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ABSTRACT

Mathematical and computational modeling of flexoelectricity at fixed and moving
interfaces, fracture surfaces and contact.

Jordi Barcel6 Mercader

Flexoelectricity is a two-way coupling between strain gradient and polarisation or strain and
polarization-gradient. Harnessing flexoelectricity as a functional property requires gradient
engineering. This is a major step from the uniform-field configurations of piezoelectric
devices, since piezoelectricity couples strains and polarisation. Gradients can be generated
by non-uniform deformation, such as bending and torsion, or through non-uniform material
distributions, electrode configurations and complex geometries. Gradient engineering thus
requires accurate quantitative modelling tools capable of efficiently dealing with all these
elements with high-physical fidelity in order to build engineering tools for the design of
flexoelectric devices.

From a mathematical point of view, flexoelectricity is modelled as a system of coupled
high-order PDEs. This poses important challenges to computationally solving boundary
value problems in general multi-material samples with complex geometries and electrode
configurations.

In this thesis, a theoretical and computational model for flexoelectricity in the presence of
interfaces has been developed and implemented in the context of the hierarchical B-spline
immersed boundary approach. This framework has been used to study physical material
interfaces, as well as fictitious interfaces such as generalized periodicity unit cell boundaries.
The former has been used in multimaterial symmetry-breaking arrangements up-scaling
flexoelectricity in electromechanical devices. For the latter case, an elegant and efficient
implementation making use of the periodicity of the B-spline bases functions has been derived
and used for the design and analysis of flexoelectric architected periodic lattice metamaterials.
Moving interfaces such as cracks and ferroelectric domain boundaries have also been studied
by coupling phase-field models for fracture and ferroelectric microstructure accounting for
flexoelectricity. Finally, flexoelectricity has been shown as a plausible cause for the asymmetric
tribology observed in ferroelectrics in tight collaboration with experimentalists.

Keywords: Flexoelectricity, Continuum mechanics, Interfaces, Periodicity, Ferroelectrics, Fracture.
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Chapter 1

Introduction

1.1 Motivation

When observing our surroundings, we notice that many essential tools in our daily life need a
power supply to work. Human-made machines need energy to perform task that very often
rely on mechanics. Energy is massively transported in form of electricity, which is supplied
to the machines and needs to be transformed into mechanical action. This process is called
electromechanical transduction and strongly relies on electroactive materials. Electroactive
devices that convert an electric input into a mechanical output are called actuators in contrast to
sensors that convert mechanical output into an electric signal. Another group of electroactive
devices is the energy harvester that collects energy from an ambient mechanical source and
converts it to electric energy to power autonomous electronic devices or circuits. .

Sensors are commonly used in electronic devices that, nowadays, are used all around the
world, for example, the contact sensor in mobile phones or the pressure sensor in modern
keyboards, among others. Still, they can be used in biomedical devices, such as blood pressure
measurement devices (Terry et al., 1990) or fetal ultrasounds (Karlsson et al., 1996). Actuators
can yield well-controlled mechanical forces with application to robotics, motors or medical
devices (Ciofani and Menciassi, 2012). The last group is formed by energy harvesters; this
group includes devices to harvest and store energy from the heart’s motion (Dagdeviren et al,
2014), muscle-driven nanogenerators (Li et al., 2010) or even textile nanogenerators (Wu et al,
2012), among others. We refer the reader to Dagdeviren et al. (2016) to see a wide range of
applications illustrated in Fig. 1.1.

Most of the currently used electroactive devices rely on piezoelectric ceramics (Gautschi,
2006, Safaei et al.,, 2019, Sinha et al.,, 2009). Piezoelectricity is the ability to generate an electric
response to a mechanical stimulus. Mathematically, it can be written as a coupling between
polarisation P and stress o, governed by a third rank tensor of piezoelectric coefficients d, as

P[ = dlijo-ij- (11)
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Figure 1.1: Application for electroactive materials. Some of these applications could be energy
harvesters from the heart’s motion, wind waves or even body movements. They can also
widely be used in electronic devices as personal electronics or defence technology, among
others. The image is taken from Dagdeviren et al. (2016).

Conversely, piezoelectrics also deform & under an electric bias E,
&jj = dlijEij- (12)

Piezoelectric materials can be either crystalline, ceramic or polymeric. In each case, piezoelec-
tricity is the result of a different mechanism, but in all cases, it emerges from the existence of
an internal electric dipole, which can be ionic or polymeric. Mechanical deformation induces
changes in these dipoles, resulting in an electrical signal. Conversely, the interaction of the
internal dipoles with external electric fields produces a mechanical deformation of the material.
This mechanism is schematically illustrated on a cartoon of an ionic crystalline piezoelectric
in Fig. 1.2. Piezoelectricity has two significant characteristics that we want to highlight. The
first is reversibility, an opposite input yields an opposite output, and the second is its scale
invariance.

The presence of an internal dipole in the material is thus key to piezoelectricity. For
this, a non centro-symmetric arrangement of ions or molecules is mandatory. In the case of
ionic crystals, of the thirty-two point groups, just twenty are non-centrosymmetric. Another
limitation, the best piezoelectric materials are brittle ferroelectric ceramics, exhibiting fracture
toughnesses in the order of that of glass. The most widely used piezoelectric material is PZT,
with a 60% content of toxic lead. The crystalline structure of the grains depends on temperature,
and the material looses its piezoelectric properties above a certain transition temperature, the
Curie temperature. Common piezoelectrics have quite low Curie temperatures, precluding
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their use in extreme conditions. For instance, commercial PZT compositions have a Curie
temperature around 350°C, which limits the operating temperature range to 150 — 250°C.
Although the world, especially Occident, is trying to replace lead-based ceramics, it is still far
from achieving it (Cross, 2004, Hong et al., 2016, Saito et al., 2004, Wu, 2020).

Piezoelectricity has been widely investigated since its demonstration by Pierre Curie in
1880. Its coupling with other physics, like pyroelectricity (temperature) or ferroelectricity,
has also been studied. Besides piezoelectricity, other electromechanical couplings are also
possible. All of them have been considered and explored to potentially overcome some of the
limitations of piezoelectrics in specific situations.

On one hand, soft dielectrics such as dielectric elastomers exhibit electrostriction, the
elongation of the material resulting from the movement of cations in the direction of an
external electric field and anions in the opposite direction. This displacement accumulates
throughout the bulk material and results in an overall elongation in the direction of the field.
Similarly, the Maxwell stress effect is generated by electrostatic forces between positive and
negative charges on the interfaces of electrodes and dielectric elastomer films. Both effects
depend quadratically on the polarisation, and thus a reversal of the applied electric field does
not reverse the sign of the induced strain. Furthermore, only actuation is achieved, and sensing
is not possible, i.e. these mechanisms do not induce an electric signal upon deformation.

Another electromechanical coupling mechanism is provided by flexoelectricity. Although
negligible at the macroscale, it is a universal effect present in all dielectrics which is significant
at submicron scales. Flexoelectricity is the two-way coupling between strain gradients and
electric field or polarisation (direct effect), and a coupling between strain and electric field
gradient or polarisation gradient (converse effect). The direct effect is thus the generation
of polarisation or electric field due to an inhomogeneous deformation such as bending or
twisting. It has been observed in Cross (2006), Hana (2007), and it is expressed mathematically
as a linear property by

Py = pije—> (1.3)

oxy’
where 1 is a fourth-rank tensor called the flexoelectric tensor. The inverse effect is also true,
i.e. an electric field generates a strain gradient in the material (Bursian and Zaikovskii, 1968,
Zubko et al., 2013).
The converse effect refers to the generation of mechanical strain or stress under inhomoge-
neous electric or polarisation fields. It has been observed in Abdollahi et al. (2019), Fu et al.
(2006), Hana et al. (2006). Mathematically, it is written as

E;
oo = fri L 1.4
ij ﬁ”kaxk ( )

Like piezoelectricity, flexoelectricity is a two-way coupling. However, unlike piezoelectricity,
which is restricted by symmetry, flexoelectricity is present in all dielectrics thus a universal
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property in dielectrics, regardless of material symmetry, see Fig. 1.2. Another difference is
that being a property involving gradients, the flexoelectric effect depends inversely on size.
Because of that, flexoelectricity was not investigated until recently, when nanotechnology was
sufficiently advanced, as shown in Fig. 1.3. Interestingly, advances in nanotechnologies have
triggered an increasing interest in flexoelectricity.

Homogeneous deformation Inhomogeneous deformation (bending)
P
Non . B
centrosymmetric ‘ -
structure ot
o |fe
\F
Centrosymmetric P
structure L e
5 TF .

Figure 1.2: Illustration of direct piezoelectricity and flexoelectricity through homogeneous
and inhomogeneous deformation in centrosymmetric and non-centrosymmetric structures. a)
Applying a homogeneous force in a non-centrosymmetric structure results in a change in the
net polarisation (piezoelectric effect). b) Applying an inhomogeneous deformation in a non-
centrosymmetric structure also results in a change in the net polarisation (direct flexoelectric
effect). ¢) Applying a homogeneous deformation in a centrosymmetric structure produces no
electric response. d) Applying an inhomogeneous deformation in a centrosymmetric structure
induces a non-zero net polarisation (direct flexoelectric effect).

1.2 Evidence of flexoelectricity

Flexoelectricity was theoretically discovered by Mashkevich and Tolpygo (1957) and math-
ematically formulated by Kogan (1964), but it was first observed in 1968 by Bursian and
Zaikovskii (1968). The authors observed bending of a thin cantilever film in the presence of
an electric field, which cannot be explained by piezoelectricity and was thus attributed to
flexoelectricity. Bending was always in the direction of the positive electrode, meaning that
the direction of bending could be reversed upon electric field reversal. They also observed
charges on the film’s surfaces when bent without any external electric field. That was the
first demonstration of the two-way coupling of flexoelectricity. They needed a thin film of the
order of micrometres to observe the effect. Such small sizes were out of the reach of fabrication
technologies at that time, which explains why researchers lost interest in flexoelectricity
until the developments of nanotechnology allowed us to fabricate and manipulate devices



1.2 Evidence of flexoelectricity 5

175
150

125

a
S 100
€
35
bS] 75
()
50
25

0
1974 1978 1982 1986 1990 1994 1998 2002 2006 2010 2014 2018 2022

Year

Figure 1.3: Number of publications on flexoelectricity per year. The image has been taken
from Scopus, searching the word "flexoelectricity” and sorted by year.

at flexoelectrically relevant scales. Flexoelectricity is universal in dielectrics and has been

observed in multiple materials. We report next the most relevant ones.

1.2.1 Flexoelectricity in liquid crystals

While investigating the piezoelectric effect in liquid crystals, Meyer (1969) found another
mechanism coupled with strain gradient, which he termed flexoelectricity. Two types of
molecules can be found in a crystal: a pear molecule and a banana molecule. Under a free
tension configuration, both of them exhibit zero overall net polarisation, as seen in Fig. 1.4a-b.
However, under the effect of an inhomogeneous deformation such as bending, they redirect
themselves to minimise the total energy of the configuration giving rise to a net polarisation,
as shown in Fig. 1.4c-d.

1.2.2 Flexoelectricity in biological systems

Flexoelectricity has been observed in cellular membranes (Ahmadpoor et al., 2013, Ahmadpoor
and Sharma, 2015, Duerloo and Reed, 2013, Petrov, 2002, Todorov et al., 1991). Duerloo and
Reed (2013) found that lipid bilayers can exhibit a strong coupling between curvature and
electric fields. Furthermore, Duerloo and Reed showed that the bilayer had a displacement of
approximately 1000 times larger than a single layer (see Fig. 1.5a). Ahmadpoor et al. (2013)
also found that lipid molecules have some electric dipoles in the membranes, which explains
their curvature (see Fig. 1.5b).

Flexoelectricity has also been found to play a role in the mammalian hearing mechanism
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Figure 1.4: Flexoelectric effect in liquid crystal. a-b) Pear and banana molecules under free
tension configuration. Both of them exhibit zero net overall polarisation. c-d) Pear and
banana molecules under inhomogeneous deformation. Both of them exhibit a non-zero overall
polarisation. Image extracted from Meyer (1969).
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Figure 1.5: a) The lipid bilayer exhibits a strong coupling between curvature and electric fields
thanks to flexoelectricity. Image adapted from Duerloo and Reed (2013). b) Lipid bilayer with
some electric dipoles inside. Those dipoles create an electric field that bends the bilayer, thanks
to inverse flexoelectricity. Image adapted from Ahmadpoor et al. (2013).
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(see Fig. 1.6). Stereocilia in hair cells are biological flexoelectric sensors for sound. The hair
cell membranes convert the acoustic vibration into amplified electrical signals (Ahmadpoor
and Sharma, 2015, Krichen and Sharma, 2016, Oghalai et al, 2000, Peng et al., 2011).
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Figure 1.6: a) Cross-section of the organ of Corti pointing out the salient features relevant to
hearing transduction. b) Scanning electron microscopy image looking at the apical surface
of hair cells. c¢) Enlargement of a schematic of the hair bundle and hair cell apical surface. d)
Cross-sectional view of the MET channel illustrating putative binding sites (Peng et al, 2011)

It is well known that human bones are piezoelectric, due to the highly oriented and patterned
structure of collagen. It has been recently claimed that flexoelectricity plays a key role in
triggering the self-reparing mechanism in bones (Vasquez-Sancho et al, 2018). Micro-cracks
in the bones generate a very large strain gradient in the vicinity of the crack tips that induces
an electric field. This effect was first attributed to piezoelectricity, but nowadays, it is known
that the principal constituent of bones has a centrosymmetric structure and thus, cannot
exhibit piezoelectricity. This electric field generates a stimulus able to initiate the healing
process (see Fig. 1.7) (Vasquez-Sancho et al., 2018). Finally, flexoelectricity plays a crucial
role in enhanced toughness of the stomatopod dactyl club. It is known that the stomatopod
dactyl club is one of the most damage-tolerant materials in the world. It can break materials
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such as shells and is used to defend or attack prey. The claws undergo repeated high-velocity
and high-force impacts. The graded structure of the club, leads to a grading in mechanical
material properties. This property gradient induces a mechanical gradient that can trigger the
flexoelectric effect, generating a flexoelectrically induced electric field that enhances toughness
(see Fig. 1.8) (Abdollahi et al., 2015a, Vasquez Sancho, 2018, Weaver et al., 2012).

a) b)
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Figure 1.7: a) Recreation of a bone micro-crack b) Electric field distribution close to crack.
Image adapted from Vasquez-Sancho et al. (2018)

Figure 1.8: Image of a Stomatopod, the white arrow indicates the dactyl club and division of
the two main segments of the club: Dactyl and propodus. Image adapted from Vasquez Sancho
(2018)

1.2.3 Flexoelectricity in ionic crystals and hard ceramics

Flexoelectricity is also observed in ionic crystals and hard ceramics. Strain gradients are created
upon bending on a two-dimensional plate and a difference of tension between the stretched
upper and the compressed bottom part is created (see Fig. 1.2). Because of flexoelectricity, a
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polarisation in the same direction of the strain gradient is generated, as seen in Cross (2006),
Ma and Cross (2002, 2001a). The relationship between elastic strain gradient and electric
polarisation was investigated in the relaxor ferroelectric lead magnesium niobate ceramic.
Experimental studies done by Ma and Cross (2001b) indicated that flexoelectric polarisation is
linearly proportional to the applied strain gradient as shown in Fig. 1.9
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Figure 1.9: Flexoelectricity in ionic crystals and ferroelectric ceramics. a) Experimental setup
for the measurement of the flexoelectric effect. The loudspeaker produces the bending of
the sample and the displacement transducer measures the displacement at several positions
along the sample bar. A very thin layer of sputtered gold is used as electrode at the bottom of
the sample. b) The relationship between flexoelectric polarisation and strain gradient in the
ceramics. Image extracted from Ma and Cross (2001b)

Domain walls in ferroelectric ceramics, which constitute an interface of strain and po-
larisation gradients, can trigger the flexoelectric effect as seen in Wang et al. (2020). Wang
et al. (2020) showed that some typical domain wall distributions are only possible due to

flexoelectricity.

1.2.4 Flexoelectricity in polymers

Most experiments in the literature report a low effect of flexoelectricity in polymers, ex-
cept in some special cases. The origin of flexoelectricity in elastomers has been adressed in
Grasinger et al. (2021). Grasinger et al. (2021) shows that combining stretching and bending is
a mechanism for obtaining giant flexoelectricity.

Although the flexoelectric coefficients are typically smaller than those in inorganic ma-
terials, polymers have some advantages, for example, easy processing, low processing cost
and desirable for practical application (Baskaran et al,, 2011a, 2012, 2011b, Breger et al., 1976,
Marvan and Havranek, 1998). Under a similar stress, polymers exhibit a stronger deformation
than those created in hard ceramics, thus, a useful electromechanical response is created (Chu
and Salem, 2012, Zhou et al., 2017).
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1.3 Characterisation of flexoelectricity

According to Egs. (1.3-1.4), the flexoelectric tensor has rank 4, and thus, with no additional
assumption, it has 54 independent parameters (Le Quang and He, 2011, Shu et al., 2011).
Under the premise of cubic symmetry, which is a reasonable assumption for a wide variety of
materials, we reduce that number to three independent coefficients. They are the so-called
longitudinal, transversal and shear coefficients, and the mathematical description of the cubic
flexoelectric tensor is

ll<x>iiii = HL, i=123;
H<x>ijji = HT, ,j=1,2,3 : i#];
B = B i = s Lj=1,23 : i#], (1.5)

oriented so that the vertical axis is x. Even in the case of cubic flexoelectrics, flexoelectricity
is difficult to measure experimentally for two reasons: the need to have a high-resolution
technology and the difficulty of isolating the effect of each independent coefficient. Another
simplification that could be used is isotropy and it is fulfilled if (Le Quang and He, 2011)

pr = pit = 2p1s = 0. (1.6)

Flexoelectricity can be characterised either in experiments or through first-principle calcula-
tions. Next, we give a brief overview of both.

1.3.1 Experimental characterization

The longitudinal coefficient can be measured in the direct effect using the truncated pyramid
setup as done in Cross (2006), Hana (2007), Marvan and Havranek (1998). In this method, a
matrix of truncated pyramids is used; the difference in area between the bottom face and the
top face creates a strain gradient in the vertical direction, resulting in a vertical electric field
(see Fig. 1.10). Another way of determining this coefficient is creating a graded electric field and
computing the vertical strain as done in Hana (2007). Most of the experiments use ionic crystals
or ferroelectric ceramics because the flexoelectric coefficients are known to be proportional to
the dielectricity constant, which is larger in these materials (Zubko et al., 2013). There are some
discrepancies between the theoretical values and the experimental values of the flexoelectric
coeflicients. Some reasons are the interplay between electrostriction and flexoelectricity as
reported in Zubko et al. (2013) or the simplified analytical estimations of strain gradients in
compressed pyramids that significantly overestimate flexoelectric coefficients (Abdollahi et al.,
2015b). For this reason, the experimental values greatly exceed the expected ones, as seen
in BaTiOs-based ceramics where the experimental value exceeds by 5 — 10V the theoretical
one. For PMN-PT, the measured coefficients vary by orders of magnitude depending on the
measurement method used (Hana, 2007, Hana et al, 2006).



1.4 Flexoelectricity in technology 11

The transversal coeflicient is the easiest one because it can be mobilised upon beam bending,
which creates a transversal electric field. Two different setups can be found in the literature:
cantilever beam bending (see Fig. 1.10) (Huang et al., 2017, 2011, Kwon et al., 2014, Li et al.,
2014, 2013, Shu et al., 2017, 2016, 2013) and four-point bending (see Fig. 1.10) (Ma and Cross,
2003, Narvaez and Catalan, 2014, Narvaez et al., 2015, Zubko et al, 2007).

The quantification of shear stress is not trivial and there has yet to be a well-established
method. A natural choice is torsion of flexoelectric bars. Nevertheless, torsion-induced strain
gradients result in vanishing flexoelectric response in cubic systems, regardless of the shape of
the bar’s cross-section (Mocci, 2021, Mocci et al, 2023). A significant response can be obtained
by considering a varying cross-section, although the response, in this case, involves all three
flexoelectric modes, and a carefully derived correction is needed, as seen in Mocci et al. (2023).
In her thesis, Mocci proposed using a half-truncated cone under torsion to quantify the shear
coeflicient in cubic flexoelectrics (see Fig. 1.10).

1.3.2 First principles calculations

The first theoretical model was proposed by Kogan (1964). He stated that the flexoelectric
coefficient could be approximated as

1 g

f= dreyd (1.7)
where d is the interatomic distance, ¢ is the vacuum permittivity, and q is the electronic
charge. Nowadays, there are two models to quantify flexoelectric coefficients theoretically. The
first relies on atomistic computation, where the flexoelectric coefficient is computed through
the polarisation induced by bending using atomistic computations, such as density functional
theory (DFT) (Codony et al, 2021c, Dumitrica et al., 2002, Kalinin and Meunier, 2008, Kumar
et al, 2021, Shi et al, 2018), and the second relies on the first-principle theory of flexoelectricity
based on density functional perturbation theory (DFPT) (Codony et al., 2021b, Dreyer et al.,
2018, Hong and Vanderbilt, 2013, Resta, 2010, Stengel, 2013, 2014).

1.4 Flexoelectricity in technology

As electromechanical components in electronic devices are shrinking, the role of flexoelectricity
is becoming increasingly significant. Understanding flexoelectricity is important, not only to
harness it as a functional property, but also to understand its interaction with piezoelectricity
in current electromechanical devices.

Some sensors are based on flexoelectricity, such as a microcurvature flexoelectric sensor
(Yan and Jiang, 2013) or a sensor that converts the curvature of the beam into an electric
signal (Huang et al., 2012, Merupo et al., 2017).

As commented before, common piezoelectric materials have some disadvantages that we
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Figure 1.10: Setups for flexoelectric coefficient quantification. a) Arrangement of the truncated
pyramid under vertical compression, the longitudinal coefficient can be measured. b-c)The
transversal coefficient can be measured in the cantilever beam bending setup and three-point
bending. d) Half truncated cone under torsion, the shear coefficient can be measured. Panel
constructed using images from Hana (2007), Huang et al. (2017), Mocci (2021), Zubko et al.
(2007)

should keep in mind: brittleness, toxicity resulting from high lead content and limited range
of operating temperature being the main ones. For that reason, replacing materials with
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flexoelectric ones is of interest. Some studies try to mimic the piezoelectric response using an
architected non-piezoelectric material. This response is usually called apparent piezoelectricity.
The idea is to break the symmetry of the non-piezoelectric material by the design of a fancy
architected structure, such that after applying a homogeneous deformation, we obtain a net
polarisation. This architecture can be done in different ways, as multi-material stacks (see
Fig. 1.11a) (Liu et al, 2016a), flexural thin films (see Fig. 1.11b) (Chu et al, 2009), geometrically
polarised cavities in the material (see Fig. 1.11c) (Deng et al., 2014a, Sharma et al.,, 2007), or
juxtaposition on a plane of polar elements such as micro-pyramids (see Fig. 1.11d) (Cross, 2006,
Fousek et al., 1999, Fu et al., 2007, Zhu et al., 2006).

a)

X

Figure 1.11: Architected structures triggering flexoelectric effect. a) Multimaterial stack from
Liu et al. (2016a) b) Structure made by flexural thin film from Chu et al. (2009). c) Nanocomposite
with conical inclusions from Sharma et al. (2007). d) Flexoelectric composite made by the
arrangement of truncated pyramids from Fu et al. (2007).

Some studies and experiments rely on the interplay between piezoelectricity and flexoelec-
tricity in wrinkling or buckling deformation modes (see Fig. 1.12) (Chen et al., 2010, Dong et al.,
2020, Feng et al., 2011, Han et al, 2016, Park et al, 2010, Su et al., 2018). Indeed, flexoelectricity
can either enhance or destroy piezoelectricity depending on design, as shown by Abdollahi and
Arias (2015a). They studied the interplay in a bimorph, where two piezoelectric layers with
opposite piezoelectric principal directions were attached, as seen in Fig. 1.13a. They observed
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that at intermediate sizes where the piezoelectric and flexoelectric effects are comparable, the
interplay between them could be constructive or destructive, leading to a dramatic degradation
of the performance of piezoelectric devices depending for some designs, see Fig. 1.13b-c. These
experiments highlight the need for flexoelectricity-aware designs at the microscale.

PDMS polymer

PZT nanofibers

wires electrodes

Silicon substrate

~

Vo ~

Extraction electrodes

Figure 1.12: Flexoelectric devices using wrinkling or buckling deformation modes. a) Prestretch
BTO membrane. The image is taken from Dong et al. (2020). b) Nanogenerator for mechanical
energy harvesting using PZT nanofibers. The image is taken from Chen et al. (2010).

Last but not least, I want to comment on flexoelectricity in ferroelectrics. As will be dis-
cussed in detail in Chapter 5, one characteristic of ferroelectrics is that they exhibit spontaneous
polarisation. This spontaneous polarisation is closely related to a spontaneous elongation of
the ionic crystal unit cell with respect to the cubic non-polar reference configuration. In a
vertically polarised thin film, polarisation can be switched 180 degrees with a vertical electric
bias. Mechanical pressure can switch polarisation 90 degrees inducing a phase transformation
from a vertically elongated tetragonal unit cell to a horizontally elongated tetragonal unit cell.
However, uniform mechanical pressure cannot induce 180-degree switching, see Fig. 1.14. It
has been shown though, that the generation of strain-gradients and the resulting flexoelectric
electric fields can switch polarisation vertically upon localised pressure under an AFM tip
(Catalan et al., 2011, Lu et al, 2012, Park et al., 2018), as shown in Fig. 1.15

1.5 Objectives of the thesis

Flexoelectricity is a gradient effect and thus harnessing flexoelectricity as a functional property
requires gradient engineering. This is a major step from the uniform-field configurations of
piezoelectric devices, as becomes clear in the previous sections. Gradients can be generated
by non-uniform deformation, such as bending and torsion, or through non-uniform material
distributions, electrode configurations and complex geometries. Gradient engineering thus
requires accurate quantitative modelling tools capable of efficiently dealing with all these
elements with high-physical fidelity in order to construct engineering tools for the design of
flexoelectric devices.

From a mathematical point of view, as hinted by Egs. (1.3) and 1.4 and later explained in
detail in chapter 2, flexoelectricity is modeled as a system of coupled high-order PDEs. This
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Figure 1.13: Piezoelectricity vs flexoelectricity in a bimorph. a) Setup of the experiment: a
bilayer with series (top) or parallel (bottom) arrangement, clamped on the left side, fixed to
the ground at the top side, and a force is applied in the top right corner. b) Normalised voltage
as a function of the normalised beam thickness for the parallel bimorph arrangements. c)
Normalised voltage as a function of the normalised beam thickness for the series bimorph
arrangements. Image adapted from Abdollahi and Arias (2015a)

poses important challenges to computationally solving boundary value problems in general
multimaterial samples with complex geometries and electrode configurations.

In this thesis we focus on the modelling of material interfaces, fictitious interfaces such as
periodic boundaries of RVEs in heterogeneous media and moving phase boundaries such as
ferroelectric domain walls, in the context of high-order problems.

The thesis’ main goal is to formulate and implement a theoretical and computational
framework and platform to solve general electromechanical boundary value problems in
flexoelectric solids with interfaces. We consider both actual material interfaces in multi-
material configurations, and fictitious periodicity boundaries. We use this framework to
analyse flexoelectric metamaterials and devices, and explore and understand flexoelectric
manifestations at moving interfaces, such as ferroelectric domain walls, cracks, and in friction.
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Figure 1.14: Schematic of the ferroelectric unit cell under large electric field or stress. At the
top, the direction of the stress or the electric field is parallel to the electric dipole, producing
a stretching of the unit cell. At the bottom, the direction of the stress or electric field is

anti-parallel, producing a 180° switching in the case of the electric field and 90° in the case of
the stress.

We also present a study of flexoelectricity in graded materials. This thesis is challenging
since it covers theoretical and computational aspects as well as the physical understanding of
flexoelectricity in complex systems.

The specific objectives of this thesis are

+ Study the continuum model associated with flexoelectricity in dielectrics at infinitesimal
deformations and the different variants of flexoelectricity: direct formulation and Lifshitz-
invariant formulation.
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Figure 1.15: Selective control of multiple ferroelectric switching pathways using a trailing
flexoelectric field. The image is taken from Park et al. (2018).

« Explore different numerical methods that can solve fourth-order PDE, such as the
isogeometric approach with b-splines and immersed approach with b-splines.

« Extend the continuum framework for material interfaces from low-order to high-order
problems. It is necessary for solving fourth-order PDE problems such as flexoelectricity.

« Formulate and implement generalised periodicity conditions for high-order electrome-
chanical problems, and use them to simulate RVE in periodic flexoelectric metamaterials.

« Extend the formulation to non-homogeneous materials and study flexoelectricity in
graded materials.
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« Collaborate with experimentalists in the study of the flexoelectric effect in friction and
wear under AFM scanning. Study different contact models and extend the formulation
considering axisymmetric conditions. Perfom simulations of contact of AFM tip on
flexoelectric thin films.

+ Formulate and implement a phase field model for fracture and microstructure evolution
in ferroelectric crystals accounting for flexoelectricity, strain gradient elasticity and
strain gradient dielectricity in a high-performance computing platform. Study the effect
of flexoelectricity at domain walls in in ferroelectrics and their interaction with fracture.
Understanding phase-field modelling of polarisation and fracture and studying the
characteristics of the method, including the quasi-static performance.

1.6 Outline

The manuscript is divided as follows. Chapter 2 presents in detail the continuum model
for flexoelectricity. The first half of the chapter describes the direct flexoelectricity model
with high-order interface conditions. Those interface conditions are extended to model also
generalised periodicity conditions and are implemented using a novel Nitsche’s formula. Strong
generalised periodicity conditions are considered along with the macroscopic kinematics of the
model, for the Lifshitz-invariant flexoelectric model which explicitly accounts for direct and
converse flexoelectricity. Chapter 3 is devoted to the numerical approaches used in the thesis.
On one hand, we have the isogeometric approach using the b-spline method, and on the other
hand, we have the immersed approach using b-splines again. Chapter 4 shows the performance
of the numerical model with several applications, including interfaces, generalised periodicity
and graded structure applications. Chapter 5 particularises the model presented in Chapter 2
for axisymmetric conditions. This model is used to simulate the flexoelectric response of a
dielectric sample upon indentation. Chapter 6 extends a phase-field model for microstructure
and fracture evolution if ferroelectric single crystals (Abdollahi and Arias, 2011a, 2012) to
account for lifshitz-invariant flexoelectricity augmented with strain gradient elasticity and
gradient dielectricity. This model couples two phase-field models, one for the polarisation
field and one for fracture. Chapter 7 summarises the work and presents the main conclusions.

1.7 List of publications

1.7.1 Publications in scientific journals

« J. Barcel6-Mercader D. Codony, S. Fernandez-Méndez, and 1. Arias. Weak enforcement
of interface continuity and generalized periodicity in high-order electromechanical
problems. International Journal for Numerical Methods in Engineering 123(4), 901-923
(2022).
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This work presents a formulation for the weak enforcement of continuity conditions
at material interfaces in high-order problems, particularised to flexoelectricity. It uses
Nitsche’s method, which is particularly suited for unfitted discretisations. This formula-
tion is extended to impose generalised periodicity conditions at the unit cell boundaries
of periodic structures. Optimal high-order convergence rates are obtained with an
unfitted B-spline approximation, confirming the method’s reliability. The numerical
simulations illustrate the usefulness of the proposed approach towards the design of
functional electromechanical multi-material devices and metamaterials harnessing the
flexoelectric effect.

« D. Codony, A. Mocci, J. Barcel6-Mercader, and I. Arias. Mathematical and computa-
tional modeling of flexoelectricity. Journal of Applied Physics 130(23), 231102 (2021).

This paper revisits the mathematical modelling of the flexoelectric effect in the context
of continuum mechanics at infinitesimal deformations. It establishes and clarifies the
relation between the different formulations, points out theoretical and numerical issues
related to the resulting boundary value problems, and presents the natural extension
to finite deformations. It also offers a B-spline-based computational technique to nu-
merically solve the associated boundary value problems. It can be extended to handle
unfitted meshes, allowing for arbitrarily-shaped geometries.

+ J. Barcel6-Mercader, A. Mocci D. Codony, and I. Arias. High-order generalized period-
icity conditions for architected materials with application to flexoelectricity. Submitted

This work presents a formulation for high-order generalised periodicity conditions par-
ticularised for flexoelectricity employing a generalised periodic space of approximation
to computationally model Representative Volume Element (RVE) of periodic structures.
The high-order generalised periodicity conditions are needed to solve the fourth-order
flexoelectric PDE because C! continuity is mandatory between RVE and elements. The
complex RVE is solved efficiently in an immersed boundary approach. Also, the response
of architectural material against different loading angles is studied.

« A. Mocci, J. Barcelo-Mercader, D. Codony, and I. Arias. Geometrically polarized
architected dielectrics with apparent piezoelectricity. Journal of the Mechanics and
Physics of Solids 157, 104643 (2021).

This paper proposes a class of low area-fraction, bending-dominated metamaterials that
exhibit apparent piezoelectricity, even though the base material is not piezoelectric,
thanks to flexoelectricity. It quantifies the apparent piezoresponse thanks to accurate
simulations of continuum flexoelectricity. It characterises how apparent piezoelectricity
depends on lattice geometry, orientation, feature size and area fraction. The paper
generally provides the rules to endow any dielectric metamaterial with apparent piezo-
electricity, enabling non-toxic, environmentally friendly and biocompatible artificial
materials for electromechanical transduction.
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+ S. Cho, . Gaponenko, K. Cordero-Edwards, J. Barcelo-Mercader, 1. Arias, C. Lichten-
steiger, J. Yeom, L. Musy, H. Kim, and G. Catalan. Switchable tribology of ferroelectrics.
arXiv 2208.11373 (2022). Under review in Nature Communications

Artificially induced asymmetric tribological properties of ferroelectrics offer an alter-
native route to visualise and control ferroelectric domains. In this paper, we observe
the switchable friction and wear behaviour of ferroelectrics using a nanoscale scanning
probe. Down domains having lower friction coefficient than up domains can be used
as smart masks as they show a slower wear rate. This asymmetry is enabled by flexo-
electrically coupled polarisation in the up and down domains under a sufficiently high
contact force. Moreover, we show that this polarisation-sensitive tribological asymmetry
is universal across ferroelectrics with different chemical compositions and crystalline
symmetry. These findings establish that ferroelectrics are electrically tunable tribological

materials at the nanoscale for versatile applications.

«+ J. Barcelo-Mercader, and 1. Arias. Flexoelectric effect in fracture of ferroelectrics. In

preparation

This work presents a double phase-field model, where polarisation and damage field are
described by means of two phase-field variables, along with Lifshitz-invariant formula-
tion for flexoelectricity. It studies the evolution of the damage field in the presence of
different static polarisation fields and domain walls and how flexoelectricity affects the
behaviour of the cracks. Finally, it studies the evolution of crack whens the polarisation
field is no longer static and has a quasi-static behaviour.

 J. Barcelo-Mercader, S. Serrahima i Serra, and L. Arias. Flexoelectric effect in graded

structures. In preparation

This work explores the flexoelectric effect in graded structures. The formulation for
flexoelectricity is modified to consider an anisotropic material tensor. The examples
explore the possibilities of creating graded structures as sensors and actuators that

exhibit apparent piezoelectricity using only flexoelectric materials.



Chapter 2

Continuum model of linear
flexoelectricity with material
interfaces or fictitious boundaries.

In this chapter, we present the mathematical framework for flexoelectricity in the presence of
material interfaces and fictitious boundaries. The latter is common in the solution of boundary
value problems in periodic structures and heterogeneous materials through the analysis of
RVE. First, we review the existing continuum models for flexoelectricity focusing on enthalpy
formulations, with displacement u and electric potential ¢ as primal state variables. Among
those, two models are presented, that accounting in the enthalpy only for direct flexoelectricity
explicitly, and that accounting explicitly for both direct and converse flexoelectricity. It
is important to note that both formulations model the same physics and lead to the same
governing equations. Nevertheless, as pointed out in Codony et al. (2021a), the models differ
in the constitutive equations and the boundary conditions, and they have to be interpreted
carefully when solving specific boundary value problems (Codony et al.,, 2021a, 2019).

Mathematically, the governing equations are a system of coupled fourth-order PDEs. There
are several approaches to deal with the high-order nature of the equations. An attractive
choice is the use of an immersed boundary hierarchical B-spline method (Codony et al., 2019),
where the smooth B-spline basis functions provide the required continuity while the immersed
boundary approach allows to account for general sample geometries. In this context, essential
conditions on surfaces and interfaces cannot be imposed strongly since the basis functions
are not interpolant at the immersed boundary (Codony et al., 2019). A common approach for
the weak imposition of these conditions is the use of Nitsche’s method, a consistent penalty
method (Fernandez-Méndez and Huerta, 2004, Nitsche, 1970). Nitsche’s method preserves the
variational structure of the problem, since it boils down to adding new terms to the energy
functional.

We first derive the equilibrium and continuity equations for material interfaces, which

21
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are termed high-order interface conditions. We then present the corresponding variational
formulation for a multimaterial flexoelectric using Nitsche’s method to impose high-order
interface conditions weekly.

We then particularise this formulation to fictitious boundaries with high-order generalised
periodic conditions. We state these conditions for the case of horizontal and vertical periodicity,
and derive the corresponding variational formulation, as a particular case of the previous one.

Finally, we generalise the formulation to account for high-order generalised periodicity in
arbitrary directions. The conditions are stated and related to a macroscopic enthalpy functional.
Later, the boundary value problem for flexoelectric RVE is described. Finally, ongoing work is
shown where high-order interface conditions for Lifshitz-invariant flexoelectricity are stated
along with Nitsche’s method variational formulation.

2.1 Variational formulation of state-of-the-art flexoelectric
models

The first theoretical studies of flexoelectricity were done by Mashkevich and Tolpygo (1957)
and Tolpygo (1963), the first model for flexoelectricity in crystalline dielectrics was proposed by
Kogan (1964), but the first work clearly distinguishing piezoelectricity and flexoelectricity was
introduced by Tagantsev (1986, 1991). The complete framework considering strain gradient
elasticity, flexoelectric coupling and polarisation effect was proposed by Sahin and Dost (1988).
After that, a simple framework for isotropic dielectric was proposed by Maranganti et al.
(2006a). Recently, different continuum models for flexoelectricity exist, including new physics,
such as flexoelectricity in ferroelectric (Catalan et al., 2004, Eliseev et al, 2009a), surface effects
(Shen and Hu, 2010) or even including the photovoltaic effect (Shu et al, 2020, Yang et al.,
2018). Comprehensive reviews for flexoelectricity in solids can be seen in Krichen and Sharma
(2016), Nguyen et al. (2013), Wang et al. (2019), Yudin and Tagantsev (2013), Zubko et al.
(2013).

Different models for flexoelectricity in dielectrics are formulated depending on the choice
of state variable. The most natural choice from a physical perspective is considering the dis-
placement u and electric polarisation P as the primal unknowns. It yields a global minimisation
problem of the physical free energy. This free energy functional is expressed as (Liu, 2014,
Maranganti et al., 2006a)

1

M[u, P] = / (v P+ S llBJ ) a0 - W, (2.1)
Q

where Q is the domain occupied by the flexoelectric material, 1™ is the internal energy density,

%EOHE || is the electrostatic energy density, with €, the vacuum permittivity, E the electric field,

and W is the external work. The internal energy density can be written in several different

ways, e.g., considering only direct flexoelectricity explicitly, or considering both direct and
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converse flexoelectricity explicitly, among others (Codony et al., 2021a)
The variational principle associated with the energy functional in Eq. (2.1) is the constrained
minimisation problem

(u', P") = argmin mgn I[u, P], (2.2)
u
such that stationary Maxwell’s equations hold:

VxE =0, (2.3a)
V-D =0. (2.3b)

An alternative model, which avoids having a constrained minimisation problem, consists of
considering displacement u and electric potential ¢ as primal unknowns. The electric potential
¢ is defined such that it satisfies

E = -V¢; (2.4)

thus, Faraday’s law in Eq. (2.3a) is automatically fulfilled. We define the free enthalpy as done
in Abdollahi et al. (2014), Deng et al. (2014b), Zhuang et al. (2020) as

M 8] = | v gy d2 - wo, (25)

where ¥ is the free enthalpy density. The variational problem is now an unconstrained
min-max problem:

(u',P") = arg muin mq?x [u, ¢]. (2.6)

As derived in detail in Codony (2021), both formulations are related by a partial Legendre
transform, and are thus equivalent. In this thesis, we consider displacement and electric
potential as primal unknowns since avoiding the constraint resulting from Maxwell-Faraday’s
law and thus solving the unconstrained minimisation problem has some numerical advantages.

2.1.1 Direct flexoelectricity model

We follow here the notation by Codony et al. (2019) and Barcel6-Mercader et al. (2022). Let Q
be a physical domain in R? or R®. Considering just the direct form of flexoelectricity, the bulk
enthalpy density in a flexoelectric material is

o 1 1 1
H[u, ¢] = Efijcijklgkl + Egij,khijklmnflm,n - EElelmEm - Ejenjeij — Eiuijicij ks (2.7)
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where
Le(aly = LeCals = [0, = 5+ ), (282
(E(D)]1 = -[Ve]i = -4, (2.8b)

The first term on Eq. (2.7) corresponds to the elasticity enthalpy density with the fourth-order
elasticity tensor C;jx;. The second term corresponds to the strain gradient elasticity enthalpy
density with the sixth-order strain gradient elasticity tensor h;jx;m,. These two terms form
the enthalpy density of a strain gradient elastic material form described in Mindlin (1964).
The third term is the electrostatic enthalpy density with the second-order dielectricity tensor
€1m- The fourth term corresponds to the piezoelectric enthalpy density governed by the third-
order tensor of piezoelectric constants e;;j, and the last term is the flexoelectric enthalpy
density governed by a fourth-order tensor py;. Piezoelectricity and flexoelectricity couple the
electric field with the strain and their derivatives. Here, we are considering the direct effect of
flexoelectricity explicitly, i.e. the two-way coupling between electric field and strain gradient.
Note that the strain-gradient term represents the non-local elastic effect and regularises the
flexoelectric effect.
Apart from the internal enthalpy, we consider the work of external loads as

W u, §] = ~biu; + q¢, (2.9)

where b is the sum of body forces applied to the body Q per unit volume and g are the free
electric charges per unit volume. The total bulk enthalpy of a flexoelectric material is then

1%[u, ¢] = /Q (HQ[u, 81+ WOlu, ¢])d§2. (2.10)

The enthalpy associated with enthalpy contribution from imposed displacements and
applied tractions, and imposed electric potential and applied surface charges on the sample
boundaries must also be taken into account. Considering the standard approach where the
Dirichlet boundary conditions, i.e. imposed displacements and electric potential, are strongly
enforced, i.e. the functional space of the state variables is restricted to admissible states fulfilling
Dirichlet boundary conditions, there is no enthalpy associated with those contributions.
However, applied tractions and surface charges on the sample boundary (Neumann type
boundary conditions) do contribute to the total enthalpy of the material. In order to define
correctly the terms associated with boundary conditions, the boundary 9< is split into several
disjoint sets, as seen in Fig. 2.1, as

9Q = 9Q, U IQ; = 9Qy U IQ, = IQy U IQ,,, (2.11)

where 0Q,, 9Q, and 9Q correspond to those boundaries where Dirichlet boundary conditions
are enforced and 9Q;, 9Q, and 9Q,, correspond to those boundaries where Neumann boundary
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conditions are enforced. An example of the boundary split can be seen in Fig. 2.1.

a) b) c)
o012 o0, 0,

Figure 2.1: A 2D representation of the physical domain Q and its boundary 9Q. The boundary
is split into several disjoint sets, as in Eq. (2.11) and Eq. (2.12). a) Domain and domain boundary.
b) Domain boundary split based on mechanical low-order Dirichlet and Neumann mechanical
boundary conditions. ¢) Domain boundary split based on high-order Dirichlet and Neumann
mechanical boundary conditions. d) Domain boundary split based on Dirichlet and Neumann
electric boundary conditions. e) Domain boundary boundary 90Q split in Dirichlet and
Neumann mechanical edge (corner in 2D) conditions.

Flexoelectricity BVP also require boundary conditions for the curves C = 99Q2 (points in

2D). Consequently, the curves are split into two disjoint sets as
90Q = C,u G}, (2.12)

where C, and C; are the curves (points in 2D) where Dirichlet boundary conditions and
Neumann boundary conditions are applied, respectively. This can also be seen in Fig. 2.1. The
corresponding Dirichlet and Neumann boundary conditions applied are

u=u" on 0Q,, t=tN on 0Q;, (2.13a)
™(u) = v°  on aQ,, r=rN onoQ,, (2.13b)
¢ = ¢D on 9Qy, w=w" onadQ,, (2.13¢)
u=u" onaC, j= onag, (2.13d)

D oD and ¢P are the prescribed value of displacement, normal derivative of the

where u
displacement and electric potential, respectively, and N N wN and jN are the prescribed
value of the traction, double traction, surface charge and line force, respectively.

The total enthalpy of the system for a flexoelectric material considering direct flexoelec-
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tricity T [u, ¢] is then

TP [u, ¢] = T°[u, ¢] + 1T [u, ], (2.14)
with
HN[u,¢]=/ —u,-thdl"+/ —a”uirlNdF+/ ¢deF+/—uij?Ids, (2.15)
29, 00, oQ,, G

As mentioned before, the total enthalpy has no contribution from Dirichlet boundary conditions
in the standard approach, i.e. when Dirichlet boundary conditions are imposed strongly. We
recall the variational principle stated in Eq. (2.6), which particularises in the present case to

ey . Dir
(u,qﬁ)—arg;g%;g%ﬁﬂ [u, 4] (2.16)

where the functional spaces Up and Pp of admissible states are defined as

Up = {u e [HX(Q)P|u = u” on 9Q, and C, and 9"(u) = v° on 9Q,, }, (2.17a)
Po={¢ecH(Q)Ip=¢"onaQ,}. (2.17b)
A necessary condition for equilibrium is the vanishing of the first variation of the enthalpy

functional IT°*[u, ¢] for all admissible variations Su and §¢, which corresponds to the weak
form of the problem:

Find (u, ¢) € Up ® Pp such that SIT°T = 0 V(Su, 5$) € Uy & Py, (2.18)
with

V) = {u € [H*(Q)|u = 0 on 0Q, and C, and 9"(u) = 0 on 890} , (2.19a)

Po={¢pecH(Q)¢p=00n0Q}, (2.19b)
and

ST [u, ¢, Su, 54] = STI°[u, p, Su, 5¢] + S [u, §, Su, 5], (2:202)

STI%u, ¢, Su, 5¢] = /Q 6,0 + Gyjkdeyx — DIOE; — bidu; + g dQ, (2.20b)

5HN[u, ¢, 0u,5¢] = /

9Q;

—5u,~thdF+/ —a"(5ul~)rlNdF+/ 5¢deF+/—5uileds,
o0, Clom G

(2.20c)

where the Cauchy stress o, the high-order stress o and the Electric displacement D are defined
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as
. . oM [u, ¢]
oij(u, ¢) = 0ji(u, ) = e | T Cijkierr — enijE, (2.21a)
j VE(-;
. - oM [u, ]
Gijk(u, ) = ji(u, P) = i hijkimn€imn = HiijkEl (2.21b)
ij, £
E
- aHQ[ua ¢]
Di(u, ¢) = TeE |, €imEm + elijéij + [HijkEij k- (2.21¢)
£
Ve

Eq. (2.18) can be integrated by parts and, by invoking the divergence and surface divergence
theorems, the Euler-Lagrange equations are derived as

(6ij(u, ¢) = 5'ijk,k(u, ¢>),j + bi =0 in Q, (222&)
Di(u,¢)-q=0 inQ (2.22b)

along with the expressions for the traction, double traction, surface charge and line force

ti = (85 = Gy + Vi (m1) Gynie) my = V7 (Gyjeni) on 9Q, (2.232)
ri = Oijkhjnk on 9Q, (2.23b)
w=-Din on 9Q, (2.23¢)
Ji = [oijeming] on C, (2.23d)

where [ ] is the jump operator defined as [A] = Al + A2, V$() = V() (5kj - nknj) is the surface
divergence operator, n is the normal vector, m is the conormal vector which is a vector tangent
to the boundary and pointing outwards as in Fig. 2.1.

2.1.2 Lifshitz-invariant flexoelectricity model

This Section is presented in the same way as Section 2.1.1. The bulk internal enthalpy density
of a flexoelectric material in the regime of infinitesimal deformations is expressed in terms of
the displacement u and the electric potential ¢ as in Codony et al. (2021a)

o 1 1 1 1
H[u, ¢] =§€ijCijkl€kl + Egij,khijklmnglm,n - EElelmEm - EEm,annlkEl,k
1 1
- Ejeyjei5 - EEl:ulijkfij,k + EEl,k,ulijkEij» (2.24)

with the strain ¢;; and the electric field E; defined in Eqs. (2.8a) and (2.8b), respectively. In
contrast with Eq. (2.7), the bulk enthalpy density has a new term corresponding to the high-
order electrostatics ruled by a fourth-order tensor M,k called gradient dielectricity tensor.
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The term accounting for flexoelectricity has been split into two terms, as done in Codony
et al. (2021a): the direct flexoelectric effect coupling strain gradient with electric field and the
converse flexoelectric effect coupling strain with the electric field gradient. The characterisation
of the material tensor can be found in Appendix A.2.

The total bulk enthalpy of a flexoelectric material is

1w, §] = /Q (HQ[u, 8]+ WOu, ¢]) dQ. (2.25)

where W9[u, ¢] is defined in Eq. (2.9).

The boundary 9Q is split again into several disjoint sets as
9Q = 9Q, U 8Q; = 3Q, U IQ, = QU AQ,, = IQ, U Oy, (2.26)

where 9Q,, 9Q,, Q4 and 9Q, correspond to Dirichlet boundary conditions and 9, 9%,
2Q,, and 9Q, correspond to Neumann boundary conditions. This splitting can be seen in
Fig. 2.2 similar to what we have done in Section 2.1.1.

Apart from the boundary conditions on the faces, some boundary conditions arise from
the curves C = 09Q. Using the same notation as before, the curves are split into two disjoint

sets as
90Q = C,u Cj = Cyu Cp, (2.27)

where Cy, Cg and Cj, Cy, are the curves where Dirichlet boundary conditions and Neumann
boundary conditions are applied, respectively. It can be seen again in Fig. 2.2.

The corresponding boundary conditions applied are

u=uP onoQ,, t=t" onaQ;, (2.28a)
(u) = v° on aQ,, r=rN onaoQ,, (2.28b)
¢=¢° on 9Qy, w=w" ondQ,, (2.28¢)
3"(¢) = ¢° on 9Q,, t= on <, (2.28d)
u=u" onC, Jj= jN on C;j, (2.28¢)
¢p=¢° onC, o =p" onC,, (2.28f)

D

where uP, ©P, qSD and (pD are the prescribed value of displacement, normal derivative of the
displacement, electric potential and normal derivative of the electric potential, respectively,
and N, rN, wN, N, jN and pN are the prescribed value of the traction, double traction, surface
charge double charge density, line force and electric charge density respectively.

The total enthalpy of the system for a flexoelectric material considering Lifshitz-invariant
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Figure 2.2: A 2D representation of the physical domain Q and its boundary 9Q. The boundary
is split into several disjoint sets, as in Eq. (2.26) and Eq. (2.27). a) Domain and domain boundary.
b) Domain boundary split based on mechanical low-order Dirichlet and Neumann mechanical
boundary conditions. ¢) Domain boundary split based on high-order Dirichlet and Neumann
mechanical boundary conditions. d) Domain boundary split based on low-order Dirichlet and
Neumann electric boundary conditions. e) Domain boundary boundary 99Q split in Dirichlet
and Neumann mechanical edge (corner in 2D) conditions. f) Domain boundary split based
on high-order Dirichlet and Neumann electric boundary conditions. g) Domain boundary
boundary 90 split in Dirichlet and Neumann eletrical edge (corner in 2D) conditions.

flexoelectricity IT"[u, ¢] is then

[, ¢] = T°[u, ¢] + I [u, ¢], (2.29)
with
HN[u,gb]:/ —u,-thdI“+/ -a"uir,.Ndn/—uides (2.30)
Qy 0Q, Cj
+ / pwNdrl + / pNdy + / PN ds, (2.31)
aQ,, 90, Co

As mentioned before, the total enthalpy has no contribution from Dirichlet boundary conditions
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in the standard approach. We recall the variational principle that must be fulfilled, that is

o ey . Lif
(u,¢)—arglrlg%2{¢ré%§ﬂ [u, ¢] (2.32)

where the functional spaces U1, and P, are defined as

Ui, = {u e [HX(QP|u = u" on 9Q, and C, and 9"(u) = v° on 9Q,, }, (2.33a)
PL = {g{) € HX(Q)|¢ = ¢° on 9Qg4 and Cg and 9"(¢) = ¢° on 6Q¢} , (2.33b)

The weak form of the problem is deduced from the variational principle in Eq. (2.32) by
enforcing SITY! = 0 for all admissible variations:

Find (u, ¢) € U3, ® PL. such that ST = 0 ¥(Su, 5¢) € Uy ® Py, (2.34)
with
V) = {5u € [H*(Q)]*|6u = 0 on 9Q, and C, and 9"(Su) = 0 on an} , (2.35a)
Py = {5¢ € H*(Q)|6¢ = 0 on 9Qg4 and Cg and 9"(5¢) = 0 on 6Q(P} , (2.35b)
and
SN, ¢, Su, 5¢] =611 [u, ¢, Su, 5] + ST [u, ¢, Su, 5], (2.36a)
ST u, ¢, Su, 5] = / GOy + Gyrdeyk — DIOE; - bidu; + qd$dQ, (2.36b)
Q
STIN[u, ¢, Su, 5¢] =/ ~Su;tN drl + / ~9"(Su)rN dr + / ~Su;jN ds (2.36¢)
ZoN aQ, G
+ / SpwNdrI + / (SN dy + / SppN ds, (2.36d)
aQ,, EIoN Co

where the Cauchy stress o(u, ¢), the double stress o(u, ¢), the local electric displacement
D(u, ¢) and the double electric displacement D(u, ¢) are defined as

Gij(u, §) = Gi(u, §) = auzg,qﬂ = Cyer(u) - e Er() + %y,ijkE,,k(gb), (2.37a)
Gijk(u, §) = Gji(u, ) = (m;;jl:m = Rijkimn€mn(t) - %ul,-jkEl(gb), (2.37b)
Di(u, §) = —(mz[El;’qs] = €mEn(P) + eryjey(u) + %/Jlijkgij,k(u)’ (2.37¢)

Di(u, §) = Di(u, ) = _37{;[;:45] = MunikEmn($) - %uzijksij(u). (2.37d)
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The Euler-Lagrange equations are

(63(w. ¢) - Gjer(u.§)) ; + =0 inQ, (2.382)
(Biw.¢) - Dust.9)) -q=0 e (2.38b)
and
ti(u, §) = (5'1']' - Ojjkk + VIS (ng) 6ijknk) n; - Vf (&ijknk) on 9Q, (2.39a)
ri(u, ) = oyjkning on 9Q, (2.39b)
w(u, ¢) = - (Dl - 5lk,k + Vis(ni)ﬁlknk> np+ V}g (Blknk) on 9%, (2.39¢)
t(u, ¢) = _~jknjnk on 9Q, (2.39d)
Ji(u, ¢) = [Gijx(u, p)mjny] on C, (2.3%)
p(u,d) = - [[Ejk(U, ¢)mj”k]] on C, (2.391)

The physical stress o and the physical electric displacement D are deduced from Eq. (2.38)

as

0ij = 0ij = Gijik = Cijrreri(u) = ey Ef(P) = hijkimneimnk(w) + piijk ELr(¢),
Dy = Dy - Digk = KimEm($) + evijeqi(u) = MyjicEijr(9) + ke (1. (2.40)

2.2 High-order interface conditions applied to direct
flexoelectricity.

In order to enhance the flexoelectric effect, an arbitrary arrangement of materials with different
materials properties can be beneficial. To properly define flexoelectric boundary value problems
in heterogeoneous materials, continuity and equilibrium conditions have to be prescribed
on material interfaces. These set of conditions are termed interface conditions. Although
continuity conditions for classic elasticity at material interfaces with Isogeometric analysis
(IGA) have been developed (Dolbow and Harari, 2009, Jiang et al., 2015), high-order interfaces
in unfitted discretisations had not been addressed in the literature to the best of our knowledge,
until we did in Barcel6-Mercader et al. (2022). In this section, we present this contribution,
published in Barcel6-Mercader et al. (2022). In the context of immersed approaches, these
conditions need to be imposed weakly. We derive Nitsche’s method for this purpose, which is
a consistent penalty method which preserves the variational structure. As a preliminary, we
briefly review the Nitsche’s method for the weak imposition of Dirichlet boundary conditions
in the direct flexoelectricity framework (Codony et al, 2019). Next, we present a rigorous and
justified statement of the high-order interface conditions along arbitrary material interfaces
in the context of direct flexoelectricity, accounting for strain-gradient elasticity. Finally, we
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present the variational formulation for the weak imposition of these conditions through
Nitsche’s method. Analogously, the modified variational problem is derived by adding a new
term in the total enthalpy of the system corresponding with the enthalpy associated with the

interface conditions. The weak form is obtained from the variational principle.

2.2.1 Nitsche’s method for direct flexoelectricity

The previous method explained in Section 2.1.1 constrains the functional space of the solution
in order to enforce Dirichlet boundary conditions, and thus these conditions are strongly
satisfied. Other methods enforce them in a weak sense as Lagrange multiplier (Belytschko et al.,
1994), penalty method (Zhu and Atluri, 1998) or the one used here, Nitsche’s methods (Babuska
et al., 2003, Fernandez-Méndez and Huerta, 2004, Griebel and Schweitzer, 2003). Nitsche’s
method presents not only interesting numerical advantages, such as preserving symmetry, the
number of degrees of freedom and optimal convergence rates, but also theoretical advantages,
such as self-consistency.

To enforce Dirichlet boundary conditions using Nitsche’s method, we modify the enthalpy
functional in Eq. (2.14) in such a way that the equilibrium states satisfying the variational
principle necessarily satisfy the essential boundary conditions in a weak sense. This implies
adding, for each variable, two types of contributions acting on the Dirichlet boundaries
which penalise deviations from the corresponding essential conditions. The first type of
contribution ensures coercivity of the resulting variational problem. The second is added
to preserve symmetry and self-consistency. In the case of direct flexoelectricity, Nitsche’s
enthalpy functional is

1 2
1°[u, ¢] =/ <ﬁu(ui - u?) - (Ui - u?)t,) dr
00, \ 2
1 n D 2 n D
o (G- o) - (9Gu) - P ) ) ar
09, \ 2
1 D)’ D
o= (ps(s-") + (#-¢")w) ar
9Qy
1 D)’ D
+ fﬁcu(u,-—ui ) - (ul-—ui )t,- ds (2.41)
aCc, \ 2
with positive Nitsche’s parameters 3, B, By and Bc,. The selection of these penalty parameters

is done in section 3.3.
The modified total enthalpy of the system I’ then becomes

R [u, ¢] = [, ¢] + T[u, ¢] + TN[u, ¢, (2.42)

with II%[u, @], I°[u, ¢] and IIN[u, $] defined in Eqs. (2.10), (2.15) and (2.41), respectively.
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The variational principle associated with the enthalpy functional in Eq. (2.42) is

(', ¢") = arg min max Tt [u, ¢] (2.43)

where U is the space of functions belonging to [H?(Q)]® with £?-integrable third derivative
on the Dirichlet boundary 9Q, and P = H'(Q). The need for integrable third derivatives of
the displacements follows from the expression of the tractions, see last term in Eq. (2.23a),
now appearing in the second term of the integral on 9Q,. As previously done in Eq. (2.18),
the weak form associated with the variational principle in Eq. (2.43) is deduced by enforcing

STIP" = 0 for all admissible variation:

Find (u, ¢) € U ® P, such that STI°T = 0 V(Su, 5¢) € U" ® P, (2.44)
with

STIRI[u, ¢, Su, 5¢] = S1%[u, §, Su, 5$] + 6P [u, ¢, Su, 5¢] + I [u, §, Su, 5$], (2.45)

where SIT° and SIIN are defined in Egs. (2.20b) and (2.20c) respectively, and
ST°[u, $, Su, 54] = /mu (ﬁu(ui - u{?)aui - (u,- - uP)&i - 5uiti) dr
. /Q (Bo( 27w - 0P )" (6u) - (5" (w) - P ) 67 - 0" (uri ) dr
9y
s /aQ ~(Bs(#- 9" )00+ (8- g7 )ow + 5gw) dr
9

+ /c (ﬂcu(ui - u?)&ui - (u,- - u?)&‘i - 5uiti> ds (2.46)
aCy

Remark 2.1. Thanks to Nistche’s method, the functional spaces of the solution and the admis-
sible variation required by the weak form in Eq. (2.44) are the same and are unconstrained.

2.2.2 High-order electromechanical interface conditions

Let Q be our physical domain which is conformed by several non-overlapping subdomains as
Q = ¥, QL. The boundary of Q is composed of the exterior boundary, 9Q, and the interior
boundary or interface, T = [|JY, 9Q'\dQ. The exterior boundary and interface are illustrated
in Fig. 2.3. The interface is split into multiple parts Z¥, each one corresponding to the interface
shared by two subdomains, i.e. T = Uzj;l Tk, with Tk = 9QLK)  9QRK), being QLK) and QRK)
the adjacent subdomains. L(k) and R(k) are understood as the left and right subdomains.

To define the interface conditions, we define the weighted mean and jump operators for a
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o0 Interface
04

Figure 2.3: Physical domain Q composed of six subdomains with external boundary aQ (in
black) and interface I (in green). An example of the relative notation around one side and
corner is depicted on the right. The interface Z° is shared by the subdomains Q¥® and Q!®)
with R(5) = 4 and L(5) = 3. The corner C? is shared by 3 subdomains {QF (Z’k)},'cnz(f) with
m(3) = 3, P(2,1) = 2, P(2,2) = 3 and P(2,3) = 4. Image adapted from Barcel6-Mercader et al.
(2022)

generic function A that may be discontinuous across 7, and they are expressed as

(A}, = ),L(k)AL(k) 4 ),R(k)AR(k) on IF, (2.47a)
[A] = A0 | ARK) on IF (2.47b)

with scalar values y0, yRK) ¢ (0, 1) such that y2® + yR® = 1 and denoting as A’ the value
of A in subdomain Q'. The jump operator defined in Eq. 2.23 and the one defined here in
Eq. 2.47 are mostly the same, and we use the same symbol. In most cases, the arithmetic mean
is usually enough (yX®) = yRK®) = ¢ 5),

As done before in Section 2.1.1, we define the edges (corners in 2D) of the interface 7, which
are the boundary of the interfaces except for the edges on the Dirichlet boundary, that is C; =
{Ck}Z£1 = U}Zl dIf\C,. For each edge C¥, there are m(k) subdomains {QF(kD  QF(em(i)y
adjacent to it, see Fig. 2.3. In Fig. 2.3, the corner C? is shared by three subdomains: Q?, Q* and
Q*. The weighted mean operator, which is a generalisation of the one presented in Eq. (2.47a),
is also defined on C* as

m(k)
(Ay; = Z pPkd APKD  on Ok < ¢y, (2.48)
i=1

with P& € (0, 1) such that Z?i(lk) pPUe) = 1. Tt represents a weighted average of the value of
A in all subdomains sharing the edge.

Now, we can define interface conditions using the weighted mean and jump operator. The
interface conditions that must be fulfilled at the interface and edges (corners in 2D) enforce
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the continuity of the solution and equilibrium. That is,

[[u & nﬂ -0, [[a"u]] -0, [[gsn]] -0, onZ, (2.49)

[[t(u, ¢)]] -, [[r(u, ) o nﬂ - #eonk, [[w(u, ¢)]] - W, onZ, (2.49b)
and

u"®) —duy, =0 i=1..m(k) on Ck c ¢z, (2.50a)

nf) eI (u, @) = j on Ckccy (2.50Db)

where u* and j*(u, ) denote the displacement and the line force on the edge coming from
the subdomain Q% sharing the edge. The data isj=jon edges on the boundary and j = 0 on
edges in the interior of the domain. Low-order interface conditions in Eq. (2.49a) are imposed
strongly and low-order interface conditions in Eq. (2.49b) are automatically fulfilled by using
the body-fitted method as standard finite element method or isogeometric analysis.

Then, Eq. (2.50) enforces that the sum of the forces from each subdomain sharing an edge
C* is in internal equilibrium or equilibrium with external boundary forces. The values of Z,
r and w in Eq. (2.49) are also zero for physical problems and conveniently set for synthetic
solutions.

2.2.3 Nitsche’s method for high-order electromechanical interface
conditions

The enthalpy associated with Eq. (2.49) and Eq. (2.50) is analogous to that of Dirichlet boundary
conditions using Nitsche’s method in Eq. (2.41), and Neumann boundary conditions in Eq. (2.15).
Thus, the total enthalpy associated with interfaces is

dr +

' [u, ¢] = /1 %ﬁ"l [wini]? - [uin] {ti("’ ¢)”f}y - E"{u"}w
, /I[;ﬁvz[{anui}]z_[[anui]]{n(u,@}y—fmf{uf,f}l_
STl ol fwom < 5(s),

+;/Ck|:ae%<):) ﬂcul(u -y ) (u - <uy) ) (,¢)>—<ul>?jl

dr +
¥

dr +

ds.  (2.51)

where P(k, :) = {P(k,1),..., P(k, m(k))}.
As before, the penalty parameters f*Z, %1, pT and f! seen in Eq. (2.51) must be large
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enough to ensure concave-up enthalpy concerning the displacement u, and concave-down
enthalpy for the electric potential ¢. The selection of the penalty parameters is done in section
3.3

The total enthalpy of the domain Q with material interfaces is then

[, ¢] = T°[u, §] + T°[u, ¢] + TN [u, ¢] + IT'u, 4]. (2.52)
The variational principle is similar to the one defined in Eq. (2.43), and it is

h) = i O[u, 4], 2.53
(u,9) argmin max (u, ¢] (2.53)

where U is the space of functions belonging to [H?(Q)]? with £?-integrable third derivative
on the Dirichlet boundary 9Q, and interface 7.

2.2.4 Variational formulation for flexoelectricity with material interfaces
using Nitsche’s method

The weak form of the problem is derived from the first-order stationarity condition
S[u, ¢; 6u, 5] =0, Yéue U, 5¢ € H'(Q), (2.54)
where

oM[u, ¢; du, 5¢) =5HQ[u, ¢; du, 5¢] + SHD[u, ¢; du, 5¢] + 5HN[5u, 9]
+ 85I [u, §; Su, 5], (2.55)



2.3 Generalisation to high-order fictitious generalized-periodic horizontal and vertical
boundaries 37

with STI%, STIP, STIN defined in Egs. (2.20b), (2.20c), (2.46) and
ST, 6, Su, 5] = /I [,3“1 [Sun] [uin] - [Suin] {ti(u, gb)nj}y
~ Tuin;] {ti(éu, 5¢)nj}y - f,{(sui}ly} dr +
+/1 [/3”1 [[8”5%}] Ha"uiﬂ - Ha”éuiﬂ {ri(u, (;5)})/
_ [{anu,}] {r,-(au, 5¢)}y - f,-n}{(sui,j}ly] dr +
. /1 [ _pot [[5¢nl}] [[gﬁniﬂ N [[&bnl}] {w(u, ng)nl-}y
v Joni] {w(au, 5¢>nj}y N w{5¢}1y] dr +
- (s - <y )i Gw, 59) - s, g dr

(i 3 ) )

r€P(k;:)

ds. (2.56)

In addition, the following conditions ensure a well-posed saddle point problem:
SiM[u, ¢; 6u] > 0, &0[u, §;64] <0, Vou,5¢. (2.57)
Finally, the weak form of the problem is

Find (u, ¢) € U" ® H'(Q) such that 8II[u, ¢; Su, 5¢] = 0,¥(Su, 5¢) € U" ® H (Q). (2.58)

2.3 Generalisation to high-order fictitious generalized-periodic
horizontal and vertical boundaries

Periodic structures are obtained by periodically replicating a structural unit cell in one, two or
three spatial dimensions. Boundary value problems on periodic structures can be efficiently
solved by reducing them to the unit cell or RVE with so-called generalised periodic conditions
in the direction of periodicity (Hassani and Hinton, 1998, Kolpakov, 1991). These conditions
want to replicate the macroscopic loading conditions of a unit cell in an infinitely periodic
structure and are thus devoid of sample’s finite-size effects. In our case, these macroscopic
loading conditions can be mapped to jumps of the primary variables, displacement u and
electric potential ¢, between the unit cell fictitious periodic boundaries. Since flexoelectricity
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governing equations are a system of fourth-order PDEs, generalised periodicity needs to be
complemented with appropriate periodicity conditions for the high-order fields, enforcing C*
continuity of the primary fields u and ¢. In unfitted discretisations, high-order generalised
periodicity conditions can be enforced weakly using the formalism for physical interfaces
presented in Section 2.2, as described next. For the sake of simplicity, we consider in this
section high-order generalised periodicity along the horizontal and vertical directions.

2.3.1 High-order Generalised periodicity conditions along the horizontal
and vertical directions

For the sake of simplicity, let us restrict ourselves to a 2D lattice that is periodically replicated
along x— and y- spatial directions. The generalisation of the 3D case is straightforward.
The unit cell Q is embedded in a rectangle R = [0, L] x [0, L, ], as shown in the example
in Fig. 2.4. The boundary of the domain Q is composed of generalised periodic boundaries,
17 = {(x,0) € 9Q} = {(x,Ly) € 9Q} and I* = {(0, y) € 9Q} = {(Ly, y) € 9Q}, and physical
boundaries in the interior of the rectangle, 9OQ\[Z* u T7].

We define C* as the set of values of the y-component of the corners in 7* and C? as the
set of values of the x-component of the corners in 77, see Fig. 2.4. In the example in Fig. 2.4
we can set a unit cell from a solid structure with circular voids. The boundary of each void is
considered the physical boundary and the other ones are considered the generalised periodic
boundaries.

— 7=
- 7Y
o (%
.Cy

Figure 2.4: Example of one unit cell of a periodic structure, C* = {L,/4,3L,/4} and C¥ =
{Lx/4,3L,/4}. This image represents the unit cell of a solid structure with a circular void.
Image adapted from Barcelo-Mercader et al. (2022)

The generalised periodicity conditions of the unit cell are then
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[u]” =@, t(u, P)ly-1, + t(u, $)|y=0 = 0, on 17
HZ;H ’ =0, [r(u, ¢)] = o, on 17
[4]” = ¢, w(tt, §)ly-L, + w(tt, §)ly=o = 0 on1?,
[u]? =, J, P)ly-r, + j(1, §)ly=0 = 0 for x € C7,
[u]* = @, t(u, P)lx=L, + t(u, P)|x=0 = 0, on 1%
[6]° = ¢, W(tt, @)=L, + W, §)|x=0 = 0 on 1%,
[u]* =i, J(, @)|x=r, +j(1, P)lx=0 = 0 for y € C*, (2.59)

where the jump on the periodic boundaries is defined as

[A] = A(x,Ly) - A(x,0),  [A]" = A(Ls, ) - A0, y), (2.60)

for convenience. The jumps @, @", qu and qu can be either given constants (mapped from the

applied load at the macroscopic level) or unknown constants that have to be determined as-

suming a prescribed value of their macroscopic work-conjugate (generally, but not necessarily,

null). We are interested in four different cases:

Unconfined vertical displacement sensor: a vertical macroscopic strain is applied, ¥ =
(0, %), with ¥ a known constant, and the displacement jump #*, and electric potential
jumps, (]Ey and qu, are unknown to be computed assuming vanishing macroscopic
tractions on the vertical unit cell boundaries and that no surface charges accumulate
on unit cell boundaries, i.e. D-n = 0 on I* and 77, D being the macroscopic physical

electric displacement.

Confined vertical displacement sensor: a vertical macroscopic strain is applied, i’ =
(0, ), with %’ a known constant, the displacement jump #* is constrained @* = (0, 0),
and electric potential jumps, ¢ and ¢*, are unknowns to be computed assuming van-
ishing macroscopic tractions on all unit cell boundaries and that no surface charges
accumulate on unit cell boundaries, i.e. D-n = 0on I* and I7.

Unconfined vertical displacement actuator: an electric potential difference is applied
macroscopically, which can be mapped to known electric potential jumps in the unit
cell, ¢” and ¢*, and the unknown displacement jumps #” and @r*.

Confined vertical displacement actuator: an electric potential difference is applied
macroscopically, which can be mapped to known electric potential jumps in the unit
cell, ¢;y and qu , and the unknown displacement jump #” and #* = (0, 0).
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If the corners of the rectangle lie inside the material domain, then generalised periodicity
conditions for both 7, and 7, must be enforced simultaneously. For instance, the definition in
Eq. (2.60) becomes

[A]” = A(Ly, L)~ A(Ly, 0)+ A0, L) - A(0,0), [A]" = A(Ly, L)~ A(0, L)+ A(Ly, 0)- A0, 0),
(2.61)

at the vertex. This situation can be avoided in general by a suitable choice of the unit cell. In
the next section, the generalised periodicity condition will be applied in a differently, where
this remark is no longer necessary.

The total enthalpy of the system is

M[u, ¢, it, ¢ = T°[u, ¢] + T°[w, ¢] + I [w, ¢] + IV [w, ¢, 1, ¢] + I [u, §, it, §], (2.62)

with II%[u, ], TT°[u, ¢] and IIN[u, ] defined in Egs. (2.14), (2.41) and (2.15). The enthalpy
associated with periodic boundaries is (Barcelo-Mercader et al., 2022)

1 (a1 - [ —W( [ - @) - (Ll - &) 66 01}

1y | 2

[ w7 \2 wl?
A D b RS

dr

dr +

- E (117 - #) + (187 - ) [t 91 [ ar +

N (S R (I W]’ (2:63)
1w g d] - [ L (i) - ([l ) ol | o

PAS(E Dl B EEA S

-/ - (11 - )+ (191 - ) It 9T | dr +

> [;W( [l - ) - (1wl - ) Lo M?;], 264

yeCx

where i1 = {#*, @}, ¢ = {¢*, §”} and the weighted means and jumps on the periodic bound-
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aries are defined as

{A}) = YA(x, Ly) + (1 - y)A(x, 0) {A}, = YA(Ly,y) + (1 - y)A(0,y)  (2.65a)
[A]} = yA(x, Ly) - (1 - y)A(x, 0) [A]} = YA(Lx, y) - (1 - A0, y)  (2.65b)

with y € (0, 1). The definition of the weighted mean is analogous to the one in Eq. (2.47a).

In Egs. (2.63) and (2.64), it is important to distinguish the cases where the jumps " or ¢0)
are prescribed or unknown. For prescribed values of ") or ¢9), we directly substitute ") or
¢9 by its prescribed value " or gzg(') so that Egs. (2.63) and (2.64) are analogous to Eq. (2.56).
For unknown values of #") or gzg('), Egs. (2.63) and (2.64) weakly enforce a constraint between
state variables and therefore do not admit penalty terms. For example, the corresponding )
must be set to zero. The four situations described before would mean:

« Unconfined vertical displacement sensor: i is the only known constant, ir*, ¢¥ and ¢*
are unknown values and thus %7 = g = p#* = pGux = g,

« Confined vertical displacement sensor: #” and #* are the known constants, g{;y and gi;"
are unknown values and thus %Y = p%* = 0.

+ Unconfined vertical displacement actuator: gzgy and 4§x are the known constants, #” and
1" are unknown values and thus %/ = ﬁcuy = p*r = ﬁcux =0.

« Confined vertical displacement actuator: (/53’ , qu and #* are the known constants, #” is
the only unknown values and thus g%’ = B = 0.

For the sake of simplicity, we now restrict to the case of a vertical displacement sensor,
where a constant vertical strain is applied at the macroscopic level, allowing free macroscopic
transversal deformation of the material and assuming that no surface charges accumulate
macroscopically. Any other generalised periodic boundary value problems are straightforward.

2.3.2 Variational formulation and weak form

We are in the first situation of the four ones described before. The condition to be imposed
weakly is #” = &, with a prescribed vertical displacement jump #” mapped from the applied
vertical macroscopic strain. The horizontal jump of the displacement #* and the electric
potential jump ¢ are unknown constants values. Hence, in Eqgs. (2.63) and (2.64), the penalty
parameters f**, ,Bcux, ﬁ¢x and [3‘” must be set to 0, and #” = #”, as explained before. The

solution of the associated boundary value problem then follows from the variational principle

u,¢, 15, ¢) =argmin max max minI[u, @, ir", . 2.66
(¢ ) = argmin e max min i, i) (2.66)

The weak form of the problem follows from the stationarity of the enthalpy functional in
Eq. (2.62)
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SM[u, ¢, it*, §; Su, 5, 5u*, 8§] = 0;  Véu, 8¢, 5™, 8¢, (2.67)

where

SMI[u, ¢, it*, §; Su, 5, 5i, 5§ = ST [u, ¢; Su, 5¢] + STI°[u, ¢; Su, 5¢]
+ STIN[Su, 8¢] + STV [u, ¢, ", §; Su, 8¢, 5™, 5¢]
+ ST [u, ¢, it%, §; Su, 8¢, 5%, 5], (2.68)

STI®, 8TIP and SIIN are defined in Egs. (2.20b), (2.46) and (2.20c) and

ST [u, ¢, it, §; Su, 8¢, 5it, 5§] =

/ 7 oul? ([l - ) - [0l Tt @)1 - ([l - @) [15w. 6)] | ar
+/IV _,va [[a;;ﬂy Haj;liﬂy— ﬂaj;iﬂy {Vi(u, ¢)}j - H?}ljﬂy{ri@u, 5¢)}i dr’ +

(1591 - 59" ) Tt 9 + (141" - §7) [widw. 89)T} | dr

1y

-y [ﬁ [oul” ([wl” - &) - [Sul” Litw )1} - ( Tw]” - & ) Litou. 6)T; ] (2.69)

xe€CY

ST [u, ¢, it*, §; Su, 5¢, 5", 5] =

/p ) ( [ow]” - 5’1?‘) [, H)I; - ( []” - a;‘) [t:(8u, 59)];
* /I »ﬁvx H(Z;H ' Hai?iﬂ - Hai?iﬂ ' {n(u, ¢)};{ - Hiﬂ ' {ri(5u, 5¢)};

/. ( [561 - 66 ) [t A1 + (141" - ) Iwtow. 091

dr

dr +

dar

£y l - ([owl™ - o ) Licw @)1 - ( Ll - ) Licow. 5901 | (2.70)

yeCx

being i and 5¢; admissible variations of # and gl;, respectively. Finally, the weak form

associated with the boundary value problem reads
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Find (u, ¢, ir*, §) € U ® H'(Q)  R? ® R%such that 8II[u, ¢, ir*, §; Su, 5, 5ir*, 5] = 0,
V(u, 8¢, 6i°,6¢) € U o H(Q) e R? ® R (2.71)

where U is the space of functions belonging to [H?(Q2)]? with £?-integrable third derivative
on the Dirichlet boundary 0Q,,.

2.4 High-order generalised periodicity in arbitrary directions

As seen in Section 2.3, we are interested in simulating a single unit cell under generalised
periodic conditions, which directly provides the bulk response of a unit cell on a periodic
structure. Those generalised periodicity eliminates the presence of external boundaries and,
therefore, the finite-size effects related to them. In a finite element (or max-ent meshless)
context, enforcing 0-th order periodicity conditions is relatively easy by the intrinsic Kronecker
delta property of the basis function on the boundary. It boils down to constructing a mesh with
matching nodes (or max-ent particles) at x = 0 and x = L, and assigning the same degrees of
freedom at the matching nodes particles on each side (Barcel6-Mercader, 2018). However, as
seen in Section 2.3.1, higher-order conditions are not so trivially enforced since they would
have to be explicitly introduced as external constraints yielding different equations and degrees
of freedom in the case of Lagrange multipliers or additional terms in the current equations with
numerical penalty parameters in the case of penalty or Nitsche methods (Barcel6-Mercader
et al., 2022).

An alternative procedure to automatically fulfil high-order periodicity conditions consists
of constructing a high-order periodic approximation space for f, considering high-order
periodic basis functions. This approach, if possible, is the most convenient one since it yields
an unconstrained boundary value problem, avoiding the issues above from explicitly including
additional constraints. The immersed boundary B-spline framework is particularly well-suited
to the simulation of periodic domains since the construction of a high-order-periodic B-spline
basis is trivial, and the cuboidal shape of the fictitious domain can be immediately identified
with the unit cell of the architected material.

The section is organised as follows. Macroscopic conditions for flexoelectric RVE via
high-order generalised periodicity are shown, along with high-order generalised periodicity
conditions. The last part is similar to the one in Section 2.3.1, but now all terms are described
more precisely. Thanks to that, macroscopic kinematics and how these kinematics are encoded
through a macroscopic enthalpy functional with conjugate variables can be deduced. Finally,

the boundary value problem for flexoelectric RVE is presented.
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2.4.1 Macroscopic conditions for flexoelectric RVE via high-order
generalised periodicity

In this section, we introduce high-order generalised periodicity conditions, and we state the
conditions on the state variables of an RVE that must hold to reproduce the bulk response of
an infinitely sizeable periodic structure Q. The resulting macroscopic state variables and
their corresponding macroscopic enthalpy functional are also analysed.

The periodic structure Q. is formed by concatenating a unit cell Q8 in each dimension
indefinitely. Our domain Q is the intersection between the periodic structure and the unit cell
Q = Q. n QRVE, The boundary of the domain 9Q is split in two parts, 9Q = I'fict y Tactval with
rfict = 9ORVE o Q, and T2l = 9Q, n QRVE (see Fig. 2.6).

For the sake of simplicity, and as is common in periodically arranged architected structures,
we consider homogeneous Neumann conditions at every physical boundary of the RVE, and
disregard external volumetric loads, that is,

0Qy = 9y = 9y = 9Q, = D, (2.72a)
N=pN=N=p=o, (2.72b)
wN=tN=pN=¢g=o. (2.72¢)

2.4.1.1 High-order generalised periodicity conditions in arbitrary direction

The generalised periodicity conditions for a generic 1D field f(x) € R, x € Q®VE = [0,L,] c R
are usually stated as

Jf(Lx) = f(0) = &f My (2.73)

with «f ), € R. Standard periodicity conditions are obtained for «f)), = 0, and generalised
periodicity conditions otherwise. In a fourth-order PDE context, this condition is required but
insufficient since the extension of f over R is required to belong to H2(R) (i.e. it must be at
least C!-continuous), which is not necessarily true at x = m,Ly, m, € Z. An extra necessary
condition is then

f(Ly)  af(0)
ox ax

- 0. (2.74)

The difference between low-order and high-order periodicity conditions is shown in Fig. 2.5.
The extension of high-order generalised periodicity conditions to higher dimensions is trivial.
Let us consider a cuboidal unit cell QRVE = [0, L] x [0, Ly]x[0,L.] € R3 as depicted in Fig. 2.6
for the 2D case.

The high-order generalised periodicity conditions of the mechanical and electrical fields
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f(x) = |sin(mz)| + 2| cos(mz)| + = f(z) = sin(272) + z
3_
2_
1_
0
L L J L L x\
I 2 3 1 2 3

Figure 2.5: Example of low-order a periodic function, f(x) = | sin(rx)| + 2| cos(7x)| + x, on the
left and example of high-order periodic function f(x) = sin(2zx) + x on the right.

_ L

N
XK o Y

>

N

F;Lcl,ual

| QRVE fict

Figure 2.6: Architected structure Q* on the left and unit cell Q®VE on the right. The fictitious
boundary is rfict = 90 u QRVE the actual boundary is reetual = 50y 90, and their boundaries
are Cfict = prfict 54 (Cactual — jractual

are:

u(d = Lg) - u(d = 0) = Kuyy, P =Lg) - P(g =0) = Kp»y, (2.75a)
ou(l =Ly ou(l=0) _ 9P(f =Ly 9l =0)
al ol al al

for { = {x,y,z}.

0, (2.75b)
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2.4.1.2 High-order equilibrium conditions

On top of the continuity conditions stated above, we need to impose high-order equilibrium
of the solution fields across the RVE boundaries that is (Barcel6-Mercader et al., 2022)

K = L)+ HL = 0) =0, w(¢ = L)+ w({ = 0) = 0,
HE = L) -r({ =0)=0, W=L)-l=0)=0,  (276)
JC= L)+ =0) =0, (L = L) + o({ = 0) = 0.

Eq. (2.76) is required even if Egs. (2.75b) hold since the Neumann quantities (¢, r, j, w, t, )
also depend on second and third-order derivatives of the state variables (u, ¢) that are not

periodic in general.

2.4.2 Macroscopic kinematics

The additional unknowns (f)), arising from the generalised periodicity conditions represent
the jump (or difference between boundaries) on QRVE of the field f(x) with x € Q along the
Cartesian direction {. From a macroscopic point of view, they are regarded as the state variables
that characterise the macroscopic behaviour of a homogenised field on QRVE, regardless of the
evolution of f(x) within Q or even the shape of Q. See Fig. 2.7.

Figure 2.7: An initial unit cell or RVE QRVE is represented on the left and the final configuration
on the right. The jumps on the displacement can be seen.

We are interested in capturing the macroscopic behaviour of the state variables: displace-
ment u(x) through the macroscopic displacement gradient Vu with nine unknowns in R* and
electric potential ¢(x) through the macroscopic electric field VE with three unknowns. In 2D
Vu and VE would have four and two unknowns, respectively. Considering these macroscopic
entities and the dimensions of QRVE, the displacement u and electric potential ¢ are split into a
microscopic part and a macroscopic one. The microscopic part captures the unit cell’s internal
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behaviour, and the macroscopic part can be seen externally. The split is done as

u(x) = u'(x) + Vu - x, (2.77a)
$(x) = ¢"(x) - VE - x, (2.77b)

where u’(x) and ¢ (x) are periodic functions that fulfil

u’((=Ly)-u"({=0)=0, auP(g; L) _ aup(ai: 0 _ 0, (2.78a)
I¢°(§ = L) a4°({ =0)
a7 a7

and the macroscopic displacement gradient and electric field are

(L =Ly)-¢" (=0 =0, =0, (2.78b)

Lue Dy /Ly KuyPx/Lx Lz, /Ly
Vu = « ux»y /Ly « uy»y/Ly « uz>>y /Ly > (279)
Kuep /L Kuy»z/L; Kuzp, /L,

L - <<¢>>x /Lx
E=-Vg=| -K¢», /Ly, |. (2.80)
- <<¢>>z /Lz

The microscopic behaviour is governed by the terms u®(x) and ¢*(x) in Eq. (2.77), and the
macroscopic behaviour is governed by the terms Vu - x and VE - x in Eq. (2.77).

In turn, the macroscopic displacement gradient can be uniquely decomposed into its
symmetric and antisymmetric parts as

u=¢+R, (2.81a)
1/

e= ( u+VuT), (2.81b)
o1

R= (w-wT). (2.81¢)

The macroscopic strain € and the macroscopic rotation R are constant tensors that characterise

the macroscopic (homogenised) mechanical behaviour of QRVE

under a generalised periodic
displacement field u(x) defined on Q. They are invariants concerning the RVE size and relative
position within a given periodically-arranged architected material. Note that the components
in R do not correspond to any deformation measure but to uniform rigid body rotations instead.
That is, the energy functional of the system is invariant with respect to R. In order to prevent
infinite solutions differing in rigid body rotations only, R must be a priori enforced (i.e. three

degrees of freedom in R?® and one in R?). In the remainder of the thesis, and without loss of
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generality, we consider R = 0. We assume symmetric macroscopic displacement gradients
Vu=7¢).

Remark 2.2. Note that assuming u, ¢ generalised-periodic implies that the macroscopic state
variables g, E are constant tensors. Therefore, the macroscopic strain gradient and electric
field gradient vanish. Loading cases on a periodically-arranged architected material yielding
non-vanishing macroscopic strain gradient and electric field gradients are out of the scope of
this thesis.

Remark 2.3. Eq. (2.77) implies that the strain field and electric field are decomposed as

e=¢ (uP) +E (2.82a)
E=E(¢")+E. (2.82b)

2.4.3 Macroscopic enthalpy functional and conjugate variables

Since the macroscopic response of the architected structure is uniquely characterised by the
macroscopic state variables, our goal is to rationalise the existence of a macroscopic enthalpy
functional depending on macroscopic state variables only. Such functional should fulfil the
condition that the variation of the actual bulk enthalpy of the system or microscopic bulk
enthalpy I’ in one unit cell is equivalent to the variation of the enthalpy of a homogeneous
media of size Ly, L, and L, or macroscopic enthalpy II:

SI°[e, Ve, E,VE] = 11 [&, E] . (2.83)

In order to find the functional described in Eq. (2.83) we consider the high-order equilibrium
conditions from Eq. (2.76) in a weak way as

0= / (-t;0u} — 1;9"Su; + wS¢" +a"5¢") dI + / (<jidu; + pog") dl.  (2.84)
Thict Chict

By taking into account homogeneous microscopic Neumann conditions in Eq. (2.72),
Eq. (2.84) is extended to T'fict y ractual = 5q Cfict |, cactval — ¢ (see Fig. 2.6 to view the dif-
ference between Ifict, pactual ofict 5ppq cactual) ¢4

0= / (-t;0u} - r;0"Su} + wSgF + 1" 5¢¥) dr + / (=jioul + pdg") dl. (2.85)
oQ c
Upon application of integration by parts, the divergence theorem and the surface divergence

theorem, as done in Codony et al. (2021a) and considering the strong form of the problem in
Eq. (2.38) with zero source terms Eq. (2.72) leads to

0= /Q (582 () + Gunbei (uF) - DiSE: (¢°) - Dy (¢) ) do. (2.86)
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By using the decomposition of the strain and electric field in Eq. (2.82), we have
/ (c}ij&ij + 6'ijk55 - BI5E1 - Elk5Ekl) dQ = /&ij&,-j dQ - /bl5E1 dQ
Q Q Q
= |Q"E| (582, - DiOE)) . (2.87)

where the term & in Eq. (2.87) corresponds to the macroscopic stress and D is the macroscopic
electric displacement. Comparing Eq. (2.83) with Eq. (2.87), the variation of microscopic bulk
enthalpy corresponds to the integral over Q of the bulk internal enthalpy density variation in
Eq. (2.83) as

5Hb[£, VE, E, VE] = / (5HQ[u, QZS]) dQ = / (5’jj5€ij - i),ﬁE,- + &ijkaé‘ij’k - Bij(SEi,j) dQ,
Q

Q
(2.88)
and the variation of the macroscopic enthalpy is
ST[e, E) = / (42 - DiOE:) da = |Q%F| (567, - DioE;) (2.89)
QRVE

where the second equality in Eq. (2.89) holds by considering that the macroscopic quantities
do not depend on the position x, and |Q*VE| = L,L,L, corresponds to the macroscopic volume
of the RVE. The macroscopic stress and macroscopic electric displacement are conjugates of

the macroscopic strain and macroscopic electric field, respectively, and they are defined as

_ 1 .
O-ij = |£2RVE|/;6UdQ’

As a result, the macroscopic stress is nothing but the macroscopic average of the microscopic

1 A

Cauchy stress over Q, and the macroscopic electric displacement is the macroscopic average of
the microscopic local electric displacement over Q. Egs. (2.90) can be regarded as an extension
of the Hill-Mandel theorem (Hill, 1963, 1967) to high-order electromechanics.

Finally, we have proved that Eq. (2.87) is the weak equation that generalised periodic state
variables u(x), ¢(x) must fulfil in order to reproduce the electromechanical state of an infinitely
sizeable periodic structure over Q.

2.4.4 Boundary value problem for flexoelectric RVE

In the generalised periodicity framework described in the above Sections, € and E are additional
state variables whose components can be specified a priori or obtained due to the boundary
value problem. To this end, their components are split into two disjoint sets (as other boundary
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conditions), the macroscopic Dirichlet components

€y =T for (i, ) € T¢, (2.91a)

E =E forie TE, (2.91b)

and the macroscopic Neumann components

Gij =0y for (i,j) € {1,2,3} x {1,2,3}\ 7%, (2.92a)
forie {1,2,3}\TE, (2.92b)

where 7¢ c {1,2,3} x {1,2,3} such that if (i, j) € 7¢ then (j,i) € 7%, and TF < {1,2,3}, are
the subsets of components where macroscopic Dirichlet conditions are imposed. The r.h.s. of
Eq. (2.87) is split into Dirichlet and Neumann components accordingly. Macroscopic Dirichlet
conditions are applied strongly, projecting the solution to a functional space that satisfies
macroscopic Dirichlet conditions. On the other hand, macroscopic Neumann conditions remain
in weak form. The macroscopic Neumann conditions can be seen as the natural macroscopic
conditions of the boundary value problem since the neglect of the macroscopic Neumann term
leads to homogeneous macroscopic Neumann conditions.
The weak form of the flexoelectric generalised problem is

Find (uP, ¢P,§, E) eUPePle ﬁD ® ﬁD such that

ij

~ ~ = = _ —N =
/Q (&ijaij + Sey Gy - OEDy - 5El,mD,m) dQ = [QRVEGY sz, - |ORE[DY SE,,

v (5u¥,8¢%,52,0E) e U e PP« U 0 7', (2.93)
where

Ul = {uP € [H*(Q)]? | Eq. (2.78a) holds (high-order periodicity on uP)} , (2.94a)
P’ = {¢" € H*(Q) | Eq. (2.78b) holds (high-order periodicity on ¢") } , (2.94b)
[ {E € []R3] 2 | Eq. (2.91a) holds (Dirichlet conditions on €) and ¢;; = Eji} , (2.94¢)
P - {E € R’ | Eq. (2.91b) holds (Dirichlet conditions on E) } , (2.94d)
U= {see R |52y - ofor (i) e T}, (2.94¢)
P’ = {SE€R®|6E;=0forieTt}. (2.94f)

2.5 Ongoing work

In this section, the ongoing work is presented, that is, interface conditions for the lifshitz-
invariant flexoelectric formulation along with the interface enthalpy associated with Nitsche’s
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method and the formulation for graded structure considering the standard approach.

51

2.5.1 High-order interface conditions for Lifshitz-invariant flexoelectricity

Interface conditions described in Section 2.2.2 are only valid for direct flexoelectricity. Interface

conditions for Lifshitz-invariant flexoelectricity are slightly different and they are

-u ® nﬂ =0,
én] -0
t(u, ¢)]] -
w(w, )] = .

and

ul®) —(uy, =0 i=1..

m(k) ' )
>, ¢) = j
i=1

¢PED gy, =0 i=1..m(k)

m(k) ki R
Y 0" ) = o
i=1

b"u}] =0, on Z,
-8n¢ﬂ =0, onZ,
-r(u,¢)®nﬂ = eonk onZ,
-t(u, ng)n]] = tnl, onZ,
m(k) on CF c ¢y,
on Ck c Ct,

on Ck ¢ Cr,

on Ck c Cq,

(2.95a)
(2.95b)
(2.95¢)

(2.95d)

(2.96a)
(2.96b)
(2.96¢)

(2.96d)

where 7, C; and C* were defined in Section 2.2.2. The main difference between these interface

conditions and the ones defined in Section 2.2.2 is the high-order interface conditions for the

electric potential. Now, the interface conditions for the displacement and the electric potential
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are analogous. The interface enthalpy associated with TIMerface s now

HILnterface[u, $] = /I [;’Bul [[uinj]]z _ [[uinjﬂ {ti(u, ¢)flj}y - fi{ui}l_y} dr’ +

Sl o), ooy, o
[ Ton] " fon] () < {e},Jars
] el (), i), o
+glk[aep(k)(;ﬁ01<u g - (= G )  Cuidh| ds +

(2.97)

where P(k, :) = {P(k, 1),..., P(k, m(k))}.

2.5.2 Direct flexoelectricity model for graded structure

This subsection derives the formulation for graded structure which is very similiar to the one
presented in Section 2.1.1. Let Q be a physical domain in R? or R>. For the sake of simplicity
we consider that only the elasticity tensor depends on the position C;jx;(x). Considering just
the direct form of flexoelectricity, the bulk enthalpy density in a flexoelectric material is

1 1
H[u, ¢] = = &jCijri(x)exs + Egij,khijklmnglm,n - EElelmEm - Ejeyjeij — Eyijreije,  (2.98)

2

Apart from the internal enthalpy, we consider the work of external loads as
WOlu, §] = ~byu; + q¢, (2.99)

and the total bulk enthalpy of a flexoelectric material is then

Q = Q + e . .
°u, §] —/Q(H [, ] + W [u,¢]) do (2.100)

Considering the standard approach where the Dirichlet boundary conditions, i.e. imposed
displacements and electric potential, are strongly enforced, i.e the functional space of the
state variables is restricted to admissible states fulfilling Dirichlet boundary conditions, there
is no enthalpy associated with those contributions. However, applied tractions and surface
charges on the sample boundary (Neumann type boundary conditions) do contribute to the
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total enthalpy of the material. In order to define correctly the terms associated with boundary
conditions, the boundary 9Q is split into several disjoint sets as

9Q = 9Q, U 3Q; = 9Q, U IQ, = 9Qy U 9Q,, (2.101)
and the curves are split into two disjoint sets as
29Q = C, u G, (2.102)

where C, and C; are the curves (points in 2D) where Dirichlet boundary conditions and
Neumann boundary conditions are applied, respectively. The corresponding Dirichlet and
Neumann boundary conditions applied are

u=u" onaQ, t=tN onaQ, (2.103a)

"(u) = v°  on Q,, r=r onaoQ,, (2.103b)

= ¢D on 9Qy, w=w" onadQ,, (2.103c¢)

u=u® onaC, j=j on oGj, (2.103d)

where uP, v and ¢P are the prescribed value of displacement, normal derivative of the

displacement and electric potential, respectively, and N N wN and jN are the prescribed

value of the traction, double traction, surface charge and line force, respectively.
The total enthalpy of the system for a flexoelectric material considering direct flexoelec-
tricity TI°"[u, ¢] is then

1P [u, ¢] = T, ¢] + I [u, ¢], (2.104)

with
MN[u, ¢] = / —utN dr +/ —9"u;rN dr +/ pwN dr +/ —ujN ds, (2.105)
00, 99, 9, C

As mentioned before, the total enthalpy has no contribution from Dirichlet boundary conditions
in the standard approach, i.e. when Dirichlet boundary conditions are imposed strongly. We
recall the variational principle stated in Eq. (2.6), which particularises in the present case to

L P) = i 1P [, 2.106
(v, ¢") arg min max [u, ] (2.106)

where the functional spaces Up and Pp of admissible states are defined as

Up = {u € [H*(Q))P|u = uP on 9Q, and C, and 9"(u) = v on 6QU} , (2.107a)
Po={¢eHQ)Ip=9¢"onaQy}. (2.107b)
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A necessary condition for equilibrium is the vanishing of the first variation of the enthalpy
functional IT° [u, ¢] for all admissible variations du and 8¢, which corresponds to the weak
form of the problem:

Find (u, ) € Up ® Pp such that STI°F = 0 v(Su, 5¢) € Uy & Py, (2.108)
with

Vo = {u € [H*(Q)]’|u = 0 on 9Q, and C, and 9"(u) = 0 on an} , (2.109a)

Po={¢pecH(Q)¢p=00n0Q}, (2.109b)
and

ST [u, §, Su, 5¢] = ST1°[u, ¢, Su, 5¢] + ST [u, §, Su, 58], (2.1102)

STI[u, ¢, Su, 5¢] = /Q G686y + GyrSeijx - DISE; - biSu; + 8¢ dQ, (2.110b)

STIN[u, ¢, Su, 5¢] = / ~SustN dT + / —9"(Suy)rN dT + / SpwNdr + / ~SuyiN ds,

aQ; 2Q, oQ,, G

(2.110¢)

where the Cauchy stress o, the high-order stress ¢ and the Electric displacement D are defined

as
. IH[u, §]
() = Gt ) = I < epgan - e @111a)
&ij Ve
E
. . IH[u, §]
oijk(u, @) = ojin(u, @) = e ¢ = hijkimn€imn — MiijkEl, (2.111b)
ij,k f?
. OH[u, ¢]
Dl(u, ¢) = _aEl¢ = elmEm + €1ij€ij + PlijkEij k- (2111C)
&

Ve

Eq. (2.108) can be integrated by parts and, by invoking the divergence and surface divergence
theorems, the Euler-Lagrange equations are derived as

(65(w, @) - Gys(n. §) +bi=0  inQ, (2.112a)
Dy(u,¢)-q=0  inQ, (2.112b)
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along with the expressions for the traction, double traction, surface charge and line force

ti = (63 = Gijkk + Vi (1) Gyenic) mj = V]S (Gykn) on 9<2, (2.113a)
ri = Gykning on 0Q, (2.113b)
w=-Djn; on 99, (2.113¢)
ji = [Gyrmink] on C, (2.113d)

where [ ] is the jump operator defined as [A] = A' + A% V5() = Vi() (8 — nkn;) is the surface
divergence operator, n is the normal vector, m is the conormal vector which is a vector tangent
to the boundary and pointing outwards.

Note that the only difference between Section 2.1.1 and this one is the spatial dependence

in the elasticity material tensor in Eq. 2.111a.






Chapter 3

Computational methods for
multimaterial and generalised
periodic flexoelectric BVPs

This chapter presents the numerical methods used in this thesis to solve flexoelectric boundary
value problems. We focus on the computational aspects particularly arising when dealing with
multimaterial samples with general geometries and electrode configurations, periodic lattice
materials with general architectures, and graded materials. Firstly, we present an overview of
the state of the art of computational approaches for high-order problems, and flexoelectricity
in particular, pointing out their advantages and disadvantages. B-splines method is the one
adopted in the whole thesis. This method is divided into three different categories. The first is
the body-fitted B-spline approach, where the support of the approximation space is the same as
the physical body Q. The second is the immersed B-spline approach, where the support of the
approximation space is bigger than the physical body Q. The last is the high-order generalised
periodic approximation space approach, where we modify the immersed approximation space
to fulfil the generalised periodicity conditions.

The numerical approach provided here is part of an in-house computational framework
called iHB-FEM (Immersed hierarchical B-spline-finite element method). Onofre Marco and
David Codony initially created this framework. Then, more people participated in incorpo-
rating new functionalities, such as the extension to the body-fitted approach and periodic
functional space of approximation, to which I contributed. I should mention all the people
who contributed to having a powerful tool like that. They are, apart from the people I just
mentioned and me, Alice Mocci, Hossein Mohammadi, Monica Dingle, Francesco Greco and
Juan Carlos Tarin.

This code was initially created in MATLAB; now, part of the code has been translated to
another in-house code HiPerLife. HiPerLife is a parallel C code created by the group of Prof.
Marino Arroyo. All the codes developed are part of the FLEXOCOMP group led by Prof. Irene
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Arias.

3.1 State of the art

The numerical solution of boundary value problems involving systems of high-order partial
differential equations (PDE) requires either (1) specialised finite elements compatible with
C° approximations, such as mixed methods (Brezzi et al, 1987) and interior penalty methods
(Engel et al., 2002), or (2) approximations based on smooth basis functions. In mixed finite
elements, the primal field variables and their derivatives are interpolated as independent
variables with C° basis functions. Mixed finite elements have been successfully used in
strain-gradient elasticity (Amanatidou and Aravas, 2002) or Cahn-Hilliard equation (Feng
and Prohl, 2004). They suffer however from stability issues and from cumbersome model-
dependent implementations, as well as from a higher computational cost due to the large
number of additional unknowns. C° penalty methods also consider standard CO finite element
approximations and impose the required continuity across elements weakly (Ventura et al.,
2021).

The approach to high-order PDE based on smooth basis functions is much more direct and
only requires the approximation of the primal fields. The drawback is that it is, in general,
more difficult to define smooth approximation spaces. One option is to use meshfree methods,
which easily enable local refinement (Fish and Belytschko, 2007). However, these methods
are very expensive due to quadrature and to the large sparsity pattern resulting from the
significant overlap of basis functions required in higher-order problems. Furthermore, the
treatment of boundary conditions on curved and non-convex geometries can be cumbersome.
Another option is Isogeometric analysis (IGA) based on B-splines or NURBS (Cottrell et al.,
2009). Isogeometric methods describe boundary geometry with high fidelity and can deal with
high-order PDE, but are too rigid in the bulk, e.g. to model composites. B-spline approximations
in higher dimensions are constructed from tensor products and thus rely on cartesian meshes,
incompatible in principle with general boundary geometries.

This limitation can be circumvented by combining B-Splines with immersed boundary
methods, which use meshes non-conforming to the boundary of the domain. This boundary
is defined independently of the background mesh, and thus immersed boundary methods
overcome the rigidity of tensor product B-Spline approximates (Codony et al, 2019). In
immersed boundary methods, essential boundary conditions cannot be enforced strongly since
the basis functions are not interpolant at the boundary, and are often enforced weakly through
Nitsche’s method (Fernandez-Méndez and Huerta, 2004, Nitsche, 1970). Similarly, continuity
conditions at material interfaces or generalised periodic conditions at fictitious boundaries
cannot be imposed strongly. Although continuity conditions for classic elasticity at material
interfaces with Isogeometric analysis (IGA) have been developed (Dolbow and Harari, 2009,
Jiang et al., 2015), high-order interfaces in unfitted discretisations have not been addressed in
the literature to the best of our knowledge.
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3.1.1 B-spline basis functions

B-splines are curves or surfaces which are piecewise polynomials. We refer the reader to Piegl
and Tiller (2012) for an extensive explanation of B-splines and NURBS. Let ¢ = {&, &, ..., &n}
a non-decreasing sequence of real numbers. ¢ is called the knot vector, and ¢&; are the knots.
The i-th B-spline basis of degree q is defined recursively as

B(¢) = [ Lohee ; CRY

0 otherwise

§i+k+1 - f Bkil(f); k= L., q (3.2)

Eivke1 — i ol i=0,...,m+q—k—1.

£-&
§i+k - gi

Bf(¢) = BFl(8) +

Note that a B-spline of degree q is the linear combination of two B-splines of degree g - 1, and
the B-spline of degree 0 is just the step function. We called the multiplicity of a knot &, the
number of times that this knot is repeated in the knot vector. This multiplicity reduces the
continuity of the basis function at that point once for each time the knot is repeated. Without

any multiplicity, the continuity of the basis function is C4"!. B-splines have some properties
that we need to recall:

« Local support: BS(£) =0 V& ¢ [&, Eigur).
« For each knot span [§, &.1) there are at most g + 1 B-splines with support inside.
- Non-negativity: BS(£) = 0 Vi, k, &.

Fig. 3.1 shows two representations of the B-spline basis function. The first one of degree
1 with knot vector {0,1,2,3,4,5,6,7} and the second one of degree 2 with knot vector
{0,0,0,1,2,4,4,5,6,6}. Note that in the second example, knot 0 has multiplicity three and
knots 4 and 6 have multiplicity two. As knot 4 has multiplicity 2, it implies that the basis
function Bj is only C? at that point.

B-splines are defined in a multivariate space by the tensor product of univariate ones:

B{([¢, 1, 7]) = B{(£)B] (nB{ (7). (3.3)
Different kinds of B-spline bases are obtained depending on the choice of the knot vector.
We mainly focus on two: open B-spline and uniform B-spline.
3.1.2 High-order approximation space: Body fitted B-spline approach

Imposing Dirichlet boundary conditions strongly, as done in Section 2.1.1, requires the basis
function to be interpolant on the boundary. In order to get interpolant basis function we use
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B} B B! B 1135 B? B2 B3 B2

Figure 3.1: Example of B-spline basis function. (left) The knot vector used is {0,1,2,3,4,5,6,7}
and the degree is 1. (right) The knot vector used is {0, 0,0, 1, 2,4,4,5,6,6} and the degree is 2.

an open knot vector. An open knot vector is one whose first and last element of the knot
vector have multiplicity g + 1, as seen in Fig. 3.2.

By B B} B B} B? B? B2 B?
1
0.8 |
0.6 |
0.4 |
0.2t
0 AN
0 1 2 3 4 5 2 3 4 5
B B} B3 B3 BiB: B} B} B} B Bg BB
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 —e 0
0 1 2 3 4 5 0 ] 2 3 4 5

Figure 3.2: Example of open B-spline basis functions for different degrees. From left
to right and top and bottom, the different degrees and knot vectors are: degree=1 and
knotvector={0,0,1,2,3,4,5,5}, degree=2 and knotvector={0,0,0,1,2,3,4,5,5,5}, degree=3 and knotvec-
tor={0,0,0,0,1,2,3,4,5,5,5,5} and degree=4 and knotvector={0,0,0,0,0,1,2,3,4,5,5,5,5,5}.

Firstly, we define the geometrical maps ¢ which map a given point in the parametric space
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£ € E to a given point in the physical space x € Q as

pE—Q

3.4
E— (&) =x G4

The basis functions in the physical space N;/(x) are constructed as N;! = Bf o ¢! and the state
variables are approximated as

[u(x)]a ~ [u"(x)]a = Ni(x)ay = Bi(&, , Ty, (3.5a)
$(x) ~ ¢"(x) = Ni(x)a! = Bi(£,n, 7)al, (3.5b)

where {a*, a?} are the degrees of freedom of u" and ¢". We have omitted the superscript
q for convenience. The geometrical map in Eq. (3.4) is straightforward in the context of
B-spline because we restrict ourselves to rectangular meshes. Then the geometrical map is
@(&,n,7) = [hx&; hyn; h,7], where each element of the mesh has dimensions [hy; hy; h.].

Once the interpolant basis function is defined, we can reduce the space of approximation to
impose Dirichlet conditions as done in Eq. (2.17). Low-order PDEs, as in the Laplace equation,
need to impose the first and the last B-spline because these two are the only ones with a
value different from 0 at the boundary. For fourth-order PDEs, as flexoelectricity, we need to
impose the first two and the last two B-spline to impose the first and second-order Dirichlet
conditions. In 1D, the imposition is as easy as setting the value of the B-spline equal to the
boundary condition, but in 2D or 3D, we need to make a L2 projection to impose them, as
done in Barcel6-Mercader (2018).

3.1.3 High-order approximation space: Immersed B-spline approach

Being Q the physical domain, in the approach of Section 3.1.2, Q was restricted to a rectangular
shape. In order to deal with any arbitrary shape, we define an embedded domain Qg such that
Q € Qg (see Fig. 3.3). The geometrical map is now

Q12— Qy

o p(f) = x ()

Note that the geometrical map ¢ is independent of the physical domain. To preserve the
Jacobian and the properties explained in Section 3.1.2, the embedded domain is assumed to have
a rectangular shape of dimensions, for instance, in 3D (L, Ly, L, z), but the physical domain
has no longer a rectangular shape. The B-spline basis functions used in this method could be
defined using the open knot vector defined in Section 3.1.2. However, as the Dirichlet boundary
condition cannot be imposed strongly because the boundary of the embedded domain may
not be the same as the physical domain, we use a uniform B-spline basis function instead.

Every knot of the knot vector is now equidistant with the next and the previous one. For
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Figure 3.3: 2D Mesh for the immersed boundary approach. In dark blue, there is depicted the
cut cells QF; in light blue, there is depicted the inner cells Q! and in white, there is depicted
the outer cells QO°.

example, in Fig. 3.4, we can see some plots of the uniform B-spline basis function for degrees
between one and four. The main disadvantage of using this kind of B-spline is that they are
not interpolant at the boundary, meaning that the Dirichlet boundary condition cannot be
applied strongly. However, our embedded domain might not share the boundary with the
physical one, so it is no longer a problem.

In this approach, Dirichlet boundary conditions cannot be imposed strongly and have to
be imposed weakly, as done using Nitsche’s method explained in Section 2.2.1. One advantage
of using uniform B-splines is that all basis functions are the same but translated in space.
Therefore, their expression of them can be computed once for one spline and then translated
it.

3.1.3.1 Cut-cell integration and stabilisation

Integration of the physical domain is the most challenging part of the immersed boundary
method. Firstly, each element of the Cartesian mesh has to be classified into three disjoint
groups (see Fig. 3.3):

« Inner cells (Q!): These cells are entirely inside of the physical domain (Q! < Q).
« Outer cells (Q°): These cells are entirely outside of the physical domain (Q° n Q = @).

« Cut cells (Q): These cells have a portion inside the physical domain, and the rest lie
outside it (Q€ n Q # @ & Q€ ¢ Q).

Once each element has been classified, we distinguish two kinds of integration: integration of
the bulk and integration of the boundary.
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Figure 3.4: Example of uniform B-spline basis functions for different degrees. From left to right
and top and bottom, the different degrees and knot vectors are: degree=1 and knotvector={-
1,0,1,2,3,4,5,6}, degree=2 and knotvector={-2,-1,0,1,2,3,4,5,6,7}, degree=3 and knotvector={-3,-2,-
1,0,1,2,3,4,5,6,7,8} and degree=4 and knotvector={-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9}.

Integration of the bulk of inner cells can be done with standard quadrature for polynomials
(Witherden and Vincent, 2015), and no boundary integration is needed. For cut cells, an
excellent representation of the boundary is needed. NEFEM approach based on the NURBS
representation of the geometry is used in this thesis (Legrain, 2013, Marco et al., 2015, Sevilla
and Fernandez-Méndez, 2011, Sevilla et al.,, 2008, 2011a,b), because it preserves the high
convergence rate of the B-spline method. Then, each cut cell is divided into several subdomains
using an algorithm based on the marching cubes algorithm (Marco et al, 2015).

The system of equations built with the discretisation of the weak form in Section 2.2.4
using the immersed approach can suffer from ill-conditioning (de Prenter et al, 2016). This
phenomenon may happen when a cut cell has a tiny portion inside the physical domain. To
minimise ill-conditioning, some strategies can be used. One can be the ghost penalty method
(Burman, 2010), another adding artificial stiffness (Diister et al,, 2008, Schillinger and Ruess,
2015), and finally, the one used in this thesis, the extended B-spline method (Hollig et al, 2012,
2001, Riuberg and Cirak, 2012, Riuberg et al., 2016).

Essentially, the extended B-spline method consists of reducing the space of approximation,
changing the basis function with very little support with a linear combination of other basis
functions that lie inside o almost inside the physical domain.

That particular method is well-suited for our approach because it can be applied using
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a constraint matrix that will pre-multiply and post-multiply the matrix of the system of
equations.

3.2 High-order generalised periodicity approximation space

Simulating a unit cell of an architected material is a complex problem because you need to
apply high-order periodicity condition, as stated in Section 2.4.1. A way of enforcing them
in a fancy way is by creating a high-order generalised periodicity approximation space. Any
function approximated with high-order generalised periodicity space will fulfil the high-order
generalised periodicity conditions by construction. A set of periodic basis function and a

high-order generalised periodic basis function create this periodicity space.

3.2.1 Periodic basis function

Following the explanation described in Barcelo-Mercader et al. (2023). Being QRVE = [0, L,] ®
[0,Ly] @ [0,L.]  R? the unit cell of an architected materials as seen in Fig. 3.5. The condition
that must fulfil the Cartesian mesh Q; is that it must have element sizes (hy, hy, h;) such that
Lg/hy = ng € N¥, ¢ = {x,y,z}, where n; is the number of cells along the {-th dimension.

2 i b) 3
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Figure 3.5: a) Embedded mesh Q; of size Ly and Lj. Note that Q > OQRVE The number of
elements per dimension is 20: n, = n, = 19, and the shift is: s, = 0.9 and s, = 0.1. b) Zoom in
of the mesh, outer cells are depicted in white, cut cells in light red and inner cells in dark blue.
Image taken from Barcelo-Mercader et al. (2023)
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The dimensions (L, L;, L?) of the computational domain Q are

hy - if LY = Ly,
g - ¢ ng ! ¢ ¢ (3.7)
hg - (ng +1) 1fL§>L§.

The simplest case happens when the equality holds for every direction and then Q_ = QRVE,
Nevertheless, we use a general case where the inequality holds for every direction, obtaining
Qg > QfVE. Taking into account the shifting parameters s; € (0, 1), which moves the Cartesian
mesh an arbitrary number (to avoid very bad cut elements), the embedding domain Q spans
[hy - (sg = 1), Ly + hy - s¢] in the {-th dimension.

To obtain the periodic B-spline basis Bf (£, 1, 7), we identify the basis with its corresponding
periodic images whose distance is (myny, myny, myn;), my, my, m, € Z creating a unique
degree of freedom. It can be seen in Fig. 3.6. This strategy creates a high-order periodic basis
that satisfies standard periodic conditions as stated in Section 2.4.1 . Using this strategy, the
unit cell QRVE is cut by 9Q but not by 9QRVE,

3.2.2 High-order generalised periodic basis

A generalised periodicity approximation space is constructed by adding a periodic space with
a functional space spanned with global basis functions B (£, , 7) that fulfil

By (0= 1) - By (0 =0) = &, (3.82)
"By (0= np) ~ "By (0= 0) = 0, (3.8b)

where {,0 € {£, 7, 7} and J;, is the Kronecker delta.

The definition of the basis function B(&, 7, 7) is not unique. The simplest approach
B{(f , 1, T) is the linear function B§(§, 1, 7) = {/n;. However, it spans the whole QRVE gubstan-
tially increasing the fill-in of the resulting system matrix. An efficient alternative in the context
of B-spline basis that involves minimal fill-in and straightforward implementation consists of
defining B (£, 1, 7) as the addition of all the non-vanishing original B-spline basis B;(¢, , 7)
on the cell Q¢ intersected by 9QRVE = Ly, as seen in Fig. 3.7. Thanks to the partition of unity
property of B-spline basis, seen in Section 3.1.1, B¢(£, , 7) evaluates to 1 within the aforemen-
tioned cell and 0 for all derivatives. At the opposite boundary 9QRVE = 0, By(£, 1, 7) and its
derivatives vanish, fulfiling the conditions in Eq. (3.8). The generalized-periodic functional
space has C?47! continuity.

An advantage of defining the periodic basis as done in Section 3.2.1 and the generalised
periodic basis in this way is that they can be implemented as a linear constraint on the original
approximation space during or after the assembly stage, as done in Section 3.1.3.1 with the
extended B-spline method.

In conclusion, the components of u and ¢ are approximated by the high-order generalised
periodicity functional spaces spanned by the basis functions {Bf(g, n,7); Be (€, 1, r)} and
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Figure 3.6: Univariate periodic basis of degree g = 2. Originally (top), the functional space is
spanned by nine B-spline bases B;(¢),i = 0, ..., 8, defined onto a mesh of L,/h, = n, = 6 cells.
Note that QRVE does not coincide with Qy, and therefore cut cells (Q5 n Q®E and QF n QRVE)
are generated. In order to create a high-order-periodic functional space (bottom), the basis
functions at a distance n, on QRVE are identified with the same degree of freedom, yielding
a functional space spanned by only six periodic B-Spline bases BL'(¢),i = 0... 5. The periodic
nature of the basis implies periodicity on Q®VE too, which does not have cells cut by the
periodic boundary 9QRVE anymore. Image adapted from Barcel6-Mercader et al. (2023)

control variables {uP, ¢P; T, f} as follows:

uy(x,y,2) = Z [Bf ° go_l(x, v, z)] ”5 + [Eb o (p_l(x, v, z)] Zab (3.9a)

1

$(x,y.2) = Y, [Bl 2 07 (x,3.2)] ¢" + [By o 97 (x,,2)] E (3.9b)

1
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where a, b € {x, y, z}. Note that the solution is determined up to a constant, which means
that rigid body translation is not fixed. To impose it, we usually set the first basis function to
zero without loss of generality.
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Figure 3.7: Univariate generalised periodic basis of degree q = 2. Originally (top), the functional
space over the cut cell Q% n QRVE is spanned by three B-spline basis functions B;(£), i = {4,5,6}.
The addition of these basis functions yields the global basis function B, (), which inherits the
regularity of the original B-spline basis and fulfils the admissibility condition in Eq. (3.8). The
union of B, with the periodic B-spline basis in Fig. 3.6 spans a high-order generalised periodic
functional space on Q®VE. Image adapted from Barcel6-Mercader et al. (2023)

Remark 3.1. The critical basis functions of the high-order generalised periodic functional
space, that is, those whose support is intersected by dQ in a tiny proportion, can be stabilised
through the extended B-spline stabilisation technique as any other basis function.

3.2.3 Enforcement of macroscopic kinematics

Discretising the weak for in Eq. (2.93) on the generalised periodic space, we get the following
system of equations:
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Kpp Kpg Xp _ 0 (3.10)
Kgr Kgg /) \Xc G .

where the subscript P denotes the periodic basis functions stated in Section 3.2.1, and the
subscript G denotes the global basis functions described in Section 3.2.2.

In our case, we have X = {& E}, Xp = {u’, ¢’} and f; = |Q%E|{G, D}. The sets X
and f are split into two subsets, one corresponding to macroscopic Dirichlet conditions
X2 and fL, and another one corresponding to macroscopic Neumann conditions XN and fg .
Macroscopic Dirichlet conditions in Eq. (2.91) are strongly enforced on the system of equations
3.10 by prescribing the values of X2, and microscopic Neumann conditions in Eq. (2.92) are
enforced by prescribing the values of f2.

3.2.4 Macroscopic kinematics rotation

The macroscopic conditions derived previously have been applied along the directions (x, y, z)
of the Cartesian frame. However, macroscopic conditions can be applied along a rotating
frame by considering

=R &R, o"=R-5 R,
EX=R-E D*=R-D. (3.11)
where R is a given rotation matrix from the Cartesian frame to the rotating frame:
cosa -—sina 0 cosfi 0 sinff} (1 0 0
R=|sina cosa 0]- 0 1 0[-[0 cosy -siny|, (3.12)
0 0 1) |-sinf 0 cosfB] |0 siny cosy

being a, 8, y the angles called yaw, pitch and roll typically used in aeronautics. This approach
is useful, especially in sensitivity analysis as in the loading direction example in Section 4.4,
since a continuous response can be obtained by continuously increasing the rotation angle
covering all the parameter space. This task can be performed very efficiently by implementing
a for loop during or after the assembly stage, avoiding the re-computation of volume integrals
in the approximation space. The new rotating system of equations is

Kpp KR, Xp 0
KR KR )" ) (3.13)
GP GG G G

where Kf; = Kpo - RT, K = R~ Kop, K& = R~ Koo RY, X§ = {(#R E*} and fR =
|QRVE|{aR, D" }. The macroscopic Dirichlet and Neumann conditions can be applied directly
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to XR and fR along the directions of the rotating frame.

3.3 Selection of numerical parameters

This section reviews the selection of the penalty parameters of the Nitsche’s method in Eqs. 2.41
and 2.51, and the y-parameter of the weighted mean in Eqs. 2.47a and 2.48.

3.3.1 Penalty parameter of Nitsche’s method

The penalty parameters %, 2, S and ¢ in Eq. 2.41 can be computed by solving an eigenvalue
problem (Griebel and Schweitzer, 2003), or they can be approximated by writing them as a
function of some material parameters (Barcelo-Mercader et al, 2022, Codony et al.,, 2021a,
2019) as

E {’E

u _ - v _ 7 u_le
prei B=C O

¢ _ €
12 g, p? = h§~ (3.14)

As these values are valid for a wide range of {, we will take { = 100, which gives accurate
results for all examples in the thesis. They do not depend on the intersection of the mesh with
the body thanks to the extended B-spline method, which has been presented previously in
section 3.1.3.1.

The penalty parameters I, o, I, B?1 € R* in Eq. 2.51 are defined in terms of a
dimensionless parameter { € R" as a generalisation of the ones seen in Eq. (3.14) as

g max(EW, E?) o7 t?max(EW, E@)
prr = 2y, R s

2 max(EW, E@, .., EM) max(e, e?))
BT = o 4 Bt = J, (3.15a)

where h denotes the physical cell size of the mesh, and E, € and ¢ denote Young’s modulus,
the dielectric permittivity and the internal length scale arising from strain gradient elasticity,
see Appendix A.1.

3.3.2 Weighted mean parameter

Numerical oscillations around the interface may appear in some critical cases when one
element has a much smaller portion in one domain than in the other, as previously reported
in Annavarapu et al. (2012a,b), Dolbow and Harari (2009), Laursen et al. (2012). To improve
the conditioning, we consider the following simplified version of y-parameters reported in
Annavarapu et al. (2012a,b), which yields accurate results:

Lo _ meas(Sq(r)) R(E) _ meas(So(r))
meas(So(ry) + meas(Sor)’ meas(Sor)) + meas(Soer)’

Y (3.16)
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where meas(Sq(;)) denotes the physical measure of the cut cell. Other expressions of these
parameters include the material parameter of the physical domains as the Young modules
or Poisson ratio. We refer the reader to Annavarapu et al. (2012a,b) to find more complex
expressions and explanations.

The choice of the y-parameter in Eq. (2.48) in Barcelo-Mercader et al. (2022) is also a
generalisation of the y-parameters defined in Eq. (3.16) as

SP(ki) _ meas(Sq(i))
m(k :
Zj:(l ) meas(Sq(;))

(3.17)

3.4 Validation of numerical method

The last section of this chapter consists of two convergence tests of continuum modelling and
numerical methods. One for the 2D flexoelectric model and one for the 3D flexoelectric model.

3.4.1 Convergence test for interfaces

We start with a 2D convergence test. Being the synthetic solution defined as
ux(x, y) = 4sin(27rx),
uy(x,y) = 3sin(27y),

¢(x,y) = 2sin(27rx) + sin(27y). (3.18)

The physical domain Q consists of three triangles that create an equilateral triangle of size 3, as
seen in Fig. 3.8. Interface and Dirichlet conditions, consistent with the synthetic solution, are
the ones applied here, and they can also be seen in Fig. 3.8. The material parameters used are
in Table 3.1. Note that, as this is a convergence test, the material parameters are dimensionless
for convenience.

. Dirichlet boundary

[ Interface boundary

Figure 3.8: Physical domain and boundary conditions applied to the 2D convergence test. The
physical domain consists of three triangles forming an equilateral triangle of size 2.
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Q|E |v l]e d|e |er |e |m |pr | ps
11810331141 |y | 88 | -44 | 44 | 150 | 110 | 110
2 (58|03 1] 11 y |38 |-24|24| 100 | 10 00
3133]025|1] 85 y [53|-32]26]|10 180 | 180

Table 3.1: Material parameters for the three subdomains in Fig. 3.8

The convergence analysis is done by computing the £2, H!, H? and H?> errors using two
different degrees of approximation, q = 3 and q = 4. log,(h¢/h) is the mesh refinement level,
and hy = 1 is a normalisation length. The convergence analysis can be seen in Fig. 3.9, and
optimal convergence is obtained.

2.97

6 7 8 9
log, (h/ho)

Figure 3.9: Convergence plots for £2, H', H? and H*> norms, with degree g = 3 (left) and q = 4
(right) for the 2D interface analysis. The number for each plot is the slope of the least square
fitting.

A similar 3D convergence test is done. Let us consider an arrangement of four cubes of
size 2 forming a parallelepiped. Two different materials are used, and they are in Table 3.2.

Q|E |v l]e d|e |er |e |m |pr | ps
1198033 |1 141 88 | -44 |44 | 150 | 110 | 110
2 142103 1] 11 Z | 38| -24 |24 110 | 10 10

N

Table 3.2: Material parameters for the two subdomains in Fig. 3.10
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Dirichlet boundary conditions are imposed on the outer boundary and interface conditions
on the inner ones (see Fig. 3.10), consistent with the following synthetic solution:

u(x, y, z) = 4sin(0.2x),

uy(x, y,z) = 8cos(0.2y),

uy(x,y,z) = 7c0s(0.2y) + 2 sin(0.2z),

¢(x, v, z) = 1sin(0.2x) — 3 cos(0.2y) + 2 sin(0.2z). (3.19)

2 1 . . . Dirichlet boundary
[] Interface boundary

Figure 3.10: Physical domain and boundary conditions applied to the 3D convergence test.
The physical domain consists of an arrangement of four cubes of size 2.

The convergence analysis is done computing the £, H', H? and H? errors using two
different degrees of approximation, g = 3 and g = 4. log,(ho/h) is the mesh refinement level,
and hy = 1 is a normalisation length. The convergence analysis can be seen in Fig. 3.11 and
optimal convergence is obtained.
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4% Al 1.98

2.97

5 6 7 8 5 6 7 8
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Figure 3.11: Convergence plots for £2, H', H? and H? norms, with degree q = 3 (left) and
q = 4 (right) for the 3D interface analysis. The number for each plot is the slope of the least
square fitting.






Chapter 4

Flexoelectricity in
non-homogeneous materials

This chapter presents several examples of flexoelectric BVPs in non-homogeneous materials.
First, a comb-like flexoelectric device is presented. In this design, a non-centrosymmetric
arrangement of material inclusions is used to accumulate and upscale the local flexoelectric
response. Next, two periodic metamaterials are analysed in vertical sensor mode, i.e. a
macroscopic vertical displacement is applied and the resulting macroscopic electric bias is
computed. The metamaterials are analysed by considering the unit cell subject to generalised
periodic conditions. The two methods derived in this thesis are considered: that based on
Nitsche’s method (Section 2.3) for the first example and that taking advantage of the periodicity
of the B-spline basis functions (Section 3.2) for the second. Both examples validate the model
of generalised periodicity comparing the response of a unit cell or RVE against that obtained
for a finite structure formed by a finite but sufficiently large number of unit cells. Then,
second method is used to analyse a 2D flexoelectric architected material. The apparent
piezoelectric coefficients are computed for different operation modes as a function of the
design orientations, showing the material anisotropy. After that, a 3D flexoelectric architected
material is considered. We compare the response of the 3D architected material with a 2D unit
cell with plane strain and the same shape. Finally, graded structures are studied considering a
linearly varying Young modulus.

4.1 Comb-like flexoelectric harvester

We consider an electromechanical device consisting of two comb-like structures of a non-
piezoelectric dielectric joint together by a very low-dielectricity material at the tip of the beams,
see Fig. 4.1. The application of a shear motion at the left and right sides of the structure, induces
beam bending and triggers the flexoelectric effect. This local flexoelectrically generated electric
potential is accumulated through the structure, as shown in Fig. 4.1. By breaking the overall

75
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centrosymmetry of the system (thanks to the insulator in the middle), the low-dielectricity
material inclusions preclude internal cancellation of the local flexoelectrically generated electric
potential, thereby endowing the device with an effective piezoelectric behaviour, even when
the base material is a non-piezoelectric dielectric (Mocci et al, 2021, Sharma et al.,, 2010).

A device with ten beams is considered for illustration purposes. The beams are 100 nm
long by 10 nm wide, and the insulator is a square of side 10 nm. Material properties are given
in Table 4.1. Displacements, u;, = (0,5) nm and ug = (0, -5) nm are prescribed on the left and
right sides of the structure, and the top-right half side of the structure is electrically grounded,
Fig. 4.1. Natural boundary conditions are assumed otherwise. The effective piezoelectric
response of the structure manifests in a net potential difference between the ground electrode
and the top-left half side of the structure.

Q[ EGPa] [ v [inm] [ e[n)VZm ] [y V' m] [ pr [ ps
1| 152 033 | 1 141 150 110 | 110
2 | 152 033 | 1 141 x 1077 0 0 0

Table 4.1: Material properties of the material tensors described in Section 4.1. The piezoelectric
tensor is zero for all materials.

4.2 Sensor under vertical compression using generalised
periodicity and interface conditions.

The validation of generalised periodicity conditions is done by comparing the response of a
sizeable periodic arrangement of triangular voids on a dielectric matrix to that of the periodic
unit cell, as seen in Fig. 4.2. Such structure has been proposed as a means to generate a local
flexoelectric response in a non-piezoelectric material in such a way that a net electric potential
is generated under macroscopic homogeneous deformation (Barcel6-Mercader et al., 2022,
Mocci et al., 2021, Sharma et al., 2010). For a massive structure under a prescribed strain, we
expect the solution in the central part of the structure to be unaffected by boundary effects
and thus exhibit generalised periodicity. In Fig. 4.2, we compare the solution obtained on the
generalised periodic unit cell with the central unit cell of a vertical stack of N unit cells. In the
first simulation, we consider a unit cell with generalised periodic conditions in both directions.
A displacement jump along the vertical direction y

u’ = (0,-0.1) nm. (4.1)

is prescribed, and all other jumps in Eq. (2.59), #*, ¢* and ¢, are left free (unconfined vertical

displacement sensor), see discussion under Eq. (2.60). The unit cell is a square of side 4 um
33

with a triangular void of ==

Table 4.1.

um. The material properties correspond to the first material in
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Figure 4.1: (a) Geometry of the comb with flexoelectric material in Q; (in light blue) and
insulator in Q, (in dark blue). The interface, Z, and its corners, C, are also shown in green.
The Dirichlet boundary is depicted in red, and the electrical ground side is shown in orange.
(b) Deformed shape of the material and electric potential distribution. Image adapted from
Barcel6-Mercader et al. (2022).

Figure 4.2 shows the unit cell and the resulting electric potential distribution. In the second
simulation, we consider a stack of N=19 such unit cells subject to prescribed displacements on
the top and bottom faces matching, in the limit, the previous generalised periodicity conditions,
Le.

Uly-y, = N uly-0 = 0, (4.2)

and unconstrained generalised periodicity conditions for u and ¢ in the horizontal direction.
As the electric potential is determined up to a constant, we set it to zero at the centre of the
structure. Figure 4.2 shows the vertical structure and the electric potential distribution, with a
zoom around the central cell. For comparison purposes, the scale of the electric potential for
the second simulation is adjusted to show perfect agreement with the generalised periodic



78 FLEXOELECTRICITY IN NON-HOMOGENEOUS MATERIALS

unit cell result, Fig. 4.2. That error is smaller than 0.1% in all points inside the unit cell. For
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Figure 4.2: (a) Unit cell and electric potential distribution with generalised periodic conditions
in both directions. (b) Distribution of the electric potential in a structure formed by 19 unit cells
prescribed displacements at the top and bottom. Results on the central generalised periodic
unit cell are shown with the same scale as a) for direct comparison purposes. Image extracted
from Barcel6-Mercader et al. (2022)

stacks of a large number of unit cells, we expect the average electric potential difference on a
unit cell to tend to the generalised periodicity electric potential jump ¢7, i.e.

lim Ad ¢, (4.3)

where A¢ is the electric potential difference between the top and bottom boundaries of the
structure in Fig. 4.2. For quantitative validation purposes, we plot in Fig. 4.3 the value of
A¢/N for stacks of an increasing number of unit cells from N = 1 to N = 20 and compare
it against the generalised periodicity electric potential jump ¢ obtained in the generalised
periodic unit cell simulation, Fig. 4.2. From this plot, the limit in Eq. (4.3) is apparent. The
electromechanical response of a unit cell under generalised periodicity conditions is thus
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shown to represent the bulk response of a periodic material built from that unit cell under
the corresponding macroscopic conditions on its boundaries. Although we only show the
validation for a sensor mode considering generalised periodicity in the y-direction, actuator
mode and different generalised periodicity have been considered. All of them have the same
agreement as the one presented here.

= = Generalized perioditicy
300- —3— Dirichlet

0 5 10 15 20
Number of unit cells (N)

Figure 4.3: Plot of the difference of electric potential, A¢, per unit cell, versus the number of
unit cells N (in blue) and potential difference, ¢, for one unit cell considering generalised
periodicity in both directions (in red). Image extracted from Barcel6-Mercader et al. (2022)

4.3 Sensor under vertical compression using generalised
periodicity and high-order generalised periodicity space

In this section, we follow the validation test done in Section 4.2. We compare the response

of a large two-dimensional structure to that of the unit cell. The structure is built using an
343

arrangement of squares of length size 4 pm with equilateral triangular voids of length size ==
um as can be seen in Fig. 4.4.
First, we perform the simulation associated with the RVE (see Fig. 4.4), imposing the

following generalised periodicity conditions:
£,y = -0.1, (4.4)

while other components of the macroscopic strain and the macroscopic electric field are left
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free:
Cxx = 0Oxy=0yx =Dy =D, =0. (4.5)

This condition represents imposing a homogeneous unconfined compression along the
y-direction like done in Mocci et al. (2021), Sharma et al. (2010). The material properties are
reported in Table 4.2.

E v Cimech K Lelec He Ht Hs
[GPd] - [nm] [nC/Vm] [mm] [nC/m] [nC/m] [nC/m]
152 0.33 1 45 0 40 40 0

Table 4.2: Material parameters in Section 4.3

The unit cell and the resulting electric potential distribution can be seen in Fig. 4.4. The

6
0
-6
i
3 4 x

Figure 4.4: (Left) Unit cell simulated. (Right) Deformed shape and electric potential distribution
inside a unit cell, considering generalised periodicity. Image taken from Barcel6-Mercader
et al. (2023).

macroscopic electric field of the unit cell is E;,, = ~1.6028V/m.

YA
4 _______ ——

0 »
X

After the simulation of the RVE, we perform the simulation of the full arrangement.
Let consider an arrangement of N € {1,...,20} concatenated unit cells under prescribed
displacements on top and bottom faces matching, in the limit of N — oo, the previous
generalised periodicity conditions, that is,

uly_ay = (0,-0.4N) ulyo = 0, (4.6)

As the bottom of the structure is grounded (see Fig. 4.5), the difference in the electric potential
between top and bottom is, simply, the average of the electric potential at the top. Natural
boundary conditions are considered in all other boundaries, as seen in Fig. 4.5.



4.4 2D flexoelectric architected material 81

N=8 u=(0,-0.4-N)
VANWANVAN
VANWANIVAN
VANWANIVAN

4 pm
VANWANAN
VANWANAN
VANWANWAN
VANWANAN

4 ym p— —

$=0
u=(0,0)

DD DDDD
DD DDDD
>
]
>
DD DDDD
DD DDDD
DD DD

A
v

Figure 4.5: Unit cell (left) and structure formed by N = 8 cells per dimension (right). The
Dirichlet boundary conditions are depicted in red, and natural boundary conditions are applied
on all other boundaries. Image adapted from Barcel6-Mercader et al. (2023)

In the limit of stacking unit cells, the difference of electric potential between top and bottom
faces divided by the vertical length should tend to minus the macroscopic electric field E,,
that is,

A _
lim — = lim E, = E,. (4.7

The value of E, for different numbers of unit cells can be seen in Fig. 4.6. Also, the
value of the macroscopic electric field is plotted in red, showing that the limit in Eq. (4.7) is
apparent. The difference between the value considering N = 20 cells and the one obtained
using generalised periodicity is less than 0.05%. Although in this example, only one set of
generalised periodicity conditions has been validated, the result using any other generalised
periodicity condition is the same.

4.4 2D flexoelectric architected material

An alternative route for technologies based on electromechanical transduction could be
achieved by flexoelectricity. Architected metamaterials, if well designed, can overcome any
dielectric presenting apparent piezoelectricity, as seen in Mocci et al. (2021), Sharma et al.
(2007). We are interested in bending-dominated lattices and low-area fractions, as shown in
Mocci et al. (2021). Apparent piezoelectricity is exhibited by the lattice thanks to flexoelectricity
and the non-centrosymmetric arrangement of the constituents. The metamaterial is created
by an arrangement of periodic unit cells with a thickness of t = 160nm and length ¢ = 1.6pum.

Using the generalised periodicity conditions, the metamaterial is reduced to a single unit
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