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Abstract 

Understanding the triggering processes and mechanisms of induced seismicity remains 

one of the most critical challenges in geo-energy applications. This Thesis aims at 

assessing (1) fault stability and induced seismicity potential under various geological, 

geometrical, and poromechanical conditions in the framework of poromechanics, and 

(2) poromechanical effects on the earthquake nucleation process. 

First, we adopt the inclusion theory and Green’s function to develop an analytical 

solution for stress variations due to pore pressure changes within the reservoir under 

plane strain conditions. The solution is valid for various fault offsets, dip angles, 

reservoir lengths, and permeable and impermeable faults. Fault stability analysis finds 

that (1) the induced seismicity potential of impermeable faults is always larger than 

that of permeable faults under any initial and injection conditions; (2) the slipping fault 

patch size increases with the offset for permeable faults, while it is independent of the 

offset for impermeable faults; and (3) an impermeable fault would rupture at the lower 

deviatoric stress and the smaller pressure buildup than a permeable one. 

Second, we propose a closed-form solution for the poromechanical displacement with 

similar methods and conditions but in a half space relative to the previous stress 

solution, aiming at quickly estimating the ground uplift/subsidence. Results present 

that ground displacement increases with fault dip and decreases with increasing fault 

offset, in contrast, reservoir geometry shows a stronger effect than fault geometry. We 

compare the solution in a half space with that in a full space, showing that neglecting 

free surfaces underestimates the poroelastic displacement in the overburden. According, 

we recommend an index to assess the validity of full-space solutions. The specific 

condition is site-dependent and can be estimated by our solution.  

Next, we apply the analytical solutions to analyze the triggering mechanisms of the 

Pohang Mw5.5 earthquake, which currently is the largest seismic event induced by any 

Enhanced Geothermal System. We make a comparative analysis on the relative 

likelihood of the existing in-situ stress state estimates for the Pohang site at depth, 

finding two likely oblique-slip patterns that can describe the triggering processes: a 

reverse-slip pattern with a strike-slip component (RS-S) and a strike-slip pattern with a 

reverse component (SS-R). We perform both deterministic and stochastic 

poromechanical analyses for both slip patterns, and then assess the induced seismicity 

potential. Two kinds of results provide three consistent evidences to support the RS-S 

pattern rather than the SS-R pattern. Results also highlight that (1) a small overpressure 

can trigger a damaging earthquake when preexisting faults are critically stressed at the 

initial state, and (2) we should devote more efforts to site characterization at the prior 

stage of projects.  

Finally, we incorporate the analytical stress solution into the interfacial slip model of 
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cracks to simulate the nucleation process. Including poroelasticity drastically affects 

the quasi-static crack growth, revealing a wider range of slip regimes and reducing the 

expected magnitude of induced seismicity in some regimes. We generate maps of slip 

regime and earthquake magnitude with respect to a parametric space. The slip regime 

map comprises all the nucleation information: nucleation length, time, slip, and leading 

factors that include poroelasticity, slip weakening, and residual friction. The 

earthquake size map displays the moment magnitude associated with the ultimate 

nucleation of dynamic rupture in different slip regimes. Analyzing the two maps finds 

the favorable and unfavorable conditions as a function of rock properties, background 

stress, and injection parameters for deploying geo-energy applications. On the contrary, 

neglecting poroelastic effects cannot recognize many of such conditions.  
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Resumen 

Comprender los procesos y mecanismos desencadenantes de la sismicidad inducida 

sigue siendo uno de los desafíos más críticos en las aplicaciones de geoenergía. Esta 

Tesis tiene como objetivo evaluar (1) la estabilidad de fallas y el potencial de 

sismicidad inducida bajo diversas condiciones geológicas, geométricas y 

poromecánicas en el marco de la poromecánica, y (2) los efectos poromecánicos en el 

proceso de nucleación sísmica. 

Primero, adoptamos la teoría de inclusión y la función de Green para desarrollar una 

solución analítica para las variaciones de tensión debidas a los cambios de presión 

intersticial dentro del yacimiento bajo condiciones de deformación plana. La solución 

es válida para varias compensaciones de fallas, ángulos de buzamiento, longitudes de 

yacimientos y fallas permeables e impermeables. El análisis de estabilidad de fallas 

encuentra que (1) el potencial de sismicidad inducida de las fallas impermeables es 

siempre mayor que el de las fallas permeables bajo cualquier condición inicial y de 

inyección; (2) el tamaño del parche de falla deslizante aumenta con el desplazamiento 

de las fallas permeables, mientras que es independiente del desplazamiento de las 

fallas impermeables; y (3) una falla impermeable se rompería con el menor esfuerzo 

desviador y la menor acumulación de presión que una permeable. 

En segundo lugar, proponemos una solución de forma cerrada para el desplazamiento 

poromecánico con métodos y condiciones similares pero en medio espacio en relación 

con la solución de tensión anterior, con el objetivo de estimar rápidamente el 

levantamiento/hundimiento del suelo. Los resultados muestran que el desplazamiento 

del suelo aumenta con el buzamiento de la falla y disminuye con el aumento del 

desplazamiento de la falla; en contraste, la geometría del yacimiento muestra un efecto 

más fuerte que la geometría de la falla. Comparamos la solución en un medio espacio 

con la de un espacio completo, mostrando que despreciar las superficies libres 

subestima el desplazamiento poroelástico en la sobrecarga. De acuerdo, recomendamos 

un índice para evaluar la validez de las soluciones de espacio completo. La condición 

específica depende del sitio y puede ser estimada por nuestra solución. 

A continuación, aplicamos las soluciones analíticas para analizar los mecanismos 

desencadenantes del terremoto de Pohang Mw5.5, que actualmente es el evento 

sísmico más grande inducido por cualquier sistema geotérmico mejorado. Realizamos 

un análisis comparativo de la probabilidad relativa de las estimaciones del estado de 

tensión in situ existentes para el sitio de Pohang en profundidad, encontrando dos 

patrones probables de deslizamiento oblicuo que pueden describir los procesos 

desencadenantes: un patrón de deslizamiento inverso con un componente de 

deslizamiento de rumbo (RS-S) y un patrón strike-slip con componente inversa (SS-R). 

Realizamos análisis poromecánicos tanto determinísticos como estocásticos para 

ambos patrones de deslizamiento y luego evaluamos el potencial de sismicidad 
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inducida. Dos tipos de resultados proporcionan tres evidencias consistentes para 

apoyar el patrón RS-S en lugar del patrón SS-R. Los resultados también destacan que 

(1) una pequeña sobrepresión puede desencadenar un terremoto dañino cuando las 

fallas preexistentes están críticamente estresadas en el estado inicial, y (2) debemos 

dedicar más esfuerzos a la caracterización del sitio en la etapa previa de los proyectos. 

Finalmente, incorporamos la solución de estrés analítico en el modelo de deslizamiento 

interfacial de grietas para simular el proceso de nucleación. La inclusión de la 

poroelasticidad afecta drásticamente el crecimiento de grietas cuasiestáticas, lo que 

revela una gama más amplia de regímenes de deslizamiento y reduce la magnitud 

esperada de la sismicidad inducida en algunos regímenes. Generamos mapas de 

régimen de deslizamiento y magnitud de terremotos con respecto a un espacio 

paramétrico. El mapa del régimen de deslizamiento comprende toda la información de 

nucleación: longitud de nucleación, tiempo, deslizamiento y factores principales que 

incluyen poroelasticidad, debilitamiento por deslizamiento y fricción residual. El mapa 

del tamaño del terremoto muestra la magnitud del momento asociado con la nucleación 

final de la ruptura dinámica en diferentes regímenes de deslizamiento. El análisis de 

los dos mapas encuentra las condiciones favorables y desfavorables en función de las 

propiedades de la roca, la tensión de fondo y los parámetros de inyección para 

implementar aplicaciones de geoenergía. Por el contrario, descuidar los efectos 

poroelásticos no puede reconocer muchas de tales condiciones. 
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Chapter 1. Introduction 

1 

1 Introduction 

1.1 Background and motivation  

Humanity is currently facing the significant challenge of decarbonizing the economy to 

mitigate climate change. The world primary energy demand will increase by 40% from 

2009 to 2035 (IEA, 2011), with fossil fuels still providing most of the demand, which 

indicates a great number of greenhouse gas emissions. To effectively reduce these 

emissions, subsurface carbon-free alternatives are indispensable, such as geothermal 

energy exploitation, subsurface hydrogen storage and Carbon Capture, Utilization and 

Storage (CCUS). These geo-energy applications/technologies can contribute between 

20 to 30 % of the total CO2 emissions reduction (IEA, 2020). Thus, the potential of the 

subsurface is essential to achieve the goal of the COP21 Paris Agreement, i.e., limiting 

the global temperature increase below 2 ºC above the pre-industrial levels. 

However, the proliferating geo-energy projects have led to an increasing number of 

induced earthquakes all over the world (‎Figure 1.1, Foulger et al., 2018). These 

earthquakes can damage infrastructure and buildings, and even injure people. Some of 

these earthquakes have resulted in the cancellation of projects, as happened with the 

Deep Heat Mining Project in Basel, Switzerland (Haring et al, 2008; Deichmann and 

Giardini, 2009; Terakawa et al., 2012), the Castor underground gas storage project, in 

Spain (Del Potro 2015; Juanes et al., 2017; Villaseñor et al. 2020), and the Enhanced 

Geothermal System (EGS) project at Pohang, South Korea (Ellsworth et al., 2019; 

Grigoli et al., 2018; Lee et al., 2019). An interesting phenomenon in these three cases 

is that the largest earthquakes occurred after the stop of fluid injection, which 

represents a counterintuitive, yet typical, phenomenon for post-injection seismicity (Ge 

and Saar, 2022). The cancellation of such projects implies millionaire losses that have 

a negative impact on society. Furthermore, induced earthquakes generate nuisance and 

fear among the local population, giving rise to a negative public perception of 

geo-energy projects. 

Induced damaging earthquakes have been observed in various fluid 

injection/depletion-related subsurface activities, such as conventional and 

unconventional hydrocarbon production, wastewater disposal, shale gas fracturing, 

geologic CO2 storage (GCS), and ‎geothermal energy exploitation (Figure 1.2, Bao 

and Eaton, 2016; Foulger et al., 2018; Grigoli et al., 2017; Kivi et al., 2023). During 

the past decade, the rate of induced earthquakes with magnitudes M≥3 has grown 

tenfold in Oklahoma (Ellsworth, 2013; Rubinstein and Mahani, 2015) and threefold in 

western Canada (Atkinson et al., 2020). The increase of seismic events in Oklahoma 

principally resulted from the large amount of wastewater reinjection (Shirzaei et al., 

2016), while it is broadly attributed to hydraulic fracturing of low-permeability shales 
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in western Canada to exploit the unconventional oil and gas (Bao and Eaton, 2016). 

Hydraulic stimulation is also usually applied in deep geothermal energy exploitation to 

develop EGS (Evans et al., 2012). Several damaging earthquakes are believed to be 

involved in EGS projects, with the Pohang Mw5.5 earthquake being the largest one 

(Ellsworth et al., 2019). Although GCS is unlikely to induce a damaging seismic event 

as it usually operates in high-permeability sedimentary deformations (Juanes et al., 

2012; Rutqvist et al., 2016; Vilarrasa and Carrera, 2015) and the vast majority of the 

recorded seismicity associated with CO2 injection are lower than M2 (Cheng et al., 

2023), eighteen M≥3 earthquakes were recorded between 2006 and 2011 around the 

CO2-enhanced oil recovery (CO2-EOR) project site in Cogdell, United States (Gan and 

Frohlich, 2013), of which the maximum event of M4.4 occurred in 2011. Induced 

seismicity has become one of the most critical issues in these geo-energy activities 

(Ellsworth et al., 2016; Keranen and Weingarten, 2018; Rathnaweera et al., 2020; 

Schultz et al., 2020). Thus, minimizing the risk of inducing a damaging earthquake is a 

prerequisite for the sustainable development of geo-energy applications. 

 

Figure 1.1: World map of seismicity induced by human activities (source: HiQuake database 

webpage-http://inducedearthquakes.org/). The balls are colored based on the type of human 

activities, with yellow for fracking, red for mining, dark blue for water reservoir impoundment, 

orange for conventional oil and gas, blue for geothermal, white for waste water disposal, green 

for nuclear explosions and magenta for research. 

Yet, we currently remain unable to forecast and manage fluid-induced seismicity 

because of the limited characterization of project sites, the incomplete understanding of 

triggering mechanisms, and the insufficiency of real-time risk assessment tools (Cheng 

et al., 2023; Ge and Saar, 2022; Grigoli et al., 2017; Lee et al., 2019; Vilarrasa et al., 

2022). The main tasks of site characterization are to detect the preexisting faults and 

large joints, to measure the thermo-hydro-mechanical (THM) properties of these weak 

zones, and to estimate the in-situ stress state at depth (Ben-Zion and Sammis, 2003). 

Risk assessments of induced seismicity can only be performed under a series of 



Chapter 1. Introduction 

3 

simplifications and assumptions without enough site information, reducing the 

reliability and accuracy of assessments. Thus, several scholars have suggested devoting 

more efforts in site characterization at the prior stage of geo-energy projects (Chang et 

al., 2020; Chang and Yoon, 2021; Vilarrasa et al., 2022).  

 
Figure 1.2: Schematic description of geo-energy applications associated with induced 

seismicity (Kivi et al., 2023). 

Understanding the processes and mechanisms that induce seismicity is fundamental to 

assess the induced seismicity potential and to develop risk assessment tools. 

Considerable studies have been performed to this hot topic in recent years. These 

studies currently have reached a consensus in explaining fluid-induced seismicity in 

the framework of thermoporomechanics. This consensus is that fluid 

injection/depletion at depth leads to pore pressure diffusion and cooling effect in the 

aquifer (reservoir), which alter the in-situ stress state in the subsurface (Figure 1.2, De 

Simone et al., 2017; Rathnaweera et al., 2020; Vilarrasa et al., 2019). Once the THM 

perturbation is strong enough relative to the initial stress state, preexisting faults could 

be reactivated and the intact rocks may be fractured, releasing the elastic energy stored 

in the rock mass, and thus, inducing seismicity (Chang and Segall, 2016a, b; Rutqvist 

et al., 2008; Segall and Lu, 2015; Vilarrasa et al., 2019; Zbinden et al., 2017, 2020). 

Such fault reactivation and rock fracturing can also transfer stress to other critically 

stressed faults near or far away from the THM perturbed region (Brown and Ge, 2018; 
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Catalli et al., 2013, 2016; Ge and Saar, 2022), which may trigger a lower or larger 

magnitude earthquake, depending on the transferred stress and faulting state (King et 

al., 1994; Stein, 1999).  

The preceding consensus indicates several triggering mechanisms of induced 

seismicity based on the Mohr-Coulomb failure criterion (Figure 1.3, Vilarrasa et al., 

2019): (1) pore pressure diffusion, (2) poromechanical stress, (3) thermomechanical 

stress, and (4) stress transfer. The pressure build-up caused by fluid injection has 

originally been regarded as the basic principle of induced seismicity (Hubbert and 

Rubey, 1959; Healy et al., 1968; Raleigh et al., 1976; Pearson, 1981; Shapiro and 

Dinske, 2009) as it reduces the effective normal stress, and thus, brings the stress state 

closer to failure (Figure 1.3). This principle would give the impression that the higher 

the pressure build-up, the larger the number and magnitude of induced events. Indeed, 

the first attempt to mitigate induced seismicity was based on this idea. If the magnitude 

of an induced seismic event exceeded a given threshold, the injection rate was 

decreased in order to lower pressure build-up and thus, the frequency and magnitude of 

induced earthquakes (Langenbruch and Zoback, 2016; Zhang et al., 2013). However, 

this procedure has been proven unsuccessful in many cases (Bao and Eaton, 2016; 

Keranen and Weingarten, 2018). Especially, this principle cannot effectively explain 

the higher-magnitude post-injection seismicity than the earthquakes occurred during 

injection (De Simone et al., 2017; Segall and Lu, 2015; Vilarrasa et al., 2019), e.g., the 

cases of Basel, Castor, and Pohang, and the far-field (it means the non-pressurized 

region far away from injection wells) seismicity (Ge and Saar, 2022), e.g., the Fairview 

earthquake sequence in Oklahoma (Goebel et al., 2017).  

 

Figure 1.3: Schematic representation of thermo-hydro-mechanical (THM) coupling effects and 

the role of stress transfer on fault stability. Pressure buildup, ∆p , decreases the effective 

normal stress and causes poromechanical stress that changes the size of the Mohr circle; 

cooling effect, ∆T , induces thermomechanical stress; stress transfer could be from one patch 

of the fault to other patches, and/or from one fault to surrounding faults. 

Subsequently, the role of poromechanical response of geological media has been 
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noticed (Cocco and Rice, 2002; Rutqvist and Stephansson, 2003), analyzed in various 

geological settings and cases (Chang and Segall, 2016a, 2017; Deng et al., 2016; Fan et 

al., 2016; Jha and Juanes, 2014; Jansen et al., 2019; Juanes et al., 2016; Orlic and 

Wassing, 2013; Rutqvist et al., 2008; Vilarrasa et al., 2016; Zbinden et al., 2017, 2020), 

and even applied to explain the far field seismicity (Chang and Segall, 2016b; Fan et 

al., 2019; Goebel et al., 2017) and post-injection seismicity (Boyet et al., 2023; De 

Simone et al., 2017; Segall and Lu, 2015; Vilarrasa et al., 2021). The poromechanical 

stress caused by pressure buildup can affect a size larger than the pressurized region 

(Vilarrasa et al., 2016; Jansen et al., 2019), which is one of the causes for far field 

seismicity. The heterogeneity of formations can strengthen the poromechanical effect 

because of the stress concentration (Buijze et al., 2017). The poromechanical stress is 

non-uniform and may change from compression to tension in different fault patches 

(Jansen et al., 2019; Orlic and Wassing, 2013; Vilarrasa et al., 2016; Wu et al., 2021a). 

As a result, it can promote fault slip in some locations while inhibit slip in others 

(Figure 1.3). This non-uniformity can be used to analyze the hypocenter of earthquakes 

(Wu et al., 2021d). Thus, the poromechanical effect is fundamental both for explaining 

the triggering mechanisms and forecasting induced seismicity. 

The cooling effect was mainly proposed to explain the induced seismicity associated 

with EGS projects (De Simone et al., 2013, 2017; Ghassemi et al., 2007; Jeanne et al., 

2014; Kivi et al., 2022b; Majer et al., 2007) as it involves injecting cold fluid into the 

deep geothermal reservoirs and producing hot fluid from production wells (Figure 1.2). 

The distribution and properties of thermomechanical stress are similar to the ones of 

poromechanical stress (De Simone et al., 2017) because both the poromechanical and 

thermomechanical strains are the type of dilatational strain, i.e., expanding or 

contracting isotropically without shear component (McTigue, 1986; Segall, 1985; 

Segall and Fitzgerald, 1998; Soltanzadeh and Hawkees, 2008). Thus, the cooling effect 

can be treated as a similar mechanism to the poromechanical effect as long as the 

temperature difference between the injected fluid and target formations is big enough.  

Stress transfer usually is the primary triggering mechanism of natural earthquakes 

(Feed, 2005; King et al., 1994; Stein, 1999; Toda et al., 2005, 2011). It has been used 

to explain the far field and post-injection seismicity recently (Boyet et al., 2023; 

Brown and Ge, 2018; Catalli et al., 2013, 2016; Ge and Saar, 2022; Yeo et al., 2020) 

because of its transferring nature and time lag effect. Shear-slip stress may transfer 

from one patch of the fault to other patches, and/or from one fault to other faults that 

are close to or far away from the reactivated fault. The previous four mechanisms can 

bring weak zones to failure individually or jointly, and a combination of multiple 

triggering mechanisms has been suggested to explain damaging earthquakes (Ge and 

Saar, 2022; Vilarrasa et al., 2022). Nonetheless, how they combine and work may 

change from one case to another, depending on the geological setting and 

injection/production management. In general, the pore pressure diffusion and 

poromechanical stress are more basical and ubiquitous for injection-induced seismicity 

than the others two mechanisms as the latter only plays an important role under certain 

conditions (Ge and Saar, 2022). Thus, a comprehensively poromechanical analysis 
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considering various geological, geometrical, and poromechanical conditions would be 

insightful to understand how the multiple triggering mechanisms work and to develop 

risk assessment tools. 

The second problem of these THM mechanisms is that they overlook the nucleation 

process of earthquakes and the subsequent dynamic rupture propagation (Galis et al., 

2017; Buijze et al., 2019; Wu et al., 2023a). Relevant results can only tell us if the fault 

is stable or not and how large is the unstable fault patch size when it is unstable, failing 

to provide any information about the stability of fault slip. The unstable fault patch size 

(Chang et al., 2020; Jansen et al., 2019) evaluated by these methods can only be 

regarded as a lower limit of the true value, failing to provide indications about the final 

size of the induced earthquakes. In contrast, existing studies including earthquake 

nucleation process have revealed several dominating mechanisms that control dynamic 

fault ruptures, such as (1) the nucleation and arrest of dynamic rupture (Garagash and 

Germanovich, 2012; Azad et al., 2017), (2) aseismic slip (Bhattacharya and Viesca, 

2019; Eyre et al., 2019; Sáez et al., 2022; Jacquey and Viesca, 2023), (3) thermal 

pressurization (Viesca and Garagash, 2015), and (4) run-out distance (Garagash and 

Germanovich, 2012; Garagash, 2021). Relevant studies on natural earthquakes have 

shown the impact of the nucleation process on the physics of earthquakes (Ohnaka and 

Kuwahara, 1990; Ohnaka, 1992; Rubin and Ampuero, 2005; Ampuero and Rubin, 

2008) and provided scaling laws linking the final earthquake magnitude with the 

critical size of nucleation zone (Ellsworth and Beroza, 1995; Ohnaka, 2000; Uenishi 

and Rice, 2003). Thus, quantifying the nucleation process is helpful to improve the 

estimates of induced earthquake magnitude. Yet, the preceding studies on nucleation 

process do not include the poromechanical effect on the background stress caused by 

pore pressure diffusion. As aforementioned, such poromechanical effect is known to be 

an essential mechanism controlling fault reactivation. Therefore, we believe that the 

poromechanical stress would significantly affect the nucleation process of 

fluid-induced earthquakes. 

1.2 Objectives and methodology 

This Thesis precisely aims at addressing the two key issues that are defined in Section 

1.1, i.e., (I) fault stability and induced seismicity potential under various geological, 

geometrical, and poromechanical conditions in the framework of poromechanics, and 

(II) the poromechanical effect on the earthquake nucleation process. We divide the 

main objectives into four sub-objectives with details listed below. 

Sub-objective (1): to develop an analytical solution for poromechanical stress due to 

reservoir pressurization or depletion. We assume a reservoir crossed by a fault that 

could be either permeable or impermeable with an arbitrary dip angle and offset. 

Changing the hydro-mechanical and geometrical parameters can represent different 

geological settings. We then use this solution and the Mohr-Coulomb failure criterion 

to assess fault stability and thus, induced seismicity potential in various parametric 

spaces. 
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Sub-objective (2): to develop an analytical solution for poromechanical displacement 

due to reservoir pressurization or depletion. We consider a similar scenario to the one 

adopted in the previous stress solution. We then use this solution to estimate the ground 

uplift or subsidence, aiming at gaining insights of reservoir and fault geometries and 

revealing some precursors of induced seismicity by analyzing surface deformation 

patterns. 

Sub-objective (3): to apply the analytical solutions to analyze the triggering 

mechanisms of the Pohang Mw5.5 earthquake. Since the geological setting around the 

Pohang EGS site is highly uncertain, a statistical analysis is carried out with the help of 

analytical solutions. This analysis would show us which estimate of geological setting 

is the most likely one and how is the occurrence probability of this earthquake. 

Sub-objective (4): to couple our poromechanical stress solution with the model that 

describes the earthquake nucleation process to analyze characteristics of crack growth 

in different slip regimes, including the non-uniformly poromechanical stress. We then 

apply the nucleation information to estimate the final earthquake magnitude under 

various conditions, which can promote the development of induced seismicity 

forecasting tools. 

Sub-objectives (1) and (2) address the key issue I. Sub-objective (3) applies the 

obtained analytical solutions to a well-known earthquake, which permit considering 

poromechanical effects in uncertainty analysis. The last sub-objective deals with key 

issue II. The breakthrough of this Thesis will make a substantial advance in 

understanding the processes and mechanisms of induced seismicity, greatly promoting 

the development of induced seismicity forecasting tools, which will eventually enable 

the successful deployment of geo-energy applications. 

To achieve such goals, a systematical methodology will be followed, which consists of 

four aspects: (1) reservoir pressurization/depletion, (2) geomechanics, (3) estimate of 

ground deformation, and (4) assessment of induced seismicity. Both analytical and 

numerical approaches are adopted to solve the physical problems.  

Reservoir pressurization/depletion is the origin of subsequent stress variations, fault 

instability, ground deformation, and induced seismicity in the framework of 

poromechanics. Site characterization is the first step, i.e., giving an appropriate 

geological setting for modeling. To develop the analytical solutions shown in 

sub-objectives (1) and (2), necessary simplifications about the model geometry and 

hydro-mechanical properties have to be adopted (see details in Chapters 2 and 3). 

Subsequently, a uniform pore pressure change within the reservoir is assumed for base 

case studies. As for a practical application, we adopt existing analytical solutions to 

describe the non-uniform pressure changes. 

Representing the poromechanical response due to reservoir pressurization/depletion is 

one part of geomechanics. The essence of this poromechanical problem is related to the 

following open questions: when the reservoir undergoes a change of size and shape 

caused by a dilatational loading, what are the induced stress and strain in the reservoir 
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and its surroundings? What would happen if there is a fault in the perturbed region? 

Would it be reactivated? Eshelby’s inclusion theory (Eshelby, 1957) is a valid and 

useful method to formulate this problem. Thus, it is adopted to develop the analytical 

solutions. After solving the solutions, some verification against numerical solutions 

and other analytical solutions are presented before applications. In addition, 

geomechanics also give the initial (in-situ) stress state for fault stability analysis. 

Applying the analytical displacement solution can directly estimate the ground 

deformation under various geological settings. By comparing with the monitoring data 

of ground deformation, if it is available, we can gain insights of reservoir and fault 

geometries and reveal some precursors of induced seismicity. In contrast, to assess the 

induced seismicity potential, a failure criterion is required in addition to the analytical 

stress solution. For the parametric space analysis of sub-objectives (1) and (2), and the 

statistical analysis of sub-objective (3), this Thesis applies the concept of Coulomb 

Failure Stress (CFS, King et al., 1994), a minor variation of the Mohr-Coulomb failure 

criterion, to assess fault stability and induced seismicity potential. As for the 

earthquake nucleation problem, i.e., the slip stability, of sub-objective (4), the 

interfacial slip model of cracks (Bilby and Eshelby, 1968; Uenishi and Rice, 2003) is 

applied, by coupling with our poromechanical stress solution, to characterize the 

nucleation process. A threshold of slip rate (Ohnaka and Kuwahara, 1990; Ohnaka, 

1992) is adopted to judge if the quasi-static slip will transit to dynamic rupture or arrest. 

Finally, this Thesis uses Ohnaka’s model (Ohnaka, 2000) to estimate the moment 

magnitude, aiming at establishing a link between the slipping fault patch size or 

nucleation size and the magnitude of induced earthquakes. All the relevant details will 

be shown in Chapters 2 and 5. 

This Thesis mainly focuses on the analytical approach to develop closed-form 

solutions for the relevant poromechanical problems. Despite simplifications, the 

closed-form solutions are useful because they provide an instantaneous solution and 

serve to identify important scaling relationships that can give insights of the physical 

mechanisms that govern the problems. Numerical solutions are used for two purposes: 

on the one hand, for verifying the developed analytical solutions; on the other hand, for 

solving the singular integral equation that appears in characterizing the nucleation 

process, which usually cannot be solved analytically. 

The objectives of this Thesis and the applied methodology require research in and 

crossing the borders between hydrogeology, geomechanics, geophysics, applied 

mathematics and seismology. This interdisciplinary approach is an innovative aspect 

with respect to previous efforts to understand, assess, and forecast induced seismicity, 

which should permit to advance at the frontiers of knowledge for managing induced 

seismicity. 

1.3 Thesis layout 

This Thesis is organized in six chapters, which coincide with papers already published 

in international scientific journals or in the process of peer review and presentations in 
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conferences, workshops, and seminars. Each chapter contains its own introduction and 

conclusions. The rest of the Thesis is structured as follows: 

 Chapter 2 presents the closed-form solution developed for stress variations in 

response to injection into or pumping from a reservoir crossed by a fault that could 

be either permeable or impermeable with an arbitrary dip angle and offset. The 

solution is verified by comparing with both numerical and other analytical 

solutions. Applications of this solution under various geological settings illustrate 

the effects of fault permeability, fault geometry, initial stress state, and pore 

pressure changes on fault stability and induced seismicity potential. The contents 

of this Chapter have been published in the scientific journal Journal of 

Geophysical Research: Solid Earth (Wu et al., 2021a) and have been presented in 

several conferences (Wu and Vilarrasa, 2019; Wu et al., 2020b, 2020c, 2021b) and 

a seminar (Wu et al., 2020a). 

 Chapter 3 describes the closed-form solution developed for displacement 

generated from reservoir pressurization/depletion by considering a similar 

geological setting to the one adopted in Chapter 2 but in a half space instead of the 

previous full space. This solution is verified by comparing with two analytical 

solutions. We then present the effects of fault permeability, fault and reservoir 

geometries, and ground surface on induced displacement, with special emphasis 

on ground displacement. According to the results with and without the free surface, 

we propose an index to assess the condition for neglecting free-surface effects. An 

intrinsic threshold of such index is found for calibrating the validity of full-space 

solutions. This Chapter has resulted in an article (Wu et al., 2023b), which is 

currently under review in a scientific journal. 

 Chapter 4 deals with the uncertainty problem of geological properties for the 

Pohang Mw5.5 earthquake by a stochastic poromechanical analysis. Both the pore 

pressure diffusion and poromechanical response due to the cyclic fluid injection 

are represented by analytical solutions to perform the stochastic simulations for the 

uncertain estimates of in-situ stress and fault plane. The slipping fault patch size is 

quantitatively linked to the critical size of nucleation zone and thus, to the 

magnitude of induced seismicity. Relevant results show us the occurrence 

probability of this earthquake and the most likely estimate of the in-situ stress and 

fault plane. A parametric space analysis on the uncertain geological properties is 

also carried out to see which parameters are playing an essential role on induced 

seismicity. The contents of this Chapter have been presented in several 

conferences (Wu et al., 2021d, 2023d) and a seminar (Wu et al., 2021c) and will be 

submitted to a scientific journal (Wu et al., 2023c). 

 Chapter 5 addresses the poromechanical effect on the nucleation process of 

earthquakes, aiming at filling the gap between earthquake nucleation and stress 

heterogeneity caused by poromechanical response to fluid injection. Both the pore 

pressure diffusion and poromechanical response due to fluid injection are 

represented by analytical solutions to couple with the interfacial slip model of 
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cracks. Results reveal additional slip regimes in addition to the ones found without 

considering the poromechanical stress, and the poromechanical effect on 

earthquake magnitude. The contents of this Chapter have been included in an 

article (Wu et al., 2023a), which is under review in a scientific journal, and have 

also been presented in a seminar (Wu et al., 2022). 

 Chapter 6 summarizes the most insightful findings and conclusions of the Thesis. 

In addition, some details for all the Chapters are uniformly included in Appendices. All 

the references are listed at the end of the Thesis. 
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2 Analytical solution to assess the induced seismicity 

potential of faults in pressurized and depleted reservoirs 

2.1 Introduction  

Induced seismicity has become a widespread issue as a result of the proliferation of 

geo-energy projects (Foulger et al., 2018). On the one hand, geothermal energy 

production and geologic carbon storage are essential technologies to reach zero or 

negative net carbon emissions. On the other hand, the increased energy demand is 

boosting other operations, such as seasonal natural gas storage, subsurface energy 

storage and disposal of wastewater from conventional and non-conventional oil and 

gas production. Injecting or pumping fluids at depth – a widespread practice in 

geo-energy operations – alters the in-situ stress field and may lead to fault rupture and 

induced seismicity (Ellsworth 2013; Buijze et al., 2017; Grigoli et al., 2018). In several 

cases, authorities have decided to cancel projects believed to be associated with large 

induced earthquakes and a non-exhaustive list includes the Deep Heat Mining Project 

in Basel, Switzerland (Haring et al, 2008; Deichmann and Giardini, 2009; Terakawa et 

al., 2012), the Castor natural storage project, Spain (Del Potro 2015; Juanes et al., 2017; 

Villaseñor et al. 2020), and the Enhanced Geothermal System (EGS) project at Pohang, 

South Korea (Grigoli et al., 2018; Lee et al., 2019; Ellsworth et al., 2019). To reduce 

the risks of induced seismicity and safely promote sustainable energy development, 

tools to predict and subsequently mitigate induced seismicity should be developed.  

Despite the considerable advancements in understanding the triggering mechanisms of 

induced seismicity in recent years, forecast and mitigation of induced seismicity 

remains challenging and some fundamental questions remain open (Elsworth et al., 

2016; Lee et al., 2019). Potential triggering mechanisms include pore pressure 

diffusion caused by single phase (Simpson et al., 1988; Shapiro and Dinske, 2009) and 

multi-phase flow (Zbinden et al., 2017), poroelastic and thermally-induced stress 

changes (Chang and Segall, 2016; Langenbruch and Zoback, 2016, De Simone et al., 

2017) and strength weakening due to geochemical reactions (Rohmer et al., 2016; 

Vilarrasa et al., 2019). These mechanisms, separately or acting jointly, can lead to fault 

slip (Orlic et al., 2013; Orlic and Wassing, 2013; Van den Bogert, 2015; Lele et al., 

2016; Rutqvist et al., 2016; Van Wees et al., 2017; Lehner, 2019) and nucleation of 

dynamic rupture (Garagash and Germanovich, 2012; Buijze et al., 2017, 2019; Galis et 

al., 2017, 2019) on different geological settings (Bourne and Oates, 2017; Haug et al., 

2018), even at very large distances (Goebel et al., 2017).  

Faults intersecting the injection/pumping formation undergo pore pressure and stress 

changes, affecting their stability. Pore pressure changes are controlled by the hydraulic 

properties of faults, which are highly variable, ranging from conductive faults to flow 

barriers (Caine et al., 1996). For example, low-permeable faults are present at the 

Snohvit CO2 storage site, Norway (Chiaramonte et al., 2013; Hansen et al., 2013), at 
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Pohang EGS project, South Korea (Kim et al., 2018; Ellsworth et al., 2019) and at 

many compartmentalized reservoirs (e.g., Castelletto et al., 2013), and permeable faults 

are found at the Groningen gas field, the Netherlands (Van Wees et al., 2014; Jansen et 

al., 2019) and the Corinth rift, Greece (Geraud et al., 2006; Duverger et al., 2015). 

Stress changes arise when the reservoir deformation is restricted, as in the case of 

closed or compartmentalized reservoirs, and they are governed by the poromechanical 

properties of the rock – the stiffer the rock, the larger the induced stress – and by the 

fault offset, which generates an additional stress concentration (Buijze et al., 2017; 

Galis et al., 2017, 2019). Such generated stress could lead to an increase in induced 

earthquake frequency, as was observed in the Groningen gas field (Van Wees et al., 

2014; NAM, 2016; Van Wees et al., 2017). 

Numerical simulations can account for great physical and geometrical complexity, but 

the computational cost often prevents systematic explorations of the parametric space. 

Analytical methods offer an alternative to obtain fast estimations, but require more 

stringent hypotheses and simplifications on the geometry and physics of the problem 

when compared to numerical methods. Interestingly, their drawback turns into an 

advantage when the perspective is changed and the goal becomes a quick and efficient 

parametric space analysis, ultimately highlighting the factors controlling the problem. 

For the problem of reservoir pressurization/depletion, Eshelby’s inclusion theory 

(Eshelby, 1957) is at the heart of several analytical solutions describing displacement, 

strain and stress fields in an infinite half-space with an elliptic inclusion (Segall, 1985, 

1992; Segall and Fitzgerald, 1998). The theory was applied to study subsidence and 

induced seismicity (Segall, 1985; Segall et al., 1994; Segall, 1989), recognizing the 

influence of reservoir geometry and orientation (Soltanzadeh and Hawkees, 2008, 2009) 

and the importance of including the contribution of crack-tip resistance to fault 

strength (Wang et al. 2016). Existing analytical solutions either assume non-displaced 

faults (Segall, 1985, 1992; Segall and Fitzgerald, 1998; Soltanzadeh and Hawkees, 

2008, 2009; Wang et al. 2016) or displaced but permeable faults (Jansen et al., 2019). 

No solution currently exists for low-permeable faults that cross the reservoir with an 

offset: the aim of our contribution is to fill this knowledge gap and analyze the 

difference in terms of fault stability between permeable and low-permeable faults 

crossing a pressurized/depleted reservoir for both non-displaced and displaced faults. 

In this chapter, we propose an analytical solution for stress variations in response to 

injection/pumping into a reservoir crossed by a fault that could be either permeable or 

impermeable with offset ranging from zero to the reservoir thickness. Note that by 

stress variations we refer to total stress changes, whereas for the effective stress, we 

explicitly mention effective in our terminology. The structure of the chapter is as 

follows. In Section 2.2, we introduce the conceptual problem, develop the analytical 

solution and show its validation. In Section 2.3, we present the methods to assess fault 

stability and fault slip potential based on our solution for both permeable and 

impermeable faults. In Section 2.4, we illustrate the effect of fault permeability on fault 

stability and perform a systematical parametric space analysis of fault offset, fault dip, 

initial stress state and pressure change. Finally, we provide extended discussion of the 
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results and its principal implications in Section 2.5. 

2.2 Analytical solution for stress changes around a fault crossing a 

pressurized/depleted reservoir  

2.2.1 Problem formulation and assumptions 

We evaluate the induced stress arising in a deep reservoir crossed by a displaced 

permeable or impermeable fault as a consequence of fluid injection or production. The 

reservoir is treated as an inclusion that is hydraulically disconnected from the 

overlying caprock and underlying bedrock (Figure 2.1). A displaced fault with an 

arbitrary dip angle 𝜃 crosses the whole reservoir and extends to the surrounding rock, 

dividing the entire domain into two parts: the left part is the hanging wall and the right 

part is the footwall for a normal fault (Jansen et al., 2019). A non-displaced fault is a 

particular case in which fault offset is zero. The fault offset, ht, is defined as b – a (see 

Figure 2.1), and fault geometry is parametrized by four corner points (P1, P2, P3 and 

P4). The height (thickness) and width of the faulted reservoir are a + b and c + d, 

respectively, where the width can be assumed as infinite by imposing c = d = ∞. The 

reservoir length is assumed as infinite in the out-of-plane direction.  

 

Figure 2.1: Geological model and its schematic geometry. Pore pressure changes within the 

reservoir in one or both sides of the fault depending on whether the fault is impermeable or 

permeable, respectively. The caprock and bedrock are assumed impermeable and thus, no 

pressure changes occur outside the reservoir. 

We adopt the solid mechanics sign convention of stress and strain, i.e., negative normal 

components denote compression, and a positive shear stress is assumed to rotate the 

material element in the counterclockwise direction, which indicates that the left part of 

fault moves downward relative to the right part. For pore pressure, a negative pore 
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pressure change refers to production and a positive one to injection.  

We apply the following hypotheses: i) the reservoir, assumed horizontal, elastic, 

homogeneous and isotropic, and its surroundings have identical stiffness but different 

permeability and porosity – the latter implies that flow and pressure changes take place 

exclusively within the reservoir –; ii) two-dimensional (2D) plane strain conditions 

apply based on the assumption that the reservoir extends infinitely in the out-of-plane 

direction; iii) quasi-steady-state uniform pore pressure changes occur in the reservoir 

as a consequence of injection/production, i.e., the transient effect of flow is neglected, 

iiii) reservoir depth is great enough so as the effect of the free surface can be neglected 

(Lehner, 2019). 

2.2.2 Analytical solution 

According to the inclusion theory (Eshelby, 1957; Mura, 1987; Rudnicki, 2011), pore 

pressure changes induce stress variation σij in the reservoir as (see Appendix A for the 

full mathematical development) 

 ( , ) ( , , , ) ( , )ij ij ij ij ijx y C g x y d C G x y       

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where Ω is the inclusion domain, gij and Gij represent the Green’s function for stress 

and its surface integral, respectively, x and y are the Cartesian coordinates, ς and ξ 

denote the coordinate values within the domain Ω, α is the Biot’s coefficient, ν is the 

Poisson’s ratio, and Δp is the pore pressure change. δij is the Kronecker delta, which 

equals 1 if i = j or 0 if i ≠ j and δΩ is the modified Kronecker delta, which equals 1 if 

(𝑥, 𝑦) ∈ Ω or 0 if (𝑥, 𝑦) ∉ Ω.  

Green’s function gij gives the magnitude of the stress in the i-th direction at point (x, y) 

in response to a body force in the j-th direction applied at point (ς, ξ) (see Equations 

(A17) to (A19)). To perform their integration over the inclusion domain as in Equation 

(2.1), we set the origin to coincide with the midpoint of the fault (Figure 2.1). The 

integration domain is different whether we are in the case of permeable or 

impermeable faults. For the former case, pore pressure changes within the reservoir on 

both sides of the fault. For the latter case, pore pressure only changes on the side of the 

fault where injection or depletion takes place. In the permeable case, the entire 

inclusion consists of two trapezoids (Figure 2.1), each of which can be divided into 

two subdomains to simplify the integration. Thus, we apply the superposition principle 

of integral to combine the solutions for a rectangular and a triangular domains, which 

returns (see Appendix B for the full derivation) 
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where functions f1, f2 and f3 are  
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x y
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2 2

2
ˆ ˆ ˆ( , , ) cotf x y y x y y y    , (2.6) 

 
2 2

3
ˆ ˆ ˆ ˆ( , ) ( ) ( )f x x y y x x y y      , (2.7) 

where a, b, c, and d are the geometrical parameters shown in Figure 2.1. The last term 

(−𝜋𝛿Ω) in Equation (2.3) results from the solution of improper integral (Courant and 

John, 1989) because the Green’s function for stress becomes unbounded for points (x, y) 

located in the inclusion domain. The corners of two trapezoidal domains are 

singularities for the solutions (Equations (2.3) and (2.4)) (see Appendix B). The 

vertical fault is a special case of inclined fault, which is obtained by setting 𝜃 =90 

(Equations (B21)-(B22)). And faults with no offset are also a special case in which a = 

b (Equations (B23)-(B24)). 

When substituting Equations (2.3) and (2.4) into Equation (2.1), we obtain the x-y 

planar solution for describing the distribution of induced stress in the pressurized or 

depleted reservoir and its surrounding rock. Our solution is consistent to the one 

developed by Jansen et al. (2019) for the case of a horizontal infinite reservoir crossed 

by a permeable fault. However, our current solution is also valid for any arbitrary 

reservoir width, with the solution for the infinite reservoir being a special case, i.e., c = 

d = ∞.  

Fault stability and its likelihood of rupture depend on the distribution of the normal and 

tangential stress components along the fault plane. Thus, the above x-y planar solution 

along the fault plane needs to be transformed into the coordinate system placed on the 

fault and oriented along it. We apply the stress transformation with axis rotation 

(Equations (C4) and (C5)) to derive the closed expressions for such induced stress 

along an arbitrary fault plane with dip angle 𝜃, which yields (see Appendix C for the 

full derivation) 
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where 𝜎𝑛(𝑦cot𝜃, 𝑦) and 𝜏(𝑦cot𝜃, 𝑦) are the induced normal and tangential stress 

components along the fault plane, respectively, they will be shorten into 𝜎𝑛 and 𝜏 for 

convenience hereafter. The stress components with an overbar denote the 

dimensionless stress components, which are normalized by the scaling parameter C 

(Equation (2.2)). The sgn(•) is the sign function defined as 1 if (•) > 0, 0 if (•) = 0 or -1 

if (•) <0, and function f4 is defined as 

    
2 2

4
ˆ ˆ ˆ( , )f y y y y y y   . (2.10) 

The four corners P1, P2, P3 and P4 on the fault plane are singularities of Equations 

(2.8) and (2.9) (Figure 2.1). With such general solution, one can easily find the 

solutions for the special cases of vertical faults (Equations (C8) and (C9)) and zero 

offset faults (Equations (C10) and (C11)). In particular, 𝜎𝑛 and 𝜏 just correspond to 

𝜎𝑥𝑥 and 𝜎𝑥𝑦 for the case of vertical faults, respectively. In the above equations, the 

segment P1-P2 of the fault belongs to the inclusion, while the segment P3-P4 belongs 

to the surroundings (see Appendix C). 

For an impermeable fault, we assume that the pore pressure change is restricted to the 

side of the fault where injection/production takes place, while pore pressure in the 

other side remains unaltered. Thus, the integration of the Green’s function for stress 

only entails one part of the inclusion domain, i.e., one trapezoidal domain. Considering 

that fluid is injected into the left-hand side of the domain, such integrations are 
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and the dimensionless induced normal and tangential stress components along the fault 

plane are 
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(2.14) 

The corners of the left-hand trapezoidal domains of the fault are singularities of 

Equations (2.11) and (2.12), and the corners P2 and P4 on the fault plane are 

singularities of Equations (2.13) and (2.14) (Figure 2.1). The whole impermeable fault 

belongs to the surroundings for fluid injection into the left-hand side of the fault 

because we apply the right limit, i.e., the limit that the argument approaches the fault 

from its right-hand side, as the value of the fault plane. Note that in Equation (2.11) the 

extra term originating from improper integral is always −𝜋𝛿Ω because it depends 

only on the integrand (the limit of integration at improper points only depends on the 

integrand) and not on geometry. The solution is similar in the case of injection into the 

right-hand side of the fault. To avoid confusion or repetitions, in the following we will 

always consider the case of injection into the left-hand side as an example to represent 

the impermeable case. 

2.2.3 Verification against numerical solution 

To verify the accuracy and correctness of our analytical solution, we compare fluid 

injection-induced stress distribution along a permeable and an impermeable fault 

against numerical solutions. The numerical simulations are performed with the fully 

coupled finite element code CODE_BRIGHT (Olivella et al., 1994, 1996). The 
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geometry is shown in Figure 2.1. We adopt dimensions and rock properties as in 

Jansen et al. (2019) in order to also compare our results with theirs (Table 2.1). In the 

numerical simulations, we mimic the impermeable rock, i.e., caprock and bedrock, and 

the impermeable fault by assigning low values of intrinsic permeability, i.e., 10
-18

 m
2
. 

We impose mechanical boundary conditions of zero normal displacement to the lateral 

and lower boundaries and an overburden of -70 MPa on the upper boundary, 

corresponding to a depth of 3.5 km. We assume that the initial stress state is isotropic. 

The magnitude of the initial stress and pressure is irrelevant because we are interested 

in the stress changes induced by pore pressure changes and both the hydraulic and the 

mechanical processes are linear. We impose a pressure buildup of 20 MPa in the 

reservoir, which is the entire reservoir in the case of permeable fault while half of it in 

the case of impermeable fault. We make sure that the size of the reservoir is large 

enough to minimize boundary effects.  

Table 2.1: Geometrical parameters of the reservoir and rock properties adopted for the 

validation example.  

Parameter Physical meaning Value Unit 

a 

Geometrical parameters 

(Refer to Figure 2.1) 

100 m 

b 200 m 

c 2000 m 

d 2000 m 

𝜃 Fault dip 60  

𝜇 Shear modulus 6500 MPa 

𝜈 Poisson’s ratio   0.15 - 

𝛼 Biot’s coefficient 0.9 - 

Δp Pressure buildup 20 MPa 

 

We compare the numerical and analytical results for a permeable and an impermeable 

fault (Figure 2.2). Further results are presented in Appendix D. The numerically 

computed induced stress on the fault plane is almost identical to the analytical one. 

Small discrepancies near the corners are a consequence of the existence of singularities 

for the analytical solution, which leads to an infinite stress, and of the discrete nature 

of the numerical solution. We also consider the case of vertical permeable fault 

crossing a horizontal infinite reservoir in order to compare our results with the ones of 

Jansen et al. (2019). Comparisons are shown in Appendix D and they exhibit a good 

agreement. 
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Figure 2.2: Comparison between analytically and numerically evaluated induced (a) horizontal, 

(b) vertical and (c) x-y planar shear stress components along the fault plane. Results along the 

fault are projected on the vertical axes y. The legend is shown in (a), indicating that solid lines 

represent the analytical results (AN) and dotted lines represent the numerical results with 

CODE_BRIGHT (CB), for both a permeable (per) and an impermeable (imp) fault. A 

schematic of the reservoir geometry, with the four corners, is indicated by the grey 

background. 

2.3 Induced seismicity potential assessment  

2.3.1 Coulomb failure stress (CFS) and Coulomb failure stress change 

(∆CFS) 

We assess the fault stability by means of the Coulomb Failure Stress (CFS) (King, 

1994) 

  0 ' '0

st n nCFS         , (2.15) 

where 𝜂st is static friction coefficient, superscript 0 represents the initial state and the 

superscript ’ denotes effective stress. Here, the initial normal and tangential stress 

components on the fault plane are calculated also according to the stress transformation 

Equations (C4) and (C5). Shear stress always drives the fault to slip regardless it is 

positive or negative. The second term in right-hand side of Equation (2.15) denotes the 

fault slip resistance and increases as the effective normal stress becomes more 

compressive. A positive value of CFS indicates that slip is activated in the direction of 

the shear stress along the fault, i.e., a positive shear stress represents the normal slip 
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and a negative shear stress represents the reversed slip for a normal fault (Jha and 

Juanes 2014).  

For the assessment of induced seismicity and to identify whether a portion of the fault 

becomes more or less stable, we use the Coulomb Failure Stress Change (∆𝐶𝐹𝑆) 

 
0 0 '

st nCFS          , (2.16) 

A positive ∆𝐶𝐹𝑆 implies the induced stress is driving the fault toward failure and 

eventually co-seismic slip. CFS and ∆𝐶𝐹𝑆 can be normalized by the scaling parameter 

C (Equation (2.2)) 
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  0 0

D st/ / /nCFS C C p C            , (2.18) 

where we make use of Equations (2.8) and (2.9) for permeable faults or Equations 

(2.13) and (2.14) for impermeable faults, and the subscript D denotes dimensionless 

variables. Here the dimensionless effective pore pressure change, i.e., the term 𝛼∆𝑝/𝐶, 

is an initial physical property within the reservoir, which is independent of the process 

of integration. Thus, the segment P1 to P4 undergoes the same pore pressure change as 

the reservoir for permeable faults, and the segment P2 to P4 undergoes the same pore 

pressure change as the left-reservoir compartment for fluid injection into the left-hand 

side of the impermeable fault. 

2.3.2 Slipping fault patch size 

To quantitatively evaluate the fault slip potential, and thus, the induced seismicity 

potential, we define the slipping fault patch size as 

 / sini iS  , (2.19) 

where ℓ𝑖 is a continuous interval in coordinate y with CFS > 0. The slipping area can 

be discontinuous, so more than one Si may exist. We assume that the greatest 

magnitude of induced earthquakes is proportional to the maximum slipping fault patch 

size, defined as  

 max max( )iS S , (2.20) 

which can be expressed in dimensionless form as 

Dmax max s/ max( ) / ( )iS S L a b   , (2.21) 

where Ls is a characteristic length of fault, here assumed as the length of the fault 

intercepting the reservoir  
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 s ( ) / sinL a b   . (2.22) 

Assuming that each grain is restricted by its surrounding grains, i.e., the existence of 

cohesion between grains, the fault will not slide until the maximum unstable patch 

reaches a threshold. We set SDmax = 0.01 as the threshold of fault slip in this work, i.e., 

the fault is always regarded as stable for SDmax < 0.01. 

2.3.3 Properties of the base case scenario 

We evaluate the stress variation and the fault stability as well as the fault slip potential 

for a pressurized reservoir whose properties are derived from laboratory measurements 

on Berea sandstone (Makhnenko et al., 2015; Vilarrasa et al., 2016) (Table 2.2). We 

assume the same geometrical model as in Section 2.3 (Figure 2.1 and Table 2.1), with 

the center of the reservoir at 3.5 km depth, and with the initial stress state (normal 

faulting stress regime) shown in Table 2.2. 

To generalize the problem, we normalize the coordinate y and the fault offset by the 

reservoir thickness, and we scale the pressure buildup by the initial pore pressure, 

which yields the dimensionless variables 

 D / ( )y y a b  , (2.23) 

 D ( ) / ( )ht b a a b   , (2.24) 

 
0

D /p p p   . (2.25) 

Table 2.2: Properties of Berea sandstone and the initial stress state of the reservoir adopted for 

the failure potential analysis 

Parameter Physical meaning Value Unit 

𝜃 Fault dip 60  

htD Dimensionless fault offset 1/3 - 

𝜇 Shear modulus 4600 MPa 

𝜈 Poisson’s ratio 0.29 - 

𝛼 Biot’s coefficient 0.7 - 

ΔpD Dimensionless pressure buildup 4/7 - 

p
0
 Initial pore pressure 35 MPa 

𝜎𝑦𝑦
0  Initial vertical stress -70 MPa 

𝑘0 Stress ratio of horizontal to vertical stress 0.6 - 

𝜎𝑥𝑦
0  Initial shear stress in the x-y plane 0 MPa 

𝜂st Static friction coefficient 0.6 - 

C Scaling parameter for stress (Equation (2.2)) 1.318 MPa 

𝐶𝐹𝑆D
0 Initial dimensionless CFS (Equation (2.17)) -1.954 - 

  

We compare the results for the two scenarios of permeable and impermeable faults to 
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understand the influence of the hydraulic properties of faults on fault stability and fault 

slip potential. In addition to these base case scenarios, we perform a parametric space 

analyses to explore the effects of fault geometry, initial stress state and operational 

aspects. We compare in all cases the difference between permeable and impermeable 

faults. 

2.4 Results  

2.4.1 Effect of fault permeability in the base case scenario 

We evaluate the dimensionless induced shear and normal stress components on the 

fault plane according to Equations (2.8) and (2.9) for a permeable fault as well as 

Equations (2.13) and (2.14) for an impermeable fault (Figure 2.3). For the permeable 

fault, the dimensionless induced stress is symmetrical with respect to yD = 0, as it is 

reflected by Equations (2.8) and (2.9) when the geometric parameters c = d. Corner 

points are singular, such that the induced shear stress tends to +∞ at P1 and P4, and to 

-∞ at P2 and P3 (for representation purposes, the infinite shear stress is cut off to a 

finite value). The induced normal stress has a reverse behavior with respect to the 

induced shear stress (compare Figures 2.3a and 2.3b), i.e., it tends to -∞ at P1 and P4, 

and to +∞ at P2 and P3. The entire fault plane except for a tiny vicinity at corners P2 

and P3 shows a negative induced normal stress implies the increase in slip resistance, 

which contributes to the fault stability. 

Unlike the permeable case, the induced shear and normal stress components are not 

symmetrical with respect to yD = 0 for the impermeable fault, but the feature of reverse 

behavior for shear and normal stress components still holds (compare Figures 2.3a and 

2.3b). The induced shear and normal stress components tend to infinity at corners P2 

and P4 as a consequence of injecting from the left-hand side. These stress singularities 

in both the permeable and impermeable faults correspond to the points of stress 

concentration. The infinite value is a theoretical consequence of the integration of the 

Green’s function and it is unrealistic for faults in nature where the material will 

undergo nonlinear deformation bounding stress values. We also plot the initial shear 

and effective normal stress components as well as the pressure buildup in Figure 2.3 to 

identify the contribution of each term to fault slip. 
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Figure 2.3: Dimensionless (a) shear and (b) normal stress components on the fault plane for the 

case of permeable (blue lines) and impermeable (red lines) fault. Dashed lines are the term of 

pressure buildup normalized by the scaling parameter C. Blue auxiliary line and label denote 

the zero point of 𝜏 for a permeable fault, and the red ones for an impermeable fault.  Results 

along the fault are projected on the vertical dimensionless axes yD. A schematic of the reservoir 

geometry, with the four corners, is indicated by the grey background. 

The dimensionless Coulomb Failure Stress change (∆𝐶𝐹𝑆D, Equation (2.18)) along the 

fault plane, reflecting variations in the fault stability, remains symmetrical with respect 

to yD = 0 for the permeable fault (Figure 2.4a) because the arithmetic operations of the 

symmetrical stress does not alter its symmetry. The stability of the permeable fault 

decreases everywhere, except for a small region close to the internal corners P2 and P3. 

Around the external corners, ∆𝐶𝐹𝑆D reaches its maximum value because of the stress 

concentration, which will likely induce fault slip locally. Conversely, the impermeable 

fault (Figure 2.4a) becomes more stable above the internal corner P2 and less stable 

below it. To determine the actual fault stability and assess whether failure conditions 

occur, CFSD is computed as 𝐶𝐹𝑆D
0 (Table 2.2) plus ∆𝐶𝐹𝑆D. It results that CFSD has 

the same trend as ∆𝐶𝐹𝑆D  (compare Figures 2.4a and 2.4b), but shifted by the 

magnitude of 𝐶𝐹𝑆D
0. Therefore, the size of the fault that potentially undergoes failure 

(𝐶𝐹𝑆D > 0) is smaller than the one where stability decreases (∆𝐶𝐹𝑆D > 0).  
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Figure 2.4: Dimensionless (a) Coulomb Failure Stress Change (∆𝐶𝐹𝑆D) and (b) Coulomb 

Failure Stress (CFSD) on the fault plane for the case of permeable (blue lines) and impermeable 

(red lines) faults. Ii and yDi are the sub-interval and zero point of CFSD, respectively, in which 

the blue auxiliary lines and labels denote the ones for a permeable fault, and the red ones for an 

impermeable fault. Results along the fault are projected on the vertical dimensionless axes yD. 

A schematic of the reservoir geometry, with the four corners, is indicated by the grey 

background. We also show the case of no stress arching (denoted by NO SA), i.e., stress 

changes induced by poromechanical effects are neglected. The legend is shown in (b). 

To analyze the slip mechanism of permeable faults, given the symmetry of CFSD, we 

divide the upper half part of the CFSD curve into six sub-intervals (I1, I2, I3, I4, I5 and 

I6) by the four zero-points of CFSD (yD1, yD3, yD4 and yD5) and the zero point of 𝜏 (yD2, 

see Figure 2.3a) (blue symbols in Figures 2.3a and 2.4b). For impermeable faults, the 

whole CFSD curve however is divided into six sub-intervals (I1, I2, I3, I4, I5 and I6) 

by the four zero points of CFSD (yD1, yD2, yD3 and yD5) and the zero point of 𝜏 (yD4, see 

Figure 2.3a) (red symbols in Figures 2.3a and 2.4b). Detailed fault state and mechanics 

for each sub-interval are shown in Table 2.3, in which the shear and normal stress 

components changes both belong to the fluid injection-induced poroelastic response. 

Overall, pore pressure buildup, which mainly results in the decrease of slip resistance, 

induce fault slip in the reservoir or make it less stable. The poroelastic response 

however represents a stabilizing effect on the fault within the reservoir except for a 

small vicinity around the corners because of the local stress concentration. While the 

poroelastic response has a small negative effect on fault stability both in the caprock 

and bedrock for permeable faults, it performs a positive effect on fault stability in the 

caprock but a negative effect in the bedrock for impermeable faults (Figure 2.4a).  

Following such combined characteristics of pore pressure buildup and poroelastic 
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response, a permeable fault has four disconnected unstable patches (two normal slip 

patches and two reversed slip patches, Figure 2.4b), and an impermeable one has two 

unstable patches (one normal slip patch and one reversed slip patch, Figure 2.4b). The 

unstable patches of permeable faults, located between the external and internal corners 

(i.e., between P1 and P2 and between P3 and P4), are symmetric with respect to yD = 0 

and are separated by the stable central portion of the reservoir (between the internal 

corners P2 and P3). In contrast, practically the whole section of an impermeable fault 

located in the pressurized reservoir becomes unstable. In this case, while SDmax = 0.32 

for the permeable fault, it reaches 0.99 for the impermeable case, so both of them slide 

but the slip size of the impermeable fault is more than 3 times the one for the 

permeable fault. Multiplying SDmax by the fault characteristic length (Equation (2.22)) 

yields the dimensional maximum slipping fault patch size, which is Smax = 110.85 m 

for the permeable case and Smax = 342.95 m for the impermeable case. 

Table 2.3: Slip mechanism of permeable and impermeable faults in the base case scenario 

Fault Sub-interval State (see Figure 2.4) Mechanism (see Figure 2.3) 

Permeable 

I1 Less stable Increase in shear stress 

I2 Normal slip 
Increase both in shear stress and pore 

pressure 

I3 Normal slip Increase in pore pressure 

I4 Stable Decrease in shear stress 

I5 Reversed slip Reversed increase in shear stress 

I6 Stable 
Decrease in shear stress and increase in 

normal stress 

Impermeable 

I1 More stable Decrease in shear stress 

I2 Reversed slip Reversed increase in shear stress 

I3 Stable Decrease in shear stress 

I4 Normal slip Increase in pore pressure 

I5 Normal slip 
Increase both in shear stress and pore 

pressure 

I6 Less stable Increase in shear stress 

  

For illustrative purposes, we include in Figure 2.4 the case in which the stress arching 

(Segall 1985; Rudnicki 2002; Soltanzadeh and Hawkees 2008) is neglected, i.e., stress 

changes both inside and outside the reservoir induced by poromechanical effects are 

neglected and the effective normal stress variation equals the pressure changes. Thus, 

only the pressure buildup in the reservoir induces the increase in CFS, i.e., ∆𝐶𝐹𝑆 =

𝜂st𝛼Δ𝑝 = 8.4 MPa in the base case scenario, which is significantly larger than the 

∆𝐶𝐹𝑆 for the case of including the stress arching, except for the infinite values at the 

corner points. Neglecting stress changes significantly overestimates the decrease in 

fault stability because the compression induced in the rock in response to reservoir 

expansion caused by pressurization is not taken into account. We will discuss this 

further in Section 5. 
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2.4.2 Effect of fault offset and fault dip 

Fault offset affects differently permeable and impermeable faults (Figure 2.5). While 

fault stability significantly varies with offset for permeable faults (Figure 2.5a), 

impermeable faults undergo the same stability changes, but shifted, coinciding with the 

center of the pressurized/depleted reservoir (Figure 2.5b). For a permeable fault, 

∆𝐶𝐹𝑆D slightly increases (stability decreases) within the reservoir and it is barely 

unaltered in the surrounding rock when the offset is equal to zero (Figure 2.5a). The 

stability-decreasing section increases proportionally to the fault offset and it 

concentrates at the external corners, where it tends to infinity. The section of the fault 

where the reservoir is juxtaposed on both sides of the fault presents a slight increase in 

stability. The size of this stabilized section decreases with fault offset, becoming 

negligible when the fault offset equals the reservoir thickness. In contrast, the size of 

the symmetric stability-decreasing sections between the internal and external corners 

of the reservoir increases with fault offset. Furthermore, both the stability of the 

caprock and the bedrock also slightly decreases. For an impermeable fault, the size of 

the stability-decreasing section, which is mainly constrained by the reservoir thickness, 

is independent of fault offset (Figure 2.5b), because the effect of stress concentration, 

which is controlled by the horizontal boundaries of the reservoir and the fault plane, is 

always the same for the impermeable fault regardless of its offset. 

 

Figure 2.5: Dimensionless Coulomb Failure Stress Change (∆𝐶𝐹𝑆D) on the fault plane for 

several dimensionless fault offsets for (a) permeable and (b) impermeable faults. The numbers 

on the curves denote the dimensionless fault offset. Results along the fault are projected on the 

vertical dimensionless axes yD. The grey background indicates the position of the hanging and 

foot walls, which move simultaneously as the offset increases.  
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We analyze the impact of the fault dip, θ, (between 0°, horizontal fault, and 90º, 

vertical fault) on fault stability for both permeable and impermeable faults with no 

offset (Figure 2.6) and 1/3 of dimensionless offset (Figure 2.7). Figure 2.6a displays 

the schematic geometric model of no offset fault and the initial 𝐶𝐹𝑆D as a function of 

the dip angle. The initial 𝐶𝐹𝑆D shows that the fault is stable, with the most critical dip 

around 61º, as expected for a normal faulting stress regime with a fault friction 

coefficient of 0.6. As a result of reservoir pressurization, fault stability changes differ 

depending on the hydraulic nature of the fault.  

For a permable fault, ∆𝐶𝐹𝑆D is constant in the reservoir for each value of the dip 

angle (Figure 2.6b). It exhibits the maximum value for θ = 0 (horizontal fault) and the 

minimum value for θ ≈ 61 while it is close to zero in the surrounding rock for any 

value of the dip angle. For an impermeable fault, ∆𝐶𝐹𝑆D is not constant along the fault 

plane (see also Figure 2.5b), although its variation is only strongly relevant for 𝜃 > 

45 (Figure 2.6c). Its maximum value is always located at the external corners (the 

horizontal boundary between the reservoir and its surrounding rock) because of the 

stress concentration (recall Figure 2.4a), especially for a high dip angle because the 

effect of stress concentration becomes maximum for the angle of corners at 90 

(Ahmadi et al., 2012). ∆𝐶𝐹𝑆D in the caprock decreases for increasing dip angle 

except for 𝜃 > 85, being negative (more stable) in the range 31 < θ < 85. ∆𝐶𝐹𝑆D 

increases with the dip angle in the bedrock and is positive (less stable) for θ > 31º.  

Note that to assess fault stability, ∆𝐶𝐹𝑆D for either a permeable or an impermeable 

fault have to be added to the initial CFSD, which also changes with the dip angle 

(Figure 2.6a). The difference in ∆𝐶𝐹𝑆D between the permeable and impermeable 

faults is negative throughout the reservoir and baserock for almost all the dip angles, 

i.e., the impermeable fault is less stable, and positive over a small area located in the 

overlying caprock as a consequence of the left-hand side fluid injection (Figure 2.6d). 

A right-hand side injection would yield symmetrical results, with a positive difference 

located in the bedrock. Overall, an impermeable fault is more likely to be reactived 

than a permeable one when there is no offset. 
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Figure 2.6: Fault stability changes along the fault plane as a function of the dip angle, 𝜃, for 

the case of zero-offset fault. (a) Schematic geometry and 𝐶𝐹𝑆D
0 (shown in a polar coordinate 

system, the polar angle and diameter denote the fault dip angle and 𝐶𝐹𝑆D
0, respectively), 

(b) ∆𝐶𝐹𝑆D for the permeable fault, (c) ∆𝐶𝐹𝑆D for the impermeable fault (for comparison 

purposes, (b) and (c) have the same color scale but the range of the legend is adapted to the 

values shown in each case) and (d) the difference between ∆𝐶𝐹𝑆D for the permeable and 

impermeable faults (i.e., (b)-(c)), where negative values indicate that the impermeable fault is 

less stable.  

As for the case of 1/3 of dimensionless offset (Figure 2.7), 𝐶𝐹𝑆D
0 is the same as for 

the fault with no offset (compare Figures 2.6a and 2.7a). ∆𝐶𝐹𝑆D for a permeable fault 

is not constant along its plane and is symmetrical with respect to yD = 0 (Figure 2.7b). 

The fault has greater stability in the section between the internal corners P2 and P3, 

where the reservoir is juxtaposed on both sides of the fault, for 50 < θ < 80 and 

lower stability for other dips. For an impermeable fault (Figure 2.7c), ∆𝐶𝐹𝑆D has the 

same distribution as for the case of no offset (Figure 2.6c), with the discontinuity 

shifted downward as a consequence of the downward shift of the boundary between 

the reservoir and the surrounding rock (recall Figure 2.5b). The difference in ∆𝐶𝐹𝑆D 

between the permeable and impermeable faults shows that for the section above the 

internal corner P2, the permeable fault is more unstable than the impermeable one, but 

the impermeable fault is less stable in the rest – a similar result to the zero-offset case 
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(Figure 2.7d).  

  

 

Figure 2.7: Fault stability changes along the fault plane as a function of the dip angle, 𝜃, for 

the case with fault dimensionless offset equal to 1/3. (a) Schematic geometry and 𝐶𝐹𝑆D
0 

(shown in a polar coordinate system, the polar angle and diameter denote the fault dip angle 

and 𝐶𝐹𝑆D
0, respectively), (b) ∆𝐶𝐹𝑆D for the permeable fault, (c) ∆𝐶𝐹𝑆D for the impermeable 

fault (for comparison purposes, (b) and (c) have the same color scale but the range of the 

legend is adapted to the values shown in each case) and (d) the difference between ∆𝐶𝐹𝑆D for 

the permeable and impermeable faults (i.e., (b)-(c)), where negative values indicate that the 

impermeable fault is less stable.  

We present the fault slip potential as a function of the fault dip for several fault offsets 

while keeping the other parameters as the base case scenario, expressed in terms of the 

dimensionless maximum slipping fault patch size (SDmax), in Figure 2.8. For permeable 

faults, there is a clear onset value for fault dip (θo = 42º) corresponding to the 

threshold of fault slip, i.e., the fault undergoes slip for dip angles above the onset dip. 

Once θ > θo, SDmax increases rapidly and then gradually reaches its peak around θc = 

56º, i.e., close to the critical dip angle for a normal faulting stress regime. The general 

trend of SDmax as well as the onset and critical fault dips for slip are almost independent 

of fault offset, but its maximum value (at θ = θc) increases with fault offset. According 

to our initial and injection conditions (Table 2.2), rupture does not occur when the 
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offset is zero. However, for more critical initial stress state or larger pressure buildup, 

failure would occur also in the case of zero offset as a consequence of pore pressure 

buildup (recall Figure 2.3). When the fault is close to be vertically oriented, there is an 

inflection point in SDmax that is barely visible for a small-offset (1/3) fault, but becomes 

more evident with larger offset. The occurrence of this inflection reflects that SDmax for 

reversed slip exceeds the one for normal slip, i.e., the reversed slip becomes the 

primary slip form. For impermeable faults, the effect of fault dip on SDmax is similar to 

the case of permeable fault, with an onset dip θo = 41.3º and a critical dip θc = 59.4º, 

but no inflection is observed and the maximum value of SDmax is larger, approaching 

the reservoir thickness at the critical dip. The fault slip potential in impermeable faults 

is independent of the fault offset also because the effect of stress concentration is 

always the same regardless of its offset – a similar result to the fault stability (recall 

Figure5b). 

   

Figure 2.8: Dimensionless maximum slipping fault patch size (SDmax) as a function of fault dip 

for both permeable (blue color-scale lines) and impermeable faults (red line) and for several 

values of the dimensionless offset. The number on the blue lines denotes the dimensionless 

offset of permeable fault, and the results of different offsets for impermeable fault coincide in 

one line. 

2.4.3 Effect of initial stress and pore pressure changes 

The initial stress state determines the initial CFS, which significantly affects fault 

stability and the fault slip potential. We explore the influence of the initial stress state 

by applying different values of the horizontal to vertical stress ratio (k0) while keeping 

the vertical stress constant (Figure 2.9). Given that we adopt a value of the static 

friction coefficient of 0.6, we set a minimum stress ratio of 0.563 to ensure that the 

initial conditions correspond to CFS < 0 (stable fault). We define a critical stress ratio 

c

0k  (marked by dots in Figure 2.9) which corresponds to the threshold of fault slip 
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(SDmax = 0.01), i.e., c

0 0k k  implies a stable fault (negligible rupture size), and 

c

0 0k k  a ruptured one for the applied pore pressure change. The dimensionless 

maximum slipping fault patch size increases with decreasing stress ratio for both the 

permeable and impermeable faults (Figure 2.9). In other words, the smaller the stress 

ratio, the larger the deviatoric stress and thus, the larger the slipping fault patch size. 

The rate of increase in SDmax with decreasing k0 is not steady though and is controlled 

by the cusp-like shape of CFSD (recall Figure 2.4b). The sharp increase in SDmax, when 

k0 becomes lower than 
0

ck , results from the progressive failure of the pressurized 

reservoir. Once the whole reservoir is in failure, the portion of the caprock or bedrock 

that undergoes failure increases slowly with k0 decreasing (see Figure 2.4b). As the 

initial CFS approaches 0, the rupture size sharply increases because the asymptotic 

increase in ∆𝐶𝐹𝑆D within the caprock or bedrock is reached. The maximum rupture 

size coincides with the minimum in k0, and for an impermeable fault in the base case 

scenario (only changing the stress ratio to its minimum) the rupture size is 3 times 

greater than the reservoir thickness (SDmax ≈ 3). The rupture size is a lower bound 

because our model does not incorporate frictional strength weakening (Garagash and 

Germanovich, 2012; Buijze et al., 2017, 2019), and stress redistribution (Sacks et al., 

1978; De Simone et al., 2017) associated with shear slip activation. 

  

Figure 2.9: Dimensionless maximum slipping fault patch size (SDmax) as a function of the initial 

stress ratio for several pressure buildups. Dots represent the critical stress ratios. Blue and red 

color scales for curves and dots correspond to permeable and impermeable faults, respectively, 

and the number on the curves denotes the dimensionless pressure buildup. 

The effect of operational aspects, expressed as pore pressure changes, is mainly 

controlled by the injected volume, injection rate and reservoir boundaries, i.e., 



Chapter 2. Analytical Stress Solution 

32 

compartmentalization, (Nordbotten et al., 2005; Mathias et al., 2009; Wu et al., 2016, 

2018) and it affects the magnitude of induced earthquakes. Therefore, we further 

explore the (SDmax, k0) space for different values of pressure buildup (Figures 2.9 and 

2.10). We find that both SDmax and c

0k  (corresponding to the contour of SDmax = 0.01 

in Figure 2.10) linearly increase with pressure buildup, with the highest increments of 

SDmax corresponding to the impermeable fault. The contour plots in SDmax with k0 and 

∆pD show that the rupture size and the critical stress ratio for an impermeable fault are 

larger than for a permeable one under any initial and injection conditions (Figure 2.10). 

Thus, impermeable faults would rupture at lower initial deviatoric stress and with 

larger earthquake magnitude. Generally, SDmax for an impermeable fault is 3 to 5 times 

greater than for a permeable one under a given k0 and ∆pD.  

 

Figure 2.10: Dimensionless maximum slipping fault patch size (SDmax) as a function of the 

initial stress ratio and dimensionless pressure buildup for (a) permeable and (b) impermeable 

faults (for comparison purposes, both figures have the same color scale). The numbers on the 

contours denote the values of SDmax. 

The previous analyses on fault dip show that the onset and critical dip angles (θo and θc) 

are barely related to the fault offset (Figure 2.8). Nonetheless, Equation (2.17) suggests 

that θo and θc depend upon the initial stress ratio k0 and pressure buildup ∆pD. Such 

dependencies are the object of our next analyses. For a given pressure buildup (Table 

2.2), while θo monotonically increases with the stress ratio, θc exhibits a more complex 

behavior (Figure 2.11a). θc evolution can be divided into three phases, with an 

increasing trend as k0 increases, except for a decreasing branch in the mid-valued range 

of k0. The differential θc - θo decreases with increasing k0 and equals 0, i.e., the onset 

dip angle coincides with the critical dip angle, at k0 = 0.674 (i.e., the critical stress ratio 

in this case) for a permeable fault and at k0 = 0.694 for an impermeable fault. A direct 

consequence is that the range of dip angles favorable to slip is reduced for increasing 

k0. For k0 > 0.674 (0.694) the permeable (impermeable) fault is always stable 

regardless of its inclination (recall Figures 2.8 and 2.9). This means that geological 

sites with a higher in-situ stress ratio, i.e., lower initial deviatoric stress, are 
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intrinsically less prone to fluid injection-induced seismicity. The onset dip angle is 

smaller for impermeable faults than for permeable faults. Thus, the range of dip angles 

favorable to slip is larger for impermeable than for permeable faults, and its difference 

increases with k0. The critical stress ratio corresponding to such critical fault dip is also 

greater for impermeable faults than for permeable ones, similar to the case for an 

arbitrary fault dip as shown in Figures 2.9 and 2.10. The difference in critical stress 

ratio between Figures 2.9 and 2.11 indicates that it increases with dip angle (only for θo 

< θ < θc) and peaks at θc. Thus, the site characteristics significantly affect the results of 

the induced seismicity assessment. 

In contrast, for a given k0, the onset dip angle θo monotonically decreases with 

increasing dimensionless pressure buildup ∆pD, whereas θc decreases firstly and then 

increases with increasing ∆pD (Figure 2.11b). Thus, the differential θc - θo decreases 

with decreasing ∆pD and equals 0 at ∆pD = 0.213 (defined as the critical pressure 

buildup for this case) for a permeable fault and at ∆pD = 0.186 for an impermeable 

fault. Similarly, for ∆pD < 0.213 (0.186) the permeable (impermeable) fault is always 

stable regardless of its inclination. This means that a larger pressure buildup is 

necessary to induce seismicity, which can be translated into a value of maximum 

sustainable injection pressure (Rutqvist et al., 2007; Zhou et al., 2008; Bai et al., 2017) 

to minimize the risk of inducing seismicity. The main difference between permeable 

and impermeable faults is that the range of dip angles favorable to slip is larger for 

impermeable than for permeable faults, and the critical ∆pD related to θc - θo = 0 is 

smaller for impermeable than for permeable faults. It implies that an impermeable fault 

is more likely to induce seismicity in terms of pressure buildup and its maximum 

sustainable pressure is smaller compared with a permeable fault. 
 

 

Figure 2.11: The onset and critical dip angles (θo and θc) for fault slip as a function of (a) the 

initial stress ratio with a dimensionless pressure buildup of 4/7 and (b) the dimensionless 

pressure buildup with a stress ratio of 0.6. The blue and red lines correspond to the permeable 

and impermeable faults, respectively. The solid and dashed lines denote θo and θc, respectively, 

while the dotted lines mean the difference between θc and θo. 
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2.5 Discussion  

We present an analytical solution to assess fault stability changes (∆𝐶𝐹𝑆D) as a result 

of reservoir pressurization/depletion. The results are shown in dimensionless form, 

which generalizes the problem with respect to the pore pressure change. All the stress 

components, ∆𝐶𝐹𝑆  and CFS are normalized by the scaling parameter C, which 

strongly depends on the Poisson’s ratio (ν). C monotonically decreases with the 

increase of ν (Equation (2.2)). Fault stability is obtained by adding ∆𝐶𝐹𝑆D to the 

initial CFSD, which depends on the initial stress state and pore pressure (Equation 

(2.17)). The variation in ν will change the final CFSD and its zero points. An extra 

calculation shows that the magnitude of CFSD and SDmax increases with increasing ν for 

both permeable and impermeable faults. Furthermore, the zero-offset permeable fault 

is stabilized when ν is lower than 0.24 for the case considered in Table 2.2, i.e., fault 

dip of 60 and pore pressure buildup of 20 MPa (it is destabilized for ν =0.29 in Figure 

2.4a).  

The analytical solution is a useful tool to quickly evaluate the induced seismicity 

potential of geo-energy projects. Injection control strategies of maximum sustainable 

pressure, which have been validated in CO2 sequestration projects (Rutqvist et al., 

2007; Zhou et al., 2008; Bai et al., 2017), could benefit from adding this solution in the 

decision-making process. A detailed site characterization is needed for its effective 

application, because the maximum rupture size, and thus, the magnitude of the induced 

earthquakes, not only depends on operational aspects, like pressure change, but also on 

the stress state and hydro-geomechanical characteristics of the fault, such as 

permeability, strength, offset and dip. For a given initial and injection conditions, the 

range of dip angles which may undergo failure can be defined, but knowing the 

hydraulic properties of faults is critical because all the parametric space analyses 

confirm the unfavorable effect in terms of induced seismicity potential of an 

impermeable fault, and an identical result can be predicted for fluid injection into the 

right-hand side of the fault (i.e., the footwall). In particular, low-permeable faults lead 

to larger rupture area at lower initial deviatoric stress and at smaller pressure changes 

(Figures 2.8-2.11). One factor for causing such unfavorable effect is that the 

differential deformation between the two sides of the impermeable fault distributes in 

the whole reservoir compartment, i.e., the segment P2-P4 for injection into the hanging 

wall or the segment P1-P3 for injection into the footwall, while the centered segment 

P2-P3 of a permeable fault always keeps the same deformation.  

Pore pressure buildup arising from fluid injection reduces the slip resistance, and thus 

drives the fault toward failure (Shapiro and Dinske, 2009). The subsequent poroelastic 

response to adapt to such change tends to balance the system (Figure 2.3). However, 

the presence of the corners P1, P2, P3 and P4 (see Figure 2.1) results in a strong stress 

concentration (Buijze et al., 2017; Galis et al., 2019), leading to an excessive 

adjustment nearby the corners and fault sliding. Therefore, pore pressure buildup and 

stress concentration at the corners during reservoir pressurization are the main reasons 

of fault reactivation and induced seismicity when ignoring thermal effects and 
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geochemical reactions. Stress concentration is mainly controlled by the geometry of 

corners (Buijze et al., 2017), which changes with fault offset for permeable faults, but 

is independent of offset for impermeable faults, resulting in different fault stability 

patterns between permeable and impermeable faults (Figures 2.5-2.7).  

Stress concentration not only highlights the effect of the hydraulic nature of faults, but 

also results in the occurrence of reversed slip at the internal corners P2 and P3 for 

normal faults with a normal faulting stress regime. In particular, reversed slip becomes 

the primary slip form for the permeable faults with a large dip angle and offset (Figure 

2.8). In contrast, normal slip will occur and become the primary slip form for a small 

dip angle and permeable fault in thrust faults with a thrust faulting stress regime, i.e., 

k0 > 1. 

Regarding the criterion for fault slip, one option is to focus on points, i.e., when the 

stress state of one point reaches its failure conditions, e.g., CFS > 0, the fault slips. The 

disadvantage of such criterion is that the infinite induced stress at the corners leads to a 

misjudgment that even small amounts of injection will induce fault slip (Jansen et al., 

2019). Another option consists in considering a minimum unstable patch, like the 

slipping fault patch size defined in this work. We have considered a threshold (0.01) 

for the dimensionless maximum slipping fault patch size, i.e., fault slip will not occur 

unless SDmax > 0.01. Although further research is needed to determine how much the 

threshold should be, the parametric space analyses and the related conclusions that can 

be drawn from Section 4 are independent from the threshold value adopted.  

Concerning fluid production, the results of ∆𝐶𝐹𝑆D are basically symmetrical to the 

ones of injection presented in this chapter and are easily obtained by a sign change, 

because the pressure change is included in the scaling parameter C. Thus, the change in 

fault stability is the opposite to the case of injection and, while fault slip firstly occurs 

at the external corners (P1 and P4) during reservoir pressurization, it firstly happens at 

the internal corners (P2 and P3) during reservoir depletion for both the permeable and 

impermeable faults (Jansen et al, 2019). The reverse effect may represent a potential 

method to control or mitigate induced seismicity: short-term production followed by an 

injection phase could improve the stability of the reservoir. Analogously, such an 

operation could be performed before decommissioning. Moreover, we also observe 

that the fault slip tendency in the case of production is much smaller than that in 

injection because ∆𝐶𝐹𝑆D  is mainly negative (see Figure 2.4). Thus, the risk of 

induced seismicity in the case of injection is higher than that of production in a normal 

faulting stress regime like the one considered in this study. 

Our analytical solution includes two limitations resulting from our simplifying 

assumptions to solve this complex problem: (i) we assume a linear elastic material, 

which is physically unrealistic for rock materials; in reality, a nonlinear elastic or 

inelastic deformation cannot be avoided during the reservoir pressurization/depletion; 

(ii) we assume a quasi-steady-state pore pressure change in the reservoir and neglect 

the transient effect of flow, so the calculated induced stress are still overestimated, 

particularly in the low-permeable fault zone because pore pressure will eventually 
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diffuse into the portion of the caprock and baserock in contact with the reservoir. Such 

limitations are worthy to be investigated further and complemented by more detailed 

numerical solutions. 

Our analytical solution provides an accurate (Figure 2.2) and fast estimation of the 

stress variation in the reservoir and its surroundings, which takes into account the 

increase in stress due to the geological constraints to deformation. The stress variation, 

which is often called stress arching (Segall 1985; Rudnicki 2002; Soltanzadeh and 

Hawkees 2008), is positive within the reservoir in response to fluid injection. This 

means that the effective stress reduction is smaller than the pressure buildup (Figure 

2.3). However, many engineering applications in subsurface energy-related projects 

neglect the stress arching in assessing fault stability and the effective stress reduction is 

assumed as equivalent to the pore pressure buildup during injection (e.g., Karvounis et 

al., 2014). For example, simplified models for CO2 sequestration calculate the 

maximum sustainable pressure as the fracture pressure (Zhou et al., 2008; Mathias et 

al., 2009; Bandilla and Celia 2017), neglecting stress arching. We compare the slip 

tendency analysis estimated by means of our solution with the one estimated by 

neglecting the stress arching in Figure 2.4. Results show that ignoring the stress 

arching means overestimating the slip potential for both permeable and impermeable 

fault in a normal faulting stress regime. This implies an underestimation of the 

maximum sustainable pressure (i.e., injectivity). 

2.6 Conclusions  

In recent decades, the increasing interest in the subsurface as a source of carbon-free 

energy resources has led to an increasing number of induced earthquakes, with some of 

these earthquakes resulting in the cancellation of projects. To improve the prediction 

capability of induced seismicity, we have developed an analytical solution to compute 

the induced stress along both permeable and impermeable faults as a result of reservoir 

pressurization/depletion. The solution is based on the inclusion theory and has been 

validated by comparing it with a numerical solution. We have performed a 

comprehensive analysis on induced seismicity potential due to reservoir pressurization 

or depletion and obtained the following conclusions: 

(1) The induced seismicity potential of impermeable faults is always larger than that 

of permeable faults under any initial and injection conditions. Generally, the 

maximum size of fault undergoing slip for the impermeable faults is 3 to 5 times 

greater than that for permeable ones under a given initial stress ratio and 

pressure buildup. Moreover, an impermeable fault would rupture at a higher 

stress ratio, i.e., less deviatoric stress, and at a smaller pressure buildup than a 

permeable one. 

(2) Pore pressure buildup and stress concentration at the corners during reservoir 

pressurization/depletion are the main reasons of fault reactivation and induced 

seismicity. Stress concentration not only amplifies the effect of the hydraulic 

properties of faults, but also results in the occurrence of reversed slip at the 
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corners for normal faults with a normal faulting stress regime, and of normal slip 

for thrust faults with a thrust faulting stress regime. 

(3) The slip potential of permeable faults resulting from reservoir 

pressurization/depletion increases with the fault offset because of the change in 

stress concentration, which implies that non-displaced permeable faults 

constitute a safer choice for site selection. In contrast, the offset has no impact 

on the slip potential of impermeable faults because the effect of stress 

concentration is always the same. 

(4) For a given pressure buildup, the difference between the critical and onset dip 

angles, i.e., the range of dip angles favorable to slip, reduces for increasing the 

initial stress ratio and equals to zero at its critical stress ratio. This means that 

geological sites with a higher in-situ stress ratio (lower initial deviatoric stress) 

are intrinsically less prone to fluid injection-induced seismicity. This finding is 

useful for site selection in geo-energy projects. 

(5) For a given stress ratio, the range of dip angles favorable to slip reduces for 

decreasing the pressure buildup and equals to zero at its critical pressure buildup 

as a larger pressure buildup is more likely to induce seismicity. Thus, the 

methodology of the maximum sustainable injection pressure to minimize the risk 

of inducing seismicity is feasible and should be available for designing and 

managing the injection parameters. 

(6) The fault slip potential increases if we ignore the stress arching, i.e., assuming 

the effective stress reduction is equivalent to the pore pressure buildup during 

injection, for both permeable and impermeable faults in a normal faulting stress 

regime, which implies that the induced seismicity potential is overestimated and 

the maximum sustainable pressure is underestimated. 
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3 Analytical solution to quickly assess ground displacement 

for a pressurized or depleted deep reservoir intersected by 

a fault in a half space 

3.1 Introduction  

Ground deformation has been observed in various subsurface energy-related activities, 

such as exploitation of natural gas and oil (Bagheri-Gavkosh et al., 2021; Poland and 

Davis, 1969; Thienen-Visser and Fokker, 2017), reinjection of waste water (Loesch 

and Sagan, 2018; Shirzaei et al., 2016), geological carbon storage (Rinaldi and 

Rutqvist, 2013; Rutqvist et al., 2010), geothermal energy production (Araya and Biggs, 

2020; Juncu et al., 2020, 2017), hydraulic fracturing (Eyre et al., 2022; Grigoli et al., 

2018), subsurface energy storage (Teatini et al., 2011; Wang et al., 2022), among 

others. All these activities involve fluid injection/depletion at depth, which leads to 

pore pressure diffusion and thus, alters the in-situ stress equilibrium in the subsurface. 

As a consequence, a joint displacement/strain field accompanied with the stress 

variations in the perturbed region and its surroundings is generated (Jansen et al., 2019; 

Juncu et al., 2020; Shirzaei et al., 2016). Once the hydro-mechanical (HM) 

perturbation is strong enough relative to the initial stress state, preexisting faults may 

be reactivated and the intact rocks could be fractured, inducing seismicity (Rutqvist et 

al., 2008; Wu et al., 2021a; Zbinden et al., 2017, 2020). A rapid displacement/strain 

field is caused in the subsurface associated with such fault slip and rock fracturing 

(Deng et al., 2020; Juncu et al., 2020; Okada, 1985, 1992), which is usually evaluated 

by the dislocation theory (Segall, 2010; Steketee, 1958a,b). Deformation at the ground 

surface is of particular interest, because this is where most monitoring data is collected. 

We distinguish the preceding two types of rock deformation as HM-induced and 

coseismic (a concept in seismology, Segall, 2010; Wright et al., 2013) deformation 

based on their different causes. HM-induced deformation is ubiquitous in all 

geo-energy projects while coseismic deformation only occurs in the case of reaching 

mechanical instability. Much more attention has been paid to the latter because of its 

high dependence with seismic events (Segall, 2010). Many analytical (Okada, 1985, 

and references therein; Okada, 1992; Pollitz, 1996) and numerical solutions 

(Dziewonski and Anderson, 1981; Grilli et al., 2013; Roering et al., 1997; Sun, 2014; 

Wang et al., 2006) developed based on the dislocation theory and for the natural 

earthquakes can be directly applied to estimate the coseismic deformation. These 

dislocation solutions, however, have no direct connection to the fluid-induced HM 

response, and thus, cannot be used to analyze the HM coupled processes and 

mechanisms of induced earthquakes. For such a purpose, one has to focus on the HM 

processes, including the HM-induced deformation. In the framework of HM coupling, 

stress analysis is often performed rather than deformation analysis in evaluating 
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earthquake triggering mechanisms because of its explicit relationship with rock failure 

criterions (Ge and Saar, 2022; Keranen and Weingarten, 2018). However, the 

deformation analysis has the advantage of direct comparison with the monitoring data 

of ground deformation. Both analyses, in reality, can be performed simultaneously, 

connected by constitutive laws between stress and strain, and thus, the stress analysis 

can be improved by incorporating the advantage of deformation analysis.  

The HM-induced deformation interested by the geo-energy engineering community 

dates back to the 1920s due to the problem of land subsidence. For example, the Goose 

Creek field in Texas caused a ground subsidence of almost 1 m in eight years (Pratt 

and Johnson, 1926) as a result of reservoir compaction induced by oil and gas 

production (Fjær et al., 2008; Geertsma, 1973). More well-known cases afterwards 

include the Wilmington field in California (Gilluly and Grant, 1949), the Ekofisk and 

Valhall oil feild in the North Sea (Nagel, 2001), and the Groningen gas field in the 

Netherlands (Ketelaar et al., 2006; Thienen-Visser and Fokker, 2017). All these cases 

involved a noticeable subsidence after a few years of hydrocarbon exploitation. The 

uncertainty and complexity of geological conditions lead to a preference of addressing 

such a problem using analytical solutions, which require some simplifications, but are 

very useful for performing parametric space analysis (Fjær et al., 2008; Thienen-Visser 

and Fokker, 2017).  

Existing (semi-)analytical solutions for HM-induced deformation are derived in 

general under the theory of linear poroelasticity (Detournay and Cheng, 1993; Wang, 

2000). The most widely used analytical solution was proposed by Geertsma (Geertsma, 

1973), on the basis of nuclei-of-strain as an analogy of thermoelastic strain (Mindlin 

and Cheng, 1950a,b), in the oil and gas industry field. This solution considers a 

uniform pore pressure change within a three dimensional (3D) disk-shaped reservoir in 

a half space (semi-infinite space). Segall (1992) extended Geertsma’s solution to the 

case of non-uniform pore pressure changes as a given function within a general 

axisymmetric reservoir, while its application finally depends on numerical integration 

(Du and Olson, 2001; Segall et al., 1994). A similar extension has also been done by 

the principle of superposition (Jayeoba et al., 2019), leading to a closed-form solution 

for ground deformation. Another extension of Geertsma’s solution aims at considering 

the elastic contrast between the reservoir and its surroundings (Mehrabian and 

Abousleiman, 2015). Although applying the perturbation theory leads to an explicit 

expression for displacement, the solution is still limited to the form of elliptic integral.  

Apart from the line of Geertsma’s solution, Segall (1985) derived a solution based on 

the inclusion theory (Eshelby, 1957), which considers a full HM-coupled problem 

under plane-strain conditions formulated by the primary variables of change in pore 

fluid content and displacement. Nonetheless, this approach cannot be solved 

analytically because of the non-uniform distribution of pore fluid content, and thus, its 

application either adopts numerical integration (Segall, 1985) or returns to the uniform 

change of pore fluid content (Segall, 1989). Also according to the inclusion theory, 

Jansen et al. (2019) developed a closed-form solution for a compartmentalized 

reservoir crossed by a permeable fault in a full space (infinite space). The preexisting 
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fault effects on the induced stress distribution and fault stability due to fluid injection 

have been investigated recently (Buijze et al., 2019, 2017; Galis et al., 2017; Jansen et 

al., 2019; Wu et al., 2021a). The stress changes caused by the presence of faults should 

have an impact on rock deformation. Fault permeability is highly variable, which 

strongly affects pore pressure changes inside the reservoir. Both permeable and 

low-permeable faults have been detected in geo-energy field sites (Chiaramonte 

et al., 2013; Géraud et al., 2006; Kim et al., 2018; Van Wees et al., 2014). Fault 

permeability plays an important role on fluid-induced seismicity (Vilarrasa et al., 2016; 

Wu et al., 2021a), while such a role on deformation remains open. One main drawback 

of Jansen et al. (2019) is that it neglects the effects of the traction-free surface on 

deformation, which could be a problem because an upward motion of the overburden 

can accommodate the vertical displacement (Richard et al., 1995; Rowan et al., 2004). 

Such free-surface effects have been well-known in geophysics and thus, a great 

number of solutions and models have been developed in a half space, while many 

others solutions were solved in a full space for the sake of simplification (Goodier, 

1937; Jansen et al., 2019; Lehner, 2019; Robinson, 1951; Wu et al., 2021a). Providing 

a specific condition of neglecting the free-surface effects could make sense for the 

application of these full-space solutions. No solution exists for a reservoir 

compartmentalized by an offset fault in a half space. We aim at filling this gap and then 

focus on (1) analyzing the role of fault permeability on HM-induced deformation, and 

(2) presenting a systematical comparison between the solution in a half space and in a 

full space to find in which conditions the full-space solutions become valid. 

We address this HM-coupled problem arising from reservoir pressurization/depletion 

by considering a horizontal reservoir offset by an intersecting fault that could be either 

permeable or impermeable with an arbitrary dip angle and offset in an elastic half 

space. We develop an analytical solution based on the theory of poroelasticity for 

analysis of poroelastic displacement. We organize the rest of the chapter as follows. In 

Section 3.2, we formulate the problem and propose a new closed-form solution for 

poroelastic displacement within the reservoir and its surroundings. Section 3.3 

introduces some verification of the new closed-form solution against existing 

analytical solutions. We then describe the properties of our base-case study and the 

strategy for parametric space analysis in Section 3.4. Results are presented in Section 

3.5 where we illustrate the role of fault permeability as well as the effect of fault and 

reservoir geometries on the poroelastic displacement with special emphasis on ground 

displacement. In Section 3.6, we show the effects of free surface on the displacement 

field. At the end, we provide an extended discussion of the results and its principal 

implications in Section 3.7, and our conclusions in Section 3.8. All the detailed 

theoretical and mathematical derivations are placed in Appendices E-F. 
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3.2 Analytical solution for stress changes around a fault crossing a 

pressurized/depleted reservoir  

3.2.1 Problem formulation and assumptions 

We focus on a compartmentalized reservoir that is crossed by a fault, which can be 

either permeable or impermeable and has an arbitrary dip angle 𝜃 and offset ht 

(Figure 3.1). ht is defined as b – a. The geological model is similar to the one in Wu et 

al. (2021a), but here we focus on the evaluation of poroelastic displacement, induced 

by injecting/pumping fluid into/from the reservoir, in a half space. The reservoir center 

at a depth of D below the ground surface is located at the cross point between the 

horizontal reservoir center line and the fault plane. We define the vertical line through 

the reservoir center as the vertical reservoir center line (but we do not mean that the 

lateral extents of the reservoir on both sides of the vertical center should be the same, 

i.e., c can be different from d). The height (thickness, h) and width (w) of the 

compartmentalized reservoir are a + b and c + d, respectively, regardless of the fault 

offset. The reservoir width could be finite or infinite. The reservoir length is assumed 

as infinite in the out-of-plane direction as we formulate the problem in two 

dimensional (2D) plane-strain conditions. We locate the origin of the coordinate system 

at the cross point of the ground surface and the vertical reservoir center line. The 

positive direction for the y-axis points upwards, and all the previous geometric 

parameters shown in Figure 3.1 have a positive value. 

 

Figure 3.1: Geological model and its schematic geometry in a half space. Pore pressure 

changes within the reservoir in one or both sides of the fault depending on whether the fault is 

transversely impermeable (sealing) or permeable (non-sealing), respectively. The overburden 

and underburden are assumed impermeable and thus, no pressure changes outside the 

reservoir. 

The infinite half space is assumed elastic, homogeneous, and isotropic in mechanics, 



Chapter 3. Analytical Displacement Solution 

43 

while the horizontal reservoir is much more permeable than its surroundings in 

hydraulics. The much higher permeability of the reservoir compared to that of 

confining layers implies that fluid diffusion and pressure changes occur exclusively 

within the reservoir during and after fluid injection or production. To solve the problem 

analytically, pressure changes in the reservoir are assumed uniform, which corresponds 

to the quasi-steady state after a long time of injection or production. It means that a 

uniform pore pressure change throughout the reservoir for the case of a permeable fault 

and limited to only one side of the fault for the case of an impermeable fault. The fault 

is simplified as a line without thickness and thus, its longitudinal permeability is 

neglected, excluding fluid flow along the fault and thus fluid leakage up through the 

caprock. By fault permeability, thus, we mean if the fault is transversely sealing or not, 

i.e., the sealing between the two sides of the fault. 

3.2.2 Closed-form Solution 

We formulate and solve the HM-coupled problem based on Green’s function under 

point force (Mindlin, 1936; Segall, 2010) and Eshelby’s inclusion theory (Eshelby, 

1957). The poroelastic displacement tensor ui inside and outside the reservoir is (see 

Appendix E for details on the derivation) 

 
( , )(1 2 )

( , ) ( , , , )
2 (1 )

i
i i

G x yp p
u x y g x y d

 
  

    

  
  

  , (3.1) 

where 
(1 2 )

2(1 )

 





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
 is the poroelastic coefficient (Detournay and Cheng, 1993), α 

and ν are Biot’s coefficient and Poisson’s ratio, respectively, Δp is the pore pressure 

change, μ is shear modulus, Ω  is the inclusion domain, gi and Gi represent 

displacement function tensor and its surface integral, respectively, x and y are the 

Cartesian coordinates, ς and ξ denote the coordinate values within the domain Ω.  

The displacement function characterizes the displacement gradient at point (x, y) in 

response to a unit center of dilatation/contraction (Mindlin, 1936) at point source (ς, ξ) 

(Equations (E10) and (E11)). Its surface integral depends on the inclusion domain 

controlled by reservoir geometry and fault sealing. We have achieved the integration 

analytically, described in Appendix F, over a rectangular or a triangular inclusion. By 

superposing these closed-form expressions for the basic elements, one can obtain the 

integration over an arbitrary complex inclusion domain since a complex geometry can 

be combined by several elements of rectangle and triangle. Here, we study the setting 

shown in Figure 3.1 considering both permeable and impermeable faults for a 

demonstration. 

For the case of an impermeable fault, pore pressure diffusion will be limited to the side 

of the fault where fluid injection/depletion occurs, and thus, the inclusion is a 

trapezoidal domain. Injecting fluid into the right-hand side of the fault corresponds to 

the right-type trapezoid inclusion formed by a triangle and a rectangle. We define the 
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result in this case as the right solution. Integrating the displacement function over such 

a domain gives 
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where δΩ is the modified Kronecker delta, which equals 1 if (𝑥, 𝑦) ∈ Ω and 0 if 

(𝑥, 𝑦) ∉ Ω. The last term in the right-hand side of Equations (3.2) and (3.3) result from 

the improper integral (Courant and John, 1989) for points located in the inclusion. The 

superscript out means that the points are located outside the inclusion and implies a 

standard integration. We use the abbreviation Tra, Tri, and Rec as superscripts meaning 

trapezoid, triangle, and rectangle, respectively, to represent the different inclusion 

domains (see Appendix B for the specific expressions of Tri, out ( , )iG x y and Rec, out ( , )iG x y ). 

The upper and lower limits o, p, q, r, and s of integration, adopted for the general 

coordinates in Figure B1, have to be transformed into the specific coordinates in Figure 

3.1 with the following relationships 
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When injecting fluid into the reservoir on the left-hand side of the fault, the inclusion 

domain becomes a left-type trapezoid formed by an inverted triangle and a rectangle. 

We refer to it as the left solution, which reads 

( ) tan
Tra

Rec, out Tri, out

( , ) ( , , , ) ( , , , )

( , ) ( , )

p s p o r

x x x
l r o r

x x

G x y g x y d d g x y d d

G x y G x y x

 

       

 

 



 

  

    , (3.5) 

Tra

( )cot

Rec, out Tri, out

( , ) ( , , , ) ( , , , )

( , ) ( , )

s p s p

y y y
r l r r o

y y

G x y g x y d d g x y d d

G x y G x y y

 
       

 

 



 

  

   
. (3.6) 

The related transformation relationships of coordinate are 

, cot , cot , ,l c o b p a r D b s D a            . (3.7) 

Here, we consider the left-type trapezoid as the difference of a big rectangle minus a 

regular triangle in geometry, and thus, we update the x coordinate from o, p, q, to l, o, p. 

Note that this difference should be kept in mind when calling the specific expressions 

of Rec, out ( , )iG x y . 
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For the case of a permeable fault, pore pressure diffuses within the entire reservoir, 

implying an inclusion domain combined with a left-type and a right-type trapezoids. 

Summing both the left and right solutions gives the solution for a permeable fault. 

Note that the extra term associated with the improper integral is always 𝜋𝑥 for 

horizontal displacement and 𝜋𝑦  for vertical displacement for arbitrary inclusion 

geometries because a point can fall in only one location at one time.  

All the corners of the inclusion domain are the singular points in the preceding three 

cases. For a vertical fault (𝜃 = 90), o = p = 0 for both the left and right solutions, and 

then the integration over a triangular domain in Equations (3.2)-(3.6) gives zero. For a 

permeable fault with no offset in which a = b, the whole inclusion domain transforms 

into a simple rectangular one. 

3.3 Verification against existing analytical solutions  

3.3.1 Verification against Geertsma’s solution 

To verify the accuracy and correctness of our analytical solution for poroelastic 

displacement, we compare it with the well-known Geertsma’s solution. Although 

Geertsma’s solution is for a 3D axisymmetric geometry and our solution represents a 

2D plane-strain geometry (Figure 3.2), they will be equivalent when the reservoir 

extends infinitely in the lateral direction. This comparison also aims at showing under 

which conditions a 3D model can be simplified into a 2D model.  

 

Figure 3.2: Schematic diagram of (A) 3D cylindrical model for Geertsma’s solution and (B) 2D 

plane-strain model for the solution developed in this work in a half space. The reservoir is 

either finite or infinite in the horizontal direction, overlaied and underlaied by impermeable 

rock. The reserovir width is 2R for the 2D plane-strain model in this scenario. 

In this verification example, we consider a uniform pore pressure buildup due to fluid 

injection of 10 MPa occurring in a 300-m thick cylindrical reservoir at a depth of 1 km. 

The reservoir thickness is relatively large, aiming at distinguishing the results of the 
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approximate and exact versions of Geertsma’s solution (see Appendix G for details). 

The shear modulus and Poisson’s ratio are assumed as 5 GPa and 0.25, respectively, 

for all the rocks inside and outside the reservoir. Biot’s coefficient is considered as 1. 

We first evaluate the vertical poroelastic displacement along the vertical reservoir 

center line by the two closed-form versions of Geertsma’s solution and our plane-strain 

solution in this setting (Equations (G1)-(G3) in Appendix G) for three different 

reservoir widths (Figures 3.3A-3.3C). The approximate version of Geertsma’s solution 

indeed can only provide accurate results for points outside the reservoir, which is 

identical to the exact version, and the exact version can also give accurate results for 

points inside the reservoir. It benchmarks the exact version of Geertsma’s solution 

derived in this work. Our plane-strain solution is consistent with the exact version of 

Geertsma’s solution for the reservoir width of 200 km. It means that such a reservoir 

can be regarded as a laterally infinite one and thus, both solutions become equivalent. 

For our solution in this scenario, the inclusion domain can be regarded as either an 

individual rectangle (Figure 3.2B) or a combination of two trapezoids crossed by a 

permeable fault with zero-offset (Figure 3.1). We carry out the evaluation for both 

cases and the related results are always identical to each other (Figures 3.3A-3.3C), 

verifying our integral solution for both rectangular and triangular inclusions as well as 

their superposition. 

To further illustrate how the geometrical conditions characterize the infinite property of 

the reservoir, we calculate the ground displacement at the center uy(0, 0) as a function 

of reservoir width (w) under three different combinations of reservoir depth (D) and 

thickness (h) (Figures 3.3D-3.3F). More details for the other two combinations are 

shown in Figure J1. The difference of ground displacement between Geertsma’s 

solution and our solution decreases with increasing w, and it becomes negligible when 

w approaches to a threshold. The ground displacement also tends to be a constant after 

reaching such threshold. The threshold of w is proportional to D (see Figures 3.3D and 

3.3E) and is independent of h (see Figures 3.3D and 3.3F). It indicates that the ratio of 

reservoir width to depth (w/D) determines the infinite property of the reservoir. Our 

results show that the threshold of w/D could be about 50-100, in which the cylindrical 

reservoir tends to be laterally infinite and thus, a 3D model can be simplified into a 2D 

model.  
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Figure 3.3: Comparison of vertical poroelastic displacement along the vertical reservoir center 

line (A, B, and C) and at the ground surface (D, E, and F) between Geertsma’s solution and our 

plane-strain solution under various reservoir-geometric conditions. The legend is shown in (C), 

in which the black solid and cyan dashed lines represent our plane-strain solution evaluated, 

respectively, with an individual inclusion (Ind. Inc.) and a combined inclusion (combined by 

two trapezoidal domains, Com. Inc.), as well as blue dashed and red dotted lines denoting the 

approximate version (v1) and the exact version (v2) of Geertsma’s solution, respectively. The 

ratio w/D changes as a function of w for a specific D in (D, E, and F). 

3.3.2 Verification against Segall’s solution 

As mentioned in the Introduction, Segall (1985) derived a semi-analytical solution for 

displacement considering non-uniform changes of pore fluid content in the reservoir. 

Our solution can be regarded as a special case of Segall’s solution in terms of pore 

pressure changes, whereas our solution can handle a more complicated reservoir 

geometry and is expressed in a closed form. A closed-form version of Segall’s solution 

for ground displacement (Equations (H1) and (H2) in Appendix H) was developed by 
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assuming a uniform change of pore fluid content and a vertically concentrated 

compaction/dilatation at the horizontal reservoir center line instead of a distributed one 

throughout the reservoir (Segall, 1989). As a complementary verification, we here 

compare our solution with this approximate Segall’s solution.  

We adopt the same values as the ones applied in the verification against Geertsma’s 

solution for all the geometrical and hydro-mechanical parameters to carry out this 

verification example with the only difference in reservoir thickness. The distribution of 

ground displacement between the two solutions displays an excellent consistency 

under the base case of h = 300 m (Figure 3.4). It verifies our solution again and also 

indicates that a reservoir thickness of 300 m is thin enough compared to a depth of 1 

km, i.e., h/D = 0.3, which is the condition of vertically concentrated 

compaction/dilatation. When increasing the ratio h/D to 0.6, the comparison still 

matches well. Only small discrepancy occurs locally even for the case of h/D = 1. 

Since the approximate Segall’s solution (Equations (H1) and (H2)) only differs from 

our solution (Equations (H3) and (H4)) in terms of the assumption of vertically 

concentrated compaction/dilatation. These comparisons imply that such an assumption 

is still acceptable for the case of h/D = 1 (in general, all the field cases in practical 

geo-energy projects meet this condition) in estimating the ground subsidence/uplift. 

Predictably, this assumption will not affect the estimate of displacement outside the 

reservoir (Figures 3.3A-3.3C) (Fjaer et al., 2008). We discuss this further in Section 

3.7. 

 

Figure 3.4: Comparison of ground displacement along the x-axis between our analytical 

solution and the approximate version of Segall’s solution under three cases of reservoir 

thickness. 
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3.4 Assessment of poroelastic displacement with a compartmentalized 

reservoir  

We now apply our analytical solution to assess the fluid-induced poroelastic 

displacement with a compartmentalized reservoir (Figure 3.1). The displacement is the 

product of poroelastic coefficient  , relative strength of pore pressure change to rock 

stiffness /p  , and reservoir geometry factor ( , ) /iG x y   (Equation 3.1). To 

generalize the analysis with respect to the HM parameters, we hereafter take the 

reservoir geometry factor as a scaled poroelastic displacement. 

3.4.1 Properties of the base-case scenario 

We first perform a base-case study to show the full distribution of poroelastic 

displacement in a 2D zone of interest due to fluid injection into a fault-displaced 

reservoir. We consider both permeable and impermeable faults, with injection into the 

reservoir on left-hand side of the fault as an example, to show the role of fault 

permeability. In the base-case scenario, we adopt a general value for all the geometric 

parameters and a typical value for the HM parameters (Table 3.1). Thus, the scaled 

value for displacement is 610
-4

 with these typical HM values. Multiplying the results 

shown in Section 3.5 with this scaled value immediately yields the non-scaled 

poroelastic displacement. Applying to a specific experimental or in-situ HM condition 

only needs to adapt this scaled value. 

Table 3.1: Geometric parameters of the reservoir and rock properties adopted for the base case 

scenario.  

Parameter Physical meaning Value Unit 

a 

Geometric parameters 

(Refer to Figure 3.1) 

50 m 

b 150 m 

c 1000 m 

d 1000 m 

D Depth 2000 m 

𝜃 Fault dip 60  

𝜇 Shear modulus 5 GPa 

𝜈 Poisson’s ratio   0.25 - 

𝛼 Biot’s coefficient 0.9 - 

Δp Pressure buildup 10 MPa 

𝜂 Poroelastic coefficient 0.3 - 
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3.4.2 Parametric space analysis on the geometric properties of geological 

model 

We then carry out a parametric space analysis for the geometric properties of 

geological model and focus our analysis on ground displacement. Two kinds of 

geometric properties describe the subsurface conceptual model (Figure 3.1): fault 

geometry and reservoir geometry. A zero-thickness fault is represented by the fault dip 

and fault offset. Both of them have a strong effect on induced stress around the fault, 

and thus, the fault stability and the maximum size of slipping fault patch (Wu et al., 

2021a). However, how they affect the ground displacement remains an open question, 

which will be analyzed in Section 3.5.2. The other geometric feature, i.e., reservoir 

geometry, is characterized by its thickness, width, and depth, which can strongly affect 

the magnitude of ground displacement. In particular, the larger the reservoir size and 

the shallower the depth, the larger the ground displacement. Dimensionless variables 

are more widely used when generalizing the problem. We thus use the aspect ratio e= 

h/w, the vertical depth ratio h/D, and the horizontal (lateral) depth ratio w/D in our 

analysis to quantify the effect of these reservoir geometry properties. 

We evaluate these parametric space analyses on the basis of the previous base-case 

study, and change (1) the fault dip from 15 to 90 in increments of 15, and the fault 

offset from 0 to 300 m in increments of 100m (Section 3.5.2), and (2) the reservoir 

thickness, width, and depth to half and double of the one in the base-case scenario 

(Section 3.5.3). The values of the dimensionless variables associated with varying the 

dimensional geometry properties are shown in Table 3.2. The quantitative analysis for 

both the dimensional and dimensionless reservoir geometry properties will be included 

in Section 3.5.3. All these analyses do not involve the HM parameters and thus, the 

scaled value for displacement remains the same as shown in Section 3.4.1. 

Table 3.2: Values of the dimensional geometry parameters and the related ones of the 

dimensionless variables adopted for the parametric space analysis of reservoir geometry.  

Dimensional 

parameter 
Value 

Dimensionless parameter 

e h/D w/D 

h (m) 

100 0.05 0.05 

1 200 0.1 0.1 

400 0.2 0.2 

w (km) 

1 0.2 

0.1 

0.5 

2 0.1 1 

4 0.05 2 

D (km) 

1 

0.1 

0.2 2 

2 0.1 1 

4 0.05 0.5 
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3.5 Results  

3.5.1 The role of fault permeability in the base case scenario 

Reservoir pressurization leads to reservoir dilatation towards its surroundings. As a 

result, the scaled horizontal and vertical components of poroelastic displacement 

concentrate on the lateral and vertical boundaries of the pressurized region, 

respectively, and then decreasingly extend to their surroundings (Figure 3.5). A 

negative value of displacement implies a deformation towards the negative direction of 

the coordinate axes. Thus, the displacement is regarded as a big one as long as its 

absolute value is large.  

 
Figure 3.5: Horizontal (A and B) and vertical (C and D) components of the scaled poroelastic 

displacement for both cases of a permeable (A and C) and an impermeable (B and D) fault. 

Displacement is scaled by /p  with a value shown in Section 3.4.1. A, B, C, and D have 

the same color scale but the range of the legends is adapted to the values shown in each case. 

The reservoir geometry and the fault are indicated by the white lines. 

Fault permeability has no impact on this primary feature of poroelastic displacement, 
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while some secondary differences are evident between the cases of permeable and 

impermeable faults. For a permeable fault, both the horizontal and vertical 

displacement components are almost symmetric with respect to x = 0, i.e., the vertical 

reservoir center line, only with small inconsistency around the symmetric axis because 

of fault offset (Figures 3.5A and 3.5C). Although such symmetry remains visible in the 

impermeable case, the symmetric axis shifts to the left for about half of the reservoir 

width, i.e., 500 m, being in consistency with the actual vertical center line of the 

pressurized reservoir (Figures 3.5B and 3.5D). The scaled displacement in the 

permeable-fault case is larger than the one in the impermeable-fault case because the 

pressurized reservoir size in the latter is half of the one in the former. Such a difference 

is more evident in the vertical component than in the horizontal component. Unlike the 

horizontal component, the vertical component is much larger in the overburden than in 

the underburden of the reservoir for both permeable and impermeable cases (Figures 

3.5C and 3.5D). This asymmetry is due to the effects of the traction-free surface on the 

poroelastic displacement, which will be further discussed in Section 3.6. 

3.5.2 Effect of fault dip and fault offset on ground displacement 

Fault dip and fault offset show a similar effect on the distribution of ground 

displacement for both permeable and impermeable faults and they just slightly change 

the magnitude of ground displacement (Figure 3.6). The scaled ground displacement 

presents a similar symmetry to the full distribution of displacement shown in Figure 

3.5. For a permeable fault, the maximum vertical ground displacement occurs around 

the center, while the maximum horizontal ground displacement occurs around two 

times the lateral reservoir boundaries. These maximum points shift to left 500 m for an 

impermeable fault, being in consistency with the symmetry shown in the full 

distribution of displacement between permeable and impermeable cases. Both the 

scaled horizontal and vertical ground displacement components in the permeable-fault 

case are about the double of the one in the impermeable-fault case because the 

pressurized reservoir size also doubles. The maximum of the vertical component is 

about two times the horizontal one in both permeable and impermeable cases.  

These previous properties are basically independent of fault dip and fault offset. Only 

the symmetry is slightly affected by fault offset. In particular, ground displacement is 

exactly symmetric with respect to the center for a zero-offset fault, while it shows a 

slight deviation for these cases of a displaced fault (Figure 3.6D). The effect of fault 

geometry on ground displacement mainly affects its magnitude, with little changes to 

the spatial distribution. On the one hand, ground displacement increases as the fault 

inclination becomes stepper, and such an increment becomes less pronounced as fault 

dip increases (Figure 3.6A and 6B). On the other hand, ground displacement decreases 

with increasing fault offset and such a decrement is nearly proportional to the fault 

offset (Figure 3.6C and 6D). This effect is independent of fault permeability, and it is 

not very strong. 
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Figure 3.6: Horizontal (A and C) and vertical (B and D) components of the scaled ground 

displacement along the x-axis for both permeable (blue color-scale lines) and impermeable (red 

color-scale lines) faults under several values of fault dip (A and B) and fault offset (C and D). 

The fault offset in A and B is 100 m and the fault dip in C and D is 60º. The color-scale lines 

vary from light to dark, corresponding to fault dip changes from 15 to 90 with an increment 

of 15 and fault offset ranges from 0 to 300 m with an increment of 100 m. Displacement is 

scaled by /p  with a value shown in Section 3.4.1. 

3.5.3 Effect of the reservoir geometry properties on ground displacement 

The scaled ground displacement is proportional to the reservoir thickness and width, 

while it is inversely proportional to the reservoir depth (Figure 3.7). Such effect shows 

a similar strength among the three geometic properties and is independent of fault 

permeability, while it is much more evident than the one of fault geometry. Reservoir 

thickness almost does not affect the shape of displacement distribution: the maximum 

point of displacement always locates at the same position for different cases of 

thickness. In contrast, such a maximum point of horizontal displacement shifts outward 
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with increasing reservoir width because the reservoir expands with its width in lateral 

direction. As a result, the spatial distribution of ground displacement becomes gentler 

and wider with increasing reservoir width than increasing reservoir thickness. The 

maximum point shifts inward with decreasing reservoir depth, and thus, the spatial 

distribution of ground displacement concentrates towards the center (Figures 3.7A and 

3.7B). Fault permeability only has an influence on the effect of reservoir width on the 

displacement distribution (Figures 3.7C and 3.7D) because the pressurized region only 

expands in the left-hand side direction for an impermeable fault. 

 

Figure 3.7: Horizontal (A and C) and vertical (B and D) components of the scaled ground 

displacement along the x-axis for both permeable (blue color-scale lines, A and B) and 

impermeable (red color-scale lines, C and D) faults under several values of reservoir thickness, 

width, and depth. The legends are shown in B and D. Displacement is scaled by /p  with a 

value shown in Section 3.4.1. 

Figure 3.7 also reveals the intrinsical effect of the dimensionless aspect ratio and depth 

ratios of the reservoir. The cases of h = 100 m and w = 1 km correspond to two 

different aspect ratio (Table 3.2), while the related ground displacement is identical in 
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both cases. This means that the aspect ratio has no impact on the induced ground 

displacement. The cases of h ranging from 100 m to 400 m and D ranging from 4 km 

to 1 km correspond to the same increase of the vertical depth ratio (Table 3.2), in 

which the associated ground displacement presents a similar increasing trend. Thus, the 

ground displacement is proportional to the vertical depth ratio. The lateral depth ratio 

shows a similar behavior to the vertical one, which can be checked by the cases of 

different w and D. We conclude that the induced ground displacement is independent 

of the aspect ratio and is proportional to vertical and lateral depth ratios with a similar 

proportion, while fault permeability has no impact on such intrincial effect of reservoir 

geometry. 

3.6 Effects of traction-free surface on poroelastic displacement  

Earth ground as a typical traction-free surface has attracted much concern in rock 

mechanics and geophysics (Barla, 1972; Fu et al., 2015; Lehner, 2019; Pan et al., 1998; 

Strack and Verruijt, 2002; Verruijt, 1998; Verruijt and Booker, 1996). Although a great 

number of analytical and numerical models have been developed in a half space, a 

complete comparison between the solution in a half space and in a full space for a 

same problem is currently rare and the condition for neglecting the effects of the 

traction-free surface remains ambiguous because of the lack of quantitative analysis. 

For our solution, the displacement function in a full space is a special case of the one in 

a half space, i.e., with only the first term in the right-hand side of Equations (E10) and 

(E11). Once the other terms in these equations are neglected, our analytical solution for 

poroelastic displacement transforms immediately into the version in a full space. Such 

a relationship provides a chance to systematically analyze the effects of traction-free 

surface on displacement and to show in which conditions the full-space solution 

becomes valid. 

3.6.1 A complete comparison of displacement in a half space and in a full 

space 

We adopt the case study in Section 3.4.1 as the base-case scenario to compare our 

analytical solution in a half space and in a full space. We first calculate the scaled 

displacement with and without free-surface effects as well as their difference for a 

permeable fault. The presence of free surfaces enhances the poroelastic displacement 

in the overburden for both horizontal and vertical components while declines the 

vertical component in the underburden (Figures 3.8 and Figure J2). The scaled 

displacement in a full space is symmetric with respect to the horizontal reservoir center 

line, which differs from the one in a half space (Figure J2). Such a difference is much 

more evident in the vertical component than in the horizontal one (Figure 3.8). The 

difference of horizontal displacement mainly focuses on the two small areas around the 

maximum point of horizontal ground displacement (Figures 3.6A and 3.8A). In 

contrast, the difference of vertical displacement is inversely proportional to the depth 

of the points and concentrates on the vertical reservoir center line (Figure 3.8B). The 
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maximum difference of both the horizontal and vertical components thus locates at the 

ground surface where the effects of free surface cause the largest difference. 

 
Figure 3.8: Difference of the scaled horizontal (A) and vertical (B) displacement components 

between the solution in a half space and in a full space for a permeable fault. Displacement is 

scaled by /p   with a value shown in Section 3.4.1. A and B have the same color scale but 

the range of the legends is adapted to the values shown in each case. The reservoir geometry 

and the fault are indicated by the white lines. 

We then evaluate the previous difference at the ground surface for both horizontal and 

vertical components of the scaled poroelastic displacement under different reservoir 

geometries (Figure 3.9). The spatial distribution of such a difference is almost identical 

to the spatial distribution of ground displacement (Figures 3.7 and 3.9). The difference 

is also proportional to the reservoir thickness and width with a similar proportion 

coefficient, and thus, the vertical (h/D) and lateral (w/D) depth ratios. This similar 

proportion indicates that the effects of free surface can be neglected once the reservoir 

depth is big enough compared to both the reservoir thickness and width, while existing 

studies only pay attention to one dimension (Barla, 1972; Lehner, 2019; Soltanzadeh 

and Hawkes, 2008). The maximum difference in the vertical component is about two 

times the horizontal one, and this relationship basically is independent of reservoir 

geometry. 
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Figure 3.9: Difference of the scaled horizontal (A) and vertical (B) ground displacement 

components between the solution in a half space and in a full space for a permeable fault under 

several values of reservoir thickness and width. Displacement is scaled by /p   with a 

value shown in Section 3.4.1. The legend is shown in B. 

3.6.2 Condition for neglecting the effects of free surface 

We here perform a new example with a rectangular reservoir depth at 2 km to further 

identify the necessary condition for neglecting the effects of free surface. We consider 

three reservoir geometries with a comparative aspect ratio (e) as the three base-case 

scenarios and then vary either the reservoir width or thickness from 20 m to 3 km for 

each base scenario to see how the maximum difference of the scaled ground 

displacement in a half space and in a full space changes with the inverse of both w/D 

and h/D (Figures 3.10A-3.10C and J3A-J3C) as well as the inverse of wh/D
2
 (Figures 

3.10D-3.10F and J3D-J3F). We adopt the inverse of these dimensionless variables 

instead of themselves because that such difference is almost directly proportional to 

w/D and h/D (Figure 3.9), and that presenting the results in an inverse proportion is 

helpful to establish a threshold. 

The inverse proportion of the previous maximum difference to the inverse of wh/D
2
 

with varying either w or h is definitely identical after a cutoff value of the inverse of 

wh/D
2
 in all these base-case scenarios (Figures J3D-J3F and 3.10D-3.10F). Such a 

cutoff value is about 14 and 8 for the maximum difference of the vertical and 

horizontal displacement components, respectively (Figures J3D-J3F). Before this 

cutoff point (which means a big size of reservoir relative to its depth), the maximum 

difference increases faster with increasing h than w, indicating that the vertical depth 

ratio plays a stronger role on the free-surface effects than the lateral one. In contrast, 

these preceding features can be observed only in the base-case scenario of e = 1 

(Figures J3B and 3.10B) when focusing on the inverse proportion to the inverse of w/D 

and h/D (Figures J3A-J3C and 3.10A-3.10C). It suggests that the inverse of wh/D
2
 or 
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itself is a better index to represent the condition of neglecting the free-surface effects 

than the inverse of w/D and h/D. 

 

Figure 3.10: Maximum difference of the scaled horizontal (Hor.) and vertical (Ver.) ground 

displacement components between the solution in a half space and in a full space as a function 

of the inverse of w/D or h/D (Figures 3.10A-3.10C), and of the inverse of wh/D2 (D, E, and F) 

for a rectangular reservoir with three comparative base values of aspect ratio e. Displacement 

is scaled by /p   with a value shown in Section 3.3.4.1. The legend is shown in B. The 

base values of reservoir thickness and width for each base-case scenario are included in the 

title of each subfigure. The axis value is limited to 21 for the inverse of w/D and h/D, to 210 

for the inverse of wh/D2, and to 85 m for the maximum difference, which aim at clearly 

showing the turning interval of these curves. 

We discuss the condition in terms of the inverse of wh/D
2
 for neglecting the 

free-surface effects in the turning interval where the decreasing rate of the maximum 

difference significantly declines from a large one to a small one. Such a turning 

interval locates in the right-hand side of the previous cutoff point (Figures 

3.10D-3.10F), and the geological conditions in most of the practical geo-energy 

projects indeed are located in this turning interval (Kivi et al., 2022, 2023). These 

inversely proportional curves between the maximum difference and the inverse of 

wh/D
2
 display an intrinsic threshold for neglecting the free-surface effects because of 

their asymptotic property (Figures 3.10D-3.10F). This intrinsic threshold of the inverse 

of wh/D
2
 could be about 50-100, i.e., 0.01-0.02 for wh/D

2
 itself, when focusing on the 
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vertical ground displacement. The scaled maximum difference associated with such a 

threshold is about 14-7 m, corresponding to a non-scaled value of 8.4-4.2 mm with the 

HM parameters listed in Table 3.1. After this threshold, the maximum difference tends 

to zero asymptotically and thus, the full-space solutions become valid. We here 

propose a range for this intrinsic threshold instead of a specific value also because of 

the asymptotic property. It indicates the recognition that the specific condition for 

neglecting the free-surface effects can be different depending on the type of 

engineering projects, which depends on the field background and demands of each 

project. Our results (Figure 3.10) can provide a reference for each application. 

3.7 Discussion  

We present a new closed-form solution under 2D plane-strain conditions in a half space 

to estimate rock deformation within the reservoir and its surroundings resulting from 

reservoir pressurization/depletion due to various geo-energy related operations. With 

this solution, we elaborate (1) the role of fault permeability on poroelastic 

displacement (Figure 3.5), (2) the effect of fault and reservoir geometries on ground 

displacement (Figures 3.6 and 3.7), and (3) the effects of traction-free surface (Figures 

3.8-9 and J2) as well as the condition for neglecting such a free surface (Figures 3.10 

and J3). All the evaluated results are shown in a scaled form, which generalizes the 

problem and the associated conclusions with respect to the HM parameters. For the 

contrary scenario of fluid production, the scaled displacement shown in the previous 

cases of fluid injection remains the same, but the sign of scaled value changes. Unlike 

the unfavorable effect of an impermeable fault on induced seismicity potential (Wu et 

al., 2021a), the induced displacement is smaller in the case of an impermeable fault 

than a permeable one (Figures 3.5-3.7) because the pressurized reservoir size in the 

former is only half of the one in the latter. Although injecting the same amount of fluid 

into a smaller size of reservoir can finally lead to a higher pressure buildup, an 

overpressure in the impermeable-fault case below two times the one in the 

permeable-fault case cannot cause a same size of ground displacement as the 

permeable one (Figures 3.6 and 3.7). This indicates that cross-fault permeability 

(sealing) only plays a strong role on the spatial distribution of poroelastic displacement 

while its effect on displacement magnitude is small. 

The poroelastic displacement is proportional to the hydraulic parameters and inversely 

proportional to shear modulus, while the relation to Poisson’s ratio is more 

complicated. Once neglecting the effects of free surface, Poisson’s ratio only exists in 

the poroelastic coefficient and thus, the displacement decreases with increasing 

Poisson’s ratio but not linearly (Figures J4 and J5). We infer that the mechanical 

parameters have no impact on the spatial distribution of poroelastic displacement in a 

full space and only enlarge/minify its magnitude (Figures J2B, J2D, and J5). For an 

elastic half space, in contrast, the reservoir geometry factor also involves Poisson’s 

ratio (Equations (F6), (F11), (F32), and (F43)) and it linearly decreases with increasing 

Poisson’s ratio (Figure J6). The effect of Poisson’s ratio on reservoir geometry factor 

mainly focuses on the ground surface and decreases with increasing reservoir depth 
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(Figure J6). Merging the effect of Poisson’s ratio on poroelastic coefficient and on 

reservoir geometry factor yields the one on poroelastic displacement (Figure 3.11). The 

displacement still decreases with increasing Poisson’s ratio and such a decrement 

increases with Poisson’s ratio. This property is in agreement with the one of poroelastic 

coefficient and Poisson’s ratio (Figure J4). However, the effect of Poisson’s ratio on 

displacement primarily focuses on the reservoir boundaries and secondarily on the 

ground surface, unlike the one on reservoir geometry factor (Figure J6). We conclude 

that Poisson’s ratio impacts both the spatial distribution of poroelastic displacement 

and its magnitude in a half space because the free-surface effects enhance such impact 

around the ground surface (Figure 3.8). The inverse relation between the poroelastic 

displacement and Poisson’s ratio is retained in both full space and half space, mainly 

dominating by the relation between poroelastic coefficient and Poisson’s ratio. This 

discussion is also valid for stress analysis (Wu et al., 2021a) and can be referred in 

considering the elastic contrast between the reservoir and its surroundings (Mehrabian 

and Abousleiman, 2015; Morita et al., 1989; Rudnicki, 1999, 2011). 

 

Figure 3.11: Difference of /iG   between the cases of 𝜈 = 0.15 and 𝜈 = 0.25 (A and B), 

and between the cases of 𝜈 = 0.25 and 𝜈 = 0.35 (C and D) for a permeable fault in a half 

space. A, B, C, and D have the same color scale but the range of the legends is adapted to the 

values shown in each case. The reservoir geometry and the fault are indicated by the white 

lines. We take the base-case study in Section 3.4.1 as an example. 
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Several analytical solutions for poroelastic stress have already been proposed in a full 

space (Goodier, 1937; Jansen et al., 2019; Lehner, 2019; Soltanzadeh and Hawkes, 

2008; Wu et al., 2021a), while their validity condition in terms of free-surface effects 

remain qualitative. Such a condition for stress analysis should be similar to our 

displacement analysis because of constitutive laws between stress and strain. From the 

perspective of stress analysis, Soltanzadeh and Hawkes (2008) proposed that the 

full-space solution is exactly accurate when the reservoir depth is five times greater 

than its lateral extent (i.e., w/D < 0.2 in our setting). This condition however omits the 

role of vertical depth ratio, which has a similar strength of impact on the free-surface 

effects (Figures 3.9 and 3.10). Lehner (2019) confirmed the availability of Goodier’s 

stress solution (Goodier, 1937) for the Groningen gas field in which w/D = 1 and h/D = 

0.1 in our setting. It indicates a scaled value of 60 m for the maximum error of vertical 

displacement (Figure 3.10) and 66 mm for the non-scaled one with the HM parameters 

of Groningen gas field (Jansen et al., 2019; Lehner, 2019). Such a reservoir geometry 

property locates in the left-hand side of the previous turning interval presented in 

Figure 3.10, and the non-scaled error exceeds 20% of the recorded subsidence in the 

Groningen gas field (Thienen-Visser and Fokker, 2017). It implies that the free-surface 

effects cannot be neglected for displacement analysis in this field and the full-space 

solutions are invalid. These different results between stress and displacement analyses 

indicate that the condition of neglecting the free-surface effects may be satisfied more 

easily for stress than for displacement because that stress is linked to the displacement 

gradient. Considering the proposal of Soltanzadeh and Hawkes (2008) and the case of 

Groningen gas field as well as the fact that reservoir thickness in general is smaller 

than depth, we recommend applying the inverse of wh/D
2
 ≥ 10, i.e., wh/D

2
 ≤ 0.1, as 

the condition of neglecting the free-surface effects on poroelastic stress (Figure 3.10).  

Some of the main simplifying assumptions adopted to solve this HM-coupled problem 

analytically may hinder the generality of our solution and conclusions. In particular, 

non-linear elastic or inelastic rocks are physically more realistic than the assumption of 

linear elastic behavior (Doyle and Ericksen, 1956; Johnson and Rasolofosaon, 1996; 

Rivière et al., 2015; Scholz, 1968); and reservoirs commonly have a stiffness contrast 

with their surroundings (Bourne, 2003; Douma et al., 2019; Mehrabian and 

Abousleiman, 2015; Passey et al., 2010). The effects of these limitations in mechanics 

are worthy to be assessed by comparing the analytical with numerical solutions. 

Additionally, assuming a uniform pore pressure change within the reservoir may 

question the applicability of our solution in the early stage of fluid injection/production 

when the transient effect of pressure diffusion is evident (Crews and Cooper, 2014; 

Vilarrasa et al., 2010; Wu and Pruess, 2000). One can apply the principle of 

superposition to include this transient effect partially (Jayeoba et al., 2019). 

Both approximate versions of Geertsma’s solution (Geertsma, 1973) and Segall’s 

solution (Segall, 1985) are derived by assuming a vertically concentrated 

compaction/dilatation at the horizontal reservoir center line (Fjær et al., 2008; Segall, 

1989), which basically does not lose any accuracy in estimating displacement outside 

the reservoir (Figures 3.3 and 3.4). This assumption only requires that the ratio of 
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reservoir thickness to depth, i.e., h/D, is small enough (Segall, 1989). Almost all the 

field cases in practical geo-energy projects can meet such a condition (Kivi et al., 2022, 

2023) because the results remain acceptable even for the exaggerated case of h/D = 1 

(Figure 3.4). However, both approximate solutions only consider a special location, 

which may limit their applications. These approximations have inspired us to simplify 

our exactly closed-form solution to an approximate version for an arbitrary position by 

adopting the vertically concentrated contraction/dilatation at the horizontal reservoir 

center (Appendix I). As an extension, we here compare the distribution of scaled 

poroelastic displacement evaluated by both our exact and approximate solutions in 

more detail as well as the difference between the two solutions in a 2D zone of interest 

(Figures 3.12 and J7). Results show that the approximate solution can provide accurate 

enough estimates for almost the whole interested zone outside the reservoir domain. 

For horizontal displacement, the relatively large scaled difference (e.g., > 1 m) only 

focuses on a small region around the lateral reservoir boundaries, and it concentrates 

on the entire reservoir as well as a small extension in the lateral surroundings for 

vertical displacement. We thus conclude that the approximate solution is preferable to 

assess the induced displacement in the surroundings, especially at the ground surface, 

because of its simplicity, and the exact one is recommended when the displacement 

inside the reservoir is of interest. 
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Figure 3.12: Comparison of scaled poroelastic displacement between our exact solution (ES) 

and approximate solution (AS) along the vertical direction for several fixed values of x-axis (A 

and B) as well as the difference between the two solutions for the zone of interest (C and D). C 

and D have the same color scale but the range of the legends is adapted to the values shown in 

each case. Displacement is scaled by /p  with a value shown in Section 3.4.1 (we take the 

base-case study in Section 3.4.1 as an example). The reservoir geometry and the fault are 

indicated by the white lines in C and D. 

Our analytical solution is a useful tool to quickly evaluate the ground uplift/subsidence 

for geo-energy projects during their full lifetime. It makes the comprehensive 

parametric space analysis with respect to the geological properties of subsurface, such 

as fault permeability and sealing, reservoir and fault geometries, and rock strength, 

become feasible and executable. These comparisons can optimize the geological 

exploration strategy and numerical modeling (Rutqvist et al., 2010) in geo-energy 

applications. Superposing our solution to the existing dislocation solutions, for 

example, Okada’s solution (Okada, 1985, 1992), for the coseismic deformation can 

shed a light on the transformation process from HM perturbation to fault reactivation 

or rock fracturing. It is helpful to build a link between the ground deformation and the 

seismological parameters of induced earthquakes (Lemoine et al., 2020; Ricco et al., 

2019; Rudziński et al., 2019). This link may reveal some new precursors of 

fluid-induced seismicity and thus, can be used to predict and manage induced seismic 

events. At the same time, taking into account our solution in the decision-making 

process could also contribute to injection pressure management (Bai et al., 2017; 

Rutqvist et al., 2007). Besides, the distribution of horizontal and vertical displacement 

components displays some similar properties to the problem of ground fissures (Budhu, 

2011; Jachens and Holzer, 1982; Lee et al., 1996; Peng et al., 2016) and land 

subsidence (Bagheri-Gavkosh et al., 2021; Galloway and Burbey, 2011; Ortiz-Zamora 

and Ortega-Guerrero, 2010), respectively, arising from groundwater production, which 

opens a new window for the application of our solution. 

3.8 Conclusions  

We develop a closed-form solution in a half space for evaluating the poroelastic 

displacement in the subsurface due to fluid injection or extraction in displaced 

reservoirs. It is a useful tool to quickly estimate the ground uplift/subsidence for 

subsurface energy-related projects. We derive the solution on the basis of inclusion 

theory and half-space Green’s function. The solution has been verified by comparing it 

with Geertsma’s solution and Segall’s solution. We also provide an approximate 

version of our solution for the sake of simplification in applying our solution. We draw 

the following conclusions from evaluating the poroelastic displacement under various 

geological conditions: 

 Fault permeability only plays a strong role on the spatial distribution of poroelastic 

displacement while its effect on displacement magnitude is small. The 
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displacement is smaller in the case of an impermeable fault than a permeable one 

because the impermeable fault restricts the pore fluid diffusion in the reservoir.  

 The vertical component of ground displacement concentrates on the point 

projected to the vertical reservoir center, while the horizontal component 

symmetrically focuses on two points located outward the lateral reservoir 

boundaries. These distribution properties shift uniformly with the vertical center of 

the actual pressurized/depleted reservoir. Both fault dip and fault offset basically 

have no impact on the spatial distribution except for the offset slightly affecting its 

symmetry. Reservoir thickness does not affect this spatial distribution neither, 

while it uniformly compresses towards the center with decreasing either reservoir 

width or depth, especially the latter.  

 Ground displacement increases with increasing fault dip, while it decreases with 

increasing fault offset. This effect on displacement magnitude is not so evident. In 

contrast, reservoir geometry shows a stronger effect than fault geometry. The 

ground displacement increases with reservoir thickness and width, and decreases 

for deeper reservoirs, i.e., displacement is proportional to the vertical (h/D) and 

lateral (w/D) depth ratios.  

 Free-surface effects can enhance the poroelastic displacement in the overburden. 

We propose applying the product of the lateral and vertical depth ratios, i.e., wh/D
2
, 

or its inverse as an index to assess the condition for neglecting the free-surface 

effects. The inverse proportion between the maximum error of full-space solutions 

and the inverse of wh/D
2
 displays an intrinsic threshold for such a condition. This 

threshold may range from 50 to 100 for the inverse of wh/D
2
, i.e., 0.01-0.02 for 

wh/D
2
 itself, in displacement analysis. A specific value depends on the field 

background and the demands of engineering projects, and can be estimated based 

on our solution. Free-surface effects is smaller on stress than on displacement, we 

thus suggest applying wh/D
2
 ≤ 0.1 as a general condition for neglecting such 

effects on induced stress. 

 The poroelastic displacement decreases with increasing Poisson’s ratio in both full 

space and half space, dominating by the relation between poroelastic coefficient 

and Poisson’s ratio. Poisson’s ratio also has an impact on the spatial distribution of 

displacement in a half space because the free surface enhances the displacement 

non-uniformly with the strongest effect at the ground surface. 

 Increasing the lateral depth ratio of the reservoir to 50-100 indicates an infinite 

reservoir in the lateral direction and thus, 3D models can be simplified into 2D 

models. 

 We justify the assumption of vertically concentrated contraction/dilatation at the 

horizontal reservoir center. The approximate solution based on this assumption is 

preferable to assess the induced displacement in the surroundings, especially the 

ground displacement, and the exact solution is recommended when the 

displacement inside the reservoir is of interest. 
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4 Stochastic poromechanical analysis of induced seismicity – 

application to the Pohang Mw5.5 earthquake 

4.1 Introduction 

The Pohang Mw5.5 earthquake is the largest seismic event induced by any Enhanced 

Geothermal System (EGS) project (Ellsworth et al., 2019; Kim et al., 2018; Korean 

Government Commission (KGC, hereafter), 2019) and occurred approximately two 

months after hydraulic stimulation was completed. Although surface rupture did not 

occur, other superficial manifestations were recorded, such as significant coseismic 

surface deformations (Grigoli et al., 2018; Song and Lee, 2019), ground cracks, 

retaining wall deformations and soil liquefactions (Choi et al., 2019; Kang et al., 2019). 

The epicenter of the earthquake was located near the EGS project site (Ellsworth et al., 

2019; Kim et al., 2018; Yeo et al., 2020), with the hypocenter corresponding to the 

depth of the injection wells (Ellsworth et al., 2019; Kim et al., 2018). It is now 

commonly accepted that the earthquake was induced by high-pressure hydraulic 

stimulation in the injection well PX-2, which activated a low-permeability fault 

(Ellsworth et al., 2019; Kim et al., 2018; Lee et al., 2019), whereas some of the 

specifics regarding the triggering mechanisms remain object of a scientific debate and 

contrasting hypotheses have been formulated.  

The Overseas Research Advisory Committee (ORAC) concluded that the overpressure 

caused by fluid injection reactivated a critically stressed fault, which, in turn, released 

the stored elastic strain energy as the Pohang earthquake (Ellsworth et al., 2019; KGC, 

2019). Lim et al. (2020) studied the effect of hydraulic diffusivity on the timing delay 

between the injection and the earthquake. Chang et al. (2020) and Wassing et al. (2021) 

argued that the poroelastic stress also played a significant role, especially in the case of 

the low-permeability fault that induced the earthquake, which requires coupled 

hydro-mechanical (HM) approaches to assess the triggering mechanisms. Yeo et al. 

(2020) proposed that the earthquake interactions, i.e., the static stress transfer from the 

previous induced seismicity, made a greater contribution on the earthquake nucleation 

than the pore pressure buildup. Geochemical effects in terms of fault corrosion have 

also been proposed as a triggering mechanism (Westaway and Burnside, 2019). Thus, 

multiple triggering mechanisms (Ge and Saar, 2022; Vilarrasa et al., 2021, 2022) 

driven by a combination of coupled thermo-hydro-mechanical-chemical processes 

likely induced the Mw5.5 earthquake.  

The aforementioned studies on the Pohang earthquake present three limitations. First, 

most of the hydraulic and HM assessments focused only on fault stability (Chang et al., 

2020; Ellsworth et al., 2019; KGC, 2019; Lim et al., 2020; Yeo et al., 2020; Wassing et 

al., 2021), while no scaling relationship between the final evaluated results (pore 

pressure buildup, transferred Coulomb static stress, poroelastic stress changes, and 
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Coulomb failure stress) and the earthquake magnitude has been established. Only 

knowledge on the activated mechanisms is available, while quantitative assessment of 

the earthquake magnitude and the risk of its occurrence has not been attempted. 

Second, all previous research assumed that the reactivated fault was initially very 

critical to failure and that any perturbation of larger than the general threshold, i.e., 

0.01 MPa (King et al., 1994; Reasenberg and Simpson, 1992), could induce an 

earthquake (KGC, 2019) in Pohang EGS site, with estimates ranging from 0.05 to 0.3 

MPa. Based on the focal mechanism solutions, Terakawa et al. (2020) estimated an 

overpressure of 8 ±  3 MPa in the source region of the mainshock, arguing that the fault 

could not have been so critical to failure conditions. Otherwise, small perturbations 

like tidal stress variations (0.001-0.01 MPa, Emter, 1997) would have been sufficient 

to trigger an earthquake of similar magnitude. Third, the uncertainty of the in-situ 

stress and the fault geometry was highlighted by several equally likely estimates 

(Tables 4.1 and 4.2) based on existing geological, seismological and geodetic analyses, 

and that present a wide range of proposed values (see Section 4.2.1 for details). 

Existing HM simulations (Lim et al., 2020; Chang et al., 2020; Wassing et al., 2021) 

adopted a deterministic approach, choosing one individual estimate to carry out their 

evaluations. No comprehensive analysis has been reported to compare the relative 

likelihood of these estimates and to show which estimate would provide the best fit. 

These reported evidences highlight that there was a wide uncertainty on the initial state 

of the fault, itself a function of the in-situ state of stress, the fault geometry and rock 

properties (Jaeger et al., 2007): we believe an uncertainty analysis can provide a 

quantitative estimate for the induced seismicity risk of the Pohang EGS site.  

Monte Carlo simulation is a classic approach for such purpose of uncertainty 

(stochastic) analysis (Harrison, 2010; Raychaudhuri, 2008), which has already been 

applied in various geological hazard assessments. Original applications usually adopt 

the Monte Carlo method to analyze the earthquake recurrence parameters and sample 

earthquakes by following the probability distributions (Bourne et al., 2015; Gischig et 

al., 2013; Parsons, 2008). Later studies include that applying this method to estimate 

in-situ stress and rock properties according to field and laboratory data (Bhattacharya 

and Viesca, 2019; Kruszewski et al., 2021; Van den Ende et al., 2020), and to perform 

coupled HM simulations (Masoudian et al., 2019; Plúa et al., 2021; Raziperchikolaee 

and Mishra, 2020; Reyes Canales and Van der Baan, 2021; Zhang et al., 2021). Most of 

these HM simulations used the Monte Carlo method to generate a heterogeneous 

distribution of rock properties in the whole simulation domain and then simulated the 

coupled HM problem with heterogeneity of rock properties. To best of our knowledge, 

extremely few publications, e.g., Masoudian et al. (2019), carried out a full HM 

simulation for each realization of the Monte Carlo simulation. However, the number of 

both realizations and numerical elements adopted in Masoudian et al. (2019) is very 

limited (only about one thousand) because of the computational cost. Numerically 

evaluating the coupled HM process for every realization of Monte Carlo simulations 

indeed is a technical challenge for the current computational ability. Alternatively, we 

can simplify the evaluations of the coupled HM process by analytical solutions, which 

may greatly promote the development of stochastic poromechanical analysis. 
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This contribution aims at studying analytically the processes of pore pressure diffusion 

and poroelastic responses due to the cyclic fluid injection in Pohang EGS project and 

at evaluating the fault stability and induced seismicity potential with the range of 

proposed fault geometries and in-situ stress states to find which estimate is the best. 

We first make a deterministic analysis to show how the analytical solutions work and if 

it is possible to explain the Pohang earthquake. We also perform a parametric space 

analysis on the uncertain geological properties to see what parameters are playing an 

essential role on induced seismicity. Subsequently, we carry out Monte Carlo 

simulations that include multiple stochastic variables for this poromechanical problem, 

and then statistically estimate the probability of inducing the Pohang earthquake based 

on the stochastic simulation results. To realize the quantitative risk assessment, we 

combine the slipping fault patch size with the rupture nucleation model to build a link 

between the fault stability analysis and the magnitude of induced seismicity.  

4.2 Materials and Methods 

4.2.1 Pohang setting 

The Pohang EGS project was deployed to produce geothermal energy in the granitic 

formation around 4.2 km depth, aiming at mitigating the issue of energy deficiency in 

Korea (Kim et al., 2018; KGC, 2019). The project site is one of the highest heat-flow 

areas in Korea (Lee et al., 2015), and is located within the Pohang basin that is 

surrounded by the Yangsan fault system and the Ulsan fault system (Grigoli et al., 

2018). The former involves many N- or NNE-striking strike-slip faults, while the latter 

includes many typically NNE- to NNW-striking reverse faults (KGC, 2019). The 

previous earthquakes associated with these faults almost have no effect on fault 

stability in the area of the EGS project site (Grigoli et al., 2018; Ellsworth et al., 2019). 

Five hydraulic stimulations were conducted at the wells PX-1 and PX-2, which were 

drilled to a depth of 4215 m and 4348 m, respectively (KGC, 2019). Several 

publications have presented the recorded injection data and the related seismic events 

(Kim et al., 2018; KGC, 2019; Ellsworth et al., 2019; Yeo et al., 2020). 

There are three independent evidences confirming that the mature fault associated with 

the Pohang earthquake intersects the injection well PX-2 at the depth of ∼3.8 km (Lee 

et al., 2019; KGC, 2019; Ellsworth et al., 2019). However, the fault geometry (strike 

and dip angle) is uncertain. Eight estimates of the fault plane associated with the 

induced seismicity at the Pohang EGS site have been derived based on the focal 

mechanism, InSAR analysis and moment tensor analysis with the recorded seismic 

events (Table 4.1, Ellsworth et al., 2019; Grigoli et al., 2018). The reversed solutions 

(FP7 and FP8) with the recorded data show that the related fault is northwest-dipping 

(Grigoli et al., 2018), which means the alternative solutions (FP2 and FP4) of focal 

mechanism could not be a likely option. The fault strike of FP1, FP3, FP7 and FP8 is 

consistent with the one of FP5 instead of FP6 indicates that the mainshock is induced 

by the hydraulic stimulations in PX-2. Thus, five estimates (FP1, FP3, FP5, FP7 and 
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FP8) of the fault plane are the potential ones linked to the mainshock, and can be 

divided into two classes based on their difference in fault strike and dip angle. FP1, 

FP3 and FP5 show a relatively low dip angle with an almost same strike, while FP7 

and FP8 present a higher dip angle with a similar strike. The former may correspond to 

the dip-slip fault and the latter probably is the strike-slip fault (Jaeger et al., 2007). The 

likely estimates of fault plane show a similarity with the previous quaternary faulting 

nearby the border of the Pohang basin, which may imply that there are two different 

fault slip patterns to explain the Pohang earthquake. 

Table 4.1: Estimates of fault plane that is related to the induced seismicity at the Pohang EGS 

site (Ellsworth et al., 2019; Grigoli et al., 2018) 

Number Strike (°) Dip (°) Physical description 

FP1 214 51 Northwest-dipping nodal plane (FP1) and its alternative 

one (FP2) of the mainshock focal mechanism from 

first-motion analysis 
FP2 343 52 

FP3 215 58 Northwest-dipping nodal plane (FP3) and its alternative 

one (FP4) of Mw 3.2 event FP4 339 48 

FP5 214 43 Plane of PX-2 seismicity 

FP6 180 62 Plane of PX-1 seismicity 

FP7 225 75 Mainshock fault plane from InSAR analysis (FP7), and 

from moment tensor analysis (FP8) FP8 221 66 

 

Regarding the in-situ stress for the Pohang EGS site at depth, only the vertical stress 

component σv is determined, which is 106 MPa and is evaluated from the dipole sonic 

logging at 4.2 km of the PX-2 borehole (Park et al., 2017, 2020; KGC, 2019). 

Although the azimuth of the maximum horizontal principal stress σH is also derived 

from the logging data, it has a high uncertainty of ∼30% because of the anisotropy 

features (KGC, 2019). Accordingly, σH and the minimum horizontal principal stress σh 

are estimated and thus, several in-situ stress tensors are proposed under different 

assumptions and methods (Table 4.2, Kim et al., 2017; Park et al., 2017; Soh et al., 

2018; KGC, 2019; Castilla et al., 2019; Westaway and Burnside, 2019; Bethmann et al., 

2019), in which, the one that was derived from the shallow depth of the EXP-1 well 

(Kim et al., 2017) has been extended to the depth of 4.2 km (Farkas et al., 2021). These 

estimates present a wide range of proposed values. Three (IS7, IS8, and IS9) of them 

are estimated by the source data that was measured in the sedimentary rock. These 

three estimates basically are not suitable for the stress state of the crystalline rock.  

We define a maximum deviatoric stress ratio to make a first-order assessment on the 

proposed stress tensors, that is 

 
1 3

max 0

1 3 2
DSR

p

 

  




 
, (4.1) 

where σ1 andσ3 are the greatest and the least principal stress components, respectively, 

α is Biot’s coefficient, p
0
 is the initial pore pressure. The value of DSRmax for all these 

estimates is included in Table 4.2. 
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In fault stability analysis, a critical fault means that DSRmax ≈ SinΘ based on the three 

dimensional linear Mohr circle diagram, in which Θ is the friction angle of the fault. 

Laboratory tests on the core samples of PX-2 shows that Θ is ∼26.6 (SinΘ = 0.45), 

which corresponds to a static friction coefficient of ∼0.5 (Park et al., 2017; Kwon et al, 

2019). Thus, with the assumption of a completely hydrostatic pore pressure (Ellsworth 

et al., 2019), we can exclude the estimates IS7, IS8, and IS9 because the value of 

DSRmax for these estimates is too small relative to SinΘ. It would not result in 

misjudgment even for a smaller value of α because DSRmax decreases with α. The 

estimates with DSRmax > SinΘ imply a supercritical fault, while they cannot be 

excluded as DSRmax decreases with α. Thus, we have six potential estimates for the 

in-situ stress. Note that we did not exclude the estimates IS3 to IS5, although the value 

of DSRmax are also smaller than 0.45, because only two samples are tested for the 

friction angle of fault (Kwon et al, 2019), which may remain uncertain. We will make a 

deeper comparison among the six estimates to show their relative likelihood later. 

Table 4.2: Estimates of the in-situ stress state at the depth of ∼4.2 km for the Pohang EGS site. 

RF and SS mean the reverse faulting and strike-slip faulting regimes, respectively. Sedi and 

Crys denote the stress state is estimated by the source data that was measured in the 

sedimentary rock and the crystalline rock, respectively. DSRmax is the maximum deviatoric 

stress ratio defined in this work (Equation (4.1)). 

Number 
Azimuth of 

𝜎𝐻 (°) 

𝜎𝐻 

(MPa) 

𝜎ℎ 

(MPa) 

𝜎𝑣 

(MPa) 
Regime 

Measured 

rock type 
DSRmax Reference 

IS1 N77±23 243 120 106 RF Crys 0.517 Korean 

Government  

Commission 

(2019) 

IS2 N74 203 93 106 SS Crys 0.519 

IS3 N100 198 107 107 SS/RF Crys 0.412 Castilla et al. 

(2019) IS4 N100 168 95 107 SS Crys 0.408 

IS5 N111 200 120 110 RF Crys 0.398 
Westaway and 

Burnside (2019) 

IS6 N75 256 87 111 SS Crys 0.653 Soh et al. (2018) 

IS7 N130-136E 138 86 107 SS Sedi 0.37 Kim et al. (2017) 

IS8 N65-130E 115-138 81-105 110 SS Sedi ≤0.357 
Park et al. 

(2017) 

IS9 N100E 133-153 89-119 107 SS/RF 
Crys & 

Sedi 
≤0.329 

Bethmann et al. 

(2019) 

 

4.2.2 Stress transformation from the three dimensional (3D) principal stress 

space to the two dimensional (2D) fault plane of interest 

The in-situ stress is a tensor in 3D (Table 4.2). We need to transform the 3D principal 

stress to the 2D fault plane to couple with the 2D analytical hydromechanical solutions. 

Here we propose a new method for such purpose, i.e., continuously applying the 2D 
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coordinate transformation formula twice, instead of the 3D coordinate transformation 

(Peška and Zoback, 1995; Fan et al., 2016). The following is the 2D coordinate 

transformation formula from the x-y plane to an arbitrary x’-y’ plane 

 
' ' ' 'cos(2 ) sin(2 )

2 2

xx yy xx yy

x x xx xy xxA A
   

   
 

     , (4.2) 
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2

xx yy

x y xx xy xxA A
 

   


     , (4.3) 

where Axx’ is the angle between the original axis x and the new axis x’. 

The idea is that we first transform the two horizontal principal stress components (σH 

and σh) to the vertical plane along the fault strike direction based on Equations (4.2) 

and (4.3), i.e., obtaining σn1 and τ1 (Figure 4.1A), and then transform the evaluated σn1 

and the vertical principal stress component (σv) to the inclined fault plane, i.e., 

obtainingσn2 and τ2 (Figure 4.1A). The angle Axx’ equals azimuth – (strike – 180), i.e., 

the angle between the fault strike and the azimuth of σH, and fault dip θ in the first and 

second coordinate transformations, respectively. Thus, the initial normal and shear 

stress components on the fault plane are 

 
0

2n n  , (4.4) 

 
0 2 2

1 2( sin )     , (4.5) 

where superscript 0 represents the initial state, andτ1 should be projected on the 

inclined fault plane from its original vertical plane before the module operation.  

After fluid injection, to evaluate the shear stress on the fault plane in the final state, the 

induced shear stressτ should be added only toτ2 (Figure 4.1C), such that 

 
f 2 2

1 2( sin ) ( )       . (4.6) 

The above stress transformation method has three essential advantages: (1) the shear 

stress direction on the fault plane is clear; (2) provide a more convenient approach to 

couple with the induced shear stress; and (3) we do not need to find the angles between 

the normal direction of the fault plane and the original principal stress coordinate. 
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Figure 4.1: Schematic of (A) three dimensional (3D) geological model and its in-situ stress 

state, (B) oblique slip model along the fault plane, and (C) simplified two dimensional (2D) 

projection perpendicular to the fault strike. σv , σH , σh are the vertical principal stress,  the 

maximum horizontal principal stress, and the minimum horizontal principal stress, respectively. 

σn1 and τ1 are the normal and shear stress components acting on the vertical plane along the 

fault strike direction, respectively, which are transformed from σH and σh. σn2 and τ2 are the 

normal and shear stress components acting on the inclined fault plane, respectively, which are 

transformed fromσn1 andσv. The module betweenτ2 and the projection of τ1 on the fault plane is 

the total shear stress at the initial state. All the stress components marked in (A) indicate the 

negative direction as we adopt the sign convention of geomechanics, i.e., positive for 

compression, which implies that the potential slip direction of the hanging wall is the one 

shown in (B). The positive direction of stress components along the fault plane is shown in (C), 

where blue  means the inward direction of the out-of-plane. The pore pressure and stress 

changes induced by fluid injection are also included in (C). LD is the distance between the fault 

and the well PX-2, which is calculated based on the fault dip θ. 

4.2.3 Theis’s solution for pore pressure diffusion 

For the typical cyclic injection, the fluid injection-induced pore pressure changes in an 

infinite homogenous and isotropic aquifer can be obtained by the superposition 

principle based on Theis’s solution (Theis, 1935) 

 
1

1

( )
4π

n
i i
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where Δp is the pore pressure change (positive value implies injection), Q is the 

volumetric injection rate, h is the aquifer thickness, 𝜆 is mobility defined as the ratio of 

permeability to fluid viscosity 𝜆 =k /φ, W(u) is the Theis well function, ϕ is the rock 

porosity, ct is the total compressibility of pore and fluid, r and t are the radial distance 

and the injection time, respectively. The subscript i means the i
th

 period of injection 

with constant injection rate Qi, ti corresponds to the instant of injection rate changing, 

and t0 = 0 s, Q0 = 0 m
3
/s.  

Regarding the evaluation of Theis well function, the series expansion is usually applied 

in the field of groundwater, it is however only available for small u (Barry et al., 2000; 

Tseng and Lee, 1998). In particular, the famous approximation of Cooper and Jacob 

(1946) can provide a good estimate only for u < 0.01. When evaluating the spatial 

distribution of pore pressure changes at the instant of the mainshock, the argument u 

may exceed the previous thresholds of series expansion for some values of the radial 

distance. Thus, we apply an analytical approximation (Barry et al., 2000) 
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, and 0.5772156649015328606   is the Euler constant. 

Equation (4.9) is valid for the whole range of the argument 0u   and is sufficiently 

accurate for data analysis in hydrological applications (Barry et al., 2000). 

Logging data shows that the low-permeable fault core is surrounded by 

high-permeable damage zones (KGC, 2019; Ellsworth et al., 2019; Yeo et al., 2020), 

implying that the low-permeable fault remains permeable along its longitudinal 

direction and thus, the overpressure can dissipate along the fault. As a result, the 

blocking effect of the transversely low-permeable fault on the pore pressure diffusion 

can be neglected. 

4.2.4 Analytical solution for stress variations induced by pore pressure 

changes 

We apply the 2D analytical solution presented in Chapter 2 and Wu et al. (2021a) to 

evaluate the poromechanical stress induced by pore pressure changes. Theis’s solution 

gives a radial distribution of overpressure around the injection well after fluid injection. 
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We cut the 2D cross-section that is overlapped with the projection in Figure 4.1C to 

couple with our 2D stress solution. The mean pore pressure change averaged over the 

2D pressurized region is defined by 

 m

1 1

1 n n

i i i
A

i i

p pdA p p hdr p hdr
A  

        , (4.10) 

where A is the area, that is weighted by the pore pressure changes, of the pressurized 

region. We evaluate the mean pore pressure change by technically dividing the entire 

pressurized region into finite rectangular micro-segments, the area of each 

micro-segment is ∆pihdr. 

Our stress solution is a useful tool and can be applied in both the cases of permeable 

and impermeable faults with an arbitrary fault offset and dip angle 𝜃. The spatial 

location of the low-permeable fault and the injection well PX-2 just constitutes the 

case of fluid injection into the right-hand side of a low-permeable fault. Once the pore 

pressure diffusion reaches the fault, the pressurized region will be limited by the fault 

and finally transforms into a trapezoidal inclusion domain (Figure 4.1C), which leads 

to (Wu et al., 2021a) 
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where σij is the stress component along the direction j and acting on the surface i, x and 

y are the Cartesian coordinates, y1 and y2 denote the bottom and top boundaries of the 

trapezoidal inclusion domain Ω, respectively, d is the length of the pressurized region 

that can be measured at the vertical center of the pressurized region for a trapezoidal 

domain, α and ν are Biot’s coefficient and Poisson’s ratio, respectively. δΩ is the 

modified Kronecker delta, which equals 1 if (𝑥, 𝑦) ∈ 𝛺 or 0 if (𝑥, 𝑦) ∉ 𝛺, and functions 

f1, f2 and f3 are  
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With these induced stress components in x-y plane, one can obtain the normal and 

shear stress components on the fault plane by applying the coordinate transformation 

formula (Equations (4.2) and (4.3)). Note that the induced shear stress should be added 

to the component of initial shear stress that is perpendicular to the fault strike 

(Equation (4.6)), i.e., τ2 in Figure 4.1. 

4.2.5 Coulomb failure stress and slipping fault patch size 

Once the normal and shear stress components on the fault plane are obtained, we adopt 

the Coulomb Failure Stress (CFS) (King, 1994) and Coulomb Failure Stress Change 

(∆𝐶𝐹𝑆) to evaluate fault stability and its change 

  f ' '0

st n nCFS f     , (4.17) 

 
f 0 '

st nCFS f      , (4.18) 

where fst is static friction coefficient, and the normal stress with a superscript ’ means 

the effective normal stress including Biot’s effect, i.e., 𝜎𝑛
′0 = 𝜎𝑛

0 − 𝛼𝑝0  and 

𝜎𝑛
′ = 𝜎𝑛 − 𝛼∆𝑝FP, where ∆𝑝FP is the overpressure on the fault plane. 

In further, we apply the maximum slipping fault patch size (Chapter 2, Wu et al., 2021a) 

to assess the induced seismicity potential based on the final CFS distribution along the 

fault plane 

 max max( ) / siniS  , (4.19) 

where 𝑙𝑖 is a continuous interval in coordinate y with CFS > 0.  

4.2.6 Moment magnitude and Ohnaka’s rupture nucleation model 

The moment magnitude (Mw) is the best measure of earthquake size for moderate to 

large earthquakes, which is defined based on the seismic moment (M0 in N·m) as 

(Kanamori 1977; Hanks and Kanamori 1979) 

 w 0

2
lg 6.07

3
M M  . (4.20) 

The seismic moment can be evaluated on the basis of Ohnaka’s rupture nucleation 

model (Ohnaka, 2000) to link to the quasi-static simulations. Ohnaka’s model is a 

theoretical scaling relation between the seismic moment and the critical size (2Lc) of 

the nucleation zone  

 
3

0 NL c(2 )M k L , (4.21) 
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where kNL is the scaling parameter. We assume kNL = 10
9
, which is a typical and 

theoretical value with a few assumptions and laboratory-based observations, which 

also match well with the seismological data (Ohnaka, 2000, 2013). The maximum 

slipping fault patch size (Equation (4.19)) can be regarded as an approximate estimate 

of the critical size of the nucleation zone since both them are defined under the 

quasi-static and shear frictional equilibrium conditions. 

4.2.7 Monte Carlo simulation procedure 

The initial state of the fault evaluated with the random value of the stochastic variables 

could range from very stable (a relatively small negative value of CFS
0
) to unstable 

(CFS
0
 > 0) state during Monte Carlo simulations. An initially very stable fault will not 

slip, while an initially unstable fault is already in failure, both two types of extreme 

cases are unrealistic for Pohang EGS site and should be discarded. Thus, we redraw the 

samples when the value of CFS
0
 falls out a reasonable range. To ensure the reliability 

of the Monte Carlo simulations, we adopt the following procedure for each simulation: 

(1) Do one realization: generate the random value for all the stochastic variables 

according to the adopted distribution and then check if CFS
0
 falls in a reasonable range: 

if so, evaluate the poroelastic stress, final CFS, and the maximum slipping fault patch 

size Smax (Equation (4.19)) in order; if not so, discard this sample and redraw it again. 

(2) Compute the mean and the standard deviation of Smax, and plot them against the 

number of realizations. One can finish the simulation once the plot reaches a stationary 

state as it is not necessary to do more realizations. Otherwise, repeat the steps (1) and 

(2) to do another realization. 

(3) Check if all the stochastic variables still follow the adopted distribution: if so, end 

the simulation procedure and the result is available; if not so, which means the adopted 

distribution is not available for the current problem, use another distribution for the 

stochastic variables that did not follow the previous distribution and then repeat steps 

(1) to (3) to do another simulation. 

The applied convergence criterion in step (2) is that the relative error of both the mean 

and the standard derivation of Smax is less than 2×10
-5

 (0.2%) in this work. 

4.2.8 Potential slip patterns and simulation strategy 

The potential estimates of in-situ stress are either a reverse or a strike-slip stress 

faulting regime (Table 4.2). Transforming the 3D principle stress to the fault plane 

(Section 4.2.2) shows that the shear stress component on the likely fault plane aligns 

neither with the dip direction nor with the strike direction, but forms an angle with 

each of the directions regardless of the stress regimes (Figure 4.1A). An oblique slip 

occurs in such situation, with a displacement vector directed upward and to one side of 

the fault (Figure 4.1B). The primary slip component of this oblique slip is a reverse slip 
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for the reverse stress regime and is a strike slip for the strike-slip stress regime, just 

corresponding to the two type estimates of the fault: the dip-slip fault (FP1, FP3 and 

FP5) and the strike-slip fault (FP7 and FP8). Thus,  we propose two oblique-slip 

patterns to analyze the problem of induced seismicity in Pohang: a 

reverse-slip-dominated pattern with a strike-slip component (RS-S pattern), which 

involves a reverse fault (e.g., FP1, FP3 or FP5) being in a reverse stress faulting 

regime (e.g., IS1); and a strike-slip-dominated pattern with a reverse component (SS-R 

pattern), which considers a strike-slip fault (e.g., FP7 or FP8) being in a strike-slip 

stress faulting regime (e.g., IS2). We further take the mean value of fault geometry of 

FP1, FP3 and FP5 as the base fault plane of RS-S pattern, and of FP7 and FP8 as the 

base fault plane of SS-R pattern, i.e., the geometry of the base fault plane is 

214.5/50.5in the RS-S pattern and 223/70.5in the SS-R pattern. 

Before performing the deterministic and probabilistic analyses for the purposes of this 

work, we first make an attempt to constraint the plausible range of the in-situ stress. 

We assess stability of the different characteristics of the fault, based on the linear 

Mohr-Coulomb criterion, for each of the proposed in-situ stress states (Table 4.2). We 

adopt the laboratory test value (0.5, Kwon et al., 2019) for the static friction coefficient 

and a value of 0.79 for Biot’s coefficient (Chang et al., 2020; Chang and Yoon, 2021) 

as the reference value of our stability analysis. We follow the stress transformation 

formula shown in Section 4.2.2 to transform the 3D principal stress to the 2D fault 

plane. We further analyze the effect of in-situ stress on the fault geometry given that 

the natural faults arose in the subsurface present different geometrical properties in 

different stress faulting regimes. We show the results by Mohr circle diagrams (Figure 

4.2), which suggest that the estimates IS1 and IS2 are the two most likely in-situ stress 

states (Section 4.3.1). 

We do a deterministic analysis for the base fault plane of the two slip patterns in the 

second step. We apply Theis’s solution to evaluate the spatiotemporal pore pressure 

evolution during and after the hydraulic stimulations in PX-2 (Section 4.2.3). We 

simplify the three hydraulic stimulations in PX-2 as five continuous injection periods 

(Table 4.3), i.e., a typical stepwise injection with five cycles, where the mean injection 

rates are calculated from the public recorded data (Yeo et al., 2020). We take the 

recorded temporal injection pressure (Yeo et al., 2020) as the in-put data and then try to 

match the simulated pore pressure changes at the bottom hole with the in-put data by 

varying the thickness of the aquifer. Thus, the radial distribution of pore pressure 

changes at the instant of the mainshock is the pressurized region that is related to the 

mainshock. With the size and mean pore pressure change of this pressurized region as 

well as the overpressure on the fault, we compute the poromechanical stress along the 

fault (Section 4.2.4, Wu et al., 2021a), and evaluate the fault stability (Section 4.2.5). 

Table 4.4 includes all the involved hydraulic and mechanical parameters. 
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Table 4.3: Injection information of the five injection periods in well PX-2 (Yeo et al., 2020) 

Number 

of cycle 
Start date End date Duration (Day) 

Mean injection 

rate (L/s) 
Injection/Shut-in 

1 
29/01/2016 05/02/2016 8 1.87 Injection 

06/02/2016  10/02/2016 5 0 Shut-in 

2 
11/02/2016 18/02/2016 8 1.12 Injection 

19/02/2016 15/03/2017 391 0 Shut-in 

3 
16/03/2017 18/03/2017 3 0.15 Injection 

19/03/2017 24/03/2017 6 0 Shut-in 

4 
25/03/2017 14/04/2017 21 1.7 Injection 

15/04/2017 29/08/2017 137 0 Shut-in 

5 
30/08/2017 18/09/2017 20 1.59 Injection 

19/09/2017 15/11/2017 58 0 Shut-in 

 

Table 4.4: Hydraulic and mechanical parameters of the reservoir in the Pohang EGS site 

Parameter Physical meaning Value Unit References 

𝜙 Rock porosity 0.05 - Kwon et al. (2019) 

k Intrinsic permeability 5 μD 

Park et al. (2017); 

Hofmann et al. (2019); 

Yeo et al. (2020) 

φ Fluid viscosity 0.2 mPa·s 
Hofmann et al. (2019); 

Yeo et al. (2020) 

ct Total compressibility 9E-10 Pa
-1

 
Hofmann et al. (2019); 

Yeo et al. (2020) 

rw Radius of well PX-2 0.108 m Hofmann et al. (2019) 

𝜇 Shear modulus 13.8 GPa 
Kwon et al. (2019) 

𝜈 Poisson’s ratio 0.21 - 

p
0
 Initial pore pressure 42 MPa 

Korean Government 

Commission (2019) 

𝛼 Biot’s coefficient 0.79 - 
Chang et al. (2020); 

Chang & Yoon (2021) 

𝑓𝑠𝑡 Static friction coefficient 0.5 - Kwon et al. (2019) 

 

We then perform a parametric space analysis to analyze the effect of in-situ stress state 

(σH, σh, and azimuth), fault geometry (θ) and rock properties (α, fst) on induced 

seismicity (fault slip) in the third step as these six parameters are the main uncertain 

properties in Pohang. We do not consider the vertical stress because it already has a 

deterministic and credible value (Table 4.2). We disregard the fault strike because that 

the critically-stressed orientation of a fault is controlled by the angle azimuth – (strike 

– 180) (Figure 4.2, Section 4.2.2), and thus analyzing one of them is enough. For 

these six parameters, we vary their value 10% above and below relative to the one of 

the base fault plane in each of the two slip patterns.  
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Last, we carry out the Monte Carlo simulations (Section 4.2.7) to address the 

uncertainty problem of geological setting and to statistically assess the probability of 

inducing a specific magnitude of an earthquake for the two slip patterns. We apply the 

pressurized regions evaluated in Section 4.3.2. We take the sex geological properties 

that are included in the third step as the stochastic variables. We assume all the 

stochastic variables follow a normal distribution, the related characteristic values are 

shown in Table 4.5. In particular, the uncertainty of the in-situ stress is 5% above and 

below each estimate. The dip angle ranges from the one of FP5 to FP3 for the RS-S 

pattern, and ranges from the one of FP8 to FP7 for the SS-R pattern. The upper limit of 

Biot’s coefficient is 0.8, as adopted in Chang et al. (2020). Existing experiments on 

granite find that Biot’s coefficient decreases with increasing the Terzaghi effective 

stress (Makhnenko and Labuz, 2016), and several cases that are close to 0.5 have been 

reported (Bernabe, 1986; Detournay and Cheng, 1993). Thus, we adopt 0.5 as its lower 

limit given the high in-situ stress. We take the test value of the static friction coefficient 

as its mean value and 10% above and below the mean value for its uncertainty. Both 

slip patterns have the same limits for the variables α and fst. With the minimum and 

maximum of these variables, we solve the mean value as (maximum + minimum)/2 

and derive the standard derivation (STD) as (maximum – mean)/3 at 99.74% of 

confidence. 

After the Monte Carlo simulations, we calculate the earthquake magnitude (Section 

4.2.6) based on the value of Smax for all the realizations and then statistically analyze 

the probability distribution of the moment magnitude Mw. 

 

Table 4.5: Stochastic variables and their characteristic values for the reverse-slip-dominated 

pattern with a strike-slip component (RS-S pattern) and for the strike-slip-dominated pattern 

with a reverse component (SS-R pattern). Both slip patterns adopt the same values for Biot’s 

coefficient and static friction coefficient. The different values for the SS-R pattern are filled in 

the parentheses. 

Parameter Physical meaning Minimum Maximum Mean STD Unit 

σH 
The maximum horizontal 

principal stress  

230.85 

(192.85) 

255.15 

(213.15) 
243 (203) 

4.05 

(3.4) 
MPa 

σh 
The minimum horizontal 

principal stress  
114 (88.35) 126 (97.65) 120 (93) 

2.0 

(1.55) 
MPa 

Azimuth Azimuth of 𝜎𝐻 
N73.15 

(N70.3) 

N80.85 

(N77.7) 
N77 (N74) 

1.28 

(1.23) 
 

𝜃 Fault dip 43 (66) 58 (75) 50.5 (70.5) 2.5 (1.5)  

𝛼 Biot’s coefficient 0.5 0.8 0.65 0.05 - 

fst Static friction coefficient 0.45 0.55 0.5 0.017 - 
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4.3 Results 

4.3.1 Likelihood of existing in-situ stress estimates and its effect on fault 

geometry 

Stability analysis of preexisting faults at the initial state can quantify the likelihood of 

in-situ stress estimates. Such analysis for each of the potential in-situ stress states 

(Table 4.2) for the Pohang EGS site shows that all the likely estimates of fault plane 

are much more critically oriented in the stress states IS1 and IS2 than in IS3, IS4 and 

IS5 with the reference value of 0.5 for the static friction coefficient fst, and 0.79 for 

Biot’s coefficient α, but are much less critical than in IS6 (Figures 4.2A to 4.2F). fst  

0.78 is necessary for initial stability in IS6 under the reference value of α, and even α = 

0 cannot reach initial stability under the reference value of fst (Figure 4.2F), which 

implies that IS6 is a highly unlikely stress state. Assuming that the crust is generally in 

a state of incipient frictional failure (Townend and Zoback, 2000; Zoback, 2010; 

Zoback and Gorelick, 2012), especially stiff crystalline rock (Vilarrasa and Carrera, 

2015), i.e., in a critically stressed state, the initial stress state should be close to failure 

conditions for the most critically-oriented plane. However, even for α = 1, IS3, IS4 and 

IS5 are not critically stressed for the reference value of fst. Although fst ~0.4 (i.e., 

decreasing ~20% the reference value) could lead the crust to be critically stressed with 

the reference value of α, only one likely estimate (FP5) of fault plane is critically 

oriented in IS3 and IS5, and no one is critically oriented in IS4 (Figures 4.2C to 4.2E). 

These two inconsistencies make IS3, IS4 and IS5 not feasible estimates of the stress 

state. For the cases of IS1 and IS2, while some of the likely fault planes exceed the 

critical state under the reference values, varying either ~10% above the reference value 

of fst or ~30% below the reference value of α can make the crust and all the likely 

estimates of fault plane being both initially stable and critically (or near critically) 

stressed (Figures 4.2A to 4.2B). We conclude from the previous analyses that the IS1 

and IS2 are the two most likely in-situ stress states and, thus, will be applied in the 

following risk assessment.  

Faulting regime also significantly affects the geometrical properties of faults. Faults 

are prone to slip with a low dip angle in a reverse faulting regime (e.g., IS1), and with 

a high dip angle in a strike-slip faulting regime (e.g., IS2, Figures 4.2G and 4.2H, 

Jaeger et al., 2007; Zoback, 2010; Vilarrasa et al., 2013). This theoretical results 

explain why the likely estimates FP1, FP3 and FP5 are more critical than FP7 and FP8 

in the stress state IS1 (Figure 4.2A), while it becomes the opposite in IS2 (Figure 4.2B). 

The inclined fault with a low dip angle (≤(π/2-atan fst)/2 = 32 for fst = 0.5) in the 

reverse regime is in the most critical orientation when the fault strike is perpendicular 

to the maximum horizontal principal stress direction (i.e., azimuth), and the most 

critical fault dip decreases with increasing fst (Figure 4.2G). Vertical dipping faults are 

the most critical ones in a strike-slip regime, with the most critically-oriented direction 

when the angle azimuth − (strike − 180) equals (π/2-atan fst)/2, i.e., 32 for fst = 0.5. 

The angle increases not only with decreasing fst, but also with decreasing the fault dip 

(Figure 4.2H). Comparing Figures 4.2G and 4.2H shows that the most critical dipping 
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angle of the most critically-oriented reverse faults and the most critical orientation of 

the vertical dipping strike-slip faults present the same correlation with the static 

friction coefficient, which is (π/2-atan fst)/2. 

 

Figure 4.2: Mohr-Coulomb diagram calculated with the in-situ stress states (A) IS1, (B) IS2, 

(C) IS3, (D) IS4, (E) IS5, (F) IS6, (G) the reverse faulting regime (IS1) and (H) the strike-slip 

faulting regime (IS2). The black solid and dashed lines are the Mohr-Coulomb failure 

envelopes under different values, as shown in the legends, of the static friction coefficient fst. 

The blue solid and dashed half circles represent the Mohr circles with different values of Biot’s 

coefficientα. The solid lines and half circles represent the cases with the reference value 

(Section 4.2.8) of fst and α. The other values of both fst and α are derived by making the crust 

just being in the critical stressed state with changing either fst or α for each of the in-situ stress 

states, in which changing α may not form a critical state and thus, the case with its maximum 

or minimum is presented. The colored dots with numbers denote the five potential fault planes 

(Section 4.2.1), which are plotted based on the solved shear and effective normal stress 

components (Section 4.2.4) and colored based on the initial Coulomb failure stress (Section 

4.2.5). The curves with seven size-scaled points in (G) and (H) are the trajectory of three 

planes with the dip angle of 30º, 45º and 60º varying the orientation from perpendicular to 

parallel with respect to the maximum horizontal stress direction (azimuth). The size of points is 

plotted based on the angle azimuth – (strike – 180), as shown in (G).  
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4.3.2 Fault stability at the instant of the mainshock 

With the adopted injection information (Table 4.3) and hydraulic parameters (Table 

4.4), an aquifer thickness of ∼750 m makes a relatively well estimate of the temporal 

pore pressure evolution at the bottom hole compared with the recorded data (Figure 

4.3). The radial distributions of pore pressure changes at the instant of the mainshock 

for both RS-S and SS-R patterns follow an identical spatial trace (Figure 4.4) because 

the blocking effect of the transversely low permeability of the fault has been cancelled 

out by its longitudinally high permeability, as assumed (Section 4.2.3). Although the 

pressurized region evaluated with Theis’s solution extends infinite in radial direction, 

we propose a new estimate, i.e., the one that corresponds to the situation that the mean 

pore pressure change reaches a stationary point, for the radius of influence (Rmax). As a 

consequence, Rmax is ∼586 m in this scenario and the pore pressure change at such 

location is ∼0.01 MPa. Summing LD and Rmax gives the length of the pressurized 

region, which is ∼980 m for the RS-S pattern and ∼755 m for the SS-R pattern. It 

means a pressurized region that expands isotropically from source point, agreeing with 

existing numerical simulations (KGC, 2019; Yeo et al., 2020; Wassing et al., 2021). 

The related mean pore pressure change (∆𝑝m) of the pressurized region is 1.85 MPa for 

the former and 1.97 MPa for the latter (Figure 4.4). The pore pressure change on the 

fault (∆𝑝FP) for the RS-S and SS-R patterns are 0.06 MPa and 0.7 MPa, respectively, 

being consistent with the numerical solutions of Ellsworth et al. (2019), Lim et al. 

(2020), Yeo et al. (2020) and Wassing et al. (2021). The pressure changes near the 

bottom hole are also similar to the ones of Wassing et al. (2021). Thus, the hydraulic 

results (Figure 4.4) could be reasonable and available for the following mechanical 

assessment. 

 

Figure 4.3: Comparison between the simulated temporal pore pressure evolution at the bottom 

hole of PX-2 and the recorded injection pressure from the beginning of the first hydraulic 

stimulation to the instance of the mainshock. The recorded data is referred from Yeo et al. 

(2020) 
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Figure 4.4: Spatial distributions of pore pressure changes at the instant of the 

mainshock for both RS-S and SS-R patterns. The mean pore pressure change of the 

pressurized region as a function of the radius of influence is also included. The 

distance between the fault and the injection well PX-2 is 394 m for the RS-S pattern 

and 169 m for the SS-R pattern as the fault dip is 50.5in the RS-S pattern and 70.5 

in the  SS-R pattern. 

We then analytically evaluate the poroelastic stress (Section 4.2.4, Figure 4.5) along 

the base fault for both slip patterns with the mean overpressure of the pressurized 

region, and assess the fault stability change (Section 4.2.5, Figure 4.6) with the 

overpressure on the fault. Two smaller values of Biot’s coefficient α than its reference 

value are adopted here to reach initial stability. Values of the initial Coulomb Failure 

Stress (CFS
0
) show that the fault of the SS-R pattern is closer to instability than the one 

of the RS-S pattern at the initial state regardless of α. The Coulomb Failure Stress 

Change (∆CFS) along the fault plane shows a similar destabilized fault patch for the 

two base faults: the patch is centered at the bottom cross-point (P2 in Figure 4.1C) 

between the fault and the pressurized region, and extends along both below and above 

directions. The center of this destabilized fault patch, i.e., the most critical point close 

to instability, locates at a depth of 4.65 km, being consistent with the hypocenter of the 

mainshock (Kim et al., 2018). We compute a larger increase of ∆CFS toward instability 

for the fault of the RS-S pattern than the one of the SS-R pattern, which means that the 

RS-S pattern is more sensitive to the pore pressure perturbation than the SS-R pattern 

despite the overpressure on the fault being one order of magnitude larger in the latter 

than in the former. The difference is a consequence of fault dip, since the induced shear 

stress on the fault plane decreases and the corresponding normal stress increases 

proportionally to the dip angle (Figure 4.5).  

∆CFS is almost the same in Figures 4.6A and 4.6B because the difference of the two 

adopted values of α is only ∼3%, whereas the differences in CFS
0
 have reached 24% 

and 88% for the RS-S and SS-R patterns, respectively. The dramatic distinction 

between the initial pore pressure and the overpressure results in the different effect of α 
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on CFS
0
 and ∆CFS. Adding CFS

0
 to ∆CFS obtains the final state of the fault at the 

instant of the mainshock. For the scenario of α = 0.65 (Figure 4.6A), the fault of both 

slip patterns is stable because the initial state is far away from failure conditions. For 

the scenario of α = 0.67 (Figure 4.6B), the fault of the SS-R pattern is in failure, while 

the one of the RS-S pattern remains stable. We can further calculate the slipping fault 

patch size and the magnitude of corresponding earthquake, implying that the applied 

methods and workflow is valid to explain the Pohang earthquake. 

 

Figure 4.5: Induced (A) shear and (B) normal stress components along the base fault plane for 

both RF-S and SS-R patterns. The fault dip for each pattern is included in the legend, which is 

shown in (B). The depth of injection center is indicated by the horizontal gray line as a 

background. 
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Figure 4.6: Coulomb Failure Stress Change (∆CFS) of the base fault for both the RS-S and 

SS-R patterns with (A) α = 0.65 and (B) α = 0.67. The initial CFS (CFS0) for each pattern is 

included in the legend. Fault dip is 50.5in the RS-S pattern and 70.5 in the SS-R pattern. 

The depth of injection center is indicated by the horizontal gray line as a background. 

4.3.3 Effect of geological properties on induced seismicity potential 

We adopt the size of the pressurized region evaluated in Section 4.3.2 but increase the 

pore pressure changes to fivefold the original ones, aiming at clearly displaying the 

global effect of these parameters on fault slip. We take 0.65 as the base value of α for 

its parametric space analysis with considering the results shown in Figure 4.6. The base 

scenario, that is applying the base value for all the uncertain geological properties, 

leads to a fault patch centered at the cross-point P2 being unstable for both patterns. 

Thus, increasing or decreasing each of the uncertain parameters indicates either an 

increase or a decrease of the slipping fault patch size. For the RS-S pattern, CFS
0
 and 

the maximum slipping fault patch size (Smax) are proportional to α, the maximum 

horizontal principal stress (σH), are inversely proportional to fst, the minimum 

horizontal principal stress (σh) and the fault dip θ, and increase firstly and then 

decrease with increasing the azimuth of σH  (Figures 4.7A and 4.7B). The steeper the 

line, the larger the effect, which means that the relative importance of the effect of 

these parameters on CFS
0
 and Smax is σH > fst >σh > α > azimuth/θ > θ/azimuth. The 

relative importance of the azimuth and θ depends on the relative state of fault dipping 

and fault orientation (Figures 4.2G and 4.2H).  

All the parameters present a similar effect on CFS
0
 and Smax in the SS-R pattern except 
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for the fault dip, which is opposite (Figures 4.7C and 4.7D). Such difference is a 

consequence of the different most critical dipping angle between the reverse and the 

strike-slip faults (Figures 4.2G and 4.2H). Similarly, the relative importance of the 

effect of these parameters on CFS
0
 and Smax in the SS-R pattern is σh > σH > fst > α > 

azimuth/θ > θ/azimuth. σh is the intermediate principal stress in the RS-S pattern, 

while it is the least principal stress in the SS-R pattern, which results in the different 

relative importance between σh and σH because the intermediate principal stress 

generally has a smaller effect on fault stability compared with the greatest and the least 

principal stress components (Jaeger et al., 2007; Zoback, 2010).  

 

Figure 4.7: (A) the initial CFS (CFS0) and (B) the maximum slipping fault patch size (Smax) of 

the base fault in the RS-S pattern, (C) CFS0 and (D) Smax of the base fault in the SS-R pattern, 

as a function of the relative change for the base value of the in-situ stress state (σH, σh, 

azimuth), fault dip (θ) and rock properties (α, fst). The base value of α is 0.65 in this simulation. 

The intersecting point of all the curves in each of the slip patterns corresponds to the result of 

the base fault with the given base value for all the geological properties. 

A typical Smax curve in Figure 4.7B and 7D, like the one of σH can be divided into two 
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segments based on its changing rate (slow or sharp), which correspond to the initiation 

stage of fault slip around the cross-point P2 and its subsequent asymptotic failure stage, 

respectively (Figure 4.6, Wu et al., 2021a). Comparison between the RS-S and SS-R 

patterns also shows that a more critical fault at the initial state is more sensitive with 

changing the geological properties than a less critical fault, because the asymptotic 

failure is easier to be induced in the former than in the latter. In conclusion, the 

magnitude of in-situ stress and the static friction coefficient are playing a more 

significant role in inducing a seismic event than Biot’s coefficient and the fault 

geometry.  

4.3.4 Probability distribution considering the uncertainty of geological 

properties 

We now analyze the final state of the fault under various geological settings (Section 

4.2.8) for both slip patterns. We restrict CFS
0
 in the range of -0.61 MPa to -0.05 MPa 

for the RS-S pattern and of -0.27 MPa to -0.05 MPa for the SS-R pattern during the 

Monte Carlo simulations (Figure 4.8) to limit the magnitude of induced seismicity in a 

range that agrees with the recorded seismic events (Kim et al., 2018; Yeo et al., 2020) 

in Pohang. In particular, the lower limits of CFS
0
 corresponds to the earthquake size of 

Mw-1, and the upper limits restricts the earthquake size is less than Mw6.0 (Figure 4.11). 

The Monte Carlo simulations converge after ∼25000 realizations (Figure 4.9). For 

each of the simulations, the randomly generated values of all the stochastic variables 

still follow the normal distribution (Figure 4.10) although we redraw the samples when 

the value of CFS
0
 falls out the restricted range, confirming the reliability of the 

simulated results.  

 

Figure 4.8: (A) The maximum slipping fault patch size (Smax) as a function of the initial CFS 

(CFS0) and (B) probability density function (PDF) of CFS0 for both RF-S and SS-R patterns 
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Figure 4.9: Mean and standard derivation of Smax against the number of realizations for the 

reverse-slip-dominated pattern with a strike-slip component (RS-S pattern)  

 
Figure 4.10: Probability density function (PDF) of all these stochastic variables after Monte 

Carlo simulation for the reverse-slip-dominated pattern with a strike-slip component (RS-S 

pattern). The thickness of pressurized region is 755 m. 

We then present the probability distribution for the results of Monte Carlo simulations 

(Figure 4.11). In general, the complementary cumulative distribution function (CCDF) 

of the earthquake magnitude for the RS-S pattern is very similar to that for the SS-R 

pattern as we apply different ranges of CFS
0
 to limit the simulated earthquake 

magnitude agree with the recorded events. Some small differences still can be observed. 

Simulated seismicity mainly falls in the center range of 2.0 < Mw < 5.5 in the SS-R 

pattern, while the distribution of seismicity in the RS-S pattern is more dispersed 
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(Figure 4.11A). As a result, the probability of inducing an earthquake with Mw < 5.0 is 

a little larger in the SS-R pattern than in the RS-S pattern, while it becomes opposite 

for inducing a Mw > 5.5 earthquake (Figure 4.11B). For example, the probability of 

inducing a Mw > 3.0 earthquake and a Mw > 5.5 earthquake is ∼49% and ∼6.4% for 

the RS-S pattern, respectively, and ∼59% and ∼4.7% for the SS-R pattern, respectively. 

The probability density for Mw < 2.0 is always lager in the RS-S pattern than in the 

SS-R pattern. The majority of recorded seismicity in Pohang is smaller than Mw2.0 

(Kim et al., 2018; Yeo et al., 2020), which means that the RS-S pattern may be more 

consistent with the magnitude-frequency relationship of earthquakes occurred in 

Pohang.  

 

Figure 4.11: (A) Probability density function (PDF) and (B) complementary cumulative 

distribution function (CCDF) of the moment magnitude (Mw) of induced seismicity for both 

RS-S and SS-R patterns  

Once the poromechanical perturbation cause the fault to slide, the quasi-static fault slip 

develops with different characteristics under different rock properties, initial stress, and 

loading conditions. The slip regime map (Azad et al., 2017; Ciardo and Lecampion, 

2019; Garagash and Germanovich, 2012) provides a useful approach to qualitatively 

judge whether the slip is stable or not and how the slip evolves in a certain condition. 

For each of the Monte Carlo simulations, we have a great number of realizations and 

each realization represents a different initial condition. Thus, we put all of these 

realizations into the slip regime map with respect to the normalized understress 

(𝜏𝑝 − 𝜏0) 𝜏𝑝⁄  and effective overpressure 𝛼∆𝑝 𝜎𝑛
′0⁄  to see which initial conditions are 

in favor of the fault slip, where  𝜏𝑝 = 𝑓𝑠𝑡𝜎𝑛
′0 denotes the peak strength of the fault, 

and Biot’s coefficient is included relative to the initial map shown in Garagash and 

Germanovich (2012). 

All of these realizations for both slip patterns locate at the left-bottom corner of the slip 

regime map (Figure 4.12). For the RS-S pattern, a part of realizations belong to the 

limiting case of critically stressed fault (Garagash and Germanovich, 2012), which lead 
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to damaging earthquakes; another part of realizations belong to the limiting case of 

marginally pressurized fault (Garagash and Germanovich, 2012), which result in 

microseismicity (Figure 4.12A). In contrast, for the SS-R pattern, there are a part of 

realizations that are belong to the limiting case of critically stressed fault, while no 

realization corresponds to the limiting case of marginally pressurized fault (Figure 

4.12B). The distribution of realizations in the slip regime map colored by CFS
0
 also 

presents the similar characteristics to that of the previous one colored by Mw (Figure 

4.13). Such consistency between the two distributions indicates a clear threshold of 

CFS
0
 to judge if the fault is critically stressed under initial conditions. This threshold is 

about -0.1 MPa for the Pohang EGS site. For such critically stressed fault with a value 

of CFS
0
 > -0.1, a small pore pressure perturbation can induce a damaging earthquake.  

In addition, Figure 4.12 also shows that the earthquake magnitude associated with a 

critically stressed fault is mainly controlled by the normalized understress, while it is 

independent of the normalized effective overpressure. This implies that site selection is 

more important than injection management: we should devote more efforts to find 

suitable sites without critically stressed faults to deploy geo-energy projects. 

 

Figure 4.12: Distribution of all the realizations of the Monte Carlo simulation in the slip 

regime map with respect to the normalized understress and effective overpressure with fr/fst = 

0.6 for (A) the RS-S pattern and (B) the SS-R pattern. One point means one realization, which 

is located according to its normalized understress and effective overpressure, and colored 

according to its moment magnitude (Mw). fr is the residual friction coefficient. The normalized 

understress and effective overpressure of the zoom in part range from 0 to 0.02 and from 0.006 

to 0.024, respectively. 
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Figure 4.13: Distribution of all the realizations of the Monte Carlo simulation in the slip 

regime map with respect to the normalized understress and effective overpressure with fr/fst = 

0.6 for (A) the RF-S pattern and (B) the SS-R pattern. One point means one realization, which 

is located according to its normalized understress and effective overpressure, and colored 

according to its initial CFS (CFS0). fr is the residual friction coefficient. The normalized 

understress and effective overpressure of the zoom in part range from 0 to 0.02 and from 0.006 

to 0.024, respectively. 

4.4 Discussion 

The qualitative fault stability analysis excludes the unlikely and low likely in-situ 

stress states for the Pohang EGS site, which finds that the most two likely stress states 

are IS1 and IS2 (Figure 4.2). These two stress states just correspond to the 

characteristics of the potential estimates of fault plane. Thus, we propose two 

oblique-slip patterns to simulate the processes and mechanisms of the induced seismic 

events. The simulated results show us three evidences to conclude that the RS-S 

pattern is closer to the actual scenario than the SS-R pattern: (1) the RS-S pattern is 

more prone to slip as a result of poromechanical perturbation than the SS-R pattern 

despite both the fault being more stable at the initial state and the overpressure on the 

fault being one order of magnitude larger in the latter than in the former (Figure 4.6); 

(2) the relatively higher probability density for Mw < 2.0 in the RS-S pattern than in 

the SS-R pattern (Figure 4.11) indicates that the RS-S pattern may matches better with 

the fact that the majority of recorded seismicity is smaller than Mw2.0 (Ellsworth et al., 

2019; Kim et al., 2018; Yeo et al., 2020); and (3) the a little larger of probability for 

inducing a Mw > 5.5 earthquake in the RS-S pattern than in the SS-R pattern (Figure 

4.11). In addition, this conclusion is consistent with the indications obtained from the 
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ground surface deformation (Choi et al., 2019) and the focal mechanism solutions of 

the aftershocks (Kim et al; 2018; Kim et al., 2020). Thus, the most likely triggering 

mechanism for the Pohang earthquake is the reactivation (with an oblique slip) of a 

critically stressed reverse fault with a relatively low dip angle due to the pore pressure 

buildup in the injection formation and its subsequent poromechanical response. It 

means that the most likely estimate of in-situ stress and fault plane are IS1 and FP5, 

respectively.  

During Monte Carlo simulations, restricting CFS
0
 of all the realizations be lower than 

-0.05 MPa limits the earthquake magnitude be less than Mw6.0 for both slip patterns 

(Figures 4.8 and 4.11). It means that the initial state of the fault linked to the largest 

earthquake is not so critical as assumed in the existing studies (Chang et al., 2020; 

Ellsworth et al., 2019; KGC, 2019; Lim et al., 2020; Yeo et al., 2020; Wassing et al., 

2021), otherwise, earthquakes with Mw > 7.0 may have been triggered in Pohang. Our 

stochastic analysis shows that the initial state of the fault may range from -0.61 MPa to 

-0.05 Mpa (Figure 4.8), if adopting CFS
0
 as a judging index. For such range of CFS

0
, 

the fault could be subcritically to critically stressed. We find a threshold to judge if the 

fault is critically stressed by analyzing the distribution characteristics of all the 

realizations in the slip regime map (Garagash and Germanovich, 2012). This threshold 

is site dependent and is -0.1 MPa (Figures 4.12 and 4.13) for the Pohang EGS site. 

The two slip patterns proposed in this work have a small difference in explaining the 

seismicity. For the RS-S pattern, the main factor that induces microseismicity is the 

poroelastic effect caused by pore pressure diffusion, while both the overpressure and 

the poroelastic stress have a similar effect for the SS-R pattern (Figures 4.5, 4.6, 4.11 

and 4.13). In contrast, the initially critical state of the stressed fault is the primary 

factor that induces a damaging earthquake for both slip patterns, while the external 

stimulation just is a fuse (Figures 4.11 and 4.13). Thus, a small pore pressure 

perturbation can trigger damaging earthquakes when the preexisting faults are critically 

stressed at the initial state. These observations also justify the existing consensus 

(Evans et al., 2012; Juanes et al., 2012; Rutqvist et al., 2016; van der Baan, 2021; 

Vilarrasa and Carrera, 2015) that fluid-induced seismicity in general is limited to 

microseismicity and geo-energy projects are unlikely to directly induce damaging 

earthquakes, which usually belong to the triggered seismicity (McGarr et al., 2002). 

Thus, the Pohang Mw5.5 earthquake is a typical triggered seismicity, explaining why 

all the existing scaling laws fail to link the earthquake magnitude to the total injected 

volume (Galis et al., 2017; McGarr, 2014; Van der Elst et al., 2016; Woo et al., 2019). 

Pressure management (Rutqvist et al., 2007; Bai et al., 2017) and the cyclic soft 

stimulation scheme (Zang et al., 2013, Zang et al., 2019; Hofmann et al., 2019; Ji et al., 

2021) may not be valid for the triggered seismicity linked to a critically stressed fault 

at the initial state. Thus, we should devote more efforts in site characterization at the 

prior stage of geo-energy projects, as also suggested by other related publications 

(Chang et al., 2020; Chang and Yoon, 2021; Vilarrasa et al., 2022) 

We neglect the effect of tensile hydraulic fracturing on the pore pressure and stress 

changes, while such area should be limited in the range of 100 m away from the well 
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PX-2 (Lim et al., 2020; Yoo, 2018; Yoo et al., 2021; Wassing et al., 2021) and thus, 

such effect on the induced seismicity potential also should be limited. We do not 

consider the effect of nucleation process on the slipping fault patch size, and such 

effect can increase the final slipping patch size. However, the normalized understress 

of all the realizations is very small (< 0.012, Figure 4.12), indicating a very short 

nucleation process and a relatively small slip dislocation (Garagash and Germanovich, 

2012). Thus, the contribution of nucleation process on the earthquake magnitude may 

be limited for the Pohang case. We do not include the Coulomb stress transfer as the 

history earthquakes almost have no effect on the induced seismicity in Pohang (Grigoli 

et al., 2018; Ellsworth et al., 2019). It does not matter the credibility of risk assessment 

before fluid injection. As for the mainshock, the foreshocks may have an effect on its 

occurrence, in particular, the Mw3.2 seismic event occurred in April 15, 2017, which 

transferred a Coulomb stress of ∼0.13 MPa to the fault (Yeo et al., 2020). It is not a big 

contribution compared with the poroelastic stress (Figures 4.5 and 4.6) that is 

evaluated in this work. In any way, the probability of ∼6.4% for the mainshock is a 

conservative estimate.  

Analytical solutions provide the opportunity to conveniently perform the parametric 

space analysis, which shows that the magnitude of in-situ stress and the friction 

coefficient are playing a more significant role in inducing a seismic event than Biot’s 

coefficient and the fault geometry (Figure 4.7). We take the former as the preliminary 

variables, and the latter as the secondary variables. With changing the preliminary 

variables, the state of a fault can be dramatically different. An initially non-critical fault 

with the given preliminary variables would not become critical regardless of the 

secondary variables (Figures 4.2 and 4.7). It implies that we can adopt the most critical 

fault geometry (Figures 4.2G and 4.2H) and Biot’s coefficient to do a conservative risk 

assessment for site selection when there is no much available data. 

The Monte Carlo simulations also strongly depend on the closed form solutions. 

Otherwise, it is almost incredible to perform a poromechanical coupled simulation with 

simultaneously considering multiple stochastic variables for a great number of 

realizations (Masoudian et al., 2019; Reyes Canales and Van der Baan, 2021; Zhang et 

al., 2021). We then can statistically evaluate the probability (risk) of inducing a specific 

magnitude of earthquake as well as the other statistical values. Thus, we suggest that 

taking the methodology applied in this work as a routinely option for risk assessment 

during the whole lifetime of geo-energy projects, as required by KGC (2019) and Lee 

et al. (2019) to successfully proceed these projects in future. The projects have to be 

suspended until we can exclude the potential risk, once the evaluating probability of 

inducing a Mw > 3.0 earthquake at any stage reaches a specific threshold. Our work 

will be useful to improve safety of geo-energy applications. 

4.5 Conclusions 

The high uncertainty of geological setting at the Pohang EGS site leads to the debate 

about triggering mechanisms of the Pohang Mw5.5 earthquake. We make a relatively 
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complete workflow that includes geological setting analysis, poromechanical coupled 

process modeling, failure criterion, and earthquake magnitude estimate to simulate the 

triggering processes of the mainshock and to narrow the potential estimates of 

uncertain geological properties for this site. 

We do a comparative analysis for the existing estimates of in-situ stress based on the 

Mohr-Coulomb criterion, finding two likely oblique-slip patterns that can be used to 

analyze the triggering mechanisms: a reverse-slip-dominated pattern with a strike-slip 

component (RS-S pattern) and a strike-slip-dominated pattern with a reverse 

component (SS-R pattern). We then perform both deterministic and stochastic 

poromechanical analyses, relevant results present three evidences that support the 

RS-S pattern rather than the SS-R pattern. It implies that the pore pressure buildup in 

the injection formation and the subsequent poromechanical response reactivate the 

critically stressed reverse fault with a low dip angle (relative to the other estimates for 

fault geometry), triggering the mainshock. Our stochastic analysis also reveals a clear 

threshold of the initial CFS to judge if the fault is critically stressed or not. This 

threshold is site dependent and is -0.1 MPa for the Pohang EGS site. 

In addition, results also highlight that (1) the magnitude of in-situ stress and the 

friction coefficient play a more significant role on fault stability and induced seismicity 

potential than Biot’s coefficient and fault geometry; (2) a small overpressure can 

trigger a damaging earthquake when preexisting faults are critically stressed at the 

initial state; and (3) we should devote more efforts to site characterization at the prior 

stage of projects. 
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5 Poroelastic effects on the nucleation process of dynamic 

fault rupture during fluid injection 

5.1 Introduction 

Induced seismicity is a complex and limiting factor in many geo-energy applications 

(Foulger et al., 2018; Kivi et al., 2023): as we speak, our ability to anticipate damaging 

events is limited to non-existent. Understanding the triggering processes and 

mechanisms, which form the basis of reliable forecasting tools for managing induced 

earthquakes, is one of the most critical challenges in the geo-energy community 

(Ellsworth et al., 2016; Keranen and Weingarten, 2018; Rathnaweera et al., 2020; 

Schultz et al., 2020; Ge and Saar, 2022). Injecting fluid into geological formations is 

usually carried out in geo-energy harvesting, with the potential to cause 

thermo-hydro-mechanical perturbations in the subsurface (De Simone et al., 2017; 

Vilarrasa et al., 2019; Rathnaweera et al., 2020). Such perturbations may lead 

pre-existing faults to slip (reactivation), and, if the nucleation process grows further 

with an increase in slip rate, the slip may transit to a dynamic rupture (wave 

propagation) and manifest as a (micro-)seismic shock (Ripperger et al., 2007; Galis et 

al., 2017; Buijze et al., 2019).  

The potential mechanisms leading to fault reactivation during and after fluid injection 

have been extensively studied under quasi-static conditions, while the dynamic 

processes have often been overlooked (Healy et al., 1968; Simpson et al., 1988; 

Langenbruch and Zoback, 2016; Rohmer et al., 2016; Kang et al., 2019; Rathnaweera 

et al., 2020, and references therein). These analyses mainly focus on the assessment of 

fault stability usually evaluated by means of Coulomb Failure Stress (CFS; King et al., 

1994), slip tendency (Morris et al., 1996; Lisle and Srivastava, 2004), mobilized 

friction coefficient (Kokusho et al., 2009) or angle (Vilarrasa et al., 2016), and shear 

capacity utilization (Buijze et al., 2017), all of which are minor variations of the 

Mohr-Coulomb failure criterion. Results have highlighted the conditions that govern 

fault stability (Fan et al., 2016; Vilarrasa et al., 2016; Buijze et al., 2017; Jansen et al., 

2019), its triggering mechanisms (Chang and Segall, 2016; Grigoli et al., 2018; Chang 

et al., 2020; Vilarrasa et al., 2021), and the size of the unstable fault patch (Chang et al., 

2020; Wu et al., 2021a). The quasi-static Mohr-Coulomb based methods fail to 

describe crack growth as they do not consider the slip-weakening process (Rice and 

Ruina, 1983; Rice et al., 2005). As a consequence, the unstable fault patch size 

evaluated by these methods can only be regarded as a lower limit of the true value, 

failing to provide indications about the final size of the induced earthquakes.  

In contrast, studies including dynamic processes have shed light on several dominating 

mechanisms that control dynamic fault ruptures, such as (1) the nucleation and arrest 

of dynamic rupture (Garagash and Germanovich, 2012; Azad et al., 2017), (2) aseismic 
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slip (Bhattacharya and Viesca, 2019; Eyre et al., 2019; Sáez et al., 2022; Jacquey and 

Viesca, 2023), (3) thermal pressurization (Viesca and Garagash, 2015), and (4) run-out 

distance (Garagash and Germanovich, 2012; Garagash, 2021). Following the method 

of Uenishi and Rice (2003), Garagash and Germanovich (2012) found the conditions 

for nucleating dynamic rupture and its arrest on a pressurized fault due to fluid 

injection, and theoretically distinguished the two slip regimes of slip-weakening faults: 

unstable and ultimately stable sliding, based on the different ultimate states of dynamic 

fault rupture. Although their work was done under quasi-static conditions, the findings 

are in agreement with the results of elastodynamic simulations (Gischig, 2015; Piris 

Casasnovas, 2022). Later extensions have taken into account the opening fractures 

(Azad et al., 2017) and the effects of dilatancy (Ciardo and Lecampion, 2019) and 

injection rate ramp-up (Ciardo and Rinaldi, 2022) on the nucleation and arrest of 

dynamic rupture. The unstable slip regime implies a seismic slip and is followed by an 

unabated dynamic rupture, and the ultimately stable slip regime indicates an aseismic 

slip, although a self-arrested seismic event remains possible during the nucleation 

process (Garagash and Germanovich, 2012). Here the aseismic slip remains a 

slip-weakening frictional behavior. It differs from the original one used in seismology, 

which refers to the slip-strengthening behavior (Byerlee and Brace, 1968; Scholz et al., 

1969; Cornet, 2016) and thus, implies that no seismicity occurs by itself. We term this 

slip-weakening aseismic slip as the second-type aseismic slip to avoid confusion. 

Nonetheless, both types of aseismic slip may trigger an earthquake further away from 

the unstable fault by stress transfer (Wei et al., 2015; Eyre et al., 2019; Vilarrasa et al., 

2021; Sáez et al., 2022) or because the injection-induced aseismic slipping fault patch 

can grow larger and quicker than the pressurized region (Guglielmi et al., 2015; Galis 

et al., 2017; Bhattacharya and Viesca, 2019; Cappa et al., 2019). Once the slip transits 

to the dynamic rupture, thermal pressurization can cause dynamic strength weakening 

on faults, becoming the leading mechanism controlling high-slip rate earthquakes 

(Garagash and Germanovich, 2012; Viesca and Garagash, 2015). A long run-out 

distance can facilitate the dynamic weakening mechanisms (Garagash, 2021). All these 

previous mechanisms originate from the nucleation process as a result of the fast 

increase in slip rate. Studies applied on natural earthquakes have shown the impact of 

the nucleation process on the physics of earthquakes (Ohnaka and Kuwahara, 1990; 

Ohnaka, 1992; Rubin and Ampuero, 2005; Ampuero and Rubin, 2008) and provided 

scaling laws linking the final earthquake magnitude with the critical nucleation size 

(Ellsworth and Beroza, 1995; Ohnaka, 2000; Uenishi and Rice, 2003). Thus, 

quantifying the nucleation process is helpful to improve the estimates of induced 

earthquake magnitude, promoting the development of induced seismicity forecasting 

tools. 

The nucleation process characterizes the development of quasi-static crack growth, i.e., 

the transient evolution from initial fault slip into fully-formed dynamic rupture 

(Ohnaka and Kuwahara, 1990; Ohnaka, 1992). This process can be simulated by the 

interfacial slip model of cracks (Bilby and Eshelby, 1968; Rice, 1980; Uenishi and 

Rice, 2003). Applying such model requires to solve analytically or numerically the 

singular integral equations (Muskhelishvili, 1953). The analytical method can only 
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solve the simplest problem of eigenvalues (Uenishi and Rice, 2003), and thus the 

numerical solution has been applied more frequently thanks to its versatile nature (e.g., 

Garagash and Germanovich, 2012; Viesca and Garagash, 2015, 2018). Coupling the 

interfacial slip model with a reservoir modeling tool remains a technical challenge that 

has not yet been solved because of the high computational cost. Existing studies do not 

include poroelastic effects on the background stress induced by pore pressure diffusion. 

Yet, the poromechanical response of geological media to fluid injection is known to be 

an essential mechanism controlling fault reactivation (Fan et al., 2016; Kang et al., 

2019; Rathnaweera et al., 2020; Chang et al., 2020; Vilarrasa et al., 2021; Wu et al., 

2021a, and references therein). Poroelasticity is likely to play an important role on the 

earthquake nucleation process, by causing a heterogeneous stress distribution along the 

fault.  

The goal of this study is to fill this gap by taking into account the stress heterogeneity 

and analyzing the characteristics of crack growth in different slip regimes by including 

poroelastic effects in the interfacial slip model of cracks. We couple the interfacial slip 

model to a hydro-mechanical analytical solution (Wu et al., 2021a) of poroelastic stress 

and pressure changes during fluid injection. In Section 5.2, we introduce the interfacial 

slip model of cracks, develop the model to include the poroelastic stress, and present 

the analytical solution of pore pressure changes and poroelastic stress for the scenario 

of constant-rate injection into a fault zone. We then normalize the developed model in 

its dimensionless form and describe the numerical method adopted to solve the 

singular integral equations. In Section 5.3, we show the results of our simulations and 

illustrate the role of poroelasticity on the nucleation process and the slip regimes. In 

Section 5.4, we estimate the moment magnitude of earthquakes for the unstable slip 

regimes based on the ultimate nucleation length. Section 5.5 includes an extended 

discussion on the obtained results and their implications for the forecasting of 

injection-induced seismicity. Finally, we conclude that injecting fluid at low rates into 

faults with background shear stress above the residual friction only induces 

microseismicity, while injection into faults with background shear stress below the 

residual friction results in a long run-out distance that has a potential risk of triggering 

damaging earthquakes. This finding cannot be revealed when the poroelastic effects 

are neglected. 

5.2 Nucleation process modeling during fluid injection 

5.2.1 Interfacial slip model of cracks including poroelastic stress  

In the framework of poromechanical analysis, fluid injection at depth leads to pore 

pressure changes ∆𝑝(𝑥, 𝑡), which alters the initial background stress in the geological 

formations (Figure 5.1; Chang and Segall, 2016; Wu et al., 2021a). A preexisting fault 

starts to slowly slide once the hydro-mechanical perturbation causes the fault to break 

the quasi-static elastic equilibrium condition. The slip results in both a shear stress 

drop and a frictional strength drop (Rice et al., 2005) along the slipping fault patch due 
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to slip-weakening mechanism. The former hinders crack growth, while the latter, in 

turn, promotes sliding. Slip weakening results in a new frictional equilibrium, which 

may be broken again by the further hydro-mechanical perturbation, and thus, the crack 

gradually grows before reaching dynamic ruptures (Bilby and Eshelby, 1968; Rice, 

1980; Garagash and Germanovich, 2012). That is the essence of the quasi-static crack 

growth of slip-weakening faults due to fluid injection, which has been simulated by the 

interfacial slip model of cracks assuming a uniform stress field without considering the 

injection-induced stress variations (Garagash and Germanovich, 2012). Here, we 

develop the interfacial slip model, following the line of Garagash and Germanovich 

(2012), but incorporating the poroelastic stress into the frictional equilibrium equation. 

To do so, first, we update the shear stress 𝜏(𝑥) inside the slipping fault patch as the 

difference between the background shear stress (loading) 𝜏b  summed with the 

tangential poroelastic stress component ∆𝜏(𝑥, 𝑡), and the stress drop caused by fault 

slip 𝛿(𝑥), 
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where 𝜇∗ = 𝜇  for mode ΙΙΙ  and 𝜇∗ = 𝜇/(1 − 𝜈)  for mode ΙΙ , 𝜇  is the shear 

modulus, 𝜈 is Poisson’s ratio, a is the crack (slipping fault patch) half-length, x and t 

denote the spatial and temporal variables, respectively, and 1/(x-s) is a simple 

Cauchy-type kernel of singular integral (Erdogan et al, 1973). A symmetrical crack is 

analyzed in this work. 

Second, we add the normal poroelastic stress component ∆𝜎(𝑥, 𝑡) to the fault in 

evaluating the frictional shear strength 𝜏s(𝑥), 

 s p 0 w( ) [ ( )][ ( , ) ( , )], 0 ( )x f w x p x t x t x             , (5.2) 

where 𝛼 is Biot’s coefficient, 𝑓p  is the static friction coefficient, which linearly 

decreases with the slip by a rate of w. Hence, 𝛿w = 𝑓p/𝑤 means the slip-weakening 

scale. The shear strength reaches its peak value at the initial state, i.e., 𝜏p = 𝑓p𝜎0
′, 

where  𝜎0
′ = 𝜎0 − 𝛼𝑝0 denotes the initial effective normal stress and 𝑝0 the initial 

pore pressure. The simplified linear slip-weakening friction law is applied in this work 

instead of the laboratory-derived rate-and-state friction (Marone, 1998). This 

simplification is valid in describing the post-failure strength of granite and carbonate 

under triaxial compression conditions (Wawersik and Brace, 1971; Wawersik and 

Fairhurst, 1970; Wong, 1982) and is appropriate in studying the earthquake nucleation 

process (Uenishi and Rice, 2003; Rubin and Ampuero, 2005; Ampuero and Rubin, 

2008; Garagash and Germanovich, 2012). A positive value of pressure change and 

normal stress implies injection and compression, respectively. The time-dependence of 

the slip, crack length, and stress drop implicitly depends on the pore pressure changes 

and poroelastic stress that are expressed explicitly as functions of time. 
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Since the shear stress at the crack tip is bounded and continuous, the following 

constraint has to be met along the crack, 
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Figure 5.1: Schematic diagram of a slipping fault patch (crack mode ΙΙ or ΙΙΙ) due to fluid 

injection into the fault zone that consists of fault core and damage zone. Pore fluid/pressure 

diffuses exclusively within the fault zone. Slip occurs along the fault core. The fault is 

uniformly loaded at the initial stress state. The crack length may be limited inside or extend to 

outside the hydro-mechanical perturbation. This diagram only depicts the former case. 

Equating Equations (5.1) and (5.2) gives the elastic equilibrium equation including 

poroelastic stress for modeling the nucleation process, 
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The pore pressure changes and poroelastic stress are expressed by a general form, 

indicating that the equilibrium equation is available for all scenarios of injection. The 

right hand-side of Equation (5.4) expresses the shear strength variations inside the 

slipping fault patch, including the factors of overpressure, poroelastic effects, and 

slip-weakening effects. We divide Equation (5.4) into four cases to compare the role of 

each factor: case A only considers the factor of overpressure, case B adds poroelastic 

effects to case A, case C adds slip-weakening effects to case A, and case D (Equation 

(5.4)) includes all the three factors (see details in Appendix K). We take cases C and D 

as the main cases of our simulations, aiming at analyzing the role of poroelastic effects 

on the nucleation process (case D), with case C being the one analyzed in Garagash 

and Germanovich (2012). 

The unlimited slip-weakening law of friction coefficient applied in the previous 

derivations implies an implicit assumption that the slip is small enough during the 

nucleation process. This assumption is, in general, difficult to meet in practice. 
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Residual friction may affect the slip of cracks, and the crack length when the frictional 

shear strength reduces to its residual limit (Garagash and Germanovich, 2012). For a 

limited slip-weakening law, the final equilibrium equation for case D changes to 

r
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 , (5.5) 

where 𝑓r  is the residual friction coefficient, and 𝛿r = (1 − 𝑓r/𝑓p)𝛿w  is the slip 

associated with 𝑓r. 

5.2.2 Analytical solutions for pore pressure changes and poroelastic stress 

We consider the scenario of injection into the fault zone with negligible permeability 

along the fault thickness direction (y-axis in Figure 5.1) at a constant volumetric rate. 

We apply analytical solutions to specify the general form of pore pressure changes and 

poroelastic stress shown in Equations (5.4) and (5.5). In this scenario, fluid diffuses 

axisymmetrically with respect to the injection well in the plane of x and out-of-plane 

direction. Such an axisymmetric pore pressure diffusion can be evaluated by the Theis 

well solution (Theis, 1935)  
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where Q is the volumetric injection rate, h is the fault thickness, κ and η are the 

intrinsic permeability and fluid viscosity, respectively, and W(𝜉2) is the Theis well 

function. The spatiotemporal variable is 𝜉 = 𝑥/√4𝐷h𝑡  if x ≥ rwell , and 𝜉 =

𝑟well/√4𝐷h𝑡 if x < rwell , where Dh is the hydraulic diffusivity, and rwell is the radius of 

injection well.  

We then apply the plane-strain assumption to analytically calculate the stress variations 

caused by pore pressure changes. For a two-dimensional cross-section model 

perpendicular to the out-of-plane direction (Figure 5.1), the pressurized region can be 

regarded as a rectangular inclusion with respect to the whole geological media 

(Eshelby, 1957; Wu et al., 2021a). As a consequence, the analytical stress solution of 

Wu et al. (2021a) can be used to evaluate the induced poroelastic stress Δ𝜎𝑖𝑗 along the 

fault  
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, (5.7) 

where Ω is the inclusion domain, Gij represents the surface integral of stress Green’s 
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function (see details in Appendix K), Δ𝑝m denotes the mean value of pore pressure 

changes within the inclusion, δij is the Kronecker delta, and δΩ is the modified 

Kronecker delta (Wu et al., 2021a). The minus in the right hand-side of Equation (5.7) 

results from the adopted sign convention of normal stress, assumed here as the 

geomechanics convention, i.e., positive for compression. Coordinate y equals zero 

along the fault plane. For the three components of poroleastic stress, ∆𝜎𝑥𝑥 is parallel 

to the fault plane (Figure 5.1), which has no impact on the shear failure of fault, and 

∆𝜎𝑥𝑦 is always zero along the whole fault plane (Figures K2A and K2B). We thus only 

need to consider ∆𝜎𝑦𝑦, which acts as a normal stress on the fault, i.e., ∆𝜎(𝑥, 𝑡) in 

Equation (5.2). 

Theis’s solution (Equation (5.6)) gives a nonlinear distribution of pore pressure 

changes. Directly adopting the mean value of this non-uniform pore pressure changes 

to evaluate the poroelastic stress would lead to an unrealistic jump at the lateral 

boundaries of the pressurized region (Figures K2C and K2D). Hence, we divide the 

whole pressurized region into m sub-inclusions (Figure 5.2). In particular, the k
th

 

sub-inclusion is overlapped with the (k - 1)
th

 one in space, and the former has a smaller 

size than the latter in x dimension. As a consequence, the pressure change of the (k - 

1)
th

 sub-inclusion has to be subtracted from the one of the k
th

 sub-inclusion in 

evaluating the poroelastic stress of the k
th

 sub-inclusion as 
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where 0( , ) 0p x t  , superscript k means the k
th

 sub-inclusion, and 
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where 𝑥1
𝑘, 𝑥2

𝑘 , 𝑦1, and 𝑦2 are the left, right, bottom, and top boundaries of the k
th

 

sub-inclusion, respectively. All the sub-inclusions have the same bottom and top 

boundaries, i.e., 𝑦1 = −ℎ/2 and 𝑦2 = ℎ/2, as the fault thickness is uniform. 

We finally superpose the induced poroelastic stress of each sub-inclusion to compute 

the total one as 
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This meshing method implies that we are actually dividing the overpressure instead of 

the pressurized region (Figure 5.2), and then taking the region that corresponds to the 

k
th

 sub-overpressure as the k
th

 sub-inclusion. Meshing in this way facilitates the 

application of the poroelastic stress solution (Equation (5.7)) because all the 

sub-inclusions are centralized at the injection well, i.e., (0, 0). Otherwise, the value of x 

has to be updated to the center of sub-inclusion when applying Equation (5.7) for each 

sub-inclusion. 
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Figure 5.2: Schematic diagram of dividing the whole pressurized region into m sub-inclusions. 

The kth sub-inclusion is overlapped with the (k - 1)th one in space, the former has a smaller size 

than the latter in the x dimension. All sub-inclusions have the same height (y dimension) as the 

fault thickness is uniform. 

5.2.3 Scaling and numerical solution 

We introduce the following dimensionless variables to describe the above model in a 

more compact form and to solve the problem by a general method. 𝑎w = 𝛿w𝜇∗/𝜏p 

denotes the characteristic patch length, which only depends on the rock properties and 

the in-situ stress around the fault. The crack half-length and slip are normalized by 𝑎w 

and 𝛿w , respectively, i.e., 𝑎̅ = 𝑎/𝑎w  and 𝛿̅ = 𝛿/𝛿w . The spatial and temporal 

variables are scaled as 𝑥̅ = 𝑥/𝑎 (𝑠̅ = 𝑠/𝑎 as well) and 𝑡̅ = 4𝐷h𝑡/𝑎w
2 , respectively. 

The tangential and normal stress components are normalized by 𝜏p  and 𝜎0
′ , 

respectively, i.e., 𝜏̅b = 𝜏b/𝜏p, ∆𝜏̅ = ∆𝜏/𝜏p, ∆𝜎̅ = ∆𝜎/𝜎0
′, and ∆𝑝̅ = ∆𝑝/𝜎0

′. Taking 

Equation (5.4) as an example, its dimensionless form is 
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where 𝛿̅(𝑥̅) ranges from 0 to 1 for unlimited slip-weakening law. 

To specify the dimensionless form of pore pressure changes and poroelastic stress, we 

define the characteristic volumetric injection rate and the characteristic aspect ratio of 

the fault as 𝑄w = 𝜅𝜎0
′𝑎w/𝜂 and 𝐴c = ℎ/𝑎w, respectively. We then have 
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where 𝑄/𝑄w can be regarded as a normalized volumetric injection rate, ξ can be 

further expressed as 𝑥̅𝑎̅/√𝑡̅  if 𝑥̅ ≥ 𝑟well/𝑎𝑤/𝑎̅ , and as 𝑟well/𝑎𝑤/√𝑡̅  if 𝑥̅ <

𝑟well/𝑎𝑤/𝑎̅. Lateral boundaries of each sub-inclusion are also scaled by the crack 

half-length, i.e., 𝑥̅1
𝑘 = 𝑥1

𝑘/𝑎 and 𝑥̅2
𝑘 = 𝑥2

𝑘/𝑎, while the bottom and top boundaries are 

scaled by the characteristic patch length, i.e., 𝑦̅1 = 𝑦1/𝑎w = −𝐴c/2 and 𝑦̅2 = 𝐴c/2. 

Hence, G𝑦𝑦
𝑘 (𝑥̅, 0) can be rewritten as 
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where the normalized left boundaries of sub-inclusions range from -1 to 0, and the 

right ones range from 1 to 0. We define them as 
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The locations of 𝑥̅1
𝑘 and 𝑥̅2

𝑘 are symmetrical with respect to the crack center (x=0). 

We can take an arbitrary value between 𝑥̅1
𝑘 and 𝑥̅1

𝑘+1 as 𝑥̅𝑘 to evaluate the pressure 

change of the k
th

 sub-inclusion when the distance between 𝑥̅1
𝑘 and 𝑥̅1

𝑘+1 is small 

enough, i.e., m is big enough. As an example, we here adopt the midpoint. To 

recognize that if the point 𝑥̅ is located in the k
th

 sub-inclusions or not, we have 
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Equations (5.4), (5.5), and (5.11) are the first group of singular integral equations, 

which have often been solved by numerical methods (Muskhelishvili, 1953; Erdogan 

and Gupta, 1972; Erdogan et al, 1973). Applications show that the Gauss-Chebyshev 

quadrature is reliable in ensuring a high-order of convergence and in achieving an 

acceptable computational efficiency (Erdogan et al, 1973; Viesca and Garagash, 2018; 

Viesca, 2021). Thus, we apply the Gauss-Chebyshev quadrature to solve these 

equations instead of the ones applied in Garagash and Germanovich (2012). Separating 

the normalized crack length by a set of collection point 𝑥̅𝑖 and a set of Gauss-integral 

point 𝑠̅𝑗 for the term in the left-hand side of Equation (5.11), we have 
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We then integrate the slip gradient from one of the crack tips to 𝑥̅𝑖 to evaluate the 

normalized slip at 𝑥̅𝑖, which reads (Erdogan et al, 1973; Viesca and Garagash, 2018) 
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Updating the continuous 𝑥̅ by the discrete points 𝑥̅𝑖 in Equations (5.12) and (5.13) 

and then substituting them into Equation (5.17), we obtain the complete equation. It is 

a set of strong nonlinear equations because the normalized slip is a function of the 

unknowns 𝐹(𝑠̅𝑗)  and both the pressure changes and poroelastic stress are also 

involved in the unknown 𝑎̅. We adopt the Newton-Simpson method to solve the 

unknowns after giving the normalized background loading 𝜏b/𝜏P , injection rate 

𝑄/𝑄w , and injection time 𝑡̅. Once solving the unknowns, one can calculate the 

distribution of normalized slip, shear stress, overpressure, and poroelastic stress along 

the crack. Note that the collection points 𝑥̅𝑖 range from -1 to 1 with increasing i from 

1 to n+1 (Equation (5.18)), which means that there is at least one 𝑥̅𝑖 that will be 

located inside the injection well during numerical calculations. Recognizing this point 

is essential to achieve the convergence and stability of numerical algorithms. The 

above solving method has been benchmarked against the results of Garagash and 

Germanovich (2012), with details shown in Appendix K. 

Some basic parameters have to be given when applying the aforementioned model to 

solve a specific problem. We adopt 𝛼 = 0.7, 𝜈 = 0.25, 𝑓r/𝑓p = 0.6, rwell = 0.108 m, 

h = 10 m, 𝑎w = 20 m in the subsequent simulations. The value of rwell corresponds to 

a standard wellbore diameter in the industry. The value of h and aw is in the order of 

field scale (Ben-Zion and Sammis, 2003; Uenishi and Rice, 2003).  
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5.3 Results 

5.3.1 Poroelastic effects on nucleation process 

We first evaluate the normalized crack half-length and the normalized slip at the crack 

center (x=0), i.e., the peak slip, as functions of the square root of normalized time √𝑡̅ 

for cases without (case C) and with (case D) poroleastic effects (Figure 5.3). We here 

consider an unlimited slip-weakening law under the normalized volumetric injection 

rate of 0.9 and various values (0.9, 0.85, 0.8, 0.75, 0.7, 0.65, and 0.6) of the normalized 

background shear stress. Each evolution curve of both the crack half-length and peak 

slip with injection time consists of two parts: the solid and dashed parts correspond to 

the quasi-static crack growth under physically meaningful advance and meaningless 

reversal of the pore pressure diffusion, respectively. The demarcation point from 

meaningful advance to meaningless reversal, i.e., the point with vertical slope, of each 

curve means the instability of quasi-static crack growth, i.e., the nucleation of dynamic 

rupture. This point is referred as the nucleation point, and thus the corresponding 

quantities are the nucleation time tc, nucleation half-length ac, and nucleation fault 

patch. Beyond the nucleation point, the crack propagates dynamically, which does not 

follow the quasi-static equilibrium (Uenishi and Rice, 2003). These characteristics in 

case C are similar with the ones of Garagash and Germanovich (2012), while all the 

nucleation time, nucleation length, and the peak slip at the nucleation instants are 

inversely proportional to the background loading in case C (Figure 5.3A and 5.3B). 

The differences can be attributed to the different injection scenarios, i.e., injection with 

a constant injection pressure in Garagash and Germanovich (2012) and a constant 

injection rate in this study.  

When including poroelastic effects, the quasi-static crack growth drastically changes 

(Figures 3C and 3D). There are two nucleation points of dynamic rupture for the 

relatively small values of background loading (0.65 and 0.6) as a result of the 

superposition of poroelastic and slip-weakening effects. We define the first one as the 

poroelasticity-dominated nucleation (PE-nucleation) point and the second one as the 

slip-weakening-dominated nucleation (SW-nucleation) point for clarity in the 

description. The definitions imply the dominant factor leading to the nucleation, which 

is recognized by comparing Figure 5.3 with the results (Figure K3) of cases A and B. 

The episode between points Np and Ar (see Figure 5.3) represents the self-arrested 

dynamic rupture propagation and its distance is defined as the run-out distance 

(Garagash and Germanovich, 2012). After the point Ar, the dynamic rupture returns to 

quasi-static fault slip until the SW-nucleation. The crack half-length and peak slip 

associated with the PE-nucleation are much smaller than the ones of the SW-nucleation, 

and these characteristic crack sizes at the latter nucleation instant in case D are smaller 

than the ones in case C. The smaller size indicates that the initial dynamic rupture 

nucleated by poroelasticity releases a small part of the accumulated elastic energy 
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during injection (fault loading), which reduces the crack size at the SW-nucleation 

instant. The evolution of quasi-static crack growth in case D for these relatively small 

background loadings presents an initial PE-nucleation with a small crack size and then 

immediately propagates from points Np to Ar, followed by an arrest and a final 

SW-nucleation with a larger crack size. In contrast, the crack growth in case C only 

displays the SW-nucleation of dynamic rupture without arrest.  

 

Figure 5.3: Evolution of the normalized crack half-length (A and C) and the normalized peak 

slip (i.e., the slip at the crack center) (B and D) with an unlimited slip-weakening law under the 

normalized volumetric injection rate of 0.9 and various values of the background shear stress. 

(A) and (B) correspond to the case C (without poroelastic effects), and (C) and (D) correspond 

to the case D (with poroelastic effects). Solid and dashed parts of the lines correspond to the 

crack growth under physically meaningful advance and meaningless reversal of the pore 

pressure diffusion, respectively. 

For the relatively large background loading, although poroelasticity does not cause 

nucleation, the crack size at the SW-nucleation instant is still smaller in case D than in 

case C. The crack growth is reduced by poroelastic effects because the poroelastic 

normal stress neutralizes part of injection-induced overpressure (Figure 5.4B) and, thus, 

reduces the slip (Figure 5.4A) and shear stress drop (Figures 4C and 4D). In addition, 
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the slip starts later in case D than in case C, implying that poroelastic effects can delay 

the onset of quasi-static fault slip. The SW-nucleation time is larger in case D than in 

case C for arbitrary background shear loading, which means that poroelastic effects can 

also delay the ultimate instability time of the quasi-static crack growth. 

Crack length and slip are much bigger in case C than in case D under the specific 

conditions of 𝑄/𝑄w = 0.9 , 𝜏b/𝜏P = 0.75 , and √𝑡̅ = 1  (Figure 5.4A), indicating 

again that poroelasticity is indispensable in accurately analyzing crack growth. The 

distribution of normalized effective overpressure in case C is identical to the one in 

case D (Figure 5.4B), benchmarking our simulations (model derivations, solving 

algorithm, code programing, processing, etc.). The smoothness of the poroelastic stress 

distribution and the shear stress distribution (Figures 4B-4D) validates the proposed 

superposition method in evaluating the poroelastic stress (Equations (5.15)-(5.17)). 

The difference between the background shear loading and the shear stress along the 

crack shows the shear stress drop, and the difference between the initial shear strength 

and the shear stress also means the shear strength drop as the shear stress equals the 

strength along the slipping fault patch (Figures 4C-4D). It implies that the difference 

between the normalized strength and stress drops equals (𝜏P − 𝜏b)/𝜏P, which is a 

constant along the crack for a homogeneous fault initially loaded by a uniform stress 

field. This constant indicates the maximum bearing capacity of the fault and can be 

defined as the normalized fault understress. Its value ranges from 0 to 1, the lower and 

upper limits correspond to a critically stressed fault and a stress-free fault at the initial 

state, respectively (Gischig, 2015). 
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Figure 5.4: Distribution of the normalized (A) slip, (B) effective overpressure and poroelastic 

stress for both cases C (blue lines) and D (red lines), and shear stress along the crack for (C) 

case C and (D) case D with an unlimited slip-weakening law under the normalized volumetric 

injection rate of 0.9 and normalized loading of 0.75 at the instant of the square root of 

normalized time equals 1. 

5.3.2 Characteristics of crack growth in different slip regimes 

In Section 5.3.1, some of the normalized peak slips at the nucleation point exceed 0.4 

(Figure 5.3), which in general cannot be regarded as a small enough value. Such values 

indicate that the residual friction may affect the nucleation of dynamic rupture and its 

possible arrest, i.e., slip regime. Hereafter, we apply the model with a residual friction 

in case D (Equation (5.5)) to investigate the change of the slip regime with respect to 

the normalized fault understress (𝜏P − 𝜏b)/𝜏P and volumetric injection rate 𝑄/𝑄w. 

This normalized space represents different hydro-mechanical properties, background 

stress and injection conditions. 

We display the results as a map of the different slip regimes (Figure 5.5). The black 

line (the first-class boundary) divides the map into two parts. In the left-hand side part, 

the background shear loading is larger than the residual friction of the fault at ambient 

conditions, which finally leads to an unstable slip (US). The quasi-static fault slip will 
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transform to the unabated dynamic rupture with one or more nucleation points (Figure 

5.6). On the contrary, the slip is ultimately stable (SS) in the right-hand side part as its 

shear loading is smaller than the residual friction (Figure 5.7). The two gray lines (the 

second-class boundary) divide the map into three sub-domains by the dominant factors 

of nucleation. The nucleation in the bottom and top sub-domains are dominated by the 

poroelastic and slip-weakening effects, respectively, while the intermediate 

sub-domain is controlled by both of them. The SW-nucleation can be affected by the 

residual friction or not, whose boundary is the blue line (the third-class boundary). 

Above this boundary, such nucleation is delayed in the US and removed in the SS, and 

it is not affected below this boundary. For the latter case, when the slip weakening of a 

local slipping patch around the crack center is completed (the friction coefficient 

reaches its residual value), a new re-nucleation point is generated in the US. The new 

re-nucleation could be physically meaningful or meaningless, which is separated by the 

brown line. As a consequence, the map is divided into nine different slip regimes by 

the previous three types of boundaries. The properties of each slip regime are 

characterized by its typical evolution of the normalized crack half-length and peak slip 

(Figures 6 and 7), with details listed below. 

US-1: poroelasticity-dominated unstable slip regime. As shown by A1 and A2 in 

Figures 6A and 6B, there is only one physically meaningful nucleation point of 

dynamic rupture, which is caused by poroelastic effects (the slip is very small at these 

conditions and thus the slip-weakening effects can be neglected). With increasing 

injection rate, a physically meaningless re-nucleation point induced by slip-weakening 

effects appears during the reversal of pore pressure diffusion. The re-nucleation time tc2 

is smaller than the initial nucleation time tc1. 

US-2: double factors-dominated unstable slip regime. With increasing the injection rate 

further, tc2 becomes larger than tc1, leading to a physically meaningful re-nucleation 

point (B in Figures 6A and 6B). Poroelasticity dominates the initial nucleation and 

slip-weakening effects dominate the re-nucleation. Fault slip in this regime has a 

run-out distance that is relatively short.  

US-3: slip-weakening-dominated unstable slip regime, in which, poroelasticity does 

not lead to nucleation and the only nucleation is induced by slip-weakening effects (C1 

and C2 in Figures 6A and 6B). The residual friction has no impact on the evolution of 

crack growth in this regime.  

US-4: slip-weakening-dominated unstable slip regime with a residual friction-delayed 

nucleation point. The unique SW-nucleation is affected by the residual friction because 

the normalized peak slip exceeds its residual value (0.4 in this case) before the 

nucleation time, and thus the residual friction delays the nucleation (D in Figures 6C 

and 6D). 

US-5: this regime is a cut from the regimes US-1, US-2 and US-3, and, thus, it 

includes three sub-regimes. There is a new physically meaningful re-nucleation point 

caused by the ending of slip weakening of a local slipping fault patch in addition to the 

PE-nucleation and SW-nucleation (E, F and G in Figures 6C and 6D). The new 
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re-nucleation is strongly related to the residual friction; we define it as the residual 

friction-dominated nucleation (RF-nucleation). The corresponding local fault patch is 

defined as the mature slip-weakening patch, and its half-length is xc. The run-out 

distance before the RF-nucleation in this regime could range from a short one to a long 

one, which increases with decreasing the injection rate. 

SS-4: slip-weakening-dominated ultimately stable slip regime without nucleation of 

dynamic rupture. Since the ending of slip weakening occurs before the nucleation time, 

the nucleation is removed, and thus, the fault slip is always stable (H in Figures 7A and 

7B). 

SS-3: slip-weakening-dominated ultimately stable slip regime with one nucleation 

point. The unique SW-nucleation is not affected by the residual friction, the dynamic 

rupture however arrests by itself, because the background loading is smaller than the 

residual friction, with a negligible run-out distance (I in Figures 7A and 7B). 

SS-2: double factors-dominated ultimately stable slip regime with two nucleation 

points (SS-2a) or one nucleation point (SS-2b). Nucleation and re-nucleation in 

sub-regime SS-2a are dominated by the poroelastic and slip-weakening effects, 

respectively, which are not affected by the residual friction and are followed by the 

arrest of dynamic rupture (J in Figures 7A and 7B). Sub-regime SS-2b would be 

exactly the same as SS-2a if there was no residual friction. The residual friction 

however removes the SW-nucleation of SS-2b, and thus it has only one nucleation 

point (K in Figures 7C and 7D). After the dynamic rupture arresting, the quasi-static 

fault slip is then dominated by slip-weakening effects. The run-out distance in this 

regime is relatively short. 

SS-1: poroelasticity-dominated ultimately stable slip regime with one nucleation point, 

which can be divided into two sub-regimes (SS-1a and SS-1b) by the dashed part of 

the third boundary. The unique meaningful PE-nucleation ultimately arrests by itself. 

The re-nucleation in both AS-1a and AS-1b would be meaningless if there were no 

residual friction, and it is removed by the residual friction in SS-1b (L in Figures 7C 

and 7D), while it is not affected by the residual friction in SS-1a (M in Figures 7C and 

7D). The run-out distance in this regime is relatively long, which increases with 

decreasing the injection rate. 
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Figure 5.5: Map of slip regimes under case D (considering pore pressure changes and both 

poroelastic and slip-weakening effects) in the normalized space of fault understress and 

volumetric injection rate. The black line separates the map as unstable slip (US) and ultimately 

stable slip (SS) regimes. The two gray lines divide the map into three sub-domains by the 

dominant factors of nucleation. The blue line separates the map where the 

nucleation/re-nucleation is and is not affected by the residual friction 𝑓r, respectively. The gray 

and blue lines are evaluated from the solution with an unlimited slip-weakening law, i.e., 

without 𝑓r. The brown line cuts out a sub-regime that indicates that the new re-nucleation, 

caused by the ending of slip-weakening of a local patch, is and is not physically meaningful, 

respectively, which is evaluated with the limited slip-weakening law 𝑓r/𝑓p = 0.6. US-1: 

poroelasticity-dominated unstable slip regime; US-2: double factors-dominated unstable slip 

regime; US-3: slip-weakening-dominated unstable slip regime; US-4: 

slip-weakening-dominated unstable slip regime with a residual friction-delayed nucleation 

point; US-5: cut from the regimes US-1, US-2 and US-3, with a second re-nucleation point; 

SS-4: slip-weakening-dominated ultimately stable slip regime without nucleation; SS-3: 

slip-weakening-dominated ultimately stable slip regime with one nucleation point; SS-2: 

double factors-dominated ultimately stable slip regime with two nucleation points (SS-2a) or 

one nucleation point (SS-2b); SS-1: poroelasticity-dominated ultimately stable slip regime with 

one nucleation point, includes two sub-regimes (SS-1a and SS-1b).  
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Figure 5.6: Typical evolution of the normalized crack half-length (A and C) and peak slip (B 

and D) for case D with (red lines) and without (blue lines) the residual friction in unstable slip 

regimes. Solid and dashed parts of the lines correspond to the crack growth under physically 

meaningful advance and meaningless reversal of the pore pressure diffusion, respectively. The 

location of points A1-G is shown in Figure 5.5. 
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Figure 5.7: Typical evolution of the normalized crack half-length (A and C) and peak slip (B 

and D) for case D with (red lines) and without (blue lines) the residual friction in ultimately 

stable slip regimes. Solid and dashed parts of the lines correspond to the crack growth under 

physically meaningful advance and meaningless reversal of the pore pressure diffusion, 

respectively. The location of points H-M is shown in Figure 5.5. 

 

The residual friction of faults differentiates the quasi-static fault slip into unstable and 

ultimately stable slip regimes. We further distinguish the latter as the incompletely 

stable (e.g., SS-1, SS-2, and SS-3) and fully stable (e.g., SS-4) slip regimes since a 

dynamic rupture can still nucleate in SS-1, SS-2, and SS-3 before the ultimately stable 

state. The dynamic ruptures nucleated in the incompletely stable slip regime (most of 

them are dominated by poroelasticity) always arrest by themselves, implying 

self-arrested seismic events. The dominant factor leading to nucleation changes from 

poroelastic to slip-weakening effects as the injection rate increases. The residual 

friction never affects the PE-nucleation because the related slip is very small, while it 

may affect the SW-nucleation. As a comparison, we also plot a similar map for case C 

(Figures K4 and K5), which only displays the slip regimes US-3, US-4, US-5, SS-3, 

and SS-4 because it does not consider the injection-induced poroelastic effects. 

Including poroelastic effects reveals new additional slip regimes in the normalized 

space of fault understress and volumetric injection rate. 
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5.4 Moment magnitude estimate of injection-induced earthquakes 

associated with the ultimate nucleation in unstable slip regimes 

The slip regime map provides all the nucleation information under different conditions. 

With this map, we now apply the moment magnitude (Mw) and Ohnaka’s model 

(Ohnaka, 2000) to quantitatively estimate the earthquake size and to specify to what 

extent poroelasticity reduces it. The moment magnitude is defined from the seismic 

moment (M0 in N·m) as (Kanamori 1977; Hanks and Kanamori 1979) 

 w 0

2
lg 6.07

3
M M  . (5.24) 

To evaluate the seismic moment, Ohnaka (2000) derived a theoretical scaling relation 

between the seismic moment and the critical size of nucleation zone that corresponds 

to our nucleation length (2ac) in the framework of fracture mechanics 

 
3

0 NL c(2 )M k a , (5.25) 

where kNL is the scaling parameter. kNL = 10
9
 is a typical and theoretical value with a 

few assumptions and laboratory-based observations, which also provides a good match 

with seismological data (Ohnaka, 2000, 2013).  

We calculate the magnitude of earthquakes associated with the ultimate nucleation of 

dynamic rupture in unstable slip regimes (US). The results are incorporated into the 

slip regime map, leading to a similar map of moment magnitude of injection-induced 

earthquakes (Figure 5.8). The latter map is divided into three sub-regions with the 

same boundaries as in the former map. In the bottom sub-region, i.e., the region of 

US-1, the earthquake size is smaller than Mw 0.7 because the crack size associated with 

the PE-nucleation is very small (Figures 3 and 6). Once exceeding the boundary of 

US-1, the earthquake size immediately increases with a noticeable jump. In the left 

sub-region, i.e., the region of US-2 and US-3, the earthquake size is linked to the 

SW-nucleation and ranges from Mw 2.6 to Mw 3.6. It increases very slowly with respect 

to both the fault understress and injection rate. However, in the top-right sub-region, 

i.e., the region of US-4 and US-5, the earthquake size significantly increases with the 

fault understress. In contrast, the magnitude barely increases with the injection rate 

because the ultimate nucleation in US-4 and US-5 is controlled by the ending of slip 

weakening, i.e., the residual friction. At these ultimate nucleation points, the size of 

mature slip-weakening patch is proportional to the fault understress and is independent 

of the injection rate (Figure K6). The maximum earthquake size of the third sub-region 

exceeds Mw 7. The induced seismicity in these three sub-regions can be classified as 

micro-seismicity, felt earthquake, and moderate to large earthquake, respectively, and 

is dominated by the PE-nucleation, SW-nucleation, and RF-nucleation, respectively. 

Thus, adding poroelastic effects cuts out a space from the region dominated by 

slip-weakening effects (Figures 5 and S4) and the magnitude of induced seismicity in 

such space (US-1) is reduced from the felt level to the micro-seismic level by 

poroelasticity. The magnitude of self-arrested earthquakes in the incompletely stable 

slip regime (SS-1, SS-2, and SS-3) and whether the rock properties, background 
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loading and injection conditions located in each slip regime are appropriate to deploy 

geo-energy projects are discussed in Section 5.5. 

 

Figure 5.8: Map of moment magnitude of injection-induced earthquakes when considering 

pore pressure changes and both poroelasticity and slip-weakening effects (case D) in the 

normalized space of fault understress and volumetric injection rate. The previous three types of 

boundaries as well as the abbreviation of each slip regime shown in Figure 5.5 are also plotted 

here in the background for comparison. We do not evaluate the magnitude of earthquakes in 

the blank area of SS-1 as it is smaller than -1. The region of ultimately stable slip regimes is 

colored by a gray background without any implications to earthquake size. 

5.5 Discussions 

The interfacial slip model of cracks is a development of Mohr-Coulomb failure 

criterion by considering the slip-dependent shear stress and strength variations 

(Equations (5.1) and (5.2)), and thus, it can describe the earthquake nucleation process. 

Injection-induced quasi-static slip along the faults with slip-independent frictional 

properties never transits to dynamic ruptures (Figure K3; Rice, 1983; Rice and Ruina, 

1983). For slip-weakening faults, the transition to the ultimate dynamic rupture 

depends on the relative size between the background shear loading and the residual 

friction of the faults at ambient conditions (Figures K4 and K5; Garagash and 

Germanovich, 2012; Azad et al., 2017; Ciardo and Lecampion, 2019). Although adding 
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poroelastic effects does not alter the previous transition condition, the detailed 

evolution of crack growth significantly changes (Figures 3, 6 and 7), revealing a wider 

range of slip regimes (compare Figures 5 and K4) and reducing the magnitude of 

earthquakes in some slip regimes (Figure 5.8).  

Poroelasticity can partly neutralize the injection-induced overpressure (Figure 5.4B) 

under any conditions of the slip regime map and nucleate a dynamic rupture in the 

whole lower triangle of the slip regime map (Figure 5.5). As a consequence, the 

quasi-static crack growth presents several typical slip regimes under different rock 

properties, background stress and injection conditions (Figures 6 and 7). For the 

conditions in the poroelasticity-dominated unstable slip regime (US-1), the unique 

nucleation of dynamic rupture is dominated by poroelastic effects, while the 

subsequent slip-weakening effects are prevented as the slip is very limited. The very 

small nucleation length (Figure 5.6) in this regime restricts the corresponding 

seismicity to the micro-size level (Figure 5.8). The microseismicity partly releases the 

accumulated elastic energy of rock mass, hindering future damaging events. A similar 

phenomenon has also been observed in natural seismicity, in which the nucleation of 

parts of the San Andreas fault inhibited subsequent large earthquakes (Neely et al., 

2023). Thus, the conditions of US-1 should be sought for geo-energy applications 

because the small magnitudes will permit an effective management of induced 

seismicity.  

A similar crack growth can also be found in the poroelasticity-dominated incompletely 

stable slip regime (SS-1), however, the small background loading permits to build a 

high overpressure along a large fault patch before nucleation. As a result, once the 

dynamic rupture is nucleated by poroelastic effects, it can immediately propagate to a 

large size with a long run-out distance (exceeding 3.5 and 1.5 normalized crack 

half-length for SS-1a and SS-1b, respectively, in Figure 5.7). During such rupture 

propagation, the long run-out distance may coexist with a near sonic velocity (Ohnaka 

and Kuwahara, 1990; Ohnaka, 1992), which could activate the dynamic thermal 

pressurization and flash heating (Rice et al., 2006; Garagash and Germanovich, 2012; 

Garagash, 2021) and then induce a damaging earthquake (Viesca and Garagash, 2015; 

Bhattacharya and Viesca, 2019; Eyre et al., 2019). Thus, although the earthquake size 

associated with the unique PE-nucleation in SS-1 is similar to the one in US-1, the 

potential risk of inducing a damaging earthquake by the long run-out distance cannot 

be overlooked for the conditions in SS-1.  

In the unstable slip regimes US-2 and US-3, slip-weakening effects break the 

constraint of poroelastic effects because of a fast increase in slip rate (Figure 5.6) and 

dominate the ultimate nucleation, leading to the earthquakes in a felt-size level (Figure 

5.8). Similar size of seismicity to US-2 and US-3 can also occur in the incompletely 

stable slip regimes SS-2a and SS-3 because of the similarity of ultimate nucleation 

length between the former and the latter (Figures 6 and 7). Deploying geo-energy 

projects under these conditions needs to pay more attention and further assessment to 

avoid a negative public perception of projects. In contrast, as the SW-nucleation in 

SS-2b is removed by the residual friction, dynamic rupture can only be nucleated by 
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poroelastic effects (Figure 5.7), resulting in microseismicity that is similar to the one in 

US-1. Furthermore, the fast slip-weakening effects in SS-4 suppress the nucleation of 

poroelasticity (Figure 5.7), leading the slip to be fully stable. Hence, the conditions in 

both SS-2b and SS-4 are favorable for geo-energy projects.  

As for the unstable slip regimes US-4 and US-5, the ultimate RF-nucleation can cause 

to a damaging earthquake, explicitly overruling the feasibility of deploying geo-energy 

projects. Our results and the preceding analysis focus on the mechanical stability and 

the potential risk of induced seismicity, while the injectivity (Bai et al., 2017; Hoteit et 

al., 2019) of sites is not considered. Thus, the volume capacity and the maximum 

allowable injection rate (Bachu et al., 2007) have to be assessed in each application. 

The limited injectivity of potential sites may reduce the range of SS-2b and SS-4 

shown in Figure 5.8, while it could be negligible for US-1 because the injection rate is 

relatively low. 

The run-out problem also exists in slip regimes US-5, US-2, SS-2, and SS-3, while its 

distance is limited, because the dynamic rupture has already arrested before reaching 

the mature slip-weakening state, except the one in US-5 (Figures 6 and 7). US-5 shows 

a similar size of run-out distance to SS-1, and thus, the earthquake size may be even 

larger than the estimate shown in Figure 5.8 when considering the previous 

dynamic-weakening effects. The longest run-out distance occurs when the crack 

directly runs from the PE-nucleation (almost no slip-weakening state) to the mature 

slip-weakening state, i.e., the shear stress instantly drops from a peak value to the 

residual value. Neglecting poroelastic effects cannot find this longest run-out distance 

(Figure K5). The heterogeneity of fault gouge and the roughness of fault plane (Power 

et al., 1987; Ohnaka, 1996; Ben-Zion and Sammis, 2003) may inhibit the long run-out 

distance. Further research on this topic is needed. 

Our quasi-static simulation shows that the dynamic rupture associated with the 

ultimate nucleation in the unstable slip regimes is unabated once it is nucleated as we 

assume a homogenous fault zone with an infinite size in the longitudinal direction. 

However, such unabated dynamic rupture does not mean a runaway rupture (Galis, et 

al., 2017). In reality, the frictional properties of fault zone are nonuniform (Ohnaka, 

1996; Ben-Zion and Sammis, 2003) and the fault size is limited (Alian et al., 2019; 

Galis, et al., 2019). Thus, whether such unabated dynamic rupture eventually transits to 

the self-arrested or runaway rupture should be further studied in the framework of 

elastodynamics with a finite fault size (Ripperger et al., 2007; Galis, et al., 2017, 2019). 

The nonuniformity of fault friction could be taken into account by incorporating 

stochastic simulations (Nguyen et al., 2015). 

The slip increases very slowly during the poroelasticity-dominated crack growth, even 

for the instants close to the PE-nucleation (Figures 6 and 7). It indicates that the 

dynamic rupture nucleated by poroelasticity may probably be a slow slip event (Peng 

and Gomberg, 2010; Segall et al., 2010; Eyre et al., 2022). Thus, including poroelastic 

effects provides potential information and chance to analyzing the triggering 

mechanisms of slow slip events. Further research on this point is recommended by 
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referring to the evolution of slip rate during crack growth shown in Dublanchet (2019).  

The residual friction coefficient 𝑓𝑟 affects the first-class (between the unstable and 

ultimately stable slip regimes) and third-class (nucleation is or is not affected by 𝑓𝑟) 

boundaries of slip regime map (Figure 5.5). Reducing 𝑓𝑟 will lead to a change in both 

boundaries: the former will shift to the right and the latter will move upwards. As a 

result, the SS-3 may either expand or shrink, eventually disappearing and forming a 

new double-factors-dominated unstable slip regime with a simultaneous residual 

friction-delayed re-nucleation point. The SS-2 changes similarly. These changes, 

however, do not affect the previous nucleation process, and thus the new additional slip 

regimes hold, only the size of slip regimes varies. 

The injection-induced stress variations have, in turn, an undrained effect on the pore 

pressure, which is ignored here since the pore fluid is more compressible than the rock 

mass. In contrast, the slip-induced pressure drop due to dilatant mechanism (Rudnicki 

and Chen, 1988; Segall and Rice, 1995; Segall et al., 2010; Ciardo and Lecampion, 

2019) may be more visible (Cocco and Rice, 2002; Vilarrasa et al., 2021). Slip-induced 

pressure drop can neutralize a part of injection-induced overpressure along the slipping 

fault patch, which is similar to the poroelastic effects. As a result, the second-class 

boundary of slip regime map (Figure 5.5) would move upwards. This movement 

implies that the allowable injection rate would be larger than the one in the current 

results for deploying geo-energy projects. Evaluating such pressure drop involves 

assessing the slip-induced porosity and permeability changes of fault gouge (Segall 

and Rice, 1995; Garagash and Rudnicki, 2003) as well as the dilatant effects (Ciardo 

and Lecampion, 2019), which is recommended for future research. 

The slip-regime map delimits the slip regimes as a function of the understress and the 

injection rate. In geo-energy applications, we can control the injection rate, but the 

understress is fault dependent. This dependency implies that in order to design safe 

injection schemes, subsurface characterization is key to quantify the stress state and 

fault characteristics (Ben-Zion and Sammis, 2003; Vilarrasa et al., 2022). The 

slip-regime map can be used as a decision-making tool to minimize the risk of 

inducing earthquakes that might end up with project cancellation. This substantial 

advance in the frontiers of knowledge of the mechanisms that induce seismicity when 

considering poroelasticity opens up a promising pathway in the development of 

reliable induced-seismicity forecasting. 

5.6 Conclusions 

Earthquake nucleation process, which characterizes the intermediate evolution phase 

between the initial fault reactivation and the final dynamic rupture propagation, is of 

physical fundament in understanding both natural and induced earthquakes. We 

incorporate the poroelastic stress resulting from pore fluid diffusion into the interfacial 

slip model of cracks to study the nucleation process due to fluid injection. Including 

poroelastic effects in the rock mass drastically affects the nucleation process of fault 

rupture, which reveals new additional slip regimes and reduces the magnitude of 



Chapter 5. Poroelastic Effects on Earthquake Nucleation Process 

119 

related earthquakes in some slip regimes.  

The nature of injection-induced poroelastic response inside the slipping fault patch 

tends to resist the pressure buildup, and thus reduces the slip and shear stress drop 

along the crack. As a result, the initiation of both the quasi-static fault slip and 

ultimately dynamic rupture are delayed, and the crack size associated with the 

SW-nucleation is reduced. Such reduction in crack size is more visible once poroelastic 

effects can nucleate a dynamic rupture because the poroelasticity-nucleated dynamic 

rupture partly releases the stored elastic energy by means of microseismicity. The 

self-arrested dynamic rupture (existing in some slip regimes, i.e., certain conditions) 

can cause the crack to run out during the entire nucleation process. When the crack 

directly runs from the PE-nucleation to the mature slip-weakening state that is 

controlled by the residual friction, a long run-out distance occurs, resulting in a 

potential risk of triggering damaging earthquakes. In conclusion, our results 

recommend deploying geo-energy applications under the rock properties, background 

loading and injection conditions that correspond to the slip regimes US-1, SS-2b, and 

SS-4, excluding the conditions in US-4, US-5, and SS-1, and making a further 

assessment for the conditions in SS-2a, SS-3, US-2, and US-3, according to the 

induced seismicity potential and the seismic magnitude. On the contrary, if the 

poroelastic effects are neglected, not only the favorable conditions in US-1and SS-2b 

are lost, but also the unfavorable conditions in SS-1 cannot be recognized, which may 

significantly impede the successful deployment of geo-energy projects.  

We also point out some interesting topics connected to our current results, such as 

simulating the dynamic rupture propagation after nucleation, heterogeneity in frictional 

properties along the fault, slow slip event, slip-induced pressure drop. The developed 

interfacial slip model including poroelastic effects can provide valuable fundaments 

and insights for the suggested future investigations on these topics. This model is 

useful to develop effective forecasting methodologies of injection-induced seismicity. 
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6 Conclusions 

This Thesis addresses two poromechanical coupling issues related to fluid-induced 

seismicity to enable the successful deployment of geo-energy applications. Relevant 

results make a substantial advance in understanding the processes and mechanisms of 

induced seismicity, greatly promoting the development of risk assessment forecasting 

tools. The main conclusions of this Thesis are summarized below. 

Analytical approach is useful for understanding and forecasting induced seismicity 

because it provides an instantaneous solution and serves to identify important scaling 

relationships that can give insights of the triggering mechanisms. We propose two 

closed-form solutions for the poromechanical stress and displacement, respectively, 

due to reservoir pressurization/ depletion. The solutions are derived based on the 

inclusion theory and Green’s function under plane strain conditions. The solutions can 

be used for various geological settings in which a reservoir compartmentalized by an 

intersecting fault that could be either permeable or impermeable with an arbitrary dip 

angle and offset. For problems with a non-uniform pore pressure changes in the 

reservoir, both solutions are also available by applying the principle of superposition. 

With these solutions in hand, we can quickly evaluate the poromechanical stress along 

the fault and the ground uplift/subsidence, and thus, the slipping fault patch size and 

induced seismicity potential as well as the magnitude of earthquakes. We can also 

perform various parametric space, uncertainty, and stochastic analyses for cases with a 

high uncertain geological setting, like the Pohang Mw5.5 earthquake. Incorporating the 

poromechanical stress solution into the interfacial slip model of cracks allows further 

to take into account stress heterogeneities and geological features in a reservoir for the 

initial fault slip, nucleation process, and the initiation of dynamic rupture propagation. 

Applying this interfacial slip model including poromechanical stress greatly improves 

the estimate of earthquake magnitude. Thus, these physics-based analytical solutions 

and models developed in this Thesis represent a powerful tool for site selection, 

estimating land uplift/subsidence, gaining insights of reservoir and fault geometries, 

revealing precursors of induced seismicity, and supporting decision making during the 

full lifetime of geo-energy projects. 

When the geological setting with faults intersecting reservoirs undergoes 

poromechanical response to fluid injection, the induced poromechanical stress 

concentrates along the fault plane, especially around the cross-points among the 

reservoir, surrounding, and fault because of the stress concentration effect. 

Poromechanical stress can stabilize the fault patch that is intersected with the reservoir, 

but destabilize some other patches. As a consequence, the fault may be reactivated 

locally, resulting in slipping fault patches and increasing induced seismicity potential. 

The maximum slipping fault patch size of an impermeable fault is 3 to 5 times larger 

than that of a permeable fault. Thus, the induced seismicity potential, and thus, the 

earthquake magnitude if earthquakes occur, is larger for impermeable than for 
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permeable faults. The slipping fault patch size increases with fault offset for permeable 

faults, is independent of the offset for impermeable faults, and increases with the initial 

deviatoric stress for both permeable and impermeable faults, implying that non-offset 

permeable faults and low initial deviatoric stress constitute a safer choice for site 

selection. Neglecting the poromechanical coupling effects, i.e., assuming the effective 

stress reduction is equivalent to the overpressure, will significantly misjudge fault 

stability and induced seismicity potential. 

Unlike the distribution of poromechanical stress, the poromechanical displacement 

concentrates on the boundaries of the pressurized reservoir, i.e., reservoir 

pressurization leads to reservoir dilatation towards its surroundings. Also, unlike the 

unfavorable effect of impermeable faults on induced seismicity potential, fault 

permeability mainly impacts the spatial distribution of displacement while its effect on 

displacement magnitude is small. Ground displacement increases with fault dip, 

decreases with increasing fault offset, and is proportional to the vertical and lateral 

depth ratios, defined as the ratios of reservoir thickness (h) and width (w) to reservoir 

depth (D), respectively. Furthermore, reservoir geometry shows a stronger effect than 

fault geometry on displacement. The vertical component of ground displacement 

concentrates on the point projected to the vertical reservoir center, and the horizontal 

component symmetrically focuses on locations outward the lateral reservoir boundaries. 

The fault dip, offset, and reservoir thickness basically have no impact on this spatial 

distribution except for the offset slightly affecting its symmetry. The maximum vertical 

displacement is the double of the horizontal one regardless of fault permeability, fault 

and reservoir geometries, and mechanical parameters. Neglecting the free surface 

underestimates the poromechanical displacement in the overburden. The validity of 

full-space solutions can be assessed with the product of the lateral and vertical depth 

ratios, i.e., wh/D
2
, which become valid when wh/D

2
 decreases to an intrinsic threshold. 

This threshold may range from 0.01 to 0.02 for displacement, and its specific value 

depends on the field background and demands of projects, but can be estimated based 

on our solution. The threshold is larger for stress than for displacement, and wh/D
2
 ≤ 

0.1 is recommended for induced stress.  

The high uncertainty of geological setting at the Pohang EGS site leads to the debate 

about triggering mechanisms of the Pohang Mw5.5 earthquake. We make a comparative 

analysis for the existing estimates of in-situ stress based on the Mohr-Coulomb 

criterion, finding two likely oblique-slip faulting patterns that can be used to analyze 

this earthquake: a reverse-slip-dominated pattern with a strike-slip component (RS-S) 

and a strike-slip-dominated pattern with a reverse component (SS-R). Deterministic 

analysis presents that the RS-S pattern is more prone to slip as a result of 

poromechanical perturbation than the SS-R pattern despite both the fault being more 

stable at the initial state and the overpressure on the fault being one order of magnitude 

larger in the latter than in the former. Probabilistic assessment shows a higher 

probability of inducing earthquakes with a magnitude of Mw > 5.5 in the RS-S pattern 

than in the SS-R pattern. The relatively higher probability density for Mw < 2.0 in the 

RS-S pattern than in the SS-R pattern indicates that the RS-S pattern may matches 
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better with the fact that the majority of recorded seismicity is smaller than Mw2.0. 

These three observations suggest that the RS-S pattern is closer to the actual scenario 

of the Pohang case than the SS-R pattern, which means that the most likely in-situ 

stress and fault plane are IS1 and FP5, respectively, i.e., a reverse fault with a relative 

low-dip angle being in a 3D reverse faulting stress regime. The stochastic analysis 

reveals a clear threshold of the initial CFS to judge if the fault is critically stressed or 

not. This threshold is site dependent and is -0.1 MPa for the Pohang EGS site. In 

addition, results also highlight that (1) the magnitude of in-situ stress and the friction 

coefficient are playing a more significant role in inducing a seismic event than Biot’s 

coefficient and fault geometry; (2) a small overpressure can induce a damaging 

earthquake when preexisting faults are critically stressed at the initial state; and (3) we 

should devote more efforts to site characterization at the prior stage of projects. 

Earthquake nucleation process characterizes the intermediate evolution phase between 

the initial fault reactivation and the final dynamic rupture propagation. Including 

poromechanical effects in the rock mass drastically affects the nucleation process, 

revealing a wider range of slip regimes and reducing the expected magnitude of 

induced seismicity in some slip regimes. In detail, the poromechanical response to pore 

pressure diffusion within a longitudinally permeable fault zone tends to resist the 

pressure buildup and thus, reduces the slip and shear stress drop along the slipping 

fault patch (crack). As a result, the initiation of both the quasi-static fault slip and 

ultimately dynamic rupture are delayed, and the crack size associated with the 

slip-weakening-dominated nucleation is reduced. Such reduction in crack size is more 

visible once poromechanical effects can nucleate a dynamic rupture because the 

poroelasticity-nucleated dynamic rupture partly releases the stored elastic energy by 

means of microseismicity. The self-arrested dynamic rupture (existing in some slip 

regimes, i.e., certain conditions) can cause the crack to run out during the entire 

nucleation process. When the crack directly runs from the poroelasticity-dominated 

nucleation to the mature slip-weakening state that is controlled by the residual friction, 

a long run-out distance occurs, resulting in a potential risk of triggering damaging 

earthquakes. We generate maps of slip regime and earthquake magnitude with respect 

to the normalized fault understress and volumetric injection rate. The map is divided 

into five unstable (US) and four ultimately stable (SS) slip regimes, with some of them 

including two sub-regimes, based on the different characteristics of nucleation process. 

The two maps recommend deploying geo-energy applications under the rock properties, 

background loading and injection conditions that correspond to the slip regimes US-1, 

SS-2b, and SS-4, excluding the conditions in US-4, US-5, and SS-1, and making a 

further assessment for the conditions in SS-2a, SS-3, US-2, and US-3. On the contrary, 

if the poromechanical effects are neglected, not only the favorable conditions in 

US-1and SS-2b are lost, but also the unfavorable conditions in SS-1 cannot be 

recognized, which may significantly impede the successful deployment of geo-energy 

projects.  



Chapter 6. Conclusions 

124 

 

 



Appendices 

125 

 

 

 

 

 

 

 

 

 

 

Appendices 

 

 

 



Appendices 

126 

 

 

 

 



Appendix A 

127 

A. Inclusion theory and induced stress 

The fundamental concept of the inclusion theory lies on a series of imaginary steps 

involving cutting, transforming and restoring the inclusion itself (Eshelby, 1957; Mura, 

1987; Rudnicki, 2011). In the last step, restoring the inclusion to its original shape and 

size, i.e., with zero strain, corresponds to the application of a stress field 𝝈∗ 

(eigenstress) inside the inclusion, to neutralize the volumetric eigenstrain 𝜺∗ that it 

would undergo if unbounded, and of simultaneous a body force 𝐟 (restoring force) 

over the entire matrix, to keep the stress equilibrium (Rudnicki, 2011; Jansen et al., 

2019). For the case of uniform pore pressure change inside the inclusion, Δ𝑝, then 

 ( , , ) ( , , )x y z p x y z   Γf n , (A1) 

where the vector 𝐟  has three components in the coordinate directions for 

three-dimensional (3D) problem, 𝐧𝚪 is the unit normal vector pointing outward from 

the boundary (Γ) of the inclusion, x, y and z are the Cartesian coordinates, and   is 

Biot’s coefficient. The term −𝛼Δ𝑝  indicates the normal eigenstress for the 3D 

scenario. 

Affected by the opposite restoring force, a displacement field ( , , )iu x y z is provoked in 

the inclusion and its surrounding rock  

 ( , , ) ( , , , , , ) ( , , )i iu x y z p x y z d      


    Γg n , (A2) 

where, 

 ( , , , , , ) g ( , , , , , ),g ( , , , , , ),g ( , , , , , )
T

i ix iy izx y z x y z x y z x y z              g , (A3) 

and g ( , , , , , )ij x y z     is the Green’s function describing the displacement at any 

point ( , , )x y z under a unit body force at point ( , , )   , , ,   are the coordinate 

values on  , subscripts i and j are free indexes with , ( , , )i j x y z  in the 3D Cartesian 

space. 

For an infinite elastic unbounded domain, the g ( , , , , , )ij x y z     can be expressed as 

(Love, 1944; Mura, 1987) 

 

21
g ( , , , , , )

4 16 (1 )

ij

ij

i j

x y z R
R x x


  

  


 

  
, (A4) 

where   and   are the shear modulus and Poisson’s ratio, respectively, 
ij  is the 

Kronecker delta, which equals 1 if i = j or 0 if i ≠ j, and 
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2 2 2 2( ) ( ) ( )R x y z        . (A5) 

Equation (A2) is a standard surface integral and can be transformed into a volume 

integral by applying the Gauss’s divergence theorem 

 ( , , ) ( , , , , , )i iu x y z p x y z d   


    g , (A6) 

wheremeans the inclusion volume. Note that now , ,    in Equation (A6) denote 

the coordinate values in the domain  . 

Under the assumption of plane strain, integrating Equation (A4) along the out-of-plane 

dimension (z) yields (Mura, 1987; Jansen et al., 2019) 

 2

1
g ( , , , ) (3 4 ) ln , ( , )

8 (1 )

i j

ij ij

x x
x y R i j x y

R
   

 

 
    

  
, (A7) 

where, 

 orix x y    , (A8) 

 
2 2 2( ) ( )R x y     . (A9) 

Equation (A6) can be simplified into 

 ( , ) ( , , , )
iyix

i i

gg
u x y p d D g x y d  

  


     

   , (A10) 

where ( , , , )ig x y    is  
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( , , , )
2

x

x
g x y

R


 


 , (A11) 
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( , , , )
2

y

y
g x y

R


 


 , (A12) 

and D is a dimensionless scaling parameter 

 
(1 2 ) (1 )

2 (1 ) 3 (1 )

p p
D

K

   

    

   
 

 
, (A13) 

where K is the bulk modulus. 

For an isotropic linear elastic material, the Hooke’s equation relating the stress 𝜎ij to 

the strain εij tensor is 

 
2

2
1 2

ij ij ij kk


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
 


, (A14) 



Appendix A 

129 

where kk  is the volumetric strain and εij equals the symmetric part of the 

displacement gradient  

 
1

2

ji
ij

j i

uu

x x


 
     

. (A15) 

Substituting Equation (A10) into Equation (A15), and taking the results into Equation 

(A14), yields the expression of the stress field in the whole matrix induced by the 

restoring force f 

 ( , ) ( , , , )ij ijx y C g x y d  


  , (A16) 

where C D  is a scaling parameter and ( , , , )ijg x y    is the Green’s function for 

stress at (x, y) given a unit point force at (𝜍, 𝜉) 
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(A18) 

 4

( )( )
( , , , ) 2 2x

xy

g x y
g x y

y R

 
 
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
.

 

(A19) 

For the inclusion, the stress field however is also affected by the eigenstress resulting 

from the application of the surface traction to bring the inclusion back to its initial 

configuration (Eshelby, 1957). Since the surface traction depends on the geometry of 

the inclusion, such eigenstress is different with the one of 3D scenario for the case of 

plane strain problem. Regarding that the eigenstrain is a pure dilatational strain, only 

the normal components of eigenstress has a finite value (Eshelby, 1957; Soltanzadeh 

and Hawkees, 2008), thus 

 
* *( , ) ( , , , ) ( , )ij ij ij ij ijx y C g x y d CG x y         


    , (A20) 

where ( , )ijG x y  denotes the surface integral of Green’s function ( , , , )ijg x y   ,   

is the modified Kronecker delta 

 
1 if ( , )

0 if ( , )

x y

x y



 


. (A21) 

From the perspective of stress arching effect, the induced stress field caused by pore 

pressure change in the inclusion can be described as (Soltanzadeh and Hawkees, 2008) 

 ij ij p     , (A22) 
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where 
ij is the normalized stress arching ratio, which depends on the geometry of the 

inclusion. The minus means that injection corresponds to compression.  

For the ellipsoidal inclusions, the stress and strain fields are uniform for all points 

inside the inclusion (Eshelby, 1957; Rudnicki, 1999). And for the case in which the 

inclusion extends infinite in one direction (implying that we can apply the plane strain 

assumption), such as the elliptic cylindrical inclusion, the sum of the stress arching 

ratio in the other two directions is a constant (Soltanzadeh and Hawkees, 2008; 

Soltanzadeh, 2009) 

 
(1 2 )

1
xx yy


 




 


. (A23) 

According to Equations (A20) to (A23), we find 

 
* 1 2

( , ) ( , ) 2
1

xx yyC G x y G x y p


 



       

. (A24) 

Given that ( , , , ) ( , , , )xx yyg x y g x y      (Equations (A17) and (A18)), thus 

 
* 1 2

2(1 )
p


 




  


. (A25) 

Although Equation (A25) is derived for an elliptic cylindrical inclusion, it is valid for 

all the geometric inclusions that can be regarded as plane strain problem, because the 

inclusion only undergoes a pure dilatational deformation. Introducing Equation (A25) 

into Equation (A20) we obtain the final expression of the induced stress tensor both in 

the inclusion and its surrounding rock, as given in Equation (2.1). All the 

variables/parameters adopted in this Appendix will keep the same physical meaning 

when we use them in the following Appendices B-D. 
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B. Surface integral of Green’s function for stress 

In this appendix, we solve the surface integrals of Equation (2.1). The entire inclusion 

is divided into two trapezoids by the fault. The surface integral of one function over a 

trapezoid can be regarded as the sum of the integrations over a triangle and a rectangle 

(Figure B1). The integrand function is the Green’s function for stress given in 

Equations (A17)-(A19). We need to consider the existence of singularities for values of 

ς and ξ equal x and y, respectively, where the Green’s function becomes infinite. This 

only occurs for points (x, y) located inside the inclusion, for which the integral become 

improper. Thus, we perform the regular bounded integral for (x, y) located outside the 

inclusion, while for (x, y) located inside the inclusion we solve the improper integral by 

excluding a neighborhood of the singularity. To generalize the integration of Green’s 

function, we apply an arbitrary coordinate system, as shown in Figure B1. After 

solving the surface integrals over the triangular and rectangular domains, the solutions 

are transformed into the coordinate system of Figure 2.1.  

  
Figure B1: Schematic geometry of triangular and rectangular domains in an arbitary coordinate 

system 

Rectangular Inclusion: 

For (x, y) located outside of the rectangle, we calculate the surface integral of the Green’s 

function for horizontal stress ( , , , )xxg x y    using standard techniques and we obtain 
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If (x, y) is located in the rectangle, we need to consider the improper integration of the 

Green’s function. Note that if standard integration (like in Equation (B1)) is applied for 

such points, the result depends on the order of integration, because Fubini’s theorem 

(DiBenedetto, 2016) does not hold in this case. We solve the improper integral 

excluding a neighborhood of the singular point (ς, ξ) = (x, y), which makes the 

integrand function being bounded. We observe that ( , , , )xxg x y   is antisymmetric with 

respect to the line y - ξ = x - ς, that is,
 

( , , , ) ( , , , )xx xxg x y g y x     . This means that 

the integral is zero for a square domain centered in the singular point, because the 

contribution from the triangle above the symmetry line cancels with the contribution 

from the triangle below. Therefore, we can exclude a square neighborhood of any size 

contained in the domain Ω and centered in the singular point. In the rest of the domain 

Fubini’s theorem holds and we can apply the standard sequential integration (Equation 

(B1)). For the square domain, the actual contribution is zero while standard integration 

technique gives 𝜋, which can be checked by substituting y - r = x - p = s - y = q - x into 

Equation (B1). Therefore, we must remove the offending contribution, so that the 

integral for points inside the inclusion is 

 
in out( , ) ( , )xx xxG x y G x y   . (B2) 

Note that this result is independent on the order of integration. 

Equations (B1) and (B2) only differ for the last term −𝜋, which is a result of the 

improper integral for points located inside the reservoir. We therefore express the 

surface integral in the general form 

 ( , ) atan atan atan atanxx

y r y r y s y s
G x y

x p x q x p x q


   
    

   
 (B3) 

with δΩ defined in Equation (A21). 

There are four singularities at the corners (A, B, C and D) of the rectangular inclusion 

domain (Figure 2.B1) where the arguments in Equation (B3) become indefinite (i.e., 

0/0). The integral is in fact not defined at these points, and it is discontinuous there 

(different values are obtained when approaching it from one side or the other). 
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The same procedure can be applied to integrate the Green’s function for vertical stress

( , , , )yyg x y   . Since ( , , , ) ( , , , )yy xxg x y g x y      (see Equations (A17) and (A18)), 

it follows 

 ( , ) ( , , , ) ( , )
s q

yy yy xx
r p

G x y g x y d d G x y       . (B4) 

To integrate the Green’s function for shear stress ( , , , )xyg x y   , we follow the same 

procedure used to integrate ( , , , )xxg x y   . We observe that ( , , , )xyg x y    is 

antisymmetric with respect to y - ξ = 0 or x - ς = 0, therefore the integral over a square 

domain centered in the singular point is 0. We also observe that standard sequential 

integration technique in this case gives 
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(B5) 

Application of Equation (B5) for a square neighborhood of the singular point gives 0, 

which demonstrates that Equation (B5) is valid for both the cases of (x, y) located 

outside or inside the inclusion. 

In Equation (B5), there are four singularities at the corners A, B, C and D. 

Triangular Inclusion: 

For the integration over a triangular inclusion, we apply the same technique adopted 

for the case of the rectangular inclusion. As an example, the integral of the Green’s 

function for horizontal stress is 
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where the last term   takes into account the effect of the improper integral for 
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points located inside the inclusion. The integration of the second term in the right-hand 

side of Equation (B6) is non-trivial and a potential solution can be obtained by the 

following transformation 
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Substituting Equation (B7) into Equation (B6) and after some derivations, we obtain 
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The final expression of the integration of the Green’s function for horizontal stress 

over a triangular inclusion domain is 
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where functions f1 and f2 are  
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Similarly, integrations of the Green’s function for the vertical and shear stress 

components over a triangular inclusion domain are 
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where function f3 is  
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The singularities are located at the three corners A, D and E in this case. 

Trapezoidal Inclusion: 

We apply the superposition principle and obtain the integrations of the Green’s 
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function for the stress components over a trapezoid as the combination of the above 

integrals for rectangular and triangular inclusions  
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Note that the last term in Equation (B15) is a consequence of having improper integrals 

either for the rectangle or the triangle, i.e., (x, y) falls within the rectangle or the 

triangle. In Equations (B15)-(B17), the singularities are located at the four corners A, B, 

C and E of the trapezoid. 

Application into a specific coordinate system: 

For a permeable fault, pore pressure changes at both sides of the fault during fluid 

injection or production and thus, the inclusion is composed by two trapezoids. The 

analytical expressions of integration of the Green’s function for the stress components 

in the general coordinate system is transformed into the coordinate system of Figure 

2.1 such as 
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If c and d have finite value, the inclusion represents a finite reservoir and there are 

eight singularities for the solution: the four corners P1, P2, P3 and P4 located on the 

fault (Figure 2.1) and the four corners on the outer boundary of the faulted reservoir. If 

c = d = ∞, the reservoir is infinite and there are only the four singularities located on 

the fault. 

For a vertical fault (𝜃 = 90), such integral solutions read 
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and for a zero offset fault in which a = b, we have 
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C. Induced stress on the fault plane 

The expression for normal and tangential stress on the fault plane can be found by 

transforming the main coordinate system into a coordinate system placed on the fault 

and oriented along it. We first operate the translation, thus the horizontal and vertical 

integral solutions of the Green’s function for the stress components on the fault plane 

are evaluated by setting cotx y   in Equations (B18)-(B20), such that  
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where sgn(•) is the sign function defined as 1 if (•) > 0, 0 if (•) = 0 or -1 if (•) <0, and 

function f4 is 
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4
ˆ ˆ ˆ( , )f y y y y y y   . (C3) 

Substituting Equations (C1) and (C2) into Equation (2.1) yields the x-y planar induced 

stress along the fault plane. Subsequently, applying the stress transformation with axis 

rotation to transform the coordinate system, one can obtain the expression of induced 

normal 𝜎𝑛(𝑦cot𝜃, 𝑦) and tangential 𝜏(𝑦cot𝜃, 𝑦)  stress components along a fault 

plane with an arbitrary dip angle. Considering the sign convention and geometry 

adopted here, such stress transformation equations are 
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Substituting Equations (C1), (C2) and (2.1) into Equations (C4) and (C5) and 

normalizing by the scaling parameter C (Equation (2.2)), the dimensionless induced 

normal 𝜎𝑛(𝑦cot𝜃, 𝑦) and tangential 𝜏(𝑦cot𝜃, 𝑦) stress components along the fault 

plane are  
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where ( cot , )ijG y y  is shorten into 
ijG for convenience, and the four corners P1, P2, 

P3 and P4 on the fault plane are singularities (Figure 2.1). To simplify Equations 

(B18)-(B20) into Equations (C1) and (C2), we apply the general rule of taking the right 

limit, i.e., the limit that the argument approaches the fault from its right-hand side, as 

the value of the fault plane. Thus, the segment P1-P2 belongs to the inclusion, while 

the segment P3-P4 belongs to the surroundings for a permeable fault in the above 

equations. 

In particular, for a vertical fault (𝜃 = 90), we obtain 
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and for a zero offset fault, we have 
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D. Supplementary Information for Chapter 2 

Two sections are included in this Appendix. Section D1 contains the detailed 

comparison between our analytical solution and the numerical solution of the fully 

coupled finite element code CODE_BRIGHT (Olivella et al., 1994; 1996) for both 

permeable and impermeable fault with a dip angle 60(Text D1 and Figures D1-D6). 

Section D2 presents the analytical results of induced stress for a vertical permeable 

fault (Text D2 and Figures D7-D9). 

Text D1: Detailed comparison between our analytical solution and CODE_BRIGHT 

for an inclined displaced fault 

For verification purposes of the analytical solution, we compare in the main text 

(Figure 2.2) the horizontal and vertical total stress as well as the shear stress along the 

fault resulting from our analytical solution and the numerical results obtained with 

CODE_BRIGHT. Here, we present a more detailed comparison of the results, showing 

the contour plots and the line diagrams on induced horizontal, vertical and shear stress 

components in Figures D1-D6. Each figure includes four parts, (a) is the results of the 

analytical solution developed in the main text, (b) is the simulated results of 

CODE_BRIGHT, (c) and (d) are the comparisons between the analytical solution and 

CODE_BRIGHT at the lines x = 0 m, x = 100 m, and y = 0 m, y = 150 m, respectively. 

To show the features clearly, we plot both the analytical and numerical results focusing 

on a rectangle of 800 m by 600 m centered in the fault. Figures D1-D3 show the results 

for a permeable fault, and Figures D4-D6 display the results for an impermeable fault. 

Figures D1-D6 clearly show that the analytical results are almost identical to the 

numerical results, only the maximum and minimum values have a little difference 

because the corners are singularities for the analytical solution, which leads to an 

infinite stress (for representation purposes, the infinite stress is cut off to a finite value), 

while there is no singularity for numerical solution. Additionally, the discrete nature of 

the numerical solution also contributes to such discrepancies. Thus, the absolute 

maximum and minimum values in the numerical results are always smaller than those 

of the analytical results. 
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Figure D1. Detailed comparison of the induced horizontal stress for a permeable fault between 

(a) the analytical solution (AN) and (b) the numerical results of CODE_BRIGHT (CB), as well 

as the specific comparison of them at the lines (c) x = 0 and x = 100 m, and (d) y = 0 and y = 

150 m. The reservoir geometry and the fault are indicated by the white lines in (a). 
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Figure D2. Detailed comparison of the induced vertical stress for a permeable fault between (a) 

the analytical solution (AN) and (b) the numerical results of CODE_BRIGHT (CB), as well as 

the specific comparison of them at the lines (c) x = 0 and x = 100 m, and (d) y = 0 and y = 150 

m. The reservoir geometry and the fault are indicated by the white lines in (a). 
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Figure D3. Detailed comparison of the induced shear stress for a permeable fault between (a) 

the analytical solution (AN) and (b) the numerical results of CODE_BRIGHT (CB), as well as 

the specific comparison of them at the lines (c) x = 0 and x = 100 m, and (d) y = 0 and y = 150 

m. The reservoir geometry and the fault are indicated by the white lines in (a). 
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Figure D4. Detailed comparison of the induced horizontal stress for an impermeable fault 

between (a) the analytical solution (AN) and (b) the numerical results of CODE_BRIGHT 

(CB), as well as the specific comparison of them at the lines (c) x = 0 and x = 100 m, and (d) y 

= 0 and y = 150 m. The reservoir geometry and the fault are indicated by the white lines in (a). 
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Figure D5. Detailed comparison of the induced vertical stress for an impermeable fault 

between (a) the analytical solution (AN) and (b) the numerical results of CODE_BRIGHT 

(CB), as well as the specific comparison of them at the lines (c) x = 0 and x = 100 m, and (d) y 

= 0 and y = 150 m. The reservoir geometry and the fault are indicated by the white lines in (a). 
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Figure D6. Detailed comparison of the induced shear stress for an impermeable fault between 

(a) the analytical solution (AN) and (b) the numerical results of CODE_BRIGHT (CB), as well 

as the specific comparison of them at the lines (c) x = 0 and x = 100 m, and (d) y = 0 and y = 

150 m. The reservoir geometry and the fault are indicated by the white lines in (a). 
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Text D2: Analytical results for a vertical permeable fault 

We plot the analytical results for a vertical permeable fault, which aims at comparing 

our solution with the results of Jansen et al. (2019). Using the same example as Jansen 

et al. (2019), we find that Figures D7-D9 in this Appendix are identical to Figures 6-8 

in Jansen et al. (2019). Thus, the analytical solution developed in this work is verified 

again by comparing it with an existing analytical solution. 

 
Figure D7. Dimensionless induced horizontal stress for a vertical permeable fault calculated 

using our analytical solution. The scaling parameter C is 2.36 MPa for the parameter values 

listed in Table 1. The reservoir geometry and the fault are indicated by the white lines. 

 

 
Figure D8. Dimensionless induced vertical stress for a vertical permeable fault calculated using 

our analytical solution. The scaling parameter C is the same as in Figure D7. The reservoir 

geometry and the fault are indicated by the white lines.  
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Figure D9. Dimensionless induced shear stress for a vertical permeable fault calculated using 

our analytical solution. The scaling parameter C is the same as in Figure D7. The reservoir 

geometry and the fault are indicated by the white lines. 
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E. Poroelastic displacement due to fluid injection/depletion in a half 

space 

We derive the solution for poroelastic displacement based on Eshelby’s inclusion 

theory (Eshelby, 1957) and Green’s function under point force (Mindlin, 1936; Segall, 

2010). We treat the reservoir as an inclusion when a uniform pore pressure variation 

p  occurs in the reservoir due to fluid injection/depletion. Once re-welding the 

inclusion to its surrounding matrix and applying the restoring force in opposite 

direction (to remove the restoring force), a displacement field ( , , )iu x y z is generated 

inside and outside the inclusion (detailed imaginary steps of the inclusion theory can 

be found in Jansen et al., 2019; Rudnicki, 2011; Segall, 2010) 

 ( , , ) ( , , , , , ) ( , , )i iu x y z p x y z d      


    Γg n , (E1) 

where α is Biot’s coefficient, Γn is the unit normal vector pointing outward from the 

boundary ( ) of the inclusion, x, y and z are the Cartesian coordinates, , ,   are the 

coordinate values on  , and  

( , , , , , ) g ( , , , , , ),g ( , , , , , ),g ( , , , , , )
T

i i i ix y z x y z x y z x y z                g , (E2) 

where g ( , , , , , )ij x y z     means Green’s function tensor, a fundamental solution 

representing the displacement in the i-direction at point ( , , )x y z under a unit body force 

in the j-direction at point ( , , )    in elasticity (Mindlin, 1936; Segall, 2010), 

subscripts i and j are free indexes with ( , , )i x y z  and ( , , )j     in the three 

dimensional (3D) Cartesian space. The point source ( , , )   is a center of 

dilatation/contraction that consists of three mutually orthogonal double forces without 

moment (Mindlin, 1936). Pore pressure shows the same property as the center of 

dilatation in mechanics, which establishes the theoretical basis of representing the 

former by the latter. 

Applying Gauss’s divergence theorem in Equation (E1) transforms the surface integral 

into a volume integral 

 ( , , ) ( , , , , , )i iu x y z p x y z d   


    g , (E3) 

where denotes the inclusion domain, and now , ,    mean the coordinate values 
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inside the domain  . 

For a plane-strain problem, Equation (E3) can be reduced into a two-dimensional (2D) 

version 

 
( , , , ) ( , , , )

( , )
i i

i

g x y g x y
u x y p d

    


 

 
   

  . (E4) 

For the sake of simplification, Jansen et al. (2019) and Wu et al. (2021a) adopted a 

full-space version of Green’s function to develop an analytical solution for induced 

stress. It is valid for the stress analysis around faults buried at depth. However, an 

upward/downward motion of the overburden will accommodate the vertical 

displacement (Richard et al., 1995; Rowan et al., 2004), and thus, the displacement 

distribution is more sensitive to the free-surface effects than the stress. We here apply a 

half-space Green’s function, which was first solved by Mindlin (1936), to derive the 

closed-form solution for displacement. A related 2D version of half-space Green’s 

function can be found in Segall (2010, p.61) 
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 , 

(E5) 

where and v are the shear modulus and Poisson’s ratio, respectively, x and y have the 

same setting as the one shown in Figure 3.1, and 

 
2 2 2

1 ( ) ( )R x y     , (E6) 

 
2 2 2

2 ( ) ( )R x y     , (E7) 
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 2 atan
x

y










. (E8) 

Note that the 2D version of Green’s function is dimensionless as it is obtained by 

integrating the 3D version with respect to the out-of-plane dimension, while the latter 

has dimension of 1/m. 

Substituting Equation (E5) into Equation (E4) yields 

 
( , )(1 2 )

( , ) ( , , , )
2 (1 )

i
i i

G x yp p
u x y g x y d

 
  

    

  
  

  , (E9) 

where 
(1 2 )

2(1 )

 








 is the poroelastic coefficient (Detournay and Cheng, 1993), and 

displacement function tensor ( , , , )ig x y   is 

 2 2 4

1 2 2

(3 4 )( ) 2 ( )( )
( , , , )

2 2
x

x v x y y x
g x y

R R R

   
 

    
   , (E10) 

 

2 2

2 2 4

1 2 2

(3 4 )( ) [( ) ( ) ]
( , , , )

2 2
y

y v y y x y
g x y

R R R

   
 

     
   . (E11) 

The displacement function describes the displacement gradient at point (x, y) in 

response to a unit center of dilatation/contraction at point source in physics. It is 

identical to the one shown in Segall (1985, Equation C8 in Appendix C), while the 

latter is derived from Melan’s results (Melan, 1932). Such consistency benchmarks our 

previous mathematical manipulations. The first term in the right-hand side of 

Equations (E10) and (E11) just corresponds to the full-space version of displacement 

function, and other two terms describe the effects of free surface. For the sake of 

convenience in solving the above surface integral ( , )iG x y , we abbreviate these three 

terms as  , ,x x xg g g    for Equation (E10), respectively, and , ,y y yg g g    for 

Equation (E11), respectively. All the variables/parameters adopted in this Appendix 

will keep the same physical meaning when we use them in the following Appendices 

F-J. 
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F. Closed-form integral solution of displacement function in a half 

space for two basic elements of inclusion: a rectangle and a 

triangle 

We here present the mathematical derivations of the surface integral of Equation (E9) 

for the two basic elements of inclusion domain: a rectangle and a triangle, by following 

the idea of Wu et al. (2021a). For a complicated inclusion domain, one can achieve it 

by the principle of superposition. The integrand function is the displacement function 

given in Equations (E10) and (E11). We need to consider the existence of singularities 

for values of ς and ξ equal to x and y, respectively, where the displacement function 

becomes infinite/undefined. This only occurs for points (x, y) located inside the 

inclusion, for which the integral becomes improper. Thus, we perform the regular 

bounded integral for (x, y) located outside the inclusion, while for (x, y) located inside 

the inclusion we solve the improper integral by excluding a neighborhood of the 

singularity. To generalize the integration of the displacement function, we apply a 

general coordinate system as shown in Figure F1. Once we have the integral solution, 

its application only requires transforming the general coordinates to specific ones as 

illustrated in Section 3.2.2 of the Thesis. 

 

Figure F1: Schematic geometry of triangular and rectangular domains in a general coordinate 

system 

 

Rectangular Inclusion: 

For (x, y) located outside of the rectangle, we calculate the surface integral of horizontal 

displacement function ( , , , )xg x y    using standard techniques and we obtain 



Appendix F 

156 

Rec, out
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( , ) ( , ) ( , )

q s q s
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p r p r
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     

   
, (F1) 

where the upper and lower limits o, p, q, r, and s are the general coordinates shown in 

Figure B1, and 
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By integrating by parts, 
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. (F6) 

To save space, we do not unfold the final expressions in Equations (F4)-(F6), which 

can be obtained by replacing   with q and p, and then subtracting the latter from the 

former. 

If (x, y) is located within the rectangle, we need to consider the improper integration of 

the displacement function. Note that if the standard integration (like in Equations 

(F2)-(F6)) is applied for such a case, the result depends on the order of integration, 

because Fubini’s theorem does not hold in this case. We solve the improper integral 

(Courant & John, 1989) excluding a neighborhood of the singular point (ς, ξ) = (x, y), 
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which makes the integrand function being bounded. We observe that ( , , , )xg x y   is 

antisymmetric with respect to the line x - ς = 0, i.e.,
 

( , , , ) ( , , , )x xg x y g y x     . 

This mean that the integral is zero for a square domain centered in the singular point, 

because the contribution from the triangle above the symmetry line cancels with the 

contribution from the triangle below. Therefore, we can exclude a square neighborhood 

of any size contained in the domain Ω and centered in the singular point. In the rest of 

the domain, Fubini’s theorem holds and we can apply the standard sequential 

integration (Equations (F2)-(F6)). For the excluded square domain, the actual 

contribution is zero while the standard integration technique gives −𝜋𝑥, which can be 

checked by substituting x - p = q – x = 0
+
 (or 0

-
) into Equations (F4)-(F6). Therefore, 

we must remove this redundant contribution resulting from the standard integration in 

the excluded square domain, so that the integral for points inside the inclusion is 

Rec, in Rec, out( , ) ( , )x xG x y G x y x  . (F7) 

Note that this result is independent on the order of integration. 

Equations (F1) and (F7) only differ for the last term 𝜋𝑥, which is a result of the 

improper integral for points located inside the reservoir. We therefore express the 

integral solution of horizontal displacement function in the general form 

Rec Rec, out( , ) ( , )x xG x y G x y x   , (F8) 

where δΩ is the modified Kronecker delta, which equals 1 if (𝑥, 𝑦) ∈ Ω and 0 if 

(𝑥, 𝑦) ∉ Ω. 

There are four singularities for the integral solution (Equation (F8)) at the corners (A, 

B, C and D) of the rectangular inclusion domain (Figure B1) where some arguments in 

Equation (F5) become indefinite, i.e., 0/0. The integral is in fact not defined at these 

points, and it is discontinuous there (different values are obtained when approaching it 

from one side or the other). 

The same procedure can be applied to integrate the vertical displacement function 

( , , , )yg x y   , which reads, 
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where, 
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For (x, y) located in the rectangle, it becomes improper integral. We solve it with the 

same method adopted for the horizontal component. We observe that although there is 

no uniform antisymmetric line for ( , , , )yg x y   , yg  is antisymmetric with respect 

to the line 0y   , i.e., ( , , , ) ( , , , )y yg x y g x y       , and yg  and yg are 

bounded. This means that we only need to consider the improper integration for yg . 

Therefore, we similarly exclude a square neighborhood of any size contained in the 

domain Ω and centered in the singular point. In the rest of the domain, Fubini’s 

theorem holds and we can apply the standard sequential integration (Equations 

(F10)-(F12)). For the excluded square domain, the actual contribution is zero while the 

standard integration technique for yg  gives −𝜋𝑦 , which can be checked by 

substituting y - r = s – y = 0
+
 (or 0

-
) into Equation (F10). Therefore, we must remove 

this redundant contribution, so that the integral for points inside the inclusion is 

Rec, in Rec, out( , ) ( , )y yG x y G x y y  . (F13) 

Equations (F9) and (F13) only differ for the last term 𝜋𝑦, thus, the general form for 

the integral solution of vertical displacement function is 

Rec Rec, out( , ) ( , )y yG x y G x y y   . (F14) 



Appendix F 

159 

There are also four singularities for the integral solution (Equation (F14)) of vertical 

displacement function at the corners (A, B, C and D) of the rectangular inclusion 

domain where some arguments in Equation (F10) become indefinite, i.e., 0/0. The 

integral is not defined at these points, and it is discontinuous there. 

 

Triangular Inclusion: 

For the integration over a triangular inclusion, we apply the same technique adopted 

for the case of a rectangular inclusion. The integral of the horizontal displacement 

function is 

( ) tan
Tri, out

Tri, out Tri, out Tri, out

( , ) ( , , , )

( , ) ( , ) ( , )

p o r

x x
o r

x x x

G x y g x y d d

G x y G x y G x y

 

   
 



     

  , (F15) 

where, 
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, (F16) 
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(F17) 
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where tany y o r    , tany y o r    , and y y  . 

Integration of the last term in the right-hand side of Equations (F16)-(F18) is similar to 

the one for a rectangular inclusion, while the second term of Equations (F16) and (F17) 

and the first term of Equation (F18) are non-trivial. A potential solution for the second 

term of Equation (F16) can be obtained by the following transformation 

 

2 2 2 2
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Substituting Equation (F19) into Equation (F16) and after some derivations, we obtain 

2
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We further make the transformation 

[( ) ( tan )sin cos ] [ ( tan )sin cos ]x y x x y x               . (F21) 

Substituting Equation (F21) into Equation (F20) and after some derivations, we obtain 
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Substituting Equation (F22) into Equation (F16), we finally get 
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Similarly, applying the following transformations for the similar term of Equations 

(F17) and (F18), respectively, 

 

2 2 2 2

2 2 2
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(F24) 

 2 2 2 2 2( ) ( tan ) ( tan ) [( tan ) tan ( )] cosx y y x y x                   , (F25) 

leads to 
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Further substituting the following transformations 

[( ) ( tan )sin cos ] [ ( tan )sin cos ]x y x x y x               , (F28) 

[( ) ( tan )sin cos ] ( tan )sin cosx x y x y x               , (F29) 

into Equations (F26) and (F27), respectively, gives 
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Finally, substituting Equations (F30) and (F31) into Equations (F17) and (F18), 

respectively, reads 
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Applying the same procedure for the vertical displacement function yields 

Tri, out
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where, 
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where cotx x r o    , x x  , and x x  . 

For the second term in the right-hand side of Equations (F35) and (F36), we apply 
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Making transformations
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(F40) and (F41), respectively, and then taking the results into Equations (F35) and 

(F36), respectively, we obtain 
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For the last term in the right-hand side of Equation (F37), a further derivation gives 
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The last term in the right-hand side of Equation (F44) is similar to the second term of 

Equation (F36), we thus follow similar transformations and take the results into 

Equation (F44). Finally substituting all the derived equations into Equation (F37) reads 
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For points located inside the inclusion, the improper integral still gives an extra term 

𝜋𝑥 and 𝜋𝑦 for the horizontal and vertical components of the displacement function, 

respectively. Thus, the general form of the integral solution for a triangular inclusion is 

Tri Tri, out( , ) ( , )x xG x y G x y x   , (F46) 

Tri Tri, out( , ) ( , )y yG x y G x y y   . (F47) 

The singularities of the integral solution (Equations (F46) and (F47)) for a triangular 

inclusion are located at the three corners A, D and E of the triangle where some 

arguments in Equations (F23) and (F42) become indefinite, i.e., 0/0. The integral is not 

defined in these points. 
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G. Closed-form versions of Geertsma’s solution and our solution for 

vertical displacement along the vertical reservoir center line 

The initial version of Geertsma’s solution (Geertsma, 1973) is expressed in the form of 

elliptic integrals. We here provide two closed-form versions for its vertical 

displacement along the vertical reservoir center line to compare with our plane-strain 

solution. The first one is an approximate version obtained by assuming a vertically 

concentrated compaction at the horizontal reservoir center line (Fjær et al., 2008), 

Geertsma v1

m
2 2

2

2 2 3/22 2

1
(0, ) 3 4

2 ( )

(3 4 )( ) 2

[( ) ]( )

y

D y D y
u y C h p v

D y D y R

v D y R y

D y RD y R


  

    
  

  
  

     

, (G1) 

where h, D, R are the thickness, depth, and radius of the disk-shaped reservoir, 

respectively, and m

(1 2 )

2(1 )
C

 

  


 


 is the uniaxial reservoir compaction 

coefficient defined in Geertsma (1973). We have transformed the solution to the setting 

shown in Figure 3.2. 

The approximate version however cannot provide good results for points inside the 

reservoir. We improve the approximate solution to an exact one 
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. (G2) 

For the setting of Figure 3.2B, the inclusion is a simple rectangular domain. For the 

special center line, our plane-strain solution thus reduces to 
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H. Closed-form version of Segall’s solution and our solution for 

ground displacement 

The initial version of Segall’s solution (Segall, 1985) is a semi-analytical one. It was 

simplified into a closed-form version for ground displacement (Segall, 1989). We here 

rewrite the approximate version by taking the pore pressure change instead of the pore 

fluid content as the primary variable based on the illustration of Segall (1989), which 

reads, under the setting shown in Figure 3.2B, 

2 2
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2 2
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Note that Equations (7a) and (7b) of Segall (1989) lose a minus, we have corrected 

them here. 

When focusing on the ground displacement for a rectangular inclusion, our solution 

can be reduced as 
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I. Approximate version of our integral solution for displacement 

function in a half space 

We show the approximate version of the surface integral presented in Appendix F by 

assuming a vertically concentrated contraction/dilatation at the horizontal reservoir 

center instead of a distributed one throughout the entire reservoir in vertical direction. 

For a rectangular inclusion, the approximate version is 
2 2 2 2

Rec

2 2 2 2

2 2 2 2

( ) ( ) (3 4 ) ( ) ( )
( , ) ln ln

4 ( ) ( ) 4 ( ) ( )

1 1
( )

( ) ( ) ( ) ( )

x

h y D x p h v y D x p
G x y

y D x q y D x q

hy y D
y D x p y D x q

      
 

     

 
   

      

, (I1) 

Rec

2 2 2 2

(3 4 )
( , ) (atan atan ) (atan atan )

2 2

( ) ( ) ( ) ( )

y

h x p x q h v x q x p
G x y

y D y D y D y D

x q x p
hy

y D x q y D x p

    
   

   

  
  

      

. (I2) 

For a triangular inclusion, we have 
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where ( cot ) / 2opx h o   is the middle point of o and p. We do not need to consider 

the problem of improper integration because the integral variable   has been replaced 

by constant D during the integration with respect to  . The lateral boundaries at the 

depth of the reservoir center are the singularities of the solution in this case. 

For a trapezoidal inclusion or the one in Figure 3.1, a similar solution can be obtained 

by combining Equations (I1)-(I4) as illustrated in Section 3.2.2. We should adopt two 

different reservoir depths for the left and right reservoir compartments, respectively, 

instead of the previous uniform depth for the combined inclusion in Figure 3.1 because 

the horizontal reservoir center has been displaced by faults. For the left reservoir 

compartment, the real depth is D+(b-a)/2, and it is D-(b-a)/2 for the right one. 
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J. Supplementary Information for Chapter 3 

 

 

Figure J1: Comparison of vertical poroelastic displacement along the vertical reservoir center 

line between our 2D plane-strain solution and the 3D Geertsma’s solution under various 

reservoir-geometrical conditions. The legend is shown in (A): the black solid and the red 

dotted lines represent our plane-strain solution evaluated with an individual inclusion (Ind. Inc.) 

and the exact version (v2) of Geertsma’s solution, respectively.  
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Figure J2: Horizontal (A and B) and vertical (C and D) components of the scaled poroelastic 

displacement for a permeable fault in a half space (A and C) and in a full space (B and D). 

Displacement is scaled by /p   with a value shown in Section 4.1. A, B, C, and D have 

the same color scale but the range of the legends is adapted to the values shown in each case. 

The reservoir geometry and the fault are indicated by the white lines. 
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Figure J3: Maximum difference of the scaled horizontal (Hor.) and vertical (Ver.) ground 

displacement components between the solution in a half space and in a full space as a function 

of the inverse of w/D or h/D (Figures 10A-10C), and of the inverse of wh/D2 (D, E, and F) for 

a rectangular reservoir with three comparative base values of aspect ratio e. Displacement is 

scaled by /p   with a value shown in Section 4.1. The legend is shown in B. The base 

values of reservoir thickness and width for each base-case scenario are included in the title of 

each subfigure. All the results associated with either varying w or h from 20 m to 3 km are 

included in this semi-log plotting, which aims at presenting the potential full-profile of the 

maximum difference with either varying w or h. 

 

 

 



Appendix J 

174 

 
Figure J4: Poroelastic coefficient 𝜂 as a function of Poisson’s ratio 𝜈 with a unit value of 

Biot’s coefficient. The value of Poisson’s ratio ranges from 0 to 0.5 for real materals.  

 

 

Figure J5: Difference of /iG   between the cases of 𝜈 = 0.15 and 𝜈 = 0.25 (A and B), 

and between the cases of 𝜈 = 0.25 and 𝜈 = 0.35 (C and D) for a permeable fault in a full 

space. A, B, C, and D have the same color scale as Figure 11 but the range of the legends is 

adapted to the values shown in each case. The reservoir geometry and the fault are indicated by 

the white lines. We take the base-case study in Section 4.1 as an example. 
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Figure J6: Difference of the reservoir geometry factor /iG  between the cases of 𝜈 = 0.25 

and 𝜈 = 0.15 (A and B), and between the cases of 𝜈 = 0.25 and 𝜈 = 0.35 (C and D) for a 

permeable fault in a half space. A, B, C, and D have the same color scale but the range of the 

legends is adapted to the values shown in each case. The reservoir geometry and the fault are 

indicated by the white lines. We take the base-case study in Section 4.1 as an example. 
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Figure J7: Comparison of the scaled horizontal (A and B) and vertical (C and D) displacement 

components between our exact solution (ES, A and C) and approximate solution (AS, B and D) 

for the zone of interest. A, B, C, and D have the same color scale but the range of the legends is 

adapted to the values shown in each case. Displacement is scaled by /p  with a value 

shown in Section 4.1 (we take the base-case study in Section 4.1 as an example). The reservoir 

geometry and the fault are indicated by the white lines. 
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K. Supplementary Information for Chapter 5 

Text K1: Cases of fault shear strength variations due to fluid injection 

In the chapter 5, we consider three factors that vary the frictional shear strength inside 

the slipping fault patch. To compare the role of each factor, we divide the shear 

strength variations into four cases, with the quasi-static elastic equilibrium equation for 

each case listed below. 

Case A: only the role of overpressure is considered. We take it as the base case for 

comparison. We can get a similar equation to Equation (5.4) as 
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where 𝜇∗ = 𝜇 for mode ΙΙΙ and 𝜇∗ = 𝜇/(1 − 𝜈) for mode ΙΙ, and 𝜇 is the shear 

modulus, 𝜈 is Poisson’s ratio, 𝛼 is Biot’s coefficient, a is the crack half-length, x and 

t denote the spatial and temporal variables, respectively, and 1/(x-s) is a simple 

Cauchy-type kernel of singular integral. 𝛿(𝑥) is the slip, ∆𝑝(𝑥, 𝑡) means the pore 

pressure changes, 𝜏b is the background shear stress (loading), 𝜏p = 𝑓p𝜎0
′ denotes the 

peak shear strength where 𝑓p is the static friction coefficient and  𝜎0
′ = 𝜎0 − 𝛼𝑝0 

denotes the initial effective normal stress. 

Case B: this case adds the poroelastic stress (poroelastic effects) to Case A, obtaining 
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where ∆𝜏(𝑥, 𝑡) and ∆𝜎(𝑥, 𝑡) are the tangential and normal components of poroelastic 

stress. 

Case C: this case adds the slip-weakening effects to Case A, it is the one considered by 

Garagash and Germanovich (2012), resulting in 
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where 𝛿w = 𝑓p/𝑤 means the slip-weakening scale in which w is the linear decreasing 

rate of friction coefficient. 

Case D: the latter case adds both the poroleastic and slip-weakening effects to Case A, 

which yields Equation (5.4). 
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Text K2: Surface integral of Green’s function for a rectangle inclusion 

The derivations of surface integral Gij of Green’s function for evaluating the 

poroelastic stress are introduced in the chapter 2. For a rectangle inclusion, the three 

components of surface integral read  

 
1 2 1 2

1 1 2 2

( , ) ( , ) atan atan atan atanyy xx

x x x x x x x x
G x y G x y

y y y y y y y y

   
     

   
, (K4) 
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   

, (K5) 

where x and y are the Cartesian coordinates, x1, x2, y1, and y2 are the left, right, bottom, 

and top boundaries of the rectangle inclusion, respectively. 

Text K3: Benchmark of the Gauss-Chebyshev quadrature 

We adopt the problem scenario of Garagash and Germanovich (2012) to benchmark 

the Gauss-Chebyshev quadrature applied to solve the singular integral equations. In 

their work, Garagash and Germanovich (2012) investigated the one dimensional fault 

slip problem due to fluid injection into the fault zone with only longitudinal 

permeability under a constant overpressure at injection well, 

 well h( , ) , / 4
x a

p x t p Erfc x D t
t

 


      , (K6) 

where Δ𝑝well  is the constant overpressure at the injection well and 𝜉  is a 

spatiotemporal variable, Dh is the hydraulic diffusivity. 

The previous case C is in agreement with the assumptions of Garagash and 

Germanovich (2012), hence, substituting Equation (K6) into Equation (K3) and 

reformatting the result in a dimensionless form read 

 
1

b

well
1

1 ( ) /
1 1 ( ) ( )

2

x ad s ds
ds x p Erfc x

a x s t


   

 

  
           

 , (K7) 

where the variables with an overbar denote their dimensionless form, in particular, 

𝑎̅ = 𝑎/𝑎w, 𝛿̅ = 𝛿/𝛿w, 𝑥̅ = 𝑥/𝑎 (𝑠̅ = 𝑠/𝑎 as well), 𝑡̅ = 4𝐷h𝑡/𝑎w
2 , 𝜏̅b = 𝜏b/𝜏p, and 

Δ𝑝̅well = Δ𝑝well/𝜎0
′ in which 𝑎w = 𝛿w𝜇∗/𝜏p denotes the characteristic patch length. 

Applying the Gauss-Chebyshev quadrature (see details in Section 5.2.3 of the Thesis) 

to solve Equation (K7), we obtain 

 
b

well

1

( )1
1 1 ( ) ( )

2

n
j i

j i i

j i j

F s x a
w x p Erfc x

a x s t
   

 

  
           

 . (K8) 

We here take Biot’s coefficient as 1 because Garagash and Germanovich (2012) does 
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not consider Biot’s effect. We can solve the unknowns of Equation (K8) given the 

normalized background shear loading 𝜏b/𝜏P  and the normalized overpressure 

Δ𝑝well/𝜎0
′ for an arbitrary injection time. Then, we can evaluate the distribution of 

normalized slip and shear stress along the crack plane. In the benchmark problem, we 

compare these distributions with the results of Garagash and Germanovich (2012) for 

three instants of normalized injection time under 𝜏b/𝜏P = 0.75 and Δ𝑝well/𝜎0
′ = 0.5 

(Figure K1), showing an excellent agreement. 

 

Figure K1: Distribution of the normalized (A) slip and (B) shear stress along the crack plane 

for the case of normalized overpressure equals 0.5 and of normalized shear loading equals 0.75 

at the instants of the square root of normalized time equals 0.3, 0.6, and 0.638. Solid and 

dotted lines denote the results of the Gauss-Chebyshev quadrature and Garagash and 

Germanovich (2012), respectively; red and black lines represent the physically meaningful 

distribution, while pink and gray lines correspond to the physically meaningless one associated 

with the crack growth under the meaningless reversal of pore pressure diffusion. 
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Figure K2: Distribution of scaled poroelastic stress components ∆𝜎𝑥𝑦 (A and B) and ∆𝜎𝑦𝑦 

(C and D) in two dimensional x-y plane (A and C) and on the fault plane (y = 0, B and D). 

Poroelastic stress is evaluated with Equations (5.14), (K4) and (K4) and scaled by the mean 

pore pressure Δ𝑝m of the pressurized inclusion, i.e., the results are independent of the mean 

pore pressure, under given values of 𝛼 = 0.7 and 𝜈 = 0.25. The size of inclusion is 100 m in 

the x direction by 10 m in the y direction. 
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Figure K3: Evolution of the normalized crack half-length (A and C) and the normalized peak 

slip (i.e., the slip at the crack center) (B and D) of cases A (only pore pressure changes are 

considered) (A and B) and B (pore pressure changes and poroelastic effects are considered) (C 

and D) under the normalized volumetric injection rate of 0.9 and various values of the 

background stress. Solid and dashed parts of the lines correspond to the crack growth under 

physically meaningful advance and meaningless reversal of the pore pressure diffusion, 

respectively. The quasi-static fault slip never transits to dynamic rupture in case A, in which, 

the crack length and peak slip are proportional to the square root of normalized time. There is 

one nucleation point of dynamic rupture in case B for relatively small values of background 

shear loading. This dynamic rupture, which we denominate as poroelasticity-dominant, will 

arrest and turn to quasi-static slip again. These two phenomena are expected because the 

unabated dynamic crack propagation only occurs for the slip-weakening faults. 

 

 



Appendix K 

182 

 

Figure K4: Map of slip regimes for case C (considering pore pressure changes and 

slip-weakening effects) in the normalized space of fault understress and injection rate. The 

black line separates the map as unstable slip (US) and ultimately stable slip (SS) regimes. The 

blue line separates the map where the nucleation/re-nucleation is and is not affected by residual 

friction 𝑓𝑟, respectively, which is evaluated from the solution with an unlimited 

slip-weakening law, i.e., without 𝑓𝑟. The brown line cuts out a sub-regime that indicates that 

the new re-nucleation, caused by the ending of slip weakening of a local patch, is and is not 

physically meaningful, respectively, which is evaluated with the limited slip-weakening law 

𝑓r/𝑓p = 0.6. US-3: slip-weakening-dominant unstable slip regime, with one nucleation point, 

caused by slip-weakening effects and not affected by 𝑓𝑟; US-4: slip-weakening-dominant 

unstable slip regime with a residual friction-delayed nucleation point; US-5: cut from the 

regime US-3, with one more re-nucleation point, caused by the ending of slip weakening, in 

addition to the one of US-3, not affected by 𝑓𝑟. SS-4: slip-weakening-dominant ultimately 

stable slip regime without nucleation, which is removed by 𝑓𝑟; SS-3: slip-weakening-dominant 

ultimately stable slip regime with one nucleation point, not affected by 𝑓𝑟. Here we extend the 

upper limit of normalized injection rate to the same one as in Figure 5 for comparison, while 

the potential tensile failure is not considered. The typical evolution of the normalized crack 

half-length and peak slip for each slip regime is shown in Figure S5. US-3, US-4, US-5, SS-4, 

and SS-3 just correspond to the slip regimes 2a, 3, 2b, 4, and 2c in Figure 11 of Garagash and 

Germanovich (2012), respectively. 
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Figure K5: Typical evolution of the normalized crack half-length (A and C) and peak slip (B 

and D) for case C (considering pore pressure changes and slip-weakening effects) with (red 

lines) and without (blue lines) the residual friction for each slip regime. Solid and dashed parts 

of the lines correspond to the crack growth under physically meaningful advance and 

meaningless reversal of the pore pressure diffusion, respectively. The location of points A1-E 

is shown in Figure K4. 
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Figure K6: Distribution of normalized half-length 𝑥̅c of the mature slip-weakening patch 

under case D (pore pressure changes and both poroelastic and slip-weakening effects are 

considered) in the normalized space of fault understress and volumetric injection rate. 𝑥c is 

scaled by the crack half-length a. The previous three types of boundaries as well as the 

abbreviation of each slip regime shown in Figure 5.5 are also plotted here as a background for 

comparison.  
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