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PHDR CRC Physical Header Cyclic Redundancy Check.

PL Number of Payload Bytes.

PPP Point-to-Point.

PSM Power Saving Mode.

RC Radio Configuration.

RCS Reassembly Check Sequence.

REP Repeated Flag.

RF Radio Frequency.
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RFT Receiver-Feedback Technique.

RSSI Received Signal Strength Indicator.

RT Retransmission Timer.

RU Resource Unit.

SC-FDMA Single Carrier Frequency Division Multiple Access.

SDNV Self-Delimiting Numeric Values.

S-GW Serving Gateway.

SCHC Static Context Header Compressor.

SF Spreading Factor.

SIB System Information Block.

STA Station.

ToA Time-on-Air.

UB Uncompressed Bitmap.

UE User Equipment.

ULE Ultra Low Energy.

UNB Ultra Narrow Band.

WG Working Group.

WuR Wake-up Radio.

WuR-CTC Cross-Technology Communication using Wake-up Radio.

WuRx Wake-up Radio Receiver.

WuS Wake-up Signal.

WuTx Wake-up Transmitter.



CHAPTER 1

INTRODUCTION

<<Light is focused on the source.>>

This chapter provides the motivation, contributions and organization of the PhD thesis. Sec-
tion 1.1 presents the motivation of this thesis investigation. The main thesis contributions are
listed in Section 1.2. Finally, Section 1.3 describes the structure of this thesis document.

1.1 Motivation

Low Rate Low Power Wireless Networks (LRLPWNs) refer to network technologies designed for
the Internet of Things (IoT). The IoT can be defined as the interconnection of various objects
(sensors, actuators, or goal-specific applications) to the global Internet. LRLPWNs can be di-
vided in two categories: Low Power Wide Area Networks (LPWANs) and Low Rate Channel over
Wake-up Radio (WuR) systems. Both LPWANs and Low Rate Channel over WuR have a unique
set of characteristics, not only low rate and low power, but also a limited data frame payload
size. LPWANs also provide long-range communication and low infrastructure cost [1]. LRLPWN
technologies have attracted the attention of the industry, academia and standard development or-
ganizations, focused on the study of Internet Protocol version 6 (IPv6) [2] over LPWAN networks,
and in power consumption and latency reductions of sleepy nodes with WuR systems.

The huge number of heterogeneous devices brought by IoT networks stresses the need for strong
interoperability. The global Internet already provides this interoperability feature using a common
set of protocols. However, these protocols were not designed for LRLPWNs. This is especially
true for IPv6, even though its large address space would be a desirable feature to handle large
number of IoT devices. As a result, using IPv6 on LPWANs implies numerous challenges, mainly
due to its large header overhead (40 bytes) and that it requires lower layers to support a Maximum
Transmission Unit (MTU) of 1280 bytes [2]. However, the MTU sizes supported by LPWAN
technologies are typically much smaller. For instance, LoRaWAN [3] and Sigfox [4] support MTU
sizes of up to 242 bytes and 12 bytes, respectively. Similar challenges are present in low rate
channel over WuR systems [5].

To tackle these two problems, the LPWAN Working Group (WG) of the Internet Engineering
Task Force (IETF) has standardized a new framework called Static Context Header Compression
and fragmentation (SCHC, pronounced ”sheek”) [6]. This framework provides IPv6 header Com-
pression/Decompression (C/D) mechanisms, and several Fragmentation/Reassembly (F/R) modes
to tackle the IPv6 header size problem and satisfy its MTU size requirements.

The growing interest in LPWAN technologies, and specially in the IPv6 adaptation layers,
has pushed the IETF LPWAN WG to further customize SCHC to optimally work over flagship
LPWAN technologies. New standards focused on enabling SCHC over Sigfox [7] and NB-IoT [8] are
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work in progress. SCHC over LoRaWAN [9] is already published as Internet standard. All these
documents objective is to optimally adapt SCHC to the special characteristics of each technology
and leverage the available resources in terms of MTU size and how the device sends and receives
messages.

However, the SCHC framework optimal configuration parameters and performance was un-
known. Therefore, research that focus on modeling, analyzing, evaluating, and optimizing SCHC
is required. This evaluation is required for the generic SCHC framework [6] and for SCHC over
the LPWAN technologies too. This thesis investigation is aligned with such requirements, and
aims at advancing the state of the art in the area of IPv6 support over LRLPWNs, through the
contributions presented in the following section.

1.2 Results and contributions

The main contributions of this thesis are:

a) Performance evaluations of all SCHC Fragmentation modes over LoRaWAN.

b) Optimally tuned SCHC ACK-on-Error mode configuration values for SCHC Fragmentation over
LoRaWAN and Sigfox.

c) Improvements in SCHC Acknowledgment (ACK) size with new Receiver-Feedback Techniques
(RFTs) and evaluation in all LoRaWAN world regions.

d) Performance evaluation of SCHC over Sigfox in all world regions.

e) Energy and current consumption model for SCHC F/R over Sigfox.

f) Proposal of the Compound ACK message, which reduces and optimizes the ACK traffic.

g) Proposal of the SCHC Convergence Profile to enable full LPWAN interoperability.

h) Design, implementation, and evaluation of IPv6 support over Cross-Technology Communication
with Wake-up Radios, extending the usage of the SCHC framework between IEEE 802.11 and
IEEE 802.15.4 devices.

1.3 Thesis organization

This thesis is composed of 11 chapters. Chapter 1 (current chapter) and Chapter 2 are an in-
troduction and technical background, respectively, of the investigation performed in this thesis,
which is covered in Chapters 3 to 9. Chapter 10 presents the conclusions of this thesis and fu-
ture work that has sprouted from this thesis investigation. Chapter 11 shows a list of published
contributions, including journal articles, conference papers, Internet Drafts, open source projects,
simulators built, Projects, international research visit, participation in the IETF, recognitions and
grants received during this thesis investigation.

The structure of this thesis is presented in Fig. 1.1. Below each section, a roman number
cites the publication involved. On top, the Internet Drafts that have been impacted or have been
produced as a result of this thesis investigation are shown with a box that covers the thesis chapters
related to such documents.

Chapters 3 to 9 are organized as follows. In Chapter 3, we provide an overview of the SCHC
F/R modes and evaluate their trade-offs over LoRaWAN by simulations. The analyzed parameters
are the total channel occupancy, goodput and total delay at the SCHC layer. The results of these
evaluations have led to the publication of a conference paper [VI].
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Figure 1.1: Thesis structure.

In Chapter 4, we develop a mathematical model to compute the most critical performance
parameters for the SCHC ACK-on-Error mode, namely, the ACK traffic incurred by a fragment
receiver for the successful delivery of a fragmented packet. The model is used to evaluate the
SCHC ACK-on-Error mode performance, as well as to optimally tune its main parameters when
used over LoRaWAN and Sigfox, for different packet sizes. Additionally, we illustrate how our
derived optimal settings allow to reduce the ACK traffic in a number of scenarios. The results of
this investigation provided useful insights in the development of the IETF SCHC framework as
well as in the design of the technology specific SCHC Profiles, and have been published in a journal
article [I]. Part of the investigation of this chapter was performed as part of a research visit at the
IMT-Atlantique in Rennes, France.

SCHC defines an RFT, called Compressed Bitmap (CB), by which a receiver reports to the
sender whether the fragments carrying a packet have been received or not. Such information is
carried as ACK payload. In Chapter 5, we compare the performance of CB with that of several
alternative RFTs, namely List of Lost Fragments (LLF), List of Deltas (LoD), and Uncompressed
Bitmap (UB), where the latter is used as a benchmark. We evaluate the considered RFTs in terms
of ACK size, number of Layer 2 (L2) frames needed to carry an ACK, and ACK Time on Air.
Furthermore, we provide guidance on which RFT should be used for different packet sizes, error
rates and error patterns. Results obtained and guidance from this evaluation have been published
in a journal article [II].

In Chapter 6, we provide a performance evaluation of SCHC over Sigfox, a flagship LPWAN
technology. We focus on the main SCHC over Sigfox fragmentation mode, called ACK-on-Error,
which offers low overhead, reliability, and reassembly functionalities. We provide a theoretical
analysis and an experimental evaluation in real environments that correspond to two geographical
zones with different Sigfox radio settings: Barcelona (Spain) and Santiago (Chile). The study
focuses on modeling and evaluating packet transfer times, and the required number of uplink and
downlink messages. This work was performed in collaboration with the Sigfox company and the
University of Chile. The results of this evaluation led to the publication of a journal article [III]
and collaboration in a conference paper [VII]. Moreover, collaboration with the IETF LPWAN
WG led to co-authorship of the SCHC over Sigfox Profile Internet Draft [VIII], and the creation
of a new Internet Draft called SCHC Compound ACK message [IX].

In Chapter 7, we present a current and energy consumption model of SCHC Packet transfer
over Sigfox. The model, which is based on real hardware measurements, allows to determine the
impact of several parameters and fragment transmission strategies on the energy performance of
SCHC Packet transfer over Sigfox. The evaluation results have been published in a journal article
[IV].

In Chapter 8, we present the design, implementation and evaluation of a solution to provide IPv6
support over Cross-Technology Communication using Wake-up Radio (WuR-CTC), by leveraging
the IETF SCHC framework. SCHC over WuR-CTC is performed between IEEE 802.15.4 and
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IEEE 802.11, two examples of popular technologies in some crucial IoT domains (e.g., smart
home, smart buildings, smart factories and smart cities, among others). This way, IoT devices
supporting different wireless technologies are interoperable without the need of a gateway. The
designed solution supports typical real-time interactions in smart environments (e.g., smart homes)
with a human user in the loop. The evaluation results led to a journal article which is currently
under review [V].

In Chapter 9, we present current work at the IETF LPWAN WG that has stemmed from the
investigation and evaluation performed in this thesis. First, the Compound ACK message format
is described. The Compound ACK message is a new message added to the IETF SCHC framework,
which was built from the conclusions of Chapter 6, that favors the optimization of downlink traffic.
The Compound ACK was presented and adopted by the IETF LPWAN WG [XI] as a proposed
standard. Second, LPWAN convergence using the IETF SCHC framework is presented. LPWAN
convergence is defined as the usage of multiple LPWANs in cooperation. This is achieved using
the SCHC Convergence Profile, which aims to provide interopability at the SCHC fragment level
between LPWAN technologies, by providing a single SCHC F/R sublayer. The idea was presented
to the IETF LPWAN WG and submitted as an Individual Submission to the IETF [X].



CHAPTER 2

TECHNICAL BACKGROUND

<<Light does not exist if it is not on the go.>>

In this chapter we present the technical background in LRLPWN technologies relevant to this
thesis investigation.

2.1 Introduction

In this chapter we present the most relevant LRLPWN technologies and the adaptation of IPv6 over
these networks. LRLPWNs can be classified in two categories: LPWAN and low rate channel over
WuR systems. Each technology targets different use cases and has different systems. LPWANs
are characterized by supporting long range communications while low rate channel over WuR
has a limited range. However, both technologies are optimized for battery lifetime and have
similar characteristics: low bit rates, low power and a reduced L2 MTU size. IPv6 has desirable
characteristics, such as a large address space, support of security protocols and interoperability. To
be compatible with IPv6, the underlying low rate low power technology must support a 1280-byte
MTU. Moreover, IPv6 has a header size of 40 bytes, that in some cases can be larger than the L2
MTU of LPWAN technologies. To obtain the benefits of IPv6 in LRLPWNs, the need to perform
header compression and fragmentation to transmit large packet sizes becomes critical. The IETF
LPWAN WG has proposed a new framework that performs header compression and fragmentation,
especially designed to support IPv6 for LPWAN technologies. The framework is called SCHC. In
this section we first present the most relevant LPWAN technologies. Then we detail the WuR
system and how the secondary radio can be used as a low rate low power communication channel.
Finally, a SCHC framework overview is shown, specially focused on the three F/R modes offered
by SCHC.

2.2 Low rate low power wireless network technologies

2.2.1 LPWAN technologies

LPWANs refer to network technologies designed for IoT that are characterized by a long-range
and low-energy operation [1,10,11]. They complement traditional cellular and short range wireless
technologies in addressing diverse requirements of IoT applications. With a long range, in the order
of a few to tens of kilometers [12], and battery life of ten years and beyond, LPWAN technologies
are promising for an Internet of low power, low cost, and low-throughput things. The long range
low power characteristic of LPWAN technologies is achieved with a trade-off between low data
rate and higher latency. This makes LPWAN not suitable for all IoT use cases, but for delay
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tolerant, low rate, low power IoT applications [13]. LPWAN technologies are typically based on
star topology deployments, where a potentially high number of IoT devices are directly connected
to a radio gateway. In this section we present the most relevant LPWAN technologies. First,
the flagship LoRaWAN, Sigfox, and NB-IoT are described in detail. Then, a summary of other
LPWAN technologies is presented.

2.2.1.1 Long Range Wide Area Network (LoRaWAN)

Long Range Wide Area Network (LoRaWAN) is a technology designed for long range and low
power communications. LoRaWAN defines the communication protocol and system architecture
for the network while the Long Range (LoRa) physical layer enables the long-range communication
link [14]. Furthermore, the LoRa layer features low power operation (e.g., around 10 years of
battery lifetime), low data rate (i.e., from 250 bps to 50 kbps depending on selected configuration)
and long communication range (e.g., 2-5 km in urban areas and 15 km in suburban areas) [12].

LoRaWAN networks are organized in a star-of-stars topology [12] (see Fig. 2.1). The topology
is composed of three basic elements: end-nodes (end-devices), gateways, and a central Network
Server (NS) [15]. The end-nodes can be sensors or actuators (e.g., enabling applications such
as tracking, alarms, metering, monitoring). They communicate with the NS using one or more
gateways which receive the sent message. On the other hand, the NS only sends downlink messages
using a specific gateway. While the gateway uses LoRa physical layer to communicate with the
end-nodes, the communication with the NS uses the IP protocol stack as shown in Fig. 2.2. The
LoRaWAN layer provide end-to-end encryption and data integrity. The Application Session Key
provides confidentiality for the upper layer payloads, and the Network Session Key is used to
provide data integrity [15].

Figure 2.1: LoRaWAN architecture [14].

Three functional classes are defined in the LoRaWAN specifications for the end-devices: Class
A, Class B, and Class C. All LoRaWAN devices must implement at least Class A. Class A end-
devices are bi-directional whereby after each uplink transmission it opens two short downlink
windows to receive messages from NS. Following classes are based on Class A. Class B, differently
from Class A, supports scheduled receiving slots, allowing more opportunities to communicate
between the gateway and the end-device. In order to synchronize the end-device reception window
with the gateway transmission, a time synchronized Beacon is sent from the gateway. Class C
end-devices have the receiver window open continuously, only closing it when performing uplink
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Figure 2.2: LoRaWAN protocol architecture [15].

transmissions. When comparing the different functionality classes, Class C devices consume more
power than Class A and B, but offer lower latency in downlink transmissions [3].

Physical Layer In LoRaWAN, the physical transmission between the end-device and the gate-
way uses LoRa modulation and Gaussian Frequency Shift Keying (GFSK). The LoRa modulation
is based on the Chirp Spread Spectrum (CSS) mechanism [15].

The duration of a packet or fragment transmission is defined as Time-on-Air (ToA) and depends
on a given Spreading Factor (SF) and channel bandwidth (BW). The SF is defined as the logarithm
in base 2 of the number of chips per symbol used for modulation [16]. A LoRa symbol has 2SF

chips that cover the entire frequency band. The SF can take values from 7 to 12 [3] giving
different Data Rates (DRs), each with certain spectral efficiency and network capacity. As the
SF value increases, efficiency and capacity increase as well. LoRa provides recovery against bit
errors by using forward error correction with a penalty of a small overhead. This recovery feature
is implemented using different Coding Rates (CR), ranging from 4/5 (CR=1) to 4/8 (CR=4).
Moreover, an optimization mechanism is used in lower DRs to avoid problems regarding crystal
drifts of the reference oscillator. This increases robustness to frequency variation over the time
required to receive a LoRa message and is only used for SF11 and SF12.

Depending on the country, different Radio Frequency (RF) bands are used for LoRaWAN
deployments. In the EU region, LoRaWAN operates in the EU863-870 Industrial Scientific Medical
(ISM) band. Three default channel are defined: 868.10, 868.30, 868.50 MHz [3]. Each channel
has a BW of 125 kHz, and must allow DRs from 0.3 kbps to 5 kbps (DR0 to DR5), as shown
in Section 2.2.1.1. Every LoRaWAN device must implement these channels if working in the
European region. The different DR and the corresponding SF, BW, modulation, and physical bit
rate are shown in Section 2.2.1.1.

In the EU region, the 868 MHz ISM band has a duty-cycle restriction of 1% per channel. The
duty-cycle is used to describe the percentage of time a device can actively transmit. Toff can be
defined as the amount of time the end-device has to sleep after the transmission of data because
of the duty-cycle regulation, and can be calculated as:

Toff[s] = ToA[s]× 100− duty-cycle

duty-cycle
, (2.1)

where the duty-cycle, in %, is dependent on packet length and its corresponding transmission
duration, i.e., its ToA [16].

Section 2.2.1.1 shows the DR and the corresponding SF, BW, modulation, and physical bit
rate. The 915 MHz ISM band is divided into different channel plans: an upstream plan with
64 channels (0 to 63) using LoRa modulation with a BW of 125 kHz, varying from DR0 (902.3
MHz) to DR3 (914.9 MHz) incrementing linearly by 200 kHz steps. Another upstream plan with 8
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Table 2.1: DRs and configurations for EU863-870 band channels [3].
DR Configuration Physical Bit Rate (bit/s)

Modulation Spreading Factor (SF) Bandwidth
0 LoRa SF12 125 kHz 250
1 LoRa SF11 125 kHz 440
2 LoRa SF10 125 kHz 980
3 LoRa SF9 125 kHz 1760
4 LoRa SF8 125 kHz 3125
5 LoRa SF7 125 kHz 5470
6 LoRa SF7 250 kHz 11000
7 FSK 50 kbit/s 50000

8-15 Reserved for Future Use

channels (64 to 71) using LoRa modulation with a BW of 500 kHz, starting at DR4 (903.0 MHz)
and incrementing by 1.6 MHz steps to 914.2 MHz, and a downstream plan with 8 channels (0 to
7) using LoRa modulation with a BW of 500 kHz at DR10 (923.3 MHz) to DR13 (927.5 MHz)
incrementing linearly by 600 kHz steps [3].

End-devices that operate in the US902-928 feature the channel data structure of the 72 channels.
In the US region, there is no duty-cycle restriction.

Table 2.2: DRs and related configuration for US902-928 band channels [3].
DR Configuration Physical Bit Rate (bit/s)

Modulation Spreading Factor (SF) Bandwidth
0 LoRa SF10 125 kHz 980
1 LoRa SF9 125 kHz 1760
2 LoRa SF8 125 kHz 3125
3 LoRa SF7 125 kHz 5470
4 LoRa SF8 500 kHz 12500

5-7 Reserved for Future Use
8 LoRa SF12 500 kHz 980
9 LoRa SF11 500kHz 1760
10 LoRa SF10 500kHz 3900
11 LoRa SF9 500kHz 7000
12 LoRa SF8 500kHz 12500
13 LoRa SF7 500kHz 21900

14-15 Reserved for Future Use

Physical Layer message format The LoRaWAN specification defines the physical layer mes-
sage format. The message comprises a preamble, a physical header (PHDR), a physical header
Cyclic Redundancy Check (PHDR CRC), a physical payload (PHY Payload), and an error detec-
tion field at the end (CRC). PHDR and PHDR CRC fields have a combined total size of 20 bits.
The 2 bytes of CRC are present only in uplink messages [15].

The ToA is calculated as the sum of the preamble duration and payload duration, converting
the respective packet or fragment length from bytes to symbols [17].

The preamble is used to synchronize the receiver and enable the detection of the LoRa chirps.
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Preamble PHDR PHDR CRC PHY Payload CRC

n symbols 2 bytes 4 bits variable 2 bytes

Figure 2.3: LoRaWAN physical layer message format [15]. The length of each field is denoted
below.

The preamble is defined as a sequence of programmable number of symbols. The symbol period
depends on the SF and BW selected with the following relation:

Tsym =
2SF

BW
. (2.2)

The duration of the preamble can be calculated as follows:

Tpreamble = (npraeamble + 4.25)× Tsym, (2.3)

where npreamble is the number of programmed preamble symbols [17]. The packet and header can
be converted into a number of symbols (payloadSymbNb) and equals:

payloadSymbNb = 8 +max

Å
ceil

Å
8PL− 4SF + 28 + 16− 20H

4(SF − 2DE)

ã
(CR+ 4), 0

ã
, (2.4)

where PL is the number of payload bytes, H = 1 when the header is enable and H = 0 when no
header is present, DE = 1 when the low DR optimization is enable and 0 when disable. CR is the
Coding Rate and may take values from 1 to 4.

The payload duration can be calculated as the symbol period multiplied by the number of
payload symbols as follows:

Tpayload = payloadSymbNb× Tsym. (2.5)

Finally, the ToA can be obtained as the sum of the durations of the preamble and the payload:

Tpacket = Tpreamble + Tpayload. (2.6)

MAC Layer message format The LoRaWAN specifications [3] define three Medium Access
Control (MAC) messages that are carried in the physical layer message (i.e., in the physical layer
payload). The messages are: the Join message, the Confirmed Data message and the Unconfirmed
Data message. Fig. 2.4 shows the LoRaWAN MAC message format.

MAC Payload︷ ︸︸ ︷
MHDR FHDR Fport FRM Payload MIC

1 byte 7 to 22 bytes 1 byte 0 to (M-8) bytes 4 bytes

Figure 2.4: LoRaWAN MAC message format [15]. The length of each field is denoted below.

The MAC message is composed of the MAC Header (MHDR), which indicates the MAC message
type, the MAC payload, which can carry the application data or a Join message, and the MAC
Message Integrity Code (MIC), which allows for an integrity check at the receiver of the MAC
message [15]. The MAC payload can carry MAC commands using the frame header (FHDR) that
depends on the Fport value. The radio configuration and MAC layer parameters can be changed
using the MAC commands. The application data is carried in the FRM Payload field [15].



CHAPTER 2. TECHNICAL BACKGROUND 28

2.2.1.2 Sigfox

Sigfox technology is designed for the development of IoT applications when the volume of data
sent (data from sensor device in most cases) is low (ranging from a few bytes to tens of bytes) and
infrequent. Sigfox coverage range is large (tens of kilometers) and its current consumption is very
low [18]. Sigfox operates in unlicensed ISM bands and efficiently uses the frequency bandwidth
with very low noise level, higher receiver sensitivity, and low cost antenna design by using Binary
Shift Keying (BPSK) modulation [19].

Sigfox network architecture is a star topology as shown in Fig. 2.5. The devices (i.e., sensors and
actuators) communicate via neighboring Base Stations (BSs). A device can send a message at any
time, and it can be received by one or many BSs, as the device is not associated to any BS, reducing
the need for signaling and handover [20]. BSs are connected to a single core network, which is
located in the cloud, through the public Internet. The core network comprises two elements: the
Service Center and the Registration Authority. The Service Center is in charge of controlling and
managing the BSs and devices. The Registration Authority is the one responsible for authorizing
the network access to the devices. The Service Center provides a web interface and a number
of Application Program Interfaces (APIs) to interact with the devices and the data collected by
them [20].

Registration

Authority

Service

Center

Base

Station

ApplicationsInternet

Base

Station Core Network

Devices

Figure 2.5: Sigfox architecture [1].

Initially, Sigfox only supported uplink communication, but has evolved to support bidirectional
traffic [19] as shown in Section 2.2.1.2. In the EU region, Sigfox utilizes the bands from 868.00
MHz to 868.60 MHz for uplink and 869.40 MHz to 869.65 MHz for downlink. In the US region it
uses the 902 MHz band [20].

Physical Layer Sigfox uses Ultra Narrow Band (UNB) radio that allows a long link range with
limited transmission power for both uplink and downlink communication. The uplink channel
bandwidth depends on the region. In the EU region it is 100 Hz and in the US region it is
600 Hz. The downlink channel bandwidth is 1.5 kHz in both regions. Sigfox modulation for the
uplink is Differential Binary Phase-Shift Keying (DBPSK) and GFSK for downlink. DBPSK is
more efficient than GFSK in bandwidth management, favoring an increase in the uplink range, as
the uplink is more power sensitive. Moreover, DBPSK concentrates the received power in a very
narrow bandwidth and obtains a high received power level, which yields a good protection against
interference. In the EU region, the uplink bit rate is 100 bits/s and in the US region is 600 bit/s.
The downlink physical layer bit rate is the same in both regions, i.e., 600 bit/s.
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As Sigfox uses a license-free spectrum, i.e., the ISM band, it must comply with the regulation
regarding its use. In the EU region, the downlink and uplink bands must enforce a duty-cycle of
1% and 10%, respectively [20]. To comply with the duty-cycle regulation, Sigfox allows, typically,
up to 140 uplink messages and 4 downlink messages per day (see Section 2.2.1.2) [21]. Depending
on the region and use case, Sigfox may relax the message volume limitation or give less priority to
messages over the limits [1].

Table 2.3: Sigfox uplink and downlink number of messages, payload and throughput [19–21].
Number of Messages over the uplink 140 messages / day
Number of Messages over the downlink 4 messages / device / day
Maximum payload length for every uplink message 12 bytes
Maximum payload length for every downlink message 8 bytes
Maximum uplink throughput (Europe Region) 100 bps
Maximum uplink throughput (US Region) 600 bps
Maximum downlink throughput (Both Regions) 600 bps

Radio configuration and features Sigfox is designed to operate in license-free frequency
bands. Sharing unlicensed spectrum presents technical constraints, as use of these frequency
bands is subject to local spectrum access regulations. To better handle the diversity of regulations
across different world zones, Sigfox defines 7 geographical zones [4]. Each geographical zone is
characterized by a specific set of radio features and parameter settings called Radio Configuration
(RC) [22]. Table 2.4 shows the RCs that correspond to the 7 Sigfox geographical zones.

Table 2.4: Radio Configuration (RC) for different Sigfox geographical zones.
RC1 RC2 RC3 RC4 RC5 RC6 RC7

Regions
or

countries

Europe
Middle East

Africa

Brazil
Canada
Mexico
USA

Japan
Latin America

Asia Pacific South Korea India Russia

Uplink
frequency
(MHz)

868 902 923 920 923 865 868

Downlink
frequency
(MHz)

869 905 922 922 922 866 869

Uplink
data rate
(bit/s)

100 600 100 600 100 100 100

Downlink
data rate
(bit/s)

600 600 600 600 600 600 600

Spectrum
access

Duty
Cycle

(UL 1%, DL 10%)

Frequency
Hopping

Listen
Before
Talk

Frequency
Hopping

Listen
Before
Talk

-
Duty
Cycle

(UL 1%, DL 10%)

As shown in Table 2.4, Sigfox uses sub-GHz frequency bands in all RCs. The uplink data rate
may be 100 bit/s or 600 bit/s, depending on the considered RC. For example, in RC1 (Europe and
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Africa) the uplink data rate is 100 bit/s, while in RC2 and RC4 (North/South America, Asia and
Australia) the uplink data rate is 600 bit/s. The downlink data rate is 600 bit/s in all RCs.

A relevant feature of each RC is its associated spectrum access techniques. For example, in
RC1 there is a 1% duty-cycle constraint that must be enforced in the uplink, while in RC4 a radio
transmitter must implement frequency hopping. The duty-cycle restriction, under the strictest
regulation, allows a maximum of 140 uplink messages and a very limited number of downlink
messages per day (e.g., less than 10, depending on the RC) [1]. However, constraints may vary
depending on regulatory and system conditions.

Uplink procedure (U-procedure) A device can send data towards the Sigfox Network any-
time, provided that radio regulations are enforced. In Sigfox, there are two types of methods to
perform an uplink frame transmission: U-procedure, and B-procedure. In the former, the uplink
frame does not trigger a response from the Sigfox Network. In the latter, the device requests such
a response. This subsection describes the U-procedure.

The uplink frame is transmitted three times using different frequencies. This approach provides
time and frequency diversity. Therefore, Sigfox offers a triple diversity, i.e., diversity in time, in
frequency, and in space [4]. A U-procedure comprises three different states (Fig. 2.6):

1. transmission (of duration TTx),

2. wait for next transmission (of duration TWaitTx
) and

3. cooldown (of duration TCool).

Figure 2.6: Illustration of a Sigfox U-procedure example. State numbers and their corresponding
durations are indicated at the lower part of the figure. In the U-procedure, states 1 and 2 are
present three and two times, respectively.

Fig. 2.7 shows the Sigfox uplink frame format, which is composed of 10 fields. The Preamble is
a 19-bit predefined sequence. The Field Type (FT) is a 13-bit field which signals the message type
(i.e., application or control messages). The Length Indicator (LI) is a 2-bit field that provides
the length of the Message Authentication Code (MAUTH) (see Table 2.5). The Bidirectional
Flag (BF) is a 1-bit field that indicates if the uplink frame is starting a U-procedure (0b0) or a
B-procedure (0b1). The Repeated Flag (REP) is a 1-bit field set to 0b0.

The Sigfox uplink frame format also includes a 12-bit Sequence Number. This number is
incremented by the device for every uplink frame transmission. At reception, the number is
registered by the Sigfox Cloud, which keeps a record of the sequence numbers received. The
Device ID is a unique 32-bit value that identifies each device in the Sigfox Network.
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Figure 2.7: Sigfox uplink frame format.

The maximum uplink frame payload size (LULMAX
) is 12 bytes. The MAUTH provides frame

authentication and has a variable length (LMAUTH) which depends on the frame payload size. The
total uplink frame size is fixed to a set of values, i.e., 14, 15, 18, 22, and 26 bytes, which lead to
only 5 possible radio burst durations (for each data rate). This small and fixed set of total uplink
frame sizes simplifies the radio transmitter and receiver design, and allows to better predict the
power consumption (i.e., battery lifetime) of the device for a specific application. To accomplish
this, considering that the uplink frame payload field is of variable size (between 0 and 12 bytes),
the LMAUTH is selected so that its combination with the uplink frame payload always yields one
of the possible total uplink frame sizes (see Table 2.5). The uplink frame integrity is secured by
using a CRC of 16 bits.

Table 2.5 shows the Sigfox uplink frame transmission time (TTx) for 100 bit/s and 600 bit/s,
for all possible uplink frame payload sizes (LUL). Note that TTx has a variable duration and, due
to a dependency between LMAUTH and LUL, it exhibits a stepwise behavior as a function of the
payload size.

Table 2.5: Uplink frame transmission time as a function of the payload size

LUL

(bytes)
LMAUTH

(bytes)
LI value

(MSB, LSB)

Total frame
size

(bytes)

TTx

100 bit/s

(ms)

TTx

600 bit/s

(ms)

0 2 00 14 1120 186.67
1 2 00 15 1200 200
2 4 10

18 1440 2403 3 01
4 2 00
5 5 11

22 1760 293.34
6 4 10
7 3 01
8 2 00
9 5 11

26 2080 346.67
10 4 10
11 3 01
12 2 00

Bidirectional procedure (B-procedure) The B-procedure allows a device to send data to,
and receive data from, the Sigfox Network. Fig. 2.8 shows a B-procedure example. In contrast
with the U-procedure, the 3 uplink frames are now followed by the transmission of a downlink
frame and an uplink confirmation frame. The confirmation frame is only sent by the device if
the downlink frame is correctly received. The different states involved in a B-procedure, when a
downlink frame is sent by the Sigfox Network and received by the device, are the following:
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Figure 2.8: Sigfox B-procedure example illustration. State numbers and their corresponding dura-
tions are indicated at the lower part of the figure. In this example, a downlink frame is sent by the
Sigfox Cloud and received by the device. The latter sends a confirmation frame. In a B-procedure,
states 1 and 2 are present three and two times, respectively. TRx can take values between TRxMIN ,
when the downlink frame is received at the start of the reception window, and TRxMAX , when no
downlink frame is received.

1. transmission (of duration TTx),

2. wait for next transmission (of duration TWaitTx
),

3. wait for next reception (of duration TWaitRx
),

4. reception (of duration TRx),

5. confirmation transmission (of duration TConf ),

6. cooldown (of duration TCool).

The reception state has a variable duration (TRx), which depends on the moment in which the
downlink frame is transmitted. If the downlink frame is not received by the device, or no downlink
frame is sent by the Sigfox Network, the reception state will last for its maximum value (TRxMAX

)
and the confirmation transmission state will not be present.

Fig. 2.9 shows the Sigfox downlink frame format, distributed as follows. The first field is a
91-bit predetermined Preamble. This field is followed by a 13-bit FT field that indicates a B-
procedure is taking place. A downlink Error Correction Code (ECC) of 32 bits, which is the
result of a BCH(15,11) error correction code applied over the concatenation of the downlink frame
payload and the downlink frame MAUTH. The downlink frame payload size is fixed to 8 bytes.
The downlink frame MAUTH has a size of 16 bits and it provides authentication for the downlink
frame. The downlink frame integrity is protected by using an 8-bit CRC.

The confirmation frame has the same format as the uplink frame (see Fig. 2.7), with a fixed
payload size of 8 bytes. This payload contains information regarding the device battery voltage and
Received Signal Strength Indicator (RSSI) estimation made by the device based on the downlink
frame received from the BS.

2.2.1.3 NB-IoT

Narrow band IoT (NB-IoT) is the 3rd Generation Partnership Project (3GPP) proposal for the
long range, low power, low data rate IoT market [23]. NB-IoT provides an extended coverage of
164 dB maximum coupling loss, battery life of over 10 years, up to 55000 devices per cell and
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91 bits 13 bits 32 bits 64 bits 16 bits 8 bits

Preamble FT ECC Frame Payload MAUTH CRC

Figure 2.9: Sigfox downlink frame format.

an uplink latency of less than 10 seconds [1]. Fig. 2.10 shows how the capabilities of NB-IoT are
located between current Long Term Evolution (LTE) and LPWAN technologies. It was published
at Release 13 of 3GPP on June 2016. LTE design has been reused for NB-IoT to a large extent,
including numerologies, channel coding and modulation schemes, and higher layer protocols, which
allows quick and easy deployment and further development of NB-IoT products within existing LTE
networks [24]. Since NB-IoT operates in a licensed spectrum, it has no channel access restrictions
allowing up to a 100% duty-cycle.

Figure 2.10: NB-IoT features, in comparison with other technologies [23].

Fig. 2.11 shows the 3GPP network architecture, which also applies to NB-IoT. The Mobility
Management Entity (MME) is responsible for handling the mobility of the User Equipment (UE).
The MME tasks include tracking and paging UEs, session management, choosing the Serving
Gateway (S-GW) for the UE during initial attachment and authenticating the user [1]. The S-GW
routes and forwards the user data packets through the access network. The Packet Data Network
Gateway (P-GW) works as an interface between the 3GPP and external networks. The Home
Subscriber Server (HSS) contains the user-related and subscription-related information. It is in
charge of user authentication and access authorization. The eNodeB is the BS that controls the
UEs in one or several cells.

UE

eNodeB

MME HSS

S-GW P-GW

Service Packet
Data Network

(PDN)
(Internet)

UE

UE

Figure 2.11: NB-IoT architecture [1].

Physical Layer NB-IoT technology uses a frequency band of 180 kHz bandwidth, which corre-
sponds to one resource block in LTE transmission. For uplink, it uses Single-Carrier Frequency Di-



CHAPTER 2. TECHNICAL BACKGROUND 34

vision Multiple Access (SC-FDMA) and Orthogonal Frequency Division Multiple Access (OFDMA)
for the downlink. NB-IoT defines three operation modes (see Fig. 2.12):

• Stand-alone operation: Uses currently available 200 kHz GSM frequencies. There is a guard
interval of 10 kHz.

• Guard band operation: Uses unused resource blocks within an LTE carrier’s guard-band.

• In-band operation: Uses resource blocks within the LTE carrier.

Figure 2.12: NB-IoT operation modes [25].

There are two types of transmissions in NB-IoT: multi-tone and single-tone. Multi-tone trans-
mission uses 15 kHz sub-carrier spacing, 0.5 ms slot and 1 ms subframe, like LTE, and it is based on
SC-FDMA. On the other hand, single-tone transmission supports two sub-carrier spacing, namely,
15 kHz and 3.75 kHz. For the sub-carrier spacing of 3.75 kHz, the slot duration is of 2 ms [26].
Section 2.2.1.3 illustrates the different types of NB-IoT. The data rate is limited to 250 kbps for the
multi-tone downlink communication and to 20 kbps for the single-tone uplink communication [13].
The payload size is 1600 bytes [27].

Table 2.6: NB-IoT characteristics [26].
Sub-carrier No of tones No of SC-FDMA Transmission

spacing symbols time
15 kHz 12 14 1 ms
15 kHz 6 28 2 ms
15 kHz 3 56 4 ms
15 kHz 1 112 8 ms

3.75 kHz 1 112 32 ms

Physical Layer message format NB-IoT downlink has two physical signals and three physical
channels. Fig. 2.13a illustrates how the NB-IoT subframes are allocated to different physical
channels and signals in downlink. The two physical signals are the Narrowband Reference Signal
(NRS), which provides phase reference for the demodulation of the downlink channel, and the
Narrowband Primary and Secondary Synchronization signals (NPSS and NSSS), which are used
to perform cell search using time and frequency synchronization and cell identity detection.

The three physical channels are:

• The Narrowband Physical Broadcast Channel (NPBCH), which carries the Master Informa-
tion Block (MIB) and is transmitted in subframe 0 in every frame.
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• The Narrowband Physical Downlink Control Channel (NPDCCH) is the core element of the
downlink control channels as it carries control information such as paging, UL/DL assign-
ment, random access channel (RACH) response, type of modulation being used for transmis-
sion and power control. Moreover, it controls the data transmission between the BS and the
user equipment (UE).

• The Narrowband Physical Downlink Shared Channel (NPDSCH) is the main bearing channel.
It consists of the System Information Block (SIB), user unicast data and control information.
The downlink frame is located in the NPDSCH channel, and has a Header size of 65 bytes
and a 3-byte CRC [28].

(a) Downlink Frame Structure (b) Uplink Frame Structure

Figure 2.13: NB-IoT downlink and uplink frame structure [28]

In uplink, NB-IoT defines a Resource Unit (RU), which is a resource mapping unit, combining
the number of subcarriers (frequency domain) and the number of slots (time domain). Furthermore,
NB-IoT supports single-tone and multi-tone transmissions and has one physical signal and two
physical channels (see Fig. 2.13b). The physical signal channel is called Demodulation Reference
Signal (DMRS), which is multiplexed with the data so that it is only transmitted in RUs containing
data. The two physical channels are the Narrowband Physical Random Access Channel (NPRACH)
which enables the UE to connect to a BS, and the Narrowband Uplink Shared Channel (NPUSCH)
which carries both the data and the control information, differently from LTE. The uplink frame
structure is composed of a 65-byte header and a 3-byte CRC [28].

2.2.1.4 Other LPWAN technologies

Many other technologies have emerged in the LPWAN spectrum. Some are proprietary and oth-
ers are standards, developed by well-known organizations. The most relevant proprietary LP-
WAN technologies are: INGENU RPMA [29], Telensa [30], Qowisio [31], and the previously ex-
plained Sigfox. Regarding the LPWAN standards, there are different organizations that have
defined different standards: The Institute of Electrical and Electronics Engineers [32] (IEEE)
with 802.15.4k, 802.15.4g and 802.11ah; the European Telecommunications Standard Institute [33]
(ETSI) with Low Throughput Networks (LTN); the 3GPP [34] with enhanced MTC (eMTC), Ex-
tended Coverage GSM (EC-GSM) and the previously explained NB-IoT; the Weightless-SIG [35]
with Weightless-W, Weightless-N and Weightless-P; and the DASH7 Alliance with DASH7 [13].
Table 2.8 gives the most important characteristics of some of the LPWAN proprietary and standard
technologies [13].
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Table 2.7: Technical specifications of various LPWAN technologies [13].

Standard /

Technology

IEEE WEIGHTLESS-SIG DASH7 Alliance
INGENU TELENSA

802.15.4k 802.15.4g WEIGHTLESS-W WEIGHTLESS-N WEIGHTLESS-P DASH7

Modulation DSSS, FSK
MR-(FSK, OFDMA,

OQPSK)

16-QAM, BPSK,

QPSK, DBPSK
UNB DBPSK GMSK, offset-QPSK GFSK

RPMA-DSSS(UL),

CDMA(DL)
UNB 2-FSK

Band
ISM SUB-GHZ &

2.4GHz

ISM SUB-GHZ &

2.4GHz

TV white spaces

470-790MHz

ISM SUB-GHZ EU

(868MHz), US

(915MHz)

SUB-GHZ ISM or

licensed

SUB-GHZ 433MHz,

868MHz, 915MHz
ISM 2.4GHz

SUB-GHZ bands

including ISM:

EU (868MHz),

US (915MHz),

Asia (430MHz)

Data rate 1.5 bps-128 kbps 4.8 kbps-800 kbps 1 kbps-10 Mbps 30 kbps-100 kbps 200 bps-100kbps 9.6,55.6,166.7 kbps
78kbps (UL),

19.5 kbps(DL)

62.5 bps(UL),

500 bps(DL)

Range 5 km (URBAN) up to several kms 5 km (URBAN) 3 km (URBAN) 2 km (URBAN) 0-5 km (URBAN) 15 km (URBAN) 1 km (URBAN)

No of

Channels /

orthogonal

signals

multiple channels.

Number depends on channel & modulation

16 or 24

channels(UL)

multiple 200 Hz

channels

multiple 12.5 kHz

channels

3 different channel

types (number

depends on type &

region)

40 1MHz channels,

up to 1200

signals per channel

multiple channels

Forward error

correction
YES YES YES NO YES YES YES YES

MAC

CSMA/CA,

CSMA/CA or

ALOHA with PCA

CSMA/CA TDMA/FDMA slotted ALOHA TDMA/FDMA CSMA/CA CDMA-like -

Topology star

star, mesh,

peer-to-peer (depends

on upper layers)

star star star tree, star star, tree star

Payload length 2047B 2047B >10B 20B >10B 256B 10KB -

Authentication

& encryption
AES 128b AES 128b AES 128b AES 128b AES 128/256b AES 128b

16B hash,

AES 256b
-

Table 2.8: Technical specifications of various LPWAN technologies [13].

2.2.2 Wake-up radio systems as low rate data channel

The WuR system is a MAC based technique that reduces the power consumption by maintaining
the main radio off most of the time and only ”wakes up” when a message needs to be transmitted
or received. This reduces the duty-cycle of the main radio of the device, reducing the power
consumption and optimizing the battery lifetime. One characteristic of the WuR system is the use
of a secondary radio, whose main feature is low power consumption and main function is to detect
a Wake-up Signal (WuS). In this section, we explain the basic WuR system and how it can be used
as a secondary low rate channel for data exchange, focusing on Wi-Fi radio.

2.2.2.1 Wake-up Wi-Fi and secondary radio

Wi-Fi has been considered as an option to fulfill the connectivity requirements for the IoT. In spite
of the massive adoption Wi-Fi device compliant family (i.e., IEEE 802.11), with 628 million public
access points (APs) [36], the power consumption of IEEE 802.11 devices is too high for many use
cases considered in the IoT. To solve this problem, the IEEE issued IEEE 802.11 Power Saving
Mode (PSM), which makes the device radio periodically toggle, turning it off for most of the time.
The off period ranges from several beacon intervals in IEEE 802.11 up to several years in IEEE
802.11ah. Some extra functionality is required in the Access Point (AP) to avoid losing frames
sent to a sleeping Station (STA). When the STA wakes up, according to the program schedule, it
requests all the frames queued in the AP. PSM introduces a trade-off between latency and power
consumption, as the communication has to wait until the next scheduled wake-up. Therefore, PSM
is not suitable for low-latency applications [5].

To solve the low-latency problem introduced by PSM in IEEE 802.11, but still targeting low
power devices, the WuR concept was introduced. When using WuR, the main radio is only acti-
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vated to receive incoming transmissions and is kept off for the rest of the time. Since the main
radio is off, WuR proposed the implementation of a secondary radio receiver, the Wake-up Radio
Receiver (WuRx), which receives asynchronous wake-up requests from other devices. The wake-up
requests are called Wake-up Signal (WuS) and are generated by the main or secondary transmit-
ter, called Wake-up Transmitter (WuTx), of other devices in the network. The WuRx must be
of low power consumption to allow a continuous operation, making the communication available
on-demand and reducing the trade-off between latency and power consumption, as the STA main
radio can be sleeping when not needed. Due to the growing interest on WuR technologies, the
IEEE started standardization efforts within IEEE 802.11 with the IEEE 802.11ba amendment.

A coordination mechanism is required as devices need to turn on their radios in a coordinated
manner to maintain communication. Such a mechanism is called rendez-vous scheme and deter-
mines the method used to coordinate the wake-up of devices in the network [5]. Fig. 2.14 shows a
WuR implementation of a purely asynchronous rendez-vous scheme. In WuR systems, devices turn
off their main radio but keep a low power secondary radio continuously active. The rendez-vous on
WuR occurs as follows: 1) the Initiator device uses its WuTx (i.e., the main or secondary radio)
to send a WuS to the Target device; 2) the Target device receives the WuS with its WuRx; 3. the
Target device WuRx wakes up its controller from sleep; 4) the Target device controller activates
its main radio; and finally, 5) the main radios of both devices are active and the rendez-vous has
occurred.

Figure 2.14: Diagram illustrating the operation of WuR system. [5].

Fig. 2.14 shows a rendez-vous where both devices may operate under the same technology,
i.e., IEEE 802.11. However, the possibility of the main radio to communicate with a secondary
low power radio, using another modulation scheme over the same communication channel (e.g., in
IEEE 802.11ba using On-Off-Keying (OOK) or Peak-Flat modulation [5]) provides a new low rate
channel, not only for wake-up proposes, but also for data exchange.

Fig. 2.15 shows two devices (Device A and B) that communicate using the secondary radios
as WuRx and the main radio as WuTx. The communication is initiated when a WuS is sent from
Device A to Device B (see Fig. 2.16). Device B controller wakes up the main radio and sends an
ACK indicating that it is ready. The ACK is sent using its main radio as WuTx. Device A receives
the ACK using the secondary radio and proceeds to send the data. Unlike IEEE 802.11ba, which
only provides a wake-up mechanism to initiate the communication over the main radio (using the
same standard i.e., IEEE 802.11), the communication channel between main and secondary radios
allows devices using different standards to communicate between each other. For example, in
Fig. 2.15, even if Device A main radio is IEEE 802.11 and Device B main radio is IEEE 802.15.4,
they are still able to communicate using the secondary radio as a low rate channel. The use of this
low rate channel to interconnect different network technologies may leverage new possibilities, as
the creation of an adaptation layer for IPv6 support over secondary radio channels. By using an
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adaptation layer for IPv6 support over secondary radio channels, it is possible to interconnect and
provide full interoperability between wireless technologies without the use of a gateway.

Main

Radio

WuRx

Controller Controller

Main

Radio

WuRx

Device A Device B

Figure 2.15: WuR system using the secondary radio as a low rate data channel. Each device main
radio communicates with the other device WuR

Device
A

Device
B

WuS

ACK

Begin Data exchange

...
...

End Data exchange

Target
Device

Initiator
Device

Figure 2.16: Example of a low rate data channel using the secondary radio for data exchange and
the WuS to begin communication. An ACK is sent by the Target Device to notify the Initiator
Device that the WuRx is ready for data reception.

2.3 IPv6 over low rate low power wireless network technolo-
gies

2.3.1 Motivation

LRLPWN technologies, overviewed in Section 2.2, will provide connectivity to billions of IoT
devices. IPv6 is the optimal protocol in order to provide Internet connectivity to this vast number
of devices, connected to heterogeneous networks. The characteristics of IPv6, such as its large
set of available addresses, tools for unattended operation, intrinsic interoperability and improved
security, make it suitable to solve the interoperability problem present in the IoT domain. However,
IPv6 was not designed for networks with constrained resources i.e., constrained energy, memory,
processing and communication, as it was designed for networks where resources are available,
such as Ethernets or Wi-Fi. New problems arise when using IPv6 over LRLPWNs as they are
characterized by a reduced data unit length [37], sometimes smaller than the IPv6 header itself.
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Therefore, an adaptation functionality is required to support and optimize IPv6 over constrained-
node networks [37]. This functionality can be modeled as an adaptation layer, i.e., a protocol
stack layer placed between the IPv6 and the MAC or link layer of the wireless radio technology.
This adaptation layer must be designed to efficiently enable IPv6 over that technology, providing
lightweight encoding formats (e.g., IPv6 header compression), support for data transport (e.g.,
fragmentation and reassembly, especially in technologies with short frame payload size) and energy
efficiency, for devices that operate with limited power resources (see Fig. 2.17).

Figure 2.17: Adaptation layer functionality example [37].

The IETF IPv6 over Low Power Wireless Personal Area Networks (6LoWPAN) WG completed
in 2012 an adaptation layer to support IPv6 over IEEE 802.15.4, low rate, low power wireless radio
interface and the WG was closed [38]. From 2012 until now, the number of low rate, low power
radios have grown considerably, as the need to extend IPv6 support over these new networks. To
tackle this problem, the IETF IPv6 over Networks of Resource-constrained Nodes (6Lo) WG was
created in 2013, targeting IPv6 adaptation for a set of technologies, called 6Lo technologies, such as
Bluetooth Low Energy (BLE), Digital Enhanced Cordless Telecommunications Ultra Low Energy
(DECT ULE), Near Field Communication (NFC) and IEEE 802.11ah [37].

With the emergence of LPWAN technologies, the adaptation proposed by the 6Lo WG becomes
insufficient, since the extreme constraints of LPWAN are different from the ones of 6Lo technologies
(see Fig. 2.18).

Figure 2.18: MTU and capacity comparison between 6Lo and LPWAN technologies [37].

The challenges of supporting IPv6 over LPWAN can be summarized as: 1) small MTU and low
bit rate, 2) lack of layer-two fragmentation, 3) severe message rate limitations due to regulatory
constraints, and 4) uplink/downlink asymmetry [37]. For example, IPv6 has a header size and
a minimum MTU of 40 and 1280 bytes, respectively. Indeed, a new adaptation mechanism is
required to enable IPv6 over such extraordinary challenging scenarios, as the level of adaptation
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provided by existing standards, i.e., 6LoWPAN/6Lo, is insufficient, as LPWAN technologies are
more constrain, especially in MTU size. To fill this gap in IPv6 support, the IETF created a
new WG to enable IPv6 over LPWAN technologies (IETF LPWAN WG). The main result of the
LPWAN WG is a new framework called Static Context Header Compression (SCHC) [6]. SCHC
provides header compression for the IPv6 headers using a static context that is shared between
the end-device and the gateway/BS. Furthermore, SCHC offers F/R mechanisms that not only
provides support for the 1280-byte MTU of IPv6, but also provides optional reliability.

2.3.2 Static Context Header Compression (SCHC)

This section provides an overview of the SCHC framework C/D and F/R modes.

2.3.2.1 SCHC adaptation layer overview

Flagship LPWAN technologies, such as LoRaWAN and Sigfox, are characterized by a reduced L2
MTU [1]. Furthermore, these technologies do not provide a native fragmentation mechanism for
transferring larger packets. The SCHC framework provides header C/D and F/R functionalities
specifically designed for LPWAN [6]. SCHC defines a set of Rules, each identified with a RuleID,
which determine how to perform the compression and fragmentation and allow the sender and
receiver to determine the operation mode and configuration parameters.

SCHC is composed of two sublayers, namely the C/D and the F/R sublayers. Fig. 2.19 shows
those sublayers between the IPv6 layer and the LPWAN technology layer. When an IPv6 packet

IPv6

Compression/Decompression

Fragmentation/Reassembly

´
SCHC

LPWAN technology

Figure 2.19: Protocol stack illustrating the location of the SCHC sublayers between the IPv6 layer
and the underlying LPWAN technology [6].

needs to be sent, compression is performed. The compressed IPv6 packet is called a SCHC Packet.
If the SCHC Packet size is greater than the L2 MTU, SCHC fragmentation is performed at the
sender that, depending on the operation mode, will respond with a SCHC ACK. At the receiver,
the SCHC Packet is reassembled and the IPv6 packet is decompressed. Fig. 2.20 illustrates the
operation of SCHC.

2.3.3 SCHC header compression

SCHC header compression is based on a static context shared between the C/D entities located
at the sender and receiver. The static context exploits the predictability of IoT traffic (e.g., a
device, with known identifiers sending temperature measurements every 10 minutes to a previously
configured server), which allows compression of packet header field values known a priori. If a field
value is known by both the sender and receiver, it is not necessary to send such field value in
uncompressed form. Fields that cannot be compressed entirely are transferred as a compression
residue.

The static context is composed of a set of rules, each one identified by a RuleID. A rule contains
partial or full values of all the fields of a given packet header, along with matching operators that
describe how the field values of a packet to be compressed are compared with the ones in the rule.
When an IPv6 packet needs to be sent, the compressor will replace the IPv6 packet header with
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IPv6 Packet

SCHC Compression SCHC Decompression

SCHC Fragmentation SCHC Reassembly

Sender Receiver

SCHC Packet (no fragmentation)

SCHC ACK

SCHC Fragments

Figure 2.20: SCHC compression and fragmentation process [6].

only the RuleID of the best matching rule, plus a compression residue (if any). The output of the
compression process is a SCHC Packet with a header that contains the RuleID and the compression
residue, as shown in Fig. 2.21. A rule defines how each field is compressed according to matching
operators such as equal, ignore and match mapping. Each field and operator have an associated
action applied over the header field, e.g., not-sent, sent, or mapping-sent, among others.

Figure 2.21: The IPv6 header is compressed using SCHC. The output of SCHC compression is
called a SCHC Packet.

2.3.4 SCHC fragmentation

In SCHC F/R, a SCHC Packet is fragmented into units called tiles (see Section 2.3.4.3). One or
more tiles are carried by one SCHC Fragment, which is sent in an LPWAN frame. In some SCHC
F/R modes, a determined number of tiles are grouped into a window (see Section 2.3.4.4), and the
receiver generates SCHC ACKs to tell the sender which tiles of that window have been received or
not. Missing fragments or tiles are retransmitted. Tiles and windows are numbered in a way that
each tile can be identified for further retransmissions (see Fig. 2.22).

2.3.4.1 SCHC Packet format

The SCHC framework specifies a packet format composed of the compressed header and the payload
of the original packet. The compressed header is composed of the Rule ID and the Compression
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SCHC Packet︷ ︸︸ ︷
4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0︸ ︷︷ ︸

w0

︸ ︷︷ ︸
w1

︸ ︷︷ ︸
w2

︸ ︷︷ ︸
w3

Figure 2.22: Example of a SCHC Packet fragmented into 20 tiles, with 5 tiles per window. The
tile index in the window, called the Fragment Compressed Number (FCN), is indicated for each
tile.

Residue (if any) which, if present, is the output of compressing the packet header with a determined
Rule [6]. Fig. 2.23 shows the structure of the SCHC Packet.

Compressed Header︷ ︸︸ ︷
Rule ID Compression Residue Payload

Figure 2.23: Example of a SCHC Packet.

2.3.4.2 SCHC F/R messages and headers

The SCHC framework defines different messages that are used to carry out the SCHC F/R process
between the sender and the receiver. The main messages are the SCHC Fragment and the SCHC
ACK. Each message has a SCHC F/R Header with the following fields:

• Rule ID: this field identifies whether a SCHC message is a SCHC Fragment. In a SCHC
Fragment, it indicates which F/R mode and settings are used.

• Datagram Tag (DTag): this field is used to identify –along with the Rule ID– a SCHC Packet.
The length of the DTag field is T in bits.

• W : this field identifies the window number a fragment belongs to and has a length of M
bits. W is only present in SCHC F/R modes that use windows.

• Fragment Compressed Number (FCN): this N -bit field is used to identify the progress of the
sequence of tile(s) being transmitted in a SCHC Fragment message.

• Reassembly Check Sequence (RCS): this field, of U bytes, is used to check the integrity of a
reassembled SCHC Packet. It protects the complete SCHC Packet.

• Integrity Check (C): this one-bit field (LCbit
= 1) equals 1 if the integrity check of the

reassembled SCHC Packet succeeded, and 0 otherwise.

A SCHC Fragment carries a part of a SCHC Packet from the sender to the receiver. The FCN
field of a SCHC Fragment has all bits set to 1 (it is then called an All-1 SCHC Fragment), to
indicate it is the last fragment for the current SCHC Packet; that fragment carries the RCS for
this SCHC Packet. Fig. 2.24 shows a regular and an All-1 SCHC Fragment. LSH is the length of
the SCHC Fragment Header in bytes. Padding bits are added at the end of the SCHC Fragment
if needed by the LPWAN technology. A SCHC ACK is sent by the receiver to the sender to
acknowledge the complete or partial reception of the fragmented SCHC Packet. In the latter case,
a SCHC ACK reports whether the tiles of a given window have been received or not, in the form
of a bitmap (see Section 2.3.4.5). Fig. 2.25 shows the SCHC ACK format. A SCHC ACK carries
the C field.
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SCHC Frag Header︷ ︸︸ ︷
Rule ID DTag W FCN Fragment Payload padding (as needed)

T M N

Rule ID DTag W 11..11 RCS Fragment Payload padding (as needed)

T M N U

LSH

Figure 2.24: Illustration of a regular SCHC Fragment, an All-1 SCHC Fragment with the RCS
field and an All-0 SCHC Fragment. The length in bits of each header field is indicated below each
field.

SCHC ACK Header︷ ︸︸ ︷
Rule ID DTag W C=1 padding (as needed) (success)

Rule ID DTag W C=0 Bitmap padding (as needed) (failure)

T M 1

LSH

Figure 2.25: Illustration of a SCHC ACK message. The top SCHC ACK message notifies successful
reassembly of a SCHC Packet by carrying a C = 1. The bottom one indicates a failed SCHC Packet
reassembly (C = 0) and carries a bitmap. The length of each header field (in bits) is indicated
below each field.

2.3.4.3 Tiles

A tile has a size of t bytes. If the payload field is present in a SCHC Fragment, it must carry at
least one tile. The FCN of the SCHC Fragment, together with the window index W , identifies the
first tile carried by the SCHC Fragment.

2.3.4.4 Windows

A group of w successive tiles is called a window. Each window in a fragmented SCHC Packet
transmission, except the last one, must have the same number of tiles. Windows are numbered
from 0 upwards. The window field (W ) has a size of M bits and the window size (window size) has
to be less than 2N −1 (in each window, the tiles are numbered from window size−1 downwards).
Fig. 2.22 shows the fragmentation of a SCHC Packet in 4 windows, with 5 tiles per window.

2.3.4.5 Bitmap

A bitmap is a sequence of bits where each bit indicates the received status of a tile within a specific
window. The bitmap has a size of 2N − 1. The rightmost and leftmost bits will correspond to tile
numbers 0 and window size − 1, respectively. The receiver will set a 1 in the bitmap when the
corresponding tile is received successfully and a 0 when the tile was not received, as exemplified
in Fig. 2.26. The C field is set to 0, indicating the packet reassembly was not successful, mostly
because the SCHC Packet was not received completely.
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SCHC ACK Header︷ ︸︸ ︷ Bitmap︷ ︸︸ ︷
Rule ID DTag W C=0 0 1 1 1 1 1 1 padding (as needed)

tile number = 6 5 4 3 2 1 0

Figure 2.26: Example of a SCHC ACK, where a window of 7 tiles (w = 7) was sent and tile FCN
# 6 was not received successfully.

LPWAN
device

LPWAN Radio
Gateway

Rule ID DTag 10 Tile

Rule ID DTag 01 Tile

Rule ID DTag 11 RCS Tile 0-Pad

receiversender

Figure 2.27: Example of a SCHC Packet transfer that requires fragmentation in the No-ACK
mode. The SCHC Packet needs 3 fragments to be carried.

2.3.5 SCHC Fragmentation and Reassembly modes

SCHC offers 3 SCHC F/R modes to perform the SCHC F/R process: No-ACK, ACK-Always
and ACK-on-Error. If a reliable communication is required, ACK-Always and ACK-on-Error use
ACKs to support potential retransmission upon failure. This section provides a brief description
of No-ACK and ACK-Always modes, and a more detailed explanation of the ACK-on-Error mode.

2.3.5.1 No-ACK mode

The No-ACK mode provides a mechanism for in-sequence delivery of SCHC Fragments between the
sender and the receiver. This mode does not provide reliability when errors are present, since there
is no feedback from the receiver and the sender cannot perform SCHC Fragment retransmissions
(see Fig. 2.27). Variable L2 MTU size is supported. Tiles can be of different sizes, while windows
are not used.

2.3.5.2 ACK-Always mode

The ACK-Always mode is a window-based mechanism for in-sequence delivery of SCHC Fragments
that supports reliability (see Fig. 2.28). At the end of the transmission of each window, a SCHC
ACK is sent by the receiver to the sender to report on the tiles received for the current window.
The sender only begins the transmission of the next window, once the receiver confirms the correct
reception of all tiles of the current window. Variable L2 MTU size is not supported. Tiles can
have different sizes.

2.3.5.3 ACK-on-Error mode

The ACK-on-Error mode is a window-based mechanism that supports reliable and out-of-order
delivery of SCHC Fragments and variable L2 MTU. This SCHC F/R mode reduces the number of
SCHC ACKs, when compared to ACK-Always, since in all windows except for the last one carrying
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LPWAN
device

LPWAN Radio
Gateway

Rule ID DTag W0 10 Tile

Rule ID DTag W0 01 Tile

Rule ID DTag W0 00 Tile
ALL-0

Rule ID DTag W0 C=1

ACK OK

Rule ID DTag W1 10 Tile

Rule ID DTag W1 01 Tile
Rule ID DTag W1 11 RCS Tile 0-Pad

ALL-1

Rule ID DTag W1 C=1

RCS OK

sender receiver

(a) Without transmission errors.

LPWAN
device

LPWAN Radio
Gateway

Rule ID DTag W0 10 Tile

Rule ID DTag W0 01 Tile
Rule ID DTag W0 11 RCS Tile 0-Pad

ALL-1

Rule ID DTag W C=0 1 0 1

ACK KO

Rule ID DTag W0 01 Tile
Retransmission

Rule ID DTag W0 C=1

RCS OK

sender receiver

(b) With transmission errors.

Figure 2.28: Example of a SCHC Packet transfer that requires fragmentation in the ACK-Always
mode. In (a), the SCHC Packet transfer requires 2 windows of 3 tiles, for a total of 6 tiles. In (b)
the SCHC Packet transfer requires 1 window of 3 tiles, as the SCHC Packet needs only 3 fragments
to be carried. Losses are present in the first (and only) window in (b).
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a SCHC Packet, SCHC ACKs are only sent when at least one tile is lost. For the last window, in
order to ensure that the sender can expect to receive feedback on the fragmented SCHC Packet
transmission, a SCHC ACK is unconditionally sent.

All tiles must be of the same size, except for the last one, which can be smaller. One or more
tiles can be carried in a SCHC Fragment and they can be from multiple windows.

In a SCHC Fragment, the window number (W ) needs to be set to identify each window number
unambiguously during the transmission of a SCHC Packet. The sender can retransmit the SCHC
Fragments for any lost tiles, from previous windows. This allows the sender and the receiver to
work in a loosely coupled manner.

Transmission of a fragmented SCHC Packet may end in three ways: first when the integrity
check for the SCHC Packet shows a correct reassembly at the receiver, second when too many
retransmission attempts were made, and finally when an inactivity timer at the receiver indicates
that the transmission has been inactive for too long. Fig. 2.29a shows the transmission of the
fragmented SCHC Packet of Fig. 2.22 with no errors, where the SCHC Fragment size allows 4 tiles
per fragment.

If the receiver receives the All-1 SCHC Fragment, it performs the integrity check for the SCHC
Packet. This is carried out by comparing the RCS calculated with the RCS received in the All-1
SCHC ACK Fragment. With the result of the Integrity Check, the C field is populated with 1 or
0, indicating success or failure of the SCHC Packet reassembly, respectively. In case some tiles of a
window or a complete window were lost, the receiver prepares the bitmap for the lowest-numbered
window that was not entirely received.

The sender has to listen for a SCHC ACK from the receiver after sending the All-1 SCHC
Fragment. Moreover, a technology-oriented profile specification can establish other times when
the sender may need to listen for a SCHC ACK, for example after sending a complete window
of tiles. The sender can terminate the transmission of a SCHC Packet when receiving a SCHC
ACK with C = 1. If the SCHC ACK carries C = 0, the sender must resend the SCHC Fragments
corresponding to the missing tiles indicated in the bitmap. As an example, Fig. 2.29b shows the
transmission of the SCHC Packet presented in Fig. 2.22 with an error in the 4th SCHC Fragment.
Even though the SCHC Fragment carries tiles from 2 windows, the SCHC ACK indicates the
window number of the lower-numbered window and the sender is able to identify which SCHC
Fragment has to be retransmitted. After the retransmission of the missing SCHC Fragment,
the receiver computes the RCS, performs the integrity check and sends a SCHC ACK reporting
successful SCHC Packet reassembly.

2.3.6 Counters and Timers

In all SCHC F/R modes, upon SCHC Fragment reception, the receiver resets a timer called Inac-
tivity Timer. When this timer expires, the SCHC Packet transmission is aborted due to inactivity.
Furthermore, in reliable SCHC F/R modes, the sender and the receiver keep a counter that is
incremented when a SCHC ACK is requested and sent, respectively. The SCHC ACK will be
requested and sent a maximum of MAX ACK REQUESTS times. The sender will wait, after
requesting each SCHC ACK, for a time given by a timer called the Retransmission Timer (RT).
If MAX ACK REQUESTS is reached, the SCHC Packet transfer is aborted by either the sender
or the receiver.

2.3.7 SCHC Profiles

The SCHC framework specification was purposefully defined following a generic approach, in order
to offer flexibility for adapting to different underlying LPWAN technologies and scenarios [6]. As
shown earlier in this section, SCHC provides several F/R modes and a number of parameters, but
it does not specify which F/R modes or parameter settings should be used over each particular
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LPWAN
device

LPWAN Radio
Gateway

Rule ID DTag W0 100 4 3 2 1
Rule ID DTag W0 000 0 4 3 2
Rule ID DTag W1 001 1 0 4 3
Rule ID DTag W2 010 2 1 0 4

Rule ID DTag W3 011 3 2 1

Rule ID DTag W3 111 RCS 0
SCHC ALL-1

Rule ID DTag W3 C=1

SCHC ACK Success

sender receiver

(a) Example of a transmission of the SCHC Packet
shown in Fig. 2.22 with no errors. The transmis-
sion ends with a SCHC ACK that indicates successful
SCHC Packet reassembly.

LPWAN
device

LPWAN Radio
Gateway

Rule ID DTag W0 100 4 3 2 1
Rule ID DTag W0 000 0 4 3 2
Rule ID DTag W1 001 1 0 4 3
Rule ID DTag W2 010 2 1 0 4

Rule ID DTag W3 011 3 2 1

Rule ID DTag W3 111 RCS 0
SCHC ALL-1

Rule ID DTag W2 C=0 1 1 0 0 0

SCHC ACK Failure

Rule ID DTag W2 010 2 1 0 4
Retransmission

Rule ID DTag W3 C=1

SCHC ACK Success

sender receiver

(b) Example of a transmission of a SCHC Packet
with one lost SCHC Fragment in ACK-on-Error mode.
Once the All-1 SCHC Message is received by the re-
ceiver, a SCHC ACK with C = 0 and its corre-
sponding bitmap is generated. The sender performs
the SCHC Fragment retransmission. When the lost
SCHC Fragment is received, the receiver performs the
Integrity Check and sends the corresponding SCHC
ACK Success indicating the end of the transmission
of the SCHC Packet.

Figure 2.29: ACK-on-Error mode.
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LPWAN technology. Such details are deferred to SCHC Profiles, which are technology-specific
documents that specify the parameter settings and F/R modes to be used over a given LPWAN
technology. As of the writing, SCHC Profiles have been or are being defined for LoRaWAN, NB-
IoT, and Sigfox [7–9]. Exploiting the generic design of SCHC [6], and its efficiency, SCHC Profiles
are also being defined for use of SCHC over protocols and technologies beyond the LPWAN field,
such as the Point-to-Point Protocol (PPP) or IEEE 802.15.4 [39,40].

A SCHC Profile needs to provide information regarding the most common intended use cases,
implementation recommendations, mapping of SCHC elements into the corresponding LPWAN
architecture, and recommendations for C/D and/or F/R utilization. SCHC Profiles for LPWAN
technologies focus mainly on specifying details for F/R functionality [7–9]. Such details comprise
the F/R modes to be used and the size of each SCHC Fragment header field, among others.



CHAPTER 3

PERFORMANCE ANALYSIS OF SCHC F/R MODES

<<Light gets the shape of what it enlightens.>>

In this chapter we present a performance evaluation of all SCHC F/R modes. As the SCHC
framework was evolving into becoming a standard, we evaluated its performance with different
parameter settings. We collaborated in the development of SCHC simulation tools and contributed
with a statistical module to obtain the values of the different performance metrics. The evaluation
was performed for three critical network and application performance parameters, such as Channel
Occupancy (CO), Goodput and Total delay. We believe that the results of this investigation
provided valuable insights on how the SCHC framework can be configured, and the impact of those
configuration values on network and application performance. One SCHC F/R mode outperforms
the others for reliable communication: the SCHC ACK-on-Error mode. The contributions have
been published in a conference paper [VI].

3.1 Introduction

There are numerous applications for IoT, with various constraints, many of them involving a large
number of nodes, each of which having a limited amount of data to send (e.g., one message per
day). Another common constraint is the low energy of the nodes, as many IoT devices operate on
battery, which should last for extended periods of time (months, years or even decades). These
constraints led to the deployment of LPWANs.

The huge number of heterogeneous devices brought by IoT stress the need for strong interop-
erability. The global Internet already provides this interoperability feature using a common set of
protocols. However, these protocols were not designed for low bitrate and high latency networks.
This is especially true for IPv6, even though its large address space would be a desirable feature
to handle big amounts of IoT devices. As a result, using IPv6 on LPWAN implies numerous chal-
lenges, mainly due to its large header overhead (40 bytes). Indeed, having low bitrates means that
it takes long ToA to send a large amount of data. This high CO, in turn, reduces the probability
of a node to access the radio channel in the case of frequency bands regulated by a duty-cycle. For
example, the 1% duty-cycle constraint of the European 868 MHz band requires devices to keep
their radio quiet for 99% of the time.

Another issue with IPv6 is that it requires lower layers to support a MTU of 1280 bytes. How-
ever, the maximum payload sizes supported by LPWAN technologies are typically much smaller.
For instance, LoRaWAN and Sigfox support MTUs of 242 bytes and 12 bytes, respectively.

To tackle these two problems, the LPWAN WG of the IETF has defined a new framework
called SCHC [6]. This framework provides a header compression mechanism, as well as several F/R
algorithms to satisfy both the large header and the large MTU size required by IPv6. SCHC follows

49
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a technology-agnostic approach and, as a new framework, performance and optimal configuration
values are unknown at the moment of writing.

Next sections are organized as follows. In Section 3.2, we provide a comprehensive analysis
of the state of the art regarding LPWAN, as well as fragmentation for LPWAN networks. In
Section 3.3, we develop and justify the performance metrics that will be used to evaluate the three
SCHC F/R modes over LoRaWAN by means of simulation. Results are presented and discussed
in Section 3.4.

3.2 Related work

The emergence and popularity of IoT requires the interoperability between heterogeneous systems.
This interoperability is made possible with IPv6 as the glue between different wireless technologies
on the one hand, and with different applications on the other hand. However, running IPv6 over
low powered and lossy network is challenging, and adaptation layers are often required.

6LoWPAN was developed by the eponymous IETF WG to provide IPv6 support on top of
IEEE 802.15.4 [41]. This adaptation layer mainly provides fragmentation and header compression
to fit the maximum layer 2 MTU [42]. Papadopoulos et al. [43] highlighted problems when using
fragmentation over a multi-hop network: in some route-over [44] implementations, each interme-
diate node reassembles the initial data packets, and there is inter-fragment interference on the
forwarding path. Later on, the IETF 6Lo WG has defined specific adaptation layers for other
short range wireless technologies (e.g. BLE, ITU-T G.9959, etc.) [45].

In the LPWAN realm (with technologies such as LoRaWAN, Sigfox or NB-IoT), there is also
a need to provide adaptation layers to support IPv6, but the network characteristics are different.
LPWANs are operated networks in which devices are usually organized in a star topology, around
a radio gateway. The downlink is critical in these networks, and usually comes at a high cost in
energy consumption and resources. This constrains the feedback that can be given to connected
IoT devices (e.g. sensors or actuators) to its minimum. In practice, it prevents negotiations over
the wireless medium, and greatly reduces the number of ACKs that can be sent. Furthermore,
the maximum layer 2 MTU offered by most LPWAN technologies is significantly smaller than
that of 6LoWPAN or 6Lo technologies. These are the main reasons why the IETF LPWAN WG
has defined the SCHC framework [6] in order to provide fragmentation [16] [46] [47], and header
compression [48] over LPWAN technologies such as LoRAWAN.

Suciu et al. [16] analyzed the tradeoff between packet sizes, i.e., the optimal number of frag-
ments, and goodput in LPWAN. While we are conducting a performance evaluation of the Lo-
RaWAN adaptation layer to support IPv6 (i.e., data packets up to 1280 bytes), Suciu et al.
evaluated whether sending several fragments is more efficient than sending large data packets
(up to 250 bytes). They carried out Matlab simulations to study if fragmentation of a 250-bytes
packet can show benefits in comparison to not using fragmentation. When considering a duty-
cycle of 1%, they actually showed that packet fragmentation increases reliability, with a higher
impact in denser and slower networks (e.g., with a higher SF). The study highlights that there is a
trade-off between goodput performance, energy consumption and latency. However, in non-duty-
cycle-restricted networks, they showed that throughput decreases when using thirty fragments per
data packet or more.

Moons et al. [46] and Ayoub et al. [47] studied the benefits of using SCHC or 6LoWPAN for
LoRaWAN networks. They performed the computation of the overhead in terms of headers and
number of packets, and proposed an implementation for the OSS-7 operating system in [46]. They
showed that the overhead is twenty times smaller with SCHC than with 6LoWPAN. In [47] the
authors described an implementation using the network simulator ns-3, but did not provide a
performance analysis of the ACK mechanisms.
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While there are many of LoRa performance studies in terms of DR and coverage (e.g. [49] [50]
[51] [52] [53]), to the best of our knowledge, only Suciu et al. [16], Moons et al. [46] and Ayoub et
al. [47] discuss SCHC. In this chapter, we study in depth the performance of SCHC F/R modes for
data packets with a size up to 1280 bytes (IPv6 MTU), and we provide an overview of the ACK
mechanisms which have never been studied previously.

3.3 Performance metrics

In this section, we present the definition of the metrics used to evaluate the performance of the
SCHC F/R modes presented in Section 2.3.5. These metrics are: total CO, goodput, and total
delay at the SCHC layer.

3.3.1 Total channel occupancy

The total Channel Occupancy (COT) is defined as the amount of time the channel is busy during
the transmission of a SCHC Packet. That is, the time required by the sender to transmit all SCHC
Fragments plus, in the case of ACK-Always and ACK-on-Error, the time needed to transmit all
SCHC ACKs. COT is calculated using the CO of each transmission and can be divided in two
parts: the CO of the sender (COtx) and the CO of the receiver (COrx). The general formula of
COT is given by:

COT[s] = COtx[s] + COrx[s], (3.1)

where COtx (respectively, COrx) is the channel occupancy of all the fragments transmitted by the
sender (respectively, the receiver).

Note that in LoRa/LoRaWAN networks, CO mainly depends on physical layer parameters,
such as spreading factor (SF), channel bandwidth [17], and coding rate [16] [15]. The larger the
SF, the lower the LoRaWAN MTU size, and the higher the CO required for the transmission.

3.3.2 Goodput

We define the goodput as the ratio between the size of the original SCHC Packet and the size of all
fragments and ACKs transmitted. It takes into account the SCHC Headers, payload and padding
bits:

Goodput[%] = (Packet size/Total data sent)× 100. (3.2)

3.3.3 Total delay

Total delay at the SCHC layer (Td SCHC) is defined as the duration between the start of the
transmission of the first SCHC fragment, and the end of the transmission (No-ACK), or the
reception of the confirmation that the SCHC Packet has been successfully transmitted (ACK-
Always and ACK-on-Error).

In more details, for ACK-Always and ACK-on-Error, Td SCHC includes the CO of all the SCHC
Fragments and the corresponding Toff between transmission, except for the Toff after the transmis-
sion of the last SCHC fragment. This is the time spend until the sender receives the SCHC ACK,
signaling a successful reception of the whole SCHC Packet. For the No-ACK mode, Td SCHC is the
time spend between the beginning and the end of the transmission.

In Europe, LoRaWAN frequency band is restricted by duty-cycle [49] and the Toff can be
expressed as:

Toff[s] = CO[s]× 100− duty-cycle

duty-cycle
. (3.3)
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3.4 Simulations

In this section, we present the simulation results for the performance metrics presented in Sec-
tion 3.3. We used the OpenSCHC simulator [54] to evaluate the performance of the three fragmen-
tation methods, in an ideal scenario, with no channel error nor collision. OpenSCHC is an open
source implementation of the SCHC Framework written in micropython. For this study, we created
a program to obtain statistics of each SCHC fragment transmission and adapted the simulator to
support ACK-Always, which was not implemented in the simulator.

Rules are configured with Lr = 6 bits, T = 2 bits, N = 3 (which implies a maximum window
size of Ntiles/window = 7), and U = 32 bits. This yields a SCHC header of 11 bits for No-ACK. For
ACK-Always, M is supposed to be 1. However, because of the way we implemented ACK-Always
in OpenSCHC, the simulations were actually performed with M = 3 (that is, a penalty of 2 bits
per fragment with respect to a correct implementation). Consequently, the total SCHC header
length for ACK-Always is 14 bits. Finally, ACK-on-Error was configured with M = 3 bits, which
means that there is at most 8 windows per SCHC Packet. This also gives a SCHC header length
of 14 bits.

Regarding tile sizes, we selected 49 bytes when using a LoRa SF of 12 (SF12), and 240 bytes
using a LoRa SF of 8 (SF8), in order to match LoRaWAN MTU for the EU 868-880 MHz ISM
band. This last setting does not apply for No-ACK since OpenSCHC does not require a tile size
in that mode.

Ntiles/window is set to 2 and 5 tiles for ACK-Always. A window size of 2 tiles requires more
windows per packet than a window size of 5 tiles. Thus, we expect a larger overhead with smaller
values of Ntiles/window, as SCHC ACKs are sent at the end of each window. In the ACK-on-Error
mode, Ntiles/window is set to 5 tiles, but the actual value has no impact in the absence of noise, as
only one SCHC ACK is sent for the whole transmission (no negative ACK).

As radio technology below SCHC, we consider LoRaWAN, working in the EU 863-880 MHz ISM
band with one uplink channel (for data transmission) and one downlink channel. This configuration
imposes a duty-cycle of 1% by regulatory restrictions.

OpenSCHC provides a realistic simulation of the SCHC protocol implementation. However,
it does not provide an implementation for ACK-Always. To simulate the ACK-Always mode, we
considered that the All-0 SCHC fragment is carrying an RCS for the currently transmitted window.
We also needed to set M = 3 instead of 1 as required by the standard. This increases the overhead
in the ACK-Always mode, but was necessary to perform simulations.

3.4.1 Total channel occupancy

The COT is directly related to the SF and the number of fragments exchanged. Figs. 3.1a and 3.1b
show the COT for SF8 and SF12, respectively. As expected, the only difference between ACK-
on-Error and No-ACK over an ideal communication channel is the SCHC ACK at the end of
the transmission. Comparing ACK-Always and ACK-on-Error, we notice no difference when the
packet size is smaller than the window size (i.e., only one window is required). Such a difference
only appears when the packet size is larger than the window size (i.e., more than one window is
needed), as a result of the additional SCHC ACKs required for ACK-Always. The difference in
number of SCHC ACKs between ACK-on-Error and ACK-Always is proportional to the number
of windows required (i.e., the number of additional SCHC ACKs in ACK-Always), and so is the
case for COrx. Moreover, we considered that ACK-Always must send an RCS in the All-0 SCHC
Fragment (at the end of each window), implying a larger COtx when Ntiles/window is smaller.

COT varies significantly with SF because of the difference in MTU sizes. For instance, sending
a 1280-bytes IPv6 packet with SF8 will require a COT approximately 20 times greater than with
SF12.
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No-ACK mode does not use windows nor SCHC ACKs. Thus, COT is only composed of the
COtx component, which is related to the total number of fragments transmitted by the sender. For
this reason, and as expected, No-ACK is the SCHC F/R mode with the lowest COT. The results
in Fig. 3.1 confirm that ACK-Always is the method with the largest receiver overhead. Also, COT

in ACK-Always depends directly on the windows size: as more windows are required to transmit
a SCHC Packet, the SCHC ACK overhead and the COT increase.

Note that in terms of COT, considering the scenarios of Fig. 3.1, the cost of the extra reliability
of ACK-Always over No-ACK ranges from 9% (Ntiles/window = 5, SF8, packet size of 320 bytes) to
46% (Ntiles/window = 2, SF12, packet size of 1280 bytes). This extra COT is however much more
moderate between ACK-on-Error and No-ACK: ranging from 4% (SF12, packet size of 1280 bytes)
to 9% (SF8, packet size of 320 bytes).
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Figure 3.1: Channel Occupancy vs packet size. Darker colors correspond to COtx, and lighter
colors correspond to COrx.

3.4.2 Goodput

Goodput results are presented in Fig. 3.2 for SF12 and SF8. As a trend, goodput is negatively
impacted by the overhead induced by the SCHC F/R mechanisms and tends to an upper limit
as the SCHC Packet size grows higher. In the details, though, all three modes show a sawtooth
behaviour. This sawtooth profile is due to the extra overhead induced when the fragmentation
process requires one more fragment to send the SCHC Packet. In ACK-Always, this sawtooth
behaviour is amplified when more windows are needed, as more All-0 Fragments (including a RCS,
in our implementation) are emitted.

As expected, No-ACK is the method with the lowest overhead, due to the absence of SCHC
ACKs, therefore it is the method with the best goodput ratio. On the opposite side, ACK-Always
yields the lowest goodput. However, as more fragments are sent in the same window, a better
goodput is obtained, because more data is transferred and acknowledged for the same amount of
SCHC ACKs. Finally, the results show that ACK-on-Error provides a trade-off between No-ACK
and ACK-Always. Furthermore, Fig. 3.2a confirms that, in the best case, ACK-Always reaches the
same goodput as ACK-on-Error. This happens when only one window is needed for ACK-Always
(thus only one SCHC ACK is sent).

Comparing Figs. 3.2a and 3.2b, one can observe that the lower the SF, the greater the goodput.
This happens because higher SF implies smaller layer-2 MTU (hence, a smaller fragment sizes).
In this case, more fragments are required for a given IPv6 packet size, which increases overhead.
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Figure 3.2: Goodput vs packet size.

3.4.3 Total delay

Total delay for the three SCHC F/R modes is presented in Figs. 3.3a and 3.3b for SF12 and SF8,
respectively. In the simulated scenario, the three SCHC F/R modes perform more or less the same.
Only No-ACK presents a somewhat lower Td SCHC for high SF and SCHC Packet sizes, as a result
of a lower COtx (hence, a lower Toff). In simulations of Fig. 3.3, we considered that SCHC ACKs
generated between windows were received by the sender during its Toff. Under this assumption,
there is a small difference between the Td SCHC of ACK-Always and that of ACK-on-Error.

The main teaching of Fig. 3.3 is that delays are high, even for moderate packet sizes and low
SFs. Fig. 3.3a shows that even if SCHC F/R mechanisms can provide support for the maximum
IPv6 MTU, there are cases where such packet sizes are not practical. For instance, Td SCHC for
SF12 and a 1280 byte IPv6 packet is 2.0 hours for the ACK-on-Error Mode. Using SF8, the
time drops to 5.9 minutes (0.1 hours, 20 times smaller than SF12). For smaller packet sizes, the
Td SCHC difference is still considerable. For example, using a 320-byte IPv6 packet, the difference
of Td SCHC between SF12 and SF8 is in the same order of magnitude: Td SCHC is 23 times higher
with SF12, compared to SF8. In our scenario, these high values of Td SCHC are mainly due to
duty-cycle restrictions. As an example, in a non-duty-cycle-restricted network, a 1280 byte packet
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Figure 3.3: Td SCHC vs packet size.
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would only require a Td SCHC of 72.65 s using the ACK-on-Error mode and SF12, instead of the 2
hours of our 1% duty-cycle scenario.

Interestingly, while experimenting with SCHC parameters, we found out that a small variation
in the SCHC header size can have large implications in terms of Td SCHC. Not only because of the
extra CO associated with the transmission of the additional bits in the SCHC header, but also
because of the subsequent Toff the sender must await after each transmission.



CHAPTER 4

PERFORMANCE ANALYSIS AND OPTIMAL TUNING OF
SCHC ACK-ON-ERROR MODE

<<Light makes visible all origin and destination sources.>>

LPWANs have a bottle-neck in downlink traffic (i.e., from gateway to device), mainly due to
duty-cycle restrictions and network capacity. Therefore, optimizing the downlink messages number
and size becomes critical, especially for ACK traffic. In this chapter, a mathematical model of the
SCHC ACK-on-Error ACK burden was built, and the configuration values for the main SCHC
ACK-on-Error parameters, when using SCHC over Sigfox and LoRaWAN, were proposed and
optimized. We define ACK pooling (pooling a large number of fragment errors in a single ACK),
which provides benefits for high error rates, while smaller ACKs are better for low error rates.
Then, we quantify the advantages of using the optimized values in terms of ACK number and
ACK size. Contributions in the optimal configuration parameters discovery have provided useful
insights for the development of the SCHC standard, and for use of SCHC over LoRaWAN and
over Sigfox. Part of the results in this chapter were obtained during a research stay in the IMT-
Atlantique in Rennes, France, and have been published in the journal article [I].

4.1 Introduction

This chapter focuses on the the SCHC F/R ACK-on-Error mode, which is promising due to its
reliability and high efficiency by minimizing the number of ACKs compared to ACK-Always. In
this mode, ACKs are sent by the fragment receiver only when the latter detects fragment losses.
Then, the fragment sender selectively retransmits any lost fragments reported in the ACKs. To
maintain consistency, a final ACK is also unconditionally sent at the end of the fragmented packet
transmission.

A key constraint for LPWAN is the amount of downlink traffic, i.e., from the gateway to the
IoT device. Indeed, in the spectrum band used by unlicensed LPWAN technologies in Europe (e.g.,
the 868 MHz band), each device must respect a duty-cycle limit, which can be especially binding
for gateways, that manage many flows. Even if the downlink traffic is not limited by the duty-cycle
constraint, one may still want to minimize it for economic reasons: the amount of downlink traffic
is now used by some operators as a basis for charging IoT users in some plans1 or the number of
downlink messages is limited [20]. Noting that IoT flows are mostly uplink flows (e.g., from the
IoT device, say a sensor, sending its data readings), the focus in this chapter is on the ACK traffic
incurred by the SCHC F/R process –the main expected type of downlink traffic– which needs to
be minimized in order to reduce costs and/or respect gateway duty-cycle constraints [12].

1See, e.g., https://businessapps.swisscom.ch/en/apps/25128/iot-connectivity-lorawan/editions (ac-
cessed on 19/01/2023)

56
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More specifically, in this chapter we present a mathematical model to compute the volume of
ACK traffic (relative to the IoT device data volume) based on the quality of the radio link and the
SCHC F/R parameters. We then use the model to optimize those parameters in order to minimize
the ACK traffic. For a direct practical use of our results, we provide the optimal parameter values
for LoRaWAN [3] and Sigfox [4] technologies.

The remainder of this chapter is organized as follows. In Section 4.2, we present work related to
LPWAN fragmentation and its performance. The mathematical model used to analyze the ACK-
on-Error mode is developed in Section 4.3, and it is used in Section 4.4 to evaluate the performance
metrics, mostly regarding the amount of ACK messages. Section 4.5 explains how our results can
be applied to state-of-the-art LPWAN technologies such as LoRaWAN and Sigfox.

4.2 Related work

Recent attention on LPWAN technologies has partly focused on the evaluation of the physical and
link layers [12,15,18,20]. In [12], the authors analyzed LoRaWAN and explored its limitations. The
results showed that the application and network design must minimize the number of acknowledged
frames to avoid capacity drain, because the LPWAN gateway must enforce a time-off following the
transmission to comply with duty-cycle regulations. Other studies provide a mathematical model
that characterizes LoRaWAN and Sigfox end-device energy consumption, lifetime and provided
results for the energy involved in data delivery [15, 20]. In [18], a performance evaluation of
Sigfox scalability is presented. Together, these studies provide important insights into the physical
and link layers of LPWAN technologies, but do not consider the compatibility with IPv6, nor
fragmentation mechanisms.

Several studies compare different LPWAN technologies [19, 26, 27]. While Mroue et al. [26]
perform an evaluation using the packet error rate for Sigfox, LoRa, and NB-IoT, a comprehensive
and comparative study for a number of performance metrics is presented in [27]. The study in [19]
evaluates, by simulation, the influence of the number of devices on the packer error rate, collisions
and spectrum utilization for Sigfox and LoRa. None of these studies address the problem of
transmitting a fragmented IPv6 packet over LPWAN.

Regarding the upper layer functionalities in LPWAN, the study in [16] evaluates the effect
of fragmentation and its efficiency in terms of energy consumption, throughput, goodput, and
average delay in dense networks. Suciu et al [16] showed that fragmentation increases reliability,
especially when sending several fragments instead of only one of the MTU size, i.e., when no
fragmentation is needed. Other contributions focus on IPv6 over LPWAN using SCHC [46–48,55–
57]. Some of these propose enhancements to SCHC Header compression, but do not consider SCHC
F/R [48, 56]. On the other hand, Moons et al. [46] compared SCHC and 6LoWPAN compression
and fragmentation functionalities. Their results show that SCHC has a smaller footprint, uses
less memory, and the overhead is twenty times smaller when compared with 6LoWPAN. Ayoub et
al. [47] present an implementation of SCHC using the ns-3 network simulator and also compare
SCHC with 6LoWPAN, finding the same performance advantage for SCHC in terms of header
overhead. The authors in [55] provided an overview of SCHC and a simple evaluation of the
different F/R modes, but it is a high level study due to its tutorial purpose. In [57], the authors
compared the different SCHC F/R modes in terms of total channel occupancy, goodput, and total
delay at the SCHC layer in an ideal communication channel. The authors showed that, when
comparing the reliable SCHC F/R modes, namely, ACK-Always and ACK-on-Error, this latter
provides a better goodput.

To the best of our knowledge, no previous work provides a mathematical model to estimate
the ACK volume and its relation with key configuration parameters of SCHC F/R ACK-on-Error
mode, nor contribute with configuration guidance based on radio link quality and packet size.
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We think that this mode is worth analyzing, because it provides reliable communication while
minimizing the number of ACKs when compared to ACK-Always.

4.3 Mathematical model and analysis

This section provides the mathematical model used to calculate the expected number of SCHC
ACKs, hereafter called ACKs, required to successfully transfer a fragmented SCHC Packet in ACK-
on-Error mode, in presence of losses. On this basis, the section also introduces a number of related
crucial performance metrics. Sections 4.3.1 to 4.3.4 present how to compute the performance
metrics, namely: ACK message overhead, ACK bit overhead, ACK bit overhead with L2 Headers,
and percentage of used bits per fragment, respectively. In addition, Section 4.3.5 presents useful
parameters such as the maximum window size and the maximum bitmap sizes.

In our analysis, we consider an infinite maximum number of fragment retries, all tiles of the
same size and no padding in the bitmap. We do not count the unconditional SCHC ACK (see
Fig. 2.25) generated by the receiver to notify that all tiles of a SCHC Packet have been received
successfully because it does not provide more information to the analysis, as it is always sent,
whether there are fragment losses or not.

4.3.1 ACK Message Overhead

The ACK message overhead, Ek is defined as the expected number of ACKs required to successfully
transfer a given window. Ek depends on the average number of SCHC Fragments necessary to
transmit all the tiles of a window and on the probability that each SCHC Fragment is successfully
received.

If we assume that all bits must be received without errors for the transmission to be successful,
the probability of success, Ps, for a SCHC Fragment can be related to the Bit Error Rate (BER)
through the relation

Ps = (1−BER)8F , (4.1)

where F is the fragment size in bytes of the L2 MTU of the underlying LPWAN technology.
(Note that we implicitly assume a uniform BER that refers to the residual BER after application
of physical layer error correcting techniques; the impact of the frame header size is considered
separately, see Section 4.3.3.) Assuming that Ps is fixed and all transmissions are independent,
the number of transmission attempts NTA needed to successfully deliver a SCHC Fragment from
the sender to the receiver follows a geometric distribution, i.e.,

P(NTA = n) = (1− Ps)
n−1Ps. (4.2)

Recall that at most only one ACK per window is generated i.e., the ACK reports all the tiles
not received in that window. Hence, until all SCHC Fragments containing all tiles of a window
have been successfully received, a negative ACK is sent for that window and the missing SCHC
Fragments are re-sent.

As a result, the number of such negative ACKs that are sent per window is the maximum
number of retransmissions over all the SCHC Fragments in the window. The expected value of
that number can be computed recursively, using a renewal argument. To do so, let Aj be the
expected number of transmission attempt cycles (a cycle meaning that we send all the missing
SCHC Fragments of a window once) until successful reception of all SCHC Fragments, when j > 0
SCHC Fragments remain to be sent. Then, consider the situation after a transmission attempt

cycle of all those j SCHC Fragments: with probability

Å
j
i

ã
P j−i

s (1 − Ps)
i, there have been j − i

SCHC Fragments successfully received, and i SCHC Fragments that need retransmission. From
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that situation, the expected number of transmission attempt cycles is Ai, hence the recursive
relation

Aj = 1 +

j∑
i=0

Å
j
i

ã
P j−i

s (1− Ps)
iAi, (4.3)

where the first term accounts for the transmission attempt we considered. Rearranging, we get

Aj =
1

1 + (1− Ps)j

[
1 +

j−1∑
i=0

Å
j
i

ã
P j−i

s (1− Ps)
iAi

]
(4.4)

Using (4.4) with A0 = 0, the number of ACKs required per window is simply Ak− 1, removing
the last successful transmission attempt cycle, when all the SCHC Fragments with all the tiles of
that window were correctly received, with k the number of SCHC Fragments per window.

A SCHC Fragment can contain tiles from several consecutive windows, hence the number of
SCHC Fragments to successfully send a window may vary. For a fixed window size w (in tiles)
and fragment size f (in tiles), the number of SCHC Fragments per window, k, can be modeled as
a random variable, as follows:

k =

®
k1 = bwf c, with probability 1 + bwf c −

w
f

k2 = dwf e, with probability w
f − b

w
f c,

(4.5)

as illustrated in Fig. 4.1.

SCHC Packet︷ ︸︸ ︷
4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 ...︸ ︷︷ ︸

W0

︸ ︷︷ ︸
W1

︸ ︷︷ ︸
W2

︸ ︷︷ ︸
W3

SCHC Fragments

Rule ID DTag W0 100 4 3 2 1 Rule ID DTag W0 000 0 4 3 2︸ ︷︷ ︸
W0

︸︷︷︸
W0

︸ ︷︷ ︸
W1

Rule ID DTag W1 001 1 0 4 3 Rule ID DTag W2 010 2 1 0 4︸ ︷︷ ︸
W1

︸ ︷︷ ︸
W2

︸ ︷︷ ︸
W2

︸︷︷︸
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Rule ID DTag W3 011 3 2 1 0 Rule ID DTag W4 100 4 3 2 1︸ ︷︷ ︸
W3

︸ ︷︷ ︸
W4

Rule ID DTag W4 000 0 4 3 2︸︷︷︸
W4

︸ ︷︷ ︸
W5

Figure 4.1: Example of a SCHC Packet and SCHC Fragments. The SCHC Packet is fragmented in
5 tiles per window (w = 5) and the SCHC Fragments can transport 4 tiles per fragment (f = 4).
For a successful transmission of the packet, W0 needs k2 = 2 successful SCHC Fragment trans-
missions, then W1,W2, and W3 need each k1 = 1 more successful SCHC Fragment transmission,
in compliance with (4.5): a proportion w

f − b
w
f c = 1/4 of windows need k2 = dwf e new SCHC

Fragment transmissions, whereas the other windows need only k1 = bwf c = 1 new SCHC Fragment
transmission.

To compute Ek, the expected number of transmission attempts for k1 and k2 are first obtained
from (4.4). Ek is the weighted average of Ak1 − 1 and Ak2 − 1, with the weights of (4.5). This
gives us Ek for a given window size, fragment size, and tile size:

Ek =
(
1 +
⌊
w
f

⌋
− w

f

)
×Abwfc − 1 +

(
w
f −

⌊
w
f

⌋)
×Adwfe − 1. (4.6)
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4.3.2 ACK Bit Overhead

The ACK bit overhead (OACK) is defined as the average number of (negative) ACK bits sent for
each data bit sent and provides the trade-off between the amount of data that can be transferred
in a window and the resulting ACK(s) volume.

OACK is obtained by dividing Ek by the window size and then multiplying the result by the
ACK size (LACK). The window size can be obtained as the tile size (t) multiplied by the number
of tiles in a window (w). LACK is equal to the bitmap size, that exactly equals w (one bit per tile
in a window) plus the ACK header LSH (in bytes) allowing to express the ACK bit overhead as:

OACK =
(8LSH + w) · Ek

8wt
. (4.7)

OACK quantifies the relation between the quantity of data and the quantity of ACKs that need
to be sent. The ACK size (LACK) is related to the tile size. For the same window size (in bytes),
larger tiles produce smaller bitmaps, thus smaller ACKs. Recall that OACK is pertains to the
SCHC framework layer, as it only considers the SCHC Headers.

4.3.3 ACK Bit Overhead with L2 headers

As the SCHC framework is on top of a LPWAN technology, there is an extra L2 overhead. To
consider the additional cost involved in sending an ACK, the L2 header (with size LL2H in bytes)
is added to OACK in the downlink, i.e., a penalty for sending an ACK, and can be calculated as
follows:

OACKL2
=

(8 · (LL2H + LSH) + w) · Ek

8wt
. (4.8)

The ACK bit overhead with L2 headers (OACKL2
) analyzes the impact of the L2 overhead and

its relation with the window and tile sizes. Minimizing OACKL2
maximizes the uplink data, whereas

optimizing the ACK size and volume, reduce the utilization of the LPWAN gateway and leverages
the available resources in duty-cycle-constrained networks.

4.3.4 Percentage of used bits per fragment

The percentage of used bits per SCHC Fragment provides information on how efficient a tile size
is for a given L2 MTU (F ) considering the SCHC Headers. Due to LPWAN capacity constraints,
the tile size must be set to maximize the SCHC Fragment payload.

Therefore, the percentage of usage of a SCHC Fragment, which we will denote by PU , is given
by:

PU =
ft

F − LSH
× 100. (4.9)

In LPWAN technologies such as LoRaWAN, F can change during an on-going fragmented
packet transmission [3] and the tile size previously chosen may not be multiple of the modified F
as it was in the previous one, leaving some bytes unused. The number of unused bytes in a SCHC
Fragment (funused), for a given tile size, is given by:

funused = (F − LSH)− (ft). (4.10)

For example, a 9-byte tile (t = 9) will use all the bytes when F = 11, f = 1 with LSH = 2, but
when having 5 tiles (f = 5) of 9 bytes each and F = 53, 6 bytes per SCHC Fragment will not be
used.
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4.3.5 Maximum window and bitmap sizes

The SCHC framework defines a method for F/R on the uplink to transfer SCHC Packets, but
it does not propose a SCHC ACK F/R method. Without a fragmentation method, the ACK
is limited to one L2 MTU. Therefore, there is a maximum bitmap size (MBS) that leads to a
maximum window size (MWS). Moreover, the tile size will limit the maximum amount of data on
a window. The maximum bitmap size in tiles, i.e., the number of bits in the bitmap, is therefore
given by:

MBS = 8 · (F − LSH), (4.11)

and the maximum window size in bytes is then:

MWS = (t×MBS)− U. (4.12)

4.4 Performance evaluation

In this section, we use the models derived in Section 4.3 to evaluate the ACK-on-Error mode in
terms of the performance metrics presented. The section pursues two main goals. The first one
is determining the impact of the main SCHC F/R ACK-on-Error mode parameters, i.e., window
and tile sizes, and loss rate, on the considered performance metrics. The second goal is deriving
the optimal settings for both window and tile sizes in a wide range of scenarios.

The fragment sizes F used in the performance evaluation range between the minimum (F = 11)
and maximum (F = 242) MTU values in LoRaWAN for US 915 MHz band (US915) and EU 868
MHz band (EU868), respectively. These settings allow analyzing the performance of ACK-on-Error
mode for the whole range of values for F in LoRaWAN. Note that the physical layer configuration
in LoRaWAN (including data unit size, and thus fragment size) is determined by the DR and
SF [3]. The SCHC ACK and SCHC Fragment Header size used is 2 bytes (LSH = 2).

4.4.1 ACK Message Overhead

Fig. 4.2a shows the ACK message overhead Ek as a function of Ps, for different window sizes, and
for F = 11 and t = 9 bytes so that f = 1 (one tile per fragment), and thus k = w as per Eq. (4.5),
and there are no unused bits. As expected, Ek decreases with Ps. The difference in Ek between
a small window size (e.g., w = 1) and a large window (e.g., w = 143) is larger for small Ps than
with high Ps values. This happens because Ek has a logarithmic behavior as a function of k (see
Fig. 4.2b) and ”flattens” when Ps increases: for small values of k and Ps, a small variation in k
produces large changes in Ek. The Ek variation decreases as k increases. For larger Ps values, Ek

is less dependent on k since only a few ACKs are sent.
For Ps = 1, only one positive ACK is generated at the end of the fragmented packet transmission

because no SCHC Fragments are lost, but Ek = 0 because it only counts negative ACKs, i.e., failed
window transmission cycles.

4.4.2 ACK Bit Overhead

We now consider the ACK bit overhead metric OACK defined in (4.7), with the aim of minimizing
it to obtain an optimal tile and window sizes.

4.4.2.1 Optimal tile size

Fig. 4.3a shows the impact of the tile size on OACK for F = 11 and Ps = 0.9. For small tiles,
OACK increases faster with the window size than for large tiles. Indeed, a small tile size requires
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Figure 4.2: Ek for F = 11, t = 9 and LSH = 2 for different window sizes as a function of Ps (a)
and k (b).

a large bitmap for each data bit transferred since the bitmap size equals the number of tiles in a
window. Hence, the bitmap size is inversely proportional to the tile size for a fixed window (in
data volume). As the tile size increases, the ACK size required for the same window size decreases.
When the window size increases, the ACK size becomes more relevant in OACK than the average
number of ACKs, because the average number of ACKs has a logarithmic behavior (see Fig. 4.2b)
while the ACK size increases linearly with the window size. The tile size that yields the smallest
ACK size and the lowest OACK ratio is the largest possible tile size.

The results for Ps = 0.9 are shown in Figs. 4.3c and 4.3d, for F = 51 and F = 242 respectively.
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Figure 4.3: OACK vs window size. Impact of the tile size t on the OACK. LSH = 2.
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As in the previous case, a tile size equal to the SCHC Fragment payload size minimizes OACK. As
expected, there is a large difference between using a 9-byte and 49-byte tile, when compared to a
240-byte tile, as Fig. 4.3d shows.

Fig. 4.3b shows OACK for Ps = 0.5 and F = 11, evaluated for different window sizes. For larger
tile sizes, as the window size increases, OACK decreases because larger windows are more efficient
when reporting many lost fragments.

For all the displayed settings, the optimal tile size is the largest possible tile, i.e., a tile size of
the SCHC Fragment payload size, independently of Ps. This occurs because the largest tile size
maximizes the SCHC Fragment payload while reducing the number of bits in the bitmap, i.e., only
one bitmap bit is required for each SCHC Fragment. Hence, as a practical recommendation, for
technologies with fixed L2 MTU such as Sigfox, the optimal tile size is simply the SCHC Fragment
payload size. For technologies with variable L2 MTU size, such as LoRaWAN, it is not possible to
use a tile of the SCHC Fragment payload size in the larger fragment sizes because the tile has to fit
in the smallest fragment size to support variable L2 MTU. In the case where the SCHC Fragment
size is known beforehand, the Rule can be chosen with the optimal tile and window sizes. If the
L2 MTU changes, then the tile size can change accordingly.

4.4.2.2 Optimal window size

Now, the tile size is set to a fixed value, the SCHC Fragment payload size. Figs. 4.4a and 4.4b
illustrate the OACK as a function of Ps for different window sizes, for F = 11, t = 9 and F = 51,
t = 49, respectively. When Ps is low, many fragments are lost and a larger window size leads to
lower OACK.

The interest of having large windows lies in what we can call ACK pooling, that is the fact
that when several fragments (of the same window) fail, the information of the failures is pooled
into a single ACK message. Large window sizes benefit from ACK pooling when Ps is low because
one large ACK can report many lost fragments. Conversely, smaller windows sizes will generate a
greater number of ACKs leading to higher overhead.

Henceforth, the tradeoff is between ACK pooling (larger windows mean less ACKs) and ACK
size (larger windows mean larger ACKs), that we manage through the total ACK volume metric
OACK.

As Ps increases, there exists one point (see zoom in Figs. 4.4a and 4.4b) beyond which smaller
windows outperform larger window sizes. From this point onwards, having smaller ACKs becomes
more optimal since the number of losses is low. For example, the window size of 1 tile performs
worst for small Ps, but as Ps increases, it becomes the one yielding the lowest OACK. When Ps is
greater than 0.9, the window size of just 1 tile is optimal because rarely a SCHC Fragment will be
lost, in which case a smaller ACK will be sent (almost no ACK pooling, and smaller ACKs). In
contrast, large windows require a large ACK to report the few lost fragments.

As a consequence, there exists an optimal window size that minimizes OACK, which depends
not only on Ps, but also on F and t. Figs. 4.4c and 4.4d show the values for OACK for different
windows sizes, and for F = 11, t = 9 and F = 51, t = 49, respectively. When Ps is 0.8, ACK
pooling benefits the larger windows and the optimal window size is large as, for example, 342 bytes
(w = 38) in Fig. 4.4c. As Ps increases, OACK increases with the window size and for Ps ≥ 0.9, the
benefit of ACK pooling is lost, leading to an optimal window size of one tile (w = 1).

Figs. 4.5a and 4.5b illustrate the results for F = 240 with t = 49 and t = 240, respectively.
When the tile size is small compared to the SCHC Fragment payload size (f > 1), there is no
gain from ACK pooling for Ps > 0.5. Hence, smaller windows perform better, as Fig. 4.5a shows.
As the window size increases, smaller tiles per SCHC Fragment are required when compared to
larger tile sizes (see Fig. 4.5b), making the larger window size yield a greater OACK when using
smaller tiles. Fig. 4.5c illustrates how OACK is minimized for small window sizes when Ps > 0.80
for F = 240 and t = 49: the optimal window size is the smallest window, i.e., w = 4. In contrast,
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Figure 4.4: Impact of the window size w (in tiles) or wt (in bytes) on the ACK overhead OACK.
The optimal window size (wopt) is indicated in (c) and (d) with a mark. LSH = 2.

Fig. 4.5d illustrates for F = 242 and t = 240 how a larger tile size yields a larger optimal window
size and benefits from ACK pooling for Ps < 0.9.

Hence, depending on the parameters and the channel conditions, the window size minimizing
OACK varies. We now focus on that optimal window size.

Fig. 4.6a presents the optimal window size as a function of Ps, for different F values. When Ps

is below 0.8, in most cases, the optimal window size is large. The optimal window size decreases
as Ps increases. As expected, the importance of ACK pooling decreases with respect to the ACK
size. Fig. 4.6b presents the optimal window size for different Ps and for larger F values. As for
the case of small F values, as Ps becomes higher, the optimal window size becomes smaller.

4.4.3 ACK Bit Overhead with L2 headers

The previous two subsections (i.e., Section 4.4.1 and Section 4.4.2) considered the ACK overhead
as defined in (4.7), i.e., ignoring L2 headers in the size of ACKs. This may be justified if the
operator charges the user based on the volume of L2 payloads. In this section we investigate the
impact of counting the whole L2 ACK size by counting those headers, as suggested in (4.8).

The L2 header size of Sigfox according to [20] is 21 bytes in downlink with a payload of 8 bytes.
The L2 headers of LoRaWAN according to [3] are 13 byte long, hence we will especially focus on
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Figure 4.5: Impact of the window size w (in tiles) or wt (in bytes) on the ACK overhead OACK.
The optimal window size (wopt) is indicated in (c) and (d) with a mark. LSH = 2.

those values.
For the sake of clarity of the plots, we define Pf as 1−Ps. Figs. 4.7a and 4.7b illustrate OACKL2

for F = 11, t = 9 and for F = 242, t = 49, with LL2H = 13, respectively.
Smaller windows outperform larger ones for Ps > 0.99 (see the zoom in Figs. 4.7a and 4.7b),

whereas in Section 4.4.2 it is for Ps > 0.90. This happens because the additional constant length
added to the ACK size favors the ACK pooling effect of large windows over the additional ACK
length, making it more efficient to send one large ACK than several smaller ones (and their large
L2 headers). Hence, only with very large success probability Ps > 0.99, i.e., Pf < 10−2, does the
ACK length effect take over the ACK pooling effect, as Fig. 4.7a shows. For Ps > 0.99, the best
window size is 1 tile (w = 1), but as Ps decreases, the optimal window size increases (e.g., w = 143
for Ps < 0.99).

Figs. 4.7c and 4.7d confirm our conclusions, by showing OACKL2
for F = 11, t = 9 and for

F = 242, t = 49 with LL2H = 13 for different Ps, respectively.

4.4.4 Percentage of used bits per fragment

The percentage of used bits per fragment (PU ) provides an overview of how efficient a tile size is
for a given SCHC Fragment size. Fig. 4.8a illustrates PU for F = 11, 12, 51, 53 and different tile
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Figure 4.6: Optimal window size vs Ps for different settings.
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sizes. When fragment payload sizes are a multiple of the tile size, PU is 100%, e.g., t = 1 ∀ F ,
t = 3 for F = 11, t = 5 for F = 12, t = 7 for F = 51 and t = 17 F = 53. Furthermore, there
are tile sizes that have a low PU . For example, t = 5 for F = 11 only uses the 55.56%, t = 6 for
F = 12 with only 60%, t = 25 for F = 51 with 51.02% and t = 26 for F = 53 with 50.98%.

Fig. 4.8b shows the percentage of used bits for F = 115, 125 and 242. As with small SCHC
Fragments, some tile sizes have a better PU than others. Moreover, as the tile size gets larger and
only one tile can be fitted in the SCHC Fragment payload, the percentage of used bits is reduced
significantly. For example, t = 57 for F = 115 with 50.44%, t = 62 for F = 125 with 50.41% and
t = 121 for F = 242 with 50.42%.
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Figure 4.8: Percentage of usage PU vs t. LSH = 2.

4.5 Technology-oriented evaluation

The SCHC framework specification does not offer recommendations about how the ACK-on-Error
parameter values should be selected. This section provides configuration guidance for, and discusses
the impact of, the main parameters of ACK-on-Error mode when used over LoRaWAN (EU868
and US915) and Sigfox.

This section is organized as follows: Section 4.5.1 describes the physical layer parameters of
LoRaWAN and Sigfox relevant to the ACK-on-Error mode configuration. Section 4.5.2 provides
our recommended values for the main ACK-on-Error parameters, along with the methodology
used to determine such values. Section 4.5.3 discusses the optimal window size results obtained.
Finally, Section 4.5.4 evaluates the global impact of limiting the ratio of LPWAN devices that use
the optimal ACK-on-Error settings derived.

4.5.1 LoRaWAN and Sigfox relevant parameters

LoRaWAN defines a number of physical layer options for use in different world regions. In each
region, a physical layer option corresponds to different settings of a parameter called the SF. Each
SF defines a specific DR. In LoRaWAN, the L2 MTU depends on the SF/DR in use. All SF/DR
settings in LoRaWAN are shown in the leftmost columns of Tables 4.1 and 4.2, for the EU868 and
US915 bands, respectively.

In contrast, Sigfox physical layer options are fixed, with only one constant L2 MTU (see Ta-
ble 4.3).
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4.5.2 Determining SCHC ACK-on-Error mode parameter settings

This section provides our recommended values for the main parameter settings for ACK-on-Error
mode, and explains how they are obtained, for each considered technology, and as a function of
Ps. Tables 4.1 to 4.3 and Fig. 4.9 present the ACK-on-Error mode optimal parameter settings for
LoRaWAN in EU868 and US915 bands, and for Sigfox, respectively. The main parameters comprise
the fragment size (Section 4.5.2.1), the tile size (Section 4.5.2.2), the window size Section 4.5.2.3),
the FCN field size (N) (Section 4.5.2.4), and the length of the Window field (M) (Section 4.5.2.5).
Furthermore, reference values such as the maximum window size and the maximum bitmap size
are also provided (Section 4.5.2.6).

4.5.2.1 Fragment size (F)

In order to maximize efficiency, the value of F needs to be equal to the current L2 MTU of the
underlying LPWAN technology. Tables 4.1 to 4.3 show the optimal values of F for LoRaWAN
(Tables 4.1 and 4.2), and for Sigfox (Table 4.3). For LoRaWAN, the value of column F depends
on the current SF/DR settings (Tables 4.1 and 4.2). For Sigfox, F is a constant value (Table 4.3).

Table 4.1: ACK-on-Error configuration parameters for wopt in Table 4.1 for LoRaWAN EU868

SF DR
F

(bytes)
t

(bytes) Ps
N

(bits)

M
(bits)

SCHC Packet size
320

(bytes)
1280

(bytes)

12,
11,
10

DR0,
DR1,
DR2

51 49
0 < Ps ≤ 0.98 8

1
1

0.98 < Ps ≤ 1 3 2

9 DR3 115

49

0 < Ps ≤ 0.80 9

1
10.80 < Ps ≤ 0.90 8

0.90 < Ps ≤ 0.97 10
0.97 < Ps ≤ 1 3 2

113

0 < Ps ≤ 0.95 9

1 1
0.95 ≤ Ps < 0.98 8
0.98 ≤ Ps < 0.99 9

0.99 ≤ Ps < 1 3

8,
7

DR4,
DR5

242

49
0 < Ps ≤ 0.30 9

1
1

0.30 < Ps ≤ 0.95 8
0.95 < Ps ≤ 1 3 2

113

0 < Ps ≤ 0.80 9

1 1
0.80 < Ps ≤ 0.96 8
0.96 ≤ Ps < 0.97 9

0.97 ≤ Ps < 1 3

240

0 ≤ Ps ≤ 0.90 9

1 1
0.90 < Ps < 0.97 8
0.97 ≤ Ps < 0.98 9

0.99 ≤ Ps < 1 3
LSH = 2.

4.5.2.2 Optimal tile size

Column t of Tables 4.1 to 4.3 shows the most relevant tile sizes for each value of F over LoRaWAN
and Sigfox. For each value of F , the greatest tile sizes in column t are the optimal sizes obtained
in Section 4.4.2. Recall that the optimal tile size is the one that entirely fills the SCHC Fragment
payload. On the other hand, because in LoRaWAN the value of F is variable, and SCHC F/R
will still be possible when F changes, the optimal tile sizes for all possible smaller values of F are
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Table 4.2: ACK-on-Error configuration parameters for wopt in Table 4.2 for LoRaWAN US915

SF DR
F

(bytes)
t

(bytes) Ps
N

(bits)

M
(bits)

SCHC Packet size
320

(bytes)
1280

(bytes)

10 DR0 11 9
0 < Ps < 0.98 6 1 2
0.98 ≤ Ps ≤ 1 4 3 5

9 DR1 53
9 0 < Ps ≤ 1 8 1 1

51
0 < Ps ≤ 0.98 8

1
1

0.98 < Ps ≤ 1 3 3

8 DR2 125

9
0 < Ps ≤ 0.60 8

1 1
0.60 < Ps ≤ 0.80 7

0.80 < Ps ≤ 1 4 3 4

51

0 < Ps ≤ 0.80 9

1
10.80 < Ps ≤ 0.96 8

0.96 < Ps ≤ 0.97 9
0.97 < Ps ≤ 1 3 2

123

0 < Ps ≤ 0.90 9

1 1
0.90 < Ps ≤ 0.97 8
0.97 < Ps ≤ 0.98 9

0.98 < Ps ≤ 1 3

7,
8

DR3,
DR4

242

9
0 < Ps ≤ 0.50 7

1
1

0.50 < Ps ≤ 0.60
5

2
0.60 < Ps ≤ 1 3

51
0 < Ps ≤ 0.30 9

1
1

0.30 ≤ Ps ≤ 0.95 8
0.95 ≤ Ps ≤ 1 3 2

123

0 < Ps ≤ 0.90 9

1 1
0.90 < Ps ≤ 0.97 8
0.97 < Ps ≤ 0.98 9

0.98 < Ps ≤ 1 3

240

0 ≤ Ps ≤ 0.90 9

1 1
0.90 < Ps < 0.97 8
0.97 ≤ Ps < 0.98 9

0.99 ≤ Ps < 1 3
LSH = 2.

also evaluated. For example, the 49-byte tile size is optimal for F = 51 and it is also evaluated for
F = 115 and F = 242, for LoRaWAN EU868.

4.5.2.3 Optimal window size

The optimal window size (wopt) presented in Fig. 4.9 and in column wopt of Table 4.3 is obtained
by evaluating (4.8) from the minimum window size that generates an ACK size without padding
(i.e., w = 8) to the maximum window size in tiles derived from (4.11) (i.e., maximum number of

Table 4.3: ACK-on-Error configuration parameters for wopt for Sigfox

F
(bytes)

t
(bytes) Ps

wopt

(tiles)
N

(bits)

M
(bits)

SCHC Packet Size
320

(bytes)
1280

(bytes)

12 10
0 ≤ Ps ≤ 0.95 48 6 1 3
0.95 < Ps ≤ 1 8 4 3 5

LSH = 2.
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bits in the bitmap). Then, the window size that yields the minimum OACKL2
is selected. Finally, as

the ACK size has to be a byte multiple, the optimal window size value is the next window size that
will generate a bitmap that will not require padding (i.e., the next byte multiple). Fig. 4.9 presents
the values of wopt for LoRaWAN EU868 and LoRaWAN US915, evaluated for the corresponding
values of F and t presented in Tables 4.1 and 4.2, respectively. Table 4.3 presents the optimal
window size for Sigfox. For the sake of clarity, Fig. 4.9 and subsequent figures are shown as a
function of Pf = 1− Ps, instead of Ps.
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Figure 4.9: Optimal window size (wopt) vs Pf .

4.5.2.4 FCN field size (N )

The optimal value of N is the minimum value that allows to unambiguously identify all tiles per
window for a selected w, which is given by:

N = dlog2(w)e . (4.13)

In Tables 4.1 and 4.2, the value of column N is determined for the optimal window size (wopt)
presented in Figs. 4.9a and 4.9b, respectively. In Table 4.3, the value of column N is obtained for
the values presented in the wopt column.

4.5.2.5 Window field length (M )

The value of M must be set to identify the number of windows required to carry a SCHC Packet
size (LSCHC) and, it can be derived from:

M =

®
1, if LSCHC ≤ w · t⌈
log2(LSCHC

w·t )
⌉
, if LSCHC > w · t.

(4.14)

The values of columns M in Tables 4.1 and 4.2 are obtained for the wopt values presented in
Figs. 4.9a and 4.9b, respectively. In Table 4.3, the value of column M is determined for the values
shown in the wopt column. In Tables 4.1 to 4.3, we considered two SCHC Packet sizes: 320 bytes
and 1280 bytes. The first one is a relatively small size that will require fragmentation for all values
of F evaluated. The second one is a larger size that corresponds to the minimum packet size that
must be supported by the layer below IPv6 [2].
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4.5.2.6 Maximum window and bitmap sizes

The SCHC framework does not define a fragmentation method for SCHC ACKs. Therefore, the L2
MTU of each technology limits the corresponding Maximum Bitmap Size (MBS) and Maximum
Window Size (MWS) as explained in Section 4.3.5. Table 4.4 shows the MBS and MWS for
LoRaWAN (EU868 and US912) and Sigfox with LSH = 2, and U = 4. Different tile sizes are
presented considering different ACK-on-Error parameters configurations. Note that MBS does not
depend on the tile size, but on the SCHC Fragment and SCHC Header sizes as shown in (4.11).
MWS depends on MBS, the tile size and the RCS size (U), as shown in (4.12). Sigfox has a
downlink payload size of 8 bytes [20], hence with LSH = 2, at most 6 bytes can be used for the
bitmap.

Table 4.4: Maximum bitmap and window sizes for LoRaWAN and Sigfox

Region &
Technology

F
(bytes)

t
(bytes)

MBS
(bits)

MWS
(bytes)

N
(bits)

LoRaWAN
EU868

51 49 392 19204 9

115
49

904
44292

10
113 102148

242
49

1920
94076

11113 216956
240 460796

LoRaWAN
US915

11 9 72 644 7

53
9

408
3668

9
51 20804

125

9

984

8852

10
51 50180
123 121028

242

9

1920

17276

11
51 97916
123 236156
240 460796

Sigfox 12 10 48 476 6
LSH = 2, U = 4.

4.5.3 Optimal window size results: Discussion

In this subsection, we discuss the obtained optimal window size results for LoRaWAN and Sigfox,
in terms of Pf , shown in Fig. 4.9 and Table 4.3, respectively.

As shown in Fig. 4.9, for high Pf , the optimal window size is large, due to the benefit of ACK
pooling. As Pf decreases, ACK pooling becomes less advantageous. Therefore, it is better to
configure smaller window sizes, which leads to smaller ACK sizes.

Another observation from Fig. 4.9 is that the optimal window size fluctuates for larger values of
F , as function of Pf . In general, the OACKL2 curve as a function of Pf has a ”U” shape (see Figs. 4.4,
4.5 and 4.7). This happens because for small w, a great number of small ACKs are generated,
whereas for large w, few large ACKs are generated. Therefore, a minimum value of OACKL2

can
generally be found between the two ends. However, the value of Pf affects the ”U” shape. For
very low Pf , there are very few ACKs. In such a case, small w produces short ACKs, producing a
decay of the left side of the ”U” shape of the curve as Pf decreases. Moreover, as Pf decreases, the
value of OACKL2 will tend to decrease. On the other hand, for large w, Ek grows slowly with w
(see Fig. 4.2b). The combination of all these effects produces changes in the ”U” shape in such a
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way that small changes in Pf generate fluctuations in wopt as a function of Pf . This behavior can
be seen in Figs. 4.4 and 4.5 (except in Fig. 4.5c, where the considered tile size is non-optimal).

As shown in Fig. 4.9 and Table 4.3, this fluctuation is neither present for LoRaWAN (F = 11,
F = 51) nor for Sigfox (F = 12). The reason is that the MBS (see Table 4.4) is not large enough
to allow wopt fluctuations to happen in the practical range given for those technology settings.

Note that wopt fluctuation increases with the L2 header size (LL2H). While in Fig. 4.6 (where
LL2H = 0) there is little to no fluctuation of the optimal window size, in Fig. 4.9 the fluctuation is
more pronounced. Indeed, the L2 header size contributes to the OACKL2

metric as shown in (4.8).
As a practical remark, since the optimal window size depends on Pf , an enhanced implementa-

tion of SCHC can estimate Pf and select the optimal window size accordingly. When using SCHC
over LoRaWAN, the current value of F needs to also be taken into account. Finally, note that the
ACK-on-Error parameter optimizations proposed in this chapter do not require modifications to
off-the-shelf radio platforms.

4.5.4 Impact of optimal ACK-on-Error parameter settings on downlink
traffic

We next illustrate the impact of the derived optimal ACK-on-Error parameters values (shown
in Tables 4.1 to 4.3 and Fig. 4.9) on the ACK-on-Error ACK traffic. To this end, we assume a
network where LPWAN devices use ACK-on-Error mode to transmit SCHC Packets of the same
size in the uplink, thus ACKs are sent in the downlink. We assume that only a fraction, Ropt,
of these devices are optimally configured. We define and evaluate two performance metrics: the
ACK Excess Factor (AEF) and the ACK Bytes Excess Factor (BEF) for a given SCHC Packet
size (LSCHC). The AEF is the number of ACKs actually transmitted (for Ropt ≤ 1) divided by
the number of ACKs sent when all devices are optimally configured (Ropt = 1). Analogously,
the BEF is the number of ACK bytes actually transmitted divided by the number of ACK bytes
sent when Ropt = 1. Both metrics are evaluated considering the optimal window size (wopt) and
a non-optimal window size (wnopt), for different values of Pf . Further, a comparison between an
optimal tile size (topt) and a non-optimal tile size (tnopt) is performed for the same wopt.

Note that the global impact of the proposed optimized settings on the total downlink traffic in
an LPWAN will depend also on other parameters that are independent of SCHC ACK-on-Error
mode. These include the number of devices that do not use SCHC, how often such devices request
downlink messages, how many unsolicited downlink messages (e.g., management commands) are
sent, etc.

Figs. 4.10a and 4.10b show the AEF and BEF obtained for LoRaWAN US 915, SF10/DR0
(F = 11, see Table 4.2), respectively, for LSCHC = 1280 and different Ropt values, as a function of
Pf . The optimal window values are retrieved from Fig. 4.9b, that is, for Pf ≤ 0.011, wopt = 8, and
for Pf > 0.011, wopt = 72. The non-optimal window sizes (wnopt) evaluated are 24 and 48 tiles.
The tile size used is the optimal one (topt = 9).

As shown in Fig. 4.10, both AEF and BEF increases with Pf . If all nodes use optimal settings,
the number of ACKs and the amount of ACK bytes decrease by up to factors greater than 2 and
1.6, respectively, compared to the scenario where Ropt = 0.1 and wnopt = 24. As Ropt increases,
the potential for improvement decreases (e.g. for Ropt = 0.9 and wnopt = 24, the highest AEF and
BEF values are 1.1 and 1.07, respectively). Note that ACK traffic improvement decreases as wnopt

approaches the wopt value.
Another remarkable result shown in Fig. 4.10 is that, for Pf ≤ 0.01, the number of ACKs

sent when optimal settings are used increases, as the AEF is lower than 1. However, there is
a reduction in the excess of ACK bytes sent (i.e., BEF is greater than 1), leading to benefits
in channel occupancy. In this range of Pf values, all window sizes considered generate a similar
number of ACKs for the same SCHC Packet size, but wopt benefits from using the smallest ACK
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Figure 4.10: Impact of wnopt on the AEF (a) and on the BEF (b) for different Ropt of devices
using wopt. Results for LoRaWAN US915, SF10/DR0, F = 11, LSCHC = 1280, and topt = 9.

size.
Figs. 4.11a and 4.11b show the AEF and BEF derived for LoRaWAN US915, SF10/DR0 (F =

11), LSCHC = 1280 when using wopt with an optimal tile size (topt = 9), compared to using a
non-optimal tile size (tnopt), as a function of Pf . Both the number of ACKs and the amount of
ACK bytes may decrease by a factor of up to 2.7, depending on Ropt and tnopt. As Ropt increases,
and as tnopt approaches topt, the potential performance improvement decreases, since more devices
use a t configuration closer to the optimal one.
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Figure 4.11: Impact of tnopt on the AEF (a) and on the BEF (b) for different Ropt of devices using
topt. Results for LoRaWAN US915, F = 11, LSCHC = 1280, NSCHC = 100, and wopt.

In general, when too many fragments are lost, it is better to send large ACKs, since in that case
an ACK can be amortized to report many losses. Otherwise, using small ACKs is preferable. Recall
that the ACK size is related to the number of tiles in a window. Assuming that fragmentation is
performed in the uplink, the downlink channel usage by SCHC ACK-on-Error can be optimized.
This means that ACK traffic per data traffic can be minimized. This translates into lower billing
and longer LPWAN device battery lifetime. From the LPWAN gateway perspective, it reduces its
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load, which is critical in duty-cycle restricted networks, since a single gateway may serve a large
number of LPWAN devices.



CHAPTER 5

ALTERNATIVE RECEIVER-FEEDBACK TECHNIQUES FOR
SCHC

<<Light makes visible what gets in the way.>>

This chapter presents an evaluation of alternative Receiver-Feedback Techniques (RFTs) for
fragmentation over LPWANs. To minimize and optimize the ACK size, we evaluate the RFT
of SCHC, i.e., Compressed Bitmap (CB), and compare its performance with 5 alternative RFTs
that we proposed. These new RFTs include new ways of encoding the receiver-feedback. All
RFTs were evaluated regarding the ACK size, number of L2 frames required, and ToA, using an
uncompressed bitmap as benchmark RFT. Results were obtained for all LoRaWAN world regions.
Tests were performed using Sim-RFT, a channel error simulator that we developed. Sim-RFT
provides different error rates and patterns. The RFTs description, performance evaluation, and
guidance in selecting the optimal RFT have been published in a journal article [II].

5.1 Introduction

The main product of the IETF LPWAN WG is the specification of an adaptation layer framework,
called SCHC [6,55]. The need for this solution is justified by the fact that prior efforts to support
IPv6 over low-power wireless technologies, such as 6LoWPAN or 6Lo, yield a too high overhead
in the light of the severe constraints of LPWAN technologies [1]. In order to overcome this issue,
SCHC defines ultra-lightweight header compression, as well as LPWAN-tailored fragmentation
mechanisms. This chapter focuses on aspects of the latter.

In order to adapt to the potentially diverse requirements of different LPWAN technologies and
deployments, SCHC offers different fragmentation modes, namely: No-ACK, ACK-Always, and
ACK-on-Error. The last two modes support ACKs and selective fragment retries. In both ACK-
Always and ACK-on-Error, the receiver generates (upon fragment loss in the latter) a selective
ACK after a group of fragments have been sent. That is, the ACK informs the sender about which
fragments have been received or not from the considered group of fragments. The way in which
such information is encoded is given by the RFT defined in SCHC, which is called CB. As per
CB, the ACK payload carries a bitmap where the k-th bit of the bitmap indicates whether the
k-th fragment has been received or not. In some cases, the bitmap may be compressed, which
represents a performance optimization, compared with early versions of SCHC that made use of
a simple Uncompressed Bitmap (UB). However, the performance of CB has not been evaluated,
and, to the best of our knowledge, alternative RFTs have not been considered for SCHC.

In this chapter, we investigate the performance of CB, along with that of two alternative RFTs
called List of Lost Fragments (LLF) and List of Deltas (LoD). LLF is a binary-encoded list of
Fragment Numbers (FNs) that correspond to lost fragments. LoD is based on the differences
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(deltas) between the FNs of consecutive lost fragments. For efficiency, deltas are encoded with
variable length formats using Self-Delimiting Numerical Values (SDNV) [58]. Regarding the latter,
we investigate 4 different approaches which use base encoding format sizes of 2, 3, 4, and 5 bits.
We also include UB as a benchmark in our study.

We evaluate the performance of the considered RFTs by means of extensive simulation. To
this end, we developed Sim-RFT, an ad-hoc simulator that allows to analyze RFT performance
for different fragmented packet sizes, and under different error rates and patterns. The main
performance parameters evaluated are the ACK payload size, the number of L2 frames required
to carry an ACK, and the ACK ToA. Our results show that CB only outperforms the alternative
RFTs considered for short fragmented packet sizes or under high error rates.

The remainder of the chapter is organized as follows. In Section 5.2, we review existing work
related to SCHC and fragmentation over LPWANs. We describe the RFTs considered in this
chapter in Section 5.4. In Section 5.5, we present Sim-RFT, along with the configuration settings
and error patterns used in the study. In Section 5.7, we evaluate the performance of the RFTs
under a range of conditions, and discuss the obtained results.

5.2 Related work

In this section, we review research work that focused on SCHC and fragmentation over LPWANs,
with a particular perspective on RFTs, where applicable. Some of them investigated both SCHC
compression and fragmentation mechanisms [46–48, 55–57, 59, 60], while others focused only on
fragmentation functionality [16,61].

The authors in [55] provided an overview of SCHC. As a future work item, they proposed a
reliable fragment delivery mechanism whereby a single ACK would report on the delivery success
or failure of all the fragments that carry a large packet. When the number of fragments per packet
is too high, it may be challenging to fit the receiver report in only one L2 frame. Therefore, the
authors pointed out the need to consider alternative RFTs, instead of CB, specified in SCHC,
which, under some conditions, may produce a too large ACK payload. However, the authors
neither described nor evaluated alternative RFTs.

Suciu et al. evaluated the efficiency of fragmentation in dense LPWAN networks [16]. However,
the authors did not consider receiver-feedback mechanisms in their study. Another work defined
and evaluated the effect of an aggressive fragmentation strategy for LPWANs, i.e., performing
fragmentation even if the packet to be carried fits the L2 frame [61]. The study used UB to report
fragment reception status in negative ACKs (NACKs). However, the authors neither studied the
impact of error patterns on the NACK size, nor considered different RFTs.

Other studies analyzed the performance of IPv6 header compression [47,48,56] and/or fragmen-
tation over LPWAN by using SCHC [46,57,59,60]. Abdelfadeel et al. [48,56] and Ayoub et al. [47]
focused only on SCHC header compression. Moons et al. [46] compared the memory footprint
of SCHC header compression and fragmentation with that of a 6LoWPAN-based solution. For
SCHC fragmentation, they used UB as RFT. The authors in [57] compared the different SCHC
fragmentation methods, assuming an ideal communication channel, in terms of channel occupancy,
goodput, and delay. A mathematical model to calculate the ACK message overhead of ACK-on-
Error mode, and how to optimally tune its most critical parameters, is presented in [59]. However,
UB was assumed in both [57] and [59]. The authors in [60] evaluated SCHC header compression
and fragmentation when using an end-to-end CoAP broker to connect LoRaWAN devices by using
a publish/subscribe scheme. However, the No-ACK fragmentation mode was used, therefore no
RFT was studied in this work.

Based on our literature analysis, and to the best of our knowledge, previous work neither eval-
uates the performance of RFTs different from UB (not even CB, which is the one used in SCHC),
nor the impact of different packet sizes, error rates, and error patterns on RFT performance.
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5.3 Reliable fragmentation over LPWAN

In this chapter, we consider an efficient configuration of reliable fragmentation where a single ACK
provides feedback on the delivery success or failure of the whole set of fragments that transport a
packet. If the ACK size cannot fit one L2 frame, each additional L2 frame required includes an
ACK header as well.

Fig. 5.1 presents an example of the transmission of a packet that requires 10 fragments to be
carried. Two fragments (with FNs 1 and 6) are lost, whereas the other fragments are correctly
received. At the receiver, once the last fragment (which is signaled by a dedicated FN value) is
received, an ACK carrying a payload produced by the RFT in use is assembled and transmitted.
In the following section, the example shown in Fig. 5.1 will be used to illustrate the behavior of
each RFT studied in this chapter.

Figure 5.1: Example of the transmission of a 10-fragment packet with errors.

5.4 Receiver-Feedback Techniques for LPWAN Fragmenta-
tion

In this section, we describe the four RFTs considered in our performance evaluation, namely: UB,
CB, LLF, and LoD.

UB was the initially considered RFT for SCHC. In this chapter, UB is used as a benchmark.
CB, an improved version of UB, is the RFT standardized in SCHC. We introduce LLF and LoD
as RFTs with potential to offer good performance in some scenarios. Each considered RFT follows
a different approach and is thus expected to perform differently, depending on conditions such as
error rates, error distribution, and packet size.

5.4.1 Uncompressed Bitmap (UB)

UB was introduced in early stages of the design of SCHC. This RFT is based on representing the
sequence of received fragments by means of a sequence of bits, called a bitmap. Each bit in the
bitmap corresponds to a fragment of the packet, where the k-th bit is set to 1 or 0 when the k-th
fragment has been received or not, respectively. The leftmost bit of the bitmap corresponds to the
first fragment of the packet.
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Following the example presented in Fig. 5.1, when UB is used, the receiver generates the bitmap,
sets to one the bitmap bits that correspond to successfully received fragments, and sets to zero the
remaining bits (in the example, the ones corresponding to FNs 1 and 6). The resulting bitmap has
a size of 10 bits, since the packet size is 10 fragments. Finally, the ACK is assembled by prepending
the ACK header to the bitmap, as shown in Fig. 5.2. If needed, padding bits are appended at the
end of the bitmap.

Figure 5.2: Example of ACK payload for UB, and ACK format, for the transmission of a 10-
fragment packet where two fragments (with FNs 1 and 6) are lost.

5.4.2 Compressed Bitmap (CB)

CB is an RFT designed to reduce the size of the bitmap produced by UB, when possible. To
this end, a receiver operates as follows. Firstly, a bitmap is built as described in Section 5.4.1.
Then, in order to compress the bitmap, the receiver analyzes each bitmap bit from right to left.
All contiguous bitmap bits set to 1 are removed. The receiver will stop this procedure when a 0
is found or when it reaches the leftmost bitmap bit. The result of this operation is a compressed
version of the bitmap. After the ACK header is prepended to the compressed bitmap, the size of
the latter may need to be adjusted, depending on the minimum data unit size supported by the
underlying LPWAN technology. For example, if that technology is byte-oriented, the minimum
number of bitmap bits with value 1 are restored on the right, so that the ACK header plus the
ACK payload have a size multiple of an integer number of bytes. In some cases, padding may be
needed as well. The sender can reconstruct the original bitmap from the (potentially) compressed
bitmap received in the ACK message, as the sender knows the number of fragments sent to carry
a given packet.

Following the example presented in Fig. 5.1, Fig. 5.3 illustrates how the size of the bitmap
obtained in Fig. 5.2 is reduced from 10 bits (with values 1011110111) to 8 bits (i.e., 10111101),
assuming a 1-byte ACK header and a byte-oriented underlying LPWAN technology.

Note that the compression degree that can be achieved with CB depends on which is the last
lost fragment carrying data from a fragmented packet. For example, an error in the transmission
of the last fragment will not allow compressing the corresponding bitmap when using CB.

5.4.3 List of Lost Fragments (LLF)

We define LLF as an alternative RFT that produces the sequence of binary-encoded FNs of the
lost fragments (if any) that carry a packet. In contrast with UB, which has a fixed length for a
given packet size, LLF produces a variable length ACK payload, which is roughly proportional to
the Frame Error Rates (FER).

Fig. 5.4 shows the ACK payload that corresponds to the example presented in Fig. 5.1, where
the fragments with FNs 1 and 6 are lost, when LLF is used. The ACK payload comprises these
two FN values, converted to binary code with a size of 7 bits per FN, thus leading to a 14-bit
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Figure 5.3: Example of a bitmap before compression and the corresponding compressed bitmap.
The rightmost sequence of consecutive bitmap bits set to 1 is removed to obtain the compressed
bitmap. The example assumes a byte-oriented underlying L2 LPWAN technology. In this example,
padding is not needed.

ACK payload. Note that the 7-bit encoding per FN allows to identify fragments numbered in a
range from 0 to 127. Considering a 10-byte fragment payload (which is typical in many LPWAN
scenarios), the FN range will allow to unambiguously identify each fragment of a 1280-byte packet,
thus allowing compliance with the IPv6 MTU requirement [2].

In general, an LLF implementation can be built with a simple concatenation of the FNs of
missing fragments in a string. For example, in an MCU that supports C programming language,
it can be done by using the “strcpy” function, which is part of the string.h standard library of C.
This will represent a code size increase in the order of just a few bytes. Since SCHC includes the
calculation of a RCS based on a CRC of 32 bits, which presents significantly more computational
complexity than the considered RFTs, an LLF implementation would not add a significant amount
of code footprint.

Figure 5.4: With LLF, the FNs of lost fragments are converted to binary and appended to the
SCHC ACK Header. Finally, padding is added as needed.

5.4.4 List of Deltas (LoD)

We define LoD as an RFT where the receiver reports the differences (hereinafter, deltas) between
the FNs of any two consecutive lost fragments. Instead of encoding absolute fragment numbers
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as in LLF, LoD exploits the smaller expected size of binary encoded deltas. In LoD encoding, the
first lost fragment absolute FN is encoded as a reference. Subsequent encoded values are the deltas
between consecutive lost fragments’ FNs.

Following the example presented in Fig. 5.1, when LoD is used, the FN of the first lost fragment
(i.e., 1) is encoded as reference value. The next lost fragment corresponds to FN = 6, so a delta
of 5 is then encoded. Note that the ACK payload produced by LoD is not only sensitive to the
FER but also to the fragment loss distribution.

In order to optimize the LoD encoding, the number of bits to encode each delta needs to be
variable, allowing to represent smaller deltas with a lower number of bits. To this end, we use
SDNV encoding [58]. This technique allows a simple way of representing non-negative integers
efficiently and with variable length. We next describe SDNV in detail.

SDNV represents a number by means of one or more elementary data units, which we refer to
as bases. A base is a fixed-length set of bits used to fully or partially encode a number. The most
significant bit of a base is a control bit reserved to determine whether that base is the last one for
representing a number (in that case, the control bit is set to 0). The remaining bits in a base are
data bits, i.e., they are used to encode actual values. Therefore, in each base used, there is a 1-bit
overhead. If a number cannot be encoded by using just one base, then additional bases are added
as needed. In order to encode a number by using SDNV, the following steps are followed:

1. The number to be encoded is converted to binary.

2. The binary-encoded number bits are encapsulated, from left to right, in as many bases as
needed, using the available data bits in each base. If needed, the base with the most significant
binary number bit is padded with zeros on the left in order to fill in all data bits of that base.

3. The control bit of each base is appropriately set.

The SDNV standard uses a base of one byte thus, there are 7 data bits available in each base.
For the sake of efficiency, in the evaluation carried out in this chapter, we consider several smaller
base sizes. We use the notations SDNV-x and LoD-x to denote the usage of SDNV with a base size
of x bits. Fig. 5.5 shows two examples of how two numbers in decimal (10 and 123) are encoded
in SDNV-3 and SDNV-5, as per the steps provided above.

Figure 5.5: Example of different SDNV-encoded numbers. Data bits are represented in bold font.

Following the example presented in Fig. 5.1, where fragments 1 and 6 are lost, Fig. 5.6 illustrates
the LoD encoding for different base sizes. In this example, LoD-4 and LoD-2 produce the shortest-
sized ACK payload.

Note that SDNV encoding is based on a simple algorithm that requires around 12/13 lines of
code for decoding/encoding operations, respectively, when using python and standard libraries.
This will represent a code footprint increase in the order of tens of bytes, that depends on the
embedded microcontroller, compiler and programming language used. Considering that SCHC
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Figure 5.6: Examples of ACKs, using LoD, and for the fragment losses shown in Fig. 5.1 (i.e.,
fragments with FN=1 and FN=6), for different SDNV bases. The decimal numbers to be encoded
are 1 (first FN) and 5 (first delta). All considered SDNV base sizes require one base to encode
the FN of the first lost fragment. To encode the delta, SDNV-4 and SDNV-5 only require 1 base,
whereas SDNV-2 and SDNV-3 need 3 and 2 bases, respectively.

involves several operations (e.g., including a 32-bit CRC for integrity checks, as mentioned ear-
lier), LoD would not require a significant amount of additional program storage for an embedded
microcontroller.

5.5 Simulation environment

In this section, we present Sim-RFT, the simulation environment that we use in this chapter to
compare the performance of the different RFTs introduced in the previous section. We describe how
Sim-RFT works and detail the main fragmentation-related parameters assumed in our evaluations,
along with the characteristics of the error patterns considered.

5.5.1 Main features

Sim-RFT is an ad-hoc tool that we have developed to simulate fragmented packet transmission and
reception over a lossy channel. After each simulated fragmented packet transmission, Sim-RFT
creates the corresponding ACK, for each RFT.

Sim-RFT provides three main performance parameters from each obtained ACK: i) ACK size,
ii) number of L2 frames required to carry the ACK, and iii) ToA for each ACK. These perfor-
mance parameters take into account the main L2 frame characteristics of the underlying LPWAN
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technology considered: L2 frame header size, and L2 MTU.
Our study focuses on the fragmented packet first transmission attempt, as it will create the

largest ACK payload size for all evaluated RFTs, except for UB, which always yields the same
ACK payload size for all transmission attempts. As a side-contribution of this work, we offer
Sim-RFT publicly [62].

5.5.2 Settings

In order to maximize the applicability of our evaluation results, in this chapter we configure Sim-
RFT to use 3 different L2 MTU values: 11 bytes, 51 bytes and 242 bytes, for both the uplink
and the downlink. Table 5.1 shows the LoRaWAN L2 MTU values for all LoRaWAN channel
plans. The 11-byte L2 MTU corresponds to the maximum frame payload size of LoRaWAN US915
Data Rate 0 (DR0) and AU915 DR0. It is also similar to the 12-byte uplink, 8-byte downlink
L2 MTU of Sigfox [4, 20], and the 19-byte L2 MTU of LoRaWAN AS923 DR0. The 51-byte L2
MTU corresponds to DR0 for the following LoRaWAN regional bands: EU868, CN779, EU433,
CN470, KR920, IN865, and RU864. The 242-byte L2 MTU corresponds to the maximum one in
LoRaWAN for the highest DR of all regions (except AS923), and it is similar to the 250-byte L2
MTU of AS923 with its maximum DR (see Table 5.1). Therefore, conclusions from the evaluation
will be useful when considering fragmentation over LoRaWAN in all available regions or countries
where it is defined, and also over Sigfox. Note that, in a LoRaWAN frame, only an integer number
of bytes can be carried. Accordingly, Sim-RFT will add padding bits if required. Section 5.6 shows
the LoRaWAN full set of L2 configuration parameters used in the simulations. Fragment header
and ACK header sizes of 1 byte are assumed.

Table 5.1: LoRaWAN MTU Values

Channel Plan
Country/
Region

L2 MTU (bytes)

Minimum DR Maximum DR

EU863-870
Europe

Middle East
Africa

51 242

US902-928 America 11 242

CN779-787 China 51 242

EU433
Europe

Middle East
Africa

51 242

AU915-928 Australia 11 242

CN470-510 China 51 242

AS923 Asia 19 250

KR920-923 South Korea 51 242

IN865-867 India 51 242

RU864-870 Russia 51 242

Sim-RFT does not support native L2 retransmission mechanisms (e.g., LoRaWAN confirmed
data messages [3]), as it is not required by SCHC (e.g., when used over LoRaWAN [9]), and also
because they can have a negative impact on uplink throughput [63] and cause considerable network
performance degradation [64].
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5.5.3 Error patterns and rates

In order to evaluate the performance of the considered RFTs in the presence of errors, two different
error distributions are supported in Sim-RFT: a uniform error distribution [65–94], and a burst
error distribution [71–87]. These error distributions cover a comprehensive set of characteristics of
LoRaWAN networks such as frame loss over distance [68,70,71,74,78,88–90], different uses cases [68,
72,91–94], mobile or stationary devices [70,83,86,87], network capacity [91], and collisions [70,90].
Frame loss burstiness may be due to channel effects [71,73], mobility [71,72], limited coverage [75,
77, 78, 81], or opportunistic coverage [79–81]. Event-driven communication may also lead to burst
errors, as many devices may try to communicate at the same time during a relatively long time
interval [82–85]. Table 5.2 summarizes the types of error distributions identified in LoRaWAN
literature.

Table 5.2: LoRaWAN Error Distributions in Literature

References
Error distribution

Uniform Burst

[65–70] Yes No

[71–94] Yes Yes

The uniform error distribution is modeled by a Bernoulli process, with a fragment error prob-
ability equal to the FER. The burst error distribution is modeled by a discrete Markov chain
composed of two states [71]: a good state, where there are no fragment errors, and a burst state,
where there is a burst of λL consecutive fragment errors. The probability of transition from a good
state to the burst state is referred to as Burst Occurrence Probability (BOP). λL is modeled as a
random variable that follows a Poisson distribution (see Fig. 5.7). Once in the burst state, several
fragments are lost, and then the chain transitions back to the good state. Each fragmented packet
transmission starts in the good state. We consider that transmitting different fragmented packets
corresponds to independent events. Therefore, if a burst length λL is larger than the remaining
number of fragments to be transmitted, the resulting burst length (λRL) will be smaller, hence
the burst will be truncated (λRL ≤ λL). As the fragmented packet size increases, the probability
that a burst will be truncated decreases and larger burst lengths are more likely (see Figs. 5.7a
and 5.7b).

In order to capture the characteristics of a wide range of LoRaWAN scenarios, as reported in
prior work, in this chapter we consider FER values of 1%, 10% and 20%. FER = 1% corresponds
to good channel conditions, with sporadic fragment errors [65, 68, 87]. A FER of up to 10% is
expected in industrial deployments [66, 67], and it can also be found under certain LoRaWAN
configurations for static devices [70] and mobile ones [76]. FER up to 20% was found in adverse
environments [69], with link distance being the primary cause of losses [78,87].

On the other hand, we consider BOP values of 1% and 2%, with an average burst size (λ)
of 10 fragments (see Fig. 5.7), which captures burst error characteristics found in the literature.
Burst error lengths between 2 and 30 frames have been reported, with the range between 2 and
7 frames corresponding to the most likely burst error length [71–75]. By modeling λL with a
Poisson distribution, with an average burst size of 10 fragments, and considering burst truncation,
the resulting burst length (λRL) distribution concentrates 40% of burst sizes between 2 and 7
fragments, with an actual average burst length of 7 fragments, while still providing burst sizes up
to 30 fragments (see Fig. 5.7).
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Figure 5.7: Probability Density Function (PDF) of the theoretical vs simulated burst length (λ =
10).

5.6 LoRaWAN operation and settings

In this section, we describe the main characteristics and settings of LoRaWAN, emphasizing the
ones that are most relevant to the evaluation carried out in this chapter. The section is divided
into two parts, which focus on the LoRaWAN physical layer and on the LoRaWAN L2 layer,
respectively.

5.6.1 LoRaWAN physical layer

LoRaWAN is based on LoRa as the physical layer. LoRa is a spread spectrum modulation scheme
based on CSS technology [95].

In LoRa networks, the time duration of a frame transmission at a given SF and BW is called
the ToA of a frame (ToAframe). The available BW is of 125 kHz, 250 kHz or 500 kHz. The SF
takes values from 7 to 12. The ToAframe can be defined as the time required for the transmission
of the preamble plus the payload of the LoRa frame [96], and can be obtained as follows:

ToAframe = Tpreamble + Tpayload. (5.1)

The preamble is a sequence of a programmable number of symbols for receiver synchronization.
Its transmission time can be calculated as follows:

Tpreamble = (npreamble + 4.25) · Tsym, (5.2)

where npreamble is the aforementioned number of symbols. The symbol period (Tsym) depends on
the channel BW and SF selected, and can be calculated as follows:

Tsym =
2SF

BW
. (5.3)

The transmission time of the payload can be calculated as:

Tpayload = (payloadSymbNb) · Tsym, (5.4)

where payloadSymbNb is the number of symbols of the LoRa frame payload and header [96]. The
payloadSymbNb can be calculated as follows:

payloadSymbNb = 8 + max
Ä
ceil
Ä
8PL−4SF+28+16−20H

4(SF−2DE)

ä
(CR + 4), 0

ä
, (5.5)

where PL is the payload size in bytes, and other parameters (SF, H, DE and CR) can be found in
Table 5.3.

Table 5.3 presents the LoRa and LoRaWAN configuration parameters used in the evaluation
presented in Section 5.7.
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Table 5.3: LoRa and LoRaWAN configuration parameters

LoRa Configuration Parameters

Region/Country US EU CN

Channel Plan US902-928 EU863-870 CN779-787

Data Rate (DR) 0 0 5

Spreading Factor (SF) 10 12 7

Bandwidth (kHz) 125 125 125

Indicative physical
bit rate (bit/sec)

980 250 5470

npreamble 8 symbols

Header enable (H) Disable (0)

Low Data Rate
Optimization (DE) Disable (0)

Coding Rate (CR) 4/5

CRC present YES (1)

LoRaWAN Configuration Parameters

L2 control headers 13 bytes

L2 MTU (N) 11 bytes 51 bytes 242 bytes

5.6.2 LoRaWAN L2 layer

LoRaWAN specification [3] defines a LoRaWAN L2 frame format. The LoRaWAN L2 frame is
carried by the LoRa frame. The L2 LoRaWAN frame has a 13-byte control header. Table 5.3
presents the LoRaWAN configuration parameters used in the evaluation presented in Section 5.7.

To better understand the relation between the LoRaWAN L2 payload size and the ToAframe,
Fig. 5.8 shows the ToAframe for the configurations of LoRa and LoRaWAN presented in Table 5.3,
for different LoRaWAN L2 payload sizes. Note that ToAframe shows a stepwise relationship
with the LoRaWAN payload. This happens because of how LoRa physical layer determines the
payloadSymbNb (see (5.5)).
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Figure 5.8: ToAframe for different LoRaWAN L2 payload sizes obtained by using (5.1) and the
parameters shown in Table 5.3.
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5.6.2.1 LoRaWAN Device Class

LoRaWAN defines three classes of devices (Class A, Class B, and Class C), which are relevant to
the energy consumption of a device and communication delay. However, LoRaWAN device class
is not relevant for this chapter, since it is orthogonal to communication error characteristics.

5.7 Evaluation

In this section, we use Sim-RFT to investigate the performance of the RFTs presented in Section 5.4
for different FER values, different error distributions (uniform and burst), and for a range of packet
sizes that require fragmentation, including the MTU required for IPv6, i.e., 1280 bytes. Note that
there exist applications that involve longer packet sizes. These include waveform captures, data
logs, and large data packets using rich data types [97]. As introduced in Section 5.5.2, LoRaWAN
is the underlying LPWAN technology. Regarding LoD, we consider base sizes of 2, 3, 4, and 5 bits.

The performance metrics are: i) ACK payload size, ii) number of L2 frames needed to carry
an ACK, and iii) ACK ToA, hereinafter ToA, for each considered RFT. The ACK payload size
is critical to LPWAN performance. On the one hand, the downlink channel of an LPWAN radio
gateway is a bottleneck for the whole network. Note that most LPWAN traffic is sent in the uplink,
part of that traffic requires downlink transmissions (e.g., ACKs), and the number of LPWAN
devices per radio gateway may be large. Furthermore, there exist spectrum access regulations that
restrict the duty-cycle in some world regions and frequency bands (e.g., LoRaWAN operates in
Europe in the 868 MHz, which is limited to a maximum duty-cycle of 1%). Reducing the ACK
size increases the number of IoT devices that can be supported per LPWAN radio gateway. On
the other hand, the ACK size has a direct impact on the energy consumption of IoT devices. The
number of L2 frames needed per ACK measures the ACK fragmentation overhead. If the ACK
size exceeds the L2 frame maximum payload size, additional frame transmissions (including their
corresponding L2 headers) are required, reducing efficiency. There may also be a negative impact
on cost, as some operators charge by the number of downlink messages sent. Finally, ToA captures
the channel occupancy over time due to ACK transmission, which is relevant to the scalability of
the LPWAN. Each individual result provided has been obtained as the average over one million
simulations.

5.7.1 ACK payload size analysis

In this subsection, we evaluate the average ACK payload size for the different RFTs. In order to
capture the full impact of ACK payload size when considering the characteristics of the underlying
LPWAN technology, padding bits (if any) are added to the ACK payload sizes shown in the results.
The subsection is organized into two subsections, which focus on the performance of the RFTs for
the uniform, and for the burst error distributions, respectively.

5.7.1.1 Uniform losses

In this subsection, we evaluate the impact of a uniform fragment loss distribution on the ACK
payload size for the evaluated RFTs, for FER values of 1%, 10% and 20%, uniform losses, and a
range of packet sizes.

Fig. 5.9a presents the average ACK payload size for all considered RFTs, and for a FER of
1% and uniform losses. The sizes of the different ACK payloads produced by the different RFTs
are very similar for small packet sizes (i.e., packet sizes between 1 and 10 fragments). As packet
size increases, the ACK payload size grows very rapidly for UB and CB. UB produces the greatest
ACK payload size, which is linear with the number of fragments needed to carry a packet, and
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has a step-like behavior due to padding. CB offers better performance than UB, although its
improvement is limited by losses, which reduce CB’s compression gain.

LLF also has a linear behavior with packet size, since the number of fragments lost per packet
is, in average, a fraction (approximately equal to the FER) of the total number of fragments
required to transport the packet. Since a FER of 1% is low, LLF produces the smallest ACK
payload size among the different RFTs evaluated, for all packet sizes considered.
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Figure 5.9: Delta Probability Density Function (PDF), for FER = 1% and uniform losses.

The considered LoD variants exhibit a similar behavior for small packet sizes. However, as
packet size increases, LoD-2 tends to produce a greater ACK payload size due to the greater
overhead of SDNV-2 when encoding large deltas. LoD-3 and LoD-5 yield a similar ACK payload
size, with LoD-4 being the optimal LoD encoding for the conditions considered. LoD-4 performs
similarly to LLF for a small packet size. However, as packet size increases, and since FER is low,
deltas tend to increase, and therefore, LoD-4 produces a slightly greater ACK payload size than
LLF.

In order to better understand the performance of the different LoD solutions, we analyzed the
statistics of the deltas. Figs. 5.9b and 5.9c depict the delta PDF for packet sizes of 10 and 100
fragments, for FER = 1% and uniform losses, respectively. For both packet sizes, the delta PDF
decreases steadily, from a delta value of 1, which is the most frequent delta value, up to the packet
size (in number of fragments). As the probability of a delta value decreases, its encoded size
increases. LoD-4 provides better performance due to its suitable trade-off between low encoding
overhead and the relatively large deltas stemming from relatively infrequent errors.

Fig. 5.10a shows the average ACK payload size for FER = 10% and uniform losses. Similarly
to the study for FER = 1% (Fig. 5.9a), for small packet size (of up to 10 fragments), all RFTs
generate a similar ACK payload size. As packet size increases, UB/CB and LoD-3/LoD-4 yield
the largest and the smallest ACK payload sizes, respectively. UB produces an ACK payload size
independent of the error rate, whereas CB offers lower improvement than for FER = 1% due to
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the more frequent presence of losses at the end of packet transmission for FER = 10%. LLF yields
now a greater ACK payload size than the tested LoD schemes, as the ACK payload size is now
10 times greater than the one for a FER of 1%. Regarding the LoD schemes, LoD-2 still requires
more bits to encode the deltas than the other considered LoDs, despite the fact that smaller deltas
are more frequent for FER = 10% than for FER = 1% (see Figs. 5.9b and 5.9c, and Figs. 5.10b
and 5.10c). On the other hand, LoD-3 is a more efficient encoding for FER = 10% than it was
for FER = 1%, leading to an ACK payload size similar to the LoD-4 one. LoD-5 uses 5 bits to
encode small deltas, and therefore produces a slightly larger ACK payload size than LoD-3 and
LoD-4.
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Figure 5.10: Delta Probability Density Function (PDF), for FER = 10% and uniform losses.

Fig. 5.11a shows the average ACK payload size for FER = 20% and uniform losses. In this
case, LLF yields the largest ACK payload size among the considered RFTs, since the LLF ACK
payload size is roughly proportional to the FER, which is very high at 20%. The rest of RFTs
produce now very similar ACK payload sizes.

Regarding the LoD RFTs, LoD-3 yields the shortest ACK payload size, since deltas are smaller
than for FER = 10% (see Figs. 5.11b and 5.11c) and they can be encoded more efficiently with
a 3-bit base than with a 4-bit base. LoD-2 suffers from a too high overhead to encode deltas that
are too large for the short 2-bit base, whereas the same deltas are too small for the larger 5-bit
base in LoD-5. For FER = 20%, UB and CB generate an ACK payload size that is in average
very similar to the LoD-4 one. The UB ACK payload size remains independent of the error rate,
whereas a high FER of 20% leads CB to perform similarly to UB. Therefore, UB and CB offer
relatively good performance for high FER and uniform losses.
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Figure 5.11: Delta Probability Density Function (PDF), for FER = 20% and uniform losses.

5.7.1.2 Burst losses

This subsection analyzes the performance of the considered RFTs for the burst error distribution,
for BOP of 1% and 2%, and λ = 10 fragments i.e., FER of 10% and 20%, respectively.

Fig. 5.12a depicts the average ACK payload size for BOP = 1% and λ = 10 fragments. For
small packet sizes (i.e., between 1 and 30 fragments), CB and LoD-2 produce the smallest ACK
payload sizes, offering similar performance. For burst errors, CB improves the performance of
UB to a greater extent than for uniform errors and the same FER (Fig. 5.10a). In a burst error
distribution, it is more likely that the last loss will occur earlier in the packet transmission, thus
allowing the compression advantages of CB to a greater extent. On the other hand, in a burst
error distribution, there is a high probability of a delta value being equal to 1 (e.g., 0.83 for 10-
fragment packets and 0.90 for 100-fragment packets, see Figs. 5.12b and 5.12c, respectively), with
other deltas corresponding to the distance between bursts. Since LoD-2 encodes the delta value
of 1 with the lowest encoding overhead, LoD-2 offers good performance, outperforming the other
RFTs for packet sizes greater than 40 fragments.

LoD-3 produces a smaller average ACK payload size than LoD-4. This is because LoD-3 requires
less bits to encode the deltas (which are often equal to 1). For the same reason, LoD-5 performs
worse than LoD-4. As expected, LLF exhibits a linear behavior with packet size and generates, for
packet sizes up to ∼ 120 fragments, the largest ACK payload size among all the evaluated RFTs.
We have also evaluated the ACK payload size for BOP = 2% and λ = 10 fragments. The relative
behavior of the different RFTs is qualitatively similar to the one obtained for BOP = 1%, albeit
for greater ACK payload size. Therefore, the results for BOP = 2% are not shown for the sake of
brevity.
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Figure 5.12: Delta Probability Density Function (PDF), for BOP = 1%.

5.7.2 Average number of L2 frames and ToA gain

In this subsection, we evaluate two important performance metrics derived from the ACK payload
size results: the average number of L2 frames needed to carry an ACK (denoted ANL2F) and the
ToA, for all packet sizes, L2 MTU values (i.e.,11 bytes, 51 bytes, and 242 bytes), and fragment loss
scenarios considered in Section 5.7.1. For a given RFT, we represent the ToA in relative terms as
the ToA Gain (ToAGain), which is obtained by dividing the UB ToA by the ToA of the considered
RFT. ToAGain evaluates the benefits, if any, that can be obtained from using an RFT different
from UB. ToA is calculated as described in Section 5.6.

5.7.2.1 Uniform losses

Fig. 5.13 shows the ANL2F and the ToAGain results for FER = 1% and uniform losses, for the L2
MTU values considered. For a packet size smaller than 80 fragments and for an 11-byte L2 MTU,
the ANL2F is always one, as the ACK payload in this range fits the maximum payload size of one
L2 frame (see Fig. 5.9a). For L2 MTU values of 51 and 242 bytes, the ANL2F is always equal to
1. On the other hand, the ToAGain is negligible for all considered RFTs for packet sizes up to 40
fragments. This is due to the L2 header overhead, which is much greater than the ACK payload
size differences for the considered RFTs, for short packet sizes. As the L2 MTU increases, and for
the same range of packet sizes, the L2 overhead has lower impact and LoD-2 and LoD-3 present a
ToAGain up to 4.8%. For greater packet sizes, all RFTs other than UB achieve a significant ToA
improvement, for all L2 MTUs analyzed, since the differences in ACK payload size become more
significant. The stepwise behavior of the ToAGain is due to the relation between the LoRaWAN
frame size and its payload size (see further details in Appendix A.2).

Fig. 5.14 shows the ANL2F and the ToAGain for FER = 10% and uniform losses for the
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Figure 5.13: Average number of L2 frames (a) and ToAGain (b,c,d) vs packet size for FER = 1%
and uniform losses. In (b) results for LLF, and all LoD variants considered are overlapped.

considered L2 MTU values. For an 11-byte L2 MTU, the ANL2F is also equal to one for packet
sizes up to 40 fragments for LLF, and up to 80 fragments for all other RFTs. Since LLF depends
strongly on the number of losses occurred during a packet transmission, its ACK payload size varies
significantly, sometimes requiring two L2 frames to carry an ACK, even if its average ACK payload
size is smaller than those of UB and CB (see Fig. 5.10a). For L2 MTU values of 51 and 242 bytes,
the ANL2F is always equal to 1. As a result, LLF exhibits even negative ToAGain for some values
within the considered packet size range. For packet sizes greater than 80 fragments, UB and CB
require two L2 frames to carry an ACK more often than the rest of RFTs, and the LoD variants
offer the best performance. The frequent additional L2 frame penalizes UB and CB, introducing a
significant ToAGain of up to ∼ 45% for the rest of RFTs. This ToAGain decreases with packet size,
with LoD variants, i.e., LoD-3, LoD-4 and LoD-5, achieving a similar ToAGain, with values up to
27%. As the L2 MTU value increases, and for packet sizes between 2 and 8 fragments, UB and CB
offer the best performance, since other RFTs yield a negative ToAGain. As packet size increases,
LoD-3 and LoD-4 become optimal, with ToAGain of up to 16%. On the other hand, the ToAGain

of CB is up to only 9%, since this RFT can provide a relatively low bitmap compression degree
due to fragment losses occurring at the end of packet transmission with relatively high probability.
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Figure 5.14: Average number of L2 frames (a) and ToA Gain (b,c,d) vs packet size for FER = 10%
and uniform losses.

Fig. 5.15 illustrates the ANL2F and the ToAGain for FER = 20% and uniform losses. For
a small L2 MTU (i.e., 11 bytes), results reflect how, for high FER, UB and CB generally offer
good performance, compared with the rest of RFTs considered. LLF yields the largest ANL2F

and a negative ToAGain (down to −83% for a packet size of 80 fragments). Such ANL2F increase
happens because, in some cases, the ACK payload requires two L2 frames to be carried. As L2
MTU increases, LoD-3 and LoD-4 become the optimal RFTs, with a ToAGain of up to 9%. A
seesaw ToAGain pattern arises because of the ToA stepwise behavior of UB, which makes UB yield
better values than LoD-3, LoD-4, and the same ToA values as CB, for a short range of packets.
For L2 MTU values of 51 and 242 bytes, ANL2F is always equal to 1.

5.7.2.2 Burst losses

Fig. 5.16 depicts the ANL2F and ToAGain for BOP = 1% and λ = 10 fragments for 11-byte,
51-byte, and 242-byte L2 MTUs, respectively. For a large range of packet sizes, LLF exhibits the
largest ANL2F for the 11-byte L2 MTU, and the smallest ToAGain for all L2 MTUs analyzed,
due to its large ACK payload. Since fragment losses concentrate in bursts, LoD-2 benefits from
its small overhead when encoding the highly frequent delta value of 1, and offers the best overall
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Figure 5.15: Average number of L2 frames (a) and ToAGain (b,c,d) vs packet size for FER = 20%
and uniform losses.

performance in terms of ANL2F for the 11-byte L2 MTU, and ToAGain for all L2 MTUs analyzed.
LoD-2 is followed closely by LoD-3 and LoD-4, as these LoD techniques have a larger overhead
when encoding small deltas (see Fig. 5.12c). As the L2 MTU and packet size increases, UB is
outperformed by all other RFTs considered (except LLF). The ANL2F and ToAGain results for
BOP = 2% are qualitatively similar to those for BOP = 1%, with LoD-2 being the optimal RFT
for a large range of packet sizes and for all L2 MTUs considered.
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Figure 5.16: Average number of L2 frames (a) and ToA Gain (b,c,d) vs packet size for BOP = 1%
and λ = 10.



CHAPTER 6

SCHC PACKET FRAGMENTATION: IMPLEMENTATION AND
PERFORMANCE EVALUATION

<<Light unifies energy and matter.>>

Following the development of the SCHC framework, technology-specific versions of SCHC have
been designed for specific LPWANs. In this chapter, the adaptation of SCHC over Sigfox is
deeply studied, providing mathematical models for the number of SCHC messages and ACKs,
and SCHC Packet transfer time, as well as an experimental evaluation of total number of uplink
and downlink messages, and transfer time. We also provide the implementation (working code).
Results are obtained covering all Sigfox world regions and validating SCHC over Sigfox application
feasibility. As part of the results, an excess of ACK traffic was found, which offered optimization
opportunities. Contributions of this thesis investigation led to the co-authorship of the SCHC over
Sigfox LPWAN WG Internet Draft [VIII], and the development of a new message (along with a
corresponding mechanism) called SCHC Compound ACK, which was adopted as an LPWAN WG
Internet Draft [IX]. The SCHC Compound ACK message is presented in Chapter 9. We believe
that the results provide useful insights for researchers, developers, implementers, and providers,
with applicability to the application design, network planning, and resource management of IoT
solutions. This investigation was performed in collaboration with the Sigfox company and the
University of Chile. The contributions in this chapter have been published in a journal article [III]
and in a conference paper [VII].

6.1 Introduction

Considering the diversity of LPWAN technologies and scenarios, SCHC was purposefully designed
to offer generic, technology-independent functionality. To optimize the use of SCHC over a given
LPWAN technology, a specific definition of the SCHC mechanism choices and parameter settings
over that technology (called a SCHC Profile) is needed. As of the writing of this chapter, the
IETF LPWAN WG has worked on profiling SCHC over flagship LPWAN technologies such as
Sigfox [7], LoRaWAN [9], and NB-IoT [8]. Since C/D depends on static context rules to be defined
by the network operator/administrator on a per-deployment basis, SCHC Profiles mainly focus on
specifying how F/R is performed over each particular technology.

In this chapter, and for the first time to our best knowledge, we investigate the performance
of SCHC over Sigfox. We focus on its most promising feature: a reliable, yet efficient F/R mode
called ACK-on-Error, which is intended for uplink communication. We provide a theoretical anal-
ysis and an experimental evaluation of crucial performance metrics such as packet transfer time
and number of Sigfox messages required when using ACK-on-Error. For the experimental evalu-
ation, we implemented a real testbed and performed measurements in two different world regions
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corresponding to different Sigfox geographical zones, which are characterized by different Sigfox
radio features. Among others, our results show that in some cases fragment losses may reduce the
transfer time, compared with a scenario without losses. Moreover, very small packet size changes
can significantly impact the packet transfer time. Also, we found that the number of uplink and
downlink messages is not proportional to a Fragment Loss Rate (FLR) increase due to the fact
that downlink messages are device-driven. As a side-contribution of this work, we published our
SCHC over Sigfox implementation source code [98,99].

The remainder of the chapter is organized as follows: Section 6.2 presents related work. Sec-
tion 6.3 overviews SCHC over Sigfox, focusing on its uplink ACK-on-Error mode. Section 6.4
presents a theoretical analysis of the transfer time, and the total number of uplink and downlink
messages required to carry a fragmented generic data packet over Sigfox. Section 6.5 describes the
environment used in our experimental evaluation and presents the results and discussion.

6.2 Related work

Recently, SCHC has attracted the attention of academia and industry as it enables IPv6 connec-
tivity over LPWAN networks [6–9,46,47,57,60,100–104].

The definition of specific SCHC Profiles (see Section 2.3.7) is progressing rapidly after the pub-
lication of the generic SCHC specification, RFC 8724 [6]. The first profile, SCHC over LoRaWAN
has become RFC 9011 [9]. Similar paths are being followed by profile definitions of SCHC over Sig-
fox [7] and SCHC over NB-IoT [8]. At the same time, there is an increased interest in implementing
SCHC and SCHC profiles in simulation, experimental, and industrial settings. The Open-SCHC
initiative [101] has been evolving together with the IETF’s standardization track, with an open-
source Python implementation of SCHC that also allows rapid testing via a simulation tool.

To compare SCHC performances to previous proposals of the IETF for different technologies,
Ayoub et al. implemented a generic version of SCHC in the ns-3 simulator, focusing on the com-
pression/decompression function [47]. In [102, 103], the performance of SCHC over LoRaWAN
is modeled and validated with an experimental testbed limited to the ACK-on-Error mode for
uplink traffic. Toutain et al. [104] provided an early implementation in Python of the compres-
sion/decompression SCHC function. The code was tested in Pycom devices using LoRa, although
the authors mentioned it could be easily adapted for Sigfox. In [57], the generic SCHC specifica-
tions where simulated using Open-SCHC, providing performance results of SCHC fragmentation,
without fragment losses, while using LoRaWAN. Sanchez-Gomez et al. provided an evaluation
of the SCHC profile over LoRaWAN using a real testbed that considers regular IPv6 and CoAP
traffic [60]. The evaluation established the benefits of using SCHC in terms of delay and packet
delivery ratio, and assessed the need for resources in the constrained devices (i.e., computing and
memory requirements). To test SCHC in multimodal LPWAN solutions, Moons et al. implemented
a generic library for constrained devices using the OSS-7 operating system and the Click modular
router for packet processing and IPv6 forwarding [46].

The work mentioned above provides valuable insights into SCHC performance at both generic
and profile levels, but mainly focused on the LoRaWAN technology. In this work, we evaluate
the performance of SCHC over Sigfox, both analytically and experimentally. The experimental
evaluation is based on the first SCHC implementation that addresses the specifics of the Sigfox
technology in a scenario of packet fragmentation and reassembly.

6.3 SCHC over Sigfox Profile

The SCHC framework defers to each LPWAN technology profile the proper choice and configuration
of the F/R modes to be used (e.g., RuleID field size, N size, M size, padding bits), so that SCHC
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is suitably adapted to the characteristics of each radio technology. In this section, we describe how
SCHC F/R is used over Sigfox.

6.3.1 SCHC over Sigfox overview

In Sigfox, as in other LPWAN technologies, uplink traffic is typically dominant. The SCHC over
Sigfox specification [7] provides two modes for uplink fragmentation: No-ACK and ACK-on-Error.
No-ACK mode is intended for the transmission of short, non-critical SCHC Packets, as it does not
provide reliability. In contrast, ACK-on-Error defines two variants, offering reliability for short and
long SCHC Packets, respectively. ACK-on-Error also reduces the number of ACKs when compared
with the other reliable SCHC fragmentation mode (i.e. ACK-Always) [59, 100]. This is suitable
considering that in Sigfox, the downlink message rate is very limited (see Section 2.2.1.2). This
chapter focuses on the ACK-on-Error mode, as it provides reliability and efficiency for a very wide
range of SCHC Packet sizes.

6.3.2 Architecture

The SCHC over Sigfox architecture under study is composed of three main elements (see Fig. 6.1):
the SCHC F/R Sender (hereinafter, the sender), the Sigfox Network, and the SCHC F/R Receiver
(hereinafter, the receiver). The sender and the receiver are hosted by the device and the application
server, respectively.

Figure 6.1: SCHC over Sigfox architecture.

6.3.3 ACK-on-Error mode over Sigfox

In this section we present the two variants of ACK-on-Error mode over Sigfox. These variants use
a single-byte and a two-byte fragment header size, respectively.

6.3.3.1 Single-byte-header ACK-on-Error

SCHC over Sigfox recommends an 8-bit fragment header for SCHC Packets of a size up to 300
bytes. The fragment header (see Fig. 2.24) is composed of a 3-bit RuleID, a 2-bit W number size
(M = 2), and a 3-bit FCN size (N = 3). Neither RCS and DTag are used. WINDOW SIZE is
equal to 7 tiles. The tile size is fixed to 11 bytes (i.e., one tile per SCHC Fragment). The SCHC
ACK header includes a 3-bit RuleID, a 2-bit W and it may include a 7-bit bitmap (when there are
SCHC Fragment losses), for a total of 5 or 13 bits, depending on whether the ACK reports success
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or failure, respectively (see Fig. 2.25). In Sigfox, the downlink payload size must always be 64 bits
therefore, padding bits must be added.

6.3.3.2 Two-byte-header ACK-on-Error

Using the two-byte SCHC Fragment header supports the fragmentation and reassembly of SCHC
Packets with a size up to 2250 bytes. This is achieved by adding 1 bit to the W field and 2 bits
to the FCN, compared with the single-byte SCHC header. The 16 SCHC Fragment header bits
are organized as an 8-bit RuleID, a 3-bit W size (M = 3), and a 5-bit FCN size (N = 5). RCS
and DTag are not used. WINDOW SIZE is equal to 31 tiles. Compared to the single-byte SCHC
header, the W field size now allows for up to 2 times more windows per SCHC Packet and the FCN
field size allows up to 4 times more fragments per window. However, the tile size is now fixed to
10 bytes, one byte less. The SCHC ACK size is now of 11 or 43 bits, depending on whether SCHC
ACK reports success or failure, respectively (see Fig. 2.25). Padding bits are added to complete
the required downlink frame payload size of 64 bits.

The two-byte SCHC Fragment header may be used to comply with the IPv6 MTU of 1280
bytes, and may also be useful for applications that require long packet sizes, such as smart meters
(e.g., gas, water, etc.), waveform captures, data logs, and large data packets using rich data
types [97,105–107].

6.3.3.3 Operation specifics

In the SCHC over Sigfox Profile, in an intermediate window (i.e., a window that is not the last
one), an All-0 SCHC Fragment signals the end of the window. The All-0 is sent by using a B-
procedure, in order to open a downlink opportunity (see Section 2.2.1.2). The receiver may use
this downlink opportunity to send a SCHC ACK if there are fragment losses in current or previous
windows, and if the network assesses that radio conditions are favorable. After resending all lost
fragments or if the SCHC ACK is not received after the Retransmission Timer expires, the sender
continues with the transmission of SCHC Fragments of the next window.

At the end of the last window (i.e., after the All-1 SCHC Fragment), the sender always expects
a SCHC ACK therefore, it opens a downlink opportunity. The All-1 SCHC Fragment is sent using
a B-procedure (see Section 2.2.1.2), and is also used to request a SCHC ACK after retransmission
of lost SCHC Fragments.

The SCHC over Sigfox draft specification recommends setting MAX ACK REQUESTS to 5.
Both the Retransmission Timer and the Inactivity Timer are application-dependent and need to
be consistent with spectrum access regulations (e.g. duty-cycle constraints). RCS is not always
recommended because Sigfox performs an integrity check for each uplink frame delivered by the
Sigfox Cloud to the receiver (see Section 2.2.1.2). The DTag is not used as different RuleIDs can
be used to interleave different SCHC Packets sent simultaneously.

Finally, another Sigfox-specific feature is the use of the Sigfox Sequence Number to keep track
of SCHC Fragment transmissions and to identify missing fragments.

6.3.3.4 Single- vs two-byte-header trade-off

SCHC over Sigfox provides different configurations of ACK-on-Error mode to serve different use
cases and SCHC Packet sizes. On the one hand, the single-byte ACK-on-Error mode requires less
overhead for small SCHC Packet sizes and a smaller window size (with a smaller bitmap), which
increases the downlink opportunities, i.e., the number of times the receiver can provide feedback
to the sender and recover from eventual losses. On the other hand, the two-byte ACK-on-Error
mode requires a larger overhead with lesser downlink opportunities, which is traded for a faster
transfer time for large SCHC Packet sizes.



CHAPTER 6. IMPLEMENTATION AND PERFORMANCE EVALUATION 99

6.4 Theoretical analysis

In this section we present a theoretical performance analysis of the uplink SCHC Packet transfer
over Sigfox by using the ACK-on-Error mode. First, we obtain the total delay of a Sigfox message
transmission by using the U-procedure and the B-procedure. Based on the results, we calculate the
total SCHC Packet transfer time under the conditions considered. Finally, we derive the number
of uplink (hereinafter, UL) and downlink (hereinafter, DL) messages required to perform a SCHC
Packet transfer. This number is critical since message rates in Sigfox are limited, as aforementioned
(see Section 2.2.1.2).

We assume that no fragment losses occur. Therefore, our theoretical model provides a lower
bound on the SCHC Packet transfer time, as well as on the number of UL and DL messages
required to transfer a SCHC Packet. Note that, in Section 6.5, we experimentally evaluate the
impact of fragment losses on performance.

6.4.1 Sigfox message transmission U/B procedures delay

We now derive the Sigfox message total delay for the U-procedure and the B-procedure.

6.4.1.1 U-procedure delay

The U-procedure (see Fig. 2.6) total delay (TU−total) can be obtained as follows:

TU−total(sec) = 3 · TTx + 2 · TWaitTx
+ TCool. (6.1)

The duration of the transmission state (TTx) depends on the Sigfox frame length and the
Bitrate (BR). Recall that each Sigfox RC defines an UL BR of either 100 bit/s or 600 bit/s (see
Section 2.2.1.2) and the Sigfox protocol overhead per UL data unit is 96 bits (see Fig. 2.7). Then,
TTx can be calculated as:

TTx =
96 + LMAUTH + LUL

BR
, (6.2)

where LMAUTH depends on the UL payload size (LUL) and it can be obtained from Table 2.5.

6.4.1.2 B-procedure delay

The B-procedure total delay (TB−Total−DL) can be obtained as follows:

TB−total−DL(sec) = 3 · TTx + 2 · TWaitTx
+ TWaitRx

+ TRx + TConf + TCool, (6.3)

where TTx is derived from (6.2). Note that this calculation assumes that a DL frame is actually
received after the three UL frame transmissions (see Fig. 2.8). However, in some cases, a DL frame
might not be received during a B-procedure. This event can occur when a DL message is actually
not transmitted or when such message is not successfully delivered to the device by the radio link.

The B-procedure total delay when no DL is received (TB−Total−no−DL) can be derived from (6.3),
with TRx = TRxMAX

, and TConf = 0. Indeed, once TRxMAX
time has passed, the radio proceeds

to cooldown. Note that TB−Total−no−DL ≥ TB−Total−DL as TRxMAX
≥ TRx. This means that

when a DL frame is received, the B-procedure delay may be smaller than when a DL frame is not
received.
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6.4.2 SCHC Packet transfer time: Analysis

To obtain the SCHC Packet transfer time (TSCHC), we first calculate the transmission time of each
SCHC Fragment type and of the SCHC ACK. Then we determine the number of SCHC Fragments
and SCHC ACKs required to transfer the SCHC Packet.

As explained in Section 6.3, a SCHC Packet is carried by different types of SCHC Fragments,
such as the Regular SCHC Fragment, including the All-0, and the All-1 SCHC Fragment. All
SCHC Fragments, except for the All-1, have a fixed tile size. We next determine the transfer delay
of each type of SCHC Fragment.

A Regular SCHC Fragment that is not the All-0 is transmitted using the Sigfox U-procedure
(see Section 6.4.1.1), therefore its transmission time (TU−proc) is given by (6.1), where TTx is given
by (6.2), with LUL = 12 bytes.

The transmissions of the All-0 and All-1 SCHC Fragments use the Sigfox B-procedure. When
there is no fragment loss, the All-0 transmission time (TAll−0) is equal to TB−Total−no−DL, and it
can be calculated using (6.3), with LUL = 12 bytes.

The All-1 SCHC Fragment carries the last fragment of the SCHC Packet and its size may
be smaller than the Regular SCHC Fragment (which has a size of 12 bytes). The All-1 SCHC
Fragment size LAll−1 can be calculated as:

LAll−1 = LSCHC − (

°
LSCHC

LULMAX
− LH

§
− 1) · (LULMAX

− LH), (6.4)

where LH is the size of the SCHC Fragment header, LULMAX
is the maximum UL payload size

and LSCHC is the size of the SCHC Packet. In UL ACK-on-Error mode, LH can be either 1 or 2
bytes. The All-1 SCHC Fragment transmission time (TAll−1) can be calculated using (6.2)-(6.4).

The number of SCHC Fragments using the U-procedure required in a SCHC Packet transfer
(NU−proc) can be obtained as follows:

NU−proc =

°
LSCHC

LULMAX
− LH

§
−NAll−0 − 1. (6.5)

The number of All-0 SCHC Fragments used in a fragmented SCHC Packet transmission (NAll−0)
can be obtained as follows:

NAll−0 = NWindows − 1

=
LSCHC

WINDOW SIZE · t
− 1, (6.6)

where NWindows is the number of windows required to transmit the SCHC Packet. The number
of All-1 SCHC Fragments (NAll−1), when there is no loss, is 1 for all SCHC Packet sizes.

Once the total number of SCHC Fragments and their transmission times have been calculated,
TSCHC can be obtained as follows:

TSCHC = NU−proc · TU−proc +NAll−0 · TAll−0 +NAll−1 · TAll−1. (6.7)

In Sigfox RCs where duty-cycle restrictions apply, the device must keep the transmission radio
off for a certain amount of time (TTxOFF

), after UL transmissions. This time can be calculated as
follows:

TTxOFF
=

3 · TTx

DC
− 3 · TTx. (6.8)

where DC denotes the duty-cycle enforced (e.g., DC = 0.01 corresponds to a duty-cycle of 1%).
The total time off for a SCHC Packet transfer (TOFF ) can be determined as follows:
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TOFF = (NU−proc +NAll−0 +NAll−1) · TTxOFF
, (6.9)

where TTxOFF
can be approximated to 600 s 1.

Finally, the total SCHC Packet transfer time, including all inactive intervals due to enforcing
duty-cycle regulations (TSCHCDC

), can be obtained as:

TSCHCDC
= TSCHC + TOFF . (6.10)

6.4.3 SCHC Packet transfer time: Results

To obtain the SCHC Packet transfer time, first the U-Procedure and B-Procedure states were
measured by using an Agilent N6750A power analyzer on a Pycom LoPy4 development board [108],
as shown in Fig. 6.2.

Figure 6.2: Experimental setup for SCHC Packet transfer time measurements.

Table 6.1 shows the measured duration of each U-procedure state for Sigfox RC1 and RC4.
Conversely, Table 6.2 shows the measured B-procedure transmission states duration. Note that
TRx is variable within a range of values. From our experiments in RC1, the mean reception time
TRxMean

is 14.5 s. Recall that, when no DL frame is received, TRx takes its maximum value,
TRxMAX

.

Table 6.1: U-Procedure Transmission States and Their Corresponding Durations

State
number

State
notation

Duration (ms)
RC1 RC4

(100 bit/s) (600 bit/s)

1 TTX [1120, 2080] [186.67, 346.67]
2 TWaitTx

1000 500
3 TCool 1000 1000

Figs. 6.3a and 6.3b show the SCHC Packet transfer time (TSCHC) for SCHC Packet sizes from
0 to 2250 bytes, using the values from Tables 6.1 and 6.2, with TRxMean

= 14.5 s, and using (6.7)
and (6.9), for RC1, and a duty-cycle of 1%, and RC4, respectively. SCHC Packet transfer time
tends to increase linearly with the SCHC Packet size. The stepwise behavior of TSCHC as SCHC
Packet size increases happens because every 77 or 310 bytes, an additional window is needed (with

1see https://build.sigfox.com/study (accessed on 19/01/2023).
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Table 6.2: B-Procedure Fragment Transmission States and Their Corresponding Durations

State
number

State
notation

Duration (ms)
RC1 RC4

(100 bit/s) (600 bit/s)

1 TTX [1120, 2080] [186.67, 346.67]
2 TWaitTx

500 500
3 TWaitRx

15556 15556
4 TRx [387,25000] [387,25000]
5 TConf 1799 1799
6 TCool 1000 1000

the corresponding wait time after sending an All-0 message) for single-byte or two-byte SCHC
Fragment headers, respectively. Therefore, a small change in SCHC Packet size may lead to a
sudden increase in TSCHC . However, in RC4, a slight SCHC Packet size increase, from a SCHC
Packet size slightly below 300 bytes, leads to a TSCHC decrease by a factor of ∼ 2 (see Fig. 6.3b).
This sudden discontinuity at 300 bytes occurs because, at that size, the UL ACK-on-Error mode
changes from a single-byte to a two-byte SCHC Fragment header. The stepwise behavior is also
reflected in TSCHCDC

(see Fig. 6.3a). However, the number of fragments transmitted, and their
subsequent TTxOFF

, become more dominant than the number of windows regarding their impact
on TTxOFF

.
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Figure 6.3: Theoretical SCHC Packet transfer time for (a) RC1 and (b) RC4. In (a), the duty-cycle
is of 1% and the total time off (TOFF ) required to comply with duty-cycle regulations is depicted
in shaded blue.

6.4.4 Number of messages (UL and DL)

The number of Sigfox UL messages (NUL) required to transmit a SCHC Packet using ACK-on-
Error mode can be obtained as follows:

NUL = NU−proc +NAll−0 +NAll−1. (6.11)
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In absence of fragment losses, NUL can be calculated as:

NUL =

°
LSCHC

LULMAX
− LH

§
. (6.12)

In the considered conditions, the number of DL messages (NDL) is equal to 1 for all SCHC
Packet sizes. This is because the ACK-on-Error mode, when there are no fragment losses, only
requires one SCHC ACK at the end of the SCHC Packet to confirm the correct reception of all
SCHC Fragments.

Table 6.3 shows the number of UL and DL messages required to transfer SCHC Packets of
different sizes when using the UL ACK-on-Error mode over Sigfox with no fragment losses. The
results given in Figs. 6.3a and 6.3b and Table 6.3 will be used as benchmarks for the experimental
results given in Section 6.5.

Table 6.3: Number of UL and DL Messages in a No Loss Scenario

SCHC Packet size NUL NDL

(bytes)

0 1 1
11 1 1
22 2 1
77 7 1
90 9 1
150 14 1
231 21 1
233 22 1
512 52 1
1280 128 1
2250 225 1

6.5 Experimental evaluation

In this section, we present our experimental performance evaluation of the UL SCHC Packet trans-
fer over Sigfox using the ACK-on-Error mode. First, we present the experimental environment.
Then, we measure the SCHC Packet transfer time and the number of UL and DL messages required
for SCHC Packet transfer.

6.5.1 Experimental environment

In order to study the performance of UL ACK-on-Error mode over Sigfox, we implemented an
experimental scenario consisting of the main elements of the SCHC over Sigfox architecture (pre-
sented in Section 6.3.2). We developed the sender on a Pycom LoPy4 hardware platform. The
LoPy4 uses the low-cost, low-power ESP32 system on a chip microcontroller 2 from Espressif, which
is widely used in IoT applications. Furthermore, this platform is compatible with the Pycom SiPy
development board [109], which has the Sigfox Verified certification.

The receiver was developed to run as a Cloud Function in the Google Cloud Platform [110],
where the latter serves as the application server. The Sigfox Network forwards the SCHC Fragments

2https://www.espressif.com/en/products/socs/esp32, accessed on 03/01/2023.



CHAPTER 6. IMPLEMENTATION AND PERFORMANCE EVALUATION 104

Figure 6.4: SCHC F/R mechanism diagram using Fragmenter and Reassembler objects.

received from the device to the application server using HTTP messages. Both sender and receiver
share the same Python-based implementation, adapted to the requirements of each host. For
example, Cloud Functions retain no memory between executions. Because of this, and due to its
fast response time, Firebase Realtime Database [111] was used to save all transmission data (e.g.,
SCHC Packets, SCHC Fragments, bitmaps, Sequence Numbers, etc).

The code implementation is class-based to ease modifications and extensions and it corresponds
to an updated version of the one presented in [112]. A Profile class is defined and is extended
in the Sigfox(Profile) subclass, which sets all the parameters defined in the SCHC over Sigfox
profile [7]. In the sender, an object named Fragmenter is instantiated to perform the fragmentation
process. Each fragment obtained in the process belongs to the Fragment class. This class defines
the header and payload format for every SCHC Fragment type, particularly specifying the Rule ID,
the window number, and the FCN. In the receiver, the Reassembler object recovers the original
message and performs the reassembly process. Fig. 6.4 depicts the F/R process for an example of
three fragments per window.

In our implementation, RuleIDs for single-byte or two-byte ACK-on-Error start with 0b1 or
0b01, respectively. Note that the remaining RuleIDs may be used for C/D.

To keep track of the received fragments, a bitmap is created at the receiver (see Fig. 6.4). This
bitmap becomes part of the SCHC ACK Message that is sent back to the sender, if any fragment
is not received. When the transmission is completed, the last executed instance of the receiver
performs the reassembly process, reads the fragments from Firebase Realtime Database, and stores
the SCHC Packet in the same service.

Moreover, at the application server, we developed a fragment loss emulator, which enables the
artificial injection of fragment losses. At both sender and receiver, we developed a data tracker to
facilitate the capture of SCHC Packet transfer metrics (e.g., Sigfox procedure transmission time,
total number of fragments sent by the sender and receiver, fragment losses, etc). The source code
of the implementations for both sender and receiver are publicly available [98,99].

6.5.2 Experiment details

The experiments were performed in Sigfox RC1 (in Barcelona, Spain) and RC4 (in Santiago,
Chile). In both scenarios, the FLR was found to be approximately 0%. This allows the validation
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Table 6.4: SCHC Packet Sizes Evaluated

SCHC Packet size Number of NWindows LH

(bytes) SCHC Fragments (bytes)

77 7 1 1
150 14 2 1
231 21 3 1
512 52 2 2

of the theoretical model, which was developed assuming no fragment losses. However, to test the
performance of the SCHC over Sigfox ACK-on-Error mode in the presence of losses, fragment losses
following a Bernoulli distribution error distribution were artificially introduced at the receiver with
FLR values of 10% and 20%. We performed experiments of three types: i) with no losses, ii) with
losses in the UL only, and iii) with losses both in the UL and the DL (UL/DL).

Table 6.4 shows the SCHC Packet sizes employed in the experiments, with the corresponding
number of SCHC Fragments, NWindows, and LH . These SCHC Packet sizes allow analyzing the
impact of the number of windows on the total SCHC Packet transfer time and on the number of
UL and DL messages.

The Retransmission Timer and the Inactivity Timer were set to 60 s and 200 s, respectively.
SCHC Packet transfer time results (see Section 6.5.4) were obtained from the average of 10 and
20 experiments for each combination of parameters (i.e., SCHC Packet size, FLR, and RC).

6.5.3 SCHC Packet transfer time: Analysis validation

To validate the theoretical SCHC Packet transfer time results presented in Section 6.4, we compare
such results with experimental results (Fig. 6.5). As it can be seen, experimental results of TSCHC

are very close to the theoretical ones, with gaps that do not exceed 3.38% in the worst case.
For small SCHC Packet sizes (i.e., with a small number of U-procedures), these gaps are due to
the variability of TRx in the experimental values of TB−total−DL, whereas the theoretical value
of TRx, obtained as an average value, is slightly smaller than the experimental ones. For large
SCHC Packet sizes (i.e, with a larger number of U-procedures), the SCHC Packet transfer time
gaps are mainly due to the fact that the measured and experimental values of TU−total are slightly
different. For a Regular SCHC Fragment that is not an All-0, TU−totaltheoretical

= 9.24 s, whereas
TU−totalexperimental

= 9.4 s. The greater value of the latter is due to the processing time overhead
of the Sigfox API of LoPy4 [113]. As NU−proc increases, the TU−total gap becomes more dominant
than the TB−total−DL gap, making the experimental SCHC Packet transfer time slightly greater
(up to 1.30% for a 2250-byte SCHC Packet) than the theoretical one.

6.5.4 SCHC Packet transfer time: Experimental results

In the following, we present the experimental SCHC Packet transfer time results, TSCHC , obtained
in RC1 (see Fig. 6.6) and RC4 (see Fig. 6.7), respectively. Note that RC1, RC3, RC5, and RC6
have the same UL BR, i.e., 100 bit/s, whereas both RC4 and RC2 also share the same 600 bit/s.
Therefore, TSCHC results for RC1 and RC4 can be mapped to all the other Sigfox RCs.

TSCHC increases with the UL FLR and NWindows, as a greater number of SCHC Fragment
transmissions and retransmissions are needed. SCHC Packet sizes with equal NWindows, e.g., 150-
byte and 512-byte, exhibit similar behavior with the FLR. The small TSCHC decrease as DL FLR
increases is due to fact that Regular SCHC Fragment losses will yield a smaller time. This happens
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Figure 6.5: Theoretical and experimental SCHC Packet transfer time with 1% duty-cycle. Sigfox
zone RC1.

because TB−total−DL is smaller when a SCHC ACK is received (see Section 6.4.3). TSCHC and
TSCHCDC

show similar behaviors with SCHC Packet size and FLR (see Fig. 6.6).

6.5.5 Average number of messages (UL and DL)

Fig. 6.8 shows the experimental results for NUL in RC1 and RC4, for the different cases analyzed.
Recall that NUL comprises NU−proc, NAll−0, and NAll−1. NU−proc increases with UL FLR due to
retransmissions. Moreover, NAll−1 increases with both UL and DL FLR. This happens because
Regular SCHC Fragment retransmission cycles trigger additional All-1 SCHC Fragments to request
SCHC ACKs and losses in the DL (i.e., in SCHC ACKs) trigger an UL message (i.e., All-1) that
requests again the lost SCHC ACK.

The NAll−0 increase with UL and DL FLR is small, since this SCHC Fragment will only
be requested again if lost. However, NAll−0 increases linearly with NWindows. SCHC Packet
sizes with the same number of windows, e.g., 150-byte and 512-byte, yield similar NAll−0 values,
independently of the SCHC Packet size.

Fig. 6.9 presents the experimental results for NDL in RC1 and RC4, for all studied cases. NDL

increases with the UL and DL FLR. As UL FLR increases, more retransmissions are needed to
successfully transmit all SCHC Fragments, increasing also the number of SCHC ACKs. Increasing
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Figure 6.6: Experimental SCHC Packet transfer time: results obtained in RC1 (1% duty-cycle).
The solid colored part of the bars represents TSCHC , and the dashed part illustrates the time off
(TOFF ) required to comply with duty-cycle regulations.
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Figure 6.7: Experimental SCHC Packet transfer time: results obtained in RC4.
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Figure 6.8: Number of UL messages: experimental results, Sigfox zones RC1 and RC4. The solid
colored part, the darker colored part, and the lighter colored part represent the Regular SCHC
Fragments, All-0 SCHC Fragments, and All-1 SCHC Fragments, respectively.

the DL FLR also increases the number of SCHC ACK retransmissions.
Another observation from Fig. 6.9 is that, in the presence of losses, NDL increases with

NWindows (which is also related to the SCHC Packet size). This is due to the high probabil-
ity that the transmission of a SCHC Packet causes the loss of Regular SCHC Fragments, leading
to a large number of SCHC ACKs.

We also noted that errors in the first windows (for SCHC Packet sizes greater than one window)
have a greater impact on performance than errors in the last window, which increases the SCHC
Packet transfer time and number of messages required. This is because the last window is uncon-
ditionally acknowledged, while fragment losses within intermediate windows generate additional
SCHC ACKs. Therefore, the location of the SCHC Fragment losses directly affects SCHC Packet
transfer performance.

One possible improvement to reduce NDL may be reporting losses from several intermediate
windows in a single extended ACK. In turn, NUL would also decrease, as less All-1 SCHC Fragments
would be required.

6.5.6 Results applicability and implementation considerations

The results provided in this section are useful for application design, since they allow to verify the
feasibility of running a given application using SCHC over Sigfox considering SCHC Packet size,
FLR, and the limitations in message rate and duty-cycle (see Section 2.2.1.2). For example, an
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Figure 6.9: Number of DL messages, experimental results: Sigfox zones RC1 and RC4.

application that requires sending a 77-byte SCHC Packet every 120 minutes may be feasible in
RC1, and with duty-cycle restrictions enforced, since TSCHCDC

would be 89 minutes (see Fig. 6.6),
for UL/DL FLR of up to 10%. As another example, sending a SCHC Packet of 231 bytes for a UL
FLR up to 20% requires slightly less than 4 DL messages (see Fig. 6.9). If only 4 DL messages per
day are allowed, sending such a SCHC Packet per day will be possible. However, an additional
non-zero DL FLR may lead NDL to exceed the limit of 4 DL messages.



CHAPTER 7

ENERGY CONSUMPTION MODEL OF SCHC PACKET
FRAGMENTATION

<<Light generates matter to become visible.>>

Most LPWAN devices are battery-powered, therefore it becomes fundamental to evaluate the
energy performance of SCHC fragmented transmission. In this chapter, we propose an energy con-
sumption model of SCHC Packet transfers over Sigfox, considering all states involved in preparing,
fragmenting, sending and receiving. We evaluate two strategies which comply with duty-cycle
restrictions, using deep and light sleep modes. Moreover, results for average current and energy
consumption are obtained for single and periodic SCHC packet transfers and, for the latter, we
derive the device lifetime depending on packet size and transfer period. The results from this
chapter have been published in a journal article [IV].

7.1 Introduction

The SCHC F/R process is performed at the expense of contributing header and message overhead
to packet transmission. Considering the energy constraints of IoT devices (many of which are
not mains-powered), it is fundamental to evaluate the energy performance of SCHC fragmented
packet transmission. However, to the best of our knowledge, there is no previous work in the
literature on this topic [16, 57, 59–61, 105, 114–116]. In this chapter, we model and evaluate the
energy performance of SCHC Packet fragmentation over Sigfox, a flagship LPWAN technology
that supports a severely constrained maximum payload size (i.e., 12 bytes) for IoT device packet
transmission. Among others, our results quantify how the lifetime of a battery-operated device
performing periodic packet transfers over Sigfox increases with the idle period between transfers
and decreases with packet size. For example, assuming a battery capacity of 2000 mAh, and a
period of 5 days, the device lifetime increases from 168 days (for a 2250-byte packet) to 1464
days (for a 77-byte packet). We also evaluate the impact on performance of different fragment
transmission strategies, as well as device hardware features.

The rest of the chapter is organized as follows: Section 7.2 presents related work. Section 7.3
provides our current consumption model of SCHC Packet fragmentation over Sigfox. In Section 7.4,
the model is used to evaluate the energy performance of SCHC Packet fragmentation over Sigfox.

7.2 Related work

This section reviews related work. First, we focus on literature regarding the energy performance
of Sigfox. Secondly, we evaluation studies related to SCHC F/R.

109
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7.2.1 Sigfox energy performance

The energy performance of the Sigfox technology has been a topic of interest for the research
community. Martinez et al. [117] provided a general energy consumption model for IoT devices,
including Sigfox devices, but did not provide information regarding the considered Sigfox module,
nor device lifetime. In [20], authors provided an analytical model that characterizes Sigfox in terms
of device current consumption, device lifetime, and energy cost of data delivery. Their results show
that, using a MKRFOX1200 development kit with an ATA8520 Sigfox module, with a battery of
2400 mAh, a theoretical device lifetime of 1.5 years is possible when sending one message every
10 min at 100 bit/s. In [118], authors evaluated theoretically the energy consumption of different
LPWANs for over-the-air updates. Results show that full firmware updates consume a significant
amount of energy, especially for low bit rate technologies such as Sigfox. The datasheet values of
an Onsemi AXSF Sigfox module were considered in their evaluation.

Hernandez et. al. [119] performed extensive energy consumption measurements; their results
show that IoT sensors using Sigfox technology can be autonomous during remarkably long periods
of time, with a lifetime of up to 4 years, when sending a message every 60 min at 100 bit/s and
operating on a 1000 mAh battery. The evaluation was based on a Telit LE51-868/DIP Sigfox
module. Morin et. al. [120] compared different wireless technologies, such as Sigfox, LoRaWAN,
and BLE in terms of device lifetime. It was found that a Sigfox device, running on two AAA
batteries (of 1250 mAh at 1.5 V each) can achieve a lifetime of 25 years when sending 10 bytes per
day at 100 bit/s. Ogawa et al. [121] estimated the energy cost of Sigfox transmissions using the
TD1207R/08R module.

An IoT solution for art conservation using Sigfox was presented in [122] and showed that if
a device with a 1700 mAh battery is sending one sample per hour, it is possible to achieve a
lifetime of 1.5 years, using the Telit LE51-868S Sigfox module. Moreover, the authors indicate
that aggregation strategies (i.e., sending more than one sample per transmission) can improve
energy consumption and extend the node lifetime to 5 years. Authors in [123] concluded that, in
cases where extremely long range is required, Sigfox has better device battery lifetime for small
daily throughputs than other LPWAN technologies. Their theoretical evaluation was based on the
AX-Sigfox module. Similar results are presented in [124]. In [125], Lykov et al. studied Sigfox
using the AX-SIP-SFEU radio module. The authors found that, for a battery capacity of 2000
mAh, a payload size increase will reduce the device lifetime by up to 18 days, and that a daily
message rate increase (up to 140 messages/day) can reduce the device lifetime down to 209 days.

Table 7.1 presents a summary of published work that evaluates Sigfox energy performance.
None of these studies considered the energy consumption of packet fragmentation over Sigfox.

7.2.2 SCHC F/R

Authors in [16] showed that SCHC Packet fragmentation can increase reliability, with a trade-off
in terms of energy consumption and goodput. The same authors analyzed in [61] the use of SCHC
Packet fragmentation to reduce network congestion and increase network capacity. An overview
and a simple evaluation showing the header and message overhead of SCHC F/R is presented in
[100]. Other performance metrics, such as total channel occupancy, goodput and total delay were
studied in [57] over an ideal channel. Optimal configuration values for SCHC F/R over LoRaWAN
and Sigfox were provided in [59]. SCHC RFTs and alternative RFTs were presented and evaluated
in [105] over LoRaWAN, as part of a reliable fragmentation method. Results show that alternative
RFTs may be optimal depending on the error rate and pattern, providing greater efficiency.

Since the publication of the base SCHC specification [6], the IETF LPWAN WG has been
developing SCHC Profiles, which provide configurations of SCHC F/R functionality tailored to
specific LPWAN technologies such as Sigfox [7], LoRaWAN [9], and NB-IoT [8]. Sanchez-Gomez
et al. [60] presented an evaluation of the LoRaWAN SCHC Profile in a real testbed. SCHC F/R
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Table 7.1: List of references that evaluate Sigfox energy performance.

Reference Sigfox Module
Battery Capacity

(mAh)
Sending Period

Lifetime
(Years)

Packet
Fragmentation

[117] Not specified Not specified Not specified Not specified No

[20] ATA8520 Sigfox 2400 2400 10 min
1.5 (at 600 bit/s)

2.5 (at 100 bit/s)
No

[118] Onsemi AXSF 2400 Not specified Not specified No

[119] Telit LE51-868/DIP 1000 60 min 4 (at 600 bit/s) No

[120] TD1202 1500 × 2 24 h 25 (at 100 bit/s) No

[121] TD1207R/08R Not specified Not specified Not specified No

[122] Telit LE51-868S 1700 60 min 1.5 (at 100 bit/s) No

[123] AX-Sigfox 1500 10 min 1 (at 100 bit/s) No

[124] Not specified Not specified Not specified Not specified No

[125] AX-SIP-SFEU 2000 10 min 0.57 (at 100 bit/s) No

provided benefits in terms packet delivery ratio, with a processing time overhead below 8 ms and
a memory usage of only 609 bytes. Santa et al. [114] used SCHC to support IPv6 over LoRaWAN
and NB-IoT for personal mobility vehicles. NB-IoT showed lower latency and low fragment error
rate; however, it consumed more power than LoRaWAN. In [115], SCHC fragmentation over Sigfox
was overviewed and evaluated theoretically and empirically by using a LoPy4 module, in terms of
transfer time and number of Sigfox uplink and downlink messages. Muñoz et al. [116] evaluated
SCHC over LoRaWAN and obtained a model to determine channel occupancy efficiency based on
LoRaWAN and SCHC configuration parameters.

Table 7.2 summarizes the work related to SCHC F/R performance evaluation, along with
the performance parameters and the methods used. Together, these studies provide important
insights into SCHC F/R. However, they neither provide a detailed model of, nor evaluate, the
current consumption or the energy performance of SCHC Packet transfer.

To the best of our knowledge, no previous work provides a current or energy consumption
model nor evaluates the energy performance of fragmented packet transfer with SCHC.

7.3 Modeling SCHC F/R over Sigfox current consumption

In this section, we present models of crucial energy performance parameters of SCHC F/R over
Sigfox, i.e., device current consumption, device lifetime, and energy cost. We assume a Sigfox
device that sends SCHC Packets to the Sigfox network. Such behavior may correspond to an IoT
device sending sensor readings.

We first introduce the experimental setup used to perform current consumption measurements
on a real device. Second, we identify the different states of a device that performs reliable SCHC
Packet transfer by using ACK-on-Error over Sigfox, to obtain their corresponding current and
energy consumption profiles. Finally, we model the current and energy consumption of fragmented
SCHC Packet transfers considering single and periodic transfers. For the latter, we also model the
lifetime of a battery-operated device.
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Table 7.2: List of references related to SCHC F/R performance evaluation.

Reference Performance Parameters Method
Energy

Performance
Evaluation

[16]
Overhead, throughput, goodput,

end to end delay
Simulation No

[61]
Goodput, application capacity,

efficiency, header overhead
Simulation No

[100]
Header compression, number of

fragments, number of ACKs
Theoretical No

[57]
Channel occupancy, goodput,

total delay
Simulation No

[59]
ACK message overhead, ACK bit overhead

with and without L2 headers
Theoretical No

[105] Error rates and patterns Simulation No

[60]
Packet delivery ratio,

goodput per ToA
Experimental No

[114]
Network delay, SNR,
power consumption

Experimental No

[115]
Transfer time, number of

uplink and downlink messages
Theoretical,

Experimental
No

[116] Channel occupancy efficiency
Theoretical,

Experimental
No

7.3.1 Experimental setup

Our models are derived from current consumption measurements on a real Sigfox device: a Pycom
LoPy4 development board [108]. Fig. 7.1 shows the experimental setup, which includes an Agilent
N6750A power analyzer and the Sigfox device. The experiments were carried out in an indoor
environment in the city of Castelldefels, in Spain. The Sigfox coverage in the scenario is near-
ideal, with negligible frame loss rate.

Figure 7.1: Experimental setup with the Sigfox device and the power analyzer used.
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The LoPy4 module is based on the Espresiff ESP32 MCU. The latter includes a Wi-Fi and
a Bluetooth interface, along with a Sigfox Semtech SX1276 radio module. Note that the LoPy4
module also has a built-in RGB LED. In our measurements, the LoPy4 board was programmed
to enable the Sigfox radio interface and shut down other radio modules and peripherals (including
the Wi-Fi and BLE interfaces and the RGB LED) on boot.

The LoPy4 has a voltage regulator, which supports input voltages between 3.5 V and 5.5 V.
The output voltage of the regulator is 3.3 V. In all measurements performed, the supplied voltage
is 3.5 V. The Sigfox radio of the LoPy4 board is configured for RC1. Accordingly, the UL data
rate is 100 bps, and the DL data rate is 600 bps. The transmit power is +14 dBm. The receiver
sensitivity is -126 dBm. The SCHC over Sigfox implementation used in our evaluation is based on
the one presented in [115], which is publicly available.

7.3.2 SCHC Packet transfer states

In order to comply with the duty-cycle constraints in RC1, SCHC Fragments may be sent by
using different approaches. In our model, we consider two possible options: (i) sending one SCHC
Fragment per cycle of 10 min (and sleeping otherwise), and (ii) sending up to 6 SCHC Fragments
back to back per cycle of 60 min (and sleeping otherwise).

Let NpC denote the number of SCHC Fragments that are sent back-to-back per cycle, where
1 ≤ NpC ≤ 6. Let NC denote the number of cycles required to complete a SCHC Packet transfer.

Each cycle comprises several states (see Fig. 7.2). Initially, the device is sleeping (Sleep state),
and then, the device wakes up (Wake-up state). If a new SCHC Packet needs to be sent, the
device enters the Fragmenter state, where SCHC Packet fragmentation is performed. In this
state, the device creates the SCHC Fragments from the SCHC Packet, which includes selecting
the appropriate RuleID (according to the SCHC Packet size) and the corresponding FCN and W
values for each SCHC Fragment.

Figure 7.2: Fragmented SCHC Packet transfer state diagram. Sleep and Wake-up states, SCHC
Fragmentation-related states, and Sigfox transmission states are depicted in blue, green, and pur-
ple, respectively. X and Y variables correspond to the number of cycles (NC) and to the number
of SCHC Fragments per cycle (NpC), respectively.

After the Fragmenter state or after the Wake-up state if the device continues sending an already
fragmented SCHC Packet, the device reaches the Frag Prep state, where it prepares the next SCHC
Fragment to be sent and selects the Sigfox transmission procedure to be used for this SCHC
Fragment. The prepared SCHC Fragment is then sent accordingly (the device is in the Sigfox
transmission state). When more than one SCHC Fragment is sent per cycle NpC ≥ 2), the device
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enters the Inter Frag state to prepare the next SCHC Fragment to be transmitted or to process a
SCHC ACK (when available).

Finally, after sending all the SCHC Fragments of a cycle, or after sending the last SCHC
Fragment of a SCHC Packet, the device reaches the Post Frag state. In this state, the device
processes a SCHC ACK (when available) and returns to the Sleep State. Sleep state time will
depend on NpC . Next, we characterize the device current consumption in the states involved in
each cycle.

7.3.3 Current consumption profile

In this section, we present the current consumption profile of all the states involved in a fragmented
SCHC Packet transfer, which have been introduced in Section 7.3.2. These current consumption
profiles are obtained by using the experimental setup shown in Section 7.3.1. All individual results
provided correspond to the average of 10 experiments. For a given scenario and set of configuration
parameters, we found negligible differences among the individual results.

7.3.3.1 Sleep and Wake-up states current consumption profile

Most Sigfox devices are battery-powered. Therefore, to improve battery lifetime, they must remain
in Sleep state most of the time, and only wake up for communication. The LoPy4 supports two sleep
modes: the light sleep mode and the deep sleep mode. In the light sleep mode, most peripherals
and CPU are clock-gated, and voltage consumption is reduced, which allows for a reduced wake-up
time. In the deep sleep mode, the CPU and all peripherals are stopped, which reduces the current
consumption to the minimum but increases wake-up time.

The Wake-up state current consumption and duration depends on the sleep mode used. Tables
1 and 2 present the Wake-up state duration and current consumption, and the Sleep state current
consumption, for the light sleep mode and the deep sleep mode, respectively.

As shown in Tables 7.3 and 7.4, there is a large difference between Wake-up state and Sleep state
time and current consumption for light and deep sleep modes. The light sleep mode has a shorter
Wake-up state time but a greater sleep current. The corresponding average energy consumption
is illustrated in Fig. 7.3. For short sleep periods, light sleep is more efficient energywise, as the
Wake-up state time is shorter. For long sleep intervals, deep sleep becomes more efficient, since
the longer Wake-up state duration is compensated by the ultralow deep sleep current consumption
in the Sleep state.

Table 7.3: Wake-up and Sleep states characterization for the light sleep mode.

States Duration Notation
Duration

(ms)

Average current
consumption

notation

Average Current
Consumption

(mA)

Average Energy
Consumption

(mJ)

Wake-up TWake−up 20 IWake−up 42 2.94
Sleep TSleep - ISleep 2.07 -

7.3.3.2 SCHC Fragmentation states current consumption profile

Table 7.5 presents the SCHC fragmentation states duration and their corresponding current con-
sumption.

In contrast with the durations of the Frag Prep, Inter Frag, and Post Frag states, which
are constant, the Fragmenter state duration is proportional to the SCHC Packet size. Fig. 7.4
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Table 7.4: Wake-up and Sleep states characterization for the deep sleep mode.

States Duration Notation
Duration

(ms)

Average current
consumption

notation

Average Current
Consumption

(mA)

Average Energy
Consumption

(mJ)

Wake-up TWake−up 2770 IWake−up 52.4 508.02
Sleep TSleep - ISleep 0.02 -
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Figure 7.3: Average energy consumption of Wake-up and Sleep states for different TSleep values,
and for light and deep sleep mode.

Table 7.5: SCHC Fragmentation states.

States Duration Notation
Duration

(ms)

Average current
consumption

notation

Average Current
Consumption

(mA)

Fragmenter TFrag see Fig. 7.4 IFrag 55.3
Frag Prep TPrep 23.26 IPrep 55.3
Inter Frag TInter 19.07 IInter 55.3
Post Frag TPost 28.74 IPost 55.3

illustrates the Fragmenter state duration, as a function of the SCHC Packet size, for SCHC Packet
sizes between 1 and 2250 bytes. For small SCHC Packet sizes, the impact of the fragmentation
process on time is negligible. However, as SCHC Packet size increases, the Fragmenter state
duration becomes more significant (up to 3.54 s for a SCHC Packet size of 2250 bytes). Note that
the Fragmenter state is only present once in each SCHC Packet transfer.

7.3.3.3 U-procedure current consumption profile

In the Frag Prep state or in the Inter Frag state, the following SCHC Fragment is prepared to
be transmitted by using one of the two Sigfox procedures (i.e., U-procedure or B-procedure),
depending on the SCHC Fragment type (i.e., Regular (not All-0), All-0 or All-1). If the SCHC
Fragment is a Regular (not All-0) SCHC Fragment, the U-procedure is selected. Fig. 7.5 shows
the U-procedure current consumption profile, as measured on the LoPy4.

The U-procedure comprises three substates: Transmission (Substate 1), Wait next transmission
(Substate 2), and Cooldown (Substate 3). Table 7.6 presents the duration and current consumption
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Figure 7.4: Fragmenter state time as a function of the SCHC Packet size.
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Figure 7.5: Current consumption profile of a LoPy4 device performing a U-procedure. In this
measurement, the Sigfox UL frame payload size is 12 bytes, equivalent to a Regular (not All-0)
SCHC Fragment carrying one tile.

of these substates along with their notations. Substate 1 is repeated three times, as the UL frame
is sent by using three different frequencies. Substate 2 is present twice, between two consecutive
transmissions. After sending the UL frame, the Sigfox radio module enters Substate 3 before
transiting to the Inter Frag or Post Frag states, or before handling other processes.

Table 7.6: U-procedure substates and their corresponding duration and current consumption val-
ues.

Substate Duration Notation
Duration

(ms)

Average current
consumption

notation

Average Current
Consumption

(mA)

1. Transmission TTx [1120,2080] ITx 112.9
2. Wait next transmission TWait Tx 1000 IWait Tx 34.02

3. Cooldown TCool 1000 ICool 33.98

The transmission current measured value, denoted ITx, is greater than the one presented in
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the LoPy4 datasheet [108], as it involves the MCU in addition to the Sigfox radio module, and the
input voltage is different (our experiments are performed using 3.5 V, whereas datasheet values
are provided for 5 V). Let IU−proc denote the average current consumption of a U-Proc. Using the
notation of Table 7.6, IU−proc can be calculated as follows:

IU−proc(mA) =
3 · ITx · TTx + 2 · IWait Tx · TWait Tx + ICool · TCool

TU−proc
, (7.1)

where TU−proc denotes the total U − procedure duration and can be calculated as follows:

TU−proc(s) = 3 · TTx + 2 · TWait Tx + TCool (7.2)

7.3.3.4 B-procedure current consumption profile

All-0 and All-1 SCHC Fragments need to open a DL reception window to offer the SCHC receiver
the opportunity to transmit a SCHC ACK. To this end, the transmission of such fragments is
performed by using a B-procedure. Fig. 7.6 shows the B-procedure current consumption profile, as
measured on the LoPy4 module. The B-procedure comprises six substates: Transmission (substate
1), Wait next transmission (substate 2), Wait for reception (substate 4), Reception (substate 5),
Confirmation (substate 6), and Cooldown (substate 3). Table 7.7 presents the measured duration
and current consumption for each substate of the B-procedure.

1 1 1

2 2
4 5

6

3

Figure 7.6: Current consumption profile of a LoPy4 in a B-procedure, with an UL frame payload
of 12 bytes, equivalent to an All-0 SCHC Fragment or an All-1 SCHC Fragment carrying one tile.
A DL frame is received by the device, which subsequently sends a confirmation control frame.

In a similar way to a U-procedure, the UL frame in a B-procedure is transmitted by using 3
different frequency channels; therefore, substate 1 is present three times, and the substate 2 is
present twice, between transmissions. After the third transmission for the UL frame, the Sigfox
module waits for a fixed duration time interval in substate 4 and opens the reception window in
substate 5. The duration of substate 5 depends on when the DL frame is received. After receiving
the DL frame, the confirmation control frame is sent in substate 6. In substate 3, the device radio
cools down before allowing the MCU to perform other operations. In case the Sigfox network
and/or application does not send any DL frame to the device, or the device does not receive it,
substate 6 is not present, and substate 5 duration is the maximum one (i.e., TRXMAX , which is
equal to 25 s in RC1).

The average current consumption of a B-procedure when a DL frame is received by the device,
denoted IB−proc−DL, can be obtained as follows:
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Table 7.7: B-procedure substates and their corresponding duration and current consumption val-
ues.

Substate Duration Notation
Duration

(ms)

Average current
consumption

notation

Average Current
Consumption

(mA)

1. Transmission TTx [1120,2080] ITx 112.9
2. Wait next transmission TWait Tx 1000 IWait Tx 34.02

4. Wait for reception TWaitRx 15556 IWaitRx 34.14
5. Reception TRx [387,25000] * IRx 45.94

6. Confirmation TConf 1799 IConf 114.95
3. Cooldown TCool 1000 ICool 33.98

* The value obtained in measurements and used in the evaluation is 15550 ms.

IB−proc−DL(mA) =

ITx · TTx + 2 · IWait Tx · TWait Tx + IWait Rx · TWait Rx + IConf · TConf + ICool · TCool

TB−proc−DL

(7.3)

where TB−proc−DL can be calculated as follows:

TB−proc−DL(s) = 3 · TTx + 2 · TWait Tx + TWait Rx + TConf + TCool. (7.4)

The average current consumption of a B-procedure when a DL frame is not received by the
device, denoted IB−proc−NO−DL, can be obtained as follows:

IB−proc−NO−DL(mA) =
3 · ITx · TTx + 2 · IWait Tx · TWait Tx + IWait Rx · TWait Rx + ICool · TCool

TB−proc−NO−DL
, (7.5)

where TB−proc−NO−DL can be obtained as follows:

TB−proc−NO−DL(s) = 3 · TTx + 2 · TWaitT x + TWaitRx + TCool. (7.6)

7.3.4 SCHC Packet transfer current and energy consumption model

In this subsection, we model the SCHC Packet transfer current and energy consumption over
Sigfox. To this end, we first calculate the number of U-procedure and B-procedure required to
transfer a SCHC Packet. Then, we derive a current and energy consumption model of SCHC
Packet transfer in two cases: (i) single and (ii) periodic SCHC Packet transfers.

7.3.4.1 Number of U-procedure and B-procedure

The number of U-procedure (NU−proc) required to transfer a SCHC Packet of size LSCHC can be
obtained as:

NU−proc =

°
LSCHC

LUL−LHeader
− LSCHC

(WINDOW SIZE ∗ t)

§
, (7.7)

where LUL is the maximum Sigfox UL frame payload size of 12 bytes, and LHeader is the size of
the SCHC Fragment header.

The number of B-procedure with a DL frame (NB−proc−DL) required to transfer a SCHC Packet
without fragment losses is equal to 1. Under such conditions, the number of B-procedure with no
DL (NB−proc−NO−DL) can be obtained as follows:

NB−proc−NO−DL =

°
LSCHC

WINDOWSIZE · t
− 1

§
. (7.8)
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7.3.4.2 Single SCHC Packet transfer model

The number of cycles required to transfer a single SCHC Packet (NC) depends on the fragment
sending strategy, i.e., on the NpC value. Fig. 7.7 illustrates the current consumption of (a) a
22-byte SCHC Packet transfer for NC = 1 and NpC = 2 and (b) the first transfer cycle of a 77-byte
SCHC Packet for NC = 2 and NpC = 6. The figure shows that the number of Inter Frag states
increases with NpC .

Post Frag
Inter Frag

B-ProcU-Proc

Frag Prep

Wake-up
Fragmenter

(a)

Post Frag

U-Proc

Frag Prep

Wake-up

U-Proc U-Proc U-Proc U-Proc U-Proc

Inter Frag Inter FragFragmenter

(b)

Figure 7.7: Current consumption of two SCHC Packet transfer examples: (a) a 22-byte SCHC
Packet is sent completely and a SCHC ACK is received; (b) six SCHC Fragments are sent back-
to-back before the device returns to the Sleep state in the first transfer cycle of a 77-byte SCHC
Packet.

Note that NC is related to the number of Wake-up and Frag Prep and Post Frag states required
to complete the SCHC Packet transfer. By sending up to 6 SCHC Fragments back-to-back (i.e.,
NpC ≤ 6), the number of Wake-up, Frag Prep, and Post Frag states is minimized, when compared
to NpC = 1.

Once the sending strategy is selected, i.e., the NpC value is chosen, NC can be calculated as
follows:

NC =

°
NU−proc +NB−proc−NO−DL +NB−proc−DL

NpC

§
. (7.9)

The number of Wake-up, Frag Prep, and Post Frag states (denoted NWake−up, NPrep, and
NPost) is equal to NC , as each time the device transmits one or several back-to-back SCHC
Fragments, it must wake up, prepare the next SCHC Fragment, and then do the SCHC Fragment
post processing in the Post Frag state before returning to the Sleep state. We define the SCHC
Packet active time (Tact) as the time the device is not in the Sleep state. Tact can be obtained as
follows:

Tact(s) =TFrag +NC · (Twake−up + TPrep + TPost + TInter · (NpC − 1))+

NU−proc · TU−proc +NB−proc−NO−DL · TB−proc−NO−DL + TB−proc−DL

(7.10)

The SCHC Packet active time current consumption (Iact) can be calculated as follows:

Iact(mA) =
1

Tact
(IFrag · TFrag +NC · (Iwake−up · Twake−up + IPrep · TPrep+

IPost · TPost + IInter · TInter · (NpC − 1)) +NU−proc · IU−proc · TU−proc+

NB−proc−NO−DL · IB−proc−NO−DL · TB−proc−NO−DL+

IB−proc−DL · TB−proc−DL).

(7.11)
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As explained in Section 2.2.1.2, in RC1, a transmission procedure can only be started, at least,
every 600 s, denoted TperProc. Therefore, Tact is only a small fraction of the total SCHC Packet
transfer time (TSCHC). This latter can be obtained as follows:

TSCHC = (NU−proc +NB−proc−DL +NB−proc−NO−DL) · TperProc. (7.12)

Note that TSCHC is independent of NC , since the same total wait time has to be enforced,
regardless of whether up to 6 messages are sent back-to-back per cycle (NpC ≤ 6) or one message
is sent per cycle (NpC = 1). The effect of NC are reflected in Tact. Therefore, the amount of time
that the device is required to be in the Sleep state to comply with duty-cycle restrictions for the
transfer of a SCHC Packet, denoted TSleep, can be calculated as follows:

TSleep = TSCHC − Tact. (7.13)

Finally, the average current consumption of a SCHC Packet transfer over Sigfox (ISCHC) can
be calculated as follows:

ISCHC =
Iact · Tact + TSleep · ISleep

TSCHC
. (7.14)

In addition, the average energy consumed in a SCHC Packet transfer can be determined as:

ESCHC = ISCHC · V · TSCHC , (7.15)

where V denotes the voltage supplied to the Sigfox device.

7.3.5 Periodic SCHC Packet transfer energy performance metrics

This subsection presents the metrics used to evaluate the energy performance of SCHC over Sigfox,
for a device that transfers a SCHC Packet periodically. These metrics are (i) the average current
consumption, (ii) the SCHC Packet transfer energy cost, and (iii) the device lifetime. We assume
that the device starts a SCHC Packet transfer (by sending the first fragment) every time period
Tp. Note that the minimum possible Tp value, denoted Tpmin, should be equal to TSCHC . After
a SCHC Packet transfer, the device will wait in the Sleep state for TWait until Tp time has elapse
since the start of the previous SCHC Packet transfer. Tp can be calculated as follows:

Tp = TSCHC + TWait. (7.16)

During the wait period between SCHC Packet transfers, the device is in the Sleep state, con-
suming a current of ISleep. Otherwise, the device transfers a SCHC Packet, with an average current
consumption of ISCHC . In consequence, the average current consumption of periodic SCHC Packet
transfers (Ip) can be obtained as follows:

Ip =
ISCHC · TSCHC + ISleep · TWait

Tp
. (7.17)

The energy consumed by a device performing periodic SCHC Packet transfers over an interval
of duration Tp can be obtained as follows:

Ep = Ip · Tp · V. (7.18)

Sigfox devices are commonly battery-operated, and therefore, device lifetime calculation is
crucial to the performance of SCHC Packet transfer over Sigfox. In order to calculate the device
lifetime, the battery capacity must also be taken into consideration. Let Cp denote the battery
capacity (typically expressed in mAh). The device lifetime, LT , can be calculated as follows:

LT =
Cp

Ip
. (7.19)
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Figure 7.8: Average current consumption of a SCHC Packet transfer over Sigfox.

7.4 Evaluation

In this section, we evaluate energy-related performance parameters for single and periodic SCHC
Packet transfers over Sigfox. First, we present the SCHC Packet current consumption and energy
cost, for light and deep sleep modes, for different sending strategies. Then, we evaluate periodic
SCHC Packet transfers in terms of current consumption, energy cost and device lifetime.

7.4.1 SCHC Packet current and energy consumption

Fig. 7.8 depicts ISCHC for SCHC Packet sizes between 11 and 2250 bytes, for deep sleep and light
sleep, and for NpC values equal to 1 and 6. ISCHC values are obtained by using (7.14). As SCHC
Packet size increases, TSleep increases as well due to duty-cycle restrictions. In consequence, ISCHC

decreases since the device remains in sleep mode for a greater percentage of time (with a sleep
current of 40 µA for deep sleep and 42 mA for light sleep).

Note that for small SCHC Packet sizes, the sleep time versus active time ratio increases rapidly
with SCHC Packet size. Such ratio is only 14 for an 11-byte SCHC Packet, while it increases to 52
for a 350-byte SCHC Packet. As the SCHC Packet size increases beyond 350 bytes, the same ratio
tends asymptotically to a value of 54. Therefore, ISCHC becomes stable between 1.36 mA and 1.32
mA, for the deep sleep mode, and equal to 3.44 mA for the light sleep mode. The ISCHC stepwise
behavior for small SCHC Packet sizes is due to the additional windows needed to perform the
SCHC Packet transfer (which increases current consumption due to the corresponding additional
B-procedure). The larger step with a SCHC Packet size of 300 bytes is due to the change from a
1-byte to a 2-byte SCHC header at that value.

Fig. 7.9 illustrates the energy consumed by a device to perform a SCHC Packet transfer, for
SCHC Packet sizes between 11 and 2250 bytes. The depicted values are obtained by using (7.15).
The energy consumption increases linearly with SCHC Packet size. Despite the fact that the
average current consumption of a SCHC Packet transfer is relatively constant for SCHC Packet
sizes beyond 350 bytes, the increase of SCHC Packet transfer duration with SCHC Packet size is
reflected as a SCHC Packet transfer energy consumption increase.
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Figure 7.9: Energy consumed by a device to perform a SCHC Packet transfer over Sigfox.

7.4.2 Periodic SCHC Packet transfer energy performance

Table 7.8 presents the SCHC Packet sizes used for the periodic SCHC Packet transfer energy
performance evaluation, along with the corresponding values of NU−proc, NB−proc−NO−DL, and
the number of windows required for a single SCHC Packet transfer. The considered SCHC Packet
sizes allow to test different values for NU−proc, NB−proc−NO−DL, as well as number of windows,
for single-byte and two-byte SCHC header sizes. Table 7.8 also provides the Tp min value for each
SCHC Packet size, and the number of SCHC Packets per day that can be transferred with a SCHC
Packet sending period equal to Tp min.

Table 7.8: SCHC Packet sizes used in the energy performance evaluation.

SCHC Packet
Size

(Bytes)
NU−proc NB−proc−NO−DL NB−proc−DL

Number
of

Windows

Tp min

(Minutes)

SCHC Packets
per Day with

Tp min

77 6 0 1 1 70 20
154 12 1 1 2 140 10
275 21 3 1 4 250 5
510 49 1 1 2 510 2
2250 217 7 1 8 2250 0.64 *

* Requires more than one day for a packet transfer.

Fig. 7.10 illustrates the average current consumption of a device that performs periodic SCHC
Packet transfers, Ip, for different SCHC Packet sizes and NpC values of 1 and 6. We only consider
the deep sleep mode since it is more energy-efficient than the light sleep mode. The depicted
values are obtained by using (7.17). Note that all curves do not start at the same Tp value
since the minimum Tp (Tp min) value is equal to TSCHC and depends on the SCHC Packet size
(see Table 7.8 ). As Tp increases, Ip decreases for all SCHC Packet sizes, since TSleep increases,
reducing the average current consumption. As shown in Fig. 7.10, for a given SCHC Packet size,
NpC = 1 consumes a higher of current than NpC = 6 since with the latter, the number of Wake-up,
Frag Prep, and Post Frag states (and thus, their contribution to current consumption) is reduced.
As the SCHC Packet size increases, the average current consumption gap between the considered
NpC values increase.

Fig. 7.11 illustrates the energy consumption of a SCHC Packet transfer over a period Tp for
different SCHC Packet sizes, NpC values of 1 and 6, and with the deep sleep mode. The depicted
values are obtained by using (7.18). This performance parameter increases linearly with Tp. This
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Figure 7.10: Average current consumption of a device performing periodic SCHC Packet transfers
over Sigfox, for different Tp, NpC , and SCHC Packet size values.

increase is small, since as Tp increases, the device remains in sleep mode for a greater amount of
time, which increases energy consumption, albeit to a small extent.
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Figure 7.11: Energy consumption of a SCHC Packet transfer over a period Tp, for different Tp,
NpC , and SCHC Packet size values.

Finally, Fig. 7.12 shows the results obtained by using (7.19) regarding the lifetime of a device
that performs periodic SCHC Packet transfers for different SCHC Packet sizes, for NpC values of
1 and 6, and for the deep sleep mode. The battery capacity is 2000 mAh. Recall that Tp min =
TSCHC . Tp min ranges from 70 min for a 77-byte SCHC Packet to 2250 min for a 2250-byte SCHC
Packet (see Table 7.8).

For the corresponding Tp min and NpC = 1, the device lifetime yields the smallest values, i.e.,
42 days for a 77-byte SCHC Packet size, and 49 days for a 2250-byte SCHC Packet size. Note that
there are large differences between the Tp min value for specific SCHC Packet sizes, which in turn
increase device lifetime, as the device spends more time in Sleep mode and is involved in a lower
number of Fragmenter states. Indeed, for a fixed Tp value, as SCHC Packet size increases, more
U-procedures and B-procedures are required, with the corresponding energy consumption increase
and device lifetime decrease.

On the other hand, device lifetime increases asymptotically with Tp. For a Tp value of 5 days
and for NpC = 6, and for a 77-byte SCHC Packet size, the device lifetime is 1464 days (i.e., more
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Figure 7.12: Lifetime of a battery-operated device performing periodic SCHC Packet transfers over
Sigfox, for different Tp, NpC , and SCHC Packet size values.

than 4 years). For the same Tp and NpC values, and for a 2250-byte SCHC Packet size, the device
lifetime is 168 days. The device lifetime gaps for NpC = 1 and NpC = 6 decrease with SCHC Packet
size, due to the consequent increase of sleep time during the SCHC Packet transfer, reducing the
impact of the time spent in the Wake-up, Frag Prep, and Post Frag states. For the 77-byte SCHC
Packet size, such difference ranges from 4 days (Tp min = 70 min) to 42 days (Tp = 5 days), whereas
for the 2250-byte SCHC Packet size, the differences range from 6 days (Tp min = 2250 min) to 19
days (Tp = 5 days).



CHAPTER 8

IPV6 OVER CROSS-TECHNOLOGY COMMUNICATIONS
WITH WAKE-UP RADIO USING SCHC

<<Light responds.>>

In this chapter, we present the design, implementation, and evaluation of an adaptation layer
to provide IPv6 support on low rate channels over WuR Systems, by using Cross-Technology
Communications with Wake-up Radio (WuR-CTC) and by leveraging the IETF SCHC framework.
SCHC was built for LPWAN technologies, however, its unique features like its optimized header
compression and its low overhead reliable F/R modes are applicable beyond the LPWAN landscape.
WuR-CTC provides direct data exchange for devices with incompatible network technologies, such
as IEEE 802.15.4 and IEEE 802.11 devices. By designing, implementing, and evaluating the
SCHC over WuR-CTC Profile, we contribute to the IPv6 support over LRLPWN, providing a
SCHC Profile definition for devices that support WuR-CTC. Our solution enables full Internet
protocol stack interoperability between devices of different communication technologies, without
the need for a gateway, contributing to the advancement of wireless convergence.

8.1 Introduction

The IoT is built with the idea that all devices and applications communicate with one another
and with the Internet. According to published studies, the number of connected IoT devices as of
2022 is 14.4 billion [126]. Several wireless (and wired) technologies are playing a key role as IoT
communication enablers. More specifically, two flagship wireless communication technologies, i.e.,
IEEE 802.11 and IEEE 802.15.4, are outspread in the IoT ecosystem. On the one hand, IEEE
802.11 is being crucial to provide Internet connectivity to IoT devices1, with an already deployed
infrastructure of 628 million public APs [36]. On the other hand, IEEE 802.15.4 is widely used in
smart infrastructures, such as smart homes, buildings, and factories. As a result, many scenarios
comprise both IEEE 802.11 and IEEE 802.15.4 devices. For example, in smart home and industry
deployments, coexisting IEEE 802.11 and IEEE 802.15.4 networks are common [127].

Despite the fact that IEEE 802.11 and IEEE 802.15.4 can share the same frequency band, they
are not interoperable out-of-the-box, and a gateway is needed to interconnect them (see Fig. 8.1).
This approach presents a number of drawbacks: i) the gateway may be a single point of failure, ii)
signals are retransmitted by the gateway, thus reducing spectral efficiency and increasing energy
consumption, and iii) the additional cost of the gateway device itself [128,129].

To provide direct communication (i.e., without a gateway) between IEEE 802.11 and 802.15.4
devices, research has focused on CTC. One approach, based on signal emulation, has offered better

1https://www.wi-fi.org/discover-wi-fi/internet-of-things, (accessed on 07/12/2022).
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Figure 8.1: Gateway-based communication between Device A (IEEE 802.15.4 radio interface) and
Device B (IEEE 802.11 radio interface).

results in terms of throughput and channel efficiency compared to other CTC methods [129], while
providing bidirectional communication. Signal emulation CTC is based on reproducing the signals
of one wireless technology with the transmitter of another wireless technology. Authors in [5,129]
proposed a signal emulation CTC method for direct communication between IEEE 802.11 and
IEEE 802.15.4 devices called WuR-CTC. This method exploits a WuR channel. In [5], the WuR
channel was originally designed to wake up devices being in sleep mode by using an external
secondary low-power radio. In WuR-CTC [129], data transfer is performed via the WuR channel
itself. To accomplish this, the sender device main radio encodes data using OOK. The secondary
radio performs decoding at the receiver device.

WuR-CTC provides Physical Layer and Link Layer functionality with a maximum frame pay-
load size, also known as MTU, of 89 bytes. In order to provide full protocol stack interoperability
for WuR-CTC devices, it is necessary to support IPv6 over WuR-CTC. IPv6 provides natural
Internet connectivity, a vast address space, and it allows to leverage IP-based protocols, security,
and tools (see Fig. 8.2). However, the WuR-CTC MTU is smaller than the MTU required by IPv6
for its underlying layer, i.e., 1280 bytes [2]. Therefore, IPv6 cannot run as is atop WuR-CTC.

In this chapter, and for the first time to our best knowledge, we present the design, imple-
mentation, and evaluation of an adaptation layer that enables IPv6 over WuR-CTC. Our solution
leverages the header compression and fragmentation framework, called SCHC, which has been
recently standardized by the IETF [6]. The header compression reduces communication overhead
(decreasing both latency and energy consumption), whereas the fragmentation allows to transfer
IPv6 packets larger than the WuR-CTC MTU. SCHC has been designed with a primary focus on
LPWAN scenarios. However, in this chapter, we adapt SCHC to the WuR-CTC environment to
allow IPv6 support, enabling full protocol stack interoperability between an IEEE 802.15.4 device
and an IEEE 802.11 device, without a gateway [129].

We have implemented and evaluated our IPv6 over WuR-CTC solution in terms of IPv6 packet
compression ratio, error rate, total number of frames and overhead required, transfer time, and
throughput. Our results show that, by using SCHC, a 1280-byte IPv6 packet is transferred over
WuR-CTC in an average of 444 ms (with average throughput and overhead of 23.4 kbps, and
204.9 bytes, respectively), whereas a 127-byte IPv6 packet is transferred, on average of only 69 ms

Figure 8.2: WuR-CTC-based communication between Device A (an IEEE 802.15.4 device) and
Device B (an IEEE 802.11 device).
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(with a throughput of 15.96 kbps, and 26.1 bytes of overhead). Accordingly, the designed solution
even supports real-time interactions between IEEE 802.15.4 and IEEE 802.11 devices, without a
gateway, in smart environments where there is a human in the loop (e.g., the user presses a light
control button and the reaction is visible on a lightbulb fastly for human standards).

The rest of the chapter is organized as follows. Section 8.2 presents related work. Section 8.3
overviews the main features of WuR-CTC. Sections 8.4 and 8.5 present our design and evaluation,
respectively, of a SCHC-based adaptation layer to enable IPv6 over WuR-CTC.

8.2 Related work

This section is divided in two parts. The first one focuses on related work in the area of CTC. The
second one overviews the literature in the field of SCHC.

8.2.1 Cross-Technology Communication (CTC)

CTC has gained the attention of academia, industry, and standards development organizations, as
it enables communication between non-interoperable devices or networks without the need to use
a gateway [5, 129–139]. In this subsection, we review literature that focuses specifically on CTC
between IEEE 802.11 and IEEE 802.15.4 devices.

In [130], authors used energy patterns in the air to provide CTC. Additional hardware is
required to perform energy sensing from other nodes and to wake up the receiver device when
needed. This solution does not support bidirectional communication.

In [131], the authors presented FreeBee, a CTC system that allows communication by em-
bedding symbols into the timing of beacon frames. FreeBee requires no hardware modifications
to the communicating devices. However, the authors propose the use of WuR receivers to detect
specific Wi-Fi APs to significantly reduce standby energy consumption. Li et al. implement a bidi-
rectional, high-throughput CTC solution via physical layer emulation, called WEBee [132]. This
method allows to manipulate an IEEE 802.11 packet payload, requiring no additional hardware.
The same authors presented also a long range CTC solution called LongBee [133]. Their results
show that LongBee allows to double the range of other CTC solutions.

In [134], the authors enabled concurrent communication with a solution called B2W2, obtaining
a throughput greater than the one achieved with FreeBee [131]. Channel state information is used
to allow communication in [135]. StripComm [136] uses an interference-resisting encoding, which is
specially designed for coexistence environments. C-Morse uses packet and beacon timing to create
patterns that are captured by sensing the RSSI [137]. In [138], the authors proposed the use of
energy patterns with the existing data packets, a technique called CTC via data packets (DCTC).
DCTC enhances throughput compared to other CTC techniques.

In [139], the authors presented NetCTC. This solution uses ACKs to provide feedback and
reliability. This is accomplished by an emulation-based CTC using WEBee [132], with confirmation
messages sent only by IEEE 802.15.4 devices. NetCTC requires access to raw signal samples, which
is not available in most IEEE 802.15.4 devices.

In [5], authors proposed a new WuR system, where legacy Orthogonal Frequency Division
Modulation (OFDM)-based IEEE 802.11 devices can send wake-up signals. The same authors
proposed a CTC system which leveraged a WuR channel to transfer data between devices, creating
a Link Layer that contains a Medium Access Control (MAC) sublayer and a Logical Link Control
(LLC) sublayer [129]. Additional low-power hardware is required to detect WuR signals and enable
bidirectional communication between IEEE 802.11 and IEEE 802.15.4 devices.

All the solutions described above provide valuable developments in the field of CTC for IoT.
However, to the best of our knowledge, none of them provide IPv6 support over CTC.
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8.2.2 SCHC

SCHC was specially developed for LPWAN technologies, therefore, most of its literature is related
with LoRaWAN, Sigfox, or NB-IoT technologies. However, SCHC functionality is increasingly
used in other scenarios [39,40], including the ones where WuR-CTC is used.

A tutorial-style overview of SCHC is presented in [100]. The performance of SCHC C/D func-
tionality has been compared to other IETF standards in [47], finding that SCHC offers performance
advantages. Moons et al. [46] also compared SCHC C/D with other IETF standards showing that
SCHC has lower overhead (20 times smaller when compared with 6LoWPAN), as well as smaller
footprint and memory. Authors in [56] presented an improvement for SCHC C/D based on dy-
namic context. Ayoub et al. [140] used SCHC C/D to improve the mobility of devices for roaming
in LoRaWAN. Multimodal communication using SCHC C/D was tested in [141], where energy
performance was evaluated for LoRaWAN devices. The authors indicate that higher header com-
pression rates may be achieved depending on how homogeneous the traffic is. In [142], another
multimodal deployment was tested using SCHC C/D. Internet access was provided to LoRaWAN
devices using SCHC in [143], where the authors also evaluated end-to-end security. In [144], au-
thors presented a device discovery and context registration for SCHC and showed that SCHC can
aignificantly reduce energy consumption.

The performance of SCHC F/R functionality was studied in [16], showing that it increases
reliability, with a direct impact on goodput and energy consumption. In [61], the authors proposed
the use of SCHC F/R to increase network capacity and reduce congestion. A mathematical model
of the SCHC ACK volume and optimal configuration values when using SCHC over LoRaWAN
and Sigfox is presented in [59]. Authors in [57] provided an evaluation of all F/R modes over an
ideal channel, in terms of goodput, channel occupancy, and total delay. Uplink transmission using
SCHC over LoRaWAN is evaluated in [116]. Also using SCHC over LoRaWAN, authors in [60]
showed the benefits of SCHC for IPv6 and CoAP traffic in terms of delay and packet delivery
ratio. In [114], Santa et al. provided personal mobility vehicles with IPv6 support using SCHC
over LoRaWAN and NB-IoT. SCHC over Sigfox was implemented and evaluated in terms of packet
transfer time and number of exchanged messages [115]. Also using SCHC over Sigfox in [145], the
energy performance of SCHC F/R functionality was modeled and evaluated in terms of device
lifetime.

While the reviewed work provides significant insights into the use of SCHC over LPWAN (or
other) technologies, none of them focuses on using SCHC to support IPv6 over CTC technologies.

8.3 Cross Technology Communication with WuR

As mentioned in previous sections, one type of CTC that stands out, due to its unique character-
istics, is WuR-CTC [129]. As shown in Fig. 8.3, WuR-CTC enables communication between an
IEEE 802.15.4 device (Device A) and an IEEE 802.11 device (Device B) by using an additional
element called the WuRx. The WuRx waits for an incoming WuS. The WuS is sent by the main
radio of the other device, acting as WuTx. Once the WuS is detected by the WuRx, the latter sends
data to the WuR-CTC Controller, which may reply by using the main device radio, the WuTx,
enabling bidirectional communication. WuR-CTC comprises a Physical Layer (see Section 8.3.1)
and a Link Layer (see Section 8.3.2).

8.3.1 WuR-CTC Physical Layer overview

The Physical Layer of WuR-CTC uses a single transmission rate of 250 kbps with OOK symbols.
This rate and encoding are supported by the WuTx of both IEEE 802.15.4 and IEEE 802.11 main
radios.
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Figure 8.3: WuR-CTC communication between Device A (with an IEEE 802.15.4 main radio) and
Device B (with an IEEE 802.11 main radio). The main radio of a device works as the WuTx.

Figure 8.4: WuR-CTC PPDU frame format.

At this layer, a data unit called Physical Protocol Data Unit (PPDU) is defined by WuR-
CTC. Fig. 8.4 shows the PPDU frame format. The PPDU includes a preamble sequence, a frame
delimiter, and the Physical Service Data Unit (PSDU). The preamble sequence and the frame
delimiter are headers intended for the synchronization process, which allows the WuRx to correctly
receive the PSDU. Two encapsulation formats are required to allow a WuRx to decode the PPDU
regardless of the WuTx technology.

For the IEEE 802.11 WuTx, the WuR-CTC PPDU is encapsulated in the IEEE 802.11g frame
MAC Service Data Unit (MSDU) [129]. The bandwidth used by the IEEE 802.11g WuR-CTC
PPDU is 20 MHz, with the PPDU encoded with OOK symbols at one bit per symbol, yielding
a data rate of 250 kbps. The result is a standard-compliant IEEE 802.11g OFDM symbol. The
IEEE 802.15.4 WuTx is configured to generate an ideal square OOK symbol at 250 kbps [129],
with a bandwidth of 1 MHz. The WuR-CTC PSDU size of 94 bytes is given by the number of bits
per OFDM symbol and the IEEE 802.11g encapsulation format, which provides the most limiting
scenario of both IEEE 802.11g and IEEE 802.15.4 technologies [129].

8.3.2 WuR-CTC Link Layer overview

The WuR-CTC Link Layer comprises a MAC sublayer, and an LLC sublayer. The MAC sublayer
provides medium access sharing and addressing. At the MAC sublayer, 10-bit unicast addresses are
used. Each main radio technology, i.e., IEEE 802.11 or IEEE 802.15.4, defines a specific medium
access sharing mechanism. The IEEE 802.11 WuTx uses a standards-compliant transmitter, there-
fore CSMA/CA is used as defined by IEEE 802.11. The IEEE 802.15.4 WuTx CSMA/CA is tuned
to be as close as possible to the one in IEEE 802.11 for mixed b/g networks, to reduce inter-network
interference.

The LLC sublayer allows a sender to know whether the last frame sent was received or not,
by using ACK frames, along with a sender transmission timer. ACK frames may carry data as
payload. The LLC also provides a receiver transmission timer that allows the receiver device to
enter into sleep mode upon timer expiration, when no more frames are received. The LLC protocol
in WuR-CTC defines the control frames to wake up devices or to enable sleep mode.

Fig. 8.5 shows the WuR-CTC MAC Protocol Data Unit (MPDU), which is composed of the
following fields: a 10-bit receiver address to identify the destination WuR-CTC node, a 10-bit
sender address to identify the source WuR-CTC node, a 3-bit type field which indicates the frame
type, a 1-bit Sequence Number (SN) that is used to match the corresponding ACK, an 8-bit length
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field that contains the length of the MAC Protocol Service Unit (MPSU), the MPSU (which ranges
from 0 to 89 bytes), and an 8-bit CRC. Note that the MTU of WuR-CTC is only 89 bytes, which
is smaller than the MTU required for IPv6 (i.e., 1280 bytes).

Figure 8.5: WuR-CTC MPDU frame format.

8.3.2.1 WuR-CTC frame types

The frame type field contains three flags. Ordered from the most significant bit to the least
significant bit, these flags are the Data Flag, the ACK Flag, and the WuS Flag. By combining the
flags, WuR-CTC defines 5 frame types as shown in Table 8.1, where two frame types are reserved
for future use.

Table 8.1: WUR-CTC frame types

Frame Type
Active Flags

(Data, ACK, WuS)
Description

DATA 100
This frame type must carry a payload with a

non-null length. Used to transmit arbitrary data.

ACK 010
Acknowledge previous frame. SN must be

the same as the one in the acknowledged frame.

WAKE 001

Wake up or sleep other stations. Payload data length must be 1 byte.
Payload of 0xFF indicates the device should be woken up.
Payload of 0x00 indicates the device must return to sleep.

DATA + ACK 110
Includes data and acknowledges

the previous frame

WAKE + DATA 101
Includes data for a station in sleep mode, which returns

to sleep mode after reception

The two remaining frame types are reserved for future use.

All frame types, except the ACK frame, are replied to with an ACK. Only one frame can be
sent at a time, as no other frame transmission is allowed until the corresponding ACK is received
or until the expiration of the sender transmission timer.

8.3.3 WuR-CTC Message Exchange Overview

In WuR-CTC, a series of frame exchanges between the sender and the receiver is required to begin
and end communication. This process is described next, and is illustrated in Fig. 8.6, based on
two nodes with addresses 0x001 and 0x002.

The sender starts the WuR-CTC communication by sending a WAKE frame with the aim to
wake up the receiver device. Once the receiver is awake, it confirms its current state to the sender
by transmitting an ACK frame. Once the ACK frame is received by the sender, it is responded
to by an ACK frame to complete a 3-way handshake. Then, one or more DATA frames can be
transferred following a stop-and-wait pattern. Each ACK frame may piggyback data from the
receiver as well. Finally, once the last DATA frame is acknowledged, a SLEEP frame is sent, after
which both nodes respond with an ACK frame and can return to sleep. Sending the SLEEP frame
is not mandatory since the receiver will return to sleep automatically after a timeout; however,
this is recommended in order to reduce the energy consumption of the receiver.
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Figure 8.6: Communication between two nodes using WuR-CTC.

8.4 SCHC over WuR-CTC Profile design

In this section, we present our design of a SCHC over WuR-CTC Profile, with the aim to opti-
mally enable IPv6 over WuR-CTC. This section comprises: i) the SCHC over WuR-CTC header
compression, ii) how SCHC F/R is adapted over WuR-CTC by reusing the WuR-CTC Link Layer,
iii) SCHC over WuR-CTC message adaptation, and iv) SCHC over WuR-CTC message exchange.

8.4.1 SCHC over WuR-CTC header compression

The SCHC over WuR-CTC Profile uses SCHC C/D as described in Section 2.3.3. The degree of
compression that may be achieved depends on traffic predictability and on the design of the C/D
Rules in order to compress protocol header fields. In our experimental evaluation (see Section 8.5),
we are able to compress a 40-byte IPv6 packet header down to an 8-bit RuleID, with no compression
residue, by using an equal matching operator with a not-sent action. If the resulting SCHC Packet
size is greater than the WuR-CTC MTU (of 89 bytes), SCHC F/R is used.

8.4.2 SCHC over WuR-CTC Fragmentation and Reassembly

We now describe the design of our SCHC F/R adaptation to WuR-CTC. In order to efficiently use
SCHC over WuR-CTC, we selected the ACK-Always SCHC F/R mode. In this mode, after each
window of tiles, an ACK message is unconditionally sent. This matches the WuR-CTC behavior,
whereby an ACK frame is always sent after each received DATA frame. To optimally adapt ACK-
Always over WuR-CTC, we set the window size to one tile and use one tile per SCHC Fragment
payload. A SCHC Fragment is carried in a DATA frame. After each SCHC Fragment, a SCHC
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(a) SCHC over WuR-CTC fragment format. (b) SCHC over WuR-CTC ACK format.

Figure 8.7: SCHC over WuR-CTC ACK message format.

ACK will be sent (carried by a WuR-CTC ACK frame).
Moreover, the ACK-Always F/R mode supports retransmission of missing SCHC Fragments.

A SCHC Fragment retransmission is performed when the RT expires, if no corresponding SCHC
ACK message has been received.

The SCHC over WuR Fragment and ACK message formats use the 1-bit WuR-CTC MPDU SN
field as the SCHC F/R window number (W). Since there is only one tile per window, each tile can
be numbered using a 1-bit FCN with value 0 for windows that are not the last one of the SCHC
Packet. The last FCN will have a value of 1, which signals the last tile (and SCHC Fragment) of
the fragmented SCHC Packet transfer (see Section 2.3.4).

The 3-way handshake provided by WuR-CTC is required before starting a SCHC Packet trans-
fer, since the receiver node must be woken up. At the end of the SCHC Packet transfer, the sender
node will send the SLEEP frame and will wait for the corresponding ACK frame before closing
the transmission.

As described in [129], each WuR-CTC frame integrity is ensured with a CRC-8. Because the
integrity of each SCHC Fragment is protected, the RCS used by default in SCHC is not needed in
this case. The DTag is also not needed since SCHC Packet interleaving is not needed for SCHC
over WuR-CTC. As explained in Section 8.3.2, WuR-CTC provides a sender timer and a receiver
timer. SCHC over WuR-CTC uses both timers as RT and Inactivity Timer, respectively.

8.4.3 SCHC message adaptation over WuR-CTC

Figs. 8.7a and 8.7b show the adaptation of SCHC Fragment and SCHC ACK formats, when used
over WuR-CTC DATA and ACK frames, respectively.

The SCHC over WuR-CTC message format extends the WuR-CTC Link Layer frame format
by adding a 7-bit RuleID and a 1-bit FCN to the MSDU.

The tile size is equal to the WuR-CTC MTU (i.e., 89 bytes) minus the SCHC Fragment header
size (i.e., 1 byte). Therefore, the tile size is 88 bytes for all SCHC over WuR-CTC fragments that
are not the last one. The tile size of the last fragment can be smaller. The SCHC over WuR-CTC
fragment format is valid for WuR-CTC Frame Type 001, i.e., the DATA frame.

The SCHC over WuR-CTC ACK message format extends the WuR-CTC ACK frame format
by adding a 7-bit RuleID and a 1-bit C field to the MPSU. The SCHC ACK bitmap is not used. In
fact, no other SCHC Fragment can be sent before a sender receives the SCHC ACK message with
the same W and there is only one tile per window; therefore, each SCHC ACK message corresponds
to a unique tile. The SCHC over WuR-CTC ACK message format is valid for WuR-CTC Frame
Type 010, i.e., the ACK Frame.

8.4.4 SCHC over WuR-CTC message exchange

Fig. 8.8 shows the message exchange between two nodes that support SCHC over WuR-CTC. The
first node (with address 0x001) wakes up the other node (with address 0x002) by using a WAKE
frame. Node 0x002 awakens and replies with an ACK frame, which is responded to by node 0x001
with an ACK frame to complete the three-way handshake of WuR-CTC. Now that both nodes
are awake, the SCHC Packet transfer may begin. Node 0x001 sends a SCHC over WuR-CTC
fragment with FCN=0 and W=0. A SCHC over WuR-CTC ACK is sent by node 0x002 to confirm
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the correct reception of the corresponding fragment. This process continues until the last fragment
of the SCHC Packet is sent. If any fragment is lost, it is retransmitted upon RT expiration. The
last SCHC over WuR CTC Fragment has the FCN set to 1 to signal the end of the SCHC Packet
transfer. Node 0x002 confirms the reception of the complete SCHC Packet by setting the C bit to
1 in the SCHC over WuR-CTC ACK. Finally, node 0x001 sends a SLEEP frame to node 0x002,
which confirms reception with an ACK frame that in turn is confirmed by an ACK frame sent by
node 0x001. Finally, both nodes can return to sleep mode and turn off their main radios.

Figure 8.8: SCHC over WuR-CTC message exchange between Node 0x001 and Node 0x002, with
one retransmission.

8.5 Evaluation of SCHC over WuR-CTC Profile

This section presents the SCHC over WuR-CTC Profile implementation and evaluation on a
testbed. First, the SCHC over WuR-CTC implementation and testbed are described. Second,
the experimental methodology is presented, followed by the performance metrics used to evaluate
the SCHC over WuR-CTC Profile. Finally, the evaluation results are provided and discussed.

8.5.1 SCHC over WuR-CTC testbed implementation

The SCHC over WuR-CTC testbed consists of an IEEE 802.15.4 device and an IEEE 802.11 device.
Both devices implement the WuR-CTC controller, i.e., the WuTx, and are provided with WuRx
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additional hardware (see Fig. 8.9). On top of the WuR-CTC Controller, the SCHC layer offers
C/D and F/R functionality and manages the WuR-CTC Link Layer by communicating with the
WuR-CTC Controller.

Figure 8.9: SCHC over WuR-CTC implementation architecture and main WuR-CTC blocks. The
WuRx hardware is external to the device. The application generates a payload, e.g., a smart ther-
mostat measurement, which is carried by an IPv6 packet. The latter is compressed/decompressed
and fragmented/reassembled by SCHC.

Fig. 8.10 shows the testbed set up to evaluate the SCHC over WuR-CTC Profile. The WuTx of
the IEEE 802.15.4 and IEEE 802.11 devices are implemented by means of the EFR32MG Mighty
Gecko and ESP32 Sparkfun development kits, respectively. Both devices also implement the WuR-
CTC Controller. The EFR32MG Mighty Gecko is selected as its reconfigurable radio can provide
OOK symbols at a rate of 250 kbps while being IEEE 802.15.4 standard compliant.

The WuRx additional hardware consists of two main elements: a RF Front-End and a Baseband
module. The RF Front-End amplifies, demodulates, and normalizes the incoming signal. The
Baseband module processes incoming signals into a binary stream and parses them according to
the WuR-CTC protocol. The Baseband module is implemented on a STM32 Nucleo L053R8.
The RF Front-End is implemented by using a Band-Pass Filter (GPIO Labs BPF), a Low Noise
Amplifier (GPIO Labs 40 dB LNA), an envelope detector (LTC5508), and an operation amplifier
(CA3140), as presented in [129].

Figure 8.10: SCHC over WuR-CTC testbed implementation. The Front-End Radio and the Base-
band modules are framed in dashed blue and red lines, respectively. The IEEE 802.11 Device is
framed in dashed yellow lines. The IEEE 802.15.4 Device is framed in dashed green lines.



CHAPTER 8. IPV6 OVER WUR-CTC USING SCHC 135

8.5.2 Experimental methodology

The SCHC over WuR-CTC Profile testbed is placed in an indoor environment (a lab in our univer-
sity), where the two devices are separated by 15 cm and the WuRxs of both devices are calibrated
to reduce propagation losses. The evaluation emulates an IEEE 802.15.4 smart thermostat send-
ing measurements, carried by IPv6 packets, to an IEEE 802.11 central controller without the use
of a gateway. We assume that the application data generation is predictable (e.g., one measure-
ment is sent every 5 minutes between a sender and a receiver that are known a priori), and that
endpoint source and destination addresses are previously configured in a Rule. Accordingly, the
SCHC C/D sublayer can compress the 40-byte IPv6 header down to an 8-bit RuleID, with no
compression residue. With regard to SCHC over WuR-CTC Profile configuration parameters, two
values (30 ms and 1000 ms) are tested for the RT. The 30-ms RT value is expected to allow faster
IPv6 packet transfer. The 1000-ms RT value may be suitable when error bursts are present, as it
spreads retransmissions over a greater time interval. The maximum number of SCHC over WuR-
CTC fragment message transmission attempts is set to 5. The Inactivity timer is set to 2 seconds,
allowing the receiver to be awaken for enough time to receive SCHC over WuR-CTC fragment
message retransmissions in case of losses.

For each performance metric (see Section 8.5.3), the IPv6 packet sizes presented in Table 8.2
are evaluated. These values range from a 127-byte IPv6 packet -that requires a single SCHC over
WuR-CTC fragment transmission, and thus is used as benchmark-, up to a 1280-byte IPv6 packet,
which is the IPv6 MTU. Each experiment is performed 20 times for each IPv6 packet size, and
for each RT value. A test is considered valid if the 3-way handshake of WuR-CTC is correctly
performed (note that an error rate of 3.2% was found for the WuR mechanism in [129]). The
SLEEP frame is only sent once per test, as the receiver device will enter the sleep mode, after the
Inactivity timer expires, if no SLEEP frame is received.

Table 8.2: IPv6 Packet sizes evaluated

IPv6 packet size
(bytes)

SCHC Packet size
(bytes)

Number of SCHC
over WuR-CTC

fragments

127 88 1

215 176 2

303 264 3

479 440 5

743 704 8

1280 1241 15

8.5.3 Performance metrics

In the evaluation, we focus on the performance of the SCHC over WuR-CTC Profile when trans-
ferring an IPv6 packet. The performance metrics we use are: IPv6 packet compression ratio, error
rate, total number of frames and overhead, transfer time, and throughput.

The compression ratio measures the relation between the IPv6 packet size and the SCHC Packet
size. It can be calculated as follows:

compression ratio =
IPv6 packet size

SCHC Packet Size
. (8.1)
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The error rate is defined as the relation between the number of frames received (NFR) and the
number of frames sent (NFS). It can be obtained as follows:

error rate =

Å
1− NFR

NFS

ã
· 100. (8.2)

The total number of frames in an IPv6 packet transfer comprises: i) the number of WAKE,
SLEEP and ACK frames, ii) the number of SCHC over WuR-CTC fragment messages (carried
in DATA frames), and iii) the number of SCHC over WuR-CTC ACK messages (carried in ACK
frames).

We define the overhead as the number of additional bits that are added in the transmission
of the IPv6 packet by the SCHC over WuR-CTC Profile including the WAKE, SLEEP, and ACK
frames, and the SCHC over WuR-CTC fragment and ACK message headers.

The IPv6 packet transfer time is defined as the time elapsed between the transmission of the
WAKE frame that starts the transfer, and the transmission of the last ACK received after the
SLEEP frame, as measured by the IEEE 802.15.4 device. Finally, we define the throughput as the
IPv6 packet size divided by its corresponding transfer time.

8.5.4 Evaluation results

Fig. 8.11 shows the compression ratio obtained using (8.1) when applying SCHC compression to
the IPv6 packet header, for the IPv6 packet sizes of Table 8.2. For small IPv6 packet sizes, the
compression ratio is the highest, with a value of 1.44 for a 127-byte size. As the IPv6 packet size
increases, the compression ratio decreases rapidly, since the payload size becomes the dominant
component of the IPv6 packet size. For a 1280-byte IPv6 packet size, the compression ratio is only
1.03.
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Figure 8.11: Compression ratio by using SCHC header compression as in our implementation.

Fig. 8.12 presents the error rate obtained in each test for each considered IPv6 packet size. The
testbed is calibrated to reduce the error rate, as the experimental setup is sensitive to interference
that may be present in the 2.4 GHz ISM band. The error rate values are similar for all IPv6
packet sizes, between 4.3% and 6.1% for the 30-ms RT experiments, and between 3.6% and 5.4%
for the 1000-ms RT experiments. The overall error rate for a 1000-ms RT value is slightly smaller.
This happens because greater RT values spread retransmissions over a larger time interval, which
contributes to a better overcoming of burst interference.

Fig. 8.13a illustrates the average number of frames required for an IPv6 packet transfer. The
number of WAKE frames is equal to 1, since tests are considered valid when the 3-way handshake
is completed. Similarly, the number of SLEEP frames is equal to 1, as there are no retransmissions
for this frame type.
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Figure 8.12: Error rate as a function of IPv6 packet size, for 30-ms and 1000-ms RT.

Recall that the WAKE frame requires 2 ACK frames for the 3-way handshake, which is equal
to the number of ACK frames required by the SLEEP frame (see Fig. 8.8). Also in Fig. 8.13, the
number of SCHC over WuR-CTC fragments and ACKs increases with the IPv6 Packet size and
error rate, as more SCHC over WuR-CTC fragments are required or retransmitted, respectively.
Differences in the average number of SCHC over WuR-CTC fragments sent, for the two RT values,
are very small because the corresponding error rates are similar (see Fig. 8.12).

Fig. 8.13b shows the overhead incurred in the IPv6 packet transfers using SCHC over WuR-
CTC. In each IPv6 packet transfer, a 6-byte WAKE frame is sent, followed by two ACK frames
(one from the receiver and one from the sender), each ACK frame with a size of 5 bytes. Moreover,
for each SCHC over WuR-CTC fragment, a 5-byte header is added by the WuR-CTC Link Layer
and 1 byte is added by the SCHC F/R sublayer. The SCHC over WuR-CTC ACK size is 6 bytes.

The WAKE or SLEEP frame overhead remains constant for all the IPv6 packet sizes evaluated.
The total ACK overhead has a greater relative impact on the smaller IPv6 packet sizes. Also in
Fig. 8.13b, as the IPv6 packet size increases, the overhead increases, reflecting the overhead of each
SCHC over WuR-CTC fragment, and the corresponding ACK. The total ACK overhead is larger
than the overhead of the other frames combined, due to the 3-way handshake (for the WAKE
and SLEEP frames) and the fact that every SCHC over WuR-CTC fragment is acknowledged. As
the overhead is directly related to the number of transmitted frames, overhead differences for the
considered RT values are also very small.
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over WuR-CTC IPv6 packet transfer, with a RT of 30 ms (with lines) and 1000 ms (without lines).
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Fig. 8.14 presents the ranges of IPv6 packet transfer time results obtained. The minimum
IPv6 packet transfer time values correspond to in cases where no losses occur, which are thus
independent of the RT value. The average and the maximum IPv6 packet transfer times depend
on the error rate (see Fig. 8.12) and the RT value.
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Figure 8.14: IPv6 packet transfer time, for different IPv6 Packet sizes, with (a) 30-ms RT and (b)
1000-ms RT.

The minimum IPv6 packet transfer time value difference between the 127-byte and 215-byte
sizes corresponds to the time required to transmit only one additional SCHC Fragment (i.e., one
data frame and the corresponding ACK), with a value of approximately 18 ms.

In Fig. 8.14b, since the RT is set to 1000 ms, the IPv6 packet transfer time range increases
significantly, since a fragment loss leads o an increase of one second. For example, for the 127-byte
IPv6 packet size, the transfer time without message losses is approximately 47 ms, however it
increases to 1050 ms when one fragment is lost. As the IPv6 packet size increases, the probability
of losing SCHC over WuR-CTC fragments increases, which is reflected in a greater average and
maximum IPv6 packet transfer time. For a 30-ms RT (see Fig. 8.14a), the effect of losing one
message is significantly reduced, with a maximum IPv6 transfer time value of only 92 ms, for the
127-byte IPv6 packet size, since the device is able to retransmit sooner.

As further shown in Fig. 8.14, the IPv6 packet size of 1280 bytes exhibits the highest transfer
time. This is due to the corresponding large number of SCHC over WuR Fragments. Without
fragment losses, a 1280-byte IPv6 packet can be transferred in up to 336 ms.

Fig. 8.15 illustrates the throughput vs IPv6 packet size. Below 1280 bytes, the maximum
throughput increases linearly with the IPv6 packet size, independently of the RT value. The average
throughput decreases for large IPv6 packet sizes, due to the high transfer time (see Fig. 8.14).

The range of throughput values is greater for the RT = 1000 ms (see Fig. 8.15b), because
the corresponding transfer time range is also greater. The 30-ms RT provides better throughput
results, especially for large IPv6 packet sizes. On the other hand, the average throughput when
RT = 1000 ms decreases more rapidly with the IPv6 packet size than when RT = 30 ms. Despite
the fact that the 1000-ms RT value might be more suitable in the presence of bursts of errors, each
frame loss penalizes the IPv6 packet transfer time to a greater extent, yielding lower throughput
values.
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Figure 8.15: Throughput results for different IPv6 packet sizes, with (a) 30-ms RT and (b) 1000-ms
RT.



CHAPTER 9

COMPOUND ACK MESSAGE AND LPWAN CONVERGENCE
WITH SCHC

<<Boundaries and holes allow light to pass through.>>

In this chapter, we present two additional contributions of this thesis to the IETF LPWAN
Working Group and to the SCHC standard. The chapter is organized into two sections. The
first section presents the Compound ACK message, an adaptation of the SCHC ACK message.
The Compound ACK message was initiated as part of the SCHC over Sigfox Profile, and later
it was adopted by the LPWAN Working Group as a separate document [IX], as it can be used
over other LPWAN technologies. The second section presents the SCHC Convergence Profile, our
proposal to enable LPWAN convergence. LPWAN convergence can be understood as a way to
enable seamless interoperability between LPWANs, and where both application and application
developers are untied from the underlying network. This can be achieved by using IPv6 and the
SCHC Convergence Profile. The SCHC Convergence Profile has been submitted as an individual
document to the IETF [X].

9.1 Compound ACK message: Reducing downlink traffic

In this section we present the Compound ACK message, along with its motivation, format and
benefits.

9.1.1 Introduction

In LPWANs, a key constraint is the amount of downlink traffic, i.e., from the gateway to the IoT
device. As explained in Chapter 4, this limitation happens because the gateway manages many
data flows, and it is especially critical in regions where duty-cycle restrictions apply (e.g., Europe
868 MHz band). Therefore, there is a bottleneck in downlink traffic, as the gateway capacity is
limited. This directly reduces network capacity and the number of devices per gateway, which in
turn reduces scalability and increases network cost.

In this thesis, we have shown how the ACK burden increases with the fragment error rate and
how it depends on the fragment error pattern. In Chapter 4, we explained how ACK pooling
provides better results for high error rates, as more fragment losses are concentrated in a single
ACK. On the contrary, small ACK message sizes perform better for low fragment error rates. In
the current SCHC specification [6], this is translated into changing the window size, which is fixed
in the SCHC over LoRaWAN [9], SCHC over Sigfox [7], and SCHC over NB-IoT [8] Profiles.

Moreover, in Chapter 6, when fragment losses are present in the first windows, results showed an
excess of ACK traffic in SCHC Packets of more than one window in size. The impact of fragment
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losses in the first windows results in an increase of SCHC Packet transfer time and number of
downlink messages required per transfer. Therefore, we proposed the Compound ACK message to
reduce the number of SCHC ACK messages by allowing multiple windows to be acknowledged in a
single SCHC ACK message. This message is an extension of the SCHC framework ACK message,
which allows aggregate receiver-feedback in a single downlink message by accumulating bitmaps
of several windows.

The Compound ACK message can be used over LoRaWAN, Sigfox, NB-IoT, or any other
technology using SCHC F/R. With this modification to the generic SCHC framework, ACK-on-
Error F/R mode is provided with a variable MTU size in downlink.

9.1.2 Description

The SCHC Compound ACK message can be defined as a failure SCHC ACK message which con-
tains one or more bitmaps. Each bitmap is identified by its corresponding window number. This is
accomplished by adding the WINDOW NUMBER (W) of each bitmap to the SCHC ACK message
(which currently only had one W and one bitmap), and grouping the W with its corresponding
bitmap. Therefore, as each bitmap is uniquely identified, the window numbers present do not need
to be contiguous. However, they are ordered from the lowest-numbered to the highest-numbered
window. Hence, if fragment losses are present in window zero, they are placed first, in the SCHC
Compound ACK message header. Note that when all fragments have been correctly received
(C=1), the Compound ACK message does not modify the success SCHC ACK message format as
defined in [6].

Figs. 9.1 and 9.2 present the SCHC Compound ACK message format. The difference in formats
between Figs. 9.1 and 9.2 is related to the number of bits that require padding at the end of the
message. As the size of the SCHC Compound ACK is variable, M bits signal the end of message.
However, in some cases, less than M bits are available without adding an extra L2 word. Note
that in Fig. 9.2, what signals the end of the message is the absence of M bits, as it is not possible
to find in the message another W and bitmap group. Because windows are ordered from lowest to
highest, when present,Window number 0, is always placed in the SCHC ACK Header (w1). This
placement of window number 0 avoids confusion with the M bits that signal the end of message.
Padding bits are not restricted to any value, as they can be differentiated in both cases.

Figure 9.1: Compound ACK message format, modifying the failure SCHC ACK format, when
more than M padding bits are required to complete the L2 word.

The Compound ACK message has a variable size, because a variable number of bitmaps, from
different windows, can be signaled in a single message. Its variable size allows larger ACK sizes
when ACK pooling can be performed or smaller ACK sizes for lower error rates. This can be
accomplished with the same window size and the ACK size may depend on network error or
congestion conditions.
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Figure 9.2: Compound ACK message format, modifying the failure SCHC ACK format, when
less than M padding bits are required to complete the L2 word. Losses are found in windows
W = w1, ..., wi; where w1 ≤ w2 ≤ ... ≤ wi

.

9.1.3 ACK reduction examples

In this subsection we present examples of the ACK reduction that can be achieved by using the
Compound ACK message. As previously explained in this thesis, fragment losses in intermediate
windows generate at least one ACK message. Fragment losses in the last window generate at least
two ACK messages (one failure ACK and one success ACK message). The success ACK message
will always be sent to maintain coherence, as it confirms the correct reception of the SCHC Packet.
Therefore, reduction is possible in the failure ACK messages.

Fig. 9.3 shows a 14-tile SCHC Packet transfer using SCHC ACK-on-Error mode, with a window
size of 7 tiles, and with fragment losses in all windows. After the first 7 tiles are sent, as there
are fragment losses in the first window (W = 0), one ACK message is sent. In many LPWAN
technologies, downlink messages are device-driven, which means that the device must enable a
reception window. While the reception window is open, the network server can send a message, in
this case an ACK message to the device. After the retransmission of missing fragments starting
from W = 0, the device will continue sending fragments from the second window (W = 1). As
there are fragment losses in W = 1, another ACK message is sent, reporting missing fragments.
Finally, after all missing fragments in W = 1 are retransmitted, a success ACK message is sent,
concluding the SCHC Packet transfer.

Fig. 9.4 shows the same SCHC Packet transfer as Fig. 9.3 but using the Compound ACK
message. In contrast with the previous example, the Receiver (network) can select whether or not
to send a Compound ACK message. After the first window of tiles (W = 0) is sent, even though
there are fragment losses, the network can pool the fragment losses and wait for the next downlink
opportunity. This provides flexibility to the network, e.g., losses may be due to congestion, and
sending more messages will worsen the network status. The sender (device) will continue sending
fragments until the last one (FCN=7). This message will trigger a Compound ACK message
reporting missing fragments from previous windows. Finally, after the retransmission of missing
fragments is performed, a success ACK message is sent to end the SCHC Packet transfer.

The ACK reduction provided by using the Compound ACK message will depend on the number
of retransmissions required after the first Compound ACK message is sent. The ACK reduction
in the first transmission attempt, i.e., each fragment sent at least once, can be calculated as:

ACKreduction = NW − 1, (9.1)

where NW is the total number of windows with losses in the first transmission attempt of a SCHC
Packet transfer. Therefore, as the SCHC Packet size increases and more windows are required, the
benefits of using the Compound ACK message increases as the ACKreduction increases.

Moreover, as there is no need to increase the window size to achieve a larger ACK size, smaller
window sizes can be used to benefit from ACK pooling. Small window sizes also provide more
downlink opportunities, especially in LPWAN technologies in which the downlink message is device
driven. The usage of Compound ACK and smaller window sizes provides more opportunities to
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Figure 9.3: SCHC Packet transfer example with SCHC ACKs. The SCHC Packet size is 14 tiles
and window size is 7 tiles. Red frames highlight the ACK messages.

Figure 9.4: SCHC Packet transfer example with Compound ACK messages. The SCHC Packet
size is 14 tiles and window size is 7 tiles. Red frames highlight the ACK messages.

send feedback, i.e., a Compound ACK, to the device, while still being able to decide on network
conditions (larger or smaller ACK sizes).

Furthermore, the Compound ACK message variable size is of special interest for LPWAN
Convergence, as each LPWAN technology has different L2 characteristics, both in uplink and in
downlink. The LPWAN Convergence Profile is presented in the following section.
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9.2 The SCHC Convergence Profile

This section presents the SCHC Convergence Profile, our proposal to enable a SCHC F/R con-
vergence sublayer across LPWAN technologies. This profile focuses on uplink fragmentation, i.e.,
traffic generated from the device to the network, which is the typical usage of the SCHC framework.

9.2.1 Introduction

The IETF LPWAN WG has published several technology-specific SCHC profiles over LPWANs,
i.e., SCHC over LoRaWAN [9], SCHC over Sigfox [7], and SCHC over NB-IoT [8]. Each profile
provides optimal configuration parameters for using SCHC over the specific technology. However,
the F/R configuration of these profiles are not compatible between them. This is especially critical
in multi-radio devices (e.g., device supporting radio interfaces of LoRaWAN, Sigfox and NB-IoT),
as it requires one implementation per technology, not only in the device but also in the backend
server.

Another use case requiring multiple implementations of the SCHC F/R sublayer are multi-
network scenario. In a muti-network scenario, the same application is deployed over different
LPWAN technologies. For each deployment, a specific implementation is required at the device
and backend server.

We performed a comparison of the current SCHC Profiles for uplink fragmentation, and the
results showed no major differences between them. Therefore, it is possible to produce a single
profile that works over all LPWAN technologies, taking into consideration the specifics of each
technology. Moreover, this profile will reduce implementation complexity by providing a single
convergence SCHC F/R sublayer, and will also leverage the benefits of the Compound ACK by
using smaller windows and more downlink opportunities.

9.2.2 Motivation

In IoT application development, the LPWAN constraints influence the design of the application
itself. The definition of which LPWAN is used in a specific solution presents problems when migrat-
ing the application to another LPWAN, as it may imply a complete IoT application redesign. This
impacts the device code and the backend server code. In the IP domain, the lower layer, especially
L2, is transparent to the application. However, this is not the case for LPWAN technologies.

SCHC was built to provide interoperability for IoT applications running in LPWAN networks,
and a single C/D sublayer was proposed. However, current implementations require different
implementations of the SCHC F/R sublayer, with slightly different F/R modes. Therefore, multiple
SCHC F/R implementations are required when using multiple LPWANs, which is not the case for
the C/D sublayer.

The motivation of the SCHC Convergence Profile is to reduce code complexity and mainte-
nance by achieving a single F/R sublayer. The SCHC Convergence Profile works over LoRaWAN,
Sigfox, and NB-IoT simultaneously, considering the singularities of these technologies (e.g., when
a downlink message can be sent) while providing general F/R modes. Therefore, it can be used
for muti-radio devices and multi-network applications.

9.2.3 Use cases

We have identified several use cases for the SCHC Convergence Profile. These include:

• A generic SCHC F/R mode for implementation and testing over a new technology.

• Devices with more than one LPWAN radio, i.e., multi-radio devices.
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• Applications deployed over more than one LPWAN, i.e., multi-network applications.

• For network redundancy:

– Use another LPWAN as backup,

– Send the same SCHC Fragment via different LPWANs, increasing the probability of
success.

• Device duty-cycle can be increased, as more networks are available, e.g., if transmission over
LoRAWAN is not possible due to duty-cycle restriction, it may be performed over Sigfox or
NB-IoT. This applies for SCHC Fragments and SCHC Packets.

• Check available network coverage by sending SCHC Fragments over different LPWANs.

9.2.4 Description

9.2.4.1 Protocol stack

Fig. 9.5 shows a comparison of the SCHC Convergence Profile with the existing SCHC protocol
stack. Both protocol stacks provide a transparent LPWAN layer to the application, however they
converge at different SCHC sublayers. Fig. 9.5a shows the convergence at the SCHC C/D sublayer
using the existing SCHC protocol stack. In this case, the implementations requires as many
SCHC F/R sublayers as LPWAN technologies are used. As the SCHC C/D sublayer is the same
regardless of the LPWAN technology, SCHC Packets can be sent using any network. However, all
SCHC Fragments must be sent using the same network, as the SCHC F/R configuration depends
on the underlying technology. Once the complete SCHC Packet is received, it will be delivered to
the SCHC C/D. This increases complexity and code maintenance.

Fig. 9.5b presents the SCHC Convergence Profile protocol stack. By using this profile, it is pos-
sible to reduce the complexity as the same SCHC F/R sublayer is used regardless of the underlying
technology, making it a convergence SCHC F/R sublayer. By doing this, SCHC Fragments can
be sent over different LPWANs. With the SCHC Convergence Profile, the IPv6 and application
layers do not depend on the underlying LPWAN technology. A new element can be added called
Network Selector. The Network Selector is in charge of, as its name states, selecting the LPWAN
network for next SCHC Fragment transmission, opening a wide range of options. For example,
the network can be selected according to several criteria such as network availability (i.e., network
with available coverage), network without duty-cycle, economic cost, among others.

(a) SCHC Multiple F/R Protocol Stack. (b) SCHC Convergence Protocol Stack.

Figure 9.5: Comparison of SCHC protocol stack (a) with the proposed SCHC Convergence Profile
protocol stack (b)
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9.2.4.2 Architecture

Fig. 9.6 compares the current SCHC network architecture (Fig. 9.6a) with that proposed for
LPWAN convergence (Fig. 9.6b). The latter provides a single implementation of the SCHC F/R
sublayer, reducing code complexity. Moreover, with a single SCHC F/R implementation, the
same F/R Rule space can be used, independently of the LPWAN technology. This reduces device
memory usage and complexity when compared to multiple SCHC F/R implementation.

(a) Architecture when using several SCHC F/R implementations.

(b) SCHC Convergence Profile architecture

Figure 9.6: Comparison of current SCHC architecture (a) with SCHC Convergence Profile archi-
tecture (b).

9.2.5 Single SCHC ID

Each technology-specific SCHC Profile defines a different RuleID space. Therefore, to simplify the
access to RuleIDs and to converge the different device IDs of each network involved, a new identifier
called the single SCHC ID is needed. The single SCHC ID helps in two ways: i) unified RuleID
space and ii) converged device ID of multiple networks into a single ID. This is accomplished with
a device ID translation table, which maps the network device ID to the single SCHC ID. Then,
with the single SCHC ID, it is possible to look up and identify the corresponding Rule set for such
device. The use of a single SCHC ID dissociates the network device ID, allowing the usage of the
same Rule set for the same device, independently of the access network. This reduces memory in
the device and complexity in the Backend server.

Fig. 9.7 presents a diagram of the SCHC Convergence Profile architecture including the device
ID translation table. This table is where the different device IDs are translated to the single SCHC
ID. Also, this table can be used to save information related to a device, for example, IPv6 address
or port. This way, when an IPv6 packet arrives to the SCHC C/D, the device ID translation table
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can provide mapping to the specific network ID from the IPv6 address.

Figure 9.7: Single SCHC device ID translation table diagram

LPWAN technologies define different device IDs to identify the devices in each network. Cur-
rently, the devices IDs that converge in the SCHC Convergence Profile are:

• LoRaWAN: DevID

• Sigfox: DeviceID

• NB-IoT: IMEI

9.2.6 Uplink fragmentation

As stated in Chapters 3 and 4, the ACK-on-Error mode provides better performance than the other
SCHC F/R modes for reliable SCHC Packet transfer. Moreover, when using different LPWAN
technologies, there are different requirements at L2. The ACK-on-Error mode supports variable
MTU sizes (which is critical when sending SCHC Fragments spread across different LPWANs),
and out-of-order delivery (in case SCHC Fragments are received out-of-order at the SCHC F/R
receiver). This makes the ACK-on-Error mode suitable for uplink fragmentation.

SCHC over LoRaWAN [9], SCHC over Sigfox [7], and SCHC over NB-IoT [8] specify SCHC
F/R for uplink transmission. At the SCHC Fragment level, these profiles are not compatible with
one another as their header field sizes are different. However, one of the SCHC over Sigfox uplink
fragmentation modes present in the profile has several similarities with the ACK-on-Error SCHC
over LoRaWAN profile. NB-IoT profile provides a more general and configurable ACK-on-Error
mode, as NB-IoT has a less restrictive MTU size therefore, this profile is not considered in the
comparison. Such similarities between the SCHC over Sigfox (Two-byte Option 2) and SCHC over
LoRaWAN Profiles include:

• 2-byte SCHC Fragmentation Header size.

• 10-byte tile size.

• 1-byte Rule ID size.

• No DTag.

Differences between the SCHC over LoRaWAN and SCHC over Sigfox (Two-byte Option 2)
uplink fragmentation profiles include:

• WINDOW SIZE (tiles per window).
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• M size (maximum number of windows).

• N size (tiles per window).

• RCS size and algorithm.

The SCHC over LoRaWAN Profile, in the ACK-on-Error mode, includes a WINDOW SIZE of
64 tiles. This provides better performance in error-prone environments with larger ACKs. The
SCHC over Sigfox Profile (Two-byte Option 2) includes a smaller WINDOW SIZE of 32 tiles. The
smaller window, half the size in this case, will double the downlink opportunities. Larger ACK
sizes can be obtained by using the Compound ACK message. This provides the opportunity for
reporting on more than one window on error-prone environments, while providing the option of
sending smaller ACKs, reporting on one window, for low error rates. The SCHC Convergence
Profile uses smaller WINDOW SIZE as it uses the Compound ACK message to accomplish larger
ACK size, while still having the option of smaller ACKs and more downlink opportunities.

9.2.7 SCHC Convergence Profile Uplink ACK-on-Error mode

The SCHC Convergence Profile uplink ACK-on-Error mode takes advantages of the similarities be-
tween current LPWAN profiles. The SCHC Uplink Fragmentation Header size is 16 bits composed
as follows:

• Rule ID size is: 8 bits

• DTag size (T) is: 0 bits

• Window index (W) size (M): 3 bits

• Fragment Compressed Number (FCN) size (N): 5 bits.

Other configuration parameters are set as follows:

• MAX ACK REQUESTS: 5

• WINDOW SIZE: 31 (with a maximum value of FCN=0b1011)

• Regular tile size: 10 bytes

• All-1 tile size: 1 to 10 bytes

• Retransmission Timer: Application-dependent.

• Inactivity Timer: Application-dependent.

• RCS size: 32 bits

9.2.8 SCHC Convergence Profile message formats

This section depicts the different formats of SCHC Fragment, SCHC ACK, SCHC Compound
ACK, SCHC Aborts, and ACK Request used in the SCHC Convergence Profile for ACK-on-Error
mode.

9.2.8.1 Regular SCHC fragment

Fig. 9.8 shows an example of a regular SCHC fragment. This fragment format is used for all
fragments except for the last one.
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Figure 9.8: Regular SCHC fragment

9.2.8.2 All-1 SCHC fragment

Figs. 9.9 and 9.10 show examples of an All-1 SCHC fragment, with and without a tile, respectively.
The last fragment of a SCHC Packet is the All-1 SCHC fragment. Depending on the SCHC Packet
size, the All-1 may or may not carry the last tile.

Figure 9.9: All-1 SCHC fragment (with tile)

Figure 9.10: All-1 SCHC fragment (no tile)

9.2.8.3 SCHC ACK message

Fig. 9.11 shows an example of a success SCHC ACK message. The success SCHC ACK message
was the C bit (the integrity check bit) set to 1 and no bitmap, as it does not report any fragment
losses.

Figure 9.11: Successful SCHC ACK

Fig. 9.12 shows an example of a failure SCHC Compound ACK message. The Compound ACK
message has a variable size which depends on total number of window that are reported in a single
message.

9.2.8.4 SCHC Receiver-Abort message

Fig. 9.13 shows an example of a SCHC Receiver-Abort message. The SCHC Receiver-Abort
message enables the receiver to abort current SCHC Packet transfer. For example, the receiver is
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Figure 9.12: Failure SCHC Compound ACK message. Losses are found in windows W = w1, ..., wi;
where w1 ≤ w2 ≤ ... ≤ wi

an application server, and it may need to abort current transfer due to overload.

Figure 9.13: SCHC Receiver-Abort message

9.2.8.5 SCHC Sender-Abort messages

Fig. 9.14 shows an example of a SCHC Sender-Abort message. The SCHC Sender-Abort message
is sent by the sender, e.g., the device, when it needs to cancel current SCHC Packet transfer.

Figure 9.14: SCHC Sender-Abort message

9.2.8.6 SCHC ACK Request message

Fig. 9.15 shows an example of a SCHC ACK Request (ACK-REQ) message. This messages is used
by the sender, i.e., the device, to request a Compound ACK message.

Figure 9.15: SCHC ACK Request message



CHAPTER 10

CONCLUSIONS AND FUTURE WORK

<<Light dwells in what it generates>>

In this chapter we present the main conclusions of this thesis investigation, along with future
work directions. The first section presents the main conclusions, emphasizing our main findings
and contributions. The second section provides some future work directions, with a perspective
on the SCHC framework.

10.1 Conclusions

This thesis was motivated by the need for developing, evaluating and improving IPv6 support over
LRLPWNs, as there existed a gap in the state of the art at the research level. During the time
of this thesis investigation, the adoption of SCHC as a standard by the IETF drove the need to
evaluate its performance. SCHC follows a technology-agnostic approach and, as a new framework,
performance and optimal configuration values were unknown. In this context, this thesis main
contributions were: i) analysis of the three SCHC F/R modes, ii) a mathematical model and an
optimal tuning of ACK-on-Error mode, iii) analysis of new RFTs for SCHC, iv) development,
implementation and evaluation of the SCHC over Sigfox Profile, v) design, implementation and
evaluation of SCHC over WuR-CTC to support IPv6, and vi) creation of the Compound ACK
and SCHC Convergence profile Internet Drafts. Following are the main conclusions of this thesis
investigation, organized by chapter.

In Chapter 3, we performed an analysis of the three F/R modes of the SCHC Framework
and their trade-offs. Firstly, we provided an overview of the three SCHC F/R modes: No-ACK,
ACK-Always, and ACK-on-Error. Secondly, we explained the performance metrics used for the
analysis. Lastly, we employed the OpenSCHC simulator, to which we added an implementation
of the ACK-Always mode, to evaluate how the SCHC F/R modes perform under an error-free
LoRaWAN communication channel. The three SCHC F/R modes have different characteristics and
are focused on different use cases. Our evaluation shows that, in an ideal scenario with no errors,
No-ACK mode can reduce the total delay and, due to its lower overhead, has a higher goodput,
lower COT, and does not consume receiver resources. In the considered scenarios, the differences
in total delay and COT between ACK-Always and ACK-on-Error are directly proportional to the
number of windows required to transmit a given packet. This yields lower values of goodput, while
increasing total delay and COT. Even though ACK-on-Error outperforms ACK-Always, the latter
may be preferred for downlink fragmentation as the LoRaWAN gateway can be restricted to send
a response right after the reception of a message.

The SF has a high impact on the performance achieved by the SCHC F/R modes. With higher
SF, the differences observed between F/R modes performance increase. This is related to the
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fragment size, tile size, and number of fragments required for a given IPv6 packet size.
The reliability of No-ACK is very low since the loss of any fragment will lead to the loss of

the complete packet being carried and the associated resources involved (i.e., channel bandwidth,
energy, etc.). ACK-Always and ACK-on-Error, on the other hand, provide high reliability at the
expense of more overhead and thus, more receiver resources.

In Chapter 4, we developed a mathematical model to analyze the ACK-on-Error mode, focusing
on the number of ACKs required to transmit data. We were then able to perform an analysis that
allowed to determine the values of SCHC parameters minimizing the ACK burden imposed on the
downlink which is more sensitive to duty-cycle constraints. We then applied our mathematical
model to state-of-the-art LPWAN technologies such as LoRaWAN and Sigfox to minimize the
ACK bit overhead, taking into account the retransmission process subtleties of the ACK-on-Error
mode. Finally, we illustrated how the optimal parameter settings derived allow to decrease the
ACK overhead.

In Chapter 5 we presented a thorough evaluation of RFTs for reliable fragmentation over
LPWAN. We considered CB (which is the RFT used in SCHC), UB (as a benchmark), and two
alternative RFTs: LLF and LoD (the latter, with 4 different encoding variants). We developed
the Sim-RFT simulator to perform the evaluation. LoRaWAN was assumed as the underlying
LPWAN technology.

Our results show that the optimal RFT depends on the channel conditions (in terms of error
rate and error distribution), on L2 MTU, and on the size of the packet to be fragmented. CB
is not optimal in all the scenarios evaluated. CB tends to offer the best performance for small
packets and high error rates. In such conditions, its encoding based on a bitmap (which is further
optimized compared with UB) is efficient. As packet size increases, regardless of the L2 MTU, LoD
variants tend to become optimal. Regarding the latter, for uniform errors, 3-bit and 4-bit bases
offer the best trade-off. For burst errors, LoD-2 offers the best performance, as it minimizes the
encoding overhead for the very frequent delta of 1. Finally, for high quality links with very low
error rate and uniformly distributed errors, LLF provides the most efficient encoding. Using the
optimal RFT for a given scenario allows to achieve performance benefits such as a higher downlink
network capacity (which is especially critical when duty-cycle regulations are in force), greater
network scalability, and lower IoT device energy consumption.

In Chapter 6, we presented a performance evaluation of the SCHC ACK-on-Error F/R mode
over Sigfox. We provided a theoretical analysis and an experimental evaluation conducted on real
testbeds, for different Sigfox radio settings. Through measurements, we obtained the time required
by the LoPy4 device for the different transmission stages of a Sifgox uplink and downlink frame,
and provided a theoretical model for errorless transmissions, that was validated by experimental
results.

We investigate the transfer time and the number of uplink and downlink frames, for all Sigfox
RCs and for different SCHC Packet sizes. The number of uplink and downlink frames is critical
in LPWAN networks, as message rates are limited. The transfer time of a SCHC Packet pro-
vides important insights for delay-sensitive applications and is especially critical when duty-cycle
restrictions are enforced.

Furthermore, we proposed a new RCS mechanism which simplifies calculations, based on two
facts: i) the integrity of each SCHC Fragment is guarantee by the L2, therefore the complete
SCHC Packet integrity is guaranteed, and ii) the RCS helps identify missing fragments in the last
windows, specially when this window is not full. Therefore, the new RCS mechanism includes the
number of SCHC Fragments of the last window. By doing so, the receiver is able to know if there
are missing SCHC Fragments in the last window and sends a SCHC ACK as necessary.

In Chapter 7, we presented a model and an evaluation of the device current and energy con-
sumption of reliable packet fragmentation by using SCHC over Sigfox. We built our model by
measuring the current consumption and duration of the states involved in a SCHC Packet transfer
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on a real Sigfox device.
The average current consumption of a single SCHC Packet transfer decreases with the SCHC

Packet size since the device spends more time in the Sleep state to conform to the RC1 duty-
cycle restrictions. For periodic SCHC Packet transfers, the average current consumption decreases
with the SCHC Packet size and with the time between transfers. In contrast, the average energy
consumption increases linearly with SCHC Packet size due to the energy consumed when the device
is in the Sleep state.

We analyzed two fragment transmission strategies, which are compliant with RC1 duty-cycle
restrictions: sending one or up to six back-to-back SCHC Fragments per cycle, respectively. The
latter is more energy-efficient. In addition, we evaluated the light and deep sleep modes provided
by the Sigfox device. The results highlight that the SCHC Packet size, the packet sending period,
and the number of SCHC Fragments per cycle have a significant impact on the device lifetime.

In Chapter 8, we presented the design, implementation, and evaluation of a SCHC over WuR-
CTC Profile in order to efficiently support IPv6. This Profile enables full interoperability between
IEEE 802.15.4 and IEEE 802.11 devices, without the need of a gateway. Furthermore, the SCHC
over WuR-CTC Profile can compress the IPv6 header down to only 1 byte, and optimally adapt
the SCHC F/R ACK-Always mode to the WuR-CTC Link Layer, while adding only 1 byte of
overhead per frame, and allowing IPv6 packet transfers up to 1280 bytes.

The main overhead in IPv6 over WuR-CTC is the ACK traffic incurred by WuR-CTC, which
is leveraged in SCHC over WuR-CTC by sending SCHC ACKs, and includes also the WuR-CTC
ACKs present in the three-way handshakes performed at the beginning and at the end of packet
transmission. IPv6 packet transfer time increases with the error rate. Experiments have shown that
a low RT value yields low IPv6 packet transfer times. SCHC over WuR-CTC can support real-time
applications involving a human, especially for smaller IPv6 packet sizes and RT values, where the
average transfer time for 127-byte IPv6 packets is only 69 ms. Finally, by providing IPv6 support
over WuR-CTC, we have demonstrated the possibilities of exploiting SCHC to enable IPv6-based
communications beyond the LPWAN landscape, for which SCHC was originally designed.

In Chapter 9, we presented two further contributions to the IETF LPWAN WG, which are a
result of this thesis investigation. As part of the analysis performed using the SCHC over Sigfox
profile, the Compound ACK was created. The Compound ACK is an optimization of the SCHC
ACK message that allows fragment error feedback from one or more windows, making downlink
traffic more efficient, specially for the ACK-on-Error F/R mode. Moreover, the LPWAN can select
when to send the Compound ACK, giving the network flexibility and allowing larger or smaller
ACKs, depending on the number of windows reported per ACK.

The creation of different SCHC Profiles, one per LPWAN technology, led to multiple imple-
mentations of the SCHC F/R sublayer, with smaller differences. To converge to a single SCHC
F/R sublayer, we proposed the SCHC Convergence Profile. We carried out a comparison between
the different F/R modes of each current technology-specific Profile and performed an adaptation,
taking in consideration the Compound ACK flexibility. By having a single SCHC convergence
Profile for F/R, it is possible to converge the different LPWAN technologies at the SCHC Frag-
ment level, making it possible for multi-radio devices to send SCHC Fragments through different
LPWANs or use other LPWANs as backup. The SCHC Convergence Profile makes the LPWAN
layer transparent to the application and application development, as it is in the IP domain.

10.2 Future work

In this section, we provide future work directions that stem from this thesis investigation and the
collaboration with the IETF LPWAN WG. This section is divided in two subsections. The first
subsection presents the future research topics related to SCHC and interoperability. In the second
subsection, we present SCHC future use cases beyond the LPWAN landscape.
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10.2.1 A new era of interoperability

The SCHC framework has opened the doors for a new era of interoperability, by providing IPv6-
based protocols to LPWANs. IPv6 provides a scalable address space, support for security protocols
and interoperability, by using the Internet protocol stack. This becomes crucial to enable a scalable
and secure IoT ecosystem. With SCHC, it is possible to assign an IPv6 address or a port to every
LPWAN device. By doing this, each device is connected to the Internet. However, how and where
this information is stored, and how the device SCHC session is handled is still an open challenge.
The SCHC Convergence Profile provides a device ID mapping table, which can be extended to
include the device IPv6 address and port. It may also include information related to currently
active SCHC Packet transfers, which is called ”SCHC Session”. Implementation and evaluation of
the SCHC Convergence Profile, including the device ID mapping table, constitute an interesting
research direction.

As an IoT deployment grows, the need for device management increases. The device man-
agement overhead, summed with the IPv6 and ACKs overhead, can become a problem, specially
in large deployments. In this sense, SCHC provides a new layer where device generated data
and management data overhead can be compressed and reliably transferred. By using SCHC
compression, the amount of data is reduced, providing a network load reduction. An interesting
future research item is to study the compression impact on the data generated from deployment
management, specially when a large number of devices is involved. As new open protocols (e.g.,
CoAP, Lightweight Machine to Machine -LwM2M-) are used to perform IoT management, it will
be interesting to experimentally evaluate the benefits of using SCHC in the management plane.
This can be performed using the SCHC Convergence Profile, which provides device communication
independently of the underlying network, simplifying device access.

The SCHC Convergence Profile provides a way to converge all LPWANs at the SCHC F/R by
using the same SCHC Fragment structure, i.e., the same header fields. This profile is now focused
on uplink fragmentation with ACK-on-Error mode, but it can be extended to downlink fragmen-
tation with ACK-Always mode, and to uplink fragmentation with No-ACK mode. Moreover, in
this profile, the network that will perform next fragment transmission can be selected on-the-fly.
Therefore, a future research direction would be to study the Network Selector layer, focusing on
the criteria that can be used to select the optimal network e.g., based on network coverage, record
of fragments retransmissions, among others. The network selection can be performed by using
Machine Learning and Artificial Intelligence models, which can be trained for optimal network
selection.

Similarly, the SCHC Compound ACK message gives the network the opportunity to decide
when to send feedback to the fragment sender. However, mechanisms to select the most appropriate
downlink opportunity are still to be designed and evaluated. These mechanisms may depend on
network load, device transmission record, and metadata obtained from the network, e.g., if the
network is receiving SCHC Fragments with losses, and the device is not moving (network metadata
shows the same radio base for all SCHC Fragments), then the network may wait for the next
downlink opportunity to send the SCHC Compound ACK message.

The SCHC Compound ACK message provided a new way to provide receiver feedback. The
SCHC over WuR-CTC Profile uses the piggybacking functionality of WuR-CTC to transfer the
ACK data. A future research direction can be to actually include data in the SCHC ACK, resulting
in piggybacking. By doing this, bidirectional communication is possible. One way this can be
achieved is by adding one bit to the M tail bits of the Compound ACK, which can signal the usage
of piggybacking.

The SCHC over WuR-CTC Profile proves the benefits of combining WuR-CTC and SCHC. The
support of IPv6-based communication in the WuR channel allows applications to communicate,
without the need of a gateway. Future research work can include the production of a printed
circuit of the SCHC over WuR-CTC testbed, considering the integration of the Front-End radio
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and Baseband modules, including measurement point and calibration potentiometers. The printed
circuit schematics can be open-source to promote the adoption of this solution.

10.2.2 SCHC: LPWAN and beyond

As SCHC is becoming a mature standard, it has called the attention of researchers to apply it
to other network technologies. This is mainly because of its benefits, namely: IPv6 support, low
F/R overhead with reliability, and ultralightweight header compression. These new technologies
include IEEE 802.15.4 [40] and PPP [39]. Work has focused on how SCHC header compression can
be applied over these non-LPWAN technologies. In SCHC over LPWANs, Rules are associated
to the device or the application, with a direction field indicating uplink or downlink transmission.
LPWAN technologies are based on a star topology, as a result, device, application, uplink, and
downlink are clearly defined. In technologies such as IEEE 802.15.4, this is not always the case, as
its architecture can be a mesh network. In non-star (e.g., mesh) topologies, the idea of Dev, App,
uplink or downlink is lost. Future research work can focus on the implementation and evaluation
of these new SCHC Profiles, such as [40], and how Rules may be adapted to work in all use cases.

The SCHC compression mechanism is based on a static context which must be configured at
both ends before the first SCHC Packet is transferred. In most LPWAN technologies, this is
performed when the device is bootstrapped, or updated with the latest application version. As
SCHC is widely used over new technologies, a need for Rule context exchange arises. Therefore,
an interesting future research direction is designing and evaluating new ways to perform the Rule
exchange and provide secure Rule access policies. This may include a specific CoAP POST request,
with the rule set encoded using Concise Binary Object Representation (CBOR) [146], or a SCHC
handshake-like message exchange.

SCHC provides two reliable F/R modes, i.e., ACK-on-Error and ACK-Always. SCHC Packets
are protected by the RCS, which allows the receiver to check the integrity of the F/R process and
confirm the correct reception of all SCHC Fragments. However, missing SCHC Fragments must
be retransmitted. One way to reduce fragment retransmission is to use Forward Error Correction
(FEC) techniques, where the sender adds redundant data to the original message, e.g., performs
the XOR operation on two fragments and sends the result in a third fragment. This will increase
the amount of data sent, but allows the receiver to perform error recovery. This is of special
interest in networks where retransmission can increase congestion, or to alleviate the amount of
downlink (SCHC ACK) traffic when fragmentation is performed in the uplink. As future research
work, design and evaluation of FEC techniques for SCHC can be performed and added to the
SCHC Convergence Profile.

Furthermore, wireless technologies where devices are not battery powered and bit rate and frame
size are not a limitation, may benefits from the SCHC framework. As these wireless networks scale
up, traffic can cause congestion. Therefore, to reduce congestion and improve reliability, SCHC
C/D and F/R can be used. With C/D, the objective is to reduce the amount of overhead traffic
sent, while F/R provides reliability, i.e., using ACK-on-Error mode. The SCHC Convergence
Profile can be used with these technologies, as it provides an out-of-the-box F/R mode. The
design and performance evaluation of the SCHC Convergence Profile over these technologies is
another promising future research direction.

There are currently efforts to provide SCHC with an Ethernet number and UDP port [147].
This allows to use SCHC over Ethernet links, allowing the link to be aware that SCHC compression
is applied to the following data. Using the SCHC Ethernet number and UDP port, defining use
cases, and evaluating them is another promising future research direction.

The popularization of satellite IoT opens opportunities to the SCHC framework, as it can
also be applied in this context. Future research directions may focus on extending the SCHC
Convergence Profile to include satellite IoT connectivity, more specifically on the connectivity
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singularities of satellite links, e.g., how the device receives the downlink messages.
During the design, implementation and evaluation of the SCHC over Sigfox profile, we saw that

the message size in some use cases is small, i.e., fits in one L2 frame, and tends to be periodic,
i.e., one message each specific number of minutes or hours. These messages lack a retransmission
mechanism and since IPv6 is not involved, SCHC compression is not needed. Therefore, SCHC
may be used for reliably sending messages spread across the day with one Compound ACK message
at the end of the day. As messages are generated and sent, there is no notion of a SCHC Packet.
This produces problems with the RCS as defined in [6], as the device needs to save all messages
sent and then calculate the CRC32 to be attached to the last SCHC Fragment. On the other hand,
the receiver cannot deliver any measurement to the application, as the complete SCHC Packet has
not arrived. This was solved in the SCHC over Sigfox Profile by defining a new RCS mechanism,
which leverages the L2 integrity check.

A future research direction would be to produce a new F/R mode for a continuous stream
of messages. Instead of sending a SCHC Packet, what is sent is a continuous stream of SCHC
Fragments, each being a self-contained message, such as, a sensor measurement or device location.
If the L2 does not provide integrity check, each SCHC Fragment may include it. Each time a
window of fragments is completed, a SCHC Compound ACK message can be sent. Afterwards,
the sender can continue with the transmission of SCHC Fragments from the next window. When
SCHC Fragment transmissions pertaining to the last window are completed, the window number
can be reset and the transmission of SCHC Fragments can continue (the DTag value can be
increased in each cycle). Whenever the connection is aborted, the next transmission can start with
the first window and a new DTag number. Design and evaluation of such F/R profile can be an
interesting future research direction.
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[116] R. Muñoz, J. Saez Hidalgo, F. Canales, D. Dujovne, and S. Céspedes, “SCHC over Lo-
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