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Abstract

The Fifth-Generation (5G) of cellular networks significantly increases the per-

formance and flexibility of the offered services to users and service providers.

The strict network requirement of 5G use cases has been supported by inte-

grating service-based architecture in the core network, flexible radio access

network architecture, and implementing numerous wireless technologies. Re-

searchers and Mobile Network Operators (MNOs) face vast challenges not

only in the definition process but also in the deployment phase.

The research community should define robust and dynamic radio network

solutions to tackle the complexity and flexibility of 5G and beyond mobile

network requirements. As mentioned, the radio access network architecture

has been crucial in defining 5G systems. Especially the Cloud Radio Access

Network (C-RAN) architecture has played a fundamental role as part of the

new generation radio access network (NG-RAN) because it has the potential

to support extremely dense radio network deployments while reducing costs

because of the simplification of the radio units. Moreover, C-RAN enhances

the network capacity by reducing the number of required resources because

it centralizes the baseband functionalities in Baseband Units (BBU) pools

or Central Units (CUs), sharing the same resource to manage multiple Re-

mote Radio Heads (RRHs) or Radio Units (RUs). Moreover, Coordinated

Multipoint (CoMP), enhanced Inter-Cell Interference Coordination (eICIC),

and beamforming technologies could be easily implemented in the C-RAN

structure, improving the 5G network performance.



However, the apparition of new use cases and network requirements forces

the 5G systems to improve and go further with the initial stages of Sixth-

Generation (6G) mobile networks. The network design of 5G and beyond

must benefit society by being a human-centric reliable infrastructure. More-

over, future mobile networks should support immersive communication, cog-

nition and twinning, deterministic end-to-end applications, and high-resolution

sensing services. Sustainability and energy efficiency are crucial to support

these services and network requirements.

Namely, It is fundamental to reduce energy consumption, resource us-

age, and emissions footprints to avoid excessive power consumption. The

enormous increase in the number of devices, data amounts, and data rates

implies an increase in the overall data traffic and required capacity, while

energy reduction is not automatically guaranteed. On the other hand, the

optimal management of the computational resources to satisfy current and

future network requirements also becomes a challenge.

This doctoral thesis aims to address some of the challenges above. Most

of the published research works employ synthetic scenarios to validate the

results. A realistic C-RAN platform has been implemented, opposing these

approaches. The proposed architecture considers rural and urban zones,

heterogeneous deployment with macro and small cells, time-variant traffic

patterns, realistic user equipments with guaranteed bit rate and best effort

services, Quality of Service (QoS) constraints, a 3D ray-tracing propagation

model, multiple frequency bands, different split options, among other signif-

icant features. This platform becomes fundamental in the validation of the

proposed algorithms.
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Additionally, 5G and beyond radio network deployment will be ultra-

dense. However, optimizing the costs and energy consumption is not auto-

matically guaranteed. For this reason, this thesis also provides a non-linear

data modeling and decision-making tool to maximize cost reduction versus

coverage-QoS trade-off by optimizing the active RRHs needed according to

traffic demands. The cost and energy optimization are analytically expressed

by modeling the complex relationships between input and output system pa-

rameters.

The optimization tool is based on a multi-objective integer linear pro-

gramming model designed to reduce the network cost while maintaining

suitable coverage and QoS. Results have been presented considering 3.6 and

28 GHz frequency bands and different split options. The obtaining cost re-

duction ranges from 30 % to 70 % depending on the scenario.

On the other hand, previous works on BBU pool resource allocation have

relied on the definition of optimization problems. Most of these strategies

allocate the resources assuming the instantiated computational capacity at

BBU pools is fixed and equal to the maximum pool capacity. Under this

assumption, the computational resources could be over-provisioned or under-

provisioned, causing inefficient resource utilization or QoS degradation.

On the other hand, the design of efficient computational resource man-

agement in C-RAN environments is a challenging problem because it has

to account simultaneously for throughput, latency, power efficiency, and op-

timization trade-offs. Most of the reviewed works assume a fixed computa-

tional capacity at BBU pools, which results in underutilized or oversubscribed

resources, thus affecting the overall QoS. The resources could be dynamically
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instantiated according to the required computational capacity (RCC).

For this reason, this thesis proposes a novel strategy for Dynamic Re-

source Management with Adaptive Computational capacity (DRM-AC) us-

ing Machine Learning (ML) techniques. Three ML algorithms have been

considered in the final design after testing multiple approaches: support vec-

tor machine (SVM), time-delay neural network (TDNN), and long short-term

memory (LSTM).

DRM-AC reduces the average of unused resources by 96 %, but there is

still QoS degradation when RCC is higher than the predicted computational

capacity (PCC). To further improve, two new strategies are proposed and

tested in a realistic scenario: DRM-AC with pre-filtering and DRM-AC with

error shifting, reducing the average of unsatisfied resources by 98 % and

99.9 % compared to the DRM-AC, respectively.
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Chapter 1

Introduction

Future mobile networks will face a new paradigm in which billions of things,

humans, vehicles, robots, and drones will coexist. They will deal with chal-

lenging use cases such as holographic telepresence and immersive communi-

cations, which will produce more strict requirements [2].

Beyond Fifth-Generation (5G) networks must help to handle those is-

sues. Especially, Sixth-Generation (6G) will be a self-contained ecosystem

of Artificial Intelligence (AI) with numerous features such as intelligent con-

nected management, reduction of energy footprint, and programmability. AI

will be used to enhance network performance. It will help to maintain the

cost-effectiveness of envisioned complex 6G services, such as the interaction

between human-digital-physical worlds, to automate some level of decision-

making processes, and to achieve a zero-touch approach [2].

Besides, the evolution of 5G continues toward 5G Advanced to expand

its usage by supporting new use cases and verticals. In this sense, machine

learning (ML) will also play a significant role in the network optimization to
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support reduced capability devices and network energy efficiency [3].

The 3rd Generation Partnership Project (3GPP) includes the Cloud Ra-

dio Access Network (C-RAN) architecture in the standardization of the 5G

Radio Access Network (RAN). Furthermore, it must also be considered in

the definition of future mobile networks because C-RAN has the potential

to support extremely dense mobile networks and to reduce the number of

required Baseband Units (BBUs) by 75 % compared to the traditional RAN

architecture [4], efficiently enhancing the network capacity.

Fig. 1.1 shows an essential diagram of C-RAN architecture. The Remote

Radio Heads (RRHs) transmit the In-phase and Quadrature (IQ) signals

from User Equipment (UE) through the fronthaul link to the BBUs. The

BBU pools concentrate and virtualize the resources to handle dynamically

many RRHs. As a result, BBU pools aggregate data traffic from different

types of cells to the backhaul link and favor the rise of the multiplexing gain.

However, the optimization of the network deployment, computational re-

sources, energy footprint, and power consumption is not automatically guar-

anteed. Besides, beyond Beyond Fifth-Generation (B5G) standards must be

a step further because they should offer Tbps of data rate, sub-ms of latency,

zero-touch management, and proactive decision-making. Additionally, future

mobile networks should support immersive communication, cognition and

twinning, deterministic end-to-end applications, and high-resolution sensing

services.

Sustainability is crucial to support these services and network require-

ments, becoming fundamental to reducing energy consumption, resource us-

age, and emissions footprints.
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Figure 1.1: Cloud radio access network architecture

Additionally, managing computational resources at Central Units (CUs)

to satisfy the traffic demand of the RRHs or Radio Units (RUs) becomes a

challenging critical aspect. Previous works on BBU pool resource allocation

have relied on the definition of optimization problems such as mixed-integer

linear programming (MILP) or Multi-Objective Optimization (MOO). These

strategies allocate the resources assuming that the instantiated computa-

tional capacity at BBU pools is fixed and equal to the maximum BBU pool

capacity. Under this assumption, the computational resources could be over-

provisioned or under-provisioned, causing inefficient resource utilization or

Quality of Service (QoS) degradation, respectively.
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This thesis contributes to solving these issues, combining the flexibility of

virtualization and the availability of machine learning techniques to predict

computational demands and applying optimization techniques to reduce the

energy and cost footprint of 5G and beyond radio access networks.

The resources could be instantiated dynamically according to an antici-

pated computational capacity demand. For this reason, this work proposes

the integration of Dynamic Resource Management (DRM) with a prediction

of the required computational capacity based on ML techniques, which allows

defining a DRM with adaptive capacity (DRM-AC) to avoid under-utilization

of the computational resources and to maintain QoS.

On the other hand, this work also presents an optimization framework

with two purposes. Firstly, the efficient deployment of 5G and B5G radio

networks on C-RAN ecosystems. Secondly, the activation/deactivation of

the RRHs to maintain the coverage and QoS while minimizing the network

cost. The proposed algorithm selects the optimal distribution of RRHs from

candidate locations. The algorithm includes the possibility of implementing

cooperation strategies between cells, automatically establishing the cells that

should cooperate to satisfy the traffic demand of a specific zone in the map.

Section 1.1 summarizes the global and specific objectives that guided the

research.

1.1 Research Objectives

As previously described, this doctoral thesis tackles multiple challenges and

open issues of current and future radio access networks. In this direction,
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research questions have been formulated, which guide and motivate the whole

research:

1. How to implement a realistic C-RAN simulation platform that handles

the trade-off between the flexibility of mobile networks and computa-

tional simplicity?

2. How to efficiently deploy current and future radio access networks to

reduce costs and energy consumption?

3. How to efficiently manage the computational resources of the radio ac-

cess network? Is it possible to proactively instantiate the computational

resources necessary to increase efficiency while keeping QoS?

Numerous objectives have been appointed to solve these research prob-

lems, classifying them into global and specific objectives. The global goals

of this doctoral thesis are:

1. To perform a comprehensive and systematic literature review on related

works and technologies (e.g., 5G, C-RAN, ML, QoS, service generation,

and mathematical optimization) to identify challenges and open issues.

2. To design a realistic C-RAN platform that represents the non-uniformity

of mobile networks to obtain a suitable validation platform.

3. To test and compare multiple strategies of fronthaul design, not only to

establish the BBU-RRH connections of the C-RAN platform but also

to provide a comprehensive analysis to the Mobile Network Operators

(MNOs).
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4. To formulate and implement an efficient RRH deployment algorithm

that reduces the cost and energy footprint of the massive deployments

of current and future networks.

5. To propose novel approaches to efficiently manage the centralized com-

putational resources, introducing machine learning techniques to proac-

tively instantiate the required computational resources.

Different specific objectives or tasks have been implemented to accomplish

the global goals:

• To perform a literature review on radio access network architectures.

• To analyze multiple proposals of simulation platforms, emphasizing

their advantages and limitations to identify the fundamental features

that should represent mobile network deployments.

• To define and implement a realistic C-RAN simulation platform that

is used to validate the performance of the proposals.

• To study, test, and compare different approaches of fronthaul design to

resume multiple options of BBU-RRH connections.

• To review the research related to radio access network deployment

• To formulate a nonlinear mathematical algorithm to optimize the RRH

deployment to reduce costs and energy consumption.

• To analyze the literature on the management of computational re-

sources and machine learning.
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• To design a dynamic resource management strategy that allocates the

computational resources of the BBU pools considering a maximum and

fixed capacity, which is used as a benchmark to validate the advantage

of the resource management strategies with adaptive capacity.

• To implement novel strategies of dynamic resource management with

adaptive capacity.

1.2 Contributions

1. Unlike most analyzed works, a realistic scenario of a C-RAN environ-

ment over Vienna City is used to validate the results. UEs generating

Voice over IP (VoIP), video streaming, File Transfer Protocol (FTP),

or web browsing services have been modeled. The deployment of the

C-RAN follows a non-uniform distribution.

2. A formulation and software implementation of decision-making rules

to optimize the number of required active RRHs under different traf-

fic patterns in a heterogeneous environment is presented. It is done

analytically by obtaining a complete set of nonlinear equations. The

complex relationships between the input and output parameters of the

system in a mobile network environment are modeled to optimize the

RRH network deployment. In general terms, the proposed optimization

algorithm reduces Capital Expenditures (CAPEX), Operating Expen-

ditures (OPEX), and the energy footprint.

3. We present an analysis of the consequences of different split options; the
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splits introduce a cost ratio between Base Stations (BSs) types, espe-

cially when heterogeneous network deployments with Macro and Small

BSs are considered. The cost ratio between macro-RRHs (MRRHs)

and small-RRHs (SRRHs) increases when they contain more baseband

functionalities. Thus, this cost ratio achieves the maximum value in dis-

tributed RAN (option 1) scenarios, while it is minimum in full C-RAN

(option 8). Based on this, the impact of different split options on the

deployment cost and coverage-QoS of the radio network is detailed.

4. As far as our knowledge, the optimization of the RRH deployments

of B5Gs in terms of energy and cost-saving considering: flexible ra-

dio access network, both frequency ranges (sub 6GHz and mm-wave),

coverage and capacity constraints, realistic propagation models, and

heterogeneous mobile networks with MRRHs and SRRHs is not avail-

able in the literature.

5. Opposing the approaches followed by the reviewed literature, we pro-

pose to proactively instantiate just the required computational capacity

at the BBU pools, to improve the resource usage ratio. Namely, the

work focuses on optimizing the computational resources at BBU pools

according to the required computational demand. The combination of

a previously designed dynamic resource management with a strategy to

forecast the necessary computational capacity to reduce the amounts of

underutilized resources while keeping the required QoS. The proposal

is called DRM-AC.

6. The key performance indicator that describes the QoS when DRM-AC
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is analyzed is the percentage of satisfied resources. As a result, the QoS

is degraded if the instantiated computational resources at a BBU pool

are insufficient to satisfy the required computational capacity. The

DRM-AC instantiates the resources based on predicting the necessary

computational resources. However, errors during the forecasting pro-

cess might produce a QoS degradation (under-provisioned case). We

propose two novel schemes, DRM-AC with prefiltering (DRM-AC-PF)

and DRM-AC with error shifting (DRM-AC-ES), to tackle this issue.

7. A significant contribution of this doctoral thesis is the combination of

the previously mentioned proposals in a flexible simulation platform.

The proposed platform supports multiple upgrades, which pave the

road to a wide range of future works. This tool undoubtedly could

help researchers and MNOs to improve their network planning and

management, controlling the balance between QoS and cost reduction.

1.3 Publications

The research of this doctoral thesis has been periodically published. This

section summarizes the publications in conferences and journals.

1. Rolando Guerra-Gómez, Silvia Ruiz, M. Garćıa-Lozano, and Joan Ol-

mos, “Using COST IC1004 Vienna scenario to test C-RAN optimiza-

tion algorithms,” in COST IRACON, Dublin, Ireland, Jan. 2019.

2. Rolando Guerra-Gómez, Silvia Ruiz, M. Garćıa-Lozano, and Joan Ol-

mos, “A weighted-sum multi-objective optimization for dynamic re-
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source allocation with QoS constraints in realistic C-RAN,” in COST

IRACON, Oulu, Finland, May 2019.

3. Rolando Guerra-Gómez, Silvia Ruiz, M. Garćıa-Lozano, and Joan Ol-

mos, “Predicting Required Computational Capacity in C-RAN net-

works by the use of different Machine Learning strategies,” in COST

IRACON, Gdańsk, Poland, September 2019.

4. Rolando Guerra-Gómez, Silvia Ruiz, M. Garćıa-Lozano, and Joan Ol-

mos, “Dynamic Resource Allocation in C-RAN with Real-Time Traf-

fic and Realistic Scenarios,” in 2019 15th International Conference

on Wireless and Mobile Computing, Networking and Communications

(WiMob).

5. Rolando Guerra-Gómez, S. R. Boqué, M. Garćıa-Lozano, and J. O.

Bonafé, ”Machine Learning Adaptive Computational Capacity Predic-

tion for Dynamic Resource Management in C-RAN,” in IEEE Access,

vol. 8, pp. 89130-89142, 2020, doi: 10.1109/ACCESS.2020.2994258.

6. Rolando Guerra-Gómez, S. R. Boqué, M. Garćıa-Lozano, and J. O.

Bonafé, ”Machine-Learning based Traffic Forecasting for Resource Man-

agement in C-RAN,” 2020 European Conference on Networks and Com-

munications (EuCNC), 2020, pp. 200-204.

7. Rolando Guerra-Gómez, S. R. Boqué, M. Garćıa-Lozano, and U. Saeed,

”Energy and Cost Footprint Reduction for 5G and Beyond With Flexi-

ble Radio Access Network,” in IEEE Access, vol. 9, pp. 142179-142194,

2021, doi: 10.1109/ACCESS.2021.3120765.
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8. Rolando Guerra-Gómez, Silvia Ruiz, M. Garćıa-Lozano, and U. Saeed,

“Flexible Radio Access Network Optimization with Cell Coordination,”

in 1st INTERACT: Intelligence-Enabling Radio Communications for

Seamless Inclusive Interactions, Bologna, Italy, Feb 8–11, 2022.

1.4 Thesis Outline

The structure of this thesis is divided into seven chapters. Chapter 2 presents

a literature review in which multiple research works with different objectives

and contributions have been investigated. The fundamental aim of this chap-

ter is to analyze strengths and weaknesses to identify challenges and open

issues. Some of which have been addressed by the proposals of this thesis.

After the analysis, there is room for improvement in multiple research

directions, such as energy and cost footprint reduction of the mobile net-

works, fronthaul design and optimization, and design of strategies to manage

the centralized computational resources, among others. Additionally, It has

been identified that most of the analyzed works employ synthetic scenar-

ios that could not represent the complexity of the mobile networks. These

simplifications may reduce the significance of the results.

Furthermore, ML and AI have been identified as enables of future mobile

networks. For this reason, chapter 3 presents a resume of machine learning

techniques. A general description of the main categories of machine learn-

ing approaches ML has been delivered. Section 3.2 describes unsupervised

and supervised learning, reinforcement learning, deep learning, and feder-

ated learning. Multiple approaches have been tested and compared, and the
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best results were obtained with Support Vector Machine (SVM), Time De-

lay Neural Network (TDNN), and Long Short-Term Memory (LSTM). For

this reason, a mathematical background of these strategies is presented in

sections 3.3, 3.4, and 3.5.

On the other hand, chapter 4 introduces features of the proposed sim-

ulation platform, which is a fundamental contribution of this thesis. The

platform is designed in Matlab. It tries to represent the complexity of mo-

bile networks to improve the quality of the validation.

The platform employs realistic models in each layer of the C-RAN ar-

chitecture. UEs, Guaranteed Bit Rate (GBR), and Best-effort services at

the packet level have been modeled in the user plane. The air interface has

been represented using a 3D ray-tracing model that provides all the correla-

tions and spatial consistencies. These features allow accounting for QoS and

designing resource management strategies, among other advantages, with a

high level of flexibility.

Once the simulation platform has been explained, chapter 5 presents the

mathematical formulation of the proposed algorithms. Firstly, section 5.2

introduces the mathematical description of four strategies to design and an-

alyze the fronthaul connections. Section 5.3 introduces the DRM, as well

as three variants of DRM-AC. Section 5.4 details the proposed non-linear

optimization model to optimize the RRH deployment.

These models are integrated into the simulation platform. They increase

flexibility and facilitate the optimization of deployment and network man-

agement.

The performance of these models is analyzed in chapters 6 and 7. Chapter
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6 presents the results of testing a radio network deployment using the pro-

posed optimization algorithm. The algorithm reduces the number of required

active RRH, offers acceptable coverage, and satisfies the QoS requirements.

On the other hand, chapter 7 discusses the results associated with the

proposed DRM-AC. It reduces the underutilized resources by 96 % compared

to the DRM with fixed computational resources.

However, it degrades the QoS when the predicted computational resources

are insufficient to satisfy the demand. This issue is solved by proposing two

novel strategies: DRM-AC-PF and DRM-AC-ES. They reduce unsatisfied

resources by 98 % and 99.9 % compared to the DRM-AC and the number

of underutilized resources by 75 % and 70 % compared to the DRM, respec-

tively.

Finally, chapter 8 summarizes the general conclusions and future works.
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Chapter 2

Literature Review

2.1 Introduction

This chapter presents a literature review to analyze state of the art. Multiple

research works with different objectives and contributions have been investi-

gated. The fundamental aim of this chapter is to analyze the main strengths

and weaknesses of the related works. It helps to identify multiple challenges

and open issues, some of which have been addressed by the proposals of this

thesis.

2.2 Evolution of RAN architectures towards

5G

The authors of [5] describe the RAN architecture evolution. The concept

of C-RAN was proposed in 2011 [6]. In 2013, Software-Defined for Radio

Access Networks (Soft-RAN) and Open-RAN structures were presented in [7]
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and [8], respectively. Soft-RAN is a flexible programmable architecture that

decouples the control and data planes. This structure enables a centralized

management layer in a software-defined network controller entity to manage

the resources more efficiently.

In 2014, the Heterogeneous Cloud Radio Access Network (H-CRAN) was

defined by [9] as an alternative to overcome the fronthaul capacity limitations

of C-RAN. It consists of a Macro Base Station (MBS) and inside its coverage

area, RRHs. MBS is connected to the BBU pool using a backhaul link, while

the RRHs use the fronthaul links, as Fig. 2.1 shows. The functions of the

control plane are only implemented in the MBS, while RRHs manage the data

traffic. Consequently, H-CRAN split the control plane from the data plane

to reduce the overhead through the fronthaul link, enhancing the C-RAN

capabilities.

In 2015, function splitting was defined to overcome the fronthaul capacity

limitation, splitting the baseband processing tasks between RRHs and cloud

BBU. This method can overcome the additional transmission delay of the

fronthaul link, especially where the distance between RRH and the cloud

center is large. However, the disadvantage of this solution is financial cost

increment since each RRH should have baseband processing capabilities, also

called Remote Radio System (RRS).

On the other hand, authors of [11] proposed a Hierarchical H-CRAN ar-

chitecture. This strategy combines H-CRAN and function splitting to over-

come the fronthaul capacity limitation. The architecture is composed of a

control MBS and RRHs, which have function splitting capability. Although

the fronthaul limitation is addressed, the overall C-RAN advantages cannot
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M. Peng et al.: Inter-Tier Interference Suppression in H-CRANs

TABLE 1. Summary of abbreviations.

FIGURE 1. System model of an H-CRAN with one MBS and M RRHs.

processing in the physical layer and the CRRA in the upper
layer are introduced in Section VI. Section VII summarizes
this paper. For convenience, the abbreviations used in this
paper are listed in Table 1.

II. H-CRAN SYSTEM MODEL
Unlike in C-RANs, the MBS in H-CRANs delivers the con-
trol signaling for the whole network, which decouples the
user plane and control plane. Furthermore, to alleviate the
heavy burdens on the fronthaul, some UEs with high mobility
or with real-time traffic are given high priority to access the
MBS. As a result, we can limit our attention to one MBS
in the H-CRAN, under which multiple distributed RRHs
are underlaid within the same coverage of the MBS. Thus,
as illustrated in Fig. 1, the H-CRAN of interest consists of
one MBS andM RRHs. For any typical radio resource block,
K single-antenna MUEs are served by the MBS, while only

one single-antenna RUE is associated with each RRH.
To serve multiple MUEs simultaneously and suppress the
inter-tier interference at RUEs in the downlink, the MBS is
equipped with NB antennas (NB ≥ M +K ), while each RRH
is equipped with a single antenna.

The transmit power per antenna in the MBS and RRHs
is assumed to be PM and PR, respectively. The transmission
symbols for the j-th MUE and the RUE associated with the
i-th RRH are sMj and si, respectively, which are normalized

as E[
∥∥sMj

∥∥2] = E[‖si‖2] = 1. The received signal at the
k-th MUE and a typical RUE associated with the i-th RRH
can be written as

yMMk =

K∑
j

√
PMhMMkwjsMj +

M∑
i

√
PRhRiMk si + nMMk ,

yRRi =
√
PRgRRisi +

K∑
j

√
PMgMRiwjsMj + nRRi , (1)

respectively, where hMMk ∈ C1×NB represents the radio link
between the MBS and the k-th MUE, and hRiMk represents
the interference link from the i-th RRH to the k-th MUE.
gMRi ∈ C1×NB represents the interference link between the
MBS and the RUE associated with the i-th RRH, and gRRi
represents the radio link between the i-th RRH and its served
RUE. Note that the inter-RRH interference amongst RRHs
in H-CRANs can be ignored due to the centralized signal
processing in the BBU pool through the ideal fronthaul.
We assume the radio links experience independent Rayleigh
fading, so the components of hMMk and gMRi are indepen-
dent CN (0, 1), hRiMk ∼ CN (0, 1), and gRRi ∼ CN (0, 1).
nMMk and nRRi are independent normalized additive
zero-mean Gaussian noises experienced at the k-th MUE and
the typical i-th RUE, respectively, i.e., nMMk ∼ CN (0, 1),
and nRRi ∼ CN (0, 1). wj ∈ CNB×1 represents the precoding
vector applied at the MBS for the j-th MUE.

According to (1), the received SINR for the k-th MUE and
the typical RUE can be expressed as

γMMk =
PM
∣∣hMMkwk

∣∣2
K∑

j=1,j 6=k
PM
∣∣hMMkwj

∣∣2 + M∑
i=1

PR
∣∣hRiMk

∣∣2 + 1

, (2)

γRRi =
PR
∣∣gRRi ∣∣2

PM
K∑
j

∣∣gMRiwj
∣∣2 + 1

, (3)

respectively. Since the interference is much larger than the
noise in an interference-limited H-CRAN, the noise could be
ignored herein. Thus (2) can be approximated as

γMMk ≈
PM
∣∣hMMkwk

∣∣2
K∑

j=1,j 6=k
PM
∣∣hMMkwj

∣∣2 + M∑
i=1

PR
∣∣hRiMk

∣∣2 . (4)

The intra-tier interference among K MUEs and inter-
tier interference between MUEs and RUEs can be
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Figure 2.1: Heterogeneous C-RAN architecture [10]

be achieved, which is critical in high-density scenarios.

Additionally, authors of [12] presented a Software-defined Hyper-Cellular

C-RAN (SDHC-CRAN) in 2016. A cloud-based software-defined RAN with

physical decoupling and the ability to turn off RRHs during low-traffic hours.

Fog Radio Access Network (F-RAN) is proposed in [13], where RRHs are

equipped with caching capability to decrease the latency of popular contents.

In 2017, the authors of [14] introduced the Hierarchical Software-Defined

RAN (HSD-RAN) architecture that is shown in Fig. 2.2. They proposed,

instead of virtualizing all BSs in a single centralized controller, to form multi-

ple groups concerning the BS geographic locations, which are assigned to the

local controllers. The connections between the clusters and their associated

controllers are established via fronthaul links. A high-level controller coor-

dinates control plane decisions among the local controllers [14]. Moreover,
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authors in [15] proposed an integrated architecture for Software-Defined and

Virtualized RAN (SDVRAN) with fog computing.

Adapting Downlink Power in Fronthaul-Constrained
Hierarchical Software-Defined RANs

Xianfu Chen, Zhu Han, Zheng Chang, Guoliang Xue, Honggang Zhang, and Mehdi Bennis

Abstract—The proof-of-concept software-defined radio access
network (RAN) is not flexible enough due to the inherent
delay and the necessity of high-capacity fronthaul links. We are
hence motivated to propose a hierarchical software-defined RAN
architecture, over which the base stations (BSs) are abstracted
into multiple virtual local controllers while these local controllers
are administered by a high-level controller. Under such a hi-
erarchical network architecture, we particularly investigate in
this paper how to adapt the BS transmit power over a long
term according to the network dynamics under the constraints
of mobile user queue stability and limited fronthaul capacity. We
first formulate an off-line stochastic power adaptation problem.
Through developing the Lyapunov method, we transform the
problem into an approximate on-line optimization task. However,
the challenge arises from the introduced per-cluster fronthaul
capacity constraint. To solve the task efficiently and avoid
extensive information exchange between the high-level controller
and the local controllers, we put forward a novel low-complexity
algorithm by designing a non-cooperative power adaptation game
among the local controllers. Simulations are provided to evaluate
the efficacy of the proposed studies.

I. INTRODUCTION

The exponentially growing mobile data traffic leads to
the need of ever increasing capacity density in radio access
networks (RANs) [1]. To keep pace with such demands, one of
the promising solutions is to make the network infrastructure
heterogeneous and dense. In a dense environment, the base
stations (BSs) have to be operated over a common spectrum
band, making the network operations extremely complex due
to the tight coupling of control plane decisions at the neigh-
bouring BSs. Moreover, the traditional RANs are dimensioned
to cope with the peak traffic demands. Such designs are not
flexible enough to match the radio resources with the spatially
and temporally fluctuating traffics, resulting in low spectral
efficiency and inferior energy efficiency as well [2].

Applying the idea of software-defined networking to RANs
brings the immediate advantages of simplifying the manage-
ment of a dense network. In a software-defined RAN, the
control plane is decoupled from the data plane via virtualizing

X. Chen is with the VTT Technical Research Centre of Finland, Finland
(e-mail: xianfu.chen@vtt.fi). Z. Han is with the Department of Electrical
and Computer Engineering as well as the Department of Computer Science,
University of Houston, Houston, TX, USA (e-mail: zhan2@uh.edu). Z. Chang
is with the Department of Mathematical Information Technology, University
of Jyväskylä, Finland (e-mail: zheng.chang@jyu.fi). G. Xue is with the Ira
A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ,
USA (e-mail: xue@asu.edu). H. Zhang is with the College of Information
Science and Electronic Engineering, Zhejiang University, Hangzhou, China (e-
mail: honggangzhang@zju.edu.cn). M. Bennis is with the Centre for Wireless
Communications, University of Oulu, Finland (e-mail: bennis@ee.oulu.fi).
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Fig. 1. Illustrative example of a hierarchical software-defined radio access
network.

all independent BSs as a controller which makes centralized
control plane decisions [3]. The centralized controller can
thus optimize the network performance with the global view
of the network and adapt radio resources to the network
dynamics, i.e., the channel quality variations and the mobile
traffic fluctuations from mobile users (MUs). However, the
problems with the software-defined RAN concept lie in the
inherent latency due to the totally centralized control plane
and the need of large-capacity fronthaul links to connect the
BSs and the controller [4], [5]. It thus becomes necessary to
design a more flexible software-defined RAN architecture.

In this paper, we first consider a new hierarchical architec-
ture of the software-defined RAN, which is shown in Fig. 1.
Instead of virtualizing all BSs as a single centralized controller,
multiple clusters are formed with regards to the BS geographic
locations, with each being assigned a virtual local controller.
The connections between the clusters and their associated local
controllers are established via the capacity-limited fronthaul
links [6]. A virtual high-level controller is responsible for co-
ordinating control plane decisions among the local controllers.
With the hierarchical design, the global network view at the
high-level controller is aggregated across the local clusters.
The local controllers make local decisions (e.g., intra-cluster
interference mitigation), which avoids distant control from the
high-level controller and thus alleviates control latency.

In spite of the benefits, challenges remain in facilitating
a hierarchical software-defined RAN (HSDRAN) in practice.
Particularly, mechanisms that efficiently utilize the decoupling
of control plane and data plane in a hierarchical network
architecture and the capacity-limited fronthaul links must be

978-1-5090-4183-1/17/$31.00 ©2017 IEEE

Figure 2.2: Hierarchical software-defined RAN architecture [14]

Recently, authors in [5] proposed a density-aware C-RAN design named

Heterogeneous Virtualized Software-Defined C-RAN (HVSD-CRAN). The

architecture manages two different scenarios in terms of network density:

high-density and low-density modes. Fig. 2.3 shows the architecture, where

the radio access layer is split into two parts depending on the mode. The

low-density mode involves deploying RRSs that manage the UE data/control

signals. This mode does not exploit the C-RAN advantages, but it is not a

critical aspect due to low-density scenarios are not highly demanding. On

the contrary, high-density mode scenarios demand all the advantages of fully

centralized architecture. For this reason, the radio access layer of this mode

is implemented by an H-CRAN strategy where the control messages are sent

through a coverage layer (MBS) and data messages through a traffic layer

with caching capability. The BBU cloud layer consists of a set of BBU
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processing servers and a virtualized layer where a slicing controller manages

the slicing resource allocation. Core and application layers complete the

structure. M. Baghani et al.: MORA in Density-Aware Design of C-RAN in 5G

FIGURE 2. HVSD-CRAN system model.

C. HVSD-CRAN STRUCTURE AND RESOURCE
MANAGEMENT
To cover different aspects of low and high-density regions,
we propose a new system model depicted in Fig. 2 where
there exist two modes:

• High-density mode: where there exist two types of BSs,
i.e., control BS and D-RRHs in radio access of RAN
layer in Fig. 2. The heterogeneity of this mode comes
from these two types of BSs. In this topology, the end
devices in Fig. 2 should have two connections for control
and data messages due to the physical decoupling. The
coverage is guaranteed by control BS, called coverage
layer. However, there is a capability to turn off the subset
of D-RRHs in traffic layer of Fig. 2 in low traffic time.
The data signal of end device is sent to D-RRHs and all
their baseband processing functions are deployed in a
BBU cloud of RAN layer. According to the virtualoiza-
tion feature of our system model, the radio resources
can be sliced to use by different SPs to support various
services for users.

• Low-density mode: where there exists hierarchical pro-
cessing between cloud and RRSs in RAN layer of
Fig. 2. In this mode, the baseband function splitting is
used to overcome the high delay of large distance of
front-haul link. In this topology, each RRS processes
part of the baseband processing functions which can

be dynamically determined to improve desired perfor-
mance according to the instantaneous conditions of
system. According to the virtualization characteristics,
the radio resources are sliced in BBU cloud of RAN
layer to have view of whole network. As a result, the iso-
lation constrains between slices should be guaranteed in
a centralized manner.

For both modes, the flexibility for designed system is
achieved by software-defined structure. The resource slicing,
for both modes, can be categorized as [37]

• Transmission resources e.g., power and bandwidth
• Cloud resources e.g., processing and memory units of
BBUs

• Infrastructure resources e.g., RRHs, front-haul link,
switches

The resource management structure of HVSD-CRAN is
illustrated in Fig. 3. In this topology, two resource manage-
ment units are considered. In centralized radio management
(CRM), a subset of parameters, e.g., power and spectrum, that
should be allocated by view of whole network, are assigned.
Also, by considering virtualization, all the radio resources are
sliced between SPs. When the effects of resource allocation
in one RRS on the other RRSs are negligible, it is more con-
venient to implement local radiomanagement (LRM) in radio
access of RAN layer in Fig. 3. The resource management
policy of these two modes of HVSD-CRAN are
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Figure 2.3: HVSD-CRAN architecture [16]

After the contribution of multiple researchers, 3GPP has introduced the

5G RAN or New Generation RAN (NG-RAN) [17]. Fig. 2.4 shows the general

architecture of a 5G network. The 5G core network has been simplified to

represent the control and user plane by the Access & Mobility Management

Function (AMF) and User Plane Function (UPF), respectively. On the other

hand, the NG-RAN is represented by the Next Generation NodeBs (gNBs),

and New Generation evolved NodeBs (ng-eNBs), interconnected using theXn

interface. At the same time, the connections with the core are established

using the NG interface.
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Figure 2.4: NG-RAN general architecture [17].

Furthermore, 3GPP has also defined multiple split options of the radio

access network [18]. Fig. 2.5 shows a general NG-RAN scheme that details

a gNB with CU-Distributed Unit (DU) split. As a result, the radio access

network could include fronthaul (RU-DU), middlehaul (CU-DU, F1 inter-

face), and backhaul links (CU-5GC, NG interface). Additionally, DU and

CU could be collocated, avoiding the middlehaul.

Recently, [19] proposed and analyzed a service-based RAN, and the au-

thors expect that it will enable MNOs to create fast and efficient service pro-

visioning pipelines. The development of various open-source tools, libraries,

and components will help accelerate the integration, deployment, and use of

service-based RAN.

As previously described, multiple research works have contributed to the

evolution of the RAN architectures. Works [5] and [20] provide additional

details about these structures and other proposals. Mainly, the authors of

[20] present a comprehensive survey on multiple RAN architectures such
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Figure 2.5: NG-RAN diagram with CU-DU split [18]

as cloud-RAN, heterogeneous cloud-RAN, virtualized cloud-RAN, and fog-

RAN. They also compare the architectures from diverse perspectives, such

as energy consumption, OPEX, resource allocation, spectrum efficiency, and

network performance.

2.3 Evolution of 5G system towards 6G

Besides, the evolution of 5G continues through 5G Advanced towards 6G to

expand its usage by supporting new use cases and verticals. In this sense,

AI/ML will play a significant role in supporting Extended Reality (XR),

reduced capability devices, and network energy efficiency [3]. Fig. 2.6 shows

a tentative evolution plan of 3GPP networks presented in [1].

Since its introduction in release 15, 5G has targeted several main use

cases, such as enhanced Mobile Broadband (eMBB). The 5G system provides

superior network performance in terms of capacity; enables many new use
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Figure 2.6: Tentative evolution diagram to 6G [1]

cases and support for new verticals compared to previous generations of

3GPP systems [3].

Release 16 contains a set of improvements to the 5G system and multiple

features introduced in previous releases, such as those related to mission-

critical and conversational services. It mainly enhances the NR interface

and cooperation with Long Term Evolution (LTE). Numerous configura-

tions of carrier aggregation and 256QAM are introduced to increase the bit

rate. The main objective of this release is to make the 5G system suitable

for several verticals (e. g. Vehicle to Everything (V2X), automated facto-

ries, time-sensitive networks, and public safety). To this end, this release

introduces several enhancements to ultra-Reliable Low Latency Communi-

cation (uRLLC), non-public networks, slicing, and positioning services. In

addition, release 16 also upgrades coexistence with non-3GPP networks, and

network optimization [21].

On the other side, some improvements to 5G systems have been intro-

duced in release 17. It covers roaming and non-roaming approaches, policy

control and charging, among other general features such as location and
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emergency services. However, this release is mostly dedicated to consolidat-

ing and enhancing concepts of previous releases as services to the industry,

5G support to Internet of Things (IoT), proximity communications in the

context of V2X, and mission-critical services. The radio access network is

upgraded to support these services. The introduction of 1024QAM modu-

lation in downlink is an outstanding example. Additional details of these

improvements can be found in [22].

According to [1], release 18 is a significant evolution of the 5G system,

which motivated 3GPP to classify this release as 5G Advance. Mainly, it

will introduce numerous improvements related to artificial intelligence and

extended reality, which result in intelligent network solutions to support

multiple use cases. Fig. 2.6 represents the starting point of 6G in 2027.

However, the requirement of 6G will be previously defined in parallel with

5G Advanced evolution.

2.4 Energy Efficiency and Cost-Saving

Energy efficiency, power consumption, and cost-saving optimization are crit-

ical challenges for creating green communication environments. In recent

years, numerous research works have been focused on addressing these chal-

lenges in C-RAN, such as [4, 23–27].

The potential of C-RAN to reduce power consumption and cost is evalu-

ated in detail in [24]. A real case scenario was built accounting for different

service traffic profiles. The results show that C-RAN enables the reduction of

signal processing resources four times, significantly impacting cost reduction

23



and power saving.

The authors of [4] also presented an analysis of cell traffic profiles and the

impact of the multiplexing gain. This analysis demonstrated the capabilities

of C-RAN to improve cost-saving and energy efficiency. Furthermore, the

authors presented considerations to optimize green deployments in terms of

the Total Cost of Ownership (TCO). The performance is analyzed utilizing

the ratio between the BBU pool and fiber per meter cost. The results show

that values greater than 3 produce considerable cost reduction in a partially

centralized C-RAN. In contrast, values greater than ten are needed to cen-

tralize all the RRHs. The authors conclude that the advantage is higher in

smaller and denser scenarios (100 km2) than in larger systems (400 km2).

Authors in [25] survey the energy efficiency strategies in C-RAN envi-

ronments. The authors classified these techniques into three general groups:

RRHs on/off, renewable energy sources, and resource allocation optimization.

RRHs on/off techniques analyze the capability of the network to activate or

deactivate RRHs depending on the demand to reduce power consumption.

The renewable strategy aggregates alternative energy sources to the RRHs

to increase energy efficiency. The last method refers to design optimization

problems for resource allocation schemes to reduce power consumption.

Reducing power consumption in mobile communications is an attractive

area for many researchers. In [28], algorithms that control the RRHs on/off

(sleep or active modes) status to reduce power consumption were designed,

and the transition between these states was addressed considering the num-

ber of UEs per RRHs. This approach produced another challenge because

high mobility environments with high fluctuations generate a pin-pong effect
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(consecutive on/off transitions).

On the other hand, the authors of [27] propose two algorithms to optimize

power consumption and handover. The first algorithm selects a suitable level

of RRH switching. The second algorithm determines a suitable range before

changing the state of the Small Base Station (SBS). A genetic algorithm

is used to optimize the two parameters, and a Markov chain models the

transitions between active and sleep modes.

2.5 Machine Learning and Deep Learning

Machine and deep learning techniques have been widely used in many re-

search fields. Significantly, they have been employed in multiple tasks of mo-

bile communications, such as traffic classification, traffic load management,

and cluster formation [29–37].

Authors in [32] propose a centralized resource allocation scheme using

online learning, which addresses interference mitigation, maximizing energy

efficiency while maintaining the QoS requirements challenge in H-CRAN for

5G networks. Resource blocks (RBs) and transmission power are allocated

and subjected to inter-tier interference and capacity constraints. The re-

source allocation is performed at a dedicated controller integrated with the

BBU pool, and the MBS act as brokers between the controller and the RRHs

for control exchange. The considered online learning model was a stochastic

approximation method that solves the Bellman equation associated with the

discrete-time markovian decision process.

The authors of [35] used a Random Forests algorithm to design a learning-
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based resource allocation scheme for 5G systems. The algorithm is a multi-

class classifier to predict the modulation and coding scheme.It aims to reduce

the signal overhead in the network. Results show that due to the reduction

in signaling, the proposed algorithm performs better in high user-density

scenarios than in Channel State Information (CSI) schemes.

A reinforcement learning-based resource allocation strategy is proposed

in [36]. The algorithm consists of two stages. First, a neural network model

with LSTM cells was employed to predict the user position. LSTM is a

Recurrent Neural Network (RNN) potent in predicting time series. Con-

sequently, a reinforcement learning strategy based on the mobility pattern

previously estimated is used to maximize the network throughput.

2.6 Resource management strategies

To face the naturally fluctuating traffic between day and night, weekdays and

weekends, residential, commercial, and mixed areas dynamic resource allo-

cation algorithms have been proposed in many research works [5, 23, 38–43].

However, resource allocation in C-RAN faces many challenges that need at-

tention because dynamic resource management strategies for wireless commu-

nications are complex to design and implement. User mobility, radio channel

variations, coverage, interference, frequency reuse, power control mechanism,

and QoS requirements are some of the most critical factors contributing to

wireless complexity in resource allocation. For these reasons, optimized so-

lutions for resource allocation to ensure adequate resource utilization are

required.
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Authors in [38] survey the literature on clustering algorithms applied

to C-RAN architectures, evaluate the resulting configuration of BBU pools,

and present different techniques for RRH clusterings, such as multi-objective

optimization clustering and bin-packing approach. The authors conclude

that clustering can enhance the performance of the network. However, it is

space for more analysis to select the best technique depending on the metric

to optimize.

In [5] have been proposed an adaptive architecture for C-RAN with two

operation modes according to the average user density: High and Low-density

modes that will coexist in real 5G networks. The authors presented a Multi-

Objective Resource Allocation (MORA) to optimize data rate and power

consumption in the high-density mode. On the other hand, total cost and

delay become the objective functions in the low-density mode.

A resource allocation strategy is implemented in a centralized architec-

ture in high-density mode. However, a few RRHs with baseband processing

capability are deployed in the low-density mode, where the authors proposed

a distributed resource allocation strategy to reduce latency and cost.

On the other hand, an optimization approach is used in [23] to decom-

pose the resource allocation problem into three sub-problems: hybrid energy

management, data requesting, and power allocation. Authors consider that

each RRH is equipped with an Energy Harvesting (EH) module, including

a solar panel or wind turbine, a rechargeable battery, and a data buffer,

as only renewable energies are not enough RRHs are also connected to the

power grid.

Letter [40] addresses the problem of maximizing the total throughput of
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the network via joint user association and power allocation in H-CRAN, ac-

counting for QoS requirements. A generalized Stackelberg game approach

was applied to this problem. A combination of centralized and distributed

techniques was designed to achieve the solution. Significantly, the authors

solved the user association problem using a centralized strategy while em-

ploying a distributed approach in the power allocation scheme.

A framework to optimize user association, radio resource allocation, and

power allocation in H-CRAN is also proposed by [44]. In this case, the opti-

mization problem is formulated to maximize the overall rate while considering

RRH constraints, interference threshold for macro RRHs associated devices,

and QoS constraints. The authors employed a matching game and Lagrange

dual-decomposition to optimize the transmitted power.

Additionally, the authors in [45] formulated a joint user association and

resource allocation problem to provide a better QoS to the IoT devices in

the downlink of a fog network. They take into account the demand of QoS

imposed by uRLLC and eMBB services. A matching game approach is also

used to initiate a stable association between IoT users and Fog infrastructure.

A hybrid approach for RRH clustering based on game theory is presented

in [41]. The authors address the BBU-RRH association problem in a decen-

tralized manner intending to reduce power consumption. At the same time,

the adequate number of active acpBBU is calculated using a centralized strat-

egy. The authors propose two approaches: the first relies on the best response

algorithm, and the second is based on a reinforcement learning method. The

results show comparable performance to the fully centralized approach. The

authors of [42] proposed an RRH clustering scheme that optimizes the power
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consumption and re-association rate of the UEs performing handover. In this

scheme, a non-cooperated game is used to solve the problem.

Authors in [43] have proposed two strategies for RRH clustering: first a

centralized approach where a coalitional game is formulated. However, as

this process is an exhaustive search that explores all possible solutions it is

intractable for high-density scenarios. For this reason, a distributed heuristic

approach was proposed based on a merge and split algorithm adapted from

image processing theory. The algorithm consists of two actions: coalitions

are merged if the resulting coalition has greater utility. Similarly, coalitions

are divided if the sum of the utility of each resulting part is greater than the

utility of the joint coalition.

The work in [46] proposes a multi-objective optimization strategy to max-

imize throughput and minimize power consumption. It uses the Pascoletti

and Serafini methods to cluster RRHs from various locations and allocate

them to BBU pools. This strategy outperforms the traditional greedy ap-

proach. Given the NP-completeness of the problem, [47] poses it as a bin-

packing approach and proposes a heuristic algorithm. Similarly, [48] uses the

well-known metaheuristic Tabu Search. These three techniques are reviewed

in [38] and studied comparatively, showing similar performance. However,

results are presented in a synthetic scenario with 15 RRHs randomly dis-

tributed. The maximum amount of RRHs that a BBU pool could handle is

used as BBU pool capacity.

A multi-objective optimization problem for RRH clustering that mini-

mizes the network transmission delay and power consumption is introduced

in [49] by organizing RRHs in disjoint clusters to reduce the number of active
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BBUs. Weighted-sum and ϵ–constraint methods are used to solve the prob-

lem. The considered network topology is seven hexagonal cells with a radius

of 500 m. The paper in [40] addresses the problem of maximizing the total

throughput of the network via joint user association and power allocation

in C-RAN, accounting for QoS requirements. The validation scenario is one

MBS, 30 RRHs, and 80 UEs in a square area of 500 × 500 m2.

The works mentioned above propose promising resource management

strategies. However, the computational capacity available at BBU pools and

adaptive capacity to avoid under-provisioned and over-provisioned networks

have not been considered. Moreover, for simplicity, results are evaluated

using synthetic scenarios, which do not consider the complexity of mobile

networks.

2.7 ML for traffic forecasting

Machine and deep learning techniques have been widely used in several re-

search fields and wireless communications to optimize traffic classification

and load management [34,50,51].

In [50], a multitask learning architecture using deep learning is presented.

This work aims to analyze the accuracy of deep learning architectures in

mobile traffic forecasting. The authors employ a dataset of Telecom Italia

to predict minimum, average, and maximum traffic loads. Different deep

learning models are tested, such as RNN, 3D-Convolutional Neural Network

(CNN), and a combination of RNN and CNN. Results show that RNN-CNN

can extract geographical and temporal traffic features.
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The research [34] aims to apply data analysis techniques to support

network operators to maximize resource usage during the planning stages.

The authors investigate the prediction accuracy using artificial Neural Net-

works (NNs), especially a Multilayer Perceptron (MLP), and SVM. Results

show that SVM outperforms acMLP prediction capabilities.

Although the works mentioned above lie in the analysis of the performance

of ML strategies in traffic forecasting tasks, they do not apply forecasting

to optimize the network resources. For this reason, how to use them in

optimizing resource management algorithms in 5G and C-RAN environments

remains an issue.

Mo et al. [51] propose a deep learning algorithm based on LSTM cells

that predicts network resource requirements at the optical switch where

each BBU pool is connected (e.g., Reconfigurable Optical Add/Drop Multi-

plexer (ROADM)). The authors consider a region of New York City where

9 ROADM nodes cover 400 km2, and each ROADM routes 64 RRHs. Un-

like [50] and [34], this work employs forecasting to optimize the network. It

predicts an increase in the demand 30 minutes in advance to reallocate the

additional traffic to another BBU pool. However, the instantiated resources

at BBU pools remain underutilized in low-demand situations. Moreover, QoS

with delay restrictions could be affected due to the reallocation to a farther

BBU pool.

31



2.8 RAN deployment optimization

Multiple research works have focused on defining strategies to deploy and

optimize 5G and B5G networks [52–58].

A MILP algorithm is proposed in [52] to minimize the network deploy-

ment cost and latency of a C-RAN with Mobile Edge Computing (MEC)

nodes. Moreover, they present a heuristic algorithm because of the com-

plexity of the MILP approach. The main goal of this paper is to optimize

the MEC node placement and the C-RAN deployment. Although the pro-

posed strategies are novel and could be of interest because they implement

a joint optimization considering MEC and C-RAN, the analysis is limited

to the transport network and the placement of BBU pools and MEC nodes,

without considering the RRH deployment and the mobile network demand

plane.

In [53], the authors propose an energy-effective radio network deployment

where the system could select a subset of RRHs according to the traffic

demand simulated using Traffic Demand Points (TDPs), which concentrate

the data rate of a specific zone to satisfy the QoS requirements of the potential

UEs. However, the problem is divided into two sub-optimal problems: RRH-

TDP association and RRH selection, which could reduce the possibility of

finding the optimal solution for the network deployment. On the other hand,

the authors consider two synthetic scenarios to validate the results. The first

scenario depicts a dense square region of 250m×250m with two micro-RRHs

and seven pico-RRHs, while the second represents an area of 500 m× 500 m

with three micro-RRHs and 13 pico-RRHs.

Besides, the authors in [54] recently proposed a hybrid fronthaul solution
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based on fibers and Free-Space Optics (FSO) to minimize the deployment

costs in dense urban scenarios. They formulated and compared two Integer

Linear Programmings (ILPs): joint and disjoint approaches. The disjoint

method splits the problem into two sub-problems: the RRH placement and

the fronthaul deployment. At the same time, the joint strategy only solves

one optimization problem to deploy the whole C-RAN. The authors con-

clude that the joint approach is better than the disjoint strategy regarding

deployment cost. Although they propose a fascinating solution to reduce

the deployment cost of a C-RAN with hybrid fronthaul, there is room for

improvement by introducing realistic UEs to model the traffic demand, vali-

dating the results under realistic RRH possible locations.

On the other hand, the authors in [55] propose a MOO problem for

small cell planning, which considers fiber and wireless backhaul technolo-

gies and two types of BSs. The MOO aims to determine the optimum

type and location of the deployed BSs. The authors propose a joint cell

and fiber backhaul planning algorithm employing heuristic techniques. This

work is also of interest because it focuses on the last standard of Passive

Optical Networks (PONs), called Next-Generation Passive Optical Network

2 (NG-PON2), for the fiber deployment of the backhaul; however, it does

not consider a C-RAN environment.

In [56], the authors design a joint optimization framework considering

the costs of the mobile network and its fronthaul in a C-RAN ecosystem.

Deployment cost is analyzed under different scenarios; they also extend the

work to consider three optical fronthaul technologies: Common Public Ra-

dio Interface (CPRI), Physical Layer Split (PLS), and Analogue Radio-over-
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Fiber (ARoF). Although the authors provide a detailed fronthaul analysis,

traffic profiles are simplified to reduce model complexity. Hotpots are consid-

ered to generate traffic without accounting for different services and UEs. On

the other hand, the radio network deployment is simplified by introducing a

fixed coverage radio per RRH instead of modeling the Signal-to-Noise-plus-

Interference-Ratio (SINR) using a suitable propagation channel model.

Additionally, the authors in [57] propose an optimization problem that

minimizes the number of RRHs in a C-RAN context. Following the same

approach as [53], they use the concept of TDPs to simulate the traffic de-

mand, where the TDPs are allocated at the center of the demand zones. The

algorithm starts with all the possible RRHs and connects each TDP to the

nearest RRH. Then, the proposed algorithm turns off some of the RRHs at

each iteration until the percentage of unsatisfied TDPs exceeds 0.1 %. How-

ever, for the sake of simplicity, the traffic demand of each TDP is established

without UE and service modeling, considering only a capacity constraint,

and the RRH-TDP association is based on a minimum distance approach.

In [58], the authors propose a framework to improve resource efficiency at

the BS level. They employ a joint optimization problem to efficiently allocate

the resources of the network slices, the cell-slice association, and the UE-BS

connections. They include SINR requirements and different slice services in

the network optimization problem. This work demonstrates that realistic

scenarios with UEs and services can be modeled.

To the best of our knowledge, no published papers include cell cooper-

ation in radio network deployment algorithms, saving energy, and reducing

costs at different frequency ranges and split options in a realistic scenario.
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The works mentioned in this section propose promising radio network deploy-

ment strategies. However, there is room for improvement because they skip

traffic generation by considering only demanding points without accounting

for services and UEs. Moreover, the RRH coverage and the RRH-TDP as-

sociation are simplified, which results in synthetic scenarios, usually with a

small number of cells, that do not reflect the complexity of mobile networks.

2.9 Challenge and open issues

As C-RAN has been standardized as part of the NG-RAN, it must address the

radical evolution in flexibility, security, and performance to support uRLLC,

eMBB, and Massive Machine Type Communications (mMTC) services. Mul-

tiple parameters must be enhanced, such as latency, throughput, resource

allocation, handover, energy efficiency, power consumption, and cost-saving.

Optimizing those parameters demands much effort from the research commu-

nity and the combination of some of the most promising technologies, such

as Software-Defined Networking (SDN) and Network Function Virtualiza-

tion (NFV). This complexity is a big challenge. In this section, a description

of open challenges and issues the research community is facing are summa-

rized.

High fronthaul capacities needed

Fronthaul links between BBUs and RRHs must have high bandwidth capabil-

ity with low delay and cost requirements. The fully centralized architecture

demands the highest fronthaul bandwidths because the signal is completely
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processed at the BBU pool resulting in considerable overhead. Functionality

split options have been defined by [59] to reduce the fronthaul bandwidth

requirements. However, the potential of C-RAN, depending on the number

of centralized functionalities, is reduced; [60] carries out a detailed analysis

of this situation.

RRH clustering (BBU-RRH mapping)

Designing real-time RRH clustering is a real challenge. BBU-RRH mapping

methods with efficient BBU coordination algorithms with minimal overhead

are highly complex problems. They should optimize multiple parameters,

such as load balancing, multiplexing gain, inter-cell interference, through-

put using Coordinated Multipoint (CoMP), handover frequency, energy effi-

ciency, or power consumption. Many authors are dedicating efforts to over-

coming this challenge [ [38,39,42,61–63].

Security and management of network slicing

Another significant challenge in C-RAN is security in terms of user privacy

and isolation between slices. As resources are shared between BBUs, break-

ing user privacy and accessing secured data is possible. In addition, as

C-RAN has to support services of different Mobile Virtual Network Oper-

ators (MVNOs) using network slicing over the same infrastructure, robust

isolation among slices is a significant challenge. Hence, providing reliable,

cost-effective, and QoS-guaranteed network slices under C-RAN architecture

is a challenge in 5G. Works [64–66] aim to overcome these issues.
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Resource management

The required density of RRHs to provide high data rates incurs high compu-

tational complexity due to the huge amounts of data related to signal process-

ing, resource allocation, and RRHs/BBUs coordination. This complexity is

a big challenge facing the establishment of scalable networks. Resource allo-

cation strategies, which determine the allocation of centralized computation

resources, fronthaul capacity, radio spectrum, and power allocation is still a

challenge. Some of the works that are related to this challenge have been

presented in [25,26,40,44,67].

One of the fundamental challenges is how to assign isolated resources

efficiently to the different virtual operators. Resources allocation can be

based on multiple criteria, e.g., bandwidth, data rate, power, interference,

pre-defined contracts, channel conditions, traffic load, or a combination of

these parameters. Coordination and communication protocols have to be

well designed to be used between the Infrastructure Provider (InP) and the

MVNOs [68].

Resource management often has to solve an optimization problem based

on a set of constraints, the exhaustive search strategy is not suitable because

it demands high computational complexity in high-density scenarios. For

this reason, resource allocation using optimization techniques such as game

theory, graph theory, matching theory, and heuristic techniques to minimize

the high computational complexity of solving the combinatorial optimization

problems is one of the current aims of the research community [16,44,69].

Introduction of adaptive machine learning techniques to achieve a proac-

tive network capable to adapt to data demands (e.g., IoT demands) that
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fluctuate over time and places, while optimizing the available resources is

an important challenge [25, 32, 37, 50, 70]. Due to that, InPs rent the maxi-

mum peak of capacity demanded by each service provider or mobile network

operator regardless of the instantaneous capacity that really is needed.

Energy efficiency, power consumption and cost saving

Increasing the energy efficiency of mobile communication systems while the

cost is reduced has been an important research field in recent years. The

integration of different technologies (e.g. SDN, NFV, MEC) to build the 5G

networks creates a new challenge: How to manage the high flexibility and

capacity demanded by the network while energy efficiency, power consump-

tion, and cost are enhanced. Many authors have proposed Green C-RAN

deployments to address this challenge [4, 24–27, 71]. For instance, MEC and

caching, energy-efficient designs, multi-dimensional resource management,

and physical layer security have been identified as major challenges.

2.10 Conclusions

This chapter has presented a rigorous study of the related works. It sum-

marizes the advantages and disadvantages of the analyzed works. After the

analysis of numerous promising works, it is possible to conclude that there

is room for improvement in multiple research directions, such as energy and

cost footprint reduction of the mobile networks, fronthaul design, and opti-

mization, optimization deployment of each plane of the network (for instance

BBU and RRH placement), and the design of strategies to efficiently manage
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the centralized computational resources. Additionally, It has been identified

that most of the analyzed works employ synthetic scenarios that could not

represent the complexity of the mobile networks. These simplifications may

reduce the significance of the results.
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Chapter 3

Machine Learning: Brief

Overview

3.1 Introduction

This chapter presents a summary of machine learning techniques. In section

3.2, a description of the main categories of ML approaches has been intro-

duced. Unsupervised and supervised learning, reinforcement learning, deep

learning, and federated learning are briefly described. Additionally, sections

3.3, 3.4, and 3.5 describe in detail the machine learning techniques that have

been considered in the thesis. However, multiple approaches have been tested

and compared, obtaining better results with SVM, TDNN, and LSTM.
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3.2 Machine Learning Categories

The enormous increase in the mobile traffic demand combined with the com-

plexity of the current and future heterogeneous mobile networks produce the

necessity of efficient network management and orchestration strategies. For

this reason, ML and AI are being widely considered to introduce cognitive

capabilities to the B5G networks, as discussed in the literature review.

This section presents a general overview of ML techniques, as well as a

detailed mathematical analysis of the models that have been employed in this

thesis. Fig. 3.1 shows the multiple categories of machine learning techniques.

Figure 3.1: Categories of machine learning techniques

Supervised learning

Supervised learning is a type of machine learning approach that utilizes a

labeled database for prediction or classification. Namely, these algorithms

take as input training data to learn specific features. This procedure is called

the training process. Once the algorithms finish the training process, they

are ready to test their performance in a testing database which commonly
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is not part of the training procedure. Fig. 3.2 shows a block diagram that

represents the structure of a supervised learning algorithm.

Figure 3.2: Block diagram of supervised learning

In general, algorithms in this category include classification and regression

analysis, which have been considered in multiple proposals for mobile network

management and characterization of data traffic profiles [72]. Some of the

most employed algorithms or strategies could be SVM, linear regression,

logistic regression, naive Bayes, decision trees, and neural networks, among

others.

Unsupervised learning

The fundamental difference between unsupervised learning algorithms and

supervised approaches is that they do not need a labeled database. This

characteristic is helpful when unlabeled databases are considered in clus-

tering or classification groups. Especially this branch of machine learning

algorithms is commonly used to detect hidden patterns in data. Some of the

most popular unsupervised algorithms are Principle Component Analysis,

K-means clustering, and KNN (k-nearest neighbors), among others.
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Reinforcement Learning

Another branch of machine learning systems is reinforcement learning. This

strategy is a change of paradigm regarding the previously discussed tech-

niques because the system learns iteratively. It is not based on a dataset. A

reinforcement learning algorithm contains an agent and an environment, as

shown in Fig. 3.3.

Figure 3.3: Reinforcement learning block diagram

In general terms, the system could be in a set of possible states (St).

The agent executes an action (At) at each system state and observes the

response of the environment (St) and also an associated reward Rt. This

reward is fundamental and should be carefully designed to represent the

effect of the action on the environment. It should reward the desired results

while introducing a penalty for negative actions. The agent iterative searches

for possible state-action pairs (policies) to make the decisions. After the

iterative process, the algorithm converges for decision-making with higher

long-term rewards. Reinforcement learning helps to solve multiple resource
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management issues in mobile communication systems [73].

Deep Learning

Fig. 3.4 shows an example of a deep learning architecture. In general terms,

the architecture of a deep learning model contains an input layer, hidden

layers, and an output layer. The system is trained, and the knowledge is

saved in the hidden layers. However, the deep learning theory is not limited

to this architecture. Multiple strategies such as CNNs, 3D-CNNs, RNN, and

LSTM have been considered as has been mentioned in chapter 2.

Figure 3.4: Example of Deep Learning Architecture

Federated Learning

Federated Learning (FL) is a modern machine learning approach that has

motivated researchers to study multiple novel applications. Unlike traditional
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machine learning approaches, FL splits the training process into multiple

local models. Consequently, the models are trained using the decentralized

technique, which is a fundamental advantage in mobile networks because of

the strict regulations about data privacy; it is not practical to concentrate

the customer data in a centralized location [74]. Fig. 3.5 shows a federated

learning model diagram.

Figure 3.5: Federated learning block diagram.

3.3 Support Vector Machine

SVM theory was first proposed in [75]; since then, it has been widely used in

classification and regression tasks of different scientific and engineering fields.

The original idea focuses on element classification. Let us assume a simple

case to illustrate how it works. Fig. 3.6 shows a set of training samples that

belong to two classes (circles and squares).

The aim is to find the best hyperplane (dotted line in Fig. 3.6) for
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x1

x2

Figure 3.6: Basic classification example of SVM.

classifying the data. The algorithm uses optimization theory to maximize

the width of the street. Let us assume that ω is a vector perpendicular to

the hyperplane, and u is a vector that points to an unknown observation.

The decision rule used to decide if u belongs to the circle class is presented

in (3.1)

u · ω + b ≥ 0 (3.1)

It means that if the projection of u onto the perpendicular line of the hy-

perplane is greater than the distance from the origin to the hyperplane, then

the sample is on the right side (circle), where b ∈ R and · is the scalar

product. However, as the idea is to find the line that maximizes the width

of the street, let’s take the square (xs ∈ S) and circle examples (xc ∈ O)
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into (3.2) and (3.3), respectively, which guarantee that all the samples on

the dataset are out of the street. S and O represent the set of squares and

circles, respectively.

ω · xs + b ≤ −1 (3.2)

ω · xc + b ≥ 1 (3.3)

Equations (3.2) and (3.3) are joint into (3.4), introducing the variable yi

yi(ω · xi + b) ≥ 1 (3.4a)

yi =

+1, xi ∈ O

−1, xi ∈ S,
(3.4b)

where xi represents the vector of the ith training sample. It is possible to

compute the width of the street (W) by taking one example per class over

each boundary due to they hold the equality condition in (3.4a); the result

is shown in (3.5)

W = (xc − xs) · ω

|ω|
=

2

|ω|
(3.5)

where |·| denotes the Euclidean norm. SVM aims to maximize (3.5) subject

to (3.4) to obtain the best hyperplane for classifying data. After solving this

optimization problem using a Lagrangian function, it is possible to realize

that the solution depends only on the samples, and vector ω is a linear

combination of those samples [75].

The work [76] extended this strategy to address regression tasks. In

this case, the idea is to find a linear function f(x) = x · ω + b that fits

the training data. The optimization problem is formulated to minimize the

difference (error) between the predicted value extracted from f(x) and the
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observation of the regression. The mathematical process is detailed in [76].

Equation (3.6) shows the fitting function

f(x) =
Nt∑
i=1

αixi · x+ b (3.6)

Where ai and b are real values obtained after the training process where the

optimization problem is solved, Nt is the number of samples in the training

dataset.

The previous analysis of SVM strategies assumes that it is possible to

classify or predict data based on a linear hyperplane or a linear fitting func-

tion. However, in many applications, linear approaches can not process the

data. In those cases, finding a linear function that describes the data is not

suitable. A transformation (Φ) over the data plane to solve this problem

is applied; this method is called the kernel trick. After the conversion, it

is possible to use a linear approach in a higher-order space to fit or classify

data. The fitting function after applying the kernel is shown in (3.7).

f(x) =
Nt∑
i=1

αiK(xi,x) + b (3.7)

where K(xi,x) = Φ(xi)Φ(x) depicts the kernel function.

3.4 Time-Delay Neural Network

Artificial NNs have been widely used during the last years to solve different

machine-learning problems, even regression and time series forecasting tasks.

TDNN is a combination of typical NN architecture and an input layer that

reshapes sequence time series data into parallel (shift register), employing
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a set of delays (N) to use the previous time steps as features of the NN.

The learning process takes place in the hidden layers of the neural network.

Fig. 3.7 shows the TDNNs structure, and the basic block diagram of a neural

network entity (also called a neuron). Equation (3.8) shows the behavior of a

single neuron. The inputs are multiplied by the weights (W ), and a bias (b)

is added before applying the activation function (fa) to compute the output.

The knowledge is in the weights and biases of the neurons in hidden layers.

No = fa(W · X + b) (3.8)

where X is the input vector, and No is the output.

3.5 Long Short-Term Memory

Traditional NNs have outstanding prediction performance based on the sta-

tus of input variables. However, they are not able to remember sequential

data. RNNs try to address this issue using a feedback loop to create a hidden

state where the information of previous time steps is stored. RNNs predict

the subsequent output based on the current input and the hidden state. Fig

3.8(a) shows a basic structure of a recurrent neural network unit.

The hidden state of the RNN is upgraded recursively, using the same

approach of a neural network (see (3.8)) but considering the previous hidden

state (ht−1) as another input. Equation (3.9) shows the process to upgrade

the hidden state (ht)

ht = fa(W · [ht−1, Xt]+ b) (3.9)

where W is the weight vector, fa the activation function, and [ht−1, Xt]
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Figure 3.7: General scheme of a time-delay neural network for time series forecasting with

N previous time instants.

denotes the concatenation or stack operation between the previous hidden

state and the current input, respectively. The scheme of an RNN shown in

Fig 3.8(a) could be unrolled to create deeper designs, such as the multilayer

RNN in Fig. 3.8(b), where the hidden states of the first layer are inputs of

the second layer.

Those architectures face the vanishing gradient problem that was solved

by [77], defining a different kind of RNN called LSTM. Moreover, LSTM

improves long-term predictions.
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Figure 3.8: General deep learning architecture with LSTM cells

The structure of an LSTM entity is shown in Fig 3.8(c). The critical

aspect of an LSTM unit is the cell state denoted by ct. LSTM units could

remove and aggregate information to the cell state. Those processes are regu-

lated by gates that combine a neural network and a pointwise multiplication;

it controls the amounts of information at the output of the gate. The output

of the neural network of each cell is often obtained using a sigmoid activation

function, which allows quantifying the portion of the information that could

pass through the gate with a coefficient from zero to one. As the output is a

pointwise product, zero indicates no signal to the output, and one represents

that the whole signal remains in the output.

First, the forget (f) gate decides what information to remove from the

cell state. Consequently, the input (i) and gate (g) gates decide what in-

formation aggregate to the cell state. Finally, the output gate (o) decides

what information goes to the output. The whole process of the LSTM is
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summarized in (3.10),

ft = σ(Wf · [ht−1, Xt]+ bf) (3.10a)

it = σ(Wi · [ht−1, Xt]+ bi) (3.10b)

ot = σ(Wo · [ht−1, Xt]+ bo) (3.10c)

gt = tanh (Wg · [ht−1, Xt]+ bg) (3.10d)

ct = ft ∗ ct−1 + it ∗ gt (3.10e)

ht = ot ∗ tanh ct, (3.10f)

where Wk and bk are the weights and the bias of the neural network in

gate k, respectively. The activation functions of the gates are σ or tanh,

which represent the sigmoid and hyperbolic tangent functions, respectively;

∗ operation denotes the pointwise product.

3.6 Conclusions

A resume of the machine learning categories has been introduced. The ap-

proaches mentioned in this chapter demonstrate that a wide range of options

exists to optimize future network performance. Especially the strategies that

have been widely employed in mobile network deployment and optimization.

The evolution of these techniques and the future network requirements will

open the door to multiple research works.
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Chapter 4

Simulation Platform

4.1 Introduction

As mentioned, most of the analyzed works use synthetic scenarios to validate

their contributions. However, these scenarios are not suitable to represent

the enormous complexity of mobile networks. For this reason, a big effort is

done to define a realistic C-RAN platform to test the different optimization

algorithms proposed in the thesis.

An initial version of the mobile network deployment over Vienna city is

defined by [78]. It contains the site locations, the parameters assigned to the

BSs, and the propagation model. This version considers a Fourth-Generation

(4G) heterogeneous radio access network deployment with a traditional RAN

architecture. The research community has widely used it to validate multiple

optimization algorithms [79,80].

An upgraded version of this scenario, oriented to implement C-RAN in

a flexible simulation platform, is introduced using Matlab. Section 4.2 de-
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scribes the features of the platform, such as UEs, best effort and GBR ser-

vices, and the resource demand estimation strategy.

This platform has been used to test BBU-RRH association algorithms and

different resource management strategies to allocate the available resources

at BBU pools or CUs. Additionally, an optimization of the RRH deployment

is introduced to reduce not only the CAPEX and OPEX but also the energy

footprint of B5G networks.

4.2 Simulation platform description

The map covers an area of 455 km2 with a perimeter of 86 km. The blue

and green points over the map in Fig. 4.1 represent the MRRHs and possible

BBU pools, respectively, while the red points depict the SRRHs.
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Figure 4.1: Full Vienna city map

56



The MBSs in the initial version of the scenario were sectorized into 3 or 2

cells. Each sector of the MBSs is considered a MRRH in the proposed struc-

ture. As a result, the design includes 628 sites, distributed in 233 MRRHs

and 221 SRRH, representing a total of 849 RRHs and 21 BBU pools (see

Table 4.1).

It is essential to mention that when fully centralized C-RAN deployment

(split option 8) is considered, MRRHs and SRRHs contain the same func-

tionalities. However, the platform has the feature of representing different

split options. For this reason, the notation macro/small RRH is employed,

but in the case of C-RAN option eight, the notations RRH or RU are suit-

able. However, this thesis keeps the macro/small notation because it allows

the establishment of different parameters for each. For instance, frequency

bands, antenna gain, and transmitted power.

Table 4.1: Distribution of the whole deployment

Parameters Value

Dimension 455 km2

Sites 444

MRRHs (sites) 628(233)

SRRHs (sites) 221(221)

BBU pools 21

RRHs 849

As can be seen in Fig. 4.1, the scenario considers the whole city of

Vienna, where there are rural and urban zones, which allows the analysis

of a wide range of data traffic intensities. C-RAN efficiently manages ultra-
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dense deployments, such as the metropolitan area that is shown in Fig. 4.2.

MRRHs SRRHs BBU pools

Figure 4.2: Metropolitan area of Vienna city.

This city zone represents a heterogeneous deployment, being useful to

test the performance of the proposed algorithms and the C-RAN platform

itself because it depicts the densest traffic region where the capacity of the

network may not be sufficient to satisfy the demand.

The general network distribution of this zone is summarized in table 4.2.

The location of BBU pools intentionally matches with MRRH coordinates

because of the availability of infrastructure and resources at these locations.
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Table 4.2: Deployment of the Metropolitan Area.

Parameters Value

Area (km2) 25

Sites 228

MRRHs (sites) 51(17)

SRRHs (sites) 221(211)

BBU pools 3

RRHs 272

4.2.1 Traffic Generation

As has been mentioned, mobile networks face dynamic environments with

data traffic load fluctuations according to the type of zone and the hour of

the day. For this reason, different strategies to generate the traffic profile are

utilized.

The simplest strategy considers three types of cells (office, residential and

mixed). In this case, the traffic profiles are modeled by multiple Gaussian

functions; controlling the mean and deviation is possible to adapt the data

traffic demand to realistic profiles. An example of this traffic generation

strategy is presented in Fig. 4.3.

On the other hand, the metropolitan area presented in Fig. 4.2 allows

for a detailed analysis of C-RAN based on the instantaneous computational

capacity required to manage the traffic of the RRHs. Hence, instead of using

the data traffic per hour profile, realistic UEs and services and consequently

traffic models per service have been introduced. This strategy is fundamental
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Figure 4.3: Traffic profile for office, residential and mixed cells.

to account for QoS constraints, service priorities and efficiently manage the

resources at the BBU pools.

Conversational, streaming, and interactive services have been modeled

based on the packet-level models defined in [81], [24] and [4] and summarized

in Table 4.3.

Parameters such as packet size and interval of arrival have been extracted

from [24] and [82]. Each UE generates only one service simultaneously or

remains in idle status with a probability Pidle, which is used to control the

traffic intensity and to emulate the time interval where the simulation is

running. The values of Pidle are selected for each time interval and RRH

type (office, mixed, and home) following the traffic distribution shown in

Fig. 4.3.

Furthermore, the weight (w) is used by the scheduler to guarantee the
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Table 4.3: Service modeling parameters

Services w Size
Time

Duration (s)
Traffic

interval mix (%)

VoIP 83
Packet:

20 ms Exp(120) 25
40 B

Video 59
Packet:

100 ms Exp(300) 25
[20-250] B

Web 36
Page:

Exp(30) Exp(400) 30
mean = 315 kB

FTP 36
File:

Exp(180) − 20
mean = 2MB

QoS. The scheduler assigns higher priority to VoIP and Video due to their

delay constraints. Finally, the traffic mix parameter describes the percentage

of active sessions per service and RRH.

The session duration follows an exponential distribution, except for FTP

services, where total duration depends on the size of the packet to be trans-

mitted and the UE throughput [81]. The time interval between consecutive

packets is fixed at 20 ms and 100 ms for VoIP and video streaming ser-

vices, respectively, and follows an exponential distribution for non-real-time

services.

Initially, the UEs have been placed at random positions but realistic UEs

coordinates can be uploaded. The UEs are served by the RRH that provides

the highest SINR in the downlink. The high interference that the MRRH

could cause to the UEs connected to a SRRH are avoided assuming that
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MRRHs and SRRH operate in different frequency bands.

Furthermore, the random processes in the service generation produce

enough traffic fluctuations to represent the variability of the required com-

putational capacity at BBU pools. For this reason and because beamforming

and handover are not the focus of the analysis, the UEs remain static during

the simulation time to keep the simplicity of the system model. Then, the

SINR per UE remains constant and is calculated using (4.1):

SINR [dB] = PRRH[dBm] +GRRH[dB] +GUE[dB] (4.1)

− L[dB]− 10 log(N [mW] + I[mW]),

where PRRH is the power transmitted by the RRH, GRRH, and GUE are

the RRH and UE antenna gains respectively, L is the path-loss from the

RRH to the UE, and N and I are the UE thermal noise, and the interference

received power respectively.

To calculate the required computational resources to manage the traffic

of the RRHs, the Modulation and Coding Scheme (MCS), as well as the

number of needed Physical Resource Blocks (PRBs) to transmit a packet,

should be known. The mapping between MCS and SINR is summarized in

Table 4.4 and has been obtained using [83], which presents a link-abstraction

model based on mutual information at the modulation symbol level. The

number of PRBs required to transmit a packet is extracted from [84].
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Table 4.4: Mapping between SINR and MCS.

SINR [dB] Modulation order (M) code rate (ρ)

< −5 QPSK (2) 0.076

[−5, 1] QPSK (2) 0.3

[1, 3.1] QPSK (2) 0.44

[3.1, 6.1] QPSK (2) 0.59

[6.1, 9] 16QAM (4) 0.48

[9, 13] 16QAM (4) 0.6

[13, 16] 64QAM (6) 0.65

> 16 64QAM (6) 0.85

4.2.2 Resource Demand Estimation

The introduction of UEs and realistic services generation at the packet level

allows estimating the network traffic load in terms of the Required Compu-

tational Capacity (RCC) at BBU pools.

The RCC is defined as the minimum amount of computational operations

necessary to implement physical layer functions at the BBU pool, such as

channel coding, modulation, MIMO precoding, and Orthogonal Frequency-

Division Multiplexing (OFDM) symbol mapping. The RCC is calculated

based on the strategy proposed by [85] and modified by [81] to introduce

parallel processing. The strategy uses a Long-Term Evolution (LTE) ref-

erence scenario, where the RCC and a set of scaling factors that describe

how the RCC evolves to other scenarios are tabulated. Those scaling factors

depend on the network parameters and the physical function to be imple-
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mented. Equation (4.2) describes this method.

C =
∑
iϵI

Cref
i

∏
xϵX

(
xact
xref

)si,x

X = {Bw, Na, Q,M, ρ,Ns} ,
(4.2)

where C represents the RCC of the desired scenario, Cref
i is the processing

capacity needed to address the function i in the reference scenario in Giga

operations per second (GOPS). Subscripts act and ref depict actual scenario

and reference scenario respectively, si,x is the scaling factor of the function i

and parameter x ∈ X . The set X contains the operating bandwidth (Bw), the

number of antennas (Na), the quantization resolution (Q), the modulation

order (M), the code rate (ρ) and the number of streams (Ns ≤ Na). Finally,

set I contains the PHY functionalities that have been shown in Table 4.5

and Fig. 4.4.

Fig. 4.4 shows the protocol stack and the split options, which were con-

sidered to face the extreme traffic demand of the fronthaul links. As the

resources are centralized at BBU pool entities and the functionalities are

virtualized, it is possible to split those functions into two groups. The func-

tions that may be implemented by user sessions, processed independently

and in parallel are called user-processing functions (UFs), such as channel

coding and modulation. The functions that are common to all users in the

same carrier component/cell and could not be split by user sessions, such

as OFDM modulation, are denoted as common-processing functions (CFs).

Table 4.5 summarizes the reference computational capacity, as well as the

scaling factors of the considered PHY functions.
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Figure 4.4: 3GPP Protocol stack split options.

Function indexes are the identifiers of the PHY functionalities, which

have been shown in Fig. 4.4. The total RCC of a BBU is calculated by (4.3):

Cr,t =

NCF∑
i=1

CCF
r,i,t +

Nr,t∑
u=1

NUF∑
j=1

CUF
r,u,j,t, (4.3)

where Cr,t is the RCC to handle the RRH r at time t, CCF
r,i,t is the capacity

associated with the common functions i needed to handle the RRH r at time

t, and CUF
r,u,j,t is the capacity to run the UF j of the active UE u through the

RRH r. NCF and NUF are the amount of CFs and UFs respectively, while
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Table 4.5: Scaling factors (si,x) for function i and RCC of the reference scenario (Cref
i )

(based on [81,85]).

Function index i Ci,ref Bw Na Q M ρ Ns

1 (CF) 1.3 1 1 1.2 - - -

2 (CF) 2.7 1 1 1.2 - - -

3 (UF) 1.3 1 1 1.2 0 0 1

4 (UF) 5.3 1 2 1.2 0 0 0

5 (UF) 1.3 1 0 1.2 1.5 1.5 1

6 (UF) 2.7 1 0 1.2 1.5 1.5 1

7 (UF) 1.3 1 0 1.2 1 1 1

8 (UF) 8 1 0 1.2 1 1 1

9 (UF) 3.3 1 1 1.2 0 0 1

Nr,t is the number of active UEs in RRH r at time instant t.

4.3 Conclusions

As has been previously analyzed, most of the research works drastically sim-

plify the scenarios of validation. It is impossible to strictly simulate a mobile

network because it is an extremely complex system with high time varia-

tions. However, it is important to keep a trade-off between the simplification

of the scenario and the quality of the validation. For instance, the results of

a deployment of a 5G radio access network, which should represent an ultra-

dense network deployment should not be validated with a synthetic scenario

of few cells.
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This chapter presented a realistic scenario in the city of Vienna, which

tries to represent the complexity of mobile networks. The presented plat-

form employs realistic models in each layer of the C-RAN architecture. In

the user plane, UEs, GBR, and Best-effort services at the packet level have

been modeled. The air interface has been represented using a 3D ray-tracing

model that provides all the correlations and spatial consistencies. Addition-

ally, an estimation of the required computational capacity at BBU pools has

been introduced. These features allow accounting for QoS and designing of

resource management strategies among other advantages, with a high level

of flexibility.

Chapter 5 aggregates to the platform multiple optimized features as a

direct consequence of the research proposed in this thesis. The platform

is a powerful tool for researchers and mobile network operators to validate

numerous upgrades and it is open to new contributions.
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Chapter 5

Mathematical Models

5.1 Introduction

This chapter presents the mathematical formulation of the proposed algo-

rithms. Firstly, section 5.2 introduces the mathematical description of four

strategies to design and analyze the fronthaul connections. Section 5.3 in-

troduces the DRM, as well as three variants of DRM-AC. Finally, section

5.4 details the mathematical model of the proposed non-linear optimization

model to optimize the RRH deployment.

5.2 BBU-RRU Association

One of the key points of the C-RAN deployment is the design of the fronthaul

links, the connections between BBU pools and RRHs. This section presents

a detailed analysis of several connection strategies attending to different op-

timization criteria that could help the MNOs when planning the network
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: minimum delay, load balancing based on traffic or number of RRHs, and

multiplexing gain optimization. The mathematical notation presented in this

section is introduced in [86].

5.2.1 Minimum delay (MD)

The minimum delay algorithm takes into account the distance to establish

the connections between RRHs and BBU pools. To minimize the delay, the

algorithm selects for each RRH the nearest BBU pool following (5.1).

si = {j | dij ≤ dmax ∩ dij = min(di)} (5.1)

where di is a vector that contains the distance from the RRH i to each

BBU pool, dmax is the maximum allowed fronthaul distance, min(·) operator

returns the minimum value and si is the BBU pool selected to connect to

RRH i.

5.2.2 Load balancing (LB)

The load-balancing algorithms can use two different metrics: the number of

RRHs already assigned and the capacity handled by BBU pools. The ith

RRH is connected to BBU pool c following (5.2).

c = {j | dij ≤ dmax ∩ Cj = min(C)} (5.2)

where C is a vector that depending on the version used contains the

number of RRH connected to each BBU pool or the capacity handled per
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BBU pool. Cj is the capacity of the less loaded BBU pool (j) that is selected

for the algorithm to establish the connections.

5.2.3 Multiplexing gain

This algorithm balances different types of traffic profiles to improve the mul-

tiplexing gain. The connections are established following two steps, described

by (5.3) and (5.4). First, the algorithm connects RRH ith to BBU m using

(5.3) where max(·) denotes maximum operator.

m = {j | dij ≤ dmax

∩ MGj < max(MGjn)

∩ MGj = min(MG)}

(5.3)

If m = ∅ the algorithm uses the second condition to establish the connec-

tion (5.4), where the RRH is connected to the BBU pool with the highest

multiplexing gain. The algorithm repeats this process until each RRH is

connected to the network.

m = {j | dij ≤ dmax ∩ MGj = min(MG)} (5.4)

In (5.3) and (5.4) MG is a vector that contains the multiplexing gain of

each BBU pool, MGj is the multiplexing gain of the BBU pool j and MGjn

is a vector that stores the achievable multiplexing gain after connecting each

possible RRH, computed as:

MGj =

NRRH,j∑
k=1

CRRH,k[GBph]

Cj[GBph]
(5.5)
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where NRRH,j is the number of RRHs connected to the jth BBU pool,

CRRH,k is the peak traffic through the kth RRH and Cj is the traffic handled

by the jth BBU pool.

5.3 Dynamic Resource Management (DRM)

In this section, the dynamic resource allocation problem with QoS constraint

is presented. The aim is to optimize the allocated capacity at each BBU

pool considering the required computational capacity, the priority of run-

ning services, and the maximum capacity available at the BBU pool. The

mathematical model of the DRM was presented in [87].

Let’s assume that the coverage area of a specific region is served by a set

of R = {1, . . . , N} RRHs, managed by a BBU pool. The required computa-

tional capacities to handle each RRH are Ctk = {C1,tk, . . . CN,tk}, which are

computed using (4.3). The goal is to maximize the allocated computational

capacity, which is described by the set ACCtk = {ACC1,tk, . . . , ACCN,tk}.

The problem could be modeled using a game-theoretical approach where

RRHs are connected to BBUs that are competing for computational resources

at each transmission time interval (TTI). The allocated resources must not

surpass the total capacity of the BBU pool (M), as expressed in (5.6). We

call this condition C1.

C1 :
∑
i∈R

ACCi,tk ≤M ∀ tk (5.6)

The weight of each service establishes priorities by aggregating QoS con-

straints. We denote the average service weights at each RRH as wtk =
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{w1,tk, . . . , wN,tk}. Bargaining power is defined in (5.7), where the average

service weights at each RRH act as a fitness parameter.

C2 : Bi,tk =
wi,tkCi,tk∑
j∈R wj,tkCj,tk

(5.7)

BBU allocated resources must not be greater than the required compu-

tational capacity (5.8).

C3 : ACCi,tk ≤ Ci,tk ∀ i ∈ R, ∀ tk (5.8)

Then the underlying optimization problem to perform the proposed strat-

egy is formulated as:

maximize
ACCtk

∑
i∈R

Bi,tkACCi,tk

subject to : C1,C2,C3

(5.9)

The problem becomes a weighted-sum MOO problem, where BBUs-RRHs

running higher priority services are prioritized because the allocated resources

are weighted by the bargaining power factors.

Problem (5.9) is solved by CVX tool [88] iteratively during the simulation

period.

5.3.1 DRM with adaptive capacity (DRM-AC)

Fig. 5.1(a) shows the general scheme of the DRM, where Cr,t depicts the

required computational capacity to handle the RRH r at time t (computed

using (4.3)). Moreover, ACCr,t represents the allocated computational ca-

pacity, where r ∈ [1,R], being R the amount of RRHs connected to the BBU
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pool under analysis.

The DRM allocates the resources available at the BBU pool to manage

each RRH with service priority as well as QoS constraints. This strategy is

analyzed in [89]. However, the instantiated computational capacity at the

BBU pool is fixed (see 5.1(a)). It causes QoS degradation (under-provisioned)

or inefficient resource usage (over-provisioned). To tackle this issue, we pro-

pose to dynamically instantiate resources using the schemes shown in 5.1(b),

5.1(c), and 5.1(d).

DRM

Fixed Capacity

C1,t

C2,t

CR,t

ACC1,t

ACC2,t

ACCR,t

(a) DRM

DRM

Σ ML
RCC(t)

PCC (t+1)

C1,t

C2,t

CR,t

ACC1,t

ACC2,t

ACCR,t

(b) DRM-AC

DRM

Max{}RCC(t)

PCC (t+1)

ML
Filtered CC (t)

C1,t

C2,t

CR,t

ACC1,t

ACC2,t

ACCR,t

Σ 

(c) DRM-AC-PF

DRM

Σ 

ML

RCC(t)

PCC (t+1)
Delay

Max{}

C1,t

C2,t

CR,t

ACC1,t

ACC2,t

ACCR,t

(d) DRM-AC-ES

Figure 5.1: Block diagrams of the dynamic resource management strategies
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Fig. 5.1(b) shows the block diagram of the DRM-AC, which is also de-

scribed in [90]. A machine learning entity is introduced. Its mission is to

predict the required computational resources at the BBU pools based on the

current network load. An aggregation block computes the RCC(t) based

on the current demand of each RRH (Cr,t), which depicts the database of

the ML block to predict the computational capacity at the next time step

PCC(t + 1). The analysis of multiple machine learning techniques to tackle

the prediction is presented in [91].

However, negative errors in the prediction produce QoS degradation. Two

approaches to address this issue are proposed, as will be detailed afterward.

These solutions and their performance are published in [92].

• Filtering the data before the training process using a sliding window

method and applying the maximum operation. Fig 5.1(c) shows the

general diagram of this approach that has been called DRM-AC-PF.

• Establishing a margin amount of computational resources equal to the

maximum error in a previous time window. Fig 5.1(d) depicts the block

diagram to implement this strategy, which is a DRM-AC-ES.

ML block contains the machine-learning algorithm to predict the compu-

tational capacity. On the other hand, the delay block is a memory that stores

the input value for the next iteration. The Max{} block depicts a non-linear

filter; it computes the maximum, sliding a window through the input data.

The output of the Max{} block is equal to the maximum of the θ previous

time steps.
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DRM-AC-PF employs the Max{} block to filter the RCC and the ML

block to predict the computational capacity in terms of the envelope of the

RCC. On the other hand, the DRM-AC-ES predicts the computational re-

sources based on the RCC; it makes use of a delay block to save the previous

Predicted Computational Capacity (PCC) for calculating the error. Finally,

it applies a Max{} filter to the error, which is aggregated to the PCC as

a marginal amount of computational operations to the predicted computa-

tional capacity.

5.4 RRH optimization deployment

This section presents the mathematical model developed to optimize the

number and distribution of the active RRHs required to minimize the de-

ployment cost while simultaneously maximizing the coverage and satisfying

QoS requirements, considering multiple BBU–RRH split options. The math-

ematical description is introduced in [93] and [94]. The model also allows the

consideration of cooperation among RRHs.

Let R be the set of candidate RRHs and their locations. Information

provided by the MNO about the already deployed cellular networks should

be provided (4G and 5G). In general, locations with feasible access to the

power grid and line of sight propagation should be considered to improve the

propagation conditions.

Two types of RRHs can be used, MRRHs and SRRHs, which have a

deployment cost of CMRRH and CSRRH, respectively. A binary vector η =

{η1, η2, . . . , η|R|} indicates what kind of cell could be deployed at each possible
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location, where the notation |R| denotes the number of elements of the set

R.

Equation (5.10) shows the definition of the elements of η. The set R

is subdivided into the sets M and S that represent MRRHs and SRRHs

respectively, such that M∪S = R.

ηr =

1 if r ∈ M

0 if r ∈ S
(5.10)

On the other hand, UEs have been modeled to generate the traffic demand

and also have been represented mathematically by the set U . Each UE is

subscribed to a unique Service Provider (SP) and, for the sake of simplicity,

each SP is associated with one service. Thus, each UE generates only one

service and is associated with one Service Function Chain (SFC) of its SP.

Those services could be GBR or non-GBR (Best Effort) services such as

High-Definition (HD) video streaming and FTP, respectively.

Especially, the GBR services must guarantee a minimum bit rate to each

UE, which is denoted asDmin
u , where u ∈ U . This parameter is selected by the

SP according to the minimum QoS that should be assured for each service.

In order to provide the minimum bit rate to the GBR-UEs, a minimum SINR

should be maintained (denoted as γmin
u ), which can be estimated employing

Shannon’s equation (5.11).

γmin
u = 2

Dmin
u
Bu − 1 ∀u ∈ U (5.11)

where Bu depicts the bandwidth assigned to the UE u.

The geographical area under analysis is divided into TDPs, where each
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of them aggregates and concentrates the data rates of the UEs inside it. Let

Z be the set of demand zones or TDPs in the region and Dz the demand bit

rate of the zone z ∈ Z.

The algorithm should select the optimum RRH distribution that reduces

the deployment cost while increasing the coverage. For this reason, the binary

decision vector ρ = {ρ1, ρ2, . . . , ρ|R|} has been defined to indicate the RRH

distribution. ρr is a binary variable that indicates if the candidate RRH

r ∈ R is activated or not, see (5.12).

ρr =

1 if r ∈ R is selected as RRH

0 otherwise

(5.12)

Besides, a binary decision matrix X of dimension |R| × |Z| is employed

to represent the association between RRHs and TDPs. The elements of X

are represented by the binary variable xr,z, which is defined as (5.13):

xr,z =

1 if z ∈ Z is served by r ∈ R

0 otherwise

(5.13)

Next, constraint (5.14) takes into account cooperation among RRHs to

improve the network capacity (e.g. Joint Transmission (JT) or any other

CoMP technique) by the introduction of the integer µ, that limits the num-

ber of RRHs that can cooperate to increase the bit rate while mitigating the

interference of the zones. It guarantees that each zone is served by a maxi-

mum of µ RRHs. Its minimum value is µ = 1 when cooperation techniques

are not allowed. MNOs should select µ before the optimization process and
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Table 5.1: Glossary of terms of the RRH selection algorithm

Terms Sets Input Binary Description

Parameters Variables

R ✓ set of possible RRHs and their locations

M ✓ set of possible MRRHs and their locations

S ✓ set of possible SRRHs and their locations

Z ✓ set of zones or TDPs

U ✓ set of UEs

ρr ✓ RRH distribution, 1 if r ∈ R is selected as RRH, 0 otherwise

xr,z ✓ 1 if RRH r ∈ R manages the traffic demand of zone z ∈ Z, 0 otherwise

CSRRH ✓ deployment cost of an SRRH

CMRRH ✓ deployment cost of a MRRH

ηr ✓ Identifier of RRH type, 1 if r is a MRRH, 0 otherwise

σ ✓ ratio between MRRH and SRRH costs

Dmin
u ✓ required bit rate of the UE u ∈ U

γmin
u ✓ SINR required by the UE u ∈ U to satisfy Dmin

u

γmin
z ✓ minimum SINR to satisfy at zone z ∈ Z

κadj ✓ SINR factor to consider the mitigation of the interference

γz ✓ perceived SINR at zone z ∈ Z

Pr,z ✓ received power at z ∈ Z from r ∈ R

Pr ✓ transmission power of the RRH r ∈ R

Gr ✓ antenna gain of the RRH r ∈ R

GUE ✓ antenna gain of the UEs

Lr,z ✓ transmission loss from the RRH r ∈ R to the TDP at zone z ∈ Z

LRRH ✓ loss introduced at the RRHs (e.g., transmission lines and connectors losses)

LUE ✓ loss introduced at the UEs (e.g., transmission lines and coupling losses)

LFD ✓ loss introduced by the fading effects

LPL
r,z ✓ path loss from the RRH r ∈ R to the TDP at zone z ∈ Z

Fmin
2 ✓ minimum normalized coverage–QoS

Bu ✓ bandwidth of the UE u ∈ U

Dz ✓ traffic demand (bit rate) of the TDP at zone z ∈ Z

Dr ✓ achievable throughput at RRH r ∈ R

µ ✓ number of allowed simultaneous connections of each UE to the RRHs

ξr ✓ resource usage ratio of the RRH r ∈ R

ξmax ✓ maximum resource usage ratio of the RRHs

N ✓ noise power
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according to the available cooperation technology of the considered network.∑
r∈R

xr,z ≤ µ ∀z ∈ Z (5.14)

Additionally, a key point is the establishment of a relationship between the

decision variables ρr and xr,z to ensure that, if a possible RRH r ∈ R is

selected, it must serve at least one zone z ∈ Z; and if a RRH is associated

to a zone z, it must be active. Equations (5.15) and (5.16) account for these

conditions, respectively. ∑
z∈Z

xr,z ≥ ρr ∀r ∈ R (5.15)

Moreover, equation (5.16) is also a capacity constraint. It ensures that a

selected RRH has enough capacity to satisfy the demand of its associated

TDPs or zones.

ξr ≤ ξmaxρr ∀r ∈ R (5.16)

ξr =
∑
z∈Z

xr,zDz

Dr

∑
r′∈R xr′,z

In (5.16) Dr represents the achievable throughput at the RRH r. This pa-

rameter depends on the RRH configuration, e.g., Multiple-Input Multiple-

Output (MIMO) order, modulation order, and bandwidth. Besides, the real

variable ξr depicts the traffic load of the GBR services through the RRH r.

The MNOs establish a partition of the resources between the GBR and best

effort services by controlling the parameter 0 ≤ ξr ≤ ξmax ≤ 1. For instance,

if ξmax = 0.8 it means that 80% of the radio resources of the RRHs could

be dedicated to satisfying the traffic of the slices with GBR services. The

remainder 20% of the RRH capacity is reserved for the non-GBR traffic. The
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parameter ξmax should be selected according to the demand for the different

types of services.

As it has been mentioned, to guarantee the QoS, it is important that the

UEs experience a SINR greater than a minimum (γmin
u ). However, due to

the enormous amounts of UEs that are expected in 5G networks, it is not

scalable to define a constraint that maintains an independent SINR require-

ment for each UE in the optimization algorithm. For this reason, equation

(5.17) guarantees that the SINR constraint is accomplished while relaxing

the specifications by moving them to an upper level (zone plane).

γz ≥ γmin
z κadj ∀z ∈ Z (5.17)

In (5.17), γz represents the perceived SINR at the TDP or zone z ∈ Z, while

γmin
z depicts the minimum SINR that must be kept at TDP of the zone z,

which is taken equal to the required SINR of the UE with highest demand

in the zone z. This approach is highly restrictive and it does not take into

account techniques such as enhanced Inter-Cell Interference Coordination

(eICIC). For this reason, the factor κadj is introduced, which should be

adjusted by the MNO to consider the mitigation of interference by dynamic

resource allocation techniques.∑
r∈R

xr,zP
Rx
r,z ≥ γmin

z κadj(
∑
r∈R

ρr(1− xr,z)P
Rx
r,z

+N) ∀z ∈ Z (5.18)

Equation (5.17) is transformed into (5.18) by introducing an estimated value

for γz. The left side of (5.18) represents the useful received power at TDP

z, while the expression in brackets of the right term models the interference
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plus noise power. The parameter N represents the average UE thermal noise

power. It is important to mention that according to equation (5.17), all the

active RRHs that are not serving the considered TDP are a source of inter-

ference, which means that the mobile network is designed with a frequency

reuse factor equal to unity. However, operating at the same frequency band

in the entire network will produce a high level of interference. For this reason,

the proposed algorithm considers that MRRHs and SRRHs operate at dif-

ferent frequency bands. In this work, the MRRHs operate at 2.6 GHz while

the SRRHs are able to operate at multiple frequency bands (for instance,

3.6 GHz and 28 GHz). As a result, equation (5.18) is split into (5.19) and

(5.20) ∑
r∈M

xr,zP
Rx
r,z ≥ γmin

z κadj(
∑
r∈M

ρr(1− xr,z)P
Rx
r,z

+N) ∀z ∈ Z (5.19)∑
r∈S

xr,zP
Rx
r,z ≥ γmin

z κadj(
∑
r∈S

ρr(1− xr,z)P
Rx
r,z

+N) ∀z ∈ Z (5.20)

where, as mentioned above, M and S are subsets of R that contain the sets

of MRRH and SRRH respectively, such that R = M ∪ S. The parameter

PRx
r,z , which represents the received power at TDP z from the RRH r, is

calculated by using the link budget equation (5.21)

PRx
r,z =

PTx
r GrG

UE

Lr,z

(5.21)

Lr,z = LRRHLUELFDLPL
r,z

where PTx
r and Gr denote the transmission power and the antenna gain of
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the RRH r, respectively. GUE represents the UE antenna gain, while Lr,z

takes into account the radio link losses. Namely, LRRH and LUE account for

the losses due to connectors, transmission lines, and other mismatches at the

RRH and the UE respectively. Besides, LPL
r,z represents the path-loss from the

RRH r to the TDP z. Finally, LFD is a random variable modeling the slow

fading. It is important to notice that this parameter should be eliminated

if the considered channel model already takes into account the shadowing

effects.

Additionally, equation (5.22) ensures that if a RRH r is serving the zone

z, the received power (PRx
r,z ) is greater or equal than the sensitivity of the

UE-receivers (PRx
min).

xr,zP
Rx
r,z ≥ PRx

min (5.22)

As it has been stated, the proposed algorithm allows for RRH cooperation

with the introduction of the parameter µ. On the other hand, constraint

(5.14) does not limit the cooperation between MRRH and SRRH, which in-

troduces a high complexity to the UEs because they would have to operate

simultaneously at different frequency bands, for instance in a dual connec-

tivity operation mode. For this reason, constraint (5.23) guarantees that the

cooperation is limited to a specific frequency band (known as inter-site ag-

gregation). In other words, cooperation in a specific zone is carried out by

only one type of RRH.

∑
r∈M

xr,z ≤ 0 ∨
∑
r∈S

xr,z ≤ 0 ∀z ∈ Z (5.23)

where ∨ stands for the logical disjunction (logical OR operation), guarantee-

ing that the zone z ∈ Z is not served by RRHs of different classes.
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The goal of the proposed algorithm is to select the optimum distribution

of the RRHs, minimizing the radio network deployment cost while simul-

taneously maximizing the coverage and satisfying QoS requirements. The

deployment cost is computed as in equation (5.24).

F1 =
∑
r∈R

ρr(ηrCM + (1− ηr)CS)

F1 = CS

∑
r∈R

ρr(ηrσ + (1− ηr)) (5.24)

σ =
CM

CS

where σ represents the ratio between the MRRH and SRRH costs, CM and

CS, respectively. This parameter is useful to consider different kinds of sce-

narios; for instance, to represent heterogeneous mobile network deployments

(σ > 1). Furthermore, it is used in this work to consider different BBU–RRH

split options because it modifies the cost ratio between MRRHs and SRRHs.

On the other hand, it allows the normalization of the RRH costs by consid-

ering CS = 1. The MNOs should carefully select the cost ratio (σ) according

to the cost of the considered network devices.

The coverage–QoS is estimated by the number of served zones, computed

as in equation (5.25).

F2 =
∑
z∈Z

u[
∑
r∈R

xr,z − 1] (5.25)

F2 ≥ Fmin
2 |Z| (5.26)

u[n] =

1 if n ≥ 0

0 if n < 0
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where u[·] denotes the Heaviside sequence and the operator | · | stands for

the cardinal of the considered set. Moreover, the MNO has the flexibility to

establish the minimum coverage-QoS that must be provided by controlling

the parameter 0 ≤ Fmin
2 ≤ 1 in constraint (5.26). Finally, the optimum

radio network deployment algorithm is formulated as an integer optimization

problem in equation (5.27).

minimize
ρr,xr,z

F1,−F2

subject to : (5.10)− (5.16), (5.19)− (5.23), (5.26)

(5.27)

Table 5.1 summarizes the sets, variables, and parameters of the proposed

algorithm.

5.4.1 Integer Linear Optimization Problem

The algorithm formulated in section 5.4 is a non-linear integer programming

model. The non linearity is introduced by the constraints (5.16), (5.19),

(5.20), (5.23) and the coverage function (5.25). In order to solve the proposed

algorithm employing a linear optimization solver, a reformulation of these

expressions to linear equations is needed. In this section, the problem is

transformed into an ILP model. The presented mathematical manipulations

were published in [93].

The linearization of the previously mentioned expressions uses theorem

1:

Theorem 1 Lets assume D ⊆ Rn, f : D → R, M ∈ R : M ̸= 0;M ≥

max{f(ϕ)|ϕ ∈ D} and δ a binary variable such that δ ∈ {0, 1}. Then, the

following expressions are equivalent,
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i: δ = 0 =⇒ f(ϕ) ≤ 0

ii: f(ϕ)−Mδ ≤ 0

The linearization of the constraint (5.16) implies the modification of the term

xr,z∑
r′∈R xr′,z

. Following the constraint (5.14), the denominator of this term is

an integer (k ∈ N|0 ≤ k ≤ µ), bounded by the maximum number of RRHs

that could cooperate to serve a zone (µ). So, it is possible to reformulate the

expression as it is described in (5.28)

xr,z∑
r′∈R xr′,z

=


∑µ

k=1 k
−1xr,zδk,z if k ̸= 0

0 if k = 0

(5.28)

where δk,z are binary variables indicating if the TDP z is served by k RRHs,

as described in (5.29)

δk,z = 1 =⇒
∑
r∈R

xr,z = k ∀z ∈ Z, k ∈ [0, µ] (5.29)

However, the equations (5.28) and (5.29) are also non-linear expressions that

should be linearized. The product of binary variables in (5.28) is substituted

by another binary variable such that xr,zδk,z = ψr,z,k, which is equivalent to

(5.30).

ψr,z,k = 1 ⇐⇒ xr,z + δk,z = 2 (5.30)

After this mathematical procedure, the equations (5.29) and (5.30) could be

converted to linear expressions employing the Theorem 1. Equation (5.31)
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shows the linear equivalent expressions of the constraint (5.16).

∑
z∈Z

Dz

µ∑
k=1

k−1ψr,z,k ≤ ξmaxρrDr (5.31a)

ψr,z,k ≤ xr,z (5.31b)

ψr,z,k ≤ δk,z (5.31c)

ψr,z,k ≥ δk,z + xr,z − 1 (5.31d)∑
r∈R

xr,z ≤ µ− δk,z(µ− k) (5.31e)

∑
r∈R

xr,z ≥ kδk,z (5.31f)

µ∑
k=0

δk,z = 1 (5.31g)

For the sake of simplicity, the domain of the indexing subscripts r, z, k

has been made explicit only when it is different from the defined domain.

The other non-linear constraints are (5.19), (5.20) and (5.23). As it has

been explained, each TDP could be served by k RRHs, where k = 0 means

there is no RRH that can serve TDP z satisfying the constraints. This

situation has not been considered by constraints (5.19) and (5.20), which do

not hold for this special case. For this reason, the binary variables βM
z and

βS
z , that are used to indicate if the zone z is served by MRRHs or SRRHs,

are introduced in (5.32) and (5.33).

βM
z = 1 ⇐⇒

∑
r∈M

xr,z ≤ 0 (5.32)

βS
z = 1 ⇐⇒

∑
r∈S

xr,z ≤ 0 (5.33)

Considering this approach, the constraints could be rewritten as it is shown
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in (5.34) ∑
r∈T

xr,zP
Rx
r,z + LβT

z ≥ (5.34)

γmin
z κadj(

∑
r∈T

ρrP
Rx
r,z −

∑
r∈T

xr,zP
Rx
r,z +N) ∀z ∈ Z

where T is equal to M or S to represent the constraints (5.19) and (5.20)

respectively. An alternative is to write both constraints in the same expres-

sion. It is important to notice that the non-linear expression ρrxr,z has been

substituted by xr,z, because the constraint (5.16) ensures that if xr,z = 1 then

ρr = 1, which is equivalent to ρrxr,z = xr,z. The parameter L ∈ R is a large

number to hold the constraint (5.34) when the zone z is not served by this

type of RRH.

On the other hand, the constraint (5.23) is an inclusive disjunction that

could be rewritten combining (5.32) and (5.33) with the expression βM
z +βS

z ≥

1. Theorem 1 has been employed to obtain the linear expressions of (5.32)

and (5.33), which are shown in (5.35).∑
r∈M

xr,z ≤ µ(1− βM
z ) (5.35a)

∑
r∈M

xr,z ≥ ϵ(1− βM
z ) (5.35b)

∑
r∈S

xr,z ≤ µ(1− βS
z ) (5.35c)

∑
r∈S

xr,z ≥ ϵ(1− βS
z ) (5.35d)

βM
z + βS

z ≥ 1 (5.35e)

Besides, the coverage is estimated in equation (5.25), as the number of served

zones. Following this definition, the multi-objective optimization problem
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(5.27) should minimize the deployment cost while maximizing the coverage.

However, maximizing the number of served zones is equivalent to minimizing

the zones without service. This approach allows for the reuse of the binary

variable δ0,z that indicates if the zone z is not served. Then, constraint (5.26)

is expressed as (5.37) and the underlying linear coverage–QoS function is

shown in equation (5.36).

∑
z∈Z

δ0,z = F3 = |Z| − F2 (5.36)

∑
z∈Z

δ0,z ≤ Fmin
2 |Z| (5.37)

This strategy reduces the complexity of the proposed algorithm by elimi-

nating the additional variables in the linearization of the Heaviside sequence

u[·] in (5.25).

Finally, the ILP model of the proposed algorithm is summarized in equa-

tion (5.38). The multi-objective optimization problem is solved by employing

the weighted–sum method, where the weights ω1 and ω3 should be carefully

selected by the MNO in order to obtain an optimal point on the Pareto Front.

Additionally, the subscript n in equation (5.38a) means that the objective

functions have been normalized to guarantee that their values are in the same

range. In this case, each function has been divided by its maximum value.
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The maximum of F1 and F3 are CS(σ |M|+ |S|) and |Z|, respectively.

Min
ρr,xr,z

ω1F1n + ω3F3n (5.38a)

subject to :∑
r∈R

xr,z ≤ µ (5.38b)

∑
z∈Z

xr,z ≥ ρr (5.38c)

xr,zP
Rx
r,z ≥ PRx

min (5.38d)∑
z∈Z

Dz

µ∑
k=1

k−1ψr,z,k ≤ ξmaxρrDr (5.38e)

ψr,z,k ≤ xr,z (5.38f)

ψr,z,k ≤ δk,z (5.38g)

ψr,z,k ≥ δk,z + xr,z − 1 (5.38h)∑
r∈R

xr,z ≤ µ− δk,z(µ− k) (5.38i)

∑
r∈R

xr,z ≥ kδk,z (5.38j)

µ∑
k=0

δk,z = 1 (5.38k)

∑
r∈T

xr,zP
Rx
r,z + LβT

z ≥

γmin
z κadj(

∑
r∈T

ρrP
Rx
r,z −

∑
r∈T

xr,zP
Rx
r,z +N) (5.38l)

∑
r∈M

xr,z ≤ µ(1− βM
z ) (5.38m)
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∑
r∈M

xr,z ≥ ϵ(1− βM
z ) (5.38n)

∑
r∈S

xr,z ≤ µ(1− βS
z ) (5.38o)

∑
r∈S

xr,z ≥ ϵ(1− βS
z ) (5.38p)

βM
z + βS

z ≥ 1 (5.38q)∑
z∈Z

δ0,z ≤ Fmin
2 |Z| (5.38r)

ρr, xr,z, δk,z, ψr,z,k, β
M
z , β

S
z binary variables

5.5 Conclusions

The optimization algorithms described in this chapter have been integrated

into the C-RAN platform detailed in 4. These models not only improve the

flexibility of the software planning tool by adding more parameters that can

be controlled or used by the MNOs to get extra information; they facilitate

the optimization both, along the network design and management phases, re-

spectively. The performance analysis of the proposed algorithms is presented

in chapters 6 and 7.
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Chapter 6

Radio access network

deployment study

6.1 Introduction

This chapter presents the results of testing a radio network deployment using

the proposed optimization algorithm. These results demonstrate how the

algorithm reduces the number of required active RRH. Besides, it offers

acceptable coverage and satisfies the UE requirements in terms of QoS. This

is crucial because it entails a considerable reduction in the network cost,

with the consequent improvements in energy-saving, necessary when a large

number of cells are deployed as is the case of 5G and beyond.

The algorithm could adapt to variations in traffic patterns and load, re-

calculating the set of RRHs that should be active for each case. Without the

optimization procedure, the MNO would activate all the RRHs, not bene-

fiting from the resource, cost, and energy-saving improvements. The results
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presented in this chapter have been gradually published [89,93,94].

6.2 Fronthaul deployment analysis

The C-RAN scenario described in section 4.2 offers multiple opportunities

to test and validate different optimization algorithms. The fronthaul deploy-

ment is a crucial step in the design of current and future mobile networks. In

this section, four different fronthaul planning strategies have been considered

and analyzed: minimum delay, load balancing based on traffic or number of

RRHs, and multiplexing gain algorithm, which has been adapted from [95].

This study is introduced not only to establish the BBU-RRH connections

of the proposed C-RAN but also to analyze different strategies that could be

used to optimize the fronthaul deployment.

The maximum fronthaul distance was fixed at 15 km in order to satisfy the

delay requirement when optical fiber links are considered. However, this is a

flexible parameter that should be carefully selected by the network designer

taking into account the type of services or slices that will be running in the

network and the QoS that should be provided.

As it has been presented in section 5.2, the minimum delay algorithm

minimizes the fronthaul distance connecting each RRH to the nearest BBU

pool in order to reduce the round trip time. Load balancing algorithms es-

tablish the connections balancing the capacity or the number of connected

RRHs per BBU pool in the network. Finally, the multiplexing gain algorithm

mixes different types of traffic in each BBU pool to achieve a good perfor-

mance of the overall network. It is important to mention that the study of

94



the fronthaul connections considers the full map of Vienna city, which has

been presented in Fig. 4.1. For sake of simplicity, the traffic per hour scheme

presented in 4.3 has been considered.
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Figure 6.1: Distribution of the RRH connections a) intervals of 1 km b) cumulative dis-

tribution function

Fig. 6.1(a) exhibits the distribution of the fronthaul links, while Fig.

6.1(b) shows the Cumulative Distribution Function (CDF) of each strategy.

As expected, with the minimum delay strategy most of the RRHs are con-

nected close to the BBU pool, while for the other strategies some RRHs are

connected with the maximum fronthaul distance. Minimum delay design not

only minimizes the latency but also reduces the CAPEX of the fronthaul

because all the RRHs are connected with fronthaul distances below 6 km.

The rest of the strategies exhibit similar performance in terms of delay and

fronthaul cost.

A fundamental metric to increase flexibility is network balancing. Fig.

6.2 shows the distribution of the capacity handled by the BBU pools. For

95



2 4 6 8 10 12 14 16 18 20

BBU pool Id

0

10

20

30

40

50

60

70

80

90

C
a

p
a

c
it
y
 h

a
n

d
le

d
 [
G

B
p
h

]
Minimum Delay

Load Balance (Traffic Load)

Load Balance (RRH number)

Multiplexing Gain

(a)

0 10 20 30 40 50 60 70 80 90

Capacity handled [GBph]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Minimum Delay
Load Balance (Traffic Load)
Load Balance (RRH number)
Multiplexing Gain

(b)

Figure 6.2: Distribution of the capacity in terms of traffic load per BBU pool a) capacity

handled per BBU pool b) CDF

load balancing planning strategies the capacity handled and the number of

RRHs per BBU pool are almost constant around 40 RRHs and 28 GBph,

which is more robust to face dynamic network variations. On the opposite,

minimum delay and multiplexing gain strategies exhibit wider CDFs, hence

the worst performance, because there are overloaded BBU pools while others

are underutilized.

On the other hand, as it is possible to see in Fig. 6.3, the multiplexing

gain strategy achieves almost constant values of multiplexing gain per BBU

pool while the rest of the methods experience lower values for some BBU

pools. The performance of this strategy is strongly connected to the traffic

profiles handled by the network.

As it has been mentioned above, one of the most important requirements

of 5G and beyond systems is the delay. The maximum fronthaul distance to

satisfy the 1 ms delay constraint of applications such as virtual reality can be
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Figure 6.3: Distribution of the multiplexing gain per BBU pool a) MG per BBU pool b)

CDF

estimated and some authors obtain distances between 20-40 km using optical

fiber [96]. Furthermore, the cost to deploy a C-RAN is strongly related to

the cost of the optical fiber [4], for this reason in large-scale scenarios, such

as the full deployment over Vienna city, mobile operators will centralize the

resources of only a certain percentage of the total number of base stations to

reduce the CAPEX.

Fig. 6.4 shows the performance of the proposed C-RAN deployment in

terms of the allowed maximum fronthaul distance. When the maximum

fronthaul distance is decreased the percentage of RRHs that are sharing re-

sources in BBU pools also decreases, which results in a degradation of the

multiplexing gain because operators have to allocate additional resources to

these RRHs. However, the cost to deploy the C-RAN is also reduced, becom-

ing more attractive for small-size networks in dense environments such as the

metropolitan area of the city. Mobile operators or Infrastructure providers
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Figure 6.4: C-RAN deployment in terms of the fronthaul distance: in blue the % of shared

RRHs, in red the multiplexing gain.

have to take into account this tradeoff in order to reduce the investment.

Table 6.1 summarizes the results obtained by each planning strategy,

where dmax depicts the maximum fronthaul distance while ∆RRHs, ∆C,

and ∆MG represent the maximum deviation of the number of RRHs, traffic

capacity, and multiplexing gain among BBUs, respectively. Table 6.1 shows

how the algorithms guarantee the highest balance of their parameter for each

central unit. For instance, the maximum deviation in the number of RRHs

is one, when the load balancing based on the RRHs strategy is considered.

6.3 Analysis of the RRH deployment

This section analyzes the performance of the optimization algorithm de-

scribed in section 5.4 considering as a test platform, a region inside of the
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Table 6.1: Resume of the fronthaul connections results

Algorithms dmax [km] ∆RRHs ∆C [GBph] ∆MG

MD 6 104 75.18 0.17

LB traffic 15 7 1.14 0.13

LB RRHs 15 1 5.89 0.14

MG 15 32 22.45 0.01

metropolitan area of Vienna. Section 6.3.1 describes the selected region and

presents the main features and modifications introduced in this validation.

6.3.1 Simulation conditions

Fig. 6.5 shows the region employed in this section. It has a map resolution of

5 m with 205× 291 points, which is equivalent to an area of 1025× 1455 m2.

The strategy described in 5.4 aims to optimize the RRH plane. Fig.6.6

represents the hierarchical architecture, with the three layers used as part of

the proposed optimization. The details of each layer and their interrelations

are introduced as follows:

RRH plane

RRHs parameters have been chosen to describe a realistic 5G radio network

deployment. Transmitted powers of MRRHs and SRRHs are Pr = 43 dBm

and Pr = 24 dBm respectively. When both, MRRH and SRRH, operate

at FR1 (sub 6 GHz) the antenna gains are 18 dBi and 2 dBi respectively.

When FR2 is considered (mmWave, 28 GHz) the antenna gain of the SRRHs

is increased to 12 dBi, because more elements can be added at the antenna
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Figure 6.5: Possible RRH locations on the considered Scenario

array, according to [97].

Besides the sensitivity and SINR constraints, the capacity constraint

should also be satisfied. To this end, it is fundamental to introduce an esti-

mation of the maximum bit rate capacity of the RRHs. To do so, it is neces-

sary to define additional RRHs configuration parameters such as modulation,

MIMO order, operating frequency band, bandwidth, and 5G numerology.

As previously discussed, to reduce the inter-cell interference MRRHs

and SRRHs operate at different frequencies. In this work 2.6 GHz (FR1)

is selected for the MRRH, while SRRHs could operate at 3.6 GHz (FR1)

or 28 GHz (FR2). In particular, n41 (2496-2690 MHz) and n77 (3300-

4200 MHz) frequency bands are considered when MRRHs and SRRHs op-

erate at FR1, with a bandwidth of 100 MHz for each. When the SRRHs

100



RRH plane

MRRH

SRRH

Demand plane

TDP

UE plane

voice

SD, HD video

best-effortAir Interface

Figure 6.6: Hierarchical structure of the scenario

operates at FR2, the selected frequency band is n257 (26.50-29.50 GHz)

with 300 MHz of bandwidth. A fundamental motivation to select the fre-

quency bands is that the 3D ray-tracing propagation model has been already

employed using these frequency ranges.

While the maximum modulation order considered for all the frequency

ranges is 256QAM, lower values would be dynamically assigned according to

the interference and propagation conditions. Regarding the MIMO, 8×8 and

16× 16 are considered in FR1 and FR2 respectively. Finally, the theoretical

RRHs maximum capacity is estimated according to [98], and using the values

summarized in Table 6.2.

The selected section of the map is composed of 41 possible RRHs loca-

tions, with 8 of them for possible MRRHs while the remainder are possible

SRRHs (see Fig. 6.5).
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Table 6.2: RRH plane: configuration and maximum capacity

Frequency Range Bandwidth (MHz) Modulation MIMO Dr (Gbps)

FR1 100 256QAM 8×8 4

FR2 300 256QAM 16×16 28

Demand Plane

The whole map is divided into
√
|Z| ×

√
|Z| homogeneous zones. This

approach has the advantage that by increasing the number of divisions (so,

by decreasing the area of one zone), a finer tuning is obtained at the expense

of increasing the computational complexity. Once the demand plane has

been split, the traffic demand of each zone should be estimated. It depends

on the demand of the UEs inside the zone.

UE Plane

As has been mentioned above, each UE is associated with a slice of a specific

SP. Different kinds of services have been modeled to generate traffic demand.

The voice and video services on 5G networks will be delivered based on the

IP Multimedia Subsystem (IMS). In general, these kinds of services are

enclosed in the standardization of Voice/Video over New Radio (VoNR) [99].

In particular, three examples of these services, which have been specified

by [100], are considered in this work: conversational voice, HD video, and

Standard-Definition (SD) video.

The GBR of each service must be selected by the SP to guarantee a spe-

cific QoS. In this case, the conversational audio service uses Enhanced Voice

Services (EVS) codec (EVS), which has different bit rates configurations with
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a maximum value of 128 kbps; this is the value considered as the GBR to

provide the maximum QoS to the end user. On the other hand, the video

services use H.265 and EVS codecs. In the proposed scenario, two differ-

ent video qualities are considered: HD video and SD video with 10 Mbps

and 2 Mbps of GBR respectively, which is consistent with [101]. Table 6.3

summarizes the service parameters, where the parameter SP mix represents

the percentage of UEs subscribed to each SP. A random user distribution is

considered. However, the MNOs should allocate the UEs according to their

historical data distribution.

Table 6.3: Service parameters of RRH deployment strategy

Service GBR/Best-effort Dmin
u (Mbps) SP mix (%)

voice GBR 128 kbps 25

HD video GBR 10 Mbps 15

SD video GBR 2 Mbps 30

FTP Best-effort - 15

Web Best-effort - 15

Fig. 6.7 shows the demand plane with Low traffic (LT) profile that con-

tains 30000 randomly distributed UEs in a regular divided map of 49 zones

(7 × 7) or Traffic Demand Points (TDPs). Fig. 6.7a shows the traffic de-

mand of each TDP in Mbps (Dz). On the other hand, Fig. 6.7b shows the

number of UEs that belong to each zone. To analyze the performance of the

proposed optimization algorithms, medium and high traffic profiles have also

been considered, with 60000 and 300000 UEs, respectively.
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Figure 6.7: Traffic distribution of the demand plane at each zone or TDP with a total of

30000 UEs: a) traffic demand in Mbps, b) number of UEs

Propagation Model

The use of an adequate propagation model is fundamental for analyzing a

realistic system; especially in a millimeter-wave 5G environment. In this

platform, a 3D ray-tracing map-based propagation model is employed [78].

It is similar to the METIS model for urban macro and micro cells [102].

This channel model provides correlation and spatial consistency because it

employs deterministic and physical principles accounting for scattering mech-

anisms, such as diffraction, scattering, and blocking.

It is important to mention that the proposed analysis considers downlink

and outdoor communications. In particular, it is unfeasible to provide indoor

communications at 28 GHz. Table 6.4 summarizes the parameters of the
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presented validation.

The air interface establishes not only the considered propagation model

but also the RRH–TDP association, which has been described by the binary

variables xr,z, including cooperation among RRH to serve the same TDP or

demand zone, as represented in Fig. 6.6.

Table 6.4: Features of the scenario

Parameters Values

Area (m2) 1025× 1455

Resolution (m) 5

|R| 41

|M| 8

|S| 33

Pr (dBm) (43, 24)†

Gr at FR1 (dB) (18, 2)†

Gr at FR2 (dB) 12

GUE (dB) 0

LRRH (dB) 1

LUE (dB) 1

ξmax 0.8

κadj 1

Propagation Model 3D ray-tracing

†The format of the data is (MRRH,SRRH)
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6.3.2 Performance analysis and discussion

As 3GPP includes different split options of the protocol stack between BBU

and RRH to reduce bandwidth and latency requirements, it is fundamental

to consider them in the optimization process. For this reason, the follow-

ing splits are analyzed: split option 8 that corresponds to a fully central-

ized C-RAN; split 6, where MIMO precoding and Orthogonal Frequency-

Division Multiplexing (OFDM) modulation are maintained at the RRH side;

and split 1 that represents a traditional architecture where all the baseband

functions are allocated at the RRH (see Fig. 4.4).

Besides, a comparison of results when SRRHs operate at different fre-

quency ranges (FR1 and FR2) is included. In particular, MRRHs operate

at 2.6 GHz, while SRRHs could work at 3.6, 5, and 28 GHz. For simplicity,

only the 3.6 and 28 GHz cases are presented since there are no significant

differences between the results obtained at 3.6 and 5 GHz.

Finally, it is interesting to stress the algorithm considering different traffic

loads. For this purpose, three data traffic options have been considered: Low,

Medium, and High Traffic patterns, with 30000, 60000, and 300000 UEs,

respectively.

The simulations and modeling have been carried out in MatLab. Specifi-

cally, the convex programming software CVX [88] and the Mosek solver [103]

has been used to solve the optimization problem. An MSI Prestige 15 A10SC

computer, with a Core i7 10th gen. CPU and 32 GB of RAM, have been

used to carry out the simulations.
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6.3.3 Cost reduction

As it has been explained in subsection 5.4.1, the cost is normalized using the

maximum cost of the considered split option, which is CS(σ |M|+ |S|), where

σ represents the ratio between the cost of MRRHs and SRRHs. The value

of σ changes depending on the split option. For split 8 (fully centralized

C-RAN), it corresponds to a value of σ = 1, whereas for split options 6

and 1 the assigned values are σ = 10 and σ = 50, respectively. However,

this parameter should be adjusted according to the cost of the available

devices. Cost differences associated with power amplifiers and antennas have

not been considered in the value of σ, nor the additional cost of the hardware

equipment when working at higher frequencies, because the purpose is to

measure the impact of different split options. However, they could be easily

included by changing σ values.

It is fundamental to fix the weights ω1 and ω3 = 1−ω1 to solve the multi-

objective optimization problem. Equation (5.38a) shows that these weights

are associated with the cost and coverage-QoS optimization, respectively.

The considered values for ω1 cover the range from 0 to 1 with a step of

0.2. For instance, if ω1 = 0.2 and ω3 = 0.8, the algorithm provides more

importance to coverage than cost reduction optimization.

Table 6.5 shows the comparison before and after running the optimization

algorithm for the combinations of the considered parameters. The first three

columns indicate the traffic pattern (Low, Medium, or High), the frequency

range for the SRRH, which can be 3.6 GHz or 28 GHz, and the considered

splits (8, 6, and 1). The fourth column displays the cost of the deployment

before the optimization, that is, assuming that all the RRHs in the scenario
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are active. Values under the Normalized Cost columns give the normalized

cost factors after the optimization for different ω1: from 0, meaning that the

optimization is focusing on coverage-QoS, to 1, meaning that the optimiza-

tion is focusing on cost reduction. Absolute cost values could be obtained

by multiplying the normalized factor by the cost value before optimization.

The final columns under the Coverage-QoS label provide the percentage of

covered zones after the optimization.

Table 6.5: Resume of the optimized cost and coverage-QoS for different weights, frequency

bands, split options, and traffic profiles.

Normalized Cost Coverage-QoS

Traffic Frequency Split Maximum Cost (CU) ω1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

8 41 0.68 0.63 0.61 0.51 0.29 0.29 1 1 1 0.88 0.51 0.51

LT FR1 6 113 0.65 0.31 0.22 0.21 0.20 0.12 1 0.98 0.96 0.96 0.94 0.51

1 433 0.63 0.06 0.06 0.06 0.06 0.03 1 0.94 0.94 0.94 0.96 0.51

8 41 0.68 0.34 0.29 0.27 0.07 0.07 1 1 1 1 0.57 0.55

LT FR2 6 113 0.73 0.29 0.10 0.12 0.08 0.03 1 1 0.96 0.96 0.92 0.51

1 433 0.74 0.26 0.03 0.03 0.03 0.01 1 1 0.96 0.96 0.96 0.51

8 41 1 0.98 1 0.61 0.61 0.61 0.84 0.82 0.84 0.51 0.51 0.51

MT FR1 6 113 1 0.38 0.29 0.29 0.22 0.22 0.84 0.69 0.67 0.67 0.51 0.51

1 433 1 0.19 0.08 0.08 0.08 0.06 0.84 0.69 0.67 0.67 0.67 0.51

8 41 0.73 0.51 0.49 0.39 0.22 0.22 0.94 0.96 0.96 0.90 0.55 0.51

HT FR2 6 113 0.27 0.19 0.17 0.17 0.14 0.08 0.94 0.96 0.94 0.96 0.90 0.51

1 433 0.07 0.05 0.05 0.05 0.05 0.02 0.94 0.92 0.94 0.94 0.96 0.51

The data from Table 6.5 can be used to extract multiple conclusions:

• Assuming that only the solutions with a final Coverage-QoS higher

than 95 % are acceptable, it is possible to see that some combinations

of parameters should not be used. It is the case of Medium Traffic

(60000 users) at 3.6 GHz where, regardless of the split option and the

considered weights, the requirements are never achieved. Even when
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Coverage-QoS is prioritized (ω1 = 0), results show that all the 41 RRHs

need to be active, but the maximum achieved Coverage-QoS is only

84 %. For this reason, the combination High Traffic (300000 users) at

3.6 GHz is not analyzed, as it is known in advance that this combination

will never accomplish the coverage-QoS requirement.

• On the other hand, there is always a solution that guarantees a Coverage-

QoS higher than 95 % in the remaining combinations, and in most

cases, there is more than one solution. If this is the case, the best one

in terms of cost reduction is the solution associated with the higher ω1

value, because it is the solution that maximizes the cost reduction of

the scenario, allowing for a higher number of inactive RRHs with the

consequent energy-saving.

• Cost reduction is indirectly given in Table 6.5 as the complementary

of the Normalized Cost value. For example, in the first row, the value

is 0.68 for LT, FR1, split 1, and ω1 = 0. In this case, the algorithm

provides a cost reduction of 32 %.

6.3.4 Cost vs Coverage-QoS

Table 6.5 shows the trade-off between the achieved cost reduction and the

Coverage-QoS of the UEs in the scenario. Fig. 6.8 illustrates this trade-off.

Each circumference represents a different Coverage-QoS percentage, starting

with 50% for the most internal, meaning that only 50% of the TDPs of

the scenario has been covered with the required QoS, to 100 % for the most

external, meaning that all the coverage-QoS requirements have been fulfilled.
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Figure 6.8: Coverage-QoS and Cost Reduction trade-off after running the optimization

algorithm

On the other hand, each radial shown in Fig. 6.8 represents a different

cost reduction value, ranging from 0 to 100 %, written at the edge of the

radial. Remember that cost reduction is calculated with respect to the max-

imum cost, obtained when all the RRHs remain active and shown in Table

6.5. The colored region in green is the area where the coverage-QoS is higher

than 90 %. The light blue area represents the region where the cost reduction

is higher than 20 %. Each point (circles, triangles, or rhomboids) is obtained

after running the optimization and represents the result for different ω1 val-
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ues. Moreover, the points closest to the most internal circumference are

associated with the maximum value ω1=1. Additionally, the distance to the

center of the circumference increases as the value of ω1 decreases, indicating

that coverage-QoS is gaining priority with respect to cost reduction. The

blue, red, and green lines in Fig. 6.8 connect the points with the same input

simulation parameters (FR, split, and traffic level).

The blue-continuous lines represent the performance associated with split 8,

while red-discontinuous and green-punctured lines represent split 6 and 1, re-

spectively. The cases in Table 6.5 that do not achieve a good coverage-QoS

after the optimization have not been represented in Fig. 6.8, as they are not

considered valid solutions.

The best solution for each case (above 95 % of coverage-QoS) is repre-

sented by the symbol located at the outermost end of the line. There are

other symbols of the same type showing a better Coverage-QoS, even in some

cases close to 100 %, at the expense of an increasing cost. They are repre-

sented in Fig. 6.8 by the corresponding symbols, but they appear isolated

(not connected to the line) to distinguish them. Despite this analysis, the

MNO could select the solution point that best reflects the network require-

ments, addressing the trade-off between coverage-QoS and cost reduction.

Firstly, it should be appreciated that split 1 provides the highest cost

reduction (around 95 %) while offering a good coverage-QoS. This extreme

cost reduction is due to the higher cost of the RRHs, as they contain all

the baseband functionalities. Additionally, split 6 shows cost reductions of

around 80-90 %, while split 8 exhibits cost reductions of 70-50-40 % for the

different combinations of carriers and traffic. The cost is also reduced when
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moving to higher frequency bands because, as wider bandwidths are assigned

to the RRHs, they are able to serve more UEs. However, if some system

parameters change (for example antenna gains or transmitted power), the

number of RRHs needed to satisfy receiver sensitivity requirements, could

increase when working at 28 GHz.

On the other hand, analyzing LT and Medium traffic (MT) cases at

3.6 GHz, it is shown that when the traffic profile is close to the maximum

capacity of the whole network, the cost reduction decreases since most of

the RRHs should be active to satisfy the demand. This behavior is similar

at 28 GHz. However, in this case, the algorithm saves at least 20 % of the

network cost because of the higher capacity of the network at FR2. The cost

reduction reaches approximately 75 % when LT demand is considered, while

the coverage-QoS reaches 100 %.

Fig. 6.9 complements the previous results by representing the minimum

cost that guarantees a Coverage-QoS higher than 95 % after solving the multi-

objective problem where Fig. 6.9(a), 6.9(b) and 6.9(c) stand for split 8, 6,

and 1 respectively.

Fig. 6.9 also shows the cost values before optimizing, to facilitate the

comparison. The blue bars represent valid solutions, while the red bars

represent solutions that do not satisfy the 95 % of Coverage-QoS and neither

reduce the cost. In terms of absolute cost deployment, optimal resource

management, and computational capacity efficiency, split 8 is the best option

for C-RAN networks, as has been widely shown. As the cost to deploy a new

RRH is lower than with splits 6 and 1, the cost reduction when turning off an

RRH is also lower; however, it is still a significant reduction. It is fundamental
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Figure 6.9: Minimum cost and corresponding weights for the different splits, frequency

bands, and traffic patterns

to notice that cost reduction is directly associated with an increase in the

energy efficiency of the network. The lower the number of RRH required to

satisfy the UEs requirements, the higher the energy-saving.

To summarize the analysis, it has been shown that the proposed algorithm

is highly efficient allowing practical cost deployment reductions between 20 to

70 % depending on the traffic level (Low, Medium, High), carrier frequency

used, and selected split option.

6.3.5 Active RRHs and usage ratio reduction

The proposed optimization framework is worthy for the MNO, not only in

the deployment phase but also to select the RRHs that should be active to

satisfy the current traffic demand or even the predicted traffic demand. This

could be achieved by combining the present algorithm, or the look-up tables

that can be generated after running it, with optimized AI prediction tools

allowing to analyze a dynamic scenario.

Additionally, it contributes enormously to energy-saving, a key parameter
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for 5G and future 6G networks. The number of required active RRHs after

the optimization is shown in Fig. 6.10 for each split option, being Fig. 6.10(a)

for the 3.6 GHz carrier frequency, while Fig. 6.10(b) shows the 28 GHz

results. The first bar of each split corresponds to LT profile, while the second

bars stand for MT or High traffic (HT), depending on the figure. Remember

that the initial situation, without optimization, uses the 41 RRHs of the

scenario, 8 of them MRRHs. The presented solutions correspond to the

weights considered in Fig. 6.9, which guarantee a 95 % Coverage-QoS while

reducing simultaneously the cost.
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Figure 6.10: Number of active RRHs vs split options. Left and right bars of each split

option represent LT, and MT or HT cases, respectively.

As expected, regardless of the frequency band, the number of active RRHs

increases with the traffic demand. On the other hand, the distribution of

MRRHs and SRRHs is detailed, showing that the algorithm prioritizes SR-

RHs when σ increases, to reduce the cost. The MT simulation working at
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3.6 GHz needs all the RRHs of the scenario to maximize the coverage. This

MT solution is represented to show that the optimization algorithm could

signal when the initially assigned resources are insufficient. In this case, to

find a feasible solution, MNOs should increase the number of RRHs deployed

or the bandwidth allocated to them.
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Figure 6.11: Resource usage ratio (ξr) of the RRHs by the GBR slices in C-RAN (split

option 8): (a) at 3.6 GHz with LT profile, (b) at 28 GHz with LT profile and (c) at 28 GHz

with HT profile.

It is also interesting to show that in Fig. 6.10(a) the optimized solution

ends with a similar number of required active RRHs(25-24), being the main

difference that optimal split 8 requires keeping six active MRRHs while in

splits 6 and 1 MRRHs are not needed at all. This also explains why in Fig.

6.9 there is a significant difference in cost between the three splits: in splits 1

and 6 the cost of an MRRH is very high compared to the cost of an SRRH,

so the algorithm tries to avoid the activation of MRRHs when searching for

the optimal solution.

The operation at 28 GHz shows an enormous reduction in the number

of required active RRHs, around one-third of them are needed in LT condi-
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tions while half of them are required when HT is considered. Propagation

is not the limiting factor in the scenario because the cells are close enough

and transmitted power and antenna gain are high enough to satisfy the UE

requirements. However, only outdoor UEs have been considered, assuming

that at 28 GHz, indoor users should be served by indoor Base Stations due to

the large building penetration losses. The main difference with the 3.6 GHz

operation is that the bandwidth associated with each RRH is higher.

The last fundamental parameter analyzed in this work is the usage ratio,

(ξr), which has been previously defined as the ratio between the GBR traffic

load at RRH r and its maximum capacity. In the simulations, 20 % of the

resources of an RRH are dedicated to best-effort services, while 80 % is for

the GBR services. The usage ratio for a fully C-RAN (split 8) and for the

ω1 values given in Fig. 6.9 is shown in Fig. 6.11. The red bars from id 1 to 8

correspond to the active MRRHs, while the remaining green bars represent

the active SRRHs. Each figure is for a different frequency band and traffic

pattern combination. Even in the most loaded case 6.11(a) most of the RRHs

still have at least 30 % of remaining capacity that could be used to attend

sudden network variations as new or handover UEs as well as cooperative

beamforming. In those cases where the available capacity is not enough to

serve a new TDP or zone, the capacity of several RRHs could be aggregated,

using cooperation techniques that will improve the coverage and efficiency of

the network.

Finally, Fig. 6.12 shows an example of a radio network deployment after

applying the optimization process, in particular, a C-RAN at 28 GHz with

ω1 = 0.6 and LT profile. The gray markers on Fig. 6.12 depict the RRHs
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active SRRHs 
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Figure 6.12: Resulting radio network for a C-RAN at 28 GHz with ω1 = 0.6 and LT

profile.

that have been deactivated from the original and non-optimized network

deployment (see Fig. 6.5). It allows the reader to realize the advantage of

optimization and to analyze the resulting network distribution.

6.3.6 Performance analysis considering cell coopera-

tion

This subsection presents the algorithm performance when cooperation (µ =

2, in the analysis) is considered. This assumption allows satisfying the ag-

gregated traffic of a single zone through two RRHs. The computational

complexity of the algorithm drastically increases when cooperation is consid-

ered. For this reason, the presented results only consider particular cases of
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the scenario. However, the performance is not limited to these conditions.

Especially, FR1 with LT and FR2 with HT in 6.9(a) were considered, in

order to analyze both frequency bands and traffic profiles.

Table 6.6: Cost vs Coverage-QoS comparison

Cost1 Cost2 Coverage1 Coverage2

FR1, LT 0.61 0.58 1 1

FR2, HT 0.49 0.46 0.96 0.98

Table 6.6 shows the results with and without cooperation, where sub-

scripts 1 and 2 stand for the value of µ. It is important to mention that due

to the computational complexity of the algorithm with µ = 2, its execution

has been finished by time, so it cannot be said that they are the optimal so-

lutions. With a larger simulation period probably the cost would experience

an additional reduction. But it is already possible to see an improvement

of 3% in cost reduction with respect the non-cooperative case. Moreover, in

the case of 28GHz with a high traffic profile, the coverage is 2% higher.

6.4 Conclusions

In this chapter, two different scale and realistic scenarios of the C-RAN

simulation platform C-RAN have been considered. Firstly, a fronthaul de-

ployment based on four optimization strategies and using a simple per-hour

traffic profile is presented in order to establish the BBU-RRH connections.

Additionally, a study of the performance of large C-RAN designs, in which

only a percentage of the cells, is centralized to reduce the investment is also
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presented. It may support network operators to implement an optimal design

accounting for the cost of the optical fiber, the area to be covered, and the

density of users.

The design of a C-RAN deployment of a region of the metropolitan area

has been analyzed. The proposed algorithm is tested by using a realistic

scenario that includes 41 possible RRHs in a heterogeneous deployment with

MRRHs and SRRHs, UEs modeled with different services, and an accu-

rate 3D ray-tracing propagation model. Additionally, operation at frequency

bands 3.6 and 28 GHz, as well as different C-RAN split options are studied.

The overall power consumption of future mobile networks should not grow

beyond what it is now for 5G. For this reason, a strategy that provides a

sustainable optimal deployment not only for 5G but also for B5G radio net-

works has been provided. The main objectives are to reduce the footprint on

energy efficiency, and the deployment and operational costs of the network

while maintaining the coverage-QoS. This complex problem has been mod-

eled, introducing a Multi-objective ILP optimization algorithm to select the

optimum distribution of the RRHs in the densest zone of the city of Vienna.

It is impossible to briefly summarize the results because multiple param-

eters could be compared after the optimization. However, it is possible to

resume some key aspects. For instance, the algorithm reduces the deploy-

ment cost while maintaining the coverage-QoS better than 95 %. Especially,

at 3.6 GHz with low traffic demand, the cost reduction is around 35 %, while

at 28 GHz it reaches 70 % with LT profile and almost 50 % under an HT

condition.

The integration of the C-RAN platform and the algorithms described in
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this chapter could help the MNOs to improve their network planning, not

only the RRH deployment but also the analysis and design of the fronthaul

link.

Finally, the proposed platform will be upgraded by integrating prediction

tools based on AI to efficiently manage the resources centralized at the BBU

pools. This approach is detailed in chapter 7.
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Chapter 7

DRM-AC: Analysis and

Discussion

7.1 Introduction

As has been mentioned in chapter 2, most of the previous works on BBU pool

resource management have relied on the definition of optimization problems

such as MILP or MOO. However, these strategies allocate the resources as-

suming that the instantiated computational capacity at BBU pools is fixed

and equal to the maximum BBU pool capacity. The computational resources

could be over-provisioned or under-provisioned under this assumption, caus-

ing inefficient resource utilization or QoS degradation.

This issue could be addressed by combining the flexibility of virtualization

and the availability of machine learning techniques to predict computational

demands. As the resources are virtualized, they could be instantiated dy-

namically according to an anticipated computational capacity demand.
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To do this, a DRM with adaptive capacity (DRM-AC) was defined in

the section. 5.3. This section presents an analysis of the DRM-AC perfor-

mance and also the results of a classical DRM with fixed capacity used as a

benchmark to establish a comparison.

Three ML algorithms have been analyzed: Support Vector Machine (SVM),

Time Delay Neural Network (TDNN), and Long Short-TermMemory (LSTM).

In general terms, the DRM-AC reduces the average of unused resources by

96 % in the considered scenario, but there is still QoS degradation when

RCC is higher than the predicted computational capacity (PCC). However,

DRM-AC-PF and DRM-AC-ES address this issue, reducing the average of

unsatisfied resources by 98 % and 99.9 % compared to the DRM-AC, respec-

tively. The presented results are a combination of multiple research works

that have been gradually published [89–92].

7.2 Simulation conditions

This section describes the simulation conditions that have been considered

to validate the DRM-AC algorithms. Further analysis with different param-

eters could be carried out if needed thanks to the flexibility of the developed

platform.

The analysis presented in this section employs the metropolitan area of

Vienna introduced in Fig. 4.2. On the other hand, a fully centralized C-RAN

or split option 8 has been considered (see Fig. 4.4). The RRHs are only

responsible for transmitting/receiving the in-phase and quadrature compo-

nents of the signal to/from the BBU pool, being the remaining functionalities
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centralized at the BBU pools.

As has been mentioned above, the propagation model is a 3D ray-tracing

map-based model [78], which is similar to the METIS model for urban macro

and micro cells [102]. The model automatically provides all the correlations

and spatial consistencies employing deterministic and physical principles ac-

counting for scattering mechanisms, such as specular reflections, diffraction,

scattering by rough surfaces and objects, and blocking.

For simplicity, RRHs to BBU pool connections (fronthaul links) are es-

tablished by minimizing the delay. This strategy is mathematically defined

in section 5.2, while the advantages and inconveniences of this assumption

are analyzed in section 6.2.

On the other hand, 7000 UEs are randomly placed in the scenario. The

UEs generate conversational, streaming, and interactive services based on a

packet level model used in [4, 24, 81]. The details of the service model have

been presented in subsection 4.2.1, and table 4.3 summarizes the service main

parameters while table 7.1 gives the considered network parameters.

The traffic load of the network is estimated based on the required com-

putational capacity as described in 4.2.2

7.3 DRM performance evaluation

To analyze the performance of the DRM, the maximum capacity at each

BBU pool is fixed at 300, 100, and 300 GOPS, respectively. The capacity

distribution is intentionally asymmetric to analyze the DRM with under and

over-provisioned situations. Fig. 7.1 shows the total required capacity at each
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Table 7.1: Simulation parameters for DRM.

Parameters Value

Area (km2) 25

Sites 228

MRRHs (sites) 51(17)

SRRHs (sites) 221(211)

BBU pools 3

RRHs 272

Power (dBm) (43,24)∗

Quantization resolution (bit) (24,16)∗

RRH antenna gain (dB) (18,10)∗

Bandwidth (MHz) 20

Number of RBs 100

Total UEs 7000

UEs antenna gain (dB) 0

∗ The format of the data is (MBSs,SBSs)

BBU pool RCC =
∑

iCi,t and the total allocated capacity ACC =
∑

i ACCi,t.

ACC at BBU pools 1 and 3 equals the total required computational capacity.

It can be clearly appreciated that the capacity given to BBU pool 2 is not

enough to handle the traffic demand. The key performance indicator (KPI)

to quantify the QoS is defined as the ratio between the allocated capacity

and the required capacity (KPI ∈ [0, 1]).

At BBU pool 2 for most of the simulation time, the required capacity

is higher than the maximum capacity, which results in a degradation of the
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Figure 7.1: Total required and allocated computational capacity for each BBU pool.

QoS. Fig. 7.2 represents the percentage of unsatisfied resources per RRH,

which is calculated as 1 −KPI. Details are given only for BBU pool 2. It

can be appreciated that many RRHs experience a high dissatisfaction level

which corresponds to a low QoS.

The computational capacity of BBU pool 2 has been intentionally selected

low with the aim of highlighting how the proposed algorithm is powerful

enough to reveal clearly those cases that have not been appropriately de-

signed. The influence of the bargaining power is observed in Fig. 7.2. Notice

that at the same time, there are BBUs with different QoS, because the opti-

mization algorithm is allocating more resources to the cells with high-priority

services.

BBU pools 1 and 3 have enough capacity to handle the demand. However,

due to this capacity being fixed there are intervals where it is underutilized as

Fig. 7.3 remarks. Consequently, there is a trade-off between QoS degradation
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Figure 7.2: Temporal QoS per RRH in BBU pool 2.

when the computational capacity is under-provisioned and the inefficient

use of the resources when the network is over-provisioned. For this reason,

intelligent resource management tools based on ML approaches, where the

system is able to learn from past situations to proactively predict the traffic

demand, are required to optimize future dynamic infrastructure networks.

The next subsections present how the proposed DRM-AC, DRM-AC-PF,

and DRM-AC-ES address this trade-off in the BBU pool 1.

7.4 DRM-AC performance and ML models

configuration

This section presents the configuration and comparison of the ML models

as well as the analysis of the performance of the proposed adaptive resource
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Figure 7.3: Amounts of unused resources in BBU 1 and 3.

management strategies using these models.

7.4.1 ML models and data analysis

As it has been above-mentioned, ML-based resource management tools are

required to optimize the use of the resources at BBU pools. In this case,

the system would be able to learn from past situations to proactively predict

traffic demand. This subsection describes the database, and it establishes the

simulation conditions of the supervised learning techniques (SVM, TDNN,

and LSTM) in the DRM-AC.
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Data Configuration

For simplicity, the analysis of the forecasting models has been limited only to

BBU pool 1, and one minute of traffic database is generated. Fig.7.4 shows

the database, which is split into a training set (first 80 %) and a testing set

(the remaining 20 %); the dotted line indicates the boundary between those

sets.
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Figure 7.4: Instantaneous evolution of the RCC at BBU pool 1. Database of 60000

samples. First 80 % of the data is used as a training set and the remaining 20 % as a

testing set.

Models Configuration

SVM and TDNN models predict the RCC based on a set of previous time

steps. Hence, an analysis of how many previous time steps are required

to predict the RCC is necessary. The first approximation is carried out
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by the calculation of the sample partial autocorrelation function (PACF),

represented in Fig. 7.5. PACF values are split according to their amplitudes

in high and low contribution with a threshold of 10 % of the maximum

value. The PACF decreases with the number of previous time steps, with the

exception of some isolated values (four samples after 250 ms). The cumulative

distribution function (CDF) of the high contribution values (CDF 1) is shown

on Fig. 7.5, the 78 % of the values are located before 150 ms. Furthermore,

the CDF of the high contribution values without concerning the isolated

samples after 250 ms is also shown (CDF 2), where 97 % of the samples are

before 150 ms. Based on this fact, the previous 150 ms is considered as a

significant time window to adjust this parameter in SVM and TDNN.
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Figure 7.5: Partial autocorrelation function of the database concerning 500 previous time-

steps.

After testing multiple configurations of SVM and TDNN, the best results
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were obtained using SVM with a Gaussian kernel and TDNN with two hid-

den layers of 10 neurons and sigmoid as the activation function. Fig. 7.6

shows the root-mean-square error (RMSE) of SVM and TDNN using dif-

ferent amounts of previous time-steps until 150 ms. The RMSE decreases

when the number of previous time-steps increases; however, after 100 ms and

130 ms in SVM and TDNN respectively, the RMSE remains almost constant.

This behavior shows that the convergence of TDNN and SVM is improved

by increasing the number of previous time steps until those limits. For this

reason, only θ = 100 ms and N = 130 ms previous time-steps are consid-

ered in the subsequent analysis. Nevertheless, the method based on PACF

is shown to be a perfectly valid rule-of-thumb, and there would be no need

to test each case.
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Figure 7.6: Gaussian SVM and TDNN performance in terms of the number of previous

steps.
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Regarding the LSTM approach, its performance does not depend on the

number of previous time steps because their contribution is saved in the

internal gates of the LSTM cell. However, different network architectures

were tested and compared to find a suitable deep learning scheme. Table 7.2

summarizes those architectures. Two hidden layers with different numbers of

LSTM cells, where the learning process takes place, are used. Following [104]

recommendation, dropout layers (with a dropping probability of 0.2) are used

after each hidden layer to prevent overfitting. Finally, a regression output

layer is aggregated to map the output of the last hidden layer to a predicted

value.

Table 7.2: Tested deep learning LSTM architectures

Network structure : index

1 2 3 4 5 6 7 8 9 10

L1 Sequential input layer

Hidden layer: number of LSTM cells
L2

20 40 60 80 100 120 140 160 180 200

L3 Dropout: probability of dropping out 0.2

Hidden layer: number of LSTM cells
L4

10 20 30 40 50 60 70 80 90 100

L5 Dropout: probability of dropping out 0.2

L6 Regression output layer

Fig. 7.7 shows the performance of the network structures in Table 7.2,

based on the RMSE achieved in the testing dataset (last 20 % of the data).

The RMSE decreases when the number of LSTM cells increases, reaching

131



its minimum value for network structure number four. For this reason, this

structure is selected for comparison with SVM and TDNN strategies. It has

less computational cost than higher network structure labels. The RMSE

under this architecture is 12.6 GOPS, which represents 7.6 % of the mean

value.
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Figure 7.7: Performance (RMSE) on the testing data of the deep learning LSTM archi-

tectures in Table 7.2.

7.4.2 DRM-AC performance evaluation

This subsection analyzes the performance of the DRM-AC using the DRM

with fixed capacity as a benchmark.

Fig. 7.8 summarizes the convergence of the DRM-AC using the ML ap-

proaches, which are analyzed in terms of the error distribution and to what

extent the prediction is close to the perfect prediction. Fig. 7.8(a), 7.8(b) and
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7.8(c) show the predicted computational capacity in terms of the real com-

putational demand of each strategy. Most of the predicted values are close

to the perfect prediction line, being the degree of dispersion indicator of the

quality of the prediction strategy and the convergence of the algorithms. The

maximum error of SVM and TDNN approaches is around 35 GOPS, and the

RMSE is close to 7.5 GOPS, which represents a deviation of 4.5 % of the

mean value of the overall dataset. The Pearson correlation coefficients (slope

of the regression line) are 0.92 and 0.91 for SVM and TDNN, respectively.

On the other hand, the LSTM strategy presents a RMSE = 12.6 GOPS that

depicts the 7.6 % of the mean value and the Pearson coefficient is r = 0.7,

which is more deviated from the perfect prediction line.

Fig. 7.8(d) shows the error distribution of each approach. Regardless of

the used strategy, the error distribution is almost a Gaussian curve with zero

mean. As the ML algorithms predict the required computational capacity

at the BBU pool, it is important to analyze the effect of these errors. Posi-

tive errors (right side of perfect prediction line on Fig. 7.8(d)) represent the

number of underutilized resources, while negative errors are the amounts of

unsatisfied resources. The main objective is to minimize the underutilized re-

sources while maintaining the QoS. Improving the prediction capacity of the

machine learning strategies is not enough to address this challenge because

negative errors always reduce the QoS. Table 7.3 summarizes the behavior

of the three proposed strategies.

SVM and TDNN improve the performance of LSTM in 3 %. However,

as it is possible to see in Fig. 7.6, the behavior of SVM and TDNN strongly

depends on the number of previous time steps used in the prediction. As
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mobile networks experience large fluctuations and they are not stationary

processes, results obtained under the assumption of variable parameters as

the number of previous time steps might be more robust. The design based

on LSTM cells is an example; it obtains similar performance to Gaussian

SVM and TDNN without requiring a fixed number of previous time steps.

The useful information of the previous time steps is stored in the forget gates

of the LSTM entities in the hidden layers.

Table 7.3: Summary of the proposed ML techniques.

ML technique RMSE (GOPS) RMSE (%) Pearson coefficient

SVM 7.52 4.5 0.92

TDNN 7.45 4.47 0.91

LSTM 12.6 7.6 0.7

7.4.3 DRM-AC-PF and DRM-AC-ES performance

As it was aforementioned, the LSTM approach could be more robust to face

high fluctuation environments. For this reason and without losing generality,

the performance of DRM-AC-PF and DRM-AC-ES, reducing negative errors,

are evaluated based on the LSTM approach.

Fig. 7.9 shows the performance of the solution applying DRM-AC-PF.

The Max{} block extracts the envelope of the RCC acting as a low pass filter

eliminating the fastest variations; the solid blue line represents the filtered

computational capacity. The fixed capacity (300 GOPS) is also represented

to remark the advantage of predicting the required computational capacity.
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Negative errors cause QoS degradation. Fig. 7.10 exhibits the distribu-

tion of the errors of the proposed schemes using the same LSTM architecture.

Although positive errors in DRM-AC-ES have increased, negative errors are

almost eliminated. In the case of the DRM-AC-PF, the results are similar;

negative errors appear only in isolated cases at the cost of increasing the

positive error with respect to the original LSTM approach (LSTM DRM-AC

on Fig. 7.10).

Two key performance indicators have been defined to facilitate a numeri-

cal comparison of the strategies: the mean of unused resources (MUR+) and

the mean of unsatisfied resources (MUR−), calculated by (7.1) and (7.2),

respectively.

MUR+ =
1

K

K∑
j=1

e+j (7.1)

MUR− =
1

K

K∑
j=1

e−j , (7.2)

being K the number of time-steps in the whole database (K = 60000 ms),

e+j and e−j depict the absolute values of each kind of error at instant j in

GOPS. Those errors are complementary because only one of them could be

different from zero.

Table 7.4 shows the advantage of using each strategy in terms of MUR+

and MUR− key performance indicators. The DRM without adaptive capacity

has an average of 138.56 GOPS/ms of unused resources. Under the consid-

ered traffic conditions and with a fixed capacity (300 GOPS) in BBU pool

1, the resources are enough to handle the instantaneous RCC (MUR− = 0).

However, as the maximum capacity is fixed, if the RCC surpasses the max-
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imum capacity at BBU pool 1, UEs would be in degradation; consequently,

the MUR− would increase, and the QoS would be degraded. DRM-AC re-

duces the MUR+ considerably (5.5 GOPS/ms), but the error in the predic-

tion causes the instantiated resources to be insufficient to satisfy the demand

(50 % of the time approximately). DRM-AC-PF and DRM-AC-ES strate-

gies reduce considerably the MUR− at the cost of increasing the average of

unused resources but maintaining the UEs QoS.

Table 7.4: Performance summary in terms of the MUR+ and MUR−.

Proposals MUR+ (GOPS/ms) MUR− (GOPS/ms)

DRM 138.56 0

DRM-AC 5.5 4.49

DRM-AC-PF 34.08 0.072

DRM-AC-ES 41.15 0.0016

7.5 Conclusions

This chapter integrates ML techniques into a dynamic resource management

in C-RAN to optimize the utilization of computational resources. Three

ML strategies have been implemented and exhaustively compared: SVM,

TDNN, and LSTM in terms of their ability to predict the instantaneous

computational capacity at the BBU pools.

DRM-AC reduces the underutilized resources by 96 % when compared

with the DRM with fixed computational resources. However, it degrades the

QoS when the predicted computational resources are not enough to satisfy
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the demand. This situation appears approximately 50 % of the time due

to the error following a gaussian distribution with zero mean. This issue is

solved by proposing two novel strategies.

Firstly, a DRM-AC with prefiltering is proposed, where high-frequency

variations in input data are removed. DRM-AC-PF extracts the envelope

of the RCC, improving the learning process, and it almost eliminates QoS

degradation. Secondly, DRM-AC-ES monitors the maximum error computed

in past observation times. This allows estimating a marginal amount of

resources to be added to the predicted computational capacity.

As a consequence, DRM and DRM-AC are outperformed. DRM-AC-PF

and DRM-AC-ES reduce the unsatisfied resources by 98 % and 99.9 % com-

pared to the DRM-AC, respectively. Moreover, they reduce the number of

underutilized resources by 75 % and 70 % compared to the DRM, respec-

tively.
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Figure 7.8: Performance of the DRM-AC for each ML technique. (a), (b), and (c) show

the predicted computational capacity in terms of the real computational demand of SVM,

TDNN, and LSTM respectively. Black lines denote perfect prediction lines, the red line

depicts the regression line and r is the Pearson correlation coefficient. (d) represents the

histogram of the error distribution.
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Chapter 8

Conclusions and Future Works

Overall power consumption of future mobile networks should not grow be-

yond what it is now for 5G. A strategy that provides a sustainable opti-

mal deployment not only for 5G but also for B5G and 6G radio networks

has been provided. The main objectives are to reduce the footprint on en-

ergy efficiency, and on the deployment and operational costs of the network

while maintaining the coverage-QoS. This complex problem has been mod-

eled, introducing a Multi-objective ILP optimization algorithm to select the

optimum distribution of the RRHs in the densest zone of the city of Vienna.

The proposed algorithm is tested by using a realistic scenario that includes

41 possible RRHs in a heterogeneous deployment with MRRHs and SRRHs,

UEs modeled with different services, and an accurate 3D ray-tracing propa-

gation model. Additionally, operation at frequency bands 3.6 and 28 GHz,

as well as different C-RAN split options are studied.

As so many parameters can be compared after the optimization, it is

impossible to summarize the main results in a few words. Only mention that
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the algorithm reduces the deployment cost while maintaining the coverage-

QoS better than 95 %. Especially, at 3.6 GHz with low traffic demand, the

cost reduction is around 35 %, while at 28 GHz it reaches 70 % with LT

profile and almost 50 % under an HT condition.

This tool undoubtedly could help the MNOs to improve their network

planning, providing network optimizing and controlling by allowing the op-

erator to balance between coverage-QoS and cost reduction and consequently

power consumption savings.

Moreover, this work also integrates ML techniques into dynamic resource

management in C-RAN to optimize the utilization of computational re-

sources. Three ML strategies have been implemented and exhaustively com-

pared: SVM, TDNN, and LSTM in terms of their ability to predict the

instantaneous computational capacity at the BBU pools.

The DRM-AC reduces the underutilized resources by 96 % when com-

pared with the DRM with fixed computational resources. However, it de-

grades the QoS when the predicted computational resources are not enough

to satisfy the demand. This situation appears approximately 50 % of the

time because of the Gaussian distribution.

This issue is solved by proposing two novel strategies. First, a DRM-AC

with prefiltering is proposed, where high-frequency variations in input data

are filtered. DRM-AC-PF extracts the envelope of the RCC improving the

learning process, and it almost eliminates QoS degradation. Second, DRM-

AC-ES monitors the maximum error computed in past observation times.

This allows estimating a marginal amount of resources to be added to the

predicted computational capacity. As a consequence, DRM and DRM-AC
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are outperformed. DRM-AC-PF and DRM-AC-ES reduce the unsatisfied re-

sources by 98 % and 99.9 % compared to the DRM-AC, respectively. More-

over, they reduce the number of underutilized resources by 75 % and 70 %

compared to the DRM, respectively.

Additionally, this research work is not limited to the presented contribu-

tions because it also opens the door for novel proposals or upgrades. Plenty

of future research lines could be carried out to improve the proposed platform

and algorithms. Some of the future research are summarized as follows.

Future Works

• Design an orchestration and management strategy that could efficiently

guarantee an end-to-end Quality of Experience in the mobile networks.

This strategy should handle the high complexity and variability of fu-

ture wireless systems. For this reason, it must include AI techniques

for decision-making and global management. This proposal could be

tested in the proposed platform and will be a completely novel research

line.

• From a practical point of view, the RRH deployment algorithm pro-

posed in this thesis could be used in the current deployment of multiple

MNOs, not only in the deployment phase but also to decide the active

RRHs under certain traffic conditions. However, a study of the effect

of turning off RRHs in the number of handovers and consequently in

the QoS will be fundamental.

• On the other hand, a meta-heuristic solution of the proposed RRH de-
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ployment optimization should be introduced because the computational

cost of the solution exponentially increases with the number of RRHs

and zones in the map. Simulated Annealing, genetic algorithms, and

swarm optimization could be considered to compare the performance.

• The dynamic resource management with adaptive capacity presented in

this thesis proposes to activate only the required computational capac-

ity instead of considering a fixed maximum capacity at BBU pools or

CUs. The models are introduced and tested considering a system-level

simulation. However, the proposal should be tested on a real scenario

that could be created using open-source platforms such as OpenAir-

Interface or srsRAN. One of the fundamental analyses is the timing

to instantiate the virtual network functions at CUs, which should be

synchronized with the prediction of the computational capacity.
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“Machine-learning based traffic forecasting for resource management

in C-RAN,” in 2020 European Conference on Networks and Commu-

nications (EuCNC), 2020, pp. 200–204.
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[94] R. Guerra-Gómez, Silvia Ruiz, M. Garcia-Lozano, and Umar Saeed,

“Flexible radio access network optimization with cell coordination,”

in 1st INTERACT: Intelligence-Enabling Radio Communications for

Seamless Inclusive Interactions, Bologna, Italy, Feb. 2022.

[95] Tiago Monteiro, Luis M. Correia, and Ricardo Dinis, “Implementation

analysis of cloud radio access networks architectures in small cells,” in

EURO-COST, Portugal, Feb. 2017.

160



[96] A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S.

Berger, and L. Dittmann, “Cloud RAN for mobile networks: A tech-

nology overview,” IEEE Communications Surveys Tutorials, vol. 17,

no. 1, pp. 405–426, 2015.

[97] C. Mao, M. Khalily, P. Xiao, T. W. C. Brown, and S. Gao, “Planar

Sub-Millimeter-Wave Array Antenna With Enhanced Gain and Re-

duced Sidelobes for 5G Broadcast Applications,” IEEE Transactions

on Antennas and Propagation, vol. 67, no. 1, pp. 160–168, Jan. 2019.

[98] K. Grobe, A. Mitcsenkov, S. Krauß, F. Geilhart, and et. al., “As-

sessment of candidate transport network architectures for structural

convergence,” COMBO, Tech. Rep. D3.4, Jun. 2016.

[99] L. HUAWEI TECHNOLOGIES CO., “Vo5G Technical White Paper,”

HUAWEI, Tech. Rep., Jul. 2018.

[100] 3GPP, “5G; System Architecture for the 5G System (3GPP TS 23.501

version 15.3.0 Release 15),” 3GPP, Tech. Rep., Jul. 2018.

[101] R. Ferrus, O. Sallent, J. Perez-Romero, and R. Agusti, “On 5G Radio

Access Network Slicing: Radio Interface Protocol Features and Config-

uration,” IEEE Communications Magazine, vol. 56, no. 5, pp. 184–192,

May 2018.

[102] V. Nurmela and et. al., “Deliverable d1.4: METIS Channel Models,”

Mobile and wireless communications Enablers for the Twenty–twenty

Information Society (METIS), Tech. Rep. ICT-317669-METIS/D1.4,

Feb. 2015.

161



[103] E. D. Andersen and K. D. Andersen, “The Mosek Interior Point

Optimizer for Linear Programming: An Implementation of the

Homogeneous Algorithm,” in High Performance Optimization, ser.

Applied Optimization. Boston, MA: Springer US, 2000, pp. 197–

232. [Online]. Available: https://link.springer.com/chapter/10.1007/

978-1-4757-3216-0 8

[104] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-

dinov, “Dropout: a simple way to prevent neural networks from over-

fitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, Jan. 2014.

162

https://link.springer.com/chapter/10.1007/978-1-4757-3216-0_8
https://link.springer.com/chapter/10.1007/978-1-4757-3216-0_8

