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ABSTRACT 

Structural equation modeling (SEM) is a versatile framework that allows researchers to 

estimate systems of equations and test theoretical models. A significant portion of the literature 

on SEM focuses on model fit and selection, where researchers are interested in evaluating the 

goodness of fit of a theoretical model (absolute fit) or comparing multiple plausible models 

(relative fit). Evaluating exact or approximate fit is possible in both cases. The current doctoral 

thesis is a compilation of two published studies that contribute to the literature on both absolute 

and relative fit.  

The first study aimed to compare the accuracy of assessing exact model fit using two tests, 

namely the mean and variance adjusted chi-square test and the recently developed robust 

version of the Standardized Root Mean Squared Residual (SRMR) test, in situations where data 

is not normal. Through simulation, the study examined the impact of factors such as 

(non)normality, sample size, and model size on test accuracy. The results showed that the 

robust chi-square test outperformed the robust SRMR test with respect to Type I error rates and 

was less affected by model size. 

The second study investigated the accuracy of evaluating relative model fit using several 

versions of chi-square difference tests that are robust to violations of normality. The study 

manipulated levels of (non)normality, sample size, model size, and degrees of freedom for the 

difference test through simulation. The results showed that the mean and variance adjusted chi-

square difference test performed accurately across all investigated conditions and outperformed 

its mean-adjusted competitors, which required larger samples to perform adequately. 

In summary, the two studies in the doctoral thesis contribute to the literature on both absolute 

and relative fit in SEM. The findings suggest that the robust chi-square test is more accurate in 

assessing exact model fit than the robust SRMR test, and the mean and variance adjusted chi-

square difference test is a reliable method for evaluating relative model fit in SEM. 
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RESUMEN 

La modelización de ecuaciones estructurales (SEM, por sus siglas en inglés) es un marco 

general para estimar sistemas de ecuaciones. Debido a su generalidad y flexibilidad, SEM 

puede utilizarse para evaluar modelos teóricos y existe una cantidad sustancial de literatura 

centrada en la bondad de ajuste y en la selección de modelos. Específicamente, dado un modelo 

teórico, los investigadores están interesados en evaluar su bondad de ajuste (también conocida 

como ajuste del modelo a los datos o ajuste absoluto). Cuando hay varios modelos teóricamente 

plausibles, también están interesados en la selección del modelo (también conocida como ajuste 

relativo o comparación de modelos). En ambos casos, es posible evaluar el ajuste exacto o el 

aproximado. La presente tesis doctoral es una compilación de dos estudios publicados que 

contribuyen a la literatura de ajuste absoluto y relativo.  

El primer estudio tuvo como objetivo comparar la precisión de la evaluación del ajuste exacto 

del modelo utilizando dos pruebas: la prueba chi-cuadrado ajustada por media y varianza y la 

versión robusta recientemente desarrollada de la prueba de la raíz cuadrada media 

estandarizada residual (SRMR por sus siglas en inglés), en situaciones donde los datos no son 

normales. A través de simulaciones, el estudio examinó el impacto de factores como la 

(no)normalidad, el tamaño de la muestra y el tamaño del modelo en la precisión de las pruebas. 

Los resultados mostraron que la prueba chi-cuadrado robusta superó a la prueba SRMR robusta 

en términos de las tasas de error de Tipo I y fue menos afectada por el tamaño del modelo. 

El segundo estudio investigó la precisión de la evaluación del ajuste relativo del modelo 

utilizando varias versiones de pruebas de diferencia chi-cuadrado que son robustas a las 

violaciones de la normalidad. Utilizando simulaciones, el estudio manipuló los niveles de 

(no)normalidad, el tamaño de la muestra, el tamaño del modelo y los grados de libertad. Los 

resultados mostraron que la prueba de diferencia chi-cuadrado ajustada por media y varianza 
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fue precisa en todas las condiciones investigadas y superó a sus competidores ajustados por 

media, los cuales requirieron muestras más grandes para funcionar adecuadamente. 

En resumen, los dos estudios en la tesis doctoral contribuyen a la literatura tanto sobre el 

ajuste absoluto como sobre el ajuste relativo en modelos SEM. Los hallazgos sugieren que la 

prueba chi-cuadrado robusta es más precisa en la evaluación del ajuste exacto del modelo que 

la prueba SRMR robusta, y que la prueba de diferencia chi-cuadrado ajustada por media y 

varianza es un método confiable para evaluar el ajuste relativo de modelos SEM. 
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GENERAL INTRODUCTION 

Structural equation modeling (SEM) refers to a general approach to estimate systems 

of equations, generally involving latent variables to account for measurement error. Popular 

SEM software programs include AMOS (Arbuckle, 2014), EQS (Bentler, 2004), LISREL 

(Jöreskog & Sörbom, 2017), Mplus (Muthén & Muthén, 2017) and the Lavaan package 

(Rosseel, 2012) in R (R Core Team, 2019). Many models can be subsumed as special cases of 

the general SEM framework, including regression, instrumental variables regression, models 

for experimental data, factor analysis, path analysis, random effects models for panel data 

(Bollen & Curran, 2006), etc. The generality of the modeling approach and the availability of 

user-friendly software has made SEM of the most widely used data modeling techniques across 

behavioral, social, medical, and management sciences.  

The SEM modeling and estimation toolkit was originally developed for models 

involving continuous outcomes and with no mean structure (i.e., covariance structure 

modeling), and for estimation under normality assumptions. However, over the years, the SEM 

toolkit has considerably expanded to include standard errors and tests of model fit robust to 

non-normality (Satorra & Bentler, 1994), models with structured means (Browne & Arminger, 

1995), multiple-population models (Muthén, 1989), methods for missing data (Arbuckle, 

1996), models with discrete outcomes (Muthén, 1984) and item response theory (IRT) models 

(Embretson & Reise, 2000), models for clustered data (e.g., multilevel models: Hox, Moerbeek 

& Van de Schoot, 2017; Skrondal & Rabe-Hesketh, 2004), etc. When the observed outcomes 

are continuous, maximum likelihood (ML) has emerged as the estimator of choice (Maydeu-

Olivares, 2017b); when the outcomes are discrete, multi-stage estimators involving the 

computation of polychoric and polyserial correlations are more popular (Finney & DiStefano, 

2013) due to superior computational efficiency (Forero & Maydeu-Olivares, 2009).  
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Because of its generality and flexibility, SEM is often used for testing theoretical 

propositions (e.g., theoretical models). As a result, a substantial body of literature to date has 

focused on model goodness of fit and model selection in SEM.  

Goodness of Fit in SEM 

Given a theoretical model, researchers are interested in evaluating its goodness of fit. 

The goodness of fit of a statistical model refers to the extent to which a statistical model 

captures the data generating mechanism. Thus, goodness of fit refers to assessing the 

discrepancy between the proposed model and the data, and it is often referred to as model-data 

fit, or absolute model fit. These terms will be used interchangeably in this work.  

However, in applications, researchers oftentimes propose several competing models 

(i.e., hypotheses) that are all plausible based on the available theory. In such cases, it is not 

only important to assess how well each of these models fits the observed data (i.e., models’ 

absolute fit or model-data fit) but also to select the best fitting model among the competing 

models under consideration. Model selection refers to assessing the discrepancy between two 

models, and it is often referred to as relative model fit, or model comparison. These terms will 

be used interchangeably in this work. 

Two different perspectives exist regarding goodness of fit and model selection. The 

first perspective can be labeled “models as approximations”. Within this perspective, all 

models are simply approximations to real life phenomena (i.e., all models are wrong) and the 

researcher’s aim is to choose the model that provides the “best” approximation to the data 

generating process (Cudeck & Henly, 1991; MacCallum, 2003). From this perspective, it 

makes more sense to focus on model selection and take model parsimony into account. The 

second perspective can be labeled “models as structural relations”. Within this perspective, 

modeling involves estimating structural or “causal” relations even when data is observational 

(Bollen & Pearl, 2013; Pearl, 2009). From this perspective, it makes more sense to focus on 
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model fit because inferences are to be as precise and valid as possible.  

It is important to realize the “models as structural relations” is nested within the 

“models as approximations” perspective. In the models as approximations perspective, a 

discrepancy between the unknown data generating model and the fitted model is chosen, for 

instance the Root Mean Square Error of Approximation (RMSEA: Browne & Cudeck, 1993; 

Steiger & Lind, 1980), and a model is retained if the RMSEA is “sufficiently small” (5% is 

usually the chosen cut-off value). In contrast, the models as structural relations framework 

amounts to testing whether the RMSEA is zero, that is, to testing whether the fitted model is 

the data generating model. Similarly, within the models as approximations framework, a model 

nested within a model with more parameters is selected when the difference in RMSEA is 

“small” (MacCallum, Browne, & Cai, 2006), that is, when the difference in fit is “sufficiently 

small”. In contrast, from the models as structural relations perspective, a nested model is 

selected when the difference in RMSEA is zero, i.e., when both models yield the same fit to 

the data. The table below summarizes the relationship between tests of exact fit (models as 

structural relations) and the tests of close fit (models as approximations).  

This doctoral thesis focuses on exact fit, that is, on means of evaluating if a model fits 

the data exactly, or whether two models are statistically indistinguishable from each other. 

Because tests of exact fit are more stringent than tests of close fit, they are of interest 

particularly in models with few observed variables or few degrees of freedom. In such 

situations, tests of close fit can be misleading (see e.g., Kenny et al., 2015). On the other hand, 

testing for zero difference in fit has been used extensively, particularly within the measurement 

invariance literature (e.g., Guhn et al., 2018; Hawes et al., 2018; Huhtala et al., 2018; Jenkins 

et al., 2018), but also in a variety of other applications involving several theoretically equally 

justified hypotheses (e.g., Elkins et al., 2018; Lai et al., 2015; Pappu, & Quester, 2016; 

Schivinski & Dabrowski, 2016; Shams et al., 2017). 
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Assessing exact model fit: The likelihood ratio (chi-square) test statistic 

In classical SEM (i.e., in covariance structure analysis), the maximum likelihood (ML) 

model estimation procedure involves minimizing  

 1( , ( )) log ( ) log ( ( ))MLF tr p        S S S ,  (1) 

where S  is the sample covariance matrix, ( )  is the model implied covariance matrix,   is 

the vector of model parameters with length q, p is the number of observed variables, and tr is 

the trace of the matrix.  

When ML estimation is used for model estimation, model fit can be (and most 

commonly is) statistically evaluated relying on the likelihood ratio (LR) test (Jöreskog, 1969). 

This is because the LR test statistic is the product of the minimum of the fit function in Equation 

(1) multiplied by the sample size: 

     ˆ( 1) MLT N F  ,     (2) 

where N denotes sample size, and ˆ
MLF is the minimum of the fit function in Equation (1). If the 

model is correctly specified and data is multivariate normal, the T statistic asymptotically 

follows a central chi-square distribution with degrees of freedom (df) equal to the number of 

free sample variances and covariances minus the number of parameters estimated (p(p+1)/2-

q), hence providing statistical basis for evaluating the overall model fit. Specifically, T statistic 

can be conveniently pitted against the reference sampling distribution to obtain a p-value. The 

LR test evaluates if the model fits exactly and may be considered the only substantive test of 

fit for SEM (see e.g., Barrett, 2007). Given that its reference distribution is chi-square, T 

statistic is commonly referred to as the “chi-square” test statistic in the applied literature and 

the corresponding goodness of fit test, a “chi-square test” (χ2). 

The LR test can also be used to evaluate a relative fit of two competing models, given 

that the two models are nested (i.e., hierarchical). The most common type of model nesting is 

parameter nesting (Bentler & Bonett, 1980). A model (let’s denote it with M0) is nested within 
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another model if the covariance structures implied by it can be reproduced exactly by fitting 

the other model (let’s denote it with M1). The LR difference test assesses the null hypothesis 

that the model with fewer estimated parameters fits no worse than a model with more 

parameters. Under the normality assumptions, and for ML estimation, the difference in fit 

between two nested models can be tested simply by subtracting the two LR absolute fit 

statistics: 

0 1D T T   ,      (3) 

where T0 and T1 are chi-square statistics for models M0 and M1, respectively. Under these 

conditions, and when both models are correctly specified, D asymptotically follows a chi-

square distribution with degrees of freedom df = df0 – df1 (Steiger et al., 1985). Given that its 

reference distribution is chi-square, the D statistic is commonly referred to as the “chi-square 

difference” test statistic in the applied literature and the corresponding test a “chi-square 

difference test” (Δχ2). 

It is important to observe that in this set-up, the LR test for the absolute model fit and 

the LR difference test for relative model fit are directly related. Specifically, the former may 

be considered simply a special case of a latter because the LR test of overall model fit evaluates 

the null hypothesis that the proposed model (M0) fits no worse than a saturated model (M1), for 

which T1 = 0 and df1 = 0, hence D = T0.  

Factors affecting performance of chi-square tests 

The multivariate normality assumption 

The critical assumption underlying the chi-square test is that data are multivariate 

normal (normal theory – NT). If data are not normal, the reference sampling distribution of the 

test statistic may no longer be chi-square and, consequently, the accuracy of the p-values may 

deteriorate. Given that the assumption of multivariate normality is often untenable in empirical 

research (see e.g., Cain et al., 2017; Micceri, 1989), considerable research efforts have been 
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directed towards estimating the effects of violations of normality on the performance of the 

chi-square test. Overall, it has been well documented in the literature to date that chi-square 

test rejects the null hypothesis (i.e., the correctly specified model) too often (that is, above the 

specified alpha level), even under relatively small violations of the normality assumption (e.g., 

Fouladi, 2000; Hu et al., 1992; Satorra, 1990; Satorra & Bentler, 1994).   

 When data are not normal, D statistic in Equation (3) may also not be chi-square 

distributed (Satorra, 2000). Like the chi-square test for overall fit, it has been convincingly 

shown in simulation research that the chi-square difference test also results in inflated Type I 

error rates (i.e., overrejection) when data are non-normal (e.g., Brace & Savalei, 2017; Chuang 

et al., 2015). Put differently, under violations of the normality assumption, the chi-square 

difference test will tend to favor the more complex model under investigation too often when, 

in fact, the two compared models are indistinguishable in terms of fit.  

Sample size  

The statistical theory underpinning the chi-square test is asymptotic, meaning that the 

reference sampling distribution of the statistic is known to be chi-square in very large samples. 

However, for a variety of reasons, researchers often rely on small sample sizes. For instance, 

Jiang and Yuan (2017) report that among publications that have used SEM methodology 

between 2010 and 2016, sample sizes are less than 283 in half of the studies, less than 164 in 

a quarter of the studies, and less than 100 in 11% of the studies. 

 Given that small samples are a reality in research, the performance of the chi-square 

test in ‘smaller’ samples has been intensively investigated in simulations including the 

minimum sample size requirements for the statistical results to be valid. In general, key 

simulation findings indicate that at small sample sizes, the chi-square test’s Type I error rates 

may become inflated even under ideal conditions, that is, when normality assumption holds 

and model is correctly specified (see e.g., Nevitt & Hancock, 2004), and that inflation in Type 
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I error rates is exacerbated further with introduced data nonnormality. Minimal sample size 

requirements for the chi-square test to be accurate vary depending on several factors such as 

model size, missing data, reliability of the variables, and strength of the relations among the 

variables. In a given tentative application, the influence of these factors can be estimated by 

simulation (e.g., Muthén & Muthén, 2002) to determine minimum sample size requirements. 

 Given that the chi-square difference statistic is also chi-square distributed 

asymptotically, its performance when comparing difference in fit between two nested models 

may also be compromised in small samples. The research on this issue has been scarce and 

somewhat mixed. For instance, Chuang and colleagues (2015) found that chi-square difference 

test might tend to slightly overreject in small samples even if the normality assumption holds. 

On the other hand, Brace and Savalei (2017) reported accurate Type I rates and high power of 

the chi-square difference test in small samples under normality. Under violations of normality, 

both studies reported that larger sample sizes did not help rectify the problem of inflated Type 

I error rates of the chi-square difference test.  

Model size  

Model size has been operationally defined in the literature in several ways, that is, as 

the number of observed variables (i.e., the size of the covariance matrix), the number of free 

parameters being estimated, or a combination of these, such as the model degrees of freedom 

(df). It has been repeatedly shown in simulations that increasing the size of a model is 

associated with a decreasing accuracy of the chi-square p-values. It is still unclear why this 

happens, but essentially, the problem is that the asymptotic chi-square approximation of the 

test statistic is not good enough when models are large.  

 In general, it has been shown in simulations that the chi-square test tends to overreject 

correctly specified models (i.e., has the inflated Type I error rates) with increasing model size 

(e.g., Herzog et al., 2007; Hoogland & Boomsma, 1998; Jackson, 2003; Kenny & McCoach, 
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2003). More recent research efforts aimed at identifying the primary source of the suboptimal 

performance of the chi-square test with respect to the model size (e.g., Moshagen, 2012; Shi et 

al., 2018). In the first systematic investigation of this kind, Moshagen (2012) reported that the 

primary contributor to the overrejection effect is the number of observed variables, while 

neither the number of estimated model parameters nor df affect the chi-square test accuracy 

when the number of variables is held constant. In a follow-up to this study, Shi and colleagues 

(2018) confirmed that the number of variables is the primary source of the overrejection. In 

addition, the authors also reported that the number of estimated parameters has its unique 

contribution to the accuracy of the test, such that increasing the number of estimated parameters 

somewhat rectifies the overrejection problem.  

 Model size may also be discussed in the context of testing for difference in fit of two 

nested models. Like in the case of testing for overall model fit, model size may also be 

operationalized in terms of the number of observed variables of the two models, yet it is 

important to note that the size of the two covariance matrices will always be the same given 

that the models are nested. In addition, because fit of two nested models is being compared, it 

seems more reasonable to discuss model size in this set-up in terms of the relative model size, 

that is, the difference in the number of estimated parameters (the df for the difference test). 

Simulation studies investigating performance of the chi-square difference statistic has 

traditionally relied on the two abovementioned definitions of model size when designing their 

simulation conditions (e.g., Brace & Savalei, 2017; Chuang et al., 2015). The results of these 

studies do suggest that model size may have an affect the accuracy of the chi-square difference 

test. Specifically, it appears that increasing the difference in the estimated model parameters 

may exacerbate the effects of non-normality on Type I error inflation rates (Chuang et al., 

2015). In addition, increasing the number of observed variables may also lead to increasing 

overrejection rates, especially in small samples (Brace & Savalei, 2017).  



General Introduction 

12 

Potential solutions under the violation of normality assumption 

In the literature to date, several approaches have been suggested to overcome problems 

associated with chi-square tests when data are not normal. The first approach involves 

developing corrected chi-square tests that are robust to violations of normality. The second 

approach involves resampling methods which do not assume normally distributed data. Finally, 

the third approach involves development of alternative tests robust to nonnormality.  

 Regarding the first approach, several corrected chi-square tests, robust to violations of 

normality assumption, have been proposed. These corrections can be either mean adjustments 

(modify test statistic so that it agrees in mean with the chi-square reference distribution) or 

mean and variance adjustments so that it agrees in both mean and variance (Satorra & Bentler, 

1994). Specifically, the test statistic can be corrected so that in large samples it agrees in mean 

with the chi-square distribution (Asparouhov & Muthén, 2005; Satorra & Bentler, 1994; Yuan 

& Bentler, 2000), or it can be corrected so that it agrees in both mean and variance (Asparouhov 

& Muthén, 2010; Satorra & Bentler, 1994). Traditionally, mean adjustments have been more 

popular among substantive researchers primarily because mean and variance adjustments have 

only recently been implemented into popular statistical software packages (e.g., Mplus, R). 

However, in large samples, the mean and variance corrected chi-square test should be superior 

to the less computationally expensive mean corrected chi-square (Asparouhov & Muthén, 

2013), which has been also confirmed in simulations (e.g., Maydeu-Olivares, 2017b). 

 If the normality assumption is violated, the difference statistic D, in Equation (3) will 

not be chi-square distributed even if it is computed based on the two corrected (i.e., robust) 

LR-based statistics (Satorra, 2000). Several corrected chi-square difference tests have been 

proposed (e.g., Asparouhov & Muthén, 2006; Asparouhov & Muthén, 2010; Satorra, 2000; 

Satorra & Bentler, 2001; Satorra & Bentler, 2010). To date, the two most commonly utilized 

options among applied researchers have been the two versions of the Satorra-Bentler mean-
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adjusted chi-square difference tests (Satorra & Bentler, 2001; Satorra & Bentler, 2010). The 

results of simulation research (Brace & Savalei, 2017; Chuang et al., 2015) provided limited 

support for the robustness of the Satorra and Bentler (2001) and (2010) corrections gently 

favoring the more recently proposed one. Even though the mean and variance adjusted chi-

square difference statistic (Asparouhov & Muthén, 2006, 2010) should perform better than the 

mean corrected difference options and are currently implemented in some of the most popular 

statistical software packages (e.g., R, Mplus), its performance has not yet been thoroughly 

evaluated in simulations.  

 Regarding the second approach, the most used resampling method for evaluating 

overall model fit is the Bollen and Stine (1992) model-based solution to bootstrap p-values of 

the chi-square tests statistic (Bollen & Stine, 1992; Yuan et al., 2007). Although the Bollen-

Stine approach has been implemented in several widely used SEM packages, only a few studies 

to date have been investigating its performance. Overall, these studies reported higher accuracy 

of the method over the mean corrected versions of the chi-square test (e.g., Grønneberg & 

Foldnes, 2019; Nevitt & Hancock, 2001). The Bollen-Stine approach may also be used for 

comparing nested models, although its performance has not been systematically investigated 

in simulations (see e.g., Grønneberg & Foldnes, 2019).  

 Regarding the third approach, several tests appropriate for non-normal data have been 

proposed as alternatives to the chi-square test. For instance, Wu and Lin (2016) developed a 

scaled F test by matching 3 moments (i.e., the mean, variance, and skewness) simultaneously. 

Maydeu-Olivares (2017a) provided statistical theory for utilizing the standardized root mean 

square residual (SRMR: Browne & Cudeck, 1993) as a test of exact fit, both under normality 

assumptions and when data is not normal. The SRMR can be used to assess exact fit by simply 

setting the value of the approximate fit to 0 and using a normal reference distribution 

approximation to obtain p-values. More recently, Hayakawa (2019) proposed a goodness of fit 
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test and its scaled version based on reweighted least squares (RLS), originally proposed by 

Browne (1974). RLS relies on the ML discrepancy function to obtain ML estimates, which are 

then plugged into the generalized least squares (GLS) loss function to calculate the test statistic 

(TRLS). Although TRLS is based on the ML estimator, it does not rely on the conventional 

discrepancy function in Equation (1) to compute the test statistic. Although these newly 

proposed alternatives to the scaled chi-square tests show promise, additional research is 

required to ascertain their performance under violations of normality and potential advantages 

to the current standard. In addition, at the time of this writing, these tests for assessing overall 

model fit do not include statistical theory for their comparative fit counterparts.  
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OBJECTIVE AND MOTIVATION 

The objective of this doctoral thesis is twofold, and it aims at contributing to both exact 

model fit and model comparison literature. Regarding the former, as discussed above, the chi-

square test has been repeatedly found to underperform when the normality assumption is not 

met. Although the proposed adjustments to the chi-square statistic clearly outperform the 

unadjusted version, their performance remains negatively affected under some conditions. On 

the other hand, the robust version of the SRMR may outperform the robust chi-square tests and 

solve the problem of assessing the exact fit under nonnormal data. Although the initial 

simulation test of the performance of the SRMR statistics showed promise, it included only 

normal data and small models (Maydeu-Olivares, 2017a). Thus, evaluation of the robust 

version of SRMR for assessing exact model fit under conditions of nonnormality remains an 

outstanding need in the literature. Accordingly, the first objective of this thesis is to: 1) replicate 

the findings on the performance of chi-square tests under conditions of nonnormality and other 

suboptimal conditions such as, small samples and large models, and 2) to pit the performance 

of these tests against the performance of the SRMR.     

Regarding the latter, when comparing fit of two nested models using the chi-square 

difference test, previous simulation research has been primarily focused on investigating the 

performance of the unadjusted test and potential benefits of the mean adjustments. Although it 

has been clearly shown that the mean adjusted chi-square difference tests perform considerably 

better under nonnormality and other suboptimal conditions, their performance remained 

inadequate under circumstances. On the other hand, while the mean and variance adjustments 

work better and they do when assessing absolute fit, their performance when assessing 

comparative fit has not been systematically explored to date. Accordingly, the second objective 

of this thesis is to: 1) replicate findings on the performance of unadjusted and mean adjusted 

chi-square difference tests under nonnormality and other suboptimal conditions, and 2) to pit 
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the performance of these statistics to the mean and variance adjusted chi-square difference 

tests.   

Thesis structure 

This doctoral thesis is a compilation of two published studies. In the remainder of this 

document, I present each of these studies in the following sections below. Specifically, in order 

to preserve the organizing logic of the thesis document, I first present the study in the exact 

model fit followed by the study on model comparison. Presentation of the two studies is then 

followed by a general summary and discussion of main findings. At the end of this document, 

I discuss the main limitations of the current work, provide some viable suggestions for further 

research, and end with brief concluding remarks.    

 

Publications included in the thesis 

STUDY I 

Pavlov, G., Maydeu-Olivares, A., & Shi, D. (2021). Using the standardized root mean 

squared residual (SRMR) to assess exact fit in structural equation models. Educational and 

Psychological Measurement, 81(1), 110-130 https://doi.org/10.1177/0013164420926231 

STUDY II 

Pavlov, G., Shi, D., & Maydeu-Olivares, A. (2020). Chi-square difference tests for 

comparing nested models: An evaluation with non-normal data. Structural Equation Modeling: 

A Multidisciplinary Journal, 27(6), 908-917. https://doi.org/10.1080/10705511.2020.1717957 
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STUDY I: USING THE STANDARDIZED ROOT MEAN SQUARED RESIDUAL 

(SRMR) TO ASSESS EXACT FIT IN STRUCTURAL EQUATION MODELS 

 

Abstract 

We examine the accuracy of p-values obtained using the asymptotic mean and variance (MV) 

correction to the distribution of the sample standardized root mean squared residual (SRMR) 

proposed by Maydeu-Olivares (2017a) to assess the exact fit of SEM models. In a simulation 

study, we found that under normality, the mean and variance corrected SRMR statistic provides 

reasonably accurate Type I errors even in small samples and for large models, clearly 

outperforming the current standard, that is, the likelihood ratio (LR) test. When data shows 

excess kurtosis, MV-corrected SRMR p-values are only accurate in small models (p = 10), or 

in medium sized models (p = 30) if no skewness is present and sample sizes are at least 500. 

Overall, when data is not normal, the MV-corrected LR test seems to outperform the MV- 

corrected SRMR. We elaborate on these findings by showing that the asymptotic 

approximation to the mean of the SRMR sampling distribution is quite accurate, while the 

asymptotic approximation to the standard deviation is not.  

 

Keywords: SRMR, exact fit, structural equation modeling. 
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Introduction 

Structural equation modeling (SEM) is a popular technique for modeling multivariate data 

because it provides a comprehensive framework for fitting theoretical models. Given that SEM 

is most often used for furthering theory development, a substantial body of literature to date 

has focused on the issue of how to assess model-data fit (i.e., goodness of fit) in SEM. There 

appear to be two general perspectives with regards to goodness-of-fit in SEM. One perspective 

revolves around the notion that one should not expect to find and thus not seek a model that 

may be considered as precisely true or correct in the population (e.g., MacCallum et al., 1992). 

From this perspective, applied researchers should aim at showing that a model provides a good 

approximation to real-world phenomena, as represented in an observed set of data. To do so, it 

is generally recommended that multiple approaches to assessment of fit be used (MacCallum, 

1990). These may be purely descriptive, involving a comparison of the fitted model to another 

model, such as a saturated model, or to independence model (Bentler & Bonett, 1980). This 

perspective appears to be frequently employed, for instance, when fitting exploratory factor 

analysis models (Lim & Jahng, 2019). From this perspective, assessing whether the model fits 

the data exactly appears almost unnecessary. 

The alternative perspective is concerned with the quality of inferences drawn using the 

fitted model. From this perspective, assessing the exact fit of a model is important because, 

provided that alternative equivalent models (Bentler & Satorra, 2010; MacCallum et al., 1993; 

Stelzl, 1986) can be ruled out theoretically and that the power of the test  (Lee et al., 2012; 

Saris & Satorra, 1993) is sufficiently large, failing to reject the null hypothesis of exact fit 

enables drawing statistical inferences on the parameter estimates (Bollen & Pearl, 2013; 

Maydeu-Olivares, Shi, & Fairchild, 2020). Of course, as sample size increases the power to 

reject the hypothesis of exact model fit increases (Jöreskog, 1967). Also, as model size 

increases it becomes increasingly difficult to find a well-fitting model, simply due to time 
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constraints (Maydeu-Olivares, 2017a). From this perspective, assessing the exact fit of a model 

is a meaningful endeavor, always coupled with an assessment of the size of model misfit, with 

confidence intervals (Maydeu-Olivares, 2017a; Steiger, 1989).  

Because sample goodness of fit indices are estimators of population quantities, both 

perspectives can be integrated by using confidence intervals (and if of interest, significance 

tests) for population effect sizes of misfit. Confidence intervals for the Root Mean Squared 

Error of Approximation (RMSEA: Steiger & Lind, 1980; see also Browne & Cudeck, 1993) 

are well known and routinely used in applications. Steiger (1989) showed that it is possible to 

obtain confidence intervals for the population goodness of fit index (GFI: Jöreskog & Sörbom, 

1988; see also MacCallum & Hong, 1997; Maiti & Mukherjee, 1990; Tanaka & Huba, 1985). 

The sampling distribution of the Comparative Fit Index (CFI: Bentler, 1990) may also be 

approximated using asymptotic methods (Lai, 2019). Finally, confidence intervals for the 

Standardized Root Mean Squared Residual (SRMR: Bentler, 1995) can be obtained using a 

normal distribution  (Maydeu-Olivares, 2017a; Maydeu-Olivares et al., 2018; Ogasawara, 

2001). Therefore, if the purpose of the analysis is simply to provide an approximate 

representation of the phenomena under investigation, confidence intervals for any of these 

estimands should be obtained. It is important to use unbiased estimators of the estimands of 

interest as well as confidence intervals because at small to moderate sample sizes the sample 

goodness-of-fit indices commonly used in applications can be severely biased and may display 

a large sampling variability (Maydeu-Olivares et al., 2018; Shi et al., 2019; Steiger, 1990). On 

the other hand, if the purpose of the analysis is to draw causal inferences on the model 

parameters, then it makes more sense to test whether the population value of these effect sizes 

suggests a perfect fit.  

The only effect size of model misfit that is currently used in applications is the RMSEA. 

Put differently, the RMSEA is the only goodness-of-fit index for which SEM software 
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routinely provide a p-value for a test of close fit. The null and alternative hypotheses can be 

written as 

*
0 0:H RMSEA RMSEA  vs. *

1 0:H RMSEA RMSEA  where 0RMSEA  is an arbitrary population 

value of the RMSEA. When data is normally distributed, a p-value for a test of close fit can be 

obtained using  

  2

2
0

21 ; ,F df N dfX RMSEA


   , (4) 

where N denotes sample size, 2 ( ; , )F df

   denotes the non-central chi-square distribution with 

df degrees of freedom and non-centrality parameter   (Browne & Cudeck, 1993), and χ2 

denotes the chi-square statistic used to assess the exact fit of the model, usually the likelihood 

ratio test statistic (e.g., Jöreskog, 1969). We note that (4) can also be used to assess the exact 

fit of the model, i.e., 0 0RMSEA  . In this case, the non-centrality parameter 2
0N df RMSEA   

becomes zero, and  (4) reduces to the familiar equation to obtain a p-value for the chi-square 

test using a central chi-square distribution.   

When data are not normal, the most widely used test statistic is the likelihood ratio test 

statistic, either scaled by its asymptotic mean or adjusted by its asymptotic mean and variance 

as proposed by Satorra and Bentler (1994). When any of these chi-squares robust to non-

normality is used, (4) is replaced by  

  2

2 2
01 ; ,F X df N df RMSEA c


   , (5) 

where χ2 denotes the robust chi-square statistic used, and c denotes its scaling correction (Gao 

et al., 2020; Savalei, 2018). As in the normal case, (5) reduces to the usual chi-square testing 

in the special case of examining exact fit, e.g., *
0 : 0H RMSEA  . 

 Recently, Maydeu-Olivares (2017a) introduced a framework for assessing the size of 

model misfit using the SRMR. Confidence intervals and, if of interest, tests of close fit can 

now be performed using the SRMR in addition to the RMSEA. Extant research (Maydeu-
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Olivares et al., 2018; Shi et al., 2020) has shown that more accurate confidence intervals and 

test of close fit are obtained using the SRMR than the RMSEA. The latter only provides 

accurate results in small models.  

Maydeu-Olivares (2017a) also provided theory for utilizing the SRMR as a test of 

exact fit, both under normality assumptions and when data is not normal. In a simulation 

study, involving a confirmatory factor analysis (CFA) model and sample sizes (N) ranging 

from 100 to 3,000 observations, the author showed that the SRMR p-values were accurate 

even when the smallest sample sizes were considered. Nevertheless, this simulation study 

relied on a CFA population model involving only 8 variables (p = 8) and normally distributed 

data. In the literature to date, however, it has been repeatedly found that the performance of 

goodness-of-fit tests worsens as the model size (i.e., the number of variables being modeled) 

increases (Herzog et al., 2007; Maydeu-Olivares, 2017b; Moshagen, 2012; Shi et al., 2018; 

Yuan et al., 2015) and with violations of the normality assumptions (e.g., Hu et al., 1992; 

Satorra, 1990).  

In the current article, we address this gap in the literature and examine whether the 

SRMR test of exact fit yields accurate p-values in a wider range of conditions, involving 

models of various sizes and both normal and non-normal data. In addition, we pit the 

performance of the SRMR against the gold standard for the exact goodness-of-fit assessment, 

the likelihood ratio test (e.g., Jöreskog, 1969). In the SEM literature, this test statistic is 

commonly referred to as the chi-square test. In the comparison, we also include the robust, 

that is, the mean and variance adjusted, chi-square test statistic appropriate for non-normal 

data (Asparouhov & Muthén, 2010; Satorra & Bentler, 1994). The remainder of this article is 

organized as follows. First, we summarize the existing statistical theory for the SRMR. Next, 

we describe the simulation study conducted to evaluate the accuracy of the asymptotic 
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approximations to the finite sampling distribution of these test statistics. We then summarize 

the results and provide a discussion of our findings. 

The Standardized Root Mean Squared Residual (SRMR) 

The sample SRMR 

 Let the standardized residual variances and covariances be 

 
ˆ

ˆ ij ij
ij

ii jj

s

s s

 
  , (6) 

where ijs denotes the sample covariance between variables i and j, with the model implied 

counterpart ˆ ij ; when i = j, iis  and ˆ ii  denote variances. Then, the sample SRMR (Bentler, 

1995; Jöreskog & Sörbom, 1988) is the square root of the average of the squared standardized 

residual variances and covariances 

  21 1
ˆ ˆ ˆij

i j

SRMSR
t t

 


   , (7) 

where ( 1) / 2t p p   denotes the number of non-redundant variances and covariances, and ̂  

denotes the vector of t standardized residual covariances (6). 

Equation (7) is the SRMR expression computed by the widely used software program 

LISREL (Jöreskog & Sörbom, 2017) and EQS (Bentler, 2004). It is suitable for assessing how 

well the assumed (theorized) model reproduces the observed associations among the variables 

in an interpretable manner. Roughly, it can be interpreted as the average of the absolute value 

of residual correlations.  

On the other hand, the SRMR computed by default in Mplus software (Muthén & 

Muthén, 2017) is somewhat different:  

 * * 2 * 21
ˆ ˆ) )ij i

i j i

SRMSR
t p 

 
      

  . (8) 
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where mi and ˆ i denote the sample and expected mean of variable i. It needs to be noted that 

in (9), ˆ ii  is used when standardizing the expected covariance. In contrast, in (6), the 

unrestricted estimate iis  is used for standardization. This need not impact considerably the 

SRMR values because, in many applications, the estimated variances equal the sample 

variances, i.e., ˆii iis   . However, the inclusion of the mean structure components *ˆ
i  in the 

Mplus version of the SRMR statistic may have a non-negligible impact. Specifically, in many 

applications (e.g., in CFA models), the mean structure is saturated, that is, the mean residuals 

*ˆ i  equal zero. In these applications, computing the SRMR in (8) will result in a lower value 

than the value computed using the SRMR in (7). Consequently, because all the SRMR cutoff 

values provided in the literature (e.g., Hu & Bentler, 1998, 1999; Shi, Maydeu-Olivares, & 

DiStefano, 2018) have been obtained relying on the LISREL/EQS definition of the SRMR, the 

utility of these cutoff values when applied to the Mplus SRMR becomes moot1. In this article, 

we focus on models with a saturated mean structure (i.e., no mean structure) and accordingly, 

on the sample SRMR in (7). 

Confidence intervals for the population SRMR 

The sample SRMR provided in equation (7) is an estimator of the population SRMR: 

 21 1
ij

i j

SRMR
t t

 


   , 
0

ij ij
ij

ii jj

 
 

 
. (10) 

Here, ij denotes the true and unknown population covariance between variables i and j (or 

variance if i = j) and 0
ij  denotes the population covariance (or variance) under the fitted model. 

 
1 To be able to pit the Mplus results against the SRMR cutoff values published in the literature, Mplus users 
should use MODEL=NOMEANSTRUCTURE in the ANALYSIS command. In this case, Mplus computes the 
SRMR given by equation (7) (Asparouhov & Muthén, 2018). 
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The sample SRMR provided in (7), however, is a biased estimator of the population SRMR in 

finite samples. To illustrate the potential severity of the bias, we utilize simulation results 

reported recently by Shi and colleagues (2018, Table 2). In Figure 1, we provide a plot of the 

average sample SRMR over 1,000 replications as sample size increases from 50 to 2,000 when 

the population SRMR = .058. As can be clearly observed in the figure, the magnitude of the 

overestimation cannot be neglected for sample sizes smaller than 500 observations. 

In Figure 1, we have also plotted the results of Shi and colleagues (Table 2: 2018) for 

the average unbiased estimator of the SRMR proposed by Maydeu-Olivares (2017a). As the 

figure reveals, the unbiased estimator of the SRMR is essentially unbiased for sample sizes 

over 100 observations. The unbiased estimator of the population SRMR proposed by Maydeu-

Olivares (2017a) is 

   1
ˆˆ ˆmax tr( ),0

ˆ
uSRMR k

t

  


 
 ,       

 

2

2

ˆ ˆˆ ˆtr( ) 2ˆ 1
ˆ ˆ4

k
 

 


 


, (11) 

where   denotes the asymptotic covariance matrix of the sample standardized residuals (6), 

which can be computed either assuming that the observed variables are normally distributed 

(NT) or under the asymptotically distribution free assumptions (ADF) put forth by Browne 

(1982). 



Study I: Using the SRMR to assess exact fit in structural equation models  

25 

 

Figure 1. Average sample (i.e., biased) SRMR and unbiased SRMR estimates of the 

population SRMR of .058 across 1,000 replications as a function of sample size. 

  

 Maydeu-Olivares (2017a) proposed using a normal distribution as reference for 

obtaining confidence intervals and tests of close fit for the population SRMR using the 

unbiased SRMR estimator. Using this reference distribution, a (100 – )% confidence interval 

for the population SRMR, can be obtained with  

     Pr ( ) ( ) 1u u u uSRMR z SE SRMR SRMR SRMR z SE SRMR       , (12) 

where z    denotes the critical value under a standard normal distribution corresponding to a 

significance level , and ( )uSE SRMR denotes the asymptotic standard error of the unbiased 

SRMR estimate 
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Finally, p-values for a null hypothesis of close fit, 0 0:H SRMR SRMR  vs. 

1 0:H SRMR SRMR , where SRMR0 denotes an arbitrary value of the population SRMR, can 

be obtained using  

 



01
SE( )

u

u

SRMR SRMR
p

SRMR

 
   

 
 , (14) 

where ()  denotes a standard normal distribution function. 

 In needs to be noted that, in principle, these procedures could also be used to test 

whether a hypothesized SEM model fits exactly. In practice, when the population SRMR equals 

zero, often  ˆˆ ˆ tr 0     , and the unbiased SRMR estimate is set to zero; see equation (11). 

Put differently, when the model fits exactly, the sampling distribution of the uSRMR  must be 

zero inflated and a normal distribution must provide a poor approximation. See Figure 1 of Shi 

and colleagues (2019) for an illustration of this result. Maydeu-Olivares (2017a) suggested that 

whether a model fits exactly could be tested approximating the sampling distribution of the 

biased SRMR using a normal distribution.  

Testing for exact fit using the SRMR 

 In SEM models without the mean structure, the null and alternative hypotheses of exact 

fit are generally written as: 0 0:H    vs. 1 0:H   , where   denotes the unknown 

population covariance matrix and 0  denotes the population covariance matrix implied by the 

model. A number of test statistics have been proposed in the SEM literature to assess this null 

hypothesis of exact fit. In addition to the likelihood ratio test statistic described earlier, 

researchers may employ, for instance, the residual based chi-square statistic proposed by 

Browne (1974, 1982; Hayakawa, 2019), the F-test proposed by Yuan and Bentler (1999), or 

the chi-square test proposed by Yuan and Bentler (1997) to name a few.  



Study I: Using the SRMR to assess exact fit in structural equation models  

27 

Maydeu-Olivares (2017a) has proposed an additional test of the exact fit of the model 

based on the SRMR. The author showed that under the null hypothesis of exact model fit, the 

mean and standard error of the sample SRMR in (7) can be approximated in large samples 

using 
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Then, the sample SRMR can be used to obtain p-values for the null hypothesis of exact fit using   

  1p z  ,  






SRMR

SRMR

SRMR
z





. (17) 

To investigate the performance of the method above, Maydeu-Olivares (2017a) 

performed a simulation study involving a CFA model with 8 observed variables (p = 8), sample 

sizes (N) ranging from 100 to 3,000, and normally distributed data. The results revealed that 

the proposed method provided accurate Type I error rates regardless of the sample size and 

significance level. Nevertheless, it has been repeatedly found in the literature that the 

performance of goodness-of-fit tests worsens as model size (i.e., the number of variables being 

modeled) increases (e.g., Herzog et al., 2007; Maydeu-Olivares, 2017b; Moshagen, 2012; Shi 

et al., 2018; Yuan et al., 2015). Because the initial evidence on the performance of SRMR was 

limited to a very small model, it seemed necessary to evaluate the performance of this test 

statistic also in large models. In addition, the SRMR proposal to assess the exact fit of SEM 

models was evaluated only in the case of normally distributed data (Maydeu-Olivares, 2017a). 

However, it has been well documented in the literature that the goodness-of-fit tests (e.g., the 

likelihood ratio test) fail when data is not normal (e.g., Hu et al., 1992; Satorra, 1990). 
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Accordingly, it seemed warranted to evaluate the performance of the exact fit SRMR proposal 

also in the case of non-normal data.  

Method 

We performed a simulation study to examine the performance of SRMR p-values to 

assess the exact fit of SEM models as introduced by Maydeu-Olivares (2017a). The model 

used to generate the data were a confirmatory factor analysis (CFA) model, because it is the 

most widely used SEM model in empirical research (DiStefano et al., 2018). The population 

and fitted models were a one factor model. We used this simple model because the main aim 

of the study was to investigate the performance of SRMR p-values under non-normality and 

large model size. The population values for all factor loadings were set to be .70 and all 

residual variances were set to .51.  

Data generation 

Data were generated as follows. Using this population CFA model, we first generated 

continuous data from a multivariate normal distribution. The continuous data were then 

discretized into 7 categories coded 0 to 6. Methodological studies have shown that when the 

number of response categories is large (i.e., seven), it is appropriate to treat the discretized data 

as continuous when fitting CFA models (DiStefano & Morgan, 2014; Rhemtulla et al., 2012). 

Furthermore, we used discretized normal data because in CFA studies it is more common to 

model discrete ordinal data (i.e., responses to Likert-type items) than continuous data proper 

(i.e., test scores). Finally, categorizing continuous variables is employed as a widely used 

method to generate non-normally distributed data (DiStefano & Morgan, 2014; Maydeu-

Olivares, 2017b; Muthén & Kaplan, 1985).  

Study conditions 

 The simulation conditions were obtained by manipulating the following three factors: 

(a) sample size, (b) model size, and (c) level of non-normality.  
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Sample size. Sample sizes included 100, 200, 500, and 1,000 observations. The sample 

sizes were selected to reflect a range of small to large samples commonly used in psychological 

research.   

Model size. Model size refers to the total number of observed variables, p (Moshagen, 

2012; Shi, Lee, et al., 2018). We used three different levels for the number of observed 

variables: small (p =10), medium (p = 30), and large (p = 60) models. 

Level of non-normality. Three levels of non-normality were obtained by manipulating 

the population values of the skewness and (excess) kurtosis: (a) skewness = 0.00, kurtosis = 

0.00 (i.e., normal data), (b) skewness = 0.00, kurtosis = 3.30, and (c) skewness = -2.00, 

kurtosis = 3.30. To achieve the designed skewness and kurtosis, the continuous data were 

discretized using selected threshold values (Maydeu-Olivares, 2017b; Muthén & Kaplan, 

1985). The threshold values used for data generation and the expected area under the curve 

for each response category are presented in Table 1. The technical details for computing the 

population skewness and kurtosis given a set of thresholds can be found in Maydeu-Olivares, 

and colleagues (2007). 

 

Table 1. Target Item Category Probabilities and Corresponding Threshold Values Used to 

Generate the Data 

Kurt Skew Thresholds Expected Area Under the Curve 

0 1 2 3 4 5 6 

0 0 -1.64, -1.08, -0.52, 0.52, 1.08, 1.64 5% 9% 16% 40% 16% 9% 5% 
3.3 0 -2.33, -1.64, -1.04, 1.04, 1.64, 2.33 1% 4% 10% 70% 10% 4% 1% 
3.3 -2.0 -2.33, -1.88, -1.55, -1.17, -0.84, -0.55 1% 2% 3% 6% 8% 10% 70% 

 

In sum, the simulation study consisted of a fully crossed design including four sample 

sizes, three distributional shapes, and three model sizes. Thirty-six conditions were created in 

total (4  3  3). For each of the 36 simulated conditions, one thousand (1,000) replications 
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were generated with the simsem package in R (Pornprasertmanit et al., 2013; R Core Team, 

2019). 

Estimation 

For each simulated dataset, we fitted a one-factor CFA model with the Maximum 

Likelihood (ML) estimation method using the lavaan package in R (Rosseel, 2012). The SRMR 

test statistic (17) was obtained under both normality (NT) and asymptotically distribution free 

(ADF) assumptions. Different values of this statistic based on the SRMR to assess the exact fit 

of the model are obtained under NT and ADF assumptions because the asymptotic covariance 

matrix of the standardized residual covariances, , is computed differently. For computational 

details of the two SRMR test statistics the reader is referred to Maydeu-Olivares (2017a).  

To benchmark the performance of the SRMR as a test of exact fit, we used the likelihood 

ratio (Jöreskog, 1969) test, also commonly known as the chi-square test (χ2). The chi-square 

test statistic was also obtained both NT and ADF assumptions. The χ2 statistic computed under 

normality is the likelihood ratio test. The χ2 statistic computed under ADF is the mean and 

variance adjusted likelihood ratio test statistic proposed by Asparouhov and Muthén (2010; see 

also Satorra & Bentler, 1994). For both χ2 and SRMR statistics, we evaluated the empirical 

rejection rates, that is, Type I error rates using nominal alpha levels of 5%. 

Results 

 For all the study conditions all replications successfully converged. Accordingly, 

results for each of the 36 conditions under investigation were based on all 1,000 replications. 

We provide in Table 2 the empirical rejection rates at the 5% significance level of the χ2 and 

SRMR tests of exact fit. Following Bradley (1978), and taking into account that we used only 

1,000 replications, we considered Type I error rates in [.02, .08] to be adequate. Conditions 

that fall outside this range are highlighted in Table 2. 
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The results presented in Table 2 for the χ2 statistic were consistent with previous 

findings in the literature. Specifically, the χ2 computed under normality assumption (NT in the 

table) overrejected the true model when data were non-normal. Furthermore, the rejection rates 

increased as the model size increased. For the non-normal conditions investigated, as soon as 

p = 30, the test almost always rejected the model. In fact, the only conditions investigated for 

which the test maintained adequate Type I error rates involved normal data and a small model 

(p = 10). For normal data and larger models (p  30), the NT χ2 statistic converged slowly to 

its asymptotic distribution, but even the largest sample size considered (1,000) was insufficient 

to obtain accurate Type I error rates.   

We also see in Table 2 that with the increasing number of variables, the robust χ2 (ADF 

in the table) converged faster than the NT χ2 to its reference distribution, that is, it was more 

robust to the model size effect. This is consistent with previous findings in the literature (e.g., 

Maydeu-Olivares, 2017b). Under normality, the robust χ2 achieved adequate Type I errors 

when p = 30 with 1,000 observations. However, sample sizes larger than 1,000 are needed for 

this statistic to yield accurate Type I error rates when p = 60. As expected, the ADF χ2 was also 

more robust to the effect of non-normality. Specifically, p-values were acceptable for p = 10 

and the minimum sample size needed to achieve them varied depending on the level of kurtosis 

and skewness in the data. A minimum of 100 observations was needed when the data showed 

neither (excess) kurtosis nor skewness (i.e., normal data), 200 observations when the data 

showed only excess kurtosis, and of 500 observations when both kurtosis and skewness were 

present. For p = 30, larger sample sizes (i.e., 1,000 observations) were needed for the test to 

yield nominal Type I error rates. Finally, for p = 60, not even the largest sample sizes (i.e., 

1,000) were sufficient to obtain accurate Type I error rates.    
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Table 2. Empirical Rejection Rates at the 5% Significance Level of the Chi-square and 

SRMR Tests of Exact Fit 

Kur. 
Skew

. 
p N 

NT ADF 
χ2 SRMR χ2 SRMR 

0.0 0.0 

10 

100 0.08 0.03 0.08 0.03 
200 0.08 0.05 0.08 0.04 
500 0.05 0.05 0.04 0.03 

1000 0.07 0.06 0.06 0.05 

30 

100 0.67 0.03 0.68 0.01 
200 0.28 0.04 0.26 0.02 
500 0.13 0.06 0.10 0.05 

1000 0.10 0.07 0.07 0.06 

60 

100 1.00 0.01 1.00 0.00 
200 0.99 0.04 0.99 0.00 
500 0.50 0.07 0.43 0.00 

1000 0.25 0.08 0.18 0.00 

3.3 0.0 

10 

100 0.38 0.24 0.10 0.05 
200 0.32 0.26 0.07 0.03 
500 0.29 0.27 0.05 0.04 

1000 0.31 0.30 0.06 0.05 

30 

100 1.00 0.86 0.74 0.00 
200 0.99 0.92 0.25 0.00 
500 0.96 0.94 0.09 0.03 

1000 0.97 0.95 0.07 0.05 

60 

100 1.00 1.00 1.00 0.00 
200 1.00 1.00 0.98 0.00 
500 1.00 1.00 0.38 0.00 

1000 1.00 1.00 0.15 0.00 

3.3 -2.0 

10 

100 0.87 0.75 0.12 0.04 
200 0.85 0.79 0.09 0.04 
500 0.85 0.83 0.06 0.07 

1000 0.84 0.83 0.05 0.07 

30 

100 1.00 1.00 0.87 0.00 
200 1.00 1.00 0.34 0.00 
500 1.00 1.00 0.12 0.00 

1000 1.00 1.00 0.07 0.00 

60 

100 1.00 1.00 1.00 0.00 
200 1.00 1.00 1.00 0.00 
500 1.00 1.00 0.54 0.00 

1000 1.00 1.00 0.20 0.00 
Note: Highlighted are conditions with adequate Type I errors; p = number of variables; NT = 
under normality; ADF = asymptotically distribution free; χ2 = likelihood ratio test (under 
normality) and mean and variance LR under ADF; the asymptotic covariance matrix of the 
residual covariances used to compute p-values for the SRMR is computed differently under 
normality and ADF assumptions. 
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Results for the test of exact fit using the SRMR revealed a pattern different from the 

one observed for the χ2 test statistic. When performed under normality assumptions (NT in 

Table 2), the SRMR test yielded adequate Type I error rates for all conditions involving 

normally distributed data and smaller models (p  30). These findings were in line with the 

results reported by Maydeu-Olivares (2017a). The Type I error rates were inaccurate (i.e., the 

test was underrejecting) only when the largest model and smallest sample size were considered 

(p = 60, N = 100). Overall, with normal data, the NT SRMR test statistic clearly outperformed 

the NT χ2 (i.e., the likelihood ratio test). On the other hand, with non-normal data, the NT 

SRMR test of exact fit consistently overrejected and its behavior closely resembles the behavior 

of the NT χ2 statistic. 

When data were normal and p = 10, the robust SRMR (ADF in Table 2) and robust χ2 

yielded comparable and adequate results. Conversely, when p = 30, a sample of 200 

observations sufficed to obtain adequate p-values using the robust SRMR, whereas 1,000 

observations were needed using the robust χ2. When p = 60, the robust SRMR underrejected 

the null hypothesis even at the largest sample size considered.  

When data showed excess kurtosis but no skewness, the SRMR provided more accurate 

Type I error rates than the robust χ2 in small models and small samples (p = 10, N = 100), 

slightly better results in medium size models and large samples (p = 30, N  500) but was 

consistently underrejecting when the largest model size considered (p = 60). Most interestingly, 

the behavior of the SRMR exact fit test was adversely affected by the skewness of data. When 

data showed both (excess) kurtosis and skewness, even though it was performing adequately 

in conditions with small models (p = 10), the robust SRMR was underrejecting the model in 

all conditions involving p  30 observed variables. In these conditions (p  30), the Type I error 

rates of the robust χ2 were gradually returning to their nominal levels with the increasing sample 

size, while the same effect was not observed for the robust SRMR.  
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Discussion 

In the present study, we have examined the accuracy of the asymptotic mean and 

variance correction to the distribution of the sample SRMR proposed by Maydeu-Olivares 

(2017a) to assess the exact fit of SEM models. Several model sizes, sample sizes, and levels of 

non-normality were considered, and the SRMR was computed under both normal theory (NT) 

and asymptotic distribution free (ADF) assumptions. In addition, the SRMR accuracy was 

pitted against the gold standard for the exact goodness-of-fit assessment, the likelihood ratio 

test (e.g., Jöreskog, 1969) and its robust (ADF) version obtained by adjusting the likelihood 

ratio statistic by its asymptotic mean and variance (Asparouhov & Muthén, 2010; Satorra & 

Bentler, 1994).   

Overall, the results revealed that the mean and variance corrected SRMR statistic 

provides reasonably accurate Type I errors when data shows neither excess kurtosis nor 

skewness in small samples and even in large models (p = 60, N = 200), in which the likelihood 

ratio test statistic fails. In other words, when data is normal, the mean and variance corrected 

SRMR outperforms the current standard. When data shows excess kurtosis, Type I errors of 

the mean and variance corrected SRMR are accurate only in small models (p = 10), or in 

medium sized models (p = 30) if no skewness is present and sample is large enough (N  500). 

Overall, it seems that the current standard, that is, the mean and variance corrected likelihood 

ratio test statistic, outperforms the mean and variance corrected SRMR when data is not 

normal.  

The robust χ2 and SRMR test statistics considered in this article are both mean and 

variance corrected statistics of the type  

 aT a bT  ,  (18) 

where Ta denotes the mean and variance corrected statistic used for testing, and T denotes the 

original sample statistic. In the case of the robust χ2, we write 2 2
aX a bX  , where 2

aX  
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denotes the mean and variance adjusted chi-square statistic and χ2 is the likelihood ratio test 

statistic. a and b are constants such that χa
2 agrees asymptotically in mean and variance with a 

reference chi-square distribution with the model’s degrees of freedom. However, the 

asymptotic distribution of the robust χ2 is not chi-square; it is a mixture of one degree of 

freedom chi-squares (Satorra & Bentler, 1994). This implies that as sample size increases, the 

behavior of the robust χ2 p-values need not improve.  

 As our results show, with non-normal data, the approximation’s behavior improves 

with increasing sample size. However, it is important to note that our simulation involved 

discretized normal data. With other algorithms to generate non-normal data, this need not be 

the case (for instance, see Gao et al., 2019). In fact, one should rather expect the accuracy of 

the robust χ2 p-values to improve up to a sample size, and slightly worsen after that, reflecting 

that the reference distribution to obtain the p-values is not the actual asymptotic distribution of 

the χ2 statistic.  

In the case of the robust SRMR we write z a b SRMR  ,  where a and b are constants 

such that z agrees asymptotically with a standard normal reference distribution. Obviously, in 

this case,  
1

SRMR SRMR
a   , 

1

SRMR
b    and this is the solution proposed in (17). The mean and 

variance adjustment is also used to obtain p-values for the SRMR in the normal case, and the 

difference between the normal and robust SRMR options lies in how the asymptotic covariance 

matrix of the standardized residual covariances is estimated (see Maydeu-Olivares, 2017a). It 

is important to note here that the use of normal distribution as a reference distribution is 

heuristic, and it remains to be proved that the sampling distribution of the sample SRMR 

converges to normality. Nevertheless, the approximation seems to work very well in practice.  

Why do p-values for the robust SRMR fail to be accurate in many of the non-normal 

conditions investigated in this study? One plausible explanation is that the asymptotic 

approximation proposed by Maydeu-Olivares (2017a) to the empirical standard deviation of 
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the SRMR  is not sufficiently accurate. To explore this, for each simulated condition, we 

calculated the average SRMR estimates and empirical variances across replications and 

compared them to the values based on the theoretical normal reference distributions.  

In Table 3, we provide the empirical mean and standard deviation of the SRMR  for 

each of the conditions of our simulation study, that is, the mean and standard deviation of the 

SRMR  across the 1,000 replications for each condition. We also provide in this table the 

expected mean and standard deviation for each condition computed using (15) and (16) under 

both NT and ADF assumptions. It may be observed in Table 3 that under NT, the asymptotic 

approximation to the empirical mean is quite accurate for all conditions involving normally 

distributed data. Conversely, it underestimates the empirical mean for all non-normal 

conditions. The asymptotic approximation underestimates the empirical standard deviation but, 

as expected, it improves as sample size increases. Under ADF assumptions, the asymptotic 

approximation to the empirical mean is fairly accurate for all conditions investigated (the 

relative bias is 5% at most). Nevertheless, it overestimates the empirical standard deviation of 

the SRMR and it does not improve swiftly as sample size increases. As a result, for many non-

normal conditions, the mean and variance corrected SRMR  statistic provides inaccurate p-

values.  
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Table 3. Accuracy of the Asymptotic Approximation to the Sampling Distribution of the 
Sample SRMR Across 1,000 Replications. Test of Normality, Observed vs. Expected Mean 
and Standard Deviation 

    SRMR  
Test of 

normality     Observed 
Expected 

(NT) 
Expected 

(ADF) 

Kur. Skew. p N M SD M SD M SD 
SW p-

value 

0.0 0.0 

10 

100 0.044 .0060 0.043 .0056 0.043 .0067 .9975 .13 
200 0.031 .0040 0.030 .0038 0.030 .0043 .9979 .25 
500 0.019 .0024 0.019 .0024 0.019 .0025 .9978 .20 

1000 0.014 .0017 0.014 .0017 0.014 .0017 .9951 <.01 

30 

100 0.051 .0038 0.051 .0023 0.050 .0045 .9979 .25 
200 0.036 .0020 0.036 .0014 0.036 .0024 .9984 .46 
500 0.023 .0010 0.023 .0008 0.023 .0012 .9976 .15 

1000 0.016 .0007 0.016 .0006 0.016 .0007 .9988 .78 

60 

100 0.053 .0034 0.053 .0014 0.052 .0041 .9962 .01 
200 0.037 .0018 0.037 .0008 0.037 .0021 .9981 .31 
500 0.024 .0008 0.023 .0005 0.023 .0009 .9984 .47 

1000 0.017 .0004 0.017 .0003 0.017 .0005 .9990 .88 

3.3 0.0 

10 

100 0.056 .0072 0.050 .0066 0.054 .0098 .9942 <.01 
200 0.039 .0050 0.035 .0044 0.038 .0060 .9951 <.01 
500 0.025 .0030 0.022 .0027 0.025 .0033 .9974 .10 

1000 0.017 .0022 0.016 .0019 0.017 .0022 .9944 <.01 

30 

100 0.066 .0041 0.058 .0028 0.063 .0074 .9979 .26 
200 0.046 .0023 0.041 .0017 0.045 .0040 .9980 .30 
500 0.029 .0012 0.026 .0010 0.029 .0018 .9989 .83 

1000 0.021 .0008 0.018 .0007 0.020 .0010 .9979 .26 

60 

100 0.068 .0035 0.060 .0018 0.066 .0070 .9976 .16 
200 0.048 .0018 0.042 .0010 0.047 .0036 .9980 .28 
500 0.030 .0009 0.027 .0005 0.030 .0015 .9990 .89 

1000 0.021 .0005 0.019 .0004 0.021 .0008 .9993 .99 

3.3 -2.0 

10 

100 0.068 .0101 0.051 .0070 0.065 .0129 .9955 <.01 
200 0.048 .0064 0.036 .0046 0.047 .0077 .9932 <.01 
500 0.030 .0037 0.022 .0028 0.030 .0042 .9976 .14 

1000 0.021 .0026 0.016 .0019 0.021 .0028 .9979 .25 

30 

100 0.079 .0067 0.059 .0032 0.077 .0104 .9969 .05 
200 0.056 .0035 0.042 .0018 0.055 .0055 .9973 .10 
500 0.035 .0018 0.026 .0010 0.035 .0024 .9981 .33 

1000 0.025 .0011 0.019 .0007 0.025 .0014 .9984 .50 

60 

100 0.082 .0060 0.061 .0022 0.080 .0100 .9975 .14 
200 0.058 .0032 0.043 .0011 0.057 .0052 .9990 .85 
500 0.037 .0013 0.027 .0006 0.036 .0021 .9979 .24 

1000 0.026 .0007 0.019 .0004 0.026 .0011 .9978 .20 
Note: p = number of variables; N = sample size; M = mean; SD = standard deviation; NT = 
under normality; ADF = asymptotically distribution free. SW = Shapiro-Wilk test statistic. 
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Figure 2. Empirical distribution of the sample SRMR across 1,000 replications and reference 

normal distributions. The solid and dotted lines are obtained using the empirical and 

asymptotic mean and standard deviations, respectively. 

 

In the other condition displayed in Figure 2, with N = 1,000, p = 30, (excess) kurtosis = 

3, and skewness = 0, the relative bias of the expected mean of the SRMR is less than 1%, and 

the relative bias of the expected standard deviation is “only” 23%. Nevertheless, despite the 

substantial bias, the left tail probabilities are reasonably accurate.  

As depicted in Figure 2, distribution of the sample SRMR appears to be quite normal. 

To further assess the quality of the normal approximation to the distribution of the sample 
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SRMR, we performed Shapiro-Wilk’s (1965) test of normality for each of the investigated 

conditions. We chose this particular test as it has been shown to be the most powerful to detect 

departures from normality (Yap & Sim, 2011). The test statistic ranges from 0 to 1, with 1 

indicating perfect fit. In our study, the statistic ranged from .993 to .999 across conditions (See 

Table 3) indicating that a normal distribution provides a good fit to the sampling distribution 

of the SRMR. We have also provided in Table 3 p-values for this test statistic because they 

may more clearly pinpoint conditions under which the normal approximation works best. As it 

may be observed in the table, the main driver of the accuracy of the normal approximation is 

model size. Specifically, the normal approximation is somewhat poorer when the number of 

observed variables is small (i.e., p = 10).  

Concluding remarks 

In the current study, we investigated whether a recently proposed test statistic (based 

on the SRMR) outperforms the current standard tests to evaluate the exact fit of structural 

equation models in terms of Type I errors. We conclude that the answer is negative. Because 

the current standard test statistics are a side product of the computations involved in obtaining 

maximum likelihood parameter estimates and standard errors, the current test statistics are to 

be preferred to the new proposal. We have not compared the power of both approaches as it 

only makes sense to compare the power of test statistics when accurate Type I errors are 

obtained, which was not the case in many of the conditions investigated. 

The accuracy of the SRMR test of exact fit depends on the accuracy of the reference 

normal distribution to the sampling distribution of the SRMR, and on the accuracy of the 

asymptotic approximation to the empirical mean and standard deviation of the sampling 

distribution of the SRMR. We found that the proposed reference normal distribution provides 

a good approximation to the sampling distribution of the SRMR when the model fits exactly, 

but additional statistical theory is needed to support the use of this reference distribution. We 
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also found that the asymptotic approximation to the mean of the SRMR sampling distribution 

is quite accurate, but that the asymptotic approximation to the standard deviation is not. Under 

normality assumptions, the asymptotic approximation underestimates the empirical standard 

deviation; under asymptotically distribution free assumptions, it overestimates it. The reason 

for the differential accuracy of the asymptotic approximations to the empirical mean and 

standard deviation is that two terms are used to approximate the mean, but only one term is 

used to approximate the standard deviation (for technical details, see Maydeu-Olivares, 2017a). 

The present study suggests that a two-term approximation is needed also for the standard 

deviation. Further statistical theory is required to obtain a better asymptotic approximation to 

the empirical sampling distribution of the SRMR, and to support the use of a reference normal 

distribution. 
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Supplementary materials 

########################################################################### 
#This R function conducts the exact fit test using SRMR# 
########################################################################### 
 
#install and load the lavaan package 
install.packages("lavaan") 
library(lavaan) 
 
#Set the working dictionary and Read the Data 
setwd("C:/EXACTFITSRMR") 
Data=read.csv("DATA.csv",header = F,sep = ",") 
 
# Fitting the SEM model using lavaan 
cfa.model <- ' f  =~ NA*V1 + V2 + V3 + V4 + V5 + V6 + V7 + V8 + V9 + V10 
f~~1*f' 
fit <- cfa(cfa.model, data = Data, estimator = "ML",meanstructure = 
FALSE,fixed.x = FALSE) 
 
#Read the code/function for computation, put "lav_fit_usrmr_ucrmr.R" in the 
same working dictionary 
source("lav_fit_usrmr_ucrmr.R") 
 
# Obtain Normal-Theory Results 
lav_fit_usrmr_ucrmr (lavobject = fit, ADF = FALSE) 
 
# Obtain ADF Results 
lav_fit_usrmr_ucrmr (lavobject = fit, ADF = TRUE) 
 
########################################################################### 
# Notes # 
#This function works for models with a single group, no mean structure, and 
continuous outcomes # 
#listwise deletion should be applied when there is missing data # 
########################################################################### 
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STUDY II: CHI-SQUARE DIFFERENCE TESTS FOR COMPARING NESTED 

MODELS: AN EVALUATION WITH NON-NORMAL DATA 

 

Abstract 

The relative fit of two nested models can be evaluated using a chi-square difference statistic. 

We evaluate the performance of five robust chi-square difference statistics in the context of 

confirmatory factor analysis with non-normal continuous outcomes. The mean and variance 

corrected difference statistics performed adequately across all conditions investigated. In 

contrast, the mean corrected difference statistics required larger samples for the p-values to be 

accurate. Sample size requirements for the mean corrected difference statistics increase as the 

degrees of freedom for difference testing increase. We recommend that the mean and variance 

corrected difference testing be used whenever possible. When performing mean corrected 

difference testing, we recommend that the expected information matrix is used (i.e., choice 

MLM), as the use of the observed information matrix (i.e., choice MLR) requires larger 

samples for p-values to be accurate. Supplementary materials for applied researchers to 

implement difference testing in their own research are provided.  

 

Keywords: structural equation modeling, nested models, chi-square difference test, non-normal 

data. 
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Introduction 

Structural equation modeling (SEM) is a general statistical framework appropriate for 

modeling multivariate datasets. Over the past few decades, SEM has been steadily gaining in 

popularity among applied researchers across a broad range of scientific disciplines. One of the 

essential and frequently used features available within the SEM framework is the statistical 

evaluation of how well hypothesized models fit the observed data. 

Maximum likelihood (ML) is the most widely used estimation method for modeling 

continuous data within the SEM framework (Maydeu-Olivares, 2017). When the model is 

correctly specified and data follow a multivariate normal distribution, the minimum of the ML 

fit function can be used to construct a chi-square distributed test statistic, thus enabling a 

statistical evaluation of the fit of the model to the data at hand. The assumption of multivariate 

normality, however, need not be tenable in empirical research (Cain et al., 2017; Micceri, 

1989). If data are not normal, relying on the normal-theory ML statistic to evaluate model fit 

may result in erroneous statistical conclusions (Hu et al., 1992; Satorra, 1990; Satorra & 

Bentler, 1994). To address this problem, various corrections to the chi-square test statistic have 

been proposed. Specifically, the chi-square statistic can be corrected so that in large samples it 

agrees in mean with a chi-square distribution (Asparouhov & Muthén, 2005; Satorra & Bentler, 

1994; Yuan & Bentler, 2000), or it can be corrected so that it agrees in both mean and variance 

(Asparouhov & Muthén, 2010; Satorra & Bentler, 1994). In large samples, the mean and 

variance corrected chi-square statistics should be superior to the less computationally 

expensive mean corrected chi-squares (Asparouhov & Muthén, 2013). Maydeu-Olivares 

(2017) summarizes the various mean, and mean and variance corrected chi-square statistics 

proposed in the literature. In a simulation study, he also shows that mean and variance 

corrections provide more accurate p-values than mean corrections when assessing the absolute 
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(i.e., model-data) fit of the model. In this article, we refer to these corrected chi-square statistics 

as robust chi-square statistics. 

  Chi-square tests can also be used to compare the fit of two models that are nested. There 

are many applications in which this is of interest (e.g., Elkins et al., 2018; Lai et al., 2015; 

Pappu & Quester, 2016; Schivinski & Dabrowski, 2016; Wingate & Bourdage, 2019). In 

particular, testing for differences in fit is routinely performed in the measurement invariance 

literature (e.g., Guhn et al., 2018; Hawes et al., 2018; Huhtala et al., 2018; Jenkins et al, 2018; 

Krieg et al., 2018). 

Consider two models, Model 0 and Model 1, with degrees of freedom df0 and df1, 

respectively, where df0 > df1. Model 0 is nested within Model 1 if the mean and covariance 

structures implied by Model 0 can be reproduced exactly by fitting Model 1 (Bentler & Satorra, 

2010).  Using ML, and if the normality assumption holds, the difference in model fit can be 

conveniently tested by computing the difference between chi-square statistics of the two nested 

models under consideration. When the larger model (Model 1) is correctly specified, the 

difference statistic asymptotically follows a chi-square distribution. If the chi-square difference 

statistic cannot be rejected, the more parsimonious model (Model 0), should be preferred over 

the less restricted one (Model 1).  

  If the normality assumption does not hold, the difference between the two robust fit 

statistics will not be chi-square distributed, thus compromising the accuracy of statistical 

conclusions (Satorra, 2000). To facilitate appropriate statistical testing for differences in fit 

under non-normality, several corrections to the chi-square difference statistic have been 

proposed (e.g., Asparouhov & Muthén, 2006; Asparouhov & Muthén, 2010; Satorra, 2000; 

Satorra & Bentler, 2001; Satorra & Bentler, 2010). To date, the two most commonly utilized 

options among applied researchers have been the two versions of Satorra-Bentler mean-

adjusted chi-square difference statistic (Satorra & Bentler, 2001, and Satorra & Bentler, 2010). 
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Surprisingly, notwithstanding the frequent and ongoing application of these two corrected 

statistics, only two studies have thoroughly assessed their performance under non-normality: 

Chuang and colleagues (2015), and Brace and Savalei (2017). The results of both studies 

reinforced concerns regarding the application of uncorrected difference statistics to non-normal 

data and provided evidence of the robustness to non-normality of the Satorra and Bentler 

(2001) and (2010) corrections under a variety of plausible research scenarios, gently favoring 

the more recent one.  

However, these recent studies did not include an investigation of the mean and variance 

adjusted difference statistics (Asparouhov & Muthén, 2006, 2010), which may perform better 

than the mean corrected difference statistics currently in use in applications. Accordingly, the 

current investigation is aimed at addressing this gap in the literature to date. The remaining of 

this paper is organized as follows. First, we describe the mean, and mean and variance 

corrections to chi-square statistics for comparing nested models. Next, we summarize previous 

studies on the behavior of mean corrected difference statistics when data is non-normal and 

emphasize the rationale for investigating the performance of the mean and variance corrected 

test statistic. Afterwards, we present the results of a simulation study comparing the 

performance of Asparouhov and Muthén’s (2006, 2010) the mean and variance adjusted 

difference chi-square to the Satorra and Bentler’s (i.e., 2001, 2010) mean adjusted difference 

statistics with respect to both empirical Type I error rates and power. Finally, we discuss the 

results and provide some recommendations for substantive researchers. In the supplementary 

materials to this article, we provide a worked-out example in order to facilitate the application 

of the discussed methods.  

Mean, and mean and variance corrections to the chi-square difference statistic 

In this article we focus on structural equation models for continuous outcomes 

estimated by ML as this is the most commonly used setup in applications. Under a multivariate 
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normality assumption, and when no constraints are imposed on the means, the ML fit function 

is given by: 

 1( , ( )) log ( ) log ( ( ))MLF tr p        S S S , (19) 

where S  is the sample covariance matrix, ( )  is the model implied covariance matrix,   is 

the vector of model parameters with length q, and p is the number of observed variables. Within 

this setup, the most widely used test statistic used to assess fit of the hypothesized model is the 

likelihood ratio test statistic,   

 ( 1) MLT N F  ,  (20) 

where N denotes sample size, and ˆ
MLF is obtained by minimizing the ML fit function with 

respect to  . If the multivariate normality assumption holds and the model is correctly 

specified, T asymptotically follows a chi-square distribution with degrees of freedom (df) equal 

to ( 1) / 2p p q  , hence allowing for statistical evaluation of model fit. In applied literature, 

T is commonly referred to as the chi-square test statistic. However, if data are not normally 

distributed, T will not be χ2 distributed. In this case, the chi-square statistic can be adjusted so 

that it matches asymptotically a χ2 distribution either in its mean (e.g., Satorra & Bentler, 1994; 

Yuan & Bentler, 2000; Asparouhov & Muthén, 2005), or in its mean and its variance (Satorra 

& Bentler, 1994; Asparouhov & Muthén, 2010). The mean adjusted test statistics can be written 

as 
T

T
c

  , where c is the scaling correction; the mean and variance adjusted statistic can be 

written as T aT b   (Asparouhov & Muthén, 2010). Two variants of the mean adjusted 

statistic have been proposed. They differ on how c is computed and on their suitability in the 

presence of missing data. The first one was originally proposed by Satorra and Bentler (1994) 

to be used with complete data. In Mplus (Muthén & Muthén, 2017) and lavaan (Rosseel, 2012) 

SEM packages, it is obtained when choice MLM is selected. The second one was originally 
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proposed by Yuan and Bentler (2000) and later modified by Asparouhov and Muthén (2005). 

It is suitable for both complete and incomplete data and may be obtained in Mplus and lavaan 

using choice MLR. The main difference between the MLR and MLM version of the test is how 

the information matrix used in computing the scaling correction is estimated. In MLM, the 

expected information matrix is used, whereas in MLR, the observed information matrix is used. 

The latter should provide more accurate results (Efron & Hinkley, 1978; Maydeu-Olivares, 

2017; Savalei, 2010). A detailed technical account of the differences between choices MLM 

and MLR can be found in Maydeu-Olivares (2017). 

 In applications, it is often of interest to compare the fit of competing models. When the 

comparison between two models involves one model nested within another, a test can be 

performed to determine whether the difference in fit is statistically significant. We use M0 and 

df0 to denote the more restricted model to be compared and its degrees of freedom. We denote 

by M1 with df1 the less restricted model. M0 will be nested within M1, for instance, if M0 is the 

result of placing constraints on some of the model parameters of M1. Under normality 

assumptions, and for ML estimation, the difference in fit between two nested models can be 

tested simply by subtracting the two chi-square fit statistics: 

 0 1D T T  ,  (21) 

where T0 and T1 are chi-square statistics for models M0 and M1, respectively. Under these 

conditions, and when both models are correctly specified, D asymptotically follows a chi-

square distribution with degrees of freedom df = df0 – df1 (Steiger et al, 1985).  

 When data are not normal, D does not result in a χ2 distributed statistic (Satorra, 2000). 

To account for that, Satorra (2000) developed a scale corrected χ2 difference test robust to non-

normality. However, his computationally taxing implementation was quickly followed by an 

alternative correction to D that can be conveniently computed from a standard SEM software 

output (Satorra & Bentler, 2001). The scale corrected difference test statistic is given by 
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 01
01

D
D

c
 , 0 0 1 1

01
0 1

df c df c
c

df df





 , (22) 

where 0c  and 1c   are the scaling corrections for testing the absolute fit of M0 and M1, 

respectively. We note that if  0T , 0T  and 1T , 1T  denote the uncorrected and mean-corrected 

chi-square statistics for the two models, respectively, then  0
0

0

T
c

T
  and 1

1
1

T
c

T
  .  We refer to 

this robust difference statistic as DSB1 and consider two variants of it. The first one employs 

the Satorra-Bentler mean-adjusted χ2 (Satorra & Bentler, 1994) to obtain 0T and 1T . Following 

Mplus/lavaan terminology, we refer to this option in the current study with DSB1MLM. The 

second option considered uses Asparouhov and Muthén’s (2005) mean-adjusted correction to 

obtain 0T and 1T . We refer to this option here with DSB1MLR. We note that what we refer to in 

this paper as DSB1MLM corresponds to the difference statistic DR1 evaluated by Chuang and 

colleagues (2015), and to the DSB1 statistic evaluated by Brace and Savalei (2017).  

 A drawback of the DSB1 statistic proposed by Satorra and Bentler (2001) is that when 

sample size is small, the correction in (22) can take a negative value leading to a negative 

estimate of the test statistic. To avoid this shortcoming of the scaling correction in (22), Satorra 

and Bentler (2010) proposed another version of mean-adjusted scaling correction that can take 

only positive values. The “strictly positive” Satorra-Bentler corrected difference test statistic is 

identical to (22) except that c1 in (22) is replaced by 
*

*
*

T
c

T
 , where *T , *T are uncorrected 

and robust chi-square statistics associated with an additional model run (M*) of the less 

restricted model M1 using the parameter estimates of the more restricted model M0 as starting 

values and with the number of iterations set to 0 (Bryant & Satorra, 2012). We refer to this 

robust difference statistic here as DSB10. The DSB10 statistic is asymptotically equivalent to 

DSB1, and it is always positive (Satorra & Bentler, 2010). As with DSB1, we consider two 
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options of DSB10. The first one employs the Satorra-Bentler 2χ (Satorra & Bentler, 1994) to 

obtain 0T and *T . We refer to this option as DSB10MLM. The second option employs 

Asparouhov and Muthén’s (2005) mean-adjusted correction to obtain 0T  and *T , and we refer 

to this option as DSB10MLR. We note that what we refer to in this paper as DSB10MLM 

corresponds to the difference statistic DR2 evaluated by Chuang and colleagues (2015), and to 

the DSB10 statistic evaluated by Brace and Savalei (2017). 

 Of focal interest in the current study is the second order (i.e., the mean and variance) 

adjusted difference statistics (Asparouhov & Muthén, 2010), currently implemented in Mplus 

under the “MLMV” estimator using the “DIFFTEST” command. In contrast to the mean 

corrections, the second order adjustment takes the form D aD b  , where a is the scaling 

correction and b is the shift parameter. To match the empirical mean and variance of the 

difference statistic with those of a chi-square distribution, a and b need to meet ( )E D df  

and ( ) 2Var D df . The second order adjustment (Asparouhov & Muthén, 2010) is given by  

 

 
2

2 2

( )

( ) ( )

df df tr
D D df

tr tr
  

Μ

Μ Μ
,  (23) 

where M is given in formula (9) in Asparouhov and Muthén (2006). We refer to the difference 

statistic in (23) as DMLMV. In Table 1, we summarize the choices of statistics available to 

substantive researchers to test differences in fit between nested models.  
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Table 1: Choices of Chi-square Statistics for Comparing the Fit of Nested Models for 
Continuous Outcomes 

Difference 
Statistic 

For models 
estimated 

using 
choice: 

Suitable 
for: 

Available for 
models with 

missing 
data? 

Computable 
from the two 

models 
output? 

Reference 

D ML 
normal 
outcomes 

Yes Yes 
Steiger, 
Shapiro, and 
Browne (1985) 

DSB1MLM  MLM 
non-
normal 
outcomes 

No Yes 
Satorra and 
Bentler (2001) 

DSB10MLM MLM 
non-
normal 
outcomes 

No Yesa 
Satorra and 
Bentler (2010) 

DSB1MLR  MLR 
non-
normal 
outcomes 

Yes Yes 
Satorra and 
Bentler (2001) 

DSB10MLR MLR 
non-
normal 
outcomes 

Yes Yesa 
Satorra and 
Bentler (2010) 

DMLMV MLMV 
non-
normal 
outcomes 

No Nob 
Asparouhov 
and Muthén 
(2006)  

Notes: a It requires an additional run of the less restricted model using the parameter estimates 
of the more restricted model as starting values and with the number of iterations set to 0; b 
software is needed to compute it, at the time of this writing it is only available in Mplus, which 
directly outputs the difference statistic, df, and p-value (see supplementary materials). 
 

Previous research and research hypotheses 

 Chuang and colleagues (2015) compared the Type I error rates between the two Satorra 

and Bentler’s (Satorra & Bentler, 2001, 2010) mean corrected difference statistics, i.e., 

DSB1MLM and DSB10MLM (e.g., the expected information matrix was used in computing this 

statistic), also including the uncorrected statistic (D) suitable for normal data. Within a 

confirmatory factor analysis (CFA) framework, the types of constraints studied included 

constraining factor correlations to 0 or to 1, and constraining loadings to be equal. Both normal 

and non-normal data were considered. Two methods to generate non-normal data were used: 

the method proposed by Vale and Maurelli (1983), and a mixture of normal distributions (i.e., 

a contaminated multivariate normal distribution). In the first case, skewness was set to 2 and 
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kurtosis to either 7 or 15; in the second case, skewness was set to 0 and kurtosis to 4.96. Models 

between p = 8 and 12 observed variables were considered, and the degrees of freedom available 

for difference testing ranged from 1 to 5. Sample sizes (N) ranged from 100 to 1,000 

observations. The uncorrected statistic (D) performed well across conditions involving 

normally distributed data but was consistently overrejecting the true null when data were non-

normal. Across the conditions involving non-normality, both mean corrected difference 

statistics outperformed the uncorrected test and overall performed reasonably well, with a slight 

tendency of DSB1MLM to underreject and DSB10MLM to overreject.  

 In a follow-up to the study by Chuang and colleagues (2015), Brace and Savalei (2017) 

investigated both Type I errors and power of the two Satorra and Bentler’s mean corrected 

statistics in the context of evaluating measurement invariance in two-group CFA models. As 

in the previous study (Chuang et al., 2015), D, DSB1MLM and DSB10MLM were investigated 

using the same data generating procedures and skewness/kurtosis values. Total sample sizes 

(N) ranged from 220 to 1,760 observations, model size was either p = 8 or 16, and the degrees 

of freedom available for difference testing ranged from 6 to 16. Type I error results revealed 

that the mean corrected statistics overrejected the null hypothesis of overall model fit in the 

presence of non-normality in small samples. The overrejection was increasing with the 

increasing levels of non-normality and model size. Accurate Type I errors were obtained in 

most conditions in which the smallest sample size (recall that this is a two-group set up) was N 

= 440. In general, the mean corrected difference statistics behaved better than the statistics for 

overall model fit. As Brace and Savalei (2017, p. 477) put it, "rejection rates of scaled 

difference tests are related to the differences in the rejection rates of the corresponding scaled 

tests of overall model fit". Type I errors for DSB10MLM were accurate except for a few 

conditions involving the smallest sample sizes (N = 220). The behavior of DSB1MLM was 

noticeably worse in small samples.  
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We extend previous research by evaluating the performance of the mean and variance 

difference correction. One would expect that the mean and variance corrected test statistics 

would perform better in large models than statistics that involve only a mean correction. In 

particular, Maydeu-Olivares (2017) showed that when p = 16, both types of robust statistics 

yielded adequate empirical Type I errors when assessing the overall model fit. However, when 

p = 32, the mean and variance corrected test statistic maintained nominal Type I error rates 

while the mean corrected statistics were overrejecting the model. The magnitude of 

overrejection was increasing as the sample size was decreasing. Accordingly, we expect similar 

behavior of the robust difference statistics, that is, more accurate Type I error rates in small 

samples and for large models when MLMV is used.  

In addition, the current study goes beyond previous research by also evaluating the 

performance of the two Satorra-Bentler difference corrections coupled with the Asparouhov 

and Muthén’s (2005) mean adjustment for absolute fit (i.e., DSB1MLR and DSB10MLR). These 

combinations are of particular interest to substantive researchers because MLR is the only 

option currently available for modeling incomplete data. Previous research (Maydeu-Olivares, 

2017) reports that when assessing the overall model fit, choices MLR and MLM provide similar 

results, except in smaller samples (N  500) where MLM slightly outperforms MLR. 

Accordingly, we expect similar behavior of the difference statistics, namely, more accurate 

Type I error rates in small samples (N  500) when MLM is used.  

Simulation study 

A simulation study was conducted to assess the performance of five robust difference 

options: DSB1MLM, DSB1MLR, DSB10MLM, DSB10MLR, and DMLMV. The uncorrected difference 

test, D, was also included in the study to serve as a baseline for comparison. The data were 

generated in the context of a two-wave longitudinal one factor model. Put differently, the 

population model is a one factor model measured at two time points. As a result, it has the form 
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of a two-factor confirmatory factor analysis (CFA) model with correlated errors to account for 

dependencies across time. We display in Figure 1 one of the models used in our simulation.  

The chi-square difference tests were conducted to examine the equivalence of factor 

loadings across the two occasions. It is important to note that such tests are routinely utilized, 

for example, when researchers test weak factorial invariance across time (Meredith, 1993; Shi 

et al., 2017). When generating data, both factor variances were set to one and the population 

value of the inter-factor correlation was set to 0.30. We set the population values of all factor 

loadings to 0.70, except for the factor loading value for the first indicator of the second factor. 

The value of this factor loading was varied as described below. The population values for 

residual correlations across the two time points was set to 0.15. Finally, the error variances 

were set such that the population variances of the observed variables were equal to one.  

 

Figure 1. Small model used in the simulations. 

 

Study conditions 

The simulation conditions were obtained by manipulating the following five factors: 

(a) level of non-normality, (b) sample size, (c) model size, (d) magnitude of (non)invariance, 

and (e) degrees of freedom of the difference test. 

Level of non-normality. We used three levels of non-normality by manipulating the 

magnitude of skewness and (excess) kurtosis: Normal data (0,0), moderately non-normal (2,7), 
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and severely non-normal (2,10). We chose these particular values of skewness and kurtosis to 

match the values used in studies by Chuang and colleagues (2015) and Brace and Savalei 

(2017). Until recently, the standard method for generating non-normal data were based on Vale 

and Maurelli (1983). However, Foldnes and Olsson (2016) have recently shown that the Vale-

Maurelli method gives an overly optimistic evaluations of the performance of estimators and 

fit statistics. Accordingly, in this paper non-normal data were generated using the procedure 

described by Foldnes and Olsson (2016).  

Sample size. Four typical sample size variants were included in the study: extremely 

small (100), small (200), moderate (500) and large (1,000) sample size.  

Model size. Model size refers to the total number of observed variables (p; Shi et al., 

2015, 2018). Two model sizes were considered: small model with five indicators per factor (p 

= 10), and large model with fifteen indicators per factor (p = 30). We chose p = 30 because 

Maydeu-Olivares (2017) showed that the behavior of mean corrected test statistics for 

assessing model-data fit deteriorate in models of this (and larger) model size.  

 Magnitude of noninvariance. Three levels of noninvariance were considered by 

manipulating the population values of the first indicator across factors: invariant, small, and 

large noninvariance. For the invariant conditions, all factor loadings were equivalent across 

two occasions (i.e., λ = 0.70). Therefore, rejecting the chi-square difference test implies that a 

Type I error is made. The condition with small noninvariance corresponds to setting the 

population loadings of the first indicator to 0.70 in one factor and to 0.50 in the second factor 

(Δλ = 0.20). In the large noninvariance condition these values were λ = 0.70 and λ = 0.30 (Δλ 

= 0.40), respectively. Under both small and large noninvariant conditions, the probability of 

rejecting the chi-square difference test informs us of the power rates of the test.  

Degrees of freedom of the difference test (df). We manipulated the degrees of freedom 

of the test by varying the number of equality constraints imposed (i.e., the number of tested 
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factor loadings). The invariance tests were conducted on the first factor loading and on all 

factor loadings across two occasions. That is, when p = 10 (i.e., five factor loadings loaded on 

each factor), the difference tests had either df = 1 (small) or df = 5 (large); whereas when p = 

30 (i.e., 15 factor loadings loaded on each factor), the difference tests had either df = 1 (small) 

or df = 15 (large). 

In sum, the simulation study consisted of a fully crossed design including three 

distributional shapes (normal, moderately non-normal, and severely non-normal), three 

(non)invariance options (invariance, small noninvariance, and large noninvariance), four 

sample sizes (100, 200, 500, and 1,000), two model sizes (small and large), and two df options 

(small and large). One hundred and forty-four (144) conditions were created (3  3  4  2  

2) in total. One thousand replications were generated for each condition using the function 

nnig_sim in the miceadds package in R (R Core Team, 2019; Robitzsch, 2019).  

Estimation 

The chi-square difference tests were conducted by comparing two nested models. The 

less restricted (baseline) model 1M  was a two-wave longitudinal CFA model with all 

parameters freely estimated (the factor variances were fixed to one for model identification 

purposes). The more restricted models 0M had either one (the first one) or all factor loadings 

constrained to be equal across occasions. For each dataset, we fitted the nested models and 

conducted chi-square difference tests using ML and the robust ML (i.e., MLM, MLR and 

MLMV) estimation methods. As previously described, for both MLM and MLR, two variants 

of the mean corrected difference tests were computed (i.e., DSB1 and DSB10). In total, the 

performance of six maximum likelihood (ML) based chi-square difference tests (D, DSB1MLM, 

DSB1MLR, DSB10MLM, DSB10MLR, and DMLMV) was compared across the simulated conditions.  

In order to evaluate the performance of different robust chi-square difference tests, 

empirical rejection rates for nominal alpha levels of 5% were computed across all replications 



Study II: Chi-square difference tests for comparing nested models 

62 

within each simulation condition. To reiterate, under the invariant conditions (i.e., the null 

hypotheses are correct), the empirical rejection rates are Type I error rates. When the tested 

factor loadings are noninvariant in the population (i.e., the null hypotheses are wrong) the 

proportions of rejections across all replications are to be interpreted as the power of the chi-

square difference test. All estimations were performed using lavaan 0.6-5 (Rosseel, 2012) 

except for MLMV, for which Mplus 8 (Muthén & Muthén, 2017) was used.  

Results 

 For all of the study conditions all replications successfully converged. Accordingly, 

results for each condition under investigation were based on all 1,000 replications.  

Type I error rates 

For the Type I error rate analysis, we used results involving the invariant population 

model. The less restricted model M1 and additionally restricted models M0 were correctly 

specified in all conditions. In Table 2 and Table 3 we provide empirical Type I error rates of 

the difference tests at the 5% level of significance for small (p = 10) and large models (p = 30) 

respectively. Following Bradley (1978), and taking into account rounding error, we considered 

Type I error rates in [.02, .08] to be adequate. Conditions with Type I error rates outside this 

range are highlighted in Tables 2 and 3. 

Under normality, all examined difference tests performed well across conditions 

involving M0 with a single constraint (df = 1; Tables 2 and 3), regardless of model size and 

sample size. In conditions with small models (p = 10) and M0 with multiple constraints (df = 5; 

see Table 2), the Type I error rates were also appropriate for all examined statistics. Finally, 

conditions involving large models (p = 30) and M0 with multiple constraints (df = 15; Table 3) 

were more challenging for the studied difference statistics to maintain Type I accuracy. In these 

conditions, the difference statistics involving MLR and MLMV (i.e., DSB1MLR, DSB10MLR, 

and DMLMV) tended to slightly underreject.    
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In conditions with non-normal data, the uncorrected difference test (D) did not maintain 

its accuracy and, as expected, was overrejecting the true null, regardless of model size, sample 

size, and degrees of freedom. No large differences in rejection rates were observed across 

conditions involving different model sizes, severity of non-normality, sample sizes, and 

degrees of freedom (see Tables 2 and 3).  

Conversely, in all conditions with non-normal data, the robust difference statistics were 

outperforming the uncorrected option. However, their behavior was differently affected by 

non-normality. Both versions of the Satorra-Bentler mean corrected difference statistics 

(Satorra & Bentler, 2001, 2010) were overrejecting the true null in several conditions with non-

normal data. Conversely, the mean and variance corrected difference statistic (DMLMV; 

Asparouhov & Muthén, 2010) was performing consistently and it was the only option that 

yielded adequate Type I error rates across all non-normal conditions (see Tables 2 and 3). 

Overall, as hypothesized, the mean and variance corrected statistic, DMLMV, outperformed the 

two Satorra and Bentler’s (2001, 2010) mean corrected difference statistics.  

As can be observed in Tables 2 and 3, with respect to Type I error rates, the main effect 

of Satorra-Bentler (2001) vs. (2010) option was small. A more substantial effect was found for 

the MLM vs. MLR option. Specifically, larger sample sizes were needed for MLR (i.e., SB1MLR 

and SB10MLR) than for MLM options (i.e., SB1MLM and SB10MLM) to reach adequate Type I 

error rates. The model size effect was not observed. As can be seen in Tables 2 and 3, holding 

all other factors constant and simply increasing the number of variables had no effect on the 

performance of the two mean corrected difference statistics. However, the number of degrees 

of freedom available for difference testing did have an impact on the performance of the robust 

difference statistics. Holding all other factors constant, the larger the number of degrees of 

freedom, the poorer was the performance of the mean corrected statistics. Within the limited 



Study II: Chi-square difference tests for comparing nested models 

64 

conditions of this study, the mean and variance difference statistic (DMLMV) seemed robust to 

this effect. 

Finally, a small interaction effect between the version of the difference statistic, i.e., 

Satorra-Bentler (2001) vs. (2010), and the choice of formula used to obtain the standard errors 

for the model parameters (i.e., MLM vs. MLR) was observed. As it can be seen in Tables 2 and 

3, when there was a difference in Type I error rates between the two Satorra-Bentler difference 

corrections, a slightly more accurate results were observed for the original version when both 

were coupled with the MLM option (i.e., SB1MLM), whereas a slightly more accurate results 

were obtained using the “strictly positive” version when both were coupled with the MLR 

option (i.e., SB10MLR).    

Power  

Power analysis was based on two population models with one noninvariant factor 

loading. The less restricted model M1 was correctly specified in all conditions. Conversely, 

both more restricted models M0 were misspecified, simulating a small misspecification when 

the difference of the constrained factor loading across occasions was Δλ = 0.20, and a large 

misspecification when the difference was Δλ = 0.40. The power of the difference test thus 

reflects the sensitivity of the test to identify this misspecification in M0.  

Power results are provided in Tables 4 and 5 for small (p = 10) and large model (p = 

30) respectively. In the tables, conditions with incorrect Type I error rates identified earlier are 

highlighted. We evaluate only power results in conditions with adequate Type I error rates, that 

is, in those conditions not highlighted in the tables. As expected, power of the difference 

statistics was increasing with the increasing sample size and severity of misspecification and 

was decreasing with the increasing degrees of freedom for the difference test. Overall, we did 

not observe substantial differences in power among difference statistics in conditions with 

adequate Type I error rates (see Tables 4 and 5). 



Study II: Chi-square difference tests for comparing nested models 

65 

Table 2. Correctly Specified Small Model (p = 10). Type I Error Rates at the 5% 
Significance Level 

Distribution   df = 1 
Kurt Skew N  D DSB1MLM DSB1MLR DSB10MLM DSB10MLR DMLMV 
0.0 0.0 100  0.02 0.03 0.03 0.03 0.02 0.03 
0.0 0.0 200  0.03 0.03 0.03 0.03 0.03 0.03 
0.0 0.0 500  0.02 0.02 0.02 0.02 0.02 0.02 
0.0 0.0 1,000  0.03 0.03 0.03 0.03 0.03 0.03 
7.0 2.0 100  0.28 0.06 0.12 0.07 0.08 0.07 
7.0 2.0 200  0.24 0.06 0.09 0.06 0.07 0.06 
7.0 2.0 500  0.27 0.05 0.07 0.06 0.06 0.06 
7.0 2.0 1,000  0.25 0.06 0.06 0.06 0.06 0.06 
10.0 2.0 100  0.25 0.06 0.13 0.07 0.10 0.07 
10.0 2.0 200  0.27 0.05 0.09 0.06 0.08 0.06 
10.0 2.0 500  0.29 0.05 0.08 0.05 0.07 0.05 
10.0 2.0 1,000  0.31 0.04 0.06 0.05 0.05 0.04 

Distribution   df = 5 
Kurt Skew N  D DSB1MLM DSB1MLR DSB10MLM DSB10MLR DMLMV 
0.0 0.0 100  0.03 0.03 0.03 0.03 0.02 0.03 
0.0 0.0 200  0.02 0.02 0.02 0.02 0.02 0.02 
0.0 0.0 500  0.02 0.02 0.02 0.02 0.02 0.02 
0.0 0.0 1,000  0.02 0.02 0.02 0.02 0.02 0.02 
7.0 2.0 100  0.27 0.08 0.14 0.10 0.12 0.06 
7.0 2.0 200  0.26 0.05 0.09 0.07 0.09 0.04 
7.0 2.0 500  0.27 0.06 0.08 0.07 0.08 0.05 
7.0 2.0 1,000  0.26 0.07 0.08 0.07 0.07 0.05 
10.0 2.0 100  0.27 0.08 0.17 0.12 0.14 0.06 
10.0 2.0 200  0.28 0.05 0.11 0.07 0.09 0.04 
10.0 2.0 500  0.32 0.06 0.11 0.08 0.10 0.04 
10.0 2.0 1,000  0.31 0.06 0.08 0.06 0.07 0.04 
Notes: highlighted values fall outside [.02, .08]; p = number of indicators; Kurt = Kurtosis; 
Skew = Skewness; N = sample size; df = degrees of freedom; D = uncorrected ML Δχ2; 
DSB1MLM = Satorra-Bentler Δχ2 (2001) with Satorra-Bentler χ2 (1994); DSB1MLR = Satorra-
Bentler Δχ2 (2001) with Asparouhov-Muthén χ2 (2005); DSB10MLM = Satorra-Bentler Δχ2 
(2010) with Satorra-Bentler χ2 (1994); DSB10MLR = Satorra-Bentler Δχ2 (2010) with 
Asparouhov-Muthén χ2 (2005); DMLMV = Asparouhov-Muthén Δχ2 (2010). 
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Table 3. Correctly Specified Large Model (p = 30). Type I Error Rates at 5% Significance 
Level 

Distribution   df = 1 
Kurt Skew N  D DSB1MLM DSB1MLR DSB10MLM DSB10MLR DMLMV 
0.0 0.0 100  0.02 0.03 0.02 0.02 0.02 0.02 
0.0 0.0 200  0.02 0.03 0.03 0.03 0.03 0.03 
0.0 0.0 500  0.02 0.02 0.02 0.03 0.02 0.03 
0.0 0.0 1,000  0.03 0.03 0.03 0.03 0.03 0.03 
7.0 2.0 100  0.28 0.09 0.12 0.08 0.09 0.08 
7.0 2.0 200  0.25 0.06 0.09 0.06 0.08 0.07 
7.0 2.0 500  0.30 0.05 0.06 0.06 0.06 0.06 
7.0 2.0 1,000  0.30 0.06 0.07 0.06 0.06 0.06 
10.0 2.0 100  0.26 0.08 0.13 0.08 0.09 0.08 
10.0 2.0 200  0.29 0.07 0.10 0.07 0.08 0.07 
10.0 2.0 500  0.30 0.05 0.08 0.05 0.07 0.05 
10.0 2.0 1,000  0.32 0.05 0.07 0.06 0.06 0.06 

Distribution   df = 15 
Kurt Skew N  D DSB1MLM DSB1MLR DSB10MLM DSB10MLR DMLMV 
0.0 0.0 100  0.02 0.02 0.02 0.02 0.01 0.01 
0.0 0.0 200  0.02 0.02 0.02 0.02 0.01 0.01 
0.0 0.0 500  0.02 0.02 0.01 0.02 0.01 0.01 
0.0 0.0 1,000  0.02 0.02 0.01 0.01 0.01 0.01 
7.0 2.0 100  0.26 0.13 0.22 0.17 0.18 0.08 
7.0 2.0 200  0.26 0.09 0.15 0.11 0.13 0.05 
7.0 2.0 500  0.26 0.06 0.08 0.06 0.07 0.05 
7.0 2.0 1,000  0.29 0.07 0.08 0.07 0.08 0.04 
10.0 2.0 100  0.28 0.14 0.22 0.17 0.18 0.07 
10.0 2.0 200  0.30 0.10 0.18 0.13 0.15 0.06 
10.0 2.0 500  0.32 0.08 0.12 0.10 0.11 0.05 
10.0 2.0 1,000  0.35 0.07 0.10 0.08 0.09 0.04 
Notes: highlighted values fall outside [.02, .08]; p = number of indicators; Kurt = Kurtosis; 
Skew = Skewness; N = sample size; df = degrees of freedom; D = uncorrected ML Δχ2; 
DSB1MLM = Satorra-Bentler Δχ2 (2001) with Satorra-Bentler χ2 (1994); DSB1MLR = Satorra-
Bentler Δχ2 (2001) with Asparouhov-Muthén χ2 (2005); DSB10MLM = Satorra-Bentler Δχ2 
(2010) with Satorra-Bentler χ2 (1994); DSB10MLR = Satorra-Bentler Δχ2 (2010) with 
Asparouhov-Muthén χ2 (2005); DMLMV = Asparouhov-Muthén Δχ2 (2010).  
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Table 4. Misspecified Small Model (p = 10). Empirical Rejection Rates (Power) at 5% 
Significance Level 

 Distribution   df = 1 
Δλ Kurt Skew N  D DSB1MLM DSB1MLR DSB10MLM DSB10MLR DMLMV 

0.2 0.0 0.0 100  0.31 0.32 0.31 0.33 0.30 0.33 
 0.0 0.0 200  0.58 0.58 0.57 0.58 0.57 0.58 
 0.0 0.0 500  0.94 0.94 0.94 0.94 0.94 0.94 
 0.0 0.0 1,000  1.00 1.00 1.00 1.00 1.00 1.00 
 7.0 2.0 100  0.47 0.25 0.30 0.27 0.27 0.29 
 7.0 2.0 200  0.58 0.33 0.36 0.35 0.35 0.35 
 7.0 2.0 500  0.83 0.59 0.59 0.61 0.59 0.61 
 7.0 2.0 1,000  0.97 0.88 0.86 0.88 0.87 0.88 
 10.0 2.0 100  0.46 0.23 0.30 0.25 0.27 0.25 
 10.0 2.0 200  0.62 0.34 0.37 0.36 0.35 0.36 
 10.0 2.0 500  0.83 0.59 0.59 0.60 0.60 0.60 
 10.0 2.0 1,000  0.95 0.83 0.81 0.83 0.82 0.84 
0.4 0.0 0.0 100  0.83 0.84 0.84 0.85 0.83 0.85 
 0.0 0.0 200  0.99 0.99 0.99 0.99 0.99 0.99 
 0.0 0.0 500  1.00 1.00 1.00 1.00 1.00 1.00 
 0.0 0.0 1,000  1.00 1.00 1.00 1.00 1.00 1.00 
 7.0 2.0 100  0.83 0.67 0.63 0.68 0.64 0.69 
 7.0 2.0 200  0.96 0.88 0.84 0.89 0.86 0.89 
 7.0 2.0 500  1.00 1.00 0.99 1.00 0.99 1.00 
 7.0 2.0 1,000  1.00 1.00 1.00 1.00 1.00 1.00 
 10.0 2.0 100  0.82 0.68 0.66 0.70 0.67 0.70 
 10.0 2.0 200  0.96 0.90 0.86 0.89 0.87 0.90 
 10.0 2.0 500  1.00 0.99 0.98 0.99 0.98 0.99 
 10.0 2.0 1,000  1.00 1.00 1.00 1.00 1.00 1.00 
    df = 5 
0.2 0.0 0.0 100  0.16 0.17 0.15 0.17 0.14 0.16 
 0.0 0.0 200  0.32 0.34 0.33 0.33 0.31 0.32 
 0.0 0.0 500  0.78 0.78 0.77 0.78 0.77 0.77 
 0.0 0.0 1,000  0.99 0.99 0.99 0.99 0.99 0.99 
 7.0 2.0 100  0.46 0.21 0.28 0.25 0.25 0.17 
 7.0 2.0 200  0.56 0.29 0.34 0.33 0.33 0.25 
 7.0 2.0 500  0.81 0.58 0.59 0.60 0.59 0.54 
 7.0 2.0 1,000  0.96 0.87 0.88 0.88 0.88 0.85 
 10.0 2.0 100  0.46 0.20 0.30 0.25 0.25 0.18 
 10.0 2.0 200  0.60 0.30 0.35 0.34 0.34 0.27 
 10.0 2.0 500  0.82 0.56 0.58 0.58 0.58 0.52 
 10.0 2.0 1,000  0.96 0.84 0.83 0.84 0.83 0.80 
0.4 0.0 0.0 100  0.58 0.59 0.58 0.60 0.56 0.58 
 0.0 0.0 200  0.92 0.92 0.92 0.92 0.91 0.92 
 0.0 0.0 500  1.00 1.00 1.00 1.00 1.00 1.00 
 0.0 0.0 1,000  1.00 1.00 1.00 1.00 1.00 1.00 
 7.0 2.0 100  0.79 0.58 0.59 0.61 0.58 0.53 
 7.0 2.0 200  0.95 0.83 0.82 0.85 0.83 0.80 
 7.0 2.0 500  1.00 0.99 0.99 0.99 0.99 0.99 
 7.0 2.0 1,000  1.00 1.00 1.00 1.00 1.00 1.00 
 10.0 2.0 100  0.79 0.59 0.62 0.64 0.59 0.54 
 10.0 2.0 200  0.95 0.83 0.83 0.84 0.83 0.79 
 10.0 2.0 500  1.00 0.99 0.98 0.99 0.98 0.98 
 10.0 2.0 1,000  1.00 1.00 1.00 1.00 1.00 1.00 
Notes: highlighted cells have incorrect Type I errors; p = nr. of indicators; Δλ = noninvariance; Kurt = Kurtosis; 
Skew = Skewness; N = sample size; df = degrees of freedom. D = uncorrected ML Δχ2; DSB1MLM = Satorra-
Bentler Δχ2 (2001) with Satorra-Bentler χ2 (1994); DSB1MLR = Satorra-Bentler Δχ2 (2001) with Asparouhov-
Muthén χ2 (2005); DSB10MLM = Satorra-Bentler Δχ2 (2010) with Satorra-Bentler χ2 (1994); DSB10MLR = 
Satorra-Bentler Δχ2 (2010) with Asparouhov-Muthén χ2 (2005); DMLMV = Asparouhov-Muthén Δχ2 (2010). 
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Table 5. Misspecified Large Model (p = 30). Empirical Rejection Rates (Power) at 5% 
Significance Level 

 Distribution   df = 1 
Δλ Kurt Skew N  D DSB1MLM DSB1MLR DSB10MLM DSB10MLR DMLMV 

0.2 0.0 0.0 100  0.35 0.37 0.37 0.36 0.35 0.36 
 0.0 0.0 200  0.65 0.64 0.65 0.65 0.64 0.65 
 0.0 0.0 500  0.98 0.97 0.98 0.97 0.97 0.97 
 0.0 0.0 1,000  1.00 1.00 1.00 1.00 1.00 1.00 
 7.0 2.0 100  0.47 0.26 0.29 0.28 0.27 0.28 
 7.0 2.0 200  0.66 0.39 0.42 0.41 0.40 0.42 
 7.0 2.0 500  0.89 0.65 0.64 0.66 0.64 0.66 
 7.0 2.0 1,000  0.98 0.89 0.89 0.90 0.89 0.90 
 10.0 2.0 100  0.50 0.29 0.34 0.32 0.30 0.31 
 10.0 2.0 200  0.64 0.35 0.40 0.39 0.39 0.40 
 10.0 2.0 500  0.85 0.61 0.62 0.63 0.62 0.64 
 10.0 2.0 1,000  0.97 0.87 0.86 0.87 0.86 0.88 
0.4 0.0 0.0 100  0.90 0.90 0.90 0.90 0.90 0.90 
 0.0 0.0 200  1.00 1.00 1.00 1.00 1.00 1.00 
 0.0 0.0 500  1.00 1.00 1.00 1.00 1.00 1.00 
 0.0 0.0 1,000  1.00 1.00 1.00 1.00 1.00 1.00 
 7.0 2.0 100  0.89 0.71 0.70 0.75 0.69 0.76 
 7.0 2.0 200  0.97 0.92 0.89 0.92 0.89 0.92 
 7.0 2.0 500  1.00 1.00 0.99 1.00 1.00 1.00 
 7.0 2.0 1,000  1.00 1.00 1.00 1.00 1.00 1.00 
 10.0 2.0 100  0.86 0.71 0.70 0.75 0.70 0.76 
 10.0 2.0 200  0.97 0.90 0.87 0.91 0.87 0.91 
 10.0 2.0 500  1.00 0.99 0.98 0.99 0.98 0.99 
 10.0 2.0 1,000  1.00 1.00 1.00 1.00 1.00 1.00 
    df = 15 
0.2 0.0 0.0 100  0.06 0.07 0.07 0.07 0.06 0.05 
 0.0 0.0 200  0.15 0.15 0.15 0.15 0.14 0.14 
 0.0 0.0 500  0.61 0.61 0.61 0.61 0.61 0.59 
 0.0 0.0 1,000  0.98 0.98 0.98 0.98 0.98 0.98 
 7.0 2.0 100  0.45 0.26 0.37 0.31 0.33 0.17 
 7.0 2.0 200  0.56 0.32 0.39 0.36 0.37 0.27 
 7.0 2.0 500  0.81 0.62 0.64 0.64 0.64 0.58 
 7.0 2.0 1,000  0.98 0.89 0.89 0.89 0.89 0.87 
 10.0 2.0 100  0.46 0.30 0.38 0.35 0.34 0.21 
 10.0 2.0 200  0.59 0.32 0.41 0.38 0.40 0.26 
 10.0 2.0 500  0.82 0.58 0.61 0.60 0.61 0.50 
 10.0 2.0 1,000  0.97 0.88 0.88 0.89 0.88 0.83 
0.4 0.0 0.0 100  0.40 0.42 0.41 0.43 0.38 0.37 
 0.0 0.0 200  0.83 0.84 0.83 0.84 0.82 0.82 
 0.0 0.0 500  1.00 1.00 1.00 1.00 1.00 1.00 
 0.0 0.0 1,000  1.00 1.00 1.00 1.00 1.00 1.00 
 7.0 2.0 100  0.81 0.65 0.72 0.69 0.69 0.55 
 7.0 2.0 200  0.93 0.86 0.87 0.87 0.86 0.81 
 7.0 2.0 500  1.00 1.00 1.00 1.00 1.00 0.99 
 7.0 2.0 1,000  1.00 1.00 1.00 1.00 1.00 1.00 
 10.0 2.0 100  0.78 0.64 0.69 0.68 0.66 0.54 
 10.0 2.0 200  0.94 0.84 0.85 0.85 0.84 0.77 
 10.0 2.0 500  1.00 1.00 0.99 1.00 0.99 0.99 
 10.0 2.0 1,000  1.00 1.00 1.00 1.00 1.00 1.00 
Notes: highlighted cells have incorrect Type I errors; p = nr. of indicators; Δλ = noninvariance; Kurt = Kurtosis; 
Skew = Skewness; N = sample size; df = degrees of freedom. D = uncorrected ML Δχ2; DSB1MLM = Satorra-
Bentler Δχ2 (2001) with Satorra-Bentler χ2 (1994); DSB1MLR = Satorra-Bentler Δχ2 (2001) with Asparouhov-
Muthén χ2 (2005); DSB10MLM = Satorra-Bentler Δχ2 (2010) with Satorra-Bentler χ2 (1994); DSB10MLR = 
Satorra-Bentler Δχ2 (2010) with Asparouhov-Muthén χ2 (2005); DMLMV = Asparouhov-Muthén Δχ2 (2010). 
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Discussion 

Applied researchers are often interested in assessing if a plausible and more 

parsimonious model fits the data as well as the initial model under consideration. If the two 

models of interest are nested and if data are normally distributed, evaluating the difference in 

model fit can be conveniently performed, because the difference in absolute fit of the two 

models will result in a statistic that follows a chi-square distribution. However, if data are not 

normal, a difference statistic obtained by subtracting the two robust absolute fit statistics will 

not necessarily be chi-square distributed, requiring a unique adjustment (Satorra, 2000; Satorra 

& Bentler, 2001). In order to facilitate appropriate selection of difference statistics in 

substantive research, we evaluated the performance of several difference options appropriate 

for non-normal continuous outcomes.  

Of focal interest in the current investigation was the performance of a seldom utilized 

yet potentially advantageous second order adjustment, that is, the mean and variance corrected 

difference statistic proposed by Asparouhov and Muthén (DMLMV; 2010). In order to provide a 

more thorough evaluation of this robust difference statistic, we pitted its behavior against the 

two more popular mean corrected statistics, DSB1 and DSB10, proposed by Satorra and 

Bentler (2001, 2010). The Satorra-Bentler difference statistics can be used in concert with the 

Satorra and Bentler’s (1994) model-data fit statistic appropriate for complete data (MLM), or 

the Asparouhov and Muthén’s (2005) model-data fit statistic appropriate for both complete and 

incomplete data (MLR). Accordingly, the options under investigation were DSB1MLM, 

DSB1MLR, DSB10MLM, DSB10MLR, and DMLMV. We also included in the comparison the 

uncorrected difference statistic (D) as a baseline. We evaluated the chosen options with respect 

to both Type I error rate accuracy and power of the test. 
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As expected, our investigation reconfirms that the uncorrected difference statistic can 

only be used with normally distributed data. When data is non-normal, it overrejects the true 

null, informing the researcher than the two models are different (and therefore the more 

complex model should be selected), when in fact the fit of both models is comparable. In the 

current investigation, the two Satorra-Bentler mean corrected difference statistics (DSB1 and 

DSB10) tended to overreject when sample size was small (N < 200). Their performance 

worsened as sample size decreased, kurtosis increased, and the degrees of freedom available 

for testing increased. Conversely and as hypothesized, the mean and variance corrected 

difference statistic (DMLMV; Asparouhov & Muthén, 2010) outperformed the mean corrected 

options, and also provided adequate Type I error rates across all non-normal conditions 

investigated. In terms of power, and holding Type I errors constant, no substantial differences 

were found among the difference statistics considered (the uncorrected, mean corrected, and 

mean and variance corrected). Overall, a clear winner among the difference statistics 

considered in the current investigation is the mean and variance corrected difference statistic.  

Among the mean corrected difference statistics studied, choices involving MLM 

outperformed choices involving MLR, especially in small samples. In contrast to previous 

studies, we did not find the Satorra and Bentler’s (2010) procedure of combining the mean 

corrected statistics to obtain the difference statistic advantageous over the original Satorra and 

Bentler’s (2001) proposal. This simply means that in our simulation setup, the original 

procedure did not fail (recall that the “strictly positive” procedure is essentially a way to obtain 

the difference statistic when the original procedure yields an improper value).  

Limitations and directions for future research 

As in any other simulation study, our conclusions are limited by the conditions included 

in the current investigation. We simulated conditions involving measurement invariance over 

time and found that the computationally more demanding mean and variance difference test 
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statistic outperforms statistics that only involve a mean correction. However, nested tests are 

also widely used to assess measurement invariance across populations (e.g., males vs. females). 

Therefore, future research should be aimed at replicating our findings in this setup.  

Moreover, we found that the performance of the mean corrected difference statistics 

worsened as the number of degrees of freedom for the difference test increased. In contrast, the 

mean and variance statistic maintained nominal Type I error rates in all conditions investigated. 

Nevertheless, it is reasonable to suspect that as degrees of freedom increase, p-values obtained 

using the mean and variance corrected difference statistic would eventually break down as well. 

Accordingly, it would be of interest for future research to consider large models involving 

larger numbers of degrees of freedom for difference testing than those used in the current study.  

It is of interest to note that the mean and variance difference statistics are also available 

when estimating ordinal factor analysis using polychoric correlations. In this case, Mplus 

implements these statistics for the unweighted and diagonally weighted least squares estimators 

(choices ULSMV and WLSMV in Mplus terminology; see Asparouhov & Muthén, 2010). 

Additional research is needed to investigate the performance of the mean and variance 

difference statistics in setups involving ordinal data.  

In closing, we must reiterate that statistical theory for chi-square difference testing 

relies on the assumption that the larger model being compared is correctly specified 

(Haberman, 1977; Yuan & Bentler, 2004). Because of the model size effect (Moshagen, 2012), 

this assumption may not be reliably tested in large models. Nevertheless, p-values for 

difference testing may be accurate even when p-values for overall model testing are not (e.g., 

see Brace & Savalei, 2017; Maydeu-Olivares & Cai, 2006). Accordingly, chi-square difference 

testing should be performed with care (Yuan & Bentler, 2004). 
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Recommendations 

Based on the evidence of the current evaluation, we recommend that the mean and 

variance difference correction be used whenever possible, both for continuous outcomes and 

(pending further evaluation) for ordinal outcomes as well. For continuous outcomes, the mean 

and variance corrected difference test proposed by Asparouhov and Muthén (2010) can be 

conveniently performed in Mplus by selecting as estimator MLMV in concert with the 

DIFFTEST option. For binary and ordinal outcomes, this option is available for estimation 

choices ULSMV and WLSMV. Researchers that do not have access to this software may use 

the mean corrected difference tests provided their sample is large enough (i.e., N  500). If 

opting for the mean corrected statistics, we recommend that statistics using the expected 

information matrix (MLM in Mplus terminology) are preferred over statistics using the 

observed information matrix (MLR in Mplus terminology), as the latter require larger samples 

to perform adequately. The original Satorra-Bentler mean difference correction (2001) may be 

preferred over the “strictly positive” option (Satorra & Bentler, 2010), unless it yields an 

improper value. We provide as supplementary material a worked-out example and Mplus code 

for all the evaluated robust difference tests so that substantive researchers can conveniently use 

them in their own research.  
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Supplementary materials 

Example and Mplus Code for Computing Chi-Square Difference Tests 

In the following example, we describe how to compute chi-square difference tests using 
Mplus software. Mplus syntax is included in the example so that applied researchers may 
utilize it in their own research.  
 
The data set for the example (“pc.dat”) contains four indicators measuring a unidimensional 
latent factor at two time-points. The total number of observed variables is thus eight. Sample 
size is 500.  
 
The baseline model (M1) in the example is the configural invariance model with the factor 
correlation and all factor loadings at each time-point freely estimated. The restricted model 
(M0) is the weak invariance model, which introduces equality constraints on all four factor 
loadings between the two time-points. The number of additional constraints in the model M0 

is thus four.  
 
We include Mplus code for computing the uncorrected difference test - D, Satorra-Bentler 
“original” difference test (2001) in concert with MLM - DSB1MLM, Satorra-Bentler “strictly 
positive” difference test (2010) in concert with MLM - DSB10MLM, and Asparouhov-Muthén 
chi-square difference test (2010) - DMLMV. For options involving choice MLR, the code for 
MLM can be used simply by replacing the estimator in the analysis command.  
 
We also provide results for all six options discussed in the paper.  
 
Computing the Uncorrected Difference Test  

Step 1: Estimating configural invariance model ( 1M ) with ML.   

 
TITLE: CONFIGURAL INVARIANCE (MODEL M1) WITH ML 
DATA:  FILE IS 'pc.dat'; 
VARIABLE: NAMES ARE  
!four factor indicators at time 1 

pc1_1-pc1_4  
!four factor indicators at time 2 

pc2_1-pc2_4; 
ANALYSIS: ESTIMATOR = ML; 
MODEL: 
!factor loadings freely estimated at both time points      

f1 by pc1_1-pc1_4*; 
f2 by pc2_1-pc2_4*; 

!factor correlation freely estimated  
f2 with f1; 

!both factor variances set to 1 
f1-f2@1; 

!residual correlations between time points estimated 
pc1_1 with pc2_1; 
pc1_2 with pc2_2; 
pc1_3 with pc2_3; 
pc1_4 with pc2_4; 

 

Chi-square test statistic ( 1T ) and degrees of freedom ( 1df ) are provided in the output.  
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Step 2: Estimating weak invariance model ( 0M ) with ML. 

 
TITLE: WEAK INVARIANCE (MODEL M0) WITH ML 
DATA:  FILE IS 'pc.dat'; 
VARIABLE: NAMES ARE  
!four factor indicators at time 1 

pc1_1-pc1_4  
!four factor indicators at time 2 

pc2_1-pc2_4; 
ANALYSIS: ESTIMATOR = ML; 
MODEL: 
!factor loadings are set to equality between time points 

f1 by pc1_1-pc1_4* (1-4); 
f2 by pc2_1-pc2_4* (1-4); 

!factor correlation freely estimated  
f2 with f1; 

!both factor variances set to 1 
f1-f2@1; 

!residual correlations between time points estimated 
pc1_1 with pc2_1; 
pc1_2 with pc2_2; 
pc1_3 with pc2_3; 
pc1_4 with pc2_4; 

 
Chi-square test statistic ( 0T ) and degrees of freedom ( 0df ) are provided in the output.  

 
Step 3: The uncorrected chi-square difference statistic (D) is obtained with the Equation in 
(2).  Number of degrees of freedom for the difference test is 0 1df df . 

 
Computing Satorra-Bentler “Original” Difference Test (2001) with Choice MLM (or 

MLR) 

Step 1: Estimating configural invariance model ( 1M ) with MLM.   

 
TITLE: CONFIGURAL INVARIANCE (MODEL M1) WITH MLM 
DATA:  FILE IS 'pc.dat'; 
VARIABLE: NAMES ARE  
!four factor indicators at time 1 

pc1_1-pc1_4  
!four factor indicators at time 2 

pc2_1-pc2_4; 
ANALYSIS: ESTIMATOR = MLM; 
MODEL: 
!factor loadings freely estimated at both time points      

f1 by pc1_1-pc1_4*; 
f2 by pc2_1-pc2_4*; 

!factor correlation freely estimated  
f2 with f1; 

!both factor variances set to 1 
f1-f2@1; 

!residual correlations between time points estimated 
pc1_1 with pc2_1; 
pc1_2 with pc2_2; 
pc1_3 with pc2_3; 
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pc1_4 with pc2_4; 
 

Robust chi-square test statistic ( 1T ), degrees of freedom ( 1df ), and scaling correction factor (

1c ) are provided in the output.  

 
Step 2: Estimating weak invariance model ( 0M ) with MLM. 

 
TITLE: WEAK INVARIANCE (MODEL M0) WITH MLM 
DATA:  FILE IS 'pc.dat'; 
VARIABLE: NAMES ARE  
!four factor indicators at time 1 

pc1_1-pc1_4  
!four factor indicators at time 2 

pc2_1-pc2_4; 
ANALYSIS: ESTIMATOR = MLM; 
MODEL: 
!factor loadings are set to equality between time points 

f1 by pc1_1-pc1_4* (1-4); 
f2 by pc2_1-pc2_4* (1-4); 

!factor correlation freely estimated  
f2 with f1; 

!both factor variances set to 1 
f1-f2@1; 

!residual correlations between time points estimated 
pc1_1 with pc2_1; 
pc1_2 with pc2_2; 
pc1_3 with pc2_3; 
pc1_4 with pc2_4; 

 

Robust chi-square test statistic ( 0T ), degrees of freedom ( 0df ), and scaling correction factor (

0c ) are provided in the output.  

 
Step 3: The two scaling correction factors ( 1c  and 0c ) and two degrees of freedom ( 1df  and 

0df ) are introduced into Equation in (3) to obtain scaling correction for the difference ( 01c ).  

 
Step 4: The uncorrected chi-square difference statistic (D) computed earlier is divided by the 
scaling correction 01c  to obtain the corrected chi-square difference statistic (DSB1MLM). 

Number of degrees of freedom for the difference test is 0 1df df . 

 
Computing Satorra-Bentler “Strictly Positive” Difference Test (2010) with Choice 

MLM (or MLR) 

Step 1: Estimating weak invariance model ( 0M ) with MLM and requesting syntax for model 
*M  in the output.   

 
TITLE: WEAK INVARIANCE (MODEL M0) WITH MLM REQUESTING SVALUES 
DATA:  FILE IS 'pc.dat'; 
VARIABLE: NAMES ARE  
!four factor indicators at time 1 

pc1_1-pc1_4  
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!four factor indicators at time 2 
pc2_1-pc2_4; 

ANALYSIS: ESTIMATOR = MLM; 
MODEL: 
!factor loadings are set to equality between time points 

f1 by pc1_1-pc1_4* (1-4); 
f2 by pc2_1-pc2_4* (1-4); 

!factor correlation freely estimated  
f2 with f1; 

!both factor variances set to 1 
f1-f2@1; 

!residual correlations between time points estimated 
pc1_1 with pc2_1; 
pc1_2 with pc2_2; 
pc1_3 with pc2_3; 
pc1_4 with pc2_4; 

!generating syntax for model M* in the output 
OUTPUT: SVALUES; 

 
Robust chi-square test statistic ( 0T ), degrees of freedom ( 0df ), scaling correction factor ( 0c ), 

and syntax for model *M  are provided in the output (under “MODEL COMMAND WITH 
FINAL ESTIMATES USED AS STARTING VALUES”).  
 
Step 2: Estimating configural invariance model *M .    
 
TITLE: CONFIGURAL INVARIANCE MODEL M* 
DATA:  FILE IS 'pc.dat'; 
VARIABLE: NAMES ARE  
!four factor indicators at time 1 

pc1_1-pc1_4  
!four factor indicators at time 2 

pc2_1-pc2_4; 
ANALYSIS: ESTIMATOR = MLM; 
!to set the number of iterations to 0 

CONVERGENCE=100000000 
MODEL: 
!introducing syntax for model M*  
!obtained from the output of M1 run in step 1 

f1 BY pc1_1*0.57830; 
f1 BY pc1_2*0.56133; 
f1 BY pc1_3*0.62387; 
f1 BY pc1_4*0.48925; 
f2 BY pc2_1*0.57830; 
f2 BY pc2_2*0.56133; 
f2 BY pc2_3*0.62387; 
f2 BY pc2_4*0.48925; 

 
pc1_1 WITH pc2_1*0.10261; 
pc1_2 WITH pc2_2*0.03403; 
pc1_3 WITH pc2_3*0.15778; 
pc1_4 WITH pc2_4*0.17586; 

      
f2 WITH f1*0.84084; 

 
[ pc1_1*3.20400 ]; 
[ pc1_2*3.61400 ]; 
[ pc1_3*3.44600 ]; 
[ pc1_4*3.51400 ]; 
[ pc2_1*3.31400 ]; 
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[ pc2_2*3.72400 ]; 
[ pc2_3*3.50400 ]; 
[ pc2_4*3.56800 ]; 

 
pc1_1*0.43837; 
pc1_2*0.28083; 
pc1_3*0.38353; 
pc1_4*0.46765; 
pc2_1*0.35235; 
pc2_2*0.23927; 
pc2_3*0.34973; 
pc2_4*0.48929; 
f1@1; 
f2@1; 

!to confirm that the number of iterations was 0 
OUTPUT: TECH5; 

 
The scaling correction factor  *c  and degrees of freedom ( 1df ) are provided in the output.  

 
Step 3: The two scaling corrections, *c  and 0c , and corresponding degrees of freedom ( 1df  

and 0df ) are introduced into Equation in (4) to obtain the scaling correction 10c .  

 
Step 3: The uncorrected chi-square difference (D) is divided by the scaling correction 10c  to 

obtain the corrected chi-square difference statistic DSB10MLM. Degrees of freedom for the 
difference test are 0 1df df . 

 
Computing Asparouhov-Muthén (2010) Chi-Square Difference Test with Choice 

MLMV 

Step 1: Estimating configural invariance model ( 1M ) with MLMV and saving data for the 

difference test. 
 
TITLE: CONFIGURAL INVARIANCE (MODEL M1) WITH MLMV 
DATA:  FILE IS 'pc.dat'; 
VARIABLE: NAMES ARE  
!four factor indicators at time 1 

pc1_1-pc1_4  
!four factor indicators at time 2 

pc2_1-pc2_4; 
ANALYSIS: ESTIMATOR = MLMV; 
MODEL: 
!factor loadings freely estimated at both time points      

f1 by pc1_1-pc1_4*; 
f2 by pc2_1-pc2_4*; 

!factor correlation freely estimated  
f2 with f1; 

!both factor variances set to 1 
f1-f2@1; 

!residual correlations between time points estimated 
pc1_1 with pc2_1; 
pc1_2 with pc2_2; 
pc1_3 with pc2_3; 
pc1_4 with pc2_4; 
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!saving data for the difference test 
SAVEDATA: DIFFTEST IS diffmlmv.dat; 

 
Step 2: Estimating weak invariance model ( 0M ) with MLMV using saved data from Step 1.  

 
TITLE: WEAK INVARIANCE (MODEL M0) WITH MLMV AND DIFFTEST 
DATA:  FILE IS 'pc.dat'; 
VARIABLE: NAMES ARE  
!four factor indicators at time 1 

pc1_1-pc1_4  
!four factor indicators at time 2 

pc2_1-pc2_4; 
ANALYSIS: ESTIMATOR = MLMV; 

DIFFTEST IS diffmlmv.dat; 
MODEL: 
!factor loadings are set to equality between time points 

f1 by pc1_1-pc1_4* (1-4); 
f2 by pc2_1-pc2_4* (1-4); 

!factor correlation freely estimated  
f2 with f1; 

!both factor variances set to 1 
f1-f2@1; 

!residual correlations between time points estimated 
pc1_1 with pc2_1; 
pc1_2 with pc2_2; 
pc1_3 with pc2_3; 
pc1_4 with pc2_4; 

 
The Asparouhov-Muthén (2010) chi-square difference statistic DMLMV, degrees of freedom, 
and the corresponding p-value are available in the output under “Chi-Square Test for 
Difference Testing”. 
 
Results 

 
Configural 
invariance 
(df = 15) 

 
Weak 

invariance 
(df = 19) 

 
Difference  

test 
(df = 4) 

Choice χ2 
p-

value 
 χ2 

p-
value 

 Correction Δχ2 
p-

value 

ML 28.069 .0211  33.373 .0218  
D (uncorrected difference 

test) 
5.304 .2575 

MLM 
21.732 .1150  26.938 .1061  

DSB1 (Satorra & Bentler, 
2001) 

5.094 .2778 

21.732 .1150  26.938 .1061  
DSB10 (Satorra & Bentler, 

2010) 
4.917 .2960 

MLR 
21.979 .1084  26.983 .1050  

DSB1 (Satorra & Bentler, 
2001) 

4.885 .2993 

21.979 .1084  26.983 .1050  
DSB10 (Satorra & Bentler, 

2010) 
4.832 .3050 

MLMV 21.004 .1367  26.099 .1275  
DMLMV (Asparouhov & 

Muthén, 2010) 
4.976 .2898 

Note: N = 500; df = degrees of freedom; χ2 = chi-square; Δχ2 = chi-square difference. 



General Discussion 

85 

GENERAL DISCUSSION 

In SEM, testing for exact model fit is of critical importance because only if the model 

fits exactly, valid inferences regarding parameter estimates can be made. On the other hand, 

applied researchers are often interested in evaluating several competing theoretical models. In 

such cases, testing for overall model fit needs to be supplemented by evaluating relative (or 

comparative) fit of the models under consideration.  

 Both the exact model fit and model comparison are most commonly statistically 

evaluated using the likelihood ratio test statistic (often referred to in the literature simply as the 

“chi-square statistic” of exact fit). In classical SEM, when evaluating exact fit, the chi-square 

test statistic evaluates the fit of the proposed model against a saturated model. When evaluating 

the comparative fit of two competing models, a difference in fit can be evaluated as a difference 

of the two chi-square statistics, provided the two models are nested. Under normality 

assumptions and given that the sample size is sufficiently large, both the chi-square statistic 

and the chi-square difference statistic have known reference distributions, that is, are 

asymptotically chi-square distributed, thus allowing for statistical inference. 

 In practical applications, the normality assumption is commonly not tenable. In such 

cases, the reference distributions of the chi-square statistic and the chi-square difference 

statistic may deviate from chi-square reference distribution, thus questioning the validity of 

substantive conclusions. It has been consistently shown via simulations that both chi-square 

statistics are sensitive to departures from normality assumptions (Brace & Savalei, 2017; 

Chuang et al., 2015; Fouladi, 2000; Hu et al., 1992; Satorra, 1990; Satorra, 2000; Satorra & 

Bentler, 1994). In addition, other factors, such as sample size and model size, may also distort 

the accuracy of chi-square statistics’ p-values obtained using their reference asymptotic 

distribution.  
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To deal with non-normal data, several approaches has been pursued, including adjusting 

the likelihood ratio statistics so that they can be better approximated by a chi-square 

distribution when data is non-normal, bootstrapping methods, and using alternative test 

statistics that are robust to violations of normality assumption.  

This doctoral thesis aims at contributing to both the exact model fit and model 

comparison literatures within the framework of structural equation modeling when data need 

not be normally distributed.  

Two simulation studies were presented. In the first simulation study included in this 

thesis, I re-examined the performance of the current gold standard for exact goodness of fit 

assessment of SEM models, the likelihood ratio test statistic (e.g., Jöreskog, 1969) and its 

asymptotic mean and variance adjustment (Asparouhov & Muthén, 2010; Satorra & Bentler, 

1994) against a recently proposed SRMR statistic for exact fit and its asymptotic mean and 

variance adjustment (Maydeu-Olivares, 2017b).  Major factors of the performance of the chi-

square test p-values were considered in the context of a CFA population model, including 

model size (defined as the number of observed variables), sample size, and (non)normality. In 

the second simulation study included in this thesis, I compared the performance of the 

uncorrected, and mean adjusted chi-square difference test (Satorra & Bentler, 2001; Satorra & 

Bentler, 2010) to its mean and variance adjusted version (Asparouhov & Muthén, 2006, 2010) 

in the context of testing for weak factorial invariance across time. Major factors affecting the 

performance of these fit statistics’ p-values were considered including model size (defined as 

the number of observed variables), relative model size (defined as df for the difference test), 

sample size, and (non)normality. 

General summary of findings  

The results of the first study replicated findings of previous research. Specifically, under 

normality, the uncorrected version of the chi-square performed accurately even in small 
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samples when the models involved a few variables. However, when larger models were 

considered, the test rejected the null hypothesis too often (i.e., showed inflated Type I error 

rates); and the quality of the asymptotic approximation did not sufficiently improve even at the 

largest sample sizes considered (N = 1000). Under non-normality, the uncorrected version of 

the statistic led to a severe model over-rejection across the board, which was in line with 

previous research (e.g., Fouladi, 2000; Hu et al., 1992; Satorra, 1990; Satorra & Bentler, 1994). 

The mean and variance adjustment to the chi-square test showed considerable improvements 

over the unadjusted version. Specifically, the results revealed that the adjusted version was 

relatively robust to nonnormality. However, when data were not normal, somewhat larger 

sample sizes were needed for the test to be accurate. On the other hand, the accuracy of the 

adjusted chi-square test was susceptible to model size effects. For large models, the accuracy 

of the chi-square adjusted p-values was again compromised and could not be fully rectified 

even with the largest sample sizes considered.   

 With respect to the behavior of the SRMR, when data were normally distributed, SRMR 

p-values obtained under normality were reasonably accurate, even in small samples, and for 

large models, in which the chi-square test and its adjusted version failed. When data were 

nonnormal, and SRMR p-values robust to non-normality were used, they were accurate only 

in small models. For larger models, the use of larger sample sizes did not lead to substantially 

better results (except for medium models and when no skewness was present).  

 In sum, based on the results of the first study, it seems that the current standard, that is, 

the mean and variance corrected chi-square test, performs accurately under violations of 

normality provided sample size is not too small. The major problem with this adjustment seems 

to be that testing large models must involve very large sample sizes for p-values to be accurate. 

When data are normal, the SRMR computed under normality is less susceptible to the effect of 

model size, and it outperforms the current standard. However, for nonnormal data, the robust 
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SRMR outperforms the adjusted chi-square test only in small models. For larger models, the 

mean and variance corrected chi-square test outperforms the robust SRMR. Accordingly, based 

on the results of this work, the SRMR does not seem to be the solution to assess exact model 

fit in large models. 

 With respect to the behavior of the chi-square difference test, the results of the second 

study replicated findings of previous research. Under normality, the uncorrected chi-square 

difference test performed accurately regardless of the sample size, model size, and df for the 

difference test. When data were nonnormal, the uncorrected test rejected the null hypothesis 

too often. In the current study, the magnitude of overrejection was not notably affected by 

varying levels of non-normality, model size, df for the difference test, and sample size. The 

accuracy of the mean adjusted difference tests was also affected by nonnormality. In addition, 

the magnitude of overrejection of the mean adjustment seemed to be compounded by other 

factors considered in the simulation. Specifically, the performance of the mean adjustments 

was the worst when large models, large df for the difference test, and small samples were 

considered. In general, the use of larger samples led to Type I error rates closer to their nominal 

levels, but the convergence of the reference distribution to the actual sampling distribution of 

the test statistic is slower the larger the size and degrees of freedom of the models considered. 

Finally, the focal statistic considered in the study, the mean and variance chi-square adjustment, 

performed relatively accurately across all conditions considered.  

 In sum, based on the results of the second study, it seems that the mean and variance 

chi-square difference adjustment performs better than the mean adjustments when comparing 

the fit of two nested models. In general, for mean adjustments to yield accurate Type I error 

rates, larger sample sizes are needed than if mean and variance adjustments are used. However, 

it is important to note that even though the mean and variance adjusted chi-square difference 
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test outperforms the mean adjusted versions with respect to Type I error rates, both versions 

require very similar sample sizes to reach adequate levels of statistical power. 

Limitations and future research directions 

There are several limitations to the current work. In the study on exact model fit, the 

performance of the SRMR and the chi-square test was evaluated only with respect to Type I 

error rates but not power. Limiting the investigation only to Type I errors seemed appropriate 

given that they were inaccurate in many investigated conditions. Second, the data generating 

model in the first study was a relatively simple model with a saturated mean structure, i.e., a 

CFA model. Future research should extend the current study, for example, by considering a 

greater range of number of factors and indicators and by varying magnitudes of factor loadings 

(e.g., see Hancock & Mueller, 2011; Ximénez et al., 2022). Mean and covariance structure 

models and more complex SEM models such as growth or multilevel models should also be 

considered in the future.  

 In the study on exact model fit, the SRMR was investigated as an alternative to the 

current standard, that is, the mean and variance adjusted chi-square test. Pending further 

investigation, SRMR in its current form does not seem to be a viable alternative to the current 

standard. That said, future research should also continue investigating other alternatives to 

evaluate exact model fit. One of the viable options is to use resampling methods, i.e., 

bootstrapping. Recently, Corrêa Ferraz and colleagues (2022) compared the Bollen-Stine 

bootstrapping method (Bollen & Stine, 1992) to the mean and variance adjusted chi-square 

test. The authors found that the Bollen-Stine method tends to underreject (i.e., yields deflated 

Type I error rates) under suboptimal conditions and overall performs worse than the mean and 

variance adjusted chi-square test. Similar to the SRMR, the Bollen-Stine bootstrapping method 

seems to be particularly sensitive to model size (Corrêa Ferraz et al., 2022) and it also does not 
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seem to be a viable alternative to the current standard. Along this line of inquiry, future research 

should also consider investigating the performance of alternative bootstrapping schemes.   

 Another viable option is to rely on alternative test statistics (e.g., Foldnes & 

Grønneberg, 2018; Hayakawa, 2019; Wu & Lin, 2016). For example, Foldnes and Grønneberg 

(2018) showed that their method of eigenvalue block averaging performs more accurately the 

mean and variance adjusted chi-square test under nonnormality and small sample sizes. More 

recently, Zheng and Bentler (2023) found that Hayakawa’s (2019) robust version of the 

reweighted least squares (RLS) statistic performs substantially better than the robust chi-square 

under suboptimal conditions. Although the performance of these recently proposed test 

statistics seems promising, additional research is required to ascertain their superiority over the 

current standard. In addition, such research efforts must be supported by prompt 

implementation of these tests into the popular statistical software packages. For instance, at the 

time of this writing, the RLS test statistics is only available in EQS (Bentler, 2004) and LISREL 

(Jöreskog & Sörbom, 2017); it has not yet been implemented in Mplus (Muthén & Muthén, 

2017) and the existing R (R Core Team, 2019) packages cannot compute it.  

 Most of the limitations pertaining to the study of the exact model fit may also be put 

forth with respect to the study of comparative model fit. Specifically, in the second study, the 

mean and variance chi-square difference adjustment performed accurately across all 

investigated conditions. However, the data generating model in this study was a relatively 

simple CFA model and model comparison was investigated in the context of weak longitudinal 

invariance by constraining some of the factor loadings to be equal. That said, additional 

research is needed to replicate these findings in different scenarios including more complex 

population models, larger model sizes, and larger df for the difference test. In addition, although 

the data were generated using an advanced data generating method (Foldnes & Olsson, 2016), 

future research should also consider other alternatives for generating nonnormal data. Finally, 
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nonnormality conditions generated in current work were not as extreme as in some related 

studies (e.g., Chuang et al., 2015), and future research could replicate current findings on the 

mean and variance chi-square difference adjustment in conditions involving greater departures 

from normality from those specified in the current work.   

 On a related note, the accuracy of mean adjustments to the chi-square difference 

statistic was the worst in conditions involving large models and large df for the difference test. 

However, with the current design, it was not possible to disentangle the effect of the model size 

from the effect of df for the difference test. These effects should be in focus and systematically 

investigated in future research efforts.  

General conclusions and recommendations 

In this doctoral thesis, I evaluated the performance of chi-square tests in the context of 

exact model fit and in the context of comparison in fit between two models that are nested. The 

findings of this thesis are of relevance for psychologists across various psychological 

subdisciplines such as educational, developmental, health, clinical, and industrial-

organizational, to name a few, and across various settings including academia, for-profit, non-

profit, and government. Application of appropriate statistical methods to evaluate and select 

theoretical models is essential for a robust advancement of psychological science that in turn 

may have important implications and facilitate psychological practice in terms of evidence-

based prediction and intervention, valid and fair psychological testing and assessment, and/or 

ultimately, in terms of shaping public policy more broadly.  

With respect to the issue of evaluating exact model fit, the mean and variance 

adjustment to the chi-square test outperformed its uncorrected version and performed relatively 

accurately under various suboptimal conditions considered in this work. It should be noted, 

however, that when fitting large models, results of the mean and variance adjusted chi-square 

test may still be suspect because very large sample sizes were needed for it to perform 
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accurately (N > 1000) even when data were normally distributed. Accordingly, based on the 

findings of this thesis, researchers are encouraged to make their sample size decisions 

considering the size of their theoretical models.  

In the current work, a recently proposed SRMR test for exact model fit performed 

overall worse than the mean and variance adjustment to the chi-square test. Accordingly, based 

on the results of this thesis and pending further investigation, I cannot advise researchers to 

include the SRMR in its current form in their standard toolkit for evaluating exact fit of models 

under consideration.   

When comparing the fit of two nested models, the results of this thesis reconfirmed that 

the unadjusted version of the chi-square difference test does not perform accurately when data 

are not normal. Therefore, researchers are strongly advised to use some of the available 

adjustments to the chi-square difference test to increase the validity of their statistical 

conclusions and the confidence in their findings. In this thesis, the mean and variance 

adjustment to the chi-square difference test performed accurately and outperformed mean 

adjustments in all conditions under investigation. Overall, based on the results of the current 

work, researchers should consider the mean and variance adjustment to the chi-square statistic 

as the option of choice for testing both exact model fit and model comparison. 
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