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“To be or not to be is not the question.
The vital question is how to be and how not to be.”

– Abraham Joshua Heschel

“If you get tired, learn to rest, not to quit”
– Banksy
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me vine a Barcelona. Siempre se hace más llevadero el camino con tan
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Abstract

The rapid advancement of digitization, combined with the integra-
tion of renewable generation and the development of information and
communication technologies within the distribution network, is accel-
erating the transition towards distributed, digitized, and decarbonized
smart energy systems. Despite the crucial role of data in this transfor-
mation, it is still underutilized. Artificial Intelligence (AI) technology
has the potential to extract valuable insights from these data, enabling
innovative energy services and improving the performance of existing
ones.

This thesis first explores the potential of AI in data-driven energy
services for distribution power systems through a comprehensive study.
After reviewing the state of the art, the next step focuses on energy
management systems at the household level. This thesis develops a
multi-objective energy management system that simultaneously min-
imizes greenhouse gas emissions and electricity expenses, considering
the entire life cycle of the generation assets used to provide energy, in-
cluding the grid. The results demonstrate that this methodology can
significantly reduce greenhouse gas emissions without incurring expen-
sive electricity costs. The following chapter extends this innovative
environmental-based approach to local energy communities with cen-
tralized PV and battery.

Finally, the last chapter focuses on federated learning technology
applied to home energy management systems (HEMS). Due to the in-
creasing digitization of the low-voltage network and the implementation
of smart meters, data protection has become increasingly important.
Therefore, this study seeks to preserve user privacy by training predic-
tion models in a distributed manner. Moreover, the proposed person-
alized federated learning methodology for HEMS demand forecasting
incorporates a cost-oriented loss function to minimize imbalance costs
while preserving customer privacy. The study compares cost-oriented
and traditional loss functions and reveals that the personalized fed-
erated learning approach with cost-oriented loss function obtains the



lowest imbalance cost for HEMS optimization. Moreover, the study
demonstrates that new households without large historical consump-
tion data can still achieve good load prediction outcomes through col-
laborative learning models.
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Resum

L’avanç ràpid de la digitalització, combinat amb la implementació de
generació renovable i el desenvolupament de tecnologies de la infor-
mació i la comunicació dins la xarxa de distribució, està accelerant la
transició cap a sistemes energètics intel·ligents distribüıts, digitalitzats
i descarbonitzats. Malgrat el paper crucial de les dades en aquesta
transformació, encara es subtilitzen. La tecnologia d’intel·ligència ar-
tificial (IA) té el potencial d’extreure informació valuosa d’aquestes
dades, permetent serveis energètics innovadors i millorant el rendiment
dels existents.

Aquesta tesi explora primer el potencial de la IA en serveis energètics
impulsats per dades per als sistemes de distribució de potència a través
d’un estudi exhaustiu. Després de revisar l’estat de l’art, el següent
pas se centra en els sistemes de gestió energètica en l’àmbit domèstic.
Aquesta tesi desenvolupa un sistema de gestió energètica multiobjectiu
que minimitza simultàniament les emissions de gasos d’efecte hiver-
nacle i les despeses d’electricitat, considerant tot el cicle de vida dels
actius de generació utilitzats per proporcionar energia, incloent-hi la
xarxa. Els resultats demostren que aquesta metodologia pot reduir sig-
nificativament les emissions de gasos d’efecte hivernacle sense incórrer
en despeses d’electricitat elevades. El caṕıtol següent amplia aquesta
aproximació innovadora basada en l’entorn al nivell de les comunitats
energètiques locals amb fotovoltaica i bateria centralitzades.

Finalment, l’últim caṕıtol se centra en la tecnologia d’aprenentatge
federat aplicada als sistemes de gestió energètica dels habitatges. A
causa de la creixent digitalització de la xarxa de baixa tensió i la imple-
mentació de comptadors intel·ligents, la protecció de dades s’ha tornat
cada vegada més important. Per tant, aquest estudi busca preservar la
privacitat de l’usuari entrenant models de predicció de manera distri-
büıda. A més, la metodologia d’aprenentatge federat personalitzat pro-
posada per a la previsió de la demanda d’HEMS incorpora una funció
de pèrdua orientada al cost per minimitzar els costos d’equilibri men-
tre es preserva la privacitat del client. L’estudi compara les funcions



de pèrdua orientades al cost i les tradicionals i revela que l’aproximació
d’aprenentatge federat personalitzat amb funció de pèrdua orientada
al cost obté el cost d’equilibri més baix per a l’optimització d’HEMS.
A més, l’estudi demostra que les noves llars sense dades de consum
històriques encara poden assolir resultats satisfactoris.
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Chapter 1

Introduction

This first chapter introduces the current context of the energy trans-
ition and establishes the motivation of this thesis. The main research
questions, objectives and scope of this investigation are identified, ad-
dressing the key challenges and opportunities arising from the ongoing
climate situation and defining the author’s contribution to the field.
Next, the structure of the thesis is presented. Lastly, a chronological
summary of the research activities and related work undertaken during
the doctoral period concludes the chapter.

1.1 Current context and motivation

The emission of Greenhouse Gases (GHG) and their negative impact
on climate have become a primary concern for society. To minimize
their impact in the future, an international consensus was achieved in
2016 with the Paris Agreement [11]. It aims to limit the increase in
global average temperature by the end of this century to below 2 °C
compared to pre-industrial levels. Recently, this threshold has been
reduced to 1.5 °C.
The European Union (EU) is committed to leading the sustainable

energy transition by setting even more ambitious energy targets and
regulatory frameworks. Figure 1.1 provides a visual representation of
the European GHG historical emissions, future net emission targets and
medium-term predictions. In this context, the EU climate strategy for
2020 established a target of reducing GHG emissions by 20% compared
to 1990 levels. The EU had already achieved its 20% target before the
pandemic lockdown began to impact emission levels, having reduced
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emissions by 26% in 2019, while the gross domestic product (GDP)
increased by 58% [1]. However, the pandemic recovery and the incre-
ment of fossil-based generation sources in the second half of 2021 have
resulted in emissions growth in 2021.

Figure 1.1: Historical trends and future projections of EU greenhouse
gas emissions. Source: European Environment Agency.

In 2019, the EU presented the European Green Deal [12], a com-
prehensive set of policy initiatives covering almost all sectors, from
building renovation, transport, energy, biodiversity, agriculture or in-
novation. This framework aims to achieve a minimum of 55% reduction
in GHG emissions by 2030 and achieve a climate-neutral EU by 2050
with a net-zero pollutant emissions economy. This objective is even
more challenging as electricity consumption is projected to increase by
20% to 40% by 2050 [13]. Figure 1.2 illustrates that thanks to the am-
bitious EU’s climate policies, GHG emissions are expected to decouple
from GDP growth. The EU’s economy is projected to more than double
by 2050 compared to 1990 levels while fully decarbonizing.

In order to reduce these emissions effectively, it is essential to un-
derstand their sources and the sectors that make the greatest contri-
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Figure 1.2: European climate policy decouples GHG emissions and
GDP growth [1]. Source: European Commission.

bution to them. According to [2], energy (including electricity, heat,
and transportation) is in charge of almost three-quarters of global emis-
sions (73.2%). More in detail, the electricity and heat lead the annual
emissions, as shown in Figure 1.3. Of the total energy-related CO2

emissions, more than 40% are due to the combustion of fossil fuels
for electricity generation. Therefore, the energy sector plays a crit-
ical role in mitigating these effects by improving energy efficiency and
transitioning traditional fossil-based electricity generation to carbon-
free alternatives.

Finally, Figure 1.4 depicts the historical and projected average an-
nual investments required to achieve the aforementioned EU climate
targets [3]. The residential sector has invested the most by far, and it
is expected to increase its investments even further in the next 10 years.
For these reasons, this thesis focuses on both, the residential and power
grid sectors, aiming to help these categories become drivers of change
towards a sustainable economy and energy democratization through
the implementation of small-scale, distributed renewable energy and
self-consumption.
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Figure 1.3: Annual greenhouse gas emissions by sector [2]. Source: Our
World in Data.

1.1.1 Digitization and flexibility as energy transition enablers

Recent advances in Information and Communications Technology (ICT)
together with the implementation of smart meters and sensors at low
voltage levels are facilitating real-time monitoring, transforming the
traditional power system into a Smart Grid. It is undeniable that digit-
ization enhances customer engagement, providing customers with more
detailed information and insights about their electricity consumption
patterns, empowering them to make better decisions about their en-
ergy usage. Additionally, current artificial intelligence technology and
data analytic tools are enabling the extraction of added value from the
massive amount of data generated daily, leading to novel data-driven
business models in the energy domain.

In this context, the flexibility term arises, which refers to the power
system’s ability to modify or adjust the electricity consumption an-
d/or generation in response to variability or external factors such as
electricity prices or flexibility requests from other electricity market
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Figure 1.4: Average annual and additional investments to achieve 2030
EU climate targets [3]. Source: European Commission.

participants such as Transmission System Operators (TSOs), Distribu-
tion System Operators (DSOs) or Balance Responsible Parties (BRPs),
with the purpose of maintaining network stability, minimizing conges-
tions, and reducing or avoiding imbalances, among others.

Focusing on consumers, energy management systems enable custom-
ers to monitor, control, and optimize their energy consumption and us-
age through demand-side management strategies, which aim to change
consumption patterns by encouraging customers to shift their electri-
city consumption to different periods or reducing/curtailing the overall
or some demand at specific periods. These changes are for the user’s
own benefit or due to external signals or flexibility requests by thirds
of electricity market agents in exchange for economic compensation.
Thus, indirectly, GHG emissions associated with electricity generation
are reduced, the efficiency of the electricity system is increased, and
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congestion in the grid can be avoided by activating flexibility, thereby
increasing the resilience and resistance of the electricity system. Ad-
ditionally, the flexibility market provides a platform to aggregate the
end-users’ flexibility to participate in the energy transition actively and
contribute to reducing greenhouse gas emissions while also potentially
benefiting from cost savings and other incentives. Thus, the end-user
becomes an active and indispensable part of the electricity market and
energy transition.

Therefore, the energy management systems’ flexibility service sup-
port and accelerate the ongoing energy transition and also promote
the empowerment of ordinary citizens, allowing them to manage and
monitor their energy consumption and production (in the case of be-
ing prosumers), involving them and making them key players in the
essential energy and climate transition. Furthermore, thanks to self-
consumption and the emergence of local energy communities among
neighbors, electricity generation is decentralized, thus minimizing trans-
mission losses and democratizing energy consumption, making it access-
ible to everyone. This new vision of the electricity system also gener-
ates direct economic benefits for users, providing substantial savings
through self-consumption and the sale of excess electricity in exchange
for economic compensation. This new scenario is highly beneficial for
communities as it not only enriches them but also serves as a strong
incentive for the creation of jobs in the field of energy transition.

1.1.2 Motivation

In summary, the urgent need to mitigate climate change and reduce
greenhouse gas emissions has encouraged the acceleration of the trans-
formation of energy systems, especially in the residential and build-
ing sector. Moreover, 90% of European citizens agree that reducing
CO2 emissions is necessary to achieve the 2050 emissions neutrality
target [14]. Therefore, the main objective of this thesis is to contrib-
ute to this global effort by developing innovative environmental-based
energy management system strategies that leverage the digitization of
the distribution network through the implementation of sensors and
smart meters. By enabling self-consumption and flexibility, end-users
can become active participants in the energy transition and essential
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drivers of change. Furthermore, this thesis considers user data privacy
preservation to enable the creation of forecasting models without com-
promising data security. This investigation creates an innovative and
sustainable energy management solution that supports the transition
towards a decarbonized economy while also protecting the privacy and
security of user data.
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1.2 Objectives and scope

This section outlines the Research Questions (RQ) that led to the ob-
jectives and scope of the thesis conducted by the author.

RQ1) What novel data-driven energy services are likely to
emerge or could benefit from the daily vast amount of opera-
tional and non-operational data related to distribution networks?

RQ2) Which Artificial Intelligence techniques are utilized in
the development of these data-driven energy services in the
distribution network, and how do they contribute to enhancing
the sustainability, efficiency, and reliability of the system?

RQ3) How can electricity consumers and local energy com-
munities contribute to enhancing sustainability through
emissions reduction and how can they be engaged and incentiv-
ized?

RQ4) Given the need to protect user data privacy, which ma-
chine learning distributed method can be applied to train energy
management system prediction models without compromising
personal data?

RQ5) How can cost-oriented loss functions in EMS prediction
models help to minimize imbalance penalizations due to energy
consumption estimation errors?

Figure 1.5 provides a conceptual overview of the objectives and con-
tributions of this thesis. The image details the scope of this thesis,
which is mainly focused on energy management systems, both at the
user and energy community levels. Firstly, a comprehensive analysis
of the state-of-the-art data-driven energy services and AI methods is
conducted in (O1). Subsequently, this work focuses on energy manage-
ment systems, developing an optimization model in (O2). In addition,
a novel environmental-based optimization approach is developed and
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evaluated for Home Energy Management System (HEMS) in (O3), and
(O4) applies this method to local energy communities. Furthermore,
federated learning is included in HEMS to ensure customer data pri-
vacy and enhance collaboration between different energy stakeholders
who may be hesitant to share their data otherwise. In this context,
(O5) presents the personalized approach for end-users demand fore-
casting, while (O6) introduces a cost-oriented loss function for training
the models developed in (O5).

(O1) Data-driven energy services state-of-the-art 

Energy management systems

(O2) Home energy management systems

(O3) Environmental (O5) (O6) Federated learning

• Personalized Federated 
learning

• Cost-oriented loss 
function

• Environmental and 
price-based 
approach

(O4) Energy communities

• Environmental 
and price-based 
approach

Figure 1.5: Global overview of the objectives and contributions of this
thesis.

This thesis responds to the following objectives, presented in different
chapters:

O1 Analyze the artificial intelligence methods applied in dis-
tribution networks to enable data-driven energy services.

First, a comprehensive analysis of artificial intelligence methods
applied in distribution networks to enable data-driven energy ser-
vices is conducted. The research involves identifying and classi-
fying various data-driven techniques for power systems and the
data sources involved in data acquisition. The study explores dif-
ferent energy services, including operation and monitoring, pre-
dictive maintenance, non-technical losses detection, forecasting,
flexibility and planning of distribution grids. The research also
maps the relationship between the distribution grid applications,
proving that multiple services can be offered as a single clustered
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service to different energy-related stakeholders. Additionally, the
analysis identifies the dependencies between the AI techniques
with each energy service.

O2 Develop an energy management system optimization model
capable of controlling flexible assets in order to minimize
the electricity cost.

After comprehending the state of the art of the different en-
ergy services, this thesis focuses on energy management systems.
Therefore, this objective seeks to develop an optimization model
for a household energy management system capable of controlling
flexible assets to minimize electricity costs while considering the
end-user constraints. In this phase, different flexible asset models
are designed, including a battery model taking into account the
battery degradation parameters due to usage and calendar aging
and flexible PV generation, among others.

O3 Develop an environmental-based objective function for
energy management systems that, in addition to min-
imizing cost, incorporates the reduction of greenhouse
gases associated with consumption.

After completing the previous objective, a novel strategy that
simultaneously minimizes greenhouse gas emissions and electri-
city expenses is proposed. The approach considers the entire life
cycle of the generation assets used to provide energy, including
the electricity grid. This multi-objective function empowers end-
users to determine their preferences at any time, enabling them
to prioritize minimizing cost, emissions, or a balance of both.

O4 Transform and adapt the individual energy management
system model to a local energy community optimization
model, with centralized PV and battery.

The aim of this study is to transform and adapt the individual
energy management system model and the environmental and
price-based approach to local energy communities consisting of
several buildings with centralized and shared PV and battery.
The optimization seeks the overall neighborhood benefit.

O5 Apply federated learning for energy management sys-
tems forecasting models using personalization.
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A personalized federated learning methodology is developed for
home energy management systems demand forecasting. The ap-
proach addresses the challenges of customers’ data privacy and
security, as well as mitigates the challenges of data silos in the
energy sector by enabling collaboration between stakeholders,
such as energy providers and customers, reducing or eliminat-
ing cloud-computing costs. The methodology involves retraining
a global centralized federated learning model using user-specific
smart meter data to build a personalized federated learning model
for each consumer. The new personalized model is kept locally,
maintaining the preservation of personal data.

O6 Integrate cost-oriented loss functions with personalized
federated learning models for HEMS load predictions

The final contribution of this thesis is to integrate a cost-oriented
loss function with the personalized federated learning approach
developed in the previous step for HEMS load predictions. The
study demonstrates and validates the cost savings resulting from
the use of cost-oriented personalized federated learning models in
HEMS for end-users with varying historical data availability.
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1.3 Thesis outline

The contents of the thesis are organized in the following chapters:

• Chapter 2 provides a comprehensive literature review of artifi-
cial intelligence methods applied to data-driven energy services
that have emerged with the recent digitization of the electrical
distribution network.

• Chapter 3 presents a novel multi-objective hybrid HEMS de-
signed to minimize both electricity costs and greenhouse gas emis-
sions resulting from end-user consumption. To assess the impact
of each technology generation on the climate, a life cycle analysis
methodology is used.

• Chapter 4 extends the scope of the previous research by assess-
ing different combinations of multi-objective objective function
approaches for local energy communities.

• Chapter 5 combines federated learning technology with a cost-
oriented loss function for HEMS load prediction to enhance data
privacy and collaborative learning.

• Chapter 6 summarizes the conclusions of the work and intro-
duces the future research lines for each of the research topics
addressed.

• Appendix A enumerates the publications and research outcomes,
both related and unrelated to the thesis manuscript.

• Appendix B briefly presents the detection and measurement
errors tool developed to avoid data errors.
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1.4 Thesis related work and activities

This section provides a chronological overview of the relevant activities
and work developed by the author during the thesis period, derived
from national and international projects that have directly or indirectly
fed this thesis. This is summarized in Figure 1.6.

Doctoral activities started in October 2018, with the author collab-
orating from 2018 until the end of 2019 on the Innovation Action H2020
European project INVADE Integrated electric vehicles and batteries to
empower distributed and centralized storage in distribution grids, under
Grant Agreement No 731148. This work consisted on the develop-
ment of a home energy management system optimization model that
minimizes the energy bill while offering flexibility to energy market
stakeholders to cope with grid congestion and imbalances, which led to
a conference paper [C1]. Moreover, the development of shiftable and
curtailable flexible source models, such as electric water heaters, led to
a conference article [C5] and oral presentation [P-C1]. The author also
collaborated with colleagues at CITCEA-UPC, NTNU, and compan-
ies like Anell and Smart Innovation Norway on behalf of the INVADE
Project, which resulted in several outcomes not included in this thesis,
such as journal article [J5], conference papers [C3], [C4], [C6], [C7], and
oral presentation in international events [P-C1].

The research on the HEMS assessment in smart grids continued in
2020, under the BD4OPEM H2020 Project Big Data for Open Innov-
ation Energy Marketplace, Grant Agreement No. 872525. This project
involved 12 partners from eight different countries and five pilot sites.
In this context, a review of the state-of-the-art artificial intelligence
methods applied to data-driven energy services was conducted in [J1].
These new services aim to add value to the vast amount of data gener-
ated daily in the distribution network, thanks to its digitization.

The research conducted under BD4OPEM involved the development
of four data-driven energy-related services, which are described below:

• Detection of measurement errors. This service involved the use
of a data-cleaning pipeline that used artificial intelligence to de-
tect anomalies and impute missing values. This data-cleaning
algorithm was used prior to HEMS execution to ensure optimal
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performance and data quality. This work is described in Ap-
pendix B.

• Flexibility aggregated services for balanced responsible parties.
This service consisted of two approaches. The first approach in-
volved balance portfolio optimization to avoid penalties for devi-
ating from the system. The second approach involved minimizing
purchase costs in the day-ahead electricity market. The results
of this work are presented in [J6].

• Building energy management systems for the central offices of
a distribution system operator in Spain. This service involved
developing an algorithm to manage a group of buildings within
a local energy community with self-consumption and collective
storage. The results of this work are presented in a journal article
[J4].

• Energy forecasting. This service involved developing PV genera-
tion and demand forecasting at the LV level.

In parallel with the BD4OPEM project, the author also participated
in the FLEXRED project Flexibility of distributed energy resources to
optimize the operation of distribution networks, supported by Minis-
terio de Ciencia, Innovacion y Universidades under RTI2018-09954. As
part of this project, the author developed an environmental-based ap-
proach for an energy management system, which resulted in a journal
publication [J1], a conference article [C2], and an oral presentation at
a congress [P-C2]. In addition, the author has also participated during
this period in an industrial project with a Catalan distribution system
operator company to develop an energy management system for a local
energy community, which consists of the offices of this corporation. As
a result of this work, article [J4] has been published.

In 2022, the author started working on the ATLAS project Digitiza-
tion using novel data analytic methods and toolboxes for secure, renew-
able, and flexible grids under reference PID2021-128101OB-I00 funded
by Ministerio de Ciencia, Innovación y Universidades and by ERDF A
way of making Europe. The project topic is aligned with the focus of an
international stay in Imperial College London (in the Electrical Engin-
eering Department), from August to December 2022. During this stay,
the author researched personalized federated learning for HEMS and
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combined it with a cost-oriented loss function approach to minimize im-
balance costs. The research led to journal publication [J3]. Moreover,
during 2022 I have served as the Scientific Coordinator of the Estaban-
ell Chair in Smart Grids, where my responsibilities included fostering
collaborations between industry and academia, as well as overseeing
and leading research and innovation projects in the distribution area of
the company.

In 2023, the author started participating in two projects related to
the topic of this thesis: the MERIDIAN project (Flexible distribu-
tion grid management for maximum decarbonization using artificial
intelligence) funded by Ministerio de Ciencia, Innovación y Universid-
ades under TED2021-131753B-I00 and PLATON (PLAtaforma ONline
integradora de datos de enerǵıa y de servicios IA para redes de dis-
tribución).
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Start thesis

2019

2020

2021

2022

2023

International mobility

RTI2018-09954
GA No. 872525

GA No. 731148

FLEXRED

ATLAS
PID2021-128101OB-I00

European funded project

Spanish funded project

Industrial project

MERIDIAN
TED2021-131753B-I00

PLATON

International mobility

Eypesa Energy 
Community Project

Figure 1.6: Timeline of the projects and main activities carried out dur-
ing the thesis.
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Chapter 2

Artificial intelligence for enabling
data-driven energy services

In this chapter, a comprehensive literature review is conducted on Ar-
tificial Intelligence (AI) methods applied to data-driven energy ser-
vices that have emerged with the recent expansion of digitization in
electrical distribution networks. This exhaustive analysis includes en-
ergy services such as operation and monitoring, predictive maintenance,
non-technical losses, forecasting, flexibility management and planning.
The relationships and interactions between them are examined. Many
of the applications identified lead to data outputs that can be input
for other energy applications, enabling several groups of potential ser-
vices for different stakeholders. Furthermore, future opportunities and
challenges for the application of AI in distribution grids are identified.

2.1 Introduction

The progress of Information and Communication Technologies (ICT)
and digitization are accelerating the transition towards smart energy
systems [15–17], where data have a remarkable but still under-exploited
role [17, 18]. These data, collected by different types of sources, need
to be preprocessed [19, 20] before applying AI techniques that lead to
several Big Data applications in power systems [21].

The operation and management of electrical grids are per se com-
plex decision-making processes, even more challenging taking into ac-
count the increasing penetration of renewable energy sources, which
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are adding more variability and uncertainty in the power system op-
eration [22]. To address the operation, maintenance, and planning of
electrical grids, classical analysis tools can require large computational
time and might not always find a feasible solution. In this sense, AI
techniques can contribute to operating, maintaining and planning elec-
trical networks by treating and extracting value from large volumes of
data, dealing with its variety and velocity, through much faster com-
putations [23].

Considering the potential of the data collected in electrical networks,
the scientific community is applying and developing AI techniques for
power system applications [23]. AI can be applied in all the power sys-
tem domains, including generation, transmission, distribution and con-
sumption. In particular, the International Renewable Energy Agency
(IRENA) envisages its application to promote the grid integration of
renewable energy sources in all the before mentioned power system
chain through: forecasting for renewable power plants (like wind and
solar large-scale power plants), grid stability and reliability at transmis-
sion and distribution level, demand forecasting, demand-side manage-
ment, optimized energy storage operation and optimized market design
and operation (the latter two as multi-domain applications) [24]. The
present chapter focuses on AI applications in the distribution and con-
sumption domains.

2.2 Data-driven techniques for power systems
analysis

The massive amount of data currently being produced alongside the
power system pipeline, from generation to demand side, has arisen
the opportunity to understand the system better and create innov-
ative services based on these data. For the sake of this investigation,
the data-driven techniques classification is based on the most relevant
publications in the energy field and based on Statistical, Neuroscience,
Computer Science and Mathematical references. To help the reader
to identify the different data-driven techniques, Figure 2.1 displays the
most relevant data-driven related areas in the energy sector considered
in this study.
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Let us first define what is meant by artificial intelligence. IRENA
defines AI as an area of computer science that focuses on creating in-
telligent machines that follow human behavior, according to the data
collected [24]. This is considered the starting point for the development
of data-driven services in the electricity sector. However, this concept
can sometimes be misunderstood or considered too broad since some
techniques inside Statistics and Data Mining (DM) are placed within
the AI area.

ML is a sub-field of AI and computer sciences [4,24] that has evolved
from pattern recognition to analyze the data structure and fit it into
models that can be understood and replicated by users [4]. Figure
2.1 defines all the ML categories, methods and models applicable to
energy-related projects, taking into account the standard approaches
and definitions of different authors [25–28]. The classification provided
in this thesis matches the one proposed in [28] which is also imple-
mented within the power systems field. Furthermore, ML is classified
into four categories: Supervised Learning, Unsupervised Learning, Re-
inforcement Learning (RL) and Deep Learning (DL). Supervised and
Unsupervised Learning categories aim to predict or describe the ex-
isting relationships within the data set, being called supervised when
the dependent variable is available and unsupervised when it is not.
RL is a computational approach that learns from the interaction with
the environment, which means defining how system agents can take ac-
tions in their environment to maximize the cumulative reward [29]. RL
is implemented mainly in energy dispatch problems and building en-
ergy management scheduling [30]. Some bottlenecks expected in these
applications are the complexity of the objective functions (non-linear
and non-convex) plus the limitations of physical models. The main
advantage of using RL instead of predictive model strategies is that
RL operates a model-free approach and does not require convergence
guarantees, thus enhancing its applicability. Moreover, RL needs scarce
knowledge about the problem physics to be competitive with standard
rule-based controllers [31]. However, more research and real-world test-
ing are needed for RL technology to become more mature. DL belongs
to the Artificial Neural Networks (ANN) field. They are a broad family
of techniques in multiple domains which can be applied to both Super-
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vised and Unsupervised Learning. ANNs are inspired by the function of
the brain, with the primary objective of learning from unstructured or
unlabeled data, using single or multiple layers (DL approach) to extract
higher-level features from the raw input progressively. DL techniques
can be applied to power systems in different scenarios such as fault de-
tection in transformers [32–34], Photo-Voltaic (PV) forecasting [35,36]
and day-ahead electricity market price forecasting [37].
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Figure 2.1: Data-driven techniques classification derived from [4,5] and
Machine Learning categories for power systems analysis.

It is worth mentioning the role of Statistics in power systems. Stat-
istics is an applied science concerned with the analysis and modeling
of data [38]. Despite the similarity with ML, Statistics is the field of
Mathematics that deals with the understanding and interpretation of
data. For some references [39–41], Statistics aims to provide an over-
view of the data set, rather than forecasting or extracting relationships
between the data, being generally applied in the preprocessing step of
the data science pipeline. According to [38], learning problems that can
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be solved by applying statistical techniques can be roughly classified as
either Supervised or Unsupervised. Defining the boundaries between
Statistics and ML can be controversial, and often, some methods are
considered both Statistics and ML, while other references classify the
same method in a specific knowledge domain. According to [39], Stat-
istics uses a population sample to draw population inferences, while
ML determines generalizable predictive patterns from data.

In conclusion, the research combines inference and prediction, and
frequently the classification method is more related to the scientific do-
main where the techniques are applied (i.e., Computer Science, Math-
ematics, Engineering) rather than the particularities of the technique
itself.

2.3 Energy data sources

This section identifies and classifies the massive amount of heterogen-
eous data required for developing and operating the distribution grid
energy services listed in the previous Section 2.2. With the objective
of accelerating the development and deployment of the Smart Grid, a
significant amount of sensor devices have been installed in the distri-
bution network to increase its observability of dynamic and transient
events and collect information about the actual state of the grid, thus
achieving a higher level of monitoring, observability and control beyond
substation level. Nevertheless, not all the needed data come from direct
electrical grid measurements. For instance, [42] distinguishes between
electrical and non-electrical information and identifies three categor-
ies: measurement data, business data and external data. On the other
hand, authors from [22] divide the data sources into operational and
non-operational data, whose criterion is used in this thesis. Diverse
investigations have examined the data sources available in the grid; for
instance, [43] compares eight advanced measurement devices in distri-
bution networks and reviews their most recent Smart Grid applications.

The volume of data generated is expected to grow in the upcoming
years [22]. As an example, according to [44], the generated data coming
from a single Phasor Measurement Unit (PMU) can be estimated at
around 100 GB per year. Therefore, new energy-related services and
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business models need to emerge to take advantage of this massive data
that are still underused or unused. Therefore, Big Data analytics is
essential for processing data whose size is beyond the capability of a
typical database software tool.

The flow chart presented in Figure 2.2 depicts the steps that data
follow from the time they are collected until an energy service requests
it. The data sources, located at the bottom, are classified into two
large groups: operational and non-operational data. The power sys-
tem operational data include all the measurement assets that collect
power and energy data, including voltage, current, active and react-
ive power and grid status signals. On the other hand, non-operational
data provide essential information that has a crucial role in supporting
the energy services performance, such as weather conditions, electri-
city market data, social media, Geographic Information System (GIS)
and known parameters given by customers. The Big Data distribution
grid services can request both real-time and historical data. Once the
data has been collected, the next step is to harmonize the data to en-
hance its usefulness and provide a standard structure regardless of the
measurement source. The data harmonized are ingested and saved in
the data storage, also known as data lake. When an innovative ser-
vice requests data from the data lake database, the information goes
through a cleansing process to further increase data quality by elimin-
ating duplicates and imputing values to the missing data through AI
and statistical techniques.

Primary Big Data sources within the distribution grid are described
next:

Operational data: information extracted from the distribution grid
measurement devices.

• Advanced Metering Infrastructure (AMI): is an integrated system
of smart meters, communications networks and data management
systems that enables two-way communication between power util-
ities and customers [45].

• PMU: measures time-referenced magnitudes and phase angles of
voltage and current phasors [46].

• Supervisory Control And Data Acquisition (SCADA): collects
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Figure 2.2: Big Data sources used in power system data-driven services.

data automatically from distribution grid components, thus fa-
cilitating remote monitoring and control.

Non-operational data: information that helps power system util-
ities gain deep insights into why some events occur in the grid.

• Weather data: refers to time-dependent meteorological conditions
such as irradiance, temperature and wind speed. For instance,
atmospheric information is vital for forecasting algorithms related
to energy systems.

• Electricity market data: the results obtained from the matching
up of the daily and intraday markets offer relevant information,
such as the day-ahead electricity price and the amount of energy
by generation technology type.

• Social media: through text mining methods, faults in the distri-
bution grid or a fire that may harm the electrical infrastructure
can be detected through social network comments.

• GIS: provides information about the grid components’ location
such as lines, transformers and feeders.

• Customer behavior data: known parameters related to customers.
For example, the number of people living in the house, square
meters, number of rooms and income level.
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2.4 Data-driven services in distribution systems

In this section, a review of a wide range of innovative energy services
within the distribution network is evaluated. The most relevant AI
techniques used in each service are detailed. To obtain a comprehensive
outlook, Figure 2.3 classifies these energy services into the following
three categories:

• Distribution grid operation: responsible for ensuring the correct
operation of the distribution network.

• Flexibility management: in charge of the flexibility market.

• Planning: responsible for optimal investment strategies that con-
tribute to the long-term planning in the distribution grid.

The measurements error detection service is excluded in the flow
chart since it is inherent to the rest of the services and is not offered dir-
ectly to the electricity market stakeholders since its task is to identify,
detect and solve anomalies, errors, or missing values from data sources
to ensure the quality and usability of the distribution grid services.
The primary objective of implementing AI methods in Big Data en-
ergy services is to accelerate and stimulate the existing power system
toward an environment-friendly, cost-effective and reliable Smart Grid.
The services are offered to a broad range of stakeholders involved in
the energy domain, including DSOs, BRPs, prosumers and aggregat-
ors, among others. The purpose is to improve their performance and
encourage the creation of novel business models in the energy sector in
order to take advantage of the massive data that are being generated
and underused.

2.4.1 Measurements error detection

The measurement error detection application identifies, detects and
solves eventual anomalies, errors or missing records from data sources
in order to ensure data quality and usability. Depending on the type
of anomaly detected, a correction is automatically executed. The data
cleaning step in Figure 2.2 is responsible for executing these tasks.
The following anomalies have been distinguished in operating and non-
operating data:
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Figure 2.3: Scope of the Big Data services in the distribution network.

• Duplicate records: frequently happen during data collection due
to communication channel problems or combined data sets from
multiple sites.

• Structural errors: arise during measurement or data transfer.

• Unit inconsistencies: this happens when there is a change in the
units and the past recorded data are not altered.

• Outliers: abrupt and short-duration changes in the consumption
pattern that are not a valid representation of the actual consump-
tion. The sources of spikes could be mechanical faults of the meter
or storing multiple inconsistent readings for the same timestamp.

• Missing data: occurs when no value is received for an observed
variable.

The measurement error detection sequential scheme is presented in
Figure 2.4, which identifies possible anomalies (see the dark blue boxes)
and proposes what techniques can be implemented to solve them (see
the light blue boxes). Moreover, a logical order when preprocessing
data need to be followed. The most suitable technique to address an
anomaly might vary depending on each service requirement. AI meth-
ods are a powerful tool for assigning predictive values for missing data.
Regarding missing data imputation, [47] implements a Long Short Term
Memory (LSTM)-based method for bi-direction data imputation, [48]
applies a Multi-layer Perceptron (MLP) ensemble, while [49] works with
Graph-based ANN. The main advantage of AI and Big Data analysis
is that it automates and improves the error detection process of the
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ever-increasing energy-related measured data. For instance, [50] has
developed a smart meter data error recognition technology applying
ANN and Super Vector Machine (SVM) classification algorithms.

Figure 2.4: Measurements error detection service steps.

2.4.2 Operation and monitoring

The operation and monitoring category is responsible for improving the
observability and performance of the distribution grid in nearly real-
time. Data-driven services such as topology, observability and fault
detection are included in this subsection.

New measurement devices with high granularity and power quality
resolution data like PMUs (120 Hz to 30 kHz and beyond) [22], AMI
and SCADA contribute to strengthening the LV grid monitoring by
providing essential information that assists in comprehending the grid
status and identifying possible congestions. The challenge is to monitor
the distribution grid operating conditions in nearly real-time to check
its status. Nevertheless, it is necessary first to know the distribution
grid topology to identify branches and nodes with technical problems
in order to generate a quick response to mitigate them. Therefore, the
topology estimation is an important step to ensure the distribution grid
operation and monitoring robustness.

2.4.2.1 Topology

The topology service aims to perform the complete retrieval of the
entire LV network electrical scheme. For security and operational reas-
ons, the transmission system is equipped with real-time measurement
devices at each node (bus voltages, line flows, bus injections) to ensure
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a reliable, robust and accurate topology identification and observability
of the power system [22]. However, topology is commonly unknown at
distribution levels [51] due to the scarcity of real-time measuring and
breaker status devices, which hinders its observability. Nevertheless,
due to the ever-increasing presence of advanced ICT within the distri-
bution grid domain, combined with the constant rise of smart meters
deployment [52], an enhancement of the original topology structure is
possible. For this reason, it is essential to implement some of the Big
Data techniques explained in Section 2.3 to be capable of processing
and analyzing all these amounts of data generated. In addition, the
electrical grid topology is an essential input for other energy services
like observability, non-technical losses detection, predictive mainten-
ance and aggregated flexibility services in order to have outstanding
performance and reliable operation. The literature distinguishes es-
sentially between transmission and distribution network topology, al-
though research efforts have recently concentrated on the latter. De-
pending on the frequency of data collection and the purpose of the ser-
vice, topology can be estimated in real-time [53–55] or offline [56, 57].
The principal data sources for assessing low and medium voltage topo-
logy are SCADA, smart meters and PMUs, the latter being the most
used in research. As [58] points out, topology estimation accuracy de-
pends mainly on the availability and accessibility of the measurement
instruments; however, PMU is capable of achieving satisfactory out-
comes even with limited measurements. [59] calculates an equivalent
grid applying a least-squares model-free approach by choosing PMU
measurements at a limited number of buses, whereas [60, 61] use local
electricity market prices as input data to obtain the distribution grid
topology.

The Alternating Direction Method of Multipliers (ADMM) is a pop-
ular method for distributed convex optimization problems, which de-
composes a large problem into smaller sub-problems, enhancing its ro-
bustness. The topology estimation problem is formulated and solved
using ADMM in [60–63]. The main advantages of this method are that
it allows handling and solving large-scale data problems and the imple-
mentation is straightforward. On the contrary, the convergence could
be slow.
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Regarding statistical methods, correlation is widely used in literature
as a tool for topology estimation. For instance, [56] analyzes the cor-
relation among voltage measurements to determine the grid topology,
meanwhile [64] proposes a correlation-based algorithm to identify the
transformer and phase to which a customer is connected. [65] recon-
structs the topology given the voltage magnitude measured from smart
metering devices, formulating the adaptive Lasso algorithm to obtain
the correlation coefficient matrix. Another study [66] calculates the cor-
relation coefficient among voltage measurements of smart meters under
the same distribution transformer and is capable of grouping custom-
ers that belong to the same phase effectively. Ultimately, [67] uses a
statistical learning framework for verifying single-phase grid structures
using non-synchronized voltage data.

Regarding AI-based methods, a binary classifier based on ANN iden-
tifies the status of a distinct line [53]. A learning-to-infer variational
method [57] considers three classifiers methods -Decision Tree (DT),
MLP and Logistic Regression (LogR)- for predicting the state of the
switch line, where MLP outperforms. On the other hand, [68] presents a
data-driven topology estimation method that applies the Linear Regres-
sion (LR) algorithm and historical voltage measurements as input to
the model, where the admittance matrix or switch location information
is not required. In [69], smart meter voltage patterns enable topology
identification by applying unsupervised learning clustering methods,
but the article does not specify which algorithm is applied. The study
carried out in [70] develops a Deep Neural Network (DNN) system that
interprets the reflected signal from the impedance discontinuities in the
network, which gives the possibility to determine the topology at the re-
flection site. The authors of [71] propose a Supervised Learning frame-
work that first estimates the parameters and an Unsupervised Learning
model to identify the topology. The proposed algorithm performs well
in radial and loopy distribution networks. In [72], a LR method is
proposed to evaluate the distribution network topology changes. Un-
fortunately, this method is accurate only if there is no noise in both
input and output measurements [71].

Data-driven techniques found in the literature for topology estim-
ation are listed in Table 2.1. The input data required for topology
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estimation is shown in Table 2.2.

Table 2.1: Data-driven techniques used in distribution network topo-
logy applications.

Data-driven technique Ref.

Correlation [56,59,64–66]
DNN [70]
DT [57]
LR [65,68,72]
LogR [57]
MLP [53,57]

Table 2.2: Data sources for distribution network topology estimation.
Data source Input measurement Ref.

Electricity mar-
ket

Electricity prices [60,61]

PMU Voltage phasor [51,53,57–59,63,71]

SCADA

Power injections [55,62]
Voltage magnitude [51,55]
Current [55]
Switch status [55]

Smart meters
Power injections [64,72]
Voltage magnitude [64–68,71,73]

2.4.2.2 Observability

The observability service assesses the most probable state of the dis-
tribution network state in nearly real-time. Potential applications like
congestion management, optimal voltage/power control, fault detection
and non-technical losses detection, among others, required instantan-
eous information regarding distribution system status to perform ac-
curately.

For classic state estimators, power system measurements and switch-
ing device statuses are collected using SCADA systems, but the down-
side is that SCADA sampling rates are slow [74]. On the contrary,
PMUs provide high power quality resolution data in real-time. There-
fore, the innovation in the observability field attempts to include real-
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time operation data to provide a continuous and safe state estima-
tion of the distribution grid and apply AI methods to develop reliable
data-driven solutions. It should be noted that errors made in topology
estimation might downgrade the performance of the observability ser-
vice [58]. Smart meters are commonly applied for state estimation, for
example, in [75,76]. The authors in [76] analyze the optimal positioning
of smart meters for optimal cost-effective operation of the distribution
grid to increase the state estimation accuracy, while [77] implements
real-time PMU measurements to monitor the distribution grid status.
A hybrid state estimation using AMI and SCADA measurements is
formulated in [78].

Concerning data-driven methods, ML algorithms -DNN, SVMs, and
Recurrent Neural Networks (RNN), among others- are used in [74] to
develop a sophisticated power system status monitoring using a Big
Data platform. According to [79], the distribution grid might be near-
optimal observability shortly thanks to the improvement of real-time
devices and AI-based technical solutions. A DNN approach for unob-
servable systems is presented in [80]. This work overcomes the compu-
tation complexity in Bayesian estimation, although it is less capable of
adapting to outage changes, in addition to the fact that deep learning
training algorithms are still under research.

A significant limitation of observability in distribution systems is the
lack of sufficient real-time and high-granularity measurement devices
such as PMUs. Although they are being deployed, their high cost
prevents installing the required sensors to make the system fully ob-
servable.

2.4.2.3 Fault detection

The fault detection service intends to recognize and locate unusual elec-
tric currents within the distribution network. Two fault detection ap-
proaches are distinguished [81]. On one side, data-driven methods seek
a pattern recognition of measurement readings gathered from sensors
placed at different points of the network that indicate a fault. On the
other, model-based approaches compare real data from sensors with
prediction model results. High residual differences might indicate an
electrical fault.
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The leading causes of electrical faults are damaged equipment, en-
vironmental events, falling tree limbs and direct animal contacts [82].
Concerning natural phenomena-generated faults, [83, 84] propose AI-
based approaches to predict blackouts due to convective storms [84] or
ice-wind events [83]. Several works center their attention on the LV
domain considering different data-driven methods [85–90]. Real-time
anomaly detection is proposed in [91,92], where [91] defines an approach
using smart mater large-scale consumers data, [92] formulates a Convo-
lutional Neural Network (CNN) considering bus voltages. After a fault
occurs, [93] proposes a DT approach to identify the power line-fault
cause based on historical fault records.

Some studies focus on Microgrid faults detection [94–98]. A Random
Forest (RF) classifier model is used to detect unexpected Microgrid
islanding problems from normal operation conditions [94] that can be
located by knowing the topology. [95] proposes RF, K-Nearest Neigh-
bors (KNN) and SVM to detect faults in Microgrids, while [96] employs
Extreme Learning Machine (ELM) for the classification and location
of outages. An MLP classifier detects and isolates the fault in [97]
and [98] applies the ensemble bagged DT classifier to detect dynamic
events within the power system. Clustering techniques, such as Prin-
cipal Component Analysis (PCA) [95] and Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN) [84,99] are implemented.
The following articles listed in 2.3 cover a fault diagnosis in PV sys-
tems [100–102], using different AI techniques and input data, as shown
in Table 2.3.

Recently published articles that use AI techniques to detect and
predict faults within the distribution network are listed in Table 2.3,
considering the equipment of power lines [83, 84, 88] and underground
cables [103], among others. In addition, the needed input data to per-
form the fault detection problem in each reference is specified.

2.4.3 Predictive maintenance

The predictive maintenance service intends to dig out the potentially
valuable information from the collected sensor data located in the
electrical equipment within the distribution network to help make de-
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Table 2.3: Data-driven techniques for detecting faults in the distribu-
tion grid domain.

Data-driven
technique

Equipment Data used for detecting faults Ref.

GBM Distribution grid
Time, load, generation, current,
voltage [85]

DBSCAN,
RF, DNN

Distribution grid

Area, lighting density, rain intens-
ity, storm parameters, air temper-
ature and pressure, wind speed,
precipitations, snow depth

[84]

RF Distribution grid Fault data set
[86]

MLP, ELM Distribution grid Three-phase current signal
[90]

ELM, SVM,
MLP

Distribution grid
Measurements of three-phase fault
currents [87]

SVM Distribution grid
Traced current of distribution
feeder [88]

PCA, RF,
KNN, SVM

Microgrid
Current and voltage signals at each
endpoint of the line [95]

ELM Microgrid Fault current signals
[96]

MLP Microgrid
Current modules in the DC Mi-
crogrid [97]

Ensemble DT Microgrid Distributed generator data
[98]

CNN Power system Bus voltage
[92]

MLP Power line
Line impedance, reflection coeffi-
cient and the channel transfer func-
tion in the PLC signal band

[104]

CNN PV systems PV loop current
[100]

RF PV systems
PV array voltage and string cur-
rents [101]

DNN PV systems PV module parameters
[102]

DNN
Underground power
cables

Power line modems
[103]
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cisions on the scheduling maintenance actions to anticipate an immin-
ent failure [105]. Furthermore, scheduled maintenance through pre-
dictive maintenance models is more cost-effective than repairing after
failure [106]. Concerning the energy system field, the vast majority
of the predictive maintenance research centers on high-power wind tur-
bines as the aim is to reduce the high operating and maintenance costs.
However, wind turbines are out of the scope of this investigation, which
concentrates on the distribution level domain.

The following authors focus on power transformer predictive main-
tenance [107–113]. The study presented in [107] reviews and identifies
the monitoring methods for predictive maintenance of electric power
transformers and identifies the operational lifetime degradation factors.
Another study conducted by [114] reviews recent articles that apply ML
for predictive maintenance, including power transformers and PV pan-
els. [109] analyses the different operating periods of an oil-immersed
power transformer through dissolved gas concentrations data. The K-
means clustering method groups the operation periods into different
classes characterized by the production activities of several gases and
the incipient failures. Reference [110] presents a predictive maintenance
ML method for power transformers based on RF and Ada-boost. The
results conclude that the Ada-boost algorithm provides better results
than the RF. The main disadvantage of data-driven prediction main-
tenance research is that high-resolution power-quality data are mainly
applied to validate their investigations. However, it is unlikely to have
such data in real-life distribution grid scenarios.

Concerning real-world trials and companies, Enel Distribution utility
tests its predictive transformer maintenance monitoring in [113]. These
data are of great interest to the distribution utility, as it provides faster
detection of anomalies, life loss and a more profound understanding of
the grid for future expansions. The company Neuron Soundware [115]
has developed a predictive maintenance solution powered by AI and
IoT for power utilities, covering from transformers to motors, ensuring
more than a 50% reduction in mechanical failures. Another company
named Predictive Layer [116] offers a ML tool for selective predictive
maintenance, among other energy-related use cases.

Recent studies containing AI techniques for developing predictive
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maintenance models are listed in Table 2.4. Besides, the equipment
and data used to perform the prediction model are indicated.

Table 2.4: Data-driven techniques used for prediction maintenance in
the distribution grid domain.

Data-driven
technique

Equipment
Data applied for predictive
maintenance

Ref.

Correlation
analysis

Line conductors,
cables, breakers
and transformers

Equipment’s component outage
failure data [108]

CNN Photovoltaic panels Electrical power signal
[117]

K-Means,
PCA

Power transformer Dissolved gasses concentrations
[109]

LSTM
Underground power
cables

Voltage, active power and current.
[118]

MLP Power transformer
Age transformer, loading, meteor-
ological data [111]

RF, Ada-
boost

Power transformer
Transformers’ specification, load-
ing, location and meteorological
data

[110]

SVM Power transformer Prosumer data and infrastructure
[112]

2.4.4 Non-technical losses detection

Electricity losses at distribution levels encompass both technical and
non-technical losses (NTL). The first one occurs due to Joule’s effect,
while NTL refers to the electricity consumed but not billed [119]. In
other words, energy is illegally taken by unidentified end-users without
the awareness of the energy utility. Detecting and addressing electricity
theft is an essential task for power companies. For instance, Endesa
has developed a fraud detection system currently in operation [120].
In 2018 the system was capable of detecting 65000 cases of electricity
fraud, recovering 601 million stolen kWh. This number is equivalent to
powering the Spanish city of Palma de Mallorca for a duration of six
months [121].

Some articles review in-depth data-driven techniques applied within
the NTL field. A comprehensive review is presented in [119], which
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compiles the primary techniques, including AI, and the data used to
detect energy thefts, exposing the limitations of the current solutions.
[122] focuses on Big Data oriented to anomaly detection, which is a
powerful mechanism for fraud detection, while [123] examines the ML
classifiers for electricity thief detection.

ML methods assist in improving the accuracy of fraud detection
solutions. Unsupervised Learning clustering techniques are capable
of grouping customers according to their consumption profiles, thus
detecting suspect load curves of end-users. For instance, [124] calcu-
lates regular consumption behavior by clustering data collected from
smart meters to identify NTL [124]. Moreover, distinguishing outliers
in demand profiles aids to monitor and detect suspicious customers
by identifying abnormalities in consumption patterns [125, 126]. The
NTL classification algorithms achieve better performance results thanks
to clustering techniques [127]. The most common evaluation metrics
found in the literature for NTL classification approaches are accuracy,
recall, precision, F-value and Matthews correlation coefficient. One of
the main challenges found when building an NTL classification model
is the lack of abnormal and irregular consumption data, a fact that is
known as data imbalance. The following articles [128–130] take into
consideration imbalanced data sets for NTL detection, while [131] pro-
poses strategies for improving imbalanced data performance. Some
events that could alter classification and clustering algorithms are the
change of residents or the purchase of new devices, such as EVs [125].

The most common data source applied to identify NTL using AI tech-
niques is the customer consumption data, followed in the distance by
customer information (such as location, complaints made and overdue
bills) and load, voltage and current measurements [119]. The authors
in [132] prove that it is possible to use only a small data set of recent
smart meter measures to define the customer consumption pattern.
Besides, studies generally focus on residential consumption to detect
electricity fraud, leaving aside industrial consumers. [133] justifies this
event as industries do not have a fixed electricity consumption pattern.

To conclude, traditional theft detection methods are mainly based
on on-site line inspections, which are highly expensive, time-consuming
and inefficient. In contrast, AI-based NTL detection methods are su-
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perior to conventional methods in terms of accuracy, time-consuming
and labor required, but more irregular and abnormal historical data
are needed in order to train the models optimally. The most popular
ML algorithm is SVM for classification tasks, while K-means is widely
popular for clustering consumption patterns.

Recent data-driven related articles for detecting NTL are listed in
Table 2.5.

Table 2.5: Data-driven techniques used for detection of non-technical
losses.

Data-driven category
Data-driven
technique

Ref.

Supervised Learning
Classification DT [120]

RF [127,134]
SVM [125,128,129,131,133–138]
Ada-boost [130]
KNN [133]
GBM [133]
LogR [134]

Unsupervised Learning
Clustering K-means [125,130,132]

SOM [127,132,139]
Fussy C-Means [132]
Gustafson-Kessel [124]

Dimensional reduction T-SNE [133,140]

Deep learning
CNN [133,140–142]
LSTM [141,142]

Statistics
Bayesian network [120]
Pearson coefficient [120]
Outlier detection [126]

Data Mining Data mining [120,124,126,137,139]

2.4.5 Forecasting

The forecasting service implements AI methods for demand, genera-
tion, electricity price and flexibility prediction, which are essential to
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deal with uncertainty and risk management within the distribution grid.
Furthermore, energy-related forecasting provides essential input for de-
mand response programs [143]. The purpose of this section is not to
conduct an in-depth forecasting review but to expose recent studies
that apply AI techniques within the forecasting domain. The most rel-
evant and recent review articles are revealed in each subsection to allow
the reader to delve deeper into the subject.

Forecasting horizons are classified in three categories [144–149]; short-
term (ST), medium-term (MT) and long-term (LT); although some lit-
erature adds a fourth category: very short-term or real-time (RT) fore-
casting [147, 150–152]. Table 2.6 specifies what applications and time
range covers each forecasting horizon. Most articles focus on short-term
forecasting, as [148] also points out. Concerning long-term forecasting,
they are influenced by economic growth, policy adjustment and tech-
nological advancement, making it a complicated task [149].

The following studies review different types of predictions related
to the energy sector. For instance, [151,153–155] investigate both load
and price forecasting models. In addition, [149] reviews ML algorithms,
ensemble-based approaches, and ANNs implemented for renewable en-
ergy generation, load demand and electricity price forecast.

Table 2.6: Forecasting horizon classification.
Forecasting
horizon

Time interval Applications

Real-time t ≤ 1 hour Keep the power system balanced [156]

Short-term
1 hour < t < 1
week

Deregulated electricity markets [148, 157–
159]
Real-time energy management systems
[146,147]
Optimal management of power system
[159]

Medium-
term

1 week < t < 12
months

Asses environmental impacts, maintenance
scheduling [148,160]

Long-term t > 1 year
Long-term investment and political de-
cisions [147,161]
Grid expansion criteria.
A decision tool for purchasing futures of
the spot product [161]
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2.4.5.1 Demand forecasting

The demand forecasting service predicts the consumption profiles of
a single or several end-users. For instance, the day ahead aggregated
demand forecasting of a particular zone is essential for the DSO to fore-
see possible congestion in the network. The emergence of prosumers
-a consumer who produces and consumes energy- in the power system
has caused an increment in the uncertainty of the demand profile, as
consumption has become more unpredictable and volatile due to de-
mand response programs and weather conditions that affect last stay
the end-users self-consumption. The system operator does not have
information regarding the self-consumption behind each smart meter;
therefore, predicting consumption becomes even more complex.

Reviews focusing on AI load forecasting techniques are conducted
in the literature. For instance, a study comparing conventional and
AI-based models for energy forecasting is carried out in [162]. A sys-
tematic review is presented in [163] and it concludes that regression
models are the most suitable for long-term scenarios, whereas ML al-
gorithms outperform for the short-term forecasting horizon. The com-
bination of different ML algorithms is analyzed in [164]. In a narrower
framework, [162] presents several research papers that implement data-
driven models for building scale forecastings. A survey of statistical
and conventional methods for demand forecasting is presented in [165],
concluding that Auto-regressive Integrated Moving Average (ARIMA)
statistical model combined with ANN increases the accuracy of predic-
tions. The authors in [166] review load forecasting methodologies based
on previous literature, classifying them into four forecasting methods:
similar patterns, variable selection, hierarchical forecasting and weather
station selection.

The most common and relevant input data found in the literature
for demand forecasting are mostly historical demand data along with
seasonal factors like weather and calendar data [167, 168]. According
to [143], essential parameters for system electricity demand are weather
data and random effects, such as maintenance work or customer beha-
vior, where the game theory approach helps predict erratic perform-
ance [169].

Three demand forecasting levels are distinguished: the aggregated
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demand within an area or zone, the aggregated demand in a building/-
household through smart meters and the disaggregated demand, which
predicts the consumption of electrical appliances behind the meter
thanks to the implementation of sensors that store their consumption
data (also known as sub-metering). Disaggregated demand forecasting
plays a vital role in DR programs; hence, data are crucial to predict
their consumption to make accurate and optimal load scheduling. On
the contrary, in case of not having a sensor for each flexible load, the
Non-Intrusive Load Monitoring (NILM) method identifies each asset’s
consumption curve in order to predict the power consumption of each
appliance directly from the smart meter data. Recent literature covers
different load identification methods that classify the assets behind-the-
meter for NILM methods using AI techniques [170–175].

Unsupervised clustering techniques are implemented to classify build-
ings based on their energy efficiency [168], determine natural segment-
ation of customers [176], identify appliances usage patterns [175, 177],
estimate electricity consumption behavior patterns in households [176,
178,179], group households profiles patterns to achieve better forecast-
ing outcomes [180–183] and to identify peak demand profiles or elec-
tricity theft detection [125]. Dimension reduction of NILM features
is applied in [184]. DT and Naive Bayes (NB) are used to identify
residential device loads [185].

Studies focus mainly on short-term prediction for network operation
purposes. In contrast, there are barely any long-term studies. As for
the latter, long-term forecastings require residential and non-residential
inputs, such as historical gross domestic product or population, to es-
timate demand in the following years, applying data-driven approaches
such as Multiple Linear Regression (MLR) analysis [186]. It is con-
cluded that long-term prediction models combine energy, economic and
environmental fields for planning the energy future in a sustainable
manner [165].

Table 2.7 describes the AI techniques used for developing aggregated
demand forecasting models for different time horizons and locations;
meanwhile, Table 2.8 focuses on smart meter level.
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Table 2.7: Aggregated demand forecasting models and evaluation met-
rics.

Data-driven
technique

Forecast
horizon

Highlights Evaluation metrics Ref.

MAE MAPE RMSE Other

DNN, RF ST Electricity consumption for
residential buildings for the
next day.

•
[183]

MLP ST Wavelet decomposition to
capture the various seasonal
cycles in electricity load data.

• •
[187]

DNN ST Advanced data preprocessing
strategy. DBN has outstand-
ing data learning and fore-
casting capabilities

• • • MSE

[188]

ARIMA-
WaveletNN

ST The WNN has a strong abil-
ity to fit the nonlinear com-
ponent of the electricity load

• • •
[189]

SVM ST The features extracted by the
auto-encoders forecast day-
ahead load forecasting more
accurately

•
[190]

CNN-LSTM ST Day-ahead aggregated load
forecasting based on two-
terminal sparse coding and
DNN

• • MSE

[182]

SVM, ELM MT ELM performs better than
SVM for 1 week prediction

• • • MSE

[191]
SVM MT Forecast next week electricity

demand
• • R2

[192]
MLP MT Optimal training algorithm

composed of two-particle
swarm optimization and ant
lion optimization

• MSE

[160]

MLR LT Hourly and annual electri-
city consumption estimation
for 2030 in 14 different West
African countries

• •
[186]

Multiplicative
error model

LT Monthly aggregated load pre-
diction for a horizon of four
years

• MSE

[193]
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Table 2.8: Smart meter load forecasting models and evaluation metrics.
Data-driven
technique

Forecast
horizon

Highlights Evaluation metrics Ref.

MAE MAPE RMSE Other

LSTM RT Demand forecasting from an
industrial steel plant

• • •
[156]

LSTM RT Probabilistic household load
forecasting under high uncer-
tainty and volatility

• •
[194]

DT, RF RT/ST Focuses on online environ-
ments where data are ana-
lyzed as they arrive

• • •
[195]

DNN ST Aggregated households load
forecasting

• • R2

[196]
LSTM, MLP ST Energy Big Data is used as

data set for load and price
forecasting

• •
[153]

LSTM ST The model aims to learn
the uncertainty by applying
a pooling Deep RNN. It is
tested in 920 smart meters

• •
[197]

CNN ST Single residential load fore-
casting using CNN combined
with data-augmentation
technique

• •
[198]

DNN ST Power load and probability
density forecasting

• •
[199]

LSTM ST Individual and aggregated
residential load forecasting

•
[200]

MLP, SVM,
MLR

Short/LT SVM and ANN achieve the
best outcomes

•
[201]

K-means-
MLP

ST Day-ahead office building
cooling demand, grouped in
seasons

•
[202]
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2.4.5.2 Generation forecasting

The generation forecasting service aims to predict the electricity pro-
duction of renewable sources within the distribution network. The con-
tinuing increase of renewable energy sources and demand-side flexibility
programs in power systems has raised the need for more accurate Re-
newable Energy Systems (RES) predictions. Regarding recent studies
that evaluate AI methods applied to RES prediction models, authors
in [149] review multiple renewable generation sources, including distrib-
uted wind, solar and geothermal energy, considering various forecasting
horizon ranges. Key findings state that benchmark ML models handle
a large amount of data with accurate forecasting outcomes; however,
ensemble ML models could achieve even further accuracy by combin-
ing different data-driven techniques. Concerning solar generation, [203]
presents a review on PV forecasting based on ML and metaheuristic
techniques while [204] focuses on time-series statistical, physical and
ensemble methods. A review of the state of the art of SVM in the
application of solar and wind forecasting is conducted by [205]. SVM
regressor is simple-to-use and reliable, but on the contrary, it is not
suitable for large data sets and it has a low performance for high noise
data.

Multiple ML methods such as ANNs, SVMs and Gaussian Process
Regression are studied in [206] for wind and solar power generation.
The authors in [207] extensively compare simple and sophisticated PV
forecasting methodologies and conclude that some methodologies are
more suitable under different weather conditions. The work presented
in [208] studies day-ahead PV forecasting models based on deep learn-
ing neural networks. Multi-site PV forecasting is examined in [209]
using CNN. In [210], a review of the main ML methods for forecast-
ing wind speed and power is carried out, including weighting-based,
data preprocessing, parameter selection, optimization and error pro-
cessing methods. These combined approaches generally outperform
the single models approach. Authors in [211] present a review of ANN
implemented in wind energy systems, combining the main methods ap-
plied in forecasting models, and identifying strengths and weaknesses.
The Wavelet transform is used to decompose the raw data into dif-
ferent frequencies. It is applied to mitigate spikes and fluctuations in
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raw data [212]. This method has been implemented in several stud-
ies [212–215]. A problem faced by the DSO and BRPs is the lack of
knowledge of the aggregated small-scaled solar generation of prosumers.
To solve this problem, [216] estimates the aggregated power generation
of small-scale rooftop solar sites that are not monitored by system op-
erators.

Finally, Table 2.10 shows the AI techniques applied for developing
distributed generation forecasting models for different time horizons
and locations, identifying the main evaluation metrics.

2.4.5.3 Electricity price forecasting

This service aims to predict the electricity price, which is essential for
minimizing the energy purchase invoice for BRP and retail compan-
ies in the short-term horizon. The most relevant and recent research
regarding Big Data and AI methods for electricity price forecasting is
conducted in [147, 148, 157, 158, 201, 230, 231]. ANN models for day-
ahead market price forecasting are reviewed in [157, 158], and [158]
concludes that simple ANN models do not perform properly when elec-
tricity price time-series present high volatility, sharp price spikes and
chaotic and non-linear behavior. Therefore, more sophisticated tech-
niques are required to handle complex predictions. Techniques based
on univariate and multivariate forecasting models are compared and
covered in [147], while [231] focuses on benchmark techniques, from
statistical to ensembles. Authors in [148] classify electricity price pre-
dictions in market equilibrium, structural, statistical, intelligent and
combination models, separating short, mid and long-term estimations.
Lastly, feature engineering for linear, ensembles and deep ML models
is studied in [232].

Most literature focuses on short-term electricity price forecasting
while medium and long-term predictions are not covered in sufficient
depth, as [158] also points out. However, [148, 161] overviews electri-
city price forecasting for the mid and long-term, which is essential for
distribution network planning purposes.

Deep learning models are widely used in literature to estimate elec-
tricity prices [153, 154, 231, 233–238], along with SVM regression [234,
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Table 2.9: Solar forecasting models and evaluation metrics.
Data-driven
technique

Forecast
horizon

Highlights Evaluation metrics Ref.

MAE MAPE RMSE Other

LSTM RT Hourly day-ahead solar ir-
radiance prediction by using
weather forecasting data

•
[217]

LSTM RT Five-minute forecasting hori-
zons. Model-based on short-
term multivariate historical
data sets

• • R2

[218]

LSTM RT Predicts the PV power in the
next hour

•
[219]

CNN ST Thanks to the CNN advanced
feature extraction, more met-
eorological features are intro-
duced in the prediction mode

• • MASE

[220]

DNN ST Based on particle swarm
optimization and trained
feed-forward neural network
(FNN)

•
[215]

GRNN, ELM,
ElmanNN

ST Predicts also the PV output
associated uncertainty at dif-
ferent confidence levels

•
[221]

MLP, DNN
and LSTM

ST PV prediction only with
meteorological and calendar
data. LSTM algorithm
presents the best outcomes
for all seasons

• •
[222]

SVM ST Model based on SCADA and
meteorological information

•
[213]

MLP ST Correlation analysis of main
variables. High accuracy

•
[223]

LSTM ST Uses the attention mechan-
ism to focus on the most sig-
nificant input features in fore-
casting

• • •
[224]

CNN ST Multi-Site Photovoltaic Fore-
casting

• • MASE

[209]
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Table 2.10: Wind power forecasting models and evaluation metrics.
Data-driven
technique

Forecast
horizon

Highlights Evaluation metrics Ref.

MAE MAPE RMSE Other

CNN-GBM RT Ultra short-term wind power
prediction. Light-GBM im-
proves performance of single
CNN

• MSE

[225]

RF RT The spatial average of the
wind speed, its direction and
past power values are the in-
puts.

• • • MASE

[226]

LSTM, SVM RT Performs ten-minutes and
one-hour ahead forecasting
with extremal optimization

• • • R2

[227]

LSTM-
ElmanNN

ST The wavelet transformation
is used. Its performance is
compared with nine models

• • •
[214]

K-Means-
LSTM

ST The K-Means forms clusters
of wind power impact factors
to generate a new LSTM sub-
prediction model.

• • •
[228]

Ensemble
DNN

Short/MT Uses a deep sparse auto-
encoder and transfer learning
during the training phase of
base-regressors

• •
[229]
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235,239,240] and tree-based models [195,241]. RNN has been proposed
to address time-dependent learning problems. In particular, LSTM and
Gated Recurrent Units (GRU) have an extraordinary performance for
time series price estimation according to [237]. The most accepted in-
puts are historical electricity prices and calendar data. Electricity price
has a strong correlation with other variables like oil and natural gas
price [240] if the energy mix is highly carbon-dependent. ELM tech-
niques improve the generalization performance and learn faster than
ANN trained using back-propagation [155,242–244].

A summary of the recent AI techniques applied for electricity price
forecasting in literature is presented in Table 2.12 for different forecast-
ing horizons and locations, together with the main evaluation metrics
used. Finally, Figure 2.5 displays a bar graph showing the most used
evaluation metrics in recent literature within the forecasting field.

Figure 2.5: Forecasting evaluation metrics used in literature.

2.4.5.4 Flexibility forecasting

The development of aggregated flexibility forecasting services permits
to delimit the accumulated feasible flexibility in a default area by ag-
gregating flexible loads, distributed/centralized storage units and Dis-
tributed Energy Resources (DER) [248]. Using the aggregated flexibil-
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Table 2.11: Price forecasting models inputs and evaluation metrics.
Data-driven
technique

Forecast
horizon

Highlights Evaluation metrics Ref.

MAE MAPE RMSE Other

CNN-LSTM RT Hybrid DNN performs better than
traditional ML models

• •
[233]

GBM RT Accurate and computationally in-
expensive

• • •
[152]

SVM, MLP,
DNN

RT DNN obtains less error. Higher ac-
curacy achieved by diversifying the
data source

•
[235]

ELM RT Improves the forecast accuracy in
real-time when an unexpected dy-
namic price change occurs.

[242]

Dynamic
Trees

RT/ST Dynamic Trees perform better
than RF and are an adequate
method for real-time and short-
term

• • •
[195]

SVM, LSTM ST DL model outperforms the SVR •
[234]

DNN ST Good performance for high volatil-
ity prices

•
[245]

DNN ST Inconsistencies were observed as
layers were increasing when using
a few input variables. Model per-
forms better with more historical
data

•
[236]

DNN, LSTM,
GRU, CNN

ST Compares the 4 proposed DNNs
with 23 benchmark models for elec-
tricity price forecasting. DNN,
LSTM, and GRU outperform lit-
erature models.

•
[231]

Hybrid
outlier-ELM

ST The model can be a reliable fore-
casting method in modeling time
series with complex nonlinear char-
acteristics and outliers

• • •
[243]

Neuro-fuzzy
ANN

ST This study reveals the efficiency of
neuro-fuzzy models against MLP
neural network and ARIMA stat-
istic model

• • •
[246]

GBM ST Hour feature is the most relevant
predictor in the model

• • •
[241]

ELM ST MKELM model provides better
performance as compared to the
ELM and KELM

• • •
[244]

Dimension
reduction,
DNN, SVM,
LSTM

ST Proposed method is recommended
for studies with a large volume of
input data. The feature extrac-
tion tool and rough neurons im-
prove the forecasting results.

• • •
[159]
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Table 2.12: Price forecasting models inputs and evaluation metrics.
Data-driven
technique

Forecast
horizon

Highlights Evaluation metrics Ref.

MAE MAPE RMSE Other

MLP ST This study demonstrates the im-
provement in convergence speed
with Tensorflow software

•
[44]

SVM ST Oil and natural gas prices are con-
sidered in the prediction model
due to their high correlation with
electricity prices

MSE
[240]

LSTM Short/MT Deep LSTM gives better results
compared to ELM and NARX

• •
[153]

GRU Short/MT The three-layered GRUs outper-
formed all other ANN structures
and statistical techniques. Stack-
ing multiple layers increases the
performance.

•
[237]

Weighted
KNN, DNN

MT DNN outperforms Weighted
KNN, a model based on autocor-
relations in data, providing good
accuracy forecasts even 29 days
ahead

• •
[238]

Jaya-LSTM MT Hyper-parameters tuned using
Jaya optimization multivariate
LSTM algorithm leads to better
performance than SVM and uni-
variate LSTM

• •
[154]

Co-integration
and vector er-
ror correction

LT Brent crude oil spot and futures
price along with the Spanish wind
generation are the variables that
yield the most accuracy

•
[247]
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ity in the distribution grid reduces the need for grid extension [249] and
enhances the technical and economic power system operations [250].
In [251], the aggregated flexibility calculation is discussed in more de-
tail.

The aggregator is the service provider in charge of gathering and
controlling its portfolio flexibility sources [252,253] in order to i) provide
flexibility services to power system agents, ii) to minimize the end-
users energy bill through Home Energy Management Systems and iii)
to participate in electricity markets, by using optimal bidding strategies
[254, 255]. New flexibility business model approaches are developed
in [256]. Due to the increasing penetration of intermittent RES and the
significant number of residential users with potential flexible sources,
demand-side flexibility aggregation becomes essential for balancing the
future power system [255,256].

ML-based regression models are applied in [250] to forecast the flex-
ibility of residential customers for real-time applications. A flexibility
forecasting concept and its control from multiple energy domains and
sources are presented in [249]. The GBM ensemble algorithm is selected
by [257] to build a flexibility load forecasting model for DR capacity
scheduling.

Intending to encourage a change in the demand-side consumption,
the aggregator offers a monetary incentive signal in [258]. The flexibility
potential of wet appliances in France (dishwasher and washer machine)
is estimated in [259]. In [256], residential load flexibility forecasts are
calculated using the NILM approach. Predefined customer preferences
and loads and PV forecast uncertainty are considered in [260] to define
a feasible flexibility space from controllable residential resources. [261]
studies the required percentage of end-users with sub-metering capab-
ilities needed to calculate the aggregated demand composition. The
results state that only a 5% of sub-metering coverage is required to
forecast the aggregated load composition at the substation level with
high confidence. A scalable and non-intrusive model for identifying the
flexibility of thermal loads is proposed in [262].
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2.4.6 Energy management systems

The massive amount of data generated by the rapid deployment of
smart meters in recent years supports the enhancement of building
energy efficiency and DR programs (e.g., price-based, incentive-based
and environmental-based [263]). This subsection focuses on the IA
techniques used in EMS at the building level.

The application of AI methods allows for overcoming multiple chal-
lenges related to energy management, developing better tools for auto-
matic decision-making to schedule and control multiple energy assets
through the EMS. From 2013 onwards, there has been a perceptible
increase in AI approaches across DR applications. These AI meth-
ods have been principally applied to price-based programs and residen-
tial consumer types, followed by small-scale industrial and commercial
buildings [264].

Numerous papers have reviewed AI approaches for energy DR pro-
grams. In a more general context, [264] investigates the state of the
art of DR applications and analyses the AI methods applied in differ-
ent DR scheme categories and consumer types. An extended summary
of companies, start-ups and European-funded industrial projects us-
ing AI for DR is also provided. Regarding home appliance schedule
controllers for DR programs in smart households, [265] reviews various
AI techniques based on ANN, fuzzy logic control and adaptive neural
fuzzy inference system, which imitate human thinking behavior. More
specifically, [266] reviews the existing AI-based methods for cloud EMS
with the integration of blockchain technology. However, the high devel-
opment cost and storage of blockchain and the lack of standardization
and professional expertise in this topic represent a research challenge
that should be addressed in the upcoming years.

The following studies apply Supervised and Unsupervised Learning
techniques. A MLP deep learning model is used in [267] to optimize
load consumption and storage management in response to dynamic
pricing. A deep ANN and Genetic Algorithm reduces energy demand
in peak periods, optimizing the residential appliances scheduling and
RES generation [268]. Supervised Learning algorithms as DT and Naive
Bayes identify loads through smart plugs [185] for EMS. [269] creates
a control-oriented model for a heating system based on regression trees
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and RF. A steady price prediction model based on ANN deals with price
uncertainty for EMS in [270]. [271] develops a residential scheduling
controller using the hybrid lightning search algorithm ANN to predict
the optimal ON/OFF status for home electrical appliances after a DR
event imposed by the power utility to reduce peak consumption. [272]
uses ANN in order to predict and schedule building appliances’ energy
consumption and genetic algorithms for task scheduling, while [273]
develops a prediction method based on LSTM of the end-user response
behavior to incentive-based DR program.

In recent years, RL has gained prominence in studying intelligent
management and control of buildings and households. The main ad-
vantage of using RL algorithms instead of optimization techniques is
that the RL algorithm can automatically learn the customer preferences
imitating human behavior and determining optimal incentive rates that
can maximize the profits of both energy service providers and custom-
ers fairly and efficiently. [274] narrows its research to a group of energy
systems that use RL to control the assets that have the potential for
DR applications. A DR price-based approach using deep RL in an
industrial facility is conducted in [275]. It is noteworthy that the al-
gorithm was tested in a real-world utility company, reducing energy
costs and ensuring production targets as well. The authors in [276]
perform a simulated-based followed by a lab experiment of an elec-
tric water heater cost of energy consumption minimization given an
external price profile using RL techniques.

RL is used as a decision-making tool in EMS for scheduling and con-
trolling flexible units such as EV [277, 278] and other flexible control-
lable loads [270,271,276,278–284], Energy Storage Systems (ESS) [282]
and PV generation [278, 282, 284], in order to solve different problems
like hour-ahead [270,278] and day-ahead [280,283] energy consumption
scheduling [270, 278]. The Q-learning algorithm is the most common
RL method applied in DR programs [264,270,278,280,282,284]. The Q-
learning algorithm needs many iterations to converge, while the batch
RL usually converges much faster [285]. Batch RL is applied in thermal
controlled loads in order to find the day-ahead schedule [276, 283] to
minimize costs.

In most of the articles reviewed, there is a lack of RL experimental
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results in real small and large-scale physical systems since many of the
proposed methods are only tested in simulated environments. [264,274].
The scarcity of physical experimentation could be one reason that pre-
vents buildings and households from adapting RL algorithms, as their
reliability and performance in real-world scenarios are unproven yet.
Moreover, the vast majority of the reviewed articles are single-agent
system based, which means that they only focus on a single building,
bypassing urban boundary conditions. The single-agent approach is
correct when very few buildings participate in DR programs. How-
ever, if a large number of buildings use DR schemes, a Multi-agent
approach is needed in order to address the computer limitations prob-
lems of centralized approaches by distributing the workload among the
participating agents in order to make decisions for various buildings
devices in a decentralized manner while maintaining data privacy of
costumers. Thus, the multi-agent approach avoids shifting the peak
demand to lower-cost periods, for instance.

The main drawback of the articles reviewed in this subsection is that
they assume complete knowledge of the end-user environment, although
this is unlikely to happen in reality. It is worth mentioning that the
primary focus in literature is on price-based DR programs; nevertheless,
a more comprehensive range of incentive-based DR schemes should be
developed and tested, as it is indispensable for the optimal operation
and balance of the distribution network. Only a few articles modeled
the EMS controllable appliances with a high level of detail. Unlike the
traditional model-based methods, the RL approach does not require
any system model information. Finally, Table 2.13 classifies the data-
driven technique, DR program and customer type for each reference.

2.4.7 Aggregated flexibility services

The aggregated flexibility service is responsible for gathering flexibility
from different customers and offering flexibility services to potential en-
ergy agents such as residential and industrial clients, BRPs and DSOs.
Benefits derived from the flexibility and DR programs include shift-
ing or reducing peak demand, meeting the fluctuations of renewable
generation, enabling higher penetration of renewable generation and
customer bill reduction. Nevertheless, there are still many challenges
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Table 2.13: AI methods and DR schemes used in EMS.
Data-driven
method

DR program Consumer type Ref.

Supervised Learn-
ing
ANN Price-based Residential [267]
ANN Price-based Residential [268]

ANN
Price and
incentive-based

Residential [271]

ANN Price-based Residential [272]
RF Price-based Residential [269]
Deep Learning
LSTM Incentive-based Residential [273]
Reinforcement
Learning
Deep RL (Single-
agent)

Price-based Residential [276]

Deep RL (Single-
agent)

Price-based Residential [281]

RL (Multi-agent) Price-based Residential [270]
RL (Multi-agent) Price-based Residential [278]

RL (Single-agent)
Price and
incentive-based

Residential [279]

RL (Single-agent) Incentive-based Residential [280]
RL (Single-agent) Price-based EV management [277]
RL (Single-agent) Price-based Industrial facility [275]
RL (Multi-agent) Price-based Residential [278]
RL (Multi-agent) Price-based Residential [282]
RL (Single-agent) Price-based Residential [283]
RL (Single-agent) Price-based Residential [284]
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to be addressed, such as improving the accuracy of the flexibility pre-
diction models or selecting the best suitable customers for engaging DR
programs.

As discussed earlier, it is necessary to add value to the massive data
generated within the distribution network and create aggregated flexib-
ility services for electricity market stakeholders using the most appro-
priate AI techniques. The aggregator is a relevant player contributing
to flexibility aggregated services through DR incentive-based programs
within its portfolio (a set of clients). The role of aggregators in the
Smart Grid context is studied in [286]. Electricity market actors can
request flexibility to avoid grid congestions (e.g., DSO) or imbalance
penalizations (e.g., BRP). Thanks to the aggregation of individual cus-
tomers, the total amount of flexibility available increases considerably.
Thus, the end-users change their consumption pattern in exchange for
economic compensation through incentive-based approaches [287].

Finding the best-suited customers to provide the flexibility reques-
ted by an electricity market agent is a computational challenge for
the aggregator, especially with portfolios with a considerable amount
of flexible resources. To cope with this challenge, [288] proposes a
cluster-based (K-means) day-ahead bidding optimization approach that
reduces the optimization execution time. Moreover, the ADMM tech-
nique is capable of solving large-scale optimization problems by break-
ing them into smaller pieces [289–291]. For instance, [289] formu-
lates a cost minimization problem to provide flexibility services to
DSO and BRP using ADMM to improve computational performance.
Moreover, [290] applies ADMM for bidding optimization strategy in the
day-ahead and secondary reserve markets. In [291], an ADMM-based
market-clearing strategy is presented for day-ahead congestion man-
agement, using aggregated EVs and heat pumps as flexible sources.

The DSO can request demand-side flexibility from the aggregator to
mitigate possible congestion in the distribution network. Day-ahead
congestion management is proposed in several works [291–294], while
[295] formulates real-time congestion management for the unforeseen
events that might occur during operation. On the other hand, grid
congestions can also be avoided with dynamic pricing strategies in order
to encourage customers to flatter their demand curve [267,270,275–277,
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279,284].

Aggregators can attend both DSO and BRP flexibility requests for
day-ahead and intra-day portfolio optimization. With the intention
to address this issue, the traffic light system proposed in [296] is car-
ried out in [289, 297] to coordinate the flexibility requests from DSO
and BRP and establish a priority criterion for providing flexibility in
the case of conflicting requests. Recent works use the aggregation
of thermal loads [298, 299], Heating Ventilating and Air Conditioning
(HVAC) [300, 301] and EVs along with heat pumps [291, 292, 295] in
order to provide flexibility to energy agents. On the other hand, some
studies focus on optimal bidding strategies for aggregators participating
in the electricity market [255, 288, 290, 302], where [288, 302] particip-
ate in the day-ahead market, while [255, 290] are also involved in the
reserve market.

In addition to the flexibility services mentioned above, electricity
companies also desire to segment their large number of customers ac-
cording to similar demand patterns to have insights into their energy
usage behavior, enhancing the distribution network operation and man-
agement. Moreover, more customized products and services can be
offered to each customer target group [303]. Unsupervised Learning
techniques enable customer segmentation according to the consumption
pattern, thanks to the smart meter measurements [264]. Diverse cus-
tomer demand-based clustering studies are proposed in the literature;
for instance, a robust comparative review of 11 clustering techniques
applied to residential load time series profiles is carried out in [304].
The study concludes that centroid-based (Kmeans) and hierarchical
algorithms are the best performers, whereas the density-based meth-
ods (such as DBSCAN) performed the worst for this kind of problem.
On the other hand, [305] reviews the clustering methods for custom-
ers’ consumption patterns. The K-means algorithm is the most widely
used, followed by Fuzzy C-Means, hierarchical and Self-Organizing
Map (SOM), being the latter the worst performer of a 4000 custom-
ers segmentation case study. A combination of SOM and K-means
algorithms are used for analyzing industrial parks’ energy consumption
patterns [306]. The main drawbacks of using SOM are that the res-
ults are not intuitive at first glance and are computationally expensive
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compared to K-means.

2.4.8 Trading

The trading energy service focuses on one of the biggest challenges of
the forthcoming energy transition: finding a reliable way to exchange
energy between different customers, local energy communities and op-
erators.

Based on the blockchain concept, Distributed Ledger Technology
(DLT) is positioned as a benchmark technology in the P2P trading
field, enabling smart contracts between prosumers and active users.
The potentials of DLT for P2P transactive energy exchanges and its
infrastructure in Local Energy Markets are detailed in [307], while [308]
studies the DLT requirements and use cases. The authors in [309] carry
out a detailed analysis of the concept, principles and types of blockchain
and how this technology will revolutionize the green energy manage-
ment of the future. The main advantage of the decentralization and
automation of smart contracts is eliminating the human-based central
authority, which implies lower settlement fees, simplified operational
processes because of fewer intermediaries and a greater transparency
level, thus avoiding corruption. However, the DLT is still immature
and has not yet been tested on large-scale trials. In addition, the high
computational cost of smart contracts raises the question of whether it
is economically viable or not.

Decentralized blockchain mechanisms [310] enable reliable energy
flexibility trading between the stakeholders involved in the flexibility
market. DLT for P2P ancillary service markets in distribution net-
works is studied in [311,312], where the last article applies the ADMM
technique to settle the P2P trading. Smart contracts for DR programs
are formulated and the total incentives for an energy prosumer are
calculated. Four different P2P and smart contract implementation ap-
proaches are conducted in [313], where producers and consumers send
their offers and bids accordingly with smart contracts in the energy
market. In terms of security, [314] proposes a RNN that detects net-
work attacks and fraudulent transactions within blockchain-based en-
ergy transactions. Besides, a novel transactive controller is developed
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to manage the storage unit of a residential prosumer. The research [315]
also studies P2P trading for managing the ESS and the surplus renew-
able energy in a smart energy community.

Focusing now on data-driven methods, a deep RL approach is ad-
opted to address an energy trading decision-making problem for Mi-
crogrids [316]. The work in [317] implements LSTM for blockchain-
based predictive energy analysis, intending to enable accurate short
and long-term demand forecasting to minimize the cost of delivering
electrical energy for the consumer and making effective policies. Simil-
arly, [318] develops a P2P market based on deep learning (ELM), which
learns the interaction between prosumer bidding actions and market re-
sponses from historical transaction data.

2.4.9 Asset and investment planning

The ever-increasing volume of stored measured data in the distribution
network is expected to benefit the planning and operation of future
power systems [281]. The investment planning service examines grid
status and expansion criteria and selects the most appropriate technolo-
gies and optimal geographical locations. The objective is to contribute
to the grid support during a settled planning horizon and estimate the
associated costs for achieving a specific planning goal or criteria while
meeting the forecasted demand.

ML forecasting methods play a critical role in mid and long-term
renewable energy and demand predictions, which are essential inputs
for the country’s energy mix development and planning [149]. The
authors from [319] propose a basic learning neural network to determine
how Microgrids can be optimally planned and designed. Dimension
reduction and correlation techniques are adopted for optimal planning
for capacitors in [320]. Optimization techniques are applied to minimize
total costs and investments for power distribution system planning in
[321]. Flexibility is taken into account in [322] using a generic multi-
stage distribution grid planning approach, while [323] studies in-depth
network expansion under a DR scheme.

In recent years, some efforts have been made for long-term energy
planning. For instance, long-term demand and renewable energy fore-
casting models are an energy planning tool [149]. However, there is
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a lack of research exploring AI techniques for medium and long-term
distribution grid planning. Consequently, more efforts need to be taken
in this field.

2.5 Data-driven services in distribution systems

2.5.1 Distribution grid services dependencies

Based on the comprehensive and meticulous analysis of the distribution
grid services carried out in the previous section, it can be concluded
that there are interdependencies among specific services. Consequently,
the output of one service might be a fundamental piece of information
for the execution of another. These interconnections among energy
services are represented in Figure 2.6 through a flow chart. The green
boxes represent the services related to the operation of the distribution
network and the blue boxes outline the services related to flexibility
management. Finally, the light orange box represents the planning
services. In order to facilitate understanding of the flow chart, the
outcome-dependence of each energy service is explained subsequently.

• Topology. This service offers the actual structure of the distribu-
tion network, which is often poorly known. The LV grid topology
is a required input for the optimal performance of the follow-
ing services. Observability -to calculate real-time network state
estimation-, fault detection -to identify and locate outages-, non-
technical losses detection -to detect possible frauds in the distribu-
tion network-, distribution network planning -to design optimal
long-term investments and cost operations in the LV network-
and last but not least, the aggregated flexibility service -to give
the DSO a view of the network structure so that he can formulate
flexible requests to minimize congestion-.

• Observability. The observability service outcome provides real-
time knowledge of the LV network state, which is essential for grid
operation. The fault detection service requires the LV network
status to identify the precise location of a failure in the power
grid in real-time.
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• Predictive maintenance. This service is responsible for pre-
dicting the probability of failure of distribution grid components.
Identifying the network components’ state and health enables the
distribution network planning service to optimally plan invest-
ments and operating costs in the long term.

• Price forecasting. This service predicts electricity price fore-
casting for short or long-term horizons. The aggregated flexibil-
ity service needs price forecasting to optimize the BRP portfolio
purchase bids before buying energy in the day-ahead electricity
market.

• Generation forecasting.The outcome is a RES forecast for
short or long-term horizons. The energy management system ser-
vice necessitates short-term RES generation in order to schedule
the flexible resources optimally to minimize the electricity bill.
In contrast, the distribution network planning service needs long-
term RES forecasting as input -more than five years ahead- to
minimize the LV network assets’ investment and operating costs
in the distribution grid.

• Demand forecasting. The outcome is a demand forecast for a
short or long-term horizon. This service follows the same process
as the last bullet point; the energy management system service
needs short-term load prediction, while the distribution network
planning service needs long-term demand forecasting as input
data.

• Flexibility forecasting forecasting.This service determines the
flexibility available in a zone or area of the distribution grid within
a time horizon. The aggregated flexibility service makes use of this
prediction, so the electricity market stakeholders - DSO, BRP, for
instance- know in advance the flexibility available in the zone or
area. The energy trading service also needs flexibility forecasting
in order to schedule the energy trading optimally.

• Energy management system. The end-users consumption of
a zone or area is aggregated and sent to the aggregated flexibility
services. This information is useful for specific stakeholders like
the DSO to detect possible congestions in the grid or the BRP
to identify how much energy its portfolio will consume the fol-
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lowing day after optimizing its consumption through the energy
management service.

• Aggregated flexibility services. The outcome of this service
is the flexibility requests of specific electricity market agents such
as DSO or BRP. The flexibility requests of these agents are key
input information for the energy trading service.

Figure 2.6: Distribution network services dependencies flow chart.

2.5.2 AI-techniques applied in distribution grid services

Certain services are more likely to implement AI techniques than others,
particularly those that require prediction, classification or clustering
tasks. To facilitate the understanding and interrelation among the AI
techniques and the data-driven energy services, Figure 2.7 presents a
chord diagram. This graphical representation displays the connections
between the data-driven methods and the energy services, with the arc
size corresponding to the flows’ significance. Specifically, the arc sizes
in this diagram indicate the number of publications in the literature
that have applied AI methods to the respective energy services.

The creation of the chord diagram involved the following steps:

• Identification of distribution grid services and their associated
AI techniques. This information has been progressively gathered
and collected throughout the different sections comprising this
chapter.
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• Creation of a matrix, listing the distribution grid services ver-
tically and the AI techniques horizontally (or vice-versa). This
matrix is created by documenting the total number of papers
presented throughout this chapter for each AI technique within
each distribution grid service.

• Generation of the chord diagram using data visualization tools
or programming libraries designed explicitly for chord diagrams.
The matrix data completed in the previous step is used as in-
put into the chosen tool. Visual elements such as colors, labels,
and interconnections are customized to enhance the clarity and
comprehension of the diagram.

The ribbons amplitude is equivalent to the number of articles that
have adopted this technique. For a better visual perception, the data-
driven methods that appear in less than three studies have been elim-
inated from the chord diagram. Figure 2.7 displays the AI methods
first in a clockwise manner, sorted into the four categories proposed in
Section 2.4, followed by the distribution grid services.

The services are analyzed in order of appearance. The Measurement
Error Detection service (MED) is powered by ML regression-based
algorithms for assigning predictive values for missing data. The to-
pology service widely uses Correlation and ADMM methods (TOP).
The Observability service (OBS) barely holds any articles that use
data-driven methods. In the Fault Detection service (FD), there is a
range of most used AI techniques for fault detection classification tasks:
RF, SVM and MLP. The RF classifier outperforms the other ML tech-
niques, as [86] also points out. Regarding the Predictive Maintenance
service (PM), no technique predominates over another. The PM ser-
vice mainly covers classification to clustering algorithms to classify or
group potential failure events. Concerning the Non-Technical Losses
service (NTL), using SVM to classify and detect future fault events in
PV systems or power generation equipment is predominant. However,
multiple data-driven techniques such as DM, CNN, K-means and SOM
are also employed to detect these faults.

The Forecasting service (FOR) is the most AI-intensive since several
investigations concentrate their research on predictive models applying
AI procedures. The LSTM is the most utilized in the time series fore-
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Figure 2.7: Chord diagram that represents the interrelation between
services and their most-applied AI techniques in recent lit-
erature.
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casting field in recent years, followed by a single hidden layer MLP
algorithm. DNN with more than one hidden layer and CNN are util-
ized to a lesser extent. Therefore, RNNs are appropriate for time series
data since they use temporal information from the input data. Thus,
the LSTM is the best suited when predicting a times series outcome
considering the model can associate the data of the previous time and
the present time thanks to their recurrent architecture and memory
units. The most common evaluation metric for regression tasks is the
RMSE, followed closely by MAE and MAPE. Concerning the Energy
Management System service (EMS), besides the optimization methods
that are not in the scope of this thesis, RL is used as a decision-making
tool for scheduling and controlling flexible assets. This flexibility can be
used for the end-user benefit, such as reducing electricity costs consid-
ering the customer’s comfort or being sold to a third party involved in
the electricity market through an aggregator in exchange for monetary
compensation.

The rest of the remaining services are not as dependent on IA tech-
niques. The Aggregated Flexibility Service (AGG) uses mainly optim-
ization techniques to minimize the cost of providing flexibility instead
of AI methods. Clustering is applied to group customers with a sim-
ilar consumption profile, thus detecting possible congestion or unusual
behavior. Moreover, to cope with the massive amount of data, this
service uses ADMM to relax computing complexity when aggregat-
ing flexible resources that provide flexibility, dividing the optimization
problems into separated parts. Therefore, ADMM is a valuable and re-
current solution to deal with energy services that need a large amount
of data as input. The Trading service (TRAD) relies mainly on the
DLT method, which enables P2P trading and smart contracts between
prosumers and active users. Lastly, the Planning service (PLAN) uses
some data-driven techniques, such as dimension reduction and correl-
ation techniques. Still, it is mainly a service that uses optimization
procedures instead of AI methods. The main benefits of implementing
AI methods within the distribution grid domain are addressed:

• Allow real-time distribution grid status estimation and gain ob-
servability, enhancing the monitoring and locating possible events
in the network to provide a tool that enables the operator to react
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more rapidly when a fault or event occurs.

• Performing the predictive maintenance service increases the dis-
tribution network security and availability while diminishing the
DSO costs.

• Use the aggregated flexibility available to avoid grid congestion.

• Optimal and reliable electricity trading among customers.

• Optimal medium and long-term distribution grid planning.

2.6 Opportunities and challenges

Energy sector organizations are increasingly interested in using data
science and AI capabilities to solve their daily challenges. However, Big
Data techniques applied to the energy sector are still in their early de-
velopment phase and most of the related Big Data-driven applications
are not mature yet. This brings new opportunities for this emerging
and promising research area.

One of the primary triggers of this increasing interest is the availab-
ility of significant amounts of data from smart meters and the digitiz-
ation of the distribution grid. Although used initially only for billing
purposes, smart meters provide information about the grid end-point
operation. If this information is combined with other systems related to
the digitization of the distribution grid or other external data sources,
it provides even more insight into how the system operates. This is a
kind of information that utilities did not have before smart meters de-
ployment and it has opened up opportunities for increasing operational
efficiencies and enhancing the distribution grid reliability [324].

Although these opportunities encourage the development of Big Data
solutions, utilities are still largely missing the opportunity to utilize
those newly available data. As an example, American Council for an
Energy-Efficient Economy surveyed 52 large American utilities in 2018
and found that most of them are significantly under-utilizing data from
smart meters [325].

Some challenges must be correctly addressed to boost the distribution
grid development and reach its full potential. According to [23] and
[326], Big Data challenges in energy management focus on six main
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issues, which are IT infrastructure, data collection and governance,
data integration and sharing, data processing and analysis, security
and privacy and need for professionals of Big Data analytic and smart
energy management. These challenges fit with the more generic main
issues that Europe must tackle in creating and sustaining a robust Big
Data ecosystem, identified by Big Data Value Association [327]. These
issues are related to data, skills, legal, technology, application, business
and societal aspects. Six main challenges regarding the distribution
grid digitization are addressed below.

• ICT infrastructure and technology. Utilities have been forced
to strengthen their ICT infrastructure in their back-end systems
to deal with Big Data collection and storage. It may include
new sensors, improved transmission and storage capacity and in-
creased data processing or data exchange capability [23]. New
applications can be developed using existing data, but even more
would be available if larger energy-related data were accessible
and as close to real-time as possible. An example of this issue is
the information currently available from installed smart meters.
Valuable knowledge can be discovered from the massive electri-
city consumption data collected near real-time by AMI devices.
However, limited real-time data are available from part of first-
generation deployed smart meters. As an example, by 2020, 14
European Union (EU) Member States have implemented a re-
freshment rate of at least 15 min, while only 8 Member States
confirmed to be able to provide near real-time information on
electricity every 10 seconds [328]. A second generation of smart
meters with near real-time available data is needed, making AMI
data actionable for more operation-related tools and long-term
planning applications.

• Data collection and governance. The availability and ac-
cess to high-quality data sets are key challenges for enabling AI
techniques. In the energy sector, available data are not always
sufficient or of good enough quality to develop systems that can
handle complex scenarios [24]. In addition, the timeliness, in-
tegrity, accuracy and consistency of data for energy AI applic-
ations need to be improved [23]. As digital technologies evolve,
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these problems can be more efficiently addressed with proper data
management and governance strategies.

• Data integration and sharing. As well as having agreed ap-
proaches, the interoperability of data sets and data-driven solu-
tions are essential to ensure wide adoption within and across ap-
plications. However, companies are reticent to share their data
to avoid security risks and unlock competitive advantages. For
example, great opportunities can arise if operational data from
distribution and transmission grids are exchanged between DSOs
and TSO fairly and transparently. For this reason, TSOs and
DSOs need to determine what information they require, the qual-
ity of the information, who owns it and how to ensure both confid-
entiality and transparency [329]. On the other hand, open data
sets are needed to develop and test new algorithms and solu-
tions. Several initiatives worldwide support energy data sharing
among stakeholders, such as Green Button and OpenEI in the
USA or ENTSO-E Transparency Platform in the EU. However,
open energy-related data should increase, as opening up public-
sector data and establishing common data standards can also help
to boost innovation [330].

• Data processing, analysis and business models. New data
analysis techniques in DM, ML, statistical analysis, data man-
agement and data visualization are applied to the energy sector.
Continuous and recently more frequent developments have led to
advanced technologies that make significantly easier the use of
Big Data, not only in energy applications. These innovative data
analysis techniques open up new opportunities to provide solu-
tions and create new businesses in this sector. Thus, it is crucial
to identify new business opportunities with existing data and cre-
ate new data-driven business models to make the most of these
techniques and innovations. This study [331] reviews examples of
these new business models by analyzing 40 data-driven start-ups
in the energy sector.

• Security, privacy and legal issues. The power system digitiz-
ation has converted cybersecurity into an essential concern due to
the increasing number of incidents in recent times. Besides, pri-
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vacy and security should be guaranteed along the Big Data value
chain to protect the customer and the risks and possible impact
on supply security. To deal with this problem, several initiatives
have been carried out all around the globe. At the EU, one of the
critical pieces of legislation in this regard is the Directive on the
Security of Network and Information Systems [332], which boosts
the level of cybersecurity in the Union through the development
of national cybersecurity capabilities, the increase of EU level co-
operation and the introduction of security and incident reporting
obligations in critical sectors, like the energy. In addition, General
Data Protection Regulation [333] aims at protecting individuals
concerning the processing of their data and warranting the free
movement of such data within the EU. Although these European
directives could be considered a late response to an already well-
known problem, these regulations can only be considered as a
single part of an international chessboard where they should be
followed, complemented and particularized by many others [334],
as, at the same time, China and USA have introduced their cy-
bersecurity laws and policies.

• Professionals and skills. There is a need for trained and edu-
cated employees in the energy sector that can use Big Data tech-
nologies and build on data expertise. This can be achieved by
enrolling experts from other more mature sectors, like finance
or marketing, or providing master-level students with specific
energy-related Big Data and AI techniques solid background. Al-
though these specialists should be combined with other energy
domain knowledge experts, the first option can bring immediate
results. Otherwise, energy sector stakeholders can also consider
investing in re-skilling and training their employees to manage
and operate digitally-enabled power assets and systems effect-
ively [24].

2.7 Conclusions

Implementing Big Data solutions and AI techniques in the power sys-
tem domain is a promising approach for extracting knowledge and high
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added value from the vast amount of high-granularity data stored by
intelligent devices placed along the distribution grid, such as smart
meters or PMUs.

This chapter proposes and interrelates a set of innovative energy
services designed to be offered to different electricity domain agents,
such as DSO, BRPs and prosumers. These services are fed with high
granularity and massive stored data. Thanks to the application of data-
driven techniques, they provide solutions to problems like congestion
management, distribution grid equipment maintenance, forecasting, de-
tection and prevention of faults and fraud detection.

Once the innovative services have been identified, an exhaustive re-
view of the most recent studies implementing AI techniques in each of
them is carried out. Key findings state that ensemble models present
better results than single ML models by combining different data-driven
algorithms. Deep learning algorithms have gained importance in recent
years for time series prediction tasks and outperform most benchmark
ML and statistical algorithms. Concerning classification tasks, tradi-
tional ML algorithms such as SVM or RF yet provide excellent results.
For instance, the RF classifier outperforms when it comes to supervised
classification tasks, while LSTM recurrent network is the predominant
algorithm for time series forecasting. Unsupervised learning methods
are mainly responsible for customer segmentation, building efficiency
clustering and consumption profile grouping for non-technical losses
detection. Finally, RL is widely applied in the literature to optimally
schedule flexible assets in households, although the scarcity of physical
experimentation in a realistic environment prevents its application in
real-world buildings and households.

To conclude, it is essential to equip the distribution network with
sensors to collect the data that feed the innovative services. Implement-
ing data-driven techniques in energy services development is essential
for developing a reliable, secure and efficient Smart Grid. Thanks to
these methods, the services show better performance compared to stat-
istical benchmark procedures. Nevertheless, there are still challenges to
overcome to extend and improve the AI applications in power systems,
mainly related to ICT infrastructure, data collection and governance,
data integration and sharing, data processing and analysis, security and
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privacy and the need for professionals of Big Data analytics.
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Chapter 3

Environment Strategies for Home
Energy Management Systems

This chapter presents and studies different HEMS optimization strategies,
ranging from minimizing costs to reducing emissions associated with
consumption. The most innovative strategy, a novel multi-objective
hybrid HEMS, represents an intermediate point between the two afore-
mentioned approaches. This strategy is designed to minimize electricity
costs and greenhouse gas emissions resulting from end-user consump-
tion. To assess the impact of each technology generation on the climate,
a life cycle analysis methodology is employed.

3.1 Introduction

Global carbon dioxide emissions reached an all-time high in 2019, des-
pite the fading use of coal [335]. Decarbonization is vital; for this
reason, the electricity sector has already started moving from fossil-
based to net-zero greenhouse gas (GHG) emissions. This transition is
possible thanks to the increasing number of renewable energy sources
(RES) and the use of flexibility in the power system to enhance grid
integration and maximize the potential of renewable energies. A long-
term forecasting study about the evolution of the global energy trans-
ition has been conducted in [336]. Key findings predict a significant
reduction in fossil-fuel use (around 75% by 2050) and warn that the
Paris Agreement will not be accomplished if no further decarboniz-
ation measures are taken. Focusing on Europe, current policies will
reduce GHG emissions by 60% in 2050 compared to 1990 emissions
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levels. Nevertheless, the European Commission has increased its cli-
mate ambition through the European Green Deal by enumerating key
transformative economic policies and measures to put Europe on track
to achieve the goal of net-zero global warming emissions by 2050.

Regarding the residential sector, buildings and households play a
crucial role in the energy transition. In 2018, they accounted for 28%
of the global energy-related carbon dioxide emissions [335]. As there is
still a significant margin for improvement in the energy efficiency field,
buildings are expected to be the fastest sector in reducing the CO2

emissions [337]. Therefore, more robust strategic measures to decrease
GHG emissions associated with residential electricity demand need to
be implemented.

3.2 Related work

This thesis states that intelligent home energy management systems
(HEMS) can contribute to achieving environmental targets. In the lit-
erature, there are primarily two HEMS approaches. Price-based (PB)
-the focus of most current work- and incentive-based (IB). The PB
program aims to minimize the end-user electricity bill by optimally
rescheduling controllable flexible sources, considering a time-varying
pricing tariff. Several studies have used multi-objective HEMS func-
tions for optimal scheduling, considering the minimization of electri-
city cost and end-user discomfort [338–346]. For instance, [342] min-
imizes electricity cost and the power profile deviation at the point of
standard coupling, while [343] proposes a cost-effective HEMS consid-
ering thermal and electricity comfort. The IB program offers flexib-
ility to a third electricity agent to exchange economic compensation
for changing its baseline consumption. [347] assures minimum energy
cost and supports the upstream micro-grid operation by minimizing
the load profile deviation. Electric vehicles and electric water heaters
provide flexibility in [348] for PB and IB programs. A third category,
environmental-based (EB), has been proposed in [349], which focuses
on minimizing the GHG emissions produced by the generation units
that provide electricity to the household. The study in [350] presents
a multi-objective dispatching optimization model of an energy system
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focused on energy production, conversion, and storage to maximize the
operating revenue and minimize operational risk and carbon emissions.
Focusing on HEMS sustainability factors, the study [351] calculates cli-
mate effects by displaying carbon emissions at customers’ premises to
motivate them to diminish their consumption. In [352], the curtailment
of on-site PV is penalized for maximizing green energy consumption.

Therefore, this chapter presents a hybrid approach to Home Energy
Management Systems, referred to as hybrid-based (HB) HEMS, com-
bining the previously mentioned price-based (PB) and environmental-
based (EB) methods. Table 3.1 lists various HEMS programs from the
literature. The vast majority focus on PB programs, as stated in [348].
Some studies propose multi-objective functions incorporating PB and
incentive-based (IB) programs, such as those presented in [347,348,350].

Table 3.1: HEMS programs and their services.
HEMS
program

Description HEMS service

PB
[338–341,
347, 348,
352–354]

The objective is to minimize the
end-users electricity bill.

Time-of-use pricing, real-
time pricing and peak shav-
ing.

IB
[347, 348,
355,356]

Flexible sources are economically
incentivized to be flexible by modi-
fying their electricity use.

Providing flexibility to a
third energy agent.

EB
[349]

Flexibility is used to minimize the
GHG emissions of buildings associ-
ated with generators that produce
the electricity they consume.

Minimization of GHG.

3.3 LCA for electricity generation systems: a
time-varying GWP approach

This section provides the actual environmental impact considering the
entire life cycle of an electricity generation system using the Life Cycle
Assessment (LCA) methodology. This process is described in Figure
3.1, following the steps noted in [8]. For each electricity generation
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technology, GHG emissions are evaluated and categorized according to
contributions from the following three life cycle phases:

• Fuel provision: activities from fuel extraction to its delivery at
the plant gate.

• Plant operation: operation and maintenance of the plant and the
appropriate management of residues.

• Infrastructure: covers the commissioning and decommissioning
related emissions of the electricity generation system.

The LCA impact category selected for this thesis as the reference
measure to quantify and assess the potential environmental impact
of an electricity generation source is the Global Warming Potential
(GWP) indicator. To calculate the overall GWP for each generation
source, the first step is identifying and quantifying the GHG emissions
associated with each life cycle stage listed and shown in Figure 3.1. The
most common GHGs are carbon dioxide (CO2), methane (CH4), and
nitrous oxide (NOx), as they have significant contributions to global
warming. Once the emissions are quantified, each GHG is multiplied by
its respective GWP factor. These factors represent the relative warm-
ing potential of each gas compared to CO2. For instance, methane
is estimated to have a GWP of 27-30 over a 100-year period. CH4

emitted today lasts about a decade on average, much less than CO2,
however, CH4 absorbs much more energy than CO2. After multiplying
the emissions by the GWP factors in all the life cycle phases, the results
are summed up to obtain the total GWP for the electricity generation
source. The unit typically used for GWP is carbon dioxide equivalent
(CO2−eq), which represents the amount of CO2 emissions that would
have the same warming effect as the combined emissions of all GHGs.
It’s important to note that the specific methodology and data sources
used to calculate the GWP may vary depending on the LCA study and
regional concerns.

Table 3.2 summarizes and lists the GWP indicators for the electricity
generation sources evaluated in this investigation, taken from [8] since
the scope and objective of this chapter do not involve calculating the
GWP of the generation sources taken into account in this analysis.

Power systems consisting of diverse generation sources have time-
dependent GHG emissions. Consequently, the GWP performance changes
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Figure 3.1: Electricity generation technologies LCA steps.
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hourly along with the electricity mix of each country [357]. A primary
objective is to determine the time-varying amount of kg CO2 equi-
valent (CO2−eq) emitted per kilowatt-hour (kWh) of the energy mix.
The average hourly GWP impact of the electricity supply, denoted as
Egwp,grid

t , can be expressed as follows.

Egwp,grid
t =

∑
i∈I

Egwp,avg
i ·GSt,i (3.1)

where Egwp,avg
i is the GWP average constant for each type of gen-

eration source i and GSt,i refers to the estimated generation in the
day-ahead market at period t for each type of generation source i.

It should be mentioned that these GWP emission values are not
static, as they are expected to vary over time, given that processes
generally tend to become more efficient and improve performance in
terms of associated emissions.

Table 3.2 shows the GWP indicator range for the overall life cycle
stages for each electricity generation source type, according to [8]. This
thesis uses the average GWP value.

Table 3.2: Lyfe cycle emission factors for electricity generation sources
[8].

Generation
source GSi

GWP range
[kg CO2−eq/kWh]

Average GWP
[kg CO2−eq/kWh]

Hard coal 0.66-1.05 0.855
Lignite 0.8-1.3 1.050
Natural gas 0.38-1 0.69
Nuclear 0.003-0.035 0.019
Biomass 0.0085-0.13 0.0693
Hydro-power 0.002-0.02 0.011
Photo-voltaic 0.013-0.19 0.1015
Wind 0.003-0.041 0.022
Battery - 0.0706
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3.4 Mathematical formulation

This section covers the three HEMS objective functions approaches -
PB, EB and HB- and the mathematical formulation of the optimization
model for controlling and re-scheduling flexible household sources.

3.4.1 HEMS objective function

3.4.1.1 Price-based program

This program focuses exclusively on the economic aspect. It aims to
minimize the electricity bill (4.1), considering the battery degradation

cost Kcal
t due to calendar aging, where P buy

t is the time-varying electri-

city price, χbuy
t refers to the energy purchased to the grid, and P V AT is

the tax applied. Constraint (3.2c) ensures that the energy balance is al-
ways met, where ψpv

t is the optimized PV generation output and W load
t

stands for inflexible household consumption. Finally, constraint (3.2d)
avoids exceeding the contracted power Xmax,imp. To switch from power
to energy units, Nhour is used, which refers to the number of periods
per hour. The objective function is expressed as

min
χ,V

f1 =
∑
t∈T

(P buy
t χbuy

t P V AT +Kcal
t ) (3.2a)

s.t.

Kcal
t = 0.019 · Vt − 0.0629, (3.2b)

ψpv
t + σdist + χbuy

t = σcht +W load
t , (3.2c)

χbuy
t ≤ Xmax,imp/Nhour (3.2d)

3.4.1.2 Environmental-based program

this program attempts to minimize the carbon footprint occasioned by
the generation sources that provide electricity to the household. This
HEMS is presented in [349]. The objective function is formulated as
follows.
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min
χ,ψ,σ

f2 =
∑
t∈T

Egwp,grid
t χbuy

t + Egwp,pvψpv
t + (3.3a)

+ Egwp,batσdist (3.3b)

s.t.

ψpv
t + σdist + χbuy

t = σcht +W load
t , (3.3c)

χbuy
t ≤ Xmax,imp/Nhour (3.3d)

where Egwp,grid
t indicates the kg CO2−eq/kWh of the grid on average

per period t. It is calculated with the hourly energy production mix,
taking the values of scheduled generation in the day-ahead market for
each technology described in Table 3.2.

3.4.1.3 Hybrid-based program

this multi-objective problem (MOP) approach combines the PB and
the EB objective functions. It is a multiple-criteria decision-making
problem with no unique optimal solution but a domain of feasible solu-
tions that satisfy all constraints. Therefore, the result is a trade-off, a
compromise between minimizing the energy costs and decreasing GHG
emissions derived from the generation sources that provide electricity
to the house.

The HB objective function f3 is formulated in (3.4a). Normalization
of the objectives is required so that both competing objectives can be
equivalent and compared at the same level. f∗1 is the optimal solution
of the PB objective function f1 (4.1), and f∗2 is the optimal solution of
the EB objective function f2 (4.2). The linear MOP is formulated as
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min
χ,ψ,σ,V

f3 =
α · f1
f∗1

+
(1− α) · f2

f∗2
(3.4a)

s.t.

Kcal
t = 0.019 · Vt − 0.0629, (3.4b)

ψpv
t + σdist + χbuy

t = σcht +W load
t , (3.4c)

χbuy
t ≤ Xmax,imp/Nhour, (3.4d)

α ≤ 1 (3.4e)

where α is the weighting factor for PB objective function, and (1-α)
for the environment based. The value of αmust be lower or equal to one
(3.4e). To conclude, Table 3.3 shows the formulation of the objective
functions of the three HEMS programs.

Table 3.3: HEMS programs’ objective functions.
Objective function Mathematical formulation

Price-based [MIN ]f1 =
∑

t∈T (P
buy
t χbuy

t PV AT +Kcal
t )

Environment-based [MIN ]f2 =
∑

t∈T (E
gwp,grid
t χbuy

t + Egwp,pvψpv
t +

Egwp,batσdis
t )

Hybrid-based [MIN ]f3 = αf1
f∗
1

+ (1−α)2
f∗
2

3.4.2 Energy storage system

Battery aging is formed by calendar and cycling aging. Calendar aging
happens during the battery rest time, whereas cycling aging is caused
directly by charges and discharges. According to [358], the Li-ion bat-
tery degradation due to cycling shows minimal aging for low current
rates [359] and also when the battery is not charged to its maximum
state of charge (SOC) since there is a faster degradation when charging
to 100% SOC. Therefore, the following constraints explained in Section
3.4.2.2 are added to the battery model to ensure that the storage unit
works under conditions that minimize the cycle aging impact:

• Equation (3.13) ensures that the battery charges and discharges
at low current rates.
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• Equation (3.14) reduces large cycles at high SOC by limiting the
maximum SOC allowed.

Given the above, the battery calendar aging is formulated.

3.4.2.1 Battery calendar aging

Battery operating conditions have a significant impact on their perform-
ance and lifetime. The storage model applied in this thesis considers
calendar aging for a lithium-ion (Li-Ion) battery. This phenomenon
leads to a decrease in usable battery capacity and an increase in the
battery’s inner resistance over time, resulting in a depreciation cost.
The calendar aging model formulation applied in this study is paramet-
erized in [359] through accelerated aging tests. The capacity defined in
(3.5) is a phenomenon where the volume of energy that a battery can
operate at the rated voltage diminishes over time [360]. Cell temper-
ature and voltage are the variables that impact calendar aging, thus
influencing battery lifetime. The loss of capacity is more prominent
than the resistance increase in the calendar aging function, according
to [359], as the end of the battery life is reached first due to the loss
of capacity. For this reason, only the capacity is considered in the
calendar aging formulation.

For a Li-Ion battery cell, the capacity C due to calendar aging is
expressed as

C(t) = 1− ψ(V, T ) · t0.75 (3.5)

where ψ is an aging factor that describes the aging rate during period
t and is formulated as

ψ(V, T ) = (a · V cell
t − b) · e−c/T (3.6)

where temperature is a constant parameter T = 293K in this study,
a = 7.543 · 106 V −1days−0.75, b = 2.375 · 107 days−0.75 and c = 6976K
[359].

The relationship between the open-circuit voltage (OCV) and SOC
is known and expressed by the non-linear equation shown in Figure 3.2.
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To avoid non-linear constraints, the dependence between the OCV of
the cell and SOC is linearized. The minimum SOC by restriction is
limited to 25%.

Figure 3.2: Linear and non-linear OCV and SOC dependence.

As a result, the linear correlation is represented as

V cell
t = 0.0076 · σsoct + 3.4287 (3.7)

where variable σsoct indicates the percentage of energy stored per
period t. The depreciation of the battery during each time step ∆t
leads to Kcal

t costs

Kcal
t (L,∆t) =

Kinvest

L
∆t (3.8)

where Kinvest is the acquisition cost of the 8 kWh Li-Ion battery,
and it is set in 7500 e, L is the lifetime of the battery and ∆t is
the time step. The end-of-life criterion is defined to be 80% of initial
capacity C [360]. Therefore, the expected battery life can be calculated
as C = 0.8 = 1− ψL0.75, so equation (3.9) remains
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Kcal
t (V, T,∆t) =

Kinvest

0.2
((a·V cell

t −b)·e−c/T )1/0.75

∆t (3.9)

A linear approximation to equation (3.9) is calculated to relax the
constraint and implement a linear solving method. Figure 3.3 shows
non-linear and linear equations, proving that the functions’ behavior is
practically identical.

Figure 3.3: Dependence of cell voltage on SOC for a cell temperature
of 293 K and time step ∆t = 15 minutes.

Therefore, the linearized Kcal,linear
t per time step t is formulated as

Kcal,linear
t (V ) = 0.019 · V cell

t − 0.0629 (3.10)

3.4.2.2 Battery constraints

The battery model constraints are formulated. The variable σsoct in
equation (3.11) represents the battery SOC for each period. The ef-
ficiency factors for storing ηch and delivering electricity ηdis are con-
sidered to represent the actual behavior of the battery. The variables
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σcht and σdist represent the amount of energy charged or discharged in
each period.

σsoct = σsoct−1 + σcht · ηch −
σdist

ηdis
(3.11)

To avoid over-optimistic results, the battery SOC must be the same
at the beginning and the end of the optimization horizon.

σsoct=0 = σsoct=final (3.12)

As mentioned before, it is essential to ensure the battery is not fully
charged or discharged by limiting its maximum and minimum allowed
SOC to a specific fixed value to avoid cycle aging. The equation (3.13)
ensures that σsoct is always between a minimum Omin and a maximum
Omax to preserve and extend the battery lifetime:

Omin ≤ σsoct ≤ Omax (3.13)

Equations in (3.14) also help to minimize cycling aging by limiting
the maximum power allowed for charging Qch and discharging Qdis.

σcht ≤
Qch

Nhour
, σdist ≤ Qdis

Nhour
(3.14)

The following constraint makes sure that the energy charged σcht,b to

the battery unit b is linearly decreased from Sch
b state of charge. This

linear function typically goes from 80% SOC to 0 at 100% SOC. This
constraint is represented in Figure 3.4.

σcht,b ≤
−Qch

b

1− Sch
b

· (
σsoct,b

Omax
b

− 1) ∀b ∈ B, t ∈ T (3.15)

The same happens for discharging energy σdist,b of battery b during

period t. The lower threshold to limit the energy output is Sdis
b , typic-

ally from 10% SOC to 0 at 0% SOC. This constraint is shown in Figure
3.5.
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Figure 3.4: Battery SOC as a function of maximum charging power [6].
Source: INVADE H2020 Project.

σdist,b ≤
Qdis

b

Sdis
b

·
σsoct,b

Omax
b

∀b ∈ B, t ∈ T (3.16)

Figure 3.5: Battery SOC as a function of maximum discharging power
[6]. Source: INVADE H2020 Project.

3.4.3 PV generation constraints

The formulation of a reducible PV generation model is presented. The
optimization variable PV scheduled generation ψpv

t must be between 0
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and the PV baseline electricity generation W pv
t , which is the forecasted

PV generation curve for the following day.

0 ≤ ψpv
t ≤W

pv
t (3.17)

3.5 Case study

The case studies presented in this section aim to analyze the three
HEMS program’s performance -PB, EB, and HB- to compare the elec-
tricity expenses and kg of CO2−eq related to a single-family household.
Actual consumption and PV generation data are taken from the Data
Port database [361] and used as input to the HEMS programs. These
case studies are located in Spain; therefore, the Spanish dynamic elec-
tricity tariff (Precio Voluntario Pequeño Consumidor tariff) and its
electricity mix are used as input data. P V AT is set to 21%. The optim-
ization horizon is 24 hours, divided into 96 time periods of 15 minutes,
starting at 00:00h. The household contracted maximum power is 6 kW
and is equipped with a 4.8 kW PV and a 9 kWh battery, whose SOC
must be at least 50% at the beginning and end of the optimization
horizon. The value of the parameters applied for all the case studies
are listed in Table 3.4. The end-user does not sell back electricity to
the grid; therefore, the PV is exclusively for self-consumption, and the
excess of production can be stored in the battery for later usage. The
HB multi-objective function weights are set to α = 0.3 and β = 0.7,
according to the end-user preferences that emphasize environmental as-
pects. The HEMS has been implemented in Python, using the Pyomo
optimization library and the Gurobi solver. The optimal solution of the
HB HEMS program was obtained with a computational time of 0.44
seconds on a Laptop with a processor core i7 at 2,60 GHz and 8 GB of
RAM.

Two opposite Spanish energy mix generation scenarios are proposed
to examine the HEMS program’s performance. On the one hand, low
penetration of renewables in the electricity mix and, on the other, high
participation of sustainable generation sources. Figure 3.6 presents a
scheme of these case studies. The PB HEMS is run separately since its
performance only depends on the dynamic pricing tariff, regardless of
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Table 3.4: HEMS optimization strategies: the case studies parameters.
Parameters Value Units

Battery maximum allowed SOC 8 kWh
Battery minimum allowed SOC 2 kWh
Battery SOC initial/final 4.5 kWh
Battery maximum power charge/discharge 3 kW
Battery efficiency charge/discharge 0.95 -
Household maximum import capacity 6 kW
PV maximum output power 4.8 kW

the energy mix composition, since its objective is to minimize the cost,
not GHG emissions. Case studies have identical inflexible demand,
PV generation, battery parameters, and hourly electricity prices to
compare the results of the three HEMS programs. The only input
parameter that changes is the electricity generation mix of the grid.

Figure 3.6: Scheme of the case studies proposed to test the proposed
HEMS optimization strategies performance.

For Scenario A with low RES penetration, data from November 20th
2017 is used, in which the percentage of non-fossil generation penet-
ration is 29.18%. For Scenario B with high RES penetration, March
6th, 2020 has been selected, with a daily average of 83.07% of elec-
tricity generation sources with zero emissions during their electrical
grid operation. It should be noted that nuclear power is incorporated
within zero-emissions energy sources. The hourly share of each gener-
ation source -listed in Table 3.2- in the Spanish energy mix for both
scenarios is illustrated in Figure 3.7. The total generation curve is
also represented to demonstrate that the selected generation types are
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primarily responsible for the overall generation and cover 96% of the
total demand. The higher the RES penetration in the energy mix is,
the lower the GWP grid value per energy unit. Combined cycle and
coal generation dominate in Figure 3.7(a), whereas wind power takes
priority in Figure 3.7(b).

Figure 3.7: Generation sources grid penetration share for both scen-
arios.

3.6 Results

In this section, the case studies’ results are presented and discussed. For
a better understanding of the graphical outcomes obtained (see Figure
3.8, for instance), it should be noted that negative energy values repres-
ent a generation source like PV and battery discharging. In contrast,
positive values represent energy consumption, such as inflexible loads or
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battery charging. Hence, following the energy balance equation (3.2c),
in which generation must match consumption, the resulting plot exhib-
its symmetry when the total generation and consumption sources are
aggregated individually.

3.6.1 Price-based scenario

The PB case study analyzes the HEMS behavior under dynamic price
tariffs to minimize the end-user electricity cost. The PB objective func-
tion result is identical for high and low RES penetration scenarios since
it only depends on the electricity tariff variation. However, the GHG
emissions indirectly caused by PB optimization vary depending on the
scenario. For clarification, the PB program is executed if the parameter
α is set to 1 in the HB MOP, as equation (3.4a) indicates.

The PB HEMS optimization results are displayed in Figure 3.8. The
upper graph shows the electricity price, while the lower displays the PB
optimization result. Focusing in Figure 3.8(b), during periods of low
prices (4-27), the consumed electricity is purchased directly from the
grid, taking advantage as well to charge the battery (19-23, 91-94) to
discharge it later during time intervals with more expensive costs (28-
33, 66-81). PV allows self-consumption during most daylight periods,
and the surplus energy is used to charge the batteries, reaching the
maximum capacity of 8 kWh in period 66. The battery charges again
in the last low-priced periods (91-94) to meet the restriction of ending
at least half of its SOC. The total cost of the objective function is 2.79
e. If the result is broken down, 52% belongs to battery degradation
cost, while 48% corresponds to the price of buying electricity from the
grid, including taxes.

3.6.2 Scenario A: low penetration of RES in the energy mix

The outcomes obtained in Scenario A for EB and HB HEMS programs
are displayed in Figure 3.9. The hourly-varying GWP of the grid, along
with electricity prices, are represented in Figure 3.9(a). Figure 3.9(b)
displays the EB and Figure 3.9(c) shows the HB results.

The EB program is fed from the grid during periods with moderate
kg CO2−eq levels (0-27) compared to the daily GWP average. In high
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Figure 3.8: Results of price-based HEMS under a Spanish price scheme.
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grid GWP indicators periods, the battery is discharged (28-35) to avoid
consuming from the network. PV generation is diminished (43, 46, 52,
54) as it is not feasible to store the battery’s surplus energy due to its
maximum SOC limit. Besides, the sum of the kg of CO2−eq per kWh
of PV and the battery charge has a higher environmental impact than
purchasing straight from the grid in specific periods. To comply with
the battery SOC restriction at the end of the optimization horizon,
electricity is bought from the grid to charge the battery when the grid
GWP levels are low (see periods 38-60).

Concerning the HB HEMS program in Figure 3.9(c), it is discerned
that compared with the EB HEMS, the battery discharges at moder-
ately high prices compared to the subsequent periods (0-3). In (28-30),
the battery discharges due to the high GWP values in the power sys-
tem, although less energy than the EB, as the prices for that period
are more high-priced. Solar energy does not reduce its production and
is used for self-consumption. Meanwhile, the surplus energy is used for
charging the battery. The HB avoids buying during the most expensive
intervals of the day (76-80). The energy needed to charge the battery
until the SOC imposed (4.5 kWh) at the end of the optimization hori-
zon is purchased from the grid at affordable prices (91-96).

3.6.3 Scenario B: high penetration of RES in the energy mix

The electricity generation of the grid is composed of 83% on average by
CO2 free generation sources, including nuclear energy and RES. Grid
GWP values are 4.5 times lower than in the previous Scenario A, while
the price signals, inflexible household consumption, and PV remain the
same. EB HEMS results are shown in Figure 3.9(b). Due to the high
penetration of renewables in the electrical system, the EB purchases en-
ergy from the grid practically in its entirety, excluding daylight hours
when the household is self-supplied, generating just the electricity re-
quired to meet the consumption. The EB program outcomes confirm
that if a nation’s energy mix is highly renewable as in Scenario B, the
usage of batteries is more polluting than purchasing directly from the
grid.

The HB HEMS outcomes are represented in Figure 3.9(c). It avoids
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Figure 3.9: Results of an environmental-based and hybrid-based HEMS
in Scenario A under a Spanish price scheme.
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purchasing from the grid during expensive periods (0-6) and intermit-
tent periods (68-82). It uses the PV surplus (46-65) to charge the
battery and discharge it later at high prices (68-72).

Figure 3.10: Results of an environmental-based and hybrid-based
HEMS in Scenario B under a Spanish price scheme.

Comparison among scenarios

The results obtained from scenarios A and B emphasize the crucial
role of the energy mix in influencing the environmental impact of en-
ergy management systems. With the growing penetration of renewable
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energy sources in the overall energy system, the environmental benefits
of using batteries for home energy storage and photovoltaic generation
might diminish. It is possible that, in some instances, direct purchases
from the grid are a more favorable choice from a climate perspective.

In Scenario A, characterized by low renewable energy penetration,
the EB program emphasizes self-consumption and storage during high
GHG emissions peaks to minimize environmental impact. Contrarily, in
Scenario B, with high renewable energy penetration, the EB program
predominantly relies on purchasing clean and renewable energy from
the grid, since using the storage energy has more pollutants associated.
In some periods, even the PV generation is curtailed. The HB approach
follows a similar basis but considers the cost factor by avoiding energy
purchases during high-cost periods, regardless of the emissions during
those specific hours.

These findings emphasize the importance of considering the energy
mix composition and the effectiveness of HEMS programs in optimizing
energy usage and minimizing environmental impact. The results high-
light the potential trade-offs and the need for careful evaluation and
adaptation of HEMS strategies based on the specific characteristics of
the energy system, considering also the end-user preferences.

3.6.4 Sensitivity analysis

The Pareto optimal front for the two HB normalized objective com-
ponents is represented in Figure 3.11(a), choosing as weighting factors
α varying from 0 to 1 in steps of 0.02. The blue and purple points
sequences represent the border of the feasible solution region that sat-
isfies all the restrictions imposed for each GWP scenario. Figure 3.11(b)
shows the z3 optimal solutions for each α for high and low GWP scen-
arios.

A sensitivity analysis is performed in Figure 3.12 to show how the
HB objective function z3 is affected based on changes in the following
input variables: maximum allowed battery SOC in (a)-(b), PV gen-
eration output in (c)-(d), inflexible household consumption in (e)-(f),
and electricity price average in (g)-(h) for low and high GWP scenarios.
The legend shows the maximum allowed SOC, the total daily PV gener-
ation and consumption, and the average daily electricity price. Thanks
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Figure 3.11: (a) Pareto front and (b) HB solution values for high and
low GWP scenarios.

to this sensitivity study, it is known how the variation of one para-
meter affects the HB HEMS optimal solution, reducing uncertainty. It
is reminded that α = 0 corresponds to the EB HEMS program and
α = 1 to the PB HEMS program. The continuous grey line refers to
the case study optimal solution described in Section 5.5 and displayed
in Figure 3.11(b). The start and end of α take the value one due to
the normalization of HB objective function z3. Consumption is the
variable that most affect the HB program. The lower the consump-
tion, the lower the energy cost and emissions (see consum 14 kWh).
On the contrary, the higher the consumption, the greater the cost and
environmental impact (see 59 kWh). Consumption is followed by the
electricity price, although when α equals to zero, this variable is insig-
nificant since the EB HEMS does not consider the electricity price in
its objective. The PV generation is more sensitive when it produces
less (3 kWh) as this implies an increment in the electricity cost (α = 1)
because more electricity needs to be bought. Still, it has barely any im-
pact for high amounts of generation (see PV 25 kWh and PV 32kWh)
because household consumption is minimal compared with the PV gen-
eration. Finally, the input parameter with the most minor influence is
the maximum SOC allowed for the battery.
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Figure 3.12: Sensibility analysis of different HEMS input parameters.
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3.6.5 Results comparison and discussion

A comparative overview of the HEMS program results for both high
and low RES penetration scenarios is presented in Table 3.5, showing
the total GHG emissions and electricity costs. Moreover, these HEMS
programs are compared with the household baseline, which is the en-
ergy exchanged with the grid if no flexible resources are activated. In
other words, the end-user buys all the power from the grid to meet the
inflexible consumption. It is concluded that PB HEMS achieves the
lowest electricity costs for both scenarios, as expected, due to avoiding
the purchase from the grid during expensive periods. However, in re-
turn, the PB HEMS has the most polluting emissions associated with
its consumption, specifically releasing 15.36% more emissions than the
less polluting program -the EB- in the high RES scenario. On the
other hand, the PB produces 5.19% more emissions than the EB in the
low RES scenario. On the economic side, the EB program pays 2.81
times more in the electricity bill than the PB in high RES situation
and almost twice as much in a low RES scenario.

As can be appreciated in Table 3.5, the HB program has a balance
between the PB and EB programs. For the high presence of renewables
in the energy mix, the difference between the HEMS emissions does
not exceed a range of 15%. In contrast, the boundary is narrowed
to approximately 5% in the opposite RES scenario. This is because
during periods of high renewable generation in the energy mix, the
EB purchases from the grid most of the periods, so the battery is not
utilized for self-supply nor is charged by PV surplus, resulting in a
higher electricity bill when buying more energy from the grid.

The baseline case only emits 2% more pollutant emissions than the
EB program in the high RES scenario. The explanation is the same
as in the previous paragraph: energy from the grid is cleaner than dis-
charging batteries previously charged with solar PV surplus. On the
contrary, on days with a high percentage of fossil-type generation in the
grid, the kg of CO2−eq soared compared to the rest of the programs:
61% more emissions than EB, 58.16% compared to HB, and 53.44%
compared to PB. The explanation is that the rest of the HEMS pro-
grams use the surplus PV generation to charge batteries for later use,
avoiding to a great extent buying from the grid, which is much more
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polluting than using flexible resources.

Table 3.5: Results of the case study α=0.3. GHG emission and energy
cost comparison between the different energy management
system programs.

HEMS program
GHG [kg CO2−eq] Electricity cost [e]

High RES Low RES High RES Low RES

Price-based program 5.33 14.39 1.33 1.33
Hybrid-based program 4.85 13.96 2.74 2.54
Environmental-based program 4.62 13.68 3.74 2.70

Baseline consumption 4.72 22.08 5.73 5.73

3.7 Conclusions

The chapter introduces a novel hybrid-based HEMS formulation that
optimizes the operation of PV generators and distributed storage units
behind-the-meter in order to achieve the best trade-off between elec-
tricity cost and GHG emissions minimization, considering a life cycle
analysis of the generation sources used to meet the household demand.
Two facing energy mix scenarios are proposed: high renewable energy
participation and high fossil-type generation participation. The res-
ults confirm the reduction of GHG emissions in the HEMS containing
the environmental component. The EB program achieves the lowest
emissions, while the HB seeks a compromise between economic and en-
vironmental factors. By assigning weights to the HB multi-objective
function, the end-user can modify its priority in a fast and flexible
manner.

The more renewable generation is in the energy mix, the lesser the
difference between the HEMS programs’ emissions and the baseline
case. However, electricity costs increase the more renewable energy is
in the energy mix. Therefore, if the objective is strictly to minimize
the environmental impact produced by household consumption, it is
concluded that if a nation regularly holds a very high penetration of
renewable generation in its energy mix as it occurs in scenario B, it
is more sustainable from the household point of view to buy electri-

99



Chapter 3 Environment Strategies for Home Energy Management Systems

city directly from the grid than using self-consumption with batteries,
previously charged with PV surplus, for instance. In return for prior-
itizing and considering the polluting emissions minimization, the HB
HEMS electricity expenses can be two times higher than the PB. On
the other hand, for countries with low penetration of renewable gener-
ation sources in the energy mix, flexible resources such as batteries and
PV panels significantly reduce GHG emissions and costs. Therefore,
HB HEMS is an excellent option to encourage end-users to participate
in the fight against climate change without causing high economic ex-
penses. It should be noted that, if second-life batteries were used for
this purpose in the future, the value of the GWP parameter would be
reduced, and the conclusions obtained in this study could vary. Finally,
the sensitivity analysis carried out for a set of input variables indicates
that household consumption is the input variable that most affect the
HB objective function’s results, followed by PV generation, electricity
price, and maximum allowed SOC, respectively.
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Chapter 4

Local Energy Communities
Optimization

This chapter provides an overview of the current state-of-the-art in
Energy Communities regarding regulation and explores the potential
benefits and challenges of this technology. The price and environment-
based optimization strategies presented in Chapter 3 are extended and
tested for local energy communities.

4.1 Introduction

The generation and use of energy account for more than 75% of the EU’s
greenhouse gas emissions [362]. To achieve the goal of decarbonizing
the economy and reaching net-zero emissions by 2050, the European
Green Deal [12] proposes various objectives related to buildings and
the residential sector:

• Enhancing the energy efficiency of buildings.

• Ensuring a secure and affordable EU energy supply.

• Prioritizing energy efficiency, improving the energy performance
of our buildings and developing a power sector based largely on
renewable sources.

These objectives can be achieved through a digitized energy sector
based largely on renewable distributed energy resources.

Local Energy Communities (LECs) encourage the participation of
consumers in electricity generation and distribution at local level, provid-
ing an opportunity for society to be involved in the energy trans-
ition. According to the European Commission, a LEC is an open and
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voluntary association that combines non-commercial aims with envir-
onmental and social community objectives. The aim is to promote
community-driven and decentralized electricity generation, rather than
central generation managed by a small number of large power plants,
as has been the case until now.

To take advantage of user participation in local energy communities,
electrification at the user’s premises is essential; for instance, repla-
cing a conventional natural gas boiler with heat pumps for space heat-
ing. Additionally, by increasing electrification, consumers and energy
communities can offer flexibility to the energy system through demand
response and storage programs.

The IDAE outlines the benefits of local energy communities profiling,
including: [363]

• Providing citizens with fair and easy access to local renewable
energy resources and the opportunity to benefit from these in-
vestments.

• Empowering users to take control and greater responsibility for
meeting their energy needs.

• Creating investment opportunities for citizens and local busi-
nesses.

• Offering communities to generate income, increasing the accept-
ance of local renewable energy development.

• Enabling the integration of renewable energy into the system
through demand-side management.

• Environmental benefits.

• Social benefits. The creation of local employment and promotion
of social cohesion and equity.

The increasing growth and interest in LECs are primarily due to
rising electricity prices and an increasing awareness of climate change
in society, combined with the growing availability of affordable, small-
scale distributed energy resources (DERs). Legislative changes and
government subsidies have also helped to accelerate the creation of
energy communities and self-consumption generation.
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It is a fact that prosumers and their collective forms will play a
key role in the forthcoming years by empowering consumers, boost-
ing energy efficiency, and building interconnected energy systems that
allow peer-to-peer energy trading and better-integrated grids to sup-
port renewable energy sources. This contributes to a fairer transition
to climate neutrality that allows citizens to take ownership of energy
consumption and production.

4.2 Energy communities regulation

The Clean Energy Package (CEP) [364] introduced by the European
Commission has established a legislative framework for the operation of
Local Energy Communities across Europe, which aims to facilitate cit-
izens’ participation in energy markets, evolving from traditional passive
consumers to prosumers. A report made by the European Commission
about community renewable energy in Europe confirms this transition,
stating that by 2030 energy communities could own 17% of installed
wind capacity and 21% of solar Europe-wide. By 2050, almost half of
EU households are expected to produce clean energy [365].

The CEP introduces two types of energy communities:

• Citizen Energy Community (CEC). The Internal Electricity Mar-
ket Directive (EU) 2019/944 [366] introduces CEC as a legal en-
tity that is based on voluntary and open participation and is
effectively controlled by members or shareholders that are nat-
ural persons, local authorities, including municipalities, or small
enterprises. CEC constitute a new type of entity due to their
membership structure, governance requirements and purpose.

• Renewable Energy Community (REC). The Renewable Energy
Directive (EU) 2018/2001 [367] defines a REC as a legal entity
that, in accordance with the applicable national law, is based on
open and voluntary participation, is autonomous, and is effect-
ively controlled by shareholders or members that are located in
the proximity of the renewable energy projects that are owned
and developed by that legal entity.
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These two EU directives establish a legal framework for collective
citizen participation in the energy system. The definition of CEC is
similar to REC, but there are some fundamental distinctions. RECs
have a specific focus on renewable sources and should be located close to
renewable energy projects, while CEC has no such restriction. Another
difference is that an energy community can only be called a REC if
its activity is based on renewable energy sources, while a CEC may
use renewable or conventional sources [368]. For this chapter, a REC
is presented. The main differences between the two types of energy
communities are summarized in Table 4.1.

Citizen Energy Community Renewable Energy Com-
munity

Members Natural persons, local author-
ities, small micro-enterprises

Natural persons, local author-
ities, small/micro-enterprises;
with the condition that the
main professional or commer-
cial activity of the members is
not defined by their member-
ship to the REC

Location No limitations on location,
even cross-border Citizen En-
ergy Communities can be es-
tablished

Members/shareholders need
to be in a specific location,
close to the associated project
of the REC

Activities Activities in the energy sector
targeted exclusively for mem-
bers; and activities exclus-
ively in the electricity sector
for the whole market

All areas of the energy market
involving renewable energy

Technology No limitation on technologies Only renewable energy tech-
nologies

Table 4.1: Comparison of Citizen Energy Community and Renewable
Energy Community [9]. Source: The Council of European
Energy Regulators.

However, there are still several challenges confronting the prolifera-
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tion of LECs. A significant challenge is the regulatory barriers due to
the complex framework required to obtain the necessary permits and
approvals for installation and operation. This can make it difficult for
LECs to secure financing and access to the energy grid, as conventional
investors may be uncertain about investing in short-time tested business
models. This is reflected in Figure 4.1, which demonstrates that the
transposition for enabling frameworks and support schemes for energy
communities is not consistent across European member states. This
map provides a comparative assessment of this progress, using a traffic
light grading system to represent how far each country has progressed
towards transposing EU regulations on energy communities.

4.2.1 Spanish regulatory framework

This chapter focuses on optimizing a renewable energy community loc-
ated in Spain. To understand the context in which the proposed case
study is developed, the fundamental regulatory aspects are explained
below.

The Spanish Government has introduced the definition of REC and
implemented policies to promote renewable energy development and en-
courage citizens’ participation in the energy system. Most existing re-
newable energy communities in Spain use the legal framework provided
in Real Decreto (RD) 244/2019 [369] for individual and collective elec-
tricity self-consumption and the use of renewable energy sources. It
defines collective self-consumption as a group of owners sharing one or
several solar panel installations. This limits the scope of energy sharing,
particularly excluding other renewable technologies such as wind and
small-hydro. As shown in Figure 4.1, Spain is in ”average progress” in
implementing the European directives in its national law framework;
therefore, there is still a way to go.

According to RD 244/2019, a REC installation must comply with at
least one of the following requirements:

• Self-consuming owners must be connected to the same LV trans-
formation center.

• The distance between the self-consumer and the energy produc-
tion center should be no more than 500 meters. The radius was
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Figure 4.1: Comparative assessment of the progress for enabling regu-
lation frameworks for RECs in the diverse European coun-
tries following a traffic light grading system in which red
stands for bad transposition and green for best practices [7].
Source: REScoop.
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recently expanded to 1km; however, this additional distance is
only available to PV self-consumption if located on buildings.

• The photovoltaic production facility and the self-consumers must
share the same cadastral reference.

There are two connection modalities available:

• Collective self-consumption with a connection through the public
grid: The PV production is shared via the public grid. It is
connected to the LV grid through a bi-directional smart meter,
and the retailer compensates the end-user(s).

• Collective self-consumption with direct connection to the internal
grid: In this case, the photovoltaic installation does not connect
to the public grid, but the photovoltaic production is distributed
directly to each of the internal grids of the self-consumers. This
connection is typically used in large industrial customer installa-
tions.

The following modalities specified in RD 244/2019 require all con-
sumers to belong to the same self-consumption modality. These mod-
alities are:

• Collective self-consumption without surpluses: an anti-spill sys-
tem is used to avoid injecting surplus energy into the electricity
grid.

• Collective self-consumption with surpluses not subject to com-
pensation: the owner of the generation facility sells the surplus
energy to the electricity market.

• Collective self-consumption with surpluses subject to compensa-
tion: consumers receive financial compensation for the surpluses
they inject into the electricity grid. The retailer is responsible for
compensating the surplus energy cost at the end of each billing
period. Surpluses that exceed imported consumption are not
compensated.

Sharing coefficient strategies

The Spanish regulation, RD 244/2019, establishes guidelines for dis-
tributing the generation among customers, assigning a fixed sharing
distribution coefficient value to each participant of the local energy
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community. The coefficients of all participating consumers must sum
up to 1. In other words, if there is only one associated consumer,
their coefficient will be 1 for each hour of the day. And if there are
multiple consumers, the sum of all coefficients will also be 1. New
improvements in the above-mentioned regulation expand the potential
of LECs. These improvements introduce dynamic distribution coeffi-
cients for the energy produced by a LEC, while still maintaining the
option of using fixed coefficients. Thus, the variable coefficients must
be established for each hour of the year and may be changed every four
months.

And how are these coefficients calculated? They can be determined
based on several factors:

• The contracted power of each participating associated consumer.

• The financial contribution of each consumer to the photovoltaic
installation.

• Other elements agreed upon by all participants in the shared self-
consumption, such as balancing the economic savings among all
participants.

This thesis does not address the optimization of the hourly value
of distribution coefficients. However, the author recommends further
investigation of this aspect in future research. Exploring the optim-
ization of sharing coefficients (both dynamic and static) based on the
desired objective could be engaging, whether it is minimizing the over-
all cost of the energy community or reducing the emissions associated
with consumption, for instance.

To conclude this section, it is essential to remember and emphasize
that regulations for Energy Communities are still evolving and can vary
widely between countries and regions in a brief period.

4.3 Methodology

This section considers the existing regulatory framework in Spain and
presents the methodology developed to optimize the operation of a
Local Energy Communitiy. A scheme of the method followed is presen-
ted in Figure 4.2.
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The methodology begins by setting up the case study and scenarios.
The required input data includes the location of the renewable energy
community, specifications of the BESS and PV systems, the number
of electrical supply endpoints and their consumption profiles, PV sys-
tem generation, hourly electricity price tariff for each end-user and grid
GWP. The scenarios are established based on two variables linked to a
specific analysis: sharing coefficient strategy and the REC optimization
strategy. All possible combinations of these variables are established
to generate a comprehensive set of scenarios for evaluation and discus-
sion. The results will demonstrate the potential cost savings for the
overall REC and the CO2 emissions avoided through the optimization
strategies designed in this chapter.

Regarding the LCA analysis, Table 4.2 displays the range of GWP
indicators for the overall life cycle stages for each electricity generation
source type, as reported in [8].

Table 4.2: Lyfe cycle emission factors for electricity generation sources
[8, 10].

Generation
source GSi

GWP range
[kg CO2−eq/kWh]

Average GWP
[kg CO2−eq/kWh]

Hard coal 0.660-1.05 0.855

Lignite 0.800-1.30 1.05

Natural gas 0.38-1 0.690

Nuclear 0.003-0.035 0.019

Biomass 0.008-0.130 0.069

Hydro-power 0.002-0.02 0.011

Wind 0.003-0.041 0.022

Battery [10] - 0.060

For this chapter, the average GWP value is used. The battery GWP
value has been updated concerning the previous Chapter. Figure 4.3
illustrates the methodology used to calculate the coefficients associated
with the hourly emissions of the energy mix using values from Table 4.2.
This process begins by selecting the generation sources with the highest
poundage in the energy mix. Ideally, the generation sources should rep-
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Case study modelization

Sharing strategy

Optimization strategy

Creation of a set of 
scenarios

Scenario e

Static coefficient
βp 

Dynamic coefficient
βt,p 

Price-based Environment-based

Results 

e = E No   

Yes

Run Energy Community 
optimization 

Calculate energy bill cost and GHG emissions

LEC optimization 

END

Sharing strategy
REC optimization strategy

EC location
PV system specifications

PV system generation
BESS specifications

Building electric tariff
Building load profiles

Hourly electricity price
Hourly Grid GWP 

Case study modelization 

START

Figure 4.2: LEC methodology employed in this chapter.
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resent almost all the generated power so that the grid emissions indic-
ators are as precise as possible to reality. Once the generation sources
(GS) have been specified, the data for the next day’s scheduled gener-
ation, which are public and available the day before their provisioning,
are acquired. For each hour, the amount of scheduled generation for
that technology g is multiplied by its corresponding GWP emission
factor. When calculated for the entire set of generation sources G, the
total GWP of the network for the hourly time interval t is calculated.
This process is repeated for each hour and day, successively.

GSt,g · GWPg

Hourly GWP Grid 
E(gwp,grid)t

g = G

Spanish main GS in the Energy Mix:
• Wind
• Hydro
• Photovoltaic
• Nuclear
• Coal
• Combined cycle
• Biomass 

Yes

 No

Select the most significant generation 
sources (GS) in the energy mix.

Scheduled day-ahead 
generation GSt,g

END

GWPg emission factors for 
electricity generation sources

START

Figure 4.3: Methodology employed to calculate the hourly global warm-
ing potential of the grid.
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4.4 Energy Community mathematical formulation

This section mathematically models the different assets that participate
in the LEC, such as photovoltaic generation, BESS, and the group of
consumers who will benefit from this clean energy generation. First,
the objective functions and system constraints are defined, followed by
the presentation of the mathematical models for each component that
takes part in the LEC.

4.4.1 Objective functions

The objective functions in this chapter have a similar structure to those
in Chapter 3. The main difference is that now there are multiple con-
sumers p, and selling energy is considered in this case study. Therefore,
as the primary purposes of each objective function have already been
explained in detail in Chapter 3, Section 3.4.1, they will not be further
elaborated here.

Price-based

This program focuses exclusively on the economic aspect. It min-
imizes the overall LEC electricity bill (4.1), considering the centralized

battery degradation cost Kcal
t due to calendar aging, where P buy

t and
P sell
t are the time-varying price for buying and selling electricity. The

variables χbuy
t,p and χsell

t,p refer to the virtual energy purchased and sold

to the grid by each participant p, and P V AT is the tax used. The
objective function is expressed as

min f1 =
T∑
t=1

P∑
p=1

(P buy
t,p χ

buy
t,p − P sell

t,p χ
sell
t,p +Kcal

t ) (4.1)

Environmental-based

This optimization strategy attempts to minimize the carbon footprint
occasioned by the generation sources that provide electricity to each
participant involved in the LEC. In this approach, only the emissions
from the energy consumed are considered, not those sold to the grid.
The objective function is formulated as follows.
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min f2 =
T∑
t=1

P∑
p=1

(Egwp,grid
t χbuy

t,p ) + Egwp,pvW pv
t + Egwp,batσdist (4.2)

where Egwp,grid
t indicates the kg CO2−eq/kWh of the grid on average

per period t. It is calculated with the hourly energy production mix,
taking the values of scheduled generation in the day-ahead market for
each technology described in Table 4.2. The emission parameters as-
sociated with the battery Egwp,bat and photovoltaic Egwp,pv are also
indicated in Table 4.2.

4.4.2 LEC constraints

Energy balance

The energy balance of the Local Energy Community allows for dis-
tinguishing the energy generated through the centralized PV and BESS
and imported from the grid. In this case, a sharing coefficient βt,p is
virtually associated with each participant. Therefore, if a participant
p has a constant/static sharing coefficient of βt,p = 0.5, it means that
this consumer owns 50% of the electricity generated by the renewable
generation of the community.

The energy balance expressed in 4.3 is designed to simulate that the
participants have a battery and photovoltaic generation. To achieve
a balanced energy system, the total electricity imported from the grid
χbuy
t,p , must balance the production from generation units, consumption

from load units, charging and discharging of the central BESS and
energy sold for each period t ∈ T :

βt,p(W
pv
t + σdist − σcht ) + χbuy

t,p =W inflex,load
t,p + χsell

t,p (4.3)

Not buy and sell at the same time

Binary variables δbuyt,p and δsellt,p are now introduced in order to ensure
that it is not possible to sell and buy in the same period for each
participant. It is possible that when visualizing the total consumption
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of the LEC, there may be periods where consumption and selling occur
simultaneously. However, this is due to the fact that one participant
is selling while another is not. This happens because each client may
have different distribution coefficients, resulting in one having surpluses
while the other does not.

δbuyt,p + δsellt,p ≤ 1 (4.4)

Prosumers capacity limits

Electricity bought and sold must be below power limits, according
to the terms stipulated in the retail contract:

χbuy
t,p ≤ δ

buy
t,p ·Xmax,import

p (4.5)

χsell
t,p ≤ δsellt,p ·Xmax,export

p (4.6)

Net generation

The net-generation θt follows this equation

θlect =W pv
t + σdist − σcht (4.7)

The individualized net hourly energy generated by those energy com-
munity participants p that carry out collective self-consumption, θt,p,
is

θt,p = βt,pθ
lec
t (4.8)

where θlect represents the total hourly net energy produced by the
generator smart meter and βt,pdenotes the hourly distribution coeffi-
cient among consumers participating in the collective self-consumption
of the energy generated, in period t. The exact value is repeated for all t
when referring to the static sharing coefficient. Consumers are required
to submit the coefficients of participants involved in self-consumption
for all hours of the current year, which cannot be modified within the
same year.
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Sharing strategy

The sum of all sharing coefficients allocated to the LEC participants
for each period t must equal 1.

P∑
p=1

βt,p = 1 (4.9)

4.5 Case Study: Optimization of a Spanish Energy
Community

This study is focused on an existing renewable energy community loc-
ated in Spain, consisting of four office buildings and a collective-owned
centralized photovoltaic system and a Li-ion BESS. These components
are connected downstream of an inverter that feeds energy back into
the grid, which is then compensated in the electricity bill of each parti-
cipant based on their assigned generation percentage. In addition, this
smart meter is bidirectional and capable of purchasing electricity from
the grid when it is necessary to store energy in the battery. Each build-
ing has its own smart meter and purchases energy from the grid since
they have no flexible assets behind the meter. Figure 4.4 illustrates the
components of the renewable energy community: four office buildings
and a centralized PV and BESS as a collective renewable generation
unit. The Local Energy Community Management System is respons-
ible for controlling and optimizing the LEC flexible asset and must send
optimal operating set-points for the centralized BESS, the only flexible
source as illustrated in Figure 4.4.

This case study is based on an actual energy community located in
Spain. Data for PV generation and building consumption ranges from
March 3 to December 31, 2022. According to the European and Spanish
regulations, this study belongs to the category of a renewable energy
community with collective self-consumption and surplus compensation
[369]. In other words, the energy generated is used to supply multiple
consumption points. This group of participants agrees to distribute
the renewable energy generated and applies static sharing coefficients
for each consumer. For each end-user, any surplus energy that is not
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BESS

AC line

DC line
PV system

Smart meter

Grid

Building 1 Building 2 Building 3 Building 4

Figure 4.4: Case study local energy community simplified scheme.
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consumed is fed back into the grid and economically compensated on
its electricity bill.

4.5.1 Energy Community specifications

The BESS parameters and specifications used in this study are listed
in Table 4.3. The optimization imposes that the state of charge of
the battery is the same at the beginning σsoct=0 and at the end of the
optimization horizon σsoct=end, which is 24 hours ahead in this study.
This prevents the battery from being completely discharged at the end
of the day.

Table 4.3: LEC BESS parameters.

Input Parameters Value

Maximum charging power allowed 90 kW

Maximum discharging power allowed 90 kW

Maximum SOC 189.9 kWh

Minimum SOC 31.65 kWh

Efficiency charging 0.95

Efficiency discharging 0.95

σsoct=0 150 kWh

σsoct=end 150 kWh

Table 4.4 lists the static parameters related to each building that
constitutes the energy community and Table 4.5 indicates the static
sharing coefficient rate of generation corresponding to each building.

4.5.2 Grid GWP calculation

The proposed case study and scenarios used data from March 3rd -
December 31st, 2022, the available date range from the energy com-
munity. The hourly share of each generation source (see Table 4.2) in
the Spanish energy mix is illustrated in Figure 4.5. The selected gener-
ation types are primarily responsible for the total generation and cover
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Table 4.4: LEC participants maximum contracted power.

Input Parameters B1 B2 B3 B4

Spanish electricity tariff type 3.0 3.0 3.0 3.0

Maximum contracted power Period 1 70 43.65 20.785 75

Maximum contracted power Period 2 70 43.65 20.785 75

Maximum contracted power Period 3 70 43.65 20.785 75

Maximum contracted power Period 4 70 43.65 20.785 75

Maximum contracted power Period 5 70 43.65 20.785 75

Maximum contracted power Period 6 70 43.65 20.785 75

Table 4.5: LEC participants static sharing coefficient.

B1 B2 B3 B4

Static sharing coefficient 0.35 0.15 0.02 0.04

96% of the total. The presence of coal is almost nonexistent, but during
periods of high energy demand, the energy produced from it increases.
Nuclear power serves as the base generation. In summer, photovol-
taic and combined cycle generation significantly increase, mainly due
to the rise in demand caused by high temperatures in most regions of
the country. Hydroelectric generation increases its share in the spring
months and late winter months.

Following the methodology presented in Chapter 3, the hourly grid
GWP is calculated and shown in Figure 4.6. As expected, fossil-based
generation sources such as coal, combined cycle and cogeneration con-
tribute the most to the greenhouse gas emissions in the energy mix,
despite not being the generation sources with higher production. For
instance, although the energy produced from combined cycle cogenera-
tion and coal in the mix is not the most significant, they are the sources
that contribute the most CO2 emissions to the grid.

Finally, the hourly grid GWP is calculated and displayed in Figure
4.7. Summer months display higher emissions associated with the grid
energy mix, mainly due to the increased demand during these months
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Figure 4.5: Generation sources energy mix sharing for the case study.

Figure 4.6: Spanish energy mix kg CO2 equivalent in the energy mix.
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Figure 4.7: Spanish GHG emissions in the energy mix grid.

and lower production of specific renewable resources such as hydro and
wind power. However, thanks to the increased presence of photovoltaic
generation in the last years, emissions have been partially reduced dur-
ing the summer months compared to other past years. Low emissions
levels are usually associated with low energy demand in the system (i.e.,
mild temperatures) and high penetration of renewables, especially wind
power.

4.6 Results

This section presents the results of the different scenarios analyzed in
the proposed case study. To enhance the clarity and comprehensibility
of the results, only two representative days are displayed to illustrate
the behavior of the centralized battery and energy community for the
price and environment optimization strategies. Additionally, this sec-
tion includes an analysis of the energy community costs, as well as the
GHG emissions associated with their consumption for the case study
period. This information is valid to evaluate the effectiveness of the
proposed optimization strategies.
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Table 4.6: Baseline LEC cost and GHG emissions.

Building Total cost Total GHG emissions
(e) (t CO2)

B1 13 414.72 18.81
B2 6 004.96 7.04
B3 390.46 0.47
B4 30 326.32 35.63

LEC 50 136.45 61.94

4.6.1 LEC baseline consumption

Prior to presenting the results of the two optimization strategies for
the LEC, the cost and GHG emissions associated with the consump-
tion of its participants are shown, assuming they did not have access
to collective generation and had to purchase all energy directly from
the grid. The aim is to compare the effectiveness of the optimization
developed based on these baseline data. Table 4.6 shows the cost and
GHG emissions costs and GHG emissions associated with each building
over the 10-month study period. Thus, the total LEC electricity cost is
50 136.45 e, and the emissions associated are 61.94 tones of CO2−eq.

4.6.2 Price-based approach

The price-based scenario aims to minimize the overall energy bill cost
for participants of the LEC by utilizing the flexibility of the central
BESS and the inflexible PV generation.

To demonstrate the feasibility and functionality of the developed
Local Energy Management System (LEMS), its performance over two
consecutive days is presented in Figure 4.8. This figure consists of four
sub-figures, which are described and explained in detail through this
sub-section.

The upper graph (Figure 4.8a) displays the hourly price for buying
and selling electricity on the grid. The purchase (Price buy) and self-
consumption (Price sell) SPOT prices are used in this study. The
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buying price is always higher than the selling price because the taxes
for purchasing are considered. Also, in this Figure, the start of the
second day (Day d+1 ) is indicated by a dashed black vertical line on
all graphs to aid the reader. Additionally, to facilitate comprehension,
periods with low electricity prices from the grid are highlighted in blue,
while periods with higher prices are emphasized in light red. These
elements will help with the visual explanation.

The following image (Figure 4.8b) displays the behavior of the cent-
ralized battery of the LEC. It can be observed that during periods with
high purchase prices from the grid, the battery discharges to reduce the
costs associated with buying energy from the grid for the users of the
community and/or selling excess energy to obtain economic remunera-
tion in return.

Figure 4.8c shows the state of charge of the centralized battery, the
baseline consumption of the energy community (i.e., the actual and
inflexible consumption of all buildings that are part of the LEC), and
the consumption associated with the LEC, considering centralized gen-
eration sources (battery and photovoltaic generation). During periods
of low prices (blue time slots), the LEC takes advantage of buying
energy from the grid to charge the battery and use this energy later
during periods of high prices. Therefore, those consumption peaks are
the battery charge, but they are associated with each user, as the cost
is distributed among them, using the corresponding distribution coeffi-
cient. On the other hand, during periods of high prices (red time slots),
the battery discharges to alleviate the cost for the participants of the
LEC. Thus, the consumption of the LEC is below the baseline, thanks
to photovoltaic and battery discharge.

Finally, Figure 4.8d shows the generation sources (battery discharge
and PV) and the energy sold to the grid, for which participants will
receive economic benefits for the supplied energy. To facilitate under-
standing of this graph, the author has assigned negative values to the
generation sources or energy sold and positive values to consumption
sources. According to the amount of energy sold to the grid (see peri-
ods 9 to 11 on the day d), the battery discharges more than needed to
meet user demand and sells this excess energy at a higher selling price.
This occurs again during periods 21 (day d) and 32-34 (day d+1 ). The
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Table 4.7: Price-based LEC cost and GHG emissions.

Building PB Total cost Baseline PB Total GHG Baseline
(e) (t CO2)

B1 9 529.01 ↓ 29.0% 21.65 ↑ 15.1%
B2 4 301.87 ↓ 28.4% 11.15 ↑ 58.3%
B3 184.17 ↓ 52.8% 5.64 ↑ 1108.2%
B4 24 658.09 ↓ 18.7% 36.14 ↑ 1.4%

LEC 38 673.14 ↓ 22.9% 74.58 ↑ 20.4%

reason is that selling energy to the grid is very profitable, making it
worthwhile.

Overall, the case study results demonstrate the effectiveness of the
LEMS in reducing costs and generating economic benefits for the en-
ergy community participants. The price-based results for 10 months of
time horizon, and assuming perfect predictions, are summarized in the
following Table 4.8. The objective is to reduce the overall LEC cost
above the individual benefit. The LEC reduces the energy bill a 22.9%
(11 463.31 e) in exchange for raising the GHG-associated emissions by
20.4% (an increment of 12.64 tones of GHG emissions), mainly due to
the BESS usage, since when it buys energy from the grid, the grid and
BESS emissions are considered.

It should be mentioned that the installed photovoltaic generation
covers, on average, 17% of the total LEC consumption; thus, the savings
derived from photovoltaics are not very noticeable. However, significant
savings can be achieved thanks to the battery, which purchases energy
during low-cost periods and injects it into the grid during high-cost
periods.

4.6.3 Environment-based approach

This optimization strategy aims to minimize the GHG emissions asso-
ciated with the electricity consumption of the energy community parti-
cipants. To quantify these emissions, the GHG of the grid is considered,
which varies hourly depending on the energy mix, centralized PV gen-
eration, and BESS use.
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Figure 4.8: Price-based LEC optimization results. a) Electricity price
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LEC behavior after optimization d) LEC consumption, net
generation produced and electricity sold.
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To minimize greenhouse gas emissions associated with consumption,
two different days are selected to explain the different behavior of the
LEMS depending on the energy mix: the first with a high penetration
of renewables in the grid, resulting in a low GWP index, and the second
with a high percentage of fossil sources in the energy mix.

4.6.3.1 Low grid GWP

Following the same format as the previous approach, Figure 4.9 presents
the results of the energy community for two days of optimization.

The figure above (Figure 4.9a) shows the emissions curve associated
with the hourly energy mix of the grid. The higher the curve, the
greater the emissions associated with consumption if energy is pur-
chased from the grid.

Figure 4.9a displays the emissions curve associated with the hourly
energy mix of the grid. The higher the curve, the greater the emissions
associated with consumption if energy is purchased from the grid.

In the second image, Figure 4.9b, the battery is discharged during
periods of the day with higher pollution indices (period 8), thus redu-
cing emissions associated with consumption. As the battery capacity
must be the same at the beginning and end of the day (150 kWh),
surplus photovoltaic energy is used to charge the battery during period
16. On day d+1, the battery is slightly discharged during the period of
maximum GHG emissions in the grid and charged with surplus solar
energy. On day d+1, the battery is hardly used because, thanks to the
high penetration of renewables, it is cleaner to purchase energy from
the grid.

In Figure 4.9d, it can be observed that photovoltaic energy supplies
part of the local energy community’s consumption, and in specific peri-
ods, this photovoltaic energy is used to charge the battery.

Overall, the case study demonstrates the potential benefits of com-
bining renewable energy sources with battery storage systems to reduce
greenhouse gas emissions and increase energy efficiency.
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Figure 4.9: Environment-based LEC optimization results with high re-
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4.6.3.2 High grid GWP

For this subsection, two days with a high percentage of fossil sources in
the energy mix have been selected. Figure 4.10a shows the GWP with
high GHG indices and the GWP of the previous example to compare
both magnitudes.

At first glance, the main difference is that the use of the battery
increases as the GWP index in the national energy system becomes
higher. For the first day (d), the battery discharges during the period
with the highest pollution associated with the grid. In the following
periods, the battery recovers its state of charge thanks to photovoltaic
generation. From periods 21-24, the battery discharges, coinciding with
the hours of highest emissions on the grid. For the next day (day d+1),
the battery starts with the initial state of charge of 150 kWh, as the
restriction imposes. The BESS discharges from 28 to 34, also coinciding
with a period of high emissions. From there, the battery recovers its
SOC thanks to the photovoltaic energy from the LEC and by charging
it in period 42 at maximum power (90 kW) to meet the SOC restriction.
This charge is made during the period when emissions are the lowest
during that day.

In Figure 4.10c, it can be observed that the LEC only makes a greater
electricity purchase than the baseline to charge the battery in period
40. As mentioned before, this period for day d+1 is the one with the
lowest CO2.

In Figure 4.10d, it can be seen that no energy is sold to the grid
and that the photovoltaic generation covers part of the participants’
demand. During the night and in periods of high emissions, the battery
discharges part of its capacity to reduce the emissions associated with
consumption.

4.7 Conclusions

The LEC optimization results demonstrate the feasibility and satisfact-
ory performance of the approaches proposed in this thesis. On the one
hand, the price-based optimization achieves savings of approximately
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Table 4.8: Environment-based LEC cost and GHG emissions.

Building EB Total cost Baseline EB Total GHG Baseline
(e) (t CO2)

B1 10 131.23 ↓ 24.5% 16.82 ↓ 10.6%
B2 4 590.18 ↓ 23.6% 7.30 ↑ 3.7%
B3 210.17 ↓ 46.2% 2.28 ↑ 3.87%
B4 25 757.76 ↓ 15.1% 31.88 ↓ 10.5%

LEC 40 689.35 ↓ 18.8% 58.27 ↓ 5.9%

23% (11 500 e) compared to the LEC baseline consumption. The con-
tribution of photovoltaics compared to consumption is lower than this
percentage, so the battery plays a crucial role in achieving these sav-
ings. However, the associated emissions increase by 20%. On the other
hand, the strategy of minimizing emissions associated with consump-
tion achieves a reduction of approximately 6% of these contaminants
compared to the baseline consumption, avoiding the emissions of 3.7
tons of CO2−eq. The difference in GHG release between the price and
environmental-based strategies is 21%.

The positive aspect is that the environmental strategy, in addition to
minimizing emissions, is capable of reducing costs by 18% (approxim-
ately 10 000 e) compared to the baseline, making it feasible to choose
to enhance the environment without incurring high costs, which is a
significant advantage.

However, there are still some challenges confronting the proliferation
of LECs. A significant challenge is regulatory barriers due to the com-
plex framework required to obtain the necessary permits and approvals
for installation and operation. This can make it difficult for LECs to
secure financing and access to the energy grid, as conventional investors
may be uncertain about investing in short-time tested business models.
Additionally, technical challenges associated with integrating renewable
energy sources into the energy grid and storage systems are common.
Also, at this early stage, LECs may lack the technical expertise to
design, build, and operate renewable energy projects. Finally, due to
a lack of awareness, many citizens may be unaware of the benefits and
opportunities offered by energy communities, making it challenging to
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attract members and build critical support.

Despite these obstacles, LECs offer multiple benefits to neighbor-
hoods and the environment, providing promising investment opportun-
ities. One main advantage is the reduction of dependence on fossil
fuels, resulting in a decrease in greenhouse gas emissions. By gen-
erating and consuming energy locally, LECs avoid losses due to the
Joule effect and costly long-distance energy transmission and distribu-
tion lines. Furthermore, LECs can enhance energy security by reducing
the vulnerability of areas to power outages and disruptions. They also
promote community engagement and empowerment by enabling end-
users and small groups to participate in the energy system, offering
communities the possibility of generating income and having a more
significant influence on the electricity market.
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Chapter 5

Personalized Federated Learning
for Energy Management Systems

This chapter proposes a personalized federated learning methodology
for home energy management systems demand forecasting that incor-
porates a cost-oriented loss function while preserving customers’ data
privacy and security.

5.1 Introduction

The energy sector is undergoing a rapid transformation towards a dis-
tributed, digitized and decarbonized system, moving away from the tra-
ditional centralized, rigid, fossil fuel-based energy system [370]. The ad-
vent of digitization has given consumers the availability of fine-grained
electricity consumption and self-generation data collected by smart
meters. This has enabled the creation of data-driven energy services
that cater the needs of end-users, such as Home Energy Management
Systems (HEMS). In addition, recent advances in Artificial Intelligence
(AI) technology boost the extraction of better meaningful insights and
valuable information from smart meter data, leading to the develop-
ment of more accurate prediction models and innovative energy ser-
vices [263]. As a result, energy providers can offer personalized solu-
tions to customers, ultimately creating a more efficient, sustainable,
and customer-centric energy system.

The transition to a more sustainable energy system offers many ad-
vantages but also presents technical challenges that must be addressed
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to achieve digital maturity in the distribution network. This transform-
ation requires continuous evolution of the energy legal framework [371].
For instance, the European Union’s enforcement of the General Data
Protection Regulation (GDPR) [372] requires the implementation of
robust data privacy and security measures. To meet these challenges,
Federated Learning (FL) technology has emerged as a promising solu-
tion [373–376].

Federated learning, as one of the collaborative learning techniques,
is a machine learning technique that enables the training of a central-
ized model using multiple decentralized edge devices or servers holding
local data samples without exchanging them [377]. This approach is
particularly suitable for addressing customer data privacy and security
concerns when using smart meter data in energy services and solu-
tions [378]. Furthermore, FL mitigates the challenges of data silos in
the energy sector by enabling collaboration between stakeholders, such
as energy providers and customers, while preserving privacy, security,
access rights and reducing or eliminating cloud-computing costs [379].
These advantages make FL a promising solution for power system ap-
plications.

In power systems, FL has demonstrated its applicability in various
areas, including energy management systems, load forecasting, and an-
omaly detection, among others [380]. Based on this state of the art,
literature has moved towards personalized FL models in recent years,
where each edge server or device personalizes the federated forecast-
ing model by re-training the global model with their historical data.
Compared with traditional FL algorithms, the aforementioned method
balances the global FL models meanwhile respecting the local data dis-
tribution. In [381], a novel personalized federated learning approach is
proposed for individual consumer load predictions to improve forecast-
ing accuracy with privacy protection.

From an economic perspective, the growth of distributed energy re-
sources (DER) and the implementation of demand response programs
for enhancing flexibility pose a significant challenge in maintaining a
stable and balanced electricity system [382]. Consequently, this devi-
ation from the scheduled energy could result in high operating costs or
economic penalties for electricity market participants, such as BRPs.
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State-of-the-art forecasting models typically use the Mean Square Er-
ror (MSE) loss function for training; however, MSE does not accurately
reflect the actual costs associated with forecasting errors in power sys-
tems since cost functions are often neither symmetric nor linear. To
address this issue, [383] published the first cost-oriented loss function
method. This solution better captures the economic impact of forecast-
ing errors, optimizing the trade-off between forecast accuracy and its
associated cost. Recent literature proposes various approaches, such as
a load forecast differentiable cost-oriented loss function that uses an op-
timal piece-wise linear approximation method [384] and a wind power
generation model using a cost-oriented loss function [385]. Addition-
ally, [386] presents two cost-oriented approaches to improve day-ahead
load forecasts in terms of a more cost-effective real-time operation with
respect to actual loads.

5.2 Federated Learning in Energy Systems

This section introduces the FL and reviews the existing FL applica-
tions within the energy system domain. Following this, the proposed
personalized FL methodology is presented.

Within the energy system domain, massive data is being generated
daily from multiple digital sources such as smart meters, sensors/sens-
ing devices installed in transformers or transmission lines [387], and this
amount of data is expected to increase over the years. Typically, this
data is stored in a centralized system, which incurs high storage and
communication infrastructure costs. However, some of these data may
contain users’ private information, which could conflict with GDPR
security requirements [372]. To provide a solution to these issues, FL
technology has emerged as one of the most promising solutions [388].
FL processes data locally at each source instead of central collection
and processing. This reduces the amount of data transmitted over the
network, enhances data privacy, and allows models to be trained on
a larger dataset by combining data from multiple sources. Supervised
learning energy services using FL can be classified into the following
FL types, depending on their data partitioning category [192]:
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• Horizontal Federated Learning (HFL) is introduced in scenarios
where data sets share the same feature space but different samples
(Figure 5.1 (a)).

• Vertical Federated Learning (VFL) applies to the cases where two
data sets share the same sample ID space but differ in feature
space (Figure 5.1 (b)).

• Federated Transfer Learning (FTL) applies to scenarios where
two data sets differ not only in samples but also in feature space
(Figure 5.1 (c)).

Figure 5.1: Categorization of federated learning regarding data parti-
tion for supervised learning: (a) Horizontal federated learn-
ing, (b) Vertical federated learning and (c) Federated trans-
fer learning.

General FL concepts are reviewed in [192], which defines the ar-
chitectures and applications for the federated learning framework and
provides a comprehensive survey of existing works on this subject,
while [194,389] focus more on the challenges and future directions. Spe-
cifically, [390] conducts a comprehensive review of FL applications in
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the energy domain. With regard to energy management systems, [391]
reports one of the first use of federated learning to support the Mi-
crogrid Energy Management System.

Key applications of FL in power systems and their article-related are
listed in Table 5.1.

Table 5.1: Main federated learning applications in the energy system
domain.

FL Applications in Power Systems References

Anomaly detection, predictive maintenance [392,393]

Consumer characteristic identification [373,394]

Electrical load forecasting [376,395,396]

Energy management systems [391,397]

Energy theft detection [398]

EV demand forecasting and charging station re-
commendation

[341,399,400]

Load clustering [376,396]

Solar generation disaggregation [401]

Solar irradiation forecasting [402]

Voltage forecasting [403]

5.3 Personalized Federated Learning Methodology
for HEMS

The challenge of creating a unique global ML model common to a group
of customers is that the global model may not fit all the customers’
patterns. A proposed solution to this problem is personalization to
understand user behavior and adapt to it. It consists of retraining the
centralized model using user-specific data to build a personalized model
for each user. Personalized FL is essential in EMS-related solutions
because it enables the creation of tailored forecasting models that are
able to capture user behavior and adapt the model to their patterns,
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providing more accurate and reliable predictions for individual users.
The literature proposes different ways of achieving this:

• Retrain the global FL for a small number of epochs locally using
the client’s data exclusively [395].

• Retrain the global FL adding to the loss function a regularization
penalty [381].

• Retrain the global FL through a layer-wise parameter aggrega-
tion strategy. Only the shallow layer parameters are uploaded to
the central server and aggregated together with those from other
utilities, while the deep layer parameters are kept locally [401].

This study applies the personalization technique proposed in [395],
where the centralized model is retrained with only five epochs. Figure
5.2 depicts the steps followed by the personalized FL approach here
proposed for HEMS cost-oriented load forecasting:

• Step 1a. A clustering of clients is incorporated before initiating
the FL procedure [395]. The selected clustering criteria are the
similarity of households’ average daily consumption profiles and
geographical proximity. This is due to the fact that clients’ load
profiles require to have similar patterns. Otherwise, the global
federated model may diverge [15] because of data heterogeneity
among end-users. In this thesis, clusters have been computed in a
centralized manner. Then, Step 1b calculates the cost-oriented
loss function of the desirable households and for the cluster, if
needed. From this step onwards, the procedure for a single cluster
is explained since the strategy is identical for all clusters.

• Step 2. In the first training round, once the deep neural network
structure is specified, the central cloud server randomly initializes
the global model weights; if not, the server proceeds with the
weights obtained from the previous training round (Step 7).

• Step 3. The server sends a copy of the global model to clients
within the same cluster, which develops its own model.

• Step 4. Each client trains the initial model using its local con-
sumption data. Households receive a copy of the global model
and train it using only the local data. On the other hand, spe-
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cifics of the local training depend on the type of loss function
approach selected, as explained in Section II.

• Step 5. Model weights updates are returned to the server for
aggregation.

• Step 6. Central server aggregates the individual model updates
from the same cluster.

• Step 7. Aggregated models are distributed back to their parti-
cipants’ respective clusters. The process repeats from Step 2 until
convergence.

• Step 8. Personalization. It consists of retraining the global cent-
ralized FL model using user-specific data to build a personalized
FL model for each client. This is achieved through retraining
the model for a small number of epochs locally using the user’s
data exclusively [395]. Thus, this new personalized model is kept
locally, so it never leaves the house, preserving personal data.
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5.4 Imbalance cost-oriented load forecasting for
Energy Management Systems

This section provides a detailed explanation of Steps 1a and 1b (cluster-
ing and cost-oriented loss function computation), shown in the proposed
methodology in Figure 5.2. In Section 5.4.1, households are clustered
based on their daily consumption patterns (Step 1a). The general meth-
odology for calculating the cost functions is then described in Section
5.4.2. This methodology can be applied to individual houses as well as
to an entire cluster (Step 1b).

5.4.1 Clustering households consumption profiles

In traditional machine learning algorithms, it is commonly assumed
that all input data follows the principle of being Independent and
Identically Distributed (i.i.d.), indicating that each data record in the
dataset is independent and drawn from the same distribution. However,
in the context of federated learning, where smart meter data is distrib-
uted across multiple smart meter devices, this assumption of i.i.d. data
is inaccurate. Each household exhibits its unique consumption distri-
bution due to evident variations in user behaviors and demographics.
Consequently, models trained on one smart meter’s data may not ef-
fectively generalize to another end-user due to differences in their data
distributions.

For all the above-exposed reasons, an effective strategy to enhance
the convergence and performance of aggregated models in federated
learning is to cluster households with similar properties and consump-
tion profiles. This approach, as suggested by [395], involves grouping
together customers with similar i.i.d. data by clustering end-users ac-
cording to their consumption profiles. Subsequently, further training is
conducted using federated learning for each isolated cluster. Individual
model updates provided by customers within the same cluster are then
aggregated to create a specific global model tailored to that group of
households.

Moreover, in the electricity sector smart meter data are owned by dif-
ferent retailers who may not be willing to share their data. In such situ-
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ations, the consumer clustering approach cannot directly make use of
the entire dataset. Previous research has focused on identifying social-
demographic characteristics of electricity consumption [373, 394], and
load clustering [376, 396]. However, this thesis presents a centralized
approach to clustering clients using unsupervised learning techniques,
as FL clustering is out of this thesis’ scope.

5.4.2 Cost-oriented loss function calculation

Accurately predicting loads is an effective strategy for reducing imbal-
ance costs associated with HEMS’ performance. Both over and under-
forecasts may result in additional costs due to imbalance penalizations.
Currently, the majority of load forecast applications use the quadratic
loss function Lq. However, this quadratic approach is not ideal for cases
where the costs of over-consumption and under-consumption have dif-
ferent economic impacts [404]. In literature, [384] presents a load fore-
cast differentiable cost-oriented loss function by applying an optimal
piecewise linear approximation method and the Huber norm embedding
technique. The following study [385] develops a wind power generation
model using a cost-oriented loss function. The quadratic loss function
(5.1) is considered as follows:

Lq(ϵ) = (ŷ − y)2 (5.1)

where the forecasting error = ŷ − y, predictions are represented by ŷ
and the actual value is y.

Imbalance cost arises when forecasting error results in non-optimal
decisions. Thus, the cost C(ϵ) is calculated by generating various
HEMS scenarios of imperfect load forecast, quantifying the economic
costs associated in (5.2).

C(ϵ) = C(ŷ)− C(y) (5.2)

The cost-oriented loss function Lco(ϵ) has to satisfy the following
three conditions [383]:

1) Lco(0) = 0. There is no cost if the forecasting error ϵ is zero.
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2) min Lco(ϵ) = 0. The cost must be greater or equal to zero.

3) Lco(ϵ) is monotonic non-decreasing as ϵ moves away from zero,
or, in other words, it is a convex function such as f(x)′′ ≥ 0 ∀x.

Moreover, the imbalance cost function proposed for each household
has the property that it is asymmetric, i.e., Lco(−ϵ) ̸= Lco(ϵ), since the
associated economic impact of imperfect forecasts is asymmetric [404].

The cluster and individual household cost functions have been lin-
earized based on the methodology presented in [384]. Thus, they are
calculated as presented in (5.3):

Lco(ϵ) =

{
Aϵ if −∞ < ϵ < 0

Bϵ if 0 ≤ ϵ <∞
(5.3)

When predicting individual customer load consumption in HEMS,
it is important to think about the overall imbalance costs assumed by
retailer companies due to deviations within their portfolio. To account
for this associated cost resulting from errors in predictions, cost func-
tions are constructed using end-users historical data. An analysis of the
upward and downward imbalance of average prices is conducted using
the average costs from the previous month. Cost-oriented loss functions
are then used in Step 4 and Step 8 (refer to Figure 5.2). The HEMS
costs of load forecasting errors are quantified by calculating the ideal
cost with accurate forecasts and the actual cost with imbalance pen-
alizations due to forecasting errors. This study assumes deterministic
imbalance costs.

The methodology proposed for the cost-oriented FL load forecast-
ing model, shown in Figure 5.3, is based on [384] and comprises the
following phases:

• Phase 1: Cost-oriented loss function generation. Historical HEMS
optimization results are used to associate load forecasting errors
with economic imbalance costs.

• Phase 2: Cost-oriented loss function linear approximation. In
this step, a linear cost function is formulated using the discrete
imbalance cost and load forecast error data from Phase 1.
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• Phase 3: Cost-oriented loss function integration in FL models.
The cost-oriented loss function obtained in Phase 2 is integrated
within the FL models. This loss function is used to train the
global FL models and, most importantly, for personalizing the
FL model using individual household cost functions in Step 8.
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Figure 5.3: Cost-oriented loss function strategy for HEMS load forecasting.
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The methodology presented in Figure 5.2 is utilized for training the
HEMS load forecasting model in a distributed manner, with each house-
hold having its own personalized FL model. The resulting models are
then utilized during the daily operation of each HEMS, as illustrated
in Figure 5.4. The load forecast input data are fed into the FL model
in order to predict the next day’s load consumption. The day-ahead
consumption prediction, along with other data, is then used for HEMS
optimization. The HEMS output data is then used to create further
cost functions based on these historical results.

Figure 5.4: Cost-oriented loss function for HEMS load forecasting.

The details of the personalized FL procedure for HEMS load fore-
casting using a cost-oriented loss function are explained in Algorithm
1.

5.5 Case study and results

This section aims to verify the personalized FL effectiveness and eco-
nomic benefit of the methodology proposed. For this purpose, we pro-
pose a study with actual household data using different cost functions
in FL models in order to compare the results with traditional machine
learning models trained locally.

5.5.1 Dataset Description and Experimental Settings

This study utilizes the publicly available ”Smart Meter in London”
dataset [405], consisting of a large amount of electricity consumption
data gathered from 5,567 households in London between November
2011 and February 2014, with a 30-minute sampling interval. These
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Algorithm 1 Personalized Federated Learning in Smart Homes using
Cost-oriented loss functions.

1: Input: D = [D1, D2,...,DN ] historical data of N households within
cluster C, individual cost-oriented loss function Lco(ϵ)n, federated
iteration number Ifl, personalization iteration number Ip, central
model weights Ω, local model weights ω.

2: Could server execution:
3: Initialize global model weights randomly Ω0

4: for federated iteration i = 1, 2..Ifl do
5: Sn ← random set of n households ∈ C
6: Send Ω0 weights to Sn households
7: Client household execution:
8: for each household k ∈ Sn in parallel do
9: Client household k updates local copy of ωi,k

10: ωi+1,k ← householdWeightsUpdate(k, ωk)
11: Client household k sends ωi+1,k to Server
12: end for
13: Could server computes the global gradient:
14: Ωi+1 ←

∑
k∈K

nk
n ωi,k

15: Cloud server updates the Ωi+1

16: end for
17:

18: Send global model Ωfl to all households ∈ C for personalization
19:

20: ω0 = Ωifl

21: Client household execution:
22: for personalization iteration i=1,2..Ip do
23: Client household n personalizes ω0 by minimizing the Lco(ϵ)n

on the Dn dataset for Ip epochs.
24: end for
25: Output: Cost-oriented personalized FL models ωn
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data are utilized for training load forecasting models for the next 24
hours, required as input in the HEMS optimization problem.

The objective function and constraints of the energy management
system used in this study are based on previous work [406]. The ob-
jective function minimizes the electricity cost of purchasing power from
the grid. All households are located in the same region (London) and it
is assumed that they have inflexible PV generation and identical stor-
age capacity. The evaluation period for this case study is one month
(November 2013), using historical data backdated to this date to train
the different forecasting models. The cost-oriented loss functions, both
at household individual and cluster levels, are determined using the
HEMS optimization cost results from the previous month. The fea-
tures used for the load forecast include past consumption data from 1,
2, and 7 days before. A HFL structure is employed for this purpose.

The implementation of the deep neural network model is carried out
using PyTorch [407], while federated learning is enabled by the PySyft
library [408]. Table 5.2 presents the configuration of DNN models in-
tegrated with various loss functions.

Table 5.2: Hyperparameters of the deep learning model

Hyperparameter Value

Number of hidden layers 2
Hidden layers neurons (8,4)
Activation function relu
Learning rate 0.01
Dropout 0.2
Momentum 0.95
Batch size 24

It should be noted that the deep learning feed-forward neural net-
work hyperparameters analysis is not exhaustive, as it lies beyond the
scope of this research. However, a brief justification for the chosen
hyperparameter values is provided below.

The decision to set the number of hidden layers to 2 is based on the
understanding that increasing the number of hidden layers enhances the
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model’s complexity and its capability to capture hidden patterns within
the data. This choice permits a balance between preserving simplicity
and enabling the network to learn sophisticated patterns. The ReLU
activation function is well-known for its effectiveness in deep neural
networks. The learning rate determines the step size taken during each
parameter update, affecting the convergence speed. A typical learning
rate is 0.01, which enables a balance between faster convergence and
stability. Dropout is a regularization technique that helps prevent over-
fitting by randomly disabling a fraction of neurons during training. A
standard dropout rate is 0.2, which aids in preventing dependency on
specific neurons and encourages the deep neural network to generalize
better. Momentum is a parameter that affects the optimization process
by adding a fraction of the previous update to the current update step.
In deep learning, most practitioners set the momentum value between
0.9 - 0.99 without attempting to further tune this hyperparameter.
Ultimately, the batch size determines the number of training examples
processed in each iteration before updating the model parameters. In
this case, 24 records are processed in each iteration.

5.5.2 Learning frameworks

This study introduces three learning frameworks to evaluate and com-
pare day-ahead consumption forecast performance for households within
the same cluster. The proposed methods are:

1. Centralized Federated Learning (CFL): In this approach, a
central server coordinates all participating households during the
learning process. It selects random households within the same
cluster at the beginning of the training process and aggregates
the received model updates.

2. Local Learning (LL): This approach employs state-of-the-art
ML methods as a baseline for comparison. Each household has
its local prediction model trained exclusively on its historical con-
sumption data. Although this approach makes the model easily
adaptable to the consumption pattern, a large amount of histor-
ical data is necessary to make the model reliable and robust. RF,
MLP and MLR models are selected.
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3. Personalized Federated Learning (PFL): This approach is a
combination of the previous methods. A centralized global model,
common for each cluster, is trained first using a random set of
households. Then, this model is sent to each user of that cluster to
retrain the global model with their personal data, slightly modi-
fying the weights of the CFL model to adapt it to each user and
obtain better results. The PFL model is kept inside the end-
user premises and should be periodically retrained, along with
the CFL model.

The case study evaluates the federated learning and LL model ap-
proaches as illustrated in Figure 5.5. In Stage 1, a random set of house-
holds is selected to train and create the CFL model. In Stage 2, the
trained CFL models are utilized to build personalized federated learn-
ing models in a different set of randomly selected households within the
same cluster. A total of 13 models are evaluated, out of which 10 incor-
porate federated learning technology. To assess the effectiveness of the
federated learning proposal, various combinations of loss functions are
evaluated to determine the optimal strategy in terms of error and cost,
as illustrated in Figure 5.5. To this end, different sets of households
are used for training the CFL and for testing all FL and LL models.
This results in the creation of thirteen scenarios, each representing a
proposed model.

5.5.3 Clustering profiles and cost-oriented function
generation

To cluster households based on the similarity of their hourly consump-
tion profiles, the unsupervised learning algorithm K-Means [409] is em-
ployed. In this study, twenty different groups of end-users are created.
For the sake of clarity, Figure 5.6a) shows only three clusters out of
twenty to facilitate interpretation and reduce the number of lines in
the chart. Each thin solid line represents the average hourly consump-
tion of a household, with a different color depending on the group to
which it belongs. The thick dashed line represents the average daily
consumption of an entire cluster, which exhibits specific patterns in
terms of shape and magnitude. In this study, cluster 4 is chosen to
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Figure 5.5: Case study: consumption prediction approaches (CFL,
PFL, LL) with their respective loss function.
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evaluate the proposed methodology.

In Figure 5.6b), the blue lines depict the average consumption of the
houses used to train the CFL models, while the black lines correspond
to the houses used to test the CFL, PFL, and LL models.

Figure 5.6: Clustering end-users’ daily consumption patterns: a) dis-
plays three clusters and their associated consumption pat-
terns and b) shows average daily consumption of the house-
holds selected for training and testing within cluster 4.

As shown in Step 1a) of Figure 5.2, once the clusters have been
established, the next step is to calculate the cost-oriented functions
using the cost-oriented methodology represented in Figure 5.3. Table
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Table 5.3: Cost function coefficients A, B for training and testing
households.

ID used for training global FL models ID used for testing FL models

222 1625 1725 1821 2341 191 280 309 566 730 4234

A -0.166 -0.188 -0.185 -0.206 -0.199 -0.190 -0.181 -0.194 -0.200 -0.185 -0.185

B 0.215 0.208 0.218 0.231 0.208 0.208 0.216 0.233 0.237 0.197 0.212

5.3 displays the coefficients A and B resulting from Equation 5.3 for
individual households. For the entire cluster 4, the coefficients A =
−0.1854 and B = 0.2034 have been obtained, which are required for
training the CFL (B) model using the general cost function.

5.5.4 HEMS load forecasting results

This subsection presents the results of the consumption estimations for
November 2013. These predictions were used as input to run the HEMS
for each individual household to calculate the error of the learning
frameworks and their associated costs after optimization.

Table 5.4 displays the average performance in terms of error for each
learning framework and household. As expected, since the measure-
ment error metric is the MSE, models using loss functions with a quad-
ratic format rather than cost functions show less error. The diff column
represents how much more error in percentage each model has with re-
spect to LL-MLP, which has the lowest error rate on average. On
average, the LL obtains better error outcomes for two primary reasons.
Firstly, these models are trained for each house with their historical
data, which results in a better fit of the consumption pattern. Addi-
tionally, LL models use the quadratic function (5.1) as their loss func-
tion; therefore, the algorithms are trained to provide less error for this
metric. In the case of CFL, the error rises significantly, specifically in
those models where the quadratic loss function is not used but cost-
oriented instead (B and E). Last but not least, PFL models have, on
average, around 15% more MSE error than LL-MLP. This is because
personalization is carried out by retraining the CFL models with in-
dividual end-users cost functions, thus prioritizing cost minimization
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Table 5.4: Forecasting Mean Squared Error for each household tested.
Mean Error (MSE)

191 280 309 566 730 4234 Total % diff

CFL

(A) 0.566 0.110 1.057 0.209 0.617 0.151 2.713 9.38%

(B) 0.595 0.143 1.111 0.225 0.656 0.144 2.877 15.98%

(C) 0.558 0.112 1.062 0.205 0.614 0.149 2.703 8.97%

(D) 0.559 0.110 1.055 0.209 0.606 0.151 2.692 8.55%

(E) 0.618 0.146 1.142 0.226 0.657 0.139 2.929 18.11%

PFL

(A-P) 0.589 0.113 1.119 0.213 0.637 0.151 2.825 13.91%

(B-P) 0.578 0.117 1.159 0.217 0.647 0.154 2.874 15.89%

(C-P) 0.591 0.114 1.131 0.212 0.642 0.164 2.857 15.17%

(D-P) 0.581 0.114 1.136 0.224 0.631 0.151 2.841 14.53%

(E-P) 0.577 0.116 1.164 0.222 0.635 0.152 2.867 15.60%

LL

RF 0.532 0.112 0.981 0.210 0.539 0.130 2.507 1.06%

MLP 0.503 0.102 1.012 0.202 0.531 0.129 2.480 0.00%

MLR 0.530 0.109 1.032 0.209 0.598 0.137 2.617 5.52%

rather than error.

Figure 5.7 depicts a 48-hour extract of the load forecasting perform-
ance for households 566 and 4234, displaying the profiles of the models
with the least error for each method. It is worth mentioning that the
performance of the CFL model may vary depending on the consump-
tion pattern of the test household, as it may not fit the generalization
of the cluster model satisfactorily, as is the case in Figure 5.7 b). In
such cases, personalization helps the global CFL model to obtain better
results and adjust the predictions to the consumption pattern of the
household.

The costs associated with the optimization of the HEMS using the
learning frameworks proposed in subsection 5.5.4 for load estimation
are summarized in Table 5.5. The results are presented in the same
way as the previous table (Table 5.4), with the exception that this
table displays the total costs for the houses used in the test case study.
The Total column represents the sum of all costs, and % diff denotes
the increase in cost relative to the most affordable model, which is the
PFL-(E-P). The outcomes confirm that all PFL models result in lower
costs than any other method, despite having the highest MSE error.
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Figure 5.7: CFL, PFL and LL predictions for a) client 566 and b) client
4234, who did not participate in the CFL training model
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Table 5.5: Evaluation cost of HEMS using different approaches.
Cost (EUR)

191 280 309 566 730 4234 Total % diff

CFL

(A) 179.42 137.15 232.93 128.54 166.87 89.98 934.90 3.40%

(B) 176.36 142.59 231.88 125.48 164.84 85.12 926.27 2.45%

(C) 176.35 137.60 231.25 125.75 164.32 86.10 921.37 1.90%

(D) 177.64 137.87 232.34 127.81 164.93 90.56 931.15 2.99%

(E) 177.69 144.71 232.73 125.88 164.84 81.65 927.51 2.58%

PFL

(A-P) 173.61 136.92 229.13 124.65 161.06 81.03 906.40 0.25%

(B-P) 172.84 137.53 230.17 124.32 161.08 80.26 906.20 0.23%

(C-P) 172.92 137.04 229.65 124.28 160.78 81.40 906.08 0.21%

(D-P) 172.98 136.67 228.96 125.61 159.78 80.71 904.72 0.06%

(E-P) 171.87 137.22 229.69 124.93 160.12 80.33 904.16 0

LL

RF 176.49 137.34 226.91 126.32 160.58 81.11 908.74 0.51%

MLP 173.47 136.06 231.27 125.84 161.14 82.46 910.24 0.67%

MLR 177.09 137.31 232.16 126.47 166.83 81.69 921.55 1.92%

Figure 5.8 provides a visual summary of the results presented in
previous tables (Table 5.4 and Table 5.5). The graph shows the total
cost of the tested houses in blue on the left axis and the sum of the
obtained errors in gray on the right axis. The X-axis indicates the three
different learning frameworks with their respective models.

It is worth noting that the accuracy of FL models, even after person-
alization, still varies depending on the user. This could be due to the
fact that the consumption data of the households selected for training
may have somewhat different consumption profiles, as seen in Figure
5.6. Ideally, this could be improved by using a larger number of clusters
in the data set, resulting in a smaller number of users in each cluster
with much more similar profiles. However, this increases complexity,
so a middle ground must be found.

As expected, the PFL framework has the lowest total cost, but it
also has the highest error compared to the other methods.

5.5.5 Sensitivity analysis

Suppose that a new household, whose consumption pattern aligns with
cluster 4, wants to predict its energy consumption but has very few
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Figure 5.8: Case study results: Sum of households costs and error.

days of past consumption data available. In such a case, how would
the three types of models analyzed in the preceding section perform
in terms of error? To answer this question, we conducted a sensitivity
analysis to examine how the MSE changes based on the number of past
days that can be utilized for personalizing the FL model, and how the
ML benchmark models perform using only these limited past days for
training. It is noteworthy that the CFL model would not be affected
by low data availability since it does not use historical data from the
local test houses to predict energy consumption for unseen households.

To investigate how the amount of available historical data in each test
household affects our framework and learning models, we conducted a
sensitivity analysis by simulating the case study proposed in Figure 5.5
with varying numbers of historical days (d = 1, 3, 7, 14, 21, 30, 90,
365) to retrain PFLs and train LLs. Table 5.5 presents the average test
households error of this analysis.

Figure 5.9 displays the performance of the CFL, LL, and PFL models
under varying amounts of available historical data, with a logarithmic x-
axis scale. For LL, there is a clear trend of improving error performance
as the amount of available historical data increases, which aligns with
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Table 5.6: Sensitivity analysis of the availability of historical data.

Historical data used for personalization and LL training

1 3 7 14 21 30 90 365

Average CFL 0.349 0.349 0.348 0.347 0.349 0.348 0.348 0.3375

Average LL 0.453 0.405 0.398 0.382 0.366 0.366 0.355 0.3311

Average PFL 0.356 0.361 0.361 0.361 0.368 0.368 0.358 0.3546

the common intuition that more historical data yields better model
learning. However, for federated learning models, the error remains
relatively constant, indicating that CFL is capable of generalizing well.
As expected, the MSE error for PFL is slightly higher than that for
CFL, since PFL focuses on minimizing cost rather than quadratic error.
With one month of historical data available, the local models exhibit
an error rate similar to the FL approaches. After one year, the LL
framework offers the most minor error rate, but this does not imply
the least cost, as demonstrated in the previous Section 5.5.4.

Figure 5.9: Sensitivity analysis for different historical data training.

In summary, this sensitivity analysis demonstrates that even with
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limited available data, reliable consumption predictions can be made
for households within the same cluster.

5.6 Conclusions

This chapter presents a novel personalized federated learning meth-
odology for home energy management systems, designed explicitly for
demand forecasting. The PFL method incorporates cost-oriented loss
functions, which minimize the risk of imbalance cost penalties for end-
users, indirectly contributing to maintaining a balanced electricity grid.
The performance of the proposed federated learning framework was
evaluated and compared with local learning ML models. The results
show that the PFL approach provides the lowest cost in all its models,
compared to LL and CFL, saving on average more than 1% and 3%,
respectively. Interestingly, PFL exhibits the largest average quadratic
error rate, around 14% higher than the LL approach. Furthermore, the
sensitivity study revealed that FL frameworks are essential for making
reliable consumption predictions for houses with unknown historical
data availability, as the FL frameworks maintain error performance re-
gardless of the data available, unlike LL models. Additionally, LL mod-
els outperform the FL approach in terms of error after three months of
past data available.

Despite the promising results of the proposed federated learning
framework for home energy management systems, its implementation
in energy systems faces several technical challenges related to data het-
erogeneity, improving privacy-preserving techniques, overcoming com-
munication constraints, and exploring federated learning for real-time
data processing. Data format and granularity collected from different
households could be different, leading to data heterogeneity. To im-
prove FL security and prevent attacks, privacy-preserving and cyber-
security strategies must be enhanced. Communication between edge
devices and central servers must be optimized to minimize latency and
bandwidth requirements. Implementing federated learning for real-time
data processing is another crucial challenge for demand-response and
grid management applications. Thus, the feasibility of the proposed
method depends on the edge devices’ capabilities to perform distributed
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local training, which may pose additional challenges in terms of com-
putational power and storage capacity. Fortunately, recent advances
in Information technology communications will unlock some of these
current barriers, such as real-time communication.

In the context of deploying federated learning in a real environment,
future studies in this area could explore hardware-in-the-loop invest-
igations. This experimental approach involves integrating and testing
real hardware within a simulation environment to evaluate its perform-
ance and behavior prior to real-world implementation. To conduct such
an experiment, key steps must be followed. First, integrating hardware
components is necessary to establish the federated learning setup. This
involves ensuring compatibility, establishing communication protocols,
and synchronizing data collection and transmission. Furthermore, it
is crucial to implement a robust data security framework to protect
sensitive consumer data during the hardware-in-the-loop experiment.
This framework should incorporate encryption techniques and other
privacy measures to ensure data privacy and security. Scalability is an-
other essential concern to consider in terms of efficient computational
resources. When transitioning to a real-life environment, scalability
constraints become even more significant as the experiment is conduc-
ted with a larger number of participants or households and, therefore,
devices.

In summary, conducting a hardware-in-the-loop experiment would
provide researchers with valuable insights into the performance, beha-
vior, and scalability of FL. This investigation plays a crucial role in
ensuring the proper functioning of FL approach prior to actual deploy-
ment.

Future work could explore incorporating a cybersecurity layer into
this approach to enhance its safety against potential attacks. Differ-
ent deep neural network architectures, such as LTSM -designed expli-
citly for time-series estimations- can be analyzed to improve model per-
formance further and reduce costs. Additionally, to capture the time-
dependency of cost functions, time-varying cost-oriented loss functions
could be investigated.
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Conclusions

This chapter presents the main findings of this thesis in response to the
research questions posed in Chapter 1, Section 1.2. It also provides a
summary of the contributions and proposes future lines of research.

6.1 Answers to Research Questions

This thesis addresses five research questions, which have been answered
throughout the studies presented in the chapters of the thesis.

RQ1) What novel data-driven energy services are likely to
emerge or could benefit from the vast daily amount of operational
and non-operational data related to distribution networks?

To identify the emerging or enhancing data-driven energy services
resulting from the digitization of the distribution network, an exhaust-
ive state-of-the-art study was conducted in Chapter 2. The primary
energy-related services found were categorized into three major groups:

• Distribution grid operation. Responsible for ensuring the
correct functioning of the distribution network. This category in-
cludes real-time operation and monitoring services, allowing real-
time network state observability. Fraud detection and predictive
maintenance of assets involved in the low-voltage network are also
improved thanks to continuous sensorization and measurement of
their condition.
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• Flexibility management. Responsible for the flexibility mar-
ket. This category includes prediction models for both generation
and consumption, as well as available flexibility. Energy manage-
ment systems and aggregated flexibility services for DSOs (to
avoid network congestion) or BRPs (to avoid deviations in their
portfolio) are also benefiting from digitization and high data avail-
ability. P2P trading, which aims to find a reliable way to exchange
energy between different customers, local energy communities,
and operators, is enabled thanks to Distributed Ledger Techno-
logy.

• Planning. Responsible for optimal investment strategies that
contribute to long-term planning in the distribution grid. This
category examines grid status and expansion criteria, selects the
most appropriate technologies and optimal geographical locations,
and contributes to grid support during a settled planning hori-
zon. Mid- and long-term forecasting plays a crucial role in this
category, estimating the associated costs for achieving specific
planning goals or criteria while meeting the forecasted demand.

These innovative data-driven energy services are offered to a broad
range of stakeholders involved in the energy domain, including DSOs,
BRPs, prosumers, and aggregators. The purpose is to improve their
performance and encourage the creation of novel business models in the
energy sector to take advantage of the massive data being generated
and underused. The scope of this thesis focuses on the category of
flexibility management, specifically on intelligent energy management
systems.

RQ2) Which Artificial Intelligence techniques are utilized in the
development of these data-driven energy services in the distri-
bution network, and how do they contribute to enhancing the
sustainability, efficiency, and reliability of the system?

Once the innovative services have been identified, an exhaustive re-
view of the most recent studies implementing AI techniques in each
is carried out in Chapter 2. Key findings state that ensemble mod-
els present better results than single ML models by combining differ-
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ent data-driven algorithms. In recent years, deep learning algorithms
have gained importance for time series prediction tasks and outperform
most benchmark ML and statistical algorithms. Concerning classifica-
tion tasks, traditional ML algorithms such as SVM or RF yet provide
excellent results. For instance, the RF classifier outperforms when it
comes to supervised classification tasks, while LSTM recurrent network
is the predominant algorithm for time series forecasting. Unsupervised
learning methods are mainly responsible for customer segmentation,
building efficiency clustering and consumption profile grouping for non-
technical losses detection. Finally, RL is widely applied in the literature
to schedule flexible household assets optimally. However, the scarcity
of physical experimentation in a realistic environment prevents its ap-
plication in real-world buildings and households.

The main benefits of implementing AI methods within the distribu-
tion grid domain are addressed:

• Allow real-time distribution grid status estimation and gain ob-
servability, enhancing the monitoring and locating possible events
in the network to provide a tool that enables the operator to react
more rapidly when a fault or event occurs.

• Performing the predictive maintenance service increases the dis-
tribution network security and availability while diminishing the
DSO costs.

• Use the aggregated flexibility available to avoid grid congestion.

• Optimal and reliable electricity trading among customers.

• Optimal medium and long term distribution grid planning

To conclude, equipping the distribution network with sensors to col-
lect data is crucial for developing innovative energy services. Imple-
menting data-driven techniques in energy service development is es-
sential for creating a reliable, secure, and efficient Smart Grid. These
methods have been shown to provide better performance than stat-
istical benchmark procedures. However, challenges still need to be ad-
dressed to extend and improve AI applications in power systems. These
challenges mainly include ICT infrastructure, data collection and gov-
ernance, data integration and sharing, data processing and analysis,
security and privacy, and the need for professionals in Big Data ana-
lytics.
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RQ3) How can electricity consumers and local energy com-
munities contribute to enhancing sustainability through emis-
sions reduction, and how can they be engaged and incentivized?

In a recent survey conducted by the EU, 90% of European citizens
agreed that CO2 emissions must be reduced to achieve the 2050 emis-
sions neutrality target [14]. This motivation led to the development in
Chapter 3 of a novel environmental-based HEMS strategy focused on
minimizing household-related emissions. Then, this strategy evolved
into a hybrid-based approach, combining GHG and electricity cost min-
imization.

• Environmental-based strategy. The key idea behind the novel
environmental-based HEMS strategy is to empower end-users to
actively participate in reducing GHG emissions by leveraging flex-
ible assets such as batteries and controllable loads. The HEMS
activates flexibility and adjusts end-users consumption based on
the GHG emissions associated with the generation source used to
meet their demand. This source can be self-consumption, such
as batteries or photovoltaic panels installed behind the meter or
from the electricity grid network. However, GHG emissions alone
cannot represent environmental performance since they only ac-
count for emissions during the operational life. Instead, the Life
Cycle Assessment (LCA) framework is employed in this thesis,
which considers emissions from all processes associated with each
generation technology, including raw material extraction, man-
ufacturing, operation, and end-of-life. To this end, the Global
Warming Potential (GWP) indicator is used as a reference in this
work, which measures the CO2 equivalent per kWh generated by
each generation source.

However, the environmental-based strategy alone does not address
the complex trade-offs between cost and emissions. Therefore, a hybrid-
based approach was developed.

• Hybrid-based HEMS. It is a multi-objective strategy that com-
bines emissions with cost reduction. This approach seeks to
achieve the best trade-off between electricity cost and GHG emis-
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sions minimization, considering the life cycle analysis of the gen-
eration sources used to meet household demand.

The hybrid-based approach enables the end-user to modify the
priority of their objective function in a fast and flexible manner
by assigning weights to the multi-objective function. The end-
user can then decide whether to prioritize minimizing the cost,
reducing the environmental impact of their electricity consump-
tion or a trade-off between these two objectives. This makes the
HB HEMS an excellent option to encourage end-users to be en-
gaged and participate in the fight against climate change without
incurring high economic expenses.

After developing the environmental strategy at the consumer level,
the concept is expanded to energy communities. For this purpose, a
local energy management system has been created, consisting of a bat-
tery and centralized photovoltaic generation, the generation of which is
distributed in an agreed manner among the members of the community.
Together, they can agree to prioritize the reduction of emissions and
minimize the total cost of the electricity bill.

The LEC optimization results demonstrate the feasibility and satis-
factory performance of the proposed approaches. The price-based op-
timization achieves approximately 23% savings compared to the LEC
baseline consumption. Similarly, the environmental strategy reduces
about 6% of GHG emissions associated with consumption compared
to the baseline. Furthermore, the environmental strategy also reduces
costs by 18%, making it a sustainable and affordable LEC optimization
choice. One significant finding is that buying energy directly from the
grid could be more sustainable than using the battery with the sur-
plus energy from the PV generator in case of low penetration of CO2

generation in the energy mix.

RQ4) Given the need to protect user data privacy, which ma-
chine learning distributed method can be applied to train energy
management system prediction models without compromising
personal data?

In recent years, federated learning, a machine learning method also
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known as collaborative learning, has gained notoriety for training pre-
diction models involved in EMS methodologies in a distributed way
without compromising personal data. This ensures that end-users in-
formation remains on their devices, ensuring the privacy and security
of their data. The central server only receives the prediction model
weights aggregated from several households, which is insufficient to in-
fer personal data about individual users.

However, the challenge of creating a unique global ML model com-
mon to a group of customers is that the global model may not fit all
the customers’ patterns. Chapter 5 proposes personalization in fed-
erated learning as a solution to this problem in order to understand
user behavior and adapt to it. It consists of retraining the centralized
model using user-specific data to build a personalized model for each
user. Personalized FL is essential in EMS-related solutions because it
enables the creation of tailored forecasting models that are able to cap-
ture user behavior and adapt the model to their patterns, providing
more accurate and reliable predictions for individual users.

RQ5) How can cost-oriented loss functions in EMS prediction
models help to minimize imbalance penalizations due to energy
consumption estimation errors?

Currently, the majority of load forecast applications use the quad-
ratic loss function. However, it is not a suitable approach when over-
consumption and under-consumption have different economic impacts,
like deviation penalizations. In such cases, the prediction model should
be trained to minimize the expected cost of imbalances rather than just
the mean squared error (MSE).

To address this issue, this thesis proposes in Chapter 5 an innov-
ative federated learning methodology for Home Energy Management
Systems (HEMS). The presented approach incorporates cost-oriented
loss functions when training demand forecasting models. This thesis
tests different combinations and types of loss functions for both global
and personalized federated learning models. By minimizing the expec-
ted cost of imbalances, the HEMS can better manage the risks associ-
ated with inaccurate energy consumption predictions, which may lead
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to costly penalties from energy suppliers. Additionally, cost-oriented
loss functions can optimize the trade-off between cost and accuracy,
allowing the HEMS to make more informed decisions about how to
balance energy supply and demand. This methodology, tested using
actual household data, has demonstrated that using cost-oriented loss
functions achieves the lowest costs associated with imbalances. Addi-
tionally, the study has proven that global federated learning models
enable households with similar consumption patterns but without ex-
tensive historical consumption data to achieve accurate load prediction
outcomes through collaborative learning models.

6.2 Contributions

The major contributions for each chapter are summarized below:

• In Chapter 2, the AI methods with potential applications in
distribution grid energy services are analyzed. These applica-
tions include operation and monitoring, predictive maintenance,
non-technical losses detection, forecasting, flexibility management
and planning of distribution grids. In addition, the relation-
ships between the distribution grid applications are presented and
mapped, proving that multiple services can be offered as a single
clustered service to different stakeholders. Furthermore, future
opportunities and challenges for the application of AI in distri-
bution grids are identified.

• Chapter 3 introduces an energy management system for a house-
hold and proposes a novel strategy to optimize the system opera-
tion by minimizing the greenhouse gas emissions associated with
user consumption. To achieve this goal, the emissions associated
with the generation sources used are quantified hourly, includ-
ing those from self-consumption sources such as batteries and
photovoltaics, as well as emissions associated with the hourly
energy mix of the national electrical system, which varies de-
pending on the availability of renewable sources. Furthermore, a
degradation battery model is implemented in the HEMS, which
takes into account calendar and cycling aging constraints. Then,

165



Chapter 6 Conclusions

a hybrid-based strategy that combines environmental and cost-
minimization strategies is proposed. The users give the weight
that they consider appropriate to the approach that suits them
best, and they can change it whenever they want. The proposed
hybrid-based strategy enables the end-users to have a more influ-
ential role in the climate change solution by giving more weight
to the multi-objective function’s environmental component.

In line with the latter challenge, federated learning strategies that
could enable the implementation of some of the identified data-
driven services without compromising data privacy and secur-
ity can be identified and compared to centralized learning ap-
proaches. On the other hand, potential data-driven services of
interest for transmission grids could be investigated.

• Chapter 4 extends the previous methodology to the scenario
of a local energy community, which includes a centralized PV
system and a battery. Thus, energy communities can offer not
only energy and economic savings but also an opportunity to
encourage and involve users in the fight against climate change.
Price and environmental-based LEC optimization strategies are
explored, resulting in promising outcomes for reducing electricity
expenses and emissions.

• In Chapter 5, for the first time, a cost-oriented loss function
is integrated with personalized federated learning (FL) models
for load forecasting in HEMS. This approach ensures the pro-
tection of consumers’ data privacy by avoiding the sharing of
their smart meter information. The methodology demonstrates
and validates the potential cost savings associated with imbal-
ances through the use of cost-oriented personalized FL models in
HEMS for end-users with diverse availability of historical data.
Furthermore, this thesis estimates accurate day-ahead consump-
tion profiles and imbalance cost savings for households without
historical data using federated models.
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6.3 Future work

Potential future research directions based on the contributions of this
thesis are described by chapter:

• Chapter 2. The energy sector is increasingly interested in util-
izing data science and AI capabilities to overcome their daily chal-
lenges However, despite the potential benefits, the application of
big data methods in the energy sector is not yet fully matured.
This brings new opportunities and future research directions for
this emerging and promising research area. Furthermore, with AI
technology constantly evolving at an ever-increasing speed, there
is a continuous need for researchers to adapt the current state of
the art to these recent technologies. In addition, the expected in-
crease in data availability in the future will result in even greater
accuracy and possibilities for energy services. However, to fully
boost the potential of the distribution grid data, it is crucial to ad-
dress some challenges, including IT infrastructure, data collection
and governance, data integration and sharing, data processing
and analysis, security and privacy, and the need for professionals
with expertise in big data and AI analytics.

• Chapter 3. The price, environment and hybrid-based strategies
proposed in Chapter 3 for HEMS demonstrated promising res-
ults in reducing costs and GHG emissions without incurring high
expenses. However, further investigation is necessary to under-
stand how this strategy can be applied on a larger scale. Future
research could explore the implementation of hybrid-based energy
management systems in larger communities or industrial settings,
utilizing more flexible assets and incorporating external flexibility
requests. While the thesis primarily focused on energy manage-
ment systems with PV generation and storage units, other flex-
ible assets could be integrated into the proposed energy systems
to further optimize energy use. For instance, integrating electric
vehicle charging stations and flexible loads.

• Chapter 4. Similar to the findings in Chapter 3, the price-
based and environment-based strategies proposed in Chapter 4
for local energy communities have demonstrated the potential for
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reducing overall LEC energy costs and GHG emissions without
incurring high expenses. To further improve these strategies, fu-
ture research could incorporate dynamic sharing coefficients that
vary hourly and have different values on each day. Moreover,
adding flexible elements within each building belonging to the
energy community could optimize their behavior alongside the
centralized battery. Additionally, distributed federated learning
techniques could be analyzed for LEC forecasting tasks, such as
the one presented in Chapter 5. Furthermore, exploring the par-
ticipation of a LEC in a Flexibility Market, where it can offer
its flexibility in exchange for economic remuneration, could be
another future research path.

• Chapter 5. The personalized federated learning models pro-
posed in Chapter 5 achieved accurate load forecasts while pre-
serving consumers’ privacy. However, privacy-preserving feder-
ated learning methods still require further development. Future
research could investigate the incorporation of a cybersecurity
layer to enhance the safety of the approach against potential at-
tacks. Different deep neural network architectures, such as LTSM,
which are explicitly designed for time-series estimations, could be
explored to further improve the performance of federated learning
models while maintaining strong privacy data guarantees. Fur-
thermore, to capture the time-dependency of cost functions, re-
searchers could investigate the use of time-varying cost-oriented
loss functions.
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Appendix B

Detection of measurement errors
tool

In this thesis, a tool for error detection is developed to avoid errors when
using raw datasets. The tool is designed to identify and solve data an-
omalies, such as outliers or missing values in the raw data sources used
in this study, in order to guarantee optimal data quality and algorithm
effectiveness. Depending on the anomaly detected, an automatic cor-
rection is performed according to the preferences set, using analytical
tools ranging from Statistics to Artificial Intelligence, including Big
Data processing techniques. Additionally, it is possible to report the
detected anomalies. This appendix provides a brief overview of this
tool and its functionalities.

B.1 Tool description

For the deployment of smart grids, a large amount of metering and
sensing devices are being installed at different voltage levels, exponen-
tially increasing the amount of data available. These data are vital for
the operation and control of the grid; however, they may contain an-
omalies such as outliers or missing records. Therefore, this tool ensures
high data quality during the operation of power system-related services
performed in this thesis.

The Detection of Measurement Errors service (from now on, DoME)
offers the possibility of analyzing time-series data sources coming from
a great variety of fields and identifying eventual anomalies through the
automatic application of Machine Learning, Statistics and Big Data

209



Appendix B Detection of measurement errors tool

processing methods. Depending on the user’s preferences and the type
of anomaly detected, a specific correction is implemented in the data
set. This ensures accurate, insightful, and high-quality input data for
services utilizing DoME. DoME works on-demand when the energy
service starts running and gets the input data. When imputing val-
ues to missing data, random forest and K-Nearest Neighbors (KNN)
techniques are used. This tool is also designed to be used with Spark,
as presented in Figure B.1. This service can clean and process large
amounts of data, thus enabling data scalability.

The most suitable technique to address missing data imputations
or anomalies might vary depending on the service requirements. AI
methods are a powerful tool for assigning predictive values in place of
missing values. The main advantage of using AI and Big Data ana-
lysis is that it automates and improves the error detection process of
the ever-increasing energy-related measured data. However, in certain
cases when the data needs to be imputed and analyzed fast, Statistics
benchmark methods like mean and median are applied.

B.2 Methodology for the tool development

The DoME tool follows the workflow presented in Figure B.1. The
first diagram shows the available options for non-Big Data files clean-
ing process. The algorithm makes sure that no data is missing in the
case of time series. However, if the dataset needed is used for train-
ing tasks (data for training models option), the missing data rows are
eliminated instead of imputing a non-true value since the missing data
records account for a small amount of the total. In data for opera-
tion, the next step notifies the service user of the row/columns with
missing data, if requested in the DoME setup. The following step is
data analysis to detect outliers that do not correspond with the rest of
the data. Depending on the service requesting the DoME, the anom-
aly is eliminated and/or reported. For example, the fraud detection or
predictive maintenance service will choose to be notified of anomalous
data, which may imply that fraud is being committed in the network or
the malfunctioning of a piece of equipment. Then, the DoME performs
the task of imputing or deleting rows with missing values, depending

210



B.2 Methodology for the tool development

on whether the dataset is used for training tasks. By imputing values,
the dataset size remains the same. Only the empty records which were
either missing or deleted due to anomalies are now filled with predicted
values. The second diagram describes the DoME process for Big Data
files. Spark is an open-source parallel processing framework for run-
ning large-scale data analytics applications across clustered computers.
It can handle both batch and real-time analytics and data processing
workloads. In this context, DoME uses Spark to process and clean the
data, returning clean datasets with the required quality.
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Figure B.1: Error detection tool flowchart.

Some functionalities have been eliminated when dealing with Big
Data files since not all the libraries used for smaller files (first diagram)
allow to work computationally in a distributed manner, as Spark re-
quires.

B.2.1 Missing data imputation methods

The missing values should be replaced with rational records to offer the
data-driven services a completed dataset. The approach to handling
missing values is called Imputation. Several Imputation techniques are
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applied and offered in this service, ranging from Statistics to Artificial
Intelligence.

B.2.1.1 Statistics methods

Univariate imputation

The following methods are used as the imputation value for the Stat-
istical estimation of the missing data.

• Mean. This method replaces missing values with the mean of the
available records in that column. It is a fast imputation method;
however, it can provide imputations far from the true value if
the data do not follow a normal distribution. In addition, mean
values may be influenced by outliers.

• Median. Similar to mean imputation, this method replaces miss-
ing values with the median of the available values in that column.
It is a more robust method than mean imputation since it is not
affected by outliers.

• Most frequent value. This method replaces missing values with
the most frequent value in that column. This method is typically
used for categorical data.

• Zero values. This method replaces missing values with zeros. It
can be useful when missing values indicate that the variable did
not occur or have a value of zero. For instance, PV generation at
night.

Interpolation: Interpolation is a mathematical method that adjusts
a function to the dataset and uses this function to extrapolate the
missing data. The simplest type is linear interpolation, but polynomial
is also available in DME, indicating the degree.

• Linear. This method assumes a linear relationship between known
data points and calculates the missing values accordingly.

• Polynomial. This method fits a polynomial function to the avail-
able data and uses it to estimate the missing values. It is useful
when there is a non-linear relationship between the variables.
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B.2.1.2 Artificial Intelligence methods

Multivariate Imputation (Machine Learning techniques)
For this imputation technique, a distributed set of observed data es-
timates a set of imputation values for the missing data. A Multiple
Imputation by Chained Equations (MICE method) is applied in this
method.

• Light Gradient Boosting Machine. It is a Multiple Imputa-
tion by Chained Equations (MICE) missing data in a dataset
through an iterative series of predictive models. In each itera-
tion, each specified variable in the dataset is imputed using the
other variables in the dataset. These iterations should be run
until it appears that convergence has been met.

• Random Forest. This method fits a random forest model on
the observed part and then predicts the missing part. [410]

• KNN. Each sample of missing values is imputed using the mean
value from k nearest neighbors found in the training set. Two
samples are close if the features that neither is missing are close.

There are trade-offs between the proposed missing imputation op-
tions. Using one method or another will depend on the service’s ne-
cessary specifications that need clean data. The key points are the
following:

• Execution time (best to worst): Univariate, Interpolation, Mul-
tivariate Imputation.

• Imputation quality (best to worst): Multivariate Imputation, In-
terpolation, Univariate.

B.2.2 Outliers detection methods

The error detection tool offers two methods to detect outliers.

IQR method: The Interquartile Range (IQR) is often used to detect
outliers in data, based on the concept of the quartiles of a distribution.
It follows these steps:
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1. First, calculate the IQR range for the data, which is calculated
as the difference between the third quartile (Q3) and the first
quartile (Q1).

IQR = Q3−Q1 (B.1)

2. Calculate the lower and upper bounds for detecting outliers are
defined. Any data point that falls outside these bounds is con-
sidered an outlier. The choice of 1.5 as the multiplier is arbitrary
and can be modified as needed in this tool.

3. Upper bound: Add 1.5IQR to the third quartile (Q3). Any num-
ber more significant than this is considered an outlier.

Upperbound = Q3 + (1.5IQR) (B.2)

4. Lower bound: Substract 1.5IQR to the first quartile (Q1). Any
number less significant than this is considered an outlier.

Lowerbound = Q1− (1.5IQR) (B.3)

The IQR method is robust to outliers and can be useful for de-
tecting them in datasets with skewed distributions or outliers that
are not extreme. However, it may not work well for datasets with
extreme outliers or small sample sizes.

Mean-std difference method: This method deletes the outliers
that are above and below the mean value minus the standard deviation,
multiplied by a parameter that can be modified:

Outlier = (mean± std) ∗ Constantparameter (B.4)

B.2.3 DoME workflow

The operational input parameters for this tool are listed and described
in Table B.1. Many have already been explained in the prior section,
but others are defined here for the first time.
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Figure B.2 illustrates the execution process of the DoME tool. De-
pending on the selected input parameters (see Table B.1), the tool will
perform differently. In this visual example, the selected input vari-
ables follow the light blue arrows until reaching the output file, which
contains clean and error-free data.
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Table B.1: DoME parameters description.
Parameters Description

Pre-training models (bool) If True, missing data will be deleted

Outliers detection (bool) If True, the outlier detection is performed and saved in a text file

missing detection (bool) If True, the missing data detection is performed and saved in a
text file

outlier methods (simple, IQR). simple: easy way of detecting outliers using the standard
deviation. ’IQR’ method.

IQR coefficient (float >1) Value needed to calculate the IQR method.

Simple coefficient (float) Value that sets the outlier detection range for the ’simple’ outlier
detection method. The bigger the coefficient is, the stricter the outlier
detection becomes.

Outliers deletion (bool) If True, outliers are deleted, and a missing value is imputed af-
terwards.

Missing imputation
method

(mean, median, most frequent, micerf, multivariate, KNN, linear, poly)
The ”micerf” imputes the missing data using Random Forests and the
other columns as input training data to estimate the missing value
smartly and automatically. If the dataset has only one column, micerf
can not be selected (linear imputation runs instead). Micerf, multivari-
ate and KNN use ML techniques for missing data imputation.

order (int) If missing method = ’poly’, this parameter indicates the polynomial
order.

plot visualization (bool) If True, plots of each step are saved (raw data, anomalies deleted)

missing data visualization (bool) If True, plots regarding missing data in the raw dataset are saved.

missing threshold (float <1) Parameter that sets the maximum acceptable limit of missing
data in the input raw dataset. If the missing data threshold = 0.1, the
dataset should have less than 10% of missing records in the dataset. If
higher, a warning sign/text pops up.

outliers threshold (=float <1) Parameter that sets the maximum acceptable limit of out-
liers in the raw input dataset. If the outliers threshold = 0.05, the
dataset should have less than 5% of outliers in the dataset. If higher, a
warning sign/text pops up.
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B.3 Example of tool application in thesis

This section provides a use case to help understand the performance
and functionality of DoME during the development of this thesis.

Specifically, the case study is taken from Chapter 4, where DoME was
used to clean data for several scheduled generation sources in Spain,
which were necessary to calculate the total hourly GWP of the national
electricity mix. To provide context, the objective was to calculate the
hourly GWP of the Spanish electrical grid from March to December
2022, in order to use these indicators as input for the environmental
and hybrid-based LEC optimization approach.

For this case study, two datasets were chosen from the Spanish Elec-
tricity Market database: anthracite and lignite coal generation. How-
ever, it was discovered that a significant number of data points were
missing since the database did not provide information for hours when
there was no generation. This is logical as the share of carbon gener-
ation units in the energy mix is decreasing due to the pollutants they
release into the atmosphere. It is common for databases to delete the
date and time if the values are 0 in order to conserve storage space.

Figures B.3 and B.5 show the raw data extracted from the database
for hard coal and lignite, respectively. The results or KPIs obtained
after the data cleaning for each dataset are presented in Tables B.2 and
B.3.

Table B.2: KPIs obtained for Lignite data cleaning with DoME.

KPIs Value

Total data 7147.00
Missing data 2057.00
Share missing data 28.78%

To handle the missing datetime values, DoME applies the zero-value
imputation method since it is known that the missing values were due
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Table B.3: KPIs obtained for Hard coal data cleaning with DoME.

KPIs Value

Total data 7299.00
Missing data 1942.00
Share missing data 26.61%

to the actual value being zero.

Finally, Figures B.4 and B.6 display the resultant cleaned data files,
which are now ready for further utilization.

Figure B.3: Raw hard coal generation dataset.
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Figure B.4: Cleansed hard coal generation dataset.

Figure B.5: Raw lignite generation dataset.

Figure B.6: Cleansed lignite generation dataset.
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