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Abstract

Mathematical and computational modeling of flexoelectricity at fixed and moving
interfaces, fracture surfaces and contact.

Jordi Barceló Mercader

Flexoelectricity is a two-way coupling between strain gradient and polarisation or strain and
polarization-gradient. Harnessing flexoelectricity as a functional property requires gradient
engineering. This is a major step from the uniform-field configurations of piezoelectric
devices, since piezoelectricity couples strains and polarisation. Gradients can be generated
by non-uniform deformation, such as bending and torsion, or through non-uniform material
distributions, electrode configurations and complex geometries. Gradient engineering thus
requires accurate quantitative modelling tools capable of efficiently dealing with all these
elements with high-physical fidelity in order to build engineering tools for the design of
flexoelectric devices.

From a mathematical point of view, flexoelectricity is modelled as a system of coupled
high-order PDEs. This poses important challenges to computationally solving boundary
value problems in general multi-material samples with complex geometries and electrode
configurations.

In this thesis, a theoretical and computational model for flexoelectricity in the presence of
interfaces has been developed and implemented in the context of the hierarchical B-spline
immersed boundary approach. This framework has been used to study physical material
interfaces, as well as fictitious interfaces such as generalized periodicity unit cell boundaries.
The former has been used in multimaterial symmetry-breaking arrangements up-scaling
flexoelectricity in electromechanical devices. For the latter case, an elegant and efficient
implementation making use of the periodicity of the B-spline bases functions has been derived
and used for the design and analysis of flexoelectric architected periodic lattice metamaterials.
Moving interfaces such as cracks and ferroelectric domain boundaries have also been studied
by coupling phase-field models for fracture and ferroelectric microstructure accounting for
flexoelectricity. Finally, flexoelectricity has been shown as a plausible cause for the asymmetric
tribology observed in ferroelectrics in tight collaboration with experimentalists.

Keywords: Flexoelectricity, Continuum mechanics, Interfaces, Periodicity, Ferroelectrics, Fracture.
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Chapter 1

Introduction

1.1 Motivation

When observing our surroundings, we notice that many essential tools in our daily life need a
power supply to work. Human-made machines need energy to perform task that very often
rely on mechanics. Energy is massively transported in form of electricity, which is supplied
to the machines and needs to be transformed into mechanical action. This process is called
electromechanical transduction and strongly relies on electroactive materials. Electroactive
devices that convert an electric input into amechanical output are called actuators in contrast to
sensors that convert mechanical output into an electric signal. Another group of electroactive
devices is the energy harvester that collects energy from an ambient mechanical source and
converts it to electric energy to power autonomous electronic devices or circuits. .

Sensors are commonly used in electronic devices that, nowadays, are used all around the
world, for example, the contact sensor in mobile phones or the pressure sensor in modern
keyboards, among others. Still, they can be used in biomedical devices, such as blood pressure
measurement devices (Terry et al., 1990) or fetal ultrasounds (Karlsson et al., 1996). Actuators
can yield well-controlled mechanical forces with application to robotics, motors or medical
devices (Ciofani and Menciassi, 2012). The last group is formed by energy harvesters; this
group includes devices to harvest and store energy from the heart’s motion (Dagdeviren et al.,
2014), muscle-driven nanogenerators (Li et al., 2010) or even textile nanogenerators (Wu et al.,
2012), among others. We refer the reader to Dagdeviren et al. (2016) to see a wide range of
applications illustrated in Fig. 1.1.

Most of the currently used electroactive devices rely on piezoelectric ceramics (Gautschi,
2006, Safaei et al., 2019, Sinha et al., 2009). Piezoelectricity is the ability to generate an electric
response to a mechanical stimulus. Mathematically, it can be written as a coupling between
polarisation 𝑷 and stress 𝝈 , governed by a third rank tensor of piezoelectric coefficients 𝒅 , as

𝑃𝑙 = 𝑑𝑙𝑖𝑗𝜎𝑖𝑗 . (1.1)

1
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Figure 1.1: Application for electroactive materials. Some of these applications could be energy
harvesters from the heart’s motion, wind waves or even body movements. They can also
widely be used in electronic devices as personal electronics or defence technology, among
others. The image is taken from Dagdeviren et al. (2016).

Conversely, piezoelectrics also deform 𝜺 under an electric bias 𝑬 ,

𝜀𝑖𝑗 = 𝑑𝑙𝑖𝑗𝐸𝑖𝑗 . (1.2)

Piezoelectric materials can be either crystalline, ceramic or polymeric. In each case, piezoelec-
tricity is the result of a different mechanism, but in all cases, it emerges from the existence of
an internal electric dipole, which can be ionic or polymeric. Mechanical deformation induces
changes in these dipoles, resulting in an electrical signal. Conversely, the interaction of the
internal dipoles with external electric fields produces a mechanical deformation of the material.
This mechanism is schematically illustrated on a cartoon of an ionic crystalline piezoelectric
in Fig. 1.2. Piezoelectricity has two significant characteristics that we want to highlight. The
first is reversibility, an opposite input yields an opposite output, and the second is its scale
invariance.

The presence of an internal dipole in the material is thus key to piezoelectricity. For
this, a non centro-symmetric arrangement of ions or molecules is mandatory. In the case of
ionic crystals, of the thirty-two point groups, just twenty are non-centrosymmetric. Another
limitation, the best piezoelectric materials are brittle ferroelectric ceramics, exhibiting fracture
toughnesses in the order of that of glass. The most widely used piezoelectric material is PZT,
with a 60% content of toxic lead. The crystalline structure of the grains depends on temperature,
and the material looses its piezoelectric properties above a certain transition temperature, the
Curie temperature. Common piezoelectrics have quite low Curie temperatures, precluding
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their use in extreme conditions. For instance, commercial PZT compositions have a Curie
temperature around 350◦C, which limits the operating temperature range to 150 − 250◦C.
Although the world, especially Occident, is trying to replace lead-based ceramics, it is still far
from achieving it (Cross, 2004, Hong et al., 2016, Saito et al., 2004, Wu, 2020).

Piezoelectricity has been widely investigated since its demonstration by Pierre Curie in
1880. Its coupling with other physics, like pyroelectricity (temperature) or ferroelectricity,
has also been studied. Besides piezoelectricity, other electromechanical couplings are also
possible. All of them have been considered and explored to potentially overcome some of the
limitations of piezoelectrics in specific situations.

On one hand, soft dielectrics such as dielectric elastomers exhibit electrostriction, the
elongation of the material resulting from the movement of cations in the direction of an
external electric field and anions in the opposite direction. This displacement accumulates
throughout the bulk material and results in an overall elongation in the direction of the field.
Similarly, the Maxwell stress effect is generated by electrostatic forces between positive and
negative charges on the interfaces of electrodes and dielectric elastomer films. Both effects
depend quadratically on the polarisation, and thus a reversal of the applied electric field does
not reverse the sign of the induced strain. Furthermore, only actuation is achieved, and sensing
is not possible, i.e. these mechanisms do not induce an electric signal upon deformation.

Another electromechanical coupling mechanism is provided by flexoelectricity. Although
negligible at the macroscale, it is a universal effect present in all dielectrics which is significant
at submicron scales. Flexoelectricity is the two-way coupling between strain gradients and
electric field or polarisation (direct effect), and a coupling between strain and electric field
gradient or polarisation gradient (converse effect). The direct effect is thus the generation
of polarisation or electric field due to an inhomogeneous deformation such as bending or
twisting. It has been observed in Cross (2006), Hana (2007), and it is expressed mathematically
as a linear property by

𝑃𝑙 = 𝜇𝑙𝑖𝑗𝑘
𝜕𝜀𝑖𝑗
𝜕𝑥𝑘

, (1.3)

where 𝜇 is a fourth-rank tensor called the flexoelectric tensor. The inverse effect is also true,
i.e. an electric field generates a strain gradient in the material (Bursian and Zaikovskii, 1968,
Zubko et al., 2013).

The converse effect refers to the generation of mechanical strain or stress under inhomoge-
neous electric or polarisation fields. It has been observed in Abdollahi et al. (2019), Fu et al.
(2006), Hana et al. (2006). Mathematically, it is written as

𝜎𝑖𝑗 = 𝑓𝑙𝑖𝑗𝑘
𝐸𝑙
𝜕𝑥𝑘

. (1.4)

Like piezoelectricity, flexoelectricity is a two-way coupling. However, unlike piezoelectricity,
which is restricted by symmetry, flexoelectricity is present in all dielectrics thus a universal
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property in dielectrics, regardless of material symmetry, see Fig. 1.2. Another difference is
that being a property involving gradients, the flexoelectric effect depends inversely on size.
Because of that, flexoelectricity was not investigated until recently, when nanotechnology was
sufficiently advanced, as shown in Fig. 1.3. Interestingly, advances in nanotechnologies have
triggered an increasing interest in flexoelectricity.

Figure 1.2: Illustration of direct piezoelectricity and flexoelectricity through homogeneous
and inhomogeneous deformation in centrosymmetric and non-centrosymmetric structures. a)
Applying a homogeneous force in a non-centrosymmetric structure results in a change in the
net polarisation (piezoelectric effect). b) Applying an inhomogeneous deformation in a non-
centrosymmetric structure also results in a change in the net polarisation (direct flexoelectric
effect). c) Applying a homogeneous deformation in a centrosymmetric structure produces no
electric response. d) Applying an inhomogeneous deformation in a centrosymmetric structure
induces a non-zero net polarisation (direct flexoelectric effect).

1.2 Evidence of flexoelectricity

Flexoelectricity was theoretically discovered by Mashkevich and Tolpygo (1957) and math-
ematically formulated by Kogan (1964), but it was first observed in 1968 by Bursian and
Zaikovskii (1968). The authors observed bending of a thin cantilever film in the presence of
an electric field, which cannot be explained by piezoelectricity and was thus attributed to
flexoelectricity. Bending was always in the direction of the positive electrode, meaning that
the direction of bending could be reversed upon electric field reversal. They also observed
charges on the film’s surfaces when bent without any external electric field. That was the
first demonstration of the two-way coupling of flexoelectricity. They needed a thin film of the
order of micrometres to observe the effect. Such small sizes were out of the reach of fabrication
technologies at that time, which explains why researchers lost interest in flexoelectricity
until the developments of nanotechnology allowed us to fabricate and manipulate devices
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Figure 1.3: Number of publications on flexoelectricity per year. The image has been taken
from Scopus, searching the word "flexoelectricity" and sorted by year.

at flexoelectrically relevant scales. Flexoelectricity is universal in dielectrics and has been
observed in multiple materials. We report next the most relevant ones.

1.2.1 Flexoelectricity in liquid crystals

While investigating the piezoelectric effect in liquid crystals, Meyer (1969) found another
mechanism coupled with strain gradient, which he termed flexoelectricity. Two types of
molecules can be found in a crystal: a pear molecule and a banana molecule. Under a free
tension configuration, both of them exhibit zero overall net polarisation, as seen in Fig. 1.4a-b.
However, under the effect of an inhomogeneous deformation such as bending, they redirect
themselves to minimise the total energy of the configuration giving rise to a net polarisation,
as shown in Fig. 1.4c-d.

1.2.2 Flexoelectricity in biological systems

Flexoelectricity has been observed in cellular membranes (Ahmadpoor et al., 2013, Ahmadpoor
and Sharma, 2015, Duerloo and Reed, 2013, Petrov, 2002, Todorov et al., 1991). Duerloo and
Reed (2013) found that lipid bilayers can exhibit a strong coupling between curvature and
electric fields. Furthermore, Duerloo and Reed showed that the bilayer had a displacement of
approximately 1000 times larger than a single layer (see Fig. 1.5a). Ahmadpoor et al. (2013)
also found that lipid molecules have some electric dipoles in the membranes, which explains
their curvature (see Fig. 1.5b).

Flexoelectricity has also been found to play a role in the mammalian hearing mechanism
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Figure 1.4: Flexoelectric effect in liquid crystal. a-b) Pear and banana molecules under free
tension configuration. Both of them exhibit zero net overall polarisation. c-d) Pear and
banana molecules under inhomogeneous deformation. Both of them exhibit a non-zero overall
polarisation. Image extracted from Meyer (1969).

Figure 1.5: a) The lipid bilayer exhibits a strong coupling between curvature and electric fields
thanks to flexoelectricity. Image adapted from Duerloo and Reed (2013). b) Lipid bilayer with
some electric dipoles inside. Those dipoles create an electric field that bends the bilayer, thanks
to inverse flexoelectricity. Image adapted from Ahmadpoor et al. (2013).
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(see Fig. 1.6). Stereocilia in hair cells are biological flexoelectric sensors for sound. The hair
cell membranes convert the acoustic vibration into amplified electrical signals (Ahmadpoor
and Sharma, 2015, Krichen and Sharma, 2016, Oghalai et al., 2000, Peng et al., 2011).

Figure 1.6: a) Cross-section of the organ of Corti pointing out the salient features relevant to
hearing transduction. b) Scanning electron microscopy image looking at the apical surface
of hair cells. c) Enlargement of a schematic of the hair bundle and hair cell apical surface. d)
Cross-sectional view of the MET channel illustrating putative binding sites (Peng et al., 2011)

It is well known that human bones are piezoelectric, due to the highly oriented and patterned
structure of collagen. It has been recently claimed that flexoelectricity plays a key role in
triggering the self-reparing mechanism in bones (Vasquez-Sancho et al., 2018). Micro-cracks
in the bones generate a very large strain gradient in the vicinity of the crack tips that induces
an electric field. This effect was first attributed to piezoelectricity, but nowadays, it is known
that the principal constituent of bones has a centrosymmetric structure and thus, cannot
exhibit piezoelectricity. This electric field generates a stimulus able to initiate the healing
process (see Fig. 1.7) (Vasquez-Sancho et al., 2018). Finally, flexoelectricity plays a crucial
role in enhanced toughness of the stomatopod dactyl club. It is known that the stomatopod
dactyl club is one of the most damage-tolerant materials in the world. It can break materials
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such as shells and is used to defend or attack prey. The claws undergo repeated high-velocity
and high-force impacts. The graded structure of the club, leads to a grading in mechanical
material properties. This property gradient induces a mechanical gradient that can trigger the
flexoelectric effect, generating a flexoelectrically induced electric field that enhances toughness
(see Fig. 1.8) (Abdollahi et al., 2015a, Vásquez Sancho, 2018, Weaver et al., 2012).

Figure 1.7: a) Recreation of a bone micro-crack b) Electric field distribution close to crack.
Image adapted from Vasquez-Sancho et al. (2018)

Figure 1.8: Image of a Stomatopod, the white arrow indicates the dactyl club and division of
the two main segments of the club: Dactyl and propodus. Image adapted from Vásquez Sancho
(2018)

1.2.3 Flexoelectricity in ionic crystals and hard ceramics

Flexoelectricity is also observed in ionic crystals and hard ceramics. Strain gradients are created
upon bending on a two-dimensional plate and a difference of tension between the stretched
upper and the compressed bottom part is created (see Fig. 1.2). Because of flexoelectricity, a
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polarisation in the same direction of the strain gradient is generated, as seen in Cross (2006),
Ma and Cross (2002, 2001a). The relationship between elastic strain gradient and electric
polarisation was investigated in the relaxor ferroelectric lead magnesium niobate ceramic.
Experimental studies done by Ma and Cross (2001b) indicated that flexoelectric polarisation is
linearly proportional to the applied strain gradient as shown in Fig. 1.9

Figure 1.9: Flexoelectricity in ionic crystals and ferroelectric ceramics. a) Experimental setup
for the measurement of the flexoelectric effect. The loudspeaker produces the bending of
the sample and the displacement transducer measures the displacement at several positions
along the sample bar. A very thin layer of sputtered gold is used as electrode at the bottom of
the sample. b) The relationship between flexoelectric polarisation and strain gradient in the
ceramics. Image extracted from Ma and Cross (2001b)

Domain walls in ferroelectric ceramics, which constitute an interface of strain and po-
larisation gradients, can trigger the flexoelectric effect as seen in Wang et al. (2020). Wang
et al. (2020) showed that some typical domain wall distributions are only possible due to
flexoelectricity.

1.2.4 Flexoelectricity in polymers

Most experiments in the literature report a low effect of flexoelectricity in polymers, ex-
cept in some special cases. The origin of flexoelectricity in elastomers has been adressed in
Grasinger et al. (2021). Grasinger et al. (2021) shows that combining stretching and bending is
a mechanism for obtaining giant flexoelectricity.

Although the flexoelectric coefficients are typically smaller than those in inorganic ma-
terials, polymers have some advantages, for example, easy processing, low processing cost
and desirable for practical application (Baskaran et al., 2011a, 2012, 2011b, Breger et al., 1976,
Marvan and Havránek, 1998). Under a similar stress, polymers exhibit a stronger deformation
than those created in hard ceramics, thus, a useful electromechanical response is created (Chu
and Salem, 2012, Zhou et al., 2017).
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1.3 Characterisation of flexoelectricity

According to Eqs. (1.3-1.4), the flexoelectric tensor has rank 4, and thus, with no additional
assumption, it has 54 independent parameters (Le Quang and He, 2011, Shu et al., 2011).
Under the premise of cubic symmetry, which is a reasonable assumption for a wide variety of
materials, we reduce that number to three independent coefficients. They are the so-called
longitudinal, transversal and shear coefficients, and the mathematical description of the cubic
flexoelectric tensor is

𝜇<𝒙>𝑖𝑖𝑖𝑖 = 𝜇𝐿, 𝑖 = 1, 2, 3;

𝜇<𝒙>𝑖𝑗𝑗𝑖 = 𝜇𝑇 , 𝑖, 𝑗 = 1, 2, 3 ∶ 𝑖 ≠ 𝑗;

𝜇<𝒙>𝑖𝑖𝑗𝑗 = 𝜇
<𝒙>

𝑖𝑗𝑖𝑗 = 𝜇𝑆 , 𝑖, 𝑗 = 1, 2, 3 ∶ 𝑖 ≠ 𝑗, (1.5)

oriented so that the vertical axis is 𝒙 . Even in the case of cubic flexoelectrics, flexoelectricity
is difficult to measure experimentally for two reasons: the need to have a high-resolution
technology and the difficulty of isolating the effect of each independent coefficient. Another
simplification that could be used is isotropy and it is fulfilled if (Le Quang and He, 2011)

𝜇𝐿 − 𝜇𝑇 − 2𝜇𝑆 = 0. (1.6)

Flexoelectricity can be characterised either in experiments or through first-principle calcula-
tions. Next, we give a brief overview of both.

1.3.1 Experimental characterization

The longitudinal coefficient can be measured in the direct effect using the truncated pyramid
setup as done in Cross (2006), Hana (2007), Marvan and Havránek (1998). In this method, a
matrix of truncated pyramids is used; the difference in area between the bottom face and the
top face creates a strain gradient in the vertical direction, resulting in a vertical electric field
(see Fig. 1.10). Another way of determining this coefficient is creating a graded electric field and
computing the vertical strain as done in Hana (2007). Most of the experiments use ionic crystals
or ferroelectric ceramics because the flexoelectric coefficients are known to be proportional to
the dielectricity constant, which is larger in these materials (Zubko et al., 2013). There are some
discrepancies between the theoretical values and the experimental values of the flexoelectric
coefficients. Some reasons are the interplay between electrostriction and flexoelectricity as
reported in Zubko et al. (2013) or the simplified analytical estimations of strain gradients in
compressed pyramids that significantly overestimate flexoelectric coefficients (Abdollahi et al.,
2015b). For this reason, the experimental values greatly exceed the expected ones, as seen
in BaTiO3-based ceramics where the experimental value exceeds by 5 − 10V the theoretical
one. For PMN-PT, the measured coefficients vary by orders of magnitude depending on the
measurement method used (Hana, 2007, Hana et al., 2006).
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The transversal coefficient is the easiest one because it can be mobilised upon beam bending,
which creates a transversal electric field. Two different setups can be found in the literature:
cantilever beam bending (see Fig. 1.10) (Huang et al., 2017, 2011, Kwon et al., 2014, Li et al.,
2014, 2013, Shu et al., 2017, 2016, 2013) and four-point bending (see Fig. 1.10) (Ma and Cross,
2003, Narvaez and Catalan, 2014, Narvaez et al., 2015, Zubko et al., 2007).

The quantification of shear stress is not trivial and there has yet to be a well-established
method. A natural choice is torsion of flexoelectric bars. Nevertheless, torsion-induced strain
gradients result in vanishing flexoelectric response in cubic systems, regardless of the shape of
the bar’s cross-section (Mocci, 2021, Mocci et al., 2023). A significant response can be obtained
by considering a varying cross-section, although the response, in this case, involves all three
flexoelectric modes, and a carefully derived correction is needed, as seen in Mocci et al. (2023).
In her thesis, Mocci proposed using a half-truncated cone under torsion to quantify the shear
coefficient in cubic flexoelectrics (see Fig. 1.10).

1.3.2 First principles calculations

The first theoretical model was proposed by Kogan (1964). He stated that the flexoelectric
coefficient could be approximated as

𝑓 ≈
1

4𝜋𝜖0
𝑞
𝑑

(1.7)

where 𝑑 is the interatomic distance, 𝜖0 is the vacuum permittivity, and 𝑞 is the electronic
charge. Nowadays, there are two models to quantify flexoelectric coefficients theoretically. The
first relies on atomistic computation, where the flexoelectric coefficient is computed through
the polarisation induced by bending using atomistic computations, such as density functional
theory (DFT) (Codony et al., 2021c, Dumitrică et al., 2002, Kalinin and Meunier, 2008, Kumar
et al., 2021, Shi et al., 2018), and the second relies on the first-principle theory of flexoelectricity
based on density functional perturbation theory (DFPT) (Codony et al., 2021b, Dreyer et al.,
2018, Hong and Vanderbilt, 2013, Resta, 2010, Stengel, 2013, 2014).

1.4 Flexoelectricity in technology

As electromechanical components in electronic devices are shrinking, the role of flexoelectricity
is becoming increasingly significant. Understanding flexoelectricity is important, not only to
harness it as a functional property, but also to understand its interaction with piezoelectricity
in current electromechanical devices.

Some sensors are based on flexoelectricity, such as a microcurvature flexoelectric sensor
(Yan and Jiang, 2013) or a sensor that converts the curvature of the beam into an electric
signal (Huang et al., 2012, Merupo et al., 2017).

As commented before, common piezoelectric materials have some disadvantages that we
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Figure 1.10: Setups for flexoelectric coefficient quantification. a) Arrangement of the truncated
pyramid under vertical compression, the longitudinal coefficient can be measured. b-c)The
transversal coefficient can be measured in the cantilever beam bending setup and three-point
bending. d) Half truncated cone under torsion, the shear coefficient can be measured. Panel
constructed using images from Hana (2007), Huang et al. (2017), Mocci (2021), Zubko et al.
(2007)

should keep in mind: brittleness, toxicity resulting from high lead content and limited range
of operating temperature being the main ones. For that reason, replacing materials with
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flexoelectric ones is of interest. Some studies try to mimic the piezoelectric response using an
architected non-piezoelectric material. This response is usually called apparent piezoelectricity.
The idea is to break the symmetry of the non-piezoelectric material by the design of a fancy
architected structure, such that after applying a homogeneous deformation, we obtain a net
polarisation. This architecture can be done in different ways, as multi-material stacks (see
Fig. 1.11a) (Liu et al., 2016a), flexural thin films (see Fig. 1.11b) (Chu et al., 2009), geometrically
polarised cavities in the material (see Fig. 1.11c) (Deng et al., 2014a, Sharma et al., 2007), or
juxtaposition on a plane of polar elements such as micro-pyramids (see Fig. 1.11d) (Cross, 2006,
Fousek et al., 1999, Fu et al., 2007, Zhu et al., 2006).

Figure 1.11: Architected structures triggering flexoelectric effect. a) Multimaterial stack from
Liu et al. (2016a) b) Structuremade by flexural thin film fromChu et al. (2009). c) Nanocomposite
with conical inclusions from Sharma et al. (2007). d) Flexoelectric composite made by the
arrangement of truncated pyramids from Fu et al. (2007).

Some studies and experiments rely on the interplay between piezoelectricity and flexoelec-
tricity in wrinkling or buckling deformation modes (see Fig. 1.12) (Chen et al., 2010, Dong et al.,
2020, Feng et al., 2011, Han et al., 2016, Park et al., 2010, Su et al., 2018). Indeed, flexoelectricity
can either enhance or destroy piezoelectricity depending on design, as shown by Abdollahi and
Arias (2015a). They studied the interplay in a bimorph, where two piezoelectric layers with
opposite piezoelectric principal directions were attached, as seen in Fig. 1.13a. They observed
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that at intermediate sizes where the piezoelectric and flexoelectric effects are comparable, the
interplay between them could be constructive or destructive, leading to a dramatic degradation
of the performance of piezoelectric devices depending for some designs, see Fig. 1.13b-c. These
experiments highlight the need for flexoelectricity-aware designs at the microscale.

Figure 1.12: Flexoelectric devices using wrinkling or buckling deformation modes. a) Prestretch
BTO membrane. The image is taken from Dong et al. (2020). b) Nanogenerator for mechanical
energy harvesting using PZT nanofibers. The image is taken from Chen et al. (2010).

Last but not least, I want to comment on flexoelectricity in ferroelectrics. As will be dis-
cussed in detail in Chapter 5, one characteristic of ferroelectrics is that they exhibit spontaneous
polarisation. This spontaneous polarisation is closely related to a spontaneous elongation of
the ionic crystal unit cell with respect to the cubic non-polar reference configuration. In a
vertically polarised thin film, polarisation can be switched 180 degrees with a vertical electric
bias. Mechanical pressure can switch polarisation 90 degrees inducing a phase transformation
from a vertically elongated tetragonal unit cell to a horizontally elongated tetragonal unit cell.
However, uniform mechanical pressure cannot induce 180-degree switching, see Fig. 1.14. It
has been shown though, that the generation of strain-gradients and the resulting flexoelectric
electric fields can switch polarisation vertically upon localised pressure under an AFM tip
(Catalan et al., 2011, Lu et al., 2012, Park et al., 2018), as shown in Fig. 1.15

1.5 Objectives of the thesis

Flexoelectricity is a gradient effect and thus harnessing flexoelectricity as a functional property
requires gradient engineering. This is a major step from the uniform-field configurations of
piezoelectric devices, as becomes clear in the previous sections. Gradients can be generated
by non-uniform deformation, such as bending and torsion, or through non-uniform material
distributions, electrode configurations and complex geometries. Gradient engineering thus
requires accurate quantitative modelling tools capable of efficiently dealing with all these
elements with high-physical fidelity in order to construct engineering tools for the design of
flexoelectric devices.

From a mathematical point of view, as hinted by Eqs. (1.3) and 1.4 and later explained in
detail in chapter 2, flexoelectricity is modeled as a system of coupled high-order PDEs. This
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Figure 1.13: Piezoelectricity vs flexoelectricity in a bimorph. a) Setup of the experiment: a
bilayer with series (top) or parallel (bottom) arrangement, clamped on the left side, fixed to
the ground at the top side, and a force is applied in the top right corner. b) Normalised voltage
as a function of the normalised beam thickness for the parallel bimorph arrangements. c)
Normalised voltage as a function of the normalised beam thickness for the series bimorph
arrangements. Image adapted from Abdollahi and Arias (2015a)

poses important challenges to computationally solving boundary value problems in general
multimaterial samples with complex geometries and electrode configurations.

In this thesis we focus on the modelling of material interfaces, fictitious interfaces such as
periodic boundaries of RVEs in heterogeneous media and moving phase boundaries such as
ferroelectric domain walls, in the context of high-order problems.

The thesis’ main goal is to formulate and implement a theoretical and computational
framework and platform to solve general electromechanical boundary value problems in
flexoelectric solids with interfaces. We consider both actual material interfaces in multi-
material configurations, and fictitious periodicity boundaries. We use this framework to
analyse flexoelectric metamaterials and devices, and explore and understand flexoelectric
manifestations at moving interfaces, such as ferroelectric domain walls, cracks, and in friction.
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Figure 1.14: Schematic of the ferroelectric unit cell under large electric field or stress. At the
top, the direction of the stress or the electric field is parallel to the electric dipole, producing
a stretching of the unit cell. At the bottom, the direction of the stress or electric field is
anti-parallel, producing a 180º switching in the case of the electric field and 90º in the case of
the stress.

We also present a study of flexoelectricity in graded materials. This thesis is challenging
since it covers theoretical and computational aspects as well as the physical understanding of
flexoelectricity in complex systems.

The specific objectives of this thesis are

• Study the continuum model associated with flexoelectricity in dielectrics at infinitesimal
deformations and the different variants of flexoelectricity: direct formulation and Lifshitz-
invariant formulation.
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Figure 1.15: Selective control of multiple ferroelectric switching pathways using a trailing
flexoelectric field. The image is taken from Park et al. (2018).

• Explore different numerical methods that can solve fourth-order PDE, such as the
isogeometric approach with b-splines and immersed approach with b-splines.

• Extend the continuum framework for material interfaces from low-order to high-order
problems. It is necessary for solving fourth-order PDE problems such as flexoelectricity.

• Formulate and implement generalised periodicity conditions for high-order electrome-
chanical problems, and use them to simulate RVE in periodic flexoelectric metamaterials.

• Extend the formulation to non-homogeneous materials and study flexoelectricity in
graded materials.



18 Introduction

• Collaborate with experimentalists in the study of the flexoelectric effect in friction and
wear under AFM scanning. Study different contact models and extend the formulation
considering axisymmetric conditions. Perfom simulations of contact of AFM tip on
flexoelectric thin films.

• Formulate and implement a phase field model for fracture and microstructure evolution
in ferroelectric crystals accounting for flexoelectricity, strain gradient elasticity and
strain gradient dielectricity in a high-performance computing platform. Study the effect
of flexoelectricity at domain walls in in ferroelectrics and their interaction with fracture.
Understanding phase-field modelling of polarisation and fracture and studying the
characteristics of the method, including the quasi-static performance.

1.6 Outline

The manuscript is divided as follows. Chapter 2 presents in detail the continuum model
for flexoelectricity. The first half of the chapter describes the direct flexoelectricity model
with high-order interface conditions. Those interface conditions are extended to model also
generalised periodicity conditions and are implemented using a novel Nitsche’s formula. Strong
generalised periodicity conditions are considered along with the macroscopic kinematics of the
model, for the Lifshitz-invariant flexoelectric model which explicitly accounts for direct and
converse flexoelectricity. Chapter 3 is devoted to the numerical approaches used in the thesis.
On one hand, we have the isogeometric approach using the b-spline method, and on the other
hand, we have the immersed approach using b-splines again. Chapter 4 shows the performance
of the numerical model with several applications, including interfaces, generalised periodicity
and graded structure applications. Chapter 5 particularises the model presented in Chapter 2
for axisymmetric conditions. This model is used to simulate the flexoelectric response of a
dielectric sample upon indentation. Chapter 6 extends a phase-field model for microstructure
and fracture evolution if ferroelectric single crystals (Abdollahi and Arias, 2011a, 2012) to
account for lifshitz-invariant flexoelectricity augmented with strain gradient elasticity and
gradient dielectricity. This model couples two phase-field models, one for the polarisation
field and one for fracture. Chapter 7 summarises the work and presents the main conclusions.

1.7 List of publications
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• J. Barceló-Mercader D. Codony, S. Fernández-Méndez, and I. Arias. Weak enforcement
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(2022).
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complex RVE is solved efficiently in an immersed boundary approach. Also, the response
of architectural material against different loading angles is studied.

• A. Mocci, J. Barceló-Mercader, D. Codony, and I. Arias. Geometrically polarized
architected dielectrics with apparent piezoelectricity. Journal of the Mechanics and
Physics of Solids 157, 104643 (2021).

This paper proposes a class of low area-fraction, bending-dominated metamaterials that
exhibit apparent piezoelectricity, even though the base material is not piezoelectric,
thanks to flexoelectricity. It quantifies the apparent piezoresponse thanks to accurate
simulations of continuum flexoelectricity. It characterises how apparent piezoelectricity
depends on lattice geometry, orientation, feature size and area fraction. The paper
generally provides the rules to endow any dielectric metamaterial with apparent piezo-
electricity, enabling non-toxic, environmentally friendly and biocompatible artificial
materials for electromechanical transduction.
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probe. Down domains having lower friction coefficient than up domains can be used
as smart masks as they show a slower wear rate. This asymmetry is enabled by flexo-
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is universal across ferroelectrics with different chemical compositions and crystalline
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materials at the nanoscale for versatile applications.
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Chapter 2

Continuum model of linear
flexoelectricity with material
interfaces or fictitious boundaries.

In this chapter, we present the mathematical framework for flexoelectricity in the presence of
material interfaces and fictitious boundaries. The latter is common in the solution of boundary
value problems in periodic structures and heterogeneous materials through the analysis of
RVE. First, we review the existing continuum models for flexoelectricity focusing on enthalpy
formulations, with displacement 𝒖 and electric potential 𝜙 as primal state variables. Among
those, two models are presented, that accounting in the enthalpy only for direct flexoelectricity
explicitly, and that accounting explicitly for both direct and converse flexoelectricity. It
is important to note that both formulations model the same physics and lead to the same
governing equations. Nevertheless, as pointed out in Codony et al. (2021a), the models differ
in the constitutive equations and the boundary conditions, and they have to be interpreted
carefully when solving specific boundary value problems (Codony et al., 2021a, 2019).

Mathematically, the governing equations are a system of coupled fourth-order PDEs. There
are several approaches to deal with the high-order nature of the equations. An attractive
choice is the use of an immersed boundary hierarchical B-spline method (Codony et al., 2019),
where the smooth B-spline basis functions provide the required continuity while the immersed
boundary approach allows to account for general sample geometries. In this context, essential
conditions on surfaces and interfaces cannot be imposed strongly since the basis functions
are not interpolant at the immersed boundary (Codony et al., 2019). A common approach for
the weak imposition of these conditions is the use of Nitsche’s method, a consistent penalty
method (Fernández-Méndez and Huerta, 2004, Nitsche, 1970). Nitsche’s method preserves the
variational structure of the problem, since it boils down to adding new terms to the energy
functional.

We first derive the equilibrium and continuity equations for material interfaces, which
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boundaries.

are termed high-order interface conditions. We then present the corresponding variational
formulation for a multimaterial flexoelectric using Nitsche’s method to impose high-order
interface conditions weekly.

We then particularise this formulation to fictitious boundaries with high-order generalised
periodic conditions. We state these conditions for the case of horizontal and vertical periodicity,
and derive the corresponding variational formulation, as a particular case of the previous one.

Finally, we generalise the formulation to account for high-order generalised periodicity in
arbitrary directions. The conditions are stated and related to a macroscopic enthalpy functional.
Later, the boundary value problem for flexoelectric RVE is described. Finally, ongoing work is
shown where high-order interface conditions for Lifshitz-invariant flexoelectricity are stated
along with Nitsche’s method variational formulation.

2.1 Variational formulation of state-of-the-art flexoelectric
models

The first theoretical studies of flexoelectricity were done by Mashkevich and Tolpygo (1957)
and Tolpygo (1963), the first model for flexoelectricity in crystalline dielectrics was proposed by
Kogan (1964), but the first work clearly distinguishing piezoelectricity and flexoelectricity was
introduced by Tagantsev (1986, 1991). The complete framework considering strain gradient
elasticity, flexoelectric coupling and polarisation effect was proposed by Sahin and Dost (1988).
After that, a simple framework for isotropic dielectric was proposed by Maranganti et al.
(2006a). Recently, different continuum models for flexoelectricity exist, including new physics,
such as flexoelectricity in ferroelectric (Catalan et al., 2004, Eliseev et al., 2009a), surface effects
(Shen and Hu, 2010) or even including the photovoltaic effect (Shu et al., 2020, Yang et al.,
2018). Comprehensive reviews for flexoelectricity in solids can be seen in Krichen and Sharma
(2016), Nguyen et al. (2013), Wang et al. (2019), Yudin and Tagantsev (2013), Zubko et al.
(2013).

Different models for flexoelectricity in dielectrics are formulated depending on the choice
of state variable. The most natural choice from a physical perspective is considering the dis-
placement 𝒖 and electric polarisation 𝑷 as the primal unknowns. It yields a global minimisation
problem of the physical free energy. This free energy functional is expressed as (Liu, 2014,
Maranganti et al., 2006a)

Π[𝒖, 𝑷] = ∫
Ω
(𝜓

Int(𝒖, 𝑷) +
1
2
𝜖0||𝑬||2) dΩ −𝑊 Ext, (2.1)

whereΩ is the domain occupied by the flexoelectric material, 𝜓 Int is the internal energy density,
1
2𝜖0||𝑬||

2 is the electrostatic energy density, with 𝜖0 the vacuum permittivity, 𝑬 the electric field,
and𝑊 Ext is the external work. The internal energy density can be written in several different
ways, e.g., considering only direct flexoelectricity explicitly, or considering both direct and
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converse flexoelectricity explicitly, among others (Codony et al., 2021a)
The variational principle associated with the energy functional in Eq. (2.1) is the constrained

minimisation problem

(𝒖∗, 𝑷 ∗) = argmin
𝒖

min
𝑷

Π[𝒖, 𝑷], (2.2)

such that stationary Maxwell’s equations hold:

∇ × 𝑬 = 0, (2.3a)
∇ ⋅ 𝑫 = 0. (2.3b)

An alternative model, which avoids having a constrained minimisation problem, consists of
considering displacement 𝒖 and electric potential 𝜙 as primal unknowns. The electric potential
𝜙 is defined such that it satisfies

𝑬 = −∇𝜙; (2.4)

thus, Faraday’s law in Eq. (2.3a) is automatically fulfilled. We define the free enthalpy as done
in Abdollahi et al. (2014), Deng et al. (2014b), Zhuang et al. (2020) as

Π[𝒖, 𝜙] = ∫
Ω
𝜓𝜙(𝒖, 𝜙) dΩ − 𝑊 Ext, (2.5)

where 𝜓𝜙 is the free enthalpy density. The variational problem is now an unconstrained
min-max problem:

(𝒖∗, 𝜙∗) = argmin
𝒖

max
𝜙

Π[𝒖, 𝜙]. (2.6)

As derived in detail in Codony (2021), both formulations are related by a partial Legendre
transform, and are thus equivalent. In this thesis, we consider displacement and electric
potential as primal unknowns since avoiding the constraint resulting from Maxwell-Faraday’s
law and thus solving the unconstrained minimisation problem has some numerical advantages.

2.1.1 Direct flexoelectricity model

We follow here the notation by Codony et al. (2019) and Barceló-Mercader et al. (2022). Let Ω
be a physical domain in ℝ2 or ℝ3. Considering just the direct form of flexoelectricity, the bulk
enthalpy density in a flexoelectric material is

Ω[𝒖, 𝜙] =
1
2
𝜀𝑖𝑗ℂ𝑖𝑗𝑘𝑙𝜀𝑘𝑙 +

1
2
𝜀𝑖𝑗,𝑘ℎ𝑖𝑗𝑘𝑙𝑚𝑛𝜀𝑙𝑚,𝑛 −

1
2
𝐸𝑙𝜖𝑙𝑚𝐸𝑚 − 𝐸𝑙𝑒𝑙𝑖𝑗𝜀𝑖𝑗 − 𝐸𝑙𝜇𝑙𝑖𝑗𝑘𝜀𝑖𝑗,𝑘 , (2.7)
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where

[𝜺(𝒖)]𝑖𝑗 = [𝜺(𝒖)]𝑗𝑖 = [∇𝑠(𝒖)]𝑖𝑗 =
1
2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖), (2.8a)

[𝑬(𝜙)]𝑙 = −[∇𝜙]𝑙 = −𝜙,𝑙 . (2.8b)

The first term on Eq. (2.7) corresponds to the elasticity enthalpy density with the fourth-order
elasticity tensor ℂ𝑖𝑗𝑘𝑙 . The second term corresponds to the strain gradient elasticity enthalpy
density with the sixth-order strain gradient elasticity tensor ℎ𝑖𝑗𝑘𝑙𝑚𝑛. These two terms form
the enthalpy density of a strain gradient elastic material form described in Mindlin (1964).
The third term is the electrostatic enthalpy density with the second-order dielectricity tensor
𝜖𝑙𝑚. The fourth term corresponds to the piezoelectric enthalpy density governed by the third-
order tensor of piezoelectric constants 𝑒𝑙𝑖𝑗 , and the last term is the flexoelectric enthalpy
density governed by a fourth-order tensor 𝜇𝑙𝑖𝑗𝑘 . Piezoelectricity and flexoelectricity couple the
electric field with the strain and their derivatives. Here, we are considering the direct effect of
flexoelectricity explicitly, i.e. the two-way coupling between electric field and strain gradient.
Note that the strain-gradient term represents the non-local elastic effect and regularises the
flexoelectric effect.

Apart from the internal enthalpy, we consider the work of external loads as

Ω[𝒖, 𝜙] = −𝑏𝑖𝑢𝑖 + 𝑞𝜙, (2.9)

where 𝒃 is the sum of body forces applied to the body Ω per unit volume and 𝑞 are the free
electric charges per unit volume. The total bulk enthalpy of a flexoelectric material is then

ΠΩ[𝒖, 𝜙] = ∫
Ω
(

Ω[𝒖, 𝜙] +Ω[𝒖, 𝜙]) dΩ. (2.10)

The enthalpy associated with enthalpy contribution from imposed displacements and
applied tractions, and imposed electric potential and applied surface charges on the sample
boundaries must also be taken into account. Considering the standard approach where the
Dirichlet boundary conditions, i.e. imposed displacements and electric potential, are strongly
enforced, i.e. the functional space of the state variables is restricted to admissible states fulfilling
Dirichlet boundary conditions, there is no enthalpy associated with those contributions.
However, applied tractions and surface charges on the sample boundary (Neumann type
boundary conditions) do contribute to the total enthalpy of the material. In order to define
correctly the terms associated with boundary conditions, the boundary 𝜕Ω is split into several
disjoint sets, as seen in Fig. 2.1, as

𝜕Ω = 𝜕Ω𝑢 ∪ 𝜕Ω𝑡 = 𝜕Ω𝑣 ∪ 𝜕Ω𝑟 = 𝜕Ω𝜙 ∪ 𝜕Ω𝑤 , (2.11)

where 𝜕Ω𝑢 , 𝜕Ω𝑣 and 𝜕Ω𝜙 correspond to those boundaries where Dirichlet boundary conditions
are enforced and 𝜕Ω𝑡 , 𝜕Ω𝑟 and 𝜕Ω𝑤 correspond to those boundaries where Neumann boundary
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conditions are enforced. An example of the boundary split can be seen in Fig. 2.1.

Figure 2.1: A 2D representation of the physical domain Ω and its boundary 𝜕Ω. The boundary
is split into several disjoint sets, as in Eq. (2.11) and Eq. (2.12). a) Domain and domain boundary.
b) Domain boundary split based on mechanical low-order Dirichlet and Neumann mechanical
boundary conditions. c) Domain boundary split based on high-order Dirichlet and Neumann
mechanical boundary conditions. d) Domain boundary split based on Dirichlet and Neumann
electric boundary conditions. e) Domain boundary boundary 𝜕𝜕Ω split in Dirichlet and
Neumann mechanical edge (corner in 2D) conditions.

Flexoelectricity BVP also require boundary conditions for the curves 𝐶 = 𝜕𝜕Ω (points in
2D). Consequently, the curves are split into two disjoint sets as

𝜕𝜕Ω = 𝐶𝑢 ∪ 𝐶𝑗 , (2.12)

where 𝐶𝑢 and 𝐶𝑗 are the curves (points in 2D) where Dirichlet boundary conditions and
Neumann boundary conditions are applied, respectively. This can also be seen in Fig. 2.1. The
corresponding Dirichlet and Neumann boundary conditions applied are

𝒖 = 𝒖D on 𝜕Ω𝑢 , 𝒕 = 𝒕N on 𝜕Ω𝑡 , (2.13a)
𝜕𝑛(𝒖) = 𝒗D on 𝜕Ω𝑣 , 𝒓 = 𝒓N on 𝜕Ω𝑟 , (2.13b)

𝜙 = 𝜙D on 𝜕Ω𝜙 , 𝑤 = 𝑤N on 𝜕Ω𝑤 , (2.13c)
𝒖 = 𝒖D on 𝜕𝐶𝑢 , 𝒋 = 𝒋N on 𝜕𝐶𝑗 , (2.13d)

where 𝒖D, 𝒗D and 𝜙D are the prescribed value of displacement, normal derivative of the
displacement and electric potential, respectively, and 𝒕N, 𝒓N, 𝑤N and 𝒋N are the prescribed
value of the traction, double traction, surface charge and line force, respectively.

The total enthalpy of the system for a flexoelectric material considering direct flexoelec-
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tricity ΠDir[𝒖, 𝜙] is then

ΠDir[𝒖, 𝜙] = ΠΩ[𝒖, 𝜙] + ΠN[𝒖, 𝜙], (2.14)

with

ΠN[𝒖, 𝜙] = ∫
𝜕Ω𝑡

−𝑢𝑖𝑡N𝑖 dΓ + ∫
𝜕Ω𝑟

−𝜕𝑛𝑢𝑖𝑟N𝑖 dΓ + ∫
𝜕Ω𝑤

𝜙𝑤N dΓ + ∫
𝐶𝑗
−𝑢𝑖𝑗N𝑖 ds, (2.15)

Asmentioned before, the total enthalpy has no contribution fromDirichlet boundary conditions
in the standard approach, i.e. when Dirichlet boundary conditions are imposed strongly. We
recall the variational principle stated in Eq. (2.6), which particularises in the present case to

(𝒖∗, 𝜙∗) = arg min
𝒖∈D

max
𝜙∈D

ΠDir[𝒖, 𝜙] (2.16)

where the functional spaces D and D of admissible states are defined as

D =
{
𝒖 ∈ [𝐻 2(Ω)]3|𝒖 = 𝒖D on 𝜕Ω𝑢 and 𝐶𝑢 and 𝜕𝑛(𝒖) = 𝒗D on 𝜕Ω𝑣

}
, (2.17a)

D =
{
𝜙 ∈ 𝐻 1(Ω)|𝜙 = 𝜙D on 𝜕Ω𝜙

}
. (2.17b)

A necessary condition for equilibrium is the vanishing of the first variation of the enthalpy
functional ΠDir[𝐮, 𝜙] for all admissible variations 𝛿𝐮 and 𝛿𝜙, which corresponds to the weak
form of the problem:

Find (𝒖, 𝜙) ∈ D ⊗ D such that 𝛿ΠDir = 0 ∀(𝛿𝒖, 𝛿𝜙) ∈ 0 ⊗ 0, (2.18)

with

0 =
{
𝒖 ∈ [𝐻 2(Ω)]3|𝒖 = 0 on 𝜕Ω𝑢 and 𝐶𝑢 and 𝜕𝑛(𝒖) = 0 on 𝜕Ω𝑣

}
, (2.19a)

0 =
{
𝜙 ∈ 𝐻 1(Ω)|𝜙 = 0 on 𝜕Ω𝜙

}
, (2.19b)

and

𝛿ΠDir[𝒖, 𝜙, 𝛿𝒖, 𝛿𝜙] = 𝛿ΠΩ[𝒖, 𝜙, 𝛿𝒖, 𝛿𝜙] + 𝛿ΠN[𝒖, 𝜙, 𝛿𝒖, 𝛿𝜙], (2.20a)

𝛿ΠΩ[𝒖, 𝜙, 𝛿𝒖, 𝛿𝜙] = ∫
Ω
𝜎𝑖𝑗𝛿𝜀𝑖𝑗 + 𝜎̃𝑖𝑗𝑘𝛿𝜀𝑖𝑗,𝑘 − 𝐷̂𝑙𝛿𝐸𝑙 − 𝑏𝑖𝛿𝑢𝑖 + 𝑞𝛿𝜙 dΩ, (2.20b)

𝛿ΠN[𝒖, 𝜙, 𝛿𝒖, 𝛿𝜙] = ∫
𝜕Ω𝑡

−𝛿𝑢𝑖𝑡N𝑖 dΓ + ∫
𝜕Ω𝑟

−𝜕𝑛(𝛿𝑢𝑖)𝑟N𝑖 dΓ + ∫
𝜕Ω𝑤

𝛿𝜙𝑤N dΓ + ∫
𝐶𝑗
−𝛿𝑢𝑖𝑗N𝑖 ds,

(2.20c)

where the Cauchy stress 𝝈̂ , the high-order stress 𝝈̃ and the Electric displacement 𝐃̂ are defined
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as

𝜎̂𝑖𝑗(𝒖, 𝜙) = 𝜎̂𝑗𝑖(𝒖, 𝜙) =
𝜕Ω[𝒖, 𝜙]

𝜕𝜀𝑖𝑗

|||||∇𝜺𝑬
= ℂ𝑖𝑗𝑘𝑙𝜀𝑘𝑙 − 𝑒𝑙𝑖𝑗𝐸𝑙 , (2.21a)

𝜎̃𝑖𝑗𝑘(𝒖, 𝜙) = 𝜎̃𝑗𝑖𝑘(𝒖, 𝜙) =
𝜕Ω[𝒖, 𝜙]
𝜕𝜀𝑖𝑗,𝑘

|||||𝜺𝑬
= ℎ𝑖𝑗𝑘𝑙𝑚𝑛𝜀𝑙𝑚,𝑛 − 𝜇𝑙𝑖𝑗𝑘𝐸𝑙 , (2.21b)

𝐷̂𝑙 (𝒖, 𝜙) = −
𝜕Ω[𝒖, 𝜙]

𝜕𝐸𝑙

||||| 𝜺∇𝜺
= 𝜖𝑙𝑚𝐸𝑚 + 𝑒𝑙𝑖𝑗𝜀𝑖𝑗 + 𝜇𝑙𝑖𝑗𝑘𝜀𝑖𝑗,𝑘 . (2.21c)

Eq. (2.18) can be integrated by parts and, by invoking the divergence and surface divergence
theorems, the Euler-Lagrange equations are derived as

(𝜎̂𝑖𝑗(𝒖, 𝜙) − 𝜎̃𝑖𝑗𝑘,𝑘(𝒖, 𝜙)),𝑗 + 𝑏𝑖 = 0 in Ω, (2.22a)

𝐷̂𝑙,𝑙 (𝒖, 𝜙) − 𝑞 = 0 in Ω, (2.22b)

along with the expressions for the traction, double traction, surface charge and line force

𝑡𝑖 = (𝜎̂𝑖𝑗 − 𝜎̃𝑖𝑗𝑘,𝑘 + ∇𝑆𝑙 (𝑛𝑙 ) 𝜎̃𝑖𝑗𝑘𝑛𝑘) 𝑛𝑗 − ∇𝑆𝑗 (𝜎̃𝑖𝑗𝑘𝑛𝑘) on 𝜕Ω, (2.23a)
𝑟𝑖 = 𝜎̃𝑖𝑗𝑘𝑛𝑗𝑛𝑘 on 𝜕Ω, (2.23b)
𝑤 = −𝐷̂𝑙𝑛𝑙 on 𝜕Ω, (2.23c)
𝑗𝑖 = J𝜎̃𝑖𝑗𝑘𝑚𝑗𝑛𝐾 K on 𝐶, (2.23d)

where J K is the jump operator defined as J𝐴K = 𝐴1 +𝐴2, ∇𝑆𝑗 ( ) = ∇𝑘( ) (𝛿𝑘𝑗 − 𝑛𝑘𝑛𝑗) is the surface
divergence operator, 𝒏 is the normal vector,𝒎 is the conormal vector which is a vector tangent
to the boundary and pointing outwards as in Fig. 2.1.

2.1.2 Lifshitz-invariant flexoelectricity model

This Section is presented in the same way as Section 2.1.1. The bulk internal enthalpy density
of a flexoelectric material in the regime of infinitesimal deformations is expressed in terms of
the displacement 𝒖 and the electric potential 𝜙 as in Codony et al. (2021a)

Ω[𝒖, 𝜙] =
1
2
𝜀𝑖𝑗ℂ𝑖𝑗𝑘𝑙𝜀𝑘𝑙 +

1
2
𝜀𝑖𝑗,𝑘ℎ𝑖𝑗𝑘𝑙𝑚𝑛𝜀𝑙𝑚,𝑛 −

1
2
𝐸𝑙𝜖𝑙𝑚𝐸𝑚 −

1
2
𝐸𝑚,𝑛𝑀𝑚𝑛𝑙𝑘𝐸𝑙,𝑘

− 𝐸𝑙𝑒𝑙𝑖𝑗𝜀𝑖𝑗 −
1
2
𝐸𝑙𝜇𝑙𝑖𝑗𝑘𝜀𝑖𝑗,𝑘 +

1
2
𝐸𝑙,𝑘𝜇𝑙𝑖𝑗𝑘𝜀𝑖𝑗 , (2.24)

with the strain 𝜀𝑖𝑗 and the electric field 𝐸𝑙 defined in Eqs. (2.8a) and (2.8b), respectively. In
contrast with Eq. (2.7), the bulk enthalpy density has a new term corresponding to the high-
order electrostatics ruled by a fourth-order tensor 𝑀𝑚𝑛𝑙𝑘 called gradient dielectricity tensor.
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The term accounting for flexoelectricity has been split into two terms, as done in Codony
et al. (2021a): the direct flexoelectric effect coupling strain gradient with electric field and the
converse flexoelectric effect coupling strainwith the electric field gradient. The characterisation
of the material tensor can be found in Appendix A.2.

The total bulk enthalpy of a flexoelectric material is

ΠΩ[𝒖, 𝜙] = ∫
Ω
(

Ω[𝒖, 𝜙] +Ω[𝒖, 𝜙]) dΩ. (2.25)

whereΩ[𝒖, 𝜙] is defined in Eq. (2.9).
The boundary 𝜕Ω is split again into several disjoint sets as

𝜕Ω = 𝜕Ω𝑢 ∪ 𝜕Ω𝑡 = 𝜕Ω𝑣 ∪ 𝜕Ω𝑟 = 𝜕Ω𝜙 ∪ 𝜕Ω𝑤 = 𝜕Ω𝜑 ∪ Ωr, (2.26)

where 𝜕Ω𝑢 , 𝜕Ω𝑣 , 𝜕Ω𝜙 and 𝜕Ω𝜑 correspond to Dirichlet boundary conditions and 𝜕Ω𝑡 , 𝜕Ω𝑟 ,
𝜕Ω𝑤 and 𝜕Ωr correspond to Neumann boundary conditions. This splitting can be seen in
Fig. 2.2 similar to what we have done in Section 2.1.1.

Apart from the boundary conditions on the faces, some boundary conditions arise from
the curves 𝐶 = 𝜕𝜕Ω. Using the same notation as before, the curves are split into two disjoint
sets as

𝜕𝜕Ω = 𝐶𝑢 ∪ 𝐶𝑗 = 𝐶𝜙 ∪ 𝐶℘, (2.27)

where 𝐶𝑢 , 𝐶𝜙 and 𝐶𝑗 , 𝐶℘ are the curves where Dirichlet boundary conditions and Neumann
boundary conditions are applied, respectively. It can be seen again in Fig. 2.2.

The corresponding boundary conditions applied are

𝒖 = 𝒖D on 𝜕Ω𝑢 , 𝒕 = 𝒕N on 𝜕Ω𝑡 , (2.28a)
𝜕𝑛(𝒖) = 𝒗D on 𝜕Ω𝑣 , 𝒓 = 𝒓N on 𝜕Ω𝑟 , (2.28b)

𝜙 = 𝜙D on 𝜕Ω𝜙 , 𝑤 = 𝑤N on 𝜕Ω𝑤 , (2.28c)
𝜕𝑛(𝜙) = 𝜑D on 𝜕Ω𝜑 , r = rN on 𝜕Ωr, (2.28d)

𝒖 = 𝒖D on 𝐶𝑢 , 𝒋 = 𝒋N on 𝐶𝑗 , (2.28e)
𝜙 = 𝜙D on 𝐶𝜙 ℘ = ℘N on 𝐶℘, (2.28f)

where 𝒖D, 𝒗D, 𝜙D and 𝜑D are the prescribed value of displacement, normal derivative of the
displacement, electric potential and normal derivative of the electric potential, respectively,
and 𝒕N, 𝒓N, 𝑤N, rN, 𝒋N and ℘N are the prescribed value of the traction, double traction, surface
charge double charge density, line force and electric charge density respectively.

The total enthalpy of the system for a flexoelectric material considering Lifshitz-invariant
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Figure 2.2: A 2D representation of the physical domain Ω and its boundary 𝜕Ω. The boundary
is split into several disjoint sets, as in Eq. (2.26) and Eq. (2.27). a) Domain and domain boundary.
b) Domain boundary split based on mechanical low-order Dirichlet and Neumann mechanical
boundary conditions. c) Domain boundary split based on high-order Dirichlet and Neumann
mechanical boundary conditions. d) Domain boundary split based on low-order Dirichlet and
Neumann electric boundary conditions. e) Domain boundary boundary 𝜕𝜕Ω split in Dirichlet
and Neumann mechanical edge (corner in 2D) conditions. f) Domain boundary split based
on high-order Dirichlet and Neumann electric boundary conditions. g) Domain boundary
boundary 𝜕𝜕Ω split in Dirichlet and Neumann eletrical edge (corner in 2D) conditions.

flexoelectricity ΠLif[𝒖, 𝜙] is then

ΠLif[𝒖, 𝜙] = ΠΩ[𝒖, 𝜙] + ΠN[𝒖, 𝜙], (2.29)

with

ΠN[𝒖, 𝜙] = ∫
𝜕Ω𝑡

−𝑢𝑖𝑡N𝑖 dΓ + ∫
𝜕Ω𝑟

−𝜕𝑛𝑢𝑖𝑟N𝑖 dΓ + ∫
𝐶𝑗
−𝑢𝑖𝑗N𝑖 ds (2.30)

+ ∫
𝜕Ω𝑤

𝜙𝑤N dΓ + ∫
𝜕Ωr

𝜕𝑛𝜙rN d𝛾 + ∫
𝐶℘

𝜙℘N ds, (2.31)

Asmentioned before, the total enthalpy has no contribution fromDirichlet boundary conditions
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in the standard approach. We recall the variational principle that must be fulfilled, that is

(𝒖∗, 𝜙∗) = arg min
𝒖∈L

max
𝜙∈L

ΠLif[𝒖, 𝜙] (2.32)

where the functional spaces L and L are defined as

L =
{
𝒖 ∈ [𝐻 2(Ω)]3|𝒖 = 𝒖D on 𝜕Ω𝑢 and 𝐶𝑢 and 𝜕𝑛(𝒖) = 𝒗D on 𝜕Ω𝑣

}
, (2.33a)

L =
{
𝜙 ∈ 𝐻 2(Ω)|𝜙 = 𝜙D on 𝜕Ω𝜙 and 𝐶𝜙 and 𝜕𝑛(𝜙) = 𝜑D on 𝜕Ω𝜑

}
, (2.33b)

The weak form of the problem is deduced from the variational principle in Eq. (2.32) by
enforcing 𝛿ΠLif = 0 for all admissible variations:

Find (𝒖, 𝜙) ∈ L ⊗ L such that 𝛿ΠLif = 0 ∀(𝛿𝒖, 𝛿𝜙) ∈ 0 ⊗ 0, (2.34)

with

0 =
{
𝛿𝒖 ∈ [𝐻 2(Ω)]3|𝛿𝒖 = 0 on 𝜕Ω𝑢 and 𝐶𝑢 and 𝜕𝑛(𝛿𝒖) = 0 on 𝜕Ω𝑣

}
, (2.35a)

0 =
{
𝛿𝜙 ∈ 𝐻 2(Ω)|𝛿𝜙 = 0 on 𝜕Ω𝜙 and 𝐶𝜙 and 𝜕𝑛(𝛿𝜙) = 0 on 𝜕Ω𝜑

}
, (2.35b)

and

𝛿ΠLif[𝒖, 𝜙, 𝛿𝒖, 𝛿𝜙] =𝛿ΠΩ[𝒖, 𝜙, 𝛿𝒖, 𝛿𝜙] + 𝛿ΠN[𝒖, 𝜙, 𝛿𝒖, 𝛿𝜙], (2.36a)

𝛿ΠΩ[𝒖, 𝜙, 𝛿𝒖, 𝛿𝜙] = ∫
Ω
𝜎𝑖𝑗𝛿𝜀𝑖𝑗 + 𝜎̃𝑖𝑗𝑘𝛿𝜀𝑖𝑗,𝑘 − 𝐷̂𝑙𝛿𝐸𝑙 − 𝑏𝑖𝛿𝑢𝑖 + 𝑞𝛿𝜙 dΩ, (2.36b)

𝛿ΠN[𝒖, 𝜙, 𝛿𝒖, 𝛿𝜙] = ∫
𝜕Ω𝑡

−𝛿𝑢𝑖𝑡N𝑖 dΓ + ∫
𝜕Ω𝑟

−𝜕𝑛(𝛿𝑢𝑖)𝑟N𝑖 dΓ + ∫
𝐶𝑗
−𝛿𝑢𝑖𝑗N𝑖 ds (2.36c)

+ ∫
𝜕Ω𝑤

𝛿𝜙𝑤N dΓ + ∫
𝜕Ωr

𝜕𝑛(𝛿𝜙)rN d𝛾 + ∫
𝐶℘

𝛿𝜙℘N ds, (2.36d)

where the Cauchy stress 𝝈̂ (𝒖, 𝜙), the double stress 𝝈̃ (𝒖, 𝜙), the local electric displacement
𝑫̂(𝒖, 𝜙) and the double electric displacement 𝑫̃(𝒖, 𝜙) are defined as

𝜎̂𝑖𝑗(𝒖, 𝜙) = 𝜎̂𝑗𝑖(𝒖, 𝜙) =
𝜕Ω[𝒖, 𝜙]

𝜕𝜀𝑖𝑗
= ℂ𝑖𝑗𝑘𝑙𝜀𝑘𝑙 (𝒖) − 𝑒𝑙𝑖𝑗𝐸𝑙 (𝜙) +

1
2
𝜇𝑙𝑖𝑗𝑘𝐸𝑙,𝑘(𝜙), (2.37a)

𝜎̃𝑖𝑗𝑘(𝒖, 𝜙) = 𝜎̃𝑗𝑖𝑘(𝒖, 𝜙) =
𝜕Ω[𝒖, 𝜙]
𝜕𝜀𝑖𝑗,𝑘

= ℎ𝑖𝑗𝑘𝑙𝑚𝑛𝜀𝑙𝑚,𝑛(𝒖) −
1
2
𝜇𝑙𝑖𝑗𝑘𝐸𝑙 (𝜙), (2.37b)

𝐷̂𝑙 (𝒖, 𝜙) = −
𝜕Ω[𝒖, 𝜙]

𝜕𝐸𝑙
= 𝜖𝑙𝑚𝐸𝑚(𝜙) + 𝑒𝑙𝑖𝑗𝜀𝑖𝑗(𝒖) +

1
2
𝜇𝑙𝑖𝑗𝑘𝜀𝑖𝑗,𝑘(𝒖), (2.37c)

𝐷𝑘𝑙 (𝒖, 𝜙) = 𝐷𝑙𝑘(𝒖, 𝜙) = −
𝜕Ω[𝒖, 𝜙]
𝜕𝐸𝑙,𝑘

= 𝑀𝑚𝑛𝑙𝑘𝐸𝑚,𝑛(𝜙) −
1
2
𝜇𝑙𝑖𝑗𝑘𝜀𝑖𝑗(𝒖). (2.37d)
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The Euler-Lagrange equations are

(𝜎̂𝑖𝑗(𝒖, 𝜙) − 𝜎̃𝑖𝑗𝑘,𝑘(𝒖, 𝜙)),𝑗 + 𝑏𝑖 = 0 in Ω, (2.38a)

(𝐷̂𝑙 (𝒖, 𝜙) − 𝐷𝑙𝑘,𝑘(𝒖, 𝜙)),𝑙
− 𝑞 = 0 in Ω. (2.38b)

and

𝑡𝑖(𝒖, 𝜙) = (𝜎̂𝑖𝑗 − 𝜎̃𝑖𝑗𝑘,𝑘 + ∇𝑆𝑙 (𝑛𝑙 ) 𝜎̃𝑖𝑗𝑘𝑛𝑘) 𝑛𝑗 − ∇𝑆𝑗 (𝜎̃𝑖𝑗𝑘𝑛𝑘) on 𝜕Ω, (2.39a)
𝑟𝑖(𝒖, 𝜙) = 𝜎̃𝑖𝑗𝑘𝑛𝑗𝑛𝑘 on 𝜕Ω, (2.39b)

𝑤(𝒖, 𝜙) = −(𝐷̂𝑙 − 𝐷𝑙𝑘,𝑘 + ∇𝑆𝑖 (𝑛𝑖)𝐷𝑙𝑘𝑛𝑘)𝑛𝑙 + ∇𝑆𝑙 (𝐷𝑙𝑘𝑛𝑘) on 𝜕Ω, (2.39c)

r(𝒖, 𝜙) = −𝐷𝑗𝑘𝑛𝑗𝑛𝑘 on 𝜕Ω, (2.39d)
𝑗𝑖(𝒖, 𝜙) = J𝜎̃𝑖𝑗𝑘(𝒖, 𝜙)𝑚𝑗𝑛𝑘K on 𝐶, (2.39e)
℘(𝒖, 𝜙) = −

q
𝐷𝑗𝑘(𝒖, 𝜙)𝑚𝑗𝑛𝑘

y
on 𝐶, (2.39f)

The physical stress 𝝈 and the physical electric displacement 𝑫 are deduced from Eq. (2.38)
as

𝜎𝑖𝑗 = 𝜎̂𝑖𝑗 − 𝜎̃𝑖𝑗𝑘,𝑘 = ℂ𝑖𝑗𝑘𝑙𝜀𝑘𝑙 (𝒖) − 𝑒𝑙𝑖𝑗𝐸𝑙 (𝜙) − ℎ𝑖𝑗𝑘𝑙𝑚𝑛𝜀𝑙𝑚,𝑛𝑘(𝒖) + 𝜇𝑙𝑖𝑗𝑘𝐸𝑙,𝑘(𝜙),

𝐷𝑙 = 𝐷̂𝑙 − 𝐷𝑙𝑘,𝑘 = 𝜅𝑙𝑚𝐸𝑚(𝜙) + 𝑒𝑙𝑖𝑗𝜀𝑖𝑗(𝒖) − 𝑀𝑖𝑗𝑙𝑘𝐸𝑖,𝑗𝑘(𝜙) + 𝜇𝑙𝑖𝑗𝑘𝜀𝑖𝑗,𝑘(𝒖). (2.40)

2.2 High-order interface conditions applied to direct
flexoelectricity.

In order to enhance the flexoelectric effect, an arbitrary arrangement of materials with different
materials properties can be beneficial. To properly define flexoelectric boundary value problems
in heterogeoneous materials, continuity and equilibrium conditions have to be prescribed
on material interfaces. These set of conditions are termed interface conditions. Although
continuity conditions for classic elasticity at material interfaces with Isogeometric analysis
(IGA) have been developed (Dolbow and Harari, 2009, Jiang et al., 2015), high-order interfaces
in unfitted discretisations had not been addressed in the literature to the best of our knowledge,
until we did in Barceló-Mercader et al. (2022). In this section, we present this contribution,
published in Barceló-Mercader et al. (2022). In the context of immersed approaches, these
conditions need to be imposed weakly. We derive Nitsche’s method for this purpose, which is
a consistent penalty method which preserves the variational structure. As a preliminary, we
briefly review the Nitsche’s method for the weak imposition of Dirichlet boundary conditions
in the direct flexoelectricity framework (Codony et al., 2019). Next, we present a rigorous and
justified statement of the high-order interface conditions along arbitrary material interfaces
in the context of direct flexoelectricity, accounting for strain-gradient elasticity. Finally, we
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present the variational formulation for the weak imposition of these conditions through
Nitsche’s method. Analogously, the modified variational problem is derived by adding a new
term in the total enthalpy of the system corresponding with the enthalpy associated with the
interface conditions. The weak form is obtained from the variational principle.

2.2.1 Nitsche’s method for direct flexoelectricity

The previous method explained in Section 2.1.1 constrains the functional space of the solution
in order to enforce Dirichlet boundary conditions, and thus these conditions are strongly
satisfied. Other methods enforce them in a weak sense as Lagrange multiplier (Belytschko et al.,
1994), penalty method (Zhu and Atluri, 1998) or the one used here, Nitsche’s methods (Babuška
et al., 2003, Fernández-Méndez and Huerta, 2004, Griebel and Schweitzer, 2003). Nitsche’s
method presents not only interesting numerical advantages, such as preserving symmetry, the
number of degrees of freedom and optimal convergence rates, but also theoretical advantages,
such as self-consistency.

To enforce Dirichlet boundary conditions using Nitsche’s method, we modify the enthalpy
functional in Eq. (2.14) in such a way that the equilibrium states satisfying the variational
principle necessarily satisfy the essential boundary conditions in a weak sense. This implies
adding, for each variable, two types of contributions acting on the Dirichlet boundaries
which penalise deviations from the corresponding essential conditions. The first type of
contribution ensures coercivity of the resulting variational problem. The second is added
to preserve symmetry and self-consistency. In the case of direct flexoelectricity, Nitsche’s
enthalpy functional is

ΠD[𝒖, 𝜙] = ∫
𝜕Ω𝑢

(
1
2
𝛽𝑢(𝑢𝑖 − 𝑢

D
𝑖 )

2
− (𝑢𝑖 − 𝑢

D
𝑖 )𝑡𝑖) dΓ

+ ∫
𝜕Ω𝑣

(
1
2
𝛽𝑣(𝜕

𝑛(𝑢𝑖) − 𝑣D𝑖 )
2
− (𝜕

𝑛(𝑢𝑖) − 𝑣D𝑖 )𝑟𝑖) dΓ

+ ∫
𝜕Ω𝜙

−(
1
2
𝛽𝜙(𝜙 − 𝜙D)

2
+ (𝜙 − 𝜙D)𝑤) dΓ

+ ∫
𝜕𝐶𝑢 (

1
2
𝛽𝐶𝑢(𝑢𝑖 − 𝑢

D
𝑖 )

2
− (𝑢𝑖 − 𝑢

D
𝑖 )𝑡𝑖) ds (2.41)

with positive Nitsche’s parameters 𝛽𝑢 , 𝛽𝑣 , 𝛽𝜙 and 𝛽𝐶𝑢 . The selection of these penalty parameters
is done in section 3.3.

The modified total enthalpy of the system ΠDir* then becomes

ΠDir
Nit[𝒖, 𝜙] = ΠΩ[𝒖, 𝜙] + ΠD[𝒖, 𝜙] + ΠN[𝒖, 𝜙], (2.42)

with ΠΩ[𝒖, 𝜙], ΠD[𝒖, 𝜙] and ΠN[𝒖, 𝜙] defined in Eqs. (2.10), (2.15) and (2.41), respectively.



2.2 High-order interface conditions applied to direct flexoelectricity. 33

The variational principle associated with the enthalpy functional in Eq. (2.42) is

(𝒖∗, 𝜙∗) = argmin
𝒖∈

max
𝜙∈

ΠDir
Nit[𝒖, 𝜙] (2.43)

where  is the space of functions belonging to [2(Ω)]3 with 2-integrable third derivative
on the Dirichlet boundary 𝜕Ω𝑢 and  = 𝐻 1(Ω). The need for integrable third derivatives of
the displacements follows from the expression of the tractions, see last term in Eq. (2.23a),
now appearing in the second term of the integral on 𝜕Ω𝑢 . As previously done in Eq. (2.18),
the weak form associated with the variational principle in Eq. (2.43) is deduced by enforcing
𝛿ΠDir* = 0 for all admissible variation:

Find (𝒖, 𝜙) ∈  ⊗  , such that 𝛿ΠDir = 0 ∀(𝛿𝒖, 𝛿𝜙) ∈  ⊗  , (2.44)

with

𝛿ΠDir
Nit[𝒖, 𝜙, 𝛿𝒖, 𝛿𝜙] = 𝛿Π

Ω[𝒖, 𝜙, 𝛿𝒖, 𝛿𝜙] + 𝛿ΠD[𝒖, 𝜙, 𝛿𝒖, 𝛿𝜙] + 𝛿ΠN[𝒖, 𝜙, 𝛿𝒖, 𝛿𝜙], (2.45)

where 𝛿ΠΩ and 𝛿ΠN are defined in Eqs. (2.20b) and (2.20c) respectively, and

𝛿ΠD[𝒖, 𝜙, 𝛿𝒖, 𝛿𝜙] = ∫
𝜕Ω𝑢

(𝛽𝑢(𝑢𝑖 − 𝑢
D
𝑖 )𝛿𝑢𝑖 − (𝑢𝑖 − 𝑢

D
𝑖 )𝛿𝑡𝑖 − 𝛿𝑢𝑖𝑡𝑖) dΓ

+ ∫
𝜕Ω𝑣

(𝛽𝑣(𝜕
𝑛(𝑢𝑖) − 𝑣D𝑖 )𝜕

𝑛(𝛿𝑢𝑖) − (𝜕
𝑛(𝑢𝑖) − 𝑣D𝑖 )𝛿𝑟𝑖 − 𝜕

𝑛(𝛿𝑢𝑖)𝑟𝑖) dΓ

+ ∫
𝜕Ω𝜙

−(𝛽𝜙(𝜙 − 𝜙D)𝛿𝜙 + (𝜙 − 𝜙D)𝛿𝑤 + 𝛿𝜙𝑤) dΓ

+ ∫
𝜕𝐶𝑢

(𝛽𝐶𝑢(𝑢𝑖 − 𝑢
D
𝑖 )𝛿𝑢𝑖 − (𝑢𝑖 − 𝑢

D
𝑖 )𝛿𝑡𝑖 − 𝛿𝑢𝑖𝑡𝑖) ds (2.46)

Remark 2.1. Thanks to Nistche’s method, the functional spaces of the solution and the admis-
sible variation required by the weak form in Eq. (2.44) are the same and are unconstrained.

2.2.2 High-order electromechanical interface conditions

Let Ω be our physical domain which is conformed by several non-overlapping subdomains as
Ω = ⋃𝑁

𝑖=1 Ω𝑖 . The boundary of Ω is composed of the exterior boundary, 𝜕Ω, and the interior
boundary or interface,  = [⋃𝑁

𝑖=1 𝜕Ω𝑖]⧵𝜕Ω. The exterior boundary and interface are illustrated
in Fig. 2.3. The interface is split into multiple parts 𝑘 , each one corresponding to the interface
shared by two subdomains, i.e.  = ⋃𝑛𝑓

𝑘=1 
𝑘 , with 𝑘 = 𝜕Ω𝐿(𝑘) ∩ 𝜕Ω𝑅(𝑘), being Ω𝐿(𝑘) and Ω𝑅(𝑘)

the adjacent subdomains. 𝐿(𝑘) and 𝑅(𝑘) are understood as the left and right subdomains.
To define the interface conditions, we define the weighted mean and jump operators for a
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Figure 2.3: Physical domain Ω composed of six subdomains with external boundary 𝜕Ω (in
black) and interface  (in green). An example of the relative notation around one side and
corner is depicted on the right. The interface 5 is shared by the subdomains Ω𝑅(5) and Ω𝐿(5)

with 𝑅(5) = 4 and 𝐿(5) = 3. The corner 𝐶2 is shared by 3 subdomains {Ω𝑃(2,𝑘)}𝑚(3)
𝑘=1 with

𝑚(3) = 3, 𝑃(2, 1) = 2, 𝑃(2, 2) = 3 and 𝑃(2, 3) = 4. Image adapted from Barceló-Mercader et al.
(2022)

generic function 𝐴 that may be discontinuous across , and they are expressed as

{𝐴}𝛾 = 𝛾 𝐿(𝑘)𝐴𝐿(𝑘) + 𝛾𝑅(𝑘)𝐴𝑅(𝑘) on 𝑘 , (2.47a)
J𝐴K = 𝐴𝐿(𝑘) + 𝐴𝑅(𝑘) on 𝑘 , (2.47b)

with scalar values 𝛾 𝐿(𝑘), 𝛾𝑅(𝑘) ∈ (0, 1) such that 𝛾 𝐿(𝑘) + 𝛾𝑅(𝑘) = 1, and denoting as 𝐴𝑖 the value
of 𝐴 in subdomain Ω𝑖 . The jump operator defined in Eq. 2.23 and the one defined here in
Eq. 2.47 are mostly the same, and we use the same symbol. In most cases, the arithmetic mean
is usually enough (𝛾 𝐿(𝑘) = 𝛾𝑅(𝑘) = 0.5).

As done before in Section 2.1.1, we define the edges (corners in 2D) of the interface , which
are the boundary of the interfaces except for the edges on the Dirichlet boundary, that is 𝐶 =
{𝐶𝑘}𝑛𝐶𝑘=1 = ⋃𝑛𝑓

𝑓 =1 𝜕
𝑓 ⧵𝐶𝑢 . For each edge 𝐶𝑘 , there are 𝑚(𝑘) subdomains {Ω𝑃(𝑘,1), ..., Ω𝑃(𝑘,𝑚(𝑘))}

adjacent to it, see Fig. 2.3. In Fig. 2.3, the corner 𝐶2 is shared by three subdomains: Ω2, Ω3 and
Ω4. The weighted mean operator, which is a generalisation of the one presented in Eq. (2.47a),
is also defined on 𝐶𝑘 as

⟨𝐴⟩𝛾 =
𝑚(𝑘)

∑
𝑖=1

𝛾 𝑃(𝑘,𝑖)𝐴𝑃(𝑘,𝑖) on 𝐶𝑘 ⊂ 𝐶 , (2.48)

with 𝛾 𝑃(𝑘,𝑖) ∈ (0, 1) such that ∑𝑚(𝑘)
𝑖=1 𝛾 𝑃(𝑘,𝑖) = 1. It represents a weighted average of the value of

𝐴 in all subdomains sharing the edge.
Now, we can define interface conditions using the weighted mean and jump operator. The

interface conditions that must be fulfilled at the interface and edges (corners in 2D) enforce
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the continuity of the solution and equilibrium. That is,
r
𝒖 ⊗ n

z
= 𝟎,

r
𝜕𝑛𝒖

z
= 𝟎,

r
𝜙n

z
= 𝟎, on , (2.49a)

r
𝒕(𝒖, 𝜙)

z
= 𝒕̂,

r
𝒓(𝒖, 𝜙) ⊗ n

z
= 𝒓̂ ⊗ n𝐿,

r
𝑤(𝒖, 𝜙)

z
= 𝑤̂, on , (2.49b)

and

𝒖𝑃(𝑘,𝑖) − ⟨𝒖⟩𝛾 = 𝟎 𝑖 = 1 ... 𝑚(𝑘) on 𝐶𝑘 ⊂ 𝐶 , (2.50a)
𝑚(𝑘)

∑
𝑖=1

𝒋𝑃(𝑘,𝑖)(𝒖, 𝜙) = 𝒋̂ on 𝐶𝑘 ⊂ 𝐶 (2.50b)

where 𝒖𝛼 and 𝒋𝛼 (𝒖, 𝜙) denote the displacement and the line force on the edge coming from
the subdomain Ω𝛼 sharing the edge. The data is 𝒋̂ = 𝒋̄ on edges on the boundary and 𝒋̂ = 𝟎 on
edges in the interior of the domain. Low-order interface conditions in Eq. (2.49a) are imposed
strongly and low-order interface conditions in Eq. (2.49b) are automatically fulfilled by using
the body-fitted method as standard finite element method or isogeometric analysis.

Then, Eq. (2.50) enforces that the sum of the forces from each subdomain sharing an edge
𝐶𝑘 is in internal equilibrium or equilibrium with external boundary forces. The values of 𝒕̂ ,
𝒓̂ and 𝑤̂ in Eq. (2.49) are also zero for physical problems and conveniently set for synthetic
solutions.

2.2.3 Nitsche’s method for high-order electromechanical interface
conditions

The enthalpy associated with Eq. (2.49) and Eq. (2.50) is analogous to that of Dirichlet boundary
conditions using Nitsche’s method in Eq. (2.41), and Neumann boundary conditions in Eq. (2.15).
Thus, the total enthalpy associated with interfaces is

ΠI[𝒖, 𝜙] = ∫
 [

1
2
𝛽𝑢 J𝑢𝑖𝑛𝑗K2 − J𝑢𝑖𝑛𝑗K

{
𝑡𝑖(𝒖, 𝜙)𝑛𝑗

}

𝛾
− 𝑡𝑖

{
𝑢𝑖
}

1−𝛾]
dΓ +

+ ∫
 [

1
2
𝛽𝑣

r
𝜕𝑛𝑢𝑖

z2
−

r
𝜕𝑛𝑢𝑖

z{
𝑟𝑖(𝒖, 𝜙)

}

𝛾
− 𝑟𝑖𝑛𝐿𝑗

{
𝑢𝑖,𝑗

}

1−𝛾]
dΓ +

+ ∫
 [

−
1
2
𝛽𝜙

r
𝜙𝑛𝑖

z2
+

r
𝜙𝑛𝑖

z{
𝑤(𝒖, 𝜙)𝑛𝑖

}

𝛾
+ 𝑤̂

{
𝜙
}

1−𝛾]
dΓ +

+
𝑛𝐶
∑
𝑘=1

∫
𝐶𝑘 [

∑
𝛼∈𝑃(𝑘,∶)

(
1
2
𝛽𝐶𝑢(𝑢𝛼𝑖 − ⟨𝑢𝑖⟩𝛾 )2 − (𝑢𝛼𝑖 − ⟨𝑢𝑖⟩𝛾 )𝑗𝛼𝑖 (𝒖, 𝜙)) − ⟨𝑢𝑖⟩𝛾 𝑗𝑖]

ds. (2.51)

where 𝑃(𝑘, ∶) = {𝑃(𝑘, 1), ..., 𝑃(𝑘, 𝑚(𝑘))}.
As before, the penalty parameters 𝛽𝑢 , 𝛽𝑣 , 𝛽𝜙 and 𝛽𝐶𝑢 seen in Eq. (2.51) must be large
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enough to ensure concave-up enthalpy concerning the displacement 𝒖, and concave-down
enthalpy for the electric potential 𝜙. The selection of the penalty parameters is done in section
3.3

The total enthalpy of the domain Ω with material interfaces is then

Π[𝒖, 𝜙] = ΠΩ[𝒖, 𝜙] + ΠD[𝒖, 𝜙] + ΠN[𝒖, 𝜙] + ΠI[𝒖, 𝜙]. (2.52)

The variational principle is similar to the one defined in Eq. (2.43), and it is

(𝒖*, 𝜙*) = argmin
𝒖∈

max
𝜙∈1(Ω)

Π[𝒖, 𝜙], (2.53)

where  is the space of functions belonging to [2(Ω)]𝑑 with 2-integrable third derivative
on the Dirichlet boundary 𝜕Ω𝑢 and interface .

2.2.4 Variational formulation for flexoelectricity with material interfaces
using Nitsche’s method

The weak form of the problem is derived from the first-order stationarity condition

𝛿Π[𝒖, 𝜙; 𝛿𝒖, 𝛿𝜙] = 0, ∀𝛿𝒖 ∈  , 𝛿𝜙 ∈ 1(Ω), (2.54)

where

𝛿Π[𝒖, 𝜙; 𝛿𝒖, 𝛿𝜙] =𝛿ΠΩ[𝒖, 𝜙; 𝛿𝒖, 𝛿𝜙] + 𝛿ΠD[𝒖, 𝜙; 𝛿𝒖, 𝛿𝜙] + 𝛿ΠN[𝛿𝒖, 𝛿𝜙]

+ 𝛿ΠI[𝒖, 𝜙; 𝛿𝒖, 𝛿𝜙], (2.55)
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with 𝛿ΠΩ, 𝛿ΠD, 𝛿ΠN defined in Eqs. (2.20b), (2.20c), (2.46) and

𝛿ΠI[𝒖, 𝜙, 𝛿𝒖, 𝛿𝜙] = ∫
 [
𝛽𝑢 J𝛿𝑢𝑖𝑛𝑗K J𝑢𝑖𝑛𝑗K − J𝛿𝑢𝑖𝑛𝑗K

{
𝑡𝑖(𝒖, 𝜙)𝑛𝑗

}

𝛾

− J𝑢𝑖𝑛𝑗K
{
𝑡𝑖(𝛿𝒖, 𝛿𝜙)𝑛𝑗

}

𝛾
− 𝑡𝑖

{
𝛿𝑢𝑖

}

1−𝛾]
dΓ +

+ ∫
 [
𝛽𝑣

r
𝜕𝑛𝛿𝑢𝑖

zr
𝜕𝑛𝑢𝑖

z
−

r
𝜕𝑛𝛿𝑢𝑖

z{
𝑟𝑖(𝒖, 𝜙)

}

𝛾

−
r
𝜕𝑛𝑢𝑖

z{
𝑟𝑖(𝛿𝒖, 𝛿𝜙)

}

𝛾
− 𝑟𝑖𝑛𝐿𝑗

{
𝛿𝑢𝑖,𝑗

}

1−𝛾]
dΓ +

+ ∫
 [

− 𝛽𝜙
r
𝛿𝜙𝑛𝑖

zr
𝜙𝑛𝑖

z
+

r
𝛿𝜙𝑛𝑖

z{
𝑤(𝒖, 𝜙)𝑛𝑖

}

𝛾

+
r
𝜙𝑛𝑖

z{
𝑤(𝛿𝒖, 𝛿𝜙)𝑛𝑗

}

𝛾
+ 𝑤̂

{
𝛿𝜙

}

1−𝛾]
dΓ +

+
𝑛𝐶
∑
𝑘=1

∫
𝐶𝑘 [

∑
𝛼∈𝑃(𝑘,∶)

(𝛽
𝐶𝑢

(𝑢
𝛼
𝑖 − ⟨𝑢𝑖⟩𝛾)(𝛿𝑢

𝛼
𝑖 − ⟨𝛿𝑢𝑖⟩𝛾)

− (𝑢
𝛼
𝑖 − ⟨𝑢𝑖⟩𝛾)𝑗

𝛼
𝑖 (𝛿𝒖, 𝛿𝜙) − 𝑗

𝛼
𝑖 (𝒖, 𝜙)𝛿𝑢

𝛼
𝑖 dΓ

− 𝛾 𝛼(𝑗𝑖 − ∑
𝜏∈𝑃(𝑘;∶)

𝑗𝜏𝑖 (𝒖, 𝜙))𝛿𝑢
𝛼
𝑖 )] ds. (2.56)

In addition, the following conditions ensure a well-posed saddle point problem:

𝛿2𝑢Π[𝒖, 𝜙; 𝛿𝒖] > 0, 𝛿2𝜙Π[𝒖, 𝜙; 𝛿𝜙] < 0, ∀𝛿𝒖, 𝛿𝜙. (2.57)

Finally, the weak form of the problem is

Find (𝒖, 𝜙) ∈  ⊗1(Ω) such that 𝛿Π[𝒖, 𝜙; 𝛿𝒖, 𝛿𝜙] = 0, ∀(𝛿𝒖, 𝛿𝜙) ∈  ⊗1(Ω). (2.58)

2.3 Generalisation to high-order fictitious generalized-periodic
horizontal and vertical boundaries

Periodic structures are obtained by periodically replicating a structural unit cell in one, two or
three spatial dimensions. Boundary value problems on periodic structures can be efficiently
solved by reducing them to the unit cell or RVE with so-called generalised periodic conditions
in the direction of periodicity (Hassani and Hinton, 1998, Kolpakov, 1991). These conditions
want to replicate the macroscopic loading conditions of a unit cell in an infinitely periodic
structure and are thus devoid of sample’s finite-size effects. In our case, these macroscopic
loading conditions can be mapped to jumps of the primary variables, displacement 𝒖 and
electric potential 𝜙, between the unit cell fictitious periodic boundaries. Since flexoelectricity
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governing equations are a system of fourth-order PDEs, generalised periodicity needs to be
complemented with appropriate periodicity conditions for the high-order fields, enforcing 1

continuity of the primary fields 𝒖 and 𝜙. In unfitted discretisations, high-order generalised
periodicity conditions can be enforced weakly using the formalism for physical interfaces
presented in Section 2.2, as described next. For the sake of simplicity, we consider in this
section high-order generalised periodicity along the horizontal and vertical directions.

2.3.1 High-order Generalised periodicity conditions along the horizontal
and vertical directions

For the sake of simplicity, let us restrict ourselves to a 2D lattice that is periodically replicated
along 𝑥− and 𝑦− spatial directions. The generalisation of the 3D case is straightforward.
The unit cell Ω is embedded in a rectangle 𝑅 = [0, 𝐿𝑥 ] × [0, 𝐿𝑦], as shown in the example
in Fig. 2.4. The boundary of the domain Ω is composed of generalised periodic boundaries,
𝑦 = {(𝑥, 0) ∈ 𝜕Ω} ≡ {(𝑥, 𝐿𝑦 ) ∈ 𝜕Ω} and 𝑥 = {(0, 𝑦) ∈ 𝜕Ω} ≡ {(𝐿𝑥 , 𝑦) ∈ 𝜕Ω}, and physical
boundaries in the interior of the rectangle, 𝜕Ω⧵[𝑥 ∪ 𝑦].

We define 𝐶𝑥 as the set of values of the 𝑦-component of the corners in 𝑥 and 𝐶𝑦 as the
set of values of the 𝑥-component of the corners in 𝑦 , see Fig. 2.4. In the example in Fig. 2.4
we can set a unit cell from a solid structure with circular voids. The boundary of each void is
considered the physical boundary and the other ones are considered the generalised periodic
boundaries.

Figure 2.4: Example of one unit cell of a periodic structure, 𝐶𝑥 = {𝐿𝑦/4, 3𝐿𝑦/4} and 𝐶𝑦 =
{𝐿𝑥 /4, 3𝐿𝑥 /4}. This image represents the unit cell of a solid structure with a circular void.
Image adapted from Barceló-Mercader et al. (2022)

The generalised periodicity conditions of the unit cell are then
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J𝒖K𝑦 = 𝒖̌𝑦 , 𝒕(𝒖, 𝜙)|𝑦=𝐿𝑦 + 𝒕(𝒖, 𝜙)|𝑦=0 = 𝟎, on 𝑦
s
𝜕𝒖
𝜕𝑦

{𝑦
= 𝟎, J𝒓(𝒖, 𝜙)K𝑦 = 𝟎, on 𝑦

J𝜙K𝑦 = 𝜙𝑦 , 𝑤(𝒖, 𝜙)|𝑦=𝐿𝑦 + 𝑤(𝒖, 𝜙)|𝑦=0 = 𝟎 on 𝑦 ,
J𝒖K𝑦 = 𝒖̌𝑦 , 𝒋(𝒖, 𝜙)|𝑦=𝐿𝑦 + 𝒋(𝒖, 𝜙)|𝑦=0 = 𝟎 for 𝑥 ∈ 𝑦 ,
J𝒖K𝑥 = 𝒖̌𝑥 , 𝒕(𝒖, 𝜙)|𝑥=𝐿𝑥 + 𝒕(𝒖, 𝜙)|𝑥=0 = 𝟎, on 𝑥
s
𝜕𝒖
𝜕𝑥

{𝑥
= 𝟎, J𝒓(𝒖, 𝜙)K𝑥 = 𝟎, on 𝑥

J𝜙K𝑥 = 𝜙𝑥 , 𝑤(𝒖, 𝜙)|𝑥=𝐿𝑥 + 𝑤(𝒖, 𝜙)|𝑥=0 = 𝟎 on 𝑥 ,
J𝒖K𝑥 = 𝒖̌𝑥 , 𝒋(𝒖, 𝜙)|𝑥=𝐿𝑥 + 𝒋(𝒖, 𝜙)|𝑥=0 = 𝟎 for 𝑦 ∈ 𝑥 , (2.59)

where the jump on the periodic boundaries is defined as

J𝐴K𝑦 = 𝐴(𝑥, 𝐿𝑦 ) − 𝐴(𝑥, 0), J𝐴K𝑥 = 𝐴(𝐿𝑥 , 𝑦) − 𝐴(0, 𝑦), (2.60)

for convenience. The jumps 𝒖̌𝑦 , 𝒖̌𝑥 , 𝜙𝑦 and 𝜙𝑥 can be either given constants (mapped from the
applied load at the macroscopic level) or unknown constants that have to be determined as-
suming a prescribed value of their macroscopic work-conjugate (generally, but not necessarily,
null). We are interested in four different cases:

• Unconfined vertical displacement sensor: a vertical macroscopic strain is applied, 𝒖̌𝑦 =
(0, 𝑢̌𝑦 ), with 𝑢̌𝑦 a known constant, and the displacement jump 𝒖̌𝑥 , and electric potential
jumps, 𝜙𝑦 and 𝜙𝑥 , are unknown to be computed assuming vanishing macroscopic
tractions on the vertical unit cell boundaries and that no surface charges accumulate
on unit cell boundaries, i.e. 𝑫 ⋅ 𝐧 = 0 on 𝑥 and 𝑦 , 𝑫 being the macroscopic physical
electric displacement.

• Confined vertical displacement sensor: a vertical macroscopic strain is applied, 𝒖̌𝑦 =
(0, 𝑢̌𝑦 ), with 𝑢̌𝑦 a known constant, the displacement jump 𝒖̌𝑥 is constrained 𝒖̌𝑥 = (0, 0),
and electric potential jumps, 𝜙𝑦 and 𝜙𝑥 , are unknowns to be computed assuming van-
ishing macroscopic tractions on all unit cell boundaries and that no surface charges
accumulate on unit cell boundaries, i.e. 𝑫 ⋅ 𝐧 = 0 on 𝑥 and 𝑦 .

• Unconfined vertical displacement actuator: an electric potential difference is applied
macroscopically, which can be mapped to known electric potential jumps in the unit
cell, 𝜙𝑦 and 𝜙𝑥 , and the unknown displacement jumps 𝒖̌𝑦 and 𝒖̌𝑥 .

• Confined vertical displacement actuator: an electric potential difference is applied
macroscopically, which can be mapped to known electric potential jumps in the unit
cell, 𝜙𝑦 and 𝜙𝑥 , and the unknown displacement jump 𝒖̌𝑦 and 𝒖̌𝑥 = (0, 0).
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If the corners of the rectangle lie inside the material domain, then generalised periodicity
conditions for both 𝑥 and 𝑦 must be enforced simultaneously. For instance, the definition in
Eq. (2.60) becomes

J𝐴K𝑦 = 𝐴(𝐿𝑥 , 𝐿𝑦 )−𝐴(𝐿𝑥 , 0)+𝐴(0, 𝐿𝑦 )−𝐴(0, 0), J𝐴K𝑥 = 𝐴(𝐿𝑥 , 𝐿𝑦 )−𝐴(0, 𝐿𝑦 )+𝐴(𝐿𝑥 , 0)−𝐴(0, 0),

(2.61)

at the vertex. This situation can be avoided in general by a suitable choice of the unit cell. In
the next section, the generalised periodicity condition will be applied in a differently, where
this remark is no longer necessary.

The total enthalpy of the system is

Π[𝒖, 𝜙, 𝒖̌, 𝜙] = ΠΩ[𝒖, 𝜙] + ΠD[𝒖, 𝜙] + ΠN[𝒖, 𝜙] + ΠP,y[𝒖, 𝜙, 𝒖̌, 𝜙] + ΠP,x[𝒖, 𝜙, 𝒖̌, 𝜙], (2.62)

with ΠΩ[𝒖, 𝜙], ΠD[𝒖, 𝜙] and ΠN[𝒖, 𝜙] defined in Eqs. (2.14), (2.41) and (2.15). The enthalpy
associated with periodic boundaries is (Barceló-Mercader et al., 2022)

ΠP,y[𝒖, 𝜙, 𝒖̌, 𝜙] = ∫
𝑦 [

1
2
𝛽𝑢𝑦( J𝑢𝑖K𝑦 − 𝑢̌

𝑦
𝑖 )

2
− ( J𝑢𝑖K𝑦 − 𝑢̌

𝑦
𝑖 ) J𝑡𝑖(𝒖, 𝜙)K𝑦𝛾 ]

dΓ

+ ∫
𝑦 [

1
2
𝛽𝑣𝑦(

s
𝜕𝑢𝑖
𝜕𝑦

{𝑦

)
2
−

s
𝜕𝑢𝑖
𝜕𝑦

{𝑦 {
𝑟𝑖(𝒖, 𝜙)

}𝑦

𝛾]
dΓ +

+ ∫
𝑦 [

−
1
2
𝛽𝜙𝑦( J𝜙K𝑦 − 𝜙𝑦)

2
+ ( J𝜙K𝑦 − 𝜙𝑦) J𝑤(𝒖, 𝜙)K𝑦𝛾 ]

dΓ +

+ ∑
𝑥∈𝐶𝑦 [

1
2
𝛽𝐶𝑢𝑦( J𝑢𝑖K𝑦 − 𝑢̌

𝑦
𝑖 )

2
− ( J𝑢𝑖K𝑦 − 𝑢̌

𝑦
𝑖 ) J𝑗𝑖(𝒖, 𝜙)K𝑦𝛾 ]

, (2.63)

ΠP,x[𝒖, 𝜙, 𝒖̌, 𝜙] = ∫
𝑥 [

1
2
𝛽𝑢𝑥( J𝑢𝑖K𝑥 − 𝑢̌𝑥𝑖 )

2
− ( J𝑢𝑖K𝑥 − 𝑢̌𝑥𝑖 ) J𝑡𝑖(𝒖, 𝜙)K𝑥𝛾 ]

dΓ

+ ∫
𝑥 [

1
2
𝛽𝑣𝑥(

s
𝜕𝑢𝑖
𝜕𝑥

{𝑥

)
2
−

s
𝜕𝑢𝑖
𝜕𝑥

{𝑥 {
𝑟𝑖(𝒖, 𝜙)

}𝑥

𝛾]
dΓ +

+ ∫
𝑥 [

−
1
2
𝛽𝜙𝑥( J𝜙K𝑥 − 𝜙𝑥)

2
+ ( J𝜙K𝑥 − 𝜙𝑥) J𝑤(𝒖, 𝜙)K𝑥𝛾 ]

dΓ +

+ ∑
𝑦∈𝐶𝑥 [

1
2
𝛽𝐶𝑢𝑥( J𝑢𝑖K𝑥 − 𝑢̌𝑥𝑖 )

2
− ( J𝑢𝑖K𝑥 − 𝑢̌𝑥𝑖 ) J𝑗𝑖(𝒖, 𝜙)K𝑥𝛾 ]

, (2.64)

where 𝒖̌ = {𝒖̌𝑥 , 𝒖̌𝑦}, 𝜙 = {𝜙𝑥 , 𝜙𝑦} and the weighted means and jumps on the periodic bound-
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aries are defined as

{𝐴}𝑦𝛾 = 𝛾𝐴(𝑥, 𝐿𝑦 ) + (1 − 𝛾)𝐴(𝑥, 0) {𝐴}𝑥𝛾 = 𝛾𝐴(𝐿𝑥 , 𝑦) + (1 − 𝛾)𝐴(0, 𝑦) (2.65a)

J𝐴K𝑦𝛾 = 𝛾𝐴(𝑥, 𝐿𝑦 ) − (1 − 𝛾)𝐴(𝑥, 0) J𝐴K𝑥𝛾 = 𝛾𝐴(𝐿𝑥 , 𝑦) − (1 − 𝛾)𝐴(0, 𝑦) (2.65b)

with 𝛾 ∈ (0, 1). The definition of the weighted mean is analogous to the one in Eq. (2.47a).
In Eqs. (2.63) and (2.64), it is important to distinguish the cases where the jumps 𝒖̌(⋅) or 𝜙(⋅)

are prescribed or unknown. For prescribed values of 𝒖̌(⋅) or 𝜙(⋅), we directly substitute 𝒖̌(⋅) or
𝜙(⋅) by its prescribed value 𝒖̂(⋅) or 𝜙(⋅) so that Eqs. (2.63) and (2.64) are analogous to Eq. (2.56).
For unknown values of 𝒖̌(⋅) or 𝜙(⋅), Eqs. (2.63) and (2.64) weakly enforce a constraint between
state variables and therefore do not admit penalty terms. For example, the corresponding 𝛽 (⋅)

must be set to zero. The four situations described before would mean:

• Unconfined vertical displacement sensor: 𝒖̌𝑦 is the only known constant, 𝒖̌𝑥 , 𝜙𝑦 and 𝜙𝑥

are unknown values and thus 𝛽𝜙𝑦 = 𝛽𝑢𝑥 = 𝛽𝜙𝑥 = 𝛽𝐶𝑢𝑥 = 0.

• Confined vertical displacement sensor: 𝒖̌𝑦 and 𝒖̌𝑥 are the known constants, 𝜙𝑦 and 𝜙𝑥

are unknown values and thus 𝛽𝜙𝑦 = 𝛽𝜙𝑥 = 0.

• Unconfined vertical displacement actuator: 𝜙𝑦 and 𝜙𝑥 are the known constants, 𝒖̌𝑦 and
𝒖̌𝑥 are unknown values and thus 𝛽𝑢𝑦 = 𝛽𝐶𝑢𝑦 = 𝛽𝑢𝑥 = 𝛽𝐶𝑢𝑥 = 0.

• Confined vertical displacement actuator: 𝜙𝑦 , 𝜙𝑥 and 𝒖̌𝑥 are the known constants, 𝒖̌𝑦 is
the only unknown values and thus 𝛽𝑢𝑦 = 𝛽𝐶𝑢𝑦 = 0.

For the sake of simplicity, we now restrict to the case of a vertical displacement sensor,
where a constant vertical strain is applied at the macroscopic level, allowing free macroscopic
transversal deformation of the material and assuming that no surface charges accumulate
macroscopically. Any other generalised periodic boundary value problems are straightforward.

2.3.2 Variational formulation and weak form

We are in the first situation of the four ones described before. The condition to be imposed
weakly is 𝒖̌𝑦 = 𝒖̂𝑦 , with a prescribed vertical displacement jump 𝒖̂𝑦 mapped from the applied
vertical macroscopic strain. The horizontal jump of the displacement 𝒖̌𝑥 and the electric
potential jump 𝜙 are unknown constants values. Hence, in Eqs. (2.63) and (2.64), the penalty
parameters 𝛽𝑢𝑥 , 𝛽𝐶𝑢𝑥 , 𝛽𝜙𝑥 and 𝛽𝜙𝑦 must be set to 0, and 𝒖̌𝑦 = 𝒖̂𝑦 , as explained before. The
solution of the associated boundary value problem then follows from the variational principle

(𝒖*, 𝜙*, 𝒖̌𝑥*, 𝜙*) = argmin
𝒖∈

max
𝜙∈1(Ω)

max
𝒖̌𝑥∈ℝ2

min
𝜙∈ℝ2

Π[𝒖, 𝜙, 𝒖̌𝑥 , 𝜙]. (2.66)

The weak form of the problem follows from the stationarity of the enthalpy functional in
Eq. (2.62)
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𝛿Π[𝒖, 𝜙, 𝒖̌𝑥 , 𝜙; 𝛿𝒖, 𝛿𝜙, 𝛿𝒖̌𝑥 , 𝛿𝜙] = 0; ∀𝛿𝒖, 𝛿𝜙, 𝛿𝒖̌𝑥 , 𝛿𝜙, (2.67)

where

𝛿Π[𝒖, 𝜙, 𝒖̌𝑥 , 𝜙; 𝛿𝒖, 𝛿𝜙, 𝛿𝒖̌𝑥 , 𝛿𝜙] = 𝛿ΠΩ[𝒖, 𝜙; 𝛿𝒖, 𝛿𝜙] + 𝛿ΠD[𝒖, 𝜙; 𝛿𝒖, 𝛿𝜙]

+ 𝛿ΠN[𝛿𝒖, 𝛿𝜙] + 𝛿ΠP,y[𝒖, 𝜙, 𝒖̌𝑥 , 𝜙; 𝛿𝒖, 𝛿𝜙, 𝛿𝒖̌𝑥 , 𝛿𝜙]

+ 𝛿ΠP,x[𝒖, 𝜙, 𝒖̌𝑥 , 𝜙; 𝛿𝒖, 𝛿𝜙, 𝛿𝒖̌𝑥 , 𝛿𝜙], (2.68)

𝛿ΠΩ, 𝛿ΠD and 𝛿ΠN are defined in Eqs. (2.20b), (2.46) and (2.20c) and

𝛿ΠP,y[𝒖, 𝜙, 𝒖̌𝑥 , 𝜙; 𝛿𝒖, 𝛿𝜙, 𝛿𝒖̌𝑥 , 𝛿𝜙] =

∫
𝑦 [

𝛽𝑢𝑦 J𝛿𝑢𝑖K𝑦 ( J𝑢𝑖K𝑦 − 𝑢̂
𝑦
𝑖 ) − J𝛿𝑢𝑖K𝑦 J𝑡𝑖(𝒖, 𝜙)K𝑦𝛾 − ( J𝑢𝑖K𝑦 − 𝑢̂

𝑦
𝑖 ) J𝑡𝑖(𝛿𝒖, 𝛿𝜙)K𝑦𝛾 ]

dΓ

+ ∫
𝑦 [

𝛽𝑣𝑦
s
𝜕𝑢𝑖
𝜕𝑦

{𝑦 s
𝜕𝛿𝑢𝑖
𝜕𝑦

{𝑦
−

s
𝜕𝛿𝑢𝑖
𝜕𝑦

{𝑦 {
𝑟𝑖(𝒖, 𝜙)

}𝑦

𝛾
−

s
𝜕𝑢𝑖
𝜕𝑦

{𝑦 {
𝑟𝑖(𝛿𝒖, 𝛿𝜙)

}𝑦

𝛾]
dΓ +

+ ∫
𝑦 [(

J𝛿𝜙K𝑦 − 𝛿𝜙𝑦) J𝑤(𝒖, 𝜙)K𝑦𝛾 + ( J𝜙K𝑦 − 𝜙𝑦) J𝑤(𝛿𝒖, 𝛿𝜙)K𝑦𝛾 ]
dΓ

+ ∑
𝑥∈𝐶𝑦 [

𝛽𝐶𝑢𝑦 J𝛿𝑢𝑖K𝑦 ( J𝑢𝑖K𝑦 − 𝑢̂
𝑦
𝑖 ) − J𝛿𝑢𝑖K𝑦 J𝑗𝑖(𝒖, 𝜙)K𝑦𝛾 − ( J𝑢𝑖K𝑦 − 𝑢̂

𝑦
𝑖 ) J𝑗𝑖(𝛿𝒖, 𝛿𝜙)K𝑦𝛾 ]

, (2.69)

𝛿ΠP,x[𝒖, 𝜙, 𝒖̌𝑥 , 𝜙; 𝛿𝒖, 𝛿𝜙, 𝛿𝒖̌𝑥 , 𝛿𝜙] =

∫
𝑥 [

− ( J𝛿𝑢𝑖K𝑥 − 𝛿𝑢̌𝑥𝑖 ) J𝑡𝑖(𝒖, 𝜙)K𝑥𝛾 − ( J𝑢𝑖K𝑥 − 𝑢̌𝑥𝑖 ) J𝑡𝑖(𝛿𝒖, 𝛿𝜙)K𝑥𝛾 ]
dΓ

+ ∫
𝑥 [

𝛽𝑣𝑥
s
𝜕𝑢𝑖
𝜕𝑥

{𝑥 s
𝜕𝛿𝑢𝑖
𝜕𝑥

{𝑥
−

s
𝜕𝛿𝑢𝑖
𝜕𝑥

{𝑥 {
𝑟𝑖(𝒖, 𝜙)

}𝑥

𝛾
−

s
𝜕𝑢𝑖
𝜕𝑥

{𝑥 {
𝑟𝑖(𝛿𝒖, 𝛿𝜙)

}𝑥

𝛾]
dΓ +

+ ∫
𝑥 [(

J𝛿𝜙K𝑥 − 𝛿𝜙𝑥) J𝑤(𝒖, 𝜙)K𝑥𝛾 + ( J𝜙K𝑥 − 𝜙𝑥) J𝑤(𝛿𝒖, 𝛿𝜙)K𝑥𝛾 ]
dΓ

+ ∑
𝑦∈𝐶𝑥 [

− ( J𝛿𝑢𝑖K𝑥 − 𝛿𝑢̌𝑥𝑖 ) J𝑗𝑖(𝒖, 𝜙)K𝑥𝛾 − ( J𝑢𝑖K𝑥 − 𝑢̌𝑥𝑖 ) J𝑗𝑖(𝛿𝒖, 𝛿𝜙)K𝑥𝛾 ]
, (2.70)

being 𝛿𝒖̌ and 𝛿𝜙 admissible variations of 𝒖̌ and 𝜙, respectively. Finally, the weak form
associated with the boundary value problem reads
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Find (𝒖, 𝜙, 𝒖̌𝑥 , 𝜙) ∈  ⊗1(Ω) ⊗ ℝ2 ⊗ ℝ2such that 𝛿Π[𝒖, 𝜙, 𝒖̌𝑥 , 𝜙; 𝛿𝒖, 𝛿𝜙, 𝛿𝒖̌𝑥 , 𝛿𝜙] = 0,

∀(𝛿𝒖, 𝛿𝜙, 𝛿𝒖̌𝑥 , 𝛿𝜙) ∈  ⊗1(Ω) ⊗ ℝ2 ⊗ ℝ2. (2.71)

where  is the space of functions belonging to [2(Ω)]2 with 2-integrable third derivative
on the Dirichlet boundary 𝜕Ω𝑢 .

2.4 High-order generalised periodicity in arbitrary directions

As seen in Section 2.3, we are interested in simulating a single unit cell under generalised
periodic conditions, which directly provides the bulk response of a unit cell on a periodic
structure. Those generalised periodicity eliminates the presence of external boundaries and,
therefore, the finite-size effects related to them. In a finite element (or max-ent meshless)
context, enforcing 0-th order periodicity conditions is relatively easy by the intrinsic Kronecker
delta property of the basis function on the boundary. It boils down to constructing a mesh with
matching nodes (or max-ent particles) at 𝑥 = 0 and 𝑥 = 𝐿𝑥 and assigning the same degrees of
freedom at the matching nodes particles on each side (Barceló-Mercader, 2018). However, as
seen in Section 2.3.1, higher-order conditions are not so trivially enforced since they would
have to be explicitly introduced as external constraints yielding different equations and degrees
of freedom in the case of Lagrange multipliers or additional terms in the current equations with
numerical penalty parameters in the case of penalty or Nitsche methods (Barceló-Mercader
et al., 2022).

An alternative procedure to automatically fulfil high-order periodicity conditions consists
of constructing a high-order periodic approximation space for 𝑓 , considering high-order
periodic basis functions. This approach, if possible, is the most convenient one since it yields
an unconstrained boundary value problem, avoiding the issues above from explicitly including
additional constraints. The immersed boundary B-spline framework is particularly well-suited
to the simulation of periodic domains since the construction of a high-order-periodic B-spline
basis is trivial, and the cuboidal shape of the fictitious domain can be immediately identified
with the unit cell of the architected material.

The section is organised as follows. Macroscopic conditions for flexoelectric RVE via
high-order generalised periodicity are shown, along with high-order generalised periodicity
conditions. The last part is similar to the one in Section 2.3.1, but now all terms are described
more precisely. Thanks to that, macroscopic kinematics and how these kinematics are encoded
through a macroscopic enthalpy functional with conjugate variables can be deduced. Finally,
the boundary value problem for flexoelectric RVE is presented.
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2.4.1 Macroscopic conditions for flexoelectric RVE via high-order
generalised periodicity

In this section, we introduce high-order generalised periodicity conditions, and we state the
conditions on the state variables of an RVE that must hold to reproduce the bulk response of
an infinitely sizeable periodic structure Ω∞. The resulting macroscopic state variables and
their corresponding macroscopic enthalpy functional are also analysed.

The periodic structure Ω∞ is formed by concatenating a unit cell ΩRVE in each dimension
indefinitely. Our domain Ω is the intersection between the periodic structure and the unit cell
Ω = Ω∞ ∩ ΩRVE. The boundary of the domain 𝜕Ω is split in two parts, 𝜕Ω = Γfict ∪ Γactual with
Γfict = 𝜕ΩRVE ∩ Ω∞ and Γactual = 𝜕Ω∞ ∩ ΩRVE (see Fig. 2.6).

For the sake of simplicity, and as is common in periodically arranged architected structures,
we consider homogeneous Neumann conditions at every physical boundary of the RVE, and
disregard external volumetric loads, that is,

𝜕Ω𝑢 = 𝜕Ω𝑣 = 𝜕Ω𝜙 = 𝜕Ω𝜑 = ∅, (2.72a)
𝒕N = 𝒓N = 𝒋N = 𝒃 = 0, (2.72b)
𝑤N = rN = ℘N = 𝑞 = 0. (2.72c)

2.4.1.1 High-order generalised periodicity conditions in arbitrary direction

The generalised periodicity conditions for a generic 1D field 𝑓 (𝑥) ∈ ℝ, 𝑥 ∈ ΩRVE = [0, 𝐿𝑥 ] ⊂ ℝ
are usually stated as

𝑓 (𝐿𝑥 ) − 𝑓 (0) = ⟨⟨𝑓 ⟩⟩𝑥 , (2.73)

with ⟨⟨𝑓 ⟩⟩𝑥 ∈ ℝ. Standard periodicity conditions are obtained for ⟨⟨𝑓 ⟩⟩𝑥 = 0, and generalised
periodicity conditions otherwise. In a fourth-order PDE context, this condition is required but
insufficient since the extension of 𝑓 over ℝ is required to belong to 𝐻 2(ℝ) (i.e. it must be at
least 𝐶1-continuous), which is not necessarily true at 𝑥 = 𝑚𝑥𝐿𝑥 , 𝑚𝑥 ∈ ℤ. An extra necessary
condition is then

𝜕𝑓 (𝐿𝑥 )
𝜕𝑥

−
𝜕𝑓 (0)
𝜕𝑥

= 0. (2.74)

The difference between low-order and high-order periodicity conditions is shown in Fig. 2.5.
The extension of high-order generalised periodicity conditions to higher dimensions is trivial.
Let us consider a cuboidal unit cell ΩRVE = [0, 𝐿𝑥 ] × [0, 𝐿𝑦] × [0, 𝐿𝑧] ∈ ℝ3 as depicted in Fig. 2.6
for the 2D case.

The high-order generalised periodicity conditions of the mechanical and electrical fields
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Figure 2.5: Example of low-order a periodic function, 𝑓 (𝑥) = | sin(𝜋𝑥)| + 2| cos(𝜋𝑥)| + 𝑥 , on the
left and example of high-order periodic function 𝑓 (𝑥) = sin(2𝜋𝑥) + 𝑥 on the right.

Figure 2.6: Architected structure Ω∞ on the left and unit cell ΩRVE on the right. The fictitious
boundary is Γfict = 𝜕Ω ∪ ΩRVE, the actual boundary is Γactual = 𝜕Ω ∪ 𝜕Ω∞, and their boundaries
are 𝐶fict = 𝜕Γfict and 𝐶actual = 𝜕Γactual.

are:

𝒖(𝜁 = 𝐿𝜁 ) − 𝒖(𝜁 = 0) = ⟨⟨𝒖⟩⟩𝜁 , 𝜙(𝜁 = 𝐿𝜁 ) − 𝜙(𝜁 = 0) = ⟨⟨𝜙⟩⟩𝜁 , (2.75a)
𝜕𝒖(𝜁 = 𝐿𝜁 )

𝜕𝜁
−
𝜕𝒖(𝜁 = 0)

𝜕𝜁
= 0,

𝜕𝜙(𝜁 = 𝐿𝜁 )
𝜕𝜁

−
𝜕𝜙(𝜁 = 0)

𝜕𝜁
= 0, (2.75b)

for 𝜁 = {𝑥, 𝑦, 𝑧}.
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2.4.1.2 High-order equilibrium conditions

On top of the continuity conditions stated above, we need to impose high-order equilibrium
of the solution fields across the RVE boundaries that is (Barceló-Mercader et al., 2022)

𝒕(𝜁 = 𝐿𝜁 ) + 𝒕(𝜁 = 0) = 0, 𝑤(𝜁 = 𝐿𝜁 ) + 𝑤(𝜁 = 0) = 0,

𝒓(𝜁 = 𝐿𝜁 ) − 𝒓(𝜁 = 0) = 0, r(𝜁 = 𝐿𝜁 ) − r(𝜁 = 0) = 0, (2.76)
𝒋(𝜁 = 𝐿𝜁 ) + 𝒋(𝜁 = 0) = 0, ℘(𝜁 = 𝐿𝜁 ) + ℘(𝜁 = 0) = 0.

Eq. (2.76) is required even if Eqs. (2.75b) hold since the Neumann quantities (𝒕, 𝒓, 𝒋, 𝑤, r, ℘)
also depend on second and third-order derivatives of the state variables (𝒖, 𝜙) that are not
periodic in general.

2.4.2 Macroscopic kinematics

The additional unknowns ⟨⟨𝑓 ⟩⟩𝜁 arising from the generalised periodicity conditions represent
the jump (or difference between boundaries) on ΩRVE of the field 𝑓 (𝒙) with 𝒙 ∈ Ω along the
Cartesian direction 𝜁 . From amacroscopic point of view, they are regarded as the state variables
that characterise the macroscopic behaviour of a homogenised field on ΩRVE, regardless of the
evolution of 𝑓 (𝒙) within Ω or even the shape of Ω. See Fig. 2.7.

Figure 2.7: An initial unit cell or RVE ΩRVE is represented on the left and the final configuration
on the right. The jumps on the displacement can be seen.

We are interested in capturing the macroscopic behaviour of the state variables: displace-
ment 𝒖(𝒙) through the macroscopic displacement gradient ∇𝒖 with nine unknowns in ℝ3 and
electric potential 𝜙(𝒙) through the macroscopic electric field ∇𝑬 with three unknowns. In 2D
∇𝒖 and ∇𝑬 would have four and two unknowns, respectively. Considering these macroscopic
entities and the dimensions of ΩRVE, the displacement 𝒖 and electric potential 𝜙 are split into a
microscopic part and a macroscopic one. The microscopic part captures the unit cell’s internal



2.4 High-order generalised periodicity in arbitrary directions 47

behaviour, and the macroscopic part can be seen externally. The split is done as

𝒖(𝒙) = 𝒖P(𝒙) + ∇𝒖 ⋅ 𝒙, (2.77a)
𝜙(𝒙) = 𝜙P(𝒙) − ∇𝑬 ⋅ 𝒙, (2.77b)

where 𝒖P(𝒙) and 𝜙P(𝒙) are periodic functions that fulfil

𝒖P(𝜁 = 𝐿𝜁 ) − 𝒖P(𝜁 = 0) = 0,
𝜕𝒖P(𝜁 = 𝐿𝜁 )

𝜕𝜁
−
𝜕𝒖P(𝜁 = 0)

𝜕𝜁
= 0, (2.78a)

𝜙P(𝜁 = 𝐿𝜁 ) − 𝜙P(𝜁 = 0) = 0,
𝜕𝜙P(𝜁 = 𝐿𝜁 )

𝜕𝜁
−
𝜕𝜙P(𝜁 = 0)

𝜕𝜁
= 0, (2.78b)

and the macroscopic displacement gradient and electric field are

∇𝒖 =
⎡
⎢
⎢
⎢
⎣

⟨⟨𝑢𝑥⟩⟩𝑥 /𝐿𝑥 ⟨⟨𝑢𝑦⟩⟩𝑥 /𝐿𝑥 ⟨⟨𝑢𝑧⟩⟩𝑥 /𝐿𝑥
⟨⟨𝑢𝑥⟩⟩𝑦 /𝐿𝑦 ⟨⟨𝑢𝑦⟩⟩𝑦/𝐿𝑦 ⟨⟨𝑢𝑧⟩⟩𝑦 /𝐿𝑦
⟨⟨𝑢𝑥⟩⟩𝑧 /𝐿𝑧 ⟨⟨𝑢𝑦⟩⟩𝑧/𝐿𝑧 ⟨⟨𝑢𝑧⟩⟩𝑧 /𝐿𝑧

⎤
⎥
⎥
⎥
⎦

, (2.79)

𝑬 = −∇𝜙 =
⎡
⎢
⎢
⎢
⎣

− ⟨⟨𝜙⟩⟩𝑥 /𝐿𝑥
− ⟨⟨𝜙⟩⟩𝑦 /𝐿𝑦
− ⟨⟨𝜙⟩⟩𝑧 /𝐿𝑧

⎤
⎥
⎥
⎥
⎦

. (2.80)

The microscopic behaviour is governed by the terms 𝒖P(𝑥) and 𝜙P(𝑥) in Eq. (2.77), and the
macroscopic behaviour is governed by the terms ∇𝒖 ⋅ 𝒙 and ∇𝑬 ⋅ 𝒙 in Eq. (2.77).

In turn, the macroscopic displacement gradient can be uniquely decomposed into its
symmetric and antisymmetric parts as

∇𝒖 = 𝜺 + R, (2.81a)

𝜺 =
1
2 (

∇𝒖 + ∇𝒖𝑇) , (2.81b)

R =
1
2 (

∇𝒖 − ∇𝒖𝑇) . (2.81c)

The macroscopic strain 𝜺 and the macroscopic rotationR are constant tensors that characterise
the macroscopic (homogenised) mechanical behaviour of ΩRVE under a generalised periodic
displacement field 𝒖(𝒙) defined on Ω. They are invariants concerning the RVE size and relative
position within a given periodically-arranged architected material. Note that the components
inR do not correspond to any deformation measure but to uniform rigid body rotations instead.
That is, the energy functional of the system is invariant with respect to R. In order to prevent
infinite solutions differing in rigid body rotations only, R must be a priori enforced (i.e. three
degrees of freedom in ℝ3 and one in ℝ2). In the remainder of the thesis, and without loss of
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generality, we consider R = 𝟎. We assume symmetric macroscopic displacement gradients
(∇𝒖 = 𝜺).

Remark 2.2. Note that assuming 𝒖, 𝜙 generalised-periodic implies that the macroscopic state
variables 𝜺, 𝑬 are constant tensors. Therefore, the macroscopic strain gradient and electric
field gradient vanish. Loading cases on a periodically-arranged architected material yielding
non-vanishing macroscopic strain gradient and electric field gradients are out of the scope of
this thesis.

Remark 2.3. Eq. (2.77) implies that the strain field and electric field are decomposed as

𝜺 = 𝜺 (𝒖P) + 𝜺 (2.82a)
𝑬 = 𝑬 (𝜙P) + 𝑬. (2.82b)

2.4.3 Macroscopic enthalpy functional and conjugate variables

Since the macroscopic response of the architected structure is uniquely characterised by the
macroscopic state variables, our goal is to rationalise the existence of a macroscopic enthalpy
functional depending on macroscopic state variables only. Such functional should fulfil the
condition that the variation of the actual bulk enthalpy of the system or microscopic bulk
enthalpy Πb in one unit cell is equivalent to the variation of the enthalpy of a homogeneous
media of size 𝐿𝑥 , 𝐿𝑦 and 𝐿𝑧 or macroscopic enthalpy Π:

𝛿Πb[𝜺, ∇𝜺, 𝑬, ∇𝑬] = 𝛿Π [𝜺, 𝑬] . (2.83)

In order to find the functional described in Eq. (2.83) we consider the high-order equilibrium
conditions from Eq. (2.76) in a weak way as

0 = ∫
Γfict

(−𝑡𝑖𝛿𝑢P𝑖 − 𝑟𝑖𝜕
𝑛𝛿𝑢P𝑖 + 𝑤𝛿𝜙

P + r𝜕𝑛𝛿𝜙P) dΓ + ∫
𝐶fict

(−𝑗𝑖𝛿𝑢P𝑖 + ℘𝛿𝜙P) d𝑙. (2.84)

By taking into account homogeneous microscopic Neumann conditions in Eq. (2.72),
Eq. (2.84) is extended to Γfict ∪ Γactual = 𝜕Ω, 𝐶fict ∪ 𝐶actual = 𝐶 (see Fig. 2.6 to view the dif-
ference between Γfict, Γactual, 𝐶fict and 𝐶actual), so

0 = ∫
𝜕Ω

(−𝑡𝑖𝛿𝑢P𝑖 − 𝑟𝑖𝜕
𝑛𝛿𝑢P𝑖 + 𝑤𝛿𝜙

P + r𝜕𝑛𝛿𝜙P) dΓ + ∫
𝐶
(−𝑗𝑖𝛿𝑢P𝑖 + ℘𝛿𝜙P) d𝑙. (2.85)

Upon application of integration by parts, the divergence theorem and the surface divergence
theorem, as done in Codony et al. (2021a) and considering the strong form of the problem in
Eq. (2.38) with zero source terms Eq. (2.72) leads to

0 = ∫
Ω
(𝜎̂𝑖𝑗𝛿𝜀𝑖𝑗 (𝒖

P) + 𝜎̃𝑖𝑗𝑘𝛿𝜀𝑖𝑗,𝑘 (𝒖P) − 𝐷̂𝑙𝛿𝐸𝑙 (𝜙P) − 𝐷𝑙𝑘𝛿𝐸𝑘,𝑙 (𝜙P)) dΩ. (2.86)
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By using the decomposition of the strain and electric field in Eq. (2.82), we have

∫
Ω
(𝜎̂𝑖𝑗𝛿𝜀𝑖𝑗 + 𝜎̃𝑖𝑗𝑘𝛿𝜀 − 𝐷̂𝑙𝛿𝐸𝑙 − 𝐷𝑙𝑘𝛿𝐸𝑘𝑙) dΩ = ∫

Ω
𝜎̂𝑖𝑗𝛿𝜀 𝑖𝑗 dΩ − ∫

Ω
𝐷̂𝑙𝛿𝐸𝑙 dΩ

= |ΩRVE| (𝜎 𝑖𝑗𝛿𝜀 𝑖𝑗 − 𝐷𝑙𝛿𝐸𝑙) . (2.87)

where the term 𝝈 in Eq. (2.87) corresponds to the macroscopic stress and 𝑫 is the macroscopic
electric displacement. Comparing Eq. (2.83) with Eq. (2.87), the variation of microscopic bulk
enthalpy corresponds to the integral over Ω of the bulk internal enthalpy density variation in
Eq. (2.83) as

𝛿Πb[𝜺, ∇𝜺, 𝑬, ∇𝑬] = ∫
Ω
(𝛿Ω[𝒖, 𝜙]) dΩ = ∫

Ω
(𝜎̂𝑖𝑗𝛿𝜀𝑖𝑗 − 𝐷̂𝑖𝛿𝐸𝑖 + 𝜎̃𝑖𝑗𝑘𝛿𝜀𝑖𝑗,𝑘 − 𝐷𝑖𝑗𝛿𝐸𝑖,𝑗) dΩ,

(2.88)

and the variation of the macroscopic enthalpy is

𝛿Π[𝜺, 𝑬] = ∫
ΩRVE (

𝜎𝑖𝑗𝛿𝜀 𝑖𝑗 − 𝐷̂𝑖𝛿𝐸𝑖) dΩ = |ΩRVE| (𝜎 𝑖𝑗𝛿𝜀 𝑖𝑗 − 𝐷𝑖𝛿𝐸𝑖) , (2.89)

where the second equality in Eq. (2.89) holds by considering that the macroscopic quantities
do not depend on the position 𝒙 , and |ΩRVE| = 𝐿𝑥𝐿𝑦𝐿𝑧 corresponds to the macroscopic volume
of the RVE. The macroscopic stress and macroscopic electric displacement are conjugates of
the macroscopic strain and macroscopic electric field, respectively, and they are defined as

𝜎 𝑖𝑗 =
1

|ΩRVE| ∫Ω
𝜎̂𝑖𝑗 dΩ, 𝐷𝑖 =

1
|ΩRVE| ∫Ω

𝐷̂𝑖 dΩ. (2.90)

As a result, the macroscopic stress is nothing but the macroscopic average of the microscopic
Cauchy stress over Ω, and the macroscopic electric displacement is the macroscopic average of
the microscopic local electric displacement over Ω. Eqs. (2.90) can be regarded as an extension
of the Hill-Mandel theorem (Hill, 1963, 1967) to high-order electromechanics.

Finally, we have proved that Eq. (2.87) is the weak equation that generalised periodic state
variables 𝒖(𝒙), 𝜙(𝒙)must fulfil in order to reproduce the electromechanical state of an infinitely
sizeable periodic structure over Ω∞.

2.4.4 Boundary value problem for flexoelectric RVE

In the generalised periodicity framework described in the above Sections, 𝜺 and 𝑬 are additional
state variables whose components can be specified a priori or obtained due to the boundary
value problem. To this end, their components are split into two disjoint sets (as other boundary
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conditions), the macroscopic Dirichlet components

𝜀 𝑖𝑗 = 𝜀D𝑖𝑗 for (𝑖, 𝑗) ∈  𝜺 , (2.91a)

𝐸𝑖 = 𝐸
D
𝑖 for 𝑖 ∈  𝑬 , (2.91b)

and the macroscopic Neumann components

𝜎 𝑖𝑗 = 𝜎N
𝑖𝑗 for (𝑖, 𝑗) ∈ {1, 2, 3} × {1, 2, 3} ⧵  𝜺 , (2.92a)

𝐷𝑖 = 𝐷
N
𝑖 for 𝑖 ∈ {1, 2, 3} ⧵  𝑬 , (2.92b)

where  𝜺 ⊆ {1, 2, 3} × {1, 2, 3} such that if (𝑖, 𝑗) ∈  𝜺 then (𝑗, 𝑖) ∈  𝜺 , and  𝑬 ⊆ {1, 2, 3}, are
the subsets of components where macroscopic Dirichlet conditions are imposed. The r.h.s. of
Eq. (2.87) is split into Dirichlet and Neumann components accordingly. Macroscopic Dirichlet
conditions are applied strongly, projecting the solution to a functional space that satisfies
macroscopic Dirichlet conditions. On the other hand, macroscopic Neumann conditions remain
in weak form. The macroscopic Neumann conditions can be seen as the natural macroscopic
conditions of the boundary value problem since the neglect of the macroscopic Neumann term
leads to homogeneous macroscopic Neumann conditions.

The weak form of the flexoelectric generalised problem is

Find (𝒖P, 𝜙P, 𝜺, 𝑬) ∈  P ⊗ P ⊗ D ⊗ D such that

∫
Ω
(𝛿𝜀𝑖𝑗𝜎𝑖𝑗 + 𝛿𝜀𝑖𝑗,𝑘 𝜎̃𝑖𝑗𝑘 − 𝛿𝐸𝑙𝐷𝑙 − 𝛿𝐸𝑙,𝑚𝐷𝑙𝑚) dΩ = |ΩRVE|𝜎𝑁𝑖𝑗 𝛿𝜀 𝑖𝑗 − |ΩRVE|𝐷𝑁

𝑖 𝛿𝐸𝑖 ,

∀ (𝛿𝒖P, 𝛿𝜙P, 𝛿𝜺, 𝛿𝑬) ∈  P ⊗ P ⊗ 0 ⊗ 0, (2.93)

where

 P =
{
𝒖P ∈ [2(Ω)]3 | Eq. (2.78a) holds (high-order periodicity on 𝒖P)

}
, (2.94a)

P =
{
𝜙P ∈ 2(Ω) | Eq. (2.78b) holds (high-order periodicity on 𝜙P)

}
, (2.94b)

 D =
{
𝜺 ∈ [ℝ3]

2 | Eq. (2.91a) holds (Dirichlet conditions on 𝜺) and 𝜀 𝑖𝑗 = 𝜀 𝑗𝑖
}
, (2.94c)

D =
{
𝑬 ∈ ℝ3 | Eq. (2.91b) holds (Dirichlet conditions on 𝑬)

}
, (2.94d)

 0 =
{
𝛿𝜺 ∈ [ℝ3]

2 | 𝛿𝜀 𝑖𝑗 = 0 for (𝑖, 𝑗) ∈  𝜺
}
, (2.94e)

0 =
{
𝛿𝑬 ∈ ℝ3 | 𝛿𝐸𝑖 = 0 for 𝑖 ∈  𝑬} . (2.94f)

2.5 Ongoing work

In this section, the ongoing work is presented, that is, interface conditions for the lifshitz-
invariant flexoelectric formulation along with the interface enthalpy associated with Nitsche’s
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method and the formulation for graded structure considering the standard approach.

2.5.1 High-order interface conditions for Lifshitz-invariant flexoelectricity

Interface conditions described in Section 2.2.2 are only valid for direct flexoelectricity. Interface
conditions for Lifshitz-invariant flexoelectricity are slightly different and they are

r
𝒖 ⊗ n

z
= 𝟎,

r
𝜕𝑛𝒖

z
= 𝟎, on , (2.95a)

r
𝜙n

z
= 𝟎,

r
𝜕n𝜙

z
= 𝟎, on , (2.95b)

r
𝒕(𝒖, 𝜙)

z
= 𝒕̂,

r
𝒓(𝒖, 𝜙) ⊗ n

z
= 𝒓̂ ⊗ n𝐿, on , (2.95c)

r
𝑤(𝒖, 𝜙)

z
= 𝑤̂,

r
r(𝒖, 𝜙)n

z
= r̂n𝐿, on , (2.95d)

and

𝒖𝑃(𝑘,𝑖) − ⟨𝒖⟩𝛾 = 𝟎 𝑖 = 1 ... 𝑚(𝑘) on 𝐶𝑘 ⊂ 𝐶 , (2.96a)
𝑚(𝑘)

∑
𝑖=1

𝒋𝑃(𝑘,𝑖)(𝒖, 𝜙) = 𝒋̂ on 𝐶𝑘 ⊂ 𝐶 , (2.96b)

𝜙𝑃(𝑘,𝑖) − ⟨𝜙⟩𝛾 = 𝟎 𝑖 = 1 ... 𝑚(𝑘) on 𝐶𝑘 ⊂ 𝐶 , (2.96c)
𝑚(𝑘)

∑
𝑖=1

℘𝑃(𝑘,𝑖)(𝒖, 𝜙) = ℘̂ on 𝐶𝑘 ⊂ 𝐶 , (2.96d)

where , 𝐶 and 𝐶𝑘 were defined in Section 2.2.2. The main difference between these interface
conditions and the ones defined in Section 2.2.2 is the high-order interface conditions for the
electric potential. Now, the interface conditions for the displacement and the electric potential
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are analogous. The interface enthalpy associated with ΠInterface
𝐿 is now

ΠInterface
𝐿 [𝒖, 𝜙] = ∫

 [
1
2
𝛽𝑢 J𝑢𝑖𝑛𝑗K2 − J𝑢𝑖𝑛𝑗K

{
𝑡𝑖(𝒖, 𝜙)𝑛𝑗

}

𝛾
− 𝑡𝑖

{
𝑢𝑖
}

1−𝛾]
dΓ +

+ ∫
 [

1
2
𝛽𝑣

r
𝜕𝑛𝑢𝑖

z2
−

r
𝜕𝑛𝑢𝑖

z{
𝑟𝑖(𝒖, 𝜙)

}

𝛾
− 𝑟𝑖𝑛𝐿𝑗

{
𝑢𝑖,𝑗

}

1−𝛾]
dΓ +

+ ∫
 [

−
1
2
𝛽𝜙

r
𝜙𝑛𝑖

z2
+

r
𝜙𝑛𝑖

z{
𝑤(𝒖, 𝜙)𝑛𝑖

}

𝛾
+ 𝑤̂

{
𝜙
}

1−𝛾]
dΓ +

+ ∫
 [

−
1
2
𝛽𝜑

r
𝜕𝑛𝜙

z2
+

r
𝜕𝑛𝜙

z{
r(𝒖, 𝜙)

}

𝛾
+ r𝑛𝐿𝑖

{
𝜙,𝑖
}

1−𝛾]
dΓ +

+
𝑛𝐶
∑
𝑘=1

∫
𝐶𝑘 [

∑
𝛼∈𝑃(𝑘,∶)

(
1
2
𝛽𝐶𝑢(𝑢𝛼𝑖 − ⟨𝑢𝑖⟩𝛾 )2 − (𝑢𝛼𝑖 − ⟨𝑢𝑖⟩𝛾 )𝑗𝛼𝑖 (𝒖, 𝜙)) − ⟨𝑢𝑖⟩𝛾 𝑗𝑖]

ds +

+
𝑛𝐶
∑
𝑘=1

∫
𝐶𝑘 [

− ∑
𝛼∈𝑃(𝑘,∶)

(
1
2
𝛽𝐶𝜙(𝜙𝛼 − ⟨𝜙⟩𝛾 )2 + (𝜙𝛼 − ⟨𝜙⟩𝛾 )℘𝛼 (𝒖, 𝜙)) + ⟨𝜙⟩𝛾 ℘̂]

ds. (2.97)

where 𝑃(𝑘, ∶) = {𝑃(𝑘, 1), ..., 𝑃(𝑘, 𝑚(𝑘))}.

2.5.2 Direct flexoelectricity model for graded structure

This subsection derives the formulation for graded structure which is very similiar to the one
presented in Section 2.1.1. Let Ω be a physical domain in ℝ2 or ℝ3. For the sake of simplicity
we consider that only the elasticity tensor depends on the position ℂ𝑖𝑗𝑘𝑙 (𝒙). Considering just
the direct form of flexoelectricity, the bulk enthalpy density in a flexoelectric material is

Ω[𝒖, 𝜙] =
1
2
𝜀𝑖𝑗ℂ𝑖𝑗𝑘𝑙 (𝒙)𝜀𝑘𝑙 +

1
2
𝜀𝑖𝑗,𝑘ℎ𝑖𝑗𝑘𝑙𝑚𝑛𝜀𝑙𝑚,𝑛 −

1
2
𝐸𝑙𝜖𝑙𝑚𝐸𝑚 − 𝐸𝑙𝑒𝑙𝑖𝑗𝜀𝑖𝑗 − 𝐸𝑙𝜇𝑙𝑖𝑗𝑘𝜀𝑖𝑗,𝑘 , (2.98)

Apart from the internal enthalpy, we consider the work of external loads as

Ω[𝒖, 𝜙] = −𝑏𝑖𝑢𝑖 + 𝑞𝜙, (2.99)

and the total bulk enthalpy of a flexoelectric material is then

ΠΩ[𝒖, 𝜙] = ∫
Ω
(

Ω[𝒖, 𝜙] +Ω[𝒖, 𝜙]) dΩ. (2.100)

Considering the standard approach where the Dirichlet boundary conditions, i.e. imposed
displacements and electric potential, are strongly enforced, i.e the functional space of the
state variables is restricted to admissible states fulfilling Dirichlet boundary conditions, there
is no enthalpy associated with those contributions. However, applied tractions and surface
charges on the sample boundary (Neumann type boundary conditions) do contribute to the
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total enthalpy of the material. In order to define correctly the terms associated with boundary
conditions, the boundary 𝜕Ω is split into several disjoint sets as

𝜕Ω = 𝜕Ω𝑢 ∪ 𝜕Ω𝑡 = 𝜕Ω𝑣 ∪ 𝜕Ω𝑟 = 𝜕Ω𝜙 ∪ 𝜕Ω𝑤 , (2.101)

and the curves are split into two disjoint sets as

𝜕𝜕Ω = 𝐶𝑢 ∪ 𝐶𝑗 , (2.102)

where 𝐶𝑢 and 𝐶𝑗 are the curves (points in 2D) where Dirichlet boundary conditions and
Neumann boundary conditions are applied, respectively. The corresponding Dirichlet and
Neumann boundary conditions applied are

𝒖 = 𝒖D on 𝜕Ω𝑢 , 𝒕 = 𝒕N on 𝜕Ω𝑡 , (2.103a)
𝜕𝑛(𝒖) = 𝒗D on 𝜕Ω𝑣 , 𝒓 = 𝒓N on 𝜕Ω𝑟 , (2.103b)

𝜙 = 𝜙D on 𝜕Ω𝜙 , 𝑤 = 𝑤N on 𝜕Ω𝑤 , (2.103c)
𝒖 = 𝒖D on 𝜕𝐶𝑢 , 𝒋 = 𝒋N on 𝜕𝐶𝑗 , (2.103d)

where 𝒖D, 𝒗D and 𝜙D are the prescribed value of displacement, normal derivative of the
displacement and electric potential, respectively, and 𝒕N, 𝒓N, 𝑤N and 𝒋N are the prescribed
value of the traction, double traction, surface charge and line force, respectively.

The total enthalpy of the system for a flexoelectric material considering direct flexoelec-
tricity ΠDir[𝒖, 𝜙] is then

ΠDir[𝒖, 𝜙] = ΠΩ[𝒖, 𝜙] + ΠN[𝒖, 𝜙], (2.104)

with

ΠN[𝒖, 𝜙] = ∫
𝜕Ω𝑡

−𝑢𝑖𝑡N𝑖 dΓ + ∫
𝜕Ω𝑟

−𝜕𝑛𝑢𝑖𝑟N𝑖 dΓ + ∫
𝜕Ω𝑤

𝜙𝑤N dΓ + ∫
𝐶𝑗
−𝑢𝑖𝑗N𝑖 ds, (2.105)

Asmentioned before, the total enthalpy has no contribution fromDirichlet boundary conditions
in the standard approach, i.e. when Dirichlet boundary conditions are imposed strongly. We
recall the variational principle stated in Eq. (2.6), which particularises in the present case to

(𝒖∗, 𝜙∗) = arg min
𝒖∈D

max
𝜙∈D

ΠDir[𝒖, 𝜙] (2.106)

where the functional spaces D and D of admissible states are defined as

D =
{
𝒖 ∈ [𝐻 2(Ω)]3|𝒖 = 𝒖D on 𝜕Ω𝑢 and 𝐶𝑢 and 𝜕𝑛(𝒖) = 𝒗D on 𝜕Ω𝑣

}
, (2.107a)

D =
{
𝜙 ∈ 𝐻 1(Ω)|𝜙 = 𝜙D on 𝜕Ω𝜙

}
. (2.107b)
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A necessary condition for equilibrium is the vanishing of the first variation of the enthalpy
functional ΠDir[𝐮, 𝜙] for all admissible variations 𝛿𝐮 and 𝛿𝜙, which corresponds to the weak
form of the problem:

Find (𝒖, 𝜙) ∈ D ⊗ D such that 𝛿ΠDir = 0 ∀(𝛿𝒖, 𝛿𝜙) ∈ 0 ⊗ 0, (2.108)

with

0 =
{
𝒖 ∈ [𝐻 2(Ω)]3|𝒖 = 0 on 𝜕Ω𝑢 and 𝐶𝑢 and 𝜕𝑛(𝒖) = 0 on 𝜕Ω𝑣

}
, (2.109a)

0 =
{
𝜙 ∈ 𝐻 1(Ω)|𝜙 = 0 on 𝜕Ω𝜙

}
, (2.109b)

and

𝛿ΠDir[𝒖, 𝜙, 𝛿𝒖, 𝛿𝜙] = 𝛿ΠΩ[𝒖, 𝜙, 𝛿𝒖, 𝛿𝜙] + 𝛿ΠN[𝒖, 𝜙, 𝛿𝒖, 𝛿𝜙], (2.110a)

𝛿ΠΩ[𝒖, 𝜙, 𝛿𝒖, 𝛿𝜙] = ∫
Ω
𝜎𝑖𝑗𝛿𝜀𝑖𝑗 + 𝜎̃𝑖𝑗𝑘𝛿𝜀𝑖𝑗,𝑘 − 𝐷̂𝑙𝛿𝐸𝑙 − 𝑏𝑖𝛿𝑢𝑖 + 𝑞𝛿𝜙 dΩ, (2.110b)

𝛿ΠN[𝒖, 𝜙, 𝛿𝒖, 𝛿𝜙] = ∫
𝜕Ω𝑡

−𝛿𝑢𝑖𝑡N𝑖 dΓ + ∫
𝜕Ω𝑟

−𝜕𝑛(𝛿𝑢𝑖)𝑟N𝑖 dΓ + ∫
𝜕Ω𝑤

𝛿𝜙𝑤N dΓ + ∫
𝐶𝑗
−𝛿𝑢𝑖𝑗N𝑖 ds,

(2.110c)

where the Cauchy stress 𝝈̂ , the high-order stress 𝝈̃ and the Electric displacement 𝐃̂ are defined
as

𝜎̂𝑖𝑗(𝒖, 𝜙) = 𝜎̂𝑗𝑖(𝒖, 𝜙) =
𝜕Ω[𝒖, 𝜙]

𝜕𝜀𝑖𝑗

|||||∇𝜺𝑬
= ℂ𝑖𝑗𝑘𝑙 (𝒙)𝜀𝑘𝑙 − 𝑒𝑙𝑖𝑗𝐸𝑙 , (2.111a)

𝜎̃𝑖𝑗𝑘(𝒖, 𝜙) = 𝜎̃𝑗𝑖𝑘(𝒖, 𝜙) =
𝜕Ω[𝒖, 𝜙]
𝜕𝜀𝑖𝑗,𝑘

|||||𝜺𝑬
= ℎ𝑖𝑗𝑘𝑙𝑚𝑛𝜀𝑙𝑚,𝑛 − 𝜇𝑙𝑖𝑗𝑘𝐸𝑙 , (2.111b)

𝐷̂𝑙 (𝒖, 𝜙) = −
𝜕Ω[𝒖, 𝜙]

𝜕𝐸𝑙

||||| 𝜺∇𝜺
= 𝜖𝑙𝑚𝐸𝑚 + 𝑒𝑙𝑖𝑗𝜀𝑖𝑗 + 𝜇𝑙𝑖𝑗𝑘𝜀𝑖𝑗,𝑘 . (2.111c)

Eq. (2.108) can be integrated by parts and, by invoking the divergence and surface divergence
theorems, the Euler-Lagrange equations are derived as

(𝜎̂𝑖𝑗(𝒖, 𝜙) − 𝜎̃𝑖𝑗𝑘,𝑘(𝒖, 𝜙)),𝑗 + 𝑏𝑖 = 0 in Ω, (2.112a)

𝐷̂𝑙,𝑙 (𝒖, 𝜙) − 𝑞 = 0 in Ω, (2.112b)
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along with the expressions for the traction, double traction, surface charge and line force

𝑡𝑖 = (𝜎̂𝑖𝑗 − 𝜎̃𝑖𝑗𝑘,𝑘 + ∇𝑆𝑙 (𝑛𝑙 ) 𝜎̃𝑖𝑗𝑘𝑛𝑘) 𝑛𝑗 − ∇𝑆𝑗 (𝜎̃𝑖𝑗𝑘𝑛𝑘) on 𝜕Ω, (2.113a)
𝑟𝑖 = 𝜎̃𝑖𝑗𝑘𝑛𝑗𝑛𝑘 on 𝜕Ω, (2.113b)
𝑤 = −𝐷̂𝑙𝑛𝑙 on 𝜕Ω, (2.113c)
𝑗𝑖 = J𝜎̃𝑖𝑗𝑘𝑚𝑗𝑛𝐾 K on 𝐶, (2.113d)

where J K is the jump operator defined as J𝐴K = 𝐴1 +𝐴2, ∇𝑆𝑗 ( ) = ∇𝑘( ) (𝛿𝑘𝑗 − 𝑛𝑘𝑛𝑗) is the surface
divergence operator, 𝒏 is the normal vector,𝒎 is the conormal vector which is a vector tangent
to the boundary and pointing outwards.

Note that the only difference between Section 2.1.1 and this one is the spatial dependence
in the elasticity material tensor in Eq. 2.111a.





Chapter 3

Computational methods for
multimaterial and generalised
periodic flexoelectric BVPs

This chapter presents the numerical methods used in this thesis to solve flexoelectric boundary
value problems. We focus on the computational aspects particularly arising when dealing with
multimaterial samples with general geometries and electrode configurations, periodic lattice
materials with general architectures, and graded materials. Firstly, we present an overview of
the state of the art of computational approaches for high-order problems, and flexoelectricity
in particular, pointing out their advantages and disadvantages. B-splines method is the one
adopted in the whole thesis. This method is divided into three different categories. The first is
the body-fitted B-spline approach, where the support of the approximation space is the same as
the physical body Ω. The second is the immersed B-spline approach, where the support of the
approximation space is bigger than the physical body Ω. The last is the high-order generalised
periodic approximation space approach, where we modify the immersed approximation space
to fulfil the generalised periodicity conditions.

The numerical approach provided here is part of an in-house computational framework
called iHB-FEM (Immersed hierarchical B-spline-finite element method). Onofre Marco and
David Codony initially created this framework. Then, more people participated in incorpo-
rating new functionalities, such as the extension to the body-fitted approach and periodic
functional space of approximation, to which I contributed. I should mention all the people
who contributed to having a powerful tool like that. They are, apart from the people I just
mentioned and me, Alice Mocci, Hossein Mohammadi, Monica Dingle, Francesco Greco and
Juan Carlos Tarín.

This code was initially created in MATLAB; now, part of the code has been translated to
another in-house code HiPerLife. HiPerLife is a parallel C code created by the group of Prof.
Marino Arroyo. All the codes developed are part of the FLEXOCOMP group led by Prof. Irene
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3.1 State of the art

The numerical solution of boundary value problems involving systems of high-order partial
differential equations (PDE) requires either (1) specialised finite elements compatible with
𝐶0 approximations, such as mixed methods (Brezzi et al., 1987) and interior penalty methods
(Engel et al., 2002), or (2) approximations based on smooth basis functions. In mixed finite
elements, the primal field variables and their derivatives are interpolated as independent
variables with 𝐶0 basis functions. Mixed finite elements have been successfully used in
strain-gradient elasticity (Amanatidou and Aravas, 2002) or Cahn-Hilliard equation (Feng
and Prohl, 2004). They suffer however from stability issues and from cumbersome model-
dependent implementations, as well as from a higher computational cost due to the large
number of additional unknowns. 𝐶0 penalty methods also consider standard C0 finite element
approximations and impose the required continuity across elements weakly (Ventura et al.,
2021).

The approach to high-order PDE based on smooth basis functions is much more direct and
only requires the approximation of the primal fields. The drawback is that it is, in general,
more difficult to define smooth approximation spaces. One option is to use meshfree methods,
which easily enable local refinement (Fish and Belytschko, 2007). However, these methods
are very expensive due to quadrature and to the large sparsity pattern resulting from the
significant overlap of basis functions required in higher-order problems. Furthermore, the
treatment of boundary conditions on curved and non-convex geometries can be cumbersome.
Another option is Isogeometric analysis (IGA) based on B-splines or NURBS (Cottrell et al.,
2009). Isogeometric methods describe boundary geometry with high fidelity and can deal with
high-order PDE, but are too rigid in the bulk, e.g. to model composites. B-spline approximations
in higher dimensions are constructed from tensor products and thus rely on cartesian meshes,
incompatible in principle with general boundary geometries.

This limitation can be circumvented by combining B-Splines with immersed boundary
methods, which use meshes non-conforming to the boundary of the domain. This boundary
is defined independently of the background mesh, and thus immersed boundary methods
overcome the rigidity of tensor product B-Spline approximates (Codony et al., 2019). In
immersed boundary methods, essential boundary conditions cannot be enforced strongly since
the basis functions are not interpolant at the boundary, and are often enforced weakly through
Nitsche’s method (Fernández-Méndez and Huerta, 2004, Nitsche, 1970). Similarly, continuity
conditions at material interfaces or generalised periodic conditions at fictitious boundaries
cannot be imposed strongly. Although continuity conditions for classic elasticity at material
interfaces with Isogeometric analysis (IGA) have been developed (Dolbow and Harari, 2009,
Jiang et al., 2015), high-order interfaces in unfitted discretisations have not been addressed in
the literature to the best of our knowledge.
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3.1.1 B-spline basis functions

B-splines are curves or surfaces which are piecewise polynomials. We refer the reader to Piegl
and Tiller (2012) for an extensive explanation of B-splines and NURBS. Let 𝜉 = {𝜉0, 𝜉1, … , 𝜉𝑚}
a non-decreasing sequence of real numbers. 𝜉 is called the knot vector, and 𝜉𝑖 are the knots.
The 𝑖-th B-spline basis of degree 𝑞 is defined recursively as

𝐵0𝑖 (𝜉 ) =

{
1 𝜉𝑖 ≤ 𝜉 < 𝜉𝑖+1
0 otherwise

; (3.1)

𝐵𝑘𝑖 (𝜉 ) =
𝜉 − 𝜉𝑖
𝜉𝑖+𝑘 − 𝜉𝑖

𝐵𝑘−1𝑖 (𝜉 ) +
𝜉𝑖+𝑘+1 − 𝜉
𝜉𝑖+𝑘+1 − 𝜉𝑖+1

𝐵𝑘−1𝑖+1 (𝜉 );
𝑘 = 1, … , 𝑞

𝑖 = 0, … ,𝑚 + 𝑞 − 𝑘 − 1.
(3.2)

Note that a B-spline of degree 𝑞 is the linear combination of two B-splines of degree 𝑞 − 1, and
the B-spline of degree 0 is just the step function. We called the multiplicity of a knot 𝜉𝑖 , the
number of times that this knot is repeated in the knot vector. This multiplicity reduces the
continuity of the basis function at that point once for each time the knot is repeated. Without
any multiplicity, the continuity of the basis function is 𝐶𝑞−1. B-splines have some properties
that we need to recall:

• Local support: 𝐵𝑘𝑖 (𝜉 ) = 0 ∀𝜉 ∉ [𝜉𝑖 , 𝜉𝑖+𝑞+1).

• For each knot span [𝜉𝑖 , 𝜉𝑖+1) there are at most 𝑞 + 1 B-splines with support inside.

• Non-negativity: 𝐵𝑘𝑖 (𝜉 ) ≥ 0 ∀𝑖, 𝑘, 𝜉 .

Fig. 3.1 shows two representations of the B-spline basis function. The first one of degree
1 with knot vector {0, 1, 2, 3, 4, 5, 6, 7} and the second one of degree 2 with knot vector
{0, 0, 0, 1, 2, 4, 4, 5, 6, 6}. Note that in the second example, knot 0 has multiplicity three and
knots 4 and 6 have multiplicity two. As knot 4 has multiplicity 2, it implies that the basis
function 𝐵24 is only 𝐶0 at that point.

B-splines are defined in a multivariate space by the tensor product of univariate ones:

𝐵𝑞𝒊 ([𝜉 , 𝜂, 𝜏 ]) = 𝐵
𝑞
𝑖𝜉 (𝜉 )𝐵

𝑞
𝑖𝜂(𝜂)𝐵

𝑞
𝑖𝜏 (𝜏 ). (3.3)

Different kinds of B-spline bases are obtained depending on the choice of the knot vector.
We mainly focus on two: open B-spline and uniform B-spline.

3.1.2 High-order approximation space: Body fitted B-spline approach

Imposing Dirichlet boundary conditions strongly, as done in Section 2.1.1, requires the basis
function to be interpolant on the boundary. In order to get interpolant basis function we use
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Figure 3.1: Example of B-spline basis function. (left) The knot vector used is {0, 1, 2, 3, 4, 5, 6, 7}
and the degree is 1. (right) The knot vector used is {0, 0, 0, 1, 2, 4, 4, 5, 6, 6} and the degree is 2.

.

an open knot vector. An open knot vector is one whose first and last element of the knot
vector have multiplicity 𝑞 + 1, as seen in Fig. 3.2.

Figure 3.2: Example of open B-spline basis functions for different degrees. From left
to right and top and bottom, the different degrees and knot vectors are: degree=1 and
knotvector={0,0,1,2,3,4,5,5}, degree=2 and knotvector={0,0,0,1,2,3,4,5,5,5}, degree=3 and knotvec-
tor={0,0,0,0,1,2,3,4,5,5,5,5} and degree=4 and knotvector={0,0,0,0,0,1,2,3,4,5,5,5,5,5}.

Firstly, we define the geometrical maps 𝜑 which map a given point in the parametric space
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𝜉 ∈ Ξ to a given point in the physical space 𝒙 ∈ Ω as

𝜑 ∶Ξ −→ Ω

𝜉 −→ 𝜑(𝜉 ) = 𝒙
(3.4)

The basis functions in the physical space 𝑁 𝑞
𝑖 (𝒙) are constructed as 𝑁 𝑞

𝑖 = 𝐵𝑞𝑖 ◦ 𝜑−1 and the state
variables are approximated as

[𝒖(𝒙)]𝑑 ≈ [𝒖ℎ(𝒙)]𝑑 = 𝑁𝑖(𝒙)𝑎𝑢𝑖𝑑 = 𝐵𝑖(𝜉 , 𝜂, 𝜏 )𝑎𝑢𝑖𝑑 , (3.5a)

𝜙(𝒙) ≈ 𝜙ℎ(𝒙) = 𝑁𝑖(𝒙)𝑎
𝜙
𝑖 = 𝐵𝑖(𝜉 , 𝜂, 𝜏 )𝑎

𝜙
𝑖 , (3.5b)

where {𝒂𝑢 , 𝒂𝜙} are the degrees of freedom of 𝑢ℎ and 𝜙ℎ. We have omitted the superscript
𝑞 for convenience. The geometrical map in Eq. (3.4) is straightforward in the context of
B-spline because we restrict ourselves to rectangular meshes. Then the geometrical map is
𝜑(𝜉 , 𝜂, 𝜏 ) = [ℎ𝑥𝜉 ; ℎ𝑦𝜂; ℎ𝑧𝜏], where each element of the mesh has dimensions [ℎ𝑥 ; ℎ𝑦 ; ℎ𝑧].

Once the interpolant basis function is defined, we can reduce the space of approximation to
impose Dirichlet conditions as done in Eq. (2.17). Low-order PDEs, as in the Laplace equation,
need to impose the first and the last B-spline because these two are the only ones with a
value different from 0 at the boundary. For fourth-order PDEs, as flexoelectricity, we need to
impose the first two and the last two B-spline to impose the first and second-order Dirichlet
conditions. In 1D, the imposition is as easy as setting the value of the B-spline equal to the
boundary condition, but in 2D or 3D, we need to make a 𝐿2 projection to impose them, as
done in Barceló-Mercader (2018).

3.1.3 High-order approximation space: Immersed B-spline approach

Being Ω the physical domain, in the approach of Section 3.1.2, Ωwas restricted to a rectangular
shape. In order to deal with any arbitrary shape, we define an embedded domain Ω□ such that
Ω ∈ Ω□ (see Fig. 3.3). The geometrical map is now

𝜑 ∶Ξ −→ Ω□

𝜉 −→ 𝜑(𝜉 ) = 𝒙
(3.6)

Note that the geometrical map 𝜑 is independent of the physical domain. To preserve the
Jacobian and the properties explained in Section 3.1.2, the embedded domain is assumed to have
a rectangular shape of dimensions, for instance, in 3D (𝐿𝑥 , 𝐿𝑦 , 𝐿, 𝑧), but the physical domain
has no longer a rectangular shape. The B-spline basis functions used in this method could be
defined using the open knot vector defined in Section 3.1.2. However, as the Dirichlet boundary
condition cannot be imposed strongly because the boundary of the embedded domain may
not be the same as the physical domain, we use a uniform B-spline basis function instead.

Every knot of the knot vector is now equidistant with the next and the previous one. For
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Figure 3.3: 2D Mesh for the immersed boundary approach. In dark blue, there is depicted the
cut cells Ω𝐶 ; in light blue, there is depicted the inner cells Ω𝐼 ; and in white, there is depicted
the outer cells Ω𝑂 .

.

example, in Fig. 3.4, we can see some plots of the uniform B-spline basis function for degrees
between one and four. The main disadvantage of using this kind of B-spline is that they are
not interpolant at the boundary, meaning that the Dirichlet boundary condition cannot be
applied strongly. However, our embedded domain might not share the boundary with the
physical one, so it is no longer a problem.

In this approach, Dirichlet boundary conditions cannot be imposed strongly and have to
be imposed weakly, as done using Nitsche’s method explained in Section 2.2.1. One advantage
of using uniform B-splines is that all basis functions are the same but translated in space.
Therefore, their expression of them can be computed once for one spline and then translated
it.

3.1.3.1 Cut-cell integration and stabilisation

Integration of the physical domain is the most challenging part of the immersed boundary
method. Firstly, each element of the Cartesian mesh has to be classified into three disjoint
groups (see Fig. 3.3):

• Inner cells (Ω𝐼 ): These cells are entirely inside of the physical domain (Ω𝐼 ⊆ Ω).

• Outer cells (Ω𝑂): These cells are entirely outside of the physical domain (Ω𝑂 ∩ Ω = ∅).

• Cut cells (Ω𝐶 ): These cells have a portion inside the physical domain, and the rest lie
outside it (Ω𝐶 ∩ Ω ≠ ∅ & Ω𝐶 ⊈ Ω).

Once each element has been classified, we distinguish two kinds of integration: integration of
the bulk and integration of the boundary.
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Figure 3.4: Example of uniform B-spline basis functions for different degrees. From left to right
and top and bottom, the different degrees and knot vectors are: degree=1 and knotvector={-
1,0,1,2,3,4,5,6}, degree=2 and knotvector={-2,-1,0,1,2,3,4,5,6,7}, degree=3 and knotvector={-3,-2,-
1,0,1,2,3,4,5,6,7,8} and degree=4 and knotvector={-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9}.

Integration of the bulk of inner cells can be done with standard quadrature for polynomials
(Witherden and Vincent, 2015), and no boundary integration is needed. For cut cells, an
excellent representation of the boundary is needed. NEFEM approach based on the NURBS
representation of the geometry is used in this thesis (Legrain, 2013, Marco et al., 2015, Sevilla
and Fernández-Méndez, 2011, Sevilla et al., 2008, 2011a,b), because it preserves the high
convergence rate of the B-spline method. Then, each cut cell is divided into several subdomains
using an algorithm based on the marching cubes algorithm (Marco et al., 2015).

The system of equations built with the discretisation of the weak form in Section 2.2.4
using the immersed approach can suffer from ill-conditioning (de Prenter et al., 2016). This
phenomenon may happen when a cut cell has a tiny portion inside the physical domain. To
minimise ill-conditioning, some strategies can be used. One can be the ghost penalty method
(Burman, 2010), another adding artificial stiffness (Düster et al., 2008, Schillinger and Ruess,
2015), and finally, the one used in this thesis, the extended B-spline method (Höllig et al., 2012,
2001, Rüberg and Cirak, 2012, Rüberg et al., 2016).

Essentially, the extended B-spline method consists of reducing the space of approximation,
changing the basis function with very little support with a linear combination of other basis
functions that lie inside o almost inside the physical domain.

That particular method is well-suited for our approach because it can be applied using



64
Computational methods for multimaterial and generalised periodic flexoelectric

BVPs

a constraint matrix that will pre-multiply and post-multiply the matrix of the system of
equations.

3.2 High-order generalised periodicity approximation space

Simulating a unit cell of an architected material is a complex problem because you need to
apply high-order periodicity condition, as stated in Section 2.4.1. A way of enforcing them
in a fancy way is by creating a high-order generalised periodicity approximation space. Any
function approximated with high-order generalised periodicity space will fulfil the high-order
generalised periodicity conditions by construction. A set of periodic basis function and a
high-order generalised periodic basis function create this periodicity space.

3.2.1 Periodic basis function

Following the explanation described in Barceló-Mercader et al. (2023). Being ΩRVE = [0, 𝐿𝑥 ] ⊗
[0, 𝐿𝑦] ⊗ [0, 𝐿𝑧] ⊂ ℝ3 the unit cell of an architected materials as seen in Fig. 3.5. The condition
that must fulfil the Cartesian mesh Ω□ is that it must have element sizes (ℎ𝑥 , ℎ𝑦 , ℎ𝑧) such that
𝐿𝜁 /ℎ𝜁 = 𝑛𝜁 ∈ ℕ+, 𝜁 = {𝑥, 𝑦, 𝑧}, where 𝑛𝜁 is the number of cells along the 𝜁 -th dimension.

a)
b)

Figure 3.5: a) Embedded mesh Ω□ of size 𝐿□𝑥 and 𝐿□𝑦 . Note that Ω□ ⊃ ΩRVE The number of
elements per dimension is 20: 𝑛𝑥 = 𝑛𝑦 = 19, and the shift is: 𝑠𝑥 = 0.9 and 𝑠𝑦 = 0.1. b) Zoom in
of the mesh, outer cells are depicted in white, cut cells in light red and inner cells in dark blue.
Image taken from Barceló-Mercader et al. (2023)
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The dimensions (𝐿□𝑥 , 𝐿□𝑦 , 𝐿□𝑧 ) of the computational domain Ω□ are

𝐿□𝜁 =

{
ℎ𝜁 ⋅ 𝑛𝜁 if 𝐿□𝜁 = 𝐿𝜁 ,
ℎ𝜁 ⋅ (𝑛𝜁 + 1) if 𝐿□𝜁 > 𝐿𝜁 .

(3.7)

The simplest case happens when the equality holds for every direction and then Ω□ ≡ ΩRVE.
Nevertheless, we use a general case where the inequality holds for every direction, obtaining
Ω□ ⊃ ΩRVE. Taking into account the shifting parameters 𝑠𝜁 ∈ (0, 1), which moves the Cartesian
mesh an arbitrary number (to avoid very bad cut elements), the embedding domain Ω□ spans
[ℎ𝜁 ⋅ (𝑠𝜁 − 1), 𝐿𝜁 + ℎ𝜁 ⋅ 𝑠𝜁 ] in the 𝜁 -th dimension.

To obtain the periodic B-spline basis 𝐵P𝒊 (𝜉 , 𝜂, 𝜏 ), we identify the basis with its corresponding
periodic images whose distance is (𝑚𝑥𝑛𝑥 , 𝑚𝑦𝑛𝑦 , 𝑚𝑧𝑛𝑧), 𝑚𝑥 , 𝑚𝑦 , 𝑚𝑧 ∈ ℤ creating a unique
degree of freedom. It can be seen in Fig. 3.6. This strategy creates a high-order periodic basis
that satisfies standard periodic conditions as stated in Section 2.4.1 . Using this strategy, the
unit cell ΩRVE is cut by 𝜕Ω but not by 𝜕ΩRVE.

3.2.2 High-order generalised periodic basis

A generalised periodicity approximation space is constructed by adding a periodic space with
a functional space spanned with global basis functions 𝐵𝜁 (𝜉 , 𝜂, 𝜏 ) that fulfil

𝐵𝜁 (𝜚 = 𝑛𝜚) − 𝐵𝜁 (𝜚 = 0) = 𝛿𝜁 𝜚 , (3.8a)
𝜕𝑛𝐵𝜁 (𝜚 = 𝑛𝜚) − 𝜕𝑛𝐵𝜁 (𝜚 = 0) = 0, (3.8b)

where 𝜁 , 𝜚 ∈ {𝜉 , 𝜂, 𝜏} and 𝛿𝜁 𝜚 is the Kronecker delta.
The definition of the basis function 𝐵𝜁 (𝜉 , 𝜂, 𝜏 ) is not unique. The simplest approach

𝐵𝜁 (𝜉 , 𝜂, 𝜏 ) is the linear function 𝐵𝜁 (𝜉 , 𝜂, 𝜏 ) = 𝜁 /𝑛𝜁 . However, it spans the whole ΩRVE, substan-
tially increasing the fill-in of the resulting system matrix. An efficient alternative in the context
of B-spline basis that involves minimal fill-in and straightforward implementation consists of
defining 𝐵𝜁 (𝜉 , 𝜂, 𝜏 ) as the addition of all the non-vanishing original B-spline basis 𝐵𝑖(𝜉 , 𝜂, 𝜏 )
on the cell Ω𝑐

□ intersected by 𝜕ΩRVE = 𝐿𝜁 , as seen in Fig. 3.7. Thanks to the partition of unity
property of B-spline basis, seen in Section 3.1.1, 𝐵𝜁 (𝜉 , 𝜂, 𝜏 ) evaluates to 1 within the aforemen-
tioned cell and 0 for all derivatives. At the opposite boundary 𝜕ΩRVE = 0, 𝐵𝜁 (𝜉 , 𝜂, 𝜏 ) and its
derivatives vanish, fulfiling the conditions in Eq. (3.8). The generalized-periodic functional
space has 𝐶𝑞−1 continuity.

An advantage of defining the periodic basis as done in Section 3.2.1 and the generalised
periodic basis in this way is that they can be implemented as a linear constraint on the original
approximation space during or after the assembly stage, as done in Section 3.1.3.1 with the
extended B-spline method.

In conclusion, the components of 𝒖 and 𝜙 are approximated by the high-order generalised
periodicity functional spaces spanned by the basis functions

{
𝐵P𝑖 (𝜉 , 𝜂, 𝜏 ); 𝐵𝜁 (𝜉 , 𝜂, 𝜏 )

}
and
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0 1 2 3 4 5 6

6543210

Figure 3.6: Univariate periodic basis of degree 𝑞 = 2. Originally (top), the functional space is
spanned by nine B-spline bases 𝐵𝑖(𝜉 ), 𝑖 = 0, … , 8, defined onto a mesh of 𝐿𝑥 /ℎ𝑥 = 𝑛𝑥 = 6 cells.
Note that ΩRVE does not coincide with Ω□, and therefore cut cells (Ω□

0 ∩ ΩRVE and Ω□
6 ∩ ΩRVE)

are generated. In order to create a high-order-periodic functional space (bottom), the basis
functions at a distance 𝑛𝑥 on ΩRVE are identified with the same degree of freedom, yielding
a functional space spanned by only six periodic B-Spline bases 𝐵P𝑖 (𝜉 ), 𝑖 = 0… 5. The periodic
nature of the basis implies periodicity on ΩRVE too, which does not have cells cut by the
periodic boundary 𝜕ΩRVE anymore. Image adapted from Barceló-Mercader et al. (2023)

control variables
{
𝒖P, 𝜙P; 𝜺, 𝑬

}
as follows:

𝑢𝑎(𝑥, 𝑦, 𝑧) ≈ ∑
𝑖
[𝐵P𝑖 ◦ 𝜑

−1(𝑥, 𝑦, 𝑧)] 𝑢P𝑎 + [𝐵𝑏 ◦ 𝜑−1(𝑥, 𝑦, 𝑧)] 𝜀𝑎𝑏 (3.9a)

𝜙(𝑥, 𝑦, 𝑧) ≈ ∑
𝑖
[𝐵P𝑖 ◦ 𝜑

−1(𝑥, 𝑦, 𝑧)] 𝜙P + [𝐵𝑏 ◦ 𝜑−1(𝑥, 𝑦, 𝑧)] 𝐸𝑏 (3.9b)
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where 𝑎, 𝑏 ∈ {𝑥, 𝑦, 𝑧}. Note that the solution is determined up to a constant, which means
that rigid body translation is not fixed. To impose it, we usually set the first basis function to
zero without loss of generality.

654321

1

0

6543210

Figure 3.7: Univariate generalised periodic basis of degree 𝑞 = 2. Originally (top), the functional
space over the cut cell Ω6

□ ∩ΩRVE is spanned by three B-spline basis functions 𝐵𝑖(𝜉 ), 𝑖 = {4, 5, 6}.
The addition of these basis functions yields the global basis function 𝐵𝑥 (𝜉 ), which inherits the
regularity of the original B-spline basis and fulfils the admissibility condition in Eq. (3.8). The
union of 𝐵𝑥 with the periodic B-spline basis in Fig. 3.6 spans a high-order generalised periodic
functional space on ΩRVE. Image adapted from Barceló-Mercader et al. (2023)

Remark 3.1. The critical basis functions of the high-order generalised periodic functional
space, that is, those whose support is intersected by 𝜕Ω in a tiny proportion, can be stabilised
through the extended B-spline stabilisation technique as any other basis function.

3.2.3 Enforcement of macroscopic kinematics

Discretising the weak for in Eq. (2.93) on the generalised periodic space, we get the following
system of equations:



68
Computational methods for multimaterial and generalised periodic flexoelectric

BVPs

(
𝑲 𝑃𝑃 𝑲 𝑃𝐺

𝑲𝐺𝑃 𝑲𝐺𝐺)(
𝑿 𝑃

𝑿𝐺)
=
(

0

𝒇𝐺)
(3.10)

where the subscript 𝑃 denotes the periodic basis functions stated in Section 3.2.1, and the
subscript 𝐺 denotes the global basis functions described in Section 3.2.2.

In our case, we have 𝑿𝐺 = {𝜺, 𝑬}, 𝑿 𝑃 = {𝒖P, 𝜙P} and 𝒇𝐺 = |ΩRVE|{𝝈, 𝑫}. The sets 𝑿𝐺

and 𝒇𝐺 are split into two subsets, one corresponding to macroscopic Dirichlet conditions
𝑿𝐷
𝐺 and 𝒇𝐷𝐺 , and another one corresponding to macroscopic Neumann conditions 𝑿𝑁

𝐺 and 𝒇𝑁𝐺 .
Macroscopic Dirichlet conditions in Eq. (2.91) are strongly enforced on the system of equations
3.10 by prescribing the values of 𝑿𝐷

𝐺 , and microscopic Neumann conditions in Eq. (2.92) are
enforced by prescribing the values of 𝒇𝑁𝐺 .

3.2.4 Macroscopic kinematics rotation

The macroscopic conditions derived previously have been applied along the directions (𝑥, 𝑦, 𝑧)
of the Cartesian frame. However, macroscopic conditions can be applied along a rotating
frame by considering

𝜺𝑹 = 𝑹 ⋅ 𝜺 ⋅ 𝑹𝑇 , 𝝈𝑹 = 𝑹 ⋅ 𝝈 ⋅ 𝑹𝑇 ,

𝑬𝑹 = 𝑹 ⋅ 𝑬, 𝑫𝑹 = 𝑹 ⋅ 𝑫. (3.11)

where 𝑹 is a given rotation matrix from the Cartesian frame to the rotating frame:

𝑹 =
⎛
⎜
⎜
⎜
⎝

cos 𝛼 − sin 𝛼 0

sin 𝛼 cos 𝛼 0

0 0 1

⎞
⎟
⎟
⎟
⎠

⋅
⎛
⎜
⎜
⎜
⎝

cos 𝛽 0 sin 𝛽

0 1 0

− sin 𝛽 0 cos 𝛽

⎞
⎟
⎟
⎟
⎠

⋅
⎛
⎜
⎜
⎜
⎝

1 0 0

0 cos 𝛾 − sin 𝛾

0 sin 𝛾 cos 𝛾

⎞
⎟
⎟
⎟
⎠

, (3.12)

being 𝛼, 𝛽, 𝛾 the angles called yaw, pitch and roll typically used in aeronautics. This approach
is useful, especially in sensitivity analysis as in the loading direction example in Section 4.4,
since a continuous response can be obtained by continuously increasing the rotation angle
covering all the parameter space. This task can be performed very efficiently by implementing
a for loop during or after the assembly stage, avoiding the re-computation of volume integrals
in the approximation space. The new rotating system of equations is

(
𝑲 𝑃𝑃 𝑲𝑹

𝑃𝐺

𝑲𝑹
𝐺𝑃 𝑲𝑹

𝐺𝐺)(
𝑿 𝑃

𝑿𝑹
𝐺)

=
(

0

𝒇 𝑹𝐺)
, (3.13)

where 𝑲𝑹
𝑃𝐺 = 𝑲 𝑃𝐺 ⋅ 𝑹𝑇 , 𝑲𝑹

𝐺𝑃 = 𝑹 ⋅ 𝑲𝐺𝑃 , 𝑲𝑹
𝐺𝐺 = 𝑹 ⋅ 𝑲𝐺𝐺 ⋅ 𝑹𝑇 , 𝑿𝑹

𝐺 = {𝜺𝑹 , 𝑬𝑹} and 𝒇 𝑹𝐺 =
|ΩRVE|{𝝈𝑹 , 𝑫𝑹}. The macroscopic Dirichlet and Neumann conditions can be applied directly
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to 𝑿𝑹
𝐺 and 𝒇 𝑹𝐺 along the directions of the rotating frame.

3.3 Selection of numerical parameters

This section reviews the selection of the penalty parameters of the Nitsche’s method in Eqs. 2.41
and 2.51, and the 𝛾 -parameter of the weighted mean in Eqs. 2.47a and 2.48.

3.3.1 Penalty parameter of Nitsche’s method

The penalty parameters 𝛽𝑢 , 𝛽𝑣 , 𝛽𝐶𝑢 and 𝛽𝜙 in Eq. 2.41 can be computed by solving an eigenvalue
problem (Griebel and Schweitzer, 2003), or they can be approximated by writing them as a
function of some material parameters (Barceló-Mercader et al., 2022, Codony et al., 2021a,
2019) as

𝛽𝑢 =
𝐸
ℎ
𝜁 , 𝛽𝑣 =

𝓁 2𝐸
ℎ
𝜁 , 𝛽𝐶𝑢 =

𝓁 2𝐸
ℎ2

𝜁 , 𝛽𝜙 =
𝜖
ℎ
𝜁 . (3.14)

As these values are valid for a wide range of 𝜁 , we will take 𝜁 = 100, which gives accurate
results for all examples in the thesis. They do not depend on the intersection of the mesh with
the body thanks to the extended B-spline method, which has been presented previously in
section 3.1.3.1.

The penalty parameters 𝛽𝑢 , 𝛽𝑣 , 𝛽𝐶𝑢 , 𝛽𝜙 ∈ ℝ+ in Eq. 2.51 are defined in terms of a
dimensionless parameter 𝜁 ∈ ℝ+ as a generalisation of the ones seen in Eq. (3.14) as

𝛽𝑢 =
max(𝐸(1), 𝐸(2))

ℎ
𝜁 , 𝛽𝑣 =

𝓁 2max(𝐸(1), 𝐸(2))
ℎ

𝜁 ,

𝛽𝐶𝑢 =
𝓁 2max(𝐸(1), 𝐸(2), ..., 𝐸(𝑛))

ℎ2
𝜁 , 𝛽𝜙 =

max(𝜖(1), 𝜖(2))
ℎ

𝜁 , (3.15a)

where ℎ denotes the physical cell size of the mesh, and 𝐸, 𝜖 and 𝓁 denote Young’s modulus,
the dielectric permittivity and the internal length scale arising from strain gradient elasticity,
see Appendix A.1.

3.3.2 Weighted mean parameter

Numerical oscillations around the interface may appear in some critical cases when one
element has a much smaller portion in one domain than in the other, as previously reported
in Annavarapu et al. (2012a,b), Dolbow and Harari (2009), Laursen et al. (2012). To improve
the conditioning, we consider the following simplified version of 𝛾 -parameters reported in
Annavarapu et al. (2012a,b), which yields accurate results:

𝛾 𝐿(𝑘) =
𝑚𝑒𝑎𝑠(𝑆Ω(𝐿))

𝑚𝑒𝑎𝑠(𝑆Ω(𝐿)) + 𝑚𝑒𝑎𝑠(𝑆Ω(𝑅))
, 𝛾𝑅(𝑘) =

𝑚𝑒𝑎𝑠(𝑆Ω(𝑅))
𝑚𝑒𝑎𝑠(𝑆Ω(𝐿)) + 𝑚𝑒𝑎𝑠(𝑆Ω(𝑅))

, (3.16)
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where 𝑚𝑒𝑎𝑠(𝑆Ω(𝑖)) denotes the physical measure of the cut cell. Other expressions of these
parameters include the material parameter of the physical domains as the Young modules
or Poisson ratio. We refer the reader to Annavarapu et al. (2012a,b) to find more complex
expressions and explanations.

The choice of the 𝛾 -parameter in Eq. (2.48) in Barceló-Mercader et al. (2022) is also a
generalisation of the 𝛾 -parameters defined in Eq. (3.16) as

𝛾 𝑃(𝑘,𝑖) =
𝑚𝑒𝑎𝑠(𝑆Ω(𝑖))

∑𝑚(𝑘)
𝑗=1 𝑚𝑒𝑎𝑠(𝑆Ω(𝑗))

. (3.17)

3.4 Validation of numerical method

The last section of this chapter consists of two convergence tests of continuum modelling and
numerical methods. One for the 2D flexoelectric model and one for the 3D flexoelectric model.

3.4.1 Convergence test for interfaces

We start with a 2D convergence test. Being the synthetic solution defined as

𝑢𝑥 (𝑥, 𝑦) = 4 sin(2𝜋𝑥),

𝑢𝑦 (𝑥, 𝑦) = 3 sin(2𝜋𝑦),

𝜙(𝑥, 𝑦) = 2 sin(2𝜋𝑥) + sin(2𝜋𝑦). (3.18)

The physical domain Ω consists of three triangles that create an equilateral triangle of size 3, as
seen in Fig. 3.8. Interface and Dirichlet conditions, consistent with the synthetic solution, are
the ones applied here, and they can also be seen in Fig. 3.8. The material parameters used are
in Table 3.1. Note that, as this is a convergence test, the material parameters are dimensionless
for convenience.

Figure 3.8: Physical domain and boundary conditions applied to the 2D convergence test. The
physical domain consists of three triangles forming an equilateral triangle of size 2.
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Ω 𝐸 𝜈 𝑙 𝜖 𝒅 𝑒𝐿 𝑒𝑇 𝑒𝑆 𝜇𝐿 𝜇𝑇 𝜇𝑆
1 87 0.33 1 141 y 8.8 -4.4 4.4 150 110 110
2 58 0.3 1 11 y 3.8 -2.4 2.4 100 10 00
3 33 0.25 1 85 y 5.3 -3.2 2.6 10 180 180

Table 3.1: Material parameters for the three subdomains in Fig. 3.8

The convergence analysis is done by computing the 2, 1, 2 and 3 errors using two
different degrees of approximation, 𝑞 = 3 and 𝑞 = 4. log2(ℎ0/ℎ) is the mesh refinement level,
and ℎ0 = 1 is a normalisation length. The convergence analysis can be seen in Fig. 3.9, and
optimal convergence is obtained.

Figure 3.9: Convergence plots for 2,1,2 and3 norms, with degree 𝑞 = 3 (left) and 𝑞 = 4
(right) for the 2D interface analysis. The number for each plot is the slope of the least square
fitting.

A similar 3D convergence test is done. Let us consider an arrangement of four cubes of
size 2 forming a parallelepiped. Two different materials are used, and they are in Table 3.2.

Ω 𝐸 𝜈 𝑙 𝜖 𝒅 𝑒𝐿 𝑒𝑇 𝑒𝑆 𝜇𝐿 𝜇𝑇 𝜇𝑆
1 98 0.33 1 141 z 8.8 -4.4 4.4 150 110 110
2 42 0.3 1 11 z 3.8 -2.4 2.4 110 10 10

Table 3.2: Material parameters for the two subdomains in Fig. 3.10
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Dirichlet boundary conditions are imposed on the outer boundary and interface conditions
on the inner ones (see Fig. 3.10), consistent with the following synthetic solution:

𝑢𝑥 (𝑥, 𝑦, 𝑧) = 4 sin(0.2𝑥),

𝑢𝑦 (𝑥, 𝑦, 𝑧) = 8 cos(0.2𝑦),

𝑢𝑧(𝑥, 𝑦, 𝑧) = 7 cos(0.2𝑦) + 2 sin(0.2𝑧),

𝜙(𝑥, 𝑦, 𝑧) = 1 sin(0.2𝑥) − 3 cos(0.2𝑦) + 2 sin(0.2𝑧). (3.19)

1

1

2

2

Figure 3.10: Physical domain and boundary conditions applied to the 3D convergence test.
The physical domain consists of an arrangement of four cubes of size 2.

The convergence analysis is done computing the 2, 1, 2 and 3 errors using two
different degrees of approximation, 𝑞 = 3 and 𝑞 = 4. log2(ℎ0/ℎ) is the mesh refinement level,
and ℎ0 = 1 is a normalisation length. The convergence analysis can be seen in Fig. 3.11 and
optimal convergence is obtained.
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Figure 3.11: Convergence plots for 2, 1, 2 and 3 norms, with degree 𝑞 = 3 (left) and
𝑞 = 4 (right) for the 3D interface analysis. The number for each plot is the slope of the least
square fitting.





Chapter 4

Flexoelectricity in
non-homogeneous materials

This chapter presents several examples of flexoelectric BVPs in non-homogeneous materials.
First, a comb-like flexoelectric device is presented. In this design, a non-centrosymmetric
arrangement of material inclusions is used to accumulate and upscale the local flexoelectric
response. Next, two periodic metamaterials are analysed in vertical sensor mode, i.e. a
macroscopic vertical displacement is applied and the resulting macroscopic electric bias is
computed. The metamaterials are analysed by considering the unit cell subject to generalised
periodic conditions. The two methods derived in this thesis are considered: that based on
Nitsche’s method (Section 2.3) for the first example and that taking advantage of the periodicity
of the B-spline basis functions (Section 3.2) for the second. Both examples validate the model
of generalised periodicity comparing the response of a unit cell or RVE against that obtained
for a finite structure formed by a finite but sufficiently large number of unit cells. Then,
second method is used to analyse a 2D flexoelectric architected material. The apparent
piezoelectric coefficients are computed for different operation modes as a function of the
design orientations, showing the material anisotropy. After that, a 3D flexoelectric architected
material is considered. We compare the response of the 3D architected material with a 2D unit
cell with plane strain and the same shape. Finally, graded structures are studied considering a
linearly varying Young modulus.

4.1 Comb-like flexoelectric harvester

We consider an electromechanical device consisting of two comb-like structures of a non-
piezoelectric dielectric joint together by a very low-dielectricity material at the tip of the beams,
see Fig. 4.1. The application of a shear motion at the left and right sides of the structure, induces
beam bending and triggers the flexoelectric effect. This local flexoelectrically generated electric
potential is accumulated through the structure, as shown in Fig. 4.1. By breaking the overall
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centrosymmetry of the system (thanks to the insulator in the middle), the low-dielectricity
material inclusions preclude internal cancellation of the local flexoelectrically generated electric
potential, thereby endowing the device with an effective piezoelectric behaviour, even when
the base material is a non-piezoelectric dielectric (Mocci et al., 2021, Sharma et al., 2010).

A device with ten beams is considered for illustration purposes. The beams are 100 nm
long by 10 nm wide, and the insulator is a square of side 10 nm. Material properties are given
in Table 4.1. Displacements, 𝒖𝐿 = (0, 5) nm and 𝒖𝑅 = (0, −5) nm are prescribed on the left and
right sides of the structure, and the top-right half side of the structure is electrically grounded,
Fig. 4.1. Natural boundary conditions are assumed otherwise. The effective piezoelectric
response of the structure manifests in a net potential difference between the ground electrode
and the top-left half side of the structure.

Ω 𝐸[GPa] 𝜈 𝑙[nm] 𝜖[nJ V−2m−1] 𝜇𝐿[µJ V−1m−1] 𝜇𝑇 𝜇𝑆
1 152 0.33 1 141 150 110 110
2 152 0.33 1 141 × 10−7 0 0 0

Table 4.1: Material properties of the material tensors described in Section 4.1. The piezoelectric
tensor is zero for all materials.

4.2 Sensor under vertical compression using generalised
periodicity and interface conditions.

The validation of generalised periodicity conditions is done by comparing the response of a
sizeable periodic arrangement of triangular voids on a dielectric matrix to that of the periodic
unit cell, as seen in Fig. 4.2. Such structure has been proposed as a means to generate a local
flexoelectric response in a non-piezoelectric material in such a way that a net electric potential
is generated under macroscopic homogeneous deformation (Barceló-Mercader et al., 2022,
Mocci et al., 2021, Sharma et al., 2010). For a massive structure under a prescribed strain, we
expect the solution in the central part of the structure to be unaffected by boundary effects
and thus exhibit generalised periodicity. In Fig. 4.2, we compare the solution obtained on the
generalised periodic unit cell with the central unit cell of a vertical stack of 𝑁 unit cells. In the
first simulation, we consider a unit cell with generalised periodic conditions in both directions.
A displacement jump along the vertical direction 𝑦

𝒖̂𝑦 = (0, −0.1) nm. (4.1)

is prescribed, and all other jumps in Eq. (2.59), 𝒖̌𝑥 , 𝜙𝑥 and 𝜙𝑦 , are left free (unconfined vertical
displacement sensor), see discussion under Eq. (2.60). The unit cell is a square of side 4 µm
with a triangular void of 3

√
3

2 µm. The material properties correspond to the first material in
Table 4.1.
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a)

Figure 4.1: (a) Geometry of the comb with flexoelectric material in Ω1 (in light blue) and
insulator in Ω2 (in dark blue). The interface, , and its corners, , are also shown in green.
The Dirichlet boundary is depicted in red, and the electrical ground side is shown in orange.
(b) Deformed shape of the material and electric potential distribution. Image adapted from
Barceló-Mercader et al. (2022).

Figure 4.2 shows the unit cell and the resulting electric potential distribution. In the second
simulation, we consider a stack of 𝑁=19 such unit cells subject to prescribed displacements on
the top and bottom faces matching, in the limit, the previous generalised periodicity conditions,
i.e.

𝒖|𝑦=𝑦𝑚𝑎𝑥 = 𝑁 𝒖̂𝑦 𝒖|𝑦=0 = 𝟎, (4.2)

and unconstrained generalised periodicity conditions for 𝒖 and 𝜙 in the horizontal direction.
As the electric potential is determined up to a constant, we set it to zero at the centre of the
structure. Figure 4.2 shows the vertical structure and the electric potential distribution, with a
zoom around the central cell. For comparison purposes, the scale of the electric potential for
the second simulation is adjusted to show perfect agreement with the generalised periodic
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unit cell result, Fig. 4.2. That error is smaller than 0.1% in all points inside the unit cell. For

Figure 4.2: (a) Unit cell and electric potential distribution with generalised periodic conditions
in both directions. (b) Distribution of the electric potential in a structure formed by 19 unit cells
prescribed displacements at the top and bottom. Results on the central generalised periodic
unit cell are shown with the same scale as a) for direct comparison purposes. Image extracted
from Barceló-Mercader et al. (2022)

stacks of a large number of unit cells, we expect the average electric potential difference on a
unit cell to tend to the generalised periodicity electric potential jump 𝜙𝑦 , i.e.

lim
𝑁→∞

Δ𝜙
𝑁

= 𝜙𝑦 , (4.3)

where Δ𝜙 is the electric potential difference between the top and bottom boundaries of the
structure in Fig. 4.2. For quantitative validation purposes, we plot in Fig. 4.3 the value of
Δ𝜙/𝑁 for stacks of an increasing number of unit cells from 𝑁 = 1 to 𝑁 = 20 and compare
it against the generalised periodicity electric potential jump 𝜙𝑦 obtained in the generalised
periodic unit cell simulation, Fig. 4.2. From this plot, the limit in Eq. (4.3) is apparent. The
electromechanical response of a unit cell under generalised periodicity conditions is thus
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shown to represent the bulk response of a periodic material built from that unit cell under
the corresponding macroscopic conditions on its boundaries. Although we only show the
validation for a sensor mode considering generalised periodicity in the y-direction, actuator
mode and different generalised periodicity have been considered. All of them have the same
agreement as the one presented here.

Figure 4.3: Plot of the difference of electric potential, Δ𝜙, per unit cell, versus the number of
unit cells 𝑁 (in blue) and potential difference, 𝜙𝑦 , for one unit cell considering generalised
periodicity in both directions (in red). Image extracted from Barceló-Mercader et al. (2022)

4.3 Sensor under vertical compression using generalised
periodicity and high-order generalised periodicity space

In this section, we follow the validation test done in Section 4.2. We compare the response
of a large two-dimensional structure to that of the unit cell. The structure is built using an
arrangement of squares of length size 4 µm with equilateral triangular voids of length size 3

√
3

2
µm as can be seen in Fig. 4.4.

First, we perform the simulation associated with the RVE (see Fig. 4.4), imposing the
following generalised periodicity conditions:

𝜀𝑦𝑦 = −0.1, (4.4)

while other components of the macroscopic strain and the macroscopic electric field are left
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free:

𝜎𝑥𝑥 = 𝜎𝑥𝑦 = 𝜎𝑦𝑥 = 𝐷𝑥 = 𝐷𝑦 = 0. (4.5)

This condition represents imposing a homogeneous unconfined compression along the
𝑦-direction like done in Mocci et al. (2021), Sharma et al. (2010). The material properties are
reported in Table 4.2.

E 𝜈 𝓁mech 𝜅 𝓁elec 𝜇𝓁 𝜇𝑡 𝜇𝑠
[𝐺𝑃𝑎] - [𝑛m] [𝑛𝐶/𝑉m] [𝑛m] [𝑛𝐶/m] [𝑛𝐶/m] [𝑛𝐶/m]
152 0.33 1 45 0 40 40 0

Table 4.2: Material parameters in Section 4.3

The unit cell and the resulting electric potential distribution can be seen in Fig. 4.4. The
macroscopic electric field of the unit cell is 𝐸𝑦 = −1.6028𝑉 /m.
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Figure 4.4: (Left) Unit cell simulated. (Right) Deformed shape and electric potential distribution
inside a unit cell, considering generalised periodicity. Image taken from Barceló-Mercader
et al. (2023).

After the simulation of the RVE, we perform the simulation of the full arrangement.
Let consider an arrangement of 𝑁 ∈ {1, … , 20} concatenated unit cells under prescribed
displacements on top and bottom faces matching, in the limit of 𝑁 → ∞, the previous
generalised periodicity conditions, that is,

𝒖|𝑦=4𝑁 = (0, −0.4𝑁 ) 𝒖|𝑦=0 = 0, (4.6)

As the bottom of the structure is grounded (see Fig. 4.5), the difference in the electric potential
between top and bottom is, simply, the average of the electric potential at the top. Natural
boundary conditions are considered in all other boundaries, as seen in Fig. 4.5.
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N=8

u=(0,0)

u=(0,-0.4·N)

ϕ=0

4 μm

4 μm

Figure 4.5: Unit cell (left) and structure formed by 𝑁 = 8 cells per dimension (right). The
Dirichlet boundary conditions are depicted in red, and natural boundary conditions are applied
on all other boundaries. Image adapted from Barceló-Mercader et al. (2023)

In the limit of stacking unit cells, the difference of electric potential between top and bottom
faces divided by the vertical length should tend to minus the macroscopic electric field 𝐸𝑦 ,
that is,

lim
𝑁→∞

−Δ𝜙
𝐿𝑦

= lim
𝑁→∞

𝐸𝑦 = 𝐸𝑦 . (4.7)

The value of 𝐸𝑦 for different numbers of unit cells can be seen in Fig. 4.6. Also, the
value of the macroscopic electric field is plotted in red, showing that the limit in Eq. (4.7) is
apparent. The difference between the value considering 𝑁 = 20 cells and the one obtained
using generalised periodicity is less than 0.05%. Although in this example, only one set of
generalised periodicity conditions has been validated, the result using any other generalised
periodicity condition is the same.

4.4 2D flexoelectric architected material

An alternative route for technologies based on electromechanical transduction could be
achieved by flexoelectricity. Architected metamaterials, if well designed, can overcome any
dielectric presenting apparent piezoelectricity, as seen in Mocci et al. (2021), Sharma et al.
(2007). We are interested in bending-dominated lattices and low-area fractions, as shown in
Mocci et al. (2021). Apparent piezoelectricity is exhibited by the lattice thanks to flexoelectricity
and the non-centrosymmetric arrangement of the constituents. The metamaterial is created
by an arrangement of periodic unit cells with a thickness of 𝑡 = 160nm and length 𝓁 = 1.6μm.

Using the generalised periodicity conditions, the metamaterial is reduced to a single unit



82 Flexoelectricity in non-homogeneous materials

Ey

Ey

0 5 10 15 20
-10

0

10

20

30

40

N

Ey [V/m]

ln(N)

ln(Ey-Ey)

0 0.5 1 1.5 2 2.5 3

3

4

2

1

0

-1

-2

-3

Ey

Figure 4.6: Plot of the electric field resulting from stacking 𝑁 cells per dimension versus the
number of cells stacked (left). The red line is the value resulting considering generalised
periodicity conditions. Plot of the difference between the electric field resulting from stacking
𝑁 cells per dimension and the one obtained using generalised periodicity conditions versus
the number of cells stacked (right) . Image adapted from Barceló-Mercader et al. (2023).

cell, as seen in Fig. 4.7(a). We simulate two different setups for the actuator mode. Both have
applied a macroscopic electric field in the vertical direction 𝐸𝑦 , and the mechanical response
is left free in the vertical direction. In the horizontal direction, we consider two different
conditions, the first one is a strain-free configuration 𝜀𝑥𝑥 = 𝜀𝑥𝑦 = 0, and the second one is a
stress-free configuration 𝜎𝑥𝑥 = 𝜎𝑥𝑦 = 0. Both of them are presented in Fig. 4.7. The material
parameters are chosen accordingly to Mocci et al. (2021) and reported in table 4.3.

Material Y 𝜈 𝓁mech 𝜅 𝓁elec 𝜇𝓁 𝜇𝑡 𝜇𝑠
[𝐺𝑃𝑎] - [𝑛m] [𝑛𝐶/𝑉m] [𝑛m] [𝜇𝐶/m] [𝜇𝐶/m] [𝜇𝐶/m]

BST 152 0.33 50 8 300 1.21 1.10 0.055

Table 4.3: Material in Section 4.4

For quantitative characterisation, two different apparent coefficients 𝑑, 𝑑 are calculated, as

𝑑 =
𝜕𝜀
𝜕𝐸̄

||||𝜎̄𝑥𝑥=0
= 0.42 𝑝𝑚/𝑉 , 𝑑 =

𝜕𝜀
𝜕𝐸̄

||||𝜖𝑥𝑥=0
= 0.51 𝑝𝑚/𝑉 . (4.8)

It can be seen that the rigid device shows over a 20% performance improvement concerning
the soft device.

The next step is studying the anisotropic behaviour of the lattice. This step can be achieved
by considering different angles of orientation of the mechanical and electrical inputs. In this
case, the sensor mode and the actuator mode are studied. For the sensor mode, the apparent
piezoelectric coefficient is ℎ̄, and for the actuator mode is 𝑑 . Both of them have been normalised
using Young’s modulus and dielectric permittivity.
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Figure 4.7: Geometrically-polarised, bending-dominated lattice in actuation mode. The RVE is
represented in a). A macroscopic electric field is applied in the vertical direction. However, two
different approaches are considered in the horizontal direction: strain-free configuration in b)
and stress-free configuration in c). The normalised y-displacements 𝑢̂𝑦 = 𝑢𝑦/𝓁 are depicted
on the deformed configuration considering the normalised electric potential 𝜙 = 𝜙𝜅/𝜇. Image
taken from Barceló-Mercader et al. (2023)

The polar plots obtained are shown in Fig. 4.8, showing that the response of the lattice is
anisotropic. Note that no polarisation is shown when the load has a horizontal direction. This
fact is in agreement with having a horizontal symmetry of the lattice. Apart from the previous
symmetry, a 2𝜋/3 rotation symmetry is also shown.

4.5 3D flexoelectric architected material

The structure is formed by an arrangement of unit cells in which each unit cell is a cube
of size 𝓁 = 2μm with a truncated conical void inside. The truncated cone has a radius
1μm and 0.2μm and a height 1μm. The material parameters are the same as the previous
application, and it can be seen in Table 4.3. Macroscopic strain is applied in the vertical
direction 𝜀𝑧𝑧 = −0.1, and standard periodicity is applied in the other directions, which means
𝜀𝑥𝑥 = 𝜀𝑦𝑦 = 𝜀𝑥𝑧 = 𝜀𝑥𝑦 = 𝜀𝑦𝑧 = 0 and 𝐷𝑥 = 𝐷𝑦 = 𝐷𝑧 = 0. Thanks to the non-centrosymmetry of
the metamaterial, the lattice shows a macroscopic electric field in the vertical direction. Note
that the macroscopic electric field in the other two directions is zero due to the symmetry of
the structure. It can be seen in Fig. 4.9.

Finally, we compare the response of the 3D metamaterial with a 2D RVE with plane strain
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Figure 4.8: Anisotropy of the normalised apparent piezoelectric coefficients ℎ̄
√
𝜅/𝑌 and 𝑑

√
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for sensor and actuator modes, respectively. Solid lines mean positive values of the apparent
piezoelectric coefficient, and dashed lines mean negative values. The normalised electric
potential 𝜙 = 𝜙𝜅/𝜇 and y-displacements 𝑢̂𝑦 = 𝑢𝑦/𝑙 are plotted on the deformed configuration.
Image taken from Barceló-Mercader et al. (2023).

approximation. To do that, we created the 2D model as the cross-section of the 3D model by
the middle, as seen in Fig. 4.10. The 3D model has the generalised periodicity condition stated
previously, while the generalised periodicity condition for the 2D model is 𝜀𝑦𝑦 = −0.1 with
𝜀𝑥𝑦 = 𝜀𝑥𝑥 = 0 and 𝐷𝑥 = 𝐷𝑦 = 0. The results shown in Fig. 4.10 clarify that although plane
strain is a good approximation, it is not enough for accurate quantitative results.

4.6 Graded material

Avoiding centrosymmetric deformations is mandatory to trigger the flexoelectric effect. For
this reason, inhomogeneous deformation as bending is commonly used. Another way of
obtaining flexoelectricity with a homogeneous deformation is having a graded structure.
Graded structures are ubiquitous in nature and they are helpful in making damage-tolerant
structures as the ones seen in the stomatopod (Weaver et al., 2012, Yaraghi et al., 2016), the
human teeth (Cuy et al., 2002) or human bones (Wegst et al., 2015).

Bones present a gradient of porosity, with the centre being hollow. The outer layers are
more compact than the inner layers, as seen in Fig. 4.11. This hierarchical structure helps to
stabilise cracks, increasing fracture toughness. Teeth also have a hierarchical structure with
gradients of Young’s modulus that prevents cracking of the brittle enamel as seen in Fig. 4.12.
The last example is the stomatopod’s club. The stomatopod is a crustacean with an incredibly
strong club that can break the shells of its prey. The impact region of the club is responsible for
absorbing most of the impact energy and presents a hierarchical structure, as seen in Fig. 4.13.

We use graded structures to create a flexoelectric sensor that works under homogeneous
deformation, as shown in Fig. 4.14. We will consider a graded structure with varying Young’s
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Figure 4.9: 3D flexoelectric device simulation. The geometrical model in 3D is shown in a)
while some 2D cuts are shown in b-c). The electric potential distribution is seen for the 3D
cube in d) and some arbitrary 2D cuts in e-i). Image taken from Barceló-Mercader et al. (2023).

modulus and isotropic flexoelectricity, as seen in table 4.4. We remark that the piezoelectric
tensor is neglected. The young modulus varies linearly, following the law

𝐸 = 𝐸0 + 𝐴𝑖𝑥𝑖 (4.9)

with 𝐸0 = 200GPa with the centre of the rectangle at (0, 0).

𝜈 𝑙[nm] 𝜖[nJ V−2m−1] 𝜇𝐿[µJ V−1m−1] 𝜇𝑇 [µJ V−1m−1] 𝜇𝑆 [µJ V−1m−1]
0.33 1 141 15 11 2

Table 4.4: Material properties of the material tensors described in Section 4.6. The piezoelectric
tensor is zero.
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Figure 4.10: a) Geometrical model and b) electric potential distribution when macroscopic
strain in the vertical direction is applied. Image adapted from Barceló-Mercader et al. (2023).

Figure 4.11: The hierarchical structure of bones (a) and bamboo (b) is shown. Both structures
share the same pattern, with the outer layers being more compact and the inner layers more
porous. Image taken from Wegst et al. (2015).

The first experiments show that, as we thought, these graded structures can mobilise a non
negligible flexoelectric effect, as seen in Fig. 4.15 . The flexoelectric effect could be optimised
by changing the gradient direction of the Young’s modulus, as shown in the anisotropic
plot in Fig. 4.15. These preliminary results create a path towards the creation of functional
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Figure 4.12: Enamel Hardness in GPa (left) and Young’s modulus in GPa (right) for the mesial
half of the maxillary determined by nanoindentation. Image taken from Cuy et al. (2002).

Figure 4.13: Optical microscopy and high-resolution nanoindentation of the impact region.
Graded Young’s modulus is seen in picture H. Image taken from Yaraghi et al. (2016).

flexoelectric-graded structure sensors or actuators.
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Figure 4.14: Sketch of the boundary conditions applied. Vertical displacement is fixed at the
top and bottom sides; the bottom side is also grounded. The physical domain is a square of
size 1𝜇𝑚.

Figure 4.15: Polar plot of the electric potential at the top side considering different angles of
graded young modulus. The young modulus at the centre of the structure is always constant
𝐸0 = 200 GPa.



Chapter 5

Flexoelectric effect at domain walls
and fracture in ferroelectrics

Ferroelectric materials are extensively used in a variety of sensor and actuator applications,
where the coupling between mechanical and electrical fields are of primary interest. They
develop microstructures with domains corresponding to different crystallographic variants.
Ferroelectric domains are separated by domain walls which can be seen as topological defects
in the parent crystal structure of the material. Due to the extremely small width of domain
walls (nanometer scale dimensions), the change of polarisation direction (polarisation gradient)
is noticeable at domain walls, highlighting them as a ground to search for field gradient effects.
In particular, flexoelectricity should be significant at domain walls. Furthermore, Ferroelectric
crystals are very brittle, with fracture toughness in the order of that of glass. Fracture and
fatigue is the main cause of the short life of ferroelectric components. Fracture is also a source
of large strain gradients, the largest that a material can sustain. The effect of flexoelectricity
in fracture physics of piezoelectric materials has been studied theoretically (Abdollahi et al.,
2015a) and experimentally (Cordero-Edwards et al., 2019), revelling interesting asymmetries as
a consequence of the interplay of flexoelectricity and piezoelectricity. The interplay between
ferroelectric domain microstructure evolution and fracture in ferroelectric single crystals and
ceramics is very rich, and has been studied using a coupled phase-field model (Abdollahi and
Arias, 2011a, 2012, Miehe et al., 2010).

In this chapter, we study the manifestation of flexoelectricity in ferroelectric single crystals.
Specifically, we study the role of flexoelectricity in the ferroelectric domain microstructure,
and in the fracture response. The outline of the chapter is the following. We first motivate
the study and introduce ferroelectric materials and describe a previously developed model
for combined microstructure evolution and fracture. Using this model as a starting point, we
incorporate flexoelectricity and study different relevant situations. We conclude and hint some
directions of ongoing and future work.

89
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5.1 Origin and phenomenology of ferrroelectricity

Ferroelectricity is a property of certain dielectric materials exhibiting a spontaneous electric
polarisation that can be reversed by the application of an external electric field, and also
mechanically. The origin of ferroelectricity is tightly connected to its atomic or molecular
structure. In ionic crystals, the emergence of a spontaneous dipole can be illustrated on the
crystal lattice unit cell of a typical ferroelectric of the perovskite family, Barium Titanate, see
Fig. 5.1.

Figure 5.1: Unit cell of Barium titanate above and below the Curie Temperature.

Above the Curie temperature, a critical transition temperature, the unit cell is cubic with
Barium cations located at the corners, Oxygen anions at the centre of the faces and the
titanium cation at the centre of the cube. In this configuration, the unit cell is centrosymmetric
and thus cannot sustain any electric dipole. This phase is termed paraelectric, and it is
neither piezoelectric nor ferroelectric. Below a critical transition temperature, termed Curie
temperature, the cubic crystalline structure becomes tetragonal and the Titanium cation
moves with respect to the centre of the tetragon at the equilibrium state, thereby inducing
a spontaneaous electric dipole. This polar tetragonal structure is piezoelectric, since small
homogeneous deformations of the crystal lattice change the relative position of the ions and
thus the associated dipole, and conversely an external electric field displaces cations in the
direction of the electric field and anions in the opposite direction, thereby deforming the unit
cell. The polar tetragonal structure can be oriented along six directions in space, giving rise to
six energetically equivalent variants (see Fig. 5.2).

From a thermodynamical modelling perspective, these variants correspond to equal-energy
wells in a non-convex multiple-well energetic landscape. Depending on the macroscopic
mechanical and electric loads, some variants become more favourable than others, and the
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Figure 5.2: Six energetically equivalent tetragonal phases in Barium titanate.

material accommodates external loads by switching between variants. Consider a vertically
polarised unit cell. When applying a small vertical stress or electric field, the potential energy
tilts and the unit cell stretches or compresses but it is not enough to reverse polarisation, as
illustrated in Fig. 5.3 (top). When applying a large vertical stress or electric field, the unit
cell stretches. If the electric field is anti-parallel with respect to the electric dipole, the unit
cell exhibits a 180º switching, as seen in Fig. 5.4 (middle). If the stress is anti-parallel with
respect to the electric dipole, the unit cell exhibits a 90º switching, as seen in Fig. 5.4 (bottom).
This is due to the transition from one well of the potential energy to another one that is more
favourable.

This switching ability gives rise to the typical ferroelectric polarisation and butterfly loops
(see Fig. 5.5) which characterise the ferroelectric phenomenology. The energetic barrier to
transition between variants for the whole crystal at once is too high, and thus the material
finds a lower energy path by nucleating switching at specific sites in the crystals, usually
defects, and propagation the switch domain throughout the crystal. This gives rise to the
typical ferroelectric microstructures with domains corresponding to different variants, see
Fig. 5.6
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Figure 5.3: Schematic of the ferroelectric unit cell under small electric field or stress. At the
top, the direction of the stress or the electric field is parallel to the electric dipole, producing
a stretching of the unit cell. At the bottom, the direction of the stress or electric field is
anti-parallel, producing a compression of the unit cell.

5.2 Phase-field modelling of fracture in ferroelectric materials

Phase-field models are ideally suited to deal with moving interface problems (Landau, 1937,
Miehe et al., 2010). Phase-field modelling has been used in a lot of applications such as
fracture(Francfort and Marigo, 1998), image segmentation (Beneš et al., 2004), multi-phase
flows (Jacqmin, 1999), among others. In these models, the interface is assumed as a diffuse or
smeared entity, as opposed to a sharp interface, and is described by a continuous phase-field
variable defined over the whole domain, transitioning from a value (typically 0) at the interface
to 1 everywhere else. This transition controls the "width" of the interface. The position of
the interface results from an energy minimisation problem, where the energy cost of creating
the interface competes with other physics of the problem. The variational structure allows
us to naturally couple multiple physics, e.g. crack propagation and microstructure evolution
in ferroelectrics (Abdollahi and Arias, 2011a, 2012). In quasi-static problems, the kinetics
of the interface can then be modelled by a gradient flow of the electromechanical enthalpy,
introducing an interface mobility parameter. In the case of fully dynamic problems, dynamic
phase-field models have also been proposed in the literature (Borden et al., 2012).

5.2.1 Phenomenological electromechanical enthalpy

The phenomenology of ferroelectrics as described in Section 5.1, is traditionally modelled by
taking the polarisation vector as a continuous phase variable (Landau and Lifshitz, 2013). The
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Figure 5.4: Schematic of the ferroelectric unit cell under large electric field or stress. At the
top, the direction of the stress or the electric field is parallel to the electric dipole, producing
a stretching of the unit cell. At the middle, the direction of the electric field is anti-parallel,
producing a 180º switching. At the bottom, the direction of the stress is anti-parallel, producing
a 90º switching. Note that left and right configurations are equally energetically favourable.

electromechanical enthalpy density of a ferroelectric material is (Abdollahi and Arias, 2011a,
Zhang and Bhattacharya, 2005):

ferro(𝒖, 𝒑, 𝜙) = 𝑈 (𝒑) + 𝑊 (𝒖, 𝒑) + 𝜒(𝒑) −
𝜀0
2
𝜙,𝑖𝜙,𝑖 − 𝜙,𝑖𝑝𝑖 (5.1)

where 𝒖, 𝒑 and 𝜙 are the displacement, electric polarisation and electric potential, respectively.
The functions 𝑈 ,𝑊 and 𝜒 are derived in Devonshire (1951, 1949) for a plane polarisation and
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Figure 5.5: Hysteresis and butterfly loops for a ferroelectric material under an external electric
field. Due to the external electric field the unit cell suffers from a 180º switching between up
and down polarisation

Figure 5.6: Ferroelectric microstructure. Different domains are separated by domain walls. a)
Two types of domain walls can be produced inside ferroelectric materials: 90º and 180º domain
walls separating orthogonal and anti-parallel phases, respectively. b) Microstucture in PZT
showing 180º and 90º domain walls. Image partially extracted from (Indergand et al., 2020)

plane strain state as

𝑈 (𝒑) =
𝑎0
2 (𝑝21,1 + 𝑝

2
1,2 + 𝑝

2
2,1 + 𝑝

2
2,2) , (5.2)

𝑊(𝒖, 𝒑) = −
𝑏1
2 (𝜀11𝑝21 + 𝜀22𝑝

2
2) −

𝑏2
2 (𝜀11𝑝22 + 𝜀22𝑝

2
1) − 𝑏3 (𝜀21 + 𝜀12) 𝑝1𝑝2

+
𝑐1
2 (𝜀211 + 𝜀

2
22) + 𝑐2𝜀11𝜀22 +

𝑐3
2 (𝜀212 + 𝜀

2
21) , (5.3)

𝜒(𝒑) =
𝑎1
2 (𝑝21 + 𝑝

2
2) +

𝑎2
4 (𝑝41 + 𝑝

4
2) +

𝑎3
2
𝑝21𝑝

2
2 +

𝑎4
6 (𝑝61 + 𝑝

6
2) +

𝑎5
4 (𝑝41𝑝

4
2) . (5.4)
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The terms𝑊 + 𝜒 correspond to the Landau-Ginzburg energy density, while 𝑈 is the domain
wall energy, and depends on the scaling parameter 𝑎0. The constants 𝑏𝑖 are the constant of
the electro-mechanical coupling, and 𝑐𝑖 are the elastic constants. Dimensionless variables are
selected as 𝑥 ′𝑖 = 𝑥𝑖

√
𝑐0/𝑎0/𝑝0, 𝑝′𝑖 = 𝑝𝑖/𝑝0, 𝜀′𝑖 = 𝜀𝑖𝑐0/𝑝20 , 𝜙′ = 𝜙/√𝑎0𝑐0, 𝑎′1 = 𝑎1𝑝20/𝑐0, 𝑎′2 = 𝑎2𝑝40/𝑐0,

𝑎′3 = 𝑎3𝑝40/𝑐0, 𝑎′4 = 𝑎4𝑝60/𝑐0, 𝑎′5 = 𝑎5𝑝80/𝑐0, 𝑏′𝑖 = 𝑏𝑖𝑝20/𝑐0 and 𝑐′𝑖 = 𝑐𝑖/𝑐0. The normalisation
constants are chosen to fit the behaviour of single crystals of barium titanate (BaTiO3) at room
temperature, taking 𝑐0 = 1 GPa, a value for the spontaneous polarisation of 𝑝0 = 0.26 C/m2, the
resulting relative spontaneous strains are 𝜀𝑎 = −0.44% along a-axis and 𝜀𝑐 = 0.65% along c-axis
(Wang et al., 2007, Zhang and Bhattacharya, 2005). The domain wall scaling parameter is set
to 𝑎0 = 3.710−9 Vm3/C which gives a domain wall width of 0.5 nanometers for the normalised
unit length 𝑥 ′ = 1. The normalised parameter values can be seen in Table 5.1

𝑎′0 𝑎′1 𝑎′2 𝑎′3 𝑎′4 𝑎′5 𝑏′1 𝑏′2 𝑏′3 𝑐′1 𝑐′2 𝑐′3
1 −0.007 −0.009 0.018 0.0261 5 1.4282 −0.185 0.8066 185 111 74

Table 5.1: Normalised material parameters for ferroelectric phase-field

The parameters of the phenomenological model 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 are obtained from characterisation
experiments (Wang et al., 2007, Zhang and Bhattacharya, 2005). The stress can be computed
as

𝜎11 =
𝜕ferro

𝜕𝜀11
= 𝑐1𝜀11 + 𝑐2𝜀22 −

𝑏1
2
𝑝21 −

𝑏2
2
𝑝22 , (5.5a)

𝜎22 =
𝜕ferro

𝜕𝜀22
= 𝑐1𝜀22 + 𝑐2𝜀11 −

𝑏1
2
𝑝22 −

𝑏2
2
𝑝21 , (5.5b)

𝜎12 =
𝜕ferro

𝜕𝜀12
= 𝑐3𝜀12 − 𝑏3𝑝1𝑝2. (5.5c)

Taking into account a stress-free state, that means 𝜎11 = 𝜎22 = 𝜎12 = 0, the spontaneous strain
is

𝜀011 =
(𝑐1𝑏1 − 𝑐2𝑏2)𝑝21 + (𝑐1𝑏2 − 𝑐2𝑏1)𝑝22

2(𝑐21 − 𝑐22 )
, (5.6a)

𝜀022 =
(𝑐1𝑏2 − 𝑐2𝑏1)𝑝21 + (𝑐1𝑏1 − 𝑐2𝑏2)𝑝22

2(𝑐21 − 𝑐22 )
, (5.6b)

𝜀012 =
𝑏3𝑝1𝑝2
𝑐3

. (5.6c)

The normalised Landau-Devonshire energy is plotted in the Fig. 5.7 using the spontaneous
strain derived in Eq. (5.6) and 𝑝′1 and 𝑝′2 as primal variables, considering a crystal axis oriented
with respect to 𝑥3. The four minima in Fig. 5.7 correspond to the four variants of the tetragonal
phase in 2D with normalised polarisation.

In the absence of body loads and volume charges, the total enthalpy of the system for a
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Figure 5.7: Normalised Landau-Devonshire energy for the free stress configuration. (left) 3D
normalised Landau-Devonshire energy. Four minima are seen whose coordinates are: (0, 1),
(0, −1), (1, 0) and (−1, 0). The plot is truncated for energy values greater than 0 for convenience.
(right) 2D normalised Landay-Devonshire energy considering 𝑝2 = 0. Two minima are seen
whose coordinates: are 𝑝1 = 1 and 𝑝1 = −1.

ferroelectric body Ω is

𝐸(𝒖, 𝑷, 𝜙) = ∫
Ω
ferro(𝒖, 𝑷, 𝜙) dΩ − ∫

Γ𝑡
𝑡𝑖𝑢𝑖 d𝑆 + ∫

Γ𝑤
𝑤𝜙 d𝑆, (5.7)

where 𝑡𝑖 and 𝑤 are the traction and surface charge density, respectively.

5.2.2 Regularised fracture energy

We consider the variational regularised model of Griffith’s fracture (Ambrosio and Tortorelli,
1990, Bourdin et al., 2000, Francfort and Marigo, 1998). This model allows naturally for crack
nucleation, interaction between multiple cracks and, branching. It smears the crack in contrast
with some other models like cohesive methods (Camacho and Ortiz, 1996, Xu and Needleman,
1994), sharp methods as extended finite element method (Moës et al., 1999), and the strong
discontinuity approach (Oliver et al., 2002).

The total energy of an elastic body made of brittle material occupying a region Ω can be
written in terms of the scalar field 𝑣 as

𝐸(𝒖, 𝑣) = ∫
Ω
(𝑣2 + 𝜂)𝐹 (𝒖) dΩ + 𝐺𝑐 ∫

Ω [
(1 − 𝑣)2

4𝜅
+ 𝜅𝑣,𝑖𝑣,𝑖] dΩ − ∫

Γ
𝑡𝑖𝑢𝑖 d𝑆, (5.8)

where 𝐹 is the elastic energy, 𝐺𝑐 is the critical energy release rate, and 𝜅 is a positive regu-
larisation constant controlling the size of the fracture zone. The residual stiffness 𝜂 avoids
singularities in the resulting stiffness matrix upon discretisation corresponding to entries from
elements located in the fully fractured region of the domain. It has been shown mathematically
using Γ-convergence that the regularised model in Eq. (5.8) tends in the limit of 𝜅 → 0 to Gif-
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fith’s model of brittle fracture, i.e. a traction-free sharp-crack model (Ambrosio and Tortorelli,
1990, Francfort and Marigo, 1998). The traction-free crack face conditions are

𝜎+ ⋅ 𝒏 = 𝜎− ⋅ 𝒏 = 0, (5.9)

where 𝜎+ and 𝜎− mean the top and bottom stress on the sharp-crack faces. The damage field
𝑣 takes value 𝑣 = 1 for the unbroken state of the material and value 𝑣 = 0 for the broken one.

Eq. 5.8 sets up a competition by storing energy in the bulk and using it to create new cracks,
which can be seen as the bulk elastic energy stored, and the second term, which is the surface
energy of the crack. When the elastic energy stored reaches a certain value determined by 𝐺𝑐 ,
the crack initiates, and the energy of the bulk is transferred to the energy of crack propagation.
The width of the crack is governed by the regularisation parameter 𝜅.

Bourdin et al. (2008) stated that the profile of the phase-field variable 𝑣, for a given value
of the regularisation parameter 𝜅, on a line orthogonal to the crack passing through 𝑥 with a
distance function 𝑑(𝑥) is

𝑣𝜅(𝑥) =

{
0 if 𝑑(𝑥) ≤ 𝛼
1 − 𝑒(𝑑(𝑥)−𝛼)/2𝜅 otherwise

(5.10)

where 2𝛼 indicates the fully fracture region where 𝑣 = 0. This profile is seen in Fig. 5.8
in contrast to sharp-crack models, where the crack faces are geometrically defined in the
computational model.

Figure 5.8: Smeared crack using the profile in Eq. (5.10) and displacement for sharp-crack
models (red) and phase-field models (blue).
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5.2.3 Regularised electromechanical enthalpy for a fractured ferroelectric

Following Abdollahi and Arias (2012), the electro-mechanical enthalpy for fracture in ferro-
electrics is (Abdollahi and Arias, 2011a)

𝐸(𝒖, 𝒑, 𝜙, 𝑣) = ∫
Ω
[(𝑣

2 + 𝜂) (𝑈 (𝒑) + 𝑊 (𝒖, 𝒑)) + 𝜒(𝒑) −
𝜖0
2
𝜙,𝑖𝜙,𝑖 − 𝜙,𝑖𝑝𝑖] dΩ+ (5.11)

𝐺𝑐 ∫
Ω [

(1 − 𝑣)2

4𝜅
+ 𝜅𝑣,𝑖𝑣,𝑖] dΩ − ∫

Γ𝑡
𝑡𝑖𝑢𝑖 d𝑆 + ∫

Γ𝑤
𝑤𝜙 d𝑆. (5.12)

In sharp-crack models for electromechanical materials, crack face conditions have to be
defined, corresponding to different physical conditions. Traditionally, cracks are assumed
to be mechanically traction-free, or cohesive. Electrically, they can be permeable, imperme-
able, or semi-permeable. In fact, for a well-posed problem, cracks face conditions should
be energetically consistent. In phase-field models of fracture, where cracks are not bound-
aries of the computational domain but rather features of the solution within the domain,
and hence the different sharp-crack conditions have to be modelled in the phase-field partial
differential equations (Abdollahi and Arias, 2012). As shown by Abdollahi and Arias (2012),
the electromechanical enthalpy in Eq. (5.11) encodes traction-free and electrically permeable
crack face condition. In the limiting sharp-crack model to which this model converges, these
conditions mean: the electric potential and the normal component of the electric displacement
are continuous across the crack,

𝜙+ = 𝜙− (5.13a)
𝑫+ ⋅ 𝒏 = 𝑫− ⋅ 𝒏. (5.13b)

free-polarisation along the crack which means that the polarisation is unaffected by the
presence of the crack,

∇𝒑+ ⋅ 𝒏 = ∇𝒑− ⋅ 𝒏 = 0. (5.14)

and the traction-free,

𝜎+ ⋅ 𝒏 = 𝜎− ⋅ 𝒏 = 0, (5.15)

Other electro-mechanical conditions can be the electrical impermeable crack model which
assumes that the crack face is treated as a charge-free surface:

𝑫+ ⋅ 𝒏 = 𝑫− ⋅ 𝒏 = 0 (5.16)

or the zero-polarisation which assumes that the polarisation vanishes in the crack gap and
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also it is continuous at the interface:

𝒑+ = 𝒑− = 0. (5.17)

It is known that the fracture behaviour strongly depends on the electromechanical crack-face
conditions (Abdollahi and Arias, 2012). Here, only traction-free, permeable, and polarisation-
free cracks are considered. Consideration of other crack face conditions is left for future
studies.

5.2.4 Electromechanical enthalpy of a ferroelectric and flexoelectric solid

As done in previous chapters, flexoelectricity is incorporated into the model by adding the flexo-
electric coupling term in the enthalpy. The lifshitz-invariant enthalpy density of flexoelectricity,
similar to the one presented in Ahluwalia et al. (2014), is

𝑓 (𝒖, 𝒑) = −
𝑓𝐿
2
(𝑝1𝜀11,1 + 𝑝2𝜀22,2 − 𝜀11𝑝1,1 − 𝜀22𝑝2,2)

−
𝑓𝑇
2
(𝑝1𝜀22,1 + 𝑝2𝜀11,2 − 𝜀11𝑝2,2 − 𝜀22𝑝1,1)

−
𝑓𝑆
2
(𝑝1(𝜀12,2 + 𝜀21,2) + 𝑝2(𝜀12,1 + 𝜀21,1) − (𝜀12 + 𝜀21)(𝑝2,1 + 𝑝1,2)) (5.18)

and the total enthalpy density of a ferroelectric taking into account flexoelectricity is

ferro+flexo(𝒖, 𝒑, 𝜙) = 𝑈 (𝒑) + 𝑊 (𝒖, 𝒑) + 𝜒(𝒑) + 𝑓 (𝒖, 𝒑) −
𝜀0
2
𝜙,𝑖𝜙,𝑖 − 𝜙,𝑖𝑝𝑖 (5.19)

In the absence of body loads and volume charges and surface contributions, the total enthalpy
of the system for a ferroelectric and flexoelectric body Ω is

𝐸(𝒖, 𝑷, 𝜙) = ∫
Ω
ferro+flexo(𝒖, 𝑷, 𝜙) dΩ−∫

Γ𝑡
𝑡𝑖𝑢𝑖 d𝑆 +∫

Γ𝑤
𝑤𝜙 d𝑆 −∫

Γ𝑟
𝑟𝑖𝜕𝑛𝑢𝑖 d𝑆 −∑

𝐶𝑗
𝑗𝑖𝑢𝑖 , (5.20)

where 𝑟 and 𝑗 are the double traction and line force respectively. The flexoelectric coefficients
are converted into dimensionless coefficients following:

𝑓 ′𝐿 = 𝑓𝐿
1

√𝑎0𝑐0
, 𝑓 ′𝑇 = 𝑓𝑇

1
√𝑎0𝑐0

and 𝑓 ′𝑆 = 𝑓𝑆
1

√𝑎0𝑐0
. (5.21)

5.2.5 Electromechanical enthalpy of a fractured ferroelectric and
flexoelectric solid

In the spirit of section 5.2.3, and following Abdollahi et al. (2015a), the phase-field of fracture
in ferroelectrics accounting for flexoelectricity is constructed by adding the flexoelectric
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contribution to the enthalpy density in Eq. (5.11). In order to encode traction-free, polarisation-
free and surface-charge-free sharp-crack face conditions into the phase-field framework, the
flexoelectric contribution needs to be multiplied by the degradation function (Abdollahi et al.,
2015a). The electro-mechanical enthalpy of fracture in ferroelectrics considering traction-free,
electrically permeable and free-polarisation of the crack is

𝐸(𝒖, 𝒑, 𝜙, 𝑣) = ∫
Ω
[(𝑣

2 + 𝜂) (𝑈 (𝒑 + 𝑊(𝒖, 𝒑) + 𝑓 (𝒖, 𝒑)) + 𝜒(𝒑) −
𝜖0
2
𝜙,𝑖𝜙,𝑖 − 𝜙,𝑖𝑝𝑖] dΩ+

𝐺𝑐 ∫
Ω [

(1 − 𝑣)2

4𝜅
+ 𝜅𝑣,𝑖𝑣,𝑖] dΩ − ∫

Γ𝑡
𝑡𝑖𝑢𝑖 d𝑆 + ∫

Γ𝑤
𝑤𝜙 d𝑆 − ∫

Γ𝑟
𝑟𝑖𝜕𝑛𝑢𝑖 d𝑆 −∑

𝐶𝑗
𝑗𝑖𝑢𝑖 . (5.22)

5.2.6 Governing equations of quasi-static phase-field model

We proposed a quasi-static approach for all systems presented in previous subsections. The
evolution of the system is a gradient flow of the energy with respect to the polarisation, with
the kinetics controlled by a mobility parameter 1/𝜇, and assuming that the displacement and
the electric potential attain equilibrium instantly:

𝜇 ∫
Ω

𝜕𝑝𝑖
𝜕𝑡

𝛿𝑝𝑖 dΩ = −𝛿𝐸(𝒖, 𝑷, 𝜙, 𝑣; 𝛿𝑷), (5.23a)

0 = 𝛿𝐸(𝒖, 𝑷, 𝜙, 𝑣; 𝛿𝒖), (5.23b)
0 = 𝛿𝐸(𝒖, 𝑷, 𝜙, 𝑣; 𝛿𝜙), (5.23c)
0 = 𝛿𝐸(𝒖, 𝑷, 𝜙, 𝑣; 𝛿𝑣). (5.23d)

The mobility parameter is difficult to quantify experimentally. Frazier and Kochmann (2017),
Kannan et al. (2022) found that the mobility parameter can be estimated measuring the energy
dissipated by the domain wall motion. Abdollahi and Arias (2011a) proposed a similar set of
governing equations but having a gradient flow with respect to the damage also. We consider
that the mobility of the damage field is so fast that the equilibrium is attained instantaneously
as Muixí et al. (2021).

Note that not all of the systems described in this section present all the state variables in
Eq. (5.23). For the numerical examples presented next, in each case we consider the relevant
governing equations in Eq. (5.23).

5.3 Solution methods and validation tests

The quasi-static coupled system of governing partial differential equations stated in Eq. (5.23)
is solved using a staggered iterative scheme. Both tools are validated using two different setups.
The first one is a fracture splitting problem statement proposed by Ambati et al. (2015). The
second one is the fracture in ferroelectrics proposed by Abdollahi and Arias (2011a). We use
the body-fitted b-spline method explained in Section 3.1.2 for all simulatons in this chapter.
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5.3.1 Staggered scheme for the quasi-static phase-field model

The solution of the discretised version of Eq. (5.23) is obtained by solving a non-linear problem.
The monolithic schemes solve all variables simultaneously, and they are very fast but with
high computation cost (non-linear system). We refer the reader to Liu et al. (2016b) to see a
monolithic scheme for fracture. Instead of that, we propose the following four-step method:

For each time-step we repeat until convergence

• Compute polarisation in Eq. (5.23a), considering displacement, electric potential and
damage field fixed. We use forward Euler for time integration.

• Compute displacement in Eq. (5.23b), considering polarisation, electric potential and
damage field fixed.

• Compute electric potential in Eq. (5.23c), considering polarisation, displacement and
damage field fixed.

• Compute damage field in Eq. (5.23d), considering polarisation, displacement and damage
field fixed.

Convergence is achieved if |𝒑𝑚 − 𝒑𝑚−1| < 𝛿𝑝 and |𝑣𝑚 − 𝑣𝑚−1| < 𝛿𝑣 for a given 𝛿𝑝 and 𝛿𝑣 . We
take 𝛿𝑝 = 𝛿𝑣 = 0.001 in our simulations. The staggered scheme solves four linear equations
iteratively until equilibrium, which makes it a slower method compared to monolithic schemes.

5.3.2 Fracture splitting

For the first validation example, we use the problem statement by Ambati et al. (2015) for
a purely elastic material. Thus, the electromechanical couplings, both ferroelectricity and
flexoelectricity are set to zero. The body is a square of size 1 × 1 in dimensionless units. A
precrack is assumed, as shown in Fig. 5.9. Horizontal displacements are prescribed on the top
and bottom faces. 300 loading time steps 𝑡 are used and the prescribed displacement is applied
incrementally, following 𝑢𝑡𝐷 = 0.001𝑡 . After 30% loading steps, the crack splits its horizontal
trajectory as shown in Fig. 5.9, in qualitative agreement with Ambati et al. (2015). The material
parameters are extracted from Ambati et al. (2015)

5.3.3 Fracture in ferroelectrics

To validate the implementation of the coupled fracture and microstructure evolution in ferro-
electric single crystals, we compare our results with those by (Abdollahi and Arias, 2011a).

The problem setup is shown in Fig. 5.10 (left). A rectangular domain of 100 × 100 nm of a
single-crystalline ferroelectric is considered, without flexoelectricity, i.e. 𝑓 ≡ 0. The material
parameters used are in Table 5.1. To mobilize model fracture, monotonically increasing opening
vertical displacements are prescribed on the top and bottom sides, as well as on the left side to
favour crack initiation from the left middle section of the boundary. The vertical right side is
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Figure 5.9: Problem statement and final crack distribution for split fracture. A split of the
fracture is seen by applying a mechanical shear displacement to the body. The problem
statement is taken from Ambati et al. (2015).

set to be free of tractions. The top and bottom sides are assumed to be free of surface charges
and the left and right faces are grounded.

The initial polarisation of the sample is taken as right polarisation. The boundary conditions
applied can be seen in Fig. 5.10. After some time steps, a crack is initiated in the middle of the
sample. This crack propagates along the horizontal. The stress concentrations at the crack tip
lead to localized domain switching which propagates throughout the domain, leading to the
formation of the so-called domain twins, see Fig. 5.10 (right). The evolving ferroelectric domain
size depend on the lengthscales of the problem, i.e. the sample size, the domain wall size 𝑎0,
creating up and down polarisations called twins. The final distribution of the polarization can
be seen in Fig. 5.10, which is in qualitative agreement with the results in Fig. 5 in Abdollahi
and Arias (2011a).

Finally, the evolution of the normalised surface energy has been stored and shown in
Fig. 5.11. It shows the evolution of the surface energy for a single-phase crystal (no polarisation)
and multi-phase crystal, considering a traction-free, permeable and free-polarisation crack. It
is in agreement with the results in Fig. 6 in Abdollahi and Arias (2011a)

5.4 Eploration of flexoelectric effect in domain microstructure

We present next a set of numerical experiments to explore the effect of flexoelectricity on the
ferroelectric domain microstructure formation and evolution. We consider a rectangular ferro-
electric and flexoelectric sample of dimensions 80 × 80nm with random initial polarisation. The
material parameters are given in Table 5.1, and different values for the flexoelectric coefficients
are considered. Homogeneous Neumann boundary conditions have been considered for the
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Figure 5.10: Example of a fracture in ferroelectrics. Left) A rectangular body of dimensions
100 × 100 nm, prescribed displacement is applied in the top, bottom and left faces, while the
left and right sides are grounded. The sample is horizontally polarized initially. The variable 𝑡
indicates the pseudo-time. Right) Final distribution of polarisation. The colourmap indicates
the magnitude of the vertical polarisation. Regions with zero vertical polarisation correspond
to horizontally polarised domains. The sign of this horizontal polarization is taken from plots
of horizontal polarisation (not shown). Black arrows indicating the net domain polarization
are added to the figure for illustration purpose..

Figure 5.11: Evolution of the normalised surface energy for a single-phase crystal (no polarisa-
tion) and a multi-phase crystal.

surface charge, the double traction and the line force and the displacement of all boundaries
have been set to zero. In Fig. 5.12, we report the final polarisation distribution on the sample
after 50000 load increments, for four different combinations of longitudinal, transverse and
shear flexocoupling coefficients, 𝑓𝐿, 𝑓𝑇 and 𝑓𝑆 . Fig. 5.12a corresponds to the case whithout
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flexoelectricity. In this case, the final configuration is, in most cases (depending on the random
initial configuration), a homogeneous polarisation in the whole body or at most, one domain
wall close to the boundary, as seen in Fig. 5.12 a).

The other three configurations are very similar. For simplicity, as a first approach we
have analysed the effect of each component of the cubic flexocoupling tensor independently,
setting the others to zero. Different values in the 0-15V range have been considered for the
non-vanishing flexocoupling coefficient. For all three flexocoupling coefficients, increasing the
value of the flexocoupling, leads to more domains. Indeed, flexoelectricity seems to favour the
creation of domain walls. This effect can be seen in Fig. 5.12b-d for longitudinal, transversal
and shear coefficient values of 5V, 5V and 3V, respectively.

Figure 5.12: Magnitude of vertical polarisation after 50000-time steps for: a) no flexoelectricity,
b) only longitudinal flexoelectricity with a value equal to 5V, c) only transversal flexoelectricity
with a value equal to 5V and d) only shear flexoelectricity with a value equal to 3V. Regions
with zero vertical polarisation correspond to horizontally polarised domains. The sign of
this horizontal polarization is taken from plots of horizontal polarisation (not shown). Black
Arrows indicating the net domain polarization are added to the figure for illustration purposes.

For large flexocoupling values, the number of domains increases dramatically, as shown in
Fig. 5.13. Interestingly, a similar behaviour was observed by Ahluwalia et al. (2014) and was
attributed to a modulation effect when considering equilibrium dynamics of the displacement.
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In the present simulations the displacement is quasi-static, and thus the origin of the observed
response is different. The following possible explanation is currently under investigation and
needs yet to be confirmed.

Figure 5.13: Polarisation in ferroelectrics after 50000-time steps with transversal flexoelectricity
values of 10V and 15V, respectively.

The ferroelectric enthalpy density in Eq. (5.1) has a convex term concerning the gradient
of polarisation, which means that the stress-free solution that minimises the energy also has a
gradient of polarisation equal to zero. When adding the flexoelectric terms to the energy in
Eq. (5.19), the energy can no longer be convex concerning the polarisation, giving an unstable
solution to the system or an unbounded solution with respect to the gradient of polarisation.
We derive next the necessary conditions on the flexoelectric parameters to correctly solve the
minimisation problem.

Following the derivation in Section 5.2.1, we derived the stress as

𝜎11 =
𝜕
𝜕𝜀11

= 𝑐1𝜀11 + 𝑐2𝜀22 −
𝑏1
2
𝑝21 −

𝑏2
2
𝑝22 + 𝑓𝐿𝑝1,1 + 𝑓𝑇𝑝2,2, (5.24a)

𝜎22 =
𝜕
𝜕𝜀22

= 𝑐1𝜀22 + 𝑐2𝜀11 −
𝑏1
2
𝑝22 −

𝑏2
2
𝑝21 + 𝑓𝐿𝑝2,2 + 𝑓𝑇𝑝1,1, (5.24b)

𝜎12 =
𝜕
𝜕𝜀12

= 𝑐3𝜀12 − 𝑏3𝑝1𝑝2 + 𝑓𝑆(𝑝1,2 + 𝑝2,1). (5.24c)

Note that we have considered only the converse term of the flexoelectricity because we can
use the divergence theorem in the direct part without loss of generality to convert it into the
converse one (Codony, 2021).
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Considering a stress-free state, the spontaneous strain is

𝜀011 =
(𝑐1𝑏1 − 𝑐2𝑏2)𝑝21 + (𝑐1𝑏2 − 𝑐2𝑏1)𝑝22 + 2(𝑓𝑇 𝑐2 − 𝑓𝐿𝑐1)𝑝1,1 + 2(𝑓𝐿𝑐2 − 𝑓𝑇 𝑐1)𝑝2,2

2(𝑐21 − 𝑐22 )
, (5.25a)

𝜀022 =
(𝑐1𝑏2 − 𝑐2𝑏1)𝑝21 + (𝑐1𝑏1 − 𝑐2𝑏2)𝑝22 + 2(𝑓𝑇 𝑐1 − 𝑓𝐿𝑐2)𝑝1,1 + 2(𝑓𝐿𝑐1 − 𝑓𝑇 𝑐2)𝑝2,2

2(𝑐21 − 𝑐22 )
, (5.25b)

𝜀012 =
𝑏3𝑝1𝑝2 − 𝑓𝑆(𝑝1,2 + 𝑝2,1)

𝑐3
. (5.25c)

Now, we consider the terms associated with the gradient of polarisation in the enthalpy with
a stress-free state. Those terms should provide a convex enthalpy to have a stable solution.
This condition should be imposed by looking at the eigenvalues of the associated matrix and
verifying that those values are positive. A weaker condition is that all elements in the diagonal
of that matrix should be positive. The diagonal terms of this matrix are

𝑎0
2

+
2𝑓𝐿𝑓𝑇 𝑐2 − 𝑓 2𝐿 𝑐1 − 𝑓 2𝑇 𝑐1

𝑐21 − 𝑐22
> 0, (5.26a)

𝑎0
2

+
2𝑓𝐿𝑓𝑇 𝑐1 − 𝑓 2𝐿 𝑐2 − 𝑓 2𝑇 𝑐2

𝑐21 − 𝑐22
> 0, (5.26b)

𝑎0
2

−
2𝑓 2𝑆
𝑐3

> 0. (5.26c)

Considering a similar approach to the one done in the previous examples, where only one
coefficient of the flexoelectric tensor was different from zero, the conditions for the flexoelectric
coefficient would be

𝑓𝐿 < min

{√
(𝑐21 − 𝑐22 )𝑎0

2𝑐2
,

√
(𝑐21 − 𝑐22 )𝑎0

2𝑐1

}

= 14.8V, (5.27a)

𝑓𝑇 < min

{√
(𝑐21 − 𝑐22 )𝑎0

2𝑐2
,

√
(𝑐21 − 𝑐22 )𝑎0

2𝑐1

}

= 14.8V, (5.27b)

𝑓𝑆 <
√𝑐3𝑎0
2

= 4.3V. (5.27c)

This result agrees with the behaviour seen in Fig. 5.13 where the solution was unstable for
transversal flexoelectricity equal to 15V. The solution for 10 V was also unstable, although the
coefficient satisfies the inequality in Eq. (5.27). This is explained by the fact that the inequalities
in Eq. (5.27) are necessary conditions, but not sufficient conditions for stability.
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5.5 Eploration of flexoelectric effect in fracture in
ferroelectrics

To explore the effect of flexoelectricity in fracture in ferroelectrics, two different sets of simu-
lations have been done. The first explores the effect of flexoelectricity in fracture propagation
considering a homogeneous static polarisation, i.e. there are no domain walls and polarisation
switching is precluded. The interaction of fracture and a fixed domain wall is studied in a
second example, where switching is also precluded.

Consider a rectangular sample of dimensions 100 × 100 nm and an initial polarisation that
remains fixed throughout the simulation with the four orientations: up, down, left and right,
see Fig. 5.14 (left). The boundary conditions and loading are the same as in the example in
Fig. 5.10. Without considering flexoelectricity, taking 𝑓𝐿 = 𝑓𝑇 = 𝑓𝑆 = 0 V, the velocity of
propagation of the fracture in the four initial configurations are the same. Note that this does
not contradict the well-known fracture anisotropy in ferroelectric materials, i.e. the fact that
cracking in ferroelectrics along the poling direction has a shorter length and consequently
a higher effective fracture toughness than that normal to the poling direction, in Vicker’s
indentation tests. Abdollahi and Arias (2011b) show that the fracture toughening mechanism
leading to the above anisotropy is a result of domain switching in the vicinity of the crack.
This mechanism is not available in the present simulations, since the polarization is kept fixed.
In Fig. 5.14 (right), we plot the phase field 𝑣 after the first 30% of all the loading steps. The
position of the crack tip is at 𝑥 = 13.2nm for the four orientations considered. We observe no
fracture anisotropy with respect to the poling direction in the absence of flexoelectricity.

Figure 5.14: Crack propagation in a poled piezoelectric (without switching) for the four different
poling directions. Left) Initial polarisation. Right) Phase 𝑣 after 30% of the final loading.

This situation changes in the presence of flexoelectricity. We consider the same 4 poled
piezoelectrics with an isotropic flexocoupling tensor given by 𝑓𝐿 = 𝑓𝑇 = 5 V and 𝑓𝑆 = 0
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V, as shown in Fig. 5.15 (left). According to Fig. 5.15 (right), in the presence of isotropic
flexoelectricity, we observe faster crack propagation as compared with the case without
flexoelectricity. This weakening effect is strongest for cracking orthogonal to poling. In these
two cases, the sign of the orthogonal poling does not affect crack propagation. In the case
of cracking along the poling direction, the weakening effect is smaller, and asymmetric with
respect to the poling sign, being stronger for the antiparallel case. These results seem to
contradict Abdollahi et al. (2015c), and thus need further investigation.

Figure 5.15: Crack propagation in a poled piezoelectric (without switching) for the four different
poling directions considering flexoelectricity. Left) Initial polarisation. Right) Phase 𝑣 after
30% of the final loading.

Now, consider the same rectangle as before, but with a fixed polarisation orientation
containing a domain wall as shown in Fig. 5.16. We consider the same loading and boundary
conditions as in the previous examples, and illustrated in Fig. 5.10. In these simulations the
crack trajectory slows down as it approaches the domain wall and deviates from the horizontal
trajectory briefly as it crosses the domain wall. After that, it continues propagating along a
horizontal trajectory through the vertically polarized domain at a faster speed as expected, see
Fig. 5.16.

5.6 Ongoing and future work

The ongoing and future work is presented here, and it is divided into the following tasks:

• The necessary conditions for stability of flexoelectric ferroelectrics were derived in
Section 5.2.4. The sufficient conditions are still unknown and they are ongoingly inves-
tigated.

• The effect of flexoelectricity on the fracture of ferroelectrics is analysed in Section
5.5. We have shown a slight deviation from the natural propagation of the fracture in
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Figure 5.16: Crack propagation in the presence of a fixed 90º domain wall (ferroelastic). a)
Fixed initial polarisation, red means right polarisation and blue means down polarisation. b)
Fracture profile after 30% loading steps, blue means broken material and red means unbroken
material. The discontinuous green line represent the domain wall c) Fracture profile after 100%
loading steps.

the presence of a domain wall. We expected a significant effect due to the gradient of
polarisation of the domain wall. The interplay between fracture and domain wall is a
rich and complex phenomenon that remains unknown. This example should be studied
extensively to see different interactions of the fracture depending on the direction of
the domain wall.

• The fully coupled interaction of fracture and ferroelectric microstructure evolution
accounting for flexoelectricity is yet to be investigated. Some preliminary results are
shown in Fig. 5.17 and Fig. 5.18, for the same setup as the one presented in Section 5.3.3.
The propagating crack interacts with the domain microstructure in a similar way as
shown by Abdollahi and Arias (2011a). The effect of flexoelectricity on this interaction
is yet to be fully investigated and understood.
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Figure 5.17: Vertical polarisation after 30% and 100% steps considering the boundary conditions
explained in Fig. 5.10. Left) The little wings created on the top and bottom of the crack tip
interact with the opposite polarisation domains, reducing the velocity of the crack. Right)
The final polarisation is very similar to the final one without considering flexoelectricity,
showing that the flexoelectric effect in the fracture is a very local phenomenon where the
strain gradients are significant.

Figure 5.18: Evolution of the normalised surface energy for multi-phase crystal with and
without flexoelectricity.



Chapter 6

Asymmetric tribology due to
flexoelectricity

In this chapter we explore computationally the effect of flexoelectricity on friction, in close
collaboration with experimentalists. This chapter is partially included in Cho et al. (2022). We
present numerical simulations of indentation experiments of vertically polarised ferroelec-
tric thin films accounting for flexoelectricity and confirm that flexoelectricity can induce a
different friction response for up and down ferroelectric domains. Firstly, we describe the
experimentally observed asymmetry in friction and wear in ferroelectrics, which is attributed
to the interplay between piezoelectricity and flexoelectricity, similarly to previous evidences
in fracture (Abdollahi et al., 2015c, Cordero-Edwards et al., 2019). Next, an axisymmetric
formulation of the continuum and computational model of flexoelectricity in ferroelectrics
is presented. The model for the contact of the indenter and the ferroelectric thin film is
also described in detail, along with its validation. Finally, simulations of indentation depth
and contact area upon indentation of polarised thin films are presented, showing apparent
differences for up and down polarised ferroelectric domains. These results are then related to
asymmetric friction coefficients via one-asperity friction models.

6.1 Observation of asymmetry

Understanding and controlling the interplay between piezoelectricity and flexoelectricity
in ferroelectric materials can enrich critical opportunities in the area of condensed matter
physics and functional materials engineering. For instance, this non-trivial interplay has
been shown to be constructive or destructive depending on design (Abdollahi and Arias,
2015b). Furthermore, the interplay between piezoelectricity and flexoelectricity at scales
where they have competing magnitudes, has been shown to be the origin of asymmetric
fracture in ferroelectrics (Abdollahi et al., 2015c). In a similar way, Cordero-Edwards et al.
(2017) have shown that this interplay causes down domains to be stiffer than up domains.
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Here, we show that the interplay between flexoelectricity and piezoelectricity leads to an
asymmetric friction and wear response. This nanotribological asymmetry is used to develop a
top-down, chemical-free lithography technique to edge complicated nanopatterns, following
the underlying domain patterns.

In this project, uniaxial ferroelectric LiNbO3 single crystals and thin films are scanned
with a diamond probe. The samples are vertically polarised, with domains with polarisation
pointing upwards (up domains) and downwards (down domains), see Fig. 6.1a). After a few
scans, down domains are less strongly etched than the up domains. This effect can be seen in
Fig. 6.1a-b). Also, a polarisation-dependent friction contrast is observed with higher friction in
the up domains concerning the down domains (see Fig. 6.1b)) after 50 milling scans. Apart
from an increasing friction force, an apparent difference in the height of the sample is visible.
Fig. 6.1d) shows the strong height and friction difference in up and down domains.

Figure 6.1: Observation of friction and indentation depth of ferroelectric LiNbO3. a) Sketch
of the asymmetric milling for up and down domains. b) 3D plot of the surface after 50 scans.
c) Sketch of the difference of contact area between up and down polarisation. d) Height and
friction signal during a 50th milling scan. Figure adapted from Cho et al. (2022)

Friction andwear are complex tribological phenomena and can result from the contributions
of several possible microscopic or nanoscopic mechanisms, which could lead to the observed
asymmetry of these responses in ferroelectrics (Carpick and Salmeron, 1997, Chung et al.,
2005).
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The flexoelectric field induced by the AFM tip due to the strain gradient originated is a
possible mechanism of the asymmetry. This strain-gradient-induced polarisation has been
shown to lead to asymmetric mechanical response in the stiffness in ferroelectrics (Cordero-
Edwards et al., 2017), down-domains being stiffer than up-domains. At the same loading force
in up and down domains, we should therefore expect a larger contact area and indentation
depths in up-domains during the etching scan, as schematically illustrated in Fig. 6.1c). Because
friction strongly depends on the real contact area (Bowden and Tabor, 1939), as does the
mechanical wear rate, we would consequently expect higher friction and wear in up domains,
in agreement with the experimental observations, Fig. 6.1d).

Other possible explanations of the observed asymmetric tribology are an electrostatic effect
or inhomogeneous defect distribution, but both have been studied in detail and ruled out by
Cho et al. (2022). Here, we propose a model to compute the contact area and indentation depth
of an indenter acting on a vertically polarised ferroelectric solid accounting for flexoelectricity.
We then relate the contact area to the friction coefficients through a single-asperity model and
quantitatively confirm the observed asymmetry in the friction coefficient.

6.2 Theoretical and computational model

In the experiments, milling scans are performed with a loading force range of 5 − 10𝜇N. These
loading forces are large enough to observe significant etching and a consistent asymmetry,
but low enough to preclude fracture and mechanically induced domain switching (Lu et al.,
2012). Thus, the continuum model presented in Section 5 is simplified here for a polarised
linear piezoelectric, without polarisation reversal (Abdollahi and Arias, 2012), augmented
with flexoelectricity. An axisymmetric formulation of the problem is derived next, reducing the
indentation problem to two dimensions. The AFM tip is idealised as a rigid indenter in contact
with an ideally flat sample surface. The sample shape is rectangular, and thus a body-fitted
B-spline approximation as described in Section 3.1.2 is used. The interpolation properties of
open B-splines at the boundary allow us to impose essential boundary conditions strongly. To
model a frictionless contact, we follow the well-known Signorini-Hertz-Moreau model, which
allows us to either control the tip indentation and measure force, or control force and measure
the displacement of the indenter (Wriggers and Laursen, 2006, Yastrebov, 2013). The iterative
algorithm to compute the contact area and indentation depth is described in detail.

6.2.1 Axisymmetric flexoelectricity

We follow the linear continuum model of piezoelectricity (Abdollahi and Arias, 2012) for spon-
taneous polarisation augmented with flexoelectricity (Barceló-Mercader et al., 2022, Codony
et al., 2019). The total enthalpy considered is
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(𝜀𝑖𝑗 , 𝜀𝑖𝑗,𝑘 , 𝐸𝑖) = ∫
Ω

1
2
ℂ𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝜀𝑘𝑙 − 𝑒𝑖𝑘𝑙𝐸𝑖𝜀𝑘𝑙 −𝜇𝑖𝑗𝑘𝑙𝐸𝑖𝜀𝑗𝑘,𝑙 −

1
2
𝜖𝑖𝑗𝐸𝑖𝐸𝑗 +

1
2
ℎ𝑖𝑗𝑘𝑙𝑚𝑛𝜀𝑖𝑗,𝑘𝜀𝑙𝑚,𝑛 dΩ (6.1)

where Ω is the solid domain, ℂ is the fourth-rank elasticity tensor, 𝑒 is the third-rank piezo-
electricity tensor, 𝜇 is the fourth-rank flexoelectricity tensor, 𝑘 is the second-rank dielectricity
tensor and 𝑔 is the six-rank strain gradient elasticity tensor. The strain gradient term is needed
in order to guarantee thermodynamic stability of the model in the presence of flexoelectricity
(Eliseev et al., 2009b, Mao and Purohit, 2014, Maranganti et al., 2006b).

The traction 𝑡𝑖(𝒖, 𝜙), double traction 𝑟𝑖(𝒖, 𝜙), electric charge density 𝑤(𝒖, 𝜙) and edge forces
𝑗𝑖(𝒖, 𝜙) are

𝑡𝑖(𝒖, 𝜙) = (𝜎̂𝑖𝑗(𝒖, 𝜙) − 𝜎̃𝑖𝑗𝑘,𝑘(𝒖, 𝜙) − 𝜎̃𝑖𝑘𝑗,𝑙 (𝒖, 𝜙)(𝛿𝑙𝑘 − 𝑛𝑙𝑛𝑘)) 𝑛𝑗 + 𝜎̃𝑖𝑗𝑘(𝒖, 𝜙)𝑁̃𝑗𝑘 (6.2a)
𝑟𝑖(𝒖, 𝜙) = 𝜎̃𝑖𝑗𝑘(𝒖, 𝜙)𝑛𝑗𝑛𝑘 , (6.2b)
𝑤(𝒖, 𝜙) = −𝐷̂𝑙 (𝒖, 𝜙)𝑛𝑙 , (6.2c)
𝑗𝑖(𝒖, 𝜙) = 𝜎̃𝑖𝑗𝑘(𝒖, 𝜙)(𝑚𝐿

𝑗 𝑛
𝐿
𝑘 + 𝑚

𝑅
𝑗 𝑛

𝑅
𝑘 ), (6.2d)

where 𝑁̃𝑖𝑗 = −𝑛𝑖,𝑙 (𝛿𝑙𝑗 − 𝑛𝑙𝑛𝑗) + 𝑛𝑓 ,𝑔(𝛿𝑓 𝑔 − 𝑛𝑓 𝑛𝑔)𝑛𝑖𝑛𝑗 . n is the unitary exterior normal vector.
The superscripts 𝐿 and 𝑅 refer to the first and second surface sharing the edge, andm is the
conormal vector on each surface, tangent to the surface, normal to the edge and pointing
outward to the surface.

The stress 𝜎̂𝑖𝑗 , double stress 𝜎̃𝑖𝑗𝑘 and electric displacement 𝐷̂𝑙 in Eq. (6.2) are derived from
the bulk enthalpy density, as work-conjugates to strain 𝜀𝑖𝑗 , strain gradient 𝜀𝑖𝑗,𝑘 and electric
field 𝐸𝑙 , respectively, as

𝜎̂𝑖𝑗(𝒖, 𝜙) =
𝜕Ω[𝜺, ∇𝜺, 𝑬]

𝜕𝜀𝑖𝑗

|||||∇𝜺𝑬
= ℂ𝑖𝑗𝑘𝑙𝜀𝑘𝑙 (𝒖) − 𝑒𝑙𝑖𝑗𝐸𝑙 (𝜙), (6.3)

𝜎̃𝑖𝑗𝑘(𝒖, 𝜙) =
𝜕Ω[𝜺, ∇𝜺, 𝑬]

𝜕𝜀𝑖𝑗,𝑘

|||||𝜺𝑬
= ℎ𝑖𝑗𝑘𝑙𝑚𝑛𝜀𝑙𝑚,𝑛(𝒖) − 𝜇𝑙𝑖𝑗𝑘𝐸𝑙 (𝜙), (6.4)

𝐷̂𝑙 (𝒖, 𝜙) = −
𝜕Ω[𝜺, ∇𝜺, 𝑬]

𝜕𝐸𝑙

||||| 𝜺∇𝜺
= 𝜖𝑙𝑚𝐸𝑚(𝜙) + 𝑒𝑙𝑖𝑗𝜀𝑖𝑗(𝒖) + 𝜇𝑙𝑖𝑗𝑘𝜀𝑖𝑗,𝑘(𝒖). (6.5)
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The previous equations are subject to appropriate boundary conditions as

𝑢𝑖 = 𝑢D𝑖 on Γ𝑢 𝑡𝑖 = 𝑡N𝑖 on Γ𝑡 ,

𝜕𝑛𝑢𝑖 = 𝑣D on Γ𝑣 𝑟𝑖 = 𝑟N𝑖 on Γ𝑟 ,

𝜙 = 𝜙D on Γ𝜙 𝑤 = 𝑤N on Γ𝑤 ,

𝑢𝑖 = 𝑢D𝑖 on 𝐶𝑢 𝑗𝑖 = 𝑗N𝑖 on 𝐶𝑗 , (6.6)

with the normal derivative operator 𝜕𝑛(𝐴) ∶= 𝜕𝐴/𝜕n. 𝑢D𝑖 is the prescribed displacement on
the first order Dirichlet boundary, Γ𝑢 ; 𝑡N𝑖 is the traction on the first order Neumann boundary,
Γ𝑡 with 𝜕Ω = Γ𝑡 ∪ Γ𝑢 ; 𝑣D𝑖 is the normal derivative of the displacement 𝜕𝑛𝒖 on the second order
Dirichlet boundary, Γ𝑣 , and 𝑟N𝑖 is the double traction on the second order Neumann boundary,
Γ𝑟 with 𝜕Ω = Γ𝑟 ∪ Γ𝑣 . 𝜙D is the prescribed potential on the Dirichlet boundary Γ𝜙 , and 𝑤N is
the surface charge density on the Neumann boundary Γ𝑤 , with 𝜕Ω = Γ𝜙 ∪ Γ𝑤 . The domain
boundary is assumed to be composed of smooth surfaces (curves in 2D) that are joined on
sharp boundary edges (corners in 2D). 𝐶𝑗 denotes the union of the boundary edges that are
shared by two surfaces with first-order Neumann conditions, i.e. the edges of Γ𝑡 , where a line
(punctual in 2D) force 𝑗N𝑖 is set. 𝐶𝑢 denotes the union of all other edges, i.e. those shared by at
least one Dirichlet surface, where the value of 𝑢𝑖 is assumed to be that of the adjacent Dirichlet
surface, i.e. 𝑢𝑖 = 𝑢D𝑖 on 𝐶𝑢 ⊂ Γ𝑢 .

Considering 2D axisymmetric problem with rotationally symmetric structures and axisym-
metric material tensor under axisymmetric loading we obtain

𝛿ΠAxi[𝒖, 𝜙; 𝛿𝒖, 𝛿𝜙] = 2𝜋 ∫
Ω
(𝜎̂𝑖𝑗(𝒖, 𝜙)𝜀𝑖𝑗(𝛿𝒖)+𝜎̃𝑖𝑗𝑘(𝒖, 𝜙)𝜀𝑖𝑗,𝑘(𝛿𝒖)−𝐷̂𝑙 (𝒖, 𝜙)𝐸𝑙 (𝛿𝜙))𝑟 d𝑟 d𝑧, (6.7)

where the strain 𝜀, strain gradient ∇𝜀 and electric field 𝐸 are defined, component-wise, as

𝜀𝑟𝑟 = 𝜕𝑢𝑟 /𝜕𝑟 , 𝜀𝑟𝑧 = 𝜀𝑧𝑟 =
1
2(

𝜕𝑢𝑟 /𝜕𝑧 + 𝜕𝑢𝑧/𝜕𝑟),

𝜀𝑧𝑧 = 𝜕𝑢𝑧/𝜕𝑧, 𝜀𝜑𝜑 = 𝑢𝑟 /𝑟 , (6.8)

𝜀𝑟𝑟 ,𝑟 = 𝜕𝑢𝑟 /𝜕𝑟2, 𝜀𝑟𝑧,𝑟 = 𝜀𝑧𝑟,𝑟 =
1
2(

𝜕2𝑢𝑟 /𝜕𝑟𝜕𝑧 + 𝜕2𝑢𝑧/𝜕𝑟2),

𝜀𝜑𝜑,𝑟 =
1
𝑟
𝜕𝑢𝑟 /𝜕𝑟 −

𝑢𝑟
2𝑟2

, 𝜀𝑧𝑧,𝑟 = 𝜕2𝑢𝑧/𝜕𝑟𝜕𝑧,

𝜀𝑟𝜑,𝜑 = 𝜀𝜑𝑟,𝜑 =
1
𝑟
𝜕𝑢𝑟 /𝜕𝑟 −

3𝑢𝑟
4𝑟2

, 𝜀𝑧𝜑,𝜑 = 𝜀𝜑𝑧,𝜑 =
1
2𝑟 (

𝜕𝑢𝑟 /𝜕𝑧 + 𝜕𝑢𝑧/𝜕𝑟),

𝜀𝑟𝑟 ,𝑧 = 𝜕2𝑢𝑟 /𝜕𝑟𝜕𝑧, 𝜀𝑟𝑧,𝑧 = 𝜀𝑧𝑟,𝑧 =
1
2(

𝜕2𝑢𝑧/𝜕𝑟𝜕𝑧 + 𝜕2𝑢𝑧/𝜕𝑧2),

𝜀𝜑𝜑,𝑧 =
1
𝑟
𝜕𝑢𝑟 /𝜕𝑧, 𝜀𝑧𝑧,𝑧 = 𝜕2𝑢𝑧/𝜕𝑧2, (6.9)
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𝐸𝑟 = −𝜕𝜙/𝜕𝑟, 𝐸𝑧 = −𝜕𝜙/𝜕𝑧, (6.10)

The weak form of the associated flexoelectric problem considering 2D axisymmetry is

Find (𝒖, 𝜙) ∈ D ⊗ D, such that 𝛿ΠAxi = 0 ∀(𝛿𝒖, 𝛿𝜙) ∈ 0 ⊗ 0, (6.11)

with

D =
{
𝒖 ∈ [𝐻 2(Ω)]2|𝒖 = 𝒖D on 𝜕Ω𝑢 and 𝐶𝑢 and 𝜕𝑛(𝒖) = 𝒗D on 𝜕Ω𝑣

}
, (6.12a)

D =
{
𝜙 ∈ 𝐻 2(Ω)|𝜙 = 𝜙D on 𝜕Ω𝜙

}
(6.12b)

0 =
{
𝒖 ∈ [𝐻 2(Ω)]2|𝒖 = 0 on 𝜕Ω𝑢 and 𝐶𝑢 and 𝜕𝑛(𝒖) = 0 on 𝜕Ω𝑣

}
, (6.12c)

0 =
{
𝜙 ∈ 𝐻 2(Ω)|𝜙 = 0 on 𝜕Ω𝜙

}
, (6.12d)

6.2.2 Contact model

For the contact problem, we follow the frictionless Signorini-Hertz-Moreau model defined
in Wriggers and Laursen (2006) and Yastrebov (2013). This model considers two points of
contact (𝑥, 𝑥0) where 𝑥 is a point in the flat surface and 𝑥0 the corresponding point of the rigid
cone which is coming into contact (see Fig. 6.2), stating

𝑔𝑛𝜎𝑛 = 0 on Γ𝑐 , (6.13a)
𝑔𝑛 ≤ 0, (6.13b)

𝜎𝑛 = 𝒏 ⋅ 𝜎 ⋅ 𝒏, (6.13c)

where Γ𝑐 is the contact region, and 𝑔𝑛 is the gap function that can be described as

𝑔𝑛 = 𝒖 ⋅ 𝒏 + (𝑥 − 𝑥0) ⋅ 𝒏. (6.14)

Figure 6.2: Signorini-Hertz-Moreau contact model. a) Definition of the gap function in Eq. (6.14).
b) Signorini-Hertz-Moreau model applied to the sphere and the flat surface. c) The penalty
term added in Eq. (6.15) penalises the penetration zone depicted in dark blue.

We enforce the non-penetration constraint by adding a new penalty term to the enthalpy
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functional  as

𝑡 =  + ∫
Γ𝑐

1
2
𝛽𝑐⟨𝑔𝑛⟩2dΓ, (6.15)

where 𝛽𝑐 is a penalty parameter and the Macaulay bracket is defined as

⟨𝐴⟩ =

{
𝐴 if 𝐴 > 0,

0 otherwise.
(6.16)

The contact force 𝐹 is defined, considering 2D axisymmetry, as

𝐹 = 2𝜋 ∫
𝑅𝑐

0
𝛽𝑐⟨𝑔𝑛⟩𝑟 d𝑟. (6.17)

where 𝑅𝑐 is the contact radius (see Fig. 6.3). An iterative algorithm is used to compute the
indentation for a given force.

6.2.2.1 Validation in a purely elastic solid

We validate the previous model for the purely mechanical case (without piezoelectricity and
flexoelectricity) by comparison against the analytical model by Popov et al. (2019). We set
the penalty parameter to 𝛽𝑐 = 10 for all simulations with accurate results. The problem
statement is seen in Fig. 6.3, where a conical indenter is pushed against a flat surface, creating
an indentation depth 𝑑 and a contact radius 𝑅𝑐 . We consider an angle of the cone 𝜃 to be 42, 5°.

Figure 6.3: Problem statement for the conical indentation. Image adapted from Cho et al. (2022)

The analytical relation between the contact radius and the indentation depth is

𝑑(𝑅𝑐) =
𝜋
2
𝑅𝑐 tan 𝜃, (6.18)
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and the analytical relation between the contact radius and the force applied is

𝐹 =
𝜋𝑅2𝑐
2
𝐸∗ tan 𝜃, (6.19)

where 𝐸∗ = 𝐸/(1− 𝜈2). For the validation of the contact model, we have just considered a purely
elastic material with 𝐸 = 164 GPa and 𝜈 = 0.3. The sample dimensions are 𝐿 = 100nm and
𝐻 = 50nm. The perfect agreement between the simulation and the analytical model is shown
in Fig. 6.4.
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Figure 6.4: Validation of the numerical model versus the analytical one. Left) A plot of
the applied force versus the contact radius. Right) A plot of the contact radius versus the
indentation depth.

6.3 Simulations

For the following simulations, the displacement along the contact line (shown in red in Fig. 6.3)
is prescribed, the left and bottom sides of the rectangle are mechanically clamped horizontally
and vertically, respectively, see Fig. 6.3. The bottom boundary is electrically grounded, while all
other boundaries are assumed to be free of surface charges and traction-free, also all boundaries
and corners are assumed to be double traction-free and line force free. The material parameters
for the elastic, piezoelectric and dielectric tensors are taken from Persson (2014). For the
strain-gradient elasticity tensor, we considered the definition in Appendix A and a length-scale
𝓁 = 10nm. The definition of the flexoelectric tensor is also given in Appendix A. Here, only
isotropic flexoelectric tensors are considered, i.e. 𝜇𝑆 = (𝜇𝐿 − 𝜇𝑇 )/2, with 𝜇𝐿 = 𝜇𝑇 = 𝜀0𝜀𝑟 𝑓 , 𝜇𝑆 = 0,
and different values for the flexocoupling coefficient 𝑓 are considered. A simulation of the 2D
axisymmetric model is shown in Fig. 6.5 for illustration purposes.

Fig. 6.6 depicts the computed indentation depth (left) and contact radius (right) as a function
of the applied force for different values of the flexoelectric parameters. In the absence of
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z

r

θ

0

Figure 6.5: 3D model (left) and the 2D axisymmetric simulation (right). The flexoelectric
tensor considered is 𝑓𝐿 = 𝑓𝑇 = 10𝑉 and 𝑓𝑆 = 0. The colourmap represents the resulting electric
potential on the sample upon mechanical indentation. Image adapted from Cho et al. (2022)

flexoelectricity (𝑓 = 0), we obtain the same response for up-domains (solid lines) and down-
domains (dashed lines). When flexoelectricity is accounted for, the response depends clearly
on the polarisation direction and the asymmetry increases with the flexocoupling coefficient.
Results for two values of the flexocoupling coefficient 𝑓 = 10, 40V are shown in the figure. The
asymmetry of the response is apparent and can be explained by the direction of the flexoelectric
polarisation and piezoelectric polarisation shown in Fig. 6.7, where the flexoelectrically induced
polarisation and piezoelectric polarisation are plotted separately, for the case of upward and
downward polarised domains. While the flexoelectric polarisation is largely independent of
the direction of ferroelectric polarisation, the piezoelectric polarisation has opposite signs for
up and down domains. Hence, their combination is the origin of the observed asymmetric
response. Within the range where flexoelectric and piezoelectric polarisations are comparable
in magnitude, the observed difference in the response for up and down domains depends on
the magnitude of flexoelectric parameters, being larger for stronger flexoelectricity.

We relate next the asymmetry in the contact radius with the friction coefficient by means
of the following relation (Enachescu et al., 1999), which holds at the nanoscale:

𝐹𝑓 = 𝜏𝐴𝑐 = 𝜏𝜋𝑅𝑐
√
𝑅2𝑐 + 𝑑2, (6.20)

where 𝜏 is the shear strength and 𝐴𝑐 is the area of contact. Estimating friction forces for up
and down domains is difficult in the experiment because of the lack of calibration, and the
shear strength is also unknown in the current setting. Thus, we compute the ratio between
the friction force in up and down domains 𝐹 𝑢𝑝𝑓 /𝐹 𝑑𝑜𝑤𝑛𝑓 . In the experiment, we obtain values
around 𝐹 𝑢𝑝𝑓 /𝐹 𝑑𝑜𝑤𝑛𝑓 = 1.0272. We perform some simulations considering different values for the
flexocoupling coefficient, which is also unknown for the samples used in the experiments. The
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Figure 6.6: Force applied vs Indentation depth (left) and Force applied vs Contact radius (right).
Solid and dashed lines mean up and down initial polarisation, respectively. Two values for the
flexocoupling coefficients 𝑓 = 10V and 𝑓 = 40V are considered.

(10,10,0)

Figure 6.7: Flexoelectric polarisation and piezoelectric polarisation for up and down domains.

results of these simulations can be seen in Table 6.1, with the last column calculated using

𝐹 𝑢𝑝𝑓
𝐹 𝑑𝑜𝑤𝑛𝑓

=
𝑅𝑢𝑝𝑐

√
(𝑅𝑢𝑝𝑐 )2 + (𝑑𝑢𝑝)2

𝑅𝑑𝑜𝑤𝑛𝑐
√
(𝑅𝑑𝑜𝑤𝑛𝑐 )2 + (𝑑𝑑𝑜𝑤𝑛)2

. (6.21)

𝑓𝐿 𝑓𝑇 𝑓𝑆 𝐹 𝑢𝑝𝑓 /𝐹 𝑑𝑜𝑤𝑛𝑓
54 54 0 1.1881
40 40 0 1.1236
10 10 0 1.0361
1 1 0 1.0036

Table 6.1: Relation between up and down friction for different values of flexoelectricity.
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6.3.1 Spherical indenter

During the milling scans, the originally conical indenter wears out and is better modelled
by a spherical shape. Here, we provide results for a spherical indenter, as shown in Fig. 6.8.
The same boundary conditions described in Section 6.3 are considered here. The 3D model
reconstructed from axisymmetric simulations is shown in Fig. 6.9.

Figure 6.8: Problem statement for the spherical indentation.
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rθ

Figure 6.9: 3Dmodel (left) and the 2D axisymmetric simulation (right) for the spherical indenter.
The flexoelectric tensor considered is 𝑓𝐿 = 𝑓𝑇 = 10𝑉 and 𝑓𝑆 = 0. The colormap represents the
resulting electric potential on the sample upon mechanical indentation.

In the spherical case, the resulting friction force is

𝐹𝑓 = 𝜏𝐴𝑐 = 𝜏4𝜋𝑅2(1 − cos
𝑅𝑐
𝑅 ) . (6.22)
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The computed friction forces are reported in Table 6.2, yielding similar results to those obtained
for the conical indenter (Table 6.1).

𝑓𝐿 𝑓𝑇 𝑓𝑆 𝐹 𝑢𝑝𝑓 /𝐹 𝑑𝑜𝑤𝑛𝑓
54 54 0 1.1390
40 40 0 1.1095
10 10 0 1.0375
1 1 0 1.0037

Table 6.2: Relation between up and down friction for different values of flexoelectricity for the
spherical indenter.

6.4 Discussion and conclusions

We have shown that flexoelectricity can explain the observed friction asymmetry in ferro-
electrics between up and down domains. We performed several B-spline simulations to quantify
the indentation depth and contact area depending on the poling direction in the presence or
absence of flexoelectric coupling, using the well-known Signorini-Hertz-Moreau model for
contact. The tip of the indenter was modelled by a cone or sphere in contact with a flat surface
made by LiNbO3, as seen in Fig. 6.5.

The flexoelectric polarisation induced by the strain gradient of the indentation produces
asymmetric interactions between up and down domains, as shown in Fig. 6.7. One consequence
of this asymmetric interaction is the result in larger indentation depth and contact area for
the up domain as compared to down domains, as seen in Fig. 6.6. The higher the flexoelectric
coefficient, the bigger the effect until it reaches the maximum. If we keep increasing the
flexoelectric coefficient, the flexoelectric polarisation becomes dominant, and no asymmetry
is seen, as shown in Fig. 6.10, where the indentation depth with 𝑓 = 300V is very similar to
𝑓 = 10V.

The experimental and simulated data comparison has been made using a single asperity
contact model that predicts a linear relationship between the contact area and the friction force.
The ratio between the predicted friction force for up and down domains has been computed
for several simulations. The comparison shows a good agreement between the experimental
data and the simulated values for flexoelectric coefficients close to 10V.

All in all, the experimental observation and simulations results suggest that flexoelectricity
is the dominant mechanism for asymmetric tribology. Furthermore, the electrically switched
down domain shows a lower friction coefficient than the up domain.
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Figure 6.10: Force applied vs Indentation depth (left) and Force applied vs Contact radius
(right) for the conical indenter. Solid and dashed lines mean up and down initial polarisation,
respectively. Two values for the flexocoupling coefficients 𝑓 = 40V and 𝑓 = 300V are considered.
The indentation depth for 𝑓 = 300V is similar to 𝑓 = 10V

6.5 Ongoing work

Although the continuum and numerical model presented in this chapter give accurate results,
some improvements can be made, and they are:

• 2D axisymmetric simulations give a good approximation of the solution in 3D only in
the cases where everything in the problem exhibits rotational symmetry. In order to
study more general situations, we are currently developing the full 3D contact model.

• The proposed model in the present form does not account for the effect of shear forces.

• Furthermore, the proposed model is quasistatic. For higher scanning rates, dynamic
effects should be taken into account.





Chapter 7

Conclusions

In this thesis, a theoretical and computational model for flexoelectricity in the presence of inter-
faces has been developed and implemented in the context of the hierarchical B-spline immersed
boundary approach proposed by Codony et al. (2019). This framework has been used to study
physical material interfaces, as well as fictitious interfaces such as generalised periodicity unit
cell boundaries. The former has been used in multimaterial symmetry-breaking arrangements
up-scaling flexoelectricity in electromechanical devices. For the latter case, an elegant and
efficient implementation making use of the periodicity of the B-spline bases functions has
been derived. The developments presented here have been instrumental in the design and
analysis of flexoelectric architected periodic lattice metamaterials. Moving interfaces such as
cracks and ferroelectric domain boundaries have also been studied by coupling phase-field
models for fracture and ferroelectric microstructure accounting for flexoelectricity. Finally,
flexoelectricity has been shown as a plausible cause for the asymmetric tribology observed
in ferroelectrics in tight collaboration with experimentalists. The main contributions of the
thesis are summarised next.

• High-order interface conditions for flexoelectricity have been formulated. These condi-
tions are encoded through an enthalpy function which is suitable for unfitted discretisa-
tions. Interface conditions for other high-order PDEs have a similar form and thus, can
be extended to other problems.

• Interface conditions are used to enforce generalised periodicity conditions weakly. These
conditions were the first approach to generalised periodicity conditions which mimics
the behaviour of a large periodic structure.

• Generalised periodicity conditions are derived using a second method. This method
splits the response of a unit cell in two parts: a macroscopic and a microscopic part. All
macroscopic functional are derived and the new weak form of flexoelectricity for unit
cells is shown.
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• The effect of flexoelectricity in graded structure has been analysed. Graded structure
can replace piezoelectric sensors with non-piezoelectrics.

• From a numerical point of view, two different methods were implemented. The first
is the body-fitted B-spline method which is suitable for rectangular domains. The
second is the immersed B-spline method which allows to simulate any desired structure
without geometric limitations. An upgrade of the immersed approach is done, such
that generalised periodicity conditions can be imposed strongly. It is achieved through
the creation of generalised periodicity space of approximation which is formed using a
periodic and a generalised periodic approximation space.

• An axisymmetric formulation of flexoelectricity is derived and used in combination
with a Hertzian contact model to simulate contact of conical and spherical indenters on
poled ferroelectric thin films. Our simulations confirm flexoelectricity as a source of
asymmetric friction with respect to the poling direction in ferroelectrics.

• The effect of flexoelectricity in ferroelectric domain microstructure has been explored
showing that flexoelectricity increases the number of polarisation domains. Also, an
upper limit for the flexoelectric coefficient values is derived based on stability arguments.

• The effect of flexoelectricity on crack propagation in ferroelectrics has also been studied.
Preliminary results show fracture toughening mechanisms that should be further studied.

A big step in understanding the coupling of flexoelectricity with other physics has been done.
But there are a lot of questions that remain open. The high-order generalised periodicity
conditions stated are assumed to have a linear behaviour of the macroscopic displacement,
which implies that the macroscopic strain-gradient tensor vanishes, i.e. it aims to simulate
macroscopic uniform tension only. A generalisation of this formulation would be needed in
order to simulate macroscopic bending.

Regarding the study of the influence on flexoelectricity on the interaction between crack
propagation and ferreoelectric microstructure, only preliminaries results have been presented.
These results allow us to understand some of the limitations of the current implementation
and further developments involving probably higher order phase fields are currently under
investigation. The hypothesis that polarisation and strain gradients at domain walls should
play a role through the flexoelectric effect on the reduced toughness along these interfaces
has not been fully validated and will require further investigation to provide convincing quali-
tative and quantitative evidence. Regarding the tribological behaviour of poled ferroelectrics,
qualitative evidence has been provided to support flexoelectricity as one plausible cause of
the experimentally observed asymmetric friction and wear. Our simulations have addressed
the axisymmetric case, assuming isotropic material tensors, already providing convincing
evidence that flexoelectricity can produce friction asymmetry in ferroelectrics depending on
the poling direction. A fully 3D simulation is underway, which will allow us to explore the
effect of shear tractions, as well as material anisotropy.
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A Material characterization

In the following Appendix, the material characterisation is presented. The appendix is divided
into multiples section depending on the type of material considered.

A.1 Infinitesimal deformation for direct flexoelectricity

In this section, the material tensor for direct flexoelectricity in Section 2.1.1 is presented. They
are described component-wise (non-zero components) and 𝑑 is the number of dimensions of
the physical space (Barceló-Mercader et al., 2022).

Isotropic elasticity tensor is defined in terms of the Young modulus 𝐸 and Poisson ratio 𝜈 as

ℂ𝑖𝑖𝑖𝑖 = 𝐶𝐿, 𝑖 = 1, … , 𝑑;

ℂ𝑖𝑖𝑗𝑗 = 𝐶𝑇 , 𝑖, 𝑗 = 1, … , 𝑑 ∶ 𝑖 ≠ 𝑗;

ℂ𝑖𝑗𝑖𝑗 = ℂ𝑖𝑗𝑗𝑖 = 𝐶𝑆 , 𝑖, 𝑗 = 1, … , 𝑑 ∶ 𝑖 ≠ 𝑗, (A.1)

where the parameters 𝐶𝐿, 𝐶𝑆 and 𝐶𝑇 are

𝐶𝐿 ∶=
𝐸 (1 − 𝜈)

(1 + 𝜈)(1 − 2𝜈)
, 𝐶𝑇 ∶=

𝐸𝜈
(1 + 𝜈)(1 − 2𝜈)

, 𝐶𝑆 ∶=
𝐸

2(1 + 𝜈)
. (A.2)

We consider an isotropic version of the general model in (Mindlin and Eshel, 1968) that is
described in (Altan and Aifantis, 1997). The strain gradient tensor is defined in terms of the
Young modulus 𝐸, the Poisson ratio 𝜈 and the mechanical length scale 𝓁mech as

ℎ𝑖𝑖𝑘𝑖𝑖𝑘 = 𝓁 2mech𝐶𝐿, 𝑖, 𝑘 = 1, … , 𝑑;

ℎ𝑖𝑖𝑘𝑗𝑗𝑘 = 𝓁 2mech𝐶𝑇 , 𝑖, 𝑗, 𝑘 = 1, … , 𝑑 ∶ 𝑖 ≠ 𝑗;

ℎ𝑖𝑗𝑘𝑖𝑗𝑘 = ℎ𝑖𝑗𝑘𝑗𝑖𝑘 = 𝓁 2mech𝐶𝑆 , 𝑖, 𝑗, 𝑘 = 1, … , 𝑑 ∶ 𝑖 ≠ 𝑗 (A.3)

where the parameters 𝐶𝐿, 𝐶𝑆 and 𝐶𝑇 are defined in Eq. (A.2).
Isotropic dielectricity is described as

𝜖𝑖𝑖 = 𝜖, 𝑖 = 1, … , 𝑑. (A.4)

Piezoelectricity is represented by the third-order tensor 𝒆, where tetragonal symmetry is
considered, which has a principal direction. It involves longitudinal, transversal and shear
couplings represented by the parameters 𝑒𝐿, 𝑒𝑇 and 𝑒𝑆 , respectively. For a material with
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principal direction 𝒙1, the piezoelectric tensor 𝒆<𝒙1> is

𝑒<𝒙1>111 = 𝑒𝐿;

𝑒<𝒙1>1𝑗𝑗 = 𝑒𝑇 , 𝑗 = 2, … , 𝑑;

𝑒<𝒙1>𝑗1𝑗 = 𝑒<𝒙1>𝑗𝑗1 = 𝑒𝑆 , 𝑗 = 2, … , 𝑑. (A.5)

The piezoelectric tensor 𝒆 oriented in an arbitrary direction 𝒅 is obtained by rotating 𝒆<𝒙1> as

𝑒𝑙𝑖𝑗 = 𝑅𝑙𝐿𝑅𝑖𝐼𝑅𝑗𝐽 𝑒𝐿𝐼 𝐽 , (A.6)

where 𝑅 is the rotation matrix. Flexoelectricity is represented by the fourth-order tensor 𝝁
where cubic symmetry is considered. It leads to a tensor involving longitudinal, transversal and
shear couplings represented by the parameters 𝜇𝐿, 𝜇𝑇 and 𝜇𝑆 , respectively. The components of
the flexoelectric tensor 𝝁<𝒙> of a material oriented in the Cartesian axes are the following:

𝜇<𝒙>𝑖𝑖𝑖𝑖 = 𝜇𝐿, 𝑖 = 1, … , 𝑑;

𝜇<𝒙>𝑖𝑗𝑗𝑖 = 𝜇𝑇 , 𝑖, 𝑗 = 1, … , 𝑑 ∶ 𝑖 ≠ 𝑗;

𝜇<𝒙>𝑖𝑖𝑗𝑗 = 𝜇
<𝒙>

𝑖𝑗𝑖𝑗 = 𝜇𝑆 , 𝑖, 𝑗 = 1, … , 𝑑 ∶ 𝑖 ≠ 𝑗. (A.7)

The flexoelectric tensor 𝝁 oriented in an arbitrary orthonormal basis is obtained by rotating
𝝁<𝒙> as

𝜇𝑙𝑖𝑗𝑘 = 𝑅𝑙𝐿𝑅𝑖𝐼𝑅𝑗𝐽𝑅𝑘𝐾𝜇𝐿𝐼 𝐽𝐾 . (A.8)

The condition for an isotropic flexoelectric tensor is

𝜇𝑆 = (𝜇𝐿 − 𝜇𝑇 )/2. (A.9)

A.2 Infinitesimal deformation for Lifshitz-invariant flexoelectricity

In this section, the material tensor for Lifshitx-invariant flexoelectricity in Section 2.1.2 is
presented. Apart from the material tensor described in Appendix A.1, we incorporate isotropic
gradient dielectricity. It is represented by the fourth-order tensor 𝑀 . We take a simple form
depending on the electric permittivity 𝜖 and the dielectric length scale 𝓁elec as

𝑀𝑖𝑗𝑖𝑗 = 𝜖𝓁 2elec 𝑖, 𝑗 = 1, … , 𝑑. (A.10)
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B Variational formulation for generalised periodicity using
interface conditions for four types of sensors and actuators.

In Section 2.3.1, we have presented the four cases we are interested in: 2 types of sensors and
2 types of actuators. But, we have shown only one variational formulation for simplicity. In
this Appendix all four variational formulation for the enthalpy associated with generalised
periodicity is presented for clarity and completeness. We will show the associated enthalpy
ΠP,y and ΠP,x.

B.1 Unconfined vertical displacement sensor

𝛿ΠP,y[𝒖, 𝜙, 𝒖̌, 𝜙; 𝛿𝒖, 𝛿𝜙, 𝛿𝒖̌, 𝛿𝜙] =

∫
𝑦 [

𝛽𝑢𝑦 J𝛿𝑢𝑖K𝑦 ( J𝑢𝑖K𝑦 − 𝑢̂
𝑦
𝑖 ) − J𝛿𝑢𝑖K𝑦 J𝑡𝑖(𝒖, 𝜙)K𝑦𝛾 − ( J𝑢𝑖K𝑦 − 𝑢̂

𝑦
𝑖 ) J𝑡𝑖(𝛿𝒖, 𝛿𝜙)K𝑦𝛾 ]

dΓ

+ ∫
𝑦 [

𝛽𝑣𝑦
s
𝜕𝑢𝑖
𝜕𝑦

{𝑦 s
𝜕𝛿𝑢𝑖
𝜕𝑦

{𝑦
−

s
𝜕𝛿𝑢𝑖
𝜕𝑦

{𝑦 {
𝑟𝑖(𝒖, 𝜙)

}𝑦

𝛾
−

s
𝜕𝑢𝑖
𝜕𝑦

{𝑦 {
𝑟𝑖(𝛿𝒖, 𝛿𝜙)

}𝑦

𝛾]
dΓ +

+ ∫
𝑦 [(

J𝛿𝜙K𝑦 − 𝛿𝜙𝑦) J𝑤(𝒖, 𝜙)K𝑦𝛾 + ( J𝜙K𝑦 − 𝜙𝑦) J𝑤(𝛿𝒖, 𝛿𝜙)K𝑦𝛾 ]
dΓ

+ ∑
𝑥∈𝐶𝑦 [

𝛽𝐶𝑢𝑦 J𝛿𝑢𝑖K𝑦 ( J𝑢𝑖K𝑦 − 𝑢̂
𝑦
𝑖 ) − J𝛿𝑢𝑖K𝑦 J𝑗𝑖(𝒖, 𝜙)K𝑦𝛾 − ( J𝑢𝑖K𝑦 − 𝑢̂

𝑦
𝑖 ) J𝑗𝑖(𝛿𝒖, 𝛿𝜙)K𝑦𝛾 ]

. (B.1)

𝛿ΠP,x[𝒖, 𝜙, 𝒖̌, 𝜙; 𝛿𝒖, 𝛿𝜙, 𝛿𝒖̌, 𝛿𝜙] =

∫
𝑥 [

− ( J𝛿𝑢𝑖K𝑥 − 𝛿𝑢̌𝑥𝑖 ) J𝑡𝑖(𝒖, 𝜙)K𝑥𝛾 − ( J𝑢𝑖K𝑥 − 𝑢̌𝑥𝑖 ) J𝑡𝑖(𝛿𝒖, 𝛿𝜙)K𝑥𝛾 ]
dΓ

+ ∫
𝑥 [

𝛽𝑣𝑥
s
𝜕𝑢𝑖
𝜕𝑥

{𝑥 s
𝜕𝛿𝑢𝑖
𝜕𝑥

{𝑥
−

s
𝜕𝛿𝑢𝑖
𝜕𝑥

{𝑥 {
𝑟𝑖(𝒖, 𝜙)

}𝑥

𝛾
−

s
𝜕𝑢𝑖
𝜕𝑥

{𝑥 {
𝑟𝑖(𝛿𝒖, 𝛿𝜙)

}𝑥

𝛾]
dΓ +

+ ∫
𝑥 [(

J𝛿𝜙K𝑥 − 𝛿𝜙𝑥) J𝑤(𝒖, 𝜙)K𝑥𝛾 + ( J𝜙K𝑥 − 𝜙𝑥) J𝑤(𝛿𝒖, 𝛿𝜙)K𝑥𝛾 ]
dΓ

+ ∑
𝑦∈𝐶𝑥 [

− ( J𝛿𝑢𝑖K𝑥 − 𝛿𝑢̌𝑥𝑖 ) J𝑗𝑖(𝒖, 𝜙)K𝑥𝛾 − ( J𝑢𝑖K𝑥 − 𝑢̌𝑥𝑖 ) J𝑗𝑖(𝛿𝒖, 𝛿𝜙)K𝑥𝛾 ]
. (B.2)
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B.2 Confined vertical displacement sensor

𝛿ΠP,y[𝒖, 𝜙, 𝒖̌, 𝜙; 𝛿𝒖, 𝛿𝜙, 𝛿𝒖̌, 𝛿𝜙] =

∫
𝑦 [

𝛽𝑢𝑦 J𝛿𝑢𝑖K𝑦 ( J𝑢𝑖K𝑦 − 𝑢̂
𝑦
𝑖 ) − J𝛿𝑢𝑖K𝑦 J𝑡𝑖(𝒖, 𝜙)K𝑦𝛾 − ( J𝑢𝑖K𝑦 − 𝑢̂

𝑦
𝑖 ) J𝑡𝑖(𝛿𝒖, 𝛿𝜙)K𝑦𝛾 ]

dΓ

+ ∫
𝑦 [

𝛽𝑣𝑦
s
𝜕𝑢𝑖
𝜕𝑦

{𝑦 s
𝜕𝛿𝑢𝑖
𝜕𝑦

{𝑦
−

s
𝜕𝛿𝑢𝑖
𝜕𝑦

{𝑦 {
𝑟𝑖(𝒖, 𝜙)

}𝑦

𝛾
−

s
𝜕𝑢𝑖
𝜕𝑦

{𝑦 {
𝑟𝑖(𝛿𝒖, 𝛿𝜙)

}𝑦

𝛾]
dΓ +

+ ∫
𝑦 [(

J𝛿𝜙K𝑦 − 𝛿𝜙𝑦) J𝑤(𝒖, 𝜙)K𝑦𝛾 + ( J𝜙K𝑦 − 𝜙𝑦) J𝑤(𝛿𝒖, 𝛿𝜙)K𝑦𝛾 ]
dΓ

+ ∑
𝑥∈𝐶𝑦 [

𝛽𝐶𝑢𝑦 J𝛿𝑢𝑖K𝑦 ( J𝑢𝑖K𝑦 − 𝑢̂
𝑦
𝑖 ) − J𝛿𝑢𝑖K𝑦 J𝑗𝑖(𝒖, 𝜙)K𝑦𝛾 − ( J𝑢𝑖K𝑦 − 𝑢̂

𝑦
𝑖 ) J𝑗𝑖(𝛿𝒖, 𝛿𝜙)K𝑦𝛾 ]

. (B.3)

𝛿ΠP,x[𝒖, 𝜙, 𝒖̌, 𝜙; 𝛿𝒖, 𝛿𝜙, 𝛿𝒖̌, 𝛿𝜙] =

∫
𝑥 [

𝛽𝑢𝑥 J𝛿𝑢𝑖K𝑦 ( J𝑢𝑖K𝑦 − 𝑢̂
𝑦
𝑖 ) − J𝛿𝑢𝑖K𝑥 J𝑡𝑖(𝒖, 𝜙)K𝑥𝛾 − ( J𝑢𝑖K𝑥 − 𝑢̌𝑥𝑖 ) J𝑡𝑖(𝛿𝒖, 𝛿𝜙)K𝑥𝛾 ]

dΓ

+ ∫
𝑥 [

𝛽𝑣𝑥
s
𝜕𝑢𝑖
𝜕𝑥

{𝑥 s
𝜕𝛿𝑢𝑖
𝜕𝑥

{𝑥
−

s
𝜕𝛿𝑢𝑖
𝜕𝑥

{𝑥 {
𝑟𝑖(𝒖, 𝜙)

}𝑥

𝛾
−

s
𝜕𝑢𝑖
𝜕𝑥

{𝑥 {
𝑟𝑖(𝛿𝒖, 𝛿𝜙)

}𝑥

𝛾]
dΓ +

+ ∫
𝑥 [(

J𝛿𝜙K𝑥 − 𝛿𝜙𝑥) J𝑤(𝒖, 𝜙)K𝑥𝛾 + ( J𝜙K𝑥 − 𝜙𝑥) J𝑤(𝛿𝒖, 𝛿𝜙)K𝑥𝛾 ]
dΓ

+ ∑
𝑦∈𝐶𝑥 [

𝛽𝐶𝑢𝑥 J𝛿𝑢𝑖K𝑥 ( J𝑢𝑖K𝑥 − 𝑢̂𝑥𝑖 ) − J𝛿𝑢𝑖K𝑥 J𝑗𝑖(𝒖, 𝜙)K𝑥𝛾 − ( J𝑢𝑖K𝑥 − 𝑢̌𝑥𝑖 ) J𝑗𝑖(𝛿𝒖, 𝛿𝜙)K𝑥𝛾 ]
. (B.4)
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B.3 Unconfined vertical displacement actuator

𝛿ΠP,y[𝒖, 𝜙, 𝒖̌, 𝜙; 𝛿𝒖, 𝛿𝜙, 𝛿𝒖̌, 𝛿𝜙] =

∫
𝑦 [

− ( J𝛿𝑢𝑖K𝑦 − 𝛿𝑢̌
𝑦
𝑖 ) J𝑡𝑖(𝒖, 𝜙)K𝑦𝛾 − ( J𝑢𝑖K𝑦 − 𝑢̂

𝑦
𝑖 ) J𝑡𝑖(𝛿𝒖, 𝛿𝜙)K𝑦𝛾 ]

dΓ

+ ∫
𝑦 [

𝛽𝑣𝑦
s
𝜕𝑢𝑖
𝜕𝑦

{𝑦 s
𝜕𝛿𝑢𝑖
𝜕𝑦

{𝑦
−

s
𝜕𝛿𝑢𝑖
𝜕𝑦

{𝑦 {
𝑟𝑖(𝒖, 𝜙)

}𝑦

𝛾
−

s
𝜕𝑢𝑖
𝜕𝑦

{𝑦 {
𝑟𝑖(𝛿𝒖, 𝛿𝜙)

}𝑦

𝛾]
dΓ +

+ ∫
𝑦 [

J𝛿𝜙K𝑦 J𝑤(𝒖, 𝜙)K𝑦𝛾 + ( J𝜙K𝑦 − 𝜙𝑦) J𝑤(𝛿𝒖, 𝛿𝜙)K𝑦𝛾 − 𝛽
𝜙𝑦 J𝛿𝜙K𝑦 ( J𝜙K𝑦 − 𝜙𝑦)]

dΓ

+ ∑
𝑥∈𝐶𝑦 [

− ( J𝛿𝑢𝑖K𝑦 − 𝛿𝑢̌
𝑦
𝑖 ) J𝑗𝑖(𝒖, 𝜙)K𝑦𝛾 − ( J𝑢𝑖K𝑦 − 𝑢̂

𝑦
𝑖 ) J𝑗𝑖(𝛿𝒖, 𝛿𝜙)K𝑦𝛾 ]

. (B.5)

𝛿ΠP,x[𝒖, 𝜙, 𝒖̌, 𝜙; 𝛿𝒖, 𝛿𝜙, 𝛿𝒖̌, 𝛿𝜙] =

∫
𝑥 [

− ( J𝛿𝑢𝑖K𝑥 − 𝛿𝑢̌𝑥𝑖 ) J𝑡𝑖(𝒖, 𝜙)K𝑥𝛾 − ( J𝑢𝑖K𝑥 − 𝑢̂𝑥𝑖 ) J𝑡𝑖(𝛿𝒖, 𝛿𝜙)K𝑥𝛾 ]
dΓ

+ ∫
𝑥 [

𝛽𝑣𝑥
s
𝜕𝑢𝑖
𝜕𝑥

{𝑥 s
𝜕𝛿𝑢𝑖
𝜕𝑥

{𝑥
−

s
𝜕𝛿𝑢𝑖
𝜕𝑥

{𝑥 {
𝑟𝑖(𝒖, 𝜙)

}𝑥

𝛾
−

s
𝜕𝑢𝑖
𝜕𝑥

{𝑥 {
𝑟𝑖(𝛿𝒖, 𝛿𝜙)

}𝑥

𝛾]
dΓ +

+ ∫
𝑥 [

J𝛿𝜙K𝑥 J𝑤(𝒖, 𝜙)K𝑥𝛾 + ( J𝜙K𝑥 − 𝜙𝑥) J𝑤(𝛿𝒖, 𝛿𝜙)K𝑥𝛾 − 𝛽
𝜙𝑥 J𝛿𝜙K𝑥 ( J𝜙K𝑥 − 𝜙𝑥)]

dΓ

+ ∑
𝑦∈𝐶𝑥 [

− ( J𝛿𝑢𝑖K𝑥 − 𝛿𝑢̌𝑥𝑖 ) J𝑗𝑖(𝒖, 𝜙)K𝑥𝛾 − ( J𝑢𝑖K𝑥 − 𝑢̂𝑥𝑖 ) J𝑗𝑖(𝛿𝒖, 𝛿𝜙)K𝑥𝛾 ]
. (B.6)
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B.4 Confined vertical displacement actuator

𝛿ΠP,y[𝒖, 𝜙, 𝒖̌, 𝜙; 𝛿𝒖, 𝛿𝜙, 𝛿𝒖̌, 𝛿𝜙] =

∫
𝑦 [

− ( J𝛿𝑢𝑖K𝑦 − 𝛿𝑢̌
𝑦
𝑖 ) J𝑡𝑖(𝒖, 𝜙)K𝑦𝛾 − ( J𝑢𝑖K𝑦 − 𝑢̂

𝑦
𝑖 ) J𝑡𝑖(𝛿𝒖, 𝛿𝜙)K𝑦𝛾 ]

dΓ

+ ∫
𝑦 [

𝛽𝑣𝑦
s
𝜕𝑢𝑖
𝜕𝑦

{𝑦 s
𝜕𝛿𝑢𝑖
𝜕𝑦

{𝑦
−

s
𝜕𝛿𝑢𝑖
𝜕𝑦

{𝑦 {
𝑟𝑖(𝒖, 𝜙)

}𝑦

𝛾
−

s
𝜕𝑢𝑖
𝜕𝑦

{𝑦 {
𝑟𝑖(𝛿𝒖, 𝛿𝜙)

}𝑦

𝛾]
dΓ +

+ ∫
𝑦 [

J𝛿𝜙K𝑦 J𝑤(𝒖, 𝜙)K𝑦𝛾 + ( J𝜙K𝑦 − 𝜙𝑦) J𝑤(𝛿𝒖, 𝛿𝜙)K𝑦𝛾 − 𝛽
𝜙𝑦 J𝛿𝜙K𝑦 ( J𝜙K𝑦 − 𝜙𝑦)]

dΓ

+ ∑
𝑥∈𝐶𝑦 [

− ( J𝛿𝑢𝑖K𝑦 − 𝛿𝑢̌
𝑦
𝑖 ) J𝑗𝑖(𝒖, 𝜙)K𝑦𝛾 − ( J𝑢𝑖K𝑦 − 𝑢̂

𝑦
𝑖 ) J𝑗𝑖(𝛿𝒖, 𝛿𝜙)K𝑦𝛾 ]

. (B.7)

𝛿ΠP,x[𝒖, 𝜙, 𝒖̌, 𝜙; 𝛿𝒖, 𝛿𝜙, 𝛿𝒖̌, 𝛿𝜙] =

∫
𝑥 [

𝛽𝑢𝑥 J𝛿𝑢𝑖K𝑦 ( J𝑢𝑖K𝑦 − 𝑢̂
𝑦
𝑖 ) − J𝛿𝑢𝑖K𝑥 J𝑡𝑖(𝒖, 𝜙)K𝑥𝛾 − ( J𝑢𝑖K𝑥 − 𝑢̌𝑥𝑖 ) J𝑡𝑖(𝛿𝒖, 𝛿𝜙)K𝑥𝛾 ]

dΓ

+ ∫
𝑥 [

𝛽𝑣𝑥
s
𝜕𝑢𝑖
𝜕𝑥

{𝑥 s
𝜕𝛿𝑢𝑖
𝜕𝑥

{𝑥
−

s
𝜕𝛿𝑢𝑖
𝜕𝑥

{𝑥 {
𝑟𝑖(𝒖, 𝜙)

}𝑥

𝛾
−

s
𝜕𝑢𝑖
𝜕𝑥

{𝑥 {
𝑟𝑖(𝛿𝒖, 𝛿𝜙)

}𝑥

𝛾]
dΓ +

+ ∫
𝑥 [

J𝛿𝜙K𝑥 J𝑤(𝒖, 𝜙)K𝑥𝛾 + ( J𝜙K𝑥 − 𝜙𝑥) J𝑤(𝛿𝒖, 𝛿𝜙)K𝑥𝛾 − 𝛽
𝜙𝑥 J𝛿𝜙K𝑥 ( J𝜙K𝑥 − 𝜙𝑥)]

dΓ

+ ∑
𝑦∈𝐶𝑥 [

− ( J𝛿𝑢𝑖K𝑥 − 𝛿𝑢̌𝑥𝑖 ) J𝑗𝑖(𝒖, 𝜙)K𝑥𝛾 − ( J𝑢𝑖K𝑥 − 𝑢̂𝑥𝑖 ) J𝑗𝑖(𝛿𝒖, 𝛿𝜙)K𝑥𝛾 ]
. (B.8)
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