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Abstract

Brain circuits display modular architecture at different scales of organization. Such neu-
ral assemblies are typically associated to functional specialization that favours both the
segregation and the integration of information. However, the mechanisms leading to their
emergence and consolidation remain elusive.

This PhD thesis aims to understand the formation of modular structures in artificial
neural networks and the mechanisms that sustain these memory structures over time while
allowing continuous adaptation. In addition, the thesis seeks to validate the architecture
and mechanisms using real sensory information and to evaluate their effective integration
into cognitive tasks.

In the first chapter, we review the state of the art regarding the formation of multiple
clusters in networks of coupled oscillators, focusing specifically on Kuramoto oscillators
subjected to adaptation. This chapter also highlights the formation of structural clusters
via external stimulation and discusses two approaches: frequency-based and synchrony-
based, paving the way for the experiments conducted in the following chapters.

In the second chapter, we focus on the formation and consolidation of modular struc-
tures induced by external stimuli in networks of theta-neurons. The results show that
inhibitory neurons play a crucial role in the maintenance of these modular architectures.
Networks containing both excitatory and inhibitory neurons are able to maintain and con-
solidate learned memories by avoiding total synchronisation of the network, while networks
with only excitatory neurons or networks that do not differentiate between excitatory and
inhibitory neurons fail to do so. We also show that the number of inhibitory neurons in
the network determines its memory capacity.

In the third chapter, we study the phenomenon of spontaneous memory recall in an
asynchronous irregular state and its role in long-term memory consolidation. We consider
an excitatory-inhibitory spiking neural network subjected to spike-timing-dependent plas-
ticity. We show that the presence of two groups of inhibitory neurons — one subjected to
Hebbian-STDP and one subjected to anti-Hebbian-STDP — is necessary to guarantee the
emergence of the modular structures and their spontaneous recall at rest. We prove that
these recalls are correlated with a consolidation of the structural modules. In addition, a
relationship between the number of inhibitory neurons and the storage capacity is again
established.

Finally in the last chapter, we apply this architecture to the learning of audio-visual
information. This confirms the possibility of forming and maintaining complex structures
over the long-term, but this time with real sensory stimuli. Learning each modality inde-
pendently results in stable segregated structures, enabling accurate unimodal recognition.
The integration of modalities is achieved via hub neurons, facilitating coherent and more
efficient processing of multisensory information in recognition and generation tasks.

In summary, this PhD thesis contributes to a better understanding of the impact of
inhibition on network dynamics, allowing sustainable memory learning. In addition, these
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works highlight the role of this same inhibition in the storage of memories and in their
integration and processing in cognitive tasks. In this way, this thesis also provides in-
sights for more bio-realistic artificial intelligence systems, while contributing to a better
understanding of neural mechanisms.

Keywords: artificial neural network, spiking neural network, coupled oscillator,
learning, adaptation, plasticity, inhibition, synchronization, long-term memory, memory
consolidation, modular structure, spontaneous recall, multimodality, recognition, genera-
tion



Résumé

Les circuits cérébraux présentent une architecture modulaire & différentes échelles
d’organisation. Ces assemblages neuronaux sont généralement associés & une spéciali-
sation fonctionnelle qui favorise a la fois la ségrégation et I'intégration des informations.
Cependant, les mécanismes qui conduisent & leur émergence et a leur consolidation restent
évasifs.

Cette these de doctorat vise & comprendre la formation de structures modulaires dans
les réseaux neuronaux artificiels et les mécanismes qui soutiennent ces structures de mé-
moire dans le temps tout en permettant une adaptation continue. En outre, la thése
cherche & valider I'architecture et les mécanismes en utilisant des informations sensorielles
réelles et & évaluer leur intégration efficace dans des taches cognitives.

Dans le premier chapitre, nous examinons 1’état de 'art concernant la formation de
modules multiples dans des réseaux d’oscillateurs couplés, en nous concentrant spécifique-
ment sur les oscillateurs de Kuramoto soumis & I’adaptation. Ce chapitre met également
en évidence la formation de modules structurels par stimulation externe et examine deux
approches : celle basée sur la fréquence et celle basée sur la synchronie, ce qui ouvre la
voie aux expériences menées dans les chapitres suivants.

Dans le deuxiéme chapitre, nous nous concentrons sur la formation et la consolidation
de structures modulaires induites par des stimuli externes dans des réseaux de neurones
theta. Les résultats montrent que les neurones inhibiteurs jouent un réle crucial dans
le maintien de ces architectures modulaires. Les réseaux contenant & la fois des neurones
excitateurs et inhibiteurs sont capables de maintenir et de consolider les souvenirs appris en
évitant une synchronisation totale du réseau, alors que les réseaux contenant uniquement
des neurones excitateurs ou les réseaux qui ne font pas la différence entre les neurones
excitateurs et inhibiteurs n’y parviennent pas. Nous montrons également que le nombre
de neurones inhibiteurs dans le réseau détermine sa capacité de mémoire.

Dans le troisiéme chapitre, nous étudions le phénoméne de rappel spontané de la mé-
moire dans un état irrégulier asynchrone et son réle dans la consolidation de la mémoire &
long terme. Nous considérons un réseau de neurones & impulsions excitateurs-inhibiteurs
soumis & une plasticité dépendante du temps d’occurrence des impulsions. Nous montrons
que la présence de deux groupes de neurones inhibiteurs - I'un soumis & une STDP Hebbi-
enne et autre & une STDP anti-Hebbienne - est nécessaire pour garantir I’émergence des
structures modulaires et leur rappel spontané au repos. Nous prouvons que ces rappels
sont corrélés & une consolidation des modules structurels. De plus, une relation entre le
nombre de neurones inhibiteurs et la capacité de stockage est & nouveau établie.

Enfin, dans le dernier chapitre, nous appliquons cette architecture & I'apprentissage
d’informations audiovisuelles. Cela confirme la possibilité de former et de maintenir des
structures complexes & long terme, mais cette fois-ci avec des stimuli sensoriels réels.
L’apprentissage indépendant de chaque modalité aboutit & des structures séparées sta-
bles, permettant une reconnaissance unimodale efficace. L’intégration des modalités se



fait par l'intermédiaire de neurones hubs, ce qui facilite le traitement cohérent et efficace
des informations multisensorielles dans des taches de reconnaissance et de génération.

En résumé, cette thése de doctorat contribue & une meilleure compréhension de I'impact
de l'inhibition sur la dynamique des réseaux, permettant un apprentissage durable de la
mémoire. De plus, ces travaux mettent en évidence le role de cette méme inhibition dans
le stockage des mémoires et dans leur intégration et traitement dans des taches cognitives.
Ainsi, cette thése fournit des pistes pour des systémes d’intelligence artificielle plus bio-
réalistes, tout en contribuant & une meilleure compréhension des mécanismes neuronaux.

Mots-clés: réseau de neurones artificiels, réseau de neurones a impulsions, oscillateur
couplé, apprentissage, adaptation, plasticité, inhibition, synchronisation, mémoire a long
terme, consolidation de la mémoire, structure modulaire, rappel spontané, multimodalité,
reconnaissance, génération



Restimen

Los circuitos cerebrales muestran una arquitectura modular a diferentes escalas de orga-
nizacién. La presencia de tales conjuntos neuronales suele asociarse a una organizacion
funcional que favorece tanto la segregaciéon como la integracion de la informacién. Sin em-
bargo, los mecanismos que conducen al surgimiento y consolidacién de esta organizaciéon
modular siguen siendo desconocidos.

Esta tésis doctoral trata de comprender la formacion de estructuras modulares en redes
neuronales artificiales y los mecanismos que sostienen estas estructuras de memoria a lo
largo del tiempo, permitiendo asi su continua adaptacion. Ademas, esta tésis pretende
validar el surgimiento de tales arquitecturas modulares utilizando para ello informacién
sensorial real, y evaluar su integracion efectiva en tareas cognitivas.

El primer capitulo resume el conocimiento actual en el campo con respecto a la forma-
cién de architecturas modulares, siguiendo redes de osciladores acoplados. En este caso,
nos centramos en redes de osciladores de Kuramoto acoplados sometidos a adaptacion.
También se destaca la formacién de modulos estructurales debido a la aplicacién de estim-
ulos externos y se analizan dos enfoques distintos para ello: el basado en la frecuencia y el
basado en la sincronia. Estos ejemplos sirven como punto de partida para los experimentos
realizados en los capitulos siguientes.

El segundo capitulo se centra en la formacién y la consolidacion de arquitecturas mod-
ulares, inducidas por la presencia de estimulos externos en redes de “neuronas theta’.
Los resultados muestran que las neuronas inhibitorias son fundamentales para el manten-
imiento de estas arquitecturas modulares. Las redes que contienen neuronas excitatorias
e inhibitorias son capaces de mantener y consolidar las memorias aprendidas, evitando la
sincronizacion total de la red. Sin embargo, las memories no pueden ser consolidadas en
aquellas redes compuestas tnicamente de neuronas excitatorias, o en aquellas en las que
no se evita diferenciar entre neuronas excitatorias e inhibitorias. También demostramos
que la capacidad de memoria de las redes viene determinado por el nimero de neuronas
inhibitorias.

En el tercer capitulo, estudiamos la aparicién de recuerdos espontaneos en las redes
neuronales, mientras éstas se encuentran en un estado basal caracterizado por la activi-
dad irregular y asincrona de sus neuronas. También estudiamos el papel de los recuerdos
espontaneos en la consolidacién de las memorias a largo plazo. Para ello, consideramos
una red compuesta por neuronas excitatorias e inhibitorias sometidas a una plasticidad
dependiente del tiempo de los picos de actividad neuronal. Demostramos que la pres-
encia de dos grupos de neuronas inhibitorias —uno sometido a Hebbian-STDP y el otro
sometido a anti-Hebbian-STDP— es necesaria para garantizar la formacion esponténea de
las estructuras modulares y la presencia de recuerdos espontaneos en la actividad neuronal.
Demostramos también que estos recuerdos espontaneos son necesarios para la consolidacién
de la architectura modular. Ademaés, establecemos de nuevo una relacién entre el niimero
de neuronas inhibitorias y la capacidad de almacenamiento de la red.



viii

Finalmente, en el ultimo capitulo, utilizamos este tipo de arquitecturas para el apren-
dizaje de informacién audiovisual. Con ello confirmamos también la formaciéon y manten-
imiento de estructuras complejas a largo plazo, pero esta vez empleando estimulos sensori-
ales reales. El aprendizaje de cada modalidad sensorial de manera independiente da lugar
a estructuras segregadas pero estables, lo que a posteriori permite un reconocimiento uni-
modal preciso. Sin embargo, la integraciéon de las dos modalidades sensoriales se consigue
a través de "hubs" neuronales. La presencia de tales neuronas facilita un procesamiento
coherente y mas eficiente de la informacién multisensorial en tareas de reconocimiento y
generacion.

En restiimen, esta tésis doctoral contribuye a la comprensiéon del papel que juega la
inhibicién en la dindmica de redes neuronales, permitiendo un aprendizaje sostenible de
la memoria. Ademés, destacamos la importancia de esta inhibicién en el almacenamiento
de los recuerdos, y en su integracién y posterior procesamiento durante tareas cognitivas.
De este modo, esta tésis también aporta nuevas ideas para el desarrollo de sistemas de
inteligencia artificial con mayor realismo biolbgico, al tiempo que contribuye a una mayor
comprension de los mecanismos neuronales relacionados con el aprendizaje y la formaciéon
de estructuras neuronales.

Palabras clave: red neuronal artificial, red neuronal de espigas, osciladores acopla-
dos, aprendizaje, adaptacion, plasticidad, inhibicién, sincronizacién, memoria a largo plazo,
consolidacién de la memoria, estructura modular, recuerdos espontdneos, multimodalidad
sensorial, reconocimiento, generacion.
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Introduction

Al and neuroscience

Artificial intelligence (AI) and neuroscience are two fields interconnected by various as-
pects. On the one hand, computational neuroscience is increasingly incorporating machine
learning techniques, including deep neural networks, in response to the increasing amount
of precise data to be analysed on brain dynamics and connectivity. On the other hand, cur-
rent Al systems employing Artificial neural networks (ANN) draw inspiration from some
principles derived from neuroscience. In particular, their learning is based on the notion
of Hebbian rule, which states that "cells that fire together, wire together" [174]", which
attends to explain the synaptic plasticity of brain neurons during the adaptation process.
Also, deep neural networks are based on the principle of convolutional neural network
which follows a certain hierarchical organization found in mammals [223|. However, they
rely on the back-propagation mechanism which, although having proven its ability to learn
complex data effectively [238|, deviates from the synaptic weight adaptation observed in
biology. In fact, this method relies on non-local information through propagation of error
from upper layers. In contrast, biological networks involve local dynamics via the mech-
anism of Spike-timing-dependent plasticity (STDP) [46]. In addition to the challenges of
efficiently incorporating local plasticity rules into ANN [32], another difference remains.
Indeed, the increasingly deep layered architecture of current networks poses a number of
optimisation problems that call this type of organisation into question. Indeed, the latest
research shows that the brain instead follows a modular connectivity that facilitates both
the segregation of information (i.e. the specialisation of brain regions on specific tasks or
modalities) and the coherent integration of these information [333, 352, 418, 421].
Despite these differences, the popularization of Al systems such as ChatGPT [288] or
Bard [6] capable of efficiently responding to almost any query and even surpassing human
in certain cases, raises question on whether these systems are really "intelligent" or just
sophisticated machine learning algorithms. Indeed, the latter can also now exhibit a certain
level of creativity, as shown by projects like DALL-E [287] or Midjourney [266], creativity
that is generally considered to be correlated with intelligence. However, beneath their
impressive achievements, these systems remain large neural networks trained on a vast
amount of data, far exceeding what an individual can encounter or learn in a lifetime.
This makes them extremely efficient for a given task but for a significant computational
cost. Moreover, they remain a kind of input/output boxes providing singular answers to
specific prompts. In this regard, these models bear a closer resemblance to inert networks
without real state of consciousness or thoughts, in contrast to living systems characterized
by variable and persistent activity. The human and animal brain, on the other hand,
in general is capable of processing and learning information at the same time by being
confronted with it only a few times and then retaining it over a long period of time while
remaining active and in constant adaptation. Even if it is difficult to establish a precise



2 Chapter 0. Introduction

definition of "intelligence", this one cannot exist without the autonomous, complex, and
coordinated activity of neurons in the brain. These aspects constitute the initial motivation
of this thesis to establish a system able of efficiently processing sensory information while
coming as close as possible to the biological mechanisms observed in the human brain and,
to a lesser extent, to its state of consciousness.

The role of consciousness in learning and integration of infor-
mation

The brain is a massively parallel system where each specialized area operates relatively
independently. These routine execution tasks are most often performed unconsciously.
However, in order to overcome unpredictable conditions and process complex information,
consciousness seems to be the primary means by which the nervous system relies [10, 21].
In the context of learning, consciousness allows us to direct our attention, make choices,
and focus on specific aspects of our environment or mental representations. More precisely,
it helps us to focus and select relevant stimuli or information, filtering distractions, which is
crucial for effective learning [112, 229|. Although consciousness is a concept with a number
of definitions, it is often divided into two main components. Firstly, arousal, which is
comparable to wakefulness or vigilance, and secondly, awareness, in the sense of being
aware of the environment and self [92, 237]. Plenty of experiments on individuals with
brain damage have aimed to distinguish between the different conscious and unconscious
states, shedding light on their implications [114, 237, 236]. In particular, it has been shown
that the process of consciousness operates on a relatively slow time scale, allowing for the
correct integration of information [113, 114]. Therefore, it would seem that these aspects of
integration and consciousness are closely linked, as evidenced by studies such as proposed
by Laureys [236], which showed that auditory cortices of vegetative patients respond to
stimulation, while the higher-order multimodal areas do not, indicating dysfunction in
information integration.

In order to explain these observations, the Global Workspace Theory (GWT) suggests
that consciousness facilitates to link and integrate separate and independent brain func-
tions [22]. According to this theory, consciousness is necessary to perform complex learning
such as that involving novelty or other brain mechanisms (e.g. working memory, voluntary
control, attention...) [22, 23]. The GWT proposes that this integration through conscious-
ness is possible thanks to the infrastructure of the brain itself [338, 339]. This theory
promotes the idea of functional hubs linking and propagating information from one spatial
population to another [23]. Although originally independent, these functional zones can
transmit and receive information from other modalities through these hubs. These hubs
or workspace nodes are influenced by the competition between these mutually inhibiting
cortical populations and by the top-down feedback [21, 338, 339]. Therefore, these neurons
could facilitate the flow of information from one region to another through the long-range
connections that link them [338]. In other words, consciousness, thanks to these connec-
tions, makes it possible to form associations between different pieces of information.
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Another theory approaching the previous one, the Integrated Information Theory (IIT),
states that consciousness corresponds to the capacity of a system to integrate informa-
tion [375, 377]. The main difference here is that we are referring to a quantity of available
consciousness (i.e. the amount of information that can be integrated) and no longer to
a simple mechanism. To measure this quantity, the theory refers to the causality of the
information to be integrated and so to the way in which the elements of a system interact
with each other in a unified way, forming a coherent whole [375, 376]. Indeed, the more
information are linked (notably spatio-temporally), the more easily they can be integrated.
Consequently, II'T also suggests that conscious states are exclusive, meaning that when a
particular set of elements within a system enters a state of integrated information, other
subsets are excluded [375, 376]. Despite these differences in the approach to deal with
consciousness, IIT also evokes the fact that: the presence of different specialized functional
regions as in the brain and, the existence of causal structures between elements in a system
(as with hubs in the GWT), allow for an ideal integration of information and favours the
quality of conscious experience [377]. These theories reflect the aspect of segregation and
integration of information, a notion that we will see is present in the brain and will be a
fundamental concept throughout this thesis. According to these theories, the architecture
of the brain seems to be the basis of the notion of consciousness.

The modular and hierarchical organization of the brain

As stated earlier, numerous studies have shown that the brain’s connectivity follows a
modular organization at different spatial and functional scales, with neurons and regions
associated to common modalities or functions being more strongly connected [403, 402,
179, 265, 421]. These modules are usually associated to particular sensory modality (e.g.,
vision, audition and motor control) or to specific features within a modality, emerging in
an autonomous way [402, 179, 247, 421, 42]. Plastic connection strengths seem to play a
significant role in the specification of neural assemblies involved in a particular function
under the action of co-activation zones [100, 157]. This highlights the concept of semantic
memory where correlated information or functions share a common structure [361, 326].
Some models suggest this concept of semantic memory by having association between
mental representations and topology [419, 325]. Also, it has been observed that during rest
(i.e., no task activity), small series of sequence activation replays occur, akin to a memory
retrieval and consequently to a process of memory consolidation [166, 372]. This memory
retrieval process in the dynamics seems based on the activation of particular semantic
subgroups [166], again highlighting the impact of the physical organization of the network
on these dynamics. In summary, the idea of having segregated specialized functional zones,
as stated by the GW'T and the IIT, is corroborated by biological findings where the modular
and hierarchical organisation of the brain is characterized by randomly densely connected
communities of neurons and by sparse connections between modules [80, 277, 339, 420].
However, these inter-module connections appear to be centralised on a limited number
of strongly connected neurons [42, 358, 420, 421]. These hubs form a rich-club at the top
of the network hierarchy, providing a central workspace for the integration of multisensory
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information [216, 255, 277, 358, 334, 420, 421]. All of this directly echoes to the GWT
enunciated previously, with the segregation of different sensory information into modules
and their integration by the hub neurons [159, 339, 420|. In addition, the rich-club regions
could harmonize the brain regions using oscillations to promote integration (or commu-
nication) between them according to a particular task [42, 216, 334]. Thus, they are
involved in diverse cognitive processes, including attention, memory, decision-making and
sensorimotor integration [64]. Therefore, hub neurons are heterogeneous and may differ in
their specific properties, connectivity patterns, and functional roles depending on the brain
region they belong [270]. In particular, it should be noted that, although hubs are func-
tionally interdependent in terms of inputs and outputs, they don’t necessary have strong
incoming and outgoing connections [161, 420]. However, their high degree of connectivity
and the fact that they are crucial for a normal cognition, they constitute a vulnerable
area to damage or dysfunction since their perturbation can have cascading effects on net-
work communication [359, 94]; which ultimately can be at the origin of neurological and
psychiatric disorders [64, 358]. Nevertheless, hub neurons are also considered as resilient
because they possess redundant connections, which allow compensatory mechanisms and
the maintenance of network integrity even in the face of damage or disruptions [359, 389].

Although we have seen that plasticity plays a significant role in the specialization of
areas in particular functions, how these modular structures and especially the hubs that
connect them emerge remains an open question. However, several key factors seem to
contribute to the development of this organisation. First of all, genetic instructions de-
termine the initial organization and development of the brain by guiding the formation,
migration, and differentiation of neural progenitor cells, ultimately shaping the overall
structure and connectivity of brain regions [286, 309|. Thus, through evolution, genetics
provides the foundation of this organization, notably by encoding the pathway of sensory
informations to different brain areas. However, it is well known that the frontiers be-
tween cortical areas are less distinct in immature brain [285, 308]. This underlines the
fact that this structure is not totally innate and the importance of its posterior construc-
tion. Indeed, as previous experiments suggest, neural activity shapes brain organization
through activity-dependent processes, such as synaptic plasticity, which strengthen specific
connections and contribute to efficient information processing [176, 209]. Similarly, this
organization is also shaped by sensory experiences and environmental stimuli (including
developmental constraint [291, 308|) through experience-dependent plasticity, which en-
ables adaptive modifications in connectivity to optimize information representation and
processing based on specific inputs and cognitive demands [137, 218|. In summary, these
particular structures appear to be largely induced by the various plasticity phenomena;
but their consistent maintenance over time remains elusive.

Problems and objectives

Learning We have seen that the particular structuring of the brain’s biological network
appears to be largely induced firstly by genetic factors, and then by the different adapta-
tion mechanisms. However from a computational point of view, the emergence of modular
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structures is still unclear. Some approaches propose that from a totally random network,
the topological overlap mechanism can be used to create proto-modules leading to the emer-
gence of more complex modules [101]. Similarly, it is shown that starting from different ini-
tial network configurations, local Hebbian plasticity rule can permit a self-(re)organization
of connection between units resulting in a modular topology [100, 267, 388]. Also in a
different direction, genetic algorithms have been used to evolve the connectivity of neu-
ral network models towards modular structures proving the certain optimality of such a
structure to maximize network performance and minimize connection costs [88]. From
these insights, the first question is to understand how this kind of architecture can emerge
through local adaptation in ANN. Consequently, the initial goal of this thesis aims to
highlight the phenomena of segregation in modular neural networks. To do this,
the first step will be to explain the emergence of these structures using specific localized
inputs associated with learning rules based on local plasticity. Therefore, it will be nec-
essary to investigate the role of these local dynamics on the excitatory-inhibitory balance
and on the network architecture in order to optimize learning capacities. At the same time,
an analogy will be drawn between the creation of these structures and that of memory,
particularly through their link with learning.

Maintaining and consolidating The second problematic addressed in this thesis is to
understand how the emerging structures can be maintained over time. Indeed,
the information, memories or sensory functions that the learned structures encode, must
be maintained so that they can be reused in a coherent way over the long-term. Moreover,
unlike conventional Al systems where adaptation is inactive after learning, biological net-
work are in constant adaptation and reorganization, without forgetting what they learn.
Going a step further, we saw earlier that the memories contained in these structures can be
consolidated [166, 372|, once again highlighting this structural maintenance. The objective
will be to find the mechanisms that enable this maintenance and consolidation in neural
network models while allowing the network to admit continuous activity and adaptation.
Thus, these results will provide a better understanding of how long-term memory works.

Processing As final purpose, we aim at evaluating this architecture and the re-
sulting mechanisms using real sensory information. By applying different cognitive
stimuli to the network, we expect to validate the previous objectives by forming stable
and maintainable modular structures, each representing a sensory modality. These in-
dividual modules should be able to efficiently learn some particular patterns in order to
separately process simple recognition or generation tasks proving the modality segregation
aspect. Then, the final goal will be to understand and evidence the effectiveness
of the phenomenon of integration. For this purpose, the modules of the architec-
ture will have to cooperate synergistically to guarantee optimal multimodal processing,
and thus demonstrate the gain of such an approach on cognitive tasks. In addition to
contributions to the field of neuroscience, notably on understanding the formation
and maintenance of long-term memory, this thesis will bring some insights for more bio-
realistic Al systems. These results may lead to more efficient and less energy-consuming
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learning, thus improving the operation of existing ANN.

Protocol overview

To address the different research questions enunciated, we plan throughout this thesis to
base ourselves on the following protocol. The first general idea is to start from a random
graph with randomly connected neurons, which can be compared to an immature brain or
an untrained network. Then, external inputs are applied to different subsets of neurons in
the network. We foresee that these stimulation along with synaptic adaptation will lead
to the formation of modular structures as represented in Fig. 1.

Random graph Modular structures Self-sustaining structures

Figure 1: Overview of the general experimental protocol used during this thesis.

We then let the network evolve, emphasising the mechanisms that enable the structures
formed to maintain themselves over the long-term. Overall, throughout the process,
we focus on the following biological constraints:

e the role of inhibitory neurons
e the maintenance of spontaneous neuronal activity

e the presence of constant synaptic adaptation

Outline

After introducing the original motivation of this thesis by linking artificial intelligence
and neuroscience, we reviewed some theoretical and biological concepts on consciousness
and brain structural organisation allowing to highlight some key topics of this thesis. The
problems and objectives as well as a protocol overview of this study are then enunciated,
emphasising on four main themes: learning, maintaining, consolidating and processing
memories; paving the way for the four chapters of this thesis.

In the first chapter, we start doing a state of the art of more technical concepts notably
the aspects of oscillations, synchronization and oscillator models. Then still in this same
chapter, we present and reproduce some state of art results with Kuramoto oscillators
giving some basis on coupled units subject to synaptic adaptation. These results and this
model are then further developed in order to adapt them to our problems and to obtain
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some preliminary results that will enable us to better define the approaches to be followed
and the challenges to be overcome, particularly with regard to the formation and learning
of structural clusters via external stimulation.

In the Chapter 2, which constitutes the first content chapter and largely takes up the
works of our first article [38|, we apply the reflections of the previous chapter on oscillators
to f#-neurons. In addition to the formation of neuronal assemblies, we focus on the role
of inhibition in the maintenance process of these structures. The Chapter 3, linked to the
work in our second article [37], extends the previous results to spiking neurons. More
precisely, we evolve the model adding some realistic constraints in order to make it closer
to biology. Here, in addition to the initial problem of formation of memories, we place
more emphasis on the richness of neuronal dynamics and their roles, in particular with
spontaneous recalls, which favours the consolidation of memory items.

The Chapter 4 constitutes a multimodal application of the model established in the
previous chapter. We confirm the previous results on learning and memory maintenance
using real sensory stimuli. In addition, in this chapter we further develop the aspect of
modality integration previously described, by evaluating the model on tasks such as the
generation and recognition of audio-visual information.

Finally, in the discussion chapter, we summarize and develop the different notions
treated in this thesis, such as the impact of inhibition on network dynamics, the
sustainability of learned memory and the memory capacity of the network.
Lastly, we discuss the perspectives that we envisage for future work, and which may be
of interest in the fields of artificial intelligence and machine learning or neuroscience and
biology.
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In this chapter, we revise the state of the art regarding the formation of multiple clus-
ters in networks of Kuramoto oscillators subject to adaptation. In particular, we review
concepts such as brain oscillations, synchronization and models of coupled oscillators. We
also present preliminary investigations conducted on the formation and learning of struc-
tural clusters via external stimulation, which will pave the way for the experiments in the
following chapters.

1.1 Background

1.1.1 Oescillations in the brain

The brain exhibits rhythmic and repetitive patterns of neuronal activity known as oscilla-
tions. These oscillations play a vital role in various cognitive processes. They facilitate the
encoding and processing of information [198, 215], integration and communication between
brain regions |71, 146|, and coordination of cognitive and physiological functions [68, 342].
They are categorized into different frequency bands based on their characteristic frequen-
cies and functions [215]:
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e Delta rhythms (0.5-4 Hz) are associated with deep sleep and certain pathological con-
ditions. They are also thought to be crucial for their developmental and restorative
functions, such as memory consolidation, synaptic plasticity, and brain recovery [363].

e Theta rhythms (4-8 Hz) are involved in memory processes, attention, and spatial
navigation [327].

e Alpha rhythms (8-12 Hz) are often observed during wakefulness and eye closure.
They are also linked to attentional processes, sensory inhibition, and information
control [197].

e Beta rhythms (12-30 Hz) are associated with sensorimotor processing and planning,
as well as cognitive functions [128].

e Gamma rhythms (30-100 Hz) are involved in higher-order cognitive processes and
sensory integration [386].

Brain oscillations emerge from the interplay of neural excitability and inhibition [68,
406], intrinsic properties of neurons [192], network connectivity [148], and neuromodula-
tion [409]. The interaction between excitatory and inhibitory activity, combined with the
intrinsic properties of neurons, allows to generate rhythmic patterns [68, 110, 192, 406].
Network connectivity and feedback loops enable the synchronization and coordination of
oscillatory activity across brain regions [68, 148]. Neuromodulatory systems influence os-
cillations by regulating the balance between excitation and inhibition [409]. These factors
collectively contribute to the emergence of a wide variety of oscillatory patterns in the
brain.

The importance of this mechanism is underlined by the fact that disturbances in brain
oscillations have been associated with several neurological and psychiatric disorders. For
instance, abnormalities in alpha oscillations have been observed in pathologies such as
Alzheimer’s disease and attention deficit disorders [24]. Similarly, altered gamma oscilla-
tions have been implicated in schizophrenia [31]. These abnormalities have been also linked
to impaired sensory integration, disrupted information processing, and impaired cognitive
functions such as working memory [84, 386|

1.1.2 Models of coupled oscillators

The brain admits states of collective oscillation dynamics that play a central role in com-
munication and neuronal functions. Therefore, it may be interesting to consider models
that focus on this oscillation mechanism in order to investigate the complex dynamics aris-
ing from interactions between oscillatory systems. Several fundamental models describe
this phenomenon:

e The Kuramoto model is a basic model that demonstrates mutual synchronization
among coupled oscillators [224, 225, 227]. It involves a population of phase oscillators
that interact through a coupling term. This model has been extensively studied in the
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context of synchronization phenomena, including biological rhythms and collective
behaviours in complex networks.

e The Stuart-Landau model represents a class of coupled oscillators that exhibit limit
cycle oscillations [232, 367, 368, 301]. It describes the dynamics of complex systems,
such as chemical reactions or coupled lasers, through a set of differential equations.
The model captures the interaction between individual oscillators and the emergence
of collective behaviour.

e The Winfree model is used to study the dynamics of coupled oscillators on a two-
dimensional grid [129, 269, 411]. It considers the interaction between phase oscillators
with nearest-neighbour coupling. The model has been applied to understand the
synchronization patterns observed in biological systems, such as firefly flashing or
circadian rhythms.

e The Adler model describes the behaviour of coupled oscillators under the influence of
weak periodic forcing [5, 45, 292|. It incorporates a forcing term that interacts with
the intrinsic dynamics of the oscillators. This model has been instrumental in study-
ing phenomena like frequency entrainment and phase-locking in coupled systems.

e The Jansen-Ritt model is a neural mass model that is widely used for simulating
electroencephalogram (EEG) oscillatory signals and understanding the dynamics of
neural populations in the brain regions [196, 350, 379, 408|. This model is a three-
population model (i.e. excitatory pyramidal cells, inhibitory interneurons, and a
population of external inputs) that studies EEG phenomena like alpha, beta, and
gamma rhythms, as well as neurological disorders such as epileptic seizures.

All the models presented above describe the dynamics and interactions between coupled
oscillators. Consequently, the couplings that link them appear to be decisive parameters
in their behaviour. Some studies fix these couplings during simulations and eventually
adapt them a posteriori [4, 130]. However, similar to the plasticity mechanisms observed
in brain neurons, introducing a plasticity mechanism to adapt coupling connections over
time can be beneficial. Furthermore, to obtain complex states such as partial synchroniza-
tion, adaptation could be required in the coupling between oscillators [131, 346|. For this
purpose, the STDP rule can be employed to make appear multi-stability of synchronized
and desynchronized clusters [252]. More suited to phase models and oscillators, Phase-
difference-dependent plasticity (PDDP) establishes a relation between spikes timing and
phases [12, 13, 41, 310]. Thus, depending on the phase difference between two oscillators,
their connection can be strengthened or weakened depending on the nature of the plasticity
function. By employing such learning rules, the adaptation of coupling weights can lead to
a variety of collective behaviours in the phases of the oscillators [12, 13, 41]. Consequently,
the phase patterns and the weighted network structures mutually influence each other at
different time scales, to converge towards stable dynamics [13, 41, 310].

While fully connected networks associated with adaptation can admit complex dynam-
ics, investigating the impact of imposed network topologies provides additional insights. To
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begin with, random network topologies with different degrees of connectivity dilution have
been analysed [398]. The results reveal that random dilution of links leads to desynchroni-
sation of the originally present clusters in the network dynamics, emphasizing the influence
of network topology (learned or imposed) on the states of a system [398]. Similarly, in a
modular structure of coupled oscillators, a correlation between highly interconnected units
and communities of synchronized oscillators has been demonstrated [18, 17, 15]. Like-
wise, similar experiments have been carried out on the synchronization of oscillators in
scale-free topologies, highlighting the role of the hub neurons [275, 310, 418]. These par-
ticular nodes are more stable than weakly linked nodes and therefore synchronize more
easily with their neighbours without destroying the latter’s synchrony if these hubs are
removed [275]. Finally, as in more conventional Al systems, it is possible to implement
a reservoir computing architecture with coupled oscillators, enabling cost reduction and
efficient processing thanks in particular to the synchronization property of oscillators and
their ability to individually represent a large population of units [416].

1.1.3 Synchronization

Oscillations in the brain can facilitate synchronization between multiple neurons or dif-
ferent brain regions by coordinating the timing of neural activity [71, 146]. Synaptic
connections between neurons are one of the key factors contributing to the emergence of
these synchronised patterns. Indeed, these couplings enable the exchange of electrical and
chemical signals between neurons, promoting alignment of oscillatory phases or frequencies
between interconnected neurons [8, 406]. Another factor is that neurons with similar reso-
nant frequencies, determined by their intrinsic properties, may synchronize when coupled
together, as their oscillatory activity in interactions naturally tends to align [69, 194]. As
enunciated earlier, feedback and feed-forward loops in the brain influence synchronization
by modulating activity between neuronal populations through feedback or forward con-
nections [33, 108|. Finally, external factors, such as rhythmic sensory input or oscillatory
drive from other brain areas, can synchronize neuronal populations by entraining their ac-
tivity, resulting in coordinated oscillatory patterns [70, 178]. Ultimately, all these factors
are mainly linked to the coupling weights between neurons and therefore to the adaptation
mechanism that ensures this particular connectivity.

In the field of modelling, we identify the same factors that contribute to the emergence
of synchronized patterns in an oscillatory regime [43, 120]. Indeed, synchronization arises
as a collective behaviour through interactions and coupling between individual oscillators,
which align their phases or frequencies through the exchange of information and energy.
The specific mechanisms underlying synchronization vary depending on the model being
used and involve factors such as coupling strength, network topology, and oscillator dynam-
ics [50, 301, 366, 16, 269]. For instance, in certain models like the Kuramoto oscillators,
synchronisation can easily occur when the coupling strength is sufficiently large. However,
in other cases, it may be necessary to modulate the degree of synchronization.

Indeed, although synchronization plays an important role in brain function, global syn-
chronization is not necessarily desirable due to potential information loss [336], reduced
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flexibility [147], instability [56], limited functional specialization [353], and association with
pathological conditions [385|. Therefore, achieving partial synchronization is more appro-
priate, allowing for both coordinated activity and functional diversity, enabling the brain to
perform complex and adaptive information processing tasks. Various mechanisms can be
employed to prevent total synchronization. For example, we can play on the amplitudes of
the oscillations (large amplitudes tending to de-phase oscillators) [169], introducing phase
conduction delays [93, 321], adding random external noise [226], or having oscillators with
non-uniform natural frequencies [226, 321|. Nevertheless, the main factor influencing syn-
chronization in oscillators remains the coupling strength, with stronger coupling increasing
the likelihood of neurons to align their phases [226, 321, 413|. Positive couplings promote
in-phase relationships, while negative couplings favour anti-phase relationships with the
mean field, which can result in fully coherent, incoherent, or multi-stable states [413, 184].
Inhibition plays a crucial role in controlling the levels of synchronization in oscillator mod-
els, as it allows for flexible modulation of the balance between synchrony and asynchrony
in the collective dynamics of oscillators. By adjusting the strength and timing of inhibitory
connections, we can precisely control the emergence and stability of synchronized patterns.
Indeed, strong inhibitory interactions can disrupt synchronization by introducing desyn-
chronization or anti-phase relationships between oscillators, leading to more irregular or
asynchronous dynamics [407]. Conversely, inhibition can also enhance synchronization by
suppressing the activity of some oscillators, favouring the dominance of others, and align-
ing their phases. This leads to greater coherence and stability in oscillatory patterns while
avoiding destabilizing factors [133, 131, 242|. Achieving and maintaining synchronized pat-
terns in oscillator models heavily relies on finding the right balance between excitation and
inhibition. Consequently, if we consider stable proportions of excitatory and inhibitory
populations, it requires appropriate adjustment of the inhibitory strength relative to ex-
citatory coupling [120, 373|. In particular as enunciated previously, the adaptation of the
coupling between the oscillators may be require to obtain this balance [131, 346].

1.2 Emergence of complex dynamical patterns via adaptation

Through the state of the art, we have been able to highlight the importance of oscil-
lation and synchronisation mechanisms in the brain in order to ensure correct cognitive
processes. These phenomena can be described fairly accurately using coupled oscillator
models, which represent neurons or ensembles of neurons connected by coupling weights.
The adaptation mechanism of these connections is decisive for modulating the degree of
synchronization and, by extension, for creating complex dynamics. In this section, we
illustrate this idea by reproducing previous work using coupled oscillators associated with
an adaptation mechanism.

1.2.1 Kuramoto oscillators

The Kuramoto model for coupled phase oscillators has the advantage of being a relatively
simple model able to capture different types of dynamics ranging from asynchronous to
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partially synchronous states [224, 225, 227|. Some studies have shown the possibility
of adding an adaptation mechanism to the coupling leading to more complex dynamical
behaviours [12, 13, 40, 39]. For these reasons, we took the decision to start with this
model as baseline and reprod<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>