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Abstract

The most common tremor syndromes worldwide are Parkinson’s disease and essential tremor. Med-

ical evaluation by neurologists remains the gold standard for diagnosing both movement disorders.

Specific protocols have been established for these assessments, such as the Unified Parkinson’s Dis-

ease Rating Scale and the Fahn-Tolosa-Marin scale for Essential Tremor. However, the accuracy of

this practice depends primarily on the experience and skill of the treating physician or specialist.

An effective tool for diagnosing Parkinson’s disease is 123I-FP-CIT SPECT1 . Although this test

is expensive, access to this technology is limited or non-existent in many countries, particularly

in developing regions. In addition, the patient must be compatible with the radiopharmaceutical

tracer used in the test, making it an invasive procedure.

In this context, there are no low-cost methods or techniques that ensure accurate, safe, and

reproducible differentiation between these two diseases. Diagnostic methods have been developed

that use inertial measurement units to record and analyze upper extremity tremors. However, im-

plementing these methods in clinical practice is challenging due to the multiple maneuvers required,

staff training, and the availability of specialized equipment to perform the distraction tests. This

research focuses on developing a low-cost, non-invasive, user-friendly decision support tool that

integrates wearable devices with built-in inertial sensors and machine learning-based classification

models. The goal is to achieve a fast and straightforward real-time differential classification of these

movement disorders.

An initial kinematic analysis of hand tremor recordings from various subjects was performed in

the MATLAB development environment. These recordings were obtained from a database of pre-

vious research, including data from healthy subjects and patients diagnosed by movement disorder

specialists. Discriminative features of hand tremors in the frequency spectrum were extracted from

linear acceleration and angular velocity signals acquired by accelerometers and gyroscopes from

1123I-FP-CIT SPECT (DaTScan) is a complementary tool in the differential diagnosis of patients with incom-

plete or uncertain Parkinsonism. It uses a radiopharmaceutical tracer that provides information about dopamine

transporters.
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smartphones and inertial measurement units. The next phase involved the development of machine

learning models. Two models were created: one to discriminate between physiological and patho-

logical tremors and another to discriminate between pathological tremors. Several performance

parameters were considered, such as the sensor axes used, the signal segments processed, the fre-

quency range analyzed, the kinematic features used, the train/test ratio, the classification method,

and its hyperparameters. These variables were crucial to optimize the identification of tremor

types. The results of this initial research phase have been published in three papers, demonstrating

that combining linear acceleration and angular velocity information from hand tremor signals with

machine learning has significant potential for tremor-type classification.

Subsequently, the decision support tool was conceptualized as a modular system consisting of

three basic components:1) a mobile application for data acquisition and visualization of classification

results; 2) a RESTful API that serves as a web server/backend that receives, processes, and classifies

the data; and 3) a database for records of diagnosed subjects. The mobile application, developed

in Kotlin for Android devices, allows the input of demographic data and the recording of signals

for subsequent classification. The algorithms used for signal analysis and training new models

were implemented in Python. The same programming language was used to create a RESTful

API using the Flask framework to deploy the developed algorithms and models. Additionally, this

server can store kinematic records of patients with confirmed diagnoses in a PostgreSQL database.

Expanding this database will improve the machine learning models and enhance the capabilities of

the tool. The development process and operation of the resulting application have been licensed

and registered as TremorSoft.
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Resumen

Los síndromes de temblor más prevalentes en todo el mundo son la enfermedad de Parkinson y

el Temblor Esencial. La evaluación médica por neurólogos sigue siendo el patrón de referencia

para diagnosticar ambos trastornos del movimiento. Se han adoptado protocolos específicos para

estas evaluaciones, como la Escala Unificada de Calificación de la Enfermedad de Parkinson y la

escala Fahn-Tolosa-Marin para el Temblor Esencial. Sin embargo, la precisión de esta práctica

depende principalmente de la experiencia y las habilidades del médico tratante o especialista. Una

herramienta eficaz para diagnosticar la enfermedad de Parkinson es la 123I-FP-CIT SPECT2 Aunque

esta prueba es costosa, en muchos países, especialmente en los que se encuentran en regiones en

vías de desarrollo, el acceso a esta tecnología es limitado o inexistente. Además, el paciente debe

ser compatible con el trazador radiofarmacéutico utilizado en la prueba, lo que la convierte en un

procedimiento invasivo.

En este contexto, no existen métodos o técnicas de bajo coste que garanticen una diferenciación

precisa, segura y reproducible entre estos dos trastornos. Se han desarrollado métodos de diag-

nóstico que emplean unidades de medición inercial para registrar y analizar los temblores de las

extremidades superiores. Sin embargo, la implementación de estos métodos en la práctica clínica

presenta retos debido a las múltiples maniobras requeridas, la necesidad de formación del personal

y la disponibilidad de equipos especializados para realizar las pruebas de distracción. Esta inves-

tigación se ha centrado en el desarrollo de una herramienta de apoyo al diagnóstico cuantitativo

que sea rentable, no invasiva, fácil de usar e integre dispositivos wearables con sensores inerciales

y modelos de clasificación basados en machine learning. El objetivo es lograr una clasificación

diferencial rápida y sencilla en tiempo real de estos trastornos del movimiento.

En el entorno de desarrollo MATLAB se realizó un análisis cinemático inicial de los registros

del temblor de la mano de varios sujetos. Estos registros procedían de una base de datos de investi-

2123I-FP-CIT SPECT (DaTScan) es una herramienta complementaria en el diagnóstico diferencial de pacientes

con parkinsonismo incompleto o incierto. Utiliza un trazador radiofarmacéutico que proporciona información sobre

los transportadores de dopamina.
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gaciones anteriores, que incluía datos de sujetos sanos y pacientes diagnosticados por especialistas

en trastornos del movimiento. Se extrajeron características discriminatorias de los temblores de

la mano en el espectro de frecuencias a partir de señales de aceleración lineal y velocidad angular

adquiridas mediante acelerómetros y giroscopios de smartphones y unidades de medición inercial.

La fase siguiente consistió en el desarrollo de modelos de aprendizaje automático. Se crearon dos

modelos: uno para distinguir entre temblores fisiológicos y patológicos y otro para diferenciar entre

temblores patológicos. Se tuvieron en cuenta diversos parámetros de rendimiento, como los ejes de

los sensores utilizados, los segmentos de señal procesados, el rango de frecuencias analizado, las car-

acterísticas cinemáticas utilizadas, las relaciones entrenamiento/prueba, el método de clasificación

y sus hiperparámetros. Estas variables fueron fundamentales para optimizar la identificación de

los tipos de temblor. Los resultados de esta fase inicial de la investigación se han publicado en tres

artículos, demostrando que la combinación de la aceleración lineal y la información de la señal de

velocidad angular de los temblores de la mano con el aprendizaje automático tiene un potencial

significativo para la clasificación del tipo de temblor.

Posteriormente, la herramienta se conceptualizó como un sistema modular compuesto por tres

componentes fundamentales: 1) Una aplicación móvil para la adquisición de datos y visualización

de los resultados de la clasificación; 2) Una API RESTful, que sirve como servidor web/back-end

que recibe, procesa y clasifica los datos; y 3) Una base de datos para los registros de los sujetos

diagnosticados. Desarrollada en Kotlin para dispositivos Android, la aplicación móvil permite la

introducción de datos demográficos y el registro de señales para su posterior clasificación. Los algo-

ritmos utilizados para el análisis de señales y el entrenamiento de nuevos modelos se implementaron

en Python. El mismo lenguaje de programación se empleó para crear una API RESTful utilizando

el framework Flask, donde se desplegaron los algoritmos y modelos desarrollados. Además, este

servidor puede almacenar registros cinemáticos de pacientes con diagnósticos confirmados en una

base de datos PostgreSQL. La ampliación de esta base de datos mejorará los modelos de Machine

Learning y reforzará las capacidades de la herramienta. El proceso de desarrollo y funcionamiento

de la herramienta resultante está registrado como TremorSoft.
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Chapter 1

Introduction

This work is situated within the challenges of the Horizon H2020 program [1], specifically Health,

Demographic Change, and Well-being, as well as in the Health Cluster of Global Challenges and

European Industrial Competitiveness [2] for 2021-2027. Its aim is to promote projects that im-

prove the quality of life for elderly individuals and reinforce healthcare and assistance systems.

Non-communicable diseases (NCDs) are a significant public health concern, accounting for approx-

imately 71% of annual global deaths [3]. The onset of NCDs is influenced by various factors such

as genetics, environment, and behavior. Unhealthy eating habits, smoking, alcohol abuse, and

a sedentary lifestyle are known to increase the risk of developing and dying from these diseases,

particularly in individuals between ages 30 and 69. It is crucial to prioritize efforts to prevent and

manage NCDs to reduce their impact on global health. High mortality rates are primarily caused

by the challenges of early detection and inadequate treatments to mitigate their impact. Thus, it

is critical to conduct early evaluations, diagnoses, treatments, and palliative care for addressing

NCDs. This study focuses on Movement Disorders, specifically Parkinson’s Disease and Essential

Tremor, which are among the most prevalent tremor syndromes globally [4, 5].

The global prevalence rate of Parkinson’s Disease among elderly individuals is estimated to be

1. 6%[6], and that of essential tremor is 4. 6%[7], or approximately 474 million people worldwide.

Distinguishing between these two conditions in the early stages, particularly in Parkinson’s Disease

patients with no family history, can be uncertain, as noted by [4, 8–10]. The risk of misdiag-

nosis is considerable; approximately 40% of patients with Essential Tremor receive an inaccurate

diagnosis [11], with Parkinson’s Disease being the most common misdiagnosis [12]. Approximately

47 of Parkinson’s Disease diagnoses are incorrect in primary care settings, while about 25% are

incorrect when conducted by specialists not experienced in specific movement disorders. For spe-

cialists in movement disorders, between 6% and 8% of cases result in incorrect diagnoses [13, 14].
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Resting tremors are typically linked to Parkinson’s Disease, whereas postural or kinetic tremors

are associated with Essential Tremor [5]. Nonetheless, some individuals with Parkinson’s Disease

may experience postural tremor [5], and some individuals with Essential Tremor may have resting

tremor as the disease progresses [15, 16]. Early diagnosis is essential to guarantee appropriate

patient treatment and prevent harmful side effects [4, 5, 17]. While medical evaluations remain the

preferred diagnostic method for Parkinson’s and Essential Tremor [18], using dopamine transporter

single-photon emission computed tomography (DaT-SPECT) with (123I)ioflupane is the most re-

liable complementary technique for Parkinson’s diagnosis, with a sensitivity of up to 99.4% [11,

19]. However, this test is invasive and requires patient compatibility with the radiopharmaceutical

tracer, which may hinder its applicability [20]. Moreover, this test is costly, and access to this

technology is scarce or non-existent in several countries, especially developing regions. Addressing

these challenges highlights the need for economical and user-friendly technology to facilitate the

diagnosis of movement disorders.

1.1 Movement Disorders

Movement Disorders are neurological conditions that lead to abnormal movements or tremors,

which can manifest either voluntarily or involuntarily [21]. As defined by the Task Force [22], a

tremor is a rhythmic, oscillating, involuntary movement of a body part. This manifestation is most

notable in fingers, hands, legs, head, and voice but is not observed during sleep [23]. When the

limbs and head lack support, they display a minor tremor known as a physiological tremor. This

type of tremor usually decreases amplitude and only affects fine motor control [22, 24]. Unless

aggravated by fatigue or anxiety, physiological tremors are usually not visible or symptomatic. In

contrast, pathological tremors are more pronounced and persistent [22].

The tremor classification is based on clinical characteristics and activation conditions according

to Table 1.1[25]. The Task Force suggested a classification of tremors based on two axes: clinical

features (Axis 1) and etiology (Axis 2)[22, 25]. This two-axis approach expedites the collection of

clinically relevant data from patients with tremors, serving as a diagnostic and research tool [22].

The clinical characteristics of tremors include various aspects of medical history such as the age

of onset, family history, temporal course, exposure to drugs and toxins, as well as the characteristics

of the tremor, comprising body distribution, activation conditions, and frequency, along with asso-

ciated systemic and neurological signs. For certain types of tremors, additional characterizations

can be obtained through laboratory analyses, for instance, frequency recordings for orthostatic

tremors and structural imaging for lesion localization. On the other hand, analyzing serum and
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Table 1.1: Tremor Classification Based on Clinical Characteristics and Activation Conditions

Rest When the limbs are fully supported against gravity

Action During different types of movements

Postural While holding a limb or body part in one position, against gravity

Kinetic With directed voluntary movement

Intent / Terminal While moving the limb towards a target

Isometric While contracting the muscle without an observable movement

Task-specific tremor During the execution of specialized tasks (writing, playing a musical instrument, etc.)

tissue, along with biomarkers, can provide supplementary information for identifying Axis 2 etiolo-

gies. These causes could be genetic, acquired, or idiopathic (either familial or sporadic). Etiological

factors comprise neurodegenerative diseases, chromosomal aneuploidy, mitochondrial genetic disor-

ders, infectious and other inflammatory diseases, endocrine and metabolic disorders, neuropathies,

spinal muscular atrophies, toxins, and drugs. The functional tests for classifying tremor syndromes

along Axis 1 (Tests 1, 2, and 3) and Axis 2 (Tests 2, 3, and 4) are presented in Table 1.2 [26].

Table 1.2: Diagnostic Tests for Tremor Classification

Electrophysiological testing

Surface EMG to record the tremor’s presence, measure tremor frequency,

and evaluate the morphology and rhythm of EMG.

Fourier analysis of accelerometric and EMG recordings with and without

weight in hand to identify the mechanical reflex and central neurogenic

tremors.

Coherence and Fourier analysis of EMG recordings of multiple limbs to

diagnose primary orthostatic tremor.

Structural imaging MRI and CT for the detection of lesions, metabolic disorders, etc.

Receptor imaging
Dopamine and serotonin transporter imaging for disorders or deficiency

syndromes.

Serum and tissue markers Metabolic blood tests, infection tests, genetic tests, etc.

1.1.1 Parkinson’s Disease

Parkinson’s disease is a neurodegenerative process that typically begins in adulthood and is the

second most common neurodegenerative disorder after Alzheimer’s dementia [27, 28]. The disease

is characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars com-

pacta (SNc) of the mesencephalic region, as well as the presence of intracellular inclusions known

as Lewy bodies [29–31]. The presence of Lewy bodies is the primary distinguishing feature of
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Parkinson’s disease [32, 33], although this disease also affects several other neurotransmitters such

as acetylcholine, serotonin, and noradrenaline [34]. This neurodegeneration results in the denerva-

tion of dopaminergic SNc projections to the striatum, which disrupts the normal physiology of the

basal ganglia and leads to remarkable manifestations of the disease [12, 31, 35].

Although there have been significant advancements in both structural and functional brain

imaging techniques, Parkinson’s Disease diagnosis still primarily relies on clinical observations [36,

37]. In this context, misdiagnosis rates can reach up to 47% [13, 14], and an autopsy is required to

confirm the disease definitively [38]. However, the UK Brain Bank has introduced the most widely

accepted clinical criteria, incorporating four cardinal signs: bradykinesia, resting tremor, rigidity,

and postural instability [8, 39].

Table 1.3 presents the levels of confidence in diagnosing Parkinson’s Disease, which include

possible, probable, and definite diagnoses. To make a possible diagnosis, the patient must have

at least two of the four cardinal signs, with at least one of them being tremor or bradykinesia.

Furthermore, there must be no features indicating an alternative diagnosis, and the patient must

not exhibit a positive response to dopaminergic medications. To reach a probable diagnosis of

Parkinson’s, at least three of the four signs must be present, and an alternative diagnosis must

be eliminated. Additionally, a verified and continued response to dopaminergic medications must

be documented. A definite diagnosis of Parkinson’s Disease necessitates meeting all the criteria

for a possible diagnosis and receiving histopathological confirmation. After diagnosis, patients are

classified based on their stage of the Hoehn and Yahr Scale (Table 1.4), a tool used to assess

disease progression and severity and evaluate treatment efficacy. It is important to note that the

scale solely focuses on motor symptoms [31].

1.1.2 Essential Tremor

Essential Tremor is a prevalent movement disorder among individuals over 60 years old, with an

estimated prevalence exceeding 5-6% [16, 24]. Essential Tremor onset primarily occurs in the second

and sixth decades of life, where 91% of younger subjects display a family history of tremor [25,

40]. Although Essential Tremor is a common disorder, it has been extensively researched due to its

impact on the quality of life of those affected. The most characteristic manifestation of Essential

Tremor is a postural or kinetic tremor, with frequencies typically ranging from 5 to 8 Hz [40, 41].

Although initially regarded as a benign monosymptomatic disorder, recent research has revealed

its complexity and associated neurodegeneration.

Throughout history, Essential Tremor has been viewed as a focal clinical condition defined by
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Table 1.3: UK Parkinsons Disease Society Brain Bank Diagnostic Criteria

STEP 1. Diagnosis of Parkinsonian syndrome

Bradykinesia (slowness of initiation of voluntary movement with progressive reduction

in speed and amplitude of repetitive actions).

And at least one of the following:

a. Muscular rigidity

b. 46 Hz rest tremor

c. Postural instability is not caused by primary visual, vestibular, cerebellar, or proprioceptive

dysfunction.

STEP 2. Exclusion criteria for Parkinsons disease

History of repeated strokes with the stepwise progression of Parkinsonian features.

History of repeated head injury.

History of definite encephalitis.

Oculogyric crises.

Neuroleptic treatment at the onset of symptoms.

More than one affected relative.

Sustained remission.

Strictly unilateral features after three years.

Supranuclear gaze palsy.

Cerebellar signs.

Early severe autonomic involvement.

Early severe dementia with disturbances of memory, language, and praxis.

Babinski sign.

Presence of a cerebral tumor or communicating hydrocephalus on CT scan.

Negative response to large doses of levodopa (if malabsorption excluded).

MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) exposure.

STEP 3. Supportive prospective positive criteria for Parkinsons disease. Three or

more required for the diagnosis of definite Parkinsons disease

Unilateral onset.

Rest tremor present.

Progressive disorder.

Persistent asymmetry affects the side of onset most.

Excellent response (70100%) to levodopa.

Severe levodopa-induced chorea.

Levodopa response for five years or more.

The clinical course of 10 years or more.
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Table 1.4: Hoehn and Yahr Scale for Parkinson’s Disease Staging

Stage 0 No signs of disease

Stage 1 Symptoms on one side only (unilateral)

Stage 1.5 Symptoms unilateral and also involving the neck and spine

Stage 2 Symptoms on both sides but no impairment of balance

Stage 2.5
Mild symptoms on both sides, with recovery when the pull test is given (the

doctor stands behind the person and asks them to maintain their balance when pulled backward)

Stage 3 Balance impairment, mild to moderate disease, physically independent

Stage 4 Severe disability, but still able to walk or stand unassisted

Stage 5 Needing a wheelchair or bedridden unless assisted.

tremors, characterized by the absence of other neurological signs [40]. However, recent research has

revealed that Essential Tremor is not solely an isolated movement disorder, but rather, it is associ-

ated with considerable non-motor symptoms such as depression, anxiety, and mild cognitive deficits

within areas like attention and memory [26, 42]. The evolving perception of Essential Tremor as

a multifaceted and intricate disorder has been established by empirical research involving clinical

observation, neuroimaging, and pathophysiological studies. These investigations have successfully

identified notable alterations in both the structure and function of specific brain regions [42].

One emphasized aspect of Essential Tremor research is the increasing recognition of its clinical

and etiological heterogeneity [26, 43]. Essential Tremor is a non-uniform entity encompassing vari-

ous clinical presentations and potential underlying causes. This partially results from the diversity

of motor and non-motor symptoms observed in Essential Tremor patients. The variations in symp-

toms and potential causes have challenged prior understandings of a singular medical condition,

resulting in a more intricate comprehension of the disorder.

The diagnosis of Essential Tremor typically depends on clinical evaluation and neurological his-

tory, given the absence of precise biological indicators or dependable diagnostic tests [44]. However,

the International Parkinson and Movement Disorder Society published a consensus statement in

2017 presenting diagnostic criteria and a revised classification of Essential Tremor [22]. The consen-

sus recognizes two main categories of Essential Tremor (refer to Table 1.5): Simple Essential Tremor

and Complex Essential Tremor (or ET-Plus), reflecting the diversity of clinical presentations and

associated symptoms [22, 45].

In addition to setting forth criteria for classification and diagnosis, the 2017 consensus further-

more presents significant exclusion criteria (Table 1.6) for diagnosing Essential Tremor [22]. These

exclusions are essential for eliminating other ailments manifesting with symptoms that resemble
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Table 1.5: Inclusion Criteria for Essential Tremor Classification

Essential Tremor

Isolated tremor syndrome of bilateral upper limb action tremor

At least three years duration

With or without tremor in other locations (e.g., head, voice, or lower limbs)

Absence of other neurological signs, such as dystonia, ataxia, or parkinsonism.

Essential Tremor plus
Tremor with the characteristics of Essential Tremor

Additional neurological signs of uncertain significance such as impaired tandem gait, questionable

dystonic posturing, memory impairment, or other mild neurologic signs of unknown significance

that do not suffice to make an additional syndrome classification or diagnosis. Essential Tremor with tremor at

rest should be classified here.

Essential Tremor but warrant a different therapeutic strategy. This exclusionary approach is instru-

mental in enhancing diagnostic precision and identifying the appropriate subjects for ET-focused

research and treatment.

Table 1.6: Exclusion Criteria for Essential Tremor Classification

Isolated focal tremors (voice, head)

Orthostatic tremor with a frequency >12 Hz

Task- and position-specific tremors

Sudden onset and step-wise deterioration

This section discusses movement disorders, specifically Parkinson’s Disease and Essential Tremor.

These disorders pose substantial challenges to health and well-being due to their widespread oc-

currence and the negative impact on affected individuals’ quality of life. The classification criteria

and highlighted diagnostic challenges emphasize the intricacy of accurately identifying and differ-

entiating these conditions, even for specialists [46]. The section below explores the concepts and

methodologies of machine learning and its potential to bolster early detection, treatment, and pa-

tient care for individuals with Parkinson’s Disease and Essential Tremor. This contribution strives

to enhance healthcare systems and improve the overall well-being of affected individuals.

1.2 Machine Learning Algorithms

Machine learning, a subfield of artificial intelligence, entails designing algorithms and models that

can learn from data and generate predictions and decisions without explicit programming [47]. It

has gained wide popularity in recent years owing to its versatile applications across various domains,

including image and speech recognition, natural language processing, recommendation systems, and

autonomous vehicles [48, 49]. This section addresses the working principles of machine learning
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algorithms employed in developing classification models [50]. These models receive multiple input

variables, particularly the kinematic features of the signal, and predict whether the subject under

study can be classified as having physiological or pathological tremors and subsequently distinguish

between Parkinson’s pathology and Essential Tremor.

Different models have their own benefits and drawbacks, and choosing the most appropriate

model for each study is essential. Table 1.7 provides an overview of the four main types of algorithm

families and some of the most frequently implemented algorithms within each family. This research

concentrates on the family of supervised algorithms, which can be either based on regression or

classification, as described in [48].

Table 1.7: Classification of Machine Learning families and some lerated algorithms.

Machine Learning Algorithms

Supervised Unsupervised
Semi-Supervised

Reinforcement

Regression Classification Clustering Association Model-Free Model-Based

Linear Regression Naïve Bayes k-Means Apriori Heuristic Q-learning Markov Decision

Logistic Regression Logistic Regression Mean Shift Eclat Graph-based Method Monte Carlo Imagination-Augmented Agents

Decision Tree Support Vector Machine Gaussian Mixture FP Growth Low Density Separation Policy Optimization Model-Based Value Expansion

Neural Network K-Nearest Neighbor DBScan

Lasso Regression Random Forest

Support Vector Machine Gradient Boosting

Polynomial Regression Decision Tree

1.2.1 Supervised Machine Learning

Supervised machine learning is a ubiquitous algorithm in machine learning. Its principal aim is

to map input data to output labels using a training set of known input-output pairs [50]. This

framework is highly adaptable and potent in addressing classification and regression issues in the

machine-learning sphere. The premise is that input data is labeled, and the objective is to develop

a mapping from input to output variable that can apply to unobserved data. Each algorithm has

its own set of suppositions, limitations, and advantages, and the algorithmic selection should be

tailored to the problem and the available data.

In supervised machine learning, a collection of input-output pairs (training examples) are given

to the algorithm, which learns to map inputs to outputs by recognizing patterns in the data. After

training, the algorithm can use the learned mapping to make predictions or decisions regarding

new data. The objective is to construct a function that can predict output values for fresh inputs

with precision. This function is usually exemplified by a model containing coefficients and weights

learned from the training data. The evaluation of the model quality is carried out on an autonomous

set of test data. Performance evaluation metrics for supervised machine learning models include
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accuracy, precision, recall, F1 score, and area under the receiver operating characteristic curve

(AUC-ROC) [51, 52].

Supervised machine learning encompasses two subcategories: regression and classification. In

regression, the machine learning model predicts a continuous output variable based on input data.

In contrast, the output variable in classification is discrete, and the objective is to acquire a function

that assigns inputs to various predefined classes. Figure 1.1 illustrates the distinction between these

subcategories.

Figure 1.1: Comparison of regression and classification models in the context of supervised Machine

Learning.

In the field of Supervised machine learning, there are several widely used algorithms, each with

its strengths and limitations. Some of the most common algorithms are described below.

Linear Regression

Linear regression is a supervised learning technique that establishes a relationship between one or

more independent variables and a continuous dependent variable through a linear function [53]. The

primary objective of linear regression is to identify coefficients that minimize the sum of squared

errors between forecasted and actual values of the dependent variable. Given a training dataset D

consisting of N examples and a feature set X, Linear Regression can be represented as the process

of constructing and predicting as follows:

1. Define the linear model:

y = β0 + β1x1 + β2x2 + ...+ βpxp + ϵ (1.1)

where y is the dependent variable, β0 is the intercept term, βi are the coefficients associ-

ated with the independent variables, xi are the independent variables, p is the number of
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independent variables, and ϵ is the error term.

2. Adjust the coefficients βi to minimize the sum of squared errors between the predicted and

actual values of the dependent variable. This is done using the method of least squares. The

process of fitting the coefficients βi involves solving the normal equations:

β = (XTX)−1XT y (1.2)

where X is the matrix of independent variables, y is the vector of dependent variable values,

and β is the coefficient vector.

3. For a new input x, compute the prediction y using the fitted linear model:

ŷ = β0 + β1x1 + β2x2 + ...+ βpxp (1.3)

Linear regression is a straightforward and frequently employed algorithm in finance, economics,

and social sciences. Nevertheless, it has constraints when confronted with non-linear variable

relationships or the existence of outliers or missing values within the data [48]. Despite its simplicity,

this algorithm is a prevalent method based on its interpretability and adaptability in varied domains.

Logistic Regression

Logistic Regression is a binary classification algorithm that models the relationship between a bi-

nary dependent variable and one or more independent variables. The primary objective of Logistic

Regression is to identify a sigmoid curve that optimally distinguishes the two classes [54, 55]. Given

a set of training data, D, with N examples, and a set of features, X, and assuming binary classi-

fication with labels y ∈ {0, 1}, the process of constructing and predicting with Logistic Regression

can be represented as follows:

1. Define the logistic function (sigmoid):

p(y = 1|x) = 1

1 + exp(−z)
(1.4)

where z = β0 + β1x1 + β2x2 + ... + βpxp is the linear predictor, and βi are the coefficients

associated with the independent variables.

2. Adjust the coefficients βi to maximize the probability of observed labels in the training set.

This is done by finding the values that maximize the likelihood function:

L(β) =
N∏
i=1

p(yi|xi;β) (1.5)
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3. For a new input x:

(a) Calculate the probability of the positive class as p(y = 1|x).

(b) Predict the positive class label if p(y = 1|x) > 0.5, otherwise predict the negative class

label.

This technique is highly effective and has a range of applications, including credit scoring,

medical diagnosis, and spam filtering. However, it assumes a linear relationship exists between

independent variables and the log-odds of the positive class, which may not hold true in certain

contexts. Although its assumptions limit its applicability in some instances, Support Vector Ma-

chines remain popular due to their simplicity and effectiveness in various applications.

Support Vector Machines

Support Vector Machines are supervised learning algorithms for classification and regression tasks [56,

57]. The primary objective of Support Vector Machines (SVM) is to determine the optimal hy-

perplane that maximizes the separation between classes in the feature space [58]. This hyperplane

seeks to separate classes with the largest margin possible for classification cases. The process of

constructing and predicting with SVM assumes binary classification with labels y ∈ {−1, 1}, and

it requires a training set D with N examples and a feature set X.

1. Find the hyperplane that maximizes the margin:

wTx+ b = 0 (1.6)

where w is the normal vector to the hyperplane, and b is the bias term.

2. Define the decision boundaries:

wTx+ b ≥ 1 if y = 1 (1.7)

wTx+ b ≤ −1 if y = −1 (1.8)

3. Solve the optimization problem to find w and b that maximize the margin while satisfying

the constraints:
min
w,b

1

2
||w||2

subject to yi(w
Txi + b) ≥ 1, for i = 1, ..., N

(1.9)

4. For a new input x, calculate the prediction as the sign of the hyperplane:

F (x) = sign(wTx+ b) (1.10)
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SVMs are effective in high-dimensional spaces and are applied in various fields, such as text classifi-

cation, medical diagnosis, and fraud detection. Yet, selecting the appropriate kernel and parameter

configuration may pose challenges and impact model performance. Linear, polynomial, and radial

basis function (RBF) kernels remain the typical kernel types employed.

Naive Bayes

The Naive Bayes algorithm is a supervised machine learning technique primarily utilized for clas-

sification [59]. It is founded on the principles of Bayes’ theorem and conditional independence,

resulting in the term "naive". Although simple, Naive Bayes has demonstrated efficacy in various

applications, notably in natural language processing and document classification. Given a dataset

D consisting of N examples and a feature set X, the Naive Bayes algorithm can be used to construct

and predict.

1. Calculate the prior probabilities of each class:

P (Y = c) =
Number of examples with class c

N
(1.11)

2. Calculate the conditional probabilities of each feature given a class:

P (Xj = x
(i)
j |Y = c) =

Number of examples with Xj = x
(i)
j and class c

Number of examples with class c
(1.12)

where Xj is the j-th feature and x
(i)
j is the value of the j-th feature in the i-th example.

3. For a new input x, calculate the posterior probabilities for each class using Bayes’ theorem:

P (Y = c|X) =
P (Y = c) · P (X|Y = c)

P (X)
(1.13)

where P (X|Y = c) is estimated by multiplying the conditional probabilities of each feature

given the class.

4. Assign the class with the highest posterior probability as the prediction.

The algorithm assumes conditional independence, implying that features are independent of

each other given the class. However, if this assumption does not hold in the problem domain, then

Naive Bayes may lead to lower prediction accuracy. The Naive Bayes algorithm operates at an

impressive speed, particularly when handling massive datasets, and its efficacy can be remarkably

impressive given its basic design.
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k-Nearest Neighbors

The k-Nearest Neighbors (k-NN) algorithm is a machine learning technique for classification and

regression tasks proposed by Altman [60] and Freund [61]. It operates based on the concept

that comparable examples usually possess the same labels or values. The k-NN method makes

predictions by selecting the k-nearest examples from the training set, then determining an output

based on most of their labels (in Classification) or by averaging their values (in Regression). Given a

set of training data D containing N examples and a feature set X, the k-NN method for constructing

and predicting can be summarized as follows:

1. Define a distance metric, such as Euclidean distance, to measure similarity between examples.

2. For a new input x:

(a) Calculate the distance between x and each training example xi using the distance metric.

(b) Select the k nearest training examples to x.

In the case of Classification:

(a) Count the frequencies of labels of the k nearest neighbors.

(b) Assign the most common label as the prediction.

In the case of Regression:

(a) Calculate the average output variable values of the k nearest neighbors.

(b) Use the average as the prediction.

The user must choose a hyperparameter value k. Opting for a small k value may lead to a

model that is highly sensitive to noise, while a larger value can mitigate noise effects but reduce

details at decision boundaries. The k-NN algorithm is straightforward and comprehensible, but

its efficacy hinges on selecting the distance metric and the value assigned to k. Moreover, it can

incur significant computational costs when applied to large datasets. Nevertheless, its simplicity

and adaptability make it a valuable tool for classification and regression.

Decision Trees

Decision trees are supervised machine learning algorithms used for classification and regression

tasks [62, 63]. These algorithms create a tree model with internal nodes representing features,
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branches indicating decision rules, and leaf nodes displaying outcomes. The process of constructing

the tree involves recursively dividing the dataset into smaller subsets, using selected features to

maximize the purity of each class in the leaf nodes. Mathematically, the construction of a decision

tree can be formulated as follows:

1. Given a training set D with N examples and a feature set X, the algorithm searches for the

feature Xj and threshold value T that best separates the examples into two groups, Dleft

and Dright.

2. An impurity metric, such as Gini impurity or information gain, is calculated to evaluate the

quality of the split. Impurity is defined as:

Impurity(D) = 1−
C∑
c=1

P (c|D)2 (1.14)

where C is the number of classes, and P (c|D) is the proportion of class c examples in set D.

3. The process is repeated recursively for subsets Dleft and Dright, generating additional internal

nodes and splitting the data until a stopping criterion is met, such as a maximum depth or

a minimum number of examples in a node.

4. For a new input x:

(a) Traverse the tree following decision rules based on features.

(b) Reach a leaf node and assign the corresponding label or value as the prediction.

Decision Trees are recognized for their interpretability and visualization abilities, which are

highly valued in applications prioritizing model transparency. Nonetheless, deep and complicated

trees pose a risk of overfitting. To address this issue, various techniques, including pruning, gradient

boosting, and random forests, have been developed to improve the model’s generalizability.

Random Forests

Random Forests are an ensemble learning algorithm that combines multiple decision tree models

to enhance prediction accuracy and robustness [64, 65]. This algorithm constructs a set of decision

trees on random subsets of input variables and training data. The final prediction is obtained

by averaging the predictions of individual Trees. The process of constructing and predicting with

Random Forests can be represented as follows: A training dataset, comprising N examples and M

features, is used alongside a set of T decision trees.
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1. For each tree t in the forest (t = 1, 2, ..., T ):

(a) Select a subset of N examples from the training set D with replacement (bootstrap).

(b) Select a random subset of m features from the total M features.

(c) Build a decision tree using the selected example and feature subset.

2. For a new input x:

(a) For each tree t in the forest, calculate the tree’s prediction ht(x).

(b) Calculate the final forest prediction by averaging the tree predictions:

F (x) =
1

T

T∑
t=1

ht(x) (1.15)

Random Forests efficiently avert overfitting and enhance accuracy by minimizing the intrinsic vari-

ability of individual trees. Random Forests introduce diversity into the trees by using random

subsets of examples and features, making the forest more resilient to noisy data and irrelevant

variables. Additionally, averaging across multiple trees mitigates the impact of individual errors,

enhancing generalization. Although Random Forests are powerful and user-friendly, constructing

multiple trees can lead to computational expense. However, more efficient alternatives exist, such

as the Extremely Randomized Trees (ExtraTrees) algorithm. This algorithm selects random split

points rather than searching for the best split points for each feature. In summary, Random Forests

are a valuable tool in machine learning, capable of handling complex and noisy datasets and im-

proving accuracy and robustness. Their ability to average multiple trees and reduce overfitting

makes Random Forests a popular tool for various applications.

Gradient Boosting Machines

Gradient Boosting Machines (GBM) are machine learning algorithms that combine multiple weak

models to form a strong model [66]. Typically, GBM employs shallow decision trees as the weak

models. The fundamental concept behind GBM is to iteratively fit new weak models to the resid-

uals of previous models to enhance the final model’s prediction. Mathematically, the process of

constructing and predicting with GBM can be expressed as follows:

1. Given a training set D with N examples and a feature set X, we start with an initial weak

model F0, which can be a simple estimate like the mean of output values.
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2. In each iteration m, we fit a new weak model hm to the residuals of the previous model Fm−1:

hm = argmin
h

N∑
i=1

L(yi, Fm−1(xi) + h(xi)) (1.16)

Where L is a loss function that measures the discrepancy between predictions and actual

values (yi).

3. We update the final model Fm by adding the adjusted weak model weighted by a learning

rate η:

Fm(x) = Fm−1(x) + η · hm(x) (1.17)

4. For a new input x, we use the final model Fm(x) to make predictions:

Predictionfor x : ŷ = Fm(x) (1.18)

GBM has the ability to capture intricate and nonlinear connections between input and output

variables. Variations of GBM, including XGBoost, LightGBM, and CatBoost, integrate optimiza-

tions and extra features that improve overall performance and training efficiency [67]. It is essential

to note that choosing the appropriate learning rate and hyperparameters can significantly impact

model performance. Moreover, GBM may be more susceptible to overfitting than other algorithms

due to its sequential approach to fitting residuals.

Neural Networks

Neural networks are models inspired by the structure and function of the human brain [68]. They are

powerful and flexible algorithms capable of learning complex patterns in data. A neural network

comprises interconnected nodes, known as artificial neurons, arranged in layered configurations.

Every node linearly combines inputs and applies a non-linear activation function. Neural networks

can have several hidden layers between input and output layers, known as deep neural networks

or "deep learning." Given a dataset consisting of N examples and a feature set X, the process of

constructing and predicting with neural networks can be depicted as follows:

1. Define the forward propagation operation:

z(l) = W (l)a(l−1) + b(l) (1.19)

a(l) = f(z(l)) (1.20)

where l denotes the layer, W (l) is the weight matrix, a(l) is the output of layer l, b(l) is the

bias vector, and f(·) is the nonlinear activation function.
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2. Adjust the weights and biases to minimize errors between predictions and actual values. This

is done using optimization algorithms like gradient descent. The process involves calculating

partial derivatives of the error concerning the network’s parameters and updating values in

the direction that minimizes the error.

3. For a new input x:

(a) Calculate the output of the last layer using the forward propagation operation.

(b) Predict the label or output value based on the Neural Network’s configuration.

Neural Networks can detect intricate relationships and are implemented in image recognition,

natural language processing, and gaming, among other tasks. Nevertheless, they can demand sub-

stantial computational resources and necessitate extensive training datasets to evade overfitting [49].

Interpreting the decisions made by neural networks can be challenging due to their complex and

opaque internal operations. Despite their data requirements and complexity, the effectiveness of

neural networks across various applications makes them valuable for solving complex problems.

Supervised machine learning algorithms are powerful tools for addressing various classification

and regression problems. From linear regression and logistic regression to decision trees, support

vector machines, and neural networks, each algorithm has its own advantages and disadvantages

regarding complexity, interpretation, and performance in varied situations. The selection of an

appropriate algorithm largely depends on the specific problem, the availability of data, and the

required level of accuracy. It is often necessary to test multiple algorithms and fine-tune their

hyperparameters to achieve the best performance for a given task. As machine learning advances,

new algorithms and approaches will likely emerge, leading to further possibilities for applications

and increased accuracy.

1.3 Motivation

The reliable and early diagnosis and monitoring of Parkinson’s Disease is currently a focus of re-

search [69, 70]. Optical motion detection systems [71] are one of the proposed and implemented

non-invasive techniques that extract kinematic information from patients, aiding in clinical mon-

itoring and diagnosis. Nevertheless, their practicality is frequently limited by the necessity for

expensive and sophisticated equipment, a fixed camera range that constrains the workspace for

recording movement, and the necessary training for operation.

Inertial measurement units (IMUs), such as accelerometers, have been integrated into these
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systems to enhance their capabilities recently [72]. The analysis of accelerometer and gyroscope data

is a crucial area of investigation in biomechanics, as it allows for recording movement information

through wearable devices [73–75]. Researchers are actively studying the use of these devices in

movement disorders [76], resulting in the publication of numerous papers on the subject. Many of

these studies concentrate on the diagnosis of such disorders. For example, Uchida et al. [15] used

a triaxial accelerometer to measure the severity and frequency of hand tremors in patients with

Essential Tremor and Parkinson’s disease during various tasks. They found that resting tremors

were reduced during walking in Essential Tremor patients and increased in Parkinson’s. Similarly,

Wile et al. [41] classified patients by analyzing their Mean Harmonic Power using a smartwatch

accelerometer. Locatelli et al. [5] discovered that a smartwatch device was more effective than an

analog accelerometer in distinguishing between tremor subjects. They used a wearable sensor to

record hand tremors during various tasks, differentiating between patients with tremors. Notably,

they found that the frequency domain was more indicative of Parkinson’s Disease during resting

tasks, while Essential Tremor subjects exhibited more distinct data during postural and kinetic

tasks.

In recent years, researchers such as Bernhard et al. [77] have investigated gait and balance

deficits using wearables placed on the lower back and ankle, claiming that such devices could mon-

itor the progression of movement disorders and response to treatment. Additionally, Varghese et

al. [78] have created the Smart Device System, which discovers fresh phenotypical biomarkers in

individuals with movement disorders, training AI models to predict such conditions. Machine learn-

ing algorithms have been incorporated in these studies, enabling a thorough kinematic analysis of

movement disorders [79]. This assists in the identification and differentiation of tremor conditions.

Surangsrirat et al. [10] utilized machine learning algorithms to categorize patients with movement

disorders based on angular velocity fluctuations detected by a 6-degree-of-freedom (DOF) inertial

measurement unit. Meanwhile, Raza et al. [80] assessed the efficacy of their machine learning mod-

els in discriminating between Parkinson’s Disease and Essential Tremor subjects, compared to early

diagnoses by medical specialists. Kramer et al. [81] combined electromyography and accelerometry

signals, using Wavelet Coherence Analysis to differentiate between tremor types, which yielded

better results than standard coherence analysis.

In a recent study, Ricci et al. [82] employed a network of wearable sensors to measure kinematic

features during a range of tasks performed by Parkinson’s patients and healthy subjects. Machine

learning algorithms were employed to attain a 95% accuracy in distinguishing between the two

groups. The evolution of wearable technologies has opened the path for mobile apps in the medical

industry to diagnose, assess, analyze, and monitor movement disorders [83, 84]. However, only a few
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systems have been fully integrated as ready-to-use applications. Researchers have primarily con-

centrated on providing objective data on disease progression and monitoring its development [85].

However, currently, no low-cost, easily accessible, and user-friendly solutions exist which can accu-

rately, securely, and consistently differentiate between various movement disorders [86]. To address

this issue, LaMoyne et al.[87] developed an iPhone app to characterize hand tremors in Parkinson’s

patients using the built-in triaxial accelerometer. The application recorded acceleration data and

enabled email transmission for subsequent analysis. According to Daneault et al. [88], smartphones

are useful for evaluating anomalous motor variables, and they developed an app that characterizes

tremor acceleration. Using a support vector machine model, Woods et al. [24] formulated an of-

fline app with a smartphone accelerometer to differentiate patients with Parkinson’s Disease and

Essential Tremor with an accuracy of 96%. The AWARE framework, an open-access application

created by Ferreira et al. [89], facilitates the collection of data from inertial sensors in smartphones.

Kostikis et al. [90] developed a web application to collect and process data from tremor patients

and healthy subjects, classified using machine learning models. The TREMOR12 app for Apple

devices, developed by Kubben et al. [84], quantifies tremors using accelerometers and gyroscopes.

Kuosmanen et al. [91] additionally introduced the STOP mobile app, which quantifies tremor

severity and medication efficacy in Parkinson’s patients using accelerometer data.

Current research is focused on developing dependable, inexpensive decision-support tools for

distinguishing between various movement disorders. An appealing solution involves the integration

of wearables with machine learning algorithms; however, there is a shortage of thorough diagnostic

applications [86]. The challenge is to create standardized, easy-to-use tools for distinguishing

accurate tremor diseases, particularly in resource-limited environments. In previous studies [4, 92],

methodologies have been proposed to perform differential classification of Parkinson’s disease and

essential tremor using inertial sensors from wearable devices, such as the built-in accelerometer of

a mobile phone. Barrantes’ approach identified specific features that distinguished hand tremors

in patients with tremor disease.

The ongoing advancement of wearable technologies, smartphone applications, and machine

learning techniques presents an opportunity to impact the diagnosis and monitoring of movement

disorders significantly. One possibility to bridge the gap between the demand for advanced medical

resources and the limitations of current diagnostic methods is to develop a comprehensive mobile

application and web server that integrates wearable devices and machine learning algorithms. This

study aims to contribute substantially to this vital field by presenting a non-invasive option to

support diagnostic differentiation, particularly between Parkinson’s disease and Essential Tremor.
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1.4 Research topic

The primary aim of this project is to develop an affordable, non-intrusive, user-friendly quantitative

technique that utilizes wearable technologies (e.g., smartphones and inertial sensors) and machine

learning algorithms to facilitate differential diagnosis and remote monitoring of various movement

disorders, particularly Parkinson’s Disease and Essential Tremor. The research queries and specific

goals of this research proposal can be succinctly outlined as follows:

1.4.1 Research questions

Question 1: Can hand tremors recorded with an inertial measurement unit be used to differen-

tiate between Parkinson’s disease and Essential Tremor? If yes, which sensor, gyroscope, or

accelerometer offers the most specific information to differentiate these two tremor disorders?

Question 2: How do recording duration, recording system weight, and sampling rate affect the

differential analysis of Parkinson’s Disease and Essential Tremor patients? To what extent

can machine learning classification methods enhance the differentiation between these move-

ment disorders? What kinematic features are essential for implementing these classification

methods?

Question 3: Can a mobile application be used to evaluate patients with abnormal tremor signs

as a decision support tool? Is it feasible to estimate the severity of the tremor with the help

of the mobile app after identifying the movement disorder?

1.5 Objectives

The specific objectives of this research can be summarized as follows:

• Design, develop, and implement data analysis algorithms based on the available data set.

• Apply feature selection techniques to evaluate and identify the kinematic features with the

highest discriminative power.

• Train, test, and select the first set of classification models using the selected feature matrix.

• Plan and collaborate with specialists from the Department of Movement Disorders at various

hospitals to register new data.
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• Analyze the expanded database to determine the influence of different operational parameters

on the performance of the classification models.

• Build the mobile application and the web server.

• Validate the operation of the final decision support tool with a small group of confirmed

patients from the collaborating hospitals.

1.6 Research Impact and Excellence

1.6.1 Scientific and Technological Impact

The developed application offers a secure, efficient, and user-friendly classification of hand tremors.

This is achieved through the integration of wearable devices with machine learning algorithms. The

classification results are readily available during medical examinations, whether conducted on-site

or remotely. This research differentiates itself from other similar studies in two key ways. First,

the study simultaneously records accelerometer and gyroscope signals instead of only analyzing

one data type like previous research. This approach combines features for model training, leading

to more reliable models. Second, this research framework offers innovative techniques for analyz-

ing hand tremor signals, presenting multiple novel features extracted from these signals. These

attributes are noteworthy because of their multidimensionality, derived by utilizing data from pos-

tural and resting positions to define a distinctive characteristic. They possess a high discriminative

capability, effectively identifying computational thresholds and hyperparameters that optimize the

classification models of the mobile application and web server.

The clinical significance of this research is its ability to exceed current state-of-the-art methods

for evaluating movement disorders, making it a valuable tool for distinguishing pathological tremors.

This is particularly critical in cases where diagnosis is challenging, particularly in the early stages of

a disease. The application’s level of accuracy surpasses that of SPECT, demonstrating its reliability.

This high level of reliability will aid neurologists in precisely evaluating and classifying the severity

of movement disorders. The novel findings from this study will significantly contribute to improving

the differential diagnosis of movement disorders. The primary objective of this application is to

furnish neutral information to facilitate clinical decision-making and, most significantly, decrease

the wait time to distribute fitting treatment to patients.
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1.6.2 Socioeconomic Impact

The technology resulting from this research has potential benefits for three primary groups. The

application aids the treating physician in the initial evaluation of a disease, particularly in cases

where a diagnosis has not been made, in the early stages, or in complex cases that may necessitate

supplementary tests. The application provides immediate information on upper limb tremors during

medical evaluations, eliminating the need for more sophisticated and expensive techniques that often

create bottlenecks in the healthcare system for doctors. Timely and accurate medical treatment

can greatly impact a Patient’s health by reducing complications and improving their quality of life.

Finally, medical expenses for Parkinson’s Disease patients can reach up to 17,000 euros annually

in clinics and hospitals in Spain [93]. The proposed tool can potentially decrease healthcare costs

by addressing incorrect or ineffective tremor treatments, expensive diagnostic technologies such as

SPECT, and treatment expenses incurred prior to a definite diagnosis.

1.6.3 Technology Transfer Plan

The copyrighted tool, comprising a mobile application and web server, can be utilized by hospitals

and non-governmental organizations (NGOs), such as the Centro de Trastornos del Movimiento

(CETRAM, Chile), to benefit from its outcomes. The Hospital Clínic Barcelona and the Hospital

da Luz in Lisbon are willing to incorporate this decision-support tool as an adjunct method in cases

where physicians have uncertainties regarding the ultimate diagnosis. This know-how is of interest

to both public institutions and private companies. A market niche exists wherein businesses focus

on selling objective information applications for decision-making based on biomechanical variables,

particularly via wearable devices. The project will delve into this sector to facilitate transferring the

developed application to the market. Some companies that may be interested in this application are

ENGIDI SL (located in Girona and specializing in biomedical sensors for safety enhancement in the

workplace), DyCare (based in Barcelona and offering wearable solutions for rehabilitation), MJN

(a Girona-based company that specializes in bioinstrumentation and machine learning), Trimedica

(located in Madrid and specializing in biomedical sensors and applications), among others.

1.6.4 Dissemination and Outreach Activities

In addition to writing and presenting this study, several articles have been written, and the research

results have been presented at international conferences. Furthermore, the initial operational ver-

sion of the TremorSoft application has been created, and its entire source code has been made avail-
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able online via GitHub. This availability facilitates sharing and collaboration with other medical

professionals and researchers to enhance TremorSoft collectively. The long-term goals of Tremor-

Soft involve continually improving the application through feedback from medical professionals,

enhancing the tremor record database to train machine learning models better, and promoting the

tool as a decision-support tool for movement disorder specialists in their daily clinical routines. Re-

search collaborations have been conducted for dissemination activities with Dr. Pedro Chaná from

the CETRAM, Dr. Esther Catena Ruiz from Consorci Sanitari Alt Penedès-Garraf, Julia Barrero

from Associació Catalana per al Parkinson (ACP), and Joao Costa and Joaquim J Ferreira from

Universidade de Lisboa. These collaborations aim to foster the advancement of knowledge in the

field. Technical abbreviations used will be explained throughout the text.

Papers published

The publications resulting from this thesis have been featured in academic journals and interna-

tional conference proceedings.

Julián D. Loaiza Duque, Andrés M. González-Vargas, Antonio J. Sánchez Egea, and Hernán A.

González Rojas. Using Machine Learning and Accelerometry Data for Differential Diagnosis of

Parkinsons Disease and Essential Tremor. In: Communications in Computer and Information

Science. Vol. 1052. Springer, 2019, pp. 368378. isbn: 9783030310189. doi: 10.1007/978-3-030-

31019-6_32 [94]

Abstract: Parkinsons disease and Essential Tremor are the most common tremor syndromes

in the world. Currently, a specific Single Photon Emission Computed Tomography (123I-FP-CIT

SPECT) has proven to be an effective tool for the diagnosis of these diseases (97% sensitivity and

100% specificity). However, this test is invasive and expensive, and not all countries can have a

SPECT system for an accurate differential diagnosis of Parkinson’s Disease patients. Clinical eval-

uation by a neurologist remains the gold standard for Parkinson diagnosis, although the accuracy

of this protocol depends on the experience and expertise of the physician. Wearable devices have

been found to be a potential tool to help in the differential diagnosis of Parkinson’s Disease and

Essential Tremor in early or complex cases. In this paper, we analyze the linear acceleration of the

hand tremor recorded with a built-in accelerometer of a smartphone, with a sampling frequency of

100 Hz. This hand tremor signal was thoroughly analyzed to extract different kinematic features in

the frequency domain. These features were used to explore different Machine Learning methods to

automatically classify and differentiate between control and tremor subjects (HETR Group) and,

subsequently, patients with Parkinson’s Disease and Essential Tremor (ETPD Group). A sensitiv-
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ity of 90.0% and Specificity of 100.0% were obtained with classifiers of the HETR group. On the

other hand, classifiers with Sensitivity ranges from 90.0% to 100.0% and Specificity from 80% to

100% were obtained for the ETPD group. These results indicate that the method proposed can be

a potential tool to help clinicians with differential diagnoses in complex or early hand tremor cases.

Further information about this work can be found in Appendix B.

Julián D. Loaiza Duque, Antonio J. Sánchez Egea, Theresa Reeb, Hernán A. González Rojas, and

Andrés M. González-Vargas. Angular Velocity Analysis Boosted by Machine Learning for Helping

in the Differential Diagnosis of Parkinson’s Disease and Essential Tremor. In: IEEE Accesss 8

(2020), pp. 8886688875. ISBN: 2169-3536. DOI: 10.1109/ACCESS.2020.2993647 [95]

Abstract: Recent research has shown that smartphones/smartwatches have a high potential

to help physicians identify and differentiate between different movement disorders. This work

aims to develop Machine Learning models to improve the differential diagnosis between patients

with Parkinson’s Disease and Essential Tremor. For this purpose, we use a smartphone’s built-in

gyroscope to record the angular velocity signals of two different arm positions during the patient’s

follow-up, more precisely, in rest and posture positions. To develop and find the best classification

models, diverse factors were considered, such as the frequency range, the training and testing

divisions, the kinematic features, and the classification method. It was performed a two-stage

kinematic analysis, first to differentiate between healthy and trembling subjects and then between

patients with Parkinson’s Disease and Essential Tremor. The models developed reached an average

accuracy of 97.2 ± 3.7% (98.5% Sensitivity, 93.3% Specificity) to differentiate between healthy and

trembling subjects and an average accuracy of 77.8 ± 9.9% (75.7% Sensitivity, 80.0% Specificity) to

discriminate between Parkinson’s Disease and Essential Tremor patients. Therefore, we conclude

that the angular velocity signal can be used to develop Machine Learning models for the differential

diagnosis of Parkinson’s Disease and Essential Tremor.

Further information about this work can be found in Appendix C.

Julián D. Loaiza Duque, Antonio J. Sánchez Egea, Hernán A. González Rojas, Pedro Chána-

Cuevas, Joaquim J. Ferreira, and Joao Costa. TremorSoft: A decision support application for

differential diagnosis between Parkinsons disease and Essential Tremor. In: SoftwareX 22 (May

2023), p. 101393. issn: 2352-7110. doi: 10.1016/j.softx.2023.101393 [96]

Abstract: A cost-effective, non-invasive, and easy-to-use tool is presented that uses the 6-

axis inertial sensor of the smartphone or a specific wearable sensor, boosted by machine learning,

to support early differential diagnosis of Parkinsons disease and Essential Tremor. A dedicated
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web server helps extract the kinematic indexes from the recorded signals, implement the machine

learning models and return the resulting classification to the App. Thus, clinicians can use this App

as a support tool in the clinic, contributing to performing motor evaluations in the uncertain and

undecided stages of the diseases and promoting appropriate, fast, and timely therapeutic responses.

Further information about this work can be found in Appendix F.

Other scientific collaborations

This subsection includes other external work carried out with collaborators from the department

where the research was conducted.

• María Alejandra Cerón, Julián Loaiza Duque, Sergi Barrantes Verdoy, Ana López Ojeda,

Marta Alcover Morro, Pedro Quetglas Barea, Hernán A González Rojas, Antonio J Sánchez

Egea. Characterization of the volume and thickness of DIEP flap by CTA image processing.

In: 2021 22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2021

- Conference Proceedings (2021). doi: 10.1109/STSIVA53688.2021.9592004. [97]

• Erick Chávez Pereda, Julián D. Loaiza Duque, María Alejandra Cerón Hurtado, Hernán A.

González Rojas, Antonio J. Sánchez Egea. Erick D.Chávez Pereda et al. Experimental Data-

Driven Insertion Force Analyses of Hypodermic Needles in a Soft Tissue with an In-House

Test Bench. In: Communications in Computer and Information Science 1685 CCIS (2022),

pp. 415422. issn: 18650937.doi: 10.1007/978-3-031-20611-5_34/COVER. [98]
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Chapter 2

Machine Learning Differentiation of

Tremor Disorders in Matlab

In this chapter, the methodology used to perform the acquisition, analysis, and classification of

tremor signals in individuals with Parkinson’s disease, essential tremor, and healthy subjects is de-

tailed, as shown in Figure 2.1. Figure 2.1 illustrates this approach based on prior research examining

hand tremor characteristics [4]. The primary aim of this study was to investigate the possibility

of combining previously proposed features and machine learning algorithms for constructing im-

proved classification models designed to categorize tremor signals recorded in the current research.

The algorithm was first developed using MATLAB’s programming environment (MathWorks Inc.,

USA). To conduct these tasks, a workstation with an Intel i5-9600K processor running at 3.70 GHz,

16 GB of RAM, and an NVIDIA GeForce GTX 1650 graphics card with 4 GB of video memory

(V-RAM).

A thorough data acquisition protocol was implemented to capture tremor signals in resting

and postural positions. Signal acquisition utilized a device equipped with both a gyroscope and

an accelerometer. Then, preprocessing techniques were employed to guarantee record quality by

eliminating potential noise and artifacts. Significant kinematic feature extraction processes were

performed on the preprocessed signals to identify and describe tremors. Feature selection was found

to be paramount in reducing data complexity and removing non-contributing features for analysis.

Non-parametric statistical methods, including the Chi-squared test and the unbiased tree method,

were implemented to identify the most discriminative and relevant features. The final phase of this

study centered on training and testing classification models. Various kinematic features, training

and testing data ratios, and frequency ranges were examined in different combinations. Multiple

classification methods were employed to evaluate the performance of each model utilizing metrics
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such as sensitivity, specificity, accuracy, and balanced accuracy.

Figure 2.1: Development Outline of MATLAB analysis.

2.1 Data Acquisition Protocol and Database Description

A precise data collection protocol was implemented to record tremor signals in individuals with

Parkinson’s Disease, Essential Tremor, and Healthy Subjects. The data collection process utilized

the methodology employed in the research conducted by [4]. During this research, the initial

database, which formed the basis of a significant part of this research, was recorded at the Movement

Disorders Unit of the Hospital Clínic Barcelona between October 2015 and December 2016.

2.1.1 Data Acquisition Procedure

Subjects were instructed to sit in a chair with armrests, and a securing strap was used to attach

a smartphone or wearable device equipped with a gyroscope and accelerometer to the dorsum of

the hand that exhibited the most pronounced tremor signs in patients or to the dominant hand

in healthy subjects. Signals from the gyroscope and accelerometer were recorded at a sampling

frequency of 100 Hz, and each recording lasted 30 seconds. Two arm positions were measured

during the acquisition process: The Resting position is when the subject rests their forearms on

the chair’s armrests, while the Postural position involves holding both upper limbs fully extended

and parallel to the ground.

2.1.2 Informed Consent and Anonymization

All participants provided written informed consent before their inclusion in the study. Codes were

assigned to the subjects to maintain confidentiality and anonymity instead of utilizing their actual

identities. The Hospital Clinic Barcelona Ethics Committee authorized the study in compliance

with the ethical principles established in the Declaration of Helsinki and its subsequent amendments.
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2.1.3 Devices and Apps Used

Tremor signals were recorded utilizing the 6-axis inertial sensor built into an iPhone 5S through

the SensorLog recording app. This device and app were chosen due to their capacity to precisely

and comprehensively record data at a sampling frequency of 100 Hz.

2.1.4 Initial Database

The database initially consists of 51 registered participants, with the following distribution: 19

individuals with Parkinson’s Disease, 20 individuals with Essential Tremor, and 12 healthy sub-

jects. All patients in the study displayed visible hand tremors and received definitive diagnoses of

either Parkinson’s Disease or Essential Tremor or were highly suspected of having these conditions.

Patients diagnosed with Essential Tremor scored between 1 and 2 on the Fahn-Tolosa-Marín scale,

while those diagnosed with Parkinson’s Disease were evaluated using the Unified Parkinson’s Dis-

ease Rating Scale (UPDRS). In addition, patients with Parkinson’s Disease underwent a SPECT

test for diagnostic confirmation.

2.1.5 Database Expansion

Due to limitations in the size of the subject database registered at the Hospital Clínic Barcelona,

efforts were made to expand the database as much as possible throughout this research. To achieve

this, collaborations were established with the Chilean NGO, CETRAM, and the ACP to increase

the data. At CETRAM, 25 new patients were registered. Among them, 18 had Parkinson’s disease,

and 7 had Essential Tremor. Additionally, through the Vilanova I la Geltrù delegation of the ACP,

it was possible to record the data of 22 new patients, including 12 with Parkinson’s Disease and 10

healthy subjects, the latter being relatives of patients and members of the association.

The patient registry followed the same methodology as the original database, except for two

differences. Firstly, the recordings utilized Xsens Dot, a type of wireless inertial sensor that is

lighter and more manageable. The smaller size of this device assists in minimizing the potential

impact of the recording weight of the device on the data quality. Another benefit of these sensors

is the potential to receive data in real-time through Bluetooth once the recording concludes. The

recordings were made at a frequency of 120 Hz, which was selected because the device only allows

sampling at nine predefined frequencies (1 Hz, 4 Hz, 10 Hz, 12 Hz, 15 Hz, 20 Hz, 30 Hz, 60 Hz,

and 120 Hz). The ninth option was selected to record the data because it was the closest value to

the one used in the Clinic’s database. This ensures equivalent or improved signal resolution within
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the same time period as the initial recordings. Integration of the new records with the initial ones

considered this variation.

2.2 Analysis of the Hand Tremor Data Acquired

Analyzing gyroscope and accelerometer recordings has been crucial for detecting and character-

izing tremors associated with Parkinson’s disease, Essential Tremor, and Physiological Tremor.

According to previous literature [17, 40, 41, 99, 100], as mentioned in section 1.1, it is known that

Parkinson’s disease manifests with resting tremor in the frequency range of 4 to 6 Hz, while essen-

tial tremor presents with postural or kinetic tremor in the range of 5 to 8 Hz, while physiological

tremor falls in the range of 8 to 12 Hz. The gyroscope and accelerometer signals were subjected

to the following preprocessing, feature extraction, and feature selection procedures to perform the

analysis.

2.2.1 Signal Preprocessing

Data preprocessing ensures that records are appropriately conditioned for kinematic feature ex-

traction and classification model training processes. This stage encompasses various tasks to clean

and condition data. By reducing noise and artifacts, more representative signals of the tremors

of interest are obtained, significantly improving the analysis and training of classification models.

The following are the main actions performed during signal preprocessing.

• The initial preprocessing step requires removing around 2 seconds from the beginning and

end of the signals. This prevents artifacts from being generated at the beginning and at the

end of the data recording since, in manual recording, there may be motion records during

these signal segments that do not correspond to hand tremors.

• A filtering process is subsequently employed to decrease sensor drift and shifts resulting from

physical phenomena like motion artifacts and other interferences [35, 80]. Two 10th-order

Butterworth filters with different cutoff frequencies are implemented for this purpose. The

initial filter possesses cutoff frequencies ranging from 3 to 10 Hz [16], while the subsequent

filter has cutoff frequencies ranging from 1 to 16 Hz [26]. These cutoff frequencies are chosen

by considering the characteristic frequencies of the examined tremors. This enables iden-

tifying the optimal frequency range for feature extraction, resulting in classification model

development with the best possible performance. By implementing this filtering process, the
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analysis can concentrate on particular frequencies associated with pathological and physio-

logical tremors, thus enhancing the detection of essential kinematic features.

After the preprocessing stage, the signals were prepared for the subsequent stage, which involved

feature extraction. Figure 2.2 illustrates the impact of preprocessing on the angular velocity signals

of individuals with Parkinson’s Disease and Essential Tremor and Healthy subjects in a postural

position before and after signal processing.

Figure 2.2: Time-domain signal of subjects with Parkinson’s Disease and Essential Tremor, as well

as healthy subjects in the postural position, before and after signal processing.
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2.2.2 Kinematic feature extraction

The analysis of features in the frequency domain was accomplished by estimating the Power Spectral

Density (PSD) of the preprocessed signals. The PSD was calculated using filtered and trimmed

signals from the gyroscope and accelerometer in all three spatial directions (X, Y, and Z). This

calculation was performed using the Welch method [101], which involves averaging 3-second signal

segments with a Hanning window with a 50% overlap. This produces a power spectral density

(PSD) for each spatial direction, which is subsequently averaged to yield a single averaged and

scaled PSD. Kinematic features are then computed from the Averaged PSD and used as inputs to

the classification models. Figure 2.3 presents the PSD of a subject with Essential Tremor, which

has been averaged and scaled, and illustrates the kinematic features computed from the spectral

power analysis. Initially, 4 kinematic features are extracted for both arm positions, as detailed in

the following description:

Figure 2.3: Normalized Power Spectral Density of tremor in a subject with Essential Tremor.

Initially, 4 kinematic features are extracted for both arm positions, as detailed in the following

description:

• Median Power Frequency (MPF): This feature represents the dominant frequency of the

tremor oscillations, the frequency at which the PSD decreases to half its maximum value.

• Power Bandwidth (PB): Indicates the width of the frequency spectrum of the tremor.

The frequency band centered on the MPF that contains 90% of the total signal power.

• Peak Power Frequency (PPF): This measure provides information about the dominant
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frequency of the most intense oscillations. It represents the frequency of the Peak Power (PP)

in the PSD.

• Harmonic Index (HI): The HI measures the ratio between the area under the PSD curve

and a rectangle bounded by the frequency band of interest (fl - fh) and the PP. A higher HI

indicates a greater energy content in the frequency band of interest.

HI =

∫ fh
fth

PSD(f) · df
PP · (fh − fl)

(2.1)

In the study conducted by citebarrantes2017, 2 new kinematic features were proposed: RPC

and RE. These features are predicated on the idea that tremor frequency components vary between

resting and postural conditions. It is assumed that Parkinson’s disease patients should have a

higher total spectral power of tremor in the resting position than in the postural position, and vice

versa for patients with Essential Tremor. Accordingly, these novel features employ data from both

positions in their computation:

• Relative Power Contribution to the First Harmonic (RPC): This measurement cal-

culates the correlation between the power of harmonics within a frequency division threshold

(fth) and fh and the total power within the area of interest (fl fh). It offers insight into the

existence of harmonics in the signal.

RPC =

∫ fh
fth

PSD(f) · df∫ fh
fl

PSD(f) · df
(2.2)

• Relative Energy (RE): This metric assesses the connection between the normalized resting

PSD (PSDR) and postural PSD (PSDP) in the frequency range of fl to fh. It permits the

assessment of tremor energy variation between the two arm positions.

RE =

∫ fh
fl

PSDR · df∫ fh
fl

PSDP · df
(2.3)

During this study, two additional features were proposed. These features, like the previous

ones, consider information from both positions.

• Harmonic Index Ratio (HIR): It depicts the correlation between the harmonic indices of

the arms at rest and in posture. This enables a contrast of the harmonic composition of the

tremor across both arm positions.

HIR =
HIR
HIP

(2.4)
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• Sum of Maximum Power (SMP): The sum of the PP value from the rest and posture

positions represents the total power in the most dominant frequencies from both positions.

SPM = PMR + PMP (2.5)

Labeling of Kinematic Features

After extracting the matrix of kinematic features, each row (or set of features) is labeled based on

the subject’s condition from whom it was extracted. There are two specific scenarios or cases that

are considered:

1. Case 1: Tremor patients vs. Healthy subjects

• (Tremor patient) - Positive class.

• (Healthy subject) - Negative class.

2. Case 2: Parkinson’s disease vs. Essential Tremor

• (Parkinson’s disease) - Positive class.

• (Essential Tremor) - Negative class.

The labeled features in Case 1 were utilized to distinguish between tremor patients and healthy

subjects, while the labeled features in Case 2 were utilized to distinguish between Parkinson’s

disease patients and Essential Tremor patients.

2.2.3 Feature Selection of Kinematic features

Feature selection was an essential step in the data analysis process as it reduces the dimensionality

of the feature set and eliminates redundant or irrelevant features, thereby enhancing the efficiency

and accuracy of classification models [102, 103]. In this study, two well-known methods in the

literature were used for feature selection: the chi-squared test and the unbiased tree method [104,

105].

• Chi-squared test The Chi-square test is a statistical method employed to assess indepen-

dence between two variables. This study utilized it to evaluate the degree of dependence

between each feature and the classification variable corresponding to the health condition.

The features that obtained higher Chi-square values were deemed more closely linked to the

classification variable and were selected as the most relevant.
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• Unbiased Tree test The Unbiased Tree test is a feature selection approach that relies on

decision trees. This approach aimed to construct impartial decision trees for each feature

and evaluate their significance in categorizing samples into distinct groups. As a result, the

features that significantly influence classification were deemed the most critical.

For the Feature Selection process, the following steps were followed:

1. The feature selection methods mentioned earlier were applied to the feature matrix obtained

previously, which contains the kinematic feature values for each subject.

2. The top importance values for each feature selection method were determined. Specifically,

the ten most relevant features were identified through the Chi-squared test and the Unbiased

Tree method.

3. Common features identified in both tests were selected for further analysis. This led to

the identification of a subset of features that were found to be the most discriminative and

relevant in the classification of study cases, specifically those involving tremor vs. healthy

participants and Parkinson’s disease vs. Essential Tremor.

The feature selection process was conducted on two frequency ranges- 1 to 16 Hz and 3 to 10

Hz. Thus, two sets of features were selected for each case study- Case 1 and 2. The training time

and accuracy can be improved by reducing the number of features used in the model training. This

allows for focusing solely on the most relevant features for class differentiation.

2.3 Machine Learning-Based Classification Models

This section outlines the methodology used to construct classification models and assess the dis-

criminative capabilities of selected features from the prior phase. These models are built upon four

crucial factors: the frequency range under examination, the proportion of training and testing data,

the utilized kinematic features, and the classification algorithm applied.

1. Frequency Range of Analysis: As previously stated, kinematic features were extracted at

two different frequency ranges, 1-16 Hz and 3-10 Hz, in order to determine the optimal range

for achieving maximum model performance in both cases.

2. Training and Testing Data proportion: The dataset was divided randomly into three

different training and testing data proportions: 30/70, 50/50, and 70/30. These divisions
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were applied to each classification case: Case 1 (distinguishing pathological tremors from

physiological tremors) and Case 2 (differentiating Parkinson’s disease from Essential Tremor).

To avoid biases in the models, it was ensured that positive and negative classes were evenly

distributed in each training and testing set. Table 2.1 presents the class proportions obtained

in the training and testing datasets for both cases across all proportions.

Table 2.1: Training and testing set class ratios.

Case 1: temblor vs. healthy Case 2: Parkinson vs. Essential Tremor

Division Training Testing Training Testing

(%) PC NC PC NC PC NC PC NC

30 / 70 12 4 27 8 6 6 13 14

50 / 50 20 6 19 6 10 10 9 10

70 / 30 27 8 12 4 13 14 6 6

PC, Positive class. NC, Negative class.

The decision to test with three divisions instead of one was made to assess the impact of data

distribution on model performance.

3. Selected Kinematic Features: From the extracted features of the data analysis, every con-

ceivable feature combination ranging from one feature to all was identified. However, to avoid

complexity and overfitting, a maximum of five features was set for each model. In some cases,

up to 31 feature combinations resulted from this constraint. Each combination was evaluated

to determine its individual discriminative ability and its performance in combination with

other features using the appropriate classification methods.

4. Classification Method used: To train the classification models, the Classification Learner

application in MATLAB was used. This tool offers a range of supervised machine-learning

methodologies, such as Decision Trees, Discriminant Analysis, Support Vector Machines, Lo-

gistic Regression, k-nearest Neighbors, Naive Bayes, and Ensemble Classification techniques.

The application provides default hyperparameter settings for these methods, enabling explo-

ration of up to 25 hyperparameter configurations to achieve optimal performance for each

trained model. As a result, 775 distinct classification models were created for certain cases

by considering the various configuration settings and potential feature combinations.

Due to the limited and imbalanced dataset, stratified k-fold cross-validation was used to evaluate

the performance of the classification models. This approach guarantees that the class distribution in

each split matches the distribution in the overall training dataset [106]. Accuracy and area under
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the receiver operating characteristic (ROC) curve (AUC) were estimated for each classification

model from the classification probabilities obtained by cross-validation. The performance metrics,

such as Sensitivity (Eq. 2.6), Specificity (Eq. 2.7), Precision (Eq. 2.8), and Balanced Precision (Eq.

2.9), were calculated utilizing the test set. The equations used for the calculations are presented

below.

• Sensitivity: The ability of the model to correctly identify positive cases (tremor in Case 1 or

Parkinson’s disease in Case 2).

Sensitivity =
TP

TP + FN
(2.6)

• Specificity: The ability of the model to correctly identify negative cases (healthy individuals

in Case 1 or Essential Tremor in Case 2).

Specificity =
TN

TN + FP
(2.7)

• Accuracy: The proportion of correctly classified subjects in the test set relative to the total

number of predictions.

Precision =
TP + TN

TP + FP + FN + TN
(2.8)

• Balanced Accuracy: A useful metric for imbalanced classes [107], calculated as the average

between sensitivity and specificity.

Balanced Accuracy =
Sensibilidad+ Especificidad

2
(2.9)

To ensure a reliable evaluation of the models, the training and testing process was randomly

repeated 100 times for identical feature combinations and classification approaches across each of

the three training/test splits. The average performance metrics were computed for each model in

each iteration. The top three models were selected for Cases 1 and 2, demonstrating the highest

accuracy, sensitivity, and specificity levels across the dataset. Figure 2.4 outlines the procedure for

creating and choosing classification models.

2.4 Analysis of Linear Acceleration in Tremor Disorders

This section presents the findings from the analysis of Linear Acceleration signals from 51 subjects.

To accomplish this, the methodology described in the previous sections was used, where classi-

fication models trained on these data showed a sensitivity of 90.0% and a specificity of 100.0%
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Figure 2.4: Process diagram for the development and selection of classification models.

to discriminate individuals in Case 1, that is, to discriminate tremor subjects from healthy sub-

jects. On the other hand, the classifiers produced sensitivities ranging from 90.0% to 100.0% and

specificities from 80.0% to 100.0% for Case 2, which involves differentiating between Parkinson’s

disease and Essential Tremor. Refer to Appendix I for a more detailed explanation of the specific

methodology. Figure 2.4 depicts the tasks carried out during the process of training, validating,

and selecting classification models. The data were randomly split into two sets (training set and

validation set) in a 70:30 ratio. For the training set, 63 combinations of machine learning classifi-

cation methods and features were tested, including 23 with Principal Component Analysis (PCA)

and 23 without PCA.

The classification models’ performance was evaluated using 6-fold cross-validation. Each model’s

accuracy and area under the receiver operating characteristic curve (AUC-ROC) were determined

using non-parametric ROC features and classification probabilities from cross-validation. Subse-

quently, the performance metrics were computed using the validation sets. In this context, Sensi-

tivity refers to the classification model’s capability to detect a positive case, that is, patients with

tremors in Case 1 or patients with Parkinson’s disease in Case 2. Similarly, Specificity pertains to

the classification model’s ability to identify negative cases, that is, healthy subjects in Case 1 or

patients with Essential Tremor in Case 2.

To ensure reliability, 100 repetitions of validation and training were conducted using the same

combinations of features and classification methods. This process ensured that training was con-

ducted using diverse datasets to evaluate classification models with different performance levels.

Following all iterations, the classification models with the highest mean values of Balanced Accu-

racy in Cases 1 and 2 were identified. The top ten classification models were listed and examined
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in the results section after the 100 iterations.

2.4.1 Results

The outcomes of applying the iterative methodology are presented in Table 2.2. All the reported

results were acquired through validation set testing. From a pool of 2898 models based on feature

and classification method combinations, the top 10 models are listed. The "Average" column denotes

the average behavior over 100 iterations where training and validation data were randomized. The

"Best Case" column highlights the best performance among all iterations.

Notably, all models utilized the Quadratic Discriminant technique, and MPF was the common

kinetic feature for all models. This indicates that the MPF feature can significantly discriminate

tremor patients from healthy subjects. The model for classification with the highest average BAcc

value is achieved by utilizing MPF and PPF features. In other words, this particular classification

model displayed superior performance compared to other models during most of the 100 iterations.

The top of the table displays models with the highest BAcc values. These models exhibit favorable

combined results in sensitivity and specificity. Note that the top-performing cases for all classifica-

tion models demonstrate a BAcc value of 95.0% (90.0% sensitivity and 100.0% specificity). In Case

1, Table 2.2 displays the top ten classification models with the highest BAcc values, highlighting

which methods and kinetic features are crucial in discriminating between patients with Parkinson’s

Disease and Essential Tremor.

The initial six classification models implement the Logistic Regression approach, and the four

final ones utilize various KNN algorithms. It is important to note that the kinematic feature "RE"

is incorporated into all models to distinguish between the two groups, which aligns with the findings

from [4] demonstrating this feature’s substantial ability to differentiate between Parkinson’s Disease

and Essential Tremor patients (accuracy of 84.4%). RPC is also a significant feature in the previous

article, and the classification models that use these two kinetic features rank among the top five.

In this study, the best classification model, which combined the Logistic Regression method and

these two kinetic features (RPC and RE), achieved a BAcc value of 100.0% (100.0% sensitivity

and 100.0% specificity). Table 2.2 displays five other situations where a BAcc value of 100.0% was

reached. These results show promise for creating a decision-support tool to aid physicians in the

differential diagnosis of Parkinson’s Disease and Essential Tremor. Validation of these findings will

require a larger database.
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Table 2.2: Parkinson’s Disease vs. Essential Tremor patient discrimination. Top 10 Classifica-

tion Models with the highest BAcc values in Case 1. PCA: Principal Components Analysis, Sen:

Sensitivity and Spe: Specificity

Features Method PCA
Averages Best Case

Sen Spe BAcc Sen Spe BAcc

RPC+RE+HI Logistic Regression No 69.2 85.4 77.3 100.0 90.0 95.0

RPC+RE+MPF+HI Logistic Regression No 69.5 83.0 76.3 100.0 90.0 95.0

RPC+RE+PPF+HI Logistic Regression No 67.7 84.5 76.1 100.0 80.0 90.0

RPC+RE Logistic Regression No 66.7 84.8 75.8 100.0 100.0 100.0

RPC+RE+PPF Logistic Regression No 66.4 84.9 75.7 90.0 90.0 90.0

RE+PPF+HI Logistic Regression No 66.6 83.9 75.3 100.0 100.0 100.0

RE Medium KNN No 73.8 76.4 75.1 100.0 100.0 100.0

RE Cubic KNN No 73.8 76.4 75.1 100.0 100.0 100.0

RE Medium KNN Yes 73,8 76.4 75.1 100.0 100.0 100.0

RE Cubic KNN Yes 73.8 76.4 75.1 100.0 100.0 100.0

2.4.2 Conclusions

This section explored the potential benefits of using machine learning to classify patients with

hand tremors. The findings indicate that linear acceleration can supply significant data for accu-

rately distinguishing between healthy subjects and those experiencing tremors, ultimately allowing

for the differentiation between individuals with Parkinson’s Disease versus Essential Tremor. The

effectiveness of this differentiation relies heavily on accurately selecting and evaluating the ap-

propriate classifier to implement. Additionally, exceptional performance can be distinguished by

utilizing combinations of kinematic features and classification methods throughout classifier train-

ing. Combining the Quadratic Discriminant method with the MPF feature demonstrated the most

significance in distinguishing between healthy and pathological subjects. Similarly, the Logistic

Regression method, in conjunction with the RE and RPC features, was found to be crucial in

differentiating between patients with Parkinson’s Disease and Essential Tremor.

The section below examines angular velocity signals recorded using a smartphone’s gyroscope

to assess the efficacy of models trained with kinetic features from these signals in achieving perfor-

mance levels commensurate with or superior to those derived from linear acceleration signals.
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2.5 Analysis of Angular Velocity in Tremor Disorders

In this section, the results obtained in evaluating the influence of angular velocity are described in

order to identify the combination of kinematic features and machine learning models that allow an

optimal differentiation of the subjects studied. A kinematic analysis was carried out in two stages,

similar to the one for linear acceleration: first to discriminate between subjects with tremors and

healthy subjects, and then to discriminate between patients with Parkinson’s disease and Essential

tremor. The models achieved an average accuracy of 97.2±3.7% for distinguishing between healthy

subjects and those with tremors, with a sensitivity of 98.5% and a specificity of 93.3%. Moreover,

for differentiating between patients with Parkinson’s disease and Essential Tremor, they obtained

an average accuracy of 77.8±9.9% with a sensitivity of 75.7% and a specificity of 80.0%. Detailed

information regarding the methodology is presented below. These results are presented in two

separate subsections.

The findings are presented in two separate subsections. The first subsection evaluates the ability

of the model to discriminate between individuals with and without tremors. Second, the model’s ca-

pability to differentiate between patients diagnosed with Parkinson’s Disease and Essential Tremor

is evaluated. It is important to note that during the time of this analysis and paper publication

(see Appendix C), the letters A and B were utilized to reference the data recorded during Rest (R)

and Posture (P), respectively.

2.5.1 Differentiation of patients with tremors and healthy subjects

Table 2.3 displays the evaluation and selection results of features used to distinguish between tremor

and healthy subjects. The top five features from the frequency analysis between 3 to 10 Hz were

identical in both tests and included SMP, RPCP, HIP, HIR, and PBP. Similarly, the frequency

analysis from 1 to 16 Hz identified four out of the top five features that coincided in both tests:

SMP, RPCP, HIP, and PBP.

The top left section of Figure 2.5 exhibits the optimal models for distinguishing tremor and

healthy subjects within the 3 to 10 Hz frequency range, arranged by the three training/testing

subsets. The highest-performing three models for each split are identified and listed based on their

average metrics. The SMP feature is included in all nine models, while PBP, HIP, and RPCP

feature in only two models. The top-performing classification model records an average accuracy

of 94.3±5.6% (95.9% sensitivity, 89.5% specificity), while its computational cost is about 6.7±0.7

ms on average. This model achieves its results through a 70/30 split, utilizing the Linear Support
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Figure 2.5: Output results of the case study based on machine learning algorithm, frequency range,

kinematic features, and classification methods.

ST - Simple Tree, MT - Medium Tree, CT - Complex Tree, LR - Logistic Regression, LD - Linear Discriminant, QD

- Quadratic Discriminant, KNB - Naive Bayes with Kernel, GNB - Gaussian Naive Bayes, LSVM - Linear Support

Vector Machine, MKNN - Middle Nearest Neighbor, CKNN - Cubic Nearest Neighbor, ESD - Subset Space

Discriminant, ESKNN - Ensemble Subset Space Nearest Neighbor.
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Table 2.3: Evaluation and selection of kinematic features for differentiating tremor and

healthy subjects.

Feature Position 3 - 10 Hz 1 - 16 Hz

CS UT CS UT

MPF
A 3.23 0.04 3.02 0.07

B 3.36 0.02 3.98 0.03

PB
A 3.98 0.03 3.98 0.06

B 8.12 0.07 11.74 0.14

PPF
A 3.49 0.01 3.73 0.06

B 4.76 0.03 8.12 0.08

HI
A 4.76 0.06 4.76 0.07

B 9.01 0.08 9.01 0.14

RPC
A 3.42 0.01 4.96 0.10

B 6.97 0.07 10.82 0.15

RE A/B 1.87 0.00 3.98 0.00

HIR A/B 0.78 0.01 0.35 0.00

SMP A+B 11.74 0.12 10.82 0.16

A, Resting position. B, Postural position. CS, Chi-squared test. UT, Unbiased tree method. Bold

values correspond to the five features with the most discriminative values in both tests.
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Vector Machine method and the SMP feature. Although varied classification methods exist among

the nine listed, the best model applies the Logistic Regression method and SMP feature in both

30/70 and 50/50 splits.

On the right side, the figure displays the most optimal models achieved from frequency analysis

ranging from 1 to 16 Hz across all training/testing splits. The top three models are then chosen

according to their average performance. All models within this frequency range utilize SMP as a

discriminatory feature, while eight of them also employ the PBP feature. The top-performing model

yields an average accuracy of 97.2±3.7%, consisting of 98.5% sensitivity and 93.3% specificity. The

mean computational cost of the model is 105.8±1.9 ms. A single-feature model, SMP, uses a 70/30

split and the Medium Tree method. The remaining models implement the Subspace Discriminant

method and combine multiple features. On average, utilizing the Medium Tree method with a

solitary feature results in significantly lower computational costs compared to implementing the

Subspace Discriminant method with multiple features in the models.

2.5.2 Differentiation of patients with Parkinson’s Disease vs. Essential Tremor

Table 2.4 shows the evaluation and selection of features for the differentiation of patients with

Parkinson’s disease and ET. In the frequency analysis from 3 to 10 Hz, the five features identified

in each test separately are the same: SMP, HIR, RE, RPCR, and MPFR. Only three of the five

features coincided in the 1 to 16 Hz frequency range: HIR, RE, and RPCR.

The bottom-left part of Figure 2.5 displays the best models for distinguishing Parkinson’s

Disease and Essential Tremor in the frequency range of 3 to 10 Hz. The top 3 models in each

training/test division are listed by their average performance values. The feature HIR appears to

provide significant information for differentiating patients with tremors since it is present in all

represented models. The overall best performance is achieved in the 70/30 division, combining

features HIR and MPFR and using the SVM method. This model exhibits an average accuracy of

77.8±9.9% (75.7% sensitivity, 80.0% specificity) and an average computational cost of 5.4±0.3 ms.

On the right side of the figure, it visualizes the models with the best performances for distin-

guishing Parkinson’s Disease and Essential Tremor in the frequency range of 1 to 16 Hz. Again, the

best model is found in the 70/30 division, with an average accuracy of 76.1±11.8% (72.5% sensi-

tivity, 79.7% specificity) and an average computational cost of 26.5±1.7 ms. The feature presented

in most models is RE, which is used in eight of the nine models shown. In the 30/70 and 50/50

divisions, the top two classification models use the Gaussian Naive Bayes method. In contrast,

in the 70/30 division, the best performances are obtained with two different configurations of the
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Table 2.4: Evaluation and selection of kinematic features for the differentiation of sub-

jects with tremor: Parkinson vs. Essential Tremor.

Feature Position 3 - 10 Hz 1 - 16 Hz

CS UT CS UT

MPF
A 2,70 0,03 0,54 0,02

B 0,13 0,00 0,12 0,00

PB
A 0,62 0,03 1,12 0,05

B 1,12 0,02 0,62 0,01

PPF
A 0,62 0,02 0,62 0,01

B 0,05 0,01 0,01 0,00

HI
A 0,62 0,02 0,62 0,04

B 1,63 0,03 0,34 0,02

RPC
A 1,91 0,04 1,37 0,05

B 0,12 0,01 1,63 0,02

RE A/B 3,79 0,07 5,20 0,09

HIR A/B 3,34 0,07 2,10 0,06

SMP A+B 1,91 0,04 1,91 0,01

A, resting position. B, postural position. CS, Chi-square test. UT, unbiased tree method. Values

in bold correspond to the five features with the most discriminative values in both tests.
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KNN method, achieving the same average accuracy.

Based on the assumption that the frequency components of pathological tremor are higher in

either of the two studied positions, the features SMP and HIR were introduced to improve the

differentiation between tremor types. In addition, the features RE and RPC, proposed in [4],

aim to improve differentiation between patients with Parkinson’s and Essential Tremor, as their

tremor frequency components vary in resting or postural conditions. Theoretically, individuals with

Parkinson’s Disease should exhibit higher tremor amplitudes in a resting position as compared to

a postural position. Conversely, individuals with Essential Tremor should incur higher tremor

amplitudes in a postural position as compared to a rested position. The findings of this study

support this, as it appears that the most critical factor in distinguishing between Parkinson’s

Disease and Essential Tremor patients is the innovative HIR feature. This was implemented in 12

out of the 18 top-performing models as displayed in Figure 2.5. Furthermore, previous works [4, 94]

show that the features RE and RPC provide relevant information for distinguishing pathological

and healthy subjects across the analyzed frequency ranges. However, our study introduces the SMP

feature, which proves to be the most discriminative in several top models. Using this feature alone,

high accuracy values were achieved. Upon analysis of the implemented features, it is observed

that certain features offer more precise subject differentiation information depending on the case.

The models distinguishing subjects in Case 1 primarily comprise features extracted in the postural

position. Conversely, Case 2 exhibits a higher concentration of features extracted in the resting

position, in accordance with the research of [5, 10].

While the goal is to create high-performing classifiers and prevent classification errors, the

machine learning models only use patients with a confirmed diagnosis of Parkinson’s Disease and

Essential Tremor. Nevertheless, this also implies that the patients are already receiving treatment

when they are recorded, so their tremor intensity is notably low. To ensure accurate patient classi-

fication, it is crucial to gather additional data from individuals experiencing early-stage tremors to

exclude the effects of medication [108] or surgical suppression [109], as these are potential sources

of patient misclassification. Furthermore, dataset size presents a significant challenge in develop-

ing high-performance models. Since the dataset for training and testing the models is small, the

machine learning models implemented in this study are limited in their performance. The dataset

needs to be expanded to develop highly accurate models.
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2.6 Conclusions

The angular velocity signal recorded by the gyroscope and enhanced using machine learning algo-

rithms has proven to be an effective method for differentiating between healthy subjects and patients

with tremors, as well as between patients with Parkinson’s Disease and Essential Tremor. This

differentiation substantially depends on correctly selecting and evaluating classification methods,

kinematic features, data processing techniques, and size. The best model for distinguishing tremor

and healthy subjects has an average accuracy of 97.2±3.7% (98.5% sensitivity, 93.3% specificity).

The average accuracy of the best model for differentiating patients with tremors with Parkinson’s

Disease and Essential Tremor was 77.8±9.9% (75.7% sensitivity, 80.0% specificity).

During the training of the models, it is able to identify outstanding performance for some

combinations of kinematic features, such as SMP, PBP, and RPCP, for differentiating tremor and

healthy subjects, as well as HIR and MPFR for differentiating Parkinson’s Disease and Essential

Tremor. Regarding classification methods, for differentiating tremor and healthy subjects (Case

1), the best performances are achieved with the SVM and Subset Discriminant method. For the

differentiation of patients with Parkinson’s Disease and Essential Tremor (Case 2), in the 3 to 10

Hz frequency analysis, the best performance is also obtained with the Linear SVM method. In

contrast, in the 1 to 16 Hz range, the best performance is achieved with the Medium KNN method.

In both cases, the Linear SVM models have a lower computational cost than the KNN methods.

However, it’s possible that in cases where high-performance models were identified in both

analyses, they may be overfitting due to the limited amount of data available for model training.

The next chapter discusses, among other things, the transition made to implement the algorithms

developed in MATLAB in a new programming language. Furthermore, a data augmentation method

is implemented with the goal of increasing the amount of data and generating more robust models.
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Chapter 3

TremorSoft as a decision-support tool

for movement disorder assessment

In the previous chapters, an exhaustive analysis of the linear acceleration and angular velocity

signals recorded corresponding to the study population’s three types of hand tremors was carried

out. This analysis aimed to determine whether the information contained in these signals could

prove to be significant enough to allow the development and implementation of machine learning

models capable of generating a more accurate classification than that obtained by the statistical

methods previously used in [4]. The information extracted from these signals was based on specific

kinematic features computed in the frequency domain, some of which had been proposed in previous

research. Others were defined in the course of this research. Individual analyses of these kinematic

features extracted from each type of sensor signal led to the conclusion that it was possible to

train classification models capable of discriminating these tremor types with high accuracy using

machine learning algorithms. Based on these results and the requirements previously defined in

this research for the development process of the decision-support tool, this chapter presents the

methodology that was carried out to create an innovative e-health application that promises to

make a significant contribution to the field of movement disorders research. This application has

been registered under the Safe Creative License with the identifier 2206021281741 (see Appendix G)

and is called TremorSoft.

Smartphones turned out to be the ideal platform to meet several of the requirements established

for developing this tool: simplicity, speed, capacity for real-time implementation during clinical

routines, and, last but not least, network connectivity. Therefore, it was decided to develop a

mobile application that uses the internal inertial sensors of the smartphone or wirelessly connects

to a portable inertial sensor. This will allow the collection of hand tremor data following the
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acquisition protocol described in 2.1. Furthermore, given the desire to expand the database with

new tremor records from patients with confirmed diagnoses, the application should also allow storing

these records in an online database. Therefore, in addition to the mobile application, it was decided

to develop a web server or back-end linked to a database to upload and store these new data. The

possibility of implementing a web server also allows the tremor calculation and classification tasks

to be performed securely, efficiently, and in real time. This, in turn, implies that the classification

models can be deployed on the web server.

Up to this point, the MATLAB development environment was very useful for performing the

data analysis, training, and testing the classification models. At this stage, it was possible to evalu-

ate the importance or predictive power of the kinematic features defined in subsection 2.2.2 through

performance metrics calculated on the developed models (see section 2.3). However, this option

does not allow direct implementation of the developed algorithms and models on a smartphone

or web server. Therefore, looking for an alternative at the same level or higher than MATLAB

was necessary, and the programming language Python was chosen. This decision was based on the

premise that Python, like MATLAB, is a high-level scientific programming language that enables

the development of web applications, software, data science, databases, and more. Python is the

ideal alternative for implementing algorithms, classification models, web servers, and databases,

in addition to being easy to implement and compatible with multiple platforms. An extensive

search was conducted to determine the most appropriate programming language for developing the

mobile application. After researching and exploring several options (Java, Kotlin, Dart, Flutter,

Swift, among others), the programming language Kotlin was chosen to develop the application

on Android devices. Kotlin is a simple, cross-platform programming language recommended by

Google for developing Android applications. Thus, TremorSoft was designed as a modular system

consisting of a mobile application and a web server connected to a database.

The following section describes the implementation and optimization of data analysis algorithms

(preprocessing and feature extraction) in Python.

3.1 Python Code: Data Analysis

Appendix D presents the detailed Python code developed to carry out the tasks of preprocessing

and extraction of kinematic features from the records of 96 subjects in the available databases:

51 subjects registered at the Hospital Clínic Barcelona and 25 patients registered at CETRAM

(Chile). The coding process involved searching for and using specific Python libraries, methods,

and functions equivalent to those used in MATLAB. To include the CETRAM database in the
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data analysis process, functions were introduced in the Python algorithm to select different folders

containing the tremor records of the subjects. Each time a folder is selected, the sampling frequency

used in the chosen database must be specified. In contrast to the Hospital Clínic database, the

new data were recorded at a sampling rate of 120 Hz for approximately 30 seconds in both resting

and postural positions. The following are the main changes and incorporations of methods made

in the Data Analysis algorithm:

3.1.1 Data Transformation of Xsens Dot Sensor Recordings

Since the data sources are different, it was necessary to ensure the equivalence of the data when

incorporating the new database, in particular, to ensure that the data were expressed in the same

measurement system. In the case of the Clínic database, linear acceleration records are expressed

in units of g-force (G), while angular velocity is expressed in radians per second (rad/s). On the

other hand, the data recorded with the Xsens Dot sensor at CETRAM were recorded in units of

square meters per second (m2/s) for linear acceleration and degrees per second (deg/s) for angular

velocity. The following function performs the unit conversion when the data comes from the Xsens

Dot sensors so that it is in the same measurement system as the Clínic database:

Listing 3.1: Data Transformation Function in Python

def transform_data (data):

"""

Transform the data based on the device .

Args:

data (pd. DataFrame ): Input data DataFrame containing accelerometer and

gyroscope columns .

Returns :

pd.DataFrame , pd. DataFrame : Transformed accelerometer data and gyroscope

data DataFrames .

"""

accelerometer_data = data [[’Acc_X ’, ’Acc_Y ’, ’Acc_Z ’]]

gyroscope_data = data [[’Gyr_X ’, ’Gyr_Y ’, ’Gyr_Z ’]]

accelerometer_data = accelerometer_data .copy ()

accelerometer_data [’Acc_X ’] = accelerometer_data [’Acc_X ’] * 0.1019716 - 1

accelerometer_data [’Acc_Y ’] = accelerometer_data [’Acc_Y ’] * 0.1019716 - 1

accelerometer_data [’Acc_Z ’] = accelerometer_data [’Acc_Z ’] * 0.1019716 - 1

gyroscope_data = gyroscope_data .copy ()
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gyroscope_data [’Gyr_X ’] = gyroscope_data [’Gyr_X ’] * 0.0174533

gyroscope_data [’Gyr_Y ’] = gyroscope_data [’Gyr_Y ’] * 0.0174533

gyroscope_data [’Gyr_Z ’] = gyroscope_data [’Gyr_Z ’] * 0.0174533

return accelerometer_data , gyroscope_data

3.1.2 Data Preprocessing Modifications

One of the changes made from the original algorithm was that instead of trimming a 2-second

signal segment at the beginning and end of the recorded data, a 20-second segment centered in

the middle of the analyzed data was extracted. This new algorithm discarded, on average, about

5 seconds of signal at each end of all recordings (or about 10 seconds of signal in total). This

change was made primarily to eliminate possible noise signals caused by human interaction at the

beginning or end of the data recording and to analyze all data in the same period. One of the main

functions used in this data analysis process is the one that estimates the power spectral density

using the Welch method. This function was implemented using the SciPy library, a free and open-

source Python library used for scientific and technical computing. This library also includes the

functions used for data filtering in this process, particularly the functions butter() and filtfilt(); the

former is used to design the bandpass filter from 3 to 12 Hz, and the latter applies this filter to

the studied signals. In addition, to efficiently compute the kinematic features, some functions from

two other important and widely known Python libraries, NumPy (a Python library specialized in

numerical computations and data analysis, especially for large data sets) and Pandas (a Python

library specialized in manipulating and analyzing data structures) were imported and implemented.

3.1.3 Power Band (BP) feature

It is important to note that a new feature was introduced at this stage. However, it was already

implicitly calculated: the Power Band (BP), defined as the area under the curve of the power

spectral density within the frequency range of interest (fl - fh). Although BP had previously been

used to compute RE and other features, it had not been considered discriminative in differentiating

these two pathologies.

BP =

∫ fh

fl

PSDX · df (3.1)

where X would indicate the evaluated position, which can be R (Rest) or P (Posture).
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3.1.4 Data Augmentation and Feature Extraction

Considering that, despite having new data and having registered a total of 76 subjects, it still

represents a limited amount of data to develop high-performance classification models without

incurring overfitting or underfitting. For this reason, in this stage, a data augmentation method

has been incorporated using the Overlapping Sliding Windows technique. This technique, widely

used in signal processing and sequential data, allows for dividing a continuous sequence of data

into multiple smaller segments or windows that partially overlap with each other. Its application

is common when analyzing or processing sequential data, as in the current context.

The main idea behind Overlapping Sliding Windows is to divide a long sequence into smaller

segments for analysis, ensuring that these segments partially overlap and do not lose important in-

formation at transitions between them. This technique becomes particularly valuable when working

with data exhibiting temporal features or patterns that do not align perfectly with window bound-

aries. This enriches the analysis by considering not only the static aspects of the signals but also

their dynamics and changes over time. The application of this technique as a Data Segmentation

method can provide various benefits:

• Data Augmentation: More samples are generated from the original data by subdividing

long records into shorter segments. Each X -second segment is considered a new data instance,

increasing the total data available to train the models.

• Improved Generalization: Models trained on shorter segments can learn short-term pat-

terns precisely rather than relying solely on long-term patterns. This can enhance the model’s

generalization ability, making it more robust under various conditions.

• Capturing Temporal Changes: As mentioned earlier, when working with shorter seg-

ments, it is possible to capture faster temporal changes or fluctuations in the data that might

go unnoticed in longer records.

The main steps to implement this Overlapping Sliding Windows technique in Python are de-

scribed below:

1. Parameter Definition: The window size (window_size) was calculated to divide the records

of each subject into 5-second segments. This value was determined based on the sampling

frequency at which the data were captured (100 or 120 Hz), which determines how many

data points will be included in each window. Additionally, a 25% overlap value was defined

to determine how many data points will overlap between consecutive windows. Using this
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overlap ensures proper capture of temporal changes and results in 532 segments generated

from the 76 subjects in both databases.

Listing 3.2: Parameters of the Overlapping Sliding Window method

# Sliding window method parameters

window_duration = 5

# seconds

overlap = 0.50

# 50% overlap

# Calculate window size and step size

window_size = int( window_duration * fs)

step_size = int( window_size * (1 - overlap ))

2. Window Creation: A while loop was implemented to traverse the data sequence, extracting

data segments of the current window size and processing them. Then, the window is moved

forward by a number of data points equal to the overlap value, and the next segment is taken.

This process repeats until the entire sequence is covered.

Listing 3.3: Data augmentation using the Sliding Window method

# Apply data augmentation using the sliding window method

segments = []

start = 0

while start + window_size <= len( filtered_data ):

segment = filtered_data [start:start + window_size ]

segments . append ( segment )

start += step_size

3. Processing Each Window: Next, a for loop takes each segment to estimate the Average

Power Spectral Density (PSD) of the linear acceleration and angular velocity signals, as

well as the PSD of the components or axes of both signals (2 Signal Types x 3 Axes): Linear

Acceleration (aX, aY, aZ) and Angular Velocity (vX, vY, vZ). Each PSD provides 17 features,

with 7 features for each position (PB, MPF, PBW, PPF, PP, HI, and RPC) and 3 common

features (RE, HIR, and SMP). This process multiplied the number of calculated features,

resulting in 136 features to train the new models. This change allows the evaluation of the

contribution of the signal components individually and collectively.

Listing 3.4: Looped PSD Calculation and Feature Extraction

for i, segment in enumerate ( segments ):
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frequencies , psd_segment = welch(np. transpose ( segment ), fs=fs , window

=’hamming ’, nperseg =100 , nfft =30000 , scaling =’density ’, detrend =

False)

psd_segment = np. transpose ( psd_segment )

dif_low = np.abs( frequencies - low_cut )

dif_high = np.abs( frequencies - high_cut )

low_idx = np.where( dif_low == dif_low .min ()) [0][0]

high_idx = np.where( dif_high == dif_high .min ()) [0][0]

for axis , psd_values in zip ([’’, ’x_’, ’y_’, ’z_’],

[ psd_segment .mean(axis =1)] + [ psd_segment [:, i] for i in range (3) ]):

# Code continues here ...

4. Concatenation of Results: The results obtained from each segment are concatenated and

labeled into a larger data structure, representing the processed features or segments from

the entire original sequence. This is repeated for all records in both databases using the

process_each_file() function, concatenating all features from the 380 segments.

In summary, this technique has proven to be especially useful for creating a larger and more

diverse dataset, generating multiple examples from the original data sequences, each focused on a

different part of each sequence. This can enhance the ability of machine learning models to capture

relevant patterns and features in the data.

3.2 Python Code: Model Training and Testing

This section describes the methodology for performing model training, testing, and evaluation using

Python and various libraries. The primary goal of the experiment was to construct and fine-tune

predictive models for classifying hand tremor data samples in the two cases evaluated. This section

first describes the libraries and modules imported for this purpose. The process is then divided

into several key sections, each addressing specific tasks such as data preparation, model fitting and

ensemble, model blending, and final model evaluation. The Python code provided in Appendix E

exemplifies the overall workflow.
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3.2.1 Importing Necessary Libraries and Modules

The first step in the experimental process was to import essential Python libraries and modules.

These libraries facilitated various operations such as data handling, model building, and evaluation.

The critical libraries used in this experiment were

• pandas (abbreviated as pd): This library was used extensively for data manipulation and

analysis. It provided fundamental data structures, such as data frames, which are crucial for

managing tabular data.

• scikit-learn: A Python machine-learning library that provides data preparation, model

selection, and evaluation tools. In this experiment, the train_test_split function was used

to split the dataset into training and test sets.

• PyCaret: A Python library, similar to the MATLAB Classification Learner App, designed

to automate the end-to-end machine learning process. PyCaret simplifies several tasks: data

preparation, model selection, and hyperparameter tuning.

3.2.2 Preparing the Experiment Parameters

Before starting the experiment, it was essential to define its parameters. These parameters con-

trolled various aspects of the experiment, including data handling, feature selection, and model

training. The prepare_params() function was responsible for this task. Key parameters consid-

ered in this experiment include:

• data: The data set used for training and evaluation.

• target: The target variable to predict, labeled as label in the data set.

• normalize: An indicator indicating whether to perform feature normalization.

• feature_selection: A flag indicating whether feature selection techniques should be applied.

• remove_outliers: A flag indicating whether outliers should be removed.

• train_size: The percentage of the data set used for training (80% in this case).

• data_split_stratify: An indicator of whether the data split should be stratified.

• fold_strategy: The strategy used for cross-validation, in this case stratifiedkfold.
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• fold: The number of folds used in the cross-validation (in this case, 5).

• n_jobs: The number of CPU cores used (-1 indicates that all available cores are used).

The PyCaret experiment setup was configured using the prepared parameters. This setup

defined the overall configuration for data preparation, model selection, and evaluation.

3.2.3 Model Training, Fine-tuning, and Ensemble

Optimization parameters were set before the experimental process began, specifying the metric to be

optimized, ’F1’, and the number of iterations for hyperparameter optimization (50 iterations). Once

these parameters were set, the experimental process consisted of constructing predictive models,

fine-tuning their hyperparameters, and combining them to improve predictive performance.

F1 =
2 · (Precision ·Recall)

Precision+Recall
(3.2)

All available classification models were constructed, and the top five models were selected based

on the optimization metric (’F1’) using the compare_models function of PyCaret. These models

were fine-tuned, combined, and mixed, resulting in several model ensembles.

The tune_and_ensemble_model() function encapsulated these tasks. The following steps were

performed:

1. Bagging: The tuned model has been further improved by ensemble combination, which

creates multiple instances of the model with different subsets of training data.

2. Boosting: Boosting was applied to the fine-tuned model, creating an ensemble of models

that sequentially correct the errors of their predecessors.

3. Blending: Model blending is a technique that combines multiple models to create a single

predictive model. The blend_models_sets() function was used for this purpose. It blended

models based on a given method index corresponding to different model combinations. The

blending was done using the PyCaret function blend_models. The optimized metric ’F1’ was

used for blending, ensuring that the blended model maximized the F1 score.

3.2.4 Model Evaluation and Selection

After building, tuning, and blending the models, the best-performing model was identified using

the automl function of PyCaret, which selects the model with the highest F1 score. The identified

70



best model was then calibrated to improve its performance further. The process of training and

testing the models concluded with the evaluation and finalization of both the best model and

the calibrated best model. These models generated predictions for unseen data, completing the

experimental process. The evaluate_and_finalize_models() function performed these tasks.

Key steps included:

1. Evaluation: The model’s performance was evaluated using evaluate_model function of

PyCaret, providing information on various metrics and visualizations.

2. Finalization: The best model was finalized using the finalize_model function of PyCaret,

preparing the model for prediction.

3. Predictions: The finalized model was used to predict the test and unseen data.

This model training and testing process concluded with a comprehensive evaluation of the

models and selection of the most appropriate final model for the classification task.

3.3 Machine Learning Performance

This section presents the results obtained after executing the two previously described processes.

As mentioned in the previous section, data augmentation was performed using the Sliding Window

with Overlapping technique during the Data Analysis process. A window of 5 seconds with a 25%

overlap was configured, generating a new database with 380 subsamples or segments, each properly

labeled according to its origin. For example, if a group of segments originated from hand tremors

of a patient with Parkinson’s disease, each of these segments was labeled as ’PD’. This process

was applied to all subsegments of the original signals. The resulting new database was saved in a

CSV text file for subsequent use. Below is a detailed description of the methodology used to train

classification models using the PyCaret library in this research context. The main objective of this

methodology was to develop robust and effective classification models to address the classification

problem in the dataset under study.

3.3.1 Data Preparation and Configuration

The process began with loading the dataset from the CSV file named "features.csv." Subsequently,

a critical preprocessing step was performed in which rows of the dataset that did not align with

the target label of interest, in this case, "HS," were filtered out, and the indices were reset to
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maintain data integrity. Features (X) and the target variable (y) were then separated for further

analysis. Once the data was prepared, it was divided into training sets (X_train, y_train) and

test sets (X_test, y_test). This division allocated 85% of the data for training and 15% for

testing to ensure representativeness in both partitions. Stratification was applied to preserve the

class distribution in both partitions and mitigate potential biases. Two fundamental DataFrames

were created from these sets: the training data DataFrame (training_data) and the unseen data

DataFrame (unseen_data). In both cases, the corresponding label was added to each observation

to facilitate analysis and the subsequent evaluation of models.

To ensure an efficient and effective training process, experiment parameters were configured

in PyCaret. These parameters included the definition of training data, specification of the target

variable, feature normalization, feature selection, cross-validation strategy (using Stratified K-Fold

with 5 folds), and utilizing all available cores to accelerate processing. The choice of the "F1" metric

as the primary performance indicator was critical in training classification models. Furthermore,

the number of iterations for hyperparameter tuning was set to 50 to explore the hyperparameter

space of the models thoroughly.

3.3.2 Training, Optimization, and Model Selection

Once the aforementioned steps were completed, training was initiated for various available classifi-

cation models. The "F1" metric was used to compare and select the top five models that exhibited

the best performance. Table 3.1 displays the performance metrics obtained after training each of

the available models using the kinematic features of the new dataset. From this table, the top five

models were selected in descending order: Extra Trees Classifier (ETC), Light Gradient Boosting

Machine (LightGBM), Random Forest Classifier (RFC), Extreme Gradient Boosting (XGBoost),

and Gradient Boosting Classifier (GBC). A series of additional steps were undertaken for each of

these top five models. Firstly, the model was fine-tuned through an exhaustive hyperparameter

search that included 50 iterations. Subsequently, ensemble models were created using Bagging and

Boosting techniques based on the tuned model to enhance performance and robustness further.

To determine the optimal model, the "automl" module was applied, which selected the best

model based on the "F1" optimization metric. The best model identified underwent comprehensive

evaluation using various performance metrics. Finally, the model was finalized, prepared for future

deployment, and used to make predictions on the unseen data (unseen_data). Figure 3.1 represents

the ROC curve of the optimal model, which achieved a value of 0.99 for both classes.

Table 3.2 summarizes the performance metrics estimated when using the optimal model, the
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Table 3.1: Model Performance Metrics with Data Augmentation: 5 seconds window and 25% of

overlapping

Model Algorithm Accuracy AUC Recall Precision F1 Kappa MCC

et Extra Trees Classifier 0.9677 0.9820 0.9600 0.9846 0.9719 0.9337 0.9348

lightgbm Light Gradient Boosting Machine 0.9401 0.9713 0.9600 0.9392 0.9488 0.8766 0.8787

rf Random Forest Classifier 0.9261 0.9670 0.9360 0.9372 0.9356 0.8490 0.8516

xgboost Extreme Gradient Boosting 0.9262 0.9662 0.9360 0.9365 0.9356 0.8491 0.8506

gbc Gradient Boosting Classifier 0.9121 0.9664 0.9120 0.9356 0.9225 0.8208 0.8236

ada Ada Boost Classifier 0.9030 0.9455 0.9040 0.9280 0.9132 0.8035 0.8091

dt Decision Tree Classifier 0.8889 0.8887 0.8880 0.9202 0.9024 0.7733 0.7769

qda Quadratic Discriminant Analysis 0.8569 0.9035 0.8640 0.8865 0.8749 0.7075 0.7083

lr Logistic Regression 0.7600 0.8556 0.8240 0.7795 0.7960 0.5019 0.5119

knn K Neighbors Classifier 0.7557 0.8458 0.7760 0.7909 0.7805 0.5057 0.5120

svm SVM - Linear Kernel 0.7416 0.0000 0.7600 0.7885 0.7715 0.4729 0.4772

ridge Ridge Classifier 0.7140 0.0000 0.8080 0.7266 0.7637 0.4022 0.4097

lda Linear Discriminant Analysis 0.7001 0.7721 0.7840 0.7219 0.7501 0.3753 0.3805

dummy Dummy Classifier 0.5761 0.5000 1.0000 0.5761 0.7310 0.0000 0.0000

nb Naive Bayes 0.6037 0.7596 0.5920 0.7184 0.6053 0.2000 0.2381

Extra Trees Classifier, to predict Test Data and Unseen Data. The model can be observed to

classify with 96.36% accuracy (53 out of 56 samples) on the Test Data and 93.75% accuracy (45

out of 48 samples) on the Unseen Data, demonstrating high performance and low bias.

Table 3.2: Performance of the Best Model on Test and Unseen Data

Extra Trees Classifier / 5-second window / 25% Overlapping

Data Accuracy AUC Recall Precision F1 Kappa MCC

Test 0.9636 0.9864 0.9636 0.9665 0.9638 0.9262 0.9287

Unseen 0.9375 0.9893 0.9375 0.9378 0.9372 0.8705 0.8713

It is important to note that feature selection was enabled in the PyCaret experiment configu-

ration without specifying a fixed number of features. In this case, the process selected the 28 most

important features. Figure 3.2 displays the features selected during the experiment. The influence

of the information recorded in the resting position is noteworthy, as the top 10 most significant

features are derived from this position. The newly incorporated feature, Band Power (BP), also

demonstrates significant potential for developing more robust models. The influence and potential

of the Harmonic Index (HI) feature are also evident, as it ranks among the top 10 features.

Furthermore, it is observed that the model presents a balanced representation of features ex-
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Figure 3.1: Model ROC Curve

Figure 3.2: Model Feature Importance
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tracted from each type of sensor, as well as a proportional distribution of features extracted indi-

vidually in each axis and features derived from the Average PSD.

3.4 Software Architecture

TremorSoft is a tool for decision support that utilizes the 6-axis inertial sensor of a smartphone or

a wearable sensor dedicated and connected via Bluetooth for recording, analyzing, and categorizing

hand tremor data. The tool comprises two components: firstly, a smartphone app that gathers de-

mographic, clinical, and kinematic data of the subject under evaluation, and secondly, a web server

that further processes the collected kinematic data via machine learning models to differentiate

between control, essential tremor, and Parkinson’s disease, based on the features extracted from

the data. The application was developed on the Android operating system, utilizing Kotlin and

the Android SDK in conjunction with the Xsens DOT SDK to serve as the front-end tool. The

target version for the operating system is Android 8.0 Oreo or above. The back-end web server

runs processes on the Heroku platform, programming in Python. The Retrofit network library

acts as a REST client for uploading and retrieving data from the back-end. The Firebase platform

is used for authentication services. Refer to Figure 3.3 for an overview of the software architecture.

3.4.1 Software funcionalities

Front-end

The Android application is a front end, enabling users, doctors, and movement disorder special-

ists to document pertinent information on patients with suspected or diagnosed Parkinson’s or

Essential Tremor. The scope of recorded data covers primary clinical data, hand tremor signals,

and diagnosis and treatment information for diagnosed patients. The mobile application instructs

users to record hand tremor signals using either the smartphone’s built-in inertial sensors (gyro-

scope and accelerometer) or an external inertial sensor (Xsens DOT) connected wirelessly. The

recorded signals correspond to two positions, rest and posture, which are then stored separately in

two ArrayList class variables, restData and postureData. When an external sensor records hand

tremor signals, they are stored in the device’s internal memory. These signals must be exported to

the application and assigned to appropriate variables, namely restData and postureData. After

recording and saving both positions, the two lists are merged into one named tremorData. Finally,

a new JSONArray variable called dataArray is created from the merged list. This JSON array is
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Figure 3.3: Flowchart of the TremorSoft tool.

sent to the server hosted on the Heroku platform, where the signals undergo processing, analysis,

and classification. Subsequently, the application receives and presents a message corresponding to

the outcome provided by the server. Depending on the outcome and classification achieved, the

application can display one of three messages: 1) A pathological tremor, classified as Parkinson’s,

has been detected; 2) A pathological tremor, classified as an Essential tremor, has been detected.

3) The recorded tremor has been classified as a physiological tremor.

The SEND button is enabled if the application user is an accredited TremorSoft collaborator.

Once the user receives the classification, they confirm it by pressing the button and authorising the

sending and storage of recorded data in the web server’s database. When the process is initiated, the

clinical and diagnostic data are collected and stored in a new JSONObject named patientDataJSON.

Later, patientDataJSON is added to the JSONArray named tremorsoftData, which is a replica of

dataArray that contains the signals captured during rest and posture. Finally, tremorsoftData is

transferred via a POST request using the path /submit. Finally, upon completing the task, the

server returns a confirmation message on the application’s screen. The user can then choose to

either restart the classification process on the same patient using the "RESET" button or perform

a new test on a different patient by selecting the "NEW" button. Please refer to Figure 3.4 for the
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software’s user interface.

Figure 3.4: Overview of the dialogue screens of the TremorSoft user interface: A) Login screen; B)

Home screen; C) Basic patient data; D) Patient diagnostic data; E) Sensor selection for recording

hand tremor; F) Recording hand tremor at rest; G) Recording hand tremor in the posture position;

H) Exporting records when using Xsens DOT; I) Classification result of tremor returned by the

web server; J) Confirmation of data submission and storage on the web server.

Back-end

The backend is created as a RESTful API using the Python programming language and the Flask

framework, deployed on the Heroku platform. It comprises all the necessary features and compo-

nents for analyzing, processing, and categorizing hand tremor records and storing them and other
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patient information in the SQL database. The following sections provide detailed descriptions of

the three primary components of the TremorSoft web server.

1. Data Preprocessing and Kinematic Feature Extraction: The server receives the

JSONArray through the " /upload" route from the mobile application and converts it into a

Pandas DataFrame for further processing. Initially, the signals undergo preprocess filtering to

decrease sensor drift and distortions caused by various physical phenomena. Then, the Power

Spectral Density (PSD) of each accelerometer and gyroscope axis is calculated. Kinematic

features are extracted from the components’ power spectral density (PSD) and then assessed

through machine learning models.

2. Hand Tremor Classification Using Machine Learning: The server stores the classifi-

cation models that were created based on methodology and results obtained from previous

studies [4, 94, 95]. In the classification process, a specific model and kinematic features

previously extracted through the preprocessing function are utilized to classify the recorded

tremor as either physiological or pathological initially. If the first model classifies the tremor

as pathological, a second model is utilized to distinguish if the subject’s tremor is Parkinso-

nian or Essential Tremor. Despite several kinematic features extracted in prior research, the

classification models solely utilize a limited number of features, particularly those that offer

high predictive power in combination with the model.

3. Storage of Patient Data with Confirmed Diagnosis: An SQL database is connected to

the server via the Heroku Postgres service to upload and store data. Once all the necessary

information is verified, subject data is uploaded to the web server through a POST request on

the /upload route. The dataset stored for each patient consists of 25 columns, as illustrated in

Figures 3.5 and 3.6. Patient identification (Patientid), age, gender, family history of tremor

(Fhistory), machine learning-based classification (Classification), prior diagnosis (Diagnosis),

diagnostic method (Method), age of disease onset/diagnosis (Oage), bilaterality, and received

treatments (Treatments), Medication taken prior to imaging (Medication), Comorbidities,

Acceleration signals at rest (AccXr, AccYr, AccZr), Acceleration signals in posture (AccXp,

acceleration signals at rest (AccXr, AccYr, AccZr), acceleration signals in posture (AccXp,

AccYp, AccZp), angular velocity signals at rest (GyrXr, GyrYr, GyrZr), and angular velocity

signals in posture (GyrXp, GyrYp, GyrZp).
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Figure 3.5: Patient data stored in the SQL database hosted on the Heroku server: A. Basic patient

data and tremor classification; B. Diagnosis-related data.

Figure 3.6: Data from the resting and postural tremor records stored in the SQL database hosted

on the Heroku server: A) Records of angular velocities from the gyroscope; B) Records of linear

accelerations from the accelerometer.

3.5 Impact

The medical significance of this e-health application is to achieve further progression and knowledge

beyond the current state-of-the-art testing methods for movement disorders. This decision-support

tool functions as an added evaluation technique to distinguish pathological tremors, which can be

challenging to identify in certain cases, particularly during the initial stages of the disease. Further-

more, this application will achieve a high level of reliability in assisting neurologists with accurate

evaluation and identification of movement disorders, as well as measuring their severity. The knowl-

79



edge generated from this tool will represent a substantial scientific contribution to improving the

differential diagnosis of various movement disorders when compared to the information obtained

from SPECT.

This application aims to provide objective information to facilitate decision-making and reduce

wait times for a final diagnosis, enabling patients to receive appropriate treatment quickly. The ap-

plication’s classification cannot be considered a definitive diagnosis, but it enhances decision-making

for doctors and specialists in movement disorders who perform assessments. These assessments con-

sider additional clinical criteria in addition to hand tremors. Likewise, if there is suspicion of a

false positive or false negative due to an error in patient registration, the treating physician can

repeat the test as patient registration and classification are completed quickly.

In future endeavors, the goal is to seek collaboration with various movement disorder centers to

expand the database with records of patients with confirmed diagnoses, to continually improve and

maintain the implemented models, and thus to have a higher degree of reliability in the classifica-

tions performed by the models. Considering the nature of the data collected from both users (name,

email, profile picture, etc.) and patients (age, gender, diagnosis, etc.), it will be ensured that the

final version of TremorSoft complies with all the standards and measures imposed by the General

Data Protection Regulation (GDPR) by encrypting personal data, preventing unauthorized access

to this data, and constantly evaluating the security measures implemented. Finally, we plan to

add a new feature to the mobile application that enables sending reports to the email addresses of

physicians and specialists who use the app in their clinical practice.

3.6 Conclusions

This work provides a quantitative, user-friendly, non-invasive, and cost-effective method that can

be used as a decision-support tool in diagnosing Parkinson’s disease and Essential Tremor based

on hand tremor recording. The tremor classification result is available quickly during the medical

evaluation by the physician, either in person or remotely. The combination of clinical information

with information from kinematic features for training machine learning models is the key to the

functionality of this tool, providing the application with higher classification accuracy. Typically,

the classification of these motor disorders focuses on obtaining one or more kinematic biomark-

ers; however, the heterogeneity of both diseases complicates this approach, and we believe that

complementing clinical data with kinematic biomarkers is more efficient.
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Chapter 4

General Discussion

In recent years, machine learning and deep learning fields have experienced rapid advancements,

enabling their application in various medical domains that require large volumes of data or images.

In neurology, particularly in the realm of movement disorders, machine learning techniques have

emerged as a valuable tool for detailed characterization and precise classification of different types

of tremors. Therefore, this chapter aims to discuss the importance of employing machine learn-

ing methods in characterizing tremor-related disorders and to highlight the contributions made,

focusing on their role in early diagnosis, differentiation between different types of tremors, and

continuous patient monitoring.

Early diagnosis is crucial for providing timely treatment and improving the quality of life

for patients with tremor-related disorders. Traditional diagnostic methods often rely on subjective

clinical evaluation by doctors based on their expertise, which can lead to errors and delays in

diagnosis. Machine learning has demonstrated its ability to identify signs and symptoms of a

disease before they become visible to doctors, allowing for early and accurate detection of tremor-

related disorders. For instance, Wang et al. [110] used a deep learning approach to diagnose tremors

with over 80% accuracy based on specific tremor features in videos of the patients. Here, the focus

was on acquiring signals from the upper extremities during a short clinical visit. This is one of this

technology’s most important requirements and innovations, as doctors can access more sophisticated

equipment with higher sensitivity, such as SPECT or EMG. The issue is that using SPECT requires

waiting lists of months and patient compatibility with chemicals that need to be introduced into

the bloodstream. On the other hand, EMG is a tool available in most neurology departments.

Still, signal acquisition takes a long time due to equipment setup and is very sensitive to noise or

vibrations. Therefore, the developed tool allows signal recording and provides an assessment within

the 5 minutes the doctor has during the visit of the patient. The ease of use and the speed with
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which this tool records and provides objective information based on machine learning classification

models with previously recorded and validated data can assist doctors, especially in two specific

scenarios. The first scenario is with patients in the early stages of the disease, where the doctor may

doubt the diagnosis. The second scenario occurs in regions where more sophisticated equipment is

unavailable to confirm the patient’s condition.

Differentiating between types of tremors is essential for determining the most suitable

treatment for the patient and potentially improving their quality of life. As the introduction men-

tions, Essential Tremor and tremor associated with Parkinson’s disease have similar characteristics

but require different treatment approaches. Machine learning has allowed the development of clas-

sification models that can differentiate between types of tremors with exceptional accuracy. One

of the initial studies by Sigcha et al. [111] used a machine learning algorithm to classify Parkin-

sonian tremors based solely on wrist accelerometer data successfully. Building on this study, our

work focused on including gyroscope data and various kinematic features of the signal to enhance

differentiation between populations. While it is true that all studies focus on differentiating be-

tween Parkinson’s and Essential Tremor because they exhibit similar motor disorders, the required

treatments are very different. The importance lies in early and appropriate treatment, which signif-

icantly prolongs the quality of life for Parkinson’s patients [112]. Therefore, there is no interest in

comparing with other disorders with much lower incidence in the population. Within the realm of

tremor differentiation, using inertial sensors and classification models to characterize the severity

of movement disorders may be particularly relevant. This allows doctors to determine the best

course of treatment and helps patients and their families better understand the progression of the

disease.

Continuous monitoring of tremor is essential for assessing disease progression and adjusting

treatment as needed. It also allows us to study the acceptance of different medications and their

side effects in patients, a standard line of work in many movement disorder departments [112].

Wireless technologies, such as inertial sensors that integrate accelerometers and gyroscopes, have

made it easier to collect real-time tremor data. These devices are advantageous because they are

small devices, easy to place and use. However, manual analysis of this data is labor-intensive and

error-prone. Machine learning provides a solution by processing large volumes of tremor data and

extrapolating meaningful patterns. For example, Nilashi et al. [113] used a machine-learning ap-

proach to predict the progression of Parkinson’s disease using data from an inertial sensor, allowing

continuous and non-invasive monitoring. In our case, to create an integrated and user-friendly

tool for the end user, a mobile app is developed that combines three primary functions: record-

ing, storage, and processing. In the first recording activity, a wireless inertial sensor continuously
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records the signal for the desired frequency within the limits of the sensors. Second, the recorded

signals are stored in a cloud database, eliminating the need for local desktop storage and the time

required to organize information correctly. Finally, signal processing is performed on the server

using an optimized classification model that compares the new signal with the database, contrasted

with patients previously diagnosed and validated by more sophisticated equipment. Therefore, it

is believed that there is room for improvement in making this tool more robust and refined, but

it represents progress in patient monitoring because it does not require great complexity and time

for use.

Rehabilitation with inertial sensors is a technique that can help patients with tremor disease

improve their balance, coordination, and mobility [114]. Inertial sensors can be used to provide

feedback on gait and movements, which can help patients become more aware of their deficits and

perform more efficient movements. Rehabilitation with inertial sensors can be performed in a clin-

ical or home environment. Therapists can use inertial sensors to design personalized exercises for

each patient in a clinical setting. Patients can use inertial sensors to perform activities indepen-

dently in a home environment. Several studies have shown that rehabilitation with inertial sensors

can effectively improve Parkinson’s disease symptoms [115]. For example, one study found that

Parkinson’s patients who underwent rehabilitation with inertial sensors for 12 weeks significantly

improved their balance, coordination, and walking speed. While we have not had the opportunity

to use the tool or developed models in this area, the possibility remains open for recording repetitive

movements and studying how signal recordings evolve over time.

4.1 Main limitations

Machine learning models have proven decisive in differentiating between Parkinson’s disease and

Essential Tremor patients, but certain limitations must be stressed. First, their performance and

generalization heavily depend on the quality and quantity of training data and the appropriate

selection of parameters. Using a low number of patients and an excess of parameters can lead to

several limitations and issues affecting the effectiveness and reliability of the models. Accordingly,

the main limitations of this work are discussed in detail below.

With a limited number of patients compared to the complexity of the model, there is a significant

risk of overfitting. Overfitting occurs when the model fits too closely to noisy training data and

does not generalize well to new data. This can lead to deceptively good results on the training

data but poor performance on unseen data. Additionally, a low number of patients may fail to

capture the diversity and variability present in the target population. This can result in biases
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and poor generalization to demographic groups not represented in the dataset. The effectiveness

of the model can be highly sensitive to slight variations in the training set due to the lack of

sufficient data to provide a robust and stable view of patterns. To address these issues and given

that the study initially started with a limited patient base, over the years, it has been expanded to

include 98 registered subjects, comprising 49 Parkinson’s patients, 27 with Essential Tremor, and 22

healthy individuals. Although it remains a relatively modest database, iterative methods combining

different proportions of training and validation patients have been used to limit the effect of the

relatively low number of patients. The future goal is to continue expanding the database through

three new collaboration agreements with Asociación Catalana para el Parkinson, Consorci Sanitari

Alt Penedès-Garraf and the ONG Chilena de Centro de Trastornos del Movimiento (CETRAM),

as outlined in Appendix I.

Another issue faced throughout this work is the volume of parameters used. The adopted

procedure can be observed in the articles published regarding the studied sensor and its details.

Initially, the work started with the mean values of the accelerometer signals, eventually delving

into the contribution of each component of the triad to the accelerometer and gyroscope signals.

This led to the generation of complex models with a large number of parameters, which introduced

the following problems:

1. An excess of parameters in a model can increase its complexity and ability to fit training

data, leading to overfitting. These models negatively impact their ability to generalize.

2. Models with many parameters require more computational resources for training and vali-

dation. This can increase training times and limit the scalability of the model in practical

applications.

3. As the number of parameters increases, it becomes more challenging to interpret how the

model makes decisions. Complex models may lack transparency and applicability, which is

particularly problematic in medical applications where decision-making must be understand-

able to healthcare professionals.

Before developing the tool in the form of a mobile application plus web server, the project was

at this stage, with several models that could classify different studied tremor populations well, and

these classification models were nourished with a large number of parameters, such as the frequency

proportion, kinematic features, proportion of training and validation patients, or the number of

iterations to reorder the data. Consequently, various measures were adopted to mitigate these

limitations to create a lightweight and useful tool. Some of the decisions made were as follows:
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1. Patient training and validation data were combined to avoid overfitting and bias problems.

Larger and more diverse datasets improve model generalization and robustness despite the

limitation of having a small database.

2. Instead of using all developed kinematic features, only the relevant and physically significant

features for the specific study problem were selected. This reduced the model’s complexity,

decreased the risk of overfitting, and shortened the classification process.

3. Cross-validation was used to evaluate the model’s performance on different training and

validation datasets, providing a more reliable estimation of overall model performance.

4. Finally, models of easy implementation were chosen over extremely complex ones. This helped

facilitate model integration into the database and simplified data interpretation, even though

some advantages in population differentiation might have been sacrificed.
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Chapter 5

General Conclusions

The general conclusions are detailed in the order of accomplishment throughout the project aimed

at creating a diagnostic support tool for some types of movement disorders, specifically Parkinson’s

disease and Essential Tremor.

1. First and foremost, a methodology for easy and rapid implementation with inertial sensors

during clinical visits has been developed, allowing the recording of tremors in patients with

motor disorders. Thanks to the signal recording in various positions with an inertial sensor

that builts-in accelerometer and gyroscope, different kinematic features have been developed

to differentiate between movement disorder types with hand tremors, regardless of the severity

of the disease.

2. Secondly, machine learning classification models have enabled the identification of the optimal

combination of kinematic features, the portion of the recorded signal, the training/validation

signal ratio, and classification models for distinguishing between tremor disease types in two

phases. In the first phase, the classification was performed between patients with tremors

and healthy subjects. In the second phase, differentiation was made between patients with

tremors, Parkinson’s disease, and Essential Tremors.

3. Finally, the first version of TremorSoft has been developed in the form of a mobile app with a

web server. This tool has three primary functions. The first is to record the patient’s medical

history, including any associated issues or current medication. The second function is to record

the signal in desired positions on the web server. For this purpose, an interactive tutorial is

available, guiding the doctor/patient on the positions to be assumed for adequately recording

the signal using the smartphone or wireless inertial sensors. The last function of the tool is to

provide feedback to the doctor regarding the type of population to which the registered subject
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belongs based on the classification made by the machine learning model implemented on the

web server. Additionally, collaborating doctors in the project can validate the obtained results

if confirmed results are available from other more sophisticated and sensitive equipment, such

as SPECT. This allows the web server to increase the base of correctly diagnosed patients

from which the machine learning classification model derives its knowledge.
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Chapter 6

Future Work

This work does not conclude with this thesis. Still, it will continue in the future at this institution

as the coordinator and in collaboration with various institutions such as the University of Lisbon,

the University of Santiago de Chile, the ONG of Movement Disorders Center (CETRAM) of Chile,

Associació Catalana per al Parkinson, and recently, Consorci Sanitari Alt Penedès-Garraf. Some

points considered pending and will be the subject of future studies include the following topics.

1. First and foremost, the tool must be validated and further developed, making the app more

robust and feature-rich. This requires expanding the database of registered and confirmed

patients with a diagnosis. To achieve this, a framework agreement has been reached with

Consorci Sanitari Alt Penedès-Garraf, which will allow us to register more patients with

motor disorders, mainly Parkinson’s disease and Essential Tremor patients, over the next 2

to 3 years in different hospitals and clinics in the Garraf region.

2. Improvement of the functionalities of the tool in several aspects is needed. One line of work is

enabling doctors to create clinical records during the clinical visit using the tool. Additionally,

there is an intention to generate clinical reports directly within the app for sending by email in

PDF or RAR format for storage in the patient’s medical record without the need for manual

entry. Furthermore, there should be an enhancement in the ability to choose the recording

frequency and recording intervals, which are currently fixed by default.

3. Optimization of the classification models to reduce analysis times by using the minimum

number of parameters (kinematic features, sensor axis, frequency range, etc.) necessary to

achieve high accuracy in differentiating between patients with tremors. This optimization of-

fers other associated advantages, such as the ease of interpreting the results and understanding

the physical behavior with the parameters involved in the model. Another advantage is that
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the simpler the classification model is implemented on the cloud server, the less computation

time is required, resulting in a shorter response time for the doctor to access the necessary

information without delay.

4. The study of the impact of medication cycles on the mobility of Parkinson’s patients. Since

there are different medications, Parkinson’s patients must work with their doctors to find the

combination of drugs and doses that work best for them. Therefore, the developed technology

allows adaptation for patient monitoring over the 24 hours required to study these medication

cycles.
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Appendix A

Research activities schedule

In this appendix, the main tasks of this thesis, which were planned for a period of 36 months, are

described in detail. Among the work packages, various deliverables or milestones were evaluated

regarding their impact and research excellence.

Task 1. (1st to 5th and 12th to 14th month.) 1) Define, develop, and implement in MAT-

LAB the algorithms to preprocess the raw data of angular velocity and linear acceleration

from the available dataset and then extract specific kinematic features. 2) Replicate the

algorithms developed in the programming language to be used on the web server.

Task 2. (4th to 6th and 24th to 25th month) 1) Evaluate the measured kinematic features

using statistical analysis to select those features that demonstrate a high discriminatory power

between the classification groups. 2) Repeat the same process for the expanded database.

Task 3. (5th a 10th, 15th to 16th and 26th to 27th month) 1) Develop classification mod-

els based on the selected features and then evaluate and select the best set of models. 2) Im-

plement the selected models in the programming language that will be used on the web server.

3) Repeat the previous steps using the features identified as having high discriminatory power

in the extended database.

Task 4. (11th to 18th month) Develop a preliminary version of the mobile application on An-

droid or iOS, and the webserver to record and store data from new subjects and test the

performance of the classification models developed previously.

Task 5. (19th to 32nd month) Plan and execute, with the cooperation of specialists from the

Department of Movement Disorders in different hospitals, the registration of new patients

with Parkinson’s disease (confirmed by SPECT), patients with essential tremor (confirmed
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by a clinical evaluation), and healthy subjects.

Task 6. (22nd to 29th month) Analyze the expanded database to determine the influence of

different operational parameters (sampling rate, weight of the recording device, dataset size,

sensor axes, and sensor type) on the development of classification models that will be used

in the final application.

Task 7. (28th to 35th month) Develop the final version of the mobile application and the web

server and validate their performance with a small group of confirmed patients from collabo-

rating healthcare institutions.

Deliverables/milestones 1) Write the research proposal to be evaluated as a candidate for a

Ph.D. degree. 2) Write an article for a relevant journal with a high impact factor in Biomed-

ical Engineering, Software, or Movement Disorders. 3) Prepare presentations of the results

to communicate them to the scientific community, research centers, and international confer-

ences. 4) Promote the use of this future open-access application and its web server in hospitals

to validate its performance and expand the database of patients with tremor disorders. 5)

Write the doctoral thesis for evaluation.
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3 Universidad Politécnica de Cataluña, Barcelona, Spain

antonio.egea@upc.edu

Abstract. Parkinson’s disease (PD) and Essential Tremor (ET) are the
most common tremor syndromes in the world. Currently, a specific Sin-
gle Photon Emission Computed Tomography (123I-FP-CIT SPECT) has
proven to be an effective tool for the diagnosis of these diseases (97% sen-
sitivity and 100% specificity). However, this test is invasive and expen-
sive, and not all countries can have a SPECT system for an accurate
differential diagnosis of PD patients. Clinical evaluation by a neurolo-
gist remains the gold standard for PD diagnosis, although the accuracy
of this protocol depends on the experience and expertise of the physi-
cian. Wearable devices have been found to be a potential tool to help
in differential diagnosis of PD and ET in early or complex cases. In this
paper, we analyze the linear acceleration of the hand tremor recorded
with a built-in accelerometer of a mobile phone, with a sampling fre-
quency of 100 Hz. This hand tremor signal was thoroughly analyzed to
extract different kinematic features in the frequency domain. These fea-
tures were used to explore different Machine Learning methods to auto-
matically classify and differentiate between healthy subjects and hand
tremor patients (HETR Group) and, subsequently, patients with PD and
ET (ETPD Group). Sensitivity of 90.0% and Specificity of 100.0% were
obtained with classifiers of the HETR group. On the other hand, classi-
fiers with Sensitivity ranges from 90.0% to 100.0% and Specificity from
80% to 100% were obtained for the ETPD group. These results indicate
that the method proposed can be a potential tool to help the clinicians
on differential diagnosis in complex or early hand tremor cases.

Keywords: Parkinson’s Disease · Essential Tremor ·
Machine Learning · Accelerometry · Wearable device
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1 Introduction

Tremor is an involuntary, rhythmic and oscillatory movement of a part of the
body [1]. It is not seen during sleep and its effects are commonly observed in
the fingers, hands, legs, head and voice [2]. The limbs and head, when not sup-
ported, show a slight tremor called physiological tremor, which is generally of
low amplitude and interferes only with fine motor control [1,3]. Physiological
tremor is usually not visible or symptomatic, unless it is increased by fatigue or
anxiety, whereas pathological tremor is usually visible and persistent [1].

Parkinson’s disease (PD) and Essential Tremor (ET) are the most common
tremor syndromes worldwide [4,5]. The differentiation between PD and ET can
sometimes be difficult at early stages or patients without a family history of
PD, and misdiagnosis rates can reach up to 25%, even when they are handled
by a specialist in movement disorders [4,7–9]. Typically, PD is characterized by
resting tremors and ET by postural or kinetic tremors [5]. However, some PD
patients may have postural tremor [5] and some ET patients may have resting
tremors during disease progression [10,11]. Accordingly, an early and accurate
diagnosis is fundamental for treatment selection [4,5,10]. Early treatment of
PD reduces or prevents disability and the need for support to maintain the
quality of life, whereas incorrectly prescribing PD medication to ET patients is
ineffective and exposes them to potential and serious side effects [5]. Nowadays,
dopamine transporter (DAT) imaging using Single Photon Emission Computed
Tomography (SPECT) with appropriate tracers (123I-FP-CIT) has proven to be
an efficient tool for diagnosing PD [4,5,12]. This technique is a high cost test
and its use is limited to a few developed countries worldwide. Additionally, it
is an invasive test with a radioactive fluid that requires patient compatibility,
which may present limitations for its use.

Wearable devices are currently being widely investigated in the movement
disorder field, because they can help clinicians in the differentiation between PD
and ET. Several works have been published on this topic. Uchida et al. [11] used
a triaxial accelerometer to measure the intensity and frequency of hand tremor
in resting, posture, writing and walking conditions in subjects with ET and PD
patients. They stated that tremor is attenuated during walking in ET subjects
with resting tremor and increased in PD patients. Recently, Bernhard et al. [13]
studied the gait and balance deficit by using wearables at the lower back and
the ankle. They denoted that wearable devices let us assess the progression of
movement disorders and response to treatment. Additionally, Wile et al. [14]
made a classification of patients with PD and ET via calculation and analysis
of the Mean Harmonic Power by using a smartwatch accelerometer. Thanks to
that, they noted that compared to an analog accelerometer, a smartwatch device
can provide accurate and relevant information for differential diagnosis between
PD and ET subjects, based on postural tremor. Locatelli et al. [5] recorded
hand tremors during resting, postural and kinetic tasks using a wearable sen-
sor to differentiate PD and ET patients. They observed that, in the frequency
domain, the execution of resting tasks showed a predominance of PD over ET
tremors, while the data provided by postural and kinetic tasks stand out in
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ET subjects. On the other hand, some researchers have used Discrete Wavelet
Transforms and Support Vector Machines to differentiate between the two hand
tremor conditions. Woods et al. [3] developed an offline application that uses a
mobile phone accelerometer to perform the diagnosis and classification of PD
and ET patients. Also, Surangsrirat et al. [9] classified PD and TE patients
based on temporal angular velocity fluctuations, recorded with a 6-DOF inertial
measurement unit. Additionally, Kramer et al. [15] recorded electromyography
(EMG) and accelerometry (ACC) signals to distinguish between different types
of tremor through Wavelet Coherence Analysis (WCA). They stated that WCA
is superior to a standard coherence analysis and could be a useful additional tool
for discriminating between tremor types, when the result obtained with other
methods is inconclusive. Furthermore, Nanda et al. [8] used the Wavelet trans-
form to extract EMG and ACC signal features. These features combined with
an Artificial Neural Network were used to perform a quantitative classification
of ET and PD. Finally, Raza et al. [16] compared the diagnosis obtained by
using wearable devices with respect to the early diagnosis made by a specialist.
In this work, machine learning methods were used to perform the differential
classification between PD patients and patients with other movement disorders.

In previous works [4,6], methods for the differential diagnosis of subjects
with movement disorders using the built-in accelerometer of a mobile phone
were proposed. The proposed method in [4] allows to characterize and recognize
the discriminatory features of hand tremor in patients with PD and ET. The
present work uses the same data to implement several machine learning algo-
rithms and kinematic indexes that could enhance the discrimination features
and, ultimately, improve the sensibility and specificity not only between PD and
ET, but also other types of tremor. We expect this method will be extremely
useful to aid physicians in the differential diagnosis of complex or early cases.

2 Materials and Methods

Figure 1 shows the different steps of the method we use. These include signal
recording using a smartphone, signal processing classification methods using
Matlab.

The demographic characteristics of the subjects, the method for recording
and preprocessing of the acceleration data used in this study is described in [4].
Data preprocessing, kinetic feature extraction, training and validation of classi-
fiers were carried out using Matlab v. R2017b (Mathworks Inc., USA). Figure 2
summarizes all the tasks performed for the data structuring. Recorded data were
initially preprocessed to remove noise components associated with respiration,
pulse, or any sudden high-frequency movement. In addition, Power Spectral Den-
sity was calculated for each acceleration signal, from which six kinetic features
were extracted. Finally, the set of kinetic features of each subject was properly
labeled to structure the data.
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Fig. 1. Schematic of differential diagnosis system for PD and ET subjects.

Fig. 2. Data structuring process: recording, preprocessing, featuring and labeling.

2.1 Subjects

A total of 52 subjects (17 patients with PD, 16 patients with ET, 12 healthy
subjects and 7 patients with inconclusive diagnosis) were recorded in the Move-
ment Disorders Unit of the Hospital Cĺınic of Barcelona between October 2015
and December 2016 [4]. All the patients had visually evidences of hand tremor
and were diagnosed or had strong indications of PD or ET. Patients had scores
of 1 or 2 on the Fahn-Tolosa-Maŕın scale for ET and Unified Parkinson’s Disease
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Rating Scale (UPDRS) for PD patients, a SPECT test confirmed all the patients
with PD.

2.2 Data

The data was recorded with the triaxial accelerometer of an iPhone 5S using the
SensorLog application software [17], and sent to a computer for further analysis.
The subjects were seated in an armrest chair and the smartphone was placed
on the dorsum of the most affected hand in patients or in the dominant hand
in healthy subjects. Records of 30 s with a sampling frequency of 100 Hz were
taken. Additionally, two arm positions were studied: (1) Rest position (Position
A): the subject rests his forearm on the upper part of the armrest and (2) Arms
stretched (Position B): the subject keeps both upper limbs fully extended.

2.3 Preprocessing

In early PD, the full triad of symptoms and clinical signs (resting tremor,
bradykinesia and rigidity) may not be fully manifested [18,19] and usually the
first indication for PD is resting tremor with moderate amplitude and low fre-
quency (4–6 Hz), however, some PD patients may also present postural tremor
with a medium frequency of 6 to 8 Hz [5]. ET is characterized by posture or
kinetic tremors with a medium frequency (5–8 Hz) [5], although some patients
may have tremors at rest during disease progression [10,11]. Besides the pre-
processing described in the aforementioned study, the signals were filtered using
a 10th order Butterworth filter with cut-off frequencies of 1 and 16 Hz [20], in
which the PD and ET frequencies are found. Breathing, pulse or any sudden
high frequency movement during recordings were also removed with this filter.
Since the analysis was performed in the frequency domain, Power spectral den-
sity was calculated using Welch’s periodogram by averaging 3s segments of signal
recording with 50% overlap of Hanning’s windows. The average power spectral
densities of the linear accelerations were calculated to find the kinematic indices
that allow us to differentiate hand tremor differences.

2.4 Feature Extraction

Figure 3 exhibits a Normalized Power Spectral Density (PSD) of tremor of an
ET subject. It also illustrates the kinetic features calculated from the spectral
power analysis: Median Power Frequency (MPF), Power Dispersion (PD), Peak
Power Frequency (PPF), Harmonic Index (HI), Relative Power Contribution to
the first harmonic (RPC) and Relative Energy (RE) to compare PD and ET
subjects.

– MPF: Frequency at the power distribution center.
– PD: Frequency band, centered on MPF, which contains 90% of the total

power.
– PPF: Frequency at which the maximum power is found.
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– HI: Quotient between the area under the power spectral density curve and a
rectangle bounded on the sides by the frequency band of interest (0–20 Hz)
and vertically from 0 to PPF.

– RPC: Quotient between the power spectral density of harmonics found
between a frequency division threshold (fth) and 20 Hz and the total nor-
malized power spectral density between 0 and 20 Hz.

– RE: Quotient between the normalized power spectral densities of resting
(PSDr) and posture (PSDp) in the frequency range 0 to 20 Hz.

Fig. 3. A normalized spectral power density of tremor in an ET subject

In particular, RE and RPC features were added to enhance the differentiation
between PD and ET [4], since their tremor frequency components are different in
resting or posture conditions. Theoretically, PD patients should present a higher
total spectral power of resting tremor than postural tremor, and in the opposite
way for ET patients. The set of features extracted from the data of each subject
were respectively labeled according to two classification groups:

1. HETR Group:

– Tremor patients - TR (Positive Class)
– Healthy subjects - HE (Negative Class)

2. ETPD Group:

– Parkinson’s Disease - PD (Positive Class)
– Essential Tremor - ET (Negative Class)

Therefore, it is possible to classify subjects between HE and TR and, within
subjects identified as TR differentiate between PD and ET patients.
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2.5 Training, Validation and Selection of Classification Models

Figure 4 shows all the tasks performed in the process of training, validation and
selection of classification models. All data were randomly divided into two sets
(training set and validation set) with a proportion of 70-30. For the training set,
a total of 63 combinations of features and classification methods were tested with
Machine Learning algorithms with and without Principal Component Analysis
(PCA), 23 with PCA + 23 without PCA.

Fig. 4. Training, validation and selection of Classification Models

The performance of the classification models was evaluated by using a 6-
fold cross validation. For each classification model, the accuracy and Area
Under the Curve (AUC) for non-parametric receiver operating characteristic
were estimated from the classification probabilities resulting of cross validation.
Afterwards, validation sets were used to calculate Sensitivity (Eq. 1), Specificity
(Eq. 2) and SSMean (Eq. 3), which is the average value of specificity and sen-
sibility. In this context, Sensitivity defines the ability of a classification model
to detect a positive case, that is, to detect patients with tremor in the group
of HETR or patients with PD in the group of ETPD. Furthermore, Specificity
defines the ability of the classification model to identify negative cases, being
healthy subjects in the group of HETR Group or patients with ET in the group
of ETPD.

Sensitivity =
TP

TP + FN
(1)

Specificity =
TN

TN + FP
(2)

SSMean =
Sensitivity + Specificity

2
(3)

Validation and training processes were iterated 100 times for the same fea-
ture combinations and classification methods. This ensured that the training was
carried out with a varied set of data, so that classification models with different
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performance levels were considered. After all iterations, Sensitivity, Specificity
and SSMean were calculated for each classification model. Classification models
with the highest average values of SSMean in the groups of HETR and ETPD
were identified. The best 10 classification models after these 100 iterations pro-
cess were listed and studied in the results section.

3 Results

The output results after applying the iteration methodology is listed in Table 1.
All the results reported here are obtained by testing on validation sets. The
10 best classification models come from a total of 2898 classification models,
due to the feature and classification methods combinations. The average column
represents the mean behavior during 100 iterations (in which training and val-
idation data were randomized), whereas the best case column shows the best
performance among all iterations.

Table 1. Healthy vs. Trembling subjects discrimination. Top 10 Classification Models
with the highest SSMean values in the HETR group. PCA: Principal Components
Analysis, Sen: Sensitivity and Spe: Specificity

Features Method PCA Averages Best Case

Sen Spe SSMean Sen Spe SSMean

PPF+MPF Quadratic Discriminant No 71.5 99.4 85.4 90.0 100.0 95.0

MPF+HI Quadratic Discriminant No 71.3 99.5 85.4 90.0 100.0 95.0

PPF+MPF+PD Quadratic Discriminant No 71,2 99.0 85.1 90.0 100.0 95.0

MPF Quadratic Discriminant No 70.7 99.4 85.0 90.0 100.0 95.0

MPF Quadratic Discriminant Yes 70.7 99.4 85.0 90.0 100.0 95.0

PPF+MPF+HI Quadratic Discriminant No 73.2 96.9 85.0 90.0 100.0 95.0

PPF+MPF Quadratic Discriminant Yes 70.2 99.8 85.0 90.0 100.0 95.0

PPF+MPF+PD Quadratic Discriminant Yes 70,2 99.8 85.0 90.0 100.0 95.0

MPF+PD Quadratic Discriminant Yes 70.2 99.4 84.8 90.0 100.0 95.0

MPF+PD+HI Quadratic Discriminant No 70.5 98.9 84.7 90.0 100.0 95.0

It is noticeable that all the models used the Quadratic Discrimination
method, and the common kinematic feature for all of them was MPF. This
suggests that the MPF feature may provide a significant differentiation between
HE and TR. The classification model with the highest SSMean average was
obtained using both MPF and PPF features. In other words, compared to the
other models, this classification model had the best performance in most of the
100 iterations. The models that presented the maximum SSMean values are
considered on the top of the table, because of the combined good results in sen-
sibility and specificity. Note that for all classification models the best cases had
an SSMean value of 95.0% (90.0% Sensitivity and 100.0% Specificity). Moreover,
Table 2 shows the best 10 classification models with the highest SSMean values
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Table 2. Parkinson’s Disease vs. Essential Tremor patient discrimination. Top 10
Classification Models with the highest SSMean values in the ETPD group. PCA:
Principal Components Analysis, Sen: Sensitivity and Spe: Specificity

Features Method PCA Averages Best Case

Sen Spe SSMean Sen Spe SSMean

RPC+RE+HI Logistic Regression No 69.2 85.4 77.3 100.0 90.0 95.0

RPC+RE+MPF+HI Logistic Regression No 69.5 83.0 76.3 100.0 90.0 95.0

RPC+RE+PPF+HI Logistic Regression No 67.7 84.5 76.1 100.0 80.0 90.0

RPC+RE Logistic Regression No 66.7 84.8 75.8 100.0 100.0 100.0

RPC+RE+PPF Logistic Regression No 66.4 84.9 75.7 90.0 90.0 90.0

RE+PPF+HI Logistic Regression No 66.6 83.9 75.3 100.0 100.0 100.0

RE Medium KNN No 73.8 76.4 75.1 100.0 100.0 100.0

RE Cubic KNN No 73.8 76.4 75.1 100.0 100.0 100.0

RE Medium KNN Yes 73,8 76.4 75.1 100.0 100.0 100.0

RE Cubic KNN Yes 73.8 76.4 75.1 100.0 100.0 100.0

for the group of ETPD, where it can be noted which method and kinematic are
essential to distinguish between PD and ET subjects.

The first six classification models used the Linear Regression method,
whereas the last four used different types of KNN algorithms. Note that the
kinematic feature RE is used in all the classification models to differentiate
between the two groups. This is consistent with the results obtained in [4], since
with this feature a significant differentiation was obtained between patients with
PD and ET (84.4% discrimination accuracy). RPC is a feature that also had sig-
nificant performance in the previous paper. Classification models that use these
two features are on the top five. The present work found that the best case of the
classification model that combines the Logistic Regression method and these two
kinematic features (RPC and RE) obtained a SSMean value of 100.0% (100.0%
Sensitivity and 100.0% Specificity). Table 2 shows five other cases in which an
SSMean value of 100.0% was obtained. These are promising results to develop a
helpful tool for clinicians for the differential diagnosis of PD and ET. However,
a larger database will be needed in order to further validate these results.

4 Conclusion

The potential benefits of using Machine Learning for classification of patients
with hand tremor was investigated in this paper. The main findings drawn
from this research are, firstly, that the linear acceleration is able to provide
significant information for an appropriate classification of healthy subjects and
patients with tremor and, ultimately, differentiate between PD and ET subjects.
The effectiveness of such differentiation depends substantially on the correct
selection and evaluation of the classifier to be implemented. Secondly, during
the training of the classifiers, it was possible to identify outstanding perfor-
mance of kinetic features combinations and classification methods. In particular,
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Quadratic Discriminant method combined with MPF feature were the most rel-
evant combination to differentiate healthy from pathological subjects, whereas
Logistic Regression method combined with RE and RPC features were crucial
to differentiated PD from ET subjects.

As future work, the methodology presented in this paper will be implemented
to analyze the angular velocity signal of the gyroscope built-in the mobile device.
In this way, it will be possible to determine if the angular velocity assess a
higher performance level than that obtained with the linear acceleration analysis.
Finally, a low-cost app will be developed to provide relevant information to
clinicians to help in clinical evaluation of the patients with hand tremor in the
first stages.
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ABSTRACT Recent research has shown that smartphones/smartwatches have a high potential to help
physicians to identify and differentiate between different movement disorders. This work aims to develop
Machine Learning models to improve the differential diagnosis between patients with Parkinson’s Disease
and Essential Tremor. For this purpose, we use a mobile phone’s built-in gyroscope to record the angular
velocity signals of two different arm positions during the patient’s follow-up, more precisely, in rest and pos-
ture positions. To develop and to find the best classification models, diverse factors were considered, such as
the frequency range, the training and testing divisions, the kinematic features, and the classification method.
We performed a two-stage kinematic analysis, first to differentiate between healthy and trembling subjects
and then between patients with Parkinson’s Disease and Essential Tremor. The models developed reached
an average accuracy of 97.2± 3.7% (98.5% Sensitivity, 93.3% Specificity) to differentiate between Healthy
and Trembling subjects and an average accuracy of 77.8 ± 9.9% (75.7% Sensitivity, 80.0% Specificity) to
discriminate between Parkinson’s Disease and Essential Tremor patients. Therefore, we conclude, that the
angular velocity signal can be used to develop Machine Learning models for the differential diagnosis of
Parkinson’s disease and Essential Tremor.

INDEX TERMS Differential diagnosis, Parkinson’s disease, essential tremor, gyroscope, kinematic analysis,
machine learning.

I. INTRODUCTION
Tremor is a compulsory and oscillatory movement of a part
of the body [1]. Its effects are primarily visible in the limbs,
head, and voice [2]. Physiological tremor is usually of low
amplitude and interferes only with finemotor control. In most
cases, it is not visible or symptomatic, except when increased
by fatigue or anxiety [1], [3]. On the contrary, pathologi-
cal tremor is usually visible and constant [1]. Parkinson’s
disease (PD) and Essential Tremor (ET) are the most com-
mon tremor syndromes worldwide [4], [5]. Distinguishing
between PD and ET can be difficult in the early stages of

The associate editor coordinating the review of this manuscript and
approving it for publication was Diep N. Nguyen.

the diseases or for patients without a family history of PD.
The risk of incorrect diagnosis is high; even specialists in
movement disorders may have a rate of up to 25% false pos-
itives or negatives [4], [6]–[8]. Typically, resting tremors are
associated with PD, whereas postural or kinetic tremors asso-
ciate with ET [5]. However, some PD patients may develop
postural tremor [5], and some ET patients may develop rest-
ing tremors during the progression of the disease [9], [10].
Early diagnosis is fundamental to ensure adequate treatment
of the patient and to prevent harmful side-effects [4], [5], [9].
Nowadays, dopamine transporter (DAT) imaging using Sin-
gle Photon Emission Computed Tomography (SPECT) with
appropriate tracers (123I-FP-CIT) is the most reliable tech-
nique for diagnosing PD [4], [5], [11]. However, the test
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is costly and therefore limited to economically developed
countries. Additionally, it is an invasive test with a radioactive
fluid that requires patient compatibility, which may limit its
applicability.

Therefore, it is a current topic of research to develop
fast and non-invasive techniques for the early and reliable
diagnosis of PD. Unlike the kinematic position informa-
tion captured with optical movement detection systems [12],
the accelerometry analysis is currently a hot topic in the
biomechanical field. It records the motion information of
physical activity based on wearable devices [13]. In this
sense, extensive research on the use of wearable devices in
the field of movement disorders is underway, with numer-
ous papers published on these topics. Uchida et al. [10]
employed a triaxial accelerometer to measure the severity
and frequency of hand tremors in patients with ET and PD
under conditions of rest, posture, writing, and walking. They
observed that resting tremor is attenuated during walking in
patients with ET and increased in patients with PD. Recently,
Bernhard et al. [14] studied the gait and balance deficit by
using wearables fixed at the lower back and the ankle. They
denoted that wearable gadgets could assess the progression of
movement disorders and the response to the treatment of the
disease.Wile et al. [15] classified patients with PD and ET via
calculation and analysis of the Mean Harmonic Power using
a smartwatch accelerometer. They noted that, compared to
an analog accelerometer, a smartwatch device could provide
accurate and relevant information for the differential diagno-
sis between PD and ET subjects. Locatelli and [5] recorded
hand tremors during resting, postural, and kinematic tasks
using a wearable sensor to differentiate PD and ET patients.
They observed that, in the frequency domain, the execution of
resting tasks showed a predominance of PD over ET tremors.
In contrast, the data provided by postural and kinetic tasks
stand out in ET subjects.

Some researchers have used Machine Learning (ML)
to differentiate between the two tremor conditions.
Woods et al. [3] developed an offline application that uses
a mobile phone accelerometer to perform the diagnosis and
classification of PD and ET patients. Surangsrirat et al. [9]
classified PD and ET patients based on temporal angular
velocity fluctuations, recorded with a 6-DOF inertial mea-
surement unit. Kramer et al. [16] combined Electromyogra-
phy (EMG), and Accelerometry (ACC) signals to distinguish
between different types of tremor throughWavelet Coherence
Analysis (WCA). They stated that WCA is superior to a
standard coherence analysis and could be a useful additional
tool for discriminating between tremor types when the result
obtained with other methods is inconclusive. Nanda et al. [7]
used the Wavelet transform to extract EMG and ACC signal
features. These features, combined with an Artificial Neu-
ral Network, were used to perform a quantitative classifi-
cation of ET and PD. Finally, Raza et al. [17] compared
the diagnosis obtained by using wearable devices with the
early diagnosis made by a specialist. They also used ML
methods to perform the differential classification between PD

and other movement disorders. Besides, in previous works,
we proposed different methods for the differential diagnosis
of the two diseases using the mobile phone’s built-in triaxial
accelerometer [4], [18], [19]. The developed methods allow
to characterize and recognize the discriminative features of
hand tremor in PD and ET patients and to use ML algorithms
to improve the differentiation between them.

This work aims to use the same methodology to evaluate
the angular velocity data, recorded with the mobile phone’s
built-in gyroscope, and to build ML models to differentiate
healthy subjects (HS) and tremor patients (TP) and, subse-
quently, within the subjects identified as TP to discriminate
PD patients from ET patients. These models are performed
based on two different frequency ranges and three group
divisions. We expect this method to be an additional tool
to help the physician in case of uncertainty and undecided
diagnosis of the diseases.

II. MATERIALS AND METHODS
Fig. 1 illustrates the different steps that compose the method-
ology developed in this work: Signal recording with a mobile
phone, data analysis, and model training and testing. The
demographic characteristics of the subjects, the method of
recording, and the preprocessing of the dataset are described
in Barrantes et al. [4]. The whole process was carried out
in Matlab v. R2019b (MathWorks Inc., USA) on a computer
with an Intel i5-9600K processor at 3.70GHz, 16GB of RAM
and an NVIDIA GeForce GTX 1650 graphics card with 4 GB
of V-RAM.

A. PATIENTS AND DATASET DESCRIPTION
The dataset used in this study includes recordings of 19 PD
patients, 20 ET patients, and 12 HS from the Movement
Disorders Unit of the Hospital Clinic of Barcelona between
October 2015 and December 2016 [4]. All the patients had
visual evidence of hand tremors and were diagnosed with
strong indications of PD or ET. Patients had scores of 1 or
2 on the Fahn-Tolosa-Marín scale for ET and the Unified
Parkinson’s Disease Rating Scale (UPDRS) for PD patients.
A SPECT test confirmed all the patients with PD.

The angular velocity signals were collected with the
built-in triaxial gyroscope of an iPhone 5S using SensorLog
application [20]. The smartphone was placed on the dorsum
of the most affected hand in TP or the dominant hand in
HS while sitting in an armrest chair. Tremor signals were
recorded with a frequency of 100 Hz and an average duration
of 35.66 ± 4.08 s, 35.42 ± 3.42 s, and 33.30 ± 3.27 s for
HS, ET, and PD subjects, respectively. As shown in Fig. 1,
two-arm positions were studied: 1) Rest (Position A), the sub-
ject rests his forearm on the upper part of the armrest, and
2) Posture (Position B), the subject keeps both upper limbs
fully extended.

B. DATA ANALYSIS
One of the clinical signs and symptoms of PD is tremor at
rest with moderate amplitudes and low frequencies from 4 to
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FIGURE 1. Schematic of the methodology for the differential diagnosis of PD and ET patients.

6 Hz [9], [21]. In contrast, ET is characterized by postural or
kinetic tremors with mean frequency values between of 5 to
8 Hz [15], [22]. Furthermore, physiological tremor is in the
frequency band of 8 to 12 Hz [23]. Based on this, the dataset
is preprocessed as follows in order to extract the kinematic
features: artifacts generated by starting and ending the signal
recording were eliminated by cutting approximately 2 sec-
onds on both sides of the signals. Two 10th order Butterworth
filters with cut-off frequencies of 3 to 10 Hz [11] and 1 to
16 Hz [24], where PD and ET are found, were implemented
separately in order to identify an optimal frequency range for
feature extraction. Additionally, these filters allow reducing
the sensor offsets and drifts due to various physical phenom-
ena such as motion artifacts [17], [25]. Figure 2 shows the
time-domain signal of PD, ET, and HS subjects in posture
position before and after signal processing.

Since the analysis was performed in the frequency domain,
Power Spectral Density (PSD) was calculated. For each of
the three spatial directions, a Welch’s periodogram averaging
segments of the signal recording of 3s with a 50% overlap
of Hanning’s window was applied. The PSD average of the
angular velocity components was calculated and normalized.
The resulting averagewas used to calculate kinematic indexes
that allow the identification and classification of subjects with
pathological tremor and differentiate them between PD and
ET. The kinematic features are briefly explained below:

• Median Power Frequency (MPF): Frequency at which
the PSD is halved.

• Power Bandwidth (PB): Frequency band, centered
around the MPF, which contains 90% of the total power.

• Peak Power Frequency (PPF): Frequency at which the
maximum power is located.

• Harmonic Index (HI):Quotient between the area under
the PSD curve and a rectangle bounded on the sides by
the frequency band of interest (fl - fh) and the Peak Power
(PP).

HI =

∫ fh
fth
PSD(f ) · df

PP · (fh − fl)
(1)

• Relative Power Contribution to the first harmonic
(RPC): Quotient between the PSD of harmonics found
between a frequency division threshold (fth) and fh and

FIGURE 2. Time-domain signal of PD, ET and HS subjects in posture
position before and after signal processing.

the PSD between fl and fh.

RPC =

∫ fh
fth
PSD(f ) · df∫ fh

fl
PSD(f ) · df

(2)

• Relative Energy (RE): Quotient between the normal-
ized PSD of resting (PSDA) and posture (PSDB) in the
frequency range of fl to fh.

RE =

∫ fh
fl
PSDA · df∫ fh

fl
PSDB · df

(3)
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• Harmonic Index Ratio (HIR): Quotient between the
harmonic indexes of resting and posture position.

HIR =
HIA
HIB

(4)

• Sum of Maximum Power (SMP): Sum of the power
value at the PP of resting and posture position.

SMP = PPA + PPB (5)

After extracting the feature matrix of the subjects, they
were labeled as follows:

1) Case 1: TP vs. HS
• TP (Tremor patients) - Positive Class.
• HS (Healthy subjects) - Negative Class.

2) Case 2: PD vs. ET
• PD (Parkinson’s Disease) - Positive Class.
• ET (Essential Tremor) - Negative Class.

Since thirteen features have been extracted per subject,
we used feature selection algorithms [26] to reduce the
dimensionality of the resulting matrix and to select a subset
of a maximum of five features to create the classification
models. This allows to reduce the training time of the mod-
els and to focus on the features that provide the highest
differentiation between both Cases’ classes. We used the
Chi-square test and the Unbiased Tree method to estimate,
separately, the importance of each feature [27], [28]. For
each test, the five features with the highest importance values
were identified. The features that matched in both tests were
chosen for further analysis. This process was carried out in
two frequency ranges: 1-16 Hz and 3-10 Hz.

C. MODEL TRAINING AND TESTING
The classification models designed differ in four aspects:

1) The frequency range of analysis. As mentioned in
the previous subsection, the kinematic features were
extracted in two different frequency ranges (1-16 Hz
and 3-10 Hz) to identify which range is optimal for
differentiating between physiological and pathologi-
cal tremors and, subsequently, between pathological
tremors.

2) The proportion of training and testing data. For
each of the cases presented, the dataset was randomly
divided into three different proportions (30/70, 50/50,
and 70/30), ensuring that both positive and negative
classes were distributed at the same ratio in each train-
ing and testing set. Table 1 details, for both cases in all
proportions, the class ratios obtained in the training and
testing sets.
The reason why we decided to use three different divi-
sions and not one, as commonly implemented in ML,
was to evaluate the influence of the data distribution to
obtain high-performance models.

3) The kinematic features used. Using the features
extracted and selected during the data analysis,
we identified all the possible combinations of features

TABLE 1. Training and testing set class ratios.

that can be generated, from a single feature to the
whole of them. Since we set 5 as the maximum number
of features, for some cases, up to 31 combinations
of features were obtained. These feature combinations
allowed us to evaluate the discriminatory ability the
features can reach individually or in combination using
the classification methods that implement them.

4) The classification method used to train the model.
The classification methods used for training the
models were developed based on the Matlab Classifi-
cation Learner app. This app offers a variety of super-
vised ML methods to classify data, including decision
trees, discriminant analysis, Support Vector Machines,
Logistic Regression, Nearest Neighbors, Naive Bayes,
and ensemble classification. There are several default
configurations of hyperparameters of these methods in
the app, offering a total of 25 different configurations
for the training of classification models. We integrated
all configurations into a script and applied them to the
dataset.

Given the number of combinations of features that were
possible to obtain and the diverse configurations of the clas-
sification methods, we obtained 775 different classification
models for some cases. After setting the training sets, the test-
ing sets were used to calculate Accuracy, Sensitivity and
Specificity. We defined Sensitivity as the capacity of a classi-
fication model to identify positive cases, that is, to identify
TP in Case 1 or PD subjects in Case 2. On the contrary,
Specificity is defined as the ability of the classification model
to identify negative cases, being HS in Case 1 or ET subjects
in Case 2. All training and testing processes were randomly
iterated 100 times for the same combinations of features and
classification methods in each of the three training/testing
divisions. Consequently, a different level of performance was
obtained in each iteration for each model. After all iterations,
the average values of Accuracy, Sensitivity, and Specificity
obtained for each classification model were calculated. The
three best classification models for Cases 1 and 2 were
identified based on the output classification metrics. Fig. 3
summarizes the whole process that was implemented for the
development and selection of the classification models.

III. RESULTS
We divide the results of this work into two subsections. In the
first part, we evaluate the model’s capacity to differentiate TP
from HS. In the second part, we analyze the model’s ability
to differentiate patients with PD and ET.
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FIGURE 3. Process diagram for the development and selection of classification models.

TABLE 2. Evaluation and selection of kinematic features for the
differentiation of tremor and healthy subjects.

A. DIFFERENTIATION OF TREMOR PATIENTS AND
HEALTHY SUBJECTS
Table 2 shows the results of the evaluation and selection of
features for distinguishing between TP and HS. In the 3 to
10 Hz frequency analysis, the five features with the highest
values were identical in both tests. These features were: SMP,
RPCB, HIB, HIA, and PBB. In the 1-16Hz frequency analysis,
four of the five features identified by both tests coincided:
SMP, RPCB, HIB, and PBB.

The upper and left side of Figure 4 shows the best models
for the differentiation of TP and HS in the frequency range
of 3-10 Hz, sorted by the three training/testing divisions. For
each division, the top 3 models were identified and listed
based on their average metrics. The SMP feature is present
in all nine models, while PBB, HIB, and RPCB are present
in two of them. The best performing classification model
shows an average accuracy of 94.3± 5.6% (95.9% sensitivity,

89.5% specificity), and an average computational cost of
6.7 ± 0.7 ms. This model was achieved in a 70/30 division,
using the SMP feature and the Linear SVMmethod. Although
there are a variety of classification methods among the nine
listed, in both the 30/70 and 50/50 divisions, the best model
implemented the Logistic Regression method and the SMP
feature. On the right side, the figure visualizes the best models
obtained in the frequency analysis from 1 to 16 Hz in all
training/testing divisions. Again, the three best models were
selected based on their average performances. All models in
this frequency range use SMP as a discriminatory feature,
while the PBB feature is applied in eight of them. The best
model shows an average accuracy of 97.2 ± 3.7% (98.5%
sensitivity, 93.3% specificity), and an average computational
cost of 105.8 ± 1.9 ms. There is only one model that imple-
ments a single feature, SMP, using a 70/30 division and the
Medium Tree method. The rest of the models implement
Ensemble Subspace KNN method and combine various fea-
tures. Note that the average computational cost of the models
that use the Medium Tree method with a single feature is
considerably smaller than those obtained with the models
that use the Ensemble Subspace KNN method and multiple
features.

B. DIFFERENTIATION OF PARKINSON’S DISEASE
PATIENTS VS. ESSENTIAL TREMOR PATIENTS
Table 3 shows the evaluation and selection of features for
the differentiation of PD and ET patients. In the 3-10 Hz
frequency analysis, the five features identified in each test,
separately, were the same: SMP, HIR, RE, RPCA, andMPFA.
In the frequency range of 1-16 Hz, only three of the five
features coincided: HIR, RE, and RPCA.

The bottom left side of Figure 4 depicts the best models
for the differentiation of PD and ET in the frequency range
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FIGURE 4. Output results of the machine-learning algorithm based on study case, range of frequency,
kinematic features, and classification methods.

of 3-10 Hz. The top 3 models in each training/testing division
are listed, sorted by their average performance values. The
HIR feature seems to provide significant information for the
differentiation of tremor patients, since it is present in all the
models depicted. The best overall performance was achieved
in the 70/30 division, combining the HIR and MPFA features
and using the Linear SVM method. This model showed an
average accuracy of 77.8 ± 9.9% (75.7% sensitivity, 80.0%
specificity), and an average computational cost of 5.4 ±
0.3 ms. The right side of the figure visualizes the models with
the best performances for the differentiation of PD and ET in

the frequency range from 1 to 16 Hz. Again, the best model
can be found in the 70/30 division, with an average accuracy
of 76.1 ± 11.8% (72.5% sensitivity, 79.7% specificity) and
an average computational cost of 26.5 ± 1.7 ms. The feature
that is present in most of the models is RE, being used in eight
of the nine models shown. In the 30/70 and 50/50 divisions,
the two best classification models use the Gaussian Naive
Bayes method. In contrast, in the 70/30 division, the two
best performances were obtained with two different config-
urations of the KNN method, obtaining the same average
accuracy.
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TABLE 3. Evaluation and selection of kinematic features for the
differentiation of tremor subjects: PD vs. ET.

IV. DISCUSSION
The results obtained in this work show that the character-
ization and differentiation between tremor in PD and ET
are possible with a mobile phone’s built-in gyroscope. The
accuracy of the tremor differentiation using this sensor is
comparable to the performance obtained using a mobile
phone’s built-in accelerometer [4], [19]. Although there is a
clear difference between the number of TP (39 in total) and
HS (12 in total), the accuracy of the models differentiating
the two conditions is high. This is due to the differences in
the frequency components of the tremors that characterize
both classes. By analyzing the entire data in the frequency
domain, wewere able to highlight these differences. Since the
PSD in HS can be up to 1000 times lower than in trembling
subjects, we obtained higher accuracy values than in [17],
(82.43%), even though their dataset was considerably larger
than ours. Other studies [27], [29] reported accuracy values
of 82% to 100%; however, their groups of trembling subjects
only included PD patients. In [8], [30], wearable sensors
(accelerometers and gyroscopes) were used to extract fea-
tures that allowed the implementation of ML algorithms for
the differentiation between PD and ET, reaching accuracies
of 96% to 100%. In [8], the analysis was performed in the time
domain and kinetic tremors instead of tremors in posture were
analyzed. The study performed in [30] uses accelerometry
data, registers each patient for a recording time of five min-
utes, and uses a newly introduced posture as well as statistical
analysis of the data’s frequency components to differentiate
the subjects. Compared to those studies, our classification
models were developed to be used during clinical follow-up,
where simple postures and short recording times are required.
The accuracy values reaches in our study are lower than those
in [8], [30], for two reasons. Firstly, they both registered
more subjects which improves the predictive ability of the
models. Secondly, the accuracy values we represent in this
study are average values of 100 random iterations in three
training/testing divisions. In single iterations, the classifi-
cation models developed for PD/ET differentiation reached

similar values. Moreover, since the aim of this work was to
evaluate whether the angular velocity signal could help to
differentiate tremor subjects usingML, we considered the use
of the default configurations of theMLmethods to be enough.
In future works, we intend to analyze in detail how to adjust
the hyperparameters of the implemented models to optimize
their discriminative capacity.

The frequency ranges used to develop the models gener-
ated significant differences regarding their performance. For
the differentiation of TP and HS, the average accuracy values
obtained in the frequency analysis from 1 to 16 Hz are higher
than those obtained in the analysis from 3 to 10 Hz. These
differences could exist because the frequency range from 3 to
10 Hz includes only a part of the area in which physiological
tremors occur (8 to 12 Hz) [23], whereas the analysis of 1 to
16 Hz includes its full range. Nevertheless, the models gener-
ated in the 1 to 16 Hz range require complicated methods and
more kinematic features. For the differentiation of PD and ET
patients, the models analyzed in the 3-10 Hz frequency range
show better performance compared to those in the 1-16 Hz
frequency range. These performance differences could be
directly related to the dominant frequencies of the two tremor
types. As mentioned in the Data Analysis subsection, both
PD and ET tremors are located in a frequency range between
4 and 8 Hz [9], [15], [21], [22]. Thus, the extraction of
kinematic features within a frequency range of 3 to 10 Hz
eliminates unwanted effects that are introduced by frequen-
cies outside the area of interest.

It is noticeable that the variability in the performance of the
PD/ET models listed is relatively high (5.2% to 11.8%). This
variability is influenced by the presence of atypical patient
data in each iteration since, as mentioned previously, there
are PD patients who experience postural tremors [5] and ET
patients who show tremors at rest during disease progres-
sion [9], [10]. Other variability factors are the training/testing
divisions, as the data distribution influences the performance
of the classification models. As expected, the classification
models show better performances the higher the percentage
of data in the training set. Analyzing Figure 4, the models
for differentiating TP and HS exhibit a difference of 3.1%
when comparing 30/70 and 70/30 divisions combined with
identical features (SMP, RPCB, and PBB) and the same clas-
sification method (Ensemble Subspace KNN). The models
for differentiating PD and ET show a difference of 4.0%
when comparing 30/70 and 70/30 divisions combined with
the same features (HIR) and classification method (Logistic
regression).

Based on the presumption that the frequency components
of the pathological tremor are higher in either of the two
positions studied, SMP and HIR were introduced to improve
the differentiation between the tremor types. RE and RPC
features were proposed in [4] to improve the differentiation
between PD and ET patients, as their tremor frequency com-
ponents are different under resting or postural conditions.
Theoretically, PD patients should have higher amplitudes of
tremor at rest (position A) than postural tremor (position B),
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and vice versa for patients with ET. The results obtained in
this work supported the above, the most significant feature
for the differentiation of patients with PD and ET seems to
be the novel HIR feature, as it was implemented in 12 of
the 18 best models depicted in Figure 4. Also, as already
observed in previous works [4], [19], RE and RPC features
provide essential information. The RPC feature also contains
relevant information for the differentiation of TP and HS in
both analyzed frequency ranges. However, the SMP feature
introduced in this study was most discriminative in several
of the best models; high accuracy values were reached by
only using this relative feature. Analyzing the implemented
features, it is noticeable that some of them provide more
accurate information for the differentiation of the subject
according to the Case. The features extracted in the posture
position were predominant in the models that differentiate
between subjects in Case 1. In Case 2, there is a higher
presence of features extracted in the resting position, which
is consistent with the works of [5], [8].

As it was the intention to develop high-performance clas-
sifiers and avoid classification errors, only patients with
a confirmed diagnosis of PD or ET were used to imple-
ment the ML models. However, this also means that the
patients were already on treatment when they were registered,
so their tremors intensity was remarkably low. For this reason,
we consider that additional records should be performed on
early-stage tremor patients to prevent the effects of medica-
tion [31] or surgical suppression [32], as these are possible
causes of misclassification of patients. Another important
topic regarding the development of high-performance models
is the dataset size. Since the dataset for training and testing of
the models was small, the ML models implemented in this
study are limited in their performance. The dataset needs to
be increased to develop highly accurate models. Therefore,
in the second phase of the project, we aim to introduce a
mobile application linked to a web server that allows adding
new patient records to the already registered data. This phase
will be realized through the collaboration of an international
network of physicians and biomedical engineers using the
application. By enlarging the dataset, we expect to improve
the accuracy of the developed models or to create new mod-
els with even higher performance and lower computational
cost.

V. CONCLUSION
The angular velocity signal recorded by the gyroscope and
boosted using ML algorithms has proven to be an effective
method to differentiate between healthy subjects and tremor
patients as well as between Parkinson’s disease patients and
Essential Tremor patients. This differentiation is substan-
tially dependent on the correct selection and evaluation of
classification methods and kinematic features, as well as on
the processing and the size of the training data. The best
model to differentiate HS and TP has an average accuracy
of 97.2 ± 3.7% (98.5% Sensitivity, 93.3% Specificity). The
average accuracy of the best model to differentiate tremor

patients with PD and ETwas 77.8± 9.9% (75.7% Sensitivity,
80.0% Specificity).

During the training of the models, we were able to identify
outstanding performance for some combinations of kinematic
features, such as SMP, PBB, and RPCB, for TP and HS
differentiation, as well as HIR and MPFA for PD and ET
differentiation. Regarding the classification methods, for the
differentiation of TP and HS (Case 1), the best performances
were reached with the Linear Support Vector Machine and
Ensemble Subspace KNN methods. For the differentiation
of PD and ET (Case 2), in the frequency analysis from 3 to
10Hz, the best performancewas also obtainedwith the Linear
Support Vector Machine method. In contrast, in the 1-16 Hz
range, the best performance was obtained with Medium
K-nearest Neighbor method. In both cases, the Linear Sup-
port Vector Machine models present a lower computational
cost compared to the KNN methods.

In future works, we want to combine the recordings of
accelerometer and gyroscope sensor to obtain higher clas-
sification performances and reduce the training times. The
optimized MLmodels developed in this research will be used
to design a low-cost and non-invasive tool (mobile app) to
support physicians in the differential diagnosis of the two
diseases, particularly in developing countries where sophisti-
cated diagnostic techniques such as 123I-FP-CIT SPECT are
not available. Additionally, we expect that the use of this tool
will help in patients with undecided diagnosis and, conse-
quently, in choosing appropriate and opportune therapeutic
actions.
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S1 Appendix. Matlab code for Data Analysis
clearvars;
close all;
clc;
warning('off', 'all');

Data preproccesing
Load the dataset, define the struct (eKF) where the kinematic features will be stored and create the categorical

array (PT) to label the subjects.

load dataset
zA = zeros(length(dataset), 1);
eKF = struct('MPF_A', zA, 'PB_A', zA, 'PPF_A', zA, 'HI_A', zA, 'RPC_A', zA, 'MPF_B', ...
    zA, 'PB_B', zA, 'PPF_B', zA, 'HI_B', zA, 'RPC_B', zA, 'RE', zA, 'SMP', zA, 'HIR', ...
    zA, 'SUBJ', zA);
PT = categorical(zA);

Load the Butterworth filter (btwFc3_10 or btwFc1_16), and set the number of samples to remove artifacts (uS).

load btwFc3_10.mat
% load btwFc1_16.mat
uS = 175;

Sampling frequency

sKF = 100;

Set up a FOR loop to preprocess and extract the kinematic features of each subject from the dataset. The odd

rows are the resting records (Position A) and, the even rows are the posture records (Position B).

for i = 1:length(dataset)

Assign subject signals to data

    data = dataset{i, 1};

Cut approximately 2 seconds from both sides of the signals to eliminate artifacts generated by turning the

recording on and off.

    data = data(uS:end-uS, :);

10th order Butterworth filter to reduce the sensor offsets and drifts due to various physical phenomena such as

motion artifacts

    btwfData = filter(Hd, data(:, 7:9));
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Welch filter with non-overlapping Hanning window of 3 seconds

    [pxx, ~] = pwelch(btwfData(:, 1), 300, [], 25000, sKF, 'psd');
    [pyy, ~] = pwelch(btwfData(:, 2), 300, [], 25000, sKF, 'psd');
    [pzz, f] = pwelch(btwfData(:, 3), 300, [], 25000, sKF, 'psd');

Set the borderline frequency (fLow - fHigh) for analysis.

    fLow = find(f == 3);
%     fLow = find(f==1);
    fHigh = find(f == 10);
%     fHigh = find(f==16);

Average the Power Spectral Density (PSD) of each axis and, then normalize (nPSD) the resulting average

(aPSD).

    aPSD = (pxx + pyy + pzz) ./ 3;
    f = f(fLow:fHigh);
    aPSD = aPSD(fLow:fHigh);
    
    sPSD = sum(aPSD);
    nPSD = (aPSD ./ sPSD);

Feature extraction

    if strcmp(dataset{i, 2}(5), 'A')
        pos = 'A';
        iter = '(i)';
    else
        pos = 'B';
        iter = '(i-1)';
    end

Median Power Frequency (MPF) feature

    sumPD = sum(nPSD);
    posMedian = find(cumsum(nPSD/sumPD) <= sumPD/2, 1, 'last');
    eval(['eKF', iter, '.MPF_', pos, '= f(posMedian);']);

Power Bandwidth (PB) feature

    lowPos = find(cumsum(nPSD(1:posMedian)/sumPD, 'reverse') ...
        >= 0.45, 1, 'last') + 1; %#ok<NASGU>
    highPos = posMedian + find(cumsum(nPSD(posMedian:end)./sumPD) ...
        < 0.4501, 1, 'last') - 1; %#ok<NASGU>
    eval(['eKF', iter, '.PB_', pos, '= f(highPos) - f(lowPos);']);

Peak Power Frequency (PPF) feature

    [~, posPPF] = max(aPSD);
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    eval(['eKF', iter, '.PPF_', pos, '=f(posPPF);']);

Harmonic index (HI) feature

    rArea(1:length(aPSD)) = aPSD(posPPF); %#ok<NASGU>
    eval(['eKF', iter, '.HI_', pos, '=trapz(f,aPSD)./trapz(f,rArea);']);

Relative power contribution to the first harmonic (RPC) feature

    eval(['eKF', iter, '.RPC_', pos, '=trapz(f(highPos:end),aPSD(highPos:end))', ...
        './trapz(f,aPSD);']);

Relative Energy (RE), Harmonic Index Ratio (HIR)  and Sum of Maximum Power (SMP)
features

    if strcmp(dataset{i, 2}(5), 'A')
        RE_A = trapz(f, aPSD);
        MP_A = max(aPSD);
    else
        RE_B = trapz(f, aPSD);
        MP_B = max(aPSD);
        eKF(i-1).RE = RE_A ./ RE_B;
        eKF(i-1).HIR = eKF(i-1).HI_A ./ eKF(i-1).HI_B;
        eKF(i-1).SMP = MP_A + MP_B;
    end

Assign patient identifier (ID) and label (PT) as categorical variables

    eKF(i).SUBJ = categorical(strrep(cellstr(dataset{i, 2}(1:4)), 'SA', 'HS'));
    PT(i, 1) = categorical(strrep(cellstr(dataset{i, 2}(1:2)), 'SA', 'HS'));
    clear data btwfData pxx pyy pzz dM aPSD sPSD nPD RE_B MP_B sumPD posMedian ...
        lowPos highPos posPPF rArea
end

Convert eKF to table and add two new columns, PDET and TPHS. Each column will contain the labels needed

to train and test the classification models.

eKF = struct2table(eKF);
eKF.PDET = PT;
eKF.TPHS = PT;
eKF.TPHS('PD' == eKF.TPHS(:) | 'ET' == eKF.TPHS(:)) = 'TP';

Create a new column named Id in which a number is assigned according to the label of the subject in the PDET
column.

eKF.Id(1:length(eKF.SUBJ), 1) = 0;
eKF.Id(strcmp('PD', string(eKF.PDET(:)))) = 1;
eKF.Id(strcmp('ET', string(eKF.PDET(:)))) = 2;
eKF.Id(strcmp('HS', string(eKF.PDET(:)))) = 3;
eKF(cellfun('isempty', eKF{:, 'RE'}), :) = [];
eKF = struct2table(table2struct(eKF));
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Feature evaluation and selection
Data standardization, this process contributes to the performance of some classification methods.

eKF(:,1:13) = array2table(normalize(eKF{:,1:13}, 'zscore'));

for j = 1:2

Assign the labels to use as Successful Class (sC) and Failure Class (fC).

    if j == 1
        fC = 'HS';
        sC = {'PD', 'ET'};
        cC = 16;
    else
        fC = 'ET';
        sC = 'PD';
        cC = 15;
    end
    subj = cellstr(string([eKF.SUBJ]));

Find the indexes where the first two SUBJ chars are equal to TP and HS or PD and ET, respectively.

    idFC = find(string(cellfun(@(x)x(1:2), subj, 'UniformOutput', false)) == fC);
    idSC = find(logical(sum(string(cellfun(@(x)x(1:2), subj, 'UniformOutput', false)) ...
        == sC, 2)));

Setting up predictors and response

    predictors = eKF{[idSC; idFC],1:13};
    response = eKF{[idSC; idFC],cC};

Rank the predictors using chi-square tests and Umbiased trees.

    [idx,scores] = fscchi2(predictors,response);
    rankChi2 = false(1,length(idx));
    rankChi2(idx(1:5)) = true;

    [~,idx] = sortrows(predictorImportance(fitctree(predictors,response,...
        'PredictorSelection','curvature','Surrogate','on'))', 'descend'); 
    rankUmbiased = false(1, length(idx));
    rankUmbiased(idx(1:5)) = true;

Select the most important predictors.

    sKF = eKF.Properties.VariableNames;
    sKF = sKF(rankChi2  & rankUmbiased);
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Assign the selected features to the respective variable (sKF_TPHS and sKF_PDET) according to the evaluated

Case.

    if j == 1
        sKF_TPHS = sKF;

    else
        sKF_PDET = sKF;
    end
end

Save eKF as .mat file

save('kinematicFeatures.mat', 'eKF', 'sKF_TPHS', 'sKF_PDET');
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S2 Appendix. Matlab code for Model Training and Testing
clc;
clearvars;
close all;
warning('off', 'all');

Set the folder (newFolder) where the models will be stored.

rootFolder = 'D:\';
newFolder = [rootFolder, 'TrainedModels\'];
oldFolder = cd(newFolder);

Add oldFolder to the path to use all created functions

addpath(oldFolder);

Define the training/testing divisions

thresholdTrainTest = [0.3, 0.5, 0.7];

Create the variables TM_TPHS and TM_PDET that store the performance metrics of the models in each

iteration.

for tt = 1:3
    TM_TPHS = [];
    TM_PDET = [];

Create the folder (tM_Folder) where the models will be saved. The name of the folder will be composed as

follows: date (ddmmyyyyy) + TrainedModels + training/testing division (Example: 01062019TrainedModels7030)

    tM_Folder = [replace(datestr(now, 'dd/mm/yyyy'), '/', ''), 'TrainedModels',...
        num2str(thresholdTrainTest(tt)*100), num2str(100-thresholdTrainTest(tt)*100)];
    mkdir(tM_Folder);
    cd(tM_Folder)

Check if the iP.mat file exists, which contains the last iteration performed. If it does not exist, n is initialized in 1.

This ensures that the process won't restart if for some reason it was interrupted.

    if exist([newFolder, tM_Folder, '\iP.mat'], 'file') == 2
        load('iP.mat');
        nf = 100;
        n = i + 1;
    else
        n = 1;
        nf = 100;
    end
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Start iterations up to nf times

    for i = n:nf

Use the RandomDivision function to perform the random division. Training and testing sets are obtained from

the TPHS and PDET groups.

        rng shuffle
        fC = 'HS'; sC = {'PD', 'ET'};
        [TPHS_train, TPHS_test, TPHS_sF] = RandomDivision(thresholdTrainTest, fC, sC);
        fC = 'ET'; sC = 'PD';
        [PDET_train, PDET_test, PDET_sF] = RandomDivision(thresholdTrainTest, fC, sC);

Create the folders where the models of each group are stored.

        mkdir('TPHS');
        fTPHS = [newFolder, tM_Folder, '\TPHS\'];
        mkdir('PDET');
        fPDET = [newFolder, tM_Folder, '\PDET\'];

Run the MassiveTrain function to train and test the classification models. The variables TPHS_pm and

PDET_pm contain the performance metrics of the models. The variable KFolds is the number of folds used for

cross-validation.

        KFolds = 5;
        TPHS_pm = MassiveTrain(TPHS_train, fTPHS, KFolds, TPHS_test, TPHS_sF, 'HS', 'TP');
        PDET_pm = MassiveTrain(PDET_train, fPDET, KFolds, PDET_test, PDET_sF, 'ET', 'PD');

Store the performance metrics

        TM_TPHS = cat(3, TM_TPHS, TPHS_pm);
        TM_PDET = cat(3, TM_PDET, PDET_pm);

Run the ModelSelection function to find the top 5 classification models (Top5_TPHS and Top5_PDET) for

both groups based on their performance metrics.

        Top5_TPHS = ModelSelection(TM_TPHS);
        Top5_PDET = ModelSelection(TM_PDET);
        cd([newFolder, tM_Folder]);

Save the computed variables as .mat file into tM_Folder and return to newFolder.

        save('CMTPHS.mat', 'TM_TPHS', 'Top5_TPHS');
        save('CMPDET.mat', 'TM_PDET', 'Top5_PDET');
        save('iP.mat', 'i', 'tM_Folder');
        cd(newFolder);
    end
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end

Model Training and Testing functions

RandomDivision function

function [trainingData, testingData, sF] = RandomDivision(thresholdTrainTest, fC, sC)
% Case 1: TP vs. HS. -> successfulClass (sC): Tremor Patients - TP.
%                       failureClass (fC): Healthy Subjects  - HS.
% Case 2: PD vs. ET. -> successfulClass (sC): Parkinson's Disease - PD.
%                       failureClass (sC): Essential Tremor - ET.

% Load the eKF table with the kinematic features and transform it in a struct.
load('kinematicFeatures.mat', 'eKF', 'sKF_TPHS', 'sKF_PDET');

% Assign to the variable sF the selected kinematic features according to the Case.
if strcmp(fC, 'HS') == 1
    sF = sKF_TPHS;
else
    sF = sKF_PDET;
end

% Extract the SUBJ column and convert it to cell.
subj = cellstr(string([eKF.SUBJ]));

% Find the indexes where the first two id chars are equal to TP and HS or PD and ET
% respectively.
idFC = find(string(cellfun(@(x)x(1:2), subj, 'UniformOutput', false)) == fC);
idSC = find(logical(sum(string(cellfun(@(x)x(1:2), subj, 'UniformOutput', false))...
    == sC, 2)));

% Find the number of classes.  The following FOR loop allows the assignment of the
% training and testing subjects at the same established ratio.
max_Int = max(eKF{[idSC; idFC], {'Id'}});
trainingData = [];
testingData = [];
eKF = table2struct(eKF);

for i = 1:max_Int
    idG = find([eKF.Id]' == i);
    
    % Use the randperm command to randomly distribute the indexes for each label.
    id_rand = idG(randperm(length(idG), (length(idG))));
    
    % Extract the proportion of data that will be used for training.
    sz_train = round(length(idG)*thresholdTrainTest);
    
    % Extract the training data.
    rand_train = eKF(contains(string(subj), string(subj(id_rand(1:sz_train), :))));
    
    % Extract the testing data.
    rand_test = eKF(contains(string(subj), string(subj(id_rand(sz_train+1:end), :))));
    
    % Create the training data table.
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    trainingData = [trainingData; struct2table(rand_train)];%#ok<AGROW>
    
    % Create the testing data table.
    testingData = [testingData; struct2table(rand_test)];%#ok<AGROW>
    clear idG id_rand sz_train rand_train rand_test
end

% Create the training data table
trainingData.SUBJ = [];
if strcmp(fC, 'HS') == 1
    trainingData.PDET = [];
    trainingData.TPHS = removecats([trainingData.TPHS]);
else
    trainingData.TPHS = [];
    trainingData.PDET = removecats([trainingData.PDET]);
end

% Create the testing data table
testingData.SUBJ = [];
if strcmp(fC, 'HS') == 1
    testingData.PDET = [];
    testingData.TPHS = removecats([testingData.TPHS]);
else
    testingData.TPHS = [];
    testingData.PDET = removecats([testingData.PDET]);
end
end

MassiveTrain function

function models = MassiveTrain(trainingData, dataFolder, KFolds, testingSet, sF, fC, sC)
% Initial setup.
sFLength = length(sF);
aTM = cell(25, 11);
models = [];

for i = 1:sFLength
    % Function C = nchoosek(v,i) returns an array which contains all the possible
    % combinations of the elements of the vector v taken i at once, that is, it takes only
    % once a combination of features.
    fComb = nchoosek(sF, i);
    pMetrics = [];
    
    for j = 1:length(fComb(:, 1))
        % Assign to variable FComb the combination of features that are in position j of
        % variables fComb.
        FComb = fComb(j, :);
        
        % Start parallel pool. The number of workers will depend on the number of cores in
        % the work station.
        p = gcp();
        
        % Run the trainClassifier function within the parfeval function to train and test
        % the models in parallel mode.
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        for k = 1:25
            job(k) = parfeval(p, @trainClassifier, 1, trainingData, FComb, k, KFolds,...
                testingSet, fC, sC); %#ok<AGROW>
        end
        
        for k = 1:25
            % The fetchNext function returns the struct elements tM* which contain the
            % models and their performance metrics.
            tic
            [Id, tM] = fetchNext(job);
            trainTime = toc;
            tM.trainTime = trainTime;
            
            % Define the model name.
            featureN = char(replace(join(string(FComb)), {' '}, {'-'}));
            
            % Store the performance metrics in the aTM* cell elements.
            pM = struct2cell(rmfield(tM', {'trainedModel'}))';
            aTM(Id, :) = {[dataFolder, num2str(i), 'KF.mat'], pM{1}, pM{8}, featureN,...
                pM{7}, 'NO', pM{2}, pM{3}, pM{4}, pM{5}, pM{6}};
        end
        % Store the atM* cell elements in pMetrics
        pMetrics = [pMetrics; aTM]; %#ok<AGROW>
        save([dataFolder, num2str(i), 'KFpM.mat'], 'pMetrics');
        clear k FC atM  trainTime pM;
    end
    % Store pMetrics in models
    models = [models; pMetrics]; %#ok<AGROW>
    clear j;
end
end

trainClassifier function

function [tM] = trainClassifier(trainingData, predictorNames, method, KFolds,...
    testingData, fC, sC)
% This code processes the data into the right shape for training the model.
% Extract response
inputTable = trainingData;
idResponse = find(strcmp(inputTable.Properties.VariableNames, strcat(sC,fC)));
response = inputTable.(idResponse);

% Data transformation: Select subset of the features and extract predictors.
predictors = inputTable(:, predictorNames);
isCategoricalPredictor = false(1,length(predictorNames));

% Train a classifier. This code specifies all the classifier options and trains the 
% classifier.
if method == 6
    % For logistic regression, the response values must be converted to zeros and ones 
    % because the responses are assumed to follow a binomial distribution.
    % 1 or true = 'successful' class & 0 or false = 'failure' class
    % NaN - missing response.
    successClass = sC;
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    failureClass = fC;
    
    % Compute the majority response class. If there is a NaN-prediction from fitglm, 
    % convert NaN to this majority class label.
    numSuccess = sum(response == successClass);
    numFailure = sum(response == failureClass);
    if numSuccess > numFailure
        missingClass = successClass;
    else
        missingClass = failureClass;
    end
    responseCategories = {successClass, failureClass};
    successFailureAndMissingClasses = categorical({successClass; failureClass;...
        missingClass}, responseCategories);
    isMissing = isundefined(response);
    zeroOneResponse = double(ismember(response, successClass));
    zeroOneResponse(isMissing) = NaN;
    clear numSuccess numFailure responseCategories isMissing;
    
    % Prepare input arguments to fitglm.
    concatenatedPredictorsAndResponse = [predictors, table(zeroOneResponse)];
    
    % Train using fitglm.
    Method = 'LogisticRegression';
    Model = fitglm(concatenatedPredictorsAndResponse, 'Distribution', 'binomial',...
        'link', 'logit');
    clear concatenatedPredictorsAndResponse zeroOneResponse;

    % Convert predicted probabilities to predicted class labels and scores.
    convertSuccessProbsToPredictions = @(p) successFailureAndMissingClasses(~isnan(p)...
        .*((p<0.5) + 1 ) + isnan(p)*3);
    returnMultipleValuesFcn = @(varargin) varargin{1:max(1,nargout)};
    scoresFcn = @(p) [p, 1-p];
    predictionsAndScoresFcn = @(p) returnMultipleValuesFcn...
        (convertSuccessProbsToPredictions(p), scoresFcn(p) );
    
    % Add additional fields to the result struct.
    trainedModel.SuccessClass = successClass;
    trainedModel.FailureClass = failureClass;
    trainedModel.MissingClass = missingClass;
    trainedModel.ClassNames = {successClass; failureClass};
    
    % Create the predict function.
    PredictFcn = @(x) predictionsAndScoresFcn(predict(Model, x));
    clear predictionsAndScoresFcn successFailureAndMissingClasses scoresFcn...
        successClass convertSuccessProbsToPredictions returnMultipleValuesFcn...
        failureClass missingClass;
elseif method == 7 || method == 8
    % Expand the Distribution Names per predictor. Numerical predictors are assigned 
    % either Gaussian or Kernel distribution and categorical predictors are assigned mvmn 
    % distribution Gaussian is replaced with Normal when passing to the fitcnb function.
    if method == 7
        Method = 'GaussianNaiveBayes';
        distribution = 'Kernel';
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        Kernel = 'Normal';
        Support = 'Unbounded';
    else
        Method = 'KernelNaiveBayes';
        distribution = 'Normal';
        Kernel = [];
        Support = [];
    end
    distributionNames =  repmat({distribution}, 1, length(isCategoricalPredictor));
    distributionNames(isCategoricalPredictor) = {'mvmn'};
    
     % Train using fitcnb.
    Model = fitcnb(predictors, response, 'Kernel', Kernel, 'Support', Support,...
        'DistributionNames', distributionNames, 'ClassNames', categorical({sC; fC}));
    
    % Create the predict function.
    PredictFcn = @(x) predict(Model, x);
else
    % Train using the selected method.
    [Model, Method] = classMode(method, predictors, response, sC, fC);
    
    % Create the predict functions.
    PredictFcn = @(x) predict(Model, x);
end
% Create the result struct with predict function
predictorExtractionFcn = @(t) t(:, predictorNames);
featureSelectionFcn = @(x) x(:,predictorNames);
trainedModel.predictFcn = @(x) PredictFcn(featureSelectionFcn(predictorExtractionFcn(x)));
clear PredictFcn

% Add additional fields to the result struct
trainedModel.RequiredVariables = predictorNames;
trainedModel.ClassificationModel = Model;
trainedModel.About = ['This struct is a trained model exported from Classification Lea'...
    'rner R2019b.'];
trainedModel.HowToPredict = sprintf(['To make predictions on a new table, T, use: \n  '...
    'yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is th'...
    'is struct, e.g. ''trainedModel''. \n \nThe table, T, must contain the variables r'...
    'eturned by: \n  c.RequiredVariables \nVariable formats (e.g. matrix/vector, datat'...
    'ype) must match the original training data. \nAdditional variables are ignored. \'...
    'n \nFor more information, see <a href="matlab:helpview(fullfile(docroot, ''stats'...
    ''', ''stats.map''), ''appclassification_exportmodeltoworkspace'')">How to predict'...
    ' using an exported model</a>.']);

% Perform cross-validation
if method ~= 6
    partitionedModel = crossval(trainedModel.ClassificationModel, 'KFold', KFolds);
    
    % Compute validation predictions
    [validationPredictions, validationScores] = kfoldPredict(partitionedModel);
    
    % Compute validation accuracy
    cvAcc = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError');
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else
    cvp = cvpartition(response, 'KFold', KFolds);
    
    % Initialize the predictions to the proper sizes
    validationPredictions = response;
    numObservations = size(predictors, 1);
    numClasses = 2;
    validationScores = NaN(numObservations, numClasses);
    
    for fold = 1:KFolds
        trainingPredictors = predictors(cvp.training(fold), :);
        trainingResponse = response(cvp.training(fold), :);
        
        % Data transformation: Select subset of the features
        trainingPredictors = trainingPredictors(:,predictorNames);
        foldIsCategoricalPredictor = true(1,length(predictorNames));%#ok<NASGU>
        
        % Train a classifier. For logistic regression, the response values must be 
        % converted to zeros and ones because the responses are assumed to follow a 
        % binomial distribution.
        % 1 or true = 'successful' class & 0 or false = 'failure' class
        % NaN - missing response.
        successClass = sC;
        failureClass = fC;
        
        % Compute the majority response class. If there is a NaN-prediction from fitglm, 
        % convert NaN to this majority class label.
        numSuccess = sum(trainingResponse == successClass);
        numFailure = sum(trainingResponse == failureClass);
        if numSuccess > numFailure
            missingClass = successClass;
        else
            missingClass = failureClass;
        end
        responseCategories = {successClass, failureClass};
        successFailureAndMissingClasses = categorical({successClass; failureClass;...
            missingClass}, responseCategories);
        isMissing = isundefined(trainingResponse);
        zeroOneResponse = double(ismember(trainingResponse, successClass));
        zeroOneResponse(isMissing) = NaN;
        
        % Prepare input arguments to fitglm.
        concatenatedPredictorsAndResponse = [trainingPredictors, table(zeroOneResponse)];
        
        % Train using fitglm.
        Model = fitglm(concatenatedPredictorsAndResponse, 'Distribution', 'binomial',...
            'link', 'logit');
        
        % Convert predicted probabilities to predicted class labels and scores.
        convertSuccessProbsToPredictions = @(p) successFailureAndMissingClasses...
            (~isnan(p).*((p<0.5) + 1 ) + isnan(p)*3);
        returnMultipleValuesFcn = @(varargin) varargin{1:max(1,nargout)};
        scoresFcn = @(p) [p, 1-p];
        predictionsAndScoresFcn = @(p) returnMultipleValuesFcn...
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            (convertSuccessProbsToPredictions(p), scoresFcn(p));
        
        % Create the result struct with predict function
        featureSelectionFcn = @(x) x(:,predictorNames);
        PredictFcn = @(x) predictionsAndScoresFcn(predict(Model, x));
        validationPredictFcn = @(x) PredictFcn(featureSelectionFcn(x));
        
        % Compute validation predictions
        validationPredictors = predictors(cvp.test(fold), :);
        [foldPredictions, foldScores] = validationPredictFcn(validationPredictors);
        
        % Store predictions in the original order
        validationPredictions(cvp.test(fold), :) = foldPredictions;
        validationScores(cvp.test(fold), :) = foldScores;
        clear successFailureAndMissingClasses returnMultipleValuesFcn foldPredictions...
            convertSuccessProbsToPredictions scoresFcn PredictFcn validationPredictors...
            foldScores validationPredictFcn predictionsAndScoresFcn;
    end
    clear trainingResponse trainingPredictors;
    
    % Compute validation accuracy
    correctPredictions = (validationPredictions == response);
    isMissing = ismissing(response);
    correctPredictions = correctPredictions(~isMissing);
    cvAcc = sum(correctPredictions)/length(correctPredictions);
end

% Compute the performance metrics.
[tAcc, tSen, tSpe, TP, TN] = PerformanceCalculation(testingData, trainedModel);

% Create the result struct tM.
tM = struct('trainedModel', trainedModel, 'Acc', cvAcc, 'Acc_Test', tAcc, 'Sen_Test',...
    tSen, 'Spe_Test', tSpe, 'TP', TP, 'TN', TN, 'Method', Method);
end

classMode function

function [trainedModel, Method] = classMode(method, predictors, response, sC, fC)
% Train using the selected method.
switch method
    case 1
        Method = 'ComplexTree';
        trainedModel = fitctree(predictors, response, 'SplitCriterion', 'gdi',...
            'MaxNumSplits', 100, 'Surrogate', 'off', 'ClassNames', categorical({sC; fC}));
    case 2
        Method = 'MediumTree';
        trainedModel = fitctree(predictors, response, 'SplitCriterion', 'gdi',...
            'MaxNumSplits', 20, 'Surrogate', 'off', 'ClassNames', categorical({sC; fC}));
    case 3
        Method = 'SimpleTree';
        trainedModel = fitctree(predictors, response, 'SplitCriterion', 'gdi',...
            'MaxNumSplits', 4, 'Surrogate', 'off', 'ClassNames', categorical({sC; fC}));
    case 4
        Method = 'LinearDiscriminant';
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        trainedModel = fitcdiscr(predictors, response, 'DiscrimType', 'linear',...
            'Gamma', 0, 'FillCoeffs', 'off', 'ClassNames', categorical({sC; fC}));
    case 5
        Method = 'QuadraticDiscriminant';
        trainedModel = fitcdiscr(predictors, response, 'DiscrimType', 'diagQuadratic',...
            'FillCoeffs', 'off', 'ClassNames', categorical({sC; fC}));
    case 9
        Method = 'LinearSVM';
        trainedModel = fitcsvm(predictors, response, 'KernelFunction', 'linear',...
            'PolynomialOrder', [], 'KernelScale', 'auto', 'BoxConstraint', 1,...
            'Standardize', true, 'ClassNames', categorical({sC; fC}));
    case 10
        Method = 'QuadraticSVM';
        trainedModel = fitcsvm(predictors, response, 'KernelFunction', 'polynomial',...
            'PolynomialOrder', 2, 'KernelScale', 'auto', 'BoxConstraint', 1,...
            'Standardize', true, 'ClassNames', categorical({sC; fC}));
    case 11
        Method = 'CubicSVM';
        trainedModel = fitcsvm(predictors, response, 'KernelFunction', 'polynomial',...
            'PolynomialOrder', 3, 'KernelScale', 'auto', 'BoxConstraint', 1,...
            'Standardize', true, 'ClassNames', categorical({sC; fC}));
    case 12
        Method = 'FineGaussianSVM';
        trainedModel = fitcsvm(predictors, response, 'KernelFunction', 'gaussian',...
            'PolynomialOrder', [], 'KernelScale', 0.25, 'BoxConstraint', 1,...
            'Standardize', true, 'ClassNames', categorical({sC; fC}));
    case 13
        Method = 'MediumGaussianSVM';
        trainedModel = fitcsvm(predictors, response, 'KernelFunction', 'gaussian', ...
            'PolynomialOrder', [], 'KernelScale', 1, 'BoxConstraint', 1, 'Standardize',...
            true, 'ClassNames', categorical({sC; fC}));
    case 14
        Method = 'CoarseGaussianSVM';
        trainedModel = fitcsvm(predictors, response, 'KernelFunction', 'gaussian', ...
            'PolynomialOrder', [], 'KernelScale', 4, 'BoxConstraint', 1, 'Standardize',...
            true, 'ClassNames', categorical({sC; fC}));
    case 15
        Method = 'FineKNN';
        trainedModel = fitcknn(predictors, response, 'Distance', 'Euclidean',...
            'Exponent', [], 'NumNeighbors', 1, 'DistanceWeight', 'Equal',...
            'Standardize', true, 'ClassNames', categorical({sC; fC}));
    case 16
        Method = 'MediumKNN';
        trainedModel = fitcknn(predictors, response, 'Distance', 'Euclidean',...
            'Exponent', [], 'NumNeighbors', 10, 'DistanceWeight', 'Equal',...
            'Standardize', true, 'ClassNames', categorical({sC; fC}));
    case 17
        Method = 'CoarseKNN';
        trainedModel = fitcknn(predictors, response, 'Distance', 'Euclidean',...
            'Exponent', [], 'NumNeighbors', 100, 'DistanceWeight', 'Equal',...
            'Standardize', true, 'ClassNames', categorical({sC; fC}));
    case 18
        Method = 'CosineKNN';
        trainedModel = fitcknn(predictors, response, 'Distance', 'Cosine',...
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            'Exponent', [], 'NumNeighbors', 10, 'DistanceWeight', 'Equal',...
            'Standardize', true, 'ClassNames', categorical({sC; fC}));
    case 19
        Method = 'CubicKNN';
        trainedModel = fitcknn(predictors, response, 'Distance', 'Minkowski',...
            'Exponent', 3, 'NumNeighbors', 10, 'DistanceWeight', 'Equal',...
            'Standardize', true, 'ClassNames', categorical({sC; fC}));
    case 20
        Method = 'WeightedKNN';
        trainedModel = fitcknn(predictors, response, 'Distance', 'Euclidean',...
            'Exponent', [], 'NumNeighbors', 10, 'DistanceWeight', 'SquaredInverse',...
            'Standardize', true, 'ClassNames', categorical({sC; fC}));
    case 21
        Method = 'EnsembleBoostedTrees';
        template = templateTree('MaxNumSplits', 20);
        trainedModel = fitcensemble(predictors, response, 'Method', 'AdaBoostM1',...
            'NumLearningCycles', 30, 'Learners', template, 'LearnRate', 0.1,...
            'ClassNames', categorical({sC; fC}));
    case 22
        Method = 'EnsembleBaggedTrees';
        template = templateTree('MaxNumSplits', 34);
        trainedModel = fitcensemble(predictors, response, 'Method', 'Bag',...
            'NumLearningCycles', 30, 'Learners', template, 'ClassNames',...
            categorical({sC; fC}));
    case 23
        Method = 'EnsembleSubspaceDiscriminant';
        subspaceDimension = max(1, min(1, width(predictors)-1));
        trainedModel = fitcensemble(predictors, response, 'Method', 'Subspace',...
            'NumLearningCycles', 30, 'Learners', 'discriminant', 'NPredToSample',...
            subspaceDimension, 'ClassNames', categorical({sC; fC}));
    case 24
        Method = 'EnsembleSubspaceKNN';
        subspaceDimension = max(1, min(1, width(predictors)-1));
        trainedModel = fitcensemble(predictors, response, 'Method', 'Subspace',...
            'NumLearningCycles', 30, 'Learners', 'knn', 'NPredToSample',...
            subspaceDimension, 'ClassNames', categorical({sC; fC}));
    case 25
        Method = 'EnsembleRUSBoostedTrees';
        template = templateTree('MaxNumSplits', 20);
        trainedModel = fitcensemble(predictors, response, 'Method', 'RUSBoost',...
            'NumLearningCycles', 30, 'Learners', template, 'LearnRate', 0.1,...
            'ClassNames', categorical({sC; fC}));
end
clear method predictors response sC fC;
end

PerformanceCalculation function

function [Acc, Sen, Spe, TP, TN] = PerformanceCalculation(testingnData, trainedModel)
% Case 1: TP vs. HS. -> successfulClass (sC): Tremor Patients - TP.
%                       failureClass (fC): Healthy Subjects  - HS.
% Case 2: PD vs. ET. -> successfulClass (sC): Parkinson's Disease - PD.
%                       failureClass (sC): Essential Tremor - ET.
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% Assign testingnData to dTest and use it to compute the trainedModel predictions.
dTest = testingnData;
yFit = trainedModel.predictFcn(dTest);

idResponse = find(strcmp(dTest.Properties.VariableNames, 'PDET')...
    | strcmp(dTest.Properties.VariableNames, 'TPHS'));

% Identify the successful and failure class based on the case.
if strcmp(string(dTest.Properties.VariableNames(idResponse)), 'PDET') == 1
    yFitSC = yFit([dTest.Id] == 1, 1);
    dTestSC = dTest([dTest.Id] == 1, idResponse).PDET;
    yFitFC = yFit([dTest.Id] == 2, 1);
    dTestFC = dTest([dTest.Id] == 2, idResponse).PDET;
    tP = sum([dTest.Id] == 1);
    tN = sum([dTest.Id] == 2);
else
    yFitSC = yFit([dTest.Id] == 1 | [dTest.Id] == 2, 1);
    dTestSC = dTest([dTest.Id] == 1 | [dTest.Id] == 2, idResponse).TPHS;
    yFitFC = yFit([dTest.Id] == 3, 1);
    dTestFC = dTest([dTest.Id] == 3, idResponse).TPHS;
    tP = sum([dTest.Id] == 1 | [dTest.Id] == 2);
    tN = sum([dTest.Id] == 3);
end

% Compute the successful and failure class correct predictions.
sC_Predictions = sum(yFitSC == dTestSC);
fC_Predictions = sum(yFitFC == dTestFC);

% Compute Sensitivity, Specificity, and Accuracy.
TP = sC_Predictions;
FN = abs(tP-TP);
Sen = (TP / (TP + FN));
TN = fC_Predictions;
FP = abs(tN-TN);
Spe = (TN / (TN + FP));
Acc = (TP + TN) / (TP + TN + FP + FN);
end

ModelSelection function

function TF = ModelSelection(trainedModels)

% Compute the average values and their standard deviation from the metrics obtained by 
% the models across the 100 iterations.
scoreTM(:, 1) = trainedModels(:, 1, 1);
scoreTM(:, 2) = num2cell(nanmean(cell2mat(trainedModels(:, 2, :)).*100,3));
scoreTM(:, 3) = num2cell(nanmean(cell2mat(trainedModels(:, 7, :)).*100,3));
scoreTM(:, 4) = num2cell(nanstd(cell2mat(trainedModels(:, 7, :)).*100,0,3));
scoreTM(:, 5) = num2cell(nanmean(cell2mat(trainedModels(:, 8, :)).*100,3));
scoreTM(:, 6) = num2cell(nanstd(cell2mat(trainedModels(:, 8, :)).*100,0,3));
scoreTM(:, 7) = num2cell(nanmean(cell2mat(trainedModels(:, 9, :)).*100,3));
scoreTM(:, 8) = num2cell(nanstd(cell2mat(trainedModels(:, 9, :)).*100,0,3));
scoreTM(:, 9) = num2cell(nanmean(cell2mat(trainedModels(:, 3, :)).*1000,3));
scoreTM(:, 10) = num2cell(nanstd(cell2mat(trainedModels(:, 3, :)).*100,0,3));
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scoreTM(:, 11) = trainedModels(:, 4, 1);
scoreTM(:, 12) = trainedModels(:, 5, 1);

% Sort out the models from highest to lowest performance
TM_sort = sortrows(scoreTM, [3, 5, 7, 2, 9], {'descend', 'descend', 'descend',...
    'descend', 'ascend'});
Top3_TM = TM_sort(1:5, :);

% Find the 3 best models. All the models have a cell element in which the metrics
% obtained in the n iterations will be.
[r, ~] = size(Top3_TM);
TF = cell(3,14);

for i = 1:r
    comp_TM = trainedModels(strcmp(Top3_TM{i, 11}, trainedModels(:, 4, 1)) &...
        strcmp(Top3_TM{i, 12}, trainedModels(:, 5, 1)), :, :);
    
    Top3_TM{i, 13} = reshape(permute(comp_TM, [1, 3, 2]), [], size(comp_TM, 2), 1);
    TF(i,[1:3,5,6,8,9,11,12,14]) = Top3_TM(i,[11,12,3:10]);
    TF(i,[4,7,10,13]) = {char(177)};
end
end
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Python code for Data Analysis

September 19, 2023

Import necessary libraries and modules.

[ ]: import os
from tkinter import filedialog
import tkinter as tk

import numpy as np
import pandas as pd
from scipy.integrate import simps
from scipy.signal import welch, butter, filtfilt

Function to calculate features from Power Spectral Density (PSD)

[ ]: def calculate_features(psd, frequencies):
"""
Calculates features from power spectral density (PSD).

Args:
psd (array-like): Power spectral density values.
frequencies (array-like): Corresponding frequencies.

Returns:
tuple: A tuple containing the calculated features.
"""
bp = simps(psd, frequencies)
psd_normalized = psd / bp
cumulative_sum = np.cumsum(psd_normalized)
half_total_power = 0.5
mpf = frequencies[np.where(cumulative_sum >= half_total_power)[0][0]]

frequency_5 = frequencies[np.where(cumulative_sum >= 0.05)[0][0]]
frequency_95 = frequencies[np.where(cumulative_sum >= 0.95)[0][0]]
pbw = frequency_95 - frequency_5

pp_pos = np.argmax(psd)
ppf = frequencies[pp_pos]
pp = psd[pp_pos]
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return bp, mpf, pbw, ppf, pp

Function to calculate the Harmonic Index (HI)

[ ]: def calculate_hi(psd, frequencies, ppf):
"""
Calculates the Harmonic Index (HI) from power spectral density (PSD).

Args:
psd (array-like): Power spectral density values.
frequencies (array-like): Corresponding frequencies.
ppf (float): Peak frequency.
low_idx (int): Index of the lower frequency bound.
high_idx (int): Index of the higher frequency bound.

Returns:
float: The calculated Harmonic Index (HI).
"""
area_psd = simps(psd, frequencies)
rectangle_area = simps(np.full(len(psd), ppf, dtype=float), frequencies)
hi = area_psd / rectangle_area
return hi

Function to calculate the Relative Power Contribution (RPC)

[ ]: def calculate_rpc(psd, frequencies):
"""
Calculates the Relative Power Contribution (RPC) from power spectral␣

↪density (PSD).

Args:
psd (array-like): Power spectral density values.
frequencies (array-like): Corresponding frequencies.

Returns:
float: The calculated Relative Power Contribution (RPC).
"""
pb = simps(psd, frequencies)
psd_normalized = psd / pb
cumuluspsd = np.cumsum(psd_normalized)
f1_idx = np.where(cumuluspsd >= 0.95)[0][0]
psd_harmonics = simps(psd_normalized[f1_idx:], frequencies[f1_idx:])
psd_total = simps(psd_normalized, frequencies)
rpc = psd_harmonics / psd_total
return rpc

Function to calculate RE, HIR and SMP features
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[ ]: def calculate(axis, features_df, sensor):
features_df[f'{sensor}_{axis}re'] = features_df[f'{sensor}_{axis}bp_R'] /␣

↪features_df[f'{sensor}_{axis}bp_P']
features_df[f'{sensor}_{axis}hir'] = features_df[f'{sensor}_{axis}hi_R'] /␣

↪features_df[f'{sensor}_{axis}hi_P']
features_df[f'{sensor}_{axis}smp'] = features_df[f'{sensor}_{axis}pp_R'] /␣

↪features_df[f'{sensor}_{axis}pp_P']
return features_df

Function to process sensor data and calculate features

[ ]: def process_sensor_data(data, fs, sensor_name, subject, label, position):
"""
Processes sensor data and calculates features.

Args:
data (pandas DataFrame): Sensor data.
fs (float): Sampling frequency.
window_size (int): Window size in seconds.
sensor_name (str): Name of the sensor.

Returns:
dict: A dictionary containing the calculated features.
"""
data -= data.mean()
segment_duration = int(20 * fs)
# Calculate the start and end index of the 20-second range centered in the␣

↪middle
start_index = int(len(data) // 2 - segment_duration // 2)
end_index = start_index + segment_duration

# Extract the 20-second range of data
ranged_data = data.iloc[start_index:end_index]

low_cut, high_cut = 3.0, 12.0
nyquist = 0.5 * fs
low = low_cut / nyquist
high = high_cut / nyquist
b, a = butter(5, [low, high], btype='band')

filtered_data = filtfilt(b, a, ranged_data, axis=0)

# Sliding window method
window_duration = 20 # segundos
overlap = 0.00 # 50% de solapamiento

# Calcular el tamaño de la ventana y el desplazamiento
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window_size = int(window_duration * fs) # sample_rate es la frecuencia de␣
↪muestreo de los datos

step_size = int(window_size * (1 - overlap))

# Aplicar el método de aumento de datos
segments = []
start = 0
while start + window_size <= len(filtered_data):

segment = filtered_data[start:start + window_size]
segments.append(segment)
start += step_size

feature_names = ['bp', 'mpf', 'pbw', 'ppf', 'pp', 'hi', 'rpc']
features = {f'{sensor_name}_{axis}{feature}_{position}': [] for axis in␣

↪['', 'x_', 'y_', 'z_'] for feature in
feature_names}

for i, segment in enumerate(segments):
frequencies, psd_segment = welch(np.transpose(segment), fs=fs,␣

↪window='hamming', nperseg=100, nfft=30000,
scaling='density', detrend=False)

psd_segment = np.transpose(psd_segment)

dif_low = np.abs(frequencies - low_cut)
dif_high = np.abs(frequencies - high_cut)
low_idx = np.where(dif_low == dif_low.min())[0][0]
high_idx = np.where(dif_high == dif_high.min())[0][0]

for axis, psd_values in zip(['', 'x_', 'y_', 'z_'],
[psd_segment.mean(axis=1)] + [psd_segment[:

↪, i] for i in range(3)]):
bp, mpf, pbw, ppf, pp = calculate_features(psd_values[low_idx:

↪high_idx + 1],
frequencies[low_idx:

↪high_idx + 1])
features[f'{sensor_name}_{axis}bp_{position}'].append(bp)
features[f'{sensor_name}_{axis}mpf_{position}'].append(mpf)
features[f'{sensor_name}_{axis}pbw_{position}'].append(pbw)
features[f'{sensor_name}_{axis}ppf_{position}'].append(ppf)
features[f'{sensor_name}_{axis}pp_{position}'].append(pp)
features[f'{sensor_name}_{axis}hi_{position}'].append(

calculate_hi(psd_values[low_idx:high_idx + 1],␣
↪frequencies[low_idx:high_idx + 1], ppf))

features[f'{sensor_name}_{axis}rpc_{position}'].append(
calculate_rpc(psd_values[low_idx:high_idx + 1],␣

↪frequencies[low_idx:high_idx + 1]))
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features_df = pd.DataFrame(features)
features_df['subject'] = subject
features_df['label'] = label

features_df['segment'] = features_df['subject'] + '_s' + features_df.index.
↪astype(str)

return features_df.reset_index(drop=True)

Function to process a directory and calculate features for all files

[ ]: def process_directory(directory, device):
"""
Processes a directory and calculates features for all files.

Args:
directory (str): Directory path.

Returns:
pandas DataFrame: The calculated features.
"""

column_names = ['subject', 'label', 'position', 'segment']
feature_names = ['bp', 'mpf', 'pbw', 'ppf', 'pp', 'hi', 'rpc']

accelerometer_columns = [f'acc_{axis}{feature}_{position}' for position in␣
↪['R', 'P'] for axis in

['', 'x_', 'y_', 'z_'] for feature in␣
↪feature_names]

gyroscope_columns = [f'gyr_{axis}{feature}_{position}' for position in␣
↪['R', 'P'] for axis in ['', 'x_', 'y_', 'z_']

for feature in feature_names]

column_names += accelerometer_columns + gyroscope_columns

features_df = pd.DataFrame(columns=column_names)

features_df = process_each_file(directory, device, features_df)

return features_df

[ ]: def select_directory():
"""
Opens a file dialog to select a directory.

Returns:
str: The selected directory path.
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"""
root = tk.Tk()
root.withdraw()
directory = filedialog.askdirectory()
root.destroy()
return directory

[ ]: def receive_directory_input():
"""
Receive directory and device inputs from the user.

Returns:
list[Tuple[str, str]]: A list of tuples, each containing a directory path␣

↪and device type.
"""
selected_directories = []

while True:
# Ask the user to select a directory
directory = select_directory()
if not directory:

break # If no directory is selected, break the loop

device = get_device_info()
selected_directories.append((directory, device)) # Add the directory␣

↪and device type to the list

if not selected_directories:
raise Exception("No directories selected.")

return selected_directories

[ ]: def process_all_directories(dir_device_pairs):
"""
Process all directories and combine the results.

Args:
dir_device_pairs (list[Tuple[str, str]]): A list of tuples, each containing␣

↪a directory path and device type.

Returns:
pandas DataFrame: The combined features DataFrame from all directories.
"""
features_dfs = []

for directory, device in dir_device_pairs:
features_df = process_directory(directory, device)
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features_dfs.append(features_df)

# Combine the feature DataFrames from all directories
combined_features_df = pd.concat(features_dfs, ignore_index=True)

for axis in ['', 'x_', 'y_', 'z_']:
combined_features_df = calculate(axis, combined_features_df, 'acc')
combined_features_df = calculate(axis, combined_features_df, 'gyr')

del combined_features_df['subject']
del combined_features_df['position']
del combined_features_df['segment']

return combined_features_df

[ ]: def get_device_info():
"""Ask for device input from user."""
while True:

device = input("Enter the device for the directory (1 for iPhone5s, 2␣
↪for Xsens DOT, q to Quit): ")

if device.lower() == 'q':
return None

if device not in ['1', '2']:
print('Wrong input. Please enter a correct input.')
continue

else:
return device

[ ]: def process_each_file(directory, device, features_df):
"""Process each file in the directory."""
for file in os.listdir(directory):

if file.endswith(".csv"):
label = file[:2]
subject = file[:4]
position = 'R' if file[4] == 'A' else 'P'

fs, cols, accelerometer_data, gyroscope_data =␣
↪get_device_specific_data(directory, file, device)

accelerometer_subsegment_df =␣
↪process_sensor_data(accelerometer_data, fs, 'acc', subject,

label, position)
gyroscope_subsegment_df = process_sensor_data(gyroscope_data, fs,␣

↪'gyr', subject, label,
position)

joined_df = accelerometer_subsegment_df.join(
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gyroscope_subsegment_df.set_index(['segment', 'label',␣
↪'subject']),

on=['segment', 'label', 'subject'])

if position == 'R':
joined_r = joined_df

else:
joined_p = joined_r.join(joined_df.set_index(['segment',␣

↪'label', 'subject']),
on=['segment', 'label', 'subject'])

features_df = pd.concat([features_df, joined_p],␣
↪ignore_index=True)

return features_df

[ ]: def get_device_specific_data(directory, file, device):
"""Get data specific to the device."""
if device == '1':

fs = 100.0
cols = ['motionRotationRateX', 'motionRotationRateY',␣

↪'motionRotationRateZ',
'motionUserAccelerationX', 'motionUserAccelerationY',␣

↪'motionUserAccelerationZ']
data = pd.read_csv(os.path.join(directory, file), usecols=cols)

accelerometer_data = data[['motionUserAccelerationX',␣
↪'motionUserAccelerationY', 'motionUserAccelerationZ']]

gyroscope_data = data[['motionRotationRateX', 'motionRotationRateY',␣
↪'motionRotationRateZ']]

elif device == '2':
fs = 120.0
cols = ['Gyr_X', 'Gyr_Y', 'Gyr_Z', 'Acc_X', 'Acc_Y', 'Acc_Z']
data = pd.read_csv(os.path.join(directory, file), skiprows=7,␣

↪usecols=cols)

accelerometer_data, gyroscope_data = transform_data(data)

return fs, cols, accelerometer_data, gyroscope_data

[ ]: def transform_data(data):
"""Transform the data based on device."""
accelerometer_data = data[['Acc_X', 'Acc_Y', 'Acc_Z']]
gyroscope_data = data[['Gyr_X', 'Gyr_Y', 'Gyr_Z']]

accelerometer_data = accelerometer_data.copy()
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accelerometer_data['Acc_X'] = accelerometer_data['Acc_X'].multiply(0.
↪1019716).subtract(1)

accelerometer_data['Acc_Y'] = accelerometer_data['Acc_Y'].multiply(0.
↪1019716).subtract(1)

accelerometer_data['Acc_Z'] = accelerometer_data['Acc_Z'].multiply(0.
↪1019716).subtract(1)

gyroscope_data = gyroscope_data.copy()
gyroscope_data['Gyr_X'] = gyroscope_data['Gyr_X'].multiply(0.0174533)
gyroscope_data['Gyr_Y'] = gyroscope_data['Gyr_Y'].multiply(0.0174533)
gyroscope_data['Gyr_Z'] = gyroscope_data['Gyr_Z'].multiply(0.0174533)

return accelerometer_data, gyroscope_data

[ ]: def main():
try:

# Step 1 - Receive directory and device input from user
selected_directories = receive_directory_input()

# Step 2 - Process all directories and combine results
combined_features_df = process_all_directories(selected_directories)

# Step 3 - Save the combined features DataFrame to a .csv file
output_filename = 'features.csv'
combined_features_df.to_csv(output_filename, index=False)

print(f"Features saved to {output_filename}")

except Exception as e:
print("An error occured: ", str(e))

Program execution starts here

[ ]: if __name__ == '__main__':
main()
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Python code for Model Training and Testing

September 19, 2023

Import necessary libraries and modules.

[ ]: import pandas as pd
from sklearn.model_selection import train_test_split
from pycaret.classification import *
from copy import copy

Prepare parameters function.

[ ]: def prepare_params():
"""Prepare PyCaret experiment parameters."""
parameters = {

"data": training_data,
"target": 'label',
"normalize": True,
"feature_selection": True,
"train_size": 0.8,
"data_split_stratify": True,
"fold_strategy": 'stratifiedkfold',
"fold": 5,
"n_jobs": -1

}
return parameters

Function for tuning and ensembling a model.

[ ]: def tune_and_ensemble_model(model):
"""Tune, bag and boost the given model."""
# Tuning
tuned_model = tune_model(model, optimize=OPTIMIZE_METRIC,␣

↪choose_better=True,
return_train_score=True, n_iter=N_ITER)

# Bagging
bagged_model = ensemble_model(tuned_model, optimize=OPTIMIZE_METRIC,␣

↪choose_better=True,
method='Bagging', return_train_score=True)

# Boosting
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boosted_model = ensemble_model(tuned_model, optimize=OPTIMIZE_METRIC,␣
↪choose_better=True,

method='Boosting', return_train_score=True)

return tuned_model, bagged_model, boosted_model

Function to blend models.

[ ]: def blend_models_sets(model_sets, method_index):
"""Blend models based on given method_index."""
return blend_models([m_set[method_index] for m_set in model_sets],

optimize=OPTIMIZE_METRIC,
choose_better=True,
return_train_score=True)

Function to evaluate and finalize a model.

[ ]: def evaluate_and_finalize_models(model, model_name):
"""Evaluate and finalize a model then make predictions."""
print(f"\n{model_name} Evaluation:")
evaluate_model(model)

print(f"\n{model_name} Finalization and Predictions:")
final_model = finalize_model(model)
predictions = predict_model(final_model, data=unseen_data)

return final_model, predictions

Load and filter dataset.

[ ]: dataset = pd.read_csv('/content/drive/My Drive/features.csv')
dataset = dataset[dataset['label'] != 'HS'].reset_index(drop=True)

Separating features and target.

[ ]: X = dataset.drop('label', axis=1)
y = dataset['label']

Split dataset into training and testing sets.

[ ]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15,␣
↪stratify=y)

Create training_data and unseen_data dataframes.

[ ]: training_data = X_train.copy()
training_data['label'] = y_train
unseen_data = X_test.copy()
unseen_data['label'] = y_test

2



Print shapes of Training and Unseen Data.

[ ]: print(f'Shape of Training Data: {training_data.shape}')
print(f'Shape of Unseen Data : {unseen_data.shape}')

Set PyCaret experiment.

[ ]: setup_params = prepare_params()
exp = setup(**setup_params)

Set optimization parameters.

[ ]: OPTIMIZE_METRIC = 'F1'
N_ITER = 50

Select top 5 models, tune, ensemble then blend each selected model.

[ ]: print("Selecting top 5 models based on optimization metric:")
top_models = compare_models(n_select=5, sort=OPTIMIZE_METRIC)

print("Tuning, ensembling, and blending each selected model:")
model_sets = [tune_and_ensemble_model(model) for model in top_models]
blends = [blend_models_sets(model_sets, i) for i in range(3)]

Identify the best model.

[ ]: print("Identifying the best model based on the optimization metric:")
best_model = automl(optimize=OPTIMIZE_METRIC)

Calibrate the best model.

[ ]: calibrated_best_model = calibrate_model(best_model)

Evaluate and finalize the best model and the calibrated best model.

[ ]: print("Evaluating and finalizing the best model along with the calibrated␣
↪configuration:")

best_models_info = []
best_models_info.append(evaluate_and_finalize_models(best_model, "Best Model"))
best_models_info.append(evaluate_and_finalize_models(calibrated_best_model,␣

↪"Calibrated Best Model"))

3
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1. Motivation and significance

Essential Tremor (ET) is a neurological disorder characterized
by the manifestation of involuntary and rhythmic tremors in
different parts of the body and is considered to be the most com-
mon tremor disorder worldwide [1,2], primarily affecting older
adults. In some cases, ET is confused with Parkinson’s Disease
(PD) [3], a progressive neurodegenerative disease that, among
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its clinical manifestations, and as in ET, affects movement. The
difference between these conditions has both therapeutic and
prognostic implications. Therefore, the early and correct differ-
ential diagnosis of PD and ET is crucial to ensure adequate and
timely treatments to control the evolution of the disease and also,
to prevent the patient from suffering adverse effects when receiv-
ing medication prescribed due to an erroneous diagnosis [4]. The
confusion in diagnosis is caused mainly by the fact that, although
these are two distinct diseases, there are similarities in physio-
logical and psychological symptoms between PD and ET. This is
why differentiation of the two nervous system disorders remains
a challenging task even for movement disorder specialists [5].
Neuroimaging by single-photon emission computed tomography
(SPECT) has been considered a potential diagnostic option to
differentiate PD from ET [6]. However, it is a high-cost test that
limits its use in developed countries and involves long waiting
periods in countries where the test is available. In addition, the
procedure is invasive and requires patient compatibility with the
radiopharmaceutical tracer used for this test, which may limit its
applicability [7]. Therefore, a medical evaluation by a neurologist
remains the gold standard for diagnosing both diseases.

To date, there are no low-cost, easy-to-use confirmatory or
diagnostic tests or tools that ensure accurate, safe and repro-
ducible differentiation between the two diseases [8]. However,
with the progressive development of smartphone technologies
and functionalities in recent years, mobile applications have been
created for the medical sector, some of them aimed at support-
ing the diagnosis, assessment, analysis and monitoring of some
movement disorders [9,10]. However, the applications developed
as a diagnostic support tool mainly focus on differentiating a
pathological tremor from a physiological one, mainly for PD. The
above has motivated researchers to be interested in developing
new support systems for the differential diagnosis of different
movement disorders, particularly differentiating PD from ET. Nu-
merous methods using various approaches have been developed
over the past two decades [11]. However, only a few systems have
been implemented as ready-to-use applications until now. In one
of our previous works, hand tremor recordings from subjects
with a confirmed diagnosis of PD and ET were analyzed from a
protocol described in [12] to analyze the recorded signals and
extract biomarkers that could be used in the context of routine
clinical care to support the differential diagnosis of these tremor
disorders. The proposed protocol consists of an easy, quick test
that requires no specialized equipment other than a smartphone
and/or a specific wearable inertial sensor. To perform it, either
of these two devices was placed on the dorsum of the hand to
record the tremor in two arm positions (resting and posture) at a
defined frequency rate for 30 s. The recorded data were analyzed
using statistical methods, and it was found that some biomark-
ers in the frequency spectrum can contribute to differentiating
physiological and pathological tremors and, in turn, differentiate
PD from ET. The results allowed us to use these biomarkers,
also called kinematic features, to train Machine Learning (ML)
models to classify hand tremors accurately. Thus, a methodology
was initially developed to train ML models in Matlab using the
kinematic features of the linear acceleration [13] and angular
velocity [14] signals of the hand tremor of 51 subjects previously
recorded at the Hospital Clìnic de Barcelona with an iPhone 5 at
a sampling frequency of 100 Hz [12]. For this work, the same
methodology was implemented in Python and the Scikit-Learn
machine learning library to train and test new ML models using
the data from the 51 subjects and new data from 25 subjects
recorded at the Centro de Trastornos del Movimiento (CETRAM)
in Chile between November 2021 and January 2022. The new
data were recorded at a sampling rate of 120 Hz using a wireless
inertial sensor, Xsens DOT. The new data were sub-sampled at

100 Hz to homogenize the dataset due to the difference in the
sampling frequency used for the two devices. The biomechanical
analysis was performed in the frequency domain in the range of 3
to 10 Hz to calculate the kinematic features, as described in [13]
and [14]. Finally, the sample was split in a 70–30 ratio; 70% for
training and 30% for testing. The ML models implemented in the
App showed an accuracy of 96.77% for differentiating between
physiological tremors and 94.73% for differentiating pathological
tremors (PD and ET). Finally, as a result of these three works, it
was proposed to develop TremorSoft. This Android-based mobile
application uses the built-in inertial sensors of the smartphone or
the external wirelessly connected inertial sensor (Xsens DOT) to
serve as a tool to support the differential diagnosis of PD and ET
during routine clinical practice.

TremorSoft is a novel e-health application in the field of move-
ment disorders research, whose main contribution lies in imple-
menting ML algorithms that have a high efficiency to easily and
quickly classify PD and ET. It is expected that this application can
be used as an additional tool in the medical evaluation of patients
with high suspicion of PD or ET that, through an alternative
and non-invasive test procedure, allows the physician to have
timely and reliable information to make a correct diagnosis of the
patient. Especially for developing countries, where hospitals often
have only simple tools and techniques at their disposal, a stan-
dardized, convenient and accurate low-cost tool to differentiate
PD from ET would be of considerable help.

2. Software description

2.1. Software architecture

TremorSoft implements the 6-axis inertial sensor from the
smartphone or a wearable sensor connected via Bluetooth to
record and analyze hand tremor data, classifying them accord-
ingly. The tool consists of two parts: (1) a smartphone application
to record the demographic, clinical, and kinematic data of the
subject to be evaluated, and (2) a web server where the recorded
kinematic data are processed to classify them deferentially, ac-
cordingly, between HS, ET and PD by applying ML models to
the features extracted from these data. The mobile application is
built on the Android operating system and represents the front-
end of the tool, written in Kotlin using the Android SDK and the
Xsens DOT SDK. The target version of the operating system is
Android 8.0 Oreo or higher. All processes running on the web
server, the back-end, are hosted on the Heroku platform, written
in Python. The Retrofit network library is implemented as a REST
client to load and retrieve data from the back-end. Regarding
the Authentication services, the Firebase platform is used. Fig. 1
shows the general architecture of the developed software.

2.2. Software functionality

2.2.1. Front-end
The Front-end consists of an Android application in which

users, physicians, and movement disorder specialists can record
information about patients with suspected or diagnosed PD or
ET. The information that can be recorded corresponds to primary
clinical data, hand tremor signals, and, in the case of diagnosed
patients, information related to their diagnosis and the treat-
ment received. The mobile app guides the user to record hand
tremor signals using the built-in inertial sensors (gyroscope and
accelerometer) of the smartphone or an external inertial sensor
(Xsens DOT) connected to it wirelessly. The recorded signals
correspond to two positions, rest and posture, which are stored
separately in two ArrayList class variables, restData and posture-
Data. When the external sensor is used to record hand tremor
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Fig. 1. TremorSoft flowchart.

signals, these are stored in the internal device memory, so they
must first be exported to the application and then assigned to
restData and postureData as appropriate. Once both positions are
recorded and saved, the two lists are combined into a single list
called tremorData. Then, a new variable of type JSONArray, called
dataArray, is created from the latter list. This JSONArray is the one
that is sent to the server hosted on the Heroku platform, where
the signals are processed, analyzed, and classified. The application
then receives and displays a message corresponding to the result
returned by the server. The three possible messages the appli-
cation can display according to the classification obtained are:
(1) A pathological tremor has been identified. It has been clas-
sified as PD; (2) A pathological tremor has been identified. It
has been classified as ET, or (3) The recorded tremor has been
classified as a physiological tremor.

If the user who enters the application is an associated user,
i.e., a user accredited as a TremorSoft collaborator, the application
enables the SEND button. The user confirms the classification
received by pressing this button and authorizes the submission
and storage of the recorded data in the webserver database.
When this process is initiated, the application takes each of
the collected clinical and diagnostic data and stores them in a
new JSONObject, called patientDataJSON, which is subsequently
added to the JSONArray called tremorsoftData, a copy of dataArray
which contains the recorded signals at rest and posture. Then,
tremorsofData is sent via a POST request under the path /submit.
Finally, the server returns a confirmation message displayed on
the application screen upon completing this task. Here the user
can decide whether to restart the classification process on the
same patient (RESET button) or perform a new test on a different
patient (NEW button). Fig. 2 shows the user interface of the
software.

2.2.2. Back-end
The back-end was developed as a RESTful API using Python

and Flask and is deployed on the Heroku platform. The back-end

has hosted all the functions and elements essential for processing,
analyzing, and classifying the hand tremor records and stor-
ing these records and other patient data in the SQL database.
The three main components of the TremorSoft web server are
described below:

1. Data preprocessing and extraction of kinematic fea-
tures: The server receives the JSONArray via the /upload
path from the mobile application and transforms it into
a Pandas Dataframe for further processing. The signals
are initially filtered during preprocessing to reduce sensor
drifts and distortions due to various physical phenomena.
Next, the Power Spectral Density (PSD) of each accelerom-
eter and gyroscope axes is calculated. From the PSD of
the components, kinematic features are extracted and then
evaluated by ML models.

2. Classification of hand tremor using ML: The server hosts
the classification models developed based on the method-
ology and results obtained in previous studies [12–14].
The Classification function uses a model and specific kine-
matic features, previously extracted with the Preprocess-
ing function, to initially classify the recorded tremor as
physiological or pathological. If the tremor is classified as
pathological by the first model, a second model is used to
classify the tremor of the subject as PD or ET. Although
many kinematic features have been extracted in previous
works, the classification models only use a small number of
these, i.e., only those that, together with the model, provide
high predictive power.

3. Storing patient data with a confirmed diagnosis: An SQL
database was linked to the server using the Heroku Post-
gres service for data upload and storage. Subject data is
uploaded to the web server in a POST request via the
/upload path once it is verified that all required infor-
mation has been supplied. As shown in Figs. 3 and 4,
the data set that is stored for each patient contains 25
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Fig. 2. Overview of the TremorSoft user interface dialog screens: (A) Login screen; (B) Home screen; (C) Basic patient data; (D) Patient diagnostic data; (E) Sensor
selection for recording hand tremor; (F) Recording hand tremor in resting position; (G) Recording hand tremor in postural position; (H) Export of records when
using Xsens DOT; (I) Tremor classification result returned by the web server; (J) Confirmation of data submission and saving to the web server.

columns: Patient identification (Patient_id), Age, Gender,
Family history of tremor (F_history), Classification received
by ML models (Classification), Previous diagnosis of the
patient (Diagnosis), Method of diagnosis (Method), Age
of onset or diagnosis of the disease (O_age), Bilaterality,
Treatments received (Treatments), Medication intake prior
to registration (Medication), Concomitances, Comorbidi-
ties, Accelerometer signals at Rest (AccX_r, AccY_r, AccZ_r),
Accelerometer signals at Posture (AccX_p, AccY_p, AccZ_p),
Gyroscope signals at Rest (GyrX_r, GyrY_r, GyrZ_r) and
Gyroscope signals at Posture (GyrX_p, GyrY_p, GyrZ_p).

3. Impact

The medical relevance of this e-Health App is framed in the
achievement of new advances and knowledge beyond the state
of the art of movement disorder testing methods, as this tool
will serve as an additional evaluation technique to help differ-
entiate pathological tremors that, in some cases, mainly in the

early stages of diseases, are not easy to identify. Furthermore,
compared to the one obtained with SPECT, the level of reliability
that this app will achieve will be high enough to help neurolo-
gists correctly evaluate and identify movement disorders and, in
turn, measure their severity. Likewise, the knowledge generated
from this tool will represent a significant scientific contribution
to improving the differential diagnosis of different movement
disorders.

This application aims to provide more objective information
to facilitate decision-making and, above all, reduce waiting times
before receiving a final diagnosis, making it possible for patients
to access appropriate treatment promptly. Three stakeholders
will benefit from the success of the application. First, the attend-
ing physician can use the app to support the initial evaluation
of the disease, especially in undiagnosed, early, or complicated
cases. For the patient, correct and early treatment can positively
affect the health condition, helping reduce complications and
prolong the quality of life. Finally, for healthcare systems, the
impact is mainly financial where. For example, in Spain, medical
costs per patient with PD can amount to 17,000 e per year [15].
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Fig. 3. Patient data stored in the SQL database hosted on the Heroku server: A. Basic patient data and tremor classification; B. Diagnosis-related data.

Fig. 4. Data from the resting and postural tremor records stored in the SQL database hosted on the Heroku server: (A) Records of angular velocities from the
gyroscope; (B) Records of linear accelerations from the accelerometer.

The use of this tool could contribute to the reduction of ex-
penses incurred on erroneous or ineffective treatments and even
avoid the need to use expensive techniques or technologies. It
is important to highlight that the classification given by the App
cannot be considered as a definitive diagnosis, it would serve as
an added value in the decision-making of physicians and move-
ment disorder specialists. They are the ones who would execute
these assessments and not the patients, taking into account other
clinical criteria of the patient besides the hand tremor. Likewise,
given the short time it takes to register and classify the patient,
the treating physician can repeat the test if it is considered that
a false positive or false negative has occurred due to an error at
the time of registering the patient.

In future work, we intend to seek the collaboration of different
movement disorders centers to expand the database with records
of patients with confirmed diagnoses in order to perform constant
improvement and maintenance of the implemented models and,
thus, to have a higher degree of reliability in the classification
made by the models. Taking into account the nature of the data
that may be collected from both the user (Name, email, profile
picture, etc.) and the patients (Age, gender, diagnosis, etc.), we
will ensure that the final version of TremorSoft complies with all
standards and measures imposed by the General Data Protection

Regulation (GDPR) by performing the encryption of personal data,
preventing unauthorized access to this data and constantly eval-
uating the security measures implemented. Finally, we also plan
to add a new function in the mobile application that will allow
sending reports to the email of physicians and specialists who use
the application in their clinical routine.

4. Conclusions

This work provides a quantitative, easy-to-use, non-invasive,
and cost-effective method that can be used as a supportive tool
in diagnosing PD and ET based on recording the hand tremor. The
tremor classification result is available in a short time during the
medical evaluation by the physician, either in person or remotely.
The combination of clinical information with kinematic feature
information for ML model training is the key to the functionality
of this tool, providing the application with increased classification
accuracy. Typically, the classification of these motor disorders fo-
cuses on obtaining one or more kinematic biomarkers; however,
the heterogeneity of both diseases makes this approach difficult,
and we believe that complementing clinical data with kinematic
biomarkers is more efficient.
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