polygon is
processed.
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Algorithm V.15: The algorithm for splitting a polygon into multiple parts

Require: P — polygon,
R — list of area requirements,
N — approximate number of Steiner points

1: result = []
2: remainder = P
3: for Ri in sorted(R)..−1 do
4: part, remainder = split_into_two(remainder. Ri, N )
5: result.append(part)
6: result.append(remainder)
7: return result

V.3 Results

In this section, we present the comparison of the algorithms discussed in this chapter, the IHLN
algorithm and the Bottom-up algorithm. In Section V.3.1, a comparison of the results in terms of
their quality is shown. In Section V.3.2, a comparison of the results in terms of the performance of
their implementations is shown.

The comparison was performed using the same set of 100 randomly-generated polygons hav-
ing from three to 50 vertices and up to four holes. The polygons were split among two to ten UAVs.
The area requirements for each UAV were chosen to be equal. When applicable, the number of
Steiner points covering the bounding box of each polygon was chosen to be 100 which would
correspond to a cell of a size of around 1/250 of the size of the original polygon.

V.3.1 Quality

The quality of the results produced by the algorithms is analyzed using the metrics given in Sec-
tion III.5. First, the results for the IHLN algorithm are given in Section V.3.1.2. The results pro-
duced by the Bottom-up algorithm are given in Section V.3.1.3.

V.3.1.1 Proposed approaches

The IHLN algorithm has been extensively evaluated for four different approaches. These ap-
proaches are named as approach "A", "B", "C", and "D". Approach "A" is based on the pure De-
launay triangulation. The initial positions of the UAVs are chosen to be fixed. In approach "B",
the initial positions are also fixed, but the triangles obtained from the Delaunay triangulation are
joined together to decrease the total number of convex parts. The algorithm for joining the trian-
gles was previously shown in Alg. V.3. In approach "C", the initial locations of the UAVs are not
provided and the initial partition is done by the Delaunay triangulation. Finally, approach "D"
is same as the approach "C" but with triangles joined together to decrease the number of convex
parts. Table V-1 shows the summary of all four evaluated variants of the algorithm.

V.3.1.2 IHLN algorithm evaluation

Times to cover the areas are calculated considering the speed of the UAVs to be equal to 10m/s.
It can be observed in Fig. V-16 that the compactness for all four approaches lies between 0.3 and
0.6, having still some margin for improvement. Cases "A" and "C" exhibit higher variability, and
cases "C" and "D" have higher mean. Approach "D" shows the best results out of the four. A
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Approach Convex partition UAV start
A Delaunay triangulation Fixed
B Joined triangles Fixed
C Delaunay triangulation Flexible
D Joined triangles Flexible

Table V-1: Algorithm approaches

similar conclusion can be deduced from Fig. V-17, and Fig. V-18 which ratifies our assumption
that compactness is a good metric to anticipate the quality of the flight trajectories.

Figure V-16: Compactness for four different approaches, "A"—"D", and 100 randomly generated
polygons.

For each metric, we also show the statistics regarding the number of UAVs (Figs. V-19, V-20,
and V-21). Each horizontal line shows the average value of the metric, and the vertical lines give
the standard deviation of all four approaches, each one in a different color. As can be seen from
the figures, joining triangles obtained from Delaunay triangulation (approaches "B" and "D") has a
positive effect on the resulting partitions, increasing compactness and reducing the time of flight
and the number of turns. Hence, we can assume that having larger convex parts will result in a
more compact partition and a shorter time of flight. It can also be seen that relaxing the initial
positions of the UAVs results in more compact sub-polygons and shorter flight times. Notice from
Fig. V-20 that the flight time is almost constant in approach "D" across the different numbers of
UAVs. Since the number of UAVs is directly proportional to the area of the polygon, we can
conclude that approach "D" scales perfectly with the area.

Figure V-17: Time of flight for four different approaches, A–D, and 100 randomly generated
polygons.
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Figure V-18: Number of turns for four different approaches, A–D, and 100 randomly generated
polygons.

Figure V-19: Comparison of compactness vs number of UAVs for four different cases.

Finally, Fig. V-22 shows the evolution of the compactness in relation to the number of vertices
of the polygon to split. We can observe that approach "D" is not always the best approach, but
only for polygons with more than 20 vertices. For smaller polygons, approaches "B" and "C" can
obtain more compact partitions. However, it seems logical to think that in real-life scenarios the
number of vertices will be greater than a couple of tens, and thus approach "D" would be the most
appropriate.

As we can see, the compactness of polygon parts affects the trajectories of the UAVs built
over these parts. This finding is in agreement with the research performed by (Wzorek et al., 2021)
where it was shown that maximizing the compactness of sub-polygons influences the optimality
of generated motion plans.

Figure V-20: Time vs number of UAVs. Blue – case A, orange – case B, green – case C, red – case
D.
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Figure V-21: Turns vs number of UAVs. Blue – case A, orange – case B, green – case C, red –
case D.

Figure V-22: Compactness vs number of vertices of the polygon. Blue – case A, orange – case B,
green – case C, red – case D.

Figure V-23: Comparison of workspace decomposition performed by IHLN and trajectory as-
signment using Delaunay triangulation on the left and an algorithm for joining triangles on the

right.

In Fig. V-23, one can see workspace decomposition together with the assigned trajectories.
Results for two approaches are shown – one with Delaunay triangulation used for getting convex
parts, and another one where the same triangles were joined together to form larger parts. The
latter approach, as was mentioned before, and can be seen here, produces better results in all the
metrics.
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From this point on, when referring to the results obtained from the approach "D" of the IHLN
algorithm, we will refer to it as simply as the IHLN algorithm.

V.3.1.3 Bottom-up

For the purpose of comparing the quality of the results produced by the presented algorithm, we
used the implementation of the algorithm from (Kapoutsis et al., 2017) discussed in Section II.2.
As the algorithm is based on cellular decomposition, we require to represent a polygon defined by
a set of vertices as a set of cells on a grid covering the polygon. The number of cells can be defined
by a user. Next, the algorithm requires the initial positions of the UAVs. The original paper does
not go into details on how to choose these locations but just assumes that they are given by a
user. For this reason, we choose these locations in a random fashion inside the polygon. For
a single polygon, we generate these locations several times and take the best result in terms of
compactness.

In Fig. V-24 one can see a comparison between the IHLN algorithm, bottom-up algorithm,
and the DARP algorithm from (Kapoutsis et al., 2017) — the only existing open-source implemen-
tation of an algorithm from the literature, as far as we know.
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Figure V-24: Normalized compactness vs number of parts. Comparison of IHLN algorithm,
bottom-up algorithm, and the algorithm from Kapoutsis et al. (2017) — DARP.

As can be seen, the bottom-up algorithm outperforms both IHLN and DARP in terms of
compactness. From the performed analysis it is also can be seen that the IHLN algorithm does not
scale well with the number of parts the polygon is split into.

Fig. V-25 shows a comparison of the number of tracks. Since the aforementioned algorithm
for generating trajectories cannot deal with non-convex polygons, we used a workaround where
a set of segments was generated along the line perpendicular to the width of the polygon, and in-
tersections of the segments with the polygon were obtained. It can be seen that despite producing
less compact areas, the IHLN algorithm results in fewer generated tracks.

Wzorek et al. (2021) performed an analysis of collective compactness scores for several con-
figurations of their AreaDecompose algorithm and the algorithm of Hert & Lumelsky (1998). Their
results are close to the ones achieved by us with the compactness from the algorithm by Hert &
Lumelsky (1998) around 0.4 and the average compactnesses of their algorithm around the range
from 0.6 to 0.65.
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Figure V-25: Comparison of the number of tracks.

V.3.2 Performance

In addition to quality results, we measure the performance results, this is, the cost of obtaining the
partition for each of the solutions proposed. We show the performance statistics in Fig. V-26. The
figures show how execution time depends on the number of parts polygons are split into. Fig. V-
26(a) shows the performance of the Bottom-up algorithm and Fig. V-26(b) shows the performance
of the IHLN algorithm. One can see that the IHLN algorithm is about ten times faster but the
bottom-up algorithm still performs within an acceptable time frame for a drone operator that
needs to plan in advance the partition of the mission area for its fleet of UAVs.
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Figure V-26: Statistics for timings for 100 random polygons split into 2 to 10 parts.

Further analysis is obtained for the Bottom-Up algorithm. Fig. V-27 shows performance times
depending on the number of Steiner points. Each polygon was split into two parts and the area
requirements were always equal to 50%. It can be seen that the time depends on the number of
points with a non-linear function.

It is clear that the Bottom-up algorithm cannot be compared directly to the IHLN algorithm
as the performance of the bottom-up’s algorithm does not depend on the number of vertices of
a polygon border, but on the number of Steiner points inserted inside. It does take more time,
though, on average. But the gain in the compactness justifies the usage of this approach over the
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Figure V-27: Performance of the implementation of the algorithm depending on the approxi-
mate number of Steiner points.

other ones. And, as an option to increase the performance, one could fall back to the presented
implementation of convex polygon decomposition when an input polygon is convex.



VI
Concluding Remarks

Throughout this thesis, we proposed several new algorithms and improved two existing meth-
ods for polygon decomposition, which can greatly assist drone operators in planning the flight
of a heterogeneous fleet of unmanned aerial vehicles (UAVs). However, we encountered several
challenges along the way, and some of these problems remain open. We provide their brief de-
scriptions and propose them as topics for possible further research. We also present a summary of
all the results achieved in the process of writing this thesis as well as the final remarks.

VI.1 Summary of Contributions

The main objective of this PhD thesis was to make a contribution in the area of workspace decom-
position for multiple UAVs. We consider this goal achieved, and we think the work presented
in this thesis can benefit not only operators of multiple UAVs but researchers from other areas as
well where the polygon partitioning is used. Such problems can appear in various areas such as
Very Large Scale Integration circuit design (Asano & Asano, 1983), parallel computing (Christou
& Meyer, 1996), pattern recognition (Feng & Pavlidis, 1975), and image processing (Moitra, 1991).
Likewise, operators of other types of robots rather than UAVs can benefit from the achievements
of this thesis. The particular contributions of the thesis could be summarized as follows:

• In Chapter I, we presented the state of the art of the usage of fleets of drones. It was shown
that effort needs to be put into designing algorithms for workspace decomposition which,
in turn, justified the research work shown in this thesis

• State of the art on workspace decomposition algorithms was provided in Chapter II with

81
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the classification of different approaches, their advantages and drawbacks as well as with
information on if there are available implementations for future researchers to use them. It
was shown that there are not many existing algorithms in overall and even fewer research
works providing enough details for possible implementation.

• A comparison of various libraries for computational geometry was given in Chapter III
which was then used to select the best-fitting library that supported all the necessary re-
quirements for the algorithms of the area partition. We believe the analysis will be useful for
other researchers in the area of computational geometry as well.

• We have provided various improvements to the algorithms initially designed by Hert &
Lumelsky (1998) that are capable of workspace decomposition. It is the first open-source
implementation of this algorithm1. The implementations of the algorithms were covered by
property-based tests and the algorithms themselves ensure the correctness of the results by
internally working with Fraction data types. We have also proposed using compactness as
a metric to test the quality of the resulting areas. We have shown that we could benefit from
an algorithm that could produce the optimal partition of non-convex polygons. We have
provided a simple algorithm able to split a non-convex polygon into parts larger than trian-
gles obtained from Delaunay triangulation by joining neighboring triangles. It was shown
that in this manner the results have greater compactness than when split into triangles.

• A novel algorithm capable of decomposition of workspaces defined by convex polygons was
presented in Chapter IV. The proposed algorithm is based on the analytical solution for the
most compact partition of a convex polygon into two parts by a single line segment. Splitting
a polygon into multiple parts was achieved by successive partitioning. It was shown that
this approach yields the best results compared to other techniques when splitting convex
polygons.

• Another novel algorithm for non-convex polygon decomposition was presented in Chap-
ter V. The algorithm follows a bottom-up approach and is a cellular decomposition-based
method where the cells are generated by constrained Delaunay triangulation with Steiner
points. The cells are grouped together to form larger areas of high compactness. The analy-
sis showed that this approach yields the best results compared to other algorithms for non-
convex polygon decomposition

• Finally, all developed algorithms were made available and published online2. This is unlike
the majority of other research works. All the implementations of these algorithms are also
covered by property-based tests to ensure the correctness of the produced results, unlike
even the most popular geometry-related libraries which are not free of issues.

VI.2 Future Research

In the process of writing this PhD thesis, various problems arose that are beyond the scope of this
work. We propose these problems for potential future research.

VI.2.1 Optimal decomposition of polygons with holes

One of the extensions related to polygon decomposition is that there is no implementation of an
algorithm to split a polygon with holes into a minimum number of parts. As was shown, there are

1https://pypi.org/project/pode/
2the links are not fixed by the moment of publishing the thesis; an interested user can contact the author

https://pypi.org/project/pode/
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various algorithms that can split a simple polygon into a minimum number of parts such as the al-
gorithm of Chazelle (1980) which does not have an open-source implementation of the algorithm
of Greene (1983) which is less efficient but has an implementation in CGAL (The CGAL Project,
2022). Unfortunately, none of the algorithms works with polygons with holes which is a fairly
common requirement when one requires to perform workspace decomposition. If an implemen-
tation of such an algorithm would appear, it would open the possibility of creating an algorithm
for workspace decomposition that could produce even more compact solutions compared to what
we achieved.

VI.2.2 Order of splitting

Another extension in the context of the algorithms proposed in Chapter IV and Chapter V is
the choice of the order of the area requirements. We saw in Chapter IV that when the order is
chosen to be from the largest to the smallest, the resulting partition has better quality in terms
of compactness than if the order was chosen from the smallest to the largest. But it is not clear
what order will result in the best possible solution in terms of compactness. What is clear is that
it will be highly inefficient to search for the most optimal order of splitting. The total number of
all possible ways to split a polygon into N parts when we split it into two on each step is equal to
Cn−1n!. Here, Cn−1 is a Catalan number – a number of different ways n factors can be completely
parenthesized into pairs or, alternatively, the number of ways to arrange an array into a binary tree
when the order does not matter. In our case, this is the number of ways to put area requirements in
order for recursive bi-partition. This number is multiplied by n! — a total number of permutations
of an array, where array, in our case, is the array of area requirements. In this way, for two parts
we can have only two possible ways to split a polygon, for three parts – 12 possible ways, for
four parts – 120, for five parts – 30240, and so on. Fig. VI-1 shows that using the algorithm from
Chapter IV if we search for the most optimal way to split a convex polygon into just six parts, it
will take more than ten minutes to finish the calculations which is not practical.

Figure VI-1: Performance of brute-force search for the most optimal order of splitting depending
on the number of parts using the algorithm for convex polygon partitioning from Chapter IV

VI.2.3 Multipolygons

In real-life scenarios, nothing prevents the areas to be disconnected. A UAV can work first on one
area and then depart to another area that is located elsewhere. In the general case, there can be
multiple areas and it will be necessary to optimize either the time of flight or the distances flown
between the areas.

Currently, to the best of our knowledge, there are no research works that discuss workspace
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decomposition in cases like this, when the area is represented by two or more polygons. However,
there exist few works that discuss coverage path planning (CPP) for disconnected areas such as
Chen et al. (2021) and Tung & Liu (2019).

VI.2.4 Arcs

In this thesis, we only considered performing workspace decomposition using line segments to
divide the polygons. In future work, algorithms using arcs could be designed, implemented, and
tested. It seems that the results could improve from this change but how much of an improvement
we would see can be verified only by testing.

The work by Koutsoupias et al. (1992) shows that to obtain the optimal bisection of a convex
polygon in terms of the total perimeter can be achieved in quadratic time using arcs. Applying
the proposed solution recursively in order to divide a polygon into multiple parts could result in
more compact shapes.

VI.2.5 Random polygons generation

The current work relies on the generation of random polygons for the purpose of evaluating the
effectiveness of the algorithms and testing the correctness of the implementations. As was men-
tioned in Section III.3, an algorithm implemented in the hypothesis-geometry library (Ibrakov, 2022)
was used. That algorithm generates the polygons by trial and error but more effective ways may
exist.

There exist multiple algorithms in the literature capable of generating random polygons but,
to the best of our knowledge, there are no works analyzing their differences. Moreover, most of
the algorithms in the literature do not have freely available implementations. A proper evaluation
of their effectiveness and their differences would benefit future researchers in the whole area of
computational geometry.

VI.2.6 Exploring different metrics for analytical partitioning

In Chapter IV, we proposed an algorithm capable of partitioning a convex polygon based on
the compactness metric. However, there could be other metrics that could be used to obtain the
partition.

One could come up with various metrics such as aspect ratio which would measure the ratio
of the longest side of a polygon to its shortest side, or the ratio of the area of the workspace to the
area of the smallest bounding box that encloses it.

We can only speculate how the choice of different metrics could affect the resulting areas.
And the proposed algorithm that works with compactness would need to be updated to work
with other metrics.

VI.2.7 Edge smoothing

As it was shown, the algorithm proposed in Chapter V works well for the specific objective of
area partition for a later assignment of trajectories over the obtained parts. However, for other
purposes, smoother borders between the parts could be necessary.

There exist various algorithms for curve smoothing. For example, the most well-known
Ramer–Douglas–Peucker algorithm (Ramer, 1972) could be used to reduce the complexity of zig-
zag lines that appear due to the nature of the algorithm (an example is shown in Fig. VI-2). This
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and similar algorithms, however, do not preserve the areas on the sides of the lines. In many prac-
tical cases, this will not be a problem, especially for the cases when the input polygon has to be
split into a few parts of relatively similar sizes. However, in a general case, an algorithm that can
ensure the correctness of the results will be necessary. One such algorithm that ensures the con-
servation of areas is Kronenfeld et al. (2020). This algorithm has an open-source implementation
provided by the authors themselves3.

Figure VI-2: An example of the Bottom-up algorithm’s drawback — grouping triangles can
result in zigzag lines. An algorithm to smooth them is necessary to avoid this.

VI.2.8 Addressing overlapping subspaces

One important aspect to address is the assumption of non-overlapping subspaces, which may not
align with the requirements of actual drone operations. Many applications require overlapping
areas flown with different aircraft and sensors, posing engineering challenges beyond computa-
tional geometry. Therefore, it is necessary to explore optimal flight planning for simultaneous
operations of fleets of drones taking into account the potential overlapping subspaces.

To tackle these challenges, novel approaches should be investigated for coordinating multi-
ple UAVs within shared workspaces. Conducting a comprehensive analysis of the impact of over-
lapping subspaces on mission performance is essential. This analysis should evaluate the effects
on various metrics such as mission effectiveness, data quality, and operational costs in various
application scenarios such as surveillance, search and rescue, precision agriculture, and others.

3https://github.com/geobarry/line-simplify

https://github.com/geobarry/line-simplify
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Listing A-1: Function assigning requirements to nodes.
1 def assign_requirements(polygon: Polygon, requirements: list[Requirement],
2 graph: Graph) -> tuple[FrozenSet[Requirement], list[

Requirement]]:
3 """
4 :param polygon: a polygon part corresponding to some node in the graph
5 :param requirements: a list of all not yet assigned requirements
6 :param graph: RAG
7 :returns: requirements assigned to the input polgygon and the remaining

requirements
8 """
9 requirements_with_points = {requirement for requirement in requirements

10 if requirement.point is not None}
11 preassigned_requirements_with_points = {
12 site for node in graph for site in graph.nodes[node]['requirements']}
13 if (not requirements_with_points and not

preassigned_requirements_with_points):
14 bare_requirements = [requirement for requirement in requirements
15 if requirement not in requirements_with_points]
16 if not bare_requirements:
17 return frozenset({}), requirements
18 *requirements, requirement = requirements
19 point = polygon.border.vertices[0]
20 requirement = Requirement(requirement.area, point=point)
21 return frozenset({requirement}), requirements
22 current_preassigned_requirements = graph.nodes[polygon]['requirements']
23 ancestors = nx.ancestors(graph, polygon)
24 remaining_nodes = set(graph.nodes) - {polygon, *ancestors}
25 if not remaining_nodes:
26 leftover_requirements = [requirement for requirement in requirements
27 if requirement not in

requirements_with_points]
28 return (current_preassigned_requirements | requirements_with_points,

leftover_requirements)
29 current_requirements = {requirement for requirement in

requirements_with_points
30 if requirement.point in polygon}
31 polygon_requirements_only = {requirement for requirement in

current_requirements
32 if all(requirement.point not in node for node

in remaining_nodes)}
33 if polygon_requirements_only or current_preassigned_requirements:
34 requirements_to_return = frozenset(polygon_requirements_only |

current_preassigned_requirements)
35 leftover_requirements = [requirement for requirement in requirements
36 if requirement not in requirements_to_return]
37 return requirements_to_return, leftover_requirements
38 if not current_requirements:
39 return frozenset({}), requirements
40 current_requirement = current_requirements.pop()
41 leftover_requirements = [requirement for requirement in requirements
42 if requirement != current_requirement]
43 return frozenset([current_requirement]), leftover_requirements
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Listing A-2: Function to create a triangular map
1 def to_triangular_map(triangles: List[CachedPolygon]) -> TriangularMap:
2 """
3 :param triangles: a list of triangles
4 :return: mapping storing relations between neighbouring triangles
5 and shared segments
6 """
7 triangular_map = {}
8 triangle_by_edge = {}
9 for triangle in triangles:

10 triangular_map[triangle] = {}
11 for edge in triangle.edges:
12 neighbor = triangle_by_edge.get(edge)
13 triangular_map[triangle][edge] = neighbor
14 if neighbor is None:
15 triangle_by_edge[edge] = triangle
16 else:
17 triangular_map[neighbor][edge] = triangle
18 return triangular_map

Listing A-3: Function to create a chunk map.
1 def to_chunk_map(triangular_map: TriangularMap) -> Dict[Chunk,
2 NeighborChunkPerEdge]:
3 """
4 :param triangular_map: input triangular map
5 :return: same triangular map but where triangles are wrapped as
6 chunks and segments wrapped as sets of single segment
7 """
8 chunk_per_triangle = {triangle: to_chunk(triangle)
9 for triangle in triangular_map}

10 return {chunk_per_triangle[triangle]:
11 {frozenset([edge]): chunk_per_triangle[neighbor]
12 for edge, neighbor in neighbors_map.items()
13 if neighbor is not None}
14 for triangle, neighbors_map in triangular_map.items()}
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