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Abstract

Unmanned aerial vehicles (UAV) also known as drones have been used for a variety of reasons
such as surveillance, reconnaissance, shipping and delivery, etc. and commercial drone market
growth is expected to reach remarkable levels in the near future. However, drones can accidentally
or intentionally violate the air routes of major airports, flying too close to commercial aircraft or
invading the privacy of someone. In order to prevent these unwanted events to happen, counter-
drone technology is needed to eliminate the threats coming from drones and hopefully the drones
can be integrated into the skies safely. A number of counter-drone solutions are being developed,
but the cost of drone detection ground systems can also be very high, depending on the number
of sensors deployed and powerful fusion algorithms.

Counter-drone system supported by an artificial intelligence (AI) method can be an efficient
way to fight against drones instead of human intervention. Considering the recent advances in
AI, counter-drone systems with AI can also be very accurate. The time required to engage with
the target can be less than other methods based on human intervention such as bringing down a
malicious drone by a laser gun. Also, AI can identify and classify the target with a high precision
in order to prevent a false interdiction with the targeted object. Counter-drone technology with
AI will bring important advantages to the threats coming from some drones and will help the
skies to become safer and more secure. AI has been used in different research areas in aerospace
to create an intelligent system. Especially, a drone can be controlled by AI methods such as deep
reinforcement learning (DRL) in different purposes. With the support of DRL, drones can become
more intelligent and eventually they can be fully autonomous.

The main objective of this PhD thesis is to develop an artificial intelligence approach based
on deep reinforcement learning to counter drones that may pose a threat to safety or security.
AI agents can continuously learn and adapt to new threats and countering drones with DRL has
several advantages. One of the most important advantages is autonomous decision-making which
enables AI agents to make autonomous decisions based on their environment and the situation. In
this way, drone threats can be countered quickly and effectively, even in vulnerable environments.
Additionally, AI agents can be trained in simulation, allowing for safe experimentation, testing,
and validation before deployment.

Firstly, DRL architecture is proposed to make drones behave autonomously inside a suburb
neighborhood environment. Secondly, a state-of-the-art object detection algorithm for drone de-
tection is also added to the counter drone solution. The construction of drone detection models
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involves transfer learning and training a state-of-the-art object detection algorithm. After achiev-
ing fully autonomous drone which can avoid obstacles in an environment, a deep reinforcement
learning method to counter a drone in a 2D space in an environment is presented. In this way,
drone can maintain its current altitude, and it can try to catch another drone without crashing any
obstacle in the environment. Finally, a deep reinforcement learning model is developed to counter
a drone in a challenging 3D space in an environment. The learner drone is not only moving in a
2D space but also changing altitudes to eliminate the target drone.

DRL is a promising approach for countering drones. It involves training AI models but there
are certain challenges that need to be addressed. One of the biggest challenges is that training DRL
algorithms require a lot of computational power. If the training is carried out without a simula-
tion environment, training DRL models can be computationally intensive which can make them
impractical for some applications where resources are limited. Furthermore, there are concerns
about the actions AI agents could take in sensitive environments. It is important to ensure that AI
agents are properly trained and validated so that they can make safe and responsible decisions.
Without proper testing and validation, there is a risk that AI agents in sensitive areas such as
airports or critical infrastructure might perform actions that could be dangerous or violate regu-
lations. By addressing these challenges, DRL-based counter-drone solutions can be made more
practical, efficient, and secure for future use.
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Resumen

Los vehículos aéreos no tripulados (UAV), también conocidos como drones, se han utilizado por
una variedad de razones, como vigilancia, reconocimiento, envío y entrega de paquetes, etc. y se
espera que el crecimiento del mercado de drones comerciales alcance niveles notables en un futuro
próximo. Sin embargo, los drones pueden violar accidental o intencionadamente las rutas aéreas
de los principales aeropuertos, volando demasiado cerca de aviones comerciales o invadiendo la
privacidad de alguien. Para evitar que sucedan estos eventos no deseados, se necesita tecnología
contra drones para eliminar las amenazas provenientes de los drones para que éstos pueden inte-
grarse en los cielos de manera segura. Se han desarrollado varias soluciones contra drones, pero
el costo de los sistemas terrestres de detección de drones puede ser muy alto, según la cantidad
de sensores desplegados y los potentes algoritmos de fusión.

El sistema contra drones, respaldado por un método de inteligencia artificial (IA), puede ser
una forma eficiente de luchar contra los drones si necesidad de intervención humana. Teniendo
en cuenta los avances recientes en IA, los sistemas contra drones con IA también pueden ser muy
precisos. El tiempo requerido para neutralizar al objetivo puede ser menor que con los métodos
basados en la intervención humana, como por ejemplo derribar un dron malicioso con una pistola
láser. Además, la IA puede identificar y clasificar el objetivo con alta precisión para evitar un error
al neutralizar a un objetivo equivocado. La tecnología contra drones con IA brindará ventajas
importantes a las amenazas que suponen algunos drones y ayudará a que los cielos se vuelvan
más seguros. La IA se ha utilizado en diferentes áreas de investigación en la industria aeroespacial
para crear sistemas de decisión inteligente. Especialmente, un dron puede ser controlado por
métodos de IA, como el aprendizaje profundo por refuerzo (DRL), para diferentes propósitos.
Con el apoyo de DRL, los drones pueden volverse más inteligentes y eventualmente pueden ser
completamente autónomos.

El objetivo principal de esta tesis doctoral es desarrollar un enfoque de inteligencia artificial
basado en el aprendizaje profundo por refuerzo para contrarrestar los drones que pueden repre-
sentar una amenaza para la seguridad. Los agentes basados en IA pueden aprender y adaptarse
continuamente a las nuevas amenazas, ya que contrarrestar los drones con DRL tiene varias ven-
tajas. Una de las ventajas más importantes es la toma de decisiones autónoma que permite a los
agentes tomar decisiones autónomas en función de su entorno y la situación. De esta forma, las
amenazas de los drones se pueden contrarrestar de forma rápida y eficaz, incluso en entornos
complejos. Además, los agentes inteligentes pueden entrenarse con simulaciones, lo que permite
una experimentación, prueba y validación seguras antes de la implementación.
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En primer lugar, se propone una arquitectura DRL para hacer que los drones se comporten
de forma autónoma dentro de un entorno de barrio suburbano. En segundo lugar, se propone una
solución contra drones apoyado por un algoritmo de detección de objetos de última generación
modificado para la detección de drones. La construcción de modelos de detección de drones usa
el aprendizaje por transferencia además del algoritmo de detección de drones. Después de lograr
un dron completamente autónomo que puede evitar obstáculos en un entorno, se presenta un
método de aprendizaje profundo por refuerzo para contrarrestar un dron en un espacio 2D. De
esta manera, el dron puede mantener su altitud actual y puede intentar atrapar a otro dron sin
chocar con ningún obstáculo en el entorno. Finalmente, se desarrolla un modelo de aprendizaje
profundo por refuerzo para contrarrestar un dron en un espacio 3D, un entorno de complejidad
desafiante. El dron aprende no sólo a moverse en un espacio 2D, sino que también cambia de
altura para capturar al dron malicioso.

DRL es un enfoque prometedor para tareas contra drones. Implica entrenar modelos de IA
y hay ciertos desafíos que deben abordarse. Uno de los mayores desafíos es que entrenar al-
goritmos DRL requiere mucha potencia computacional. El entrenamiento de los modelos DRL
suele ser computacionalmente intensivos, lo que puede hacerlo poco práctico para algunas aplica-
ciones donde los recursos son limitados. Además, existen preocupación sobre las acciones que los
agentes de IA podrían tomar en entornos sensibles. Es importante asegurarse de que los agentes
de IA estén debidamente capacitados y validados para que puedan tomar decisiones seguras y re-
sponsables. Sin las pruebas y la validación adecuadas, existe el riesgo de que los agentes de IA en
áreas sensibles, como aeropuertos o infraestructura crítica, puedan realizar acciones que podrían
ser peligrosas al violar las normas establecidas. Al abordar estos desafíos, las soluciones contra
drones basadas en DRL se pueden hacer más prácticas, eficientes y seguras para uso futuro.
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Resum

Els vehicles aeris no tripulats (UAV) també coneguts com a drons s’han utilitzat per diverses raons,
com ara vigilància, reconeixement, enviament i lliurament, etc. i s’espera que el creixement del
mercat de drons comercials assoleixi nivells notables en un futur proper. Tanmateix, els drons
poden violar accidentalment o intencionadament les rutes aèries dels principals aeroports, volar
massa a prop d’avions comercials o envair la privadesa de les persones. Per tal d’evitar que es
produeixin aquests esdeveniments no desitjats, és necessària la tecnologia contra-drones, per tal
d’eliminar les amenaces que provenen d’alguns drons i fer que els drons es puguin integrar a
l’espai aéri de manera segura. S’estan desenvolupant diverses solucions contra drons, però el cost
dels sistemes terrestres de detecció de drons també pot ser molt elevat, depenent del nombre de
sensors desplegats i d’algoritmes de fusió potents.

El sistema contra drons recolzat per un mètode d’intel·ligència artificial (IA) pot ser una man-
era eficient de lluitar contra els drons en lloc de la intervenció humana. Tenint en compte els
avenços recents en IA, els sistemes de contra-drones amb IA també poden ser molt precisos. El
temps necessari per neutralitzar l’objectiu pot ser inferior al d’altres mètodes basats en la interven-
ció humana, com ara fer caure un drone maliciós amb una pistola làser. A més, la IA pot identificar
i classificar l’objectiu amb una alta precisió per tal d’evitar un error en la selecció d’aquest objectiu.
La tecnologia contra drons amb IA aportarà avantatges importants a les amenaces que provenen
d’alguns drons i ajudarà a que els cels siguin més segurs i segurs. La IA s’ha utilitzat en diferents
àrees de recerca en l’aeroespacial per crear sistemes intel·ligents. Especialment, un drone es pot
controlar mitjançant mètodes d’IA com ara l’aprenentatge profund per reforç (DRL) amb difer-
ents finalitats. Amb el suport de DRL, els drons poden ser més intel·ligents i, finalment, poden ser
totalment autònoms.

L’objectiu principal d’aquesta tesi doctoral és desenvolupar un enfocament d’intel·ligència
artificial basat en l’aprenentatge profund per reforç per contrarestar els drons que poden suposar
una amenaça per a la seguretat. Els agents d’IA poden aprendre i adaptar-se contínuament a
noves amenaces. Contrarestar els drons amb DRL té diversos avantatges. Un dels avantatges
més importants és la presa de decisions que permet als agents d’IA prendre decisions autònomes
en funció del seu entorn i de la situació. D’aquesta manera, les amenaces dels drons es poden
contrarestar de manera ràpida i eficaç, fins i tot en entorns complexos. A més, els agents d’IA es
poden entrenar en simulació, cosa que permet experimentar, provar i validar de manera segura
abans del desplegament.
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En primer lloc, es proposa l’arquitectura DRL per fer que els drons es comportin de manera
autònoma dins d’un entorn d’un barri suburbà. En segon lloc, també s’afegeix un algorisme de
detecció d’objectes d’última generació per a la detecció de drons com a part de la solució con-
tra drons. La construcció de models de detecció de drons pot ser recolçada per l’aprenentatge
per transferència, a mes de per un algorisme de detecció d’objectes d’última generació. Després
d’aconseguir un dron totalment autònom que pugui evitar obstacles en un entorn, es presenta
un mètode d’aprenentatge profund per reforçament per neitralitzar un dron en un espai 2D.
D’aquesta manera, el drone pot mantenir la seva altitud, i pot intentar captura l’altre dron sense
xocar amb cap obstacle a l’entorn. Finalment, es desenvolupa un model d’aprenentatge profund
per reforçament per contrarestar un dron en un espai 3D, un entorn desafiant. El dron intelligent
no només es mou en un espai 2D, sinó que també canvia d’altitud per eliminar el dron objectiu.

DRL és un enfocament prometedor per combatre els drons. Implica entrenar models d’IA,
però hi ha certs reptes que cal abordar. Un dels majors reptes és que entrenar algorismes DRL
requereix molta potència computacional. L’entrenament dels models DRL pot ser computacional-
ment intensiu, cosa que pot fer-lo poc pràctic per a algunes aplicacions on els recursos són limitats.
A més, hi ha preocupacions sobre les accions que els agents d’IA podrien prendre en entorns sen-
sibles. És important garantir que els agents d’IA estiguin degudament formats i validats perquè
puguin prendre decisions segures i responsables. Sense les proves i validacions adequades, hi ha
el risc que els agents d’IA en àrees sensibles com aeroports o infraestructures crítiques puguin dur
a terme accions que podrien ser perilloses o infringir la normativa. En abordar aquests reptes, les
solucions contra-drones basades en DRL es poden fer més pràctiques, eficients i segures per a un
ús futur.
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İstikbal Göklerdedir.

[The future is in the skies.]

— Mustafa Kemal Atatürk

When once you have tasted flight, you will forever walk the

earth with your eyes turned skyward, for there you have been,

and there you will always long to return.

— Leonardo DaVinci

I
Introduction

Drone industry has been improving itself over the years and drones market is growing dras-
tically. According to counter unmanned aerial system (C-UAS) and unmanned aircraft system
traffic management (UTM) market analysis Unmanned-Airspace (2017), commercial drone mar-
ket is estimated to be worth United States Dollar (USD) 6510.8 Million in 2022 and it is projected
to reach USD 34500 Million by 2028 with a Compound Annual Growth Rate (CAGR) of 32.0%
during the review period. Drones are used by professionals and hobbyists for different purposes
such as delivery, wildlife monitoring, reconnaissance, inspection and surveillance. Federal Avia-
tion Administration (FAA) from United States published a report FAA (2022) that 865,505 drones
registered. In this report it is stated that 314,689 of them are commercial drones and 538,172 of
them are recreational drones or hobby use of drones. These numbers are quickly increasing all
over the world. This chapter provides a brief overview of artificial intelligence and its application
to drones, as well as counter drone technology.

I.1 Drones and Artificial Intelligence

An unmanned aerial vehicle known as a drone is an aircraft without human pilot and it is guided
autonomously by using remote control and onboard sensors and electronic transmitters.

Drones are flying machines ranging from insect-sized flapping crafts to large airplanes the
size of a commercial airline jet Palmer & Clothier (2013). Their capabilities are also wide-ranging:
some drones are capable of flying for only a few minutes, while others can fly for days at a time.
The applications of drones are also diverse. Drones can be used for a variety of civil and military

1
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purposes. The classification of the applications of drones is presented in Figure I-1. The drone
can operate in challenging environments both outside and indoors. While the initial applications
of drones were mainly for military purposes, and later for recreational purposes, drones are used
today in many civil applications and in public spaces. Some of the most common commercial
applications and uses for drones include agriculture (crop spraying, crop monitoring, etc.), live
streaming events, emergency response, search and rescue, firefighting, disaster zone mapping,
mapping and surveying and artificial intelligence applications Kugler (2019); Chew et al. (2020).
More recently, the societal utility of drones has been further enhanced in the management of the
global COVID-19 pandemic, with use cases such as aerial spraying of public areas to disinfect
streets, the surveillance of public spaces, and monitoring local authorities during lockdowns and
quarantine Restás et al. (2021).

Figure I-1: Applications of drones Hassanalian & Abdelkefi (2017)

There are many types of drones available and drones have been categorized in different ways
in terms of their weight, size, autonomy level and the usage area. For instance, European Union
Aviation Safety Agency (EASA) EASA (2022) defines drones in different groups presented in Table
I-1 depending on the actual weight of the drone considering leisure drone activities and low-
risk commercial activities. Additionally, drones with different design are presented in Figure I-2.
Drones can be fixed-wing, helicopter, ducted shape or in a bird shape design such as smart bird.
Also, the first stratospheric UAS of its kind, high altitude platform station (HAPS), called Zephyr
from Airbus and Space (2023) is flying continuously for months at around 70,000ft altitude. This
UAS demonstrated day/night longevity in the stratosphere.

Table I-1: The type of drones.

UAS Subcategory Operational Restriction

< 500 g A1 fly over people but not over assemblies of people
< 2 kg A2 fly close to people
< 25 kg A3 fly far from people

Artificial intelligence (AI) has been utilized in different purposes to support Unmanned air
vehicles (UAV). For example, a drone supported with AI can navigate in an unknown environ-
ment by detecting and avoiding the obstacles by using object detection algorithms. Moreover,
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(a) Fixed wing Northrop-
Grumman-Corporation’s
(2022b)

(b) Helicopter Northrop-
Grumman-Corporation’s
(2022a)

(c) V-bat Shield-AI (2023) (d) Smart bird Festo (2022)

(e) Parrot Anafi USA Parrot
(2023)

(f) Volodrone Volocopter-
GmbH (2023)

(g) Matrice 300 DJI (2023) (h) Zephyr and Space
(2023)

Figure I-2: Different types of drones.

a drone can deliver medicine or any kind of materials by operating autonomously using an AI
method. Reinforcement learning (RL) which is an AI method based on trial and error experiences,
is also used in drones in different scenarios. Drones supported with RL can operate autonomously
to deliver goods, navigate in an environment, or even in drone racing tournaments where drones
race against human pilots. Reinforcement learning methods showed promising results in many
areas such as gaming which requires a lot of experiences to achieve successful results. This shows
that a drone supported with RL can be used to counter drones in an effective way. Fighting against
unknown and malicious drones can be very accurate and efficient by implementing an AI method
in counter-drone technology. AI methods can speed up the time to engage with the target com-
pared to other methods based on human intervention. A drone with AI can identify and classify
the target with a high precision. It is also possible to prevent a false interdiction with the targeted
object by using an AI. Countering a drone in 2D space can be an easy way since the drone and the
target move without changing altitude. However, if the target changes an altitude and moves in
3D space, which is highly expected in real world, an AI method such as reinforcement learning
can be an efficient method thanks to perception and interpretation of environment by RL agent
drone since RL models can learn by interacting in an environment by trial and error experiences.
This is an important advantage to be used against drones in 3D space.

In recent years, researchers proposed some studies in the area of deep reinforcement learning
(DRL) and UAV. In this context, the studies are mostly focused on the topics of drone detection
and of navigation of drones in an unknown environment, avoiding obstacles. Akhloufi et al. (2019)
propose deep reinforcement learning and deep search areas for drones’ pursuit-evasion problems.
Firstly, DRL is used to follow a target drone, by predicting its actions to follow the target. Also,
supervised learning is applied by using a large dataset of drone images. Another example is
to predict the position of the target drone using deep object detector and search area proposal.
YOLO-v2 Redmon et al. (2016) is used as an object detector. A drone can also be navigated with
the help of deep reinforcement learning, using the sensor data. Hodge et al. (2021) proposed a
generic navigation algorithm that uses sensor data. Authors state that locating problems rapidly
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and accurately in hazardous situations is vital. Proximal policy optimisation (PPO) DRL algorithm
coupled with incremental curriculum learning and long short-term memory neural networks are
implemented. The algorithm acts as a recommender for autonomous drone and human pilot if
it is applicable. DRL is also used against jamming. In a research by Lu et al. (2018) DRL meth-
ods were applied to choose the relay policy by using a drone as part of a cellular communication
framework against jamming. In this method, the cellular systems can resist the jamming without
knowing the jamming model and the network model. In this article, it is stated that the opti-
mal performance can be achieved by adequately interacting with the jammer. Rodriguez-Ramos
et al. (2019) proposed a DRL for the autonomous landing of drones on a moving platform. The
drone control during landing is performed using the deep deterministic policy gradients (DDPG)
algorithm and tested over a simulator interface. Reinforcement learning is also used in Bertoin
et al. (2021) to focus on automated anti-collision systems. In this study, it is stated that training
Reinforcement Learning agents can deflect a drone equipped with an automated anti-collision sys-
tem. The effectiveness of reinforcement learning in finding security holes for the autonomous sys-
tems is also highlighted. Moreover, in a study by Lee (2021), tracking and capturing an invading
drone using a vision-based drone to defend it is presented. Firstly, researchers developed a deep
learning-based detection algorithm which is applied to detect a drone and estimate its position.
Secondly, a deep reinforcement learning algorithm is introduced to find the optimal behavior to
track a drone. Reinforcement learning can be combined with another deep learning method called
imitation learning. For example, a deep reinforcement learning method is proposed in He et al.
(2020) to navigate an UAV in an unknown environment using demonstration data. Researchers
presented that expert demonstrations can speed up the training process and both the policy and
Q-value network are pre-trained in the imitation phase. Simulation results show that UAV can
avoid obstacles in an unknown 3D environment.

I.2 Counter Drone Systems

Counter drone system is an emerging necessity to detect and eliminate a malicious drone or any
kind of UAV which threatens public security or individual’s privacy. In order to eliminate threats
to public security and privacy because of these misused drones, counter drone solutions have been
proposed by researches using different methods and tools. In Figure I-3, steps to follow when
countering a drone are explained. Firstly, drones are detected identified and tracked. Secondly,
the decision is made whether the drone detected is friendly or malicious. Later, the interdiction
methods are applied to counter a drone. Finally, the drone is disarmed, isolated or terminated.
The technologies for the detection, localization, and identification of small UAVs include infrared
sensors, laser devices, optical surveillance aids and devices, acoustic devices, LiDAR (Light De-
tection and Ranging) sensors, equipment operating with image recognition technology, devices
capable of detecting and localizing UAV remote control signals, and human air observers Kratky
& Farlik (2018). After the target drone is detected, the elimination methods such as laser guns,
water cannons, birds trained for catching drones, jamming can be applied. More details on de-
tecting drones can be seen in a survey by Chiper et al. (2022). In this survey, the different drone
detection and defense systems based on different types of methods which were proposed in the
literature are presented. In the real world, the target position can be detected in many different
sensing technologies such as radar Drozdowicz et al. (2016); Semkin et al. (2021), acoustical Bernar-
dini et al. (2017a); Mezei et al. (2015), radio frequency (RF) Nguyen et al. (2016), optical Opromolla
et al. (2018), lidar de Haag et al. (2016a), or a deep learning-based solution Çetin et al. (2021); Aker
& Kalkan (2017).

There are many study cases which investigate countering drones. In a study presented in
defence science journal Kratky & Farlik (2018), UAV detection and elimination are discussed. The
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terminology used in this journal is based on The North Atlantic Treaty Organization (NATO) .
According to this terminology, the problem of defence is divided into 3 main aspects: Air surveil-
lance, command and control and elimination. Air surveillance is used for detecting and identify-
ing UAV. Command and control collects data from sensors and acts as a decision maker mecha-
nism when the actions are taken against the aerial object. Elimination is a collection of methods
for interdiction of the threats. Devices to detect UAV, such as radar systems, sensors or acoustic
devices, are existing technologies used for countering drones. To eliminate these threats several
methods are proposed. These methods include shotguns, laser guns, nets, water cannons, birds
trained for catching drones, jamming the command and control radio signals and jamming the
global navigation satellite system signals. Detailed explanation about conter drone systems and
the methods used to counter drones presented in surveys Park et al. (2021) and Michel (2018).
Tables I-2 and I-3 present the methods used in counter drone systems and their definitions.

In a survey Lykou et al. (2020), the limitations of available counter-drone technologies and
the advantages of using them are explained in detail. In this study, it is stated that the threats
coming from drones in airports are not easy to deal with. However, methods such as geofenc-
ing, multiple radars with different detection ranges and a combination of radio-frequency sensors
with visual detection sensors can be implemented to defend airports against unwanted drones.
It is also highlighted that airfield operators must remain within the law when using disruptive
technologies, and the risks to the wider community should be fully assessed and understood.
Researchers Watkins et al. proposed a blueprint Watkins et al. (2020) which offers a design for
a novel autonomous counter drone tool based on the weaponization of “hard-to-patch” vulner-
abilities. The paper highlights the problem of privacy violation due to drones and presents a
counter-drone tool which breaks the drone’s autonomy code. In another study Barišic et al. (2022),
it is presented that the system developed can extract target UAV trajectory which is enough to
intercept an intruder drone. The research states that with a priori knowledge of the shape of the
target trajectory, they managed to track and intercept an intruding drone 30% faster than their sen-
try vehicle in more than half of the software in the loop (SITL) experiments conducted. The system
is also tested in an outdoor unstructured environment and the drone successfully intercepts in 9
out of 12 experiments.

In the literature, the researchers also studied different instruments to detect unmanned aerial
vehicles. Choi et al. (2018) propose a radar system to detect drones such as quadcopters from long
distances. The drone detection system has also been experimented in outdoor environments to
verify the long range drone detection. In another research by Bernardini et al. (2017b), acoustic
drone detection method is presented. A machine learning based warning system is developed to
detect the drones by using the drone audio fingerprint. The effectiveness of the sensing approach
is supported by preliminary experimental results. de Haag et al. (2016b) presented LiDAR and
radar sensors to detect small unmanned aerial systems platforms. The position and average ve-
locity of the target can also be determined very accurately by applying motion compensation and
target tracking techniques thanks to the LiDAR’s high update rate and high ranging accuracy. A
full counter drone system with several types of sensors and several level of prediction and fusion
is also presented by Samaras et al. (2019).

I.3 Motivation of this PhD

This section focuses on the importance of counter-drone systems to deal with the unwanted or
intruder drones. Sections I.3.1 and I.3.2 present the growing trend for drone market and the drone
incidents occurred lately in Europe and in all over the world. These future needs drive the moti-
vation of this PhD thesis.
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Table I-2: Detection, Tracking and Identification.

Methods Feature Definition

Long range (1− 20 km)
Radar Physical object Less affected by the weather

High expense

Long range (3− 50 km)
Radio-frequency (RF) receiver RF signal Detect the drone operator

Obstacle-free

Short range (0.5− 3 km)
Electro-optical (EO) Visibility Miniaturized

Low expense

Long range (1− 15 km)
Infrared (IR) camera Heat Less affected by the weather

Low accuracy

Extremely low detection range (< 0.2 km)
Acoustic receiver Acoustic signal Miniaturized

Low accuracy

Hybrid Mixed features Combination of different technologies

Table I-3: Interdiction methods.

Methods Destructive Definition

Non- Effective for drones using unknown protocols
RF Jamming destructive Not effective for autonomous drones

Instant procedure

Non- Can effect nearby friendly drones
GNSS Jamming destructive Available for follow-up investigation

Instant procedure

Non- Wide availability
Spoofing destructive Difficult to control

Includes autonomous and manual flight

Non- Only available for communicable drones
Geofencing destructive Simultaneous response

Easy to extend

Non- Difficult to target and hit
Capture Destructive Possible damage after

Available for follow-up investigation

Long range
Laser Destructive Confirmatory destruction

High expense

Long range
High Power Microwave Destructive Confirmatory destruction

High expense

Anti-aircraft Long range
weapons Destructive Confirmatory destruction

High expense

Hard to target and hit
Collision Drone Destructive Possible ground hit

Low cost
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Figure I-3: Steps to Counter-Drone

I.3.1 Flourishing Drone Market

Increasing use of commercially available drones and the capabilities of them are posing a threat
to safety of skies if they are misused. It is expected that the unmanned aerial Vehicles(UAV), also
known as drones, will scale their flights and their operations beyond visual line of sight (BVLOS)
will cover most of the air traffic by 2035 Sesar-JU (2023a). However, this increase on the number
of drones in the airspace worldwide can increase the risk of misusing drones. To allow drones to
operate in low-level airspace, U-space project is initiated by the European Commission. U-space
is a set of new services relying on a high level of digitalisation and automation of functions and
specific procedures designed to support safe, efficient and secure access to airspace for large num-
bers of drones Sesar-JU (2023b). Figure I-4 shows airspace volumes from U-space and the airspace
is partitioned in X (low-risk), Y (medium-risk) and Z (high-risk) airspace Barrado et al. (2020).
Airspace X has basic requirements from the operator, the pilot, and the drone. In airspace X, the
pilot remains responsible for seperation at all times and visual-line-of-sight (VLOS) operations are
allowed. Airspace Y requires an approved flight plan and VLOS and beyond-visual-line-of-sight
BVLOS flight operations are allowed. Airspace Z has higher density operations than airspace Y
and it also requires an approved operation plan.

The 2016 European Drones Outlook Study SESAR (2016) forecasts a promising economical
growth fostered by the emerging drone market. Unmanned aircraft will be part of everyday life
in most of the economic sectors, but will have a greater impact on air travel, utilities, entertain-
ment and media, logistics, and agriculture. Indeed, the number of drones flying in the European
airspace is expected to increase from a few thousand to several hundred thousand by 2050, most
notably in government and commercial activities. The annual economic benefit could exceed EUR
10 billion by 2035 in Europe and create 100,000 new direct jobs to support drone-related opera-
tions. An example of this growth is illustrated by the agricultural sector, where authors estimate
that 150,000 drones will be operated by 2035. The same is true in the fields of utilities and security,
where around 60,000 unmanned aircraft will be used to assist in natural disaster management or
traffic control, among other tasks.

A summary of the drone demand outlook per mission type by 2025 and 2050 is presented
in Figure I-5 by SESAR JU Undertaking et al. (2017). In this figure. drones are divided into two
parts such as specific drones and certified drones under EASA framework. Specific drones are
drones which are below 25 kilograms and flying near or below 150 meters. Certified drones are
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Figure I-4: Example of airspace volumes. Barrado et al. (2020)

used for drones flying well above 150 meters. beyond visual line of sight (BVLOS) with light load
includes agriculture spraying and delivery drones. In addition, BVLOS surveying includes more
automatic long range surveillance drones such as centralized police drones, agriculture remote
sensing, monitoring of pipeline , power-lines and railway. Localized visual line of sight (VLOS)
surveying represent inspections for energy sites (solar,oli & gas, etc.), telecommunication towers
, mining & construction sites, etc., and in-vehicle police & fire response units. It is seen that the
majority of potential demand is for drones expected to perform BVLOS missions.

Moreover, in figure I-6 provided by SESAR JU Undertaking et al. (2017), it is shown that the
forecasted economic impact of drones by 2035 and 2050 in different sectors such as agriculture,
energy, public safety and security, delivery, mobility and other sectors. Many businesses will
benefit from drones in terms of product, service, and other support capability values at-stake for
European demand.

I.3.2 Drone incidents

Under the latest drone regulation drones should not enter restricted zones, such as airports. Al-
though there are many counter-drone solutions available in the literature, each solution targets
special cases. In 2018, a drone caused a huge problem in Gatwick London Airport. The flights
were canceled and around 140,000 passengers were affected BBC-UK (2019). However, methods
such as geofencing, multiple radars with different detection ranges and a combination of radio-
frequency sensors with visual detection sensors can be implemented to defend airports against
unwanted drones. It is also highlighted that airfield operators must remain within the law when
using disruptive technologies, and the risks to the wider community should be fully assessed
and understood. Drone incidents happened in the World and in Europe are mapped by (Dedrone,
2022) and they are shown in Figures I-7 and I-8. In addition. Table I-4 presents the list of drone
incidents reported in different parts of Europe. It is seen that airports are exposed to the drone in-
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Figure I-5: Drone demand outlook by type of mission. Undertaking et al. (2017)

Figure I-6: Industry view of forecasted economic impact. Undertaking et al. (2017)

truders and results in delays, costs, and traffic rerouting for passengers, airlines, and the airports.
However, intruder drones are not limited to airports and there are many locations and many ways
to utilize drones. Law enforcement or first responders, stadiums, energy infrastructure, holiday
locations etc. can be affected by drones.

I.4 Objectives of this PhD Thesis

The main objective of this PhD thesis is to demonstrate the capability of an artificial intelligence
method, deep reinforcement learning, to counter drones and provide safe integration of drones
into the public areas. Currently drones must be supervised by a human, but many of their phases
are completely automated. Recent advances in artificial intelligence and advance flight control
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Table I-4: Published drone incidents in Europe.

Incident Place Location Date

easyJet plane comes within Airports London 24/10/2022
10 feet of drone in close counter Sky-News (2022) United Kingdom

Flights to Glasgow Airport Airports Glasgow 23/09/2022
forced to divert after United Kingdom
suspected drone sighting GlasgowLive (2022)

Norway’s airport owner Avinor reports Airports Oslo 13/09/2022
50 drone incursions per month Norway
at Oslo airport alone NRK (2022)

Five flights scheduled to land Airports Madrid 29/08/2022
at Adolfo Suárez-Madrid Barajas airport Spain
were diverted and airport operations
were disrupted for one hour due to
the presence of unauthorized drones 20minutos (2022)

Several sightings’ of drone Airports Aberdeen 06/07/2022
flown illegally near city airport Stv-News (2022) United Kingdom

Drones spy on private homes of Law Dortmund 09/07/2022
Borussia Dortmund football stars Bild (2022) Enforcement/ Germany

First Responders

Mossos report man for flying a drone Law Barcelona 27/06/2022
over Barcelona without permission Elperiódico (2022) Enforcement/ Spain

First Responders

Glastonbury: Police detect Law Glastonburry 25/06/2022
illegal drone flight over festival Thefestivals (2022) Enforcement/ United Kingdom

First Responders

Drone crash during Bayern training Kronen-Zeitung (2021) Stadiums Munich 31/03/2021
Germany

Spanish league responds to Kicker (2021) Stadiums Bilbao 26/03/2021
drone incident in Bilbao Spain

Swedish Security Service investigates Reuters (2022) Energy/Utilities Oskarshamn 14/01/2021
drones at three nuclear plants Sweden

Loss of control following bird attack GOV.UK (2020) Private/ Stranraer 08/10/2020
Non-Coporate United Kingdom
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Figure I-7: Drone incidents in Europe (2015-2022) (Dedrone, 2022)

Figure I-8: Drone incidents in the World (2015-2022) (Dedrone, 2022)

techniques present new opportunities to fully automate the drones. This research has a futuristic
view and thus addresses the long-term evolution of these flying vehicles.

The specific objectives of this PhD thesis can be outlined as follows:

• Create a deep reinforcement learning model that enables a drone to navigate through an
urban environment without crashing on any stationary and non-stationary obstacles such
as houses, trees, cars, electric wires, drones etc. and geofences which are virtual walls. It is
aimed that the learner drone (the agent) will follow the other drone in the environment and
crash on it. This idea is under a subject of counter drone technology which is used to detect
the unmanned aircraft and take action about it. In this PhD thesis, there will be the learner
drone and the random drones which move randomly in the environment. In other words,
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there will be prey and predator relationship between the learner drone and the target drone
which is one of the random drones in the environment. The purpose of the learner drone is
to crash on the target drone.

• Investigate and develop a drone detection method to implement in counter-drone systems.
Counter-drone systems include different mechanisms to work together. Drone detection
and identification are the first phase of countering a drone. In this PhD thesis, state of the
art object detection algorithm Redmon et al. (2016) is adapted to develop a drone detection
model. Drone detection model is used as an input parameter of deep reinforcement learning
algorithm neural network.

• Propose a method by deep reinforcement learning to counter a drone in a 2D space in an
environment. The drone learns to navigate in a geofenced environment and heads towards
the target drone. However, the actions are only in a 2D space such as moving forward and
yawing left and right. In other words, the target drone is assumed to be at the same altitude
as the learner drone which is trying to catch the target.

• Investigate further the most challenging counter-drone problems and develop a deep rein-
forcement learning model to counter a drone within a 3D space in a certain environment. A
deep reinforcement learning method supported a drone detection model proposed so that
the drone can catch the target drone in a 3D space. The learner drone is not only moving in
a 2D space but also changing altitudes to eliminate the target drone. Optimizing both the
time to interact with the target and the actions performed by the counter-drone system is
essential for successful counter-drone operations in a 3D space. Thus, counter-drone system
needs to be able to provide fast and accurate responses to neutralize the target.

• Design and implement transfer learning algorithm to increase the speed of learning progress
of the drone. Filtering algorithm applied during transfer learning. This consists of pre-
processing the previous experiences and eliminating those considered as bad experiences.
Transfer learning is an important part of deep reinforcement learning training sessions when
countering a drone in a 3D space. The time to train a drone is reduced dramatically and
drone learns faster and in an efficient way.

• Propose graphical methods to present the explainability of deep reinforcement learning. The
figures which represent the rewards, drone locations, crash positions and the action distri-
bution during training and testing are analyzed and compared with different scenarios and
parameters. In other words, the agent behavior is observed and the modifications are done
accordingly in training and testing sessions.

I.5 Scope and Limitations of this PhD Thesis

To achieve the objectives of this PhD thesis, several assumptions have been made. The limitations
that define its scope:

• This thesis is limited to simulation and the real flight tests are not performed due to their
associated costs. Nevertheless, open source flight simulator used in this PhD thesis is very
realistic and aircraft performance parameters can be adjusted to different vehicles. The in-
teractions between the simulation and DRL models have been made without any human
interactions and the agent drone is fully-autonomous.

• It is assumed that the solution proposed in this PhD thesis is part of a full solution where
real-time position information of malicious drones is acquired through external means and
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communicated to the counter drone. The related target data such as the target drone at-
tributes and positions in the environment are already available thanks to the flight simula-
tion used to train and test the deep reinforcement learning methods.

• None of the drones involved in the tests are subject to traffic management separation ser-
vices, neither ATM nor U-space.

• The environmental disturbances such as the weather effects (wind, wind gust, wind shear)
around the agent drone are not considered in the simulations during training and testing
sessions. The drone operates normally without expecting any technical errors such as pro-
peller failures or communication problems. The aerodynamic changes that occur during the
drone’s flight are not considered, and instead, the default conditions provided by the sim-
ulator are used. For example, as a drone agent changes speed or altitude, its aerodynamic
characteristics, such as lift and drag, will also change. In other words, all the experimental
conditions are considered as normal and there are no disturbances other than aerodynamic
effects during take-off and maneuvers of the agent drone.

I.6 Outline of this PhD Thesis

It is worth noting that a broad state-of-the-art of the main topics addressed in this PhD thesis has
been presented before. A deep and more detail state-of-the-art for each subject is included at the
beginning of the chapter that addresses it. The present thesis is organized in eight chapters, which
are summarized as follows:

• Chapter II presents the reinforcement learning fundamental theory and methods to estab-
lish core concepts of deep reinforcement learning. Drone detection for counter drone system
main concepts are also introduced to be used in the later implementations. In addition, pre-
vious studies related to drone navigation and obstacle avoidance as well as counter-drone
solutions are addressed.

• Chapter III gives the details of experimental setup. The setup includes the software frame-
work which is used to communicate between the flight simulation and the deep reinforce-
ment learning models. Moreover, the technical details of simulation and the drone used in
the learning process are also explained in detail. In addition, it is also presented the drone
detection model used in deep reinforcement learning models. The details of the drone de-
tection model and the auto-labeling images which are used during training and testing of
the detection model are introduced. The communication between the drone detection model
and the deep reinforcement learning main program is also presented.

• Chapter IV proposes deep reinforcement learning model to navigate the drone in the envi-
ronment without crashing any stationary and non-stationary obstacles.

• Chapter V proposes deep reinforcement learning models for countering a drone in 2D space.
in this chapter, neural network details of the deep reinforcement learning models, the agent
actions, the agent state and the reward function are presented.

• Chapter VI presents the deep reinforcement learning models for countering a drone in a
challenging 3D space. In addition to the details of deep reinforcement learning models,
the analysis of different scenarios are also discussed to present the explainability of deep
reinforcement learning methods.

• Chapter VII analyzes the performance of human pilots, direct solution method, and deep
reinforcement learning methods presented in Chapters V and VI.
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• Chapter VIII presents conclusions of this thesis. Achievements of the work performed dur-
ing writing the thesis are discussed. Potential future work is also described in details.



The significant problems we have cannot be solved at the same

level of thinking with which we created them.

— Albert Einstein

The only stupid question is the one you were afraid to ask but

never did.

— Rich Sutton

II
State of the Art

Artificial intelligence (AI) is the simulation of human intelligence in machines that are designed
to think and act like humans. AI and reinforcement learning (RL) are two closely related fields
that have greatly impacted each other’s development and application. RL is a subfield of ma-
chine learning that focuses on how an agent can learn to make decisions in an environment by
performing actions and receiving rewards. RL has proven to be a powerful approach for solv-
ing complex decision-making problems and has been successfully applied in various domains,
including robotics, gaming, and finance. AI, on the other hand, provides the infrastructure for
building complex systems that can learn from data and make decisions in real-world scenarios.
When combined, AI and RL have the potential to create intelligent systems that can adapt to
changing environments and make decisions based on learned experience. Deep reinforcement
learning, which combines deep learning techniques with reinforcement learning, has achieved
breakthrough results in areas such as game playing, where agents have surpassed human-level
performance. In this chapter, deep neural networks, the fundamentals of reinforcement learn-
ing, deep reinforcement learning methods used in this PhD thesis are presented. In addition, this
chapter presents state of the art drone detection methods for counter drone systems, as well as
previous works on drone navigation, obstacle avoidance, and counter drone techniques in both
2D and 3D spaces.

II.1 Background

This section introduces the concept of deep neural networks and it explains the key principles of
reinforcement learning. Also it provides a basis for understanding the following chapters and the
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use of deep reinforcement learning for the thesis context.

II.1.1 Reinforcement Learning

Reinforcement learning (RL) is an approach to artificial intelligence inspired by a human’s way
of learning, similar to what a baby experiences when learning how to walk. In RL, the agent is
a term used for any kind of object such as a drone, a robot, or an algorithm that receives inputs
and react to them with outputs. The agent gains knowledge by continuously interacting with the
environment to optimize its behavior. Reinforcement learning is a complex and challenging field,
and the design of an effective reinforcement learning algorithm often requires a deep understand-
ing of the problem and careful tuning of hyperparameters. However, it has shown great potential
in solving a wide range of problems and has received increasing attention in recent years.

Some of the examples of RL are as follows:

• Walking robot: The agent can control a walking robot. Haarnoja et al. (2018a)

• PC gamer: The agent can be the program controlling a game character in Pac-Man game.
Gnanasekaran et al. (2017)

• Board gamer: The agent can play a board game against human players or another AI models.
Silver et al. (2018)

• Smart home: The agent can control the temperature in a house during the day. Yang et al.
(2021)

• Financial advisor: The agent can observe stock market prices and decide how much to buy
or sell. Cong et al. (2021)

II.1.2 Concepts and the terminology

II.1.2.1 The agent-environment interactions

In RL, agent makes a decision and takes an action. The agent interacts with the environment. The
environment works in a similar way like the agent by reacting to inputs with outputs. The envi-
ronment provides states, which is information about the current status of the environment. Each
action updates the environment and its state. Finally, a reward is submitted by the environment
informing about the benefit of using the action in that moment. The objective of the agent is to
maximize the final reward value. The interaction between the agent and the environment is shown
in Figure II-1. State is represented as St and the State Space is represented as S. The interaction
between the agent and the environment is in discrete time steps t. Action and Action Space are
represented as At and A(St) respectively. Reward values are updated in each time, Rt+1, and a
new state becomes St+1.

II.1.2.2 States and observations

A state s, the current status of the environment, is available in the environment and there is no
information hidden from the state. However, an observation o is the partial description of the
state and observations can have less information. For example, fully observable environment
means that the agent can observe the complete state of the environment. On the other hand, if the
agent can have only the part of the the observation, the environment is called partially observed.
A state can be represented in different ways. For instance, an agent such as walking robot can be
in a state by its joint angles and velocities. A state of a drone agent can be its positions, velocities,
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Figure II-1: The agent-environment interaction in reinforcement learning.

or if the drone has optical sensor, the state can be a visual representation by the RGB matrix of its
pixel values.

II.1.2.3 Actions

In reinforcement learning, the agent is able to use different kind of actions depending on the
environments. In other words, different environments provide different types of actions. The set
of actions available in an environment is called the action space. There are two types of action
spaces: discrete action space and continuous action space. In discrete action spaces, there is only
a finite number of movements available to the agent in the environment such as in a Go game
Britannica (2022) environment. However, in continuous action spaces, real valued vectors are the
actions available to the agent. For example, the agent that controls a robot in an environment has
continuous action spaces.

II.1.2.4 Reward

After an agent selects an action, the environment provides a reward. Reward is usually a scalar
number which tells the agent how good or bad the current world state is. The reward functionR is
one of the important element in reinforcement learning. Reward function is presented in Equation
II.1 and R depends on the current state, the action, and the next state of the agent. Reward function
can be simplified as current state rt = R(st) or state action pair R(st, at).

rt = R(st, at, st+1) (II.1)

The goal of the agent is to maximize its cumulative reward over time and it is called return
OpenAI (2022). The reward return can be without discounts and it is called finite-horizon undis-
counted return. This return is just a sum of the rewards obtained in a fixed window of steps and
shown in Equation II.2. In this equation τ is a sequence of states and actions (s0, a0, s1, a1, . . . ). It
is also frequently called episodes.
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R(τ) =
T∑
t=0

rt (II.2)

Return can also be discounted and it is called infinite-horizon discounted return presented in
Equation II.3. In this type of return, the rewards obtained by the agent is summed up and they are
discounted to determine how much the agent cares about rewards in the distant future relative to
those in the immediate future.

R(τ) =
∞∑
t=0

γtrt (II.3)

where γ ∈ [0, 1] is the discount factor. The discount factor γ determines the importance
of future rewards. A factor of 0 will make the agent short-sighted by only considering current
rewards, while a factor approaching 1 will make it strive for a long-term high reward.

II.1.2.5 Policies

In RL, states are mapped to the probability of the possible actions in each time step t and this is
called policy denoted π. The policy is chosen to maximize the sum of the discounted rewards over
time shown in Equation (II.4). This means maximizing not the immediate rewards Rt+1, but the
expected discounted return Gt Sutton & Barto (1998).

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + ... =

∞∑
k=0

γkRt+k+1, (II.4)

The agent’s long term rewards can be maximized by estimating their expected discounted
returns Gt and using different policies. A policy can be deterministic or stochastic.

• Deterministic Policies: A deterministic policy is a function from the set of states of the
environment, S, to the set of actions, A. For example, in a Gridworld, the cells of the grid
correspond to the set of states of the environment and the set of actions which is composed
of four actions: north, south, east, and west. Given a state s ∈ S, π(s) with probability 1,
deterministically cause the agent to move one cell in the respective direction on the grid.

• Stochastic Policies: A stochastic policy is a family of conditional probability distributions
from the set of states, S, to the set of actions, A. For example, the probability of taking an
action number 1 from state S is 10%, 20% for taking action number 2, and there are 70%
chance of taking action number 3.

II.1.2.6 The reinforcement learning problem

The reinforcement learning problem can be defined by assuming the stochastic environment tran-
sitions and the policy OpenAI (2022). RL aims to select a policy that maximizes expected return.
The first step towards determining expected return is to look at probability distributions over the
trajectory. The probability of a T-step trajectory becomes:

P (τ |π) = ρ(s0)

T−1∏
t=0

P (st+1|st, at)π(at|st) (II.5)

The expected return denoted J(π) is:
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J(π) =

∫
τ
P (τ |π)R(τ) = E

τ∼π
[R(τ)] (II.6)

So, the optimization problem in RL can be expressed by an optimal policy:

π∗ = argmax
π
J(π) (II.7)

To understand the basic terms in reinforcement learning for the rest of the sections, glossary
terms Google (2023b) are listed as follows:

• Agent is the entity that interacts with the environment and it uses a policy to maximize the
expected return.

• Environment is the world that contains the agent and it allows the agent to observe that
world’s state.

• Policy is an agent’s probabilistic mapping from states to actions.

• Action is the mechanism taken by the agent based on the state of the environment. The
agent chooses the action by using the policy.

• Reward is the feedback given to the agent by the environment for taking an action in a state.

• Return is the sum of all rewards that the agent expects to receive.

• State is the parameter value that describe the current situation returned by the environment.

• Episode is the agent’s repeated attempts to learn the environment. It is in between an initial
state and a terminal-state.

• Trajectory is a sequence of tuples that represent a sequence of state transitions of the agent,
where each tuple corresponds to the state, action, reward, and next state for a given state
transition.

• Annealing is the amount of random exploration to increase the speed of learning progress.

• Exploration is a situation that the agent gathers information about the environment.

• Exploitation is that the agent exploits its knowledge to learn the environment.

• Time Limit is the maximum time that the agent is allowed in an episode to learn the envi-
ronment.

The following sections, inspired by the work of Sutton & Barto (1998) and the work of
Szepesvári (2010), provide the fundamental theory behind the RL agent.

II.1.3 Markov decision processes

The general RL problems are modeled according to the dynamic programming(DP) which formu-
lates the RL process as a Markov decision process (MDP). An MDP is defined as a discrete time
stochastic control framework which dedicates to address sequential decision making problems
where actions influence not just immediate rewards, but also subsequent situations, or states, and
through those future rewards. Earlier the agent-environment is shown in Figure II-1. The learner
and decision maker is called the agent and it interacts with is the environment. The agent and the
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environment interact at each of a sequence of discrete time steps, t = 0, 1, 2, 3, .... These interac-
tions are the agent selecting actions and the environment responses according to these actions and
presenting new situations to the agent. The environment also outputs rewards which the agent
aims to maximize over time by selecting actions.

Specifically, MDPs can be defined as a triplet consisting of (S,A,R) and each component is
explained as follows:

At each time step t,

• the environment’s state St ∈ S, finite set of states available in the environment

• the agent’s actionAt ∈A(s), finite set of actions available and these actions for an agent often
relies upon the state s, A(s)

• the reward Rt+1 ∈ R, numerical reward after the agent finds itself in a new state St+1

Given any particular state and action, the probability of each possible pair of next state and
reward for all s′, s ∈ S, r ∈ R and a ∈ A(s):

p(s′, r|s, a)=̇Pr{St = s′, Rt = r|St−1 = s,At−1 = a} (II.8)

p(s′, r|s, a) is the probability denoted by p of reaching state s′ and receiving reward r given
that we were in state s and took action a. Pr{St = s′, Rt = r|St−1 = s,At−1 = a} represents the
same probability in a more descriptive form.

The dynamics function p : S×R×S×A→ [0, 1] is an ordinary deterministic function of four
arguments. In Equation II.8, p defines the dynamic of the MDP. In MDP, the probabilities given
by this equation completely characterize the environment’s dynamics. The state must include
information about all aspects of the agent-environment interaction which contributes to the future
and then the state can be said to have the Markov property. From all these arguments, the state
transition probabilities can also be calculated as follows:

p(s′|s, a)=̇Pr{St = s′|St−1 = s′, At−1 = a} =
∑
r∈R

p(s′, r|s, a) (II.9)

The MDP framework can be implemented in many different problems to some extent. For
example, the time steps can be referred to arbitrary successive stages of decision making and
acting. Also, the actions can be categorized as high level control such as a decision to pursue a
post graduate level degree, and low level control such as inputs to a industry robot. Moreover,
states can be defined in many different forms. For instance, the states can be directly from the
sensor readings which are low level sensations, or they can be more high level such as symbolic
descriptions of objects in a room. They can be based on past readings or they can be entirely
subjective. For example, the state of the agent can be in a situation in which the agent does not
know where an object is or the agent can be in a state of clearly defined sense.

II.1.3.1 Value functions

A policy is described as a mapping from states to probabilities of selecting each possible action.
The value function is a measure of a state in terms of how good it is for the agent to perform a
given action in a particular state. The term "How good" is in terms of future rewards or expected
return. Formally, value functions are defined with respect to the policies.

The value function of a state s under a policy π, denoted vπ(s), is the expected return when
starting in s and following π thereafter. Formally a value function is defined as:
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vπ(s)=̇Eπ[Gt|St = s] = Eπ[
∞∑
k=0

γkRt+k+1|St = s] (II.10)

where Eπ denotes the expected value of a random variable and t represents the current time
step. In other words, vπ is called the state-value function for policy π. Equation II.10 defines the
state-value function as the expected return when starting in a particular state s and following a
specific policy π. It considers all possible future rewards, weighted by their discount factor γ, to
estimate the expected value of the total return.

Also, action-value function for policy π for taking action a in state s under policy π can be
presented as:

qπ(s, a)=̇Eπ[Gt|St = s,At = a] = Eπ[
∞∑
k=0

γkRt+k+1|St = s,At = a] (II.11)

A fundamental property of value functions satisfy recursive relationships between the value
of a state and the value of its successor states induced by the Markov property. For any policy π
and any state s, this relationship is expressed for vπ(s) as:

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s
′)],∀s ∈ S (II.12)

where the actions a, state s, next state s′, and the rewards r.

Equation II.12 is the Bellman equation for vπ which expresses a relationship between the
value of a state and the values of its successor states. Bellman equation averages over all the
possibilities and weights each of them by the probability of occurrence. Figure II-2 shows that
the value of the start state must equal the (discounted) value of its expected next state plus the
reward. Each open circle represents a state, the arrows represent the reward and each solid circle
represents a state–action pair. The value function vπ is the unique solution to its Bellman equation.

Figure II-2: The representation diagram of value function and action-value function.Sutton &
Barto (1998)

II.1.3.2 The optimal value functions

A policy in reinforcement learning task aims to achieve the most reward over the long run. There
is always at least one policy that is better than or equal to all other policies. This is an optimal
policy. A policy π is defined to be better than or equal to a policy π′ if its expected return is greater
than or equal to that of π′ for all states.

π ≥ π′ ⇐⇒ vπ(s) ≥ vπ′(s)∀s ∈ S (II.13)
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The optimal policy is denoted π∗ and the optimal state-value function is denoted v∗ and can
be defined as:

v∗=̇max
π
vπ(s)∀s ∈ S (II.14)

Optimal policies also share the same optimal action-value function, denoted q∗ and it is de-
fined as:

q∗(s, a)=̇max
π
qπ(s, a)∀s ∈ S and a ∈ A(s) (II.15)

In addition, the self-consistency condition given by the Bellman equation for state values,
II.12 must be satisfied because v∗(s) is the value function for a policy. The value of a state under
optimal policy must equal the expected return for the best action from that state. This is repre-
sented in Bellman optimality equation and Equation II.12 can be rewritten as:

v∗(s) = max
a∈A(s)

qπ∗(s, a) (II.16a)

= max
a
Eπ∗ [Gt|St = s,At = a] (II.16b)

= max
a
Eπ∗ [Rt+1 + γGt+1|St = s,At = a] (II.16c)

= max
a
Eπ∗ [Rt+1 + γv∗(St+1)|St = s,At = a] (II.16d)

= max
a

∑
s′,r

p(s′, r|s, a)[r + γv∗(s
′)] (II.16e)

Equations II.16d and II.16e are the two forms of the Bellman optimality equations for v∗. For
the optimal action-value function q∗ the Bellman optimality equations are:

v∗(s) = E[Rt+1 + γmax
a′

q∗(St+1, a
′)|St = s,At = a] (II.17a)

=
∑
s′,r

p(s′, r|s, a)[r + γmax
a′

q∗(s
′, a′)] (II.17b)

Bellman optimality equations for v∗ and q∗ are summarized in backup diagrams in Figure II-
3. This is the same diagrams for vπ and qπ presented earlier in Figure II-2. However, the difference
is that arcs have been added at the agent’s choice points to represent that the maximum over that
choice is taken rather than the expected value given some policy.

In this sense, a one-step search is performed and for optimal value functions, the actions
that appear best after that one-step search will be the optimal actions. Therefore any policy that
behaves greedy considering v∗ is an optimal policy. Notably, this consideration of short-term
consequences is also optimal in the long-term, since v∗ already takes into account the reward con-
sequences of all possible future behavior. Thereby, long-term optimal actions are brought down
to a one-step look-ahead.

Moreover, an important branching point in finite MDPs is whether the agent learns a model
of the environment. Finite MDPs are categorized according to model-based and model-free envi-
ronments. In Model-based problem, states S, actions A, state-transition probabilities p(s′|s, a) and
immediate rewards r(s, a, s′) are fully available. In this problem, the agent is allowed to plan by
thinking ahead and the agent can see what would happen for possible some choices and it can de-
cide between its options. On the other hand, in model-free problem, there is no prior information
about the environment and thus the agent needs to learn it and gain some experiences.
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Figure II-3: The representation diagram of optimal value and action-value functions.Sutton &
Barto (1998)

II.1.3.3 Model-based problem: Dynamic Programming

Dynamic programming (DP) is a collection of algorithms that can be used to find the optimal poli-
cies without an actual agent/environment interaction since the perfect model of the environment
is already given. Classical DP algorithms have limited usage in RL because of the assumption of
a perfect model and the great computational expense.

The key point in DP is to search for good policies by organizing value functions. As discussed
before in section II.1.3.2, optimal policies can be obtained after the optimal value functions are
found.

The policy iteration is the most important method in dynamic programming and it has two
phases: policy evaluation (prediction) and policy improvement. In policy evaluation, the state-
value function vπ for an arbitrary policy π is computed. This is also called as the prediction prob-
lem. In this case the Bellman equation II.12 for vπ is used as an update rule at each iteration k:

vk+1(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvk(s
′)]∀s ∈ S (II.18)

where π(a|s) is the probability of taking action a in state s under policy π and t is discrete time
step.

Equation II.18 is called iterative policy evaluation and it applies to same operation to each
state s such that at the first iteration, the states immediate rewardRt+1 is known and at the second
iteration the method knows the state values and the expected immediate rewards along all the
one-step transitions possible. On the other hand, the new policy πt+1 is estimated with the new
value function by selecting the action which is the best according to qπ(s, a) and the new greed
policy π

′
becomes:

π′ = argmax
a

E[Rt+1 + γvπ(St+1)|St = s,At = a] (II.19)

In this equation II.19, argmax
a

denotes the value of a which maximizes the expression that

follows.

The Bellman optimality equation is satisfied if the optimal value function and optimal policy
are found. The value function stabilizes only when it is consistent with the current policy, and
the policy stabilizes only when it is greedy with respect to the current value function. Finally,
policy and value function stabilize only when a policy has been found that is greedy with respect
to its own evaluation function. This process is called as generalized policy iteration (GPI) and it is
illustrated in Figure II-4.

The policy evaluation and improvement processes in GPI can also be represented in terms
of two constraints or goals. For example, in Figure II-5, each process drives the value function or
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Figure II-4: The representation diagram of generalized policy iteration (GPI).Sutton & Barto
(1998)

policy toward one of the lines representing a solution to one of the two goals. The goals interact
because the two lines are not orthogonal. Driving directly toward one goal causes some movement
away from the other goal. Finally, optimality can be found. The arrows in this figure correspond
to the behavior of policy iteration in that each takes the system all the way to achieving one of the
two goals completely.

Figure II-5: Representation diagram of generalized policy iterations (GPI).Sutton & Barto (1998)

II.1.3.4 Model-free problem Applicable in Reinforcement Learning

The main downside of the dynamic programming is that it assumes the agent has complete knowl-
edge of the environment. The agent can perform well with respect to the learned model but the
performance can be sub-optimal in real environment. However, model-free methods enable to
estimate value function and learn an optimal policy of a finite MDP without having a model
available to the agent. These methods have the advantage of the sample efficiency from using a
model. In this section, the learning methods for estimating value functions and discovering opti-
mal policies are discussed and summarized on the basis of a textbook Sutton & Barto (1998) and
lecture notes by Silver (2022).

• Monte Carlo (MC) methods can learn value functions and find optimal policies from ex-
periences by sampling sequences of states, actions, and rewards from actual or simulated
interaction with an environment. This method is a way of solving the RL problem based on
averaging sample returns. Also, the environment is sampled with a number of episodes. It is
assumed that experience is divided into episodes, and they eventually terminate regardless
of the actions selected. If an episode is completed, value estimates and policies are changed.
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In Figure II-6, it is shown a basis to estimate the value function after the terminal state. The
return over the entire episode and the distribution of states encountered are used as backup.
For example, Monte Carlo Tree Search can be implemented on a game called tic-tac-toe and
it is represented in Figure II-7. Every state is represented as a board and it starts with an
empty board. Arrows in the Figure II-7 represent a move which is a transition from one
node to another and game ends in a terminal node.

Figure II-6: Monte Carlo methods backup diagram.Silver (2022)

Figure II-7: Monte Carlo Tree Search for Tic-Tac-Toe Game.

The value functions vπ and qπ can be estimated from experiences rather than using a model
to compute the value of each possible state by following policy π and maintaining an av-
erage, for each state encountered, of the actual returns Gt that have followed that specific
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state. The average will then converge to the state’s value, vπ(s), as the number of times that
specific state is encountered approaches infinity. In addition, separate averages are kept for
each action taken in a specific state, then these averages will converge to the action values,
qπ(s, a). Equation II.20 expresses that the state-value function V (St) can be updated toward
the actual return Gt each time the state is encountered. In this equation a small positive
fraction called the step-size parameter is denoted by α and it influences the rate of learning
which is a positive scalar determining the size of the step Goodfellow et al. (2016b). The
value functions are estimated by sampled returns without computing them. Monte Carlo
methods do not update their value estimates on the basis of the value estimates of succes-
sor states but use real sampled experience. Therefore no bootstrapping is performed. In
bootstrapping, updating estimates involves estimates and the idea refers to the process of
estimating future values based on the agent’s current estimates.

V (St)← V (St) + α[Gt − V (St)] (II.20)

• Temporal Difference (TD) Learning is the core part of the reinforcement learning problem.
TD learning includes the ideas presented in DP and MC methods. TD learning can learn
from sampled experience without requiring an environment model. Also, TD methods up-
date estimates based on other learned estimates without waiting for a final outcome like
done in dynamic programming and thus they bootstrap. In other words, TD methods learn
a guess from a guess. Equation II.21 presents that unlike MC methods, TD methods wait
until the next time step and use an estimated return Rt+1 + γV (St+1). TD methods directly
form a target and update it with the immediate reward Rt+1 and the estimate for V (St+1).

V (St)← V (St) + α[Rt+1 + γV (St+1)− V (St)] (II.21)

In this equation, the error calculated between the estimated value and the better estimate
based on the agent’s immediate experience is called as temporal difference error, δt and
expressed in equation II.22.

δt = [Rt+1 + γV (St+1)− V (St)] (II.22)

The difference between the Monte Carlo methods and Temporal difference learning methods
are shown in backup diagram II-8. MC methods only work for episodic environments which
terminate but TD methods can work with environments that do not terminate. MC methods
require a larger number of sample episodes for their convergence than TD methods Sutton
& Barto (1998).

Figure II-8: Temporal difference learning methods backup diagram.Silver (2022)
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• Q-Learning is the off-policy TD control algorithm. This algorithm is the early breakthroughs
in reinforcement learning Watkins & Dayan (1992) and expressed in Equation II.27. In this
equation, the learned action-value function, Q, directly approximates the optimal action-
value function, qπ, which is no matter what the policy being followed. The term, Off-policy,
is used to call this algorithm since the agent does not always have an exploration and the
agent learns from experience. The agent in RL relies on its experience and the actions taken
to maximize the cumulative reward while the good actions need to be discovered by trying
the actions which are not selected before. The agent learning is in balance between what
it already knows to obtain reward, exploit, and exploration which is to find possible bet-
ter future action. To manage the amount of exploration globally, a simple but an effective
behavior policy method is used and it is called as ϵ − greedy policy. The parameter ϵ deter-
mines the randomness in action selections. In this method presented in II.23, memorization
of exploration specific data is not necessary.

µ(St) =

{
argmaxaQ(St, A) at probability 1− ϵ
random A at probability ϵ

(II.23)

Off-policy method has an approach that one can be learned about called target policy π and
the other one behaviour policy µ is that the optimal policy is used to choose the actions.
On the other hand, on-policy methods ensure the agent always have an exploring part and
thus the best policy that still explores can be found. In the off-policy approach, the actual
action At is chosen with respect to the behavior policy µ. On the other hand, Q-learning also
considers the alternative successor action A

′
, which would have been selected with respect

to the target policy π. Accordingly, the action value for the starting state with action At is
updated towards the alternative action and it is expressed in equation II.24.

Q(St, At)← Q(St, At) + α[Rt+1 + γQ(St+1, A
′
)−Q(St, At)] (II.24)

Thus, The target policy π improves greedy with respect to Q(s, a) and the behaviour policy
µ improves with exploratory ϵ− greedy with respect to Q(s, a).

µ(St+1) = max
a
Q(St+1, a) (II.25)

Then the estimated return, learning target yt becomes:

yt = Rt+1 + γQ(St+1, A
′
) = Rt+1 + γargmax

a
Q(St+1, a) = Rt+1 +max

a
γQ(St+1, a)

(II.26a)

Finally the update of the TD control algorithm known as Q-learning can be expressed by:

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a
Q(St+1, a)−Q(St, At)] (II.27)

As discussed earlier in II.22, the TD error δt becomes:

δt = Rt+1 + γmax
a
Q(St+1, a)−Q(St, At) (II.28)

The Q-learning method evaluates if the action took by the exploratory policy was better or
worse than the target policy, which approximates the optimal action-value function q∗. Q
has been shown to converge to q∗ with probability 1 Sutton & Barto (1998).

The Q-learning algorithm is shown in II.1 in procedural form. The Q-learning reinforcement
learning method can also be classified as an adaptive control algorithm that converges online
to the optimal control solution for completely unknown systems Lewis et al. (2012).
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Algorithm II.1: Q-learning: An off-policy TD control algorithm

1: Initialize Q(s, a) randomly
2: Initialize discount factor γ
3: Initialize step-size parameter α
4: repeat(for each episode):
5: Observe initial state S1
6: repeat(for each step of episode):
7: Choose action At using policy derived from Q (e.g. ϵ-greedy)
8: Take action At
9: Observe reward Rt+1 and new state St+1

10: Q(St, At)← Q(St, At) + α[Rt+1 + γQ(St+1, a)−Q(St, At)]
11: St ← St+1

12: until St is terminal
13: until end of learning

II.1.4 Deep Neural Networks

Tabular methods which are discussed in section II.1.3.4, such as Monte Carlo, temporal difference
learning, and Q-learning, have limitations when compared to function approximation and deep
neural networks. These limitations include slow convergence, issues with high-dimensional state
and action spaces. These constraints are addressed in deep neural networks to support efficient
scalability and handle complex environments. In tabular methods, every state has an entry V (s) or
every state-action pair is represented as Q(S,A) and the value functions are presented in a lookup
table for all the states. These methods are most suitable for games such as casino card game of
blackjack, and tic-tac-toe which are the examples of environments with small size states and ac-
tions. However, these tabular methods might not be suitable for the complex environments with
large state-action pairs. There are certain limitations which can challenge the tabular case. One of
the important challenges is the memory. Also, online updates can be challenging since in tabular
case, firstly the state must be located to find the value for that certain state. Moreover, the learning
process can be slow because of large states. In this case, the value of each state is to be learned indi-
vidually. Because of these challenges it is harder to find optimal policy with a limited data and in
a limited time. For infinite markov decision problems, generalization becomes an important sub-
ject which can relate different states with previous ones. This term generalization in RL is called
function approximation which takes data samples from the desired function Q(s, a) and gener-
alize from them to produce an approximation of the entire function. For instance, in supervised
learning, labeled dataset is provided to the agent and the main goal is to obtain an approximation
of a function given the examples. Deep neural networks(DNN) proved that they can outperform
the other machine learning methods and become the core part in artificial intelligence develop-
ments Schmidhuber (2015). Recent developments in deep neural networks Mnih et al. (2015) Silver
et al. (2017) show that superhuman performances can be achievable with an algorithm that learns
superhuman proficiency in challenging domains. In the next sections, the summary of neural net-
works based on Goodfellow et al. (2016a) and Sutton & Barto (1998) is discussed. Neural network
architecture, algorithms used, and finally training and testing the network are among the main
topics covered in next sections.

II.1.4.1 Neural Networks

A neural network can be used to approximate a value function or a policy function and it can non-
linearly maps input vectors x to a category y by learning the value of the parameters θ and thus a
mapping y = f(x : θ). Goodfellow et al. (2016a). This is accomplished by applying a sequence of
parameterized layers to the input signal. For example, in equation II.29, the functions f1, f2, and
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f3 are composed together.

f(x; θ) = f1(f2(f3(x))) (II.29)

The common architecture of concatenating the different layer parameter vectors is called feed
forward neural network. Feed forward neural networks play a very important role in machine
learning. For example, convolutional neural network (CNN), used for object recognition from
photos, is a kind of feed forward neural network. More details will be given in the next section
about the CNN. Figure II-9 shows a generic feedforward neural network with four input units,
two output units, and two hidden layers which are the layers that are neither input nor output
layers. A real-valued weight is associated with each link.

Figure II-9: A generic feed forward neural network Sutton & Barto (1998).

In this equation II.29, f1 is called the first layer of the network, f2 is called the second layer
and son on. The overall length of these layers gives the depth of the model. The term "deep" comes
from this terminology. The final layer of a feed forward neural network is called the output layer.
In neural networks each layer f i consists of neurons which are the application of an affine function
to the input. If the affine function connects the input to all neurons, the neural network layer is
called fully-connected layer and the linear operation is followed by a non-linear transformation g
shown in equation II.30.

f i(x) = g(W ix+ b) (II.30)

In this equation, W and b represent the weights and the bias respectively. g is the activation
function which inserts the non-linearity between the layers. The activation function can be S-
shaped , or sigmoid functions such as the logistic function f(x) = 1/(1 + e−x). The most famous
activation function used in most feed forward neural networks is the rectified linear activation
function and it is called RELU Nair & Hinton (2010) defined in equation II.31. After RELU is
applied to the output of a linear transformation, it yields a nonlinear transformation. The function
is a piecewise linear function with two linear pieces. Thus, Linear models are easy to be optimized
with gradient-based methods.

g(W ix+ b) = max(0,W ix+ b) (II.31)

In this equation II.31, the nonlinear function is element-wise applied. The function consists
of a simple max-operator that sets the particular neuron output to 0, if the value is below 0 and
otherwise applies a linear output with slope 1. This is represented in Figure II-10.
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Figure II-10: The rectified linear activation function Goodfellow et al. (2016a).

II.1.4.2 Training and Testing the network

The main challenge of deep learning methods is to find the network parameters such as weights
and biases. To optimize the parameters the loss function J(θ) is used a measure of how far off the
prediction was to the target. Here θ is the network parameter. Thus, the purpose is to minimize
the loss by means of pushing the prediction towards the target.

There are many optimization techniques available in the literature but the gradient descent
algorithm is one of the most commonly used computational optimization technique. In this tech-
nique, the gradient of J(θ) is computed iteratively with respect to θ and then the loss related to
each network parameter can be calculated. With this method, the magnitude and direction can be
found by changing each parameter in order to minimize the loss. Gradient descent update rule
is defined in equation II.32 where α is the specified learning rate of the network. Learning rate
scales the size of the updates.

θ → θ − α∇θJ(θ). (II.32)

There exist optimizers for minimizing the loss such as stochastic gradient descent (SGD) Le-
Cun et al. (2012) which utilizes the average gradient over a batch of randomly selected samples
called mini-batch and Adam optimizer Kingma & Ba (2014). Adam optimization algorithm is an
extension of the SGD and it is a popular optimization algorithm for neural networks. Adam opti-
mization is short for Adaptive momentum. Introducing the concept of momentum, the algorithm
can increase the convergence speed facing narrow cliffs and helps the algorithm to overcome shal-
low local optima. Another advantage of the Adam optimization algorithm is that it is insensitive
to the choice of the learning rate α.

The output layer has a desired target value and the loss can be calculated at this layer and
then the loss passes backwards layer by layer in the network from output layer to the hidden
layers. Since the flow of loss is backpropagated into the network, the algorithm is called back-
propagation Chauvin & Rumelhart (2013).

II.1.4.3 Convolutional Neural Networks

Convolutional Neural Networks LeCun et al. (1995) known as CNN are a specialized kind of
neural network for processing data that has a known grid-like topology such as the image data
as 2-D grid of pixels and time-series data as a 1- grid taking samples at regular time intervals.
A mathematical operation called convolution is adapted by the network and convolution is a
specialized kind of linear operation. Convolutional networks are simply neural networks that use
convolution in place of general matrix multiplication in at least one of their layers Goodfellow
et al. (2016b).
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Generally, convolution is an operation on two functions of a real-valued argument. Equation
II.33a shows how the convolution operation is performed. The convolutional operation is also
denoted with an asterisk shown in equation II.33b. The first argument the function x to the convo-
lution is often referred to as the input and the second argument, the function w, as the kernel. The
output is also called the feature map. If we now assume that x and w are defined only on integer
t, the discrete convolution can be defined as in equation II.33c

s(t) =

∫
x(a)w(t− a)da (II.33a)

s(t) = (x ∗ w)(t) (II.33b)

s(t) =

∞∑
a=−∞

x(a)w(t− a) (II.33c)

The input is usually a multidimensional array of data and the kernel is usually a multidimen-
sional array of parameters. These multidimensional arrays are called tensors. For example, a 2-D
image I is used as an input and 2-D kernel K is moved over the input image step by step. The
input of a neuron in the convolutional layer is calculated as an inner product of the kernel with
the currently underlying image section. This operation is illustrated in Figure II-11. The output,
known as feature map is expressed in equation II.34. Convolution is commutative and the only
reason to flip the kernel is to obtain the commutative property.

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (II.34)

In figure II-11, 3x4 input image, the 2x2 kernel size across the input image data results 2x3
output values (feature map) or 6 distinct activations. The weights of a neuron are the filter values
such as x, y, z, w. The feature detected by a neuron is the kind of input pattern that will cause the
neuron to activate. Goodfellow et al. (2016b).

Figure II-11: An example of 2-D convolution without kernel-flipping Goodfellow et al. (2016b).

In addition, convolutional layers can reduce the size of the parameters. In Figure II-11, the
kernel is moved by one, and the amount the filter shifts called striding. The length of the stride



32 Chapter II - State of the Art

can be chosen depending on the result expected. The larger the sizes of strides, the lower the com-
putational and statistical burden of the next layer becomes. The larger size of strides enables the
model parameters to shrink in size. Equation II.34 can be expanded with the striding parameter
λt and it is expressed in equation II.35.

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i · λt +m, j · λt + n)K(m,n) (II.35)

For example, the architecture of a deep convolutional network is presented in Figure II-12.
LeCun et al. (1998) proposed it to recognize hand-written characters. This network consists of
alternating convolutional and subsampling layers and then it follows fully connected final layers.
Each convolutional layer produces a number of feature maps which are a pattern of activity over
an array of units.

Figure II-12: Deep Convolutional Network Sutton & Barto (1998) LeCun et al. (1998).

II.1.5 Transfer Learning

Deep reinforcement learning is capable of handling difficult complex problems. However, learn-
ing can be too slow or even infeasible. For this reason, researchers in DRL have focused on im-
proving the time spent on learning by implementing various approaches. The most successful is
transfer learning (TL). The main purpose of TL is to improve the learning performance by using
the experience from successfully pre-trained models Taylor & Stone (2009). Recent transfer learn-
ing approaches are systematically investigated in the context of DRL by Zhu et al. (2020). Transfer
learning approaches are categorized by considering: the knowledge transferred, RL frameworks
compatible with the TL approach, differences between the source and the target domain, infor-
mation available in the target domain, sample-efficient in TL approach, and the goals of transfer
learning.

Transfer learning can be used for different goals and in different situations. Several evalua-
tion metrics can be addressed in order to evaluate the TL algorithms. Although there is no single
metric can summarize the efficacy of a TL approach, common parameters for measuring TL per-
formance are shown in Figure II-13. The difference between the initial reward values, with and
without TL, is called jump-start. The final performance of the agent is named as asymptotic per-
formance and the time required to achieve a pre-defined level is called time to Threshold. These
metrics are explained in detail in Taylor & Stone (2009). Transfer learning is applied in different
applications of DRL for UAV tasks. For instance, Anwar & Raychowdhury (2020) studied the DRL
for autonomous navigation. Transfer learning is applied to reduce the training computation load.
The environment is designed in Unreal Engine EpicGames (2019) and tested in the real world, by
using a low-cost drone (a DJI Tello), and the similar results obtained.
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Figure II-13: Different metrics for measuring TL. Taylor & Stone (2009)

II.1.6 Deep Reinforcement Learning

Deep reinforcement learning (DRL) combines reinforcement learning and deep neural networks
as function approximator and DRL helps the agents learn how to achieve their goals. Werbos
P.J. Werbos (1989) studied neural networks as function approximation for reinforcement learning.
This was an important research for the neural network as a function approximator after the tabular
representations of values. Neural networks trained by error backpropagation to learn policies and
value functions using TD-like algorithms. Nevertheless, Tsitsiklis & Van Roy (1996) showed that
the combination of nonlinear function approximation, off-policy, and bootstrapping may lead to
instability and divergence . This is also called the deadly triad issue Sutton & Barto (1998). The
danger is neither a control or to generalized policy iteration nor learning, uncertainties about
the environment. The instability can also be avoided if any two elements of the deadly triad
are present. One can also do without bootstrapping but at the cost of computational and data
efficiency.

Deep RL proposes the use of deep neural networks as the agent’s decision algorithm. In con-
junction with the experience replay memory, deep RL has been able to achieve super-human level
when playing video and board games. For instance, DQN method is published by DeepMind
Mnih et al. (2015) and the main goal of DQN is to use a deep convolutional neural network to
approximate the optimal action-value function. DQN provides updating action values and tar-
get values iteratively. The deep RL solution is also based in double deep Q-network (DDQN)
Van Hasselt et al. (2016a), an extension of the DQN implementation Mnih et al. (2013). DDQN se-
lects from the state the action of the agent which maximizes the Q-value. Q-values are estimations
of the future reward of an action executed in a given state. Van Hasselt et al. (2016b), Mnih et al.
(2016), and Silver et al. (2016) are also focused on deep reinforcement learning after the original
DQN research and these contributions help DRL evolve in time.

II.1.6.1 Reinforcement learning algorithms

Reinforcement Learning algorithms differ based on their characteristics, such as their approach to
solving an RL problem, the type of information they use, or the requirements they have. RL can be
broadly categorized into three main branches: the value-based approach, policy-based approach,
and model-based approach. In value-based RL, the agent seek the policy which maximizes a value
function which describes the long-term reward of a particular state or action. On the other hand,
in policy-based approach, the agent focuses on directly learning a policy, which is a mapping
from states to actions. Moreover, in model-based reinforcement learning, a model is provided
to the agent for the environment or the agent is to learn an environment model to perform the
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certain tasks in the environment. It is claimed that model-based learners are typically much more
efficient in terms of experience Poole & Mackworth (2010) and model-free methods require more
experiences but use less memory and often use less computation time. The agent’s policy can
be affected by some inaccuracies and imprecision if the agent is asked to learn the environment
model itself. Therefore, many approaches were proposed to integrate the model-free approaches
with the model-based ones François-Lavet et al. (2018). In addition to these main categories, there
are also hybrid methods that combine elements of multiple approaches, and meta-RL methods
that focus on learning to learn.

Reinforcement learning algorithms are also classified from different perspectives: model-
based and model-free methods, value-based and policy-based methods (or combination of the
two), Monte Carlo (MC) methods and temporal-difference methods (TD), on-policy and off-policy
methods. In Figure II-14 the taxonomy of reinforcement learning algorithms is presented and
they are as follows: DP (Dynamic Programming), TD (Temporal Difference), MC (Monte Car-
los), Monte Carlo Tree Search (MCTS) Browne et al. (2012), Q-learning Watkins & Dayan (1992),
I2A (Imagination-Augmented Agent) Racanière et al. (2017), DQN (Deep Q-Network) Mnih et al.
(2015), Quantile QT-Opt Kalashnikov et al. (2018), C51 Categorical 51 Bellemare et al. (2017), TRPO
(Trust Region Policy Optimization)Schulman et al. (2015), ACKTR (Actor Critic using Kronecker-
Factored Trust Region)Wu et al. (2017), AC (Actor-Critic)Konda & Tsitsiklis (1999), A2C (Advan-
tage Actor Critic) Mnih et al. (2016), A3C (Asynchronous Advantage Actor Critic)Mnih et al.
(2016), DDPG (Deep Deterministic Policy Gradient)Lillicrap et al. (2015), TD3 (Twin Delayed
DDPG)Fujimoto et al. (2018), SAC (Soft Actor-Critic)Haarnoja et al. (2018b), REINFORCE Williams
(1988), world models Ha & Schmidhuber (2018).

Figure II-14: Taxonomy of Reinforcement Learning Algorithms Zhang & Yu (2020).

II.1.6.2 Deep-Q Network (DQN)

Q-learning explained in section II.1.3.4 is a well-known method for reinforcement learning when
there is no knowledge of the environment or no model is available Watkins & Dayan (1992). Mnih
et al. (2015) was successful in combining Q-learning with neural networks and named the method
deep Q-Network (DQN). The overall goal of Deep Q-Network (DQN) is to use a deep convolu-
tional neural network to approximate the optimal action-value function, defined as:
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θπ(s, a) = max
π

E[rt + γrt+1 + γ2rt+2 + · · · | st = s, at = a, π] (II.36)

The optimal action-value function represents the maximum of the sum of rewards rt dis-
counted by γ at each time-step t, achievable by a behaviour policy µ = P(a|s), after making an
observation (s) and taking an action (a).

The release of the DQN (Deep Q-Network) paper by DeepMind Mnih et al. (2015) noticeably
changed Q-learning introducing a novel variant with two key ideas.

The first idea was using an iterative update that adjusted the action-values (Q) towards target
values (γ maxa Q(st+1,a)) that were only periodically updated, thereby reducing correlations with
the target.

The second one was using a biologically inspired mechanism named experience replay that
randomizes the data removing correlations in the observations of states and enhancing data dis-
tribution, with a higher-level demonstration and explanation by previous research in McClelland
(1995) , Riedmiller (2005b) and Lin (1993). The use of the experience replay encourages the choice
of an off-policy type of learning, such as Q-learning, because if not, past experiences would have
been obtained following a different policy from the current one.

Two huge advances can be taken out from this, one is that each training batch consists of
samples of experience obtained randomly from the stored samples and current experience, so
temporal correlation is clearly avoided. The other one is that each step in the agent’s experience
can be used in many weight updates, so a significant gain in efficiency is obtained in learning from
the environment.

The whole process consists in characterizing an approximate value function Q(s, a; θt) using
the CNN shown in eqn. II.38, in which θt are the weights of the Q-network at iteration t. For
the experience replay, agent’s experiences et which consist in the tuple (st, at, rt+1, st+1) are stored
at each time-step t in the replay memory e1, · · · , eN , where N sets the limit of entries, with the
possibility of replacing older experiences for new ones when the limit of the memory is reached.

The standard Q-learning update for network parameters θ after taking action At in state St
and observing the immediate reward Rt+1 and resulting state St+1 is:

θ = θt + α[yQt −Q(St, At; θt)]∇θtQ(St, At; θt), (II.37)

where the estimated return as defined as Q-target yQt :

yQt = Rt+1 + γmax
a

Q(St+1, a; θ) (II.38)

This update resembles stochastic gradient descent, updating the current value Q(St, At; θt)

over the TD (Temporal Difference) error towards a target value yQt .

However, the algorithms such as Q-learning described previously are inefficient when the
experiences which are obtained by trial and error are used to adjust the networks only once and
then discarded. Although some experiences can be ignored, there might be rare and very good
experiences and it is wasteful if they are thrown away. To solve this issue, experience replay Lin
(1992) is introduced. Experience replay (ER) is described as a way of reusing experiences. The
RL agent can remember its past experiences and the experiences are presented to its learning
algorithm repeatedly with the help of ER. Thus, the agent experiences what it had experienced
before again and again and the agent can refresh what it has learned before.

Moreover, Prioritized Experience Replay (PER) is introduced by Schaul et al. (2015) to make
the agent learn faster. Previously, experiences are sampled uniformly from a replay memory and
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the transitions are replayed without considering their significance. However, PER prioritizes
the experiences and important transitions are replayed more frequently. In this way, the agent
learns efficiently.

The earlier research by Lange & Riedmiller (2010) uses the action as an input for the neural
network and the history of all state-action transitions such as Q(s, a) which maps the history of
state-action pairs to scalar estimates of actions in a particular state. However, in this type of archi-
tecture, the Q-value of each possible action is computed in a separate forward pass and thus it is
scaled linearly with the number of actions used. On the other hand, Deepmind researchers pro-
posed an architecture Mnih et al. (2015) which separates the output unit for each possible actions
and the state passes through the neural network as an input. In other words, the output layer
corresponds to the predicted Q-values of each action for the input state and then the action with
the highest value can be chosen by the policy. The convolutional neural network with state input
and action output layer is shown in Figure II-15. In this figure, the input to the neural network
consists of an 84X84X4 image, followed by three convolutional layers and two fully connected
layers with a single output for each valid action. Each hidden layer is followed by a rectifier
non-linearity (that is, max(0, x)).

Figure II-15: Schematic illustration of the convolutional neural network Mnih et al. (2015).

Furthermore, in Q-learning, Q-function is updated and the target values shifts along with
it, but this can cause divergence when neural networks are used to approximate the entire Q-
function. To avoid the divergence, neural fitted Q-iteration is proposed by Riedmiller (2005a) to
make the algorithm more stable compared to standard Q-learning algorithm. The target network
parameters θ− are only updated with the Q-network parameters θ everyC steps and are held fixed
between individual updates shown in Algorithm II.2 line 15. The target used by DQN is shown
in Equation II.39.

yDQNt = Rt+1 + γmax
a
Q(St+1, a; θ

−) (II.39)

The full algorithm for training deep Q-networks is presented in II.2. The agent selects and
executes actions according to an ϵ− greedy policy based on Q.

In addition, instead of updating the target network every C steps seen in Algorithm II.2 Line
15, soft target updates are proposed by Lillicrap et al. (2015). The weights of the target network
are updated by having them slowly follow the learned networks at each step as a function of the
target factor τ ≪ 1. The line 15 in Algorithm II.2 is extended to implement the soft target update
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Algorithm II.2: Deep Q-Network (DQN) with Experience Replay and Neural fitted Q-iteration

1: Initialize replay memory D to capacity N
2: Initialize action-value function Q with two random sets of weights θ
3: Initialize target action-value function θ̂ with weights θ− = θ
4: repeat(for each episode):
5: Observe initial state S1
6: repeat(for each step of episode):
7: Select action At with probability ε.
8: Otherwise, select At
9: Observe reward Rt and next state St+1

10: Store the transition (St, At, Rt, St+1) in D
11: Sample random mini-batch of transitions from D ▷ Experience Replay
12: Calculate target for each transition:

13: yj =

{
Rj if Sj+1 is terminal
Rj + γQ(Sj+1, A|θ−) otherwise

14: Update network parameters θ with loss L = E[
(
yj −Q(Sj , Aj ; θ))

2
]

15: Every C steps, reset θ− = θ ▷ Neural fitted Q-iteration
16: until S is terminal
17: until end of training

shown in Equation II.40. Authors showed that stability of learning is improved by constraining
the target values to change slowly.

θ− = τθ + (1− τ)θ− (II.40)

II.1.6.3 Double Deep-Q Network (DDQN)

Using the Q-learning algorithm results in a positive bias by definition, since the maximum of the
estimates is used as an estimate of the maximum of the true values. This makes it likely select
overestimated values using a greedy policy as a target policy. The idea proposed in Hasselt (2010)
and named as Double Q-learning is basically based in decoupling action selection from evaluation.

Two action-value functions Q1 andQ2 are learned by assigning each experience randomly to
update one of the two function with the two sets of weights, θ and θ

′
in Double Q-Learning, one

set of weights is used to determine the greedy policy and the other its value.

yQt = Rt+1 + γθ(St+1, argmax
a

Q(St+1, a; θt); θt) (II.41)

And the two Double Q-learning targets can then be written as

yDoubleQ1
t = Rt+1 + γθ2(St+1, argmax

a
Q1(St+1, a; θt); θ

′
t) (II.42)

yDoubleQ2
t = Rt+1 + γθ1(St+1, argmax

a
Q2(St+1, a; θ

′
t); θt) (II.43)

Q1 is used to determine the maximizing actionA∗ = argmaxaQ1(a) andQ2 is used to provide
the estimate of its value with Q2 (A∗) = Q2 (arg maxa Q1(a)) shown in equation II.42. The second
set of weights can be updated symmetrically by switching the roles of θ and θ

′
into equation II.43,

achieving unbiased estimates.
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As only one estimate is updated per step in a random selection, but two estimates are learned,
it doubles the memory requirements but not the computational effort made at each step. The Dou-
ble Q-learning was extended for the DQN-algorithm in Van Hasselt et al. (2016a). Furthermore,
the DQN-algorithm provides with the target network θ− a natural candidate for the second value
function, without having to introduce additional networks. The Double DQN algorithm remains
the same as the original DQN-algorithm, the architecture for DQN and DDQN shown in Figure
II-16, except replacing the target yDQN explained in Kersandt et al. (2018) due to the limited space
with

yDoubleDQN1
t = Rt+1 + γθ2(St+1, argmax

a
Q1(St+1, a; θt); θ

−
t ) (II.44)

yDoubleDQN2
t = Rt+1 + γθ1(St+1, argmax

a
Q2(St+1, a; θ

−
t ); θt) (II.45)

where the weights of the second network θ
′

of double Q-learning in equations II.42 and II.43
are replaced with the weights of the target network θ−, performing the update to target network
as in neural fitted Q-iteration. DDQN Algorithm is presented in Algorithm II.2.

Figure II-16: DQN and DDQN Architecture Wang et al. (2016).

II.1.6.4 Dueling Network Architecture

In the dueling network architecture presented in Wang et al. (2016) there is no need to estimate
the value of each action choice as it is calculated in DQN and Double-DQN. Instead of following
the convolutional layers with a single sequence of fully connected layers, the dueling network
has two new streams. One of the streams estimates state-value V (s; θ, β) and the other stream
estimates the advantage for each action and output an |A| dimensional vector A(s, a; θ, α). θ is the
parameters of the convolutional layers, while α and β are the parameters of the two streams of
fully-connected layers. The lower layers of the dueling network are as in the original DQN. Finally,
the two streams are combined to produce a single output Q function shown in Equation (II.46) as
it is done in DQN Mnih et al. (2015). The agent dueling architecture can be seen in Figure II-17.

θ(s, a; θ, α, β) = V (s; θ, β) +A(s, a; θ, α) (II.46)

The advantage of using dueling architecture is that the agent can learn which states are more
valuable without learning each action at each state. In other words, there is no need to calculate
the value of each action at that state value if the state is not good.
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Algorithm II.3: Double DQN

1: Inputs: D: Empty replay buffer, θ: initial network parameters, θ−: copy of θ, Nr: replay buffer
maximum size, Nb: training batch size, N−: target network replacement frequency.

2: for episode e ∈ 1, 2, ...M do
3: Initialize frame sequence x← ()

4: for t ∈ 0, 1, .... do
5: Set state s s← x, sample action a ∼ πB
6: Sample next frame xt from environment e given (s, a) and receive reward r, and append
xt to x

7: if |x| > Nf then
8: Delete oldest frame xtmin from x

9: Set s
′ ← x, and add transition tuple (s, a, r, s

′
) to D, replacing the oldest tuple if |D| ≥ Nr

10: Sample a minibatch of Nb tuples (s, a, r, s
′
) ∼ Unif(D)

11: Construct target values, one for each of the Nb tuples:
12: Define amax(s

′
; θ) = argmaxa′Q(s

′
, a

′
; θ)

13: yj =

{
r if s

′
is terminal

r + γQ(s
′
, amax(s

′
; θ); θ−) otherwise

14: Do a gradient descent step with loss ∥yj −Q(s, a; θ)∥2
15: Replace target parameters θ− ← θ every N− steps

Figure II-17: The dueling Q-network Wang et al. (2016).

II.1.6.5 Deep Q-learning from demonstrations (DQfD)

Learning from scratch can be time consuming in some real-world applications such as counter-
drone systems in a 3D space. Experiences from an expert can be used to accelerate the learning
speed and the agent can learn in an efficient way. For instance, an AI method called imitation
learning has been used to teach an agent to mimic the behavior of an expert. In imitation learn-
ing, the labeled data are used as an input and the agent imitates the actions from the recorded
data. However, the data are limited to the expert data. On the other hand, a deep reinforcement
learning algorithm called Deep Q-learning from Demonstrations Hester et al. (2018) is introduced
to combine imitation learning and reinforcement learning. In DQfD the agent continues learning
by sampling from both its self-generated data as well as the demonstration data. For instance, a
spacecraft learns to land by DQfD algorithm in a target area surrounded by randomly generated
terrain Grigsby (2023). DQfD can quickly learn the expert’s policy and the spacecraft is landing
successfully by avoiding the obstacles in the terrain.

The main purpose of this algorithm is to remove the limitations of the applicability of DRL to
real-world tasks where the agent must learn in the environment. DQfD provides the agent with
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data from previous control of the system. Thanks to a prioritized experience replay mechanism,
DQfD can access the demonstration data to accelerate the learning process even if the agent has a
small amount of demonstration data. Authors Hester et al. (2018) showed that DQfD can perform
better and learn to out-perform the best demonstration given in 14 out of 42 games. In addition,
DQfD has already achieved state-of-the-art results on 11 Atari games.

The DQfD algorithm has two phases of training. Firstly, DQfD pretrains on the expert
demonstration data using a combination of temporal difference (TD): 1-step TD, n-step TD, super-
vised, and regularization losses. The TD loss enables the algorithm to learn a self-consistent value
function from which it can continue learning with RL. In addition, the supervised loss is used to
learn to imitate the demonstrator. After pre-training, the agent starts interacting with the domain
with its learned policy. The agent updates its network with a mix of demonstration and self-
generated data. The combination of demonstration data and self-generated data is automatically
controlled by a prioritized-replay mechanism. The overall loss is presented in Equation (II.47).
In this equation, in addition to TD losses, a margin classification loss JE Piot et al. (2014) and L2
regularization loss JL2 are implemented. λ parameter is added to control the weighting between
the losses. L2 regularization loss is applied to the weights and biases of the network to help pre-
vent it from over-fitting on the relatively small demonstration dataset. A margin classification
loss is added to make the greedy policy induced by the value function imitate the demonstrator
by forcing the values of the other actions to be at least a margin lower than the value of the demon-
strator’s action. After pre-training, the agent starts interacting with the environment, collecting
self-generated data and adding it to the replay buffer until it is full, but the demonstration data
are never over-written.

J(Q) = JDQ(Q) + λ1Jn(Q) + λ2JE(Q) + λ3JL2(Q) (II.47)

JE(Q) = max
a∈A

[Q(s, a) + lQ(aE , a)−Q(s, aE)] (II.48)

JL2(Q) = ∥θ∥2 (II.49)

where aE is the action the expert demonstrator took in state s, l(aE , a) is the margin function
and θ represents weights described in Algorithm II.4.

II.1.7 Drone Detection for Counter Drone System

The technologies for the detection, localization and identification of drones, and the interdiction
methods are explained in detail in section I.2. In this PhD thesis, drone detection is an important
part of the counter drone solution to indicate where the target drone is located. This information
is very valuable for learner drone, the agent in reinforcement learning, to improve the learning
progress. How the agent uses drone detection information is explained in detail chapters IV, V
and VI where the deep reinforcement learning models are proposed to counter a drone. Figure
II-18 shows how drone detection model works with the environment and the DRL model. Drone
detection model works as an improvement of the image and it adds an information on image
where the target drone is.

II.1.7.1 Object detection models

Object detection is one of the core techniques in computer vision and image processing. There are
several fast and powerful real-time object detection systems such as Fast r-CNN Girshick (2015),
Faster r-CNN Ren et al. (2015), Xception Chollet (2017), Yolo Redmon et al. (2016) or EfficientNet
Tan & Le (2019) Tan et al. (2020). These methods have been updated and improved considerably
with respect to former CNN models. For example, Fast r-CNN Girshick (2015) is an evolution
of the VGG16 network, a region-based convolutional neural network, using the Caffe framework
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Algorithm II.4: Deep Q-learning from Demonstrations (DQfD)

1: Inputs: Dreplay: Initialized replay memory with demonstration data set, θ: weights for initial
behavior network (random), θ

′
: weights for target network (random), τ : frequency at which

to update target net, k: number of pre-training gradient updates.
2: for steps t ∈ 1, 2, ...k do ▷ Pre-training
3: Sample a mini-batch of n transitions from Dreplay with prioritization
4: Calculate loss J(Q) using target network
5: Perform gradient descent step to update θ
6: if t mod τ = 0 then
7: θ

′ ← θ
8: for steps t ∈ 1, 2, ... do ▷ Post-training
9: Sample action from behavior policy a ∼ πϵQθ

10: Play action a and observe (s
′
, r)

11: Store (s, a, r, s
′
) into Dreplay, overwriting oldest self-generated transition if over capacity

12: Sample a mini-batch of n transitions from Dreplay with prioritization
13: Calculate loss J(Q) using target network
14: Perform gradient descent step to update θ
15: if t mod τ = 0 then
16: θ

′ ← θ

17: s← s
′

Figure II-18: Drone Detection Model and DRL Diagram.

with multitasking, in which training is done in a single-stage and avoiding any disk storage. Faster
r-CNN Ren et al. (2015) builds on top of Fast r-CNN by introducing a Region Proposal Network
(RPN) with the aim to propose regions of interest at the same time that feature maps are being
generated.

Xception Chollet (2017) is also an evolution of the VGG16 network that uses inception lay-
ers Szegedy et al. (2015). These are neural network layers that independently look correlations at
cross-channel and at spatial pixels. Xception is a linear pipeline of depth-wise separable convolu-
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tion layers, efficiently implemented over TensorFlow. Xception is the base of the Facebook object
detector software.

Yolo Redmon et al. (2016) is a family of algorithms used by many research works on object
detection. Proposed by Redmon et al. Yolo, called after “You Look Only Once", frames object de-
tection as a regression problem to spatially separated bounding boxes and associated class proba-
bilities. Yolo processes images by firstly resizing the input image. Secondly, a single convolutional
neural network runs on the image. Finally, the resulting detections are thresholded by the model’s
confidence. Any newer version of Yolo proposes a larger neural network than the precious version
and/or shows faster execution. Yolo predicts bounding boxes using dimensional clusters as an-
chor boxes Redmon & Farhadi (2017). Yolo has the advantage of allowing multi-label predictions,
this is, an object can be detected as two (or more) different labels at the same time. In this way, a
friendly drone and a malicious drone can be detected and labeled both as drones, and, at the same
time, if visual appearances are known, they could be also labeled as threat or non-threat.

EfficientNet Tan & Le (2019) is a brand-new state of the art object detection model, that to-
gether with its recent evolution, EfficientNet Tan et al. (2020), has become very popular in a short
time thanks to it’s accuracy and efficiency. One of the key improvements is its novel bi-directional
feature network (BiFPN) which allows information to flow in different directions: top-down and
bottom up. Secondly, EfficientNet uses a fast normalized fusion technique, which adds an addi-
tional weight for each input feature, identifying the importance of each input features. Finally,
it introduces a scaling method, which jointly resizes the resolution/depth/width of the model
to better fit with the different resource constraints. EfficientNet-B0 is the version of EfficientNet
adapted for small-size object.

II.1.7.2 Object detection models for on-board UAV processing

Object detection methods have been also implemented to detect objects from the UAV for dif-
ferent purposes such as surveillance and disaster management. Royo et al. (2022) enhanced the
capabilities of drones used for the surveillance of large events. Authors presented a methodology
which integrates efficiently deep learning algorithms in drone avionics. In addition, Salamí et al.
(2019) proposed a parallel architecture which includes an UAV and cloud services provides useful
real-time information directly to the end-users. In this research, olive trees which are regularly
spaced from each other are counted in a crop field. They demonstrate near real-time results ob-
tained from Unmanned aerial systems usage. Also, real time object detection has been performed
to detect humans by using videos captured from UAV Bhattarai et al. (2018). Constraints such as
computation time, scale of viewing and altitude are addressed. The results are also visualized in a
Geographic Information Systems platform by geo-localizing objects to world coordinates. In other
research, a technique is proposed Rudol & Doherty (2008) to detect humans at a high frame rate
by using an autonomous UAV. A map of points of interest is built by geo-locating the positions of
the detected humans. The video sequences, which streams from two video sources, thermal and
color, are collected on-board the UAV and fused to increase the successful detection rate. Further-
more, Yang D. et al. Yang et al. (2020) proposed a real time detection and warning system, based on
artificial intelligence (AI), to monitor the social distancing between people during the COVID-19
WHO (2021). A fixed monocular camera is used to detect individuals in a region of interest (ROI)
and the distances between them are measured in real time without data recording. The proposed
method is tested across real world datasets to measure its generality and performance.

II.1.7.3 Drone detection models

In 2017 the European SafeShore project launched, in parallel with the IEEE AVSS conference, the
Drone-vs-Bird Challenge in order to improve the methods for detecting UAV close to coastal bor-
ders, where they can be easily get confused with birds. The challenge aims to correctly label
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drones and birds appearing in a video stream. From the papers presented in the first and second
editions, in 2017 and 2019 respectively, we can conclude that new advances are driven by more
and more layers of the CNN, larger training datasets and improved implementations. In addition,
the exploitation of temporal information is a key issue in differentiating the drones from the birds.
Best paper of 2019 Craye & Ardjoune (2019) proposed a 110-layers CNN, based on a semantic
segmentation U-Net network originally designed for medical image processing and adding some
dilation layers to improve small objects detection. A posterior spatial-temporal filtering allowed
an obtained F1-score of 0.73. The set of training and test images of these works, although chal-
lenging, are from ground and have the sky as background.

Drone-Net Lin (2020) is a deep learning model, available as open source, trained with 2, 664
real drone images. It contains 24 convolutional layers in total and two of them are detection layers
called as Yolo layers. The details of the Drone-Net CNN can be seen in Appendix Fig. A-10. This
model will be used as the state-of-the-art model for drone detection, and accuracy results of this
model will be used to compare with the new models presented in Appendix A.

Xiaoping L. et al. Xiaoping et al. (2019) proposed a dynamic drone detection method, based
on two consecutive inter-frame differences. They combine a Support Vector Machines classifier
(SVM) with the traditional Histogram of Oriented Gradient (HOG) detection algorithm, and add
an intermediate step, a Fisher Linear Discriminant (FLD), to reduce the dimensionality of the HOG
features. Using a dataset of 500 images their results show an accuracy above 90%, similar to other
drone detection algorithms, but with improvements in terms of detection time allows to process
up to 10 images per second. Since this method is based on the difference of consecutive images, it
is not suitable for a moving camera.

Hu Q. et al. Hu et al. (2019) proposed an object detection method, called DiagonalNet, by
using an improved hourglass CNN as its backbone network and generating confidence diagonal
lines as detection result. A large dataset (10, 974 sample images) is created by processing videos
and photos with different backgrounds and lights and augmented by rotating and flipping each
image with random angles. The images contain six types of UAVs, including multirotor and
helicopter, and are labeled manually. The proposed algorithm detects UAV quickly (at 31 images
per second) and accurately (with a mean average precision greater than 90%). The experiments
were all indoors and in close proximity with the target drone.

With the objective to improve a swarm cooperative flight and low-altitude security, Jin R.
et al. Jin et al. (2019) proposed a 6D pose estimation algorithm for quadrotors. The algorithm
proposed, based in the Xception network and pre-trained with ImageNet, includes a novel rela-
tional graph network (RGN) to improve the performance of the drone pose detection. The pose
is obatined by recognizing eight key points of a quadrotor (nose, rotors, etc.). After training with
340 images the simulation experiments show a mean average precision of 0.94 in position and 0.74
in velocity, which compared to the baseline network is an enhancement of 9.7%. Given the real
time capabilities of the algorithm (30 frames per second) the algorithm was tested also with real
flights. However these new results dropped to mean average precision of 0.65 − 0.75. Moreover,
the accuracy of 6D pose decreased for small-sized drones.

Carrio A. et al. Carrio et al. (2020) use Airsim to train a CNN detection network of 16-layers
by automatically labeling depth maps. Depth maps are obtained by stereo matching of the RGB
image pairs of the virtual ZED stereo camera on the Airsim drone. The ground truth labels of
the depth maps are generated automatically by color segmentation of the visual image. After
training with 470 images the detection system is integrated on board a small drone and tested
while the drone navigates in the environment. Results show that the system can simultaneously
detect drones of different sizes and shapes mean average precision of 0.65 − 0.75, and localize
them with a maximum error of 10% of the truth distance when flying in linear motion encounters.
The solution is limited to maximum distance of 8 meters and relative speeds up to 2.3 m/s.
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Wyder P. M. et al. Wyder et al. (2019) present a UAV platform to detect and counter a small
UAV in an indoor environment where GPS is not available. An image dataset is used to train
a Tiny Yolo object detection algorithm. This algorithm, combined with a simple visual-servoing
approach, is also validated in a physical platform. It successfully tracked and followed a target
drone, even with an object detection accuracy limited to 77%.

II.1.8 Summary of Background

In this thesis, DRL methods are the most promising method againts drones and DRL algorithms
are utilized to create autonomous and intelligent drones that can learn and adapt to their sur-
roundings. DRL offers several advantages in countering drones. Firstly, DRL models can handle
noisy or inaccurate sensor inputs and adapt to uncertain or dynamically changing conditions.
They can learn to make robust decisions even in the presence of sensor noise or environmental
disturbances. Secondly, DRL allows autonomous decisions to be made without requiring explicit
programming. The agent can learn to make optimal decisions in complex and uncertain situ-
ations. Moreover, DRL algorithms can adapt and learn from their environment, which makes
them suitable for dynamic and changing drone scenarios. Furthermore, a state-of-the-art object
detection algorithm is also implemented to identify drones in the environment to add a valuable
information to the agent’s observation of the target drone. In summary, the DRL and object detec-
tion methods together provide a complete solution to address the challenges of drone navigation,
drone detection, tracking and countering drones.

II.2 Previous Works

This section presents previous studies to review and show the existing research and findings in
drone navigation, obstacle avoidance and counter drone techniques that exist in both 2D and 3D
spaces.

II.2.1 Drone Navigation and Avoidance of Obstacles

In this section literature works that are related to the drone navigation by using reinforcement
learning methods are reviewed. Duo & Zhao (2017) proposed UAV autonomous navigation sys-
tem for GNSS (Global Navigation Satellite System) invalidation and it is stated that the GNSS can
help navigating an UAV in most of the application scenarios. However, when the GNSS is not
available, for example passing through the sheltered areas, it is necessary to use other methods
to aid inertial navigation. To overcome this problem, the researchers used proper visual sensors
for navigation. In another research Pham et al. (2018), reinforcement learning algorithm is used
to navigate an UAV in an unknown environment. In this study it is shown that the quadrotor
can successfully learn how to navigate through an unknown environment by using Q-learning
methods combined PID (Proportional-Integral-Derivative) controller. Also, Hu et al. Hu et al.
(2020) proposed to address the UAV’s autonomous motion planning problem by implementing
a method based on a DRL algorithm known as deep deterministic policy gradient (DDPG). The
method is called multiple experience pools (MEP)–DDPG algorithm. The researchers stated that
UAVs trained with MEP-DDPG algorithm can complete successfully the experimental tasks in an
unknown environment. Moreover, the geofence technology is used in drone navigation in order to
create constraints for drones. A geofence is defined as a technology which creates a virtual barrier
around a geographical area. The purpose of using geofence is to keep the drones out of or within
the predefined area von Bothmer (2018). If the geofenced area is violated, the user can be noti-
fied to a pre-programmed entity and send warning signals to the operator to prevent the device
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entering this geofenced area. In addition, European Commission has released a regulation Com-
mission (2023) on the rules and procedures for the operation of unmanned aircraft. According to
this regulation drones are restricted to be used in certain airspaces. If it is detected a potential
breach of airspace limitations, the remote pilots are alerted so that they can take immediate and
effective action to prevent that breach. In a study Gurriet & Ciarletta (2016) about a generic and
modular geofencing strategy for civilian UAVs, geofence is used to avoid collisions with the envi-
ronment such as controlled airspace areas, people, or other flying vehicles. Additionally, a deep
reinforcement learning solution is proposed to teach a drone how to reach a non-visible goal with-
out crashing into any block in an environment which has columns inside as obstacles Kersandt
(2018) Kersandt et al. (2018). The results show that a fully autonomous drone can be achieved by
deep reinforcement learning. Furthermore, deep reinforcement learning method where the states
containing image and several scalars are processed by a joint neural network (JNN) is proposed
to use drones in an urban environment to deliver goods without crashing on obstacles and ge-
ofence Muñoz et al. (2019). Recent studies demonstrated the applicability of the usage of deep
reinforcement learning methods to navigate autonomously drones in an environment. However,
due to the limitations in the environment and the time required to train the DRL agent, previous
works implemented DRL algorithms did not consider a new environment with moving obstacles,
feasible geofencing concept and improved drone movements.

II.2.2 Counter a drone in a 2D space

In the literature, UAV detection, localization and neutralization have been studied by using dif-
ferent methods including artificial intelligence solutions. Previously, counter drone systems are
explained and summarized in I.2. In addition, several current technologies are reviewed in a re-
search Besada et al. (2021) for the non-collaborative tracking and detection of UAVs. The authors
propose a collection of simulation models which are composed by integrating preexisting models
of radar and acoustic sensing. Using these models, the most important aspects of detection and es-
timation performance of C-UAS sensors and sensor networks can be simulated. Moreover, Rudys
et al. (2022) proposes the concept of the airborne counter-UAV platform with radar. Authors use a
low-cost marine radar with a high resolution 2m wide antenna which is embedded into the wing
and aircraft heading is changed to enable radar scanning. It has been demonstrated that the plat-
form is capable of detecting drones, determining their coordinates, and neutralizing them using
a "hunter" drone in order to accomplish the intended tasks. Also, Watkins et al. (2020) illustrated
how to design a powerful counter autonomous drone tool that can be used against a single drone
or a group of drones by using hard-to-patches vulnerabilities. Authors claim that this counter
autonomous drone tool fills a critical need for mitigation of risks due to privacy violations such
as recording video by drones. Furthermore, Chen et al. (2022) proposes a countermeasure to dis-
rupt drone swarm coordination and clustering by splitting them into several unconnected parts
in a short period of time. Authors observe that the proposed two algorithms such as a genetic
algorithm and particle swarm optimization can find the optimal solution with high accuracy and
efficiency. Recent studies show that counter drone technologies utilizes radar systems, different
kind of sensors and cameras to detect and mitigate security threats posed by drones. However,
these methods are not cost effective considering the equipment used and they did not include an
autonomous drone which can navigate in an environment without colliding with obstacles and
then can attempt to catch the target drone.

II.2.3 Counter a drone in a 3D space

Drones equipped with DRL have been proposed by researchers and their main focus is on avoid-
ing obstacles in an environment and navigating them safely to their destination. For instance,
Polvara et al. Polvara et al. (2017) introduces a method based on DRL to land an UAV on a ground
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marker. A hierarchy of DQN are used for high level navigation policies. The network generates
in output 7 actions including vertical descent. Results show that DQN can be applied to complex
problems such as landing on a ground marker. However, it is suggested that further research is
needed to reach stable policies for different kind of scenarios such as sea and wind currents etc.
Moreover, Anwar et al. Anwar & Raychowdhury (2020) presented a deep reinforcement learn-
ing method for resource constraint edge nodes using transfer learning to reduce the on-board
computation required to train a deep neural network. In other words, the domain knowledge is
transferred to test environments and training the last few fully connected layers only. A low-cost
drone is also tested by using this approach and the results showed similar performance in dif-
ferent baselines. In another research by Kouris et al. Kouris & Bouganis (2018), it was proposed
that a self-supervised Convolutional Neural Network (CNN)-based approach can be used to nav-
igate a drone autonomously and to avoid collisions in a 3D world. A regression CNN is used to
predict the distances between the agent and the obstacles. The distances to the closest obstacle in
different directions are estimated. The drone flight parameters in a 2D space, such as the linear ve-
locity and the yaw angle of the drone, are changed according to the predictions made through the
deep neural network. Furthermore, reinforcement learning is implemented to land a fixed wing
aircraft autonomously in simulation environment Matúš (2019). Author defined the actions such
as discrete control inputs and throttle input to perform the landing. However, it is shown that
the policies proposed do not reach a pilot-like performance and the autonomous aircraft failed to
reach the runway. In addition, Hovell et al. (2022) studied multi-agent real-time guidance strategy
for quadrotors to perform aircraft runway inspection. Authors implemented a deep reinforcement
learning method and quadrotors autonomously and cooperatively learn to perform a runway in-
spection. These studies mostly focused on 2D space and the action space did not include any
actions that corresponds to changing the drone altitude. However, in chapter VI, the action which
can change the drone altitude is also included to counter a drone. Besides, the experiences are
pre-processed from previous training to improve learning on a related but different task such as
hunting the target drone in an environment with moving obstacles.

Furthermore, EfficientNet-B0, a sub version of EfficientNet Tan et al. (2020), is used to detect
drones in chapter VI. EfficientNet is a popular state-of-the-art object detection model thanks to its
accuracy and efficiency. EfficientNet-B0 is adapted for small-size objects. A detailed explanation
of our drone detection model is provided in section III.4 and appendix A.



Les coses importants son les que no ho semblen.

[The important things are the things that don’t
seem so.]

— Mercè Rodoreda

Before anything else, preparation is the key to success.

— Alexander Graham Bell

III
Experimental Setup

In this chapter, the tools required for training and testing deep reinforcement learning algorithms
in this thesis are explained. Reinforcement learning algorithms can be trained in many differ-
ent platforms that ensure agent-environment interaction. The experimental setup provides an
overview of various software platforms and simulators that can be used for training and testing
deep reinforcement learning algorithms. In this thesis, the AirSim simulator is used to provide a
realistic and dynamic environment for training and testing DRL algorithms. Moreover, the Ope-
nAI Gym library and Python toolkits like Keras-rl and TensorFlow are used for the development
and evaluation of algorithms. Additionally, a state-of-the-art object detection algorithm is im-
proved for detecting drones and the details are explained in detail. Finally, explainable artificial
intelligence and reinforcement learning section is added to explain and justify the agent actions
by using graphical methods.

This chapter is based on the following publications:

• Çetin E, Barrado C, & Pastor E.. 2021. Improving real-time drone detection for counter-drone systems. In: The
Aeronautical Journal. 125(1292), 1871-1896. D.O.I: 10.1017/aer.2021.43.

47
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III.1 Reinforcement Learning Software Platforms and Flight Simula-
tors

Software platforms are utilized to execute certain tasks for reinforcement learning (RL) algorithms.
In this thesis, one of most popular platform, OpenAI gym Brockman et al. (2016) is used to com-
municate, train and test deep reinforcement learning algorithms. However, many platforms are
introduced in the literature and most of them are open-source. These platforms can be used for
many areas such as robotics, trading, autonomous vehicles, etc.. Table III-1 presents the environ-
ments and simulations for reinforcement learning algorithms and applications.

In the literature, there are many simulators to train RL algorithms. For example, X-Plane
X-Plane (2023) is one of the most advanced flight simulator. It provides many different kinds of
aircraft and it is based on first-principles physics and real-world data with realism. Also, Gazebo
Gazebo (2023) is an open source robotics simulator and it allows users to access to high fidelity
physics, rendering, and sensor models. QPlane Richter & Calix (2021) is an open-source RL toolkit
for autonomous fixed wing aircraft simulation. MujoCo MuJoCo (2023) is open source physics
engine and it can be used in robotics, biomechanics, graphics and animation. Furthermore, Deep-
Mind (2023d), DeepMind (2023e), DeepMind (2023c), DeepMind (2023a), and DeepMind (2023e)
provide different frameworks for RL in games. Also, Microsoft’ The Malmo platform Microsoft
(2023b) is designed to support fundamental research in artificial intelligence. It is a sophisticated
AI experimentation platform built on top of Minecraft game. ReAgent Meta-Research (2023) is
an open source end-to-end platform for applied RL. Also, Tensor Trade TensorTrade-org (2023)
allows users to build, train, evaluate and deploy trading algorithms using RL and it is an open
source. Another framework called Ns3-gym integrates both OpenAI Gym and the network sim-
ulator it encourages the usage of RL in networking research. Text World Microsoft (2023c) is a
text-based game generator and RL agent can be trained and tested in this learning environment.
Furthermore, Reco Gym Criteo-Research (2023) is a OpenAI gym RL environment for the problem
of product Recommendation in online advertising. OpenSim Stanford-NMBL (2023) is a biome-
chanical physics environment for musculoskeletal simulations and it allows users to develop a
controller for a physiologically plausible 3D human model. VIZDoom Farama-Foundation (2023)
is primarily intended for research in machine visual learning, and deep RL and it allows devel-
oping AI bots that play Doom using only the visual information. In addition, there is another
environment, Gym Trading Ingargiola (2023) for reinforcement-learning algorithmic trading mod-
els. Webots Cyberbotics (2023) is an open-source robot simulator to model, program and simulate
robots, vehicles and mechanical systems. PyBullet Physics (2023) is a real-time collision detec-
tion and multi-physics simulation for virtual reality, games, robotics, and machine learning. AWS
DeepRacer Amazon (2023) allows users to get started with machine learning by training reinforce-
ment learning models and test them in an autonomous car racing.

Airsim Shah et al. (2017) flight simulator among the simulators listed in Table III-1 is selected
for this PhD thesis to simulate DRL algorithms. The main reason is that Airsim is developed as
a platform for AI research to experiment with deep learning, computer vision and reinforcement
learning algorithms for autonomous vehicles. In addition, the flight characteristic of a quadrotor
flying in a real-world is very close to the quadrotor provided in the Airsim simulation. Thus, the
model error between the real world and the simulation can be minimized.

III.2 AirSim

AirSim Shah et al. (2017) is a platform for AI research to experiment with deep learning, computer
vision and reinforcement learning algorithms for autonomous vehicles, and it is built on Unreal
Engine EpicGames (2019). Unreal Engine provides ultra realistic rendering and strong graphic
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Table III-1: RL Software Platforms.

Platform Implementation

Airsim Microsoft (2023a) Autonomous Vehicles
X-Plane X-Plane (2023) Autonomous Vehicles
Gazebo Gazebo (2023) Robotics and Autonomous Vehicles
Q-plane Richter & Calix (2021) Autonomous Vehicles
OpenAI Gym Brockman et al. (2016) Robotics and Custom Environments
MujoCo MuJoCo (2023) Robotic and Biomechanics
DeepMind OpenSpiel DeepMind (2023d) Gaming - Search and Planning
DeepMind Control Suite DeepMind (2023b) Infrastructure for Physics-Based Simulation
DeepMind Lab DeepMind (2023c) 3D navigation and puzzle-solving
Deepmind PySC2 DeepMind (2023e) Gaming
AWS DeepRacer Amazon (2023) Autonomous Vehicles
Project Malmo Microsoft (2023b) Gaming
ReAgent Meta-Research (2023) Building Products and Services for Large-scale
AI Safety Gridworlds DeepMind (2023a) Identifying AI Safety
Tensor Trade TensorTrade-org (2023) Trading Strategies
Ns3 Gym TKN-TUBerlin (2023) Networking
Text World Microsoft (2023c) Gaming
Reco Gym Criteo-Research (2023) Product Recommendation in Online Advertising
OpenSim Stanford-NMBL (2023) Biomechanics
VIZDoom Farama-Foundation (2023) Gaming
Gym Trading Ingargiola (2023) Trading Strategies
PyBullet Physics (2023) Robotics
Webots Cyberbotics (2023) Robotics

features for the Airsim. Airsim has a lot of environments available to be used in reinforcement
learning. These environments are mountains, blocks, neighbourhood, city environment etc.. Also,
Airsim provides different types of vehicles such as drones and cars. In this thesis, the neighbour-
hood environment is selected for training and testing. Environment and quadcopter used in the
Airsim simulator can be seen in Figures III-3 and III-2. Airsim supports sensors such as camera,
Global Positioning System (GPS), LIDAR sensors. AirSim API provides different type of images
such as Scene, DepthPlanar, DepthPerspective, DepthVis, DisparityNormalized, Segmentation,
SurfaceNormals, and Infrared. Additionally, camera sensor on quadcopter provides images in
different angles such as front center, front right, front left, bottom center and back center of the
quadcopter. In Figure III-1 shows a snapshot from Airsim simulator where a quadcopter is flying
in an urban environment. The inset in this figure shows the depth, object segmentation and front
camera streams generated in real time. In this thesis, Scene and DepthPerspective image types are
utilized.

The urban neighborhood is chosen to counter a drone because of the similarity in real-life
experiences such as a high number of drones in urban areas. Quadcopter used in the Airsim
simulator and the environment in Airsim can be seen in Figures III-2 and III-3.

It is important to mention that AirSim is not deterministic. The simulator has its own physics
and dynamics, which can be affected by simulated environmental conditions, such as wind, but
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Figure III-1: A quadcopter flying in an urban environment.

it is also affected by some random white noise. By including white noise, AirSim aims to create a
more realistic and dynamic simulation environment. For instance, in Airsim, random fluctuations
or disturbances introduced into the simulation environment to mimic real-world conditions. For
this reason, as in real life, the same actions give not exactly the same response when applied in
different simulations.

Figure III-2: Quadcopter used in AirSim.

Figure III-3: The neighbourhood environment.

In addition, the flight characteristics of the quadcopter in Airsim simulator are evaluated by
Microsoft research team Shah et al. (2017). They also evaluated some of the sensor models in Air-
sim against the real-word sensor models. Pixhawk v2 flight controller together with a Gigabyte
5500 Brix running Ubuntu 16.04 are utilized for the evaluations. They recorded the sensor mea-
surements on the Pixhawk device itself. They also configured the simulated quadrotor in AirSim
using the measured physical parameters and simulated sensor models configured using sensor
data sheets. To perform repeatable offboard control for both real-world and the simulated flights,
they used an application called AirSim MavLinkTest. Afterwards, they fly the quadrotor in the
simulator in two different patterns such as a trajectory in a circle shape with 10m long radius
and a trajectory in a squared shape with each side being 5m long. Same commands are used to
fly the real vehicle and location of the vehicle in local NED coordinates are collected for both the
simulation and real-world flights. For example, Figure III-4 presents the differences between the
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simulated and the real-world flight. Figures III-4(a) and III-4(b) present visual comparison for the
circle and the square patterns respectively. In these figures the simulated trajectory is represented
by a purple line while the real trajectory is shown with a red line. It is observed that both the real-
world and the simulated vehicle trajectories are close but there are small differences caused by
some factors such as vehicle model approximations, integration errors and random winds. More-
over, the time series of locations in simulated flight and the real flight are shown in Figures III-4(c)
and III-4 respectively. Researchers also computed the symmetric Hausdorff distance between the
real-world track and the track in simulation. It is found that the simulation and real-world tracks
were fairly close both for the circle (1.47m) as well as the square (0.65m).

(a) Circle maneuver (b) Square maneuver

(c) Space-Time Plot for Circle (d) Space-Time Plot for Square

Figure III-4: Evaluating the differences between the simulated and the real-world flight. Shah
et al. (2017)

III.3 OpenAI Gym and Python Toolkits

OpenAI-Gym is an open source interface to facilitate reinforcement learning tasks. It is a toolkit
for developing and comparing reinforcement learning algorithms. It is a well known library for
low level implementation of neural networks and it is compatible with TensorFlow Abadi et al.
(2015). OpenAI-Gym library has a collection of environments to test reinforcement learning al-
gorithms. These environments have a shared interface which allows to write general algorithms.
Custom environments can also be created by the users to train and test RL algorithms or these
environments can be connected to external simulation tools. Moreover, Keras-rl Plappert (2016)
implements some state-of-the art deep reinforcement learning algorithms in Python and seam-
lessly integrates with the deep learning library Keras. Keras is a high-level neural network library
and Keras functions as a wrapper to TensorFlow’s framework. Keras can work with OpenAI-
Gym and it is built according to the developer needs, giving the ability to define own callbacks
and metrics.
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In Figure III-5, core components of the experimental setup and the interactions between the
simulation and the DRL tools such as Tensorflow, Keras and OpenAI Gym, drone detection model
via python pipe. The use of a Python pipe enables parallel processing, allowing for efficient and
concurrent execution of tasks. The drone detection model assists in identifying drones within
the simulation environment. In this setup the DRL model constructed in python interacts with
the simulation environment provided by OpenAI Gym and uses Tensorflow and Keras to pro-
cess observations and generate actions. These actions are then executed within the simulation
environment and the agent receives rewards.

Figure III-5: Experimental Setup.

III.4 Drone Detection Platform

A number of counter-drone solutions are being developed but the cost of drone detection ground
systems can also be very high depending on the number of deployed sensors and powerful fu-
sion algorithms. In this section, a state-of-the-art object detection algorithm presented in section
II.1.7 is used to train for detecting drones. Three existing object detection models are improved by
transfer learning and tested for real-time drone detection. The drone detection model is trained
with different kind of images of drones to obtain a more robust drone-detector. The main contri-
bution in this section is that images captured from the Airsim simulator are automatically labeled
with a bounding box around the drone. Training of this drone detection model is done with a new
dataset of drone images, constructed automatically from Airsim. The guard-drone flies capturing
random images of the area, while, at the same time, a malicious drone is flying too. The drone
images are auto-labeled using the location and attitude information available in the simulator for
both drones. The world coordinates of the malicious drone position have to be projected into
image pixel coordinates. One of the advantages is that the time to label each image captured in
the simulator is reduced compared to labeling them manually. Besides, the images can be used
directly for training without needing third party applications for labeling. It is considered that
the auto-labeling introduced here can be time saving for many researchers who work in object
detection subject. The training and test results show a minimum 22% improvement in accuracy
with respect to state of the art object detection models. In this PhD thesis, the drone detection
algorithm is applied to image seen by the drone and before sending it to the agent as part of the
state of the RL model. The drone detection algorithm adds a valuable information to the state by
indicating were the target drone is.



III.4 Drone Detection Platform 53

III.4.1 Tools and Methods

In this section the tools and methods which are used for developing, training and testing drone
detection models are discussed.

III.4.1.1 Training and Testing Framework

DarknetRedmon (2013); Bochkovskiy (2020) is a framework for the training and testing of the neu-
ral networks written in C language that provides an efficient solution for general object detection
in real-time. We will use Yolo-V3 Redmon & Farhadi (2018) with Darknet-53, the originally 53-
layered CNN shown in Figure A-9, that achieves the highest measured floating point operations
per second. In addition to the algorithms implementation the Darknet framework provides also
several CNN pre-trained models.

III.4.1.2 Drone Image Dataset and Auto-Labeling

Training a CNN needs a large dataset of labeled images. In this section the new drone images for
the training dataset are captured by using the Airsim simulator. Airsim provides a public Applica-
tion Programming Interface (API) for receiving parameters related to the drone and environment.
We created a dataset of 2000 images for training, 1280× 960 in size, captured in Airsim by using a
drone flying randomly in the environment. Then, the images captured are auto-labeled by map-
ping drone position in world coordinates to the image coordinates. Some of the image samples
used in training can be seen in Figure III-6.

(a) (b) (c) (d)

Figure III-6: Airsim Training Images.

The procedure of projection from 3D world coordinates to the image plane includes few steps
and they are explained in detail below.

• The Pinhole Camera Model
The pinhole camera model defines the geometric relationship between a 3D point in the
scene and its 2D corresponding projection onto the image plane. This geometric mapping
from 3D to 2D is a perspective projection. In Airsim simulator, pinhole camera model is
available and it is mounted to the drones for capturing images. The pinhole camera models
in Airsim don’t include geometric distortion which are caused by lenses. Figure III-7 shows
a schematic view of the pinhole camera projection. Following paragraphs will explain more
in detail the different coordinate systems.

• Forward Projection
The order of the forward projection is shown in Figure III-8. Firstly, world coordinates of the
drone which is found in the image are converted to camera coordinates by using quaternions
and rotation matrix. The rotations are described as a yaw-pitch-roll sequence and the rota-
tion matrix can be obtained by using the Euler angles which are available in the simulator
and it is shown in Equation III.1.

Quaternions are applied to coordinate rotations and related them to the Euler angles Stevens
et al. (2015). Quaternion for a yaw-pitch-roll sequence are presented in Equation III.2.
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Figure III-7: Pinhole Camera Projection Visualization
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Drone captures the image of the other drone which is visible in the camera in certain angles
such that when the field of view of camera is less than 60 degrees. Secondly, image coordi-
nates are obtained by using the perspective projection of the camera which uses the camera
matrix received from the simulator. Finally, the pixel values are calculated by moving the
origin to the upper-left corner of the screen. The mapping geometry is presented in Figure
III-7.

Figure III-8: Projection Summary

III.4.1.3 Transfer Learning and Proposed Models

The main purpose of transfer learning (TL) is to improve the learning performance by using the
experience from successfully pre-trained models Taylor & Stone (2009). Transfer learning can
be used for different goals and in different situations. For instance, the Drone-Net is built by
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using transfer learning to refine a Darknet model for detecting drones. In this section new models
proposed to improve the current results of Drone-Net are presented.

Table III-2: Backbone Models used in Training
Model # of CNN Layers # of Classes

Drone-Net Lin (2020) 24 1
Darknet-53 Redmon & Farhadi (2018) 107 80

EfficientNet-B0 Tan & Le (2019) 145 80

Table III-3: Model Details for Training (all 6,000 iterations)
Model Backbone (# Pre-trained Layers) Train Datasets # of the Images

Model-1 Drone-Net (16) Airsim + Drone-Net 3000

Model-2 Darknet-53 (74) Airsim + Drone-Net 3000

Model-3 EfficientNet-B0 (132) Airsim + Drone-Net 3000

• Model-1 uses the same CNN architecture which Drone-Net has, shown in Appendix Fig-
ure A-10. From the pre-trained Yolo network, up to 16 convolutional layers are transferred.
After transferring these convolutional layers, the network is trained with 2000 new images
obtained from the airsim simulator and another 1000 images taken from the Drone-Net train-
ing set. The main purpose is to use the pre-trained weights from Drone-Net with the hope
that the new model can detect the real drones and the drones from airsim images too.

• Model-2 is built by using the pre-trained weights from Darknet-53 for the neural network
model based on Yolo-v3 Redmon & Farhadi (2018) architecture. In this model, Darknet-
53 model is implemented and the default Yolo-v3 network is modified to detect only the
drone class. The Yolo-v3 network shown in Figure III-9 contains 107 layers: 75 convolutional
layers, 23 shortcut layers, 4 routes, 2 upsamples and 3 Yolo detection layers. Predictions in
Figure III-9 show that Yolo-v3 detects objects in 3 different layers. The model summary can
be seen in Appendix Figure A-11. In this model up to 74 convolutional layers from Darknet-
53 model are transferred and then the training has been extended with the 3000 images:
2000 images from the Airsim simulator as before, plus another 1000 images taken from the
Drone-Net training set.

• Model-3 is constructed and optimized by using EfficientNet-B0 object detection algorithm
to detect a drone. EfficientNet-B0 contains 145 layers and 2 detection layers. Up to 132
convolutional layers from Efficient-D0 model are transferred. The EfficientNet-B0 model
summary used in training can be seen in Appendix Figure A-12. Training set includes the
3000 images: 2000 images from the Airsim simulator and 1000 images taken from the Drone-
Net training set.

The models proposed here have backbone networks such as Drone-Net, Darknet-53 and
EfficientNet-B0 backbone models. The details of these backbones are presented in Table III-
2. In addition, in Table III-3, the model details are explained. For instance, model-1 uses up to
16 Drone-Net backbone network convolutional layers and model-2 has backbone network
from darknet-53 up to 74 convolutional layers. Model-3 has more layers in total than the
other models thanks to EfficientNet-B0 model which has 145 layers total and it uses up to
132 convolutional layers from EfficientNet-B0.
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Figure III-9: Darknet-53 CNN used as backbone for Model-2

III.4.2 Quality of Drone Detection Model

In appendix A.1, the CNN model summaries of the drone detection model and the training and
test results are presented. The overall test results show that proposed model here has acceptable
accuracy above 85 % to detect only drones. These are promising results compared to former state
of the art drone detection models. The good results are a step forward the construction of a full-
autonomous counter-drone system.

III.5 Local Desktop Computer & Google Cloud Platform

The proposed models are trained on a desktop with a graphical processing unit (GPU), NVIDIA
GeForce GTX 1060 with 6 GB RAM graphic co-processor and Intel i7 processor, 16 GB of memory.
In addition, Google cloud platform provides colaboratory Bisong (2019), shortly “Google Colab"
which allows you to write and execute python in internet browser. Google Colab allows executing
codes on Google’s cloud serves and there are powerful hardware including graphical processing
unit (GPU) and tensor processing unit (TPU) in these servers. Neural networks are also tested on
a Google cloud server with a GPU Tesla T4-16GB. Recent DRL Models which uses drone detection
models are trained on a desktop PC with NVIDIA GeForce RTX 3060 Ti with 8 GB VRAM graphics
co-processor.

III.6 Explainable AI and Reinforcement Learning

Recent developments in AI technology demonstrated the significant power of AI algorithms. In
addition, AI models have been continuously evolving to become more and more complex. As a
result, users and even engineers or data scientists who created the AI algorithm have difficulties
to explain how the AI model gives the specific output as it is represented in Figure III-10. This
phenomenon is also called black box and this makes it difficult for end-users to trust these AI
systems.
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Explainable artificial intelligence (XAI) is defined as the set of processes and methods that
make possible for humans to understand and trust machine learning results and artificial intelli-
gence (AI) models IBM (2023). XAI has been also considered in a research by Johnson W.L. Johnson
(1994). In this research, it is described an approach for intelligent artificial agent to explain and
justify their action. This approach is implemented in an artificial fighter pilot and it can explain
the reasons why it has chosen the actions. Area of research with XAI grows and there are many re-
views that have been published Anjomshoae et al. (2019). XAI becomes one of the most important
parts of AI systems which include autonomous driving, weather simulations, facial recognition,
business optimization and security Wells & Bednarz (2021). The transparency and trustworthiness
are crucial for these AI systems to build trust and confidence when it is decided to use them in
real world applications. In aeronautics, it is mandatory to certify any software or model created
with AI methods.

Figure III-10: The need for explainable AI

XAI has been investigated by researchers in many organizations DARPA (2023) Google
(2023a) to produce more explainable AI models without changing the learning performance and
to enable users to understand and trust AI models. XAI can also help developers to ensure that
the AI system works as expected and it can have an impact on safety of the machines which uses
AI models such as autonomous vehicles or robotics Araiza-Illan & Eder (2019).

In this PhD thesis, the explainability of deep reinforcement learning is also investigated. The
figures which represent the rewards, drone locations, crash positions and the action distribution
during training and testing are analyzed and compared with different scenarios and parameters.
In other words, the agent behavior is observed and the modifications are done accordingly in
training and testing sessions. To understand how agent behaves in an episode, some figures can
be investigated. For example, drone positions for a successful episode during training is shown
in Figure III-11. It is seen that the agent moves forward at the beginning and then moves up in
few steps. Later the agent executes left and right turns before climbing back to the altitude where
the target drone is located. Finally the agent execute his final steps: moves forward and turns
right. The actions agent took in this episode are illustrated in Figure III-12 with colors to compare
it with action frequencies during training shown in Figure III-13. The expected behavior can be
seen in actions. For instance, it is expected that the agent needs to move forward and move up in
some steps because the target is at an altitude higher than the agent is at when the episode starts.
Action-4 is used frequently during the training to move up the agent and then the second mostly
used action, Action-0, is selected to move forward. The actions and the movements are described
in Table III-4.
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Table III-4: Actions.

Action Movement

0 in +x direction
1 yaw left
2 yaw right
3 +z direction
4 −z direction

Figure III-11: Drone positions.

Figure III-12: Actions.
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Figure III-13: Action Frequencies during training.





One, remember to look up at the stars and not down at your feet.

Two, never give up work. Work gives you meaning and purpose

and life is empty without it. Three, if you are lucky enough to

find love, remember it is there and don’t throw it away.

— Stephen Hawking

Je donnerais tout ce que je sais pour la moitié de ce que je ne sais

pas.

[I would give everything I know for half of what I
don’t know.]

— René Descartes IV
Drone Navigation and Avoidance of

Obstacles

In this chapter, deep reinforcement learning (DRL) architecture is proposed to make drones be-
have autonomously inside a suburb neighborhood environment. Drones are trained to reach tar-
get locations in an environment with obstacles. The environment in the simulator has plenty of
obstacles such as trees, cables, parked cars and houses. In addition, there are also other drones,
acting as moving obstacles, inside the environment, while the learner drone has a goal to achieve.
In this way the drone can be trained to detect stationary and moving obstacles inside the neigh-
borhood and so the drones can be used safely in a public area in the future. The drone has a front
camera and it can capture continuously depth images. Every depth image is part of the state used
in DRL architecture. Also, another part of the state are the distances to the geofence (a virtual
barrier on the environment) which are added as scalar values. The agent will be penalized when
it tries to overpass the geofence limits and the episode will be terminated. In addition, angle to
goal and elevation angle between the goal and the drone will be used as information to be added
to the state. It is considered that these scalar values will improve the DRL performance and also
the reward obtained. The drone is trained using Deep Q-Network and its convergence and final
reward are evaluated. Results from three scenarios show promising outcomes, with the learner
drone reaching its destination with a success rate of 100% in the first two tests and 98% in the third
test, which involved three drones. The outcomes of this chapter that helped in the counter-drone
solutions in terms of using geofence, reward system, avoiding obstacles in the environment.

This chapter is based on the following publications:

61
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IV.1 Environment

In this section, Airsim release v1.2.3 is used and small urban neighbourhood is selected as an
environment. Airsim provides APIs to retrieve data and control vehicles autonomously. Python
script is created to interact with Airsim API layer to communicate and exchange data. The neigh-
bourhood environment is shown in Figure IV-1 which includes the drone which is the agent, start
point, destination, coordinates, obstacles in the environment and geofenced region which covers
an area shaded blue. DepthImage and the boolean landing and collision information are also
collected. Initially, the drone agent is facing in x-direction.

Figure IV-1: The neighbourhood environment

IV.2 Drone Agent States

Deep reinforcement learning model has a double state composed by an image and scalar values.
The part of the state containing the front depth image is set as 20x100 pixels image by using the
middle section of the full image and the scalar values of the state are: the current velocity of the
drone, the distance to the goal, angle to goal (track angle), elevation angle between the goal and
the drone and the distance to the geofence limits shown in Table IV-1.

In Table IV-1 the data proposed as state is shown. The data is received at every time-step from
the Airsim. The current velocities of the drone is a pair of scalars (vx, vy) providing the x and y
components of the speed vector and the units are in meters per seconds. The distance between the
goal and the drone in two directions composoed of (dx, dy) and the total distance to the goal (dt)
in the environment. The distance to the geofence limits contains (dgxmin, dgxmax, dgymin, dgymax).
The geofence limits are shown in shaded blue region in Figure V-2. Also, drone yaw angle (ψ)
relative to the initial orientation is received.

• Çetin E, Barrado C, Munoz G, Macias M, & Pastor E.. 2019 (Sep.). Drone navigation and avoidance of obstacles
through deep reinforcement learning. In: IEEE/AIAA 38th Digital Avionics Systems Conference (DASC). San Diego,
CA, USA : DASC. D.O.I: 10.1109/DASC43569.2019.9081749

• Muñoz, G., Barrado, C., Çetin, E., & Salami, E.. 2019. Deep reinforcement learning for drone delivery. In: MDPI
Drones. 2019, 3(3), 72. D.O.I: 10.3390/drones3030072.
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Table IV-1: Data received from the environment
Data Meaning
vxvy agent’s velocities in x and y directions
dxdydt agent’s distances to goal in x and y and Euclidian
dgxmin dgxmax

dgymin dgymax agent’s distances to geofence limits
ψ yaw angle relative to initial orientation

DepthImage depth image in camera plan (256 x 144)
arrived boolean landing info
collided boolean collision info

IV.3 Agent’s Neural Network

Double-DQN (DDQN) algorithm is used to train and the resulting model is used to navigate the
drone in this chapter, and a number of improvements are added considering a new environment
with moving obstacles, geofencing concept, and new scalar values which are added to the joint
and the smoothing of the drone movements.

Several scalars and one image are combined by a neural network in order to process the
states. The image is the input of a convolutional neural network (CNN) and then a concatenation
layer joints the flatten output of the CNN with the reshaped scalar values of the state. The concate-
nated tensor becomes the input of three RELU layers with the following characteristics: each has
activated consecutive 256 kernel dense layers. The output layer is a dense layer and the outputs
are the action values. The deep neural network (DNN) architecture is shown in Figure IV-2.

Figure IV-2: The DNN architecture of the drone agent.

IV.4 Drone Control Actions

In this section the actions that drone agent can select are explained. After the take-off no vertical
movements will be allowed, thus the drone will fly at fixed altitude. It is aimed that the drone
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collision can be observed by moving only along two dimensions (x and y). The output of the
neural network architecture contains 5 different options: 4 actions which are the modification of
the velocity in the two dimensions, the equivalent of ±0.5m/s, and no speed modification option
which the drone keeps its current velocity. In other words, the drone movements are continuous.
Figure IV-3 shows the 2D representation of the actions.

Figure IV-3: Action Space

IV.5 Reward Function

The reward system is very relevant for the success of a DRL training. The reward function is
shown in Table IV-2. The agent is rewarded +100 if the episode is successful by reaching the
destination. On the other hand, the agent is penalized and it is given −100 if there is a collision or
a violation of the geofence. As previously described, the geofence is used as a virtual barrier for
the drone and the drone is penalized if the predefined area is violated in order to increase the safe
integration of drones into the environment. This is accomplished by calculating the distance to the
geofence limits. Some collisions may not be caused by the learning drone, but the others running
over it. In this case, the agent is innocent but it is penalized with a reward of −10. We consider
the learner drone to be innocent when it can not see the random drone and it is the random drone
movement which produces the collision. Independent of its source, a collision of the learner drone
always ends the episode. Intermediate steps return a reward of −1 (to penalize delays) plus ∆dg
which is distance-to-the-goal difference with respect to the previous step. ∆dg is used to stimulate
actions that approach to the goal. Additionally, maximum time to reach the goal was set and the
episode run was stopped after the given time limit.

Table IV-2: Rewards given at the end of each step/episode
Reward The Reason
+ 100 Goal reached
− 100 Collision: Obstacle (stationary or moving) or geofence
− 10 Innocent Collision: By random drone
−1 + ∆dg Otherwise
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IV.6 Results

The results are given in next two subsections: Training results presented in section IV.6.1 and
Testing results shown in section IV.6.2.

IV.6.1 Training Results

In this section, training results are given separately for three experiments: training number 1
including only learner drone, training number 2 including learner drone and random drone 1,
and finally training number 3 having the learner drone and random drones 1 & 2 which move
randomly in the environment. The learner drone starts an episode with different yaw angles in
order to increase the exploration capabilities of the learning.

In Figure IV-4 the initial positions of the random drones and the learner drone in the environ-
ment are shown. The random drones are used as moving obstacles and each random drone moves
randomly but restricted to stay along the road. For example, in Figure IV-4, the area shaded with
blue, and cyan colors represent the regions of random drones 1 & 2 respectively. Their duty is to
block the movement of the drone trained by deep reinforcement learning.

Figure IV-4: The environment with Random Drones and the Learner Drone

In Figure IV-5, Figure IV-6 and Figure IV-7, the training results with 125000 steps and accu-
mulated rewards are shown. The light blue represents the actual reward value of each step and the
dark blue represents the mean rewards of the every 100 steps. The vertical dotted line represents
the end of the annealing training part marking the 50000 step point. The training episodes are
finished when the drone reaches the destination or when the learning drone collides with any sta-
tionary or moving obstacle (random drone) or when the learning drone overpasses the geofence
limits.

The training results obtained by using only the learner drone and without any moving ob-
stacles in the environment are shown in Figure IV-5. It is seen that at the beginning of the training
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the rewards are below the zero when the percentage of randomness in selecting the action is high.
Although there are some successful episodes, the reward values are lower than the -100 which
means the drone crashed in most of the periods. As the random behavior decreases over time, it
is seen that the reward values are starting to increase and the trend of training curve is moving
up and having more positive rewards. After annealing the reward values becomes more stable
towards the end of the training.

Figure IV-5: Training results with only learner drone

In Figure IV-6 the training results of the learner drone under scenario "random drone 1" are
shown. The training curve shows similar trend as in Figure IV-5. For example, after around 25000
time steps, the learner drone starts learning how to avoid obstacles and the mean reward line goes
up, the accumulative reward (R) increases. However, there exist episodes in which the learning
drone crashed mostly at the beginning of the training and the reward values are between 0 and
(-25). There are 135 episodes which the agent is hit by the "random drone 1". This random drone is
the reason of the collision and the learning drone is innocent and then the learner drone penalized
as (-10) and the simulation is reset. These crashes are represented with red cross in Figure IV-6.
The crashes are mostly happened in the beginning of the training where the random behavior is
high and also before the annealing point. As the training proceeds, the number of crashes caused
by a randomly moving obstacle decreases and after some point there are no crashed episodes
because of the random drone.

In Figure IV-7 the training results of the learner drone with 2 random drones are shown.
The training curve shows similar trend as in Figure IV-6. However, there exist 79 episodes which
crashed because of the random drones. The learner drone is hit by the random drones in these
crashes. Most of the crashes occur at the beginning of the training where the random behavior
is high. For example, almost half of the crashes happened before 20000 steps. After this point
the learner drone starts exploring different parts of the environment where the random drones do
not exist and thus there are no random crashed episodes until around 40000 steps. After that, the
learner drone is hit by the random drones couple of times again but less than the beginning of the
training. After a short time, the learner drone is starting to learn again to avoid obstacles and the
mean reward values increase. The crashes caused by the random drones decrease through the end
of the training and after some point the learner drone does not collide with anything.
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Figure IV-6: Training results with random drone 1

Figure IV-7: Training results with random drones 1 & 2
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IV.6.2 Test Results

In this part, tests results of each trained model are shown. The tests are performed by using
models created in each training section to observe how the agent can learn to avoid obstacles and
the performance of the agent is assessed. These tests are made of 100 episodes starting from the
take-off and ending by landing to the destination, by collision or by the time limit.

Test results are shown in Figure IV-8 and Figure IV-9. In Figure IV-8 two scenarios are shown.
First scenario has only learner drone in the environment and the second scenario includes the
learner drone with "random drone 1" in the environment. In these tests, the learner drone has
reached the destination without crashing anything. As it is seen in these figures, the cumulative
reward values follow almost a straight line and having few oscillations. The details about the
reward values of the tests and the number of successful episodes can be seen in Table IV-3. The
mean reward value for the model including the learner drone and the "random drone 1" is 163.49,
lower than the mean reward for only one drone,learner drone, model, 172.63. This is because the
learner drone has to deal with the moving obstacle which makes the movements more conser-
vative but also slower in the second training session and the model has a reward lower than the
reward in the first training model.

Figure IV-8: Test results for only 1 drone and 2 drones

In Figure IV-9 the test consists of 3 drones, the learner drone trained in the environment
and random drones 1 & 2. In Figure IV-9, green dots represent the successful episodes, red dot
represents the crash and yellow dots which represent the timeout limit meaning there is no crash
or successful episode, but only reached a timeout. There are 98 successful episodes out of 100
episodes and only one crash and one timeout happened in the test. The reward values can be seen
in Table IV-3. The mean reward value which is 153.69 is the lowest one when we compare with
the other two tests. The reason can be more than one random drones exist in environment and
the learning drone try to avoid them. Surprisingly, the maximum reward is the highest in all three
tests.

The random behavior of the random drones which exist in the environment can change the
path followed by the learner drone. For this reason, there are also successful episodes having
reward values range between 90 and 150. The learner drone tries to avoid the random drones and
the other stationary obstacles in the environment. Even if the reward values are lower, the learner
drone successfully reaches the destination.
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Figure IV-9: Test results for 3 drones

Table IV-3: Model Tests Comparison

Model Mean reward Max reward Min reward Success rate

1 Drone 172.63 173.35 171.13 100%

2 Drones 163.49 164.02 161.72 100%

3 Drones 153.69 176.76 -385.21 98%

IV.7 Discussion of Experimental Outcomes

A number of other research studies have proposed architectures that resemble the Joint Neural
Network presented in this chapter, but they have not been used for RL state. For instance, the
hybrid reward architecture in Van Seijen et al. (2017) used separate value functions and trained
them separately, resulting in faster convergence but using separate neural networks. Srouji et al.
(2018) tested a decomposition of the neural network into two streams in various environments
including an urban driving simulator, but the training was not done jointly in a single network.
The closest architecture to JNN is in Dosovitskiy & Koltun (2016), but it is applied to supervised
learning instead of RL. This network combines three inputs - an image processed by a CNN, scalar
measurements processed by two dense networks in parallel, and a goal - and merges the outputs
into a single vector state.

DQN relies on a trade-off between exploration and exploitation, i.e., finding the optimal bal-
ance between trying new actions and exploiting the actions that have already been learned to be
effective. This balance can be difficult to achieve in real-world environments. As the size and
complexity of the environment increase, the computational requirements of DQN can become
prohibitively expensive. This can limit the ability to use DQN in large-scale drone navigation
applications.





A man who dares to waste one hour of time has not discovered

the value of life.

— Charles Darwin

It’s the job that’s never started as takes longest to finish.

— J. R. R. Tolkien

V
Counter a drone in a 2D space

In this chapter, a deep reinforcement learning (DRL) architecture is proposed to counter a drone
by using another drone in a 2D space. The defense drone will be called the learning drone and
it will autonomously avoid all kind of obstacles inside a suburban neighborhood environment.
The environment is in a simulator and has stationary obstacles such as trees, cables, parked cars,
and houses. In addition, another non-malicious third drone, acting as moving obstacle inside the
environment was also included. In this way, the learning drone is trained to detect stationary
and moving obstacles, and to counter and catch the target drone without crashing with any other
obstacle inside the neighborhood. The learning drone has a front camera and it can capture con-
tinuously depth images. Every depth image is part of the state used in DRL architecture. There are
also scalar state parameters such as velocities, distances to the target, distances to some defined
geofences, track angle, and elevation angle. The state image and scalars are processed and con-
catenated by a neural network in a similar way to what it is done in chapter IV. Moreover, transfer
learning is tested by using the weights of the first full-trained model. With transfer learning, one
of the best jump-starts achieved higher mean rewards (close to 35 more) at the beginning of train-
ing. Transfer learning also shows that the number of crashes during training can be reduced, with
a total number of crashed episodes reduced by 65%, when all ground obstacles are included.

This chapter is based on the following publications:

• Çetin E, Barrado C, & Pastor E.. 2020. Counter a drone in a complex neighborhood area by deep reinforcement
learning. In: MDPI Sensors. 20(8), 2320. D.O.I: 10.3390/s20082320.
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V.1 Environment

From the number of AirSim environments available for AI research to experiment with deep re-
inforcement learning algorithms, a small urban neighbourhood is selected. The reason is that cur-
rently some drones operators are starting to operate in similar environments, which may be used
by malicious drones to enter the area too, and to become a thread for its inhabitants. A counter-
drone system is needed to avoid this not desired incomers. The tested neighborhood environment
is shown in Figure V-2. A two-dimensional representation of the environment is shown by using
the x and y axis at the origin point of the agent.

Figure V-1 shows the environment in the simulation, with the starting location of the three
involved drones: The agent, also known as learning drone, in in the bottom of the image; On the
top of the image we find the target drone, this is, the malicious drone that the agent has to catch;
In between both some simulations include a third drone, named as random drone. This is used as
a moving obstacle that the agent shall avoid. The target and the random drones move randomly
from their starting point, inside the shaded areas of Figure V-1: red for the target drone (sized
25x8m), yellow for the random drone (sized 10x8m). Target drone and random drone can change
positions up to 1 meter in each step. The learning drone is always started in the same location,
(0, 0, 0) in the NED coordinate system, but its yaw angle is random. This aims to increase the
exploration capabilities of the learning drone from the first step.

Figure V-1: The environment with Random Drone, Target drone and the Learner Drone

It is assumed that the counter-drone system must remain always within the neighbourhood
that has contracted it. The limits of the area of the contract are given in the form of a geofence
which limits (155x90 meter square) are shown in shaded blue region of Figure V-2.
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Figure V-2: Geofences in the environment.

V.2 Drone Agent States

The state of the model is composed by an image and several auxiliary scalar values as it is ex-
plained previously in section IV.2. However, the image in this chapter has been improved and it
includes additional information. The states are as follows:

• Image State
Most drones have one or more cameras facing front, able to capture the objects situated
in the flying direction. AirSim provides three virtual front cameras: visual, thermal, and
depth. For the state we selected the image received from the depth camera. According to the
AirSim Microsoft (2023a), the depth camera output is received by using Airsim API "Depth
Perspective" image type, which simulates the return of a projection ray that hits its pixels.
The depth image received from the camera is a 256x144 pixels image as shown in Figure V-3.
From this image we crop a central part and create the state image. This state image is set as
30x100 pixels and is shown in Figure V-4. The bottom of the image includes the cropped
central part of the depth image (20x100 pixels). Then, the top 10 rows of the state image is
white (no obstacles), except for the 3x10 pixels black line. This black line is used to represent
the track angle, this is, the suitable direction to find the target drone Kersandt (2018). This
3x10 pixels black line moves left and right according to the relative movements of the target
and the catching drones.

Figure V-3: The Depth Image.

Additionally, as Figure V-5 shows, a grid is drawn on top of the state image when the drone
is close to cross the geofence. The thickness of the grid increases as the drone moves towards
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the geofence limits. The grid appears when the separation distance between the drone and
the geofence limits becomes lower or equal to 4 meters.

Figure V-4: The State Image and Encoded Section

Figure V-5: Fences drawn on the State Image.

• Auxiliary Inputs
Airsim capability to retrieve data of the environment is explained in Section III.2. For the
purposes of our agent the following data is collected: the Euclidean distance, the track angle
and the elevation angle of the target drone from the current position of the training drone.
Other auxiliary data collected for the state is the distances to geofence limits. To summarize,
the auxiliary data, aggregated to the state image as part of the agent state, is:

– The velocity of the agent in x and y directions: vxvy
– The distance from the agent to the goal in x and y directions and the Euclidean distance:
dxdydt

– Track and the elevation angles between the agent and the goal: ψζ

– The distances to the four geofence limits: (dgxmin, dgxmax, dgymin, dgymax)
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V.3 Agent’s Neural Network

The full state, composed by the image and the auxiliary data, is processed with a neural network.
The architecture of this neural network is shown in Figure V-6. The image is the input of a convo-
lutional neural network (CNN), followed by a flatten layer. Then a concatenation layer joints the
flatten output of the CNN with the scalar auxiliary data of the state.

The first layer of the CNN consists of RELU activated 32 kernel 4x4 with stride 4. This layer is
followed by RELU activated 64 kernel 3x3 with stride 2. The output of the sequential CNN model
is concatenated with the reshaped scalar values and the concatenated tensor becomes the input of
three RELU activated consecutive 256 kernel dense layers. The output layer is a dense layer and
the outputs are the action values. Neural network model summary can be seen in Figure V-6 and
with more detail about the layers and their parameters in the Appendix Figure B-1.

Figure V-6: The Agent.

V.4 Drone Control Actions

The drone agent is in the same plane in which the target drone is found, this is, without changing
altitude during the training. In other words, target drone and the learner drone are in a 2D space.
Figure V-7 illustrates the representation of the three actions and the description of the actions
available are as follows:

• Straight: Straight movement in direction of the heading with speed equal to 4 m/s

• Yaw left: Rotate clockwise around z axis with a 30deg/s angular speed

• Yaw right: Rotate counter-clockwise around z axis with a 30deg/s angular speed

As a consequence, the output layer of the agent’s neural network consists of three activation
values, one for each possible action. The neural network will predict which of the three actions
has a higher probability of obtaining the maximum cumulative reward.
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Figure V-7: Action Space.

V.5 Reward Function

Reward function is configured to allow agents learn and explore the environment and thus success
in catching the target. Previously in section IV.5, reward function includes the innocent collisions
which may not be caused by the learning drone. However, in this chapter, the agent is penalized
with the minimum reward−100 if the collision occurs. The proposed reward function is shown in
Table V-1. The agent is rewarded +100 if the episode is successful and the episode is terminated
as it has ended by catching the target drone. On the other hand, the agent is penalized and it
is given a reward −100 if the episode was unsuccessful, this is, it has ended because the agent
had a collision with a visible obstacle of the environment or because had violated the geofence.
Additionally, every intermediate step returns a reward of −1 to penalize delays on achieving the
agent’s objective. The reward of an intermediate step has two bonus: plus ∆Distance, which
is distance-to-the-goal reduction with respect to the previous step, and plus trackangle which
represents the zero-deviation towards the target direction.

Table V-1: Rewards
Reward The Reason
+ 100 Goal reached
− 100 Collision: Obstacle (stationary or moving) or geofence
-1 + ∆ Distance + TrackAngle Otherwise

V.6 Definition of Training Cases

Several training experiments are defined and categorized into two groups. The first group of
training experiments are performed at 30 meters height, above trees, houses and cars. In this
first group the only obstacles in the environment are the geofence, the random drone and the
target drone. The second group of training experiments are performed at low altitude, at an
altitude of four meters. The main reason is that the drone can interact with all kind of obstacles
such as trees, houses, and electrical wires found at this level. More detail about the obstacles
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in the environment can be seen in videos from youtube1. In each group of training, cases with
and without transfer learning are implemented to analyze and compare the performance of the
models. All transfer learning models use a unique pre-trained model. The pre-trained model is
built in the first presented case and named Baseline. A full training phase for the case named
Baseline, lasted for 125, 000 steps, and spent around 48 to 56 hours. The same resources are used
in both training and testing. The tests, run much faster, and are used to evaluate the learned
capabilities of the agent training.

Table V-2 summarizes the different cases explained through the section.

Table V-2: Training cases summary
CASE TRAINING STEPS ANNEALING GEOFENCE OBSTACLES

Baseline FULL 125K 50K YES NONE
Case 1.1 FULL 75K 50K YES stationary 3rd drone
Case 1.2 Transferred 50K 25K YES stationary 3rd drone
Case 1.3 FULL 75K 50K YES non-stationary 3rd drone
Case 1.4 Transferred 50K 25K YES non-stationary 3rd drone
Case 2.1 FULL 125K 50K YES houses, trees, electrical, etc.
Case 2.2 Transferred 50K 10K YES houses, trees, electrical, etc.

V.7 Results

The following two subsections present the results: Training results in section V.7.1 and Testing
results in section V.7.2.

V.7.1 Training Results

This section presents and analyzes the results of the experiments described in Table V-2.

V.7.1.1 Case 1: Training at 30 meters height

The following figures show the training performance relating the number of step (in the x-axis)
with its cumulative reward (in the y-axis). The light blue represents the actual reward value of
the step and the dark blue represents the mean rewards of the every 100 steps. The time steps
are discrete and equal to one second. The vertical dotted line represents the end of the annealing
training part. There is a linear epsilon-greedy exploration before the annealing points, starting
from full random down to 10% random. After the annealing point, the 10% random is maintained
until the end of the training.

The training episodes are finished when the drone catches the target or when the learning
drone collides with any stationary or non-stationary obstacle (random drone) or when the learning
drone overpasses the geofence limits.

• Baseline: Training including geofence and target drone
In Figure V-8, the training results for 125K steps are shown. This training is set at 30 meters
altitude, where both the learner drone and target drone are flying. This training is known as
"Baseline" because it is used as a pre-trained model for training by transfer learning which

1https://www.youtube.com/watch?v=wFDGZANAcfQ&feature=youtu.be
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is described in Table V-2. At the beginning of the training, the learner drone explores the
environment and the rewards are mostly around−300 which is a very low reward. The main
reason is that at the beginning of the training the random behavior is very high and the drone
has not yet knowledge of how to catch the target, thus, it exceeds the episode time limit.
However, the learning curve sets a higher slope at 20K steps and the cumulative reward
reaches the highest values around 40K steps, before the annealing point. Although there are
61 episodes crashed during training, there is only one unsuccessful episode after annealing.
This training shows that after a certain time the drone learns how to avoid geofence limits
and how to catch the target as soon as possible.

Figure V-8: Training result for Baseline.

• Case 1.1: adding a stationary third drone
This training is set at 30 meters height with a stationary drone is placed in the environment
at this same altitude, same as the learner drone and target drone. In Figure V-9 the full
training results for 75K steps can be seen. At the beginning of the training, the learner drone
explores the environment as it is seen in the previous training and the rewards are mostly
around −300. The main reason is the same as before, a very high initial random behavior.
However, this case has the stationary drone placed just 5 meters away from the learning
drone. As a result, it is observed that the behavior of the learning drone is different than
the training shown in Figure V-8. For example, in Figure V-9, it is observed that there are
accumulative rewards around −100 and these are crashed episodes in this training because
of the stationary drone placed in the environment. The learning drone eventually learns
how to avoid this stationary drone but it takes a while. For example, the number of crashes
against the random drone decreases after 65K steps. The cumulative reward reaches the
highest values around 70K steps.
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Figure V-9: Training result for Case 1.1.

• Case 1.2: adding a stationary third drone and using pre-trained model from Baseline
In Case 1.2 the training is performed by using transfer learning. This training the Baseline
pre-trained model, whose training results are shown in Figure V-8, is already trained to catch
the target while avoiding the geofences, and the new training focus only on the new knowl-
edge: the avoidance of the stationary drone. The training time is finished after 50K steps
and annealing point is set at 25K steps in this training. The last layer of the model is frozen
and the other layers are trained. In Figure V-10 the training results for transfer learning are
shown. As it is seen in this figure, at the beginning of the training, the cumulative reward
reaches positive values very fast, if compared to the training seen in Figure V-9. There are
still some crashes but these are caused by the stationary drone and the high random behav-
ior of the learning drone before the annealing point. After the annealing point, the learning
drone is in general able to catch the target drone and to successfully avoid the stationary
drone and the geofences.

Figure V-10: Training result for Case 1.2 by Transfer Learning.

Figure V-11 shows the transfer learning metrics: there is no jump-start, but the threshold
time can be observed. Both training start their curve with −160 mean reward. However,
during the training with TL, the agent reaches a pre-specified performance level faster (at
around 30K steps) than the model without TL. The asymptotic performance level is zero at
the end of 50K steps.
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Figure V-11: Training mean rewards for Case 1.1 and Case 1.2.

• Case 1.3: adding movement to the third drone
In this case, a third drone moving randomly is placed into the environment, at the same
altitude than the learner drone and target drone. In Figure V-12 the training results for 75K
steps can be seen. At the beginning of the training, the rewards are mostly around −300
because the learning drone still explores the environment. It is observed how the behavior
of the drone changes before and after identifying the non-stationary third drone. Before, the
mean rewards curve goes up until 20K steps since the drone seems to learn how to avoid
geofence and the non-stationary drone at the beginning, but after the curve starts going
down for a while and the rewards are mostly around −300 which are mostly considered
time-limit. The main reason is that the drone starts exploring again until catching the target
drone. After annealing, the mean rewards looks stable, but there are still episodes that crash
because of the non-stationary drone moving randomly.

Figure V-12: Training result for Case 1.3.

• Case 1.4: adding movement to the third drone and using pre-trained model from Baseline
In this training, the Baseline model, which is shown in Figure V-8, is used as the pre-trained
model of transfer learning, to train the learning drone to avoid geofences and the non-
stationary drone and to catch the target drone. The last layer of the model is frozen and
the other layers are trained. The training time is 50K steps and annealing point is at 25K
steps. In Figure V-13, the training result for transfer learning is shown. At the beginning of
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the training, the cumulative rewards start at −115 and but reach high values after the an-
nealing point. The cumulative reward is more stable during the training with TL compared
to the training seen in Figure V-12. This is because the crashes caused by the non-stationary
drone after annealing point in the second case. Thanks to transfer learning, the number of
crashes with the geofence are reduced by almost 75%. The non-stationary drone is a hard
challenge for the agent, because it can hit the agent during the training and thus the learning
takes longer.

Figure V-13: Training result for Case 1.4 by Transfer Learning.

Figure V-14 compares the reward curves for training with and without the transfer learning.
Training without transfer learning is not smooth. Both curves start the training with mean
reward around −115. However, with TL, the agent reaches a pre-specified performance
level, which is at 100 mean reward, and does it faster (at around 35K steps), as expected.
On the contrary, without TL the curve is not stable, with many up and downs caused by the
unexpected random movement of the non-stationary drone. Since the target drone have the
same image and also moves randomly, the situation creates confusion and the full training
is not successful.

Figure V-14: Training mean rewards for Case 1.3 and Case 1.4.
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V.7.1.2 Case 2: Training at low altitude, with many obstacles

• Case 2.1: without Transfer Learning
In Figure V-15 the results for 125K steps full training are shown. The training is set at 4
meters altitude and in addition to the obstacles, such as trees, houses, power cables and
cars, the learning drone and target drone are added to the environment. At the beginning
of the training, the learning drone explores the environment and the rewards are mostly
around −300. This is a very low reward during all training session in this case. However,
the learning curve goes up after 25K steps and the cumulative reward reaches higher values
around 35K steps, before the annealing point. This training shows that after a certain time,
the drone learns how to avoid all kind of obstacles including geofence limits, and how to
catch the target as soon as possible.

Figure V-15: Training result for Case 2.1.

• Case 2.2: with Transfer Learning, using pre-trained model from Baseline
In this training, the Baseline model, shown in Figure V-8, is used as pre-trained to transfer
to the learning drone the knowledge on how to catch the target drone. The last layer of the
model is frozen and the other layers are trained. The training time is set to 50K steps and
the annealing point to 10K steps. In Figure V-16 the training results for transfer learning
are shown. After the annealing point, as shown in Figure V-15, the training with TL shows
better results compared to the training without TL.

Figure V-16: Training result for Case 2.2 by Transfer Learning.

In Figure V-17 the transfer learning metrics are shown in terms of jump-start and threshold
time. TL starts training with mean reward around −85 while the training without TL is
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worse, around −120. The jump-start achieved is almost 35 more mean reward with transfer
learning. Moreover, the TL also reaches a pre-specified performance level faster (at around
10K steps), while the model without TL reaches the threshold point just after 40K steps.

Figure V-17: Training mean rewards for Case 2.1 and Case 2.2.

V.7.1.3 Training Results in Different Annealing Points

Transfer learning training with different annealing lengths are compared for Case 1.2. The linear
annealing policy is the same in all cases (from 1 to 0.1 randomness). However, different responses
are found for different annealing points. For example, in Figure V-18(a), it is seen that the an-
nealing starts at 10K steps and the total training covers 50K steps. Before the annealing, the agent
learns slowly and reaches higher rewards in 20K steps, but there are still crashed episodes. How-
ever, in Figure V-18(b) the annealing is set at 25K steps. Although mean rewards are very low
at the beginning of the training, after the agent explores more the environment, for around 15K
steps, and it is able to reach high reward values. After the annealing, there are still crashes but the
number of crashed episodes is lower than the crashed episodes compared to Figure V-18(a).

(a) Training result for Case 1.2, Annealing at 10K steps. (b) Training result for Case 1.2, Annealing at 25K steps.

Figure V-18: Training Results for Different Annealing

V.7.2 Test Results
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V.7.2.1 Testing the Models at Low Altitude

In this section the tests results for Case 2.1 and Case 2.2, and are discussed. During a test, the
agent is not learning anymore, but applies the learnt model with no more random behaviour. For
this reason in this section we will not call the agent the learning drone, but the agent drone.

Each test set is made of 100 episodes, starting from the take-off and ending by catching the
target drone (successful), by colliding (failure) or by time-out. Failures can happen by crashing
with a visible ground obstacle (tree, house, wires, poles, etc.) or with the virtual geofence.

(a) Test Result for Case 2.1 (Without TL) (b) Test Result for Case 2.2 (With TL)

Figure V-19: Test Results

Test results are shown in Figure V-19(a) for full training (case 2.1), and in Figure V-19(b) for
transfer learning (case 2.2). In all 100 episodes of case 2.1, the agent drone was successful and able
to catch the target drone without any crash. The cumulative reward plot is almost a straight line,
with a few oscillations. On the contrary, with transfer learning (case 2.2) the agent drone crashed
6 times out of 100 episodes. The main reason for these crashes is that the agent drone had learned
only some of the obstacles in the environment, and thus, it missed some of the distant obstacles.
However, even if there were failure episodes, the transfer learning showed a 94% success rate,
which is good performance when considering the short time spent on training.

The results demonstrated how the learning process can be improved by step-by-step learn-
ing. Initially, the drone learns the basic objective of its mission: head towards the target drone
while moving inside an invisible geo-cage. Then, new secondary objectives can be further in-
troduced using transfer learning. Our additional objectives were to avoid colliding with another
(non-malicious) drone, or to avoid multiple but fixed obstacles (houses, trees, electrical wires,
etc). Transfer learning showed much better performance that starting a longer full training: It was
faster in reaching a threshold reward and it did with a higher asymptotic performance.

With the expansion of drones flying in the airspace, the availability of an effective counter-
drone technology is a must. This counter-drone technology consists on several systems, on ground
and on air, from which the solution presented in this thesis is just one part. For this to work, it is
necessary to have a support system that detects the target drone, classifies its activity as malicious,
and estimates the position to the target drone. The results also show that deep reinforcement learn-
ing is a promising approach for the interception of the target drone moving randomly. However,
the full system is still to be developed. In particular the final interception method, which is here
achieved by crashing into the target drone, could use a more sophisticated approach to capture it.
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V.8 Discussion of Experimental Outcomes

In this section, the explainability of deep reinforcement learning is focused and the charts related
to drone positions and crash reports are discussed.

V.8.1 Comparison of the effects of different annealing points in TL

Previously, training results for different annealing points are presented in Figure V-18. In this sec-
tion, crash reports are analyzed and discussed further with explainable AI. Figure V-20(a) shows
that from a total of 167 crashed episodes by annealing at 10K steps, only seven episodes crashed
with the geofence while 160 episodes crashed with the stationary third drone. In Figure V-20(b)
the number of crashed episodes and their crashed obstacles are shown for annealing at 25K steps.
There are 178 crashed episodes in total, 85 episodes crashed on geofence and 93 episodes crashed
on drone. The total number of crashed episodes are slightly higher than before, but the number of
episodes crashed on stationary drone are reduced in half. The main reason is that a longer anneal-
ing allows the agent to explore more at the beginning of the training, learning about both type of
obstacles at the same time.

(a) Crash report chart for Case 1.2, Annealing at 10K
steps.

(b) Crash report chart for Case 1.2, Annealing at 25K
steps.

Figure V-20: Crash Report Charts for Different Annealing

V.8.2 Comparison of the explored areas with or without TL

In this section, a map was built to show the drone positions during all the training steps. As in
the previous comparison, the details of the crashed obstacles are also given. The map of the drone
positions is limited by the coordinates of the geofence, these limits are [-5, 150] for the x-axis and [-
70, 20] for the y-axis. The blue dots represent the agent position in each time step during training.
The red dot is the initial position of the target drone.

In Figure V-21 the learning drone position map for Baseline is shown. It can easily be seen
that the agent drone learns how to focus on targeting the goal, avoiding exploring areas that do
not face the target. Also it is observed that geofence limits are not approached.
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Figure V-21: Drone Position Map for Baseline

In Figure V-22(a) the number of total crashes and the crashed obstacles for the Case 1.1 are
shown. As it is seen in Figure V-22(a), there are 145 episodes crashed against the stationary drone.
Moreover, it is observed that the number of crashes with the geofence are also higher in this
training. The geofence limits are exceeded 81 times in this training, although it was 61 in the
training without adding the stationary drone shown in Baseline.

In Figure V-22(b) the number of total crashes and the crashed obstacles for Case 1.2 are
shown. As it is seen in Figure V-22(b), there are 93 episodes crashed against the stationary drone.
Moreover, it is observed that the number of crashes with the geofences is 85. The geofence limits
are violated four times more with transfer learning compared with the full training of Case 1.1.

(a) Crash report chart for Case 1.1. (b) Crash report chart for Case 1.2 by Transfer Learning.

Figure V-22: Crash Report Charts for Cases 1.1 and 1.2

Figures V-23(a) and V-23(b) show maps of the learning drone position for Case 1.1 and Case
1.2 respectively. Observe that with transfer learning (Figure V-23(b)) the drone is mostly directed
to the target which is visually indicated by a red-colored dot, while without transfer learning, the
drone is distracted and moves far away from the goal (see Figure V-23(a)).

In Figure V-24(a) the number of the total crashes and the crashed obstacles for Case 1.3 are
shown. There are more crashed episodes in Case 1.3 compared to the other cases because of the
non-stationary drone. There are 193 episodes crashed this drone. Also, the number of episodes of
crashing with the geofence(150) is high compared to the cases before. In summary, the learning
drone does not learn how to avoid this non-stationary drone in a considerable time as expected in
this case.

In Figure V-24(b) the number of total crashes and the crashed obstacles for Case 1.4 are
shown. A similar number of episodes failures (200) are also due to the non-stationary drone. How-
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(a) Drone Position Map for Case 1.1. (b) Drone Position Map for Case 1.2 by Transfer Learn-
ing.

Figure V-23: Drone Position Maps for Cases 1.1 and 1.2

ever, the crashes with the geofence (45) is lower than in Figure V-24(a) without transfer learning.

(a) Crash report chart for Case 1.3. (b) Crash report chart for Case 1.4 by Transfer Learning.

Figure V-24: Crash Report Charts for Cases 1.3 and 1.4

In Figure V-25(a) and Figure V-25(b) the maps of the learning drone positions during the
training sessions can be seen. With transfer learning (Figure V-25(b)) the drone is better focused
on the target, while without transfer learning, the drone is moving left and right side of the envi-
ronment in order to find a way to avoid non-stationary drone (Figure V-25(a)) but fails in reaching
its goal.

In Figure V-26(a) and Figure V-26(b) the number of total crashes and the crashed obstacles for
Case 2.1 and Case 2.2 are presented respectively. Although the number of crashed episodes is 177
for the transfer learning Case 2.2, the number is even higher (503 crashed episodes) in Case 2.1.
The total number of crashed episodes was reduced by 65% with transfer learning. The crashed
obstacles are categorized as geofences, trees, power lines, and houses.

In Figure V-27(a) and Figure V-27(b) the learner drone position maps in the environment
during the training sessions are shown. In both figures, the shape of obstacles can be observed.
For example, in Figure V-27(a), the learner drone tries to explore the environment by moving
around the obstacle, as seen with a white rectangular shape positioned in the y-direction within
the range of [−30,−10]. In addition, one of the trees (in front of the house) can also be seen as a
white area surrounded by many blue dots. In Figure V-27(b) the shape of the house can also be
observed, but with transfer learning the learning drone does not need to explore all around the
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(a) Drone Position Map for Case 1.3 (b) Drone Position Map for Case 1.4 by Transfer Learn-
ing.

Figure V-25: Drone Position Maps for Cases 1.3 and 1.4

(a) Crash report chart for Case 2.1. (b) Crash report chart for Case 2.2 by Transfer Learning.

Figure V-26: Crash Report Charts for Cases 2.1 and 2.2

house.

(a) Drone Position Map for Case 2.1 (b) Drone Position Map for Case 2.2 by Transfer Learn-
ing.

Figure V-27: Drone Position Maps for Cases 2.1 and 2.2



The good thing about science is that it’s true whether or not you

believe in it.

— Neil deGrasse Tyson

Sorprenderse, extrañarse, es comenzar a entender.

[To be surprised, to be amazed, is to begin to un-
derstand.]

— José Ortega y Gasset

VI
Counter a drone in a 3D space

In a 2D space it is already shown that the deep reinforcement learning method is an effective
way to counter a drone. However, countering a drone in a 3D space with another drone is a
very challenging task considering the time required to train and avoid obstacles at the same time.
In this chapter, a Double Deep Q-Network (DDQN) algorithm with dueling network architecture
and prioritized experience replay is presented to catch another drone in the environment provided
by an Airsim simulator. The models have been trained and tested with different scenarios to
analyze the learning progress of the drone. Experiences from previous training are also transferred
before starting a new training by pre-processing the previous experiences and eliminating those
considered as bad experiences. The drone detection model running in the background is also
implemented in most of the models, and one of the best models is obtained by using the drone
detection model running in the background. The results show that the best models are obtained
with transfer learning and the drone learning progress has been increased dramatically.

This chapter is based on the following publications:

• Çetin E, Barrado C, & Pastor E.. 2022. Countering a Drone in a 3D Space: Analyzing Deep Reinforcement
Learning. In: MDPI Sensors. 22(22), 8863. D.O.I: 10.3390/s22228863.

• Çetin E, Barrado C, & Pastor E.. 2021. Improving real-time drone detection for counter-drone systems. In: The
Aeronautical Journal. 125(1292), 1871-1896. D.O.I: 10.1017/aer.2021.43.
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VI.1 Environment

The urban neighborhood is chosen as it is done in previous chapters IV and V to counter a drone
because of the similarity in real-life experiences in urban areas. The details of the environment is
explained in Section III.2. Also, all the models starts at the same location in y − direction and it
is at y = 0. Target locations in z − direction are also same for all the models and it is fixed at 5
meters above the ground z = −5 but the target locations in x − direction have been changed to
challenge the agent during training and test. The orientation of x-y-z directions are presented in
Figure VI-1.

Figure VI-1: Environment Setup x-y-z Directions.

VI.2 Drone Agent States

Agent states consist of images and scalar input values which are concatenated later. However,
different image states are used in two different DRL models.

VI.2.1 Drone Agent Scalar State Inputs

Scalar inputs contain the agent’s distances to the goal in x, y and z directions and the Euclidean
distance dxdydzdt. The scalar inputs are concatenated with an image state input with or without
drone detection.

VI.2.2 Image State without Drone Detection

The depth image seen in Figure VI-2, with 256 × 144 pixels captured continuously. This image is
the default size that Airsim can output.



VI.2 Drone Agent States 91

Figure VI-2: Depth Image.

VI.2.3 Image State with Drone Detection

Depth image shown in Figure VI-3(a), 84 × 84 pixels, and scene image, 256 × 144 pixels, are cap-
tured by using a drone onboard cameras. The scene image seen is processed by the drone detection
model to create bounding boxes when the target drone is detected on the image as shown in Fig-
ure VI-3(b). After merging the images, the bounding box region in the depth image is masked
shown in Figure VI-3(c). Previously, the circles are drawn in black in chapter V. Nevertheless, in
this chapter bounding box are replaced with white to help the agent find the target easily since
dark colors in depth images can be mistaken for obstacles. The final image used in the DRL model
can be seen in Figure VI-3(d).

(a) Depth Image (b) Prediction (c) Image Masked (d) Final State

Figure VI-3: Drone Detection and Image Processing.

VI.2.4 Geofences on Image State

In addition, the grid is drawn on the image in both cases VI.2.2 and VI.2.3 if the drone comes closer
to the geofence limits in all directions. The grids start to be drawn on the image when the distance
between the drone and the geofence limits lower than or equal to 1 m in steps. The thickness of
the grid increases as the drone moves towards the geofence limits. The grid which is drawn on
the image is illustrated in Figure V-5 when the drone moves in a 2D Space. Additionally, the grid
is drawn for 3D space if the agent is closer to the top of the geofences or closer to the ground.
In Figure VI-4(a), the grid is drawn if the agent is closer to the geofences on top. On the other
hand, in Figure VI-4(b), the grid is drawn on the bottom of the image if the agent is closer to
the ground.

(a) (b)

Figure VI-4: Fences in Image State. (a) Grid on Top of the Image. (b) Grid on the Bottom of the
Image.
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VI.3 Agent’s Neural Network

The deep reinforcement learning model is constructed by using dueling network architecture and
trained with DDQN including prioritized experience replay. The image is an input of a convo-
lutional neural network (CNN), followed by a flatten layer and then a concatenation layer joints
the flatten output of the CNN with scalar inputs. Figure VI-5 shows the neural network model
representation including dueling architecture. In this figure, only simple state image is shown.
Also, dueling architecture has outputs: state-value V and the advantage for each action A.

Figure VI-5: Agent Dueling Architecture.

VI.4 Drone Control Actions

The agent can select five different actions such as moving forward, yawing left and right, and go-
ing up and down. The actions are represented in detail in Table VI-1 and in Figure VI-6.

Table VI-1: Actions.

Action Movement

0 2 m/s in +x direction
1 30 deg yaw left
2 25 deg yaw right
3 0.25 m/s in +z direction
4 0.25 m/s in −z direction
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Figure VI-6: Agent Actions.

VI.5 Reward Function

The reward function includes incremental rewards which penalize the agent during the episode
and the reward giving a successful episode. Incremental rewards shown in Table VI-2 are given
to the agent such as [−1 : −4] during an episode in every 50 steps. In addition, an intermediate
step reward is added: ∆Distance which represents the change of distance to the target between
the current step and the previous step. In other words, if the ∆Distance is higher, the agent is pe-
nalized more. Finally, the time limit is also set to restart the episode after 180 steps and the reward
of the agent becomes the the sum of rewards at the end of the 180th step. In this paper, collision
penalization for colliding with any obstacle in the environment is not implemented. The reward
function is shown in Table VI-2.

Table VI-2: Rewards.
Reward The Reason Step Interval

+100 Target Caught End of the Episode
−1 + ∆Distance Incremental Advancement Episode steps between 0–50
−2 + ∆Distance Incremental Advancement Episode steps between 50–100
−3 + ∆Distance Incremental Advancement Episode steps between 100–150
−4 + ∆Distance Incremental Advancement Episode steps between 150–200

VI.6 Definition of DRL Models

Nine models are trained by implementing different scenarios such as different target drone loca-
tions, teleportation and random heading at the beginning of each episode during training. Tele-
portation is that the agent starts the episode in different locations around the target to enhance
the exploration. All models described in Table VI-3, are trained with DDQN algorithm with pri-
oritized experience replay. In addition, some models have been trained by implementing transfer
learning and using different network architectures such as a dueling network. Different annealing
sections and the total training times are also investigated and shown in Table VI-3. State of the
DRL models are already explained in section VI.2.1 and all models have the same kind of scalar
states such as distances to the target.
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Table VI-3: Setup DRL Models.

Models

Teleportation
and
Random
Heading

Transfer
Learn-
ing

Dueling
Network
Architecture

Image
State

Annealed
Steps

Training
Steps

Drone
Detec-
tion

Model-1 NO NO YES (256,144) 15,000 48,540 NO

Model-2 NO YES YES (84,84) 20,000 55,032 YES

Model-3 NO NO YES (84,84) 15,000 24,795 YES

Model-4 NO NO YES (84,84) 20,000 72,634 YES

Model-5 NO NO YES (84,84) 15,000 49,999 YES

Model-6 NO NO NO (84,84) 15,000 45,253 YES

Model-7 YES NO NO (84,84) 100,000 42,060 YES

Model-8
YES
(Random
Heading)

NO NO (84,84) 50,000 103,947 YES

Model-9 NO NO NO (84,84) 15,000 33,901 YES

VI.7 Results

In this section training and test results are presented. Models are trained on a desktop PC with
NVIDIA GeForce RTX 3060 Ti with 8 GB VRAM graphics co-processor. Previously in chapter III
in Figure III-5, core components of the experimental setup and the interactions between the DRL
tools such as Tensorflow, Keras and OpenAI Gym, drone detection model via python pipe which
accomplishes the parallel processing and the simulation are presented. The linear Epsilon-greedy
policy is applied during the training. Different training steps and the annealed part of the training
section are implemented to train DRL models. In addition, some of the models are also trained
by loading experiences from another training. In general, full training with 75,000 steps can take
approximately 48 h but training time can vary depending on the model. A summary of the models
is presented in Table VI-3 and Hyperparameters of the training and tests are presented in Table
C-1.

VI.7.1 Training Results

In order to observe each model separately in Appendix C, all the training curves are presented
individually. These individual training curves can be found in Figure C-1. Mean rewards of DRL
models are presented together in Figure VI-7. It is seen that only model-2 has positive mean
rewards at the beginning thanks to transfer learning by loading experiences from the previous
training. On the other hand, it can be seen in this figure that Model-7 is very slow and does not
reach a positive mean reward in training while the other models reach positive mean rewards
after some time in training.

In Table VI-4 maximum, minimum and average cumulative rewards of DRL models are pre-
sented. Success rates during training are also shown. Model-1 and model-2 have the maximum
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success rates and maximum average cumulative results. Model-3 and Model-7 has the minimum
success rates.

Figure VI-7: Training Results ALL Models.

Table VI-4: DRL Models Training Rewards Statistics.

Models
Average
Cumulative
Reward

Max.
Cumulative
Reward

Min.
Cumulative
Reward

Success Rates

Model-1 83.11 94.48 −429.27 95%
Model-2 83.82 94.12 −420.99 98%
Model-3 −3.73 97.33 −426.16 47%
Model-4 65.91 98.09 −427.04 88%
Model-5 65.24 96.16 −424.30 88%
Model-6 64.49 98.21 −416.40 83%
Model-7 −29.40 96.25 −252.38 5%
Model-8 71.80 97.16 −421.06 86%
Model-9 72.08 97.14 −418.69 85%

VI.7.1.1 Selection of Best Models Candidates

Best models are chosen according to training and test performances. If the training has more
successful episodes with less crashes and it is stable during the training, the model is considered
to be a good model. Model-1 and Model-2 are selected as best models and the mean rewards are
compared and presented in Figure VI-8. Although both models have dueling network architecture
and prioritized experience replay, model-1 has no drone detection model and no transfer learning,
as indicated in Table VI-3. On the other hand, model-2 includes a drone detection model running
and the experiences from previous training are transferred. As is seen in Figure VI-8, model-
2 starts the training with positive rewards and reaches its maximum levels in a short time. It
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is seen that transferring experiences from a previous training speeds up the learning process.
However, model-1 starts the training from scratch but can reach the high rewards like model-2,
whereas model-1 has more crashes at the beginning of the training. Likewise, in Figure VI-9,
the differences between model-1 and model-2 during training are shown in terms of the usage
of transfer learning. In this figure, cumulative rewards in each episode are presented and the
episodes are color-coded according to agent’ success in blue, crash (failure) in red or time limit in
cyan. At the beginning of the training, it is seen that model-1 without transfer learning has many
episodes failed to catch the target and crashed on obstacles. However, model-2 takes an advantage
of transfer learning and it has less episodes failed.

Figure VI-8: Best Models.

(a) without Transfer Learning (Model-1) (b) with Transfer Learning (Model-2)

Figure VI-9: Comparison of Models with or without Transfer Learning

VI.7.1.2 Analysis of Models with Different Scenarios

In this section, the training results of the models are compared in terms of different annealing
parts, teleporting and starting an episode with random heading.

• Different Annealing Points and Teleporting Feature:

At the beginning of the training, it is expected to start with higher randomness in action
selection to explore and try new things. This helps to balance between exploration and
exploitation. In order to implement this scenario, different annealing stages are applied
on the models to investigate the training progresses. For example, models with different
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annealing parts and teleporting feature are investigated to analyze the learning progress of
the agent. Teleporting is a feature at the moment of the start of training to locate the agent in
different coordinates in the environment to increase exploration. Training results for model-
2 and model-7 are selected due to their significantly different annealing sections, as specified
in Table VI-3 and Figure VI-10 presents the difference between these two models. In Figure
VI-10(b), it is seen that the model with high annealing part which ends after 100K steps and
teleporting option has many episodes failed to catch the target and crashed on obstacles
in the environment. However, in Figure VI-10(a) it is shown that the model which has less
annealing part and without teleporting option has more successful episodes and less crashes.
Although model-7 has more exploration than model-2 during training, the agent learns very
slowly.

(a) Annealing=20K and without Teleporting Model-2 (b) Annealing=100K and with Teleporting Model-7

Figure VI-10: Comparison of Models with Different Annealing Parts and Teleporting.

• Random Heading at the beginning of an Episode:

In normal scenario, the agent starts an episode by facing the target drone. However, explo-
ration can be limited and the learning progress is not efficient. To avoid this situation, the
agent starts each episodes with random yaw angle to explore different areas in the environ-
ment and to avoid obstacles during searching for the target. For example, Model-8 which
starts an episode with random heading is compared with the model-2 facing the target at
the beginning of an episode. Figure VI-11 presents both cases to highlight the differences
in training between these models. Without random heading, the model seen in Figure VI-
11(a) can crash less at the beginning of training and converges faster. However, as shown in
Figure, VI-11(b) Model with random heading starts training with many crashes over a long
period and then the training starts converging.

(a) without Random Heading (Model-2) (b) with Random Heading (Model-8)

Figure VI-11: Comparison of Models with or without Random Heading.
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VI.7.2 Test Results

After training the DRL models described in Table VI-3, the models are tested in the environment
with the best checkpoint weights obtained during the training. The models presented which in-
cludes best and worst models are tested and presented in Figure VI-12. The test results are shown
in Table VI-5. In this table, average cumulative rewards, minimum and maximum rewards are
compared. The success rates represent on how many episodes the learner drone catches the tar-
get drone in a test out of 100 episodes. In addition, the average steps in each episode in tests
are also presented. Model-1 and model-2 show the best performance as expected since they are
selected as the best models and shown in Section VI.7.1.1. Average cumulative rewards are 90.86
and 89.38, the highest for model-1 and model-2 respectively. The highest minimum cumulative
rewards show the precision of these models. Model-1 and model-2 spend less time to catch the
target with average time steps 8.98 and 11.92 respectively. However, model-7 and model-8 are not
as successful as expected. Although model-8 has a better success rate (92%), it has higher average
steps compared to the best models, and model-7 fails to catch the target drone.

Table VI-5: DRL Models Test Statistics.

Models
Average
Cumulative
Reward

Max.
Cumulative
Reward

Min.
Cumulative
Reward

Success
Rates

Average
Steps

Model-1 90.86 91.12 90.69 100% 8.98
Model-2 89.38 92.93 82.93 100% 11.92
Model-7 −87.55 73.78 −408.58 3% 56.97
Model-8 65.73 95.06 −220.29 92% 32.01

(a) Model-1 (b) Model-2

(c) Model-7 (d) Model-8

Figure VI-12: Test Results.
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VI.8 Discussion of Experimental Outcomes

In this section some plots are shown and analyzed to understand the relation of the models charac-
teristics and the behaviour of the agents during their training process. The position of the learner
drone, the agent, in episodes during the training of DRL models have shown different flight paths
in order to catch the target in a 3D space. Figures VI-13–VI-15 present 3 projections of the 3D space
(x-y, x-z and y-z) and the positions during a particular, but late, episode, in particular 2285 of the
total of 5107 episodes for model-1, episode 3560 of the total of 3653 episodes for model-2, and 2666
of the total of 7631 episodes for model-8. It is found that the learner drone can use different actions
to catch the drone in different episodes and different models. For instance, model-2 takes 58 steps
to catch the target and the positions are shown in Figure VI-14. The learner drone moves up and
goes forward without changing position in the y-direction. Figure VI-13 shows that model-1 can
take many action steps to catch the target. Firstly, the learner drone moves up and goes forward.
After the learner drone passes the target, it starts going up and down to search for the target and
finally it catches it and the total steps are greater than 100 steps. Moreover, model-1 has shown
an interesting approach in that the learner drone spends time in the y-direction such as going left
and right and going up and down at the same time. However, although model-8 is declared as
one of the worst models, there are also successful episodes in which the learner drone catches the
target. For example, the learner drone position is presented in Figure VI-15. In this figure, it is
seen that the learner drone spends a lot of time to find the target and uses different kinds of actions
including going forward and backwards. The episode in this approach takes 84 steps to catch the
target. In counter-drone systems, catching the target as soon as possible is expected. Otherwise,
the target can be lost in a short time.

Figure VI-13: Model-1 Training Episode 2285 Drone Position.
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Figure VI-14: Model-2 Training Episode 3560 Drone Position.

Figure VI-15: Model-8 Training Episode 2666 Drone Position.

Additionally, explainability of deep reinforcement learning models is investigated.
The crashed episodes are analyzed by checking the drone crash locations in the environment.
Figure VI-16 shows crash positions in the environment in x-y directions for four different models.
Red rectangle lines represent the geofences in the environment in x-y directions. It is clearly seen
that model-7 and model-8 crash a lot of times on the right side of the geofenced location in × di-
rection. However, among all the models, model-2 has minimum crashes. This can also be seen in
Figure C-4. Model-1 performs better than model-7 and model-8 but not as well as model-2. More-
over, model-7 crashes on each side of the geofenced area. The long annealing part also contributes
to this situation because the random behavior is high in the annealing part and the learner drone
tries to explore more in the environment, but even after a long time, there are no improvements in
this model.
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(a) Model-1 (b) Model-2

(c) Model-7 (d) Model-8

Figure VI-16: Crash positions.

Actions for these four models are also presented in Figure VI-17. Expected behavior of the
models which does not have random heading at the beginning of an episode is that the drone
should go up and move forward since the target is in front of the learner drone and the vertical
distance is 1 m. Model-1 and model-2 perform as expected but model-1 spends more time on
turning left and right. Model-2’s performance shows a better result and it spends less time on
turning but focuses on going up and moving forward. Model-8 fails to do the expected behavior
and sometimes spends a lot of time finding the target. However, model-7’s actions show no learn-
ing at all. The actions the drone uses in this model are almost distributed equally among the five
actions and the drone has no idea where the target is and where it should move to catch it. All
the actions that the DRL models used can be seen in Appendix C, Figure C-5. The actions and the
movements are described in Table VI-6.

Table VI-6: Actions.

Action Movement

0 Forward
1− 2 Lateral
3− 4 Vertical
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(a) Model-1 (b) Model-2

(c) Model-7 (d) Model-8

Figure VI-17: Action Frequencies.



Your time is limited, don’t waste it living someone else’s life.

Don’t be trapped by dogma, which is living the result of other

people’s thinking. Don’t let the noise of other opinions drown

your own inner voice. And most important, have the courage

to follow your heart and intuition, they somehow already know

what you truly want to become.

— Steve Jobs

Life is like riding a bicycle. To keep your balance, you must keep

moving.

— Albert Einstein VII
Performance Analysis of DRL Agents

and Human Pilots

In this chapter, the performance of human pilots are compared with the performance of deep
reinforcement learning method and direct solution method to counter a drone in the simulation
environment. The results are analyzed by comparing the time to catch the target drone in seconds
between DRL methods for 2D space and 3D space, human pilot and direct method, an algorithm,
which directs the drone towards the target position without using any AI method. The main idea
is to catch a drone in an environment as fast as possible without crashing any obstacles inside
the environment. The training and test results show that the agent drone learns to catch target
drone which can be a stationary and a non-stationary. In addition, the agent avoids crashing any
obstacles in the environment with a minimum success rate of 93%. Also, DRL model performance
is compared with the human pilot performances and the agent with DRL model shows better time
to catch the target drone. Human pilots struggle to control the drone by using remote controller
when catching the target in simulation. However, the agent with DRL model is rarely missing
the target when trying to catch the target. Direct method is also tested to catch the target drone
and it has the fastest results if there is no obstacle between the target and the agent. However,
when the performances compared with one of the best DRL models in a 3D space and the direct
method after introducing the obstacle between the agent and the target, direct method always
failed to catch the target since it crashes on the obstacle, while DRL model catches the target with
a minimum success rate of 72%.

This chapter is based on the following publications:
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VII.1 Description of the Methods

In this section, DRL methods, human pilots and the direct method are described. In all of these
approaches, the agent is a quadcopter drone and the environment setup is already explained in
chapter III. In DRL method, the agent drone is trained to catch the target drone and it is rewarded
in each time step by the environment provided by Airsim flight simulator. However, human pilots
and direct method do not have a DRL algorithm running on background but direct method, as an
algorithm, simply follows the target and crash on it. The description of the methods are presented
in Table VII-1. In this table, the name of the methods, the number of actions used by each method,
and whether they have DRL algorithm and reward function are shown. Details of the methods
are explained in the following sections.

Table VII-1: Description of the Methods.
Models DRL Algorithm Human in the Loop Number of Actions Reward Function State Input
DRL-2D Agent DDQN NO 3 YES Image + Scalars
DRL-3D Agent DDQN+Dueling+PER NO 5 YES Image + Scalars
Human Pilots - YES 4 NO Image
Direct Method - NO 1 NO Target Location

VII.1.1 DRL model for a 2D Space

In this section, the DRL model which is presented in Chapter V is used. However, several im-
provements have been made in states, reward function and actions that the agent can take. One
of the most important improvements in this DRL model in a 2D space is in image state which
contains the drone detection information on the image input. The improvements of this model are
presented in the following sections in detail.

VII.1.1.1 Drone Agent States

The state of the DRL model is constructed as it is explained previously in section V.2. Neural
network model is also explained in detail in section V.3. The image in this section includes ge-
ofence information by drawing fences on the image and an additional information about the target
drone’s location. Drone detection model processes the raw image before sending it to the agent
as an input to the DRL network. This process is presented in Figure II-18. The states of the DRL
model in this section are as follows:

• Image State
The drone continuously captures 256 x 144 pixels size depth image and scene image by using
its onboard camera. The scene image seen in Figure VII-1(a) is processed by drone detection
model to create bounding boxes when the target drone is detected on the image. The world
coordinates of the target drone position are projected into image pixel coordinates by using
the quaternions and rotation matrix. Image processing and the drone detection process can
be seen in detail in section III.4.

Depth image seen in Figure VII-1(b) is used in DRL model for detecting obstacles. After
processing the images, a bounding box region in depth image is filled with white color and
circles like a target in the dart game are created inside the white bounding box region as it is
shown in Figure VII-1(b).

• Çetin E, Barrado C, & Pastor E.. 2021 (Oct.). Counter a Drone and the Performance Analysis of Deep Reinforce-
ment Learning Method and Human Pilot. In: IEEE/AIAA 40th Digital Avionics Systems Conference (DASC). San
Antonio, TX, USA : DASC. D.O.I: 10.1109/DASC52595.2021.9594413 Hybrid event: DASC 2021.
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(a) Drone Detection Image (b) Image After Drone Detection

Figure VII-1: Drone Detection and Image Processing

The image state shown in Figure VII-2 is set as 30 x 100 pixels which contains 3 × 10 pixels
black line used to represent the track angle. This line moves left and right while the track
angle changes. This line can be slightly in different places on the image as in the location of
the circles on the image because the position of the line is a linear correlation between the
angle value and the width of the image Kersandt (2018). Moreover, the grid is drawn on the
image when the distance between the drone and the geofence limits becomes lower or equal
to 4 m. The thickness of the grid increases as the drone moves towards the geofence limits.
The grid is drawn as it was in V-5.

Figure VII-2: Image State

• Scalar Inputs
Scalar inputs contain vxvy agent’s velocities in x and y directions dxdydt agent’s distances
to goal in x and y directions and euclidean distance, dgxmin dgxmax dgymin dgymax agent’s
distances to geofence limits, track and elevation angles between the agent and the target.
These inputs are received by using APIs provided by the simulation for both the agent and
the target drones. In real world, localization and tracking the target drones are not directly
available as explained in section I. There are tools and methods to calculate these angles in
real world counter drone systems.

VII.1.1.2 Drone Control Actions

The actions used by the agent includes 3 different options as explained in section V.4. However,
the agent will have different yaw rates in this section to allow the agent explore different parts
of the environment: rotate by 30 degree on the left, rotate by 25 degree on the right and going
forward 4 m/s. Also, there is an additional task called attack mode which is added to the actions
during testing. If the drone is very close to the target drone and the drone detection model detects
a drone, then activates the attack mode to terminate the target. The attack mode is a high speed
termination task which is only available in close distances to the target. It is observed that the
agent with deep reinforcement learning model moves to the target drone position and reduces the
distances to target until the attack mode is activated.
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VII.1.1.3 Reward Function

The reward function is improved by adding an information about drone detection. Reward func-
tion is formulated in Table VII-2. Drone detection reward is one of the important factor in this
study to achieve better results considering the accuracy of state of the art real time object detec-
tion algorithm. The reward function is improved by adding a drone detection information value
to the reward calculation. If a drone is detected and the target drone is on the visibility of the agent
drone, the agent is rewarded. Track angle calculated by using the positions of target and agent,
yaw angle. In other words, track angle is at the relative to the heading angle towards the goal.

Table VII-2: Rewards
Reward The Reason
+ 100 Target Catched
− 100 Collision: Obstacle or geofence
+ 1 Drone Detection
+ ζ Track Angle
−1 + ∆dg Otherwise

VII.1.2 DRL model for a 3D Space

In this section, one of the best DRL models proposed in Chapter VI, model-1, is used to counter a
drone in 3D space. The details of this model can be seen in Tables VI-3 and VI-4. The actions and
reward function are described in VI.4 and VI.5 respectively. The differences between this model
and the rest of the methods in this chapter are explained previously in Table VII-1.

VII.1.3 Experimental Setup for Human Pilots

Human pilots performed the same task as the agent does in DRL method to catch the target drone.
Two pilots with different skills are selected. One of the pilots has a drone pilot license and the other
pilot is "SIM pilot" with more experience on flight simulation but without drone pilot license.
Human pilots control the drone by using the remote controller, FrSky Taranis X9D Plus FrSky
(2021). This is a real UAV remote controller and it can be directly connected to PC via USB port.
Pilot actions shown in Figure VII-3 include throttle input, as well as inputs for roll, pitch and
yaw control. DRL agents indirectly control these inputs and instead they use simulation APIs to
interact with vehicle programmatically.
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Figure VII-3: Actions for Human Pilots

The state input of the pilots seen in Figure VII-4 is the first person view of the neighbor-
hood environment and the pilots performed the tests to catch stationary drone and non-stationary
drone. Licensed drone pilot has trained almost 2 hours in the simulation to catch the target drone.
In real life, human pilots have flight modes such as altitude-hold mode available to them in RC.
However, they don’t have an access to these modes in the simulation and they need to control the
throttle input as well as roll, pitch and yaw control inputs. To compare human pilot performances
with the deep reinforcement learning agents, 10 best episodes are selected for each task.

Figure VII-4: State Input for Human Pilots

VII.1.4 Direct Solution Method

An algorithm directs the drone towards the target position without using any AI method or tra-
ditional navigation and guidance method. The algorithm which directs the agent to the target is
presented in Algorithm VII.1. This is the fastest method and it is considered as an ideal condi-
tion since the drone has all the necessary parameters and flight data such as target drone flight
attitude angles, target identity, target GPS positions, no obstacles around the target drone. In this
method, the agent has available positional information about the target. The agent drone keeps
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front pointing ahead and it rotates to specific angle (i.e. yaw) and keep that angle while moving.
In direct method there is no available detection and avoidance system. Although direct method
is the fastest method, it is not an adequate solution due to low flexibility to detect and avoid
obstacles.

Algorithm VII.1: Direct Solution Method Algorithm

1: Initialize drones
a: reset ▷ Resets the drones to its original starting state.
b: enableApiControl -> True ▷ API control for drones is enabled.
c: armDisarm -> True ▷ Drones are armed.
d: moveToZAsync ▷ Drones move to their initial positions.

2: for episode e ∈ 1, 2, ...M do
3: t0 = time.time() ▷ Start time.
4: repeat(for each step of episode):
5: Move the agent drone toward target location in x, y and z direction with certain speed.
6: if The agent catches the target then
7: t1 = time.time() ▷ Finish time.
8: t = t0 − t1 ▷ Total time spent to catch the target.
9: Save the time t.

10: Target is catched ▷ Episode ends
11: else if The agent crashes on any obstacle. then
12: There is a collision ▷ Episode ends
13: until Target is catched or there is a collision

VII.2 Results

In this section, the methods are tested with different kind of targets such as a stationary drone tar-
get or a drone target which moves randomly in the environment. Each test contains 100 episodes.
The test results are presented in the following sections.

VII.2.1 DRL Method in a 2D Space Test Results

DRL method in 2D Space test results are discussed. In Figure VII-5(a) and Figure VII-5(b), cumu-
lative rewards and time to catch the non-stationary target drone are represented respectively. In
Figure VII-5(a), it is seen that the agent catches the target with a success rate of 96%, but in four
episodes which have rewards in between -100 and -150 the agent failed to catch the target and they
are penalized. In addition, the time spent during each episodes are generally around 25 time steps
in seconds. There are also episodes that take longer time to catch the target. For example, between
episodes number 20 and 40, few episodes spent more than 50 time steps to catch the target. The
main reason is that the target drone moves randomly and the agent can miss the target in first try.
However, the agent returns back to catch the target, although the agent is not trained to catch a
non-stationary drone.

The agent spent less time when the target is a stationary drone. In Figure VII-6(b), it is shown
that the agent spends less than 25 time steps in general to catch the target drone, although some
episodes are longer than expected such as 50 time steps. However, it does not mean the agent
is failed. On the other hand, the agent successfully catches the target after coming back to face
the target drone. The cumulative rewards shown in FigureVII-6(a) are around 100 which shows
similar trend seen in Figure VII-5(a) except for episode number 54 which has the highest reward
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(a) Rewards (b) Time to Catch (s)

Figure VII-5: DRL Method in 2D Space Test Results for Non-Stationary Target

value, 114. The agent catches the target with a success rate of 94%.

(a) Rewards (b) Time to Catch (s)

Figure VII-6: DRL Method in 2D Space Test Results for Stationary Target

VII.2.2 DRL Method in a 3D Space Test Results

The target drone in this section moves randomly without changing altitude but it starts 1 meter
above the the agent start altitude. In Figures VII-7(a) and VII-7(b), cumulative rewards and time
to catch the non-stationary target drone are represented respectively. It is seen that DRL model
in 3D space has mixed results presented in Figure VII-7(a). There are also time limits occurred in
between episode numbers 80 and 100. However, the time spent during each episodes are mostly
around 25 time steps in seconds. There are also episodes which take longer time to catch the
target such as episodes between number 40 and 60 and one of episodes the agent spent more than
75 time steps to catch the target. When the agent misses the target in first try, the agent returns
back to catch the target, although the agent is not trained to catch a non-stationary drone. The
results show that even in challenging scenario such as countering a drone in a 3D space, the agent
can follow and catch the target in a short time as it was in VII.2.1.

FigureVII-8(a) shows that the agent successfully catches the stationary target drone with a
success rate of 93%. The cumulative rewards are mostly around 93 and stable compared to the
cumulative rewards shown in Figure VII-7(a). Moreover, the agent catches the stationary target
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(a) Rewards (b) Time to Catch (s)

Figure VII-7: DRL Method in 3D Space Test Results for Non-Stationary Target

in around 9 time steps in seconds but one of the episodes which took more than 25 time steps in
seconds presented in Figure VII-8(b). This is because the agent misses the target in first try but it
catches the target after coming back to face the target drone.

(a) Rewards (b) Time to Catch (s)

Figure VII-8: DRL Method in 3D Space Test Results for Stationary Target

VII.2.3 Comparison of the methods with stationary and non-stationary targets

Figures VII-9(a) and VII-9(b) present the time spent to catch the target drone for both pilots and
DRL agents. In FigureVII-9(a) the time distribution to catch non-stationary target by each pilot
and DRL agents is presented. Simulation pilot as known as "SIM pilot" is the fastest compared
to licensed pilot and the DRL agents. DRL agents spends more time to catch the target because
they are not trained to catch the non-stationary target but they can catch it in a longer time than
expected average time steps in seconds.

However, the pilots have struggled to control the drone. Most of the problems in test flights
are in altitude control of the drone. The median values are represented in horizontal yellow lines
in FigureVII-9(a) and FigureVII-9(b). As it is seen in these figures, human pilot median values
out of 10 best episodes are lower than the AI median values but DRL agent in 3D space in Figure
VII-9(b) has almost the same median value as licensed pilot has. In FigureVII-9(b), it is seen that
there are big gaps between the whiskers in human pilot performance results compared to DRL
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agents. On the other hand, the minimum time to catch a non-stationary drone target or stationary
target can be lower in human pilot time results. In other words, human pilots can be faster than
DRL method to catch the target drone. However, human pilots are not stable in each test episode.
They can miss the target and it can take longer than DRL agent time to come back to catch the
target drone.

(a) Results for Non-Stationary Target (b) Results for Stationary Target

Figure VII-9: Results for Time to Catch

Furthermore, the time results for DRL method, human pilots, and direct method are pre-
sented in Table VII-3 in terms of success rate which accounts for first approach catch, best and
worst timing values. Human pilots achieved the best time when catching stationary and non-
stationary target. However, human pilots also scored the worst time compared the DRL agents.
In Direct solution method explained in section VII.1.4, the drone catches the stationary target in
4.3 time steps in seconds. However, when catching non-stationary target, the drone spends 3.1
time steps in seconds, but its worst time is higher, 5.8 time steps in seconds compared to targeting
stationary drone which is 4.7 seconds.

• DRL agents vs human pilots: DRL has worse performance in general, but it is cheaper.
Also, DRL agents are more stable and make the worst humans cases better. DRL needs to
improve, but it is a good start.

• DRL agents vs direct method: Direct method is cheaper and better. Direct method is almost
as good as humans best cases, and much better in their worse cases. However, direct solution
method is not capable of avoiding obstacles. The following section compares one of the best
DRL models with the direct solution method to test its capabilities to catch the target drone
if an obstacle presents between the agent and the target.

Table VII-3: Comparison of Results
Stationary Target Non-Stationary Target

Success Best Worst Success Best Worst
(%) (s) (s) (%) (s) (s)

DRL-2D Agent 94 8.9 48.2 96 9.2 75.6

DRL-3D Agent 93 9.2 30.7 56 10.9 81.0

Human Pilots 100 4.5 156.5 100 5.0 143.1

Direct Method 100 4.3 4.7 100 3.1 5.8
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VII.2.4 Test Results with an obstacle

In this section, the methods presented in Table VII-1 are challenged with another interesting test.
One of the best DRL method, DRL model in a 3D space, and the direct solution method are tested
with an obstacle located between the target and the agent. This is illustrated in Figure VII-10. In
Figures VII-10(a) and VII-10(b), top view and front view of the initial positions of the drones in
the environment are presented respectively. An obstacle which is the identical to the target drone
is located in between the target and agent drones.

The results shows that DRL model in a 3D space catches the target in 72 out of 100 episodes
and DRL model catches the target in 12 seconds. However, direct method fails in all episodes
during testing because the direct solution method lacks the ability to avoid obstacles. The results
are shown in Table VII-4.

(a) Top View (b) Front view

Figure VII-10: Initial positions of the drones

(a) Rewards (b) Time to Catch (s)

Figure VII-11: DRL Method in 3D Space Test Results with an obstacle

Table VII-4: Test Results with an obstacle
Method Success (%) Best (s) Worst (s)

DRL-3D Agent 72 11.9 17.2



A person who never made a mistake never tried anything new.

— Albert Einstein

Nothing in life is to be feared, it is only to be understood. Now

is the time to understand more, so that we may fear less.

— Marie Salomea Skłodowska-Curie

VIII
Concluding Remarks

Counter-drone systems to fight against intruder drones can benefit from artificial intelligence
methods. With the expansion of drones flying in the airspace, the availability of an effective
counter-drone technology is a must. Counter-drone technology consists on several systems de-
ployed on the ground and in the air. The solution proposed in this PhD thesis focuses on the
capability to track and neutralize the target drone and it is just one part of the counter drone solu-
tion. In order for this solution to be effective, it is necessary to have a support system that detects
the target drone, classifies its activity as malicious, and estimates the position to the target drone.
The main objective of this PhD thesis was the development of an artificial intelligence method,
deep reinforcement learning, to counter a drone in an urban environment and to contribute to the
safe integration of drones into public areas.

While deep reinforcement learning showed that it is a promising approach for the intercep-
tion of the target drone, there is still much research to be done to determine its effectiveness. DRL
may not yet be mature enough for counter drone systems but as research and development contin-
uously evolve, DRL may become more accessible and effective in countering drones. Moreover, it
may be legally possible to fly drones with DRL, but the specific regulations and requirements that
apply will depend on the country and the purpose of the flight. It is important to investigate and
observe all relevant artificial intelligence and drone regulations to guarantee the safety of drone
operations based on DRL algorithms.

As a result of this research, several questions were raised that need further examination.
Some of these questions remain open and could be explored further. The following is a brief sum-
mary and conclusion of the achieved results, as well as suggestions for possible future research.
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VIII.1 Summary of contributions

The main contributions of this PhD thesis are summarized as follows:

• Drone detection model by improving state of the art object detection algorithm and auto-
labeling images are defined in chapter III. It is shown that drones can be detected with high
accuracy by using powerful real-time object detection algorithms available in the literature
since drone detection is a critical element of counter-drone systems, which also include other
subsystems such as drone type classifiers (malicious or friendly) and neutralization subsys-
tems. The efficiency of drone detection models is improved by training them using different
categories of drone images and the images are automatically labeled. This automatic label-
ing approach is considered to be an efficient method for advancing drone detection models
in the future.

• Deep reinforcement learning model using DDQN algorithm with uniform experience replay
is addressed in chapter IV. DRL model is implemented to navigate the drone in an urban
environment without crashing any stationary and non-stationary obstacles such as drones
moving randomly. DRL model states include image state and the scalar states and these
states are concatenated by a neural network called JNN. The results in different scenarios
are very promising and the learner drone reaches its destination successfully.

• Explainability of deep reinforcement learning is also investigated to understand the black-
box .The reasons why the agent has chosen its actions has been investigated to understand
the DRL model results. Graphical methods are utilized to understand the behavior of the
agent drone and the modifications on DRL model are made by carefully observing the
agent’s reactions after each episode during training. This allows to improve the models
and to explain why the AI model gives a particular result.

• A deep reinforcement learning architecture is utilized and enhanced to counter a drone with
another drone in 2D space in chapter V. Transfer learning approach is implemented by us-
ing the baseline pre-trained model weights. The performances of training results with or
without transfer learning are compared by using the common transfer learning metrics and
it is seen that training time is reduced and the cumulative reward is more stable during the
training with transfer learning.

• An important breakthrough has been achieved in solving the challenging task of countering
a drone in a 3D space. The state-of-the-art DQN algorithm, without any improvements, is
trained earlier and the results show that the agent had difficulties to catch the target and
it crashed many times during the training. However, the best models trained with DDQN
with dueling architecture and prioritized experience replay presented in chapter VI, shows
better performance and much faster learning.

• The first and more significant contribution is the filtering algorithm applied during transfer
learning. This consists of pre-processing the previous experiences and eliminating those
considered as bad experiences. The proposed solution is to be the first DRL solution that
successfully solves the counter-drone challenge in 3D. There are studies presenting how a
drone lands on a moving platform or a drone chases an object in the environment in 2D space
by using reinforcement learning but the time to interact with the target and the actions which
the drone can use are not focused on. These details are the critical part of the counter-drone
systems to eliminate the target.

• Finally, deep reinforcement learning agents, the human pilot performances and direct solu-
tion method are analyzed by comparing their times spent on catching the target drone. It
is observed that human pilots struggle to control the drone by using the remote controller
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when catching the target in the simulation. The training and test results showed that the
agent can catch the target drone successfully and the agent with DRL model shows better
time to catch the target drone and the agent rarely misses the target.

VIII.2 Future research

This PhD thesis raised new questions and led to new research directions.

• Deep reinforcement learning algorithms are developing and there will be challenges in the
future. Identification of the target drone’s mission or intent with the help of drone detection
systems is a very important part of counter-drone solutions since the state of the target drone
is the main part of the deep reinforcement learning algorithm. Advanced drone surveillance
technologies including improved sensors, communication and networking can make it eas-
ier and more efficient to fight against malicious drones by classifying the target as a threat
or non-threat based on its behavior.

• Target drone used in the training and testing of DRL agents is not realistic. The realism of
the target drone can be increased by improving their sensors, using machine learning and
artificial intelligence.

• Artificial intelligence improves itself very quickly and new methods and tools are being
introduced at every moment. However, there is still little knowledge about how the predic-
tions of artificial intelligence models work. In other words, it is not clear what makes them
to choose the most convenient action. In the future, the methods for visualizing, explaining
and interpreting deep reinforcement learning models need to be investigated.

• Graph neural networks (GNN) can be implemented to improve the interpretability of DQN
agents and understand the reason behind the decision agent made in graph-structured en-
vironments. GNN are designed to work with graph-structured data and it can be combined
with a DQN algorithm. For example, a DQN agent could be trained to navigate in a trans-
portation network or a maze, by using GNN to process the graph data and make decisions.
RL and GNN can also be combined in a different way such as using GNN to model the
policy or the value function of RL agents in graph-structured environments.

• Deep reinforcement learning has the potential to enable drones to perform a wide range of
tasks in the real world. However, applying DRL algorithms to drones in real-world environ-
ments poses several challenges. One major challenge is that DRL algorithms must be able
to make decisions based on sensor data and their environment which may require efficient
algorithms and hardware in real world applications.

• Deep Q-learning from Demonstrations algorithm which uses expert data should also be in-
vestigated in the future. Recent studies show that human expert data can be useful to re-
duce training time and it can be improved in counter-drone solutions, especially countering
a drone in a 3D space which is a challenging task compared to a 2D space counter-drone
solution.





A
Drone Detection Model

A.1 Results

A.1.1 Training Results

Training has been accomplished in 6000 steps for all the models. During the training the mean av-
erage precision (mAP) value is calculated and the best weights (those which give the highest mAP
value) is saved. The mAP is the mean value of the average precision (AP) for each class, being the
average precision the area of the Precision-Recall curve Bochkovskiy (2020). Training results of
all models are summarized in Table A-1 showing the mean average precision (mAP) metric and
the training time for every models. Mean average precision is calculated for an Intersection Over
Union (IoU) threshold of 0.5 and represented as mAP@0.5.

Results show that Model-3 has the highest mAP value, 89.77 %, while the Model-1 has the
lowest mAP value, 83.63 %. Model-2 has an intermediate mAP@0.5 equal to 84.93% and also took
an intermediate training time between Model-1 and Model-3. Training times can be affected by
batch sizes and subdivisions which is set in configuration of every models for training. Model-1
has the lowest training time thanks to its neural network size which has totally 24 convolutional
layers.

Table A-1: Training Results of the models after 6000 steps
Model Best mAP@0.5 % Training Time (Hours)

Model-1 83.63 2.5
Model-2 84.93 14
Model-3 89.77 18
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Training plots for every models are also presented in Figures A-1, A-2 and A-3. Red line
represents calculated mAP values and blue line shows the loss value during training. Observe
that the loss value drops dramatically after 600 iterations in all models .

In Figure A-1 the Model-1 mAP value starts with 71% and fluctuates around 80%. After 3420
iterations the best mAP value, 83.63%, is recorded. In the meantime, the average loss value stays
at minimum and stable around 0.5 which is the highest in all models.

Figure A-1: Loss & mAP(%) chart for training Model-1

Moreover, in Figure A-2 training progress is shown for Model-2. In this training, mAP value
starts with 43% and it jumps to 76 % level. After 3600 iterations the best mAP@0.5 value, 84.93,
is calculated. At the end of the training the mAP value is calculated, but we saved the weights of
the model for the first highest mAP value to avoid over-fitting.
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Figure A-2: Loss & mAP(%) chart for training Model-2

Finally, training progress for Model-3 is presented in Figure A-3. As it is done in the other
model trainings, mAP values are calculated during training and the best weights are saved. In
this training, best weights are obtained at around 4000 iterations. Model-3 mAP value shows the
highest mAP with a 89.77% in respect to the two models presented before. The mAP values of
Model-3 start with higher values, 68%, and the loss settles down at 0.25 in 6000 iterations.

Figure A-3: Loss & mAP(%) chart for training Model-3
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A.1.2 Test Results

Once the models are trained, we feed them with new not-seen images for the test evaluation.
State of the art object detection models, shown as backbone models in Table III-2, and the three
proposed models are tested with those different groups of images. The detail of the number of
test images from each group is given in Table A-2. Four sources of images are proposed with a
balanced distribution of 20 images for each source. Some of the images are shown in Figure A-4.

Table A-2: Test Images Example
Image Source # of Images

Airsim Test Images 20
Drone-Net Test Images 20

Web Drone Images 20
No-Drone Images 20

Observe in Figure A-4 the first two images A-4(a) and A-4(b) are from Airsim simulator,
the images A-4(c) and A-4(d) are obtained from the Drone-Net test set, the images A-4(e) and
A-4(f) are random but challenging drone images, with noisy background, found in the Internet.
Finally, the models are also tested with images, such as A-4(g) and A-4(h), which do not include
any drones to capture potential errors in prediction. Observe that, unlike the other two sets, the
Airsim images are drone images taken from another flying drone, not from ground as the others.

(a) Airsim #1 (b) Airsim #2 (c) DroneNet #1 (d) DroneNet #2 (e) Web #1 (f) Web #2

(g) NoDrone #1 (h) NoDrone #2

Figure A-4: Test images from four different sets.

The evaluation metrics used for measuring the neural network test performance and for com-
paring the models’ results with each other are the following:

• Accuracy: (TP+TN)/Total Predictions

• Precision: TP/(TP+FP)

• Recall: TP/(TP+FN)

• F1-Score: 2×(Precison× Recall)/(Precison + Recall)

where TP: True Positives, FP: False Positives (or detection errors), FN: False Negatives (or
omissions), and TN: True Negatives.
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While Accuracy measures the goodness of the models, the Precision and the Recall measure
the errors , one in false detection rates and the other in omissions. F1-Score, which is harmonic
mean between precision and recall, is a measure of the robustness of a model.

The overall test results including all test set (80 images) are shown in Table A-3. The test
results by each set of test images are also analyzed in detail and the results are presented in Tables
A-5, A-6, A-7, and A-8.

Table A-3 shows that Darknet-53 and EfficientNet-B0 are less accurate and, as expected, their
F1-scores are very low compared to Drone-Net which is a state of the art drone detection model.
Darknet-53 and EfficientNet-B0 models are already trained by using COCO Lin et al. (2014) image
set to detect up to 80 classes. These classes are different kind of objects such as humans, cars,
trees, birds, dogs, bags, trains etc. And all kind of air vehicles are labeled under the same class:
aeroplanes. A detailed look at the number of true positive predictions on Table A-3 shows that
Darknet-53 and EfficientNet-B0 are missing most of the drone detections. For these reason both
models have also high number of false negative predictions and, thus, a low F1-score compared to
Drone-Net. As a direct conclusion for counter drone systems, it is not feasible to use directly these
generic models to detect only drones. For this reason, the new models proposed here provide an
improved way to detect only drones with an acceptable accuracy. For example, model-1, model-2
and model-3 have high accuracies, reaching 85%, 91% and 86% respectively. Equivalently, the
models have high F1-scores, 90%, 94% and 91% respectively, and model-2 is the one with highest
scores compared to the other models. This is very important because in counter drone systems, it
is expected to detect a drone precisely. In other words, the number of false detections are expected
to be zero or as low as possible, avoiding failing in the detection of non-expected intruder drones.
As it is seen in Table A-3, model-2 has the lowest false detections compared to the other models.

Table A-3: Overall Test Results
Model TP TN FP FN Accuracy F1-Score

Drone-Net 37 18 7 18 69 % 0.75
Darknet-53 14 20 7 39 43 % 0.38

EfficientNet-B0 18 20 5 37 48 % 0.46
Model-1 52 16 6 6 85 % 0.90
Model-2 54 19 2 5 91 % 0.94
Model-3 53 16 5 6 86 % 0.91

Real-time performance of the proposed models are compared in Table A-4. The evaluation
metrics such as inference time in milli-seconds (ms) and BFLOPS (Billions of floating-point op-
erations required per second) are used to compare each models. The models are tested on Tesla
T4, 16GB GPU which is commonly used GPU among the researchers. Model-1 has the fastest in-
ference time with 4.838 milli-seconds. Model-3 performs slightly faster than model-2, although
model-3 has the highest number of layers, but it has lowest BFLOPS 3.670.

Table A-4: Comparison of Real Time Performance of the models
Model Inference Time (ms) BFLOPS

Model-1 4.838 5.448
Model-2 40.756 65.304
Model-3 38.222 3.670

To better understand how the models perform predictions, we do a deeper analysis of the
results for each test dataset.The separated Airsim images results are presented in Table A-5. We
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see that the performance of the models are satisfactory in detecting Airsim images. Model-1 and
model-3 have an accuracy of 70% while the model-2 has a higher rate of correct detection 80%.
There is only one FP detection in model-1 but model-2 and model-3 have no FP detections. The
F1-Score is also calculated for every models. Model-2 has the highest F1-score, 0.89 compared to
model-1 and model-3, 0.82 and 0.83 respectively.

Table A-5: Airsim Images Test Results
Model TP TN FP FN Accuracy F1-Score

Model-1 14 0 1 5 70 % 0.82
Model-2 16 0 0 4 80 % 0.89
Model-3 14 0 0 6 70 % 0.83

Table A-6 has the partial results for brand new images taken from the Internet. Observe
that the model-1, model-2 and model-3 have very good rate of detections, 90%, 90% and 95%
respectively. Additionally, models achieved the higher F1-scores such that model-1, model-2 and
model-3 have very promising F1-Scores, 0.95, 0.95 and 0.98 respectively.

Table A-6: Web Images Test Results
Model TP TN FP FN Accuracy F1-Score

Model-1 18 0 1 1 90 % 0.95
Model-2 18 0 1 1 90 % 0.95
Model-3 19 0 1 0 95 % 0.98

When looking at the partial results of the models tested with Drone-Net images, model-1,
model-2 and model-3 detect the images with higher accuracy, 100% as it is seen in Table A-7 .
Also, the models have higher F1-Scores, 1.

Table A-7: Drone-Net Images Test Results
Model TP TN FP FN Accuracy F1-Score

Model-1 20 0 0 0 100% 1
Model-2 20 0 0 0 100% 1
Model-3 20 0 0 0 100% 1

Finally, the partial models test results are shown for the images which do not include drones
in Table A-8. It is expected that the models shall not detect any object, including images which
have similar drone shapes. All the models have higher accuracy (above 80%), although model-1
and model-3 have few FP detections. The F1-Score is undefined given that the number of TP is
zero.

Table A-8: No-Drone Images Test Results
Model TP TN FP FN Accuracy F1-Score

Model-1 0 16 4 0 80% NA
Model-2 0 19 1 0 95% NA
Model-3 0 16 4 0 80% NA

Figure A-5 shows a same Airsim test image to compare the detection results of the four mod-
els able to predict only the class drone. Drone-Net model prediction shown in Figure A-5(a) fails
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detecting drones in Airsim test images. However, Model-1 which has the same configuration with
Drone-Net model but trained with Airsim images successfully detected a drone (see Figure A-
5(b)). Model-2 and Model-3 detection tests shown in Figure A-5(c) and Figure A-5(d) are both
correct drone detections.

(a) Drone-Net (b) Model-1 (c) Model-2 (d) Model-3

Figure A-5: Airsim Image Test Detection Results

Figure A-6 shows the test results of models for a challenging image of the web image set. All
new models have successfully detected the drone in the image. However, the state of the art drone
detection model Drone-Net failed to detect the drone for such a noisy background. In addition,
bounding box sizes can be in different sizes. For example in Figure A-6(c), bounding box is larger
than the expected size which can just cover drone predicted. However, this is not a general case
in all test images. Different size of bounding boxes can be the result of background noise and the
scale of the drone dimensions.

(a) Drone-Net (b) Model-1 (c) Model-2 (d) Model-3

Figure A-6: Web Source Image Test Detection Results

A.1.3 Discussion

In this section further analysis is discussed.

Both state of the art object detection algorithms Darknet-53 (Model-2) and EfficientNet-B0
(Model-3) have shown similar results. However, in real world applications such as counter drone
systems, an object detection method is needed to be operated with limited resources. EfficientNet-
B0 provides state of the art accuracy with 9 times smaller neural network size and it consumes
significantly less computation compared to other state-of-the-art object detectors. As future work
the EfficientNet-B0 drone detection model tested here can be the part of our counter drone system
in which, using deep reinforcement learning methods, a guardian drone can be able to detect and
counter malicious drones, while respecting and avoiding obstacles and legal drones. The accuracy
of object detection and the fast response time are very important challenges to track and catch the
drones.

A.1.3.1 Inaccurate Bounding Boxes of the Auto-labeling Process

In auto-labeling, it was observed that there were inaccurate bounding boxes, and they had to
be removed from the training set. Almost 10% of the auto-labeled images had been detected as
inaccurate. In Figure A-7 some of the inaccurate labeled images are presented. For instance, in
Figure A-7(a) there is a bounding box on top left of the image and there is no drone shown inside
it. The drone position at the moment of the image capture was very close to the other drone and
the mapping from world coordinates to image coordinates was not correct. We believe that this
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issue was caused by the processing time between capturing the image and obtaining its world
position from the simulator. The processing time does not cause problems when drones are far
from each other, but when they are too close their relative speed is high and the retrieved drone
location is already obsolete. However, if the drone stays stationary, the problem disappears and
none of the bounding boxes are inaccurate. Other erroneous and disregarded bounding boxes,
not centered correctly in the images, are shown in Figures A-7(b), A-7(c) and A-7(d), all of them
refer to a drone at the border or outside of the captured image.

(a) (b) (c) (d)

Figure A-7: Inaccurate Bounding Boxes in Auto-labeling

A.1.3.2 False Positive Detections

In this section False Positive (FP) detections by the models are discussed and analyzed. These are
error cases where another object has been mistakenly labeled as a drone. The FP images can be
seen in Figure A-8.

As the origin of this research we tested Drone-Net to detect drones on some images and
found that most of them were FP, specially when dealing with Airsim images. The Figures A-
8(a), A-8(b), A-8(c), A-8(d) and A-8(e) are the Airsim test images detected as FP. These figures
show that Drone-Net is not accurate enough to detect a drone in these images. The detections are
bounded to the objects such as trees, wires or covering the all image. In Figure A-8(f), Drone-Net
detects a drone, but it also detects the commercial aircraft as drone. Drone-Net also detects two of
the images from No-Drone test image set as false positives. Figures A-8(g) and A-8(h) show that
objects such as human and direction sign are detected as FP by Drone-Net.

Model-1 has also FP images. For example, in Figure A-8(i) large part of the image detected
a drone similar to the Drone-Net model. However, most of the FP detections exist in No-Drone
test images. Figures A-8(j), A-8(k), A-8(l), and A-8(m) show that the drone kind of shapes could
be detected as a drone.

In addition, model-2 has two FP images and one of them is from No-Drone test image set.
A noisy image from No-Drone image set is tested and then model-2 detects a smoke as a drone.
This FP image seen in A-8(o) can be caused by shape of the smoke which appears as a drone in
the image.

As it is observed previously in other models, Model-3 has also detected objects which are not
drone. A drone is detected in few of the test images from the No-Drone test set seen in Figures
A-8(q), A-8(r), A-8(s), and A-8(t). However, there are no drones in these images.

One of the common FP detections among the models are shown in Figures A-8(n), A-8(p),
and A-8(u). In these figures, it is seen that a drone is detected in one of the test images from the
web. However, another object, a commercial aircraft, is detected as a drone which is FP instead of
a drone at bottom left of the aircraft.
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(a) Drone-Net FP-
1

(b) Drone-Net FP-
2

(c) Drone-Net FP-
3

(d) Drone-Net FP-
4

(e) Drone-Net FP-
5

(f) Drone-Net FP-6

(g) Drone-Net FP-
7

(h) Drone-Net FP-
8

(i) Model-1 FP-1 (j) Model-1 FP-2 (k) Model-1 FP-3 (l) Model-1 FP-4

(m) Model-1 FP-5 (n) Model-1 FP-6 (o) Model-2 FP-1 (p) Model-2 FP-2 (q) Model-3 FP-1 (r) Model-3 FP-2

(s) Model-3 FP-3 (t) Model-3 FP-4 (u) Model-3 FP-5

Figure A-8: FP Images
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A.2 Darknet-53 CNN Summary

Figure A-9: Darknet-53 Redmon & Farhadi (2018)

A.3 Drone-Net & Model-1 CNN Summary

Figure A-10: Drone-Net and Model-1 CNN Summary



A.4 Model-2 CNN Summary 127

A.4 Model-2 CNN Summary
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Figure A-11: Model-2 CNN Summary

A.5 Model-3 CNN Summary
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Figure A-12: Model-3 CNN Summary
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NN Model Summary in Chapter V

Figure B-1: Neural Network Model Summary
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Supplemental Data for Chapter VI

Table C-1: Hyperparametres of the training.

Hyperparameter Value Observations

Training steps 75,000 Changes in different scenarios (50,000–75,000)

Annealing length 15,000 Changes in different scenarios (15,000–45,000)

Annealing interval ϵ [1–0.1] Linear Annealed Policy (can be [0.1–0.01])

Steps to warm-up 180 Number of random steps to take before learning begins

Prioritized experience replay, memory
limit

100,000

Prioritized experience replay, alpha 0.6 Decides how much prioritization is used

Prioritized experience replay, beta
Decides how much we should compensate for the non-uniform
probabilities

Prioritized experience replay, start-beta 0.4

Prioritized experience replay, end-beta 0.4

Pretraining steps 1000 Length of ’pretraining’

Large margin 0.8 Constant value

Lam2 1 Imitation loss coefficient

Dueling type ’avg’ A type of dueling architecture

Target model update τ 0.001 Frequency of the target network update

Discount factor γ 0.99 The discount factor of future rewards in the Q function

Learning rate α 0.00025 Adam optimizer Kingma & Ba (2014)



137

(a) Model-1 (b) Model-2

(c) Model-3 (d) Model-4

(e) Model-5 (f) Model-6

(g) Model-7 (h) Model-8

(i) Model-9

Figure C-1: Training Results.
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(a) Model-1 (b) Model-2

(c) Model-3 (d) Model-4

(e) Model-5 (f) Model-6

(g) Model-7 (h) Model-8

(i) Model-9

Figure C-2: Drone Positions.
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(a) Model-3 (b) Model-4

(c) Model-5 (d) Model-6

(e) Model-9

Figure C-3: Alternative Training Results.
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(a) Model-3 (b) Model-4

(c) Model-5 (d) Model-6

(e) Model-9

Figure C-4: Crashed Episodes.

(a) Model-3 (b) Model-4 (c) Model-5

(d) Model-6 (e) Model-9

Figure C-5: Actions Frequency.
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