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Abstract

This thesis studies, using simulation and experiment, the motional dynamics

of a single atom in an optical dipole trap. The optical dipole trap we study

is a single-beam, red-detuned, far-off-resonance trap (FORT). This FORT is

located at the centre of an arrangement of four high-NA lenses in the “Maltese

cross” geometry, which facilitates measurements based on atomic fluorescence.

We make a detailed study, combining simulation with experimental measure-

ments, of the temperature of the atom in this system. We note reasons why a

single-temperature description could fail to describe the motional statistics of

the atom in the trap. We then study the sensitivity of an established method,

the release-and-recapture, to a possible anisotropic temperature distribution

of the atom.

We also measure the extinction produced by the atom, from which we extract

a lower bound on the strength of interaction. Finally, we show with simulation

results and experiments, how parametric excitation of the atom in the FORT

can be used to manipulate its phase-space distribution, which can lead to an

effective decrease or increase of the atom’s kinetic energy.



Resumen

Esta tesis estudia, mediante simulación y experimentos, la dinámica del movi-

miento de un solo átomo en una trampa de dipolo óptico. La trampa de dipolo

óptico que estudiamos es una trampa fuera de resonancia (far-off-resonance

trap, FORT) de un solo haz, desintonizado hacia el rojo. Esta FORT está

ubicada en el centro de cuatro lentes de alta apertura numérica en la configu-

ración “Maltese cross”, que facilita las mediciones basadas en la fluorescencia

del átomo.

Realizamos un estudio detallado, combinando simulaciones y experimentos, de

la temperatura del átomo en este sistema. Señalamos las razones por las que

el modelo del átomo con una temperatura única puede fallar al describir las es-

tad́ısticas de su movimiento en la trampa. Además, estudiamos la sensibilidad

del ya establecido método “release and recapture” a una posible distribución

anisotrópica de la temperatura del átomo.

También medimos la extinción causada por el átomo, a partir de la cual extrae-

mos un ĺımite inferior de la fuerza de interacción. Finalmente, demostramos

con resultados experimentales y de simulaciones, cómo la excitación paramétrica

del átomo en la FORT puede ser utilizada para manipular la distribución de su

espacio de fase, llevando a una disminución o aumento efectivo de su enerǵıa

cinética.



Resum

Aquesta tesi estudia, mitjançant simulació i experiments, la dinàmica del movi-

ment d’un sol àtom en un parany de dipol òptic. El parany de dipol òptic que

estudiem és un parany fora de ressonància (far-off-resonance trap, FORT) d’un

sol feix, dessintonitzat cap al vermell. Aquesta FORT està situada en el centre

de quatre lents d’alta obertura numèrica en la configuració “ Maltese cross” ,

que facilita els mesuraments basats en la fluorescència de l’àtom.

Realitzem un estudi detallat, combinant simulacions i experiments, de la tem-

peratura de l’àtom en aquest sistema. Assenyalem les raons per les quals

el model de l’àtom amb una temperatura única pot fallar en descriure les

estad́ıstiques del seu moviment en el parany. A més, estudiem la sensibili-

tat del ja establert mètode “release and recapture” a una possible distribució

anisotròpica de la temperatura de l’àtom.

També mesurem l’extinció òptica causada per l’àtom, a partir de la qual ex-

traiem un limiti inferior de la força d’interacció. Finalment, vam demostrar

amb resultats experimentals i de simulacions, com l’excitació paramètrica de

l’àtom a la FORT pot ser utilitzada per a manipular la distribució del seu

espai de fase, portant a una disminució o augment efectiu de la seva energia

cinètica.
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Chapter 1

Introduction

1.1 Motivation and state-of-the-art

Light-matter interaction is a topic that has been extensively studied since the

advent of the laser. Although radiation pressure has been known since Kepler’s

explanation for the fact that the tails of comets always point away from the

sun, and Otto Frisch in 1933 was able to deflect an atomic beam of sodium

using light from a sodium lamp [1], it was the laser that boosted this field. The

laser enables a controlled interaction, in which light frequency, polarization,

and power can be tailored to produce remarkable effects on matter. In 1970,

Arthur Ashkin demonstrated the use of the optical dipole force to accelerate

and trap micron-sized particles [2]. After this milestone, other proposals for

using radiation pressure to confine atoms appeared, culminating in the work of

Raab et al. [3], who, in 1987, reported the first magneto-optical-trap (MOT)

for neutral sodium atoms.

Studies of individual trapped atoms began in the 1970s, with the work of

Wolfgang Paul [4] and Hans G. Dehmelt [5, 6] on single trapped ions, which

was recognized with the Nobel Prize in Physics in 1989. It wasn’t until much

later, in 2001, that the development of the optical dipole trap for single neutral
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Introduction

atoms started with Schlosser et al. [7], which demonstrated a diffraction-

limited (numerical aperture, NA = 0.7) focusing objective inside a vacuum

chamber that allowed for a sub-micrometer trap and fluorescence collection

from a single 87Rb atom. They later used this same system to trap two

atoms in separate dipole traps and interfere the emitted photons [8], and also

to manipulate a qubit stored in the atom [9]. The multi-lens objective was

afterward replaced by a simpler system by Sortais et al. [10] that consisted

of a single high-NA aspheric lens (NA = 0.5), and this new setup was used to

show the coherent transfer of a qubit between two dipole traps [11].

In 2008, Tey et al. [12] implemented a system with two co-axial high-NA lenses

aligned to a mutual focus, and reported a 9.8% extinction of a light beam by

a single 87Rb atom. The same group later studied single-atom-single-photon

interaction and demonstrated that envelope tailoring of the single photons

enabled precise control of the photon–atom interaction [13]. By illuminat-

ing coherently through both lenses, similarly to what is done in so-called 4π

microscopy, the same group observed an extinction of 36.6% [14].

In the work of Nogrette et al. a similar setup was implemented, where they

demonstrated single-atom trapping in two-dimensional arrays of microtraps

with arbitrary geometries [15], that later allowed for a setup of single Rydberg

atom arrays, opening the way to investigate the physics of spin systems with

tens of particles [16].

Other groups, using similar systems, have reported the use of a standing-wave

to trap a single Cesium atom [17]; investigation of state-dependent fluores-

cence in 87Rb [18]; new cooling mechanisms that can be applied to a single

atom in a dipole trap [19]; the near-complete control over all the internal and

external degrees of freedom of two laser-cooled 87Rb atoms trapped in two op-

tical tweezers [20] and the entanglement of remote qubits using spin-exchange

interactions [21].

Potential applications of these single-atom trapping techniques range from

fundamental atomic physics and quantum optics to quantum technologies. In

2
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single-atom quantum optics, interesting phenomena remain to be investigated,

including the unconventional quantum correlations of light emitted by a single

atom [22], the Hong-Ou-Mandel effect with a single atom as the beam-splitter

and one- and two-photon processes such as stimulated emission.

Most of the previously shown configurations for the single-atom trap involved

one or two high-NA lenses. The “Maltese cross” configuration, demonstrated

by our group in [23] and used for the experiments in this Thesis, employs four

lenses, one along each of the cardinal directions, positioned to have a mutual

focus. Similar four-lens systems have been built both before [18] and after

[24] ours. Interestingly, no two of these systems were aligned with the same

method: [18] employed a reference sphere, [24] employed precision-machined

lens-mounts, and our experiment employed wavefront measurements [23] to

position the lenses for a diffraction-limited mutual focus. Although all of these

systems have similar collection solid angles, and collect light emitted into four

directions, to our knowledge our system was the first to demonstrate that this

multi-axis collection can be diffraction limited when using a significant part

of the lenses’ numerical aperture [23].

1.2 Atom temperature

For both quantum science and quantum technology, the simplicity of the single

trapped atom is one of its most appealing features. Typically, the internal state

of the atom can be described by just a few discrete quantum observables, for

example the hyperfine quantum number F and the magnetic quantum number

mF . The motional state of the atom is described by six continuous-valued

observables, the position and momentum of the atom in three dimensions.

A typical laser-cooled atom in a FORT has a mean energy far above the

motional zero-point energy, meaning that many motional quantum states can

be occupied. To avoid the complexities of describing this motion, it is common

to 1) represent the motional state by a single number, a temperature, and 2)

3
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treat the center of mass motion classically1. This preserves the simplicity of

the atomic description, but also implies assumptions about the atomic motion,

namely that it can be described statistically by a Boltzmann distribution.

At the same time, there are reasons to expect that a single laser-cooled atom

in a FORT should not be described by an isotropic Boltzmann distribution.

The reasons, discussed in greater detail in later chapters, derive from the lack

of interaction of the atom with a macroscopic reservoir, and the asymmetry of

the trapping and cooling processes. A portion of the thesis is thus dedicated to

discussion of the concept of temperature itself, and its application to a single

atom in an optical dipole trap.

The statistical distribution of the atom’s position is important for many top-

ics in single-atom science and technology. To name a few: 1) ac Stark shifts,

proportional to the intensity of the FORT light at the position of the atom,

cause position-dependent level shifts. Spectral line shapes and their interpre-

tation thus depend on the atomic position distribution [25]. 2) The Rydberg

blockade is used in quantum computation and quantum simulation with neu-

tral atoms, and is based on dipole-dipole coupling at microwave frequencies.

Movement of the atoms in their respective traps creates fluctuations in the

strength of the dipole-dipole potential that can affect gate fidelity [26]. 3)

Optical dipole-dipole coupling ordered atomic arrays, of interest for creating

optical media with extraordinary properties not found in random media, is

even more strongly dependent on atom position [27].

For these reasons, measurement of atomic temperature is important, and a

great many single-atom experiments report a temperature. The most com-

monly used method is known as “release-and-recapture.” We study the sen-

sitivity of this technique to possible anisotropies in the position/momentum

distribution. We’ll also show how the motional dynamics of the atom in the

1With exceptions for techniques like sideband cooling, that are best described using quan-
tized motional states.
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trap can be manipulated and used for extra heating and cooling. The charac-

terization of the strength of the light-atom interaction in our system will also

be presented.

1.3 Thesis outline

The Thesis is organized as follows:

• In Chapter 2 the background theory is presented. Key concepts are

explained, such as the main features of the atom used in the experiments

described in this Thesis, 87Rb; the brief overview on magneto-optical-

traps; the optical dipole trap potential and light shifts; and finally the

discussion regarding the concept of “temperature” in atom cooling and

in particular for a single-atom in a dipole trap.

• In Chapter 3 the experimental setup is presented. We describe the im-

plementation of the single-atom trap, including the Maltese cross con-

figuration for the lenses, the magneto-optical-trap (MOT), the far-off-

resonance trap (FORT), the locking of the cooler, repumper and FORT

lasers. We describe a photon-counter implmented in arduino and ex-

plain the alignment for the collection of atom fluorescence from the four

lenses.

• In Chapter 4 the temperature measurements and simulations are dis-

cussed. We present the available techniques, their implementation in

our system, and show the limitations of the release-and-recapture tech-

nique.

• In Chapter 5 an extinction measurement is reported. The geometry, with

linearly polarized FORT orthogonal to the applied bias magnetic field,

is novel. We discuss its relation to the previously-studied geometry with

parallel magnetic field, FORT circular polarization, and circular probe

5
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polarization. This new geometry gives a lower limit of the light-atom

coupling strength.

• In Chapter 6 the parametric excitation measurement and simulations

are reported, where the modulation of the FORT power at twice the

resonant frequency can be used for heating or cooling of the atom.

• Chapter 7 presents the conclusions and outlook of this Thesis.

6



Chapter 2

Background theory

Atom cooling and optical dipole traps have been extensively reviewed in the

literature and textbooks [28–30]. In this Chapter we introduce the concepts

that are pertinent and often appear in this Thesis, following the above-cited

references. We also discuss the concept of “temperature” for a single-atom in

a dipole trap.

2.1 Rubidium

In experimental atomic physics alkali metals are widely used. Their electronic

structure with one valence electron allows a simple theoretical model for its

energy levels, which follows similarly the level structure of hydrogen. Alkali

metals also allow cycling transitions, which facilitates the implementation of

atom cooling proposals by radiation pressure.

Rubidium (Rb) is an alkali metal with atomic number Z = 37. It is naturally

found in two isotopes, 85Rb (72.17%) and 87Rb (27.83%), the first being sta-

ble. The lifetime of 87Rb is 4.9 × 1010 yr, and this is the isotope used in the

experiments described in this Thesis. Its mass is m = 1.443 161 × 10−25 kg,

7
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its nuclear spin is I = 3/2, and the transition hyperfine structure is shown in

Figure 2.1.

Figure 2.1: 87Rb D1 and D2 transition hyperfine structures. Frequency
values taken from [31].

2.2 The magneto-optical trap (MOT)

To have a single-neutral-atom trap is necessary to have a reservoir of cold

atoms from which the trap can be loaded. The technique we employ to have

such a reservoir is a magneto-optical trap (MOT). In the classic MOT ge-

ometry, which we use in our experiment, three pairs of red-detuned “cooler”

laser beams propagate along the Cartesian axes. Along each axis, the beams

counter-propagate, with opposite circular polarization, which leads to a velocity-

dependent force directed opposite to the atom’s direction of movement. A

8
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quadrupole magnetic field is applied, which gives (in lowest order) a linear

gradient around the point with zero field. By the Zeeman effect, the shift of

the atom’s internal energy levels will lead to a restorative force that will push

it towards the zero of the magnetic field. By combining these two elements,

light and magnetic fields, the MOT can cool and trap an ensemble of atoms.

2.3 The far-off-resonance trap (FORT)

Optical dipole traps generate a trapping potential using the interaction of a

laser field with the oscillating electric dipole moment induced in the atom by

that same field. In an approximation that is more accurate when the laser is

farther off resonance, the resulting force can be described by a conservative

potential proportional to the intensity of the driving laser field, plus a scatter-

ing force due to the (infrequent) scattering of laser photons by the atom. By

choosing a proper beam shape, this interaction can be used to create a tight

trap potential. For a far-detuned laser field (far-off-resonance trap, FORT),

the effective potential and the scattering rate are given by

UFORT(r) =
3πc2

2ω3
0

Γ

∆
I(r), (2.1)

Γsc(r) =
3πc2

2ℏω3
0

(
Γ

∆

)2

I(r), (2.2)

where r = (x, y, z), c is the speed of light, ω0 is the two-level transition fre-

quency, Γ is the natural linewidth of the two-level transition, I(r) is the light

intensity and ∆ = ω−ω0 is the detuning from the laser field frequency ω [30].

By tightly focusing a single far-red-detuned Gaussian beam, one creates a

potential well where atoms can be confined1. In this scenario, the intensity

1In the experiment described in this Thesis, only one atom is confined, and the reason
will be explained in the next Section.
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distribution I(x, y, z) is given by

I(x, y, z) =
2P

πw2(z)
exp

[
−2

x2 + y2

w2(z)

]
, (2.3)

where P is the total power of the beam,

w(z) ≡ wFORT

√
1 +

(
z

zR

)2

, (2.4)

wFORT is the beam waist defined as the 1/e2 radius of intensity and zR =

πw2
FORT/λ is the Rayleigh range, with λ the wavelength of the FORT. For

practical values of wFORT, the FORT potential is tighter in the radial direction

(x, y) than in the longitudinal one (z), as illustrated in Figure 2.2.

The same field-dipole interaction used to trap the atoms also introduces a

shift in the internal energy levels of the atom: the ac Stark shift. For a

two-level atom, the ground state ac Stark shift shift is ∆E = UFORT, and

the excited state shift is ∆E = −UFORT, meaning that if the ground state

experiences a trapping potential, the excited state experiences an anti-trapping

potential. For 87Rb, which is not a two-level atom, the ground state ac Stark

shift coefficient can be calculated from second-order perturbation theory [32]

or using Floquet methods [33]. Both values are present in this Thesis, denoted

by β′ and β, respectively. If we assume the latter, the trapping potential can

be written as

UFORT(x, y, z) = β
2PFORT

πw2(z)
exp

[
−2

x2 + y2

w2(z)

]
, (2.5)

where β ≈ −6.39× 10−36 Jm2W−1 for λ = 852 nm.

A common approximation that is done for the trapping potential is called

the harmonic approximation: if kBTatom/UFORT(0, 0, 0) ≪ 1, meaning that

the thermal energy of the atom kBTatom (kB is the Boltzmann constant and

Tatom is the atom’s temperature, to be discussed later), is much less than the

potential depth, we can assume that the atom only explores the bottom of the

10
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UFORT
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Figure 2.2: The FORT potential in mK as a function of position (x, z)
for its true function (red and blue, respectively) and the harmonic approx-
imation (orange and cyan, respectively), for PFORT = 7.0mW, wFORT =

1.65µm and λ = 852 nm.

FORT potential, and therefore we can expand UFORT in a power series and

take the second order approximation, which leads to the FORT potential

UFORT(x, y, z) ≈ U0

[
−1 + 2

x2 + y2

w2
FORT

+
z2

z2R

]
, (2.6)

where U0 = −UFORT(0, 0, 0). The trap depth is often given in temperature

units, i.e., as TFORT = U0/kB.

This harmonic approximation of the FORT potential is thus the sum of a

constant −U0 and harmonic oscillator potentials U(x) = mω2
⊥x

2/2, U(y) =

mω2
⊥y

2/2 and U(z) = mω2
∥z

2/2. The atom will have two frequencies of oscil-

lation, one parallel to the propagation axis of the FORT, ω∥ (longitudinal),

and one perpendicular to it, ω⊥ (transverse), that can be written as

ω⊥ =

√
2U0

mz2R
, ω∥ =

√
4U0

mw2
FORT

, (2.7)
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-20 -10 10 20
x, z (μm)

-15

-10

-5

UFORT
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Figure 2.3: The FORT potential in MHz as a function of position (x, z)
for its true function (red and blue, respectively) and the harmonic ap-
proximation (orange and cyan, respectively), for PFORT = 7.1mW and

wFORT = 1.65µm.

where m is the 87Rb mass.

2.3.1 The single-atom trap: light-assisted collisions

By tightly focusing the FORT beam, to a size comparable to its wavelength,

and having the FORT being illuminated by a red-detuned near-resonant light,

we can achieve a “collisional blockade” regime [34] where light-assisted colli-

sions (LACs) [35] guarantee, at any given time, either the presence of one or

no atom in the FORT. The reason for this is the following: if two atoms enter

the FORT, and both are in the ground state S, they interact via the van der

Waals potential V ∼ −1/r6 (where r is the interatomic distance). However,

due to the presence of the near-resonant red-detuned light, one of the atoms

can get excited to the P state, which will cause the two atoms to form a loosely

bound pair with one atom in the S state and the other in the P state. This

leads instead to an interaction through the long-range dipole-dipole attractive

12
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Figure 2.4: Energy level shifts of the ground F = 2 and excited state
F ′ = 3 of 87Rb D2 line caused by the ac-Stark shift, computed as in
[33] for our typical FORT configuration PFORT = 7.1mW and wFORT =
1.65µm, linearly polarized. Arrows indicate the blue shift in MHz of the
|F = 2,mF ⟩ → |F ′ = 3,mF ′⟩ transitions. Quantization axis along the po-

larization direction of the FORT beam.

potential of the form V ∼ −1/r3. The difference of energy ∆E, showed in

Figure 2.5, that the pair experiences, before it decays to the ground state, can

cause it to gain enough kinetic energy that exceeds the FORT depth U0, thus

leading to the loss of both atoms and guaranteeing that we have only a single

atom in the FORT.

2.4 The concept of temperature in cold atom sys-

tems

A large part of this Thesis concerns the temperature of single trapped atoms

and the measurement of these temperatures. In macroscopic systems, tem-

perature is an intuitive concept that has been given a rigorous formulation
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Figure 2.5: The LACs process scheme, details in the text. Reproduced
from [35].

in the theories of thermodynamics and statistical physics. The situation is

not so clear for microscopic systems such as single atoms. Nonetheless, the

concept of temperature is useful and very widely used. In this section I make

several observations about temperature and its applicability in the context of

single-atom experiments.

2.4.1 Thermodynamic temperature

Temperature is a basic concept in statistical mechanics and thermodynamics,

and strictly speaking is only defined for systems in equilibrium. Macroscopic

systems reach an internal thermal equilibrium by sharing energy and entropy

among many degrees of freedom. The resulting state is characterized by a tem-

perature, which is defined as the partial derivative of the internal energy with

respect to the entropy. This formulation of temperature implies, among other

things, that heat will flow only from hotter objects to colder ones, because

flow in the reverse direction would reduce the net entropy, in violation of the

second law of thermodynamics. A microscopic system in thermal contact with

a macroscopic system (a “bath”) will also reach an equilibrium characterized

by a temperature, which will be equal to the temperature of the bath [36].
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At equilibrium, the probability distribution for the energy of the microscopic

system will be described by the Boltzmann distribution. In a quantum me-

chanical description, the corresponding state is described by a density matrix

ρ = Z−1e−H/kBT (2.8)

where H is the Hamiltonian, T is the temperature, kB is the Boltzmann con-

stant, and Z is a normalization constant known as the partition function. In a

classical description, the system will be described by a phase-space probability

distribution with a density function given by

f(q,p) = Z−1e−H(q,p)/kBT (2.9)

where q is a vector of coordinates, and p is the vector of corresponding con-

jugate momenta. The probability for the system to be found in a small region

of size dnq dnp around (q,p) is f(q,p)dnq dnp.

2.4.2 “Temperature” of optical molasses

It is common in many contexts of cold atom physics to encounter a “tempera-

ture” for an atom or a collection of atoms. In some circumstances, for example

ensembles of atoms held in a conservative potential and interacting by elastic

collisions [37], the atomic system does have many coupled degrees of freedom

and can in fact reach equilibrium. In such situations, the classical concept of

temperature applies, just as it does to classical gases. In contrast, a single

trapped atom has only a few degrees of freedom, and in most circumstances

is not in thermal equilibrium with a reservoir. In such situations, there is no

temperature in the orthodox sense described above. Nonetheless, the statisti-

cal properties of an atom can often be correctly inferred from a “temperature,”

in the sense of the parameter in a Boltzmann or Maxwell-Boltzmann distri-

bution. One important and early example is optical molasses [38], in which

atoms experience optical cooling forces in the absence of trapping forces. The
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logic behind assigning a “temperature” in this situation is described by Lett

et al, which reviewed the understanding of optical molasses in 1989 [39]:

One may ask whether a laser-cooled atom or collection of atoms

can be said to have a temperature. Normally one considers a sys-

tem with a temperature to be in equilibrium with a reservoir, and

in this case the identity of that reservoir is not clear. Even if there

are many atoms, they do not interact with one another but only

with the radiation field. The radiation field, including the vac-

uum, may in some sense be a reservoir, but the sense in which

this may be true has not been made rigorous. Nevertheless, it

can be shown [F. Reif, Fundamentals of Statistical and Thermal

Physics (McGraw-Hill, New York, 1965)] that the solution of the

Fokker–Planck equation for a system acted on by a friction force

proportional to velocity . . . and with a random noise input in-

dependent of velocity, such as is provided by the random nature

of photon absorption and emissions in the small recoil limit, is a

Maxwell–Boltzmann distribution. Furthermore, our own Monte

Carlo simulations of the laser-cooling process for a single atom, in

which every emission and absorption is treated as a random event,

leads to a Maxwell–Boltzmann distribution, when averaged over

time. . . For this reason, we believe that we are justified in saying

that even a single Doppler-cooled atom, under the conditions of

small recoil velocity and small thermal velocity, has a tempera-

ture.

The small-velocity conditions referred to in the above quote can be found in

Dalibard et al. [40], which provides simple models of 1D polarization-gradient

cooling 2. These early works also suggest that a 3D molasses should be char-

acterized by a single “temperature,” and thus with a momentum distribution

2The conditions are, more precisely: the atom’s velocity vatom ≪ Γ/k, where Γ is the Ein-
stein A coefficient, k = 2π/λ, and λ the transition wavelength, and low saturation parameter
[40].
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that is isotropic, if the cooling is provided by beams with equal detuning and

intensity along the three Cartesian axes.

More recent works describe how non-Maxwell-Boltzmann velocity distribu-

tions can arise in laser cooling [41, 42], and stress that that isotropic mo-

mentum distributions are only expected for low velocities (v ≪ ∆/k, where

∆ = ω − ω0 is the detuning from the resonance) [43]. An analysis of the

time evolution of the velocity distribution for the 1D non-saturated case is

given in [44], which shows that even if initially Gaussian, the velocity dis-

tribution evolves to become non-Gaussian. There have been observations of

non-Gaussian velocity distributions in laser-cooled atoms and proposals for

other velocity distribution functions [45, 46] . To our knowledge, there have

been no studies of the precise velocity distribution for atoms in a 3D molasses

in the σ+-σ− configuration with significant saturation of the cooling transition,

which is the most common case for experiments.

(a) (b)

Figure 2.6: Wavefronts of cooler beams (in solid red) and the atom (in
yellow) moving towards the right and the constraint on its movement (blue

area) for the longitudinal (a) and transverse (b) motion.
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2.4.3 “Temperature” of a laser-cooled atom in a single-beam

FORT

As just described, the velocity distribution of a laser-cooled atom in free space

is already a fairly complex problem that may or may not lead to Gaussian dis-

tributions accurately described with a “temperature.” The situation becomes

still more complex when the atom is trapped. Trapping implies some kind of

restoring force, and thus a coupling between position and momentum degrees

of freedom. In practice, nearly all traps are spatially anisotropic, which then

suggests that the momentum distribution may also become anisotropic. We

thus expect to find different statistical distributions (and if these are Gaussian,

different “temperatures”) for different momentum components.

To illustrate this in the context of our experiments, we consider a strongly-

focused single-beam FORT like that described in chapter 3, and consider how

the anisotropic trap shape can influence the laser cooling mechanisms that

determine the momentum distribution.

The FORT is formed by a circular Gaussian beam with wavelength λ = 852 nm

and beam waist w0 = 1.65 µm, and thus Rayleigh range zR = πw2
0/λ ≈ 9.4 µm.

At a power of 7.1mW the longitudinal and transverse trap frequencies are

ω∥ = 2π × 6 kHz and ω⊥ = 2π × 51.4 kHz, respectively. Considering a typical

sub-Doppler cooling temperature of Tatom = 37µK and making the harmonic

approximation for the trapping potential, a Boltzmann-distributed position

has r.m.s. widths3 of σx = σy ≈ 0.2µm in the radial directions (x and y) and

σz ≈ 1.6µm in the longitudinal direction (z).

The cooling lasers are pairs of counter-propagating beams with a σ+-σ− po-

larization scheme. Considering just one pair for the moment, these produce a

corkscrew of linear polarizations with a spatial period of λ/2 ≈ 0.4 µm. For an

atom with a typical thermal energy, it is thus possible to travel by multiple po-

larization periods along the longitudinal direction, whereas for the same atom

3The given values are standard deviations of the Maxwell-Boltzmann distribution: σx =

σy =
√

kBTatom/mω2
⊥, σz =

√
kBTatom/mω2

∥.
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this is not possible in the transverse direction. This is illustrated in Figure 2.6.

We may thus expect that cooling mechanisms such as Doppler cooling [47] and

polarization-gradient cooling [40], each of which requires sustained motion on

the scale of the optical standing wave, could act differently on the longitudinal

and transverse directions.4

A second reason to expect an anisotropic momentum distribution comes from

the theory of optical dipole forces. The optical dipole force arises due to

intensity-dependent light shifts [48]. For red-detuned trapping light, as in the

FORT, this light shift is toward lower energies for the 5S1/2 ground states,

but toward higher energies for the 5P3/2 excited states involved in the cooling

transition. So, while the FORT light produces a trapping potential for the

ground states, it also produces for the excited states an anti-trapping potential,

i.e., a force away from the center of the trap [49, 50]. If the atom spends some

time in the excited state, for example due to excitation by the FORT light

[48] or by cooler light [51], the time spent in the excited state both alters the

mean restoring force, and makes it noisy. The latter effect is known as dipole

force fluctuations (DFF) [52]. Both effects can be explained qualitatively if

the atom spends a fraction of its time on the anti-trapping potential, with

the precise timing of transitions between the two potentials determined by

a combination of coherent processes, e.g. laser-driven Rabi oscillation, and

stochastic processes, e.g. spontaneous emission.

An interesting characteristic of DFF is that it adds noise along the optical

gradient, which is to say, parallel to the trapping force. Because the optical

gradient is much stronger along the radial directions than along the longitu-

dinal direction, this is a second way in which trap anisotropicity can produce

an anisotropic momentum distribution.

4Other phenomena could also lead to a disturbance in the cooling process, such as aber-
rations on the FORT beam, but will not be discussed in this Thesis.
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Chapter 3

Experimental setup

The single-atom is trapped by means of a far-off-resonance trap (FORT). This

FORT, at 852 nm, is loaded stochastically from a small atomic cold cloud of

87Rb provided by a magneto-optical-trap (MOT). Unlike other single-atom

trap configurations [53–55] which have one or two lenses, ours has four lenses,

which doubles the available solid angle and is versatile for experiments that

require new access and collection angles. The experiments described in this

thesis use an experimental system that was constructed starting in 2016, and

is described in two journal publications [23, 56] and a PhD thesis [57]. In

this Chapter, we give brief descriptions of each component of the system,

and also provide additional details, including the alignment process for the

FORT and the MOT, the layouts of optical setups for laser stabilization, the

construction of a photon-counter based in an Arduino Due board and the

lenses path alignment.

3.1 The Maltese cross four-lens configuration

The starting point of the experimental setup is the four-lens system geometry

developed mainly by Dr. Natalia Bruno in 2017 and published in [23]. This
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system has four high Numerical Aperture (NA=0.5) lenses in the cardinal di-

rections aligned to a mutual focus in a configuration that we call the Maltese

cross. They were glued to a Macor base (a type of ceramic) and the align-

ment procedure, described in [23] and [57], accomplished high-NA common

diffraction-limited foci, see Figure 3.1. The lenses are anti-reflection coated to

cover the wavelengths used in the experiments, namely, 780 nm, 795 nm and

852 nm. Similar setups were realized in [24, 58].

(a) (b)

Figure 3.1: The Maltese cross configuration. (a) Top view: The four lenses
are glued to the Macor base following the procedure described in [23]. (b)
Top view: The Maltese cross name comes from the fluorescence pattern in
the Figure above when 780 nm resonant light is sent through two orthogonal
lenses while the vacuum chamber is filled with 87Rb vapor. Reprinted with

permission from [23] ©Optica Publishing Group.

The placement of the four-lens system inside the UHV (ultra-high vacuum)

chamber defines the coordinates used to describe the system in this thesis, as

can be seen in Figure 3.2. For more details on the UHV chamber and the

vacuum system, see [57].

3.2 The far-off-resonance trap (FORT)

The far-off-resonance trap (FORT) we employ is at 852 nm, for which we use a

distributed feedback laser DFB (Toptica Eagleyard EYPDFB0852), frequency

locked to the D2 line of 133Cs, specifically the transition 62S1/2, F = 4 →
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(a) (b)

Figure 3.2: (a) The four-lens system placed inside the UHV chamber with
the MOT magnetic field compensation coils surrounding the former. (b) Def-
inition of the coordinate system for the Maltese cross configuration. Gravity

is in the negative y direction.

62P3/2, F
′ = 5, using the modulation transfer spectroscopy (MTS) technique1

[59], and its polarization is vertical.

Once the four-lens system is placed inside the vacuum chamber, we have the

reference for the FORT alignment. The FORT has five parameters for align-

ment: position and direction (for both vertical and horizontal directions) and

divergence angle (focusing position). The first (see Figure 3.4a), which is for

the beam to pass straight through the center of L1 and L2, is set with the help

of the shearing interferometer (SI) and two cameras, the top camera (shows

the image of Figure 3.4b, Blackfly BFLY-PGE-03S2M, fixed) and a non-fixed

camera (Thorlabs DCC1545M-GL) that we place before the second dichroic

mirror (see Figure 3.3). The first image shows us roughly if the beam is pass-

ing through L1 (by the scattering it could have in the ceramic base) and the

second if it’s being cropped by L1 or L2 (the image of the beam should be

a clean gaussian profile without any cropping from the lens’ edge). By doing

beam walking with the two mirrors before the first dichroic mirror, the beam is

roughly aligned to pass through the center of both of these lenses. After this,

we check with the SI (see Figure 3.5, right) if the beam has any aberrations,

which would be translated as a wavy pattern in the image, if it has, we do

fine alignment with beam walking and again check that the beam is not being

1Explained for the cooler laser in Section 3.3.1.1.
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Figure 3.3: Optical setup for the main part of the experiment, with the
UHV chamber and the four-lens system placed inside it. Magneto-optical-
trap beams (in purple) pass through the gaps in between the lenses. The
far-off-resonance trap (FORT) beam is increased in size by a telescope and
its polarization is set to be vertical. The FORT beam shares its optical path
with the780 nm light collected from L1 and L2, and they are frequency split
by dichroic mirrors (Semrock FF825-SDi01). λ/2 stands for half-waveplate
and λ/4 quarter-waveplate. Cubes are polarizing beamsplitters (PBS). Fiber
collimators/couplers Schäfter+Kirchhoff 60FC-4-M15-02. Filter: bandpass
filters centered in the indicated wavelength. APD: avalanche photodetector.
MOT 5 and 6 (positive and negative propagation y direction, respectively)

not shown.

cropped by the lenses. This process is done iteratively until the fringes are

straight as possible. Another option is to center the FORT beam to both irises

that are placed on its path, again, making use of the non-fixed camera and

the mirrors before the first dichroic mirror. This alignment holds for weeks in

typical laboratory working conditions.

The divergence angle is set by a telescope (see Figure 3.3, in front of the FORT
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(a) (b)

Figure 3.4: (a) Illustration of the four-lens system glued to a base and
the FORT beam (in orange). (b) Representative image from the top camera
that shows the bright FORT beam passing through the middle of L1, which

we use as a reference for the first step of its alignment.

collimator) with the help of the SI and the non-fixed camera (see Figure 3.5).

With the image of the non-fixed camera, it’s possible to see the typical SI

fringes that shows if the beam is convergent, divergent or collimated, depend-

ing on its tilt. It also shows the presence of spherical aberrations, seen as

curvatures of the fringes (wavy pattern). Due to the fact that the lenses

were commercially made to collimate a laser beam, they were designed to be

diffraction limited when collimating the light emitted by a laser that is behind

a glass window. Since no window exists in our geometry, we need to send a

slightly convergent beam to eliminate the spherical aberration that appears

in the focus spot if we send a collimated beam. For this, the angles in the SI

image (measured as the yellow angle on the SI image of Figure 3.5) need to be

set equal and opposite by moving the second lens of the telescope. The waist

of the beam (at 1/e2 intensity level) at the lens position is wlens = 1.85mm,

measured by fitting its intensity profile in the non-fixed camera (propagated

outside the UHV chamber by the same distance it would propagate to reach

L1) to a gaussian, and the typical power used for the FORT is 7mW.
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Figure 3.5: Setup for measurement and optimization of FORT convergence
angle. Compare to central region of Figure 3.3: shearing interferometer
(SI) images of the FORT beam before and after the UHV chamber in its
optimal condition. Angles (in yellow, in the SI images) are ≈ 60◦ in optimal
configuration. The SI is not a permanent part of the setup, but rather is

placed in the indicated positions for these measurements.

3.3 The magneto-optical trap (MOT)

In this Section, I’ll explain how we set up the magneto-optical trap that will

produce the small cloud of cold 87Rb atoms from which the FORT is loaded.

3.3.1 Laser system

As described in Section 2.2, the MOT needs the cooler and repumper beams

(see Figure 3.6). In this Section, I’ll describe the laser system, published in

[56], mainly developed by Dr. Lorena Bianchet that generates these beams.
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Figure 3.6: Frequency scheme for cooler and repumper lasers used in the
MOT. F states are the hyperfine ground states 52S1/2 and F ′ the hyperfine
excited states 52P3/2 of 87Rb [31]. The typical value for the detuning of
the cooler beam is 3.9Γ, where Γ is the natural decay rate of the D2 line

Γ = 2π × 6.065MHz.

3.3.1.1 Cooler laser

As described in Section 2.2, the MOT configuration used in our experiment is

the classic geometry with six counter-propagating cooler beams and a single

repumper beam. These six cooler beams are derived from a distributed Bragg

reflector (DBR) laser (Photodigm PH780DBR080T8) locked using the mod-

ulation transfer spectroscopy (MTS) technique. This laser is at 780 nm and

its current and temperature are controlled with a Thorlabs LDC202C current

supply and Thorlabs TED200C temperature controller, respectively.

3.3.1.2 Modulation transfer spectroscopy

MTS is a nonlinear spectroscopy method that is particularly well-suited to

sub-Doppler stabilization of lasers to closed transitions of gases and vapors

[60, 61]. In a common implementation (and in this thesis, see Figure 3.7), MTS

passes two beams, a frequency-modulated “pump” beam, and an unmodulated
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“probe” beam, through a vapor cell in opposite directions with spatial overlap

of the beams and a power ratio between beams (pump/probe) bigger than

1. When the two beams are properly tuned, they compete to excite a specific

velocity group, and via this competition the frequency modulation of the pump

induces amplitude modulation of the outgoing probe. The probe beam is

detected with a photodiode and demodulated to recover an error signal that

can be used as a sub-Doppler frequency reference.

The theory of MTS is well described in [61], with the specific case of the 87Rb

D2 line described in [60]. Here we describe in detail the implementation of

the experiments described in this Thesis. See also [57, 62, 63] for related MTS

work with 87Rb.

Figure 3.7: Setup for locking of the cooler laser. λ/2 stands for half-
waveplate and λ/4 quarter-waveplate. Cubes are polarizing beamsplitters
(PBS). The power after the Faraday Isolator is 60mW, power of the probe
(in purple) is 109µW, power of the modulated pump beam (in orange) is
200µW. The power input in the auxiliary beam is 0.9mW and the output
is 500µW. The power input in “cooler beam to experiment” is 50mW. The

power that goes to the photodetector is 40µW.
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In the setup shown in Figure 3.7, the first two telescopes after the Faraday

isolator are there to correct the shape and increase the size of the beam,

respectively. The quarter-waveplate (λ/4) that follows corrects the slight cir-

cular polarization of the laser beam and then this beam is split into two: one

that goes to the experiment to cool the atoms and one that goes to the locking

part of this setup. The beam that goes to the locking is also split in two: a

probe and a pump beam. The pump beam (in orange) needs to be modu-

lated, as explained before, and for this, we pass it through an acousto-optical

modulator (AOM, Gooch&Housego 3100-125) in a double-pass configuration

where we take the -1 order. The AOM is controlled by a voltage controlled

oscillator (VCO, Mini-Circuits ZX95-148-S) where we set the VCO tuning

voltage to have its carrier frequency at 114.9MHz and a frequency modu-

lation of 1.85MHz. The probe beam (in purple) in also split in two: one

part is fiber coupled as an auxiliary beam, that will be later used to lock

the repumper laser, and the other part overlaps with the modulated pump

beam. Their power ratio is Ppump/Pprobe = 200µW/109µW = 1.84. The λ/4

quarter-waveplate between the iris and before the vapor cell behaves as if a

half-waveplate, and is used to optimize the error signal afterwards by control-

ling the power of the probe beam that goes to the photodetector. The resulting

amplitude-modulated probe beam is sent to a photodetector (Thorlabs PDA

10A-EC) and the output signal is later demodulated (by mixing it with the

modulation signal itself) to extract the error signal. The error signal is sent to

a digital PID controller implemented in a FPGA-based data acquisition board

(National Instruments PCIe-7842R) which outputs the signal that controls the

current driver of the laser and sets its frequency. This locking system achieves

2MHz full-width at half-maximum (FWHM) laser linewidth and frequency

stability for days.

It is important to note that the cooler laser is locked to the closed 52S1/2F =

2 → 52P3/2F
′ = 3 87Rb transition with respect to the pump light, that has

a red-shifted optical frequency (due to double-passage through the AOM) of

−2 × 114.9MHz, but the MTS only transfers the modulation at half of that
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frequency, so the “cooler beam to experiment” is blue-shifted from the closed

transition by +114.9MHz.

For the MOT, the cooler beam2 needs to be red-detuned from the closed

transition 52S1/2F = 2 → 52P3/2F
′ = 3 by a few natural linewidths (Γ), and

in our case, we chose it to be 3.94Γ = 3.94×2π×6.065MHz = 2π×23.9MHz.

To set the cooler detuning to this proper value, we use another AOM in a

double-pass configuration at −2× 69MHz.

3.3.1.3 Repumper laser

The repumper laser (Photodigm PH780DBR080T8, same current and tem-

perature controller models as the cooler laser) it is frequency stabilized with

respect to the cooler laser using a beat-note offset lock. The optical setup for

this can be seen in Figure 3.8, where again the telescope is there to correct the

laser output beam shape and we later split this light in two, one part that is

“Repumper beam to experiment” (input power of 46mW) and the “Beam to

lock repumper” (input power of 2.5mW). For the beat-note signal, we inter-

fere the last with the cooler “Auxiliary beam” in a 50/50 fiber beam-splitter,

with respective powers of 1.5mW and 500µW. One of the fiber beam-splitter

outputs, which carries the information of their frequency difference, is sent to

a photoreceiver (Oclaro PT10DC) that outputs a signal that is amplified and

later compared to a programmable frequency by a phase-locked loop (PLL)

board (Analog Devices EV-AD41020) that outputs the error signal used by

the same type of digital PID controller used in the cooler lock . With this, it is

possible to lock the repumper laser with a specific frequency difference from the

cooler. Since the repumper has to address the 52S1/2F = 1 → 52P3/2F
′ = 2

transition, it needs to be +6453MHz blue detuned from the cooler. For this,

the PLL lock is set at +6320MHz and the remaining needed frequency comes

from the AOM in double-pass configuration that controls the on/off of the

2For the sake of brevity, since the six beams are identical in their properties, I’ll refer to
the them as “cooler beam”, singular.
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repumper at +66.5MHz. This locking system achieves 2MHz full-width at

half-maximum (FWHM) laser linewidth and frequency stability for days.

Figure 3.8: Setup for the locking of the repumper laser. The output of
the Faraday isolator is reflected by two mirrors to a telescope and later split
by a λ/2 half-waveplate and a polarizing beamsplitter (PBS) cube in two
beams, one that goes to single-atom experiment and the one that is used to

lock the repumper laser via the beat-note.

For more details on the laser system, see [57].

3.3.2 MOT alignment

To split this one cooler beam into six, we use half-waveplates and PBS cubes

in a way that we can independently control their powers. Each of the MOT

beams, namely MOT 1,2,3,4,5 and 6, is fiber coupled and sent to the main

setup of the experiment depicted in Figure 3.3. In this way, just before the

UHV chamber, we set their powers (Thorlabs S121C photodiode power sensor

and PM100D digital monitor) to be (20 ± 1)µW for the horizontal beams

and (163 ± 8)µW for the vertical beams. Their diameters (defined as the
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1/e2 intensity level) are respectively 0.7mm and 2.0mm, measured by fitting

their intensity profile in the non-fixed camera to a gaussian. This gives an

cooler beam intensity I of I/Isat ≈ 3.2 with Isat = 16.69W/m2 the saturation

intensity of the D2 closed transition for σ± polarization. The repumper beam

is sent mostly through MOT 3, and its power is set to be at 20µW.

Figure 3.9: MOT beams illustration (in red) in the Maltese cross config-
uration. Horizontal beams (�H = 0.7mm, 1/e2 diameter) are smaller than
vertical (�V = 2.0mm, 1/e2 diameter) ones due to the spatial constraint of

1.2mm gap in between lenses.

Once the FORT beam is aligned to L1 and L2, we have the reference in

height for the horizontal MOT beams (MOT 1 and 3, see Figure 3.3). The

horizontal alignment for the MOT beams 1 and 3 is done by first passing the

beam through the middle of the UHV chamber window (rough alignment) and

observing with the non-fixed camera the output beam image and minimizing

the scattering from the lenses (fine alignment). Once these horizontal beams

are set, their counterpropagating counterparts (respectively, MOT 2 and 4)

are aligned to its respective pair fibre to fibre. Two 50mm diameter irises,

centred with respect to the upper and lower windows of the UHV chamber, are

used to align the vertical MOT beams. The vertical downward beam (MOT

6, not shown in Figure 3.3) is aligned to be centered with these irises, and

its counterpart, MOT 5, is aligned to it fibre-to-fibre. This procedure aligns

MOT 5 and MOT 6 along the vertical axis of the vacuum system to within

mechanical tolerances in positioning the irises and assembling the vacuum
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system. The four-lens assembly is similarly centered on this axis to within

mechanical tolerances. In practice, it is observed that when thus aligned,

these MOT beams overlap with the other MOT beams and a MOT can be

formed.

The optics for the MOT beams surrounding the UHV chamber are there to en-

sure proper circular polarization. Once the MOT beam polarization is cleaned

by a PBS cube and its power maximized by the half-waveplate before it, the

λ/4 quarter-waveplate is set to have right circular (σ+) polarization for MOT

2,4 and 6 and left circular (σ−) for MOT 1,3 and 5 measured by a polarimeter

(Thorlabs PAN5710IR1).

The magnetic fields necessary for the proper functioning of the MOT, namely,

compensation and gradient coils, are depicted in Figure 3.2a. The compensa-

tion coils are responsible to cancel any surrounding bias magnetic fields, and

each of the three pairs was designed to produce a constant magnetic field of

1.26 G in each coil axis x′, y′ and z3 when fed by a current of 1A. The current

values used are 0.2 G, 0.02 G, and 1.1 G, respectively. The gradient coils, re-

sponsible for giving a constant gradient in the trap region, are the pair of coils

that are adjacent to the z compensation coils in its innermost layer in Figure

3.2a, were designed to give 11 G/cm with 2.7A in the y direction. For the

MOT phase, this gradient is set to be 9.2 G/cm (y direction) and 4.6 G/cm

(x and z directions). For more details on the design of these coils, see [57].

3.4 Photon-counter in Arduino

To count and plot in real time the number of photons detected by the APD in a

chosen time bin, we use a combination of an Arduino Due microcontroller and a

LabView program. This is possible because the APD outputs TTL pulses that

can be detected by the Arduino Due in-built counters. The maximum voltage

3Note that the x′, y′ axes of the coils are rotated by 45◦ when compared to the coordinates
system of Figure 3.2b.
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that the Arduino Due board can take is 3.3V, and since the TTL pulses are at

5V, the APD output signal needs to pass through a voltage attenuator that

brings this voltage down to the necessary value. The Arduino-based photon-

counter was first tested with a square-wave input from a function generator at

10 kHz, and this gave counting values of 100±1. This was the average amount

of photon counts for a time bin of 10ms of the previous photon counting

system, a Fast ComTec P7888 Time-of-Flight photon counter.

The value of the counts for each subsequent time bin is shown in the serial

monitor of the Arduino IDE, and a LabView program imports it to make a

plot in real time. With the TTL pulses from the APD, the mean values of the

background counts, measured for the same duration, but not simultaneously,

were compared with both counters (Arduino Due and Fast ComTec), and they

agreed within their statistical uncertainty (standard deviation of the mean).

The Arduino Due can also output digital signals of 5V, and therefore the

number of counts can be used as a condition for a trigger signal that starts

experimental sequences upon the presence of atom in the trap. For more

details on the control system, see [57].

3.5 Alignment of beams passing through the high-

NA lenses and single-atom signal

With the FORT and MOT beams aligned as described above, we set the cooler

detuning to 1.94Γ and the x, z magnetic gradient to 6 G/cm. The region of

the MOT is imaged through L1 onto a CCD camera. If the imaging system

is properly focused, something that can be accomplished using the lens before

the camera, a single atom in the FORT can be seen as a bright and stationary

spot against the diffuse and moving background fluorescence created by the

MOT. This image of the single atom then provides a reference for alignment

of the optical fibre behind L2, as follows: We send light through the L2 fiber

in the direction of the atom. This light is focused by L2 to approximately the
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location of the atom, before being collected by L1 and imaged on the CCD

camera. Two spots, one from the atom and one from the fiber, are seen on the

CCD camera, and the L2 beam can be aligned so that they overlap. The focus

of the L2 beam is also adjusted, using the second lens (lens number 2 in front of

L2 fiber coupler in Figure 3.3) to minimize the spot as seen at the CCD. This

should produce a L2 focus at the location of the atom. The alignment of L2 is

then refined by collecting single-atom fluorescence into fiber and detecting with

an APD. Using the Arduino to count detections (as described in the preceding

section), it is possible to align the L2 path using single-atom fluorescence in

real time. Once this L2 alignment is optimized, the L1 path is aligned to

the L2 path. The same procedure with the CCD camera is performed for the

L4 and L3 path. With this, we can collect the fluorescence signal emitted

by the atom from these four directions and plot it in real time, as shown in

Figure 3.10. We note that the cooler detuning and magnetic gradient used

for these operations is different from the values used in other tasks with the

single atom, since in this stage of alignment it is necessary to maximize its

brightness. Regarding the loading rate, it can be changed by displacing the

MOT, by adjusting its compensation coils’ current. The background gas loss

rate is controlled by changing the current of the dispenser, which sets the flux

of atoms into the UHV chamber.
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Figure 3.10: Fluorescence collection from the four lenses (averaged back-
ground subtracted) showing the single atom being stochastically loaded in
the FORT. The atom’s presence is determined when the signal jumps to a

step level.
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Chapter 4

Temperature Measurements

Considering all the disclaimers of the previous Section 2.4, measuring a single

atom’s “temperature” in the FORT is still important for its characterization.

With this information, one can know what is the average kinetic energy of the

atom inside the FORT, and verify if the harmonic approximation (Tatom ≪
TFORT) is justified and the confining potential can be approximated by an

anisotropic quadratic function. It also determines how the AC Stark-shift

is perceived by the atom: since it will always have a finite temperature and

therefore will explore a certain region of the FORT, its resonant frequency will

change according to its position. Also, to check if a certain cooling technique is

effective in reducing the atom’s kinetic energy in the FORT and to understand

what is the cooling mechanism that is taking place, it is necessary to measure

this “temperature”.

To perform such measurement in our FORT in its typical configuration, we

used two techniques, namely, “release and recapture” and “adiabatic lowering

of the trap depth”. Each of them will be explained in the next Sections and

are widely used in single-atom traps [17, 64–66].
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4.1 Available techniques for temperature measure-

ment

In this section I’ll discuss and show the experimental results for the available

techniques to measure the single atom’s temperature in a FORT: release and

recapture and adiabatic lowering of the trap depth.

4.1.1 Release and recapture

The most common technique used to measure a single atom’s temperature

in a FORT is release and recapture, see for example [64]. Its experimental

implementation is rather simple: once the atom is trapped, the FORT is

turned off for a certain amount of time (∆t), after this release time, the FORT

is turned back on and it is checked if the atom was recaptured. Since there is

only a single atom in the FORT, there are only two possible outcomes, either

it’s recaptured or it’s lost. Which of these outcomes occurs depends on the

initial position and momentum of the atom, as well as on ∆t. In particular,

the position at the time the FORT is turned back on depends strongly on the

initial momentum of the atom. If this later position is sufficiently far from

the trap centre, the optical trapping forces will not be sufficient to recapture

the atom. Because of this, the probability of recapture PR gives information

about the phase-space distribution of the atom prior to release.

By repeating release and recapture trials for a number N of atoms, the prob-

ability of recapture PR can be estimated as

PR =
NR

N
, (4.1)

where NR is the number of recaptured atoms. In this way, PR is measured for

several values of the release delay ∆t. The resulting PR(∆t) data can be fit

with a model for PR(∆) computed using the known trap potential.
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It is common to follow [64] and assume a Maxwell-Boltzmann distribution

for the atom’s position and momentum coordinates prior to release. With

this assumption, the atom’s phase-space distribution, and thus the model for

PR(∆t), has only a single parameter, the temperature T that appears in the

Boltzmann distribution. In practice, it is convenient to numerically compute

PR as a function of T and ∆t by a Monte Carlo (MC) simulation.

The MC simulation calculates the atom’s ballistic motion after the FORT

is turned off. Assuming that we are in the harmonic approximation (T ≪
TD), the MC simulation first selects randomly from a normal distribution a

position-velocity starting condition (xi, yi, zi, vx,i, vy,i, vz,i), with the standard

deviations given by ∆x = ∆y =
√
kBT/mω2

⊥, ∆z =
√
kBT/mω2

∥ and ∆v =√
kBT/m, where m is the 87Rb mass. After the atom’s initial condition in

the FORT is set, the atom’s final position-velocity vector is calculated by the

ballistic motion equations during ∆t,

xf = xi +
1

m
px,i∆t

yf = xi +
1

m
py,i∆t− g(∆t)2/2

zf = xi +
1

m
pz,i∆t

pf,x = pi, x

pf,y = pi, y −mg∆t

pf,z = pi, z

(4.2)

where g is gravity’s acceleration. If, after ∆t, the atom has a total mechanical

energy Etot ≤ 0, where

Etot ≡
1

2m
|pf |2 + UFORT(x) (4.3)

and UFORT(x) is FORT potential energy (not in the harmonic approxima-

tion), the atom is considered recaptured. Repeating this sequence for a total

of Nsim = N number of atoms at a given T , the recaptured fraction fR is
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calculated as

fR =
NR,sim

Nsim
, (4.4)

where NR,sim is the number of recaptured atoms in the simulation. Repeating

this sequence for different values of ∆t and T , we have the simulated proba-

bility distribution fR(T,∆t).

4.1.2 Fitting

We would now like to fit the model fR to the data PR to estimate T . We

note, however, that fR is only known by MC simulation, and thus is noisy.

Also, PR is described by a binomial distribution, not a normal distribution.

Nonetheless, we can justify a χ2 fitting under the conditions we encounter in

practice. We first note that, for the binomial distribution with probability of

recapture P and N trials, the population variance in the fraction recaptured

is

var(Psample) =
P (1− P )

N
. (4.5)

and thus the population standard deviation is

σP ≡
√

var(Psample) =

√
P (1− P )

N
. (4.6)

Second, we note that if var(Psample) ≪ P , then P will be approximately nor-

mally distributed.

We can then identify the conditions under which we can apply the below

χ2 analysis, which is strictly speaking only appropriate for fitting normally-

distributed data. Using Equation 4.5, we compute the variances σ2
fR

and σ2
PR

from the corrsponding values for P and N . Then if σ2
fR

≪ σ2
PR

, the noise from

the simulation is small and can be ignored. And if σ2
fR

≪ f2
R and σ2

PR
≪ P 2

R,

the distributions of fR and PR are approximately normal. We can then ap-

proximate the maximum-likelihood estimator for T by the χ2 estimate. That
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is, we find Tatom, the value of T that minimizes

χ2(T ) ≡
∑
∆t

[fR(T,∆t)− PR(∆t)]2

σ2
R(∆t)

. (4.7)

The uncertainty of this estimate is given by [67]

δTatom =

√
2

∣∣∣∣∂2χ2(T )

∂T 2

∣∣∣∣−1

T=Tatom

, (4.8)

assuming that χ2(T ) is a quadratic function around Tatom.

Figure 4.1: An atom that initially had an energy E0 after being adiabati-
cally cooled by the reduction in the potential energy during tramp, will leave
the trap if its energy E is higher than the minimum potential energy Umin.

4.1.3 Measuring the atom’s energy distribution with adiabatic

cooling or adiabatic lowering of the trap depth

Another technique that has been used to infer the atom’s temperature is mea-

surement of the probability that the atom survives an adiabatic lowering of

the trap depth. This technique was first proposed and implemented in [17]

and later also used in [64] and it is illustrated in Figure 4.1.

Reducing the FORT depth1 from Ui to Umin, under the condition that the rate

of change is much slower than the trap frequency, the atom is adiabatically

cooled from its initial total energy Ui(0) + E0 to Umin(0) + E and will leave

1Experimentally, this means reducing the FORT’s beam power. For the sake of clarity in
abbreviation, this will be referred to as the FORT’s depth Ui and Umin.
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the trap if this is positive. Again, since there’s only one atom in the trap, the

outcome of this measurement is that either the atom survived or it was lost.

Reference [17] describes a method, using as a model the adiabatic evolution

of a 1D oscillator, of calculating the maximum E0 for which the atom will

remain in the trap, given values for Ui(0) and Umin(0). The model should not

be expected to exactly describe the dynamics of an atom in a 3D trap, but [17]

argues it is nonetheless a reasonable approximation, based on numerical 3D

simulations of the atom dynamics during a slow rampdown. One attractive

feature of this method is that it allows the distribution of E to be inferred

directly from PR(Umin), with no assumptions about the distribution of E. In

particular, there is no assumption of a thermal state.

As in release and recapture, for each value of Umin, the procedure is repeated

for N atoms. The probability of survival Psurv can then be calculated as

Psurv =
Nsurv

N
, (4.9)

where Nsurv is the number of atoms that survived the lowering of the trap

depth.

As the next step towards extracting the atom’s temperature from the data, it

is necessary to do a conversion from the minimum FORT power Pmin to Ei,

the maximum initial energy an atom can have and still remain in the FORT

(Ei is the border between remaining and escaping). This can be done based

on the conservation of the 1D action, due to the adiabatic process (page 154

from [68]). Defining the action as S(E,U) =
∫ xmax

0

√
2m[E − U(x)]dx, where

xmax is the turning point, we can map the energy Eesc = Umin into the initial

energy Ei. As it will be shown afterwards, solving the constant action equation

S(Ei, Ui) = S(Eesc, Uesc) for Eesc = Uesc = Umin in the direction of gravity (the

most probable axis that the atom will escape), we have a value of Ei for each

Umin. The atom will only survive this process if its initial energy is less than

the Ei set by Eesc = Umin.
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First, it is needed to convert the minimum FORT power Pmin to Umin using

the expression

Umin = β′ 2Pmin

πw2
0

, (4.10)

where

β′ =
Γ2ℏ
24Isat

(
1

δ1
+

2

δ2

)
, (4.11)

with Γ = 2π × 6.065MHz the natural decay rate of the D2 line of 87Rb,

Isat = 16.69W/m2 the saturation intensity, ℏ the normalized Planck constant,

δ1 and δ2 the frequency detuning of the FORT beam frequency relative to the

D1 and D2 transition, respectively [10], and w0 its 1/e2 waist. The previous

values give β′ ≈ 6.17× 10−36 Jm2W−1.

Next, we need to numerically calculate the values of Ei using the 1D conser-

vation of action

S(Ei, Ui) = S(Eesc, Uesc). (4.12)

Since Eesc = Uesc = Umin and we know every Umin, we must find Ei by solving

the equation

S(Ei, Ui) =

∫ xmax

0

√
2m

[
Ei −

(
1− exp

[
−2x2

w2
0

])
Ui −mgx

]
dx, 2 (4.13)

where m is the mass of 87Rb, g is the gravity acceleration3 and xmax is found

by solving the transcendental equation(
1− exp

[
−2x2max

w2
0

])
Ui +mgxmax = Ei. (4.14)

2The zero energy level of the system was chosen to be the minimum FORT potential
energy U(0).

3Note that gravity only plays an important role when the trap depth is shallow (≈ 10µK),
when the potential energy is notably tilted.
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Since we know the right hand side (RHS) of Equation 4.12, we must find

numerically Ei that solves the equation

∫ xmax

0

√
2m

[
Ei −

(
1− exp

[
−2x2

w2
0

])
Ui −mgx

]
dx = S(Eesc, Uesc), (4.15)

where

S(Eesc, Uesc) = S(Umin, Umin)

=

∫ xmax

0

√
2m

[
Umin −

(
1− exp

[
−2x2

w2
0

])
Umin −mgx

]
dx,

(4.16)

and (
1− exp

[
−2x2max

w2
0

])
Umin +mgxmax = Umin. (4.17)

First, we solve Equation 4.17 for the xmax that will solve 4.16 (the RHS of

Equation 4.12). Putting Equation 4.14 into Equation 4.13 (the relation is

simpler if we take Ei as a function of xmax than the other way around) and

numerically integrating it as a function of xmax, we equal this expression to the

solved RHS of Equation 4.12 and find the root that will give the value for xmax

and then we calculate Ei using Equation 4.14.4 With this calculation process,

we can map every minimum FORT power Pmin to the maximum initial energy

the atom should have to survive.

To extract a temperature from the data Psurv(Ei), we need to make the as-

sumption that the atom’s energy distribution in the FORT is thermal. With

this, its normalized Boltzmann energy distribution is

f(E) =
1

(2kBT )3
E2 exp

[
−E

kBT

]
, (4.18)

4Note that there are two different xmax, one for each side of Equation 4.12, we use the
one from the RHS to solve the one on the LHS.

43



Temperature Measurements

Figure 4.2: a) Experimental sequence for MOT beams and the FORT in
the release and recapture technique (not to scale). b) Observed recapture
fraction PR as a function of the release time ∆t (red circles), each point is
the result of 100 trials. Error bars show ± one standard error of PR assuming
a binomial distribution. Grey points show the recapture fraction observed
in a Monte Carlo (MC) simulation with Tatom = 37µK, and including a
∆t-independent 11% probability of losing the atom between recapture and
fluorescence detection. Inset: calculated χ2 value between PR and MC sim-
ulation (blue circles) for different temperatures T. Error bars show ± one
standard error of χ2 by propagation of error. A least-squares quadratic fit

χ2
fit(T ) (orange curve) finds Tatom = (37± 2)µK.

where E2 is the three-dimensional density of states5. Therefore, the prob-

ability that an atom has an energy less than a certain value E is given by

Psurv(E) =
∫ E
0 f(E′)dE′. We can then fit the data to

Psurv(y) = 1−
[
1 + y +

y2

2

]
exp[−y], (4.19)

with y = Ei/(kBT ) and T as the unknown variable.
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4.1.4 Experimental implementation: release and recapture

The experimental sequence we used for this technique can be seen in Figure

4.2a, it mostly followed the procedure described in [64]. After the atom is de-

tected in the trap, MOT beams and FORT are kept on for 40ms for cooling,

then the FORT is turned off for ∆t and then back on, after 100ms the MOT

beams are turned on again to check by its fluorescence if the atom was recap-

tured. The wait time of 100ms is introduced to ensure a temporal separation,

by multiple recording time bins (of 20ms), of the fluorescence counts before

and after the release and recapture from the FORT. This avoids possible sys-

tematic errors associated with synchronization of the FORT and MOT beams

to the data acquisition. We repeat this sequence N = 100 times for each value

of ∆t. The probability of recapture, PR, is calculated as Equation 4.1. Fol-

lowing the binomial statistics of this probability distribution, the uncertainty

σR in PR is given by

σR =

√
NR(1− PR)

N
(4.20)

In Figure 4.2b (red circles) we show the results for our typical trap configura-

tion, wFORT = 1.6µm and PFORT = 7.0mW.

To extract a temperature from the experimental results, we make use of the

Monte Carlo (MC) simulation described in Section 4.1.1. For our data, the

minimum of the χ2
fit(T ) (see Figure 4.2b inset) is at Tatom = (37±2)µK, where

we take the 1-σ lower confidence bound on ∂2χ2
fit(T )/∂T

2.
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Figure 4.3: Experimental time sequence for MOT and FORT beams in the
adiabatic lowering of the trap depth technique (not to scale).

4.1.5 Experimental implementation: adiabatic lowering of the

trap depth

The experimental sequence is the following (see Figure 4.3): after the atom is

detected in the trap (t0), MOT beams and FORT are kept on for 40ms (t1)

for cooling; the MOT beams are turned off; the FORT power is then reduced

from Pi to Pmin in 2.5ms (t2−t1); this value is kept constant for 20ms (t3−t2)

so the atom can leave the trap if it has sufficient energy; after this, the FORT

power is ramped back adiabatically to its initial value (t4 − t3) and we wait

25ms (t5 − t4) to check if the atom survived this process by turning on the

cooler and repumper and observe its fluorescence. The schematics for the

experimental sequence and the trap depth during the experiment can be seen

in Figure 4.3. Repeating this sequence N = 100 times for each value of Pi, the

probability of survival is calculated as Nsurv/N , where Nsurv is the number of

atoms that survived the process, the results can be seen in Figure 4.4.

By following the method described in Section 4.1.3, each Pmin was mapped to

Ei and the resulting curve, Figure 4.5, is fitted by Function 4.19 (normalized

5The E2 comes from an analysis in [69], a wrong approach is to consider it to be
√
E,

which was what [17] did first and then corrected with an Erratum [70].
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to 0.8 since that was the averaged survival probability for the points around

Ei/Ui = 1), from which we extracted Tatom = (35± 3)µK for our typical trap

configuration, wFORT = 1.6µm and PFORT = 7.0mW. We can see that this

results agrees well with the release and recapture measurement method.

Figure 4.4: Observed survival fraction as a function of the ratio between
minimum (Pmin) and initial FORT power (Pi). Uncertainty is calculated
following the binomial distribution, in the same way as in Equation 4.20 for

the release and recapture measurement.

4.1.6 Quantum jump spectroscopy as a thermometer

We have also made use of the quantum jump spectroscopy technique, described

in [25] and annexed to the end of this Thesis, to extract the atom’s temperature

in the FORT. As previously mentioned at the beginning of this Chapter, the ac

Stark shift perceived by the atom is dependent on its instantaneous position

in the FORT, and therefore, will be dependent on the atom’s temperature.

One could then extract the temperature of the atom in the FORT from its
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Figure 4.5: Same as Figure 4.4 but now the x-axis is a function of the
atom’s initial energy in the FORT, Ei normalized by the initial potential
energy Ui. Curve fit by a weighted non-linear least squares gives Tatom =

(35± 3)µK, with statistical uncertainty given by the fit.

resonant spectrum profile. For this, we note that the instantaneous light shift

seen by the atom is

∆eg = (δe − δg)IFORT(x) (4.21)

where δg, δe are the per-intensity light shifts of the ground and excited states,

respectively, and IFORT(x) is the instantaneous intensity of the FORT. The

optical potential is therefore

V = α∆eg, (4.22)

where α ≡ 2πℏδg/(δe− δg). Assuming the atom’s center-of-mass coordinate is

thermally distributed, the distribution of light shifts f∆ is given by a Boltz-

mann distribution f∆ ∝ exp [−βV ]ρ(V ), where β ≡ 1/(kBT ) and ρ(V ) is the

potential density of states.
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To determine ρ(V ), we note that given V (x), and defining v(V ′) as the vol-

ume of x-space for which V (x) < V ′, the potential density of states (PDoS)

is ρ(V ) ≡ dv(V ′)/dV ′|V ′=V . Considering a general second-order expansion

about the minimum (which we take to be at r = 0), we have V = Vmin +

(x2/a2 + y2/b2 + z2/c2), where Vmin is the trap minimum, x, y, z are spatial

coordinates along the principal axes of the quadratic potential, and a, b, c are

constants. The volume v(V ′) is that of an ellipsoid with semi-axis lengths

(a, b, c)
√

(V ′ − Vmin), i.e., v(V
′) = (4π/3)[(V ′ − Vmin)]

3/2abc. The PDoS is

then

ρ(V ) =

{
2π (V − Vmin)

1/2 abc V ≥ Vmin

0 otherwise

=

 2π
(
x2

a2
+ y2

b2
+ z2

c2

)1/2
abc V ≥ Vmin

0 otherwise
(4.23)

The probability density function (PDF) for the potential is thus (for V > Vmin)

f(V ) =
ρ(V )e−βV∫
d3x e−βV (x)

=
2π (V − Vmin)

1/2 abc e−βV∫
dx dy dz e−β(Vmin+

x2

a2
+ y2

b2
+ z2

c2
)

=
2√
π

√
V − Vminβ

3/2e−β(V−Vmin) (4.24)

which does not depend on a, b, or c, and thus is independent of the specific

form of the quadratic terms in the potential. The spectrum thus depends on

Vmin and on the temperature via β, but not first or second spatial derivatives

of V . With this, we have that the distribution of light shifts can be written as

f∆(∆) ∝
√
α∆− Vmine

−β(α∆−Vmin)β3/2 (4.25)

for α∆ > Vmin, and zero otherwise, see Figure 4.6. The line center reflects

the average light shift, which depends strongly on the maximum intensity

I
(max)
FORT ≡ maxxIFORT(x) and weakly on the temperature T , whereas the line
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width depends more strongly on T . Fitting the data of Figure 4.7 and using

a bootstrapping procedure to estimate the fitting uncertainties (described in

[25]), we find a temperature T = (36.7± 0.8)µK, in good agreement with the

previously independent measurements of the temperature.

Figure 4.6: The light shift distribution given by Equation 4.25 for the
single atom in our typical FORT configuration (PFORT = 7.1mW, wFORT =

1.65µm) for different values of T (indicated in the inset).

4.2 The release and recapture’s sensitivity and pre-

cision

In light of what was discussed in Section 2.4, a natural question is if the

presented techniques above are sensitive to different temperatures in different

axis. In order to check it, we did simulations in Julia to calculate the atom’s

dynamics in the FORT for the release and recapture experiment with both

equal and different temperatures for the different axis. This simulation and

results will be described in the next Section.
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Figure 4.7: Quantum jump spectroscopy of the 5S1/2, F = 1 →
5P3/2, F

′ = 2 transition in individual FORT-trapped atoms. Horizontal
axis shows detuning ∆νpr ≡ νpr − ν1→2′ from the unshifted ν1→2′ transi-
tion frequency. The vertical axis shows excitation efficiency η(νpr)/Γ = I−1

sat

computed via Equation (1) in [25]. Error bars indicate plus/minus one stan-
dard error. Curves show a fit with Equation (3) of [25], with FORT inten-
sity at trap center and atom temperature as free parameters. The fit finds

I
(max)
FORT = (1.593±0.005)×109 Wm−2 at trap center and T = (36.7±0.8) µK,

with r.m.s. statistical uncertainties found by bootstrapping.

4.2.1 Simulating the atom’s dynamics in the FORT

For our system, the Hamiltonian is H = p2/2m + V (q, t), where p is the

atom’s momentum, q the spatial coordinates (qi = x, y, z) and m is the 87Rb

mass. From Hamilton’s equation6 we have that

∂H

∂qi
= −ṗi =

∂V

∂qi
, (4.26)

∂H

∂pi
= q̇i =

pi
m
. (4.27)

6The motion of the atom in the FORT is governed by classical mechanics because the
average kinetic energy of the atom is much higher than ℏωF in our typical trap.
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Therefore, the atom’s dynamics is determined by the equations of motion

dpi
dt

= −∂V

∂qi
, (4.28)

dqi
dt

=
pi
m
. (4.29)

Inside the FORT, the potential V is given by

V (x, y, z) = β′ 2PFORT

πw2(z)
exp

[
− 2(x2 + y2)

w2(z)

]
+mgy, (4.30)

with β′ defined in Equation 4.11, PFORT the total FORT power, w(z) =

wFORT

√
1 + z2/z2R, zR = πw2

FORT/λ the Rayleigh length, g the gravity ac-

celeration constant and m the 87Rb mass.

Once given the starting conditions (which will be explained afterwards), the

ODEs 4.28 and 4.29 are numerically solved in Julia using the Tsit5() method

[71], with absolute and relative tolerances of 1× 10−4 and adaptive timestep-

ping, from the initial time ti = 0 (atom released) until the final time tf = ∆t.

After this, we verify if the atom was recaptured by the FORT using the con-

dition

Etot < 0, (4.31)

which is the same condition as for the release and recapture’s Monte Carlo

simulation. We repeat this calculation for a total of N atoms (meaning, N

starting conditions), and the probability of being recaptured is again

PR =
NR

N
, (4.32)

where NR is the number of atoms that were recaptured by the FORT. This

is the general calculation that will be performed in the simulation, what will
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change from one technique to the other is the shape of PFORT(t) over time,

which is qualitatively described by Figures 4.2(a) and 4.3.

4.2.2 Sensitivity of RR methods to anisotopic temperatures

Until this point we have assumed, as was assumed in prior works, a Boltzmann

distribution with a single temperature describing the six degrees of freedom

x, y, z, px, py, and pz. As we argued in section 2.4, there are reasons to expect

that, for a single atom in an optical dipole trap, different motional degrees

of freedom will have different “temperatures.” In this section we study the

degree to which existing temperature-measurement strategies can detect such

temperature anisotropy.

We first describe a two-temperature parametrized distribution, with one tem-

perature describing transverse motion and one describing longitudinal motion.

We then perform RR simulations to observe qualitatively the effect of these

temperatures on the observable PR(∆t) curves. We then apply estimation the-

ory to determine the sensitivity of the RR technique to the two temperatures,

identify the optimal value of ∆t for representative temperatures, and observe

that even when optimized to measure it, the RR technique is far less sensitive

to the longitudinal temperature.

4.2.3 Two-temperature parametrized distribution

As the simplest plausible distribution with temperature anisotropy, we con-

sider a phase space distribution composed of two independent Boltzmann dis-

tributions, one for the transverse degrees of freedom x, y, px and py and one

for the longitudinal degrees of freedom z and pz.
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These two distributions are parametrized by the “temperatures” Tx = Ty and

Tz, respectively
7. We can write the probability distribution function as

f(q,p) ≡ fxy(x, y, px, py)fz(z, pz) (4.33)

fxy(x, y, px, py) ≡ 1

4π2T 2
x

exp

[
− 1

2Tx
(x̃2 + ỹ2 + p̃2x + p̃2y)

]
(4.34)

fz(z, pz) ≡ 1

2πTz
exp

[
− 1

2Tz
(z̃2 + p̃2z)

]
(4.35)

where the variables with tildes over them are scaled coordinates defined such

that the expectations are E[x̃2] = E[p̃2x] = E[ỹ2] = E[p̃2y] = Tx and E[z̃2] =

E[p̃2z] = Tz:

q̃α ≡ qα

√
mω2

α

kB
(4.36)

p̃α ≡ pα
1√
mkB

(4.37)

for α ∈ {x, y, z}.

4.2.3.1 First observations regarding RR sensitivity to anisotropic

temperature

We generate starting conditions according to the PDF of Section 4.2.3, and run

RR simulations as described in Section 4.2.1 to obtain estimates of PR(∆t).

Taking Tx = Ty = Tz = 37 µK as the “typical” condition around which we

will vary, we first study the dependence on transverse temperature Tx = Ty.

That is, we take Tz = 37 µK and vary Tx = Ty about 37 µK, and plot the

resulting PR(∆t) curves. The results, shown in Figure 4.8, show a dependence

of PR(∆t) on Tx = Ty that resembles that seen in previously in Section 4.1.4.

We then study the dependence on longitudinal temperature Tz. That is, we

take Tx = Ty = 37 µK, vary Tz around 37 µK, and plot the resulting PR(∆t)

7Due to the cylindrical symmetry of the gaussian-beam FORT potential, we assume equal
temperatures for the two transverse directions.
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Figure 4.8: Simulation results for the recaptured fraction PR as a function
of the release time (∆t) for the release and recapture technique for fixed
Tz = 37µK. The inset legend stands for (Tz, Tx,y). Each point is a set of
N = 10000 new starting conditions. Error bars show ± one standard error

of PR assuming a binomial distribution.

curves. The results, shown in Figure 4.9, show a far weaker dependence on Tz

than was seen in Figure 4.8.

As can be seen, the release and recapture experiment is at best weakly sensi-

tive to the longitudinal temperature and is mainly measuring the transverse

temperature. Meaning that if there was indeed a difference in the axis tem-

peratures, it would be hard to see using the RR technique.

4.2.3.2 Quantitative observations about the RR sensitivity to anisotropic

temperature

To understand quantitatively how sensitive the release and recapture exper-

iment is to determine the value of different temperatures in the longitudinal
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Figure 4.9: Simulation results for the recaptured fraction PR as a function
of the release time (∆t) for the release and recapture technique for fixed
Tx,y = 37µK. The inset legend stands for (Tz, Tx,y). Each point is a set of
N = 10000 new starting conditions. Error bars show ± one standard error

of PR assuming a binomial distribution.

and transversal axis, it is necessary to calculate the uncertainty σTz and σTx,y

in each respective measured quantity. As described already in Section 4.1.2,

under appropriate conditions we can use statistical techniques suitable for

normally-distributed variables, in this case the propagation of error formula:

σTz =

(
∂PR

∂Tz

)−1∣∣∣∣
Tx,y

σPR
, (4.38)

and

σTx,y =

(
∂PR

∂Tx,y

)−1∣∣∣∣
Tz

σPR
, (4.39)

where the partial derivative is taken at fixed Tz and Tx,y, and σPR
is the

uncertainty in the recapture fraction PR calculated as one standard error as-

suming a binomial distribution, see Equation 4.6. To calculate these partial
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Figure 4.10: Simulation results for the recaptured fraction PR as a function
of the longitudinal temperature Tz and fixed Tx,y = 37µK and ∆t = 20µs.
Each point is a set of N = 10000 new starting conditions. Error bars show
± one standard error of PR assuming a binomial distribution. In green is a

linear fit to the results, that gives ∂PR/∂Tz = −6.8× 10−4 µK−1.

derivatives, we need to know how PR depends on its respective temperature.

For this, we used the simulation described above to compute PR(Tz) at fixed

Tx,y and ∆t, and PR(Tx,y) at fixed Tz and ∆t. We fit the results to a line to

extract the slope. We note that this estimates the slope at a specific value

of ∆t, and the uncertainties σTz and σTx,y are ∆t-dependent. As described in

Section 4.2.3.3 below, it is possible to find an optimal delay ∆t that minimizes

σ. There it is observed that the release time that minimizes the uncertainty

in the temperatures is ∆t = 20µs.

In Figures 4.10 and 4.11, PR(Tz) and PR(Tx,y) are fitted by a linear function,

which gives a constant slope for both cases. With this, we can calculate the

uncertainties in Equations 4.38 and 4.39 for a “true temperature” of Tz, Tx,y =

30.0µK as

σTz =
670µK√

N
(4.40)
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Figure 4.11: Simulation results for the recaptured fraction PR as a function
of the transversal temperatures Tx,y and fixed Tz = 37µK and ∆t = 20µs.
Each point is a set of N = 10000 new starting conditions. Error bars show
± one standard error of PR assuming a binomial distribution. In green is a

linear fit to the results, that gives ∂PR/∂Tx,y = −9.8× 10−3 µK−1.

and

σTx,y =
40µK√

N
, (4.41)

where
√
N is the number of atoms used in the measurement.

To understand quantitatively the sensitivity of the RR in measuring the longi-

tudinal temperature, we can compare how many atoms would be necessary to

achieve the same precision of the transversal temperature using the following

relation

640µK√
aN

=
40µK√

N
⇒ a ≈ 281. (4.42)

Therefore, to achieve the same precision of the transversal temperature, it

takes 281 times more atoms to measure the longitudinal temperature, con-

cluding that the release and recapture experiment is not as sensitive to the
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Figure 4.12: The relative uncertainty σTz
/Tz as a function of ∆t for dif-

ferent values of Tz (indicated in the inset). Simulations results carried for
N = 10000 and fixed Tx,y = 37µK.

longitudinal temperature as it is for the transversal, and could in principle

detect different temperatures, but at a cost.

4.2.3.3 Optimal choice of ∆t

As mentioned earlier, care must be taken in the choice of the release time to

achieve the minimum uncertainty in measuring a temperature, be it longitu-

dinal or axial. This happens because PR and σPR
are a function of ∆t, and

therefore the Equations 4.38 and 4.39 will also depend on the release time. To

understand this dependence on ∆t, we have computed the relative uncertainty

σTz/Tz for different values of Tz. The results in Figure 4.12 show that for all Tz

there is a minimum in the relative uncertainty at ∆t ≈ 20 µs, where PR ≈ 0.7.

It is also seen that the smaller is Tz, the bigger is the relative uncertainty.
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Figure 4.13: The relative uncertainty σTx,y
/Tx,y as a function of ∆t for

different values of Tx,y (indicated in the inset). Simulations results carried
for N = 10000 and fixed Tz = 37µK.

In the case of measuring Tx,y, an optimal ∆t can be found, as shown in Fig-

ure 4.13, but it depends on Tx,y: the lower Tx,y, the higher ∆t needs to be in

order to have the minimum uncertainty possible. Nevertheless, due to the sen-

sitivity of RR to the axial temperatures, this does not affect the uncertainty

as strongly as in the case for measuring Tz.

These conclusions were obtained using a two-temperature distribution for the

atom at the moment of release, with one temperature describing the longi-

tudinal degrees of freedom and another describing the transverse degrees of

freedom. There may be reason to expect that the optical forces present, which

include the optical dipole force, polarization gradient cooling, and dipole force

fluctuations, may result in a still more complex distribution8. Nonetheless, we

believe the main conclusions here, that the escape probability is only weakly

dependent on the temperature of the longitudinal degrees of freedom, and thus

8Article in preparation.

60



Temperature Measurements

that release and recapture is highly inefficient at detecting this temperature,

will hold also for other initial distributions.
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Chapter 5

Extinction measurement

An important characteristic of any light-matter system is the atom-light in-

teraction strength. For single-pass systems like the one used in this thesis, one

natural measure of this interaction strength is the probability pabs for an atom

to absorb an incident photon. This is called the “coupling efficiency” in [53].

Another measure is the probability pscat for an incident photon to scatter from

the atom, and thus to depart from the neighborhood of the atom in a different

mode than it was when it entered. Note that pscat is a lower-bound on pabs,

because the photon could be absorbed and then re-emitted into the original

mode, a possibility that becomes more likely as the coupling becomes stronger.

pscat, which depends on the frequency of the photon, the atom’s internal state,

and the spatial matching of the input beam to the atom’s dipole radiation pat-

tern, can in principle be measured by sending an input beam of known power

Pin and measuring the scattered power Pscat, so that pscat = Pscat/Pin. In this

Chapter we describe a simpler measurement of this same quantity, by mea-

suring the extinction of the input beam, i.e., the power that is removed from

the input mode by scattering from the atom. The methods used closely follow

work done by the Kurtsiefer group at NUS [53, 72].

To illustrate what we measure and how this sets a lower bound to the inter-

action strength, consider the following (see Figure 5.1): an incoming probe
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Figure 5.1: Scheme for the transmission measurement where we have a
total input probe power Pin and an output power Pout. If the atom is in the
FORT (green dot), Pout has the remaining part of the probe that was not

scattered plus a portion of the total scattered power Pscat.

beam (from L2) has an input power Pin; after interacting with the atom, some

of this light will be scattered, with a total power Pscat; a portion of this power

is collected by the second lens (L1). The total output power Pout is therefore
1

Pout = Pin − Pscat + σPscat, (5.1)

where σ is the portion of the scattered light that is collected by the second

lens (L1) APD2. Since pscat = Pscat/Pin and T = Pout/Pin is the transmission

ratio, we have that

pscat =
1− T

1− σ
. (5.2)

Defining

ϵ = 1− T (5.3)

1Here the presented argument takes only power into account. A full description of the
interference of the incoming and scattered electric fields arrives at the same conclusion, as
shown in [73].

2This can be estimated considering the overlap between the atom’s dipole emission pat-
tern, the high-NA collection lens and the gaussian mode of the L1 optical fiber.

63



Extinction measurement

as the extinction, we finally have

pscat =
ϵ

1− σ
, (5.4)

for the single-atom scattering probability. Note that the scattering probability,

and therefore strength of interaction, will be always bigger or equal to the

extinction ϵ. By measuring the transmission ratio T spectrum, we can extract

the extinction ϵ and therefore the lower bound of the interaction strength for

our system.

5.1 Extinction measurement with a linearly polar-

ized FORT and σ+ polarized probe

The experimental system configuration is shown in Figure 5.2. We send a σ+

polarized probe beam through L2 and a magnetic bias field Bbias is applied in

the same direction as the propagation of the probe. The probe beam is fully

collected by L1, coupled to a single-mode fibre and sent to an APD (D1) and

its photon counts are recorded in time bins of 20ms. The light collected by L3

is also coupled to a single-mode fibre and sent to another APD (D3), and its

photon counts are recorded in time bins of 20ms. At the time this experiment

was performed, the setup was using Schäfter and Kirchoof model 60FC-4-

A15-02 fibre-to-free-space collimators. Unknown to the experimentalists at

that time, that collimator is not well suited for producing TEM00 gaussian

beams: the beam was later observed to be “donut-shaped,” with a local power

minimum at the centre. Nonetheless, extinction was still observed, and we

report the results here. The collimators were later replaced with Schäfter and

Kirchoof model 60FC-4-M15-02.

For this measurement, the FORT has vertical polarization. This is a signif-

icant difference relative to Tey et al. [73], which used a circularly-polarized

FORT. With a circularly-polarized FORT, the energy eigenstates, including
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the ac Stark shifts, are FZ eigenstates, and a circularly-polarized probe beam

can pump the atom to the |F = 2,mF = 2⟩ stretched state and keep the probe-

atom interaction on the closed |F = 2,mF = 2⟩ → |F ′ = 3,mF ′ = 3⟩ transi-

tion. This transition is in effect a two-level system and has maximum tran-

sition dipole moment, which maximizes the possible extinction3. We now

consider what happens when performing an extinction measurement with a

linearly polarized FORT. There are two “natural” ways to perform it: with

the magnetic field along the FORT polarization direction, or with a magnetic

field perpendicular to it. In the former case the field will act to stabilize the

magnetic quantum number (in a basis corresponding to a quantization axis

along the field and FORT polarization). In the latter case the magnetic field

will tend to randomize the magnetic quantum number (in this same basis)

between optical pumping events. We study the second of these scenarios.

Figure 5.2: Experimental configuration scheme for the extinction measure-
ment. The FORT is vertically polarized (pointing out of the plane) in the
quantization axis defined by the magnetic bias field Bbias. The σ+ probe
is fully collected by L1 and sent to an APD. The atom’s fluorescence signal
from the cooler and repumper beams is also collected by L3 and sent to an

APD.

The probe’s frequency was set close to the F = 2 → F ′ = 3 transition, same

as the cooler, and its power was empirically set so as to not heat the atom

out of the FORT, in a weak coherent state. Its polarization was σ+ and

its waist at L2 was wprobe = 1.2mm. The Bbias value was computed to be

Bbias = 3.18G: the 9V of bias applied to each of the x and y compensation

3Circularly polarized FORTs have other disadvantages, including higher atom tempera-
ture and larger ac Stark shifts.

65



Extinction measurement

coils pair gave a bias current of 1.78A, and following the design of the system

as mentioned in Section 3.3, this gave for each pair of coils 2.25G, which

summing their amplitudes in quadrature, gave the final bias field strength.

When the magnetic bias field was not applied, we had the typical magnetic

field compensation values set for the MOT.

The time sequence used (see Figure 5.3) is the following4: starting with all the

MOT beams on, the detection of an atom in the trap triggers the sequence

that starts at t0; MOT and FORT beams are kept on for t1−t0 = 40ms; cooler

beams are turned off for 160ms while repumper and probe are kept on5; the

magnetic bias field Bbias is applied for t2 − t1 = 140ms and later removed;

cooler beams are turned on after t3 − t2 = 20ms for t4 − t3 = 40ms. This

sequence, from t1 to t4, is repeated seven more times before the cooler beams

are turned off at t5 followed by the FORT being turned off at t6 (t6−t5 = 20ms)

for 2 s. A representative signal from this measurement is shown in Figure 5.4:

shown in green, is the photon counts from D3, and in purple is the photon

counts from D1.

The photon counts of D3 are used to determine the presence of the atom in the

FORT – which also triggers the experimental sequence – using the threshold

value of 50 counts/20ms, indicated by the red dashed line in Figure 5.4. The

L1 photon counts from D1 are used to measure the probe transmission when

the atom is in the FORT (indicated by the yellow shaded areas) and when it

is not in the FORT (indicated by the red shaded area).

If we write the number of detected photons in the ith time bin (TB) as n
(i)
D1 or

n
(i)
D3, for photons collected by lenses L1 and L3, respectively, then the trans-

mission analysis is done per time bin in the following way: upon the detection

of the atom in the FORT n
(0)
D1, the next photon count n

(1)
D1 is skipped; the next

photon counts are averaged n̄atom =
∑i=6

i=2 n
(i)
D1/5, which is the probe transmis-

sion photon count in D1 in the presence of the atom; the next photon count is

4All the timings here are multiples of the Arduino Due time bin acquisition of 20ms, so
the analysis can be done in a well defined manner.

5This is because we want to avoid power fluctuations on the probe by turning on/off its
AOM.
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Figure 5.3: Time sequence for the transmission measurement. Not to scale.
Details in the text.

Figure 5.4: A representative signal of D3 (L3) and D1 (L1) photon counts
for the probe transmission measurement, the atom detection is defined as
the time bin (TB) 0. A background of 350 counts was subtracted from the
D1 signal for visualization purposes. The transmission ratio T is calculated
as the ratio between the D1 counts when the atom is in the FORT (yellow

shaded area) and when it’s not in the FORT (red shaded area).

skipped and this analysis is repeated for as long as the atom is in the FORT

(determined by the threshold value nD3 > 35). The uncertainty in n̄atom,
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σatom, is the standard deviation of all the recorded counts n
(i)
D1 when the atom

was in the FORT. The probe transmission photon counts in D1 without the

atom is n̄ =
∑i=174

i=85 n
(i)
D1/90, the uncertainty of n̄, σn̄, is the standard devia-

tion of all the recorded counts n
(i)
D1 when the atom was not in the FORT. The

transmission ratio for each time sequence Ti is computed as

Ti =
n̄atom

n̄
, (5.5)

with an uncertainty σi calculated as

σi =

√(
1

n̄

)2

σ2
atom +

(
n̄atom

n̄2

)2

σ2
n̄, (5.6)

by propagation of error. Repeating the time sequence of Figure 5.3 for 200

trials, we compute the transmission ratio T at a given frequency of the probe

as the average of all N computed Ti

T = T̄i =

∑N
i=1 Ti

N
, (5.7)

with an uncertainty σ calculated as

σ =

√∑N
i=1 σ

2
i

N
(5.8)

by propagation of error.

Scanning the frequency of the probe around the resonance, we have the spec-

trum of the transmission ratio, which can be seen in Figure 5.5. Fitting the

data to a Lorentzian function, we can extract the maximum extinction value

at resonance: ϵ = (2.76± 1.00)%, which is the lower bound of the atom-light

interaction strength in our system in its typical configuration.

One of the aspects of the transmission spectrum showed in Figure 5.5 is that

its FWHM, Γext = 2π × (14.7 ± 1.7)MHz, is much larger than the natural

linewidth of the 87Rb D2 transition, Γ0 = 2π × 6.065MHz. What can explain
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Figure 5.5: Transmission ratio (T , calculated as in Eqn. 5.7) as a function
of the detuning (∆) from the D2 unshifted closed transition of 87Rb. Error
bars calculated as in Eqn. 5.8. A Lorentzian fit to the data gives a resonance
at ∆ext = (32.2± 0.3)MHz, an extinction of ϵ = 2.76± 1.00% and a FWHM
of Γext = 2π × (14.7 ± 1.7)MHz, where the statistical uncertainties come
from the 1-σ fit confidence level. A background of 0.03% appears due to the

FORT light reflection into the L1 optical path.

such discrepancy is the probe laser linewidth of 2MHz, the movement of the

atom inside the FORT due to extra heating from the probe (that leads to a

stronger position-dependent ac-Stark shift6), and the fact that we were not

able to do optical pumping7.The minimum of of the transmission curve is at

∆ext ≡ (ω − ω0) = 2π × (32.2± 0.3)MHz, which is the detuning of the probe

frequency, ω, from the D2 unshifted closed transition of 87Rb, ω0.

As mentioned before, given the FORT and probe polarization, and the mag-

netic bias direction, we were not able to do optical pumping. This is because

the quantization axis (QA) that diagonalizes the hamiltonian HS of the ac-

Stark effect (in the mF basis) is in the direction of the FORT’s polarization,

x, while the QA that diagonalizes the hamiltonian HZ for the Zeeman shift is

6Taking into account the losses in the path between the atom and L1’s APD, the actual
probe input was ≈ 2500 photons per 20ms, and taking the found interaction strength of
2.76% , could lead to an increase in temperature of 25µK per 20ms (given that the recoil
temperature is ≈ 362 nK [31]).

7Power broadening in this measurement is neglected, since Iin ≈ 0.0004Isat
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in the direction of the magnetic bias field, z (which is also the FORT’s prop-

agation direction). This means that it’s not possible to find a mF basis that

diagonalizes at the same time the hamiltonian H = HS +HZ for the ground

and excited states. Therefore, it is convenient to use different QAs to address

the ground and excited states, since the first is more affected by the Zeeman

shift while the second by the ac-Stark shift. Consider for example that the

atom is in the ground state |F = 2,mF = 2⟩ (QA along z), if the ac-Stark

shift splitting of the excited states is larger than the decay rate and the exci-

tation bandwidth (this is the case in the experiment), a σ+ photon from the

probe (QA along z) can, by energy conservation, only excite |F ′ = 3,mF ′⟩,
|F ′ = 3,−mF ′⟩, or a superposition of these (QA along x), for some value of

mF ′ . This is not the same as exciting |F ′ = 3,mF ′ = 3⟩ (QA along z), be-

cause that state is a superposition of all the m′
F levels (QA along x). In this

sense, the excitation process does not conserve the atomic angular momentum

of the atom + probe light, but rather transfers some angular momentum to

the FORT. This results in non-cycling transitions, with contributions from all

the possible mF and mF ′ (QA along z and x, respectively), which reduces the

atom-light interaction efficiency, reflecting in the extinction value, broadening

the transmission spectrum and changing the resonance shift. Therefore, the

found value for ϵ is taken as the lower bound of the interaction strength in our

system.
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Parametric excitation of a

single atom

Parametric excitation (PE) is a phenomenon that happens when a param-

eter, typically the resonance frequency, of a harmonic oscillator is modu-

lated at or at near twice the oscillator’s mean resonant frequency. As an

example, one can consider a pendulum of length L in a gravitational accel-

eration g and thus angular frequency, for small excursions, of ω0 =
√
g/L.

If the length or the gravity is modulated at angular frequency 2ω0, e.g., if

L(t) = L0 [1 + δL cos(2ω0t+ ϕ)] /2, the oscillator will experience paramet-

ric amplification (PA). PA is a phase-sensitive amplification effect, in which

oscillation with a certain phase relationship to the parametric modulation

(ϕ ≈ π/2, see Figure 6.1) will grow exponentially, while oscillation with a

phase 90 degrees different from this will decay exponentially.

For a thermal ensemble of atoms, in which the oscillation phases are random,

PA implies a net increase of energy (hence the name parametric excitation

in this context), because while some atoms lose amplitude and thus energy,

this loss is more than overcome by other atoms’ gain of energy, due to the

exponential nature of the amplification. This effect can be observed in trapped

ensembles, where the modulation of the trap frequency at twice its resonant
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Figure 6.1: Illustration of parametric amplification (PA) in a harmonic
trap. Top curves represent the potential energy U as a function of po-
sition x for different t. Bottom curves represent the one-dimensional
amplitude of motion of the atom inside the trap as a function of time
(x(t) = xmax cos(ω⊥t), in red) and the applied modulation to the FORT
power as a function of time (PFORT(t) = PFORT + cos(ω⊥t + ϕ), in blue),
amplitudes not to scale. Correspondence between top and bottom curves
indicated by the numbers. For PA to happen, there needs to be be a phase
difference of ϕ ≈ π/2 between x(t) and PFORT(t). On resonance, the pe-
riod of modulation tmod = 1/νmod is half of the atom’s oscillation period

tosc = 2π/ω⊥.

value manages to heat a fraction of the atoms out of the trap. This effect has

been used to measure FORT resonant frequencies [74, 75], by measuring the

fluorescence of an ensemble – and the number of atoms – as a function of the

modulation frequency. Specifically, a minimum in the curve of atom number

versus modulation frequency is expected to occur at the second harmonic of a

trap frequency.

An extension of this methodology has been applied to single atoms in a FORT,

with the same goal [76–78]. In this extension, the survival probability was

measured after a certain modulation time. As in the ensemble case, the minima

of the curve of survival probability versus modulation frequency were taken to

indicate the second harmonics of the trap frequencies.
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PE is an interesting technique for FORT characterization because it can se-

lectively excite longitudinal and axial motion. For the single atom trap, this

could be used to test the sensitivity of temperature measurement techniques

regarding different temperatures along different axes. As an example, one

could use PE to excite the longitudinal axis and perform a RR measurement

and compare the results against the RR performed on atoms that had been

prepared in the same way, but without PE. If no significant difference is ob-

served, one would have experimental evidence that RR is insensitive to the

longitudinal temperature. In this Chapter, we will describe the simulations

and experiments we have done using PE to address another effect, the phase-

space distribution distortion, and how this could be used as a cooling or heating

technique.

6.1 PE simulation implementation

To understand the effects of parametric excitation on the phase-space distri-

bution of the atoms, we have performed simulations as described in Section

4.2.1, with the difference that the FORT power is sine-modulated with an am-

plitude of 20% (PFORT = 10.1mW) at νmod = 117 kHz, for n = 7 or n = 7.5

cycles, followed by an un-modulated “wait time” δt, as qualitatively described

in the yellow shaded area of Figure 6.2.

Repeating the above simulation sequence for N = 10000 starting conditions

(shown in Figure 6.3 for Tx,y,z = 37µK) we can construct the phase-space

distributions at the end of the “wait time” δt, as a function of the number

of modulation cycles applied to the FORT power. The results are shown in

Figure 6.4 and Figure 6.5. From these graphs, it is seen that as n increases,

the shape of the distribution becomes more distorted, towards an S shape,

which is due to the anharmonicity of the potential, since atoms that have a

larger amplitude of oscillation will experience the “softer” steepness of the trap

shape, and therefore will have a slower oscillation period and consequently will

lag behind the atoms that have smaller oscillation amplitude. If the atoms are
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Figure 6.2: Experimental sequence for MOT beams and the FORT in the
parametric excitation measurement (not to scale). The number n of cycles
applied can be an integer (n = 7) or a half-integer (n = 7.5). Yellow and
orange shaded areas describe the FORT power implemented in the simula-

tions, for details, see text.

driven for many cycles, n > 10, the shape evolves to something more evenly

distributed and sparse.

We’ll focus now on the cases n = 7 and n = 7.5, shown in Figure 6.6. Besides

the S shape, the points within the solid ellipse curve (which I’ll refer to as

“central points”), are either squeezed in momentum or position, i.e., one of

their variances (∆p2f , ∆x2f ), is lowered, when compared to the starting condi-

tions variances (∆p2i , ∆x2i ). In the case of n = 7 and δt = 1µs, the central

points are squeezed in momentum, ∆p2f < ∆p2i , which can be understood as

an effect of cooling, where there is a reduction of the mean kinetic energy

due to the PA, in a similar way as in “delta kick cooling” [79]. The oppo-

site effect, heating, is observed for δt = 4.92µs, where the central points are

squeezed in position, ∆x2f < ∆x2i , and ∆p2f > ∆p2i . Conversely, if the FORT

is modulated for n = 7.5 cycles, it can be seen that the previous observations
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Figure 6.3: Phase-space distribution (x coordinate) forN = 10000 starting
conditions for Tx,y,z = 37µK. Solid ellipse indicates the region defined by

two times the standard deviations (∆p =
√
mkBT ,∆x =

√
kBT/(mω2

⊥)) of
a thermal distribution.

are interchanged, and furthermore, the distribution is more spread along the

momentum axis, which indicates a stronger propensity to the heating effect.

One must notice that the new phase-space distributions after δt no longer

represent a thermal one, and therefore assigning a temperature to it assuming

such distribution is not correct. However, to quantify the heating or cooling ef-

fect of PE plus the “wait time” δt, we therefore define a “kinetic temperature”

Tk as

Tk =
∆p2f
mkB

, (6.1)

where ∆p2f is the standard deviation of the momentum distribution m is the

87Rb mass and kB is the Boltzmann constant. This Tk is a “temperature”

related to the x−coordinate assuming the equipartition theorem where each

degree of freedom contributes equally to the total mean kinetic energy given

by (3/2)kBTk. On Table 6.1 it is shown the values of Tk for various n, and to

see graphically how they are related, the same data is plotted in Figure 6.7.

Note that for the integer cycles, n ⩽ 7, there is a reduction in the kinetic

temperature, whereas for half-integer cycles it always increases.
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Figure 6.4: Phase-space distribution (x coordinate) for a modulation of n
cycles indicated in the inset and “wait time” δt = 1µs.

Since experimentally we cannot have access to the phase-space distribution,

it is necessary to translate the squeezing into a laboratory observable. For

this, we have added release and recapture into the simulations. The FORT

depth as a function of time used then is the one described in the yellow and

orange shaded areas of Figure 6.2, with a release time of 20µs. Repeating

this new sequence for N = 10000 starting conditions and Tx,y,z = 37µK,

we have computed the recapture fraction PR as a function of δt, shown in

Figure 6.8 for both number of cycles n = 7 and n = 7.5. As discussed before,

there is a different behavior between them, which is translated into a phase
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Figure 6.5: Phase-space distribution (x coordinate) for a modulation of n
cycles indicated in the inset and “wait time” δt = 1µs.

n ∆pf(kg ×m/s) Tk (µK)

0 86.62 37.6

1 75.64 28.7

2 68.02 23.2

3 62.88 19.8

4 60.75 18.5

5 63.29 20.1

6 71.55 25.7

7 84.38 35.7

10 128.40 82.7

20 120.70 73.1

n ∆pf(kg ×m/s) Tk (µK)

0 86.62 37.6

1.5 97.71 47.9

2.5 112.13 63.1

3.5 129.26 83.8

4.5 147.43 109.1

5.5 164.26 135.4

6.5 177.87 158.8

7.5 186.55 174.7

10.5 181.45 165.2

20.5 157.03 123.8

Table 6.1: Standard deviation of the momentum distribution, ∆pf , and
kinetic temperature, Tk, for δ = 1µs, νmod = 117 kHz and n modulation

cycles.

change. For n = 7, PR starts high, reaching even PR(n = 7, δt = 1µs) =

0.793± 0.004, a higher value than PR(n = 0, δt = 1µs) = 0.750± 0.004, where

no modulation was applied. For n = 7.5, the opposite behavior is observed,

with the recapture probability being as low as PR(n = 7.5, δt = 1µs) =

0.219 ± 0.004. In light of what was discussed previously and in Chapter 4,

PR(n = 7, δt = 1µs) > PR(n = 0, δt = 1µs) indicates that there is a squeezing

in the kinetic temperature, since more atoms were recaptured than in the case

of no modulation, which agrees with the Tk predicted in Table 6.1.
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Figure 6.6

An interesting remark is to check which apparent temperature1 would the

1Note again that this is just a remark, since we cannot assign a “true temperature” to a
phase-space distribution that is not a thermal one.
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Figure 6.7: “Kinetic temperature” Tk as a function of the n number of
modulation cycles applied to the FORT power. Dashed gray line is Tk =
37.6µK. Points below and above this line indicate the reduction and increase

effects, respectively, on the kinetic temperature.

n δt(µs) PR σPR
T (µK)

0 1.00 0.750 0.004 35.8± 0.3

7 1.00 0.793 0.004 31.5± 0.3

7.5 1.00 0.219 0.004 174± 2

0 4.92 0.750 0.004 35.8± 0.3

7 4.92 0.265 0.004 143± 2

7.5 4.92 0.666 0.005 44.0± 0.4

Table 6.2: Recapture fraction PR for the simulated PE of the FORT at
νmod = 117 kHz (N = 10000) for n cycles, “wait time” δt and release time
∆t = 20µs. The last column shows their respective apparent temperature

T extracted from the fitting method of Section 4.1.2.

release and recapture (RR) fitting tool, described in Section 4.1.2, give if

one applied it to the previous results. For this, we make use again of the

Monte Carlo simulation together with the χ2 analysis, which gives the apparent

temperatures T presented in Table 6.2 for different values of n and δt. A

comparison between Tk and T for n = 7 shows that the RR would predict a
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Figure 6.8: Recapture fraction PR for the simulated parametric excitation
of the FORT as a function of the “wait time” δt and release time ∆t = 20µs.
The inset indicates the number of cycles applied in the modulation. Error
bars are smaller than the size of the points. PR,n=0 = 0.750 ± 0.004 for no

applied modulation.

lower temperature, while for n = 7.5 RR gives the same value. Additionally,

we have seen in simulation results presented in Table 6.3 that the apparent

temperature T depends on the release time ∆t, which once again shows that

a thermal distribution does not accurately describes the atom’s position and

momentum distribution after PA.

6.2 PE experimental implementation

To experimentally verify the simulated results of Figure 6.8, we have performed

the sequence shown in Figure 6.2: after an atom detection, the MOT and

FORT beams are kept on for 40ms; MOT beams are turned off and the FORT

beam is kept on for another 100µs; the FORT power is sinusoidally modulated

at νmod = 117 kHz with an amplitude of ≈ 20% for n = 7 or n = 7.5 cycles

(we accomplish this by modulating the amplitude of the radio frequency signal
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n δt(µs) ∆t(µs) PR σPR
T (µK)

0 1.96 20 0.750 0.004 35.8± 0.3

7 1.96 20 0.859 0.003 25.4± 0.2

7.5 1.96 20 0.242 0.004 159± 2

0 1.96 30 0.521 0.005 35.9± 0.4

7 1.96 30 0.765 0.004 18.8± 0.2

7.5 1.96 30 0.137 0.003 153± 3

Table 6.3: Recapture fraction PR for the simulated PE of the FORT at
resonance 124.77 kHz (N = 10000) for n cycles, “wait time” δt and release
time ∆t. The last column shows their respective apparent temperature T

extracted from the fitting method of Section 4.1.2.

that feeds the AOM and consequently the power of the first diffraction order);

the modulation is turned off and the FORT is kept on for a variable “wait

time” δt; the FORT is then turned off for 20µs and back on; after 100µs the

MOT beams are turned back on and we check if the atom was recaptured. The

FORT power used for this experiment was PFORT = 10.1mW, but everything

else was kept under the same typical conditions as described in chapter 3.

Repeating the above sequence N = 250 times for a fixed δt, we can estimate

the recapture probability PR in the same way as Equation 4.1. We have

measured PR as a function of the “wait time” δt, for integer and half-integer

cycles, and the results are shown in Figure 6.9. The phase change between

them was indeed observed, as predicted by the simulation results, however,

the amplitude for PR was not reproduced. Moreover, the experimental results

are phase-shifted when compared to the simulated ones. Nonetheless, the

experimental results agree qualitatively with the simulation predictions and

show that PR is dependent on δt and n.

One reason that could explain why experiment and simulation do not agree is

that actually the FORT waist, wFORT = (1.65 ± 0.02)µm, is not the one we

extracted from the quantum jump spectroscopy described in [25]. This could

explain the mismatch of amplitude and phase from the simulated results. To

check this hypothesis, we have run the same simulations but with a new waist
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value of wFORT = 1.61µm. This value is outside the uncertainty reported in

[25], but it is not an unreasonable value. It can be seen in Figure 6.10 that

with this new waist, there is a better agreement between simulation and ex-

perimental results in phase and amplitude. The simulation results also showed

a high sensitivity of the phase to the FORT waist, which is an indication that

this can be a good technique to measure its value. Another way to check the

value of the waist is to use another technique to measure its value, such as the

double release and recapture, as in [10].
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Figure 6.9: Experimental (black and red) and simulated (blue and ma-
genta) recapture fraction PR for PE as a function of the “wait time” δt.
Error bars show ± one standard error of PR assuming a binomial distribu-

tion. PR = 0.79± 0.03 (experimental) for no applied modulation.

82



Parametric excitation of a single atom

 0.4

 0.5

 0.6

 0.7

 0.8

 0  2  4  6  8  10

P
R

δt (μs)

7.5 cycles sim
7 cycles sim

7.5 cycles
7 cycles

Figure 6.10: Experimental (black and red, same as in Figure 6.9) and
simulated (blue and magenta) recapture fraction PR for PE as a function of
the “wait time” δt. For the simulated results, a new waist wFORT = 1.61µm
was used. Error bars show ± one standard error of PR assuming a binomial

distribution.

83



Chapter 7

Conclusions

In this Thesis, it was studied, with simulations and experiments, the dynamics

of a single-atom in a FORT. Given that for our typical trap configuration the

atomic dynamics in the FORT can be treated classically, we have simulated

such dynamics with the programming language Julia. The experimental setup

we have in our laboratory for the single-atom trap follows a Maltese cross con-

figuration, where four lenses are aligned along the cardinal axes and the optical

dipole trap is a single-beam FORT. In particular, we’ve discussed the concept

of the single-atom temperature and presented reasons to consider that its dis-

tribution in this system could differ from a single-temperature Boltzmann one

due to the asymmetry in the confining potential and the unbalanced forces

from cooler beams and the FORT itself, which can lead to an anisotropic

temperature distribution.

Two of the available techniques to measure the atom’s temperature in a FORT

were implemented in our experimental setup: the release and recapture (RR)

and the adiabatic lowering of the trap depth. It was shown that both results

agreed. We have also discussed with simulations results the sensitivity of the

release and recapture technique to a possible anisotropic temperature distribu-

tion, and it was shown that RR is largely insensitive to the temperature asso-

ciated with the longitudinal axis of the FORT. We also found that to measure
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this longitudinal temperature with the same sensitivity as for the transverse

ones, we need 281 more trials, a relevant result to be considered if measure-

ment time is limited. Furthermore, if one wants to do such a measurement, we

saw in the simulation results that there is an optimum release time, of 20µs,

to achieve minimum uncertainty in this temperature. Accurately measuring

the single-atom temperature in the FORT is crucial for determining the distri-

bution of the ac Stark shift experienced by the atom, the approximations that

can be done regarding the trapping potential and furthermore, is pertinent

to the atom-light interaction strength since it was shown that it is limited by

the residual motion of the atom [80] and that the center-of-mass motion can

determine and limit the achievable single-photon excitation probability [81].

We have also measured the interaction strength between a tightly focused

probe beam and the atom. Having the FORT linearly polarized, and with

a bias magnetic field along the trap axis, and thus orthogonal to the FORT

polarization, we observed an extinction of ϵ = 2.76 ± 1.00% for our typical

trap configuration. We take this as a lower bound of the light-atom coupling

efficiency, and note that due to a collimator that was not diffraction limited,

and the orthogonal directions of FORT polarization and bias magnetic field,

this number can probably be improved in the future.

Lastly, the parametric excitation (PE) of the single-atom in a FORT was

discussed, where we have presented simulations results that show that the

modulation of the FORT power can be used to manipulate the phase-space

of the atom and be used to decrease or increase its kinetic energy, effectively

heating or cooling it, respectively. We have also implemented the parametric

excitation experimentally, where we observed the change in phase – predicted

by the simulation results – that an integer or half-integer number of modu-

lation cycles causes in the recapture probability of the atom after a certain

release time, which proved the manipulation of the phase-space distribution

by parametric excitation.

Parametric excitation that is applied for a short time (order of µs) also shows
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the potential to be a more precise technique for the trap frequency measure-

ment, since the atom, for a few modulations cycles, still explores the harmonic

approximated shape of the FORT. Therefore, by combining the parametric ex-

citation with the release and recapture, one can have a recapture probability

as a function of modulation frequency which could show a dip at the FORT

frequency.

Furthermore, to have experimental evidence that release and recapture, for

temperature measurement, is insensitive to the longitudinal temperature, we

could use PE to excite the longitudinal motion and observe if the release and

recapture results are affected by it. With the Maltese cross geometry, we have

access to the visualization of the atomic cloud from two perspectives, parallel

and orthogonal to the FORT axis, which allows the implementation of time-

of-flight techniques [82] to measure the longitudinal temperature and therefore

have a direct observation of the possible anisotropic temperature distribution

of the atom in the FORT.

Future opportunities offered by the system presented in this Thesis include

the study of the unconventional quantum correlations of light emitted by a

single atom [22]; the atom as a sensitive and precise photo-detector; and the

atomic Hong-Ou-Mandel effect, where the atom acts as a beam splitter for

two incoming photons.
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Appendix A

“Quantum jump spectroscopy

of a single neutral atom for

precise subwavelength

intensity measurements”

In this Appendix, we reproduce the paper “Quantum jump spectroscopy of

a single neutral atom for precise subwavelength intensity measurements” by

Lorena C. Bianchet, Natalia Alves, Laura Zarraoa, Tomas Lamich, Vindhiya

Prakash and Morgan W. Mitchell, published in Physical Review Research,

volume 4, pages L042026 1-6 in November 2022 [25], and cited in Section

4.1.6.
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Quantum jump spectroscopy of a single neutral atom for precise
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We present precise, subwavelength optical intensity measurements using a single trapped 87Rb atom as a
sensor. The intensity is measured by the scalar ac Stark shift it produces on the F = 1 → F ′ = 2 hyperfine
transition of the D2 line, chosen for its F ′ = F + 1 structure and very small tensor polarizability. To boost signal
and reduce measurement-induced perturbations, we use a quantum jump spectroscopy technique in which a
single absorbed photon on a transition of interest induces the scattering of hundreds of photons on a bright closed
transition. The method greatly reduces systematic effects associated with the atomic state, optical polarization,
probe power, and atom heating, and gives the atomic temperature as a second spectroscopic observable. We
demonstrate the method by measuring the intensity at the focus of an optical tweezer.

DOI: 10.1103/PhysRevResearch.4.L042026

Individual trapped ions and neutral atoms can be positioned
with submicrometer precision, and have been used to detect
a variety of environmental perturbations, including static [1]
and oscillating [2] magnetic fields, static electric fields [3],
and microwaves [4]. Measurement of optical intensity, which
in many scenarios varies on micrometer scales, is a natural ap-
plication for such sensors [5,6]. Subwavelength (also known
as super-resolving) measurements of both resonant [5] and
off-resonant light [6,7] have been demonstrated. Single atoms
and ions are also ideal for metrology referenced to unchanging
atomic properties, e.g., polarizabilities that can be calculated
with high precision [8,9]. Single trapped atoms thus offer a
route to precision radiometry with high spatial resolution.

Off-resonance light, which for any given atom constitutes
the vast majority of the optical spectrum, can be detected by
the ac Stark shifts it produces on observable spectral lines. For
example, single neutral 87Rb atoms in far-off-resonance traps
(FORTs) have been used to quantify ac Stark shifts by moni-
toring fluorescence on the F = 2 → F ′ = 3 cooling transition
of the D2 line [6,7,10]. While this strong, closed transition
is convenient, it is not naturally suited for precision intensity
measurement because it, like other strong closed transitions,
has large vector and tensor polarizabilities. This implies (1)
that a scalar ac Stark shift to be detected will necessarily be
accompanied by a broadening or splitting of the resonance
fluorescence line [7] and (2) that the resonance fluorescence
intensity will depend on the polarization of the excitation
light, the atomic Zeeman state, and, via the FORT intensity
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distribution, also the atomic position. These atomic attributes
are easily perturbed by the resonance fluorescence process
itself, which modifies the atom’s internal state through optical
pumping, and its position through recoil effects [7]. All these
factors complicate the interpretation of the acquired spectra.

Here we introduce a single-atom probing method that
greatly reduces these systematic effects, through the use of
an open transition and “quantum jump” readout [11–15] to
amplify the resulting signal at very low probe power levels.
We apply the technique to measure the intensity distribution
seen by an atom in an optical tweezer, i.e., a strongly focused
FORT [16], of the sort used to study quantum light-matter
interactions [17–22], nonclassical atom interference effects
[10,23–25], Rydberg-atom-based quantum information pro-
cessing [26], quantum simulation [27,28] and computation
[6,29,30], manipulation of cold molecules for quantum infor-
mation and searches for physics beyond the standard model
[31–34], and also optomechanics and quantum optomechan-
ics with levitated nanoparticles [35–37]. In this application,
the method reveals both the trap-center intensity with high
precision and also the atom temperature, both of which are
subject to considerable systematic uncertainty when measured
by other methods [38].

The method, illustrated in Fig. 1, is a spectroscopic probe
of the open 1 → 2′ transition of the D2 line, i.e., 5S1/2F =
1 → 5P3/2F ′ = 2 (for brevity, we indicate the ground and
excited hyperfine states of this transition with unprimed and
primed symbols) that, rather than detecting fluorescence on
this transition, detects the induced state change using quantum
jump physics, previously studied with ions [11,12], molecules
[13], cavity-bound photons [14], and quantum dots [15]. A
weak probe beam, tuned near the 1 → 2′ transition, can
promote the atom to the F = 2 “bright” ground state by a reso-
nant Raman transition. From there, counterpropagating cooler
beams drive resonance fluorescence on the closed 2 → 3′
transition, Rayleigh scattering hundreds of photons on average

2643-1564/2022/4(4)/L042026(6) L042026-1 Published by the American Physical Society



LORENA C. BIANCHET et al. PHYSICAL REVIEW RESEARCH 4, L042026 (2022)

FIG. 1. Principle of the quantum jump spectroscopy method.
Left: Relevant levels of 87Rb 5S1/2 → 5P3/2, D2 transition. Res-
onance fluorescence is produced on the closed 2 → 3′ hyperfine
transition from the F = 2 “bright” state, whereas the F = 1 “dark”
state does not fluoresce. A probe beam with a frequency detuning
of �νpr from the 1 → 2′ transition can cause Raman transitions to
the bright state, resulting in a “quantum jump”: a burst of resonance
fluorescence that greatly amplifies the effect of the single-photon
scattering event that caused the jump. The resonance fluorescence
also cools the atom’s center-of-mass motion, returning it to a
probe-independent state before the next probe absorption. Right:
Geometry of the experiment, viewed from above. Four in-vacuum
high-numerical-aperture lenses (L1 to L4) collect resonance fluores-
cence, and also serve to produce the strongly focused FORT. The
repumper propagates together with the four horizontal cooler beams.
A circularly polarized probe beam propagates in the vertical direction
(perpendicular to the plane of the figure), together with the fifth and
sixth cooler beams (not shown).

before the atom spontaneously falls back to the F = 1 “dark”
ground state. The probe and cooler beams are on continuously,
so the atom stochastically emits bursts of resonance fluores-
cence at an average rate set by the rate of 1 → 2′ excitation.
The probe detuning is scanned across the 1 → 2′ line to reveal
the ac Stark shifted spectrum of that transition. We refer to this
method as quantum jump spectroscopy.

In this method, resonance fluorescence acts as a high-gain
amplifier, scattering many cooler photons for each 1 → 2′ →
2 Raman transition. The amplification gain depends on prop-
erties of the cooler light, magnetic fields, trap geometry, and
detection efficiencies, all of which can be held constant as the
probe frequency is scanned. In addition, the resonance fluo-
rescence process returns the atom to the F = 1 state with an
internal and center-of-mass state determined by the resonance
fluorescence process, erasing any probe-induced heating or
optical pumping. Finally, the 1 → 2′ transition has a very
small tensor susceptibility. Together, these features reduce
systematic effects relative to earlier methods [6,7,10], leading
to an easier data interpretation with more precise results.

To demonstrate intensity measurement by quantum jump
spectroscopy, we employ a Maltese cross single atom trap
[38,39], in which a magneto-optical trap (MOT) with cooler
light red-detuned by 6γ0 ≈ 2π × 36 MHz from the unshifted
2 → 3′ transition is used to load the FORT, and also provides
cooler light for the quantum jump spectroscopy. The MOT
repumper is stabilized near the 1 → 1′ transition.

FIG. 2. Level shifts for the D2 line of 87Rb under linearly po-
larized illumination at 852 nm, computed as in [9]. Red lines
above/below blue arrows show shifted Zeeman sublevels corre-
sponding to the mF labels below. Blue arrows show the ac Stark shifts
per intensity (scale in green at lower right), relative to the unshifted
hyperfine levels (grey horizontal lines). Hyperfine level spacings are
not to scale.

The FORT light is linearly polarized and stabilized to the
Cs D2 line at 852.1 nm, with an input power of PFORT =
6.8(2) mW, measured with a power meter before the cham-
ber window. The FORT has an intensity at focus, estimated
from the input power and beam waist prior to focusing, of
I (max)
FORT ≈ 1.6 × 109 W m−2 (and thus trap depth ≈740 μK)

[38]. As shown in Fig. 2, this implies a light shift of ≈20 MHz
on the 1 → F ′ transitions. We note that the F ′ = 2 state
experiences negligible tensor light shifts (�E (2)

2 /h ≈ m2
F ×

9.5 × 10−4 MHz), in comparison with the ones of the F ′ = 1
(�E (2)

1 /h ≈ m2
F × 6.63 MHz) and F ′ = 3 (�E (2)

3 /h ≈ m2
F ×

−2.49 MHz) states, where mF is the magnetic quantum num-
ber. As a consequence, the transitions to those states are
shifted by up to 9.9 MHz, an amount larger that the linewidth
of the atomic transition itself. The 1 → 2′ transition frequency
thus depends on the atom’s position, but negligibly on the
atom’s internal state.

A circularly polarized probe beam with up to 800 nW
of power in a collimated beam with 2 mm 1/e2 diameter
and tunable over 30 MHz on the blue side of the un-
shifted 1 → 2′ transition with a double-pass AOM, is sent
along the downward vertical direction, copropagating with
one of the MOT cooler beams. Fluorescence is collected by
three high-numerical-aperture (high-NA) lenses (L1, L2 and
L4, henceforth Li) surrounding the trap center, coupled into
single-mode fibers, registered with separate avalanche photo-
diodes (APDs) and counted in 20 ms time bins.

To acquire fluorescence signals versus probe intensity and
versus detuning, we implemented the sequence shown in
Fig. 3 (upper): starting from an empty FORT, the MOT beams
(cooler and repumper) are turned on to allow an atom to be
trapped. Prior to the atom’s arrival, the background count rate
is recorded.

Arrival of an atom is determined when the detected count
in channel L1 is above 50 photons per bin. After this “trigger”
event, repumper and cooler remain on for 60 ms to cool the
trapped atom. The repumper is then turned off for 300 ms,
leaving cooler and probe on, to record probe-and-cooler
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FIG. 3. Sequence and representative fluorescence signal from a
single atom. The upper portion shows time sequence of the cooler,
repumper, and probe light. Dashed lines indicate the respective zero
levels. The lower portion shows observed fluorescence counts in
20 ms bins, obtained by pooling counts from Li collected channels.
First detection of an atom in the trap (cyan star) triggers the rest of
the sequence, and is taken as the time origin (cyan line). Purple points
di are used to calculate si, the rate of atom fluorescence collected by
channel i, green points bi are used to calculate background due to
laser scattering, and counts marked with yellow stars (and yellow
lines) are used to verify atom survival.

induced fluorescence. The repumper is then turned on again
for 60 ms, to check if the atom is still trapped. The cooler
and repumper are then turned off. The atom is allowed to
leave by turning off the FORT and cooling beams, and the
cycle repeats. The probe is on at constant power and frequency
during this whole sequence.

As illustrated in Fig. 3 (lower), we record detections di

(shown in purple) and background counts bi (shown in green)
from each trapped atom for a total time of 220 ms divided in
11 time bins, where i indicates collection through lens Li. For
any given probe detuning and power, we measure 20 trials like
the one shown in Fig. 3. About 65% of the atoms survive. We
pool the resulting di and bi values, to have N ≈ 200 values of
each kind.

To extract a signal value and error from these data, we
assume bi and di have means ci and si + ci respectively, where
ci is the mean background rate and si is the mean atom
scattering collected by each channel. Thus, si is estimated
as the sample mean of {di − bi}. We estimate σ 2

i,d and σ 2
i,b

as the sample variances of {di} and {bi}, from which we
estimate σ 2

si
= σ 2

i,d + σ 2
i,b. Error estimates are propagated from

these variances.
Representative pooled fluorescence signals

∑
i si as a func-

tion of probe intensity Ipr and detuning �νpr are shown in
Fig. 4. We note that, with ≈ 13 atoms per point (requiring
less than 6 s of measurement), the technique resolves de-
tunings in steps of γ0/2, where γ0 is the natural linewidth
of the D2 transition, and also probe intensity differences of
order 10 mW m−2, three orders of magnitude below I0 =
16.69 W m−2, the saturation intensity of the D2 line [40].

The fluorescence signals of Fig. 4 show a saturation with
intensity that can be understood as follows: The probe drives
the 1 → 2 transition with a rate, i.e., probability per unit time,
of R1→2 = P1Iprη(νpr ), where PF is the probability to be in

FIG. 4. Collected resonance fluorescence rates as a function of
probe intensity Ipr and detuning �νpr. The vertical axis shows the
net collected signal

∑
i si added over Li, where si = 〈di − bi〉 is

averaged over 11 time bins per atom, acquired in 220 ms (20 ms
per time bin), and over 11 to 19 atoms. Upper (orange), middle
(green), and lower (blue) curves show detunings �νpr = γ0/2, γ0, and
3γ0/2, respectively, from the frequency ν1→2′ of the unshifted 1 → 2′

transition. Error bars show plus/minus one standard error of the
mean. Curves show fits with

∑
i si = ∑

i s(max)
i Ipr/(Ipr + Isat ), with∑

i s(max)
i = 179 counts/20 ms (found by averaging best-fit values

for
∑

i s(max)
i of the individual detunings) and best-fit values 1/Isat =

η(ν1→2′ + �νpr )/� = 13.6(2.2), 8.1(1.0), and 5.4(9) m2W−1 for
�νpr = γ0/2, γ0 and 3γ0/2, respectively. Shaded bands show the
95% confidence interval.

state F , Ipr is the probe intensity, and η(νpr ) is the efficiency
of 1 → 2 excitation at probe frequency νpr, i.e., the spectral
function we seek to measure. The reverse transition happens
with rate R2→1 = �P2, where � depends on the characteristics
of the cooler and the 2 → F ′ transitions, but is independent of
the probe.

Defining the saturation power Isat ≡ �/η(νpr ), assuming
steady-state, i.e., R1→2 = R2→1, and a fluorescence emission
rate ∝ P2, the rate of collected fluorescence via the ith channel
is

si = s(max)
i

Ipr

Ipr + Isat
, (1)

where s(max)
i is the atom’s maximum fluorescence rate times

the channel’s collection efficiency.
To measure the spectral function η(νpr ), we first measure

fluorescence si versus Ipr and fit with Eq. (1) to obtain values
for s(max)

i , as shown in Fig. 4. We then set a probe frequency
νpr, adjust Ipr to achieve si/s(max)

i ≈ 1/3 (a condition that min-
imizes statistical uncertainty in the spectral function), record
Ipr and si for 30 trials, average weighted by σ−2

si
, and compute

η(νpr ) = I−1
sat using Eq. (1). Repeating for a range of νpr we

obtain spectra such as that shown in Fig. 5. We note that line
broadening due to saturation is automatically compensated in
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FIG. 5. Quantum jump spectroscopy of the 5S1/2, F = 1 →
5P3/2, F ′ = 2 transition in individual FORT-trapped atoms. The hor-
izontal axis shows detuning �νpr ≡ νpr − ν1→2′ from the unshifted
ν1→2′ transition frequency. The vertical axis shows excitation effi-
ciency η(νpr )/�= I−1

sat computed via Eq. (1). Sequences in which
the atom escapes the trap are excluded in postselection. Each point
represents the average of 30 atoms. Error bars indicate plus/minus
one standard error. Background counts, measured with no atom in
the trap, have been subtracted. Curves show a fit with Eq. (3), with
FORT intensity at trap center and atom temperature as free pa-
rameters. The fit finds I (max)

FORT = 1.593(5) × 109W m−2 at trap center
and T = 36.7(8) μK, with rms statistical uncertainties found by
bootstrapping. These values are in good agreement with independent
estimates by physical optics calculation and release-and-recapture
temperature measurement, respectively [38].

this method, and that the probe intensity is always well below
the 1 → 2′ saturation intensity.

Via light shifts, this spectrum gives information on both
the FORT intensity and thus beam shape, and on the atomic
center-of-mass spatial distribution and thus atom temperature.
If the probe laser instantaneous frequency is ν, and the instan-
taneous light-shift is �eg = (δe − δg)IFORT(x), where δe, δg are
the per-intensity light shifts of the excited and ground state,
respectively, and x is the instantaneous position of the atom,
then the instantaneous efficiency of excitation is

η ∝ fnat (νeg + �eg − ν), (2)

where νeg = (Ee − Eg)/2π h̄ is the unshifted line center and
fnat (ν) ∝ 1/[(γ0/2)2 + (2πν)2] is the natural line shape func-
tion. Averaging over the distribution of light shifts f�(�eg),
and the probe laser’s line-shape function fpr (δ), with δ ≡
ν − νpr, we obtain

η(νpr ) ∝
∫

dδ d�eg fnat (νeg + �eg − νpr − δ) fpr (δ) f�(�eg),

(3)

i.e., the convolution of fnat (ν) with fpr (δ) and f�(−�eg).
To relate this to the atom temperature, we note that the

optical potential is V = α�eg, where α ≡ 2π h̄δg/(δe − δg).
Assuming the atom’s center-of-mass coordinate is thermally
distributed, f� is given by a Boltzmann distribution f� ∝
exp[−βV ]ρ(V ), where β ≡ 1/kBT and ρ(V ) is the potential
density of states. If the potential is quadratic with minimum

Vmin, this gives

f�(�) ∝
√

α� − Vmine−β(α�−Vmin )β3/2 (4)

for α� > Vmin, and zero otherwise [41].
The line center reflects the average light shift, which

depends strongly on the maximum intensity I (max)
FORT ≡

maxx IFORT(x) and weakly on the temperature T , whereas the
line width depends more strongly on T . Fitting the data of
Fig. 5, and using a bootstrapping procedure to estimate the
fitting uncertainties, we find I (max)

FORT = 1.593(5) × 109 W m−2

and a temperature T = 36.7(8) μK. The reduced χ2 of this
fit is 3.8, which suggests that there are other perturbations
roughly comparable to these statistical uncertainties. Relating
the obtained value of I (max)

FORT with the waist w of the FORT
beam, defined as the 1/e2 radius of intensity, and assuming
the Gaussian beam relation I (max)

FORT = 2PFORT/πw2 with FORT
power PFORT = 6.8(2) mW, the waist is w = 1.65(2) μm, in
good agreement with prior estimates [38]. The implied rms
width of the center-of-mass distribution is 0.184 μm in the
radial directions and 1.58 μm in the longitudinal, so the atom
samples the FORT intensity distribution with subwavelength
transverse resolution.

Although a full systematic error analysis is beyond the
scope of this work, we note that the Zeeman shift of the
1 → 2′ transition is B(γ2′m′ − γ1m)/2π , where B is the mag-
netic field strength, γ1/2π = −0.7 MHz G−1 and γ2′/2π =
0.93 MHz G−1 are the F = 1 and F ′ = 2 gyromagnetic ra-
tios, respectively, and m, m′ are the corresponding magnetic
quantum numbers [40]. The magnitude of the transition shift
is thus at most B × 2.56 MHz G−1. The measured magnetic
field fluctuations of the laboratory are B � 10 mG [42],
implying line shifts and broadening due to Zeeman shifts
below 26 kHz. Using a pulsed probe synchronized to the
ac power line could reduce this by more than an order
of magnitude [42]. Vector light shifts due to elliptically-
polarized FORT light can be analyzed similarly. The shift
is �I (γ (opt)

2′ m′ − γ
(opt)

1 m), where �I is the difference in
intensity between σ+ and σ− polarization components (quan-
tization axis along the FORT propagation direction), and
γ

(opt)
1 = −4.1 × 10−10 MHz m2W−1 and γ

(opt)
2′ = −1.49 ×

10−9 MHz m2W−1 are the calculated vector light shift co-
efficients for our FORT wavelength [9]. In our geometry,
the circularly polarized probe drives simultaneously the
m′ = m and m′ = m ± 1 transitions in the ratio 2:1:1, im-
plying a transition-averaged shift of at most �I × 1.08 ×
10−9 MHz m2W−1. Assuming �I = 0.013 × I (max)

FORT = 2.0 ×
107 W m−2, corresponding to the maximum �I of a beam
with linear polarization extinction ratio 105:1, we find a
maximum vector light shift of 22 kHz for the transition.
For comparison, the 5 × 106 W m−2 statistical uncertainty of
I (max)
FORT corresponds to a scalar transition light shift of 70 kHz.

Line broadening is quadratic in the dispersion of such shifts,
and is negligible here.

We note possible extensions of the technique: first, the
method could be implemented stepwise, with sequential state
preparation, probing, and readout. This would remove noise
associated with the stochastic 1 ↔ 2 jumps in the continuous
implementation. Second, circularly or elliptically polarized
fields could be measured without state-dependent shifts, if
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the atom is optically pumped to a specific F = 1, mF state
[43]. Third, the spectroscopy could be performed with the
probe tuned to the 1 → 1′ transition. On this transition, the
excitation efficiency will be strongly Zeeman-state and probe-
polarization dependent, due to selection rules and strong
tensor light shifts of the F ′ = 1 state, as shown in Fig. 2.
These features enable internal-state-selective detection with
the same advantages of high gain and low perturbation that
we have demonstrated using the 1 → 2′ transition.

Conclusion. We have proposed and demonstrated the use
of a single neutral 87Rb atom for precision, subwavelength
sensing of optical intensity, implemented by a quantum jump
spectroscopy technique. A very low intensity probe near the
F = 1 → F ′ = 2 hyperfine transition of the D2 line drives
“quantum jumps,” i.e., resonant Raman transitions, into the
F = 2 ground state. A second laser near the F = 2 → F ′ = 3
cycling transition induces a burst of resonance fluorescence
for each Raman transition, greatly amplifying the detectable
signal. By scanning the probe frequency, the spectrum of F =
1 → F ′ = 2 excitation is measured, indicating the distribution
of ac Stark shifts on this transition, which suffers negligible
broadening from tensor light shifts. From this spectrum we
obtain the intensity at trap center and the atom’s temperature.

The technique can be extended to perform Zeeman-state-
selective readout.
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A. Browaeys, and P. Grangier. Fast quantum state control of a

94

https://doi.org/10.1007/BF01340182
https://doi.org/10.1103/PhysRevLett.24.156
https://doi.org/10.1103/PhysRevLett.59.2631
https://doi.org/https://doi.org/10.1007/BF01328923
https://doi.org/10.1038/35082512
https://doi.org/10.1038/nature04628


Bibliography

single trapped neutral atom. Phys. Rev. A, 75:040301, Apr 2007.

doi:10.1103/PhysRevA.75.040301.

[10] Y. R. P. Sortais, H. Marion, C. Tuchendler, A. M. Lance, M. Lamare,

P. Fournet, C. Armellin, R. Mercier, G. Messin, A. Browaeys, and

P. Grangier. Diffraction-limited optics for single-atom manipulation.

Phys. Rev. A, 75:013406, Jan 2007. doi:10.1103/PhysRevA.75.013406.

[11] J. Beugnon, C. Tuchendler, and H. et al. Marion. Two-dimensional trans-

port and transfer of a single atomic qubit in optical tweezers. Nature Phys,

3:696–699, 2007. doi:10.1038/nphys698.

[12] Meng Khoon Tey, Zilong Chen, Syed Abdullah Aljunid, Brenda

Chng, Florian Huber, Gleb Maslennikov, and Christian Kurt-

siefer. Strong interaction between light and a single trapped atom

without the need for a cavity. Nature Phys, 4:924–927, 2008.

doi:https://doi.org/10.1038/nphys1096.

[13] V. Leong, M. Seidler, and M. et al. Steiner. Time-resolved scatter-

ing of a single photon by a single atom. Nat Commun, 7, 2016.

doi:10.1038/ncomms13716.

[14] YS. Chin, M. Steiner, and C. Kurtsiefer. Nonlinear photon-atom coupling

with 4pi microscopy. Nat Commun, 8, 2017. doi:10.1038/s41467-017-

01495-3.

[15] F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier,
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