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Abstract

The rapid advancement of digitization, combined with the integra-
tion of renewable generation and the development of information and
communication technologies within the distribution network, is accel-
erating the transition towards distributed, digitized, and decarbonized
smart energy systems. Despite the crucial role of data in this transfor-
mation, it is still underutilized. Artificial Intelligence (AI) technology
has the potential to extract valuable insights from these data, enabling
innovative energy services and improving the performance of existing
ones.

This thesis first explores the potential of Al in data-driven energy
services for distribution power systems through a comprehensive study.
After reviewing the state of the art, the next step focuses on energy
management systems at the household level. This thesis develops a
multi-objective energy management system that simultaneously min-
imizes greenhouse gas emissions and electricity expenses, considering
the entire life cycle of the generation assets used to provide energy, in-
cluding the grid. The results demonstrate that this methodology can
significantly reduce greenhouse gas emissions without incurring expen-
sive electricity costs. The following chapter extends this innovative
environmental-based approach to local energy communities with cen-
tralized PV and battery.

Finally, the last chapter focuses on federated learning technology
applied to home energy management systems (HEMS). Due to the in-
creasing digitization of the low-voltage network and the implementation
of smart meters, data protection has become increasingly important.
Therefore, this study seeks to preserve user privacy by training predic-
tion models in a distributed manner. Moreover, the proposed person-
alized federated learning methodology for HEMS demand forecasting
incorporates a cost-oriented loss function to minimize imbalance costs
while preserving customer privacy. The study compares cost-oriented
and traditional loss functions and reveals that the personalized fed-
erated learning approach with cost-oriented loss function obtains the



lowest imbalance cost for HEMS optimization. Moreover, the study
demonstrates that new households without large historical consump-
tion data can still achieve good load prediction outcomes through col-
laborative learning models.
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Resum

L’avancg rapid de la digitalitzacid, combinat amb la implementacié de
generacié renovable i el desenvolupament de tecnologies de la infor-
macié i la comunicacié dins la xarxa de distribucid, esta accelerant la
transicio cap a sistemes energetics intel-ligents distribuits, digitalitzats
i descarbonitzats. Malgrat el paper crucial de les dades en aquesta
transformacio, encara es subtilitzen. La tecnologia d’intel-ligéncia ar-
tificial (IA) té el potencial d’extreure informacié valuosa d’aquestes
dades, permetent serveis energetics innovadors i millorant el rendiment
dels existents.

Aquesta tesi explora primer el potencial de la IA en serveis energetics
impulsats per dades per als sistemes de distribucié de potencia a través
d’un estudi exhaustiu. Després de revisar ’estat de l'art, el segiient
pas se centra en els sistemes de gestié energetica en I'ambit domestic.
Aquesta tesi desenvolupa un sistema de gestié energetica multiobjectiu
que minimitza simultaniament les emissions de gasos d’efecte hiver-
nacle i les despeses d’electricitat, considerant tot el cicle de vida dels
actius de generacié utilitzats per proporcionar energia, incloent-hi la
xarxa. Els resultats demostren que aquesta metodologia pot reduir sig-
nificativament les emissions de gasos d’efecte hivernacle sense incérrer
en despeses d’electricitat elevades. El capitol seglient amplia aquesta
aproximacio innovadora basada en ’entorn al nivell de les comunitats
energetiques locals amb fotovoltaica i bateria centralitzades.

Finalment, I'altim capitol se centra en la tecnologia d’aprenentatge
federat aplicada als sistemes de gestié energetica dels habitatges. A
causa de la creixent digitalitzaci6 de la xarxa de baixa tensié i la imple-
mentacié de comptadors intel-ligents, la proteccié de dades s’ha tornat
cada vegada més important. Per tant, aquest estudi busca preservar la
privacitat de 'usuari entrenant models de prediccié de manera distri-
buida. A més, la metodologia d’aprenentatge federat personalitzat pro-
posada per a la previsié de la demanda d’HEMS incorpora una funcio
de perdua orientada al cost per minimitzar els costos d’equilibri men-
tre es preserva la privacitat del client. L’estudi compara les funcions



de perdua orientades al cost i les tradicionals i revela que ’aproximacié
d’aprenentatge federat personalitzat amb funcié de perdua orientada
al cost obté el cost d’equilibri més baix per a 'optimitzaci6 d’"HEMS.
A més, 'estudi demostra que les noves llars sense dades de consum
historiques encara poden assolir resultats satisfactoris.
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Chapter 1
Introduction

This first chapter introduces the current context of the energy trans-
ition and establishes the motivation of this thesis. The main research
questions, objectives and scope of this investigation are identified, ad-
dressing the key challenges and opportunities arising from the ongoing
climate situation and defining the author’s contribution to the field.
Next, the structure of the thesis is presented. Lastly, a chronological
summary of the research activities and related work undertaken during
the doctoral period concludes the chapter.

1.1 Current context and motivation

The emission of Greenhouse Gases (GHG) and their negative impact
on climate have become a primary concern for society. To minimize
their impact in the future, an international consensus was achieved in
2016 with the Paris Agreement [11]. It aims to limit the increase in
global average temperature by the end of this century to below 2 °C
compared to pre-industrial levels. Recently, this threshold has been
reduced to 1.5 °C.

The European Union (EU) is committed to leading the sustainable
energy transition by setting even more ambitious energy targets and
regulatory frameworks. Figure 1.1 provides a visual representation of
the European GHG historical emissions, future net emission targets and
medium-term predictions. In this context, the EU climate strategy for
2020 established a target of reducing GHG emissions by 20% compared
to 1990 levels. The EU had already achieved its 20% target before the
pandemic lockdown began to impact emission levels, having reduced
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emissions by 26% in 2019, while the gross domestic product (GDP)
increased by 58% [1]. However, the pandemic recovery and the incre-
ment of fossil-based generation sources in the second half of 2021 have
resulted in emissions growth in 2021.
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-+ Projections with existing measures (WEM) with LULUCF
- - Projections with additional measures (WAM) with LULUCF

Figure 1.1: Historical trends and future projections of EU greenhouse
gas emissions. Source: European Environment Agency.

In 2019, the EU presented the European Green Deal [12], a com-
prehensive set of policy initiatives covering almost all sectors, from
building renovation, transport, energy, biodiversity, agriculture or in-
novation. This framework aims to achieve a minimum of 55% reduction
in GHG emissions by 2030 and achieve a climate-neutral EU by 2050
with a net-zero pollutant emissions economy. This objective is even
more challenging as electricity consumption is projected to increase by
20% to 40% by 2050 [13]. Figure 1.2 illustrates that thanks to the am-
bitious EU’s climate policies, GHG emissions are expected to decouple
from GDP growth. The EU’s economy is projected to more than double
by 2050 compared to 1990 levels while fully decarbonizing.

In order to reduce these emissions effectively, it is essential to un-
derstand their sources and the sectors that make the greatest contri-
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Figure 1.2: European climate policy decouples GHG emissions and
GDP growth [1]. Source: European Commission.

bution to them. According to [2], energy (including electricity, heat,
and transportation) is in charge of almost three-quarters of global emis-
sions (73.2%). More in detail, the electricity and heat lead the annual
emissions, as shown in Figure 1.3. Of the total energy-related C'O2
emissions, more than 40% are due to the combustion of fossil fuels
for electricity generation. Therefore, the energy sector plays a crit-
ical role in mitigating these effects by improving energy efficiency and
transitioning traditional fossil-based electricity generation to carbon-
free alternatives.

Finally, Figure 1.4 depicts the historical and projected average an-
nual investments required to achieve the aforementioned EU climate
targets [3]. The residential sector has invested the most by far, and it
is expected to increase its investments even further in the next 10 years.
For these reasons, this thesis focuses on both, the residential and power
grid sectors, aiming to help these categories become drivers of change
towards a sustainable economy and energy democratization through
the implementation of small-scale, distributed renewable energy and
self-consumption.
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Greenhouse gas emissions by sector, World

Emissions are measured in carbon dioxide equivalents (CO2eq). This means non-CO2 gases are weighted by the
amount of warming they cause over a 100-year timescale
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Figure 1.3: Annual greenhouse gas emissions by sector [2]. Source: Our
World in Data.

1.1.1 Digitization and flexibility as energy transition enablers

Recent advances in Information and Communications Technology (ICT)
together with the implementation of smart meters and sensors at low
voltage levels are facilitating real-time monitoring, transforming the
traditional power system into a Smart Grid. It is undeniable that digit-
ization enhances customer engagement, providing customers with more
detailed information and insights about their electricity consumption
patterns, empowering them to make better decisions about their en-
ergy usage. Additionally, current artificial intelligence technology and
data analytic tools are enabling the extraction of added value from the
massive amount of data generated daily, leading to novel data-driven
business models in the energy domain.

In this context, the flexibility term arises, which refers to the power
system’s ability to modify or adjust the electricity consumption an-
d/or generation in response to variability or external factors such as
electricity prices or flexibility requests from other electricity market
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Figure 1.4: Average annual and additional investments to achieve 2030
EU climate targets [3]. Source: European Commission.

participants such as Transmission System Operators (TSOs), Distribu-
tion System Operators (DSOs) or Balance Responsible Parties (BRPs),
with the purpose of maintaining network stability, minimizing conges-
tions, and reducing or avoiding imbalances, among others.

Focusing on consumers, energy management systems enable custom-
ers to monitor, control, and optimize their energy consumption and us-
age through demand-side management strategies, which aim to change
consumption patterns by encouraging customers to shift their electri-
city consumption to different periods or reducing/curtailing the overall
or some demand at specific periods. These changes are for the user’s
own benefit or due to external signals or flexibility requests by thirds
of electricity market agents in exchange for economic compensation.
Thus, indirectly, GHG emissions associated with electricity generation
are reduced, the efficiency of the electricity system is increased, and
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congestion in the grid can be avoided by activating flexibility, thereby
increasing the resilience and resistance of the electricity system. Ad-
ditionally, the flexibility market provides a platform to aggregate the
end-users’ flexibility to participate in the energy transition actively and
contribute to reducing greenhouse gas emissions while also potentially
benefiting from cost savings and other incentives. Thus, the end-user
becomes an active and indispensable part of the electricity market and
energy transition.

Therefore, the energy management systems’ flexibility service sup-
port and accelerate the ongoing energy transition and also promote
the empowerment of ordinary citizens, allowing them to manage and
monitor their energy consumption and production (in the case of be-
ing prosumers), involving them and making them key players in the
essential energy and climate transition. Furthermore, thanks to self-
consumption and the emergence of local energy communities among
neighbors, electricity generation is decentralized, thus minimizing trans-
mission losses and democratizing energy consumption, making it access-
ible to everyone. This new vision of the electricity system also gener-
ates direct economic benefits for users, providing substantial savings
through self-consumption and the sale of excess electricity in exchange
for economic compensation. This new scenario is highly beneficial for
communities as it not only enriches them but also serves as a strong
incentive for the creation of jobs in the field of energy transition.

1.1.2 Motivation

In summary, the urgent need to mitigate climate change and reduce
greenhouse gas emissions has encouraged the acceleration of the trans-
formation of energy systems, especially in the residential and build-
ing sector. Moreover, 90% of European citizens agree that reducing
CO4 emissions is necessary to achieve the 2050 emissions neutrality
target [14]. Therefore, the main objective of this thesis is to contrib-
ute to this global effort by developing innovative environmental-based
energy management system strategies that leverage the digitization of
the distribution network through the implementation of sensors and
smart meters. By enabling self-consumption and flexibility, end-users
can become active participants in the energy transition and essential
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drivers of change. Furthermore, this thesis considers user data privacy
preservation to enable the creation of forecasting models without com-
promising data security. This investigation creates an innovative and
sustainable energy management solution that supports the transition
towards a decarbonized economy while also protecting the privacy and
security of user data.
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1.2 Objectives and scope

This section outlines the Research Questions (RQ) that led to the ob-
jectives and scope of the thesis conducted by the author.

RQ1) What novel data-driven energy services are likely to
emerge or could benefit from the daily vast amount of opera-
tional and non-operational data related to distribution networks?

RQ2) Which Artificial Intelligence techniques are utilized in
the development of these data-driven energy services in the
distribution network, and how do they contribute to enhancing
the sustainability, efficiency, and reliability of the system?

RQ3) How can electricity consumers and local energy com-
munities contribute to enhancing sustainability through
emissions reduction and how can they be engaged and incentiv-
ized?

RQ4) Given the need to protect user data privacy, which ma-
chine learning distributed method can be applied to train energy
management system prediction models without compromising
personal data?

RQ5) How can cost-oriented loss functions in EMS prediction
models help to minimize imbalance penalizations due to energy
consumption estimation errors?

Figure 1.5 provides a conceptual overview of the objectives and con-
tributions of this thesis. The image details the scope of this thesis,
which is mainly focused on energy management systems, both at the
user and energy community levels. Firstly, a comprehensive analysis
of the state-of-the-art data-driven energy services and Al methods is
conducted in (O1). Subsequently, this work focuses on energy manage-
ment systems, developing an optimization model in (02). In addition,
a novel environmental-based optimization approach is developed and

10
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evaluated for Home Energy Management System (HEMS) in (O3), and
(O4) applies this method to local energy communities. Furthermore,
federated learning is included in HEMS to ensure customer data pri-
vacy and enhance collaboration between different energy stakeholders
who may be hesitant to share their data otherwise. In this context,
(O5) presents the personalized approach for end-users demand fore-
casting, while (O6) introduces a cost-oriented loss function for training
the models developed in (O5).

(O1) Data-driven energy services state-of-the-art

Energy management systems

(02) Home energy management systems (04) Energy communities
(03) Environmental (O5) (06) Federated learning
e Environmentaland e« Personalized Federated e Environmental
price-based learning and price-based
stz e Cost-oriented loss SRR

function

Figure 1.5: Global overview of the objectives and contributions of this
thesis.

This thesis responds to the following objectives, presented in different
chapters:

O1 Analyze the artificial intelligence methods applied in dis-
tribution networks to enable data-driven energy services.

First, a comprehensive analysis of artificial intelligence methods
applied in distribution networks to enable data-driven energy ser-
vices is conducted. The research involves identifying and classi-
fying various data-driven techniques for power systems and the
data sources involved in data acquisition. The study explores dif-
ferent energy services, including operation and monitoring, pre-
dictive maintenance, non-technical losses detection, forecasting,
flexibility and planning of distribution grids. The research also
maps the relationship between the distribution grid applications,
proving that multiple services can be offered as a single clustered

11
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02

03

04

05

12

service to different energy-related stakeholders. Additionally, the
analysis identifies the dependencies between the Al techniques
with each energy service.

Develop an energy management system optimization model

capable of controlling flexible assets in order to minimize
the electricity cost.

After comprehending the state of the art of the different en-
ergy services, this thesis focuses on energy management systems.
Therefore, this objective seeks to develop an optimization model
for a household energy management system capable of controlling
flexible assets to minimize electricity costs while considering the
end-user constraints. In this phase, different flexible asset models
are designed, including a battery model taking into account the
battery degradation parameters due to usage and calendar aging
and flexible PV generation, among others.

Develop an environmental-based objective function for
energy management systems that, in addition to min-
imizing cost, incorporates the reduction of greenhouse
gases associated with consumption.

After completing the previous objective, a novel strategy that
simultaneously minimizes greenhouse gas emissions and electri-
city expenses is proposed. The approach considers the entire life
cycle of the generation assets used to provide energy, including
the electricity grid. This multi-objective function empowers end-
users to determine their preferences at any time, enabling them
to prioritize minimizing cost, emissions, or a balance of both.
Transform and adapt the individual energy management
system model to a local energy community optimization
model, with centralized PV and battery.

The aim of this study is to transform and adapt the individual
energy management system model and the environmental and
price-based approach to local energy communities consisting of
several buildings with centralized and shared PV and battery.
The optimization seeks the overall neighborhood benefit.

Apply federated learning for energy management sys-
tems forecasting models using personalization.
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1.2 Objectives and scope

A personalized federated learning methodology is developed for
home energy management systems demand forecasting. The ap-
proach addresses the challenges of customers’ data privacy and
security, as well as mitigates the challenges of data silos in the
energy sector by enabling collaboration between stakeholders,
such as energy providers and customers, reducing or eliminat-
ing cloud-computing costs. The methodology involves retraining
a global centralized federated learning model using user-specific
smart meter data to build a personalized federated learning model
for each consumer. The new personalized model is kept locally,
maintaining the preservation of personal data.

Integrate cost-oriented loss functions with personalized
federated learning models for HEMS load predictions

The final contribution of this thesis is to integrate a cost-oriented
loss function with the personalized federated learning approach
developed in the previous step for HEMS load predictions. The
study demonstrates and validates the cost savings resulting from
the use of cost-oriented personalized federated learning models in
HEMS for end-users with varying historical data availability.

13
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1.3 Thesis outline

The contents of the thesis are organized in the following chapters:

14

Chapter 2 provides a comprehensive literature review of artifi-
cial intelligence methods applied to data-driven energy services
that have emerged with the recent digitization of the electrical
distribution network.

Chapter 3 presents a novel multi-objective hybrid HEMS de-
signed to minimize both electricity costs and greenhouse gas emis-
sions resulting from end-user consumption. To assess the impact
of each technology generation on the climate, a life cycle analysis
methodology is used.

Chapter 4 extends the scope of the previous research by assess-
ing different combinations of multi-objective objective function
approaches for local energy communities.

Chapter 5 combines federated learning technology with a cost-
oriented loss function for HEMS load prediction to enhance data
privacy and collaborative learning.

Chapter 6 summarizes the conclusions of the work and intro-
duces the future research lines for each of the research topics
addressed.

Appendix A enumerates the publications and research outcomes,
both related and unrelated to the thesis manuscript.

Appendix B briefly presents the detection and measurement
errors tool developed to avoid data errors.
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1.4 Thesis related work and activities

This section provides a chronological overview of the relevant activities
and work developed by the author during the thesis period, derived
from national and international projects that have directly or indirectly
fed this thesis. This is summarized in Figure 1.6.

Doctoral activities started in October 2018, with the author collab-
orating from 2018 until the end of 2019 on the Innovation Action H2020
European project INVADE Integrated electric vehicles and batteries to
empower distributed and centralized storage in distribution grids, under
Grant Agreement No 731148. This work consisted on the develop-
ment of a home energy management system optimization model that
minimizes the energy bill while offering flexibility to energy market
stakeholders to cope with grid congestion and imbalances, which led to
a conference paper [C1l]. Moreover, the development of shiftable and
curtailable flexible source models, such as electric water heaters, led to
a conference article [C5] and oral presentation [P-C1]. The author also
collaborated with colleagues at CITCEA-UPC, NTNU, and compan-
ies like Anell and Smart Innovation Norway on behalf of the INVADE
Project, which resulted in several outcomes not included in this thesis,
such as journal article [J5], conference papers [C3], [C4], [C6], [CT], and
oral presentation in international events [P-C1].

The research on the HEMS assessment in smart grids continued in
2020, under the BD4OPEM H2020 Project Big Data for Open Innov-
ation Energy Marketplace, Grant Agreement No. 872525. This project
involved 12 partners from eight different countries and five pilot sites.
In this context, a review of the state-of-the-art artificial intelligence
methods applied to data-driven energy services was conducted in [J1].
These new services aim to add value to the vast amount of data gener-
ated daily in the distribution network, thanks to its digitization.

The research conducted under BD4OPEM involved the development
of four data-driven energy-related services, which are described below:

e Detection of measurement errors. This service involved the use
of a data-cleaning pipeline that used artificial intelligence to de-
tect anomalies and impute missing values. This data-cleaning
algorithm was used prior to HEMS execution to ensure optimal

15
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performance and data quality. This work is described in Ap-
pendix B.

o Flexibility aggregated services for balanced responsible parties.
This service consisted of two approaches. The first approach in-
volved balance portfolio optimization to avoid penalties for devi-
ating from the system. The second approach involved minimizing
purchase costs in the day-ahead electricity market. The results
of this work are presented in [J6].

e Building energy management systems for the central offices of
a distribution system operator in Spain. This service involved
developing an algorithm to manage a group of buildings within
a local energy community with self-consumption and collective
storage. The results of this work are presented in a journal article
[J4].

e Energy forecasting. This service involved developing PV genera-
tion and demand forecasting at the LV level.

In parallel with the BD4OPEM project, the author also participated
in the FLEXRED project Flexibility of distributed energy resources to
optimize the operation of distribution networks, supported by Minis-
terio de Ciencia, Innovacion y Universidades under RT12018-09954. As
part of this project, the author developed an environmental-based ap-
proach for an energy management system, which resulted in a journal
publication [J1], a conference article [C2], and an oral presentation at
a congress [P-C2]. In addition, the author has also participated during
this period in an industrial project with a Catalan distribution system
operator company to develop an energy management system for a local
energy community, which consists of the offices of this corporation. As
a result of this work, article [J4] has been published.

In 2022, the author started working on the ATLAS project Digitiza-
tion using novel data analytic methods and toolbozes for secure, renew-
able, and flexible grids under reference PID2021-1281010B-100 funded
by Ministerio de Ciencia, Innovacién y Universidades and by ERDF A
way of making Europe. The project topic is aligned with the focus of an
international stay in Imperial College London (in the Electrical Engin-
eering Department), from August to December 2022. During this stay,
the author researched personalized federated learning for HEMS and

16
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combined it with a cost-oriented loss function approach to minimize im-
balance costs. The research led to journal publication [J3]. Moreover,
during 2022 I have served as the Scientific Coordinator of the Estaban-
ell Chair in Smart Grids, where my responsibilities included fostering
collaborations between industry and academia, as well as overseeing
and leading research and innovation projects in the distribution area of
the company.

In 2023, the author started participating in two projects related to
the topic of this thesis: the MERIDIAN project (Flexible distribu-
tion grid management for maximum decarbonization using artificial
intelligence) funded by Ministerio de Ciencia, Innovacién y Universid-
ades under TED2021-131753B-100 and PLATON (PLAtaforma ONline
integradora de datos de energia y de servicios IA para redes de dis-
tribucién).

17
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Figure 1.6: Timeline of the projects and main activities carried out dur-
ing the thesis.
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Chapter 2

Artificial intelligence for enabling
data-driven energy services

In this chapter, a comprehensive literature review is conducted on Ar-
tificial Intelligence (AI) methods applied to data-driven energy ser-
vices that have emerged with the recent expansion of digitization in
electrical distribution networks. This exhaustive analysis includes en-
ergy services such as operation and monitoring, predictive maintenance,
non-technical losses, forecasting, flexibility management and planning.
The relationships and interactions between them are examined. Many
of the applications identified lead to data outputs that can be input
for other energy applications, enabling several groups of potential ser-
vices for different stakeholders. Furthermore, future opportunities and
challenges for the application of Al in distribution grids are identified.

2.1 Introduction

The progress of Information and Communication Technologies (ICT)
and digitization are accelerating the transition towards smart energy
systems [15-17], where data have a remarkable but still under-exploited
role [17,18]. These data, collected by different types of sources, need
to be preprocessed [19,20] before applying Al techniques that lead to
several Big Data applications in power systems [21].

The operation and management of electrical grids are per se com-
plex decision-making processes, even more challenging taking into ac-
count the increasing penetration of renewable energy sources, which
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are adding more variability and uncertainty in the power system op-
eration [22]. To address the operation, maintenance, and planning of
electrical grids, classical analysis tools can require large computational
time and might not always find a feasible solution. In this sense, Al
techniques can contribute to operating, maintaining and planning elec-
trical networks by treating and extracting value from large volumes of
data, dealing with its variety and velocity, through much faster com-
putations [23].

Considering the potential of the data collected in electrical networks,
the scientific community is applying and developing Al techniques for
power system applications [23]. Al can be applied in all the power sys-
tem domains, including generation, transmission, distribution and con-
sumption. In particular, the International Renewable Energy Agency
(IRENA) envisages its application to promote the grid integration of
renewable energy sources in all the before mentioned power system
chain through: forecasting for renewable power plants (like wind and
solar large-scale power plants), grid stability and reliability at transmis-
sion and distribution level, demand forecasting, demand-side manage-
ment, optimized energy storage operation and optimized market design
and operation (the latter two as multi-domain applications) [24]. The
present chapter focuses on Al applications in the distribution and con-
sumption domains.

2.2 Data-driven techniques for power systems
analysis

The massive amount of data currently being produced alongside the
power system pipeline, from generation to demand side, has arisen
the opportunity to understand the system better and create innov-
ative services based on these data. For the sake of this investigation,
the data-driven techniques classification is based on the most relevant
publications in the energy field and based on Statistical, Neuroscience,
Computer Science and Mathematical references. To help the reader
to identify the different data-driven techniques, Figure 2.1 displays the
most relevant data-driven related areas in the energy sector considered
in this study.

20



2.2 Data-driven techniques for power systems analysis

Let us first define what is meant by artificial intelligence. TRENA
defines Al as an area of computer science that focuses on creating in-
telligent machines that follow human behavior, according to the data
collected [24]. This is considered the starting point for the development
of data-driven services in the electricity sector. However, this concept
can sometimes be misunderstood or considered too broad since some
techniques inside Statistics and Data Mining (DM) are placed within
the AT area.

ML is a sub-field of AT and computer sciences [4,24] that has evolved
from pattern recognition to analyze the data structure and fit it into
models that can be understood and replicated by users [4]. Figure
2.1 defines all the ML categories, methods and models applicable to
energy-related projects, taking into account the standard approaches
and definitions of different authors [25-28]. The classification provided
in this thesis matches the one proposed in [28] which is also imple-
mented within the power systems field. Furthermore, ML is classified
into four categories: Supervised Learning, Unsupervised Learning, Re-
inforcement Learning (RL) and Deep Learning (DL). Supervised and
Unsupervised Learning categories aim to predict or describe the ex-
isting relationships within the data set, being called supervised when
the dependent variable is available and unsupervised when it is not.
RL is a computational approach that learns from the interaction with
the environment, which means defining how system agents can take ac-
tions in their environment to maximize the cumulative reward [29]. RL
is implemented mainly in energy dispatch problems and building en-
ergy management scheduling [30]. Some bottlenecks expected in these
applications are the complexity of the objective functions (non-linear
and non-convex) plus the limitations of physical models. The main
advantage of using RL instead of predictive model strategies is that
RL operates a model-free approach and does not require convergence
guarantees, thus enhancing its applicability. Moreover, RL needs scarce
knowledge about the problem physics to be competitive with standard
rule-based controllers [31]. However, more research and real-world test-
ing are needed for RL technology to become more mature. DL belongs
to the Artificial Neural Networks (ANN) field. They are a broad family
of techniques in multiple domains which can be applied to both Super-
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vised and Unsupervised Learning. ANNs are inspired by the function of
the brain, with the primary objective of learning from unstructured or
unlabeled data, using single or multiple layers (DL approach) to extract
higher-level features from the raw input progressively. DL techniques
can be applied to power systems in different scenarios such as fault de-
tection in transformers [32-34], Photo-Voltaic (PV) forecasting [35,36]
and day-ahead electricity market price forecasting [37].

CATEGORY METHOD MODEL

NB Classifier

SVM Classifier

DT Classifier
Classification  —® | ogistic Regression
KNN Classifier

RF Classifier

MLP Classifier

Supervised

. SVM Regression
Learning
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Intelligence DBSCAN
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Reinforcement

L )
camning Multiple hidden ELM
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Deep Convolutional
Learning Neural Networks

Statistics

CNN

Data Mining LST™M

GRU
Elman

Recurrent Neural
Networks

Figure 2.1: Data-driven techniques classification derived from [4,5] and
Machine Learning categories for power systems analysis.

It is worth mentioning the role of Statistics in power systems. Stat-
istics is an applied science concerned with the analysis and modeling
of data [38]. Despite the similarity with ML, Statistics is the field of
Mathematics that deals with the understanding and interpretation of
data. For some references [39-41], Statistics aims to provide an over-
view of the data set, rather than forecasting or extracting relationships
between the data, being generally applied in the preprocessing step of
the data science pipeline. According to [38], learning problems that can
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be solved by applying statistical techniques can be roughly classified as
either Supervised or Unsupervised. Defining the boundaries between
Statistics and ML can be controversial, and often, some methods are
considered both Statistics and ML, while other references classify the
same method in a specific knowledge domain. According to [39], Stat-
istics uses a population sample to draw population inferences, while
ML determines generalizable predictive patterns from data.

In conclusion, the research combines inference and prediction, and
frequently the classification method is more related to the scientific do-
main where the techniques are applied (i.e., Computer Science, Math-
ematics, Engineering) rather than the particularities of the technique
itself.

2.3 Energy data sources

This section identifies and classifies the massive amount of heterogen-
eous data required for developing and operating the distribution grid
energy services listed in the previous Section 2.2. With the objective
of accelerating the development and deployment of the Smart Grid, a
significant amount of sensor devices have been installed in the distri-
bution network to increase its observability of dynamic and transient
events and collect information about the actual state of the grid, thus
achieving a higher level of monitoring, observability and control beyond
substation level. Nevertheless, not all the needed data come from direct
electrical grid measurements. For instance, [42] distinguishes between
electrical and non-electrical information and identifies three categor-
ies: measurement data, business data and external data. On the other
hand, authors from [22] divide the data sources into operational and
non-operational data, whose criterion is used in this thesis. Diverse
investigations have examined the data sources available in the grid; for
instance, [43] compares eight advanced measurement devices in distri-
bution networks and reviews their most recent Smart Grid applications.

The volume of data generated is expected to grow in the upcoming
years [22]. As an example, according to [44], the generated data coming
from a single Phasor Measurement Unit (PMU) can be estimated at
around 100 GB per year. Therefore, new energy-related services and
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business models need to emerge to take advantage of this massive data
that are still underused or unused. Therefore, Big Data analytics is
essential for processing data whose size is beyond the capability of a
typical database software tool.

The flow chart presented in Figure 2.2 depicts the steps that data
follow from the time they are collected until an energy service requests
it. The data sources, located at the bottom, are classified into two
large groups: operational and non-operational data. The power sys-
tem operational data include all the measurement assets that collect
power and energy data, including voltage, current, active and react-
ive power and grid status signals. On the other hand, non-operational
data provide essential information that has a crucial role in supporting
the energy services performance, such as weather conditions, electri-
city market data, social media, Geographic Information System (GIS)
and known parameters given by customers. The Big Data distribution
grid services can request both real-time and historical data. Once the
data has been collected, the next step is to harmonize the data to en-
hance its usefulness and provide a standard structure regardless of the
measurement source. The data harmonized are ingested and saved in
the data storage, also known as data lake. When an innovative ser-
vice requests data from the data lake database, the information goes
through a cleansing process to further increase data quality by elimin-
ating duplicates and imputing values to the missing data through Al
and statistical techniques.

Primary Big Data sources within the distribution grid are described
next:
Operational data: information extracted from the distribution grid
measurement devices.
e Advanced Metering Infrastructure (AMI): is an integrated system
of smart meters, communications networks and data management

systems that enables two-way communication between power util-
ities and customers [45].

e PMU: measures time-referenced magnitudes and phase angles of
voltage and current phasors [46].

e Supervisory Control And Data Acquisition (SCADA): collects
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re 2.2: Big Data sources used in power system data-driven services.

data automatically from distribution grid components, thus fa-
cilitating remote monitoring and control.

Non-operational data: information that helps power system util-

ities

gain deep insights into why some events occur in the grid.

Weather data: refers to time-dependent meteorological conditions
such as irradiance, temperature and wind speed. For instance,
atmospheric information is vital for forecasting algorithms related
to energy systems.

Electricity market data: the results obtained from the matching
up of the daily and intraday markets offer relevant information,
such as the day-ahead electricity price and the amount of energy
by generation technology type.

Social media: through text mining methods, faults in the distri-
bution grid or a fire that may harm the electrical infrastructure
can be detected through social network comments.

GIS: provides information about the grid components’ location
such as lines, transformers and feeders.

Customer behavior data: known parameters related to customers.
For example, the number of people living in the house, square
meters, number of rooms and income level.
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2.4 Data-driven services in distribution systems

In this section, a review of a wide range of innovative energy services
within the distribution network is evaluated. The most relevant Al
techniques used in each service are detailed. To obtain a comprehensive
outlook, Figure 2.3 classifies these energy services into the following
three categories:

e Distribution grid operation: responsible for ensuring the correct
operation of the distribution network.

e Flexibility management: in charge of the flexibility market.

e Planning: responsible for optimal investment strategies that con-
tribute to the long-term planning in the distribution grid.

The measurements error detection service is excluded in the flow
chart since it is inherent to the rest of the services and is not offered dir-
ectly to the electricity market stakeholders since its task is to identify,
detect and solve anomalies, errors, or missing values from data sources
to ensure the quality and usability of the distribution grid services.
The primary objective of implementing Al methods in Big Data en-
ergy services is to accelerate and stimulate the existing power system
toward an environment-friendly, cost-effective and reliable Smart Grid.
The services are offered to a broad range of stakeholders involved in
the energy domain, including DSOs, BRPs, prosumers and aggregat-
ors, among others. The purpose is to improve their performance and
encourage the creation of novel business models in the energy sector in
order to take advantage of the massive data that are being generated
and underused.

2.4.1 Measurements error detection

The measurement error detection application identifies, detects and
solves eventual anomalies, errors or missing records from data sources
in order to ensure data quality and usability. Depending on the type
of anomaly detected, a correction is automatically executed. The data
cleaning step in Figure 2.2 is responsible for executing these tasks.
The following anomalies have been distinguished in operating and non-
operating data:
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Figure 2.3: Scope of the Big Data services in the distribution network.

e Duplicate records: frequently happen during data collection due
to communication channel problems or combined data sets from
multiple sites.

e Structural errors: arise during measurement or data transfer.

e Unit inconsistencies: this happens when there is a change in the
units and the past recorded data are not altered.

e Qutliers: abrupt and short-duration changes in the consumption
pattern that are not a valid representation of the actual consump-
tion. The sources of spikes could be mechanical faults of the meter
or storing multiple inconsistent readings for the same timestamp.

e Missing data: occurs when no value is received for an observed
variable.

The measurement error detection sequential scheme is presented in
Figure 2.4, which identifies possible anomalies (see the dark blue boxes)
and proposes what techniques can be implemented to solve them (see
the light blue boxes). Moreover, a logical order when preprocessing
data need to be followed. The most suitable technique to address an
anomaly might vary depending on each service requirement. Al meth-
ods are a powerful tool for assigning predictive values for missing data.
Regarding missing data imputation, [47] implements a Long Short Term
Memory (LSTM)-based method for bi-direction data imputation, [48]
applies a Multi-layer Perceptron (MLP) ensemble, while [49] works with
Graph-based ANN. The main advantage of Al and Big Data analysis
is that it automates and improves the error detection process of the
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ever-increasing energy-related measured data. For instance, [50] has
developed a smart meter data error recognition technology applying
ANN and Super Vector Machine (SVM) classification algorithms.
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Figure 2.4: Measurements error detection service steps.

2.4.2 Operation and monitoring

The operation and monitoring category is responsible for improving the
observability and performance of the distribution grid in nearly real-
time. Data-driven services such as topology, observability and fault
detection are included in this subsection.

New measurement devices with high granularity and power quality
resolution data like PMUs (120 Hz to 30 kHz and beyond) [22], AMI
and SCADA contribute to strengthening the LV grid monitoring by
providing essential information that assists in comprehending the grid
status and identifying possible congestions. The challenge is to monitor
the distribution grid operating conditions in nearly real-time to check
its status. Nevertheless, it is necessary first to know the distribution
grid topology to identify branches and nodes with technical problems
in order to generate a quick response to mitigate them. Therefore, the
topology estimation is an important step to ensure the distribution grid
operation and monitoring robustness.

2.4.2.1 Topology

The topology service aims to perform the complete retrieval of the
entire LV network electrical scheme. For security and operational reas-
ons, the transmission system is equipped with real-time measurement
devices at each node (bus voltages, line flows, bus injections) to ensure
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a reliable, robust and accurate topology identification and observability
of the power system [22]. However, topology is commonly unknown at
distribution levels [51] due to the scarcity of real-time measuring and
breaker status devices, which hinders its observability. Nevertheless,
due to the ever-increasing presence of advanced ICT within the distri-
bution grid domain, combined with the constant rise of smart meters
deployment [52], an enhancement of the original topology structure is
possible. For this reason, it is essential to implement some of the Big
Data techniques explained in Section 2.3 to be capable of processing
and analyzing all these amounts of data generated. In addition, the
electrical grid topology is an essential input for other energy services
like observability, non-technical losses detection, predictive mainten-
ance and aggregated flexibility services in order to have outstanding
performance and reliable operation. The literature distinguishes es-
sentially between transmission and distribution network topology, al-
though research efforts have recently concentrated on the latter. De-
pending on the frequency of data collection and the purpose of the ser-
vice, topology can be estimated in real-time [53-55] or offline [56,57].
The principal data sources for assessing low and medium voltage topo-
logy are SCADA, smart meters and PMUs, the latter being the most
used in research. As [58] points out, topology estimation accuracy de-
pends mainly on the availability and accessibility of the measurement
instruments; however, PMU is capable of achieving satisfactory out-
comes even with limited measurements. [59] calculates an equivalent
grid applying a least-squares model-free approach by choosing PMU
measurements at a limited number of buses, whereas [60,61] use local
electricity market prices as input data to obtain the distribution grid
topology.

The Alternating Direction Method of Multipliers (ADMM) is a pop-
ular method for distributed convex optimization problems, which de-
composes a large problem into smaller sub-problems, enhancing its ro-
bustness. The topology estimation problem is formulated and solved
using ADMM in [60-63]. The main advantages of this method are that
it allows handling and solving large-scale data problems and the imple-
mentation is straightforward. On the contrary, the convergence could
be slow.
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Regarding statistical methods, correlation is widely used in literature
as a tool for topology estimation. For instance, [56] analyzes the cor-
relation among voltage measurements to determine the grid topology,
meanwhile [64] proposes a correlation-based algorithm to identify the
transformer and phase to which a customer is connected. [65] recon-
structs the topology given the voltage magnitude measured from smart
metering devices, formulating the adaptive Lasso algorithm to obtain
the correlation coefficient matrix. Another study [66] calculates the cor-
relation coefficient among voltage measurements of smart meters under
the same distribution transformer and is capable of grouping custom-
ers that belong to the same phase effectively. Ultimately, [67] uses a
statistical learning framework for verifying single-phase grid structures
using non-synchronized voltage data.

Regarding Al-based methods, a binary classifier based on ANN iden-
tifies the status of a distinct line [53]. A learning-to-infer variational
method [57] considers three classifiers methods -Decision Tree (DT),
MLP and Logistic Regression (LogR)- for predicting the state of the
switch line, where MLP outperforms. On the other hand, [68] presents a
data-driven topology estimation method that applies the Linear Regres-
sion (LR) algorithm and historical voltage measurements as input to
the model, where the admittance matrix or switch location information
is not required. In [69], smart meter voltage patterns enable topology
identification by applying unsupervised learning clustering methods,
but the article does not specify which algorithm is applied. The study
carried out in [70] develops a Deep Neural Network (DNN) system that
interprets the reflected signal from the impedance discontinuities in the
network, which gives the possibility to determine the topology at the re-
flection site. The authors of [71] propose a Supervised Learning frame-
work that first estimates the parameters and an Unsupervised Learning
model to identify the topology. The proposed algorithm performs well
in radial and loopy distribution networks. In [72], a LR method is
proposed to evaluate the distribution network topology changes. Un-
fortunately, this method is accurate only if there is no noise in both
input and output measurements [71].

Data-driven techniques found in the literature for topology estim-
ation are listed in Table 2.1. The input data required for topology
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estimation is shown in Table 2.2.

Table 2.1: Data-driven techniques used in distribution network topo-
logy applications.

Data-driven technique Ref.

Correlation [56,59,64-66]
DNN [70]

DT [57]

LR (65,68, 72]
LogR [57]

MLP [53,57]

Table 2.2: Data sources for distribution network topology estimation.

Data source Input measurement Ref.

Electricity mar-

Electricity prices

60, 61]

ket [
PMU Voltage phasor [51,53,57-59,63,71]
Power injections [55,62]
SCADA Voltage magnitude [?1755]
Current [55]
Switch status [55]
Smart meters Power injections [64,72]
Voltage magnitude [64-68,71,73]

2.4.2.2 Observability

The observability service assesses the most probable state of the dis-
tribution network state in nearly real-time. Potential applications like
congestion management, optimal voltage/power control, fault detection
and non-technical losses detection, among others, required instantan-
eous information regarding distribution system status to perform ac-
curately.

For classic state estimators, power system measurements and switch-
ing device statuses are collected using SCADA systems, but the down-
side is that SCADA sampling rates are slow [74]. On the contrary,
PMUs provide high power quality resolution data in real-time. There-
fore, the innovation in the observability field attempts to include real-
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time operation data to provide a continuous and safe state estima-
tion of the distribution grid and apply AI methods to develop reliable
data-driven solutions. It should be noted that errors made in topology
estimation might downgrade the performance of the observability ser-
vice [58]. Smart meters are commonly applied for state estimation, for
example, in [75,76]. The authors in [76] analyze the optimal positioning
of smart meters for optimal cost-effective operation of the distribution
grid to increase the state estimation accuracy, while [77] implements
real-time PMU measurements to monitor the distribution grid status.
A hybrid state estimation using AMI and SCADA measurements is
formulated in [78].

Concerning data-driven methods, ML algorithms -DNN, SVMs, and
Recurrent Neural Networks (RNN), among others- are used in [74] to
develop a sophisticated power system status monitoring using a Big
Data platform. According to [79], the distribution grid might be near-
optimal observability shortly thanks to the improvement of real-time
devices and Al-based technical solutions. A DNN approach for unob-
servable systems is presented in [80]. This work overcomes the compu-
tation complexity in Bayesian estimation, although it is less capable of
adapting to outage changes, in addition to the fact that deep learning
training algorithms are still under research.

A significant limitation of observability in distribution systems is the
lack of sufficient real-time and high-granularity measurement devices
such as PMUs. Although they are being deployed, their high cost
prevents installing the required sensors to make the system fully ob-
servable.

2.4.2.3 Fault detection

The fault detection service intends to recognize and locate unusual elec-
tric currents within the distribution network. Two fault detection ap-
proaches are distinguished [81]. On one side, data-driven methods seek
a pattern recognition of measurement readings gathered from sensors
placed at different points of the network that indicate a fault. On the
other, model-based approaches compare real data from sensors with
prediction model results. High residual differences might indicate an
electrical fault.

32



2.4 Data-driven services in distribution systems

The leading causes of electrical faults are damaged equipment, en-
vironmental events, falling tree limbs and direct animal contacts [82].
Concerning natural phenomena-generated faults, [83, 84] propose Al-
based approaches to predict blackouts due to convective storms [84] or
ice-wind events [83]. Several works center their attention on the LV
domain considering different data-driven methods [85-90]. Real-time
anomaly detection is proposed in [91,92], where [91] defines an approach
using smart mater large-scale consumers data, [92] formulates a Convo-
lutional Neural Network (CNN) considering bus voltages. After a fault
occurs, [93] proposes a DT approach to identify the power line-fault
cause based on historical fault records.

Some studies focus on Microgrid faults detection [94-98]. A Random
Forest (RF) classifier model is used to detect unexpected Microgrid
islanding problems from normal operation conditions [94] that can be
located by knowing the topology. [95] proposes RF, K-Nearest Neigh-
bors (KNN) and SVM to detect faults in Microgrids, while [96] employs
Extreme Learning Machine (ELM) for the classification and location
of outages. An MLP classifier detects and isolates the fault in [97]
and [98] applies the ensemble bagged DT classifier to detect dynamic
events within the power system. Clustering techniques, such as Prin-
cipal Component Analysis (PCA) [95] and Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN) [84,99] are implemented.
The following articles listed in 2.3 cover a fault diagnosis in PV sys-
tems [100-102], using different AI techniques and input data, as shown
in Table 2.3.

Recently published articles that use AI techniques to detect and
predict faults within the distribution network are listed in Table 2.3,
considering the equipment of power lines [83,84, 88] and underground
cables [103], among others. In addition, the needed input data to per-
form the fault detection problem in each reference is specified.

2.4.3 Predictive maintenance

The predictive maintenance service intends to dig out the potentially
valuable information from the collected sensor data located in the
electrical equipment within the distribution network to help make de-
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Table 2.3: Data-driven techniques for detecting faults in the distribu-
tion grid domain.

Data-driven

technique Equipment Data used for detecting faults Ref.

GBM Distribution grid Time, load, generation, current,
voltage [85]
Area, lighting density, rain intens-

DBSCAN, NP . ity, storm parameters, air temper-

RF, DNN Distribution grid ature and pressure, wind speed, [84]
precipitations, snow depth

RF Distribution grid Fault data set [86]

MLP, ELM Distribution grid Three-phase current signal [90]

ELM, SVM, . . Measurements of three-phase fault

MLP Distribution grid currents [87]

T . Traced current of distribution

SVM Distribution grid feeder [88]

PCA, RF, Microerid Current and voltage signals at each

KNN, SVM & endpoint of the line [95]

ELM Microgrid Fault current signals [96]

. . Current modules in the DC Mi-

MLP Microgrid crogrid [97]

Ensemble DT  Microgrid Distributed generator data (98]

CNN Power system Bus voltage [92]
Line impedance, reflection coeffi-

MLP Power line cient and the channel transfer func- [104]
tion in the PLC signal band

CNN PV systems PV loop current [100]
PV array voltage and string cur-

RF PV systems rents [101]

DNN PV systems PV module parameters [102]

Underground power .
DNN cables Power line modems [103]
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cisions on the scheduling maintenance actions to anticipate an immin-
ent failure [105]. Furthermore, scheduled maintenance through pre-
dictive maintenance models is more cost-effective than repairing after
failure [106]. Concerning the energy system field, the vast majority
of the predictive maintenance research centers on high-power wind tur-
bines as the aim is to reduce the high operating and maintenance costs.
However, wind turbines are out of the scope of this investigation, which
concentrates on the distribution level domain.

The following authors focus on power transformer predictive main-
tenance [107-113]. The study presented in [107] reviews and identifies
the monitoring methods for predictive maintenance of electric power
transformers and identifies the operational lifetime degradation factors.
Another study conducted by [114] reviews recent articles that apply ML
for predictive maintenance, including power transformers and PV pan-
els. [109] analyses the different operating periods of an oil-immersed
power transformer through dissolved gas concentrations data. The K-
means clustering method groups the operation periods into different
classes characterized by the production activities of several gases and
the incipient failures. Reference [110] presents a predictive maintenance
ML method for power transformers based on RF and Ada-boost. The
results conclude that the Ada-boost algorithm provides better results
than the RF. The main disadvantage of data-driven prediction main-
tenance research is that high-resolution power-quality data are mainly
applied to validate their investigations. However, it is unlikely to have
such data in real-life distribution grid scenarios.

Concerning real-world trials and companies, Enel Distribution utility
tests its predictive transformer maintenance monitoring in [113]. These
data are of great interest to the distribution utility, as it provides faster
detection of anomalies, life loss and a more profound understanding of
the grid for future expansions. The company Neuron Soundware [115]
has developed a predictive maintenance solution powered by Al and
IoT for power utilities, covering from transformers to motors, ensuring
more than a 50% reduction in mechanical failures. Another company
named Predictive Layer [116] offers a ML tool for selective predictive
maintenance, among other energy-related use cases.

Recent studies containing AI techniques for developing predictive
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maintenance models are listed in Table 2.4. Besides, the equipment
and data used to perform the prediction model are indicated.

Table 2.4: Data-driven techniques used for prediction maintenance in
the distribution grid domain.

Data-driven Data applied for predictive

. Equi . f.
technique quipment maintenance Re
Correlation Line conductors, Equipment’s component outage
. cables, breakers .
analysis failure data [108]
and transformers
CNN Photovoltaic panels  Electrical power signal [117]
K-Means, . .
PCA Power transformer Dissolved gasses concentrations [109]
Underground power .
LSTM cables Voltage, active power and current. 18]
MLP Power transformer Age.transformer, loading, meteor-
ological data [111]
RF, Adas .Transformfars specification, lo.ad—
Power transformer ing, location and meteorological
boost [110]
data
SVM Power transformer Prosumer data and infrastructure [112]

2.4.4 Non-technical losses detection

Electricity losses at distribution levels encompass both technical and
non-technical losses (NTL). The first one occurs due to Joule’s effect,
while NTL refers to the electricity consumed but not billed [119]. In
other words, energy is illegally taken by unidentified end-users without
the awareness of the energy utility. Detecting and addressing electricity
theft is an essential task for power companies. For instance, Endesa
has developed a fraud detection system currently in operation [120].
In 2018 the system was capable of detecting 65000 cases of electricity
fraud, recovering 601 million stolen kWh. This number is equivalent to
powering the Spanish city of Palma de Mallorca for a duration of six
months [121].

Some articles review in-depth data-driven techniques applied within
the NTL field. A comprehensive review is presented in [119], which
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compiles the primary techniques, including AI, and the data used to
detect energy thefts, exposing the limitations of the current solutions.
[122] focuses on Big Data oriented to anomaly detection, which is a
powerful mechanism for fraud detection, while [123] examines the ML
classifiers for electricity thief detection.

ML methods assist in improving the accuracy of fraud detection
solutions. Unsupervised Learning clustering techniques are capable
of grouping customers according to their consumption profiles, thus
detecting suspect load curves of end-users. For instance, [124] calcu-
lates regular consumption behavior by clustering data collected from
smart meters to identify NTL [124]. Moreover, distinguishing outliers
in demand profiles aids to monitor and detect suspicious customers
by identifying abnormalities in consumption patterns [125,126]. The
NTL classification algorithms achieve better performance results thanks
to clustering techniques [127]. The most common evaluation metrics
found in the literature for NTL classification approaches are accuracy,
recall, precision, F-value and Matthews correlation coefficient. One of
the main challenges found when building an NTL classification model
is the lack of abnormal and irregular consumption data, a fact that is
known as data imbalance. The following articles [128-130] take into
consideration imbalanced data sets for NTL detection, while [131] pro-
poses strategies for improving imbalanced data performance. Some
events that could alter classification and clustering algorithms are the
change of residents or the purchase of new devices, such as EVs [125].

The most common data source applied to identify NTL using Al tech-
niques is the customer consumption data, followed in the distance by
customer information (such as location, complaints made and overdue
bills) and load, voltage and current measurements [119]. The authors
in [132] prove that it is possible to use only a small data set of recent
smart meter measures to define the customer consumption pattern.
Besides, studies generally focus on residential consumption to detect
electricity fraud, leaving aside industrial consumers. [133] justifies this
event as industries do not have a fixed electricity consumption pattern.

To conclude, traditional theft detection methods are mainly based
on on-site line inspections, which are highly expensive, time-consuming
and inefficient. In contrast, Al-based NTL detection methods are su-
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perior to conventional methods in terms of accuracy, time-consuming
and labor required, but more irregular and abnormal historical data
are needed in order to train the models optimally. The most popular
ML algorithm is SVM for classification tasks, while K-means is widely
popular for clustering consumption patterns.

Recent data-driven related articles for detecting NTL are listed in
Table 2.5.

Table 2.5: Data-driven techniques used for detection of non-technical

losses.
. Data-driven
Data-driven category technique Ref.
Supervised Learning
Classification DT [120]
RF [127,134]
SVM [125,128,129,131,133-138]
Ada-boost [130]
KNN [133]
GBM [133]
LogR [134]
Unsupervised Learning
Clustering K-means [125,130,132]
SOM (127,132,139
Fussy C-Means [132]
Gustafson-Kessel [124]
Dimensional reduction T-SNE [133,140]
Deep learning
CNN [133,140-142]
LSTM [141,142]
Statistics
Bayesian network [120]
Pearson coefficient [120]
Outlier detection 126]
Data Mining Data mining 120,124,126,137,139]

2.4.5 Forecasting

The forecasting service implements Al methods for demand, genera-
tion, electricity price and flexibility prediction, which are essential to
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deal with uncertainty and risk management within the distribution grid.
Furthermore, energy-related forecasting provides essential input for de-
mand response programs [143]. The purpose of this section is not to
conduct an in-depth forecasting review but to expose recent studies
that apply AI techniques within the forecasting domain. The most rel-
evant and recent review articles are revealed in each subsection to allow
the reader to delve deeper into the subject.

Forecasting horizons are classified in three categories [144—149]; short-
term (ST), medium-term (MT) and long-term (LT); although some lit-
erature adds a fourth category: very short-term or real-time (RT) fore-
casting [147,150-152]. Table 2.6 specifies what applications and time
range covers each forecasting horizon. Most articles focus on short-term
forecasting, as [148] also points out. Concerning long-term forecasting,
they are influenced by economic growth, policy adjustment and tech-
nological advancement, making it a complicated task [149].

The following studies review different types of predictions related
to the energy sector. For instance, [151,153-155] investigate both load
and price forecasting models. In addition, [149] reviews ML algorithms,
ensemble-based approaches, and ANNs implemented for renewable en-
ergy generation, load demand and electricity price forecast.

Table 2.6: Forecasting horizon classification.

Forecasting

horizon Time interval Applications
Real-time t < 1 hour Keep the power system balanced [156]
Short-term 1 hour < t < 1 Deregulated electricity markets [148,157—
week 159]
Real-time energy management systems
[146,147]
Optimal management of power system
[159]
Medium- 1 week < t < 12  Asses environmental impacts, maintenance
term months scheduling [148,160]

Long-term investment and political de-
cisions [147,161]

Grid expansion criteria.

A decision tool for purchasing futures of
the spot product [161]

Long-term t > 1 year
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2.4.5.1 Demand forecasting

The demand forecasting service predicts the consumption profiles of
a single or several end-users. For instance, the day ahead aggregated
demand forecasting of a particular zone is essential for the DSO to fore-
see possible congestion in the network. The emergence of prosumers
-a consumer who produces and consumes energy- in the power system
has caused an increment in the uncertainty of the demand profile, as
consumption has become more unpredictable and volatile due to de-
mand response programs and weather conditions that affect last stay
the end-users self-consumption. The system operator does not have
information regarding the self-consumption behind each smart meter;
therefore, predicting consumption becomes even more complex.

Reviews focusing on Al load forecasting techniques are conducted
in the literature. For instance, a study comparing conventional and
Al-based models for energy forecasting is carried out in [162]. A sys-
tematic review is presented in [163] and it concludes that regression
models are the most suitable for long-term scenarios, whereas ML al-
gorithms outperform for the short-term forecasting horizon. The com-
bination of different ML algorithms is analyzed in [164]. In a narrower
framework, [162] presents several research papers that implement data-
driven models for building scale forecastings. A survey of statistical
and conventional methods for demand forecasting is presented in [165],
concluding that Auto-regressive Integrated Moving Average (ARIMA)
statistical model combined with ANN increases the accuracy of predic-
tions. The authors in [166] review load forecasting methodologies based
on previous literature, classifying them into four forecasting methods:
similar patterns, variable selection, hierarchical forecasting and weather
station selection.

The most common and relevant input data found in the literature
for demand forecasting are mostly historical demand data along with
seasonal factors like weather and calendar data [167,168]. According
to [143], essential parameters for system electricity demand are weather
data and random effects, such as maintenance work or customer beha-
vior, where the game theory approach helps predict erratic perform-
ance [169].

Three demand forecasting levels are distinguished: the aggregated
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demand within an area or zone, the aggregated demand in a building/-
household through smart meters and the disaggregated demand, which
predicts the consumption of electrical appliances behind the meter
thanks to the implementation of sensors that store their consumption
data (also known as sub-metering). Disaggregated demand forecasting
plays a vital role in DR programs; hence, data are crucial to predict
their consumption to make accurate and optimal load scheduling. On
the contrary, in case of not having a sensor for each flexible load, the
Non-Intrusive Load Monitoring (NILM) method identifies each asset’s
consumption curve in order to predict the power consumption of each
appliance directly from the smart meter data. Recent literature covers
different load identification methods that classify the assets behind-the-
meter for NILM methods using Al techniques [170-175].

Unsupervised clustering techniques are implemented to classify build-
ings based on their energy efficiency [168], determine natural segment-
ation of customers [176], identify appliances usage patterns [175,177],
estimate electricity consumption behavior patterns in households [176,
178,179], group households profiles patterns to achieve better forecast-
ing outcomes [180-183] and to identify peak demand profiles or elec-
tricity theft detection [125]. Dimension reduction of NILM features
is applied in [184]. DT and Naive Bayes (NB) are used to identify
residential device loads [185].

Studies focus mainly on short-term prediction for network operation
purposes. In contrast, there are barely any long-term studies. As for
the latter, long-term forecastings require residential and non-residential
inputs, such as historical gross domestic product or population, to es-
timate demand in the following years, applying data-driven approaches
such as Multiple Linear Regression (MLR) analysis [186]. It is con-
cluded that long-term prediction models combine energy, economic and
environmental fields for planning the energy future in a sustainable
manner [165].

Table 2.7 describes the Al techniques used for developing aggregated

demand forecasting models for different time horizons and locations;
meanwhile, Table 2.8 focuses on smart meter level.
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Table 2.7: Aggregated demand forecasting models and evaluation met-
rics.

Data-driven
technique

Forecast
horizon

Highlights

Evaluation metrics

MAE MAPE RMSE Other

Ref.

DNN, RF

MLP

DNN

ARIMA-
WaveletNN

SVM

CNN-LSTM

SVM, ELM

SVM

MLP

MLR

Multiplicative
error model

ST

ST

ST

ST

ST

ST

MT

MT

MT

LT

LT

Electricity consumption for
residential buildings for the
next day.

Wavelet decomposition to
capture the various seasonal
cycles in electricity load data.
Advanced data preprocessing
strategy. DBN has outstand-
ing data learning and fore-
casting capabilities

The WNN has a strong abil-
ity to fit the nonlinear com-
ponent of the electricity load
The features extracted by the
auto-encoders forecast day-
ahead load forecasting more
accurately

Day-ahead aggregated load
forecasting based on two-
terminal sparse coding and
DNN

ELM performs better than
SVM for 1 week prediction
Forecast next week electricity
demand

Optimal training algorithm
composed of two-particle
swarm optimization and ant
lion optimization

Hourly and annual electri-
city consumption estimation
for 2030 in 14 different West
African countries

Monthly aggregated load pre-
diction for a horizon of four
years

MSE

MSE

MSE

MSE

MSE

[183)

[187]

(188

[189)

[190]

[182]

[191]

[192]

[160]

[186]

[193]
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Table 2.8: Smart meter load forecasting models and evaluation metrics.

Data-driven Forecast Highlights Evaluation metrics Ref.
technique horizon
MAE MAPE RMSE Other
LSTM RT Demand forecasting from an e . °
industrial steel plant [156]
LSTM RT Probabilistic household load e °
forecasting under high uncer- [194]
tainty and volatility
DT, RF RT/ST Focuses on online environ- e . °
ments where data are ana- [195]
lyzed as they arrive
DNN ST Aggregated households load e . R?
forecasting [196]
LSTM, MLP ST Energy Big Data is used as e .
data set for load and price [153]
forecasting
LSTM ST The model aims to learn e .
the uncertainty by applying [197]

a pooling Deep RNN. It is
tested in 920 smart meters

CNN ST Single residential load fore- . .
casting using CNN combined [198]
with data-augmentation
technique
DNN ST Power load and probability e .
density forecasting [199]
LSTM ST Individual and aggregated °
residential load forecasting [200]
MLP, SVM, Short/LT SVM and ANN achieve the °
MLR best outcomes [201]
K-means- ST Day-ahead office building °
MLP cooling demand, grouped in [202]
seasons
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2.4.5.2 Generation forecasting

The generation forecasting service aims to predict the electricity pro-
duction of renewable sources within the distribution network. The con-
tinuing increase of renewable energy sources and demand-side flexibility
programs in power systems has raised the need for more accurate Re-
newable Energy Systems (RES) predictions. Regarding recent studies
that evaluate AI methods applied to RES prediction models, authors
in [149] review multiple renewable generation sources, including distrib-
uted wind, solar and geothermal energy, considering various forecasting
horizon ranges. Key findings state that benchmark ML models handle
a large amount of data with accurate forecasting outcomes; however,
ensemble ML models could achieve even further accuracy by combin-
ing different data-driven techniques. Concerning solar generation, [203]
presents a review on PV forecasting based on ML and metaheuristic
techniques while [204] focuses on time-series statistical, physical and
ensemble methods. A review of the state of the art of SVM in the
application of solar and wind forecasting is conducted by [205]. SVM
regressor is simple-to-use and reliable, but on the contrary, it is not
suitable for large data sets and it has a low performance for high noise
data.

Multiple ML methods such as ANNs, SVMs and Gaussian Process
Regression are studied in [206] for wind and solar power generation.
The authors in [207] extensively compare simple and sophisticated PV
forecasting methodologies and conclude that some methodologies are
more suitable under different weather conditions. The work presented
in [208] studies day-ahead PV forecasting models based on deep learn-
ing neural networks. Multi-site PV forecasting is examined in [209]
using CNN. In [210], a review of the main ML methods for forecast-
ing wind speed and power is carried out, including weighting-based,
data preprocessing, parameter selection, optimization and error pro-
cessing methods. These combined approaches generally outperform
the single models approach. Authors in [211] present a review of ANN
implemented in wind energy systems, combining the main methods ap-
plied in forecasting models, and identifying strengths and weaknesses.
The Wavelet transform is used to decompose the raw data into dif-
ferent frequencies. It is applied to mitigate spikes and fluctuations in
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raw data [212]. This method has been implemented in several stud-
ies [212-215]. A problem faced by the DSO and BRPs is the lack of
knowledge of the aggregated small-scaled solar generation of prosumers.
To solve this problem, [216] estimates the aggregated power generation
of small-scale rooftop solar sites that are not monitored by system op-
erators.

Finally, Table 2.10 shows the AI techniques applied for developing
distributed generation forecasting models for different time horizons
and locations, identifying the main evaluation metrics.

2.4.5.3 Electricity price forecasting

This service aims to predict the electricity price, which is essential for
minimizing the energy purchase invoice for BRP and retail compan-
ies in the short-term horizon. The most relevant and recent research
regarding Big Data and Al methods for electricity price forecasting is
conducted in [147, 148,157, 158,201, 230, 231]. ANN models for day-
ahead market price forecasting are reviewed in [157, 158], and [158]
concludes that simple ANN models do not perform properly when elec-
tricity price time-series present high volatility, sharp price spikes and
chaotic and non-linear behavior. Therefore, more sophisticated tech-
niques are required to handle complex predictions. Techniques based
on univariate and multivariate forecasting models are compared and
covered in [147], while [231] focuses on benchmark techniques, from
statistical to ensembles. Authors in [148] classify electricity price pre-
dictions in market equilibrium, structural, statistical, intelligent and
combination models, separating short, mid and long-term estimations.
Lastly, feature engineering for linear, ensembles and deep ML models
is studied in [232].

Most literature focuses on short-term electricity price forecasting
while medium and long-term predictions are not covered in sufficient
depth, as [158] also points out. However, [148,161] overviews electri-
city price forecasting for the mid and long-term, which is essential for
distribution network planning purposes.

Deep learning models are widely used in literature to estimate elec-
tricity prices [153,154,231,233-238], along with SVM regression [234,
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Table 2.9: Solar forecasting models and evaluation metrics.

Data-driven
technique

Forecast
horizon

Highlights

Evaluation metrics

MAE MAPE RMSE Other

Ref.

LSTM

LSTM

LSTM

CNN

DNN

GRNN, ELM,
ElmanNN

MLP, DNN
and LSTM

SVM

MLP

LSTM

CNN

RT

RT

RT

ST

ST

ST

ST

ST

ST

ST

ST

Hourly day-ahead solar ir-
radiance prediction by using
weather forecasting data
Five-minute forecasting hori-
zons. Model-based on short-
term multivariate historical
data sets

Predicts the PV power in the
next hour

Thanks to the CNN advanced
feature extraction, more met-
eorological features are intro-
duced in the prediction mode
Based on particle swarm
optimization and trained
feed-forward neural network
(FNN)

Predicts also the PV output
associated uncertainty at dif-
ferent confidence levels

PV prediction only with
meteorological and calendar
data. LSTM algorithm
presents the best outcomes
for all seasons

Model based on SCADA and
meteorological information
Correlation analysis of main
variables. High accuracy
Uses the attention mechan-
ism to focus on the most sig-
nificant input features in fore-
casting

Multi-Site Photovoltaic Fore-
casting

R2

MASE

MASE

[217]

[218]

[219]

[220]

[215]

[221]

[222]

[213)]
[223)]

[224]

[209]
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Table 2.10: Wind power forecasting models and evaluation metrics.

Data-driven Forecast Highlights Evaluation metrics Ref.
technique horizon
MAE MAPE RMSE Other

CNN-GBM RT Ultra short-term wind power e MSE
prediction. Light-GBM im- [225]
proves performance of single
CNN

RF RT The spatial average of the e ° ° MASE
wind speed, its direction and [226]
past power values are the in-
puts.

LSTM, SVM RT Performs ten-minutes and e . . R?
one-hour ahead forecasting [227]
with extremal optimization

LSTM- ST The wavelet transformation e ° .

ElmanNN is used. Its performance is [214]
compared with nine models

K-Means- ST The K-Means forms clusters e . .

LSTM of wind power impact factors [228]
to generate a new LSTM sub-
prediction model.

Ensemble Short/MT Uses a deep sparse auto- e .

DNN encoder and transfer learning [229]

during the training phase of
base-regressors
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235,239,240] and tree-based models [195,241]. RNN has been proposed
to address time-dependent learning problems. In particular, LSTM and
Gated Recurrent Units (GRU) have an extraordinary performance for
time series price estimation according to [237]. The most accepted in-
puts are historical electricity prices and calendar data. Electricity price
has a strong correlation with other variables like oil and natural gas
price [240] if the energy mix is highly carbon-dependent. ELM tech-
niques improve the generalization performance and learn faster than
ANN trained using back-propagation [155,242-244].

A summary of the recent Al techniques applied for electricity price
forecasting in literature is presented in Table 2.12 for different forecast-
ing horizons and locations, together with the main evaluation metrics
used. Finally, Figure 2.5 displays a bar graph showing the most used
evaluation metrics in recent literature within the forecasting field.

40
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MAE MAPE RMSE MSE R2 Others

Figure 2.5: Forecasting evaluation metrics used in literature.

2.4.5.4 Flexibility forecasting

The development of aggregated flexibility forecasting services permits
to delimit the accumulated feasible flexibility in a default area by ag-
gregating flexible loads, distributed/centralized storage units and Dis-
tributed Energy Resources (DER) [248]. Using the aggregated flexibil-
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Table 2.11: Price forecasting models inputs and evaluation metrics.
Data-driven Forecast Highlights Evaluation metrics Ref.
technique horizon
MAE MAPE RMSE Other
CNN-LSTM RT Hybrid DNN performs better than e .
traditional ML models [233]
GBM RT Accurate and computationally in- e .
expensive [152]
SVM, MLP, RT DNN obtains less error. Higher ac- °
DNN curacy achieved by diversifying the [235]
data source
ELM RT Improves the forecast accuracy in
real-time when an unexpected dy- [242]
namic price change occurs.
Dynamic RT/ST Dynamic Trees perform better e .
Trees than RF and are an adequate [195]
method for real-time and short-
term
SVM, LSTM ST DL model outperforms the SVR )
[234]
DNN ST Good performance for high volatil- .
ity prices [245]
DNN ST Inconsistencies were observed as
layers were increasing when using [236]
a few input variables. Model per-
forms better with more historical
data
DNN, LSTM, ST Compares the 4 proposed DNNs
GRU, CNN with 23 benchmark models for elec- [231]
tricity price forecasting. =~ DNN,
LSTM, and GRU outperform lit-
erature models.
Hybrid ST The model can be a reliable fore- o )
outlier-ELM casting method in modeling time [243]
series with complex nonlinear char-
acteristics and outliers
Neuro-fuzzy ST This study reveals the efficiency of e .
ANN neuro-fuzzy models against MLP [246]
neural network and ARIMA stat-
istic model
GBM ST Hour feature is the most relevant e .
predictor in the model [241]
ELM ST MKELM model provides better e .
performance as compared to the [244]
ELM and KELM
Dimension ST Proposed method is recommended e °
reduction, for studies with a large volume of [159]
DNN, SVM, input data. The feature extrac-
LSTM tion tool and rough neurons im-

prove the forecasting results.
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Table 2.12: Price forecasting models inputs and evaluation metrics.

Data-driven
technique

Forecast
horizon

Highlights

Evaluation metrics

MAE MAPE RMSE Other

Ref.

MLP

SVM

LSTM

GRU

Weighted
KNN, DNN

Jaya-LSTM

Co-integration
and vector er-
ror correction

ST

ST

Short/MT

Short/MT

MT

MT

LT

This study demonstrates the im-
provement in convergence speed
with Tensorflow software

Oil and natural gas prices are con-
sidered in the prediction model
due to their high correlation with
electricity prices

Deep LSTM gives better results
compared to ELM and NARX
The three-layered GRUs outper-
formed all other ANN structures
and statistical techniques. Stack-
ing multiple layers increases the
performance.

DNN  outperforms  Weighted
KNN, a model based on autocor-
relations in data, providing good
accuracy forecasts even 29 days
ahead

Hyper-parameters tuned using
Jaya optimization multivariate
LSTM algorithm leads to better
performance than SVM and uni-
variate LSTM

Brent crude oil spot and futures
price along with the Spanish wind
generation are the variables that
yield the most accuracy

MSE

[44]

[240]

[238]

[247]

50



2.4 Data-driven services in distribution systems

ity in the distribution grid reduces the need for grid extension [249] and
enhances the technical and economic power system operations [250].
In [251], the aggregated flexibility calculation is discussed in more de-
tail.

The aggregator is the service provider in charge of gathering and
controlling its portfolio flexibility sources [252,253] in order to i) provide
flexibility services to power system agents, ii) to minimize the end-
users energy bill through Home Energy Management Systems and iii)
to participate in electricity markets, by using optimal bidding strategies
[254, 255]. New flexibility business model approaches are developed
in [256]. Due to the increasing penetration of intermittent RES and the
significant number of residential users with potential flexible sources,
demand-side flexibility aggregation becomes essential for balancing the
future power system [255,256].

ML-based regression models are applied in [250] to forecast the flex-
ibility of residential customers for real-time applications. A flexibility
forecasting concept and its control from multiple energy domains and
sources are presented in [249]. The GBM ensemble algorithm is selected
by [257] to build a flexibility load forecasting model for DR capacity
scheduling.

Intending to encourage a change in the demand-side consumption,
the aggregator offers a monetary incentive signal in [258]. The flexibility
potential of wet appliances in France (dishwasher and washer machine)
is estimated in [259]. In [256], residential load flexibility forecasts are
calculated using the NILM approach. Predefined customer preferences
and loads and PV forecast uncertainty are considered in [260] to define
a feasible flexibility space from controllable residential resources. [261]
studies the required percentage of end-users with sub-metering capab-
ilities needed to calculate the aggregated demand composition. The
results state that only a 5% of sub-metering coverage is required to
forecast the aggregated load composition at the substation level with
high confidence. A scalable and non-intrusive model for identifying the
flexibility of thermal loads is proposed in [262].
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2.4.6 Energy management systems

The massive amount of data generated by the rapid deployment of
smart meters in recent years supports the enhancement of building
energy efficiency and DR programs (e.g., price-based, incentive-based
and environmental-based [263]). This subsection focuses on the IA
techniques used in EMS at the building level.

The application of Al methods allows for overcoming multiple chal-
lenges related to energy management, developing better tools for auto-
matic decision-making to schedule and control multiple energy assets
through the EMS. From 2013 onwards, there has been a perceptible
increase in Al approaches across DR applications. These Al meth-
ods have been principally applied to price-based programs and residen-
tial consumer types, followed by small-scale industrial and commercial
buildings [264].

Numerous papers have reviewed Al approaches for energy DR pro-
grams. In a more general context, [264] investigates the state of the
art of DR applications and analyses the Al methods applied in differ-
ent DR scheme categories and consumer types. An extended summary
of companies, start-ups and European-funded industrial projects us-
ing AI for DR is also provided. Regarding home appliance schedule
controllers for DR programs in smart households, [265] reviews various
AT techniques based on ANN, fuzzy logic control and adaptive neural
fuzzy inference system, which imitate human thinking behavior. More
specifically, [266] reviews the existing Al-based methods for cloud EMS
with the integration of blockchain technology. However, the high devel-
opment cost and storage of blockchain and the lack of standardization
and professional expertise in this topic represent a research challenge
that should be addressed in the upcoming years.

The following studies apply Supervised and Unsupervised Learning
techniques. A MLP deep learning model is used in [267] to optimize
load consumption and storage management in response to dynamic
pricing. A deep ANN and Genetic Algorithm reduces energy demand
in peak periods, optimizing the residential appliances scheduling and
RES generation [268]. Supervised Learning algorithms as DT and Naive
Bayes identify loads through smart plugs [185] for EMS. [269] creates
a control-oriented model for a heating system based on regression trees

52



2.4 Data-driven services in distribution systems

and RF. A steady price prediction model based on ANN deals with price
uncertainty for EMS in [270]. [271] develops a residential scheduling
controller using the hybrid lightning search algorithm ANN to predict
the optimal ON/OFF status for home electrical appliances after a DR
event imposed by the power utility to reduce peak consumption. [272]
uses ANN in order to predict and schedule building appliances’ energy
consumption and genetic algorithms for task scheduling, while [273]
develops a prediction method based on LSTM of the end-user response
behavior to incentive-based DR program.

In recent years, RL has gained prominence in studying intelligent
management and control of buildings and households. The main ad-
vantage of using RL algorithms instead of optimization techniques is
that the RL algorithm can automatically learn the customer preferences
imitating human behavior and determining optimal incentive rates that
can maximize the profits of both energy service providers and custom-
ers fairly and efficiently. [274] narrows its research to a group of energy
systems that use RL to control the assets that have the potential for
DR applications. A DR price-based approach using deep RL in an
industrial facility is conducted in [275]. It is noteworthy that the al-
gorithm was tested in a real-world utility company, reducing energy
costs and ensuring production targets as well. The authors in [276]
perform a simulated-based followed by a lab experiment of an elec-
tric water heater cost of energy consumption minimization given an
external price profile using RL techniques.

RL is used as a decision-making tool in EMS for scheduling and con-
trolling flexible units such as EV [277,278] and other flexible control-
lable loads [270,271,276,278-284], Energy Storage Systems (ESS) [282]
and PV generation [278,282,284], in order to solve different problems
like hour-ahead [270,278] and day-ahead [280,283] energy consumption
scheduling [270,278]. The Q-learning algorithm is the most common
RL method applied in DR programs [264,270,278,280,282,284]. The Q-
learning algorithm needs many iterations to converge, while the batch
RL usually converges much faster [285]. Batch RL is applied in thermal
controlled loads in order to find the day-ahead schedule [276,283] to
minimize costs.

In most of the articles reviewed, there is a lack of RL experimental
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results in real small and large-scale physical systems since many of the
proposed methods are only tested in simulated environments. [264,274].
The scarcity of physical experimentation could be one reason that pre-
vents buildings and households from adapting RL algorithms, as their
reliability and performance in real-world scenarios are unproven yet.
Moreover, the vast majority of the reviewed articles are single-agent
system based, which means that they only focus on a single building,
bypassing urban boundary conditions. The single-agent approach is
correct when very few buildings participate in DR programs. How-
ever, if a large number of buildings use DR schemes, a Multi-agent
approach is needed in order to address the computer limitations prob-
lems of centralized approaches by distributing the workload among the
participating agents in order to make decisions for various buildings
devices in a decentralized manner while maintaining data privacy of
costumers. Thus, the multi-agent approach avoids shifting the peak
demand to lower-cost periods, for instance.

The main drawback of the articles reviewed in this subsection is that
they assume complete knowledge of the end-user environment, although
this is unlikely to happen in reality. It is worth mentioning that the
primary focus in literature is on price-based DR programs; nevertheless,
a more comprehensive range of incentive-based DR schemes should be
developed and tested, as it is indispensable for the optimal operation
and balance of the distribution network. Only a few articles modeled
the EMS controllable appliances with a high level of detail. Unlike the
traditional model-based methods, the RL approach does not require
any system model information. Finally, Table 2.13 classifies the data-
driven technique, DR program and customer type for each reference.

2.4.7 Aggregated flexibility services

The aggregated flexibility service is responsible for gathering flexibility
from different customers and offering flexibility services to potential en-
ergy agents such as residential and industrial clients, BRPs and DSOs.
Benefits derived from the flexibility and DR programs include shift-
ing or reducing peak demand, meeting the fluctuations of renewable
generation, enabling higher penetration of renewable generation and
customer bill reduction. Nevertheless, there are still many challenges
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Table 2.13: AI methods and DR schemes used in EMS.

Data-driven

method DR program Consumer type Ref.

Supervised Learn-

ing

ANN Price-based Residential [267]

ANN Price-based Residential [268]

ANN PI‘ICG . and Residential [271]
incentive-based

ANN Price-based Residential [272]

RF Price-based Residential [269]

Deep Learning

LSTM Incentive-based Residential [273]

Reinforcement

Learning

Deep ~RL  (Single- Price-based Residential [276]

agent)

Deep - RL  (Single- Price-based Residential [281]

agent)

RL (Multi-agent) Price-based Residential [270]

RL (Multi-agent) Price-based Residential [278]

RL (Single-agent) iﬁ:ﬁtive_baseznd Residential [279]

RL (Single-agent) Incentive-based Residential [280]

RL (Single-agent) Price-based EV management [277]

RL (Single-agent) Price-based Industrial facility — [275]

RL (Multi-agent) Price-based Residential [278]

RL (Multi-agent) Price-based Residential [282]

RL (Single-agent) Price-based Residential [283]

RL (Single-agent) Price-based Residential [284]
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to be addressed, such as improving the accuracy of the flexibility pre-
diction models or selecting the best suitable customers for engaging DR
programs.

As discussed earlier, it is necessary to add value to the massive data
generated within the distribution network and create aggregated flexib-
ility services for electricity market stakeholders using the most appro-
priate Al techniques. The aggregator is a relevant player contributing
to flexibility aggregated services through DR incentive-based programs
within its portfolio (a set of clients). The role of aggregators in the
Smart Grid context is studied in [286]. Electricity market actors can
request flexibility to avoid grid congestions (e.g., DSO) or imbalance
penalizations (e.g., BRP). Thanks to the aggregation of individual cus-
tomers, the total amount of flexibility available increases considerably.
Thus, the end-users change their consumption pattern in exchange for
economic compensation through incentive-based approaches [287].

Finding the best-suited customers to provide the flexibility reques-
ted by an electricity market agent is a computational challenge for
the aggregator, especially with portfolios with a considerable amount
of flexible resources. To cope with this challenge, [288] proposes a
cluster-based (K-means) day-ahead bidding optimization approach that
reduces the optimization execution time. Moreover, the ADMM tech-
nique is capable of solving large-scale optimization problems by break-
ing them into smaller pieces [289-291]. For instance, [289] formu-
lates a cost minimization problem to provide flexibility services to
DSO and BRP using ADMM to improve computational performance.
Moreover, [290] applies ADMM for bidding optimization strategy in the
day-ahead and secondary reserve markets. In [291], an ADMM-based
market-clearing strategy is presented for day-ahead congestion man-
agement, using aggregated EVs and heat pumps as flexible sources.

The DSO can request demand-side flexibility from the aggregator to
mitigate possible congestion in the distribution network. Day-ahead
congestion management is proposed in several works [291-294], while
[295] formulates real-time congestion management for the unforeseen
events that might occur during operation. On the other hand, grid
congestions can also be avoided with dynamic pricing strategies in order
to encourage customers to flatter their demand curve [267,270,275-277,
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279,284].

Aggregators can attend both DSO and BRP flexibility requests for
day-ahead and intra-day portfolio optimization. With the intention
to address this issue, the traffic light system proposed in [296] is car-
ried out in [289,297] to coordinate the flexibility requests from DSO
and BRP and establish a priority criterion for providing flexibility in
the case of conflicting requests. Recent works use the aggregation
of thermal loads [298,299], Heating Ventilating and Air Conditioning
(HVAC) [300,301] and EVs along with heat pumps [291, 292, 295] in
order to provide flexibility to energy agents. On the other hand, some
studies focus on optimal bidding strategies for aggregators participating
in the electricity market [255,288,290,302], where [288, 302] particip-
ate in the day-ahead market, while [255,290] are also involved in the
reserve market.

In addition to the flexibility services mentioned above, electricity
companies also desire to segment their large number of customers ac-
cording to similar demand patterns to have insights into their energy
usage behavior, enhancing the distribution network operation and man-
agement. Moreover, more customized products and services can be
offered to each customer target group [303]. Unsupervised Learning
techniques enable customer segmentation according to the consumption
pattern, thanks to the smart meter measurements [264]. Diverse cus-
tomer demand-based clustering studies are proposed in the literature;
for instance, a robust comparative review of 11 clustering techniques
applied to residential load time series profiles is carried out in [304].
The study concludes that centroid-based (Kmeans) and hierarchical
algorithms are the best performers, whereas the density-based meth-
ods (such as DBSCAN) performed the worst for this kind of problem.
On the other hand, [305] reviews the clustering methods for custom-
ers’ consumption patterns. The K-means algorithm is the most widely
used, followed by Fuzzy C-Means, hierarchical and Self-Organizing
Map (SOM), being the latter the worst performer of a 4000 custom-
ers segmentation case study. A combination of SOM and K-means
algorithms are used for analyzing industrial parks’ energy consumption
patterns [306]. The main drawbacks of using SOM are that the res-
ults are not intuitive at first glance and are computationally expensive
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compared to K-means.

2.4.8 Trading

The trading energy service focuses on one of the biggest challenges of
the forthcoming energy transition: finding a reliable way to exchange
energy between different customers, local energy communities and op-
erators.

Based on the blockchain concept, Distributed Ledger Technology
(DLT) is positioned as a benchmark technology in the P2P trading
field, enabling smart contracts between prosumers and active users.
The potentials of DLT for P2P transactive energy exchanges and its
infrastructure in Local Energy Markets are detailed in [307], while [308]
studies the DLT requirements and use cases. The authors in [309] carry
out a detailed analysis of the concept, principles and types of blockchain
and how this technology will revolutionize the green energy manage-
ment of the future. The main advantage of the decentralization and
automation of smart contracts is eliminating the human-based central
authority, which implies lower settlement fees, simplified operational
processes because of fewer intermediaries and a greater transparency
level, thus avoiding corruption. However, the DLT is still immature
and has not yet been tested on large-scale trials. In addition, the high
computational cost of smart contracts raises the question of whether it
is economically viable or not.

Decentralized blockchain mechanisms [310] enable reliable energy
flexibility trading between the stakeholders involved in the flexibility
market. DLT for P2P ancillary service markets in distribution net-
works is studied in [311,312], where the last article applies the ADMM
technique to settle the P2P trading. Smart contracts for DR programs
are formulated and the total incentives for an energy prosumer are
calculated. Four different P2P and smart contract implementation ap-
proaches are conducted in [313], where producers and consumers send
their offers and bids accordingly with smart contracts in the energy
market. In terms of security, [314] proposes a RNN that detects net-
work attacks and fraudulent transactions within blockchain-based en-
ergy transactions. Besides, a novel transactive controller is developed
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to manage the storage unit of a residential prosumer. The research [315]
also studies P2P trading for managing the ESS and the surplus renew-
able energy in a smart energy community.

Focusing now on data-driven methods, a deep RL approach is ad-
opted to address an energy trading decision-making problem for Mi-
crogrids [316]. The work in [317] implements LSTM for blockchain-
based predictive energy analysis, intending to enable accurate short
and long-term demand forecasting to minimize the cost of delivering
electrical energy for the consumer and making effective policies. Simil-
arly, [318] develops a P2P market based on deep learning (ELM), which
learns the interaction between prosumer bidding actions and market re-
sponses from historical transaction data.

2.4.9 Asset and investment planning

The ever-increasing volume of stored measured data in the distribution
network is expected to benefit the planning and operation of future
power systems [281]. The investment planning service examines grid
status and expansion criteria and selects the most appropriate technolo-
gies and optimal geographical locations. The objective is to contribute
to the grid support during a settled planning horizon and estimate the
associated costs for achieving a specific planning goal or criteria while
meeting the forecasted demand.

ML forecasting methods play a critical role in mid and long-term
renewable energy and demand predictions, which are essential inputs
for the country’s energy mix development and planning [149]. The
authors from [319] propose a basic learning neural network to determine
how Microgrids can be optimally planned and designed. Dimension
reduction and correlation techniques are adopted for optimal planning
for capacitors in [320]. Optimization techniques are applied to minimize
total costs and investments for power distribution system planning in
[321]. Flexibility is taken into account in [322] using a generic multi-
stage distribution grid planning approach, while [323] studies in-depth
network expansion under a DR scheme.

In recent years, some efforts have been made for long-term energy
planning. For instance, long-term demand and renewable energy fore-
casting models are an energy planning tool [149]. However, there is
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a lack of research exploring Al techniques for medium and long-term
distribution grid planning. Consequently, more efforts need to be taken
in this field.

2.5 Data-driven services in distribution systems

2.5.1 Distribution grid services dependencies

Based on the comprehensive and meticulous analysis of the distribution
grid services carried out in the previous section, it can be concluded
that there are interdependencies among specific services. Consequently,
the output of one service might be a fundamental piece of information
for the execution of another. These interconnections among energy
services are represented in Figure 2.6 through a flow chart. The green
boxes represent the services related to the operation of the distribution
network and the blue boxes outline the services related to flexibility
management. Finally, the light orange box represents the planning
services. In order to facilitate understanding of the flow chart, the
outcome-dependence of each energy service is explained subsequently.

e Topology. This service offers the actual structure of the distribu-
tion network, which is often poorly known. The LV grid topology
is a required input for the optimal performance of the follow-
ing services. Observability -to calculate real-time network state
estimation-, fault detection -to identify and locate outages-, non-
technical losses detection -to detect possible frauds in the distribu-
tion network-, distribution network planning -to design optimal
long-term investments and cost operations in the LV network-
and last but not least, the aggregated flexibility service -to give
the DSO a view of the network structure so that he can formulate
flexible requests to minimize congestion-.

e Observability. The observability service outcome provides real-
time knowledge of the LV network state, which is essential for grid
operation. The fault detection service requires the LV network
status to identify the precise location of a failure in the power
grid in real-time.

60



2.5 Data-driven services in distribution systems

e Predictive maintenance. This service is responsible for pre-
dicting the probability of failure of distribution grid components.
Identifying the network components’ state and health enables the
distribution network planning service to optimally plan invest-
ments and operating costs in the long term.

e Price forecasting. This service predicts electricity price fore-
casting for short or long-term horizons. The aggregated flexibil-
ity service needs price forecasting to optimize the BRP portfolio
purchase bids before buying energy in the day-ahead electricity
market.

e Generation forecasting.The outcome is a RES forecast for
short or long-term horizons. The energy management system ser-
vice necessitates short-term RES generation in order to schedule
the flexible resources optimally to minimize the electricity bill.
In contrast, the distribution network planning service needs long-
term RES forecasting as input -more than five years ahead- to
minimize the LV network assets’ investment and operating costs
in the distribution grid.

e Demand forecasting. The outcome is a demand forecast for a
short or long-term horizon. This service follows the same process
as the last bullet point; the energy management system service
needs short-term load prediction, while the distribution network
planning service needs long-term demand forecasting as input
data.

e Flexibility forecasting forecasting.This service determines the
flexibility available in a zone or area of the distribution grid within
a time horizon. The aggregated flexibility service makes use of this
prediction, so the electricity market stakeholders - DSO, BRP, for
instance- know in advance the flexibility available in the zone or
area. The energy trading service also needs flexibility forecasting
in order to schedule the energy trading optimally.

¢ Energy management system. The end-users consumption of
a zone or area is aggregated and sent to the aggregated flexibility
services. This information is useful for specific stakeholders like
the DSO to detect possible congestions in the grid or the BRP
to identify how much energy its portfolio will consume the fol-
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lowing day after optimizing its consumption through the energy
management service.

o Aggregated flexibility services. The outcome of this service
is the flexibility requests of specific electricity market agents such
as DSO or BRP. The flexibility requests of these agents are key
input information for the energy trading service.
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Figure 2.6: Distribution network services dependencies flow chart.

2.5.2 Al-techniques applied in distribution grid services

Certain services are more likely to implement Al techniques than others,
particularly those that require prediction, classification or clustering
tasks. To facilitate the understanding and interrelation among the Al
techniques and the data-driven energy services, Figure 2.7 presents a
chord diagram. This graphical representation displays the connections
between the data-driven methods and the energy services, with the arc
size corresponding to the flows’ significance. Specifically, the arc sizes
in this diagram indicate the number of publications in the literature
that have applied Al methods to the respective energy services.

The creation of the chord diagram involved the following steps:
e Identification of distribution grid services and their associated
AT techniques. This information has been progressively gathered

and collected throughout the different sections comprising this
chapter.
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e Creation of a matrix, listing the distribution grid services ver-
tically and the AI techniques horizontally (or vice-versa). This
matrix is created by documenting the total number of papers
presented throughout this chapter for each Al technique within
each distribution grid service.

e Generation of the chord diagram using data visualization tools
or programming libraries designed explicitly for chord diagrams.
The matrix data completed in the previous step is used as in-
put into the chosen tool. Visual elements such as colors, labels,
and interconnections are customized to enhance the clarity and
comprehension of the diagram.

The ribbons amplitude is equivalent to the number of articles that
have adopted this technique. For a better visual perception, the data-
driven methods that appear in less than three studies have been elim-
inated from the chord diagram. Figure 2.7 displays the AI methods
first in a clockwise manner, sorted into the four categories proposed in
Section 2.4, followed by the distribution grid services.

The services are analyzed in order of appearance. The Measurement
Error Detection service (MED) is powered by ML regression-based
algorithms for assigning predictive values for missing data. The to-
pology service widely uses Correlation and ADMM methods (TOP).
The Observability service (OBS) barely holds any articles that use
data-driven methods. In the Fault Detection service (FD), there is a
range of most used Al techniques for fault detection classification tasks:
RF, SVM and MLP. The RF classifier outperforms the other ML tech-
niques, as [86] also points out. Regarding the Predictive Maintenance
service (PM), no technique predominates over another. The PM ser-
vice mainly covers classification to clustering algorithms to classify or
group potential failure events. Concerning the Non-Technical Losses
service (NTL), using SVM to classify and detect future fault events in
PV systems or power generation equipment is predominant. However,
multiple data-driven techniques such as DM, CNN, K-means and SOM
are also employed to detect these faults.

The Forecasting service (FOR) is the most Al-intensive since several
investigations concentrate their research on predictive models applying
AT procedures. The LSTM is the most utilized in the time series fore-
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Figure 2.7: Chord diagram that represents the interrelation between
services and their most-applied Al techniques in recent lit-
erature.
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casting field in recent years, followed by a single hidden layer MLP
algorithm. DNN with more than one hidden layer and CNN are util-
ized to a lesser extent. Therefore, RNNs are appropriate for time series
data since they use temporal information from the input data. Thus,
the LSTM is the best suited when predicting a times series outcome
considering the model can associate the data of the previous time and
the present time thanks to their recurrent architecture and memory
units. The most common evaluation metric for regression tasks is the
RMSE;, followed closely by MAE and MAPE. Concerning the Energy
Management System service (EMS), besides the optimization methods
that are not in the scope of this thesis, RL is used as a decision-making
tool for scheduling and controlling flexible assets. This flexibility can be
used for the end-user benefit, such as reducing electricity costs consid-
ering the customer’s comfort or being sold to a third party involved in
the electricity market through an aggregator in exchange for monetary
compensation.

The rest of the remaining services are not as dependent on IA tech-
niques. The Aggregated Flexibility Service (AGG) uses mainly optim-
ization techniques to minimize the cost of providing flexibility instead
of Al methods. Clustering is applied to group customers with a sim-
ilar consumption profile, thus detecting possible congestion or unusual
behavior. Moreover, to cope with the massive amount of data, this
service uses ADMM to relax computing complexity when aggregat-
ing flexible resources that provide flexibility, dividing the optimization
problems into separated parts. Therefore, ADMM is a valuable and re-
current solution to deal with energy services that need a large amount
of data as input. The Trading service (TRAD) relies mainly on the
DLT method, which enables P2P trading and smart contracts between
prosumers and active users. Lastly, the Planning service (PLAN) uses
some data-driven techniques, such as dimension reduction and correl-
ation techniques. Still, it is mainly a service that uses optimization
procedures instead of Al methods. The main benefits of implementing
AT methods within the distribution grid domain are addressed:

e Allow real-time distribution grid status estimation and gain ob-
servability, enhancing the monitoring and locating possible events
in the network to provide a tool that enables the operator to react
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more rapidly when a fault or event occurs.

e Performing the predictive maintenance service increases the dis-
tribution network security and availability while diminishing the
DSO costs.

e Use the aggregated flexibility available to avoid grid congestion.
e Optimal and reliable electricity trading among customers.

e Optimal medium and long-term distribution grid planning.

2.6 Opportunities and challenges

Energy sector organizations are increasingly interested in using data
science and Al capabilities to solve their daily challenges. However, Big
Data techniques applied to the energy sector are still in their early de-
velopment phase and most of the related Big Data-driven applications
are not mature yet. This brings new opportunities for this emerging
and promising research area.

One of the primary triggers of this increasing interest is the availab-
ility of significant amounts of data from smart meters and the digitiz-
ation of the distribution grid. Although used initially only for billing
purposes, smart meters provide information about the grid end-point
operation. If this information is combined with other systems related to
the digitization of the distribution grid or other external data sources,
it provides even more insight into how the system operates. This is a
kind of information that utilities did not have before smart meters de-
ployment and it has opened up opportunities for increasing operational
efficiencies and enhancing the distribution grid reliability [324].

Although these opportunities encourage the development of Big Data
solutions, utilities are still largely missing the opportunity to utilize
those newly available data. As an example, American Council for an
Energy-Efficient Economy surveyed 52 large American utilities in 2018
and found that most of them are significantly under-utilizing data from
smart meters [325].

Some challenges must be correctly addressed to boost the distribution
grid development and reach its full potential. According to [23] and
[326], Big Data challenges in energy management focus on six main
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issues, which are IT infrastructure, data collection and governance,
data integration and sharing, data processing and analysis, security
and privacy and need for professionals of Big Data analytic and smart
energy management. These challenges fit with the more generic main
issues that Europe must tackle in creating and sustaining a robust Big
Data ecosystem, identified by Big Data Value Association [327]. These
issues are related to data, skills, legal, technology, application, business
and societal aspects. Six main challenges regarding the distribution
grid digitization are addressed below.

e ICT infrastructure and technology. Utilities have been forced
to strengthen their ICT infrastructure in their back-end systems
to deal with Big Data collection and storage. It may include
new sensors, improved transmission and storage capacity and in-
creased data processing or data exchange capability [23]. New
applications can be developed using existing data, but even more
would be available if larger energy-related data were accessible
and as close to real-time as possible. An example of this issue is
the information currently available from installed smart meters.
Valuable knowledge can be discovered from the massive electri-
city consumption data collected near real-time by AMI devices.
However, limited real-time data are available from part of first-
generation deployed smart meters. As an example, by 2020, 14
European Union (EU) Member States have implemented a re-
freshment rate of at least 15 min, while only 8 Member States
confirmed to be able to provide near real-time information on
electricity every 10 seconds [328]. A second generation of smart
meters with near real-time available data is needed, making AMI
data actionable for more operation-related tools and long-term
planning applications.

e Data collection and governance. The availability and ac-
cess to high-quality data sets are key challenges for enabling Al
techniques. In the energy sector, available data are not always
sufficient or of good enough quality to develop systems that can
handle complex scenarios [24]. In addition, the timeliness, in-
tegrity, accuracy and consistency of data for energy Al applic-
ations need to be improved [23]. As digital technologies evolve,
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these problems can be more efficiently addressed with proper data
management and governance strategies.

Data integration and sharing. As well as having agreed ap-
proaches, the interoperability of data sets and data-driven solu-
tions are essential to ensure wide adoption within and across ap-
plications. However, companies are reticent to share their data
to avoid security risks and unlock competitive advantages. For
example, great opportunities can arise if operational data from
distribution and transmission grids are exchanged between DSOs
and TSO fairly and transparently. For this reason, TSOs and
DSOs need to determine what information they require, the qual-
ity of the information, who owns it and how to ensure both confid-
entiality and transparency [329]. On the other hand, open data
sets are needed to develop and test new algorithms and solu-
tions. Several initiatives worldwide support energy data sharing
among stakeholders, such as Green Button and OpenEl in the
USA or ENTSO-E Transparency Platform in the EU. However,
open energy-related data should increase, as opening up public-
sector data and establishing common data standards can also help
to boost innovation [330].

Data processing, analysis and business models. New data
analysis techniques in DM, ML, statistical analysis, data man-
agement and data visualization are applied to the energy sector.
Continuous and recently more frequent developments have led to
advanced technologies that make significantly easier the use of
Big Data, not only in energy applications. These innovative data
analysis techniques open up new opportunities to provide solu-
tions and create new businesses in this sector. Thus, it is crucial
to identify new business opportunities with existing data and cre-
ate new data-driven business models to make the most of these
techniques and innovations. This study [331] reviews examples of
these new business models by analyzing 40 data-driven start-ups
in the energy sector.

Security, privacy and legal issues. The power system digitiz-
ation has converted cybersecurity into an essential concern due to
the increasing number of incidents in recent times. Besides, pri-
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vacy and security should be guaranteed along the Big Data value
chain to protect the customer and the risks and possible impact
on supply security. To deal with this problem, several initiatives
have been carried out all around the globe. At the EU, one of the
critical pieces of legislation in this regard is the Directive on the
Security of Network and Information Systems [332], which boosts
the level of cybersecurity in the Union through the development
of national cybersecurity capabilities, the increase of EU level co-
operation and the introduction of security and incident reporting
obligations in critical sectors, like the energy. In addition, General
Data Protection Regulation [333] aims at protecting individuals
concerning the processing of their data and warranting the free
movement of such data within the EU. Although these European
directives could be considered a late response to an already well-
known problem, these regulations can only be considered as a
single part of an international chessboard where they should be
followed, complemented and particularized by many others [334],
as, at the same time, China and USA have introduced their cy-
bersecurity laws and policies.

e Professionals and skills. There is a need for trained and edu-
cated employees in the energy sector that can use Big Data tech-
nologies and build on data expertise. This can be achieved by
enrolling experts from other more mature sectors, like finance
or marketing, or providing master-level students with specific
energy-related Big Data and Al techniques solid background. Al-
though these specialists should be combined with other energy
domain knowledge experts, the first option can bring immediate
results. Otherwise, energy sector stakeholders can also consider
investing in re-skilling and training their employees to manage
and operate digitally-enabled power assets and systems effect-
ively [24].

2.7 Conclusions

Implementing Big Data solutions and Al techniques in the power sys-
tem domain is a promising approach for extracting knowledge and high
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added value from the vast amount of high-granularity data stored by
intelligent devices placed along the distribution grid, such as smart
meters or PMUs.

This chapter proposes and interrelates a set of innovative energy
services designed to be offered to different electricity domain agents,
such as DSO, BRPs and prosumers. These services are fed with high
granularity and massive stored data. Thanks to the application of data-
driven techniques, they provide solutions to problems like congestion
management, distribution grid equipment maintenance, forecasting, de-
tection and prevention of faults and fraud detection.

Once the innovative services have been identified, an exhaustive re-
view of the most recent studies implementing Al techniques in each of
them is carried out. Key findings state that ensemble models present
better results than single ML models by combining different data-driven
algorithms. Deep learning algorithms have gained importance in recent
years for time series prediction tasks and outperform most benchmark
ML and statistical algorithms. Concerning classification tasks, tradi-
tional ML algorithms such as SVM or RF yet provide excellent results.
For instance, the RF classifier outperforms when it comes to supervised
classification tasks, while LSTM recurrent network is the predominant
algorithm for time series forecasting. Unsupervised learning methods
are mainly responsible for customer segmentation, building efficiency
clustering and consumption profile grouping for non-technical losses
detection. Finally, RL is widely applied in the literature to optimally
schedule flexible assets in households, although the scarcity of physical
experimentation in a realistic environment prevents its application in
real-world buildings and households.

To conclude, it is essential to equip the distribution network with
sensors to collect the data that feed the innovative services. Implement-
ing data-driven techniques in energy services development is essential
for developing a reliable, secure and efficient Smart Grid. Thanks to
these methods, the services show better performance compared to stat-
istical benchmark procedures. Nevertheless, there are still challenges to
overcome to extend and improve the Al applications in power systems,
mainly related to ICT infrastructure, data collection and governance,
data integration and sharing, data processing and analysis, security and
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privacy and the need for professionals of Big Data analytics.
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Chapter 3

Environment Strategies for Home
Energy Management Systems

This chapter presents and studies different HEMS optimization strategies,
ranging from minimizing costs to reducing emissions associated with
consumption. The most innovative strategy, a novel multi-objective
hybrid HEMS, represents an intermediate point between the two afore-
mentioned approaches. This strategy is designed to minimize electricity
costs and greenhouse gas emissions resulting from end-user consump-
tion. To assess the impact of each technology generation on the climate,

a life cycle analysis methodology is employed.

3.1 Introduction

Global carbon dioxide emissions reached an all-time high in 2019, des-
pite the fading use of coal [335]. Decarbonization is vital; for this
reason, the electricity sector has already started moving from fossil-
based to net-zero greenhouse gas (GHG) emissions. This transition is
possible thanks to the increasing number of renewable energy sources
(RES) and the use of flexibility in the power system to enhance grid
integration and maximize the potential of renewable energies. A long-
term forecasting study about the evolution of the global energy trans-
ition has been conducted in [336]. Key findings predict a significant
reduction in fossil-fuel use (around 75% by 2050) and warn that the
Paris Agreement will not be accomplished if no further decarboniz-
ation measures are taken. Focusing on Europe, current policies will
reduce GHG emissions by 60% in 2050 compared to 1990 emissions
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levels. Nevertheless, the European Commission has increased its cli-
mate ambition through the European Green Deal by enumerating key
transformative economic policies and measures to put Europe on track
to achieve the goal of net-zero global warming emissions by 2050.

Regarding the residential sector, buildings and households play a
crucial role in the energy transition. In 2018, they accounted for 28%
of the global energy-related carbon dioxide emissions [335]. As there is
still a significant margin for improvement in the energy efficiency field,
buildings are expected to be the fastest sector in reducing the COo
emissions [337]. Therefore, more robust strategic measures to decrease
GHG emissions associated with residential electricity demand need to
be implemented.

3.2 Related work

This thesis states that intelligent home energy management systems
(HEMS) can contribute to achieving environmental targets. In the lit-
erature, there are primarily two HEMS approaches. Price-based (PB)
-the focus of most current work- and incentive-based (IB). The PB
program aims to minimize the end-user electricity bill by optimally
rescheduling controllable flexible sources, considering a time-varying
pricing tariff. Several studies have used multi-objective HEMS func-
tions for optimal scheduling, considering the minimization of electri-
city cost and end-user discomfort [338-346]. For instance, [342] min-
imizes electricity cost and the power profile deviation at the point of
standard coupling, while [343] proposes a cost-effective HEMS consid-
ering thermal and electricity comfort. The IB program offers flexib-
ility to a third electricity agent to exchange economic compensation
for changing its baseline consumption. [347] assures minimum energy
cost and supports the upstream micro-grid operation by minimizing
the load profile deviation. Electric vehicles and electric water heaters
provide flexibility in [348] for PB and IB programs. A third category,
environmental-based (EB), has been proposed in [349], which focuses
on minimizing the GHG emissions produced by the generation units
that provide electricity to the household. The study in [350] presents
a multi-objective dispatching optimization model of an energy system
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focused on energy production, conversion, and storage to maximize the
operating revenue and minimize operational risk and carbon emissions.
Focusing on HEMS sustainability factors, the study [351] calculates cli-
mate effects by displaying carbon emissions at customers’ premises to
motivate them to diminish their consumption. In [352], the curtailment
of on-site PV is penalized for maximizing green energy consumption.

Therefore, this chapter presents a hybrid approach to Home Energy
Management Systems, referred to as hybrid-based (HB) HEMS, com-
bining the previously mentioned price-based (PB) and environmental-
based (EB) methods. Table 3.1 lists various HEMS programs from the
literature. The vast majority focus on PB programs, as stated in [348].
Some studies propose multi-objective functions incorporating PB and
incentive-based (IB) programs, such as those presented in [347,348,350].

Table 3.1: HEMS programs and their services.

HEMS

program Description HEMS service

PB Time-of-use pricin real

[338-341,  The objective is to minimize the . %0 L aIr)1 4 ei’k .

347, 348, end-users electricity bill. o pricing and p

352-354] &

1B Flexible sources are economically 1 s

[347, 348, incentivized to be flexible by modi- f}fggiﬁi ﬁzxg;lilty toa

355, 356] fying their electricity use. &y agent.
Flexibility is used to minimize the

EB GHG emissions of buildings associ- e

[349] ated with generators that produce Minimization of GHG.

the electricity they consume.

3.3 LCA for electricity generation systems: a
time-varying GWP approach

This section provides the actual environmental impact considering the
entire life cycle of an electricity generation system using the Life Cycle
Assessment (LCA) methodology. This process is described in Figure
3.1, following the steps noted in [8]. For each electricity generation
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technology, GHG emissions are evaluated and categorized according to
contributions from the following three life cycle phases:

e Fuel provision: activities from fuel extraction to its delivery at
the plant gate.

e Plant operation: operation and maintenance of the plant and the
appropriate management of residues.

e Infrastructure: covers the commissioning and decommissioning
related emissions of the electricity generation system.

The LCA impact category selected for this thesis as the reference
measure to quantify and assess the potential environmental impact
of an electricity generation source is the Global Warming Potential
(GWP) indicator. To calculate the overall GWP for each generation
source, the first step is identifying and quantifying the GHG emissions
associated with each life cycle stage listed and shown in Figure 3.1. The
most common GHGs are carbon dioxide (COs2), methane (CHy), and
nitrous oxide (NO;), as they have significant contributions to global
warming. Once the emissions are quantified, each GHG is multiplied by
its respective GWP factor. These factors represent the relative warm-
ing potential of each gas compared to COs. For instance, methane
is estimated to have a GWP of 27-30 over a 100-year period. CHy
emitted today lasts about a decade on average, much less than C'Os,
however, C'H4 absorbs much more energy than COs. After multiplying
the emissions by the GWP factors in all the life cycle phases, the results
are summed up to obtain the total GWP for the electricity generation
source. The unit typically used for GWP is carbon dioxide equivalent
(COz—¢q), which represents the amount of COy emissions that would
have the same warming effect as the combined emissions of all GHGs.
It’s important to note that the specific methodology and data sources
used to calculate the GWP may vary depending on the LCA study and
regional concerns.

Table 3.2 summarizes and lists the GWP indicators for the electricity
generation sources evaluated in this investigation, taken from [8] since
the scope and objective of this chapter do not involve calculating the
GWP of the generation sources taken into account in this analysis.

Power systems consisting of diverse generation sources have time-
dependent GHG emissions. Consequently, the GWP performance changes
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Figure 3.1: Electricity generation technologies LCA steps.
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hourly along with the electricity mix of each country [357]. A primary
objective is to determine the time-varying amount of kg COy equi-
valent (COg_¢q) emitted per kilowatt-hour (kWh) of the energy mix.
The average hourly GWP impact of the electricity supply, denoted as
EJ"P97 can be expressed as follows.

Eprvgrid _ Z ngp,avg i GSt,i (31)
el

where EJ*“P*"9 is the GWP average constant for each type of gen-
eration source ¢ and GS;; refers to the estimated generation in the
day-ahead market at period t for each type of generation source 1.

It should be mentioned that these GWP emission values are not
static, as they are expected to vary over time, given that processes
generally tend to become more efficient and improve performance in
terms of associated emissions.

Table 3.2 shows the GWP indicator range for the overall life cycle
stages for each electricity generation source type, according to [8]. This
thesis uses the average GWP value.

Table 3.2: Lyfe cycle emission factors for electricity generation sources

[8].
Generation GWP range Average GWP
source GS; kg CO2_cq/kWh] [kg CO2_.,/kWh]
Hard coal 0.66-1.05 0.855
Lignite 0.8-1.3 1.050
Natural gas 0.38-1 0.69
Nuclear 0.003-0.035 0.019
Biomass 0.0085-0.13 0.0693
Hydro-power 0.002-0.02 0.011
Photo-voltaic 0.013-0.19 0.1015
Wind 0.003-0.041 0.022
Battery - 0.0706
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3.4 Mathematical formulation

3.4 Mathematical formulation

This section covers the three HEMS objective functions approaches -
PB, EB and HB- and the mathematical formulation of the optimization
model for controlling and re-scheduling flexible household sources.

3.4.1 HEMS objective function
3.4.1.1 Price-based program

This program focuses exclusively on the economic aspect. It aims to
minimize the electricity bill (4.1), considering the battery degradation
cost Kf“l due to calendar aging, where Ptbuy is the time-varying electri-
city price, X?uy refers to the energy purchased to the grid, and PVAT is
the tax applied. Constraint (3.2c) ensures that the energy balance is al-
ways met, where 1" is the optimized PV generation output and th(’“d
stands for inflexible household consumption. Finally, constraint (3.2d)
avoids exceeding the contracted power X™%¥MP  To switch from power
to energy units, N is used, which refers to the number of periods
per hour. The objective function is expressed as

min  fi =Y (PP PVAT + kgl (3.2a)

X teT

s.t.

K =0.019 - V; — 0.0629, (3.2b)
fv _|_o_tdz's _{_Ximy — O'tCh + thoad’ (3.2C)

Xi)uy < Xmam,imp/Nhour (32(1)

3.4.1.2 Environmental-based program

this program attempts to minimize the carbon footprint occasioned by
the generation sources that provide electricity to the household. This
HEMS is presented in [349]. The objective function is formulated as
follows.
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qun fy = Z Eyepgridy buy | pawp.pvypv (3.3a)
XH0,0 teT
+ ngp,bataglis (3.3b)
s.t.
I ot = ot e (330
Xi)uy < Xmax,imp/NhouT (33d)

where E7"P 97 indicates the kg CO2_cq/kWh of the grid on average
per period t. It is calculated with the hourly energy production mix,
taking the values of scheduled generation in the day-ahead market for
each technology described in Table 3.2.

3.4.1.3 Hybrid-based program

this multi-objective problem (MOP) approach combines the PB and
the EB objective functions. It is a multiple-criteria decision-making
problem with no unique optimal solution but a domain of feasible solu-
tions that satisfy all constraints. Therefore, the result is a trade-off, a
compromise between minimizing the energy costs and decreasing GHG
emissions derived from the generation sources that provide electricity
to the house.

The HB objective function f3 is formulated in (3.4a). Normalization
of the objectives is required so that both competing objectives can be
equivalent and compared at the same level. f] is the optimal solution
of the PB objective function f; (4.1), and f5 is the optimal solution of
the EB objective function fy (4.2). The linear MOP is formulated as
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a‘f1+(1—04)‘f2

oy =g s (842)
S.t.
K =0.019 - V; — 0.0629, (3.4b)
PY + afis + Ximy = atCh + thoad, (3.4¢)
Ximy < xmaz,imp / Nhour’ (3. 4d)
a<l (3.4e)

where « is the weighting factor for PB objective function, and (1-«)
for the environment based. The value of o must be lower or equal to one
(3.4e). To conclude, Table 3.3 shows the formulation of the objective
functions of the three HEMS programs.

Table 3.3: HEMS programs’ objective functions.

Objective function Mathematical formulation

Price-based

[MIN]f1 =3 cn (PP PVAT + KEoT)

Environment-based [MIN]f: = ZteT(Efvag”dximy + BIWPPUyPY 4

Hybrid-based

gwp,bat _dis
E o)

« 1—
[MIN]fs = Tfll 4 ¢ f;)z

3.4.2 Energy storage system

Battery aging is formed by calendar and cycling aging. Calendar aging
happens during the battery rest time, whereas cycling aging is caused
directly by charges and discharges. According to [358], the Li-ion bat-
tery degradation due to cycling shows minimal aging for low current
rates [359] and also when the battery is not charged to its maximum
state of charge (SOC) since there is a faster degradation when charging
to 100% SOC. Therefore, the following constraints explained in Section
3.4.2.2 are added to the battery model to ensure that the storage unit
works under conditions that minimize the cycle aging impact:

e Equation (3.13) ensures that the battery charges and discharges
at low current rates.
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e Equation (3.14) reduces large cycles at high SOC by limiting the
maximum SOC allowed.

Given the above, the battery calendar aging is formulated.

3.4.2.1 Battery calendar aging

Battery operating conditions have a significant impact on their perform-
ance and lifetime. The storage model applied in this thesis considers
calendar aging for a lithium-ion (Li-Ion) battery. This phenomenon
leads to a decrease in usable battery capacity and an increase in the
battery’s inner resistance over time, resulting in a depreciation cost.
The calendar aging model formulation applied in this study is paramet-
erized in [359] through accelerated aging tests. The capacity defined in
(3.5) is a phenomenon where the volume of energy that a battery can
operate at the rated voltage diminishes over time [360]. Cell temper-
ature and voltage are the variables that impact calendar aging, thus
influencing battery lifetime. The loss of capacity is more prominent
than the resistance increase in the calendar aging function, according
to [359], as the end of the battery life is reached first due to the loss
of capacity. For this reason, only the capacity is considered in the
calendar aging formulation.

For a Li-Ion battery cell, the capacity C' due to calendar aging is
expressed as

C(t) =1—y(V,T)- "7 (3.5)

where 1 is an aging factor that describes the aging rate during period
t and is formulated as

YV, T) = (a- Vet —b)-e/T (3.6)

where temperature is a constant parameter T' = 293 K in this study,
a="7.543-10V~'days™7, b= 2.375-107 days " and ¢ = 6976 K
[359].

The relationship between the open-circuit voltage (OCV) and SOC
is known and expressed by the non-linear equation shown in Figure 3.2.
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To avoid non-linear constraints, the dependence between the OCV of
the cell and SOC is linearized. The minimum SOC by restriction is
limited to 25%.

4,4

Voltage cell (V)

100 90 80 70 60 50 40 30 20
State of charge (%)

—_—V-S0C eeees Linearization

Figure 3.2: Linear and non-linear OCV and SOC dependence.

As a result, the linear correlation is represented as

Vel = 0.0076 - 03°¢ + 3.4287 (3.7)

where variable ¢/ indicates the percentage of energy stored per

period t. The depreciation of the battery during each time step At
leads to K costs

Kim)est
L

KL, At) = At (3.8)

where K¢t is the acquisition cost of the 8 kWh Li-Ion battery,
and it is set in 7500 €, L is the lifetime of the battery and At is
the time step. The end-of-life criterion is defined to be 80% of initial
capacity C [360]. Therefore, the expected battery life can be calculated
as C =0.8=1—9yL%™ so equation (3.9) remains
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Kim)est
K{*(V,T, At) = . At (3.9)
((a~‘/tCE”—b)'€7C/T)1/0'75

A linear approximation to equation (3.9) is calculated to relax the
constraint and implement a linear solving method. Figure 3.3 shows
non-linear and linear equations, proving that the functions’ behavior is
practically identical.
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Figure 3.3: Dependence of cell voltage on SOC for a cell temperature
of 293 K and time step At = 15 minutes.

Kcal,lmear
t

Therefore, the linearized per time step t is formulated as

Ktcal,linear(v) =0.019 - ‘/tcell — 0.0629 (3.10)

3.4.2.2 Battery constraints

The battery model constraints are formulated. The variable ¢/°¢ in
equation (3.11) represents the battery SOC for each period. The ef-
ficiency factors for storing 7" and delivering electricity n%* are con-
sidered to represent the actual behavior of the battery. The variables
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ot and o

each period.

represent the amount of energy charged or discharged in

dis
Oy

soc soc —|—0’§h- ch

530¢ = 3¢ (3.11)

o ndis
To avoid over-optimistic results, the battery SOC must be the same
at the beginning and the end of the optimization horizon.

7720 = 01ZFinal (3.12)

As mentioned before, it is essential to ensure the battery is not fully
charged or discharged by limiting its maximum and minimum allowed
SOC to a specific fixed value to avoid cycle aging. The equation (3.13)
ensures that 7 is always between a minimum O™" and a maximum

O™ to preserve and extend the battery lifetime:

Omin < O_foc < omax (313)

Equations in (3.14) also help to minimize cycling aging by limiting
the maximum power allowed for charging Q" and discharging Q%.

N Qch di Qdis
c is
Tt < Nhour’ Tt < Nhour

(3.14)

The following constraint makes sure that the energy charged O';% to

the battery unit b is linearly decreased from Sgh state of charge. This
linear function typically goes from 80% SOC to 0 at 100% SOC. This
constraint is represented in Figure 3.4.

h soc
och -Qy ( Tib
t,b = ch max
1— SOy

-1) Vbe B,teT (3.15)
The same happens for discharging energy Ugll'f of battery b during

period t. The lower threshold to limit the energy output is Sg”s, typic-
ally from 10% SOC to 0 at 0% SOC. This constraint is shown in Figure
3.5.
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Figure 3.4: Battery SOC as a function of maximum charging power [6].
Source: INVADE H2020 Project.
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Figure 3.5: Battery SOC as a function of maximum discharging power
[6]. Source: INVADE H2020 Project.

3.4.3 PV generation constraints

The formulation of a reducible PV generation model is presented. The
optimization variable PV scheduled generation ¢{" must be between 0
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and the PV baseline electricity generation W}", which is the forecasted
PV generation curve for the following day.

0< Yl < W, (3.17)

3.5 Case study

The case studies presented in this section aim to analyze the three
HEMS program’s performance -PB, EB, and HB- to compare the elec-
tricity expenses and kg of COy_,, related to a single-family household.
Actual consumption and PV generation data are taken from the Data
Port database [361] and used as input to the HEMS programs. These
case studies are located in Spain; therefore, the Spanish dynamic elec-
tricity tariff (Precio Voluntario Pequeno Consumidor tariff) and its
clectricity mix are used as input data. PVAT is set to 21%. The optim-
ization horizon is 24 hours, divided into 96 time periods of 15 minutes,
starting at 00:00h. The household contracted maximum power is 6 kW
and is equipped with a 4.8 kW PV and a 9 kWh battery, whose SOC
must be at least 50% at the beginning and end of the optimization
horizon. The value of the parameters applied for all the case studies
are listed in Table 3.4. The end-user does not sell back electricity to
the grid; therefore, the PV is exclusively for self-consumption, and the
excess of production can be stored in the battery for later usage. The
HB multi-objective function weights are set to a = 0.3 and 8 = 0.7,
according to the end-user preferences that emphasize environmental as-
pects. The HEMS has been implemented in Python, using the Pyomo
optimization library and the Gurobi solver. The optimal solution of the
HB HEMS program was obtained with a computational time of 0.44
seconds on a Laptop with a processor core i7 at 2,60 GHz and 8 GB of
RAM.

Two opposite Spanish energy mix generation scenarios are proposed
to examine the HEMS program’s performance. On the one hand, low
penetration of renewables in the electricity mix and, on the other, high
participation of sustainable generation sources. Figure 3.6 presents a
scheme of these case studies. The PB HEMS is run separately since its
performance only depends on the dynamic pricing tariff, regardless of
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Table 3.4: HEMS optimization strategies: the case studies parameters.

Parameters Value Units
Battery maximum allowed SOC 8 kWh
Battery minimum allowed SOC 2 kWh
Battery SOC initial/final 4.5 kWh
Battery maximum power charge/discharge 3 kW
Battery efficiency charge/discharge 0.95 -
Household maximum import capacity 6 kW
PV maximum output power 4.8 kW

the energy mix composition, since its objective is to minimize the cost,
not GHG emissions. Case studies have identical inflexible demand,
PV generation, battery parameters, and hourly electricity prices to
compare the results of the three HEMS programs. The only input
parameter that changes is the electricity generation mix of the grid.

CASE STUDIES
|
SCENARIO A SCENARIO B
Low penetration of RES High penetration of RES
Price- Environmental- ~ Hybrid- Environmental-  Hybrid-
based based based based based

Figure 3.6: Scheme of the case studies proposed to test the proposed
HEMS optimization strategies performance.

For Scenario A with low RES penetration, data from November 20th
2017 is used, in which the percentage of non-fossil generation penet-
ration is 29.18%. For Scenario B with high RES penetration, March
6th, 2020 has been selected, with a daily average of 83.07% of elec-
tricity generation sources with zero emissions during their electrical
grid operation. It should be noted that nuclear power is incorporated
within zero-emissions energy sources. The hourly share of each gener-
ation source -listed in Table 3.2- in the Spanish energy mix for both
scenarios is illustrated in Figure 3.7. The total generation curve is
also represented to demonstrate that the selected generation types are
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primarily responsible for the overall generation and cover 96% of the
total demand. The higher the RES penetration in the energy mix is,
the lower the GWP grid value per energy unit. Combined cycle and
coal generation dominate in Figure 3.7(a), wh