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Abstract
Towards Video Transformers for Automatic Human Analysis

by Javier SELVA CASTELLÓ

With the aim of creating artificial systems capable of mirroring the nuanced understanding
and interpretative powers inherent to human cognition, this thesis embarks on an exploration
of the intersection between human analysis and Video Transformers. The objective is to har-
ness the potential of Transformers, a promising architectural paradigm, to comprehend the
intricacies of human interaction, thus paving the way for the development of empathetic and
context-aware intelligent systems. In order to do so, we explore the whole Computer Vi-
sion pipeline, from data gathering, to deeply analyzing recent developments, through model
design and experimentation.

Central to this study is the creation of UDIVA, an expansive multi-modal, multi-view
dataset capturing dyadic face-to-face human interactions. Comprising 147 participants across
188 sessions, UDIVA integrates audio-visual recordings, heart-rate measurements, personal-
ity assessments, socio-demographic metadata, and conversational transcripts, establishing
itself as the largest dataset for dyadic human interaction analysis up to this date. This dataset
provides a rich context for probing the capabilities of Transformers within complex environ-
ments. In order to validate its utility, as well as to elucidate Transformers’ ability to assimi-
late diverse contextual cues, we focus on addressing the challenge of personality regression
within interaction scenarios. We first adapt an existing Video Transformer to handle multiple
contextual sources and conduct rigorous experimentation. We empirically observe a progres-
sive enhancement in model performance as more context is added, reinforcing the potential of
Transformers to decode intricate human dynamics. Building upon these findings, the Dyad-
former emerges as a novel architecture, adept at long-range modeling of dyadic interactions.
By jointly modeling both participants in the interaction, as well as embedding multi-modal
integration into the model itself, the Dyadformer surpasses the baseline and other concur-
rent approaches, underscoring Transformers’ aptitude in deciphering multifaceted, noisy, and
challenging tasks such as the analysis of human personality in interaction.

Nonetheless, these experiments unveil the ubiquitous challenges when training Trans-
formers, particularly in managing overfitting due to their demand for extensive datasets.
Consequently, we conclude this thesis with a comprehensive investigation into Video Trans-
formers, analyzing topics ranging from architectural designs and training strategies, to input
embedding and tokenization, traversing through multi-modality and specific applications.
Across these, we highlight trends which optimally harness spatio-temporal representations
that handle video redundancy and high dimensionality. A culminating performance com-
parison is conducted in the realm of video action classification, spotlighting strategies that
exhibit superior efficacy, even compared to traditional CNN-based methods.
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Resum
Towards Video Transformers for Automatic Human Analysis

per Javier SELVA CASTELLÓ

Amb l’objectiu de crear sistemes artificials capaços de reflectir les intrincades habilitats de
comprensió i interpretació inherents a la cognició humana, aquesta tesi s’embarca en una ex-
ploració de la intersecció entre l’anàlisi humana i els Transformers per a vídeo. L’objectiu
és aprofitar el potencial dels Transformers, una prometedora família d’arquitectures, per tal
d’entendre les complexitats de la interacció humana, obrint així el camí per al desenvolu-
pament de sistemes intel·ligents, empàtics i conscients del seu entorn. Per aconseguir-ho,
explorem totes les branques de la Visió per Computador, des de la recollida de dades fins a
l’anàlisi del estat del art, passant pel disseny i l’experimentació amb aquests models.

Una de les pedres angulars d’aquest estudi és la creació d’UDIVA, un ampli conjunt de
dades multimodal i multivista que captura interaccions humanes diàdiques cara a cara. Amb
147 participants i 188 sessions, UDIVA integra contingut audiovisual, freqüència cardíaca,
perfils de personalitat, dades sociodemogràfiques i transcripcions de les converses, establint-
se com el conjunt de dades més gran per a l’anàlisi d’interacció humana diàdica publicat fins
ara. Aquestes dades representen un context ric per investigar les capacitats dels Transform-
ers en entorns complexos. Per tal de validar la seva utilitat, així com per verificar aquestes
habilitats dels Transformers, ens focalitzem en la regressió de la personalitat dins dels es-
cenaris d’interacció. Primer adaptem un Transformer de vídeo per tal d’integrar múltiples
fonts contextuals. Després d’una rigorosa experimentació, obtenim una millora progressiva
en els resultats a mesura que s’afegeix més context, validant el potencial dels Transformers
per modelar dinàmiques humanes complexes. Arrel d’aquests resultats dissenyem el Dyad-
former, una arquitectura per interaccions diàdiques de llarga duració. En modelar conjunta-
ment ambdós participants en la interacció, així com incorporant la multimodalitat al mateix
model, el Dyadformer supera la nostra primera proposta i altres treballs concurrents, desta-
cant l’aptitud dels Transformers per resoldre tasques enrevessades, sorolloses i desafiants.

No obstant això, aquests experiments revelen els reptes a l’hora d’entrenar Transformers,
especialment relatius al sobreajustament, derivat de la seva demanda de grans conjunts de
dades. En conseqüència, concloem la tesi amb una investigació exhaustiva sobre els Trans-
formers per a vídeo, analitzant els dissenys arquitectònics i estratègies d’entrenament, el pre-
processament dels vídeos i la tokenització, així com la multimodalitat i aplicacions especí-
fiques. Entre aquestes, destaquem tendències que aprofiten de manera òptima les representa-
cions espaciotemporals per tal de gestionar la redundància del vídeo i l’alta dimensionalitat.
Per finalitzar, realitzem una comparació de rendiment en l’àmbit de la classificació d’accions a
vídeo, destacant estratègies que mostren una eficàcia superior, inclús quan es comparen amb
els mètodes tradicionals basats en convolucions.
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Chapter 1

Introduction

1.1 Motivation

An intricate human world. The world is characterized by an inherent complexity, abound-
ing with stimuli and intricate details, rich in information that can take many forms. Humans
have evolved a heterogeneous toolkit of senses, allowing us to relate to our environments
through a wide range of signals (visual, olfactive, gustatory, aural, tactile, etc.). Moreover,
our brains have adapted over millions of years to properly integrate such varied sensory in-
put by optimizing for survival. We are able to build a coherent and complete representation
of the world around us. This allows us to perceive, reason about, understand, and interact
with our environments and each other. Moreover, this has allowed humans to build increas-
ingly complex technological spaces and societies. From social media to the ease of global
mobility, we live surrounded by a great diversity of viewpoints, cultures, and experiences.
This highlights the importance of empathy and understanding of each other.

Building artificial systems that can effectively extract valuable information, integrate di-
verse sources, and capture meaningful relationships from the complexity of our world is a
formidable challenge. Furthermore, bridging the gap between technology and society re-
quires the development of artificial systems capable of understanding our desires, empathiz-
ing with us, and engaging in natural, human-like communication. Achieving these goals
demands a deep understanding of human cognition as well as the intricacies of human inter-
action. These technological advances could grant us a new paradigm of interaction between
humans and machines, opening the door to unimaginable scientific advances.

Human perception. Crucially, we possess attentional capacity, enabling us to selectively
focus on a few pertinent signals while filtering out the overwhelming noise and sensory
overload that surrounds us. Moreover, we possess a brain structure that orchestrates the
integration of multiple sensory modalities: the thalamus. In this sense, attention allows us
to prioritize relevant information, while the thalamus puts everything together, leading to a
holistic and meaningful perception of our environment. For instance, in Figure 1.1a multi-
ple cues such as the sounds of birds, smells of flowers, rattling leaves, and bright colors are
integrated by the thalamus to construct a single world representation including individual
objects. In that setting, attention allows to focus on the hidden tiger, which poses a threat, so
the appropriate response can be activated as soon as possible. These abilities are especially
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(A) (B)

FIGURE 1.1: The complexity of the world requires proper handling of relevant context while discard-
ing irrelevant information. (A): A monkey in a cluttered environment, multisensory information must
be properly integrated to create a unique perceptual representation of the world with part-whole struc-
tures. This allows attention to separate irrelevant cues (e.g., flowers or birds) from potential threats
(e.g., a tiger lurking in the dark), such that responses to the environment can be taken in time. (B): De-
piction of a hungry monkey. In order to get food, it needs to focus on current observations of nuts and
rocks, while relating distant memories of the destructive power of rocks and the availability of food
inside nuts shells. All this whilst discarding other unrelated observations (e.g., leaves or butterflies)
and memories (such as swimming or climbing). Source images to create these figures were generated
using Bing Image Creator1.

relevant when trying to solve a specific task, allowing us to integrate varied sources of context
and discard irrelevant information in order to formulate a solution. For instance, discovering
the means to crack a nut open requires integration of past memories related to nuts and rocks
(knowledge that there is food inside the shell, destructive power of rocks) and recent visual
events (nearby nuts and rocks), while discarding unrelated memories and other distracting
present elements (see Figure 1.1b).

Vision is our most complex sense [379, 380]. As put by G. Pariente [282]: the human “may
be regarded as occupying the summit of visual evolution in the animal kingdom”. He was
probably referring to vision beyond mere sensing, as it also involves forming assumptions
and predictions based on the physical stimuli received by the eyes. Indeed, around 27% of
the human cortex is dedicated to tasks concerning visual function [383]. Regarding sensing
itself, the aforementioned complexity of the natural world stresses the need for attentional
mechanisms to selectively highlight salient elements while filtering out superfluous infor-
mation. For this, our visual system relies on the interaction of foveal vision and precise eye
movements. Foveal vision refers to the ability to see with exceptional detail at the center of
our visual field. This ability is crucially complemented by eye movements as a means to ac-
tively explore our environment. These eye movements allow us to shift our focus and direct

1https://www.bing.com/images/create

https://www.bing.com/images/create
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our attention to different regions of interest within a visual scene. These abilities allow us to
scan the environment, track moving objects, and selectively extract relevant information with
remarkable flexibility (compared, for instance, to hearing, which is limited to head motion).
Crucially, vision does not operate in isolation. The interplay between our internal world
models, memories, and recent perceptions participate in building a holistic representation of
a given situation. It is this complete context that drives our attention toward specific stim-
uli or ideas. It is precisely this contextual framework that enables us to discerningly direct
our focus within the visual field. For instance, auditory cues can guide our attention toward
occluded or out-of-view areas, enabling vision to verify the source of a sound.

FIGURE 1.2: A few of the Gestalt principles which exemplify how our visual system finds structure
within complex patterns. Similarity: We tend to group similar entities together (red vs. blue); Präg-
nanz: perception of complex objects as simple as possible (here we perceive 5 complete circles, instead
of perceiving partial circles and their intersections as separate entities); Proximity: we perceive closer
dots as more related than distant ones; Continuity: we perceive the points as forming a single curved
entity, instead of them being independent; Closure: we tend to fill in the gaps, to perceive a rhombus
instead of four independent corners; and Common region: we perceive each pair of red dots as be-
longing to a different group. Original figure by James Bascara, from an article by [72].

Patterns and structure in vision. Visual scenes are characterized by dynamic changes, oc-
clusions, cluttered environments, and varying lighting conditions. In order to make sense of
such turmoil, our visual system seems to rely on mechanisms to parse the world with an in-
nate structure. In other words, we impose organization on sensory data, unveiling regularity,
coherence, and continuity. We are able to detect salient elements and anticipate semantically
meaningful relationships. This aligns with the Gestalt laws of perception [410], and notably
with the prägnanz principle, which dictates that our visual system naturally strives for sim-
plicity and order (see Figure 1.2). Traditionally, and from a neurological point of view, the
visual system has been described as a hierarchy of descriptors [171, 384]. However, world
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representations based solely on hierarchies of descriptors of surface statistics (e.g., depth,
edges, shading...) may be insufficient to explain the phenomenon of structure perception.
Elementary surface processing is data-driven, while higher-level perception (like that pro-
posed by Gestalt principles) is goal-driven, guided by semantic models and the expectations
of the perceiver. Recognition involves leveraging such models in order to establish corre-
spondences and grouping patterns of scene primitive’s attributes into cohesive wholes [414]
(i.e., find structure within those hierarchies of descriptors). This can be further exemplified
by a recent theory put forward in [58], in which our brains would be using some form of
grammar to represent visual concepts which may have been a precursor of the language we
humans developed. Indeed, studies have shown that both visual and language-based stimuli
activate the same abstract concepts in the brain [40]. This highlights the fantastic ability of
our vision to impose structure, categorize, and group complex perceptual patterns as single
entities and the relationships between them. Finally, it is noteworthy to mention that tempo-
ral structure perception seems to play a pivotal role in comprehending our environment [38].
Not only to perceive and understand motion and dynamic changes but also as a means to
parse appearance and static cues, hence suggesting that time perception “can promote spatial
grouping” [37].

Limitations of current artificial vision. The more we delve into the intricate mechanisms
of human perception, it becomes increasingly evident that our perceptual abilities surpass
those of traditional AI methods. While our cognitive system seamlessly integrates multi-
modal information, directs attention to relevant cues, and forms a rich semantic structure to
understand the world, contemporary Computer Vision approaches fall short compared to the
depth and complexity of human perception, as we explore next.

In Computer Vision (CV), the ubiquitous Convolutional Neural Network (CNN) has shown
great performance and improvement over the years in a myriad of scenarios and applica-
tions [221, 32]. CNNs build a hierarchy of representations of a given visual input based on
interactions between local descriptors of the previous layer. These hierarchical structures for
vision were proposed precisely to mimic the behavior of the early areas of the human visual
cortex [115]. In this way, early layers learn simple detectors for edges, whereas later layers
detect more complex forms based on those (as can be seen in the work by [272] and in Fig-
ure 1.3a). CNNs’ success indicates they can indeed extract relevant patterns to form semanti-
cally significant representations of the data. Nevertheless, and as discussed above, this may
not be enough. CNNs have been shown to prioritize texture over shape cues [125, 24, 124],
fixating on surface statistics rather than capturing the underlying structure and higher-level
abstractions [182]. This limitation becomes evident in the sensibility exhibited by these net-
works to high-frequency adversarial attacks [30] (input perturbation through selective color
changes to a few individual pixels on an image). This fixation on high-frequency details [2,
438, 394] suggests that these networks may be learning shortcuts to solve tasks based on the
wrong reasons [123]. This can be further seen by the tendency of CNNs to misclassify ob-
jects when taken out of context [156] (e.g., a pear floating in the ocean). Finally, while there
is research analyzing the emergence of structure in vision models (often through the lens of
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(A) (B)

FIGURE 1.3: Texture vs. Structure: Comparison between the types of representations learned by CNNs
and Transformers. (A): CNNs build representations based on a hierarchy of surface statistics based
on learned local descriptors from the previous layer. From top to bottom, increasing depth in the
network, linked with increased complexity in the patterns exhibited (figure adapted from [272]). (B):
Transformers learn global context interactions and prefer to group semantically significant regions
which are input-dependent (figure adapted from [55]). We note that these two forms of visualization
are not strictly comparable and are here used for illustrative purposes only, displaying the findings of
several works cited in the main text.
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Gestalt principles [191, 229]) this has exclusively been studied on image models, yielding in-
consistent results [23, 35]. As we have mentioned, time seems to play a crucial role in how
these spatial perceptual structures emerge [38], so these findings may require further analysis
in the context of video.

Nevertheless, traditional methods dealing with temporal data have limitations of their
own. One key issue, especially in video, is that they fundamentally fail to handle long se-
quences. On the one hand, the Recurrent Neural Network (RNN) family encounters nu-
merical instability due to vanishing and exploding gradients when training on longer se-
quences [198, 285]. Furthermore, as they collapse sequential observations into unique recur-
rent states, as more elements are processed, distant information is progressively diluted [21].
On the other hand, CNN-based video models still rely on hierarchies of local descriptors,
which are directly extended from image models into the temporal dimension. CNN models
excel in tackling appearance-biased tasks, where simply spotting specific objects or back-
grounds may suffice (see Section 4.4.3). This capability extends to both static images and,
when integrated with recurrent techniques, even videos. Nonetheless, proper modeling of
spatiotemporal information in videos requires careful treatment of both space and time. De-
spite that, existing architectures tend to aggregate information in both dimensions, which
impedes some distant temporal relationships to form at the right level of abstraction (see Sec-
tion 4.3.5). Furthermore, these methods struggle more when solving video benchmarks that
require stronger temporal reasoning capabilities, such as Something-Something-v2 [139] (see
Section 4.6.2). From this perspective, it may be easier to explain the comparatively limited
progress in addressing video-related tasks, as opposed to image-centric tasks, beyond the
issue of dimensionality.

Transformers. Consequently, in order to build intelligent systems, capable of handling in-
tricate environments and leveraging the necessary spatio-temporal context to solve a given
task, we require novel architectures. Architectures capable of relating distant elements, mak-
ing sense of a wide range of signals, and focusing on the prevailing structure of the data
based on semantically significant relationships while discarding irrelevant information ac-
cordingly. It is in this scenario where the Transformer architecture was proposed [385], first
intended to better handle sequential data (see Figure 1.4). Transformers use non-local op-
erations (in contrast to traditional, local-based methods like CNNs), thereby enabling them
to relate distant components of the input from the first layer. In this sense, they are able
to parse the whole context in fewer operations, highlighting fine-grained and semantically
meaningful parts of the input. This capability assists in discovering more complex patterns
of interactions among temporally remote cues. Transformers use self-attention as their core
operation (see Section 3.1.1) which is dynamic and input-dependent (in contrast to the also
global but learned fully connected networks). This offers a two-fold benefit: on the one hand,
the non-locality of the self-attention allows to associate distant parts of the input; and on the
other hand, it is probably thanks to this operation that they group semantically related parts
of the input [252, 292]. In this regard, Transformers have been shown to be less sensible to ad-
versarial attacks [33], as they favor more semantic representations [454] (focusing on broader
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context and structure instead of on small distracting details) that have even been found to eas-
ily transfer to other modalities [238, 363]. In this line are the findings in the work by [55], who
showed that, if trained properly, Transformers automatically find salient objects in images
(see Figure 1.3b). All this evidence suggests that this novel architecture may be better able to
pay attention to structure within the input, focusing on semantically significant content use-
ful to solve the task at hand. Finally, and interestingly, Transformers relax assumptions about
the data, giving great flexibility to be adapted to any modality, but also to work seamlessly
in multi-modal settings that require information fusion. As we will see in Chapter 3, this
will prove to be a very useful feature when in need of leveraging multi-modal cues to solve a
complex task.

FIGURE 1.4: Difference between the way in which temporal input is processed by different architec-
tures. Light-grey circles depict individual input sequence elements, dark-grey circles illustrate the
output sequence representation while green boxes highlight the output that will be forwarded to the
next layer. CNNs learn representations based on local interactions of the previous layer. RNNs se-
quentially accumulate observations in a single recurrent state, difficulting relationships between dis-
tant elements. Transformers leverage global contexts through self-attention, allowing to leverage the
whole input at each layer. While fully connected layers also use global contexts at each layer, we note
that in the case of Transformers, these relationships are input dependent instead of fixed.

Human analysis. However, Transformers are still novel and so far we only possess prelim-
inary evidence. In this sense, we wonder, can they really make sense of complex and multi-
modal environments, leveraging minutely detailed spatiotemporal context to solve tasks that
demand fine-grained perception? To put that to the test, we need a complex environment and
a likewise complex task that require such sophisticated perceptual abilities.

Human behavior understanding, with its inherent complexity and the multifaceted nature
of humans, presents an intriguing and fertile ground for evaluating the true extent of Trans-
former capabilities. Humans are very complex creatures with diverse desires and motives:
understanding ourselves (why we do what we do) is a task that, in itself, we have not fully
mastered, and still tend to make false assumptions about others. Human behavior under-
standing involves analyzing how humans respond to internal and external stimuli, consider-
ing the interplay of environmental and psychological factors. The manner in which humans
behave is influenced by cultural backgrounds, ethics, interpersonal relationships, politics,
and social norms, as well as the behaviors of others we interact with. This has already been
clearly stated by the psychology research field: human behavior is much better understood in
situations [94]. In other words, context is crucial for understanding ourselves and others. Yet,
the integration and interpretation of complex environments to develop a comprehensive un-
derstanding of the world, and especially of human behavior, poses an exceptional challenge.
Understanding humans requires understanding complex audiovisual cues and the relation



8 Chapter 1. Introduction

(A) (B) (C) (D)

FIGURE 1.5: Illustration of four potential applications of intelligent empathetic systems capable of
humane interaction. (A) Personalized assisted living for disabled or elderly people, allowing them
for certain degree of independence. (B) The integration of these systems has the power to democra-
tize technology and science, enabling people of all backgrounds and ages to effortlessly engage and
contribute to advancing our collective knowledge. (C) Tailored teaching through custom pedagogi-
cal agents that adapt to the needs of each person. (D) Hightened human understanding can allow to
build emotional companions and even support therapy. Source images to create these figures were
generated using Bing Image Creator1.

between potentially distant events. It involves deciphering facial expressions, body gestures,
intonation, and vocalization [11], among many other aspects.

Human interaction. Perceiving all these subtleties required to analyze human behavior de-
mands a scenario that allows humans to freely and naturally express all those behavioral cues.
So we ponder, what setting provides such opportunities? Humans are inherently social crea-
tures. It is believed that some intelligent behaviors humans exhibit may have evolved in the
context of socializing [298]: we developed language and reason as a means to convince others
of our worldview [256]. It may make sense, then, to try to understand human behavior in a
context that permeates our everyday lives and may have partly shaped that same behavior:
human face-to-face interaction. Moreover, interaction is a setting where the full spectrum of
overt behavioral cues can be observed: as we are communicating with others, we reveal part
of our emotions through facial expressions or varying the pitch of our voice, we can convey
our opinions through speech, display empathy and rapport by mirroring body language, uti-
lize eye contact to convey attention and interest, employ speech pauses to indicate hesitation
or thoughtfulness, express assertiveness or engagement through body posture, and use phys-
ical contact to convey intimacy or comfort, to name a few. It is also within human interaction
that we can study patterns of leader-follower behaviors, as well as the results of cognitive
processes within cooperative or competitive task solving.

We hypothesize that, given the abilities exhibited so far by Transformers, they are a promis-
ing tool to better understand humans. We are interested in pushing the limit, facing Trans-
formers with a task that can be noisy, subjective, and demanding of abstract representations
from challenging environments that require fine-grained spatio-temporal integration of vi-
sual and multi-modal cues.

Finally, this particular setting opens the door to many different potential applications
(see Figure 1.5). For instance, aiding anthropology or psychology research to further pro-
cess and analyze great quantities of information from varied sample populations. Another
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fascinating application involves the development of empathetic systems capable of compre-
hending our desires and engaging with us in a more humane manner. Such systems could
enable equitable access to technology, transcending barriers based on age or cultural back-
ground. This increased technological accessibility not only empowers individuals to satisfy
their innate curiosity but also encourages wider participation in technology and science. By
lowering access barriers, more people can engage with these fields, fostering research, driv-
ing the development of new technologies, and ultimately improving our lives and advancing
our species.

1.2 Thesis outline

The objective of this thesis is to work towards a spatiotemporal modeling system capable
of extracting useful information for the automatic analysis of humans. In order to advance
research in that direction we traverse the entire spectrum of the Machine Learning pipeline.
From data gathering to exploring the theoretical potential of the novel Transformer archi-
tecture, through modeling the complexity of human face-to-face interactions by means of
empirical application of these models. Modeling and understanding humans in interaction
is a challenging endeavor, and as more people are involved in an interaction, the behavioral
patterns that arise become increasingly complex and nuanced. In order to provide a first
incremental step we focus on dyadic face-to-face interactions (i.e., between two participants
only). It is in this context that we begin an exploration of human interaction datasets that
allow for such intricate analysis. Unfortunately, we find a scarcity of databases that meet all
our criteria: dyadic face-to-face interaction, containing detailed annotations that demanded
fine-grained task solving, large enough to train a Transformer, as well as with a set of par-
ticipants and situations that were diverse enough. It is for this reason that we embark on a
journey to construct a large dataset capturing human interactions: UDIVA.

The UDIVA dataset (see Chapter 2) is a significant endeavor that involves extensive collab-
oration with researchers from various fields and institutions. It involves designing an inter-
action protocol with varied tasks, recruiting participants, recording interaction sessions, pro-
cessing the gathered data, as well as annotating with varied labels. The initial version of the
dataset contains self- and peer-reported personality scores, literal transcriptions of the con-
versations, as well as other metadata such as gender, ethnicity, or age of the participants. The
UDIVA dataset currently continues to be expanded with additional annotations and keeps
contributing to the advancement of research as a valuable resource for challenges and work-
shops. Nonetheless, in its current state, which task could we pose to the Transformer that
requires a fine-grained understanding of this interaction environment? Given no dyadic la-
bels are available yet, the challenges we were interested in presenting to the Transformer are
best represented by the task of self-reported personality inference.

With this in mind, we build an initial baseline that leverages the Transformer to solve this
intricate task (see Chapter 3). The non-local operation at the core of Transformers (see Sec-
tion 3.1.1) promises great context modeling capabilities. It should allow for picking up and
integrating small cues across the input video such that the dyadic interaction can be modeled.
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We first benchmark this possibility by extending an existing Transformer architecture [131] to
our setting. With it, we are able to successfully predict personality from a target participant
given a small 3-second chunk of audiovisual recordings. Motivated by this, we build the
Dyadformer, a Transformer-based architecture that effectively integrates multiple informa-
tion sources through attentional mechanisms from longer videos (up to 30 seconds). This is
done in two fashions: on the one hand video and audio representations are fused to construct
a comprehensive audiovisual model of the scene; and on the other hand, it enables recipro-
cal information access among each participant’s features. The multi-modal joint modeling of
both interactants helps predict individual personality scores, outperforming the baseline and
other models from a recent challenge on the UDIVA dataset [281].

During the development of the Dyadformer, we encountered numerous challenges. Fac-
tors such as the high dimensionality of video and the requirement for large amounts of data
posed significant obstacles. It also became evident that relying solely on supervised train-
ing for intricate tasks, such as personality prediction, might not suffice. Given the relative
novelty of Transformers, there are still many aspects that remain not fully understood. Con-
sequently, in Chapter 4 we dedicate the remainder of this thesis to conducting an exhaustive
analysis of the Video Transformers domain. We dissect them from how embedding networks
are used, to self-supervised training strategies, going through architectural design choices
specifically tailored to better capture the nuances of video data. Furthermore, we accompany
our detailed exploration with a performance comparison of over 20 Video Transformers on
the task of video action classification, finding them to outperform CNN counterparts, even
at cheaper computational costs in some cases. This effort culminates in an extensive survey
that encompasses comprehensive taxonomies and analyses, together with detailed insights
and extensive discussions, shedding light on the recent advancements in the field of Video
Transformers.

To conclude, given the knowledge gathered during this survey, we are currently extend-
ing the Dyadformer to leverage self-supervised losses that can more effectively learn human
personality from the UDIVA dataset (see Section 5.1). Our preliminary experiments suggest
that this indeed seems to be the case, proving self-supervised learning to be one of the key el-
ements to infuse both general and domain-specific semantics into neural networks. We hope
this will provide us with better tools to further our understanding of human behavior, from
both individual and dyadic settings, in the context of Video Transformers.

1.3 Summary of Contributions

Next are the main contributions derived from the development of the current thesis.

• We introduce UDIVA, a new non-acted dataset of face-to-face dyadic interactions, where
interlocutors perform competitive and collaborative tasks with different behavior elici-
tation and cognitive workload. The dataset consists of 90.5 hours of dyadic interactions
among 147 participants distributed in 188 sessions, recorded using multiple audiovisual
and physiological sensors. Currently, it includes sociodemographics, self- and peer-
reported personality, internal state, literal transcriptions and relationship profiling from
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participants. To the best of our knowledge, there is no similar publicly available, face-
to-face dyadic dataset in the research field in terms of the number of views, participants,
tasks, recorded sessions, and context labels.

• As an initial analysis on UDIVA, we propose a transformer-based method for self-
reported personality inference in dyadic scenarios, which uses audiovisual data and
different sources of context from both interlocutors to regress a target person’s personal-
ity traits. Preliminary results from an incremental study show consistent improvements
when using all available context information.

• We then extend this baseline and present the Dyadformer, a novel multi-modal multi-
subject Transformer architecture to model individual and interpersonal features in dyadic
interactions using variable time windows, thus allowing the capture of long-term inter-
dependencies. Our proposed cross-subject layer allows the network to explicitly model
interactions among subjects through attentional operations. Different to the baseline,
here the videos from both participants are simultaneously used as target and context.
This approach shows how multi-modality and joint modeling of both interactants for
longer periods of time helps to predict individual attributes. With Dyadformer, we set
new state-of-the-art self-reported personality inference results on individual subjects on
the UDIVA dataset.

• Finally, we review over 100 Video Transformer works and present a survey where we
analyze the main contributions and trends of works leveraging Transformers to model
video. In order to do so, we propose detailed taxonomies of the various design choices
throughout the whole Video Transformer pipeline. Specifically, we delve into how
videos are handled at input level first. Then, we study the architectural changes made
to deal with video more efficiently, reduce redundancy, re-introduce useful inductive
biases, and capture long-term temporal dynamics. In addition, we provide an overview
of different training regimes and explore effective self-supervised learning strategies for
video. Finally, we conduct a performance comparison on the most common benchmark
for Video Transformers (i.e., action classification on Kinetics 400 [57] and Something-
Something-v2 [139]), finding them to outperform 3D ConvNets even with less com-
putational complexity. We complement every analysis with extensive discussions and
thorough insights.
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Chapter 2

UDIVA: A Dataset of Human
Interaction

2.1 Introduction

People interact with others in many ways, guided by their culture, beliefs, relationships, con-
text, personality, or emotional and health state. Social interactions permeate our lives, beyond
our direct relationships with friends and family. They provide the foundation for many of
our daily activities, such as work, food access, education, entertainment, exercise, and more.
This is one of the reasons why human-human interaction has been widely studied in both
sociology and psychology, and more recently, from a machine learning standpoint. Gener-
ally speaking, recent technologies are interested in addressing automatic human behavior
analysis [4], and/or in the research and development of applications for human-machine in-
teractions [203]. In this new era of ubiquitous intelligent systems becoming more and more
seamlessly integrated into our daily lives, the future looks daunting for part of society. “How
should we adapt to this new technology? How will the machines learn to interact with us?”.
While valid, such questions and fears can be tackled from a different perspective, that is,
“How can technology providers train these systems to interact in a more humane way while
accounting for possible societal biases?”. Such questions motivate this work to analyze the
simplest way of human-human interactions, i.e., the interaction between two individuals or
the so-called dyadic interaction.

Current literature in computer vision and machine learning for human behavior under-
standing has mainly focused on research and development of perception, analysis, and syn-
thesis methods for individual behavior, such as the automated recognition of body move-
ments and actions [291, 56, 248]. Although recent works developed for triadic [184], small
groups [121] or multi-party based-interactions [301, 244, 165] can be found in the literature,
interpersonal-based tasks such as perception and modeling of the communication flow and
the adaptation between communication partners have been largely unexplored from a tech-
nological point of view [388]. To advance in such areas, the community is in need of publicly
available annotated datasets of non-acted, spontaneous interactions among dyads belonging
to different population groups in terms of age, gender, and cultural background. While sev-
eral acted datasets exist [50], natural interactions are preferred, as they cover the richness and
complexity of social communications in real life.
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In this chapter, we introduce UDIVA (Understanding Dyadic Interactions from Video
and Audio signals), a novel annotated dataset of dyadic face-to-face spontaneous interac-
tions. The purpose is to move beyond automatic individual behavior detection and focus
on the development of automatic approaches to study and understand the mechanisms of
influence, perception and adaptation to verbal and nonverbal social signals in dyadic inter-
actions, taking into account individual and dyad characteristics as well as other contextual
factors. One of our central research question revolves around the feasibility of developing
socially-aware systems able to decode complex internal processes and behaviors from indi-
viduals by the social signals they convey, and to understand how interaction partners per-
ceive and react to those cues directed to them. UDIVA has been designed and collected
with these goals in mind. It is a highly varied multi-modal, multi-view dataset of zero-
and previous-acquaintance, non-scripted face-to-face dyadic interactions based on free and
structured tasks performed in a lab setup. It consists of 188 interaction sessions, where 147
participants arranged in dyads performed a set of tasks in different circumstances. It has
been collected using multiple audiovisual and physiological sensors and currently includes
sociodemographic, self- and peer-reported personality, internal state, literal transcriptions of
the conversations, and relationship profiling. To the best of our knowledge, there is no simi-
lar publicly available, face-to-face dyadic dataset in the research field in terms of the number
of views, participants, tasks, recorded sessions, and context labels. The main contribution
derived from this chapter is to publicly release UDIVA. By doing so, we aim at fostering
multidisciplinary research and the development of new paradigms and technologies for un-
derstanding interpersonal behavior.

This chapter is organized as follows: we first introduce human interaction in Section 2.1.1
and personality computing in Section 2.1.2. Then, in Section 2.1.3, we review related dyadic
human interaction databases. The data collection process of UDIVA is explained in Sec-
tion 2.2, with a description of its contents following in Section 2.3. Next, in Section 2.4 we
detail the current release of the dataset, UDIVA v0.5, and go through its statistics. We high-
light potential applications for good and ethical considerations for the released data in Sec-
tion 2.5. Finally, Section 2.6 concludes the chapter.

2.1.1 Human Interaction

Human interaction has been a central topic in psychology and social sciences, aiming at ex-
plaining the complex underlying mechanisms of communication with respect to cognitive,
affective, and behavioral perspectives [48, 43]. In dyadic interactions, we use verbal and non-
verbal communication channels to convey our goals and intentions [265, 391] while building
a common ground [74]. Both interlocutors influence each other based on the cues we per-
ceive [48]. However, the way in which we handle them depends on a myriad of factors that
are crucial to better understanding the nuances of communication and interaction. Such fac-
tors, which we refer to as context, may include, but are not limited to: our personal character-
istics, either stable (e.g., personality [79], cultural background, and other sociodemographic
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information [336]) or transient (e.g., mood [75], physiological or biological factors); the rela-
tionship and shared history between both interlocutors; the characteristics of the situation
and task at hand [321]; societal norms; and environmental factors (e.g., temperature).

As we have mentioned, social interaction is the basis for most of our daily activities. In
this sense, developing tools and systems capable of understanding both, human interaction
and behaviour, would open the door to a wide spectrum of applications in many different
scenarios. This makes social interactions a complex yet very compelling setting in which to
analyze humans: it fosters that all aforementioned sources of context come into play in the
form of a wide spectrum of behaviours, demanding AI systems capable of a more compre-
hensive and complete modeling of human behavior.

Socially intelligent systems are expected to accurately perceive, understand, react, and
adapt to the affective and cognitive state of interacting individuals in different contexts, so
as to provide a more natural, empathic, tailored communication [83, 102, 280, 270]. To em-
body this human-likeness into such systems, it is crucial to have a deeper understanding of
real human-human interactions first, to allow for the computational modeling of individual
and social behaviors, and interpersonal influence [48, 101, 44]. Research in dyadic and small
group interactions has enabled the development of automatic approaches for detection, un-
derstanding, modeling, and synthesis of individual and interpersonal behaviors, social sig-
nals, and dynamics [297, 121, 392, 389]. For measuring interpersonal processes during an
interaction (such as non-verbal synchrony [85], rapport [463], or engagement [87]) the joint
modeling of all interlocutors and/or other sources of context has been frequently considered.
However, for the task of recognizing individual attributes or behaviors in interaction settings,
most computational approaches usually consider information from the target interlocutor
only. To analyze individual behaviors during a conversation, the joint modeling of both in-
terlocutors is required due to the existing dyadic interdependencies. While these aspects are
usually contemplated in non-computational dyadic research [189], context- and interlocutor-
aware computational approaches tend to disregard the effect of any sources of context on
individual behavior in addition to existing dyadic or group interdependencies [27, 415, 389,
262, 94, 78]. We largely attribute this dficiency to the lack of datasets providing contextual
metadata in different situations and populations. In order to foster research on interlocutor-
and context-aware approaches for social behavior modeling and understanding, we develop
the UDIVA dataset.

2.1.2 Personality

Two of the key labels collected during the recording of the UDIVA dataset are self- and peer-
reported personality scores of the participants. Personality is widely defined as the mani-
festation of individual differences in patterns of thought, feeling, and behavior, that remain
relatively stable during time [352]. In recent years, personality psychologists have reached
a consensus on the number of basic major dimensions of human personality, which range
between five and six [19]. Within the personality computing field [390, 295], personality is
usually characterized by the basic Big Five traits [251, 135] – Open-Mindedness (“O”), Con-
scientiousness (“C”), Extraversion (“E”), Agreeableness (“A”), and Negative Emotionality (“N”),
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often referred to as OCEAN. As described in [390], personality computing often follows the
Brunswik Lens [45], which is used to describe externalization and attribution of socially relevant
attributes during social interactions. The former is related to personality recognition, which
aims to infer self-reported personality traits from observable distal cues, i.e., overt behavior.
In contrast, the latter is related to personality perception, where the goal is to recognize the
apparent personality traits of a target person from the perspective of an external observer [176]
based on proximal cues, i.e., cues that the observer perceives. According to these definitions,
we will use the “personality recognition” expression when referring to works that focus on
self-reported personality traits (e.g., obtained via self-reported questionnaires), and the “per-
sonality perception” expression (or “apparent personality”) for referring to works that focus
on the personality attributed by external observers. Nevertheless, a method developed for
personality recognition could be easily adapted for personality perception and vice versa.

2.1.3 Related work

Human interaction datasets. Research on human behavior and communication understand-
ing has fostered the creation of a plethora of human interaction datasets [196, 300, 94, 355].
Here, we focus on publicly available datasets containing at least audiovisual data, which en-
able the fusion of multiple modalities and the creation of more complete representations.
In the literature, we can find examples of rich, non-acted datasets focused on computer-
mediated dyadic settings [51, 201], face-to-face triadic [184, 59], or small group interactions [8].
A number of TV-based datasets with acted interactions also exist [301]. However, in such
cases, the interlocutors’ internal states are artificially built.

One of the advantages of face-to-face settings is that the full overt behavioral spectrum
can be observed and modeled. Existing publicly available face-to-face dyadic interaction
datasets are summarized in Table 2.1. Most of them focus exclusively on verbal commu-
nication (speech and conversation) or emotion analysis. While some of them (e.g., IEMO-
CAP [50], NOMCO [279] or MSP-IMPROV [49]) do include annotations that would allow for
some form of interaction analysis (e.g., turn-taking), the narrow focus limits the kind of be-
haviors displayed. MMDB [322] and DAMI-P2C [62] can be highlighted, as they both focus on
interaction analysis similar to us, but are limited to adult-infant interaction, missing a broader
age representation. Opposed to these, UDIVA has been designed with a multipurpose objec-
tive, by including a varied set of tasks that allow for a broader assortment of behaviors to be
analyzed, and it includes interactions between a wider range of ages. As can be seen, most
of the publicly available interaction datasets are tailor-made for too specific purposes (such
as Mimicry, Hirability, or Agreement classification) or limited in the number of participants,
recordings (for instance, the second biggest dataset in terms of hours, Spontal [97], lags 30
hours behind the 90.5 hours of UDIVA), views, context annotations, language, or purpose.
Hence, there is no big enough general-purpose database in the literature that could allow for
an integral analysis of both, the interaction and the participants. For this reason, we next
introduce the UDIVA dataset.
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Name (Year) Focus Interaction Modality Annotations F/M Sess Size #Views Lang.

IFADV [349]
(2007)

Speech &
conversation

analysis
Non-acted Audiovisual Speech features, transcripts 24/10 20 5h 2 Dutch

IEMOCAP [50]
(2008)

Emotion
recognition

Acted∗ &
Acted

Audiovisual,
face & hands

MoCap.

Emotions, transcripts,
turn-taking 5/5 5 ∼12h 2 English

CID [36] (2008)
Speech &

conversation
analysis

Non-acted &
Non-acted∗ Audiovisual Speech features, transcripts 10/6 8 8h 1 French

Spontal [97]
(2010)

Speech &
conversation

analysis

Non-acted &
Non-acted∗

Audiovisual,
head & torso

MoCap.
Transcripts, speech features φ 120 60h 2 Swedish

NOMCO [279]
(2010)

Speech &
conversation

analysis

Non-acted &
Non-acted∗ Audiovisual

Speech & interaction
features, gestures,

transcripts, emotions

6/6
φ 60 ∼6h 3

Danish,
Swedish,
Finnish

HUMAINE†

[92, 93] (2011)
Emotion
analysis Non-acted∗ Audiovisual Emotions 34 18 ∼12h 4 English

MMDB [322]
(2013)

Adult-infant
interaction

analysis
Non-acted∗

Audiovisual,
depth,

physiological

Social cues (gaze, vocal
affects, gestures...) 121 160 ∼13.3h 8 + 1D English

MAMCO [386]
(2014)

Overlap
analysis Non-acted Audiovisual Transcripts 6/6 12 ∼1h 3 Maltese

4D CCDb [247]
(2015)

Speech &
conversation

analysis
Non-acted Audiovisual,

depth
Facial expressions, head

gestures, utterances 2/2 17 ∼0.2h 6 + 8M English

MAHNOB [34]
(2015) Mimicry Non-acted∗ Audiovisual,

head MoCap.

Head, face and hand
gestures, personality scores

(self-reported)
29/31 54 11.6h 2 +

13M English

MIT Interview
[264] (2015)

Hirability
analysis Non-acted∗ Audiovisual

Hirability, speech features,
social & behavioral traits,

transcripts
43/26 138 10.5h 2 English

MPIIEMO
[263] (2015)

Bodily
emotion
analysis

Acted Audiovisual Emotions 3/2 8×7×4
(tasks) ∼2.4h 8 German

φ

JESTKOD [42]
(2015)

Agreement
classification Non-acted∗ Audiovisual,

body MoCap. Agreement, emotion 4/6 25 4.3h 1 Turkish

Creative IT
[258] (2016)

Emotion
recognition Acted Audiovisual,

body MoCap.
Transcripts, speech features,

emotion 9/7 8 ∼1h 2 English

MSP-IMPROV
[49] (2017)

Emotion
recognition

Acted &
Non-acted Audiovisual Turn-taking, emotion 6/6 6 9h 2 English

NNIME [73]
(2017)

Emotion
analysis Non-acted∗ Audiovisual,

physiological Emotion, transcripts 22/20 102 ∼11h 1 Chinese

RAMAS [293]
(2018)

Emotion
analysis

Non-acted∗

& Acted

Audiovisual,
depth, body

MoCap.

Physiological signals,
emotion, interaction traits 5/5 80 ∼7h 2 + 1D Russian

DAMI-P2C [62]
(2020)

Adult-infant
interaction

analysis
Non-acted∗ Audiovisual

Emotion,
sociodemographics,

parenting assessment, child
personality (peer-reported)

38/30 65 ∼21.6h 1 φ English

UDIVA (ours)
(2020)

Social
interaction

analysis

1
5 Non-acted

& 4
5 Non-

acted∗

Audiovisual,
heart rate

Personality scores (self- &
peer- reported),

sociodemographics, mood,
fatigue, relationship type

66/81 188×5
(tasks) 90.5h 6 + 2E

Spanish,
Cata-
lan,

English
† Here we consider the Green Persuasive and the EmoTABOO [448] datasets together.

TABLE 2.1: Publicly available audiovisual human-human (face-to-face) dyadic interaction datasets.
“Interaction”, Acted (actors improvising and/or following an interaction protocol, i.e., given top-
ics/stimulus/tasks), Acted∗ (Scripted), Non-acted (natural interactions in a lab environment) or Non-
acted∗ (non-acted but guided by interaction protocol); “F/M”, number of participants per gender
(Female/Male) or number of participants if gender is not informed; “Sess”, number of sessions;
“Size”, hours of recordings;“#Views”, number of RGB cameras used, and D is RGB+D, E is Ego, M
is Monochrome. The φ symbol is used to indicate missing/incomplete/unclear information on the
source.
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2.2 Data collection

In this section we introduce the data collection procedure for the UDIVA dataset. We de-
scribe participant recruiment process, the questionaires to assess personality and other in-
ternal states, the sensors used (cameras, microphones, etc.), and the tasks that compose the
structure of a dyadic session in UDIVA.

2.2.1 Participant recruitment and Questionnaires

Participants were recruited through university and social media ads, as well as word of
mouth. Prior to their first dyadic session, participants gave consent to be recorded and to
share their collected data for research purposes, in compliance with the EU GDPR1, and filled
in several questionnaires about themselves. A number of individual factors are related to per-
sonality and behaviour, such as gender [407] or age [325]. Similarly, cultural and educational
indicators have been found to influence interpersonal relationships [336]. Therefore, prior to
their first session, each participant filled out a sociodemographic questionnaire, including:
age, gender, ethnicity, occupation, maximum level of education, and country of origin. To
assess personality and/or temperament, age-dependent standardized questionnaires were
administered. In particular, parents of children up to 8 years old completed the Children
Behavior Questionnaire (CBQ) [328, 276], participants from 9 to 15 years old completed the
Early Adolescent Temperament Questionnaire (EATQ-R) [99, 387], while participants aged
16 and older completed both the Big Five Inventory (BFI-2) [352] and the Honesty-Humility
axis of the HEXACO personality inventory [19]. These personality scores were computed
on a 1-to-5 scale and were later converted to z-scores using descriptive data from normative
samples.

Before and after each interaction session, participants also filled in several questionnaires
regarding their current internal state. In particular, all participants (or their parents) com-
pleted pre- and post-session mood ([119], as a 1-to-5 rating scale) and fatigue (ad-hoc 1-to-10
rating scale) assessments. The mood assessment contained items drawn from the Post Ex-
perimental Questionnaire of Primary Needs (PEQPN [412]). In particular, this included 8
classes: Good, Bad, Happy, Sad, Friendly, Tense, and Relaxed. After each session, participants
aged 9 and above completed again the previous temperament/personality and mood ques-
tionnaires, this time rating the individual they interacted with, to provide their perceived
impression. Finally, participants reported the relationship they had with their interaction
partner, if any. Participants that did not fill in the pre- and/or post-fatigue questionnaire had
their fatigue level set to 0.

2.2.2 Sensors and Recording setting

The setup consisted of 6 HD tripod-mounted cameras recording at a resolution of 1280 ×
720px and 25fps, 1 lapel microphone per participant at 44100 Hz, and an omnidirectional
microphone on the table, as depicted in Figure 2.1a. Each participant also wore an egocentric

1https://ec.europa.eu/info/law/law-topic/data-protection_en.

https://ec.europa.eu/info/law/law-topic/data-protection_en
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(A)

(B)

FIGURE 2.1: Recording environment. We used six tripod-mounted cameras, namely GB: General Rear
camera, GF: General Frontal camera, HA: individual High Angle cameras and FC: individual Frontal
Cameras, and two ego cameras E (one per participant, placed around their neck). (A) Position of
cameras, general microphone, and participants. (B) Example of the time-synchronized 8 views.

camera around their neck recording at 1920× 1080px and 30fps and a heart rate monitor on
their wrist. All the capturing devices are time-synchronized and the tripod-mounted cameras
are calibrated. Such setup allows us to collect rich audiovisual data from the participants, in
particular with respect to speech, face and upper body. See Figure 2.1b for an example of the
camera views. The particular devices used are listed below:

• Tripod-mounted cameras:

– Two Revotech i706 (FC1 and FC2) and one Revotech i712 (GB).

– Three Axis M1124 (HA1, HA2 and GF).

• Ego-cameras: Two Victure AC800.

• Lapel microphones: Two RØDE SmartLavPlus.

• Omnidirectional general microphone: One Amazon Basics USB Conference Microphone.

• Heart Rate monitor: Two Fitbit Charge 3.
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FIGURE 2.2: Examples of the 5 tasks included in the UDIVA dataset from 5 sessions. From left to right:
Talk, Lego, Animals, Ghost, Gaze.

2.2.3 Tasks

Participants were asked to sit at 90◦ to one another around a table (see Figure 2.1a), to be
close enough to perform the administered tasks while facilitating data acquisition. A ses-
sion consisted of 5 tasks (illustrated in Figure 2.2) eliciting distinct behaviors and cognitive
workload:

• Talk. Participants were instructed to discuss any subject for approximately 5 minutes.
This task allows for analysis of common conversational constructs, such as turn-taking,
synchrony, empathy, and quality of interaction, among others. Moreover, it allows to
extract further interaction features that can be employed as personality indicators.

• “Animals” game. Participants asked 10 yes/no questions about the animal in the card
wore on their own forehead to guess the animal. Animals were classified into 3 dif-
ficulty levels. This game elicits cognitive processes (e.g., thinking or gaze signaling
events). The duration of this task depends on the participants’ ability to find proper
questions and the difficulty of the animal.

• Lego building. Participants built a Lego together following the instructions leaflet,
ranging between 4 difficulty levels. This task fosters collaboration, cooperation, joint
attention, and leader-follower behaviors, among others.

• “Ghost blitz” card game. Participants played one card per turn, competing with each
other to be the first to select the correct figurine from a set of five figurines placed on the
table, based on the content of the played card. This task fosters competitive behavior,
and allows cognitive processing speed analysis, among others.

• Gaze events. Participants followed directions to look at each other’s face, at static/moving
object, or elsewhere, while moving head and eyes. This task serves as ground truth for
gaze gestures and face modeling with varied head poses.

These tasks were selected along with psychologists due to the variety of individual and
dyadic behaviors they elicit. In particular, Lego structures have been widely used in obser-
vational settings to assess aspects such as communication [1], social skills [228] or teamwork
abilities and performance [117]. Ghost and Animals are examples of board games, proven to be
valid assessments of interpersonal skills [147, 381]. All these aspects are, in turn, indicators of
personality traits like Extraversion, Agreeableness or Conscientiousness [6]. Cognitive methods,
such as the tasks herein used, are routinely used in personality research [18].

Talk was always administered first as a warm-up and Gaze was always last, whereas the
remaining tasks were administered in randomized order. Prior to the beginning of each task,



2.3. Dataset Content 21

it was explained by a lab proctor, who left the recording room while it was taking place. Only
for Gaze, the proctor gave the instructions while participants performed them. The recording
of each task starts when the lab proctor finishes explaining the task to the participants and
stops interacting with them, and finishes when the proctor starts interacting with the partic-
ipants again to deliver the following task. The real given task (e.g., build a Lego building)
may finish minutes before the end of the recording. Once they finished the real given task,
participants were free to continue playing, talking, or just wait until the proctor entered the
recording room and stopped the recording. This extra time allows the emergence of spu-
rious behaviors once the actual task finishes that could prove interesting for analysis (e.g.,
they play another round, build random legos, talk, stare at the distance in silence, etc.). The
specific Lego building and assigned animal cards for each session were selected such that no
participants repeated the same Lego or animal twice while forcing a uniform distribution on
the number of times each item was used for the total of sessions. To assess their difficulty
level, we conducted an anonymous survey among 19 co-researchers.

2.3 Dataset Content

This section introduces the actual contents of the UDIVA dataset. This includes time-synchronized
multi-modal, multi-view videos, as well as metadata and transcriptions. We note that ego-
centric cameras, heart-rate monitors, peer-reported personality, and camera calibration are
yet to be processed and synchronized, hence they have not been made publicly available yet.

2.3.1 Synchronization of audiovisual data

The UDIVA dataset currently contains the audiovisual recordings of the 6 HD tripod-mounted
cameras (see Figure 2.1a), in .mp4 format. There is one recording per camera, task, and ses-
sion, which had to undergo a synchronization process. Cameras were separated into two
groups, which are internally synchronized: Axis cameras (HA1, HA2 and GF) recorded on
one computer using Noldus’ MediaRecorder software (MR), and Revotech cameras (FC1, FC2
and GB) were recorded on a different computer using CMS software. Then, the task of syn-
chronization involves aligning the two groups together. To allow for this, a single screen was
added in the background, such that it could be seen from one camera of each group (HA1
and FC1), displaying a timestamp with millisecond precision. Furthermore, the CMS group
lost 1% of the frames (around 1 frame every 4 seconds). This does not affect the ability to per-
form analysis on this data, as it is effectively equivalent to having recorded at 24.75 fps, but
it does produce synchronization problems. It is for this reason that we used Dynamic Time
Warping (DTW) to both align and also suggest where to insert missing frames so the videos
would not lose synchrony with time. DTW is an algorithm which compares two sequences
and proposes the minimum set of operations (insertion, deletion, or match), to transform one
sequence into another. In our case, it is used to detect where, in a sequence of timestamp
readings, there is a missing frame. Regarding audio, it was recorded in synchrony with the
video through three microphones which were each linked to one camera of the MR group.
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One lapel microphone to HA1, another to HA2, and the General Microphone (on the table) to
GF. In this sense, auidio does not require any further synchronization.

The process involved the following steps:

1. Manually annotate the timestamps shown in the first and last four frames (8 frames
total) of each recorded video from FC1 and HA1.

2. Manually select the region of the video where the screen appears for both FC1 and
HA1 (as cameras were only moved between recording days, this was done for just one
session of each recording day).

3. For all frames in the video, crop the timestamp region and perform an Optical Character
Recognition (OCR) reading of the displayed timestamp2). This results in a list of read
timestamps in numerical format.

4. For each FC1 video, run DTW with the sequence of timestamp readings compared to
an artificially generated sequence (the expected one). The latter was generated through
linear interpolation using the manually annotated first and last frames of each video
(from step 1). This is needed as OCR detections were not entirely accurate, and while
DTW is resilient to the few mistakes, we require an accurate sequence against which to
compare the OCR readings. The output of DTW is a list of positions where a frame is
missing.

5. Insert missing frames in all three cameras from CMS at those positions by copying the
preceding frame.

6. Compute the delay between camera groups by using the manually annotated times-
tamps.

7. Use the delay to copy the audio from HA1 to FC1, from HA2 to FC2 and from GF to GB.

8. Crop the videos by task using manually annotated task timestamps (see Others in Sec-
tion 2.3.2).

9. Finally, a manual verification process involved assessing whether the six cameras were
synchronized at the beginning, middle, and end for each task of each session. This
was done by visual inspection of the frames from multiple views close to those three
temporal positions and listening whether audio coincides with visual cues.

2.3.2 Metadata

Audiovisual data is accompanied by a set of metadata, described next:
Participant. Metadata about each participant, independent of the session. All information

except participant and session IDs, and the total number of sessions done, were reported by
the participants themselves. It includes:

2For this we used Tesseract-OCR library: https://github.com/tesseract-ocr/tesseract

https://github.com/tesseract-ocr/tesseract
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• Anonymized participant ID (3-digit string).

• Gender (F - female, M - male).

• Age (integer).

• Country of origin (string).

• Maximum level of education (string).

• Self-reported personality questionnaire (BFI-2) results, in z-scores for the five OCEAN
traits (float, 0-centered).

• Total number of sessions done (integer).

• Session IDs in which the participant has participated in order of occurrence (string).

Session. Metadata about the interaction session, as well as participant metadata specific
to a given interaction session. It includes:

• Session ID (string).

• ID of Participant 1, recorded on cameras HA1 and FC1 (string).

• ID of Participant 2, recorded on cameras HA2 and FC2 (string).

• Recording timestamp (date and time).

• Difficulty level of Lego task (integer, from 0 to 3).

• Difficulty level of Animal task (integer, from 0 to 2).

• Language (Spanish, English, or Catalan) (string).

• Self-reported relationship among interaction partners (integer, 0 - zero-acquaintance or
1 - previous-acquaintance).

• Order of administration of the tasks within a session (integer from 1 to 5, one per task).

• Animal assigned to each participant in the Animals task (2 strings).

• Lego assigned for the participants to build (string).

• Self-reported answers of the mood questionnaire (PEQPN) per participant (1 and 2) be-
fore and after the session (Good, Bad, Happy, Sad, Friendly, Tense and Relaxed, integers
from 1 to 5).

• Self-reported fatigue levels per participant (1 and 2) before and after the session (inte-
gers from 0 to 10 - the questionnaire contained values from 1 to 10, participants that did
not answer this question have a value of 0 assigned).

• Other relevant notes (string).
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Other. Start-end times of the real given task within a task recording (e.g., the time when
participants start and end building the requested Lego figurine for the Lego task), and start-
end times of segments that do not contain audio and/or video because of privacy or technical
issues.

2.3.3 Transcriptions

Literal transcripts of the conversations at utterance level were obtained by a third-party com-
pany and manually reviewed for cleanliness and data protection. As illustrated in Figure 2.3,
a transcript file is composed of: an utterance number, the start and end times of the utterance
synchronized to the videos, the ID of the interaction partner (PART.1/2 for the participant
visible from FC1/2, respectively), and the transcribed utterance.

FIGURE 2.3: Example of a transcript from a short conversational segment included in UDIVA.

2.3.4 Main statistics

The dataset is composed of 90.5h of recordings of dyadic interactions between 147 voluntary
participants (55.1% male) from 4 to 84 years old (mean=31.29), coming from 22 countries (68%
from Spain). The majority of participants were students (38.8%) and identified themselves as
white (84.4%). Participants were distributed into 188 dyadic sessions, with a participation av-
erage of 2.5 sessions/participant (max. 5 sessions). To create the dyads, three variables were
taken into account: 1) gender (Female, Male); 2) age group (Child: 4-18, Young: 19-35, Adult:
36-50, and Senior: 51-84); and 3) relationship among interlocutors (Known, Unknown). Partic-
ipants were matched according to their availability and language while trying to enforce a
close-to-uniform distribution among all possible combinations between variables (60 combi-
nations). A minimum age of 4 years and the ability to maintain a conversation in English,
Spanish or Catalan were the only inclusion criteria. In the end, the most common interaction
group is Male-Male/Young-Young/Unknown (15%), with 43% of the interactions happening
among known people. Spanish is the majority language of interaction (71.8%), followed by
Catalan (19.7%). Half of the sessions include both interlocutors with Spain as the country of
origin.
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2.4 Release

In this section we describe the UDIVA v0.5 dataset: the preliminary subset of UDIVA which
is currently publicly available for research purposes3. UDIVA v0.5 contains a subset of the
interaction sessions, participants, synchronized camera views, metadata, and transcriptions
from UDIVA, in addition to new pose annotations4. UDIVA v0.5 dataset includes the two
frontal views of the UDIVA dataset, one per participant (FC1 and FC2, see Figure 2.1). There
is one video per participant, task, and session. Note that this initial release was motivated
by the personality regression task we tackle in Chapter 3. In this sense, “Gaze” task was not
included in this release, as very few personality indicators are present in it, and will be made
public in the future.

FIGURE 2.4: Distribution of the self-reported personality trait (OCEAN) values across train, validation,
and test splits of the UDIVA v0.5 dataset. The x axis refers to z-scores for each personality trait.

2.4.1 Data selection and partition procedure

The interaction sessions included in the UDIVA v0.5 dataset were selected from the complete
UDIVA dataset, with the aim of creating subject-independent training, validation, and test
splits with similar distribution each in terms of personality traits, age, gender, and relation-
ship among interaction partners. Prior to the data partition process, we first discarded all

3https://chalearnlap.cvc.uab.cat/dataset/41/description/.
4Pose annotations were collected outside the scope of the current dissertation, hence they will not be discussed

here any further and are mentioned only for the sake of completeness. See Section 5.1 for a short description
and [281] for details.

https://chalearnlap.cvc.uab.cat/dataset/41/description/
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FIGURE 2.5: Age distribution across train, validation, and test splits of the UDIVA v0.5 dataset.

FIGURE 2.6: Pre- and post-session fatigue distribution across train, validation, and test splits of the
UDIVA v0.5 dataset.

sessions with participants younger than 16 years old, as such participants filled in person-
ality/temperament questionnaires specific to their age different than the BFI-2 questionnaire
(see Section 2.2.1), and not all traits measured with such questionnaires have a one-to-one cor-
respondence to the OCEAN personality traits (see Section 2.1.2 for a description of OCEAN).
We also discarded sessions with any major technical issue (e.g., one of the FC views was not
available or none of the audio signals were available for a whole recording).

To ensure that no participants appeared in more than one split, some further sessions
needed to be discarded. To decide which sessions to keep and how to divide them into the
different splits, we followed an iterative procedure. First, we represented the remaining ses-
sions as a graph, where the nodes correspond to participants and the edges correspond to
interaction sessions, and assigned weights to sessions based on the number of interactions
per participant and the group (i.e., combination of age group, gender, and binary relation-
ship) they belonged to. That is, initially, sessions with participants who interacted in many
sessions and/or whose group belonged to a high-density one were assigned a lower weight
than those sessions with participants who interacted in fewer sessions and/or belonged to
less represented groups. Then, we used a greedy approach that iteratively removed and
added sessions based on their importance to find split combinations that fulfilled a split ratio
of approximately 3:1:1 with respect to the number of participants and sessions. Such approach
started removing those sessions with a lower weight. The weights were updated every time a
session was removed or added. Once a sample of all possible split candidates was computed,
we calculated a set of costs for each candidate based on:

• the difference in per-trait distributions among each split with respect to the sum of splits
by means of the p-value obtained from a Kolmogorov-Smirnov significance test [249];
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• the differences in Pearson correlation between each personality trait and self-reported
gender among each split;

• the differences in Pearson correlation between each personality trait and self-reported
age among each split;

• the differences between age, gender, and relationship distributions with respect to a
uniform distribution for validation and test splits.

Finally, we selected the combination that minimized the sum of the costs and that maximized
the number of sessions and participants.

The final split contains 116 sessions and 99 participants for training, 18 sessions and 20
participants for validation, and 11 sessions and 15 participants for test. Although the valida-
tion split is larger than the test split, the latter contains a better trait balance. The resulting
distribution of OCEAN and age values among splits can be observed in Figures 2.4 and 2.5,
respectively. Gender ratios were conserved in all splits. In contrast, relationship ratios are
significantly different, having 37.9% of known people in training, 61.1% in validation, and
81.8% in test. Pre- and post-session mood and fatigue values per split are shown, respec-
tively, in in Figures 2.6 and 2.7. Given that the number of participants in the different splits
is low (particularly validation and test), correlations between personality traits and other at-
tributes differed, as expected [335]. Nonetheless, these splits allow for reliable comparability
and benchmarking, especially in the context of personality regression, which we focus on
in Chapter 3. For other contexts where a higher number of train/test subjects is required, we
recommend strategies like leave-one-subject-out or leave-one-dyad-out instead of the pro-
vided data splits. We detail per split distribution of personality traits by gender in Table 2.2
and Figure 2.8 and by age in Table 2.3 and Figure 2.9.

Trait Training Validation Test

O t(97)=-0.07; p=0.94; d=0.01 t(18)=0.62; p=0.54; d=0.3 t(13)=0.85; p=0.41; d=0.47
C t(97)=2.45; p=0.02; d=0.5 t(18)=0.6; p=0.56; d=0.28 t(13)=2.64; p=0.02; d=1.47
E t(97)=1.78; p=0.08; d=0.36 t(18)=0.64; p=0.53; d=0.3 t(13)=1.64; p=0.13; d=0.91
A t(97)=2.65; p=0.01; d=0.54 t(18)=-0.32; p=0.75; d=0.15 t(13)=2.13; p=0.05; d=1.18
N t(97)=2.71; p=0.01; d=0.55 t(18)=1.09; p=0.29; d=0.52 t(13)=1.65; p=0.12; d=0.92

TABLE 2.2: Gender differences in OCEAN scores on training, validation, and test splits of the UDIVA
v0.5 dataset, by means of Student’s t-test.

Trait Training Validation Test

O -0.19 p=0.057 [-0.37;0.01] -0.34 p=0.146 [-0.68;0.12] 0.01 p=0.981 [-0.51;0.52]
C 0.35 p<0.001 [0.17;0.51] 0.11 p=0.632 [-0.35;0.53] 0.38 p=0.165 [-0.17;0.75]
E -0.01 p=0.924 [-0.21;0.19] 0.21 p=0.364 [-0.25;0.6] 0.09 p=0.742 [-0.44;0.58]
A 0.26 p=0.01 [0.07;0.43] 0.33 p=0.154 [-0.13;0.67] -0.21 p=0.46 [-0.65;0.34]
N -0.13 p=0.218 [-0.31;0.07] -0.06 p=0.795 [-0.49;0.39] -0.36 p=0.185 [-0.74;0.18]

TABLE 2.3: Statistical tests and 95% CIs for the correlations between OCEAN scores and age of the
UDIVA v.05 splits.
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FIGURE 2.7: Pre- and post-session distribution of mood categories across train, validation, and test
splits of the UDIVA v0.5 dataset.

2.4.2 UDIVA v0.5 Statistics

UDIVA v0.5 is composed of approximately 80h of recordings of dyadic interactions between
134 voluntary participants (44.78% female) from 17 to 75 years old (mean=31.95, sd=12.57).
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FIGURE 2.7: (Continuation) Pre- and post-session distribution of mood categories across train, valida-
tion, and test splits of the UDIVA v0.5 dataset.

Trait Mean Std. Dev. O C E A
O .21 1.07

C .12 1.07 .02
[−.15, .19]

E −.12 1.01 .40∗∗

[.25, .53]
.24∗∗

[.07, .39]

A −.04 .97 .08
[−.09, .25]

.26∗∗

[.10, .42]
.20∗

[.03, .36]

N −.28 1.07 .01
[−.16, .18]

−.22∗∗

[−.38,−.05]
−.10

[−.26, .07]
−.22∗

[−.38,−.05]

TABLE 2.4: Descriptive statistics (mean and std. deviation, and Pearson’s correlation) for self-reported
personality OCEAN values of participants from the UDIVA v0.5 dataset. Values in square brackets
indicate the 95% confidence interval for each correlation. ∗p < .05, and ∗∗p < .01.

Participants come from 22 different countries, with 68.66% of them from Spain. In relation
to the maximum level of education, participants had mostly a Master’s degree (35.82%), fol-
lowed by a Bachelor’s degree (28.36%). Table 2.4 shows the descriptive statistics (i.e., mean,
standard deviation, and Pearson’s correlation) for self-reported personality OCEAN variables
for participants of UDIVA v0.5. Compared to the normative data [120], UDIVA v0.5 sample
presented higher levels of Open-Mindedness (O) and lower scores in Negative Emotionality (N).
A low-to-moderate negative correlation between “N” and Conscientiousness (C) and Agree-
ableness (A), and low-to-moderate positive correlation between “A” and “C” and Extraversion
(E) were observed. Finally, “E” correlated moderately with “O” (r = .40) and slightly with
“C”. These findings are comparable to the pattern found in the literature of intercorrelations
between personality traits [352, 120].

Participants were distributed into 145 dyadic sessions, with a participation average of 2.16
sessions/participant (max. 5 sessions). 44.14% of the interactions occurred among partici-
pants who knew each other before their interaction session (i.e., known people). Spanish was
the interaction language in most of the dyads (73.10%), followed by Catalan (17.25%), and
English (9.65%). Regarding the inner state of the participants, the mean pre- and post-fatigue
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FIGURE 2.8: Gender differences in OCEAN scores on training, validation, and test splits of the UDIVA
v0.5 dataset.

Good Bad Happy Sad Friendly Unfriendly Relaxed Tense

Pre-session 3.91±0.74 1.83±0.79 3.61±0.78 1.91±0.88 3.86±0.71 1.77±0.81 3.52±0.93 2.34±1.01
Post-session 4.1±0.64 1.67±0.67 3.92±0.72 1.71±0.78 4.04±0.63 1.68±0.73 3.73±0.85 2.07±0.9

TABLE 2.5: Descriptive statistics (mean ± standard deviation) of pre- and post-session mood cate-
gories of the UDIVA v0.5 dataset.

value was 4.35 (± 2.32 for pre-session and± 2.39 for post-session), whereas descriptive statis-
tics of pre- and post-session mood are shown in Table 2.5. As can be seen, interaction sessions
slightly improved the mood state of participants (i.e., positive states increased, whereas their
respective negative counterparts decreased).
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FIGURE 2.9: Relationship between OCEAN scores and age along training, validation, and test splits
of the UDIVA v0.5 dataset.

2.5 Applications for good

Understanding dyadic interactions opens the door to a plethora of human-centered applica-
tion scenarios. Some examples of these include early diagnosis and intervention [98], aug-
mented telepresence [5], personalized agents [103], or human behaviour forecasting [26].
Here we particularly remark potential benefits of advancing personality regression, given
that the current release of the UDIVA dataset provides personality scores as one of its key
labels, and as it will be the task we tackle next in Chapter 3.

Beyond the basic structure of personality defined by the Big Five traits [251], the assess-
ment of personality still has some limitations. Importantly, personality predicts a number
of consequential outcomes [278], which have been shown to be consistent and replicable [353].
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These consequential outcomes allow a number of applications, which range from clinical ap-
plications to human factor engineering. With respect to the former, subjective well-being,
risky behaviors, or substance abuse are consistently related to personality [353]. Regarding
the latter, personality has been related to performance and fit in the workplace [353], and
therefore, it would be plausible that automatic detection of personality traits could allow
personalizing working environments and hence increase performance and well-being at the
workplace.

Generally speaking, automated video analysis of personality would allow speeding up
the process of personality assessment. In the context of personality recognition, it is increas-
ingly showing its potential to improve well-being and mental health through personalized
interventions [10]. If successful, we could think of it as a way to overcome all of the caveats
related to personality assessment, such as faking in test-takers, especially in high-stakes.

The key use of automatic video processing for the assessment of personality is person-
alization and customization. That is, it allows for a quick, and relatively cheap form of as-
sessment that could help custom-tailoring environments to make people able to exploit all
of their potential (via person-environment fit). For instance, in clinical settings, it would al-
low to detect people at risk of certain disorders. Furthermore, healthcare delivered by robots
is a burgeoning field of research [104], and personalization of robots’ personalities seems to
have positive impacts on patients’ health and social outcomes [13] by means of increasing
acceptance of robot’s care [368]. Another real-life example is pedagogical agents [84], which
are personalized to maximize learners’ attention: after an initial video assessment, an AI sys-
tem could personalize a learning environment for any given student that actually fits their
personality characteristics. For instance, extraverted learners take more profit from group ac-
tivities and positive reinforcement, whereas introverted and conscientious children are more
sensitive to negative reinforcement and lonely activities [311].

On a more interactive research field, [161] found they were able to profile personality
from a job candidate during a job interview interaction with higher accuracy than self-reports,
and [351] found that they were able to predict emotional states of an individual through her
facial reactions based on cues displayed by the conversational partner. Also, within work and
organizational psychology, automated video analysis coupled with AI could create teams on
the spur of the moment and boost their performance for specific tasks. All these benefits rely
on the fact that personality is an essential variable in people’s interactions with their contexts.
The role of personality recognition is to understand the person to the greatest possible degree
so as to offer them a personalized version of health, education, or even customer service.

2.5.1 Ethical considerations

Despite all the exciting applications discussed above, research on human behavior under-
standing and personality recognition also comes with a number of potential ethical pitfalls. It
is for this reason that we also describe some of the ethical issues concerning the methodolog-
ical aspects of this research as well as its potential results and consequences.

Since this research involved the collection and manipulation of sensitive data, several eth-
ical aspects were considered in conducting it. Consent to collect and use the data was asked
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with full disclosure of how it would be used, processed, and for how long the data would
be available for further processing. Additionally, the data is preserved anonymously and en-
crypted, all participation was voluntary, and it entailed no degree of harm. Furthermore, the
current release is available only for research purposes and does not allow for commercial use.
A noteworthy ethical concern in our research is the sample bias towards a WEIRD popula-
tion [157], since most of the participants in our sample matched the characteristics of a white
and highly educated population.

On a different note, there are important ethical concerns in the use of automatic tools for
personality recognition. First off, since personality computing may become the new chan-
nel for psychological assessment over the next few years [39], researchers and practitioners
should ensure data privacy even more as the possibilities of data leakage and misuse have
increased [267]. Collected personality data could be misused for personality profiling be-
yond the scopes of the research purposes, like personnel selection [373], selling strategies [89]
or such as it happened in the Cambridge Analytica scandal, when personalized political
messages were delivered based on reconstructions of personality profiles from social net-
works [76].

2.6 Conclusions

This chapter has introduced UDIVA, the largest multiview audiovisual dataset of dyadic
face-to-face non-scripted interactions, with 90 hours of recordings, 147 participants, and 188
recording sessions. The UDIVA dataset holds the potential to be used for a plethora of analy-
ses related to individual and dyadic behavior within interaction settings, from both the com-
putational and psychological fields of study. In this sense, we are releasing this data5 with
the purpose of advancing the research and understanding of human communication from a
multidisciplinary perspective.

The UDIVA dataset is currently being expanded with further annotations that allow the
modeling of more complex interpersonal constructs. Micro-actions, pose or gaze are just a
few of them (see Section 5.1). But now, the moment has arrived to assess the capabilities of
Transformers on this challenging data. We could try to regress some of the metadata, such
as gender or age. However, these are individual traits that could be predicted entirely dis-
regarding the other participant and may not require fine-grained analysis of the scene and
interaction environment. For this reason, we believe a more interesting analysis would be
that of personality. As we have explored, human behavior in interaction is deeply influenced
by our individual personalities. It is for this reason that in the next chapter we explore the
abilities of Transformers to model such complex scenarios for the task of personality regres-
sion.

5https://chalearnlap.cvc.uab.cat/dataset/39/description/

https://chalearnlap.cvc.uab.cat/dataset/39/description/
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Chapter 3

Modeling Humans through Video
Transformers

3.1 Introduction

The way people adapt and react to social signals and behaviors during a conversation de-
pends not only on their individual characteristics (e.g., personality) but also on the specific
situation and their shared history [48]. For example, one might behave more relaxed during
a conversation with a friend than in a meeting with their foreman. When analyzing social
interactions from a computational perspective, all these influential factors should be taken
into consideration to truly understand human behavior, even when the focus is on predict-
ing individual attributes such as personality traits [393]. However, this is still not the norm
throughout the literature. Our motivation to develop the UDIVA dataset (described in the
previous Chapter 2) was to help fill in that gap. With UDIVA, we provide a general-purpose
dataset with varied sources of context in order to motivate research that considers all of them
when solving interaction and individual-related tasks.

In this chapter, we are interested in benchmarking the abilities of the Transformer archi-
tecture [385] to integrate such varied sources of context to solve some challenging task. As an
initial analysis of the UDIVA dataset, we focus on automatic self-reported personality recog-
nition [390, 176] (which has plenty of potential applications for good as we have discussed
in Section 2.5). This can be considered the first step among the many research lines that can
benefit from the designed dataset. To do so, we first design a baseline model inspired by the
Video Action Transformer [131]. Motivated by the work in [315], we use a target person’s face
video and metadata as source information, while the other interlocutor’s scene, audio, and
further metadata are used as external context. The metadata includes stable and transient
characteristics from each interlocutor, as well as session, task, and relationship information.
We experimentally evaluate the usefulness of each additional input incrementally, showing
consistent improvements when using all the available context sources and modalities.

The obtained baseline scores show that Transformers are indeed capable of integrating
multiple sources of context. However, there is a large range of improvement in the regression
of personality, as well as several dyadic open challenges to address with the UDIVA dataset.
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Overall, despite the growing interest in social interaction understanding, current computa-
tional approaches for this area (including our proposed baseline) present various shortcom-
ings. On the one hand, long-term modeling is crucial in interaction settings, as more complex
dynamics emerge at different time scales, and an event may unchain effects that take time
to be observed [48]. In the case of self-reported personality computing in such scenarios, the
need for long-term modeling is heightened, as behavioral manifestations of certain traits may
not be fully observed in short periods of time. Hence, more time is needed to find salient
patterns arising during the interaction that can be associated with given traits [127]. Most
existing works attempting longer-term modeling have generally been limited to single frame
descriptors averaged over whole sequences [209], missing to represent the temporal evolu-
tion of features. On the other hand, the joint modeling of both interlocutors is another aspect
that fails to be properly modeled when assessing individual attributes in dyadic interactions.
Despite its importance for triggering individual behaviors that provide insights on individ-
ual features [27], most of the works that do model it are focused on analyzing interaction
attributes.

In order to address these issues we propose the Dyadformer, a novel Transformer archi-
tecture to leverage long-term information for joint modeling of both interlocutors in dyadic
scenarios. More precisely, we predict the personalities of both interactants by considering not
only the audiovisual information and contextual factors (referred to as metadata) indepen-
dently for each one but also by explicitly modeling their interaction. The proposed model
mainly consists of two stages: (1) a cross-modal stage where cross-attention encoders fuse
multi-modal information, and (2) a cross-subject stage which aims to shape the interaction by
performing double cross-attention (see Figure 3.3).

This approach presents several advantages over the baseline. First, the baseline regresses
participant personality from just 3-second chunks, which may not be enough to properly
model long-term interactions. Opposed to this, the Dyadformer inputs longer clips (up to 30
seconds), allowing the model to learn useful longer-range relationships. Second, our first ap-
proach does multi-modal fusion by simply concatenating information from video and audio.
Differently, the Dyadformer leverages multi-modal Transformers that exploit useful features
from each source by looking at interdependencies, and fusing them in a shared representation
space. Finally, whereas in the baseline only the personality of the target subject is regressed,
the Dyadformer explicitly models the behavior of both individuals simultaneously through
our proposed two-stream cross-attentional Transformer. As we will see, thanks to these char-
acteristics, the Dyadformer not only outperforms the baseline, but all participants to a recent
Challenge on Understanding Social Behavior in Dyadic and Small Group Interactions on UDIVA
v0.5 dataset [281], which included a self-reported personality branch.

Our contributions are summarized as follows:

• We validate our hypothesis that Transformers can integrate multiple sources of context
thanks to our baseline. Also, we confirm that as they are added results on personality
regression are improved.
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• To our knowledge, the Dyadformer is the first one to jointly model (and infer) self-
reported personality in dyadic interactions using time windows of up to ∼30 seconds
of dense audiovisual features.

• Inspired by the classical decoder block of the Transformer network [385], we leverage
a cross-attention mechanism to both fuse modalities and allow information to flow be-
tween subjects.

• Dyadformer obtained state-of-the-art results on the UDIVA v0.5 dataset for the task of
self-reported personality prediction. In particular, we reduce participant-level error by
11.8% compared to the baseline and by 6.1% compared to the best-performing challenge
solution.

The rest of the chapter is organized as follows: we first introduce the original Transformer
and relevant adaptations for video in Section 3.1.1. Then, we outline related work on social
signals, personality computing and the use of multi-modal Transformers for video in Sec-
tion 3.1.2. We then present, ablate, and discuss the baseline model in Section 3.2. Next, we
introduce our proposed Dyadformer in Section 3.3, with extensive experimental results and
discussion presented in Section 3.4. Finally, Section 3.5 concludes the chapter.

3.1.1 The Transformer

As the Transformer [385] is the core technology leveraged for this chapter, as well as Chap-
ter 4, next we provide a brief technical introduction to it. Transformers are a recent family
of models, originally designed to replace recurrent layers in a machine translation setting.
Its purpose was to remedy limitations of sequence modeling architectures by handling whole
sequences at once (as opposed to RNNs, which are sequential in nature), allowing further par-
allelization. Besides, it removes the locality bias of traditional architectures, such as CNNs,
and instead learns interactions of non-local contexts of the input.

The Transformer evolves input representations based on interactions among all the se-
quence elements. These interactions are modulated through a pair-wise affinity function that
weighs the contribution that every element should have on any other. This ability to model
all-to-all relationships can be especially beneficial to understand motion cues, long-range tem-
poral interactions and dynamic appearance changes in video data. The original Transformer
consists of two distinct modules: encoder and decoder, each composed of several stacked
Transformer layers (see Figure 3.1). The encoder was designed to produce a representation of
the source language sentence that will be then attended by the decoder, which will eventually
translate it into the target language. We first introduce a few necessary concepts, input pre-
processing and the self-attention operation, to then follow the flow of the Transformer while
explaining its components and functioning.

Input pre-processing: tokenization, linear embedding, and positional encodings. The to-
kenization converts the input source and target language sentences into sequences of words
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FIGURE 3.1: Visualization of the original Transformer proposed in [385].

(or subwords), namely “tokens”. Let ˜̃X = (˜̃x1, . . . , ˜̃xNx) and ˜̃Z = (˜̃z1, . . . , ˜̃zNz) be, respec-
tively, the source and target sequences of one-hot encoded tokens over their respective word
vocabularies X and Z (i.e., ˜̃x ∈ R|X | and ˜̃z ∈ R|Z|), where N· represents the number of el-
ements in the sequence. Then, linear embedding is simply the step of projecting one-hots to
a continuous embedding space via a learnt linear transformation: fX : R|X | 7→ Rdm (anal-
ogously fZ ), where dm will be the dimensionality handled internally by the Transformer.
This way, we obtain the source embeddings X̃ = ( fX (˜̃x1), . . . , fX (˜̃xNx)) and target embed-
dings Z̃ = ( fZ (˜̃z1), . . . , fZ (˜̃zNz)). Finally, positional encodings are used to signal the position
of the tokens in the sequence to the later (otherwise permutation invariant) attention opera-
tions. Defined using a set of (non-learnable) sinusoidal encodings (see [385] for details), these
are added to the source/target embeddings before being input to encoder/decoder (as de-
picted in Figure 3.1): X0 = (x̃1 + ex

1, . . . , x̃Nx + ex
Nx
) and Z0 = (z̃1 + ez

1, . . . , x̃Nz + ez
Nz
), where

ex
· , ez
· ∈ Rdm .

Self-attention (SA). It is the core operation of the Transformer. Given an arbitrary sequence
of token embeddings X ∈ RNx×dm (e.g., X0), it augments (contextualizes) each of the embed-
dings xi ∈ Rdm with information from the rest of embeddings and also itself. For that, the em-
beddings in X are linearly mapped to the embedding spaces of queries Q = XWQ ∈ RNx×dk ,
keys K = XWK ∈ RNx×dk , and values V = XWV ∈ RNx×dk , where WQ, WK ∈ Rdm×dk ,
WV ∈ Rdm×dv , and typically dk, dv <= dm. Then, self-attention can be computed as follows:
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Att(Q, K, V) = Softmax
(

QK>√
dk

)
V. (3.1)

The dot-product QK> ∈ RNx×Nx is a measure of similarity. Intuitively, the larger the
similarity between qi ∈ Q and kj ∈ K the more relevant the information embedded in xj is
for xi. However, this aggregation is not done in the space of X, but in the one of the values.
By applying Softmax with temperature

√
dk, we come up with normalized similarities (the

self-attention matrix) that weigh how much each of the values vj contributes to the output
representation of every other vi.

Encoder module. It consists of LE layers, each including Multi-Head Self-Attention (MHSA)
and Position-wise Feed-Forward Network (PFFN) sub-layers. The MHSA sub-layer performs
self-attention through multiple separate heads that map X to h different representation sub-
spaces (i.e., {(Qi, Ki, Vi) | 1 ≤ i ≤ h}). Qi, Ki, and Vi are computed via their associated
embedding matrices (i.e., WQi ∈ Rdm×dk , WKi ∈ Rdm×dk , and WVi ∈ Rdm×dv with dk = dv =

dm/h). The output of the heads are concatenated and mapped back to a dm-dimensional space
with another linear transformation WO ∈ R(h·dv)×dm :

MHSA(X) = Concat(H1, ..., Hh)WO,

where Hi = Att(Qi, Ki, Vi),
(3.2)

and Hi ∈ RNx×dv is the output of the ith head. We then apply “Add + Norm” to come up
with X̄ = LN(X + MSHA(X)), where LN stands for “Layer Normalization” [20]. After this,
the following PFFN sub-layer further refines each embedding in X̄ individually (point-wise).
This sub-layer is composed of two linear layers and ReLU activation function:

PFFN(X̄) = ReLU(X̄WF1)WF2 , (3.3)

where X̄ ∈ RNX×dm , and WF1 ∈ Rdm×(4∗dm) and WF2 ∈ R(4∗dm)×dm . Note, W· are weight
matrices independent for each encoder layer, but we omit those indices for ease of notation.
By applying this, X̄′ = LN(X̄ + PFFN(X̄)). In practice, a PFFN sub-layer is equivalent to
applying two fully connected layers in a point-wise fashion, i.e., independently to each token
(which can also be seen as two 1D convolutional layers with kernel size 1).

Decoder module. Consisting of LD layers and fed with Z0, it substitutes MHSA with two
other sub-layers. The first one, Masked Multi-Head Self-Attention (Masked MHSA), modifies
Att in Equation (3.1) to include a mask, B = (bij), 1 ≤ i, j ≤ Nz, impeding the access to
certain tokens. This is added to the result of the dot-product in the numerator (and before
the Softmax), as follows: QK> + B ∈ RNZ×NZ , where bij = −∞ iff i < j (otherwise bij = 0).
This draws attention values for the masked attention pairs to 0 when taking exponents in the
Softmax. As we will see, such masking is crucial to define the auto-regressive behavior of the
decoder module (avoiding tokens to attend to other tokens later in the sequence). The result
from this Masked MHSA, Z̄, is now passed to the Encoder-Decoder Multi-Head Cross-Attention
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(MHCA) sub-layer, which leverages the memory/context produced by the encoder, namely
M (i.e., X̄′ at encoder’s LE

th layer), into Z̄ as follows:

MHCA(Z̄, M) = Concat(J1, . . . , Jh)UO,

where Ji = Att(Z̄UQi , MUKi , MUVi),
(3.4)

and Ji ∈ RNZ×dv is the output of the ith cross-attention head, UQi ∈ RNZ×dk , UKi ∈ RNx×dk ,
UVi ∈ RNx×dv , and UO ∈ R(h·dv)×dm are weight matrices. Note that Z̄UQi , MUKi and MUVi are,
respectively, the queries, keys, and values of MHCA, shown here implicitly to ease notation.
Then, ¯̄Z = LN(Z̄ + MHCA(Z̄, M)). Crucially, MHCA is different from MHSA in that, for
the former, two distinct sources of information are involved (Z̄ and M), and that the cross-
attention (CA) operation effectively augments Z̄ with information from M. The remaining
PFFN sub-layer, which is no different from the one in encoder layers, is to produce ¯̄Z′ =
LN( ¯̄Z + PFFN( ¯̄Z)). Finally, in the LD

th layer, the embeddings from the PFFN are each sent
through a linear layer followed by softmax to generate the output probabilities over the words
in the target vocabulary Z , i.e., Ŷ ∈ RNz×|Z|.

Current Transformer trends adopted for video. Many variations to the Transformer have
become common in vision and, particularly, video. First, the use of other special token be-
sides the ones discussed, such as [CLS] (class) or [MSK] (mask) tokens. In image/video, these
are not strings but directly parameters initialized at random and adapted during the opti-
mization process based on the learning objective. [CLS] is used to condensate (into a vector
representation) information from the rest of token embeddings in a sequence (representing
spatiotemporal patches from the video [17]), and suited for high-level tasks (such as classi-
fying the sequence globally). Using input token embeddings instead of [CLS] may cause the
model to be biased towards it [402]. Conversely, [MSK] is used to replace input embeddings
and signal the Transformer to reconstruct those guided by the loss and based on the rest of
tokens. This forces the Transformer to learn context of the tokens and how these relate to the
masked ones. Thought for language representation learning [88], this has been adopted also
for video representation learning [406, 374].

Second, deviations from the canonical encoder-decoder: encoder-only or decoder-only Trans-
former architectures1. Encoder-only are suited to produce fixed-size outputs, i.e., augmenta-
tions of the input embeddings that can be used for more granular tasks (e.g., per-frame clas-
sification) or, when used together with [CLS], to come up with a global representation (e.g.,
sequence-level classification). For instance, [17, 31, 106] adopted an encoder-only architecture
(along with the inclusion [CLS]) for video classification following [91]. Instead, decoder-only
alternatives enable auto-regressive tasks if the size of the output cannot be determined a pri-
ori (thanks to the Masked MHSA) just by knowing the input size. For instance, to predict
a series of temporal action detections. Initially proposed by [313] in NLP, these have been

1Note we here refer to encoder or decoder by the role they carry out (i.e., encoding or decoding information),
and not to the building blocks that compose them. In this sense, and as an example, the Transformer encoders
our Dyadformer uses are composed, in part, of MHCA sub-layers (see Section 3.3), different from the canonical
encoder defined above which only include MHSA and PFFN.
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also followed in the context of video in [259, 367, 456]. Other trends originated in other fields
have been followed: swapping the order of the residual connection and layer normaliza-
tion [17, 106], although no clear general advantage of one over the other has been empirically
shown yet; or replacing ReLU in the PFFN by GeLU [130, 31, 400, 186] following [88], with
only [130] ablating this decision (finding out that GeLU was slightly outperforming ReLU on
their task/data).

Transformer limitations. Transformers have two key limitations: first, given the pair-wise
affinity computation in Equation (3.1), they exhibit quadratic complexity (O(N2)), which will
be specially problematic for video. In Section 4.3.1, we will explore some works alleviating
this issue by reducing the scope of the SA operation. The second limitation is the lack of
inductive biases. This is a double-edged sword, allowing for a general-purpose architecture
that can handle any modality, but severely complicating the learning process. While this can
be solved through large quantities of data [91], this further adds to the computational costs
of training Transformers. Throughout Chapter 4, we will explore various approaches to solve
this issue.

3.1.2 Related work

Next we review relevant related work on social signals and behavriours, automatic personal-
ity recognition, the use of long-term modeling for personality recognition, and multi-modal
Transformers.

Social signals and behaviors in context. Dyadic and small group interactions are a rich
source of overt behavioral cues. They can provide insight into our personal attributes and
cognitive/affective inner states dependent upon the context in which they are situated. Con-
text can take many forms, from the interaction partner’s attributes and behaviors to spa-
tiotemporal and multi-view information. Joint modeling of both interlocutors and/or other
sources of context have been extensively considered when trying to measure interpersonal
constructs (e.g., synchrony [85] or rapport [463]), individual social behaviors (e.g., engage-
ment [87]) and impressions (e.g., dominance [462] or empathy [284]). However, for the task
of recognizing individual attributes (such as emotion and personality) context has often been
misrepresented, in spite of extensive claims on its importance [27, 415, 389, 262].

Regarding utterance- or turn-based emotion recognition in conversation [302] and sen-
timent analysis, only a handful of recent studies employ interlocutor-aware approaches to
incorporate contextual information. Early works were based on handcrafted nonverbal, spa-
tiotemporal dyadic features [204, 257]. Nowadays, most approaches rely on deep learn-
ing, using conversation transcripts as input with contextualized word or speaker embed-
dings [222] and considering past and/or future parts of the conversation as additional con-
text. Richer contexts have been captured by explicitly modeling the temporal dimension. This
has been widely achieved via recurrent approaches [243, 424, 129], and more recently with
Transformer-like architectures [465, 216]. Some works have further proposed to enrich mod-
els with additional modalities, such as raw audiovisual data to enhance the representation of
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interlocutors’ influences and dynamics [447, 148, 421, 167], or speech cues and personality of
the target speaker [213]. Regarding context-aware personality recognition (the focus of this
chapter), a similar trend is seen, but the literature is even scarcer, as discussed next.

Automatic personality recognition has been addressed in the literature using different data
modalities, i.e., still images [60], image sequences [359], audiovisual [28, 210, 108], speech and
text [12], and multi-modal [14]. Apparent or self-reported personality has also been inferred
from gaze behavior [162], mood [348], and even from behavior patterns collected from smart-
phones [354]. Preliminary studies tended to use handcrafted features representing gestures
and speech with standard machine learning techniques [269, 108]. More recent works rely on
deep learning approaches (from either handcrafted features [12] or raw data [253]), such as
convolutional and/or recurrent architectures to leverage spatiotemporal dynamics [358, 142].

Most works focus on personality recognition or perception from the individual point of
view [153, 419], even in dyadic or small group conversational scenarios [15], using only fea-
tures from the target person. The first works that considered interpersonal dependencies for
personality computing in face-to-face interaction scenarios used descriptive statistics of over-
lapping speech segments, short interjections, backchanneling, or interruptions [296, 382], or
percentages of attention given by the target speaker to other participants and attention re-
ceived by them [212, 16, 359], in addition to other audio/video features of the target speaker.
Some works also considered labeled co-occurrent events, such as attention given/received
while speaking/not speaking [211]. Okada et al. [271] proposed to discover frequent co-
occurrent events between multiple modalities and people using graph clustering in a small
group scenario. In particular, they used utterance segments, speech, gaze, head and body
gestures. In a similar scenario, [108] obtained the highest accuracy when using intrapersonal
(speech-, prosodic-, and visual-based), dyadic (speech-based, such as speaking interruptions
and backchanneling), and speech-based one-versus-all features.

Most of the aforementioned methods rely on handcrafted interpersonal features. To our
knowledge, only a handful of methods propose interlocutor- or context-aware architectures
for self-reported personality recognition in small group interactions. Most recent works focus
on personality analysis on social media, generally limited to the textual modality (see [245]
for a complete review), involving much more people while missing useful cues from face-to-
face interactions. The work of Su et al. [356] was one of the first for dyadic conversations,
but focusing on personality perception (i.e., personality reported by external observers [176]).
They relied on a recurrent network to model the relationship between the linguistic features of
each speaking turn and personality, and on coupled Hidden Markov Models to then model
the long-term turn-taking temporal evolution and cross-speaker contextual information to
infer the personality of both individuals. Other works have also focused on modeling tran-
scribed interviews [161], but disregarding the interviewer, hence missing a chance to exploit
interpersonal context.

With respect to self-reported personality inference in small group interactions, the work
by Lin et al. [227] proposed an interlocutor-modulated recurrent attention model with turn-
based acoustic features, which models the vocal self and interactive behaviors of a target
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speaker during small group interactions. Later, Zhang et al. [455] predicted self-reported
personality and performance labels by correlation analysis of co-occurrent intrapersonal and
interpersonal key action events, extracted from head and hand pose, gaze, and motion in-
tensity features. Regarding context, Principi et al. [305] were one of the first to consider
person metadata (e.g., gender, age, ethnicity, and perceived attractiveness) with audiovisual
data. However, their goal was to better approximate the crowd biases for apparent person-
ality recognition in one-person videos. Concurrently to the work described in this chapter,
Shao et al. [341] proposed to infer an individual’s personality by modeling their cognitive
processes. More concretely, the approach first learns a person-specific convolutional network
that predicts the target’s facial reactions to the other speaker’s audiovisual cues (facial land-
marks and Mel-frequency cepstral coefficients). Then, personality is inferred from the graph
representation of the target’s person-specific processor. Since such processor is optimized on
all available data of the target, it can use the information from entire videos at once to infer
personality, not only short video snippets.

Contrary to previous works, we use different sources of context, including both interlocu-
tors, scene, and task information to infer personality, using for the first time a video-based
Transformer adapted to include audio and further context as metadata.

Long-term modeling in personality computing. The need for longer-term modeling in per-
sonality regression tasks is highlighted in [350]. The authors proposed a model based on facial
features for individual apparent and self-reported personality, but limited to 3-second time
windows. Others have attempted long-term modeling of features for personality inference,
but most are limited to compute sequence representations by averaging small clips or indi-
vidual frames features [209, 185], which miss temporal relationships. As far as we know, only
one previous work has used up to 1 minute without aggregating across clips [370]. However,
they focused on first-impressions regression, which does not benefit from longer temporal
windows [11, 413].

In the past years, a new family of architectures has risen to address some limitations of
traditional recurrent methods [188], i.e., the Transformer [385], which has shown impressive
results for many sequence modeling tasks in a plethora of modalities [88, 91, 31]. As already
mentioned, these models are capable of attending to long-range data dependencies with few
layers, allowing them to learn very useful representations. Recently, some works have started
using Transformer-like architectures to model personality. However, these works tend to
focus on the apparent personality of individuals alone [134] by only modeling text features,
generally on social media posts [208, 431]. We focus on self-reported personality on real face-
to-face dyadic interactions, which our proposed architecture explicitly exploits, and use the
Transformer to model video, audio, and metadata modalities altogether. Furthermore, our
Dyadformer exploits lonng-term interdependencies up to 30 seconds.

Multi-modal Transformers. Our work is related to the recent use of Transformers [385] to
learn multi-modal representations. The most common approach employs contrastive losses
to bring paired samples (such as video and caption [130] or subtitles [215]) closer together.
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This is generally used for captioning or retrieval tasks, where both modalities provide similar
information and the aim is to translate between them (see Sections 4.5.2 and 4.5.3). However,
in our setting we expect audio and video to convey different complementary information, for
which we explore two better suited Transformer families (we describe these alternatives in de-
tail in Section 4.3.4). The first one uses a BERT-like [88] stream which concatenates modalities
along the temporal dimension [205, 118] before input, effectively doubling sequence length.
Nevertheless, as Transformers scale quadratically with input length, these methods incur in
memory efficiency limitations. The second one solves this by using separate cross-attention
streams [180, 173], replacing self-attention to allow both modalities to attend and enrich each
other, akin to MHCA (see Section 3.1.1), while the separate streams allow for independent
modeling and maintain sequence length. This design has generally been used to fuse two
modalities, as is our case, but it can be extended further [468]. In Section 3.4.2, we test using
a BERT-like approach but, when compared with the latter alternative and in our setting, we
find it to underperform. For this reason, we opt for cross-attentional streams to fuse multi-
modal information and go one step further by also using this technique to model cross-subject
interactions (see Section 3.3 for details).

In this regard, our baseline uses audiovisual data and different sources of context from
both interlocutors and the situation istelf to regress a target person’s personality traits. Multi-
modal fusion is done by simply concatenating the information from the video and audio
modalities, different from the Dyadformer, which exploits cross-attention to fuse modalities
within the architecture itself.

3.2 Approaching UDIVA with Transformers

This section provides a first insight into the UDIVA dataset by evaluating it in a personality
traits inference task. We present a transformer-based context-aware model to regress self-
reported personality traits of a target person during a dyadic interaction. Then, we assess its
performance and the effect of adding several sources of context. Method, evaluation protocol
and results are described next.

The baseline is a multi-modal attention-based architecture that receives different sources
of information and context from both participants in the dyadic interaction to regress the tar-
get person’s personality traits. It is a re-purposed Video Action Transformer Network [131],
the input of which consists of video, audio, and metadata information. The time-synchronized
full-length videos of both interlocutors are first split into non-overlapping chunks, and sim-
ilarly for the audio. The face region from the target person’s video is then cropped to attain
a face-only video. All these are independently encoded through pre-trained networks. A
fundamental characteristic of the Video Action Transformer Network is the selection of the
query, keys and values. In the case of the proposed baseline, the query incorporates the face
and the metadata of the target person. We consider two types of keys and values: local and
extended. Local keys/values include audiovisual embeddings from the target person, while
the extended counterparts include audiovisual and metadata embeddings from the other in-
terlocutor. The local and extended key and value embeddings together with the query are
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FIGURE 3.2: Pipeline of the proposed baseline methodology to infer self-reported personality
(OCEAN) traits from multi-modal synchronized signals and context. Input consists of visual (face,
local context, and extended context chunks), audio (raw audio chunk), and metadata (both interlocu-
tors’ characteristics, and session and dyadic features). Feature extraction consists of two backbones: a
R(2+1)D network for the visual chunks and VGGish for the audio one. The visual features from the
R(2+1)D’s 3rd residual block are concatenated to spatiotemporal encodings (STE). The VGGish’s au-
dio features and handcrafted metadata features are incorporated to visual context/query features and
such representations are transformed to the set of Query, Keys, and Values to input to the Transformer
network (Tx). The Tx consists of L Tx layers, each equipped with Local and Extended Context Trans-
former Tx units. The Tx Units implement multiheaded attention and provide their updated queries,
which are combined and fed to the next Tx Layer. Finally, based on the L -th Tx layer output, the
network uses a fully-connected (FC) layer to regress per-chunk OCEAN scores.

processed independently in two different units of the transformer layer. They provide two
updated queries that are concatenated and linearly projected to produce the final context-
updated query. The baseline architecture uses three such transformer layers. Since the model
receives chunks of the original videos as input, the predicted personality traits are obtained
at chunk level, and later aggregated by particpant using the median from all their chunks.

3.2.1 Baseline method

The attention mechanism of our transformer-based method relates an initial query, in this case
the target person’s face, to the nonverbal behavior of both interlocutors, the overall scene, and
further contextual metadata, and updates it with relevant context. The process is repeated
with the updated query in consecutive layers to eventually infer the personality (OCEAN)
traits. The proposed method consists of several stages, detailed below. All components and
the information flow among them are illustrated in Figure 3.2.
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Audiovisual input. We use the pair of RGB time-synchronized full-length videos from both
subjects available in UDIVA v0.5 (i.e., FC1 and FC2 camera views). They contain the target
person, denoted as local context, and the other interlocutor or extended context). We divide
them into 32-frame non-overlapping chunks and resize each chunk’s spatial resolution to
112× 112 to obtain, respectively, ˜̃XL

V, ˜̃XE
V ∈ [0, 255]32×112×112×3. Note that we here use X to

denote any input (different from Section 3.1.1 where Z was used for decoder inputs). More-
over, we use the superindex to denote context source (e.g., Local or Extended), and drop the
layer index to ease notation. The 32 frames of the chunks are sampled with a stride of 2, such
that a chunk corresponds to 2.56 seconds of the original videos. Also, we detect the target
person’s face regions (see below for details) in the original video, crop, and re-scale them to
form the face chunk ˜̃XF

V ∈ [0, 255]32×112×112×3. Apart from the visual data, we define an audio
chunk ˜̃xA ∈ R132 300 consisting of the raw audio frames acquired at 44.1 KHz from the general
microphone (or one of the lapels if the general one was not available for that session), and
time-synchronized to its respective video chunk.

Face detection and tracking. In order to detect the faces we use MobileNet-SSD [164], de-
ployed using Tensorflow Object Detection API [170] and pretrained on the Wider Face Dataset
[433]. As we consider only frontal cameras, the detection task is not very challenging, there-
fore, on more than 95% of the videos, the detection ratio is higher than 75%. In case the gap
between consecutive detections is lower than 25 frames (1 second), we linearly interpolate the
coordinates of the boxes. If the gap was larger than 25 frames, those were discarded. Since
there are frames in which the frontal cameras capture both participants, we need to identify
the target subject before computing the face chunks. In order to do so, we employ a basic
tracking algorithm based on the following 2 steps: (1) identify target person’s face: given a
video, the face of the target person is considered the first detection that has a mean intersec-
tion over union (IoU) score higher than 0.2 with respect to all the other faces in the video; (2)
track target person face throughout the video based on the IoU.

Size of video chunks. The original Video Action Transformer [131] uses an I3D backbone
pretrained on Kinetics-400 [57] for spatiotemporal feature extraction. Such backbone uses 64
frames per chunk, which is equivalent to around 3 seconds of video. Instead, we opted for the
R(2+1)D backbone [377] pretrained on IG-65M dataset, which has shown to provide signifi-
cant performance gains [128]. This backbone uses 32 frames per chunk, so by using a stride
of 2 we manage to encode approximately the same time window as the original method with
half the number of frames while reducing the memory load. This is equivalent to downsam-
pling the original videos from 25 fps to 12.5, that is, 1 frame every 0.08 seconds. Although
not frequent, there is a chance to miss some fast-paced facial and body micro-actions in such
downsampling process. However, there is also the trade-off we try to balance between los-
ing some of these fast micro-actions and being able to include a larger, and also important,
temporal context.
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Context type Source Value range
normalization

Output
size

In
di

vi
du

al

Stable
(across

sessions)

Age Self-reported [17, 75]→ [0, 1] 1D
Gender Self-reported {F, M} → {0, 1} 1D

Cultural
background

Self-reported
(country of origin)

Recategorization
based on cultural
differences [255]

6D
(one-hot

encoding)

Transient
(per

session)

Session
index

Session
info. [1, 5]→ [0, 1] 1D

Pre-session
mood

Self-reported [119]
(8 categories∗,
Likert scale)

[1, 5]→ [0, 1]
(for each category) 8D

Pre-session
fatigue

Self-reported
(Rating scale)

[0†, 10]→ [0, 1] 1D

Se
ss

io
n

Order of the task
within the

session

Session
info. [1, 4]→ [0, 1] 1D

Task difficulty† External
survey [0, 3]→ [0, 1] 1D

D
ya

di
c

Interlocutors’
relationship

Self-reported {N, Y} → {0, 1} 1D

∗Categories: good, bad, happy, sad, friendly, unfriendly, tense, and relaxed.
† Sessions with fatigue data missing were assigned a value of 0.
‡ Tasks with no difficulty level associated were assigned a value of 0.

TABLE 3.1: Description of the different sources of context included as metadata in the proposed per-
sonality inference baseline model.

Metadata input. Different sources of context are captured in the form of input metadata.
We consider 2 types of metadata (see Table 3.1): (1) local metadata, containing individual con-
text from the target person and session information; and (2) extended metadata, with individual
context from the other interlocutor and dyadic features.

Feature extraction. First, we normalize the pixel values of {˜̃XF
V, ˜̃XL

V, ˜̃XE
V} in the range [0, 1],

subtracting and dividing them by the mean and standard deviation of the IG-65M dataset [128].
Then, we feed them to the R(2+1)D network [377] backbone, pretrained on that same dataset,
and save the rich spatiotemporal features produced by the R(2+1)D’s 3rd convolutional resid-
ual stack: X̃F

V = fF(
˜̃XF

V; WF), X̃L
V = fC(

˜̃XL
V; WC), X̃E

V = fC(
˜̃XE

V; WC), where WF and WC are the
weights of the face network fF(·) and context network fC(·), respectively (note both local and
extended context are processed with the same weights). X̃F

V, X̃L
V, X̃E

V ∈ R16×28×28×128 denote
the face, local context, and extended context visual features, respectively. For the audio feature
extraction, we use the VGGish [159] backbone. This VGG-like model, developed specifically
for the audio modality and with pre-trained weights WA learned on a preliminary version of
the YouTube-8M [3], provides a feature vector x̃A ∈ R128 encoding information contained in
the ˜̃xA chunk: x̃A = fA(˜̃xA; WA). Finally, input metadata is normalized according to Table 3.1,
and encoded in mL ∈ R20 and mE ∈ R19 for local and extended metadata features, respectively.

Spatiotemporal encodings (STE). Following other transformer-like architectures, we need
to add positional encodings to our audiovisual feature embeddings X̃, which can be either
learned or fixed. We opt to learn them end-to-end. Different from the original positional en-
codings we described in Section 3.1.1, we instead opt to define a vector of zero-centered time



48 Chapter 3. Modeling Humans through Video Transformers

indices t =
〈
− 16

2 ,− 16
2 + 1, . . . , 16

2 − 1
〉

(as the temporal dimension of the different X̃ is 16).
The temporal encodings are computed by a two-layered network: ẼT = ReLU

(
W>T1

ReLU
(

W>T2
t
))

,

where WT1 ∈ R1×20 and WT2 ∈ R20×10 are learned weights. The spatial encodings ẼS are
computed by a similar encoding network. Given that 28× 28 is the spatial resolution of the
features, we feed to the spatial encoding network a tensor of spatially zero-centered position
indices S ∈ R28×28×2, where S i,j =

〈
i− 28

2 , j− 28
2

〉
, ∀i, j ∈ [0, 28) and weights WS1 ∈ R2×20

and WS2 ∈ R20×10. Then, ẼT and ẼS are reshaped to ET ∈ R16×1×1×10 and ES ∈ R1×28×28×10

and concatenated together by broadcasting singleton dimensions, i.e., E = ES ‖ ET, where
E ∈ R16×28×28×20.

Multi-modality: fusing visuals with position, audio, and metadata. Local and extended vi-
sual context features (X̃L

V and X̃E
V) are augmented with positional encodings (E) and audio fea-

tures. The original 128-dimensional global audio features x̃A are linearly projected to a more
compact 100-dimensional representation and reshaped to X̃A ∈ R1×1×1×100. Then, the local
context features are simply XL = X̃L

V ‖ E ‖ X̃A, where XL ∈ R16×28×28×248. The extended con-
text features are similarly augmented, and also include extended metadata from the interlocutor.
This is achieved by reshaping mE ∈ R19 to ME ∈ R1×1×1×19 and applying broadcast con-
catenation, that is XE = X̃E

V ‖ E ‖ X̃A ‖ME, resulting in XE ∈ R16×28×28×267. We note that local
metadata features mL are not included with local context because they are concatenated with
the query, as we define next.

Query Preprocessor (QP). This small module transforms the positionally augmented facial
features into a vector form: xQ = QP(X̃F

V ‖E), xQ ∈ R128. The QP consists of a 3D max pooling
layer of size (1, 2, 2) and stride (1, 2, 2), a 3D conv layer of size (1, 1, 1) and 16 filters, a ReLU
activation function layer, a permutation of dimensions and reshaping so that the temporal
dimensions and the channels are merged into the same dimension, a 2D max pooling of size
(2, 2), a 2D conv layer of size (1, 1), a ReLU activation layer, a flattening, and a fully-connected
(FC) layer of size 128, another ReLU, and a dropout layer. Finally, the face query features
q ∈ R148 are built from the combination of the QP output along with the target person’s local
metadata: q = xQ ‖mL.

Keys, Values, and Query. To obtain the final input to the transformer layers, we first need
to transform local context and extended context features into two different 128-dimensional em-
beddings (Keys and Values), and also the face query features into the query embedding of
the same size. The Local keys and Local values are then KL = ReLU(W>KL

XL) and VL =

ReLU(W>VL
XL) where WKL , WVL ∈ R248×128, whereas the Extended keys and Extended values

are KE = ReLU(W>KE
XE) and VE = ReLU(W>VE

XE), where WKE , WVE ∈ R267×128. The input
Query representation q0 ∈ R128 is computed as q0 = ReLU(W>Q0q), where WQ0 ∈ R148×128.

Transformer network. Our transformer network (Tx) is composed of L = 3 Tx layers with
2 Tx units each, one for the local context and another one for the extended context. A Tx unit
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Query Key and Value
Face∗ Metadata∗ Frame∗ Frame‡ Metadata‡ Audio

M - - - - - -
L 3 - 3 - - -

Lm 3 3 3 - - -
LE 3 - 3 3 - -

LEm 3 3 3 3 3 -
LEa 3 - 3 3 - 3

LEam 3 3 3 3 3 3
∗ target person and ‡ interlocutor data.

TABLE 3.2: Evaluated scenarios. Mean value prediction (M) obtained from the mean of the per-trait
ground truth labels of the training set; and the proposed baseline method with/without Local (L) and
Extended (E) context, Metadata (m), and Audio (a) information.

follows the canonical Transformer encoder we defined in Section 3.1.1 (see left side of Fig-
ure 3.1) but replaces the MHSA sub-layer by a MHCA one. Intuitively, the Tx unit receives
the queries q, keys K, and values V, and iteratively refines q by cross-attending the extended
and local contexts in K and V. These MHCA have h = 2 heads each, which compute a
separate 128/h-dimensional linear projection of the query, the keys, and the values, and ap-
ply scaled dot product attention2. Then, it concatenates the h outputs, and linearly projects
them back to a new 128-dimensional query. After the multi-headed attention, the resulting
query follows the rest of the pipeline in the Tx unit (as illustrated in Fig. 3.2) to obtain the
updated query. Note that each unit in the `-th layer provides its own updated query, denoted
as q`

L ∈ R128 and q`
E ∈ R128, 0 < ` ≤ L . These are next concatenated together and fed to

a FC layer to obtain the `-th layer’s joint updated query q` = ReLU
(

W>Q`(q`
L ‖ q`

E)
)

, where

WQ` ∈ R256×128. Finally, q` is fed as input to the next (`+ 1-th) layer.

Inference. The per-chunk OCEAN traits are obtained by applying a FC layer to the updated
query from the L -th (last) layer, i.e., y = W>Y qL where WY ∈ R128×5. Final per-trait, per-
subject predictions are computed as the median of the chunks predictions for each participant.

3.2.2 Ablative experiments

This section describes the experimental setup used to assess the performance of the person-
ality inference baseline model.

Data. We use the UDIVA v0.5, with the subset of sessions and participants, as well as the
splits defined in Section 2.4.1. We use frontal camera views (FC1 and FC2, see Fig. 2.1), in
line with the proposed methodology. As personality labels, we use the raw OCEAN scores
obtained from the self-reported BFI-2 questionnaire, converted into z-scores using descriptive
data from normative samples. Since the duration of the videos is not constant throughout
sessions and tasks, in order to balance the number of samples we uniformly selected around
120 chunks from each stream, based on the median number of chunks per video. The final

2Note that, while in Equation (3.4) MHCA separately maps a single embedding M into keys and values, we
here input distinct embeddings for each of them (K and V).
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sample of chunks contains 94 960 instances for training, 15 350 for validation and 7 870 for test
(equivalent to 67.5/10.9/5.6 hours, respectively), distributed among the 4 tasks.

Training strategy. The proposed model was trained using Adam optimizer with β1 = 0.9,
β2 = 0.999, ε = 1e− 8 and a learning rate of 1e− 5. We used a batch size of 2 and the Mean
Squared Error (MSE) as the loss function. We compute the validation error approximately 30
times per epoch and select the model that gives the best results considering the mean with its
previous and next evaluation scores. The final results were obtained by freezing the layers of
the R(2+1)D backbones, as strategies such as finetuning end-to-end or only the last block of
the feature extractors led to fast overfitting.

Evaluation protocol. We follow an incremental approach, starting from the local context. Six
different scenarios are evaluated, summarized in Table 3.2. We train one model per scenario
and task, since each of the four tasks can elicit different social signals and behaviors (detailed
in Section 2.2.3), which can be correlated to different degrees with distinct aspects of each
personality trait. Results are evaluated with respect to the Mean Squared Error between the
aggregated personality trait score and associated ground truth label for each individual in the
test set. We also compare the results to a mean value prediction, computed as the mean of the
per-trait ground truth labels of the training set.

3.2.3 Discussion of results

Obtained per-task results for the different scenarios are shown in Table 3.3. We discuss some
of the findings below.

Effect of including extended (E) visual information. The extended context contains visual
information from the other interlocutor’s behaviors and surrounding scene, allowing the
model to consider interpersonal influences during a chunk. By comparing “L” vs. “LE”
we can observe that, on average, only Talk benefits from the addition of the extended visual
context. Trait-wise, Extraversion improves for all tasks except for Lego, which performs worse
for all traits. This can be attributed to the fact that the interaction during this type of collab-
oration is more slow-paced than in other tasks. Therefore, interpersonal influences cannot
be properly captured during just one chunk. In contrast, for more natural tasks such as Talk,
or fast-moving games such as Ghost, there are many instant actions-reactions that can be ob-
served during a single chunk, the effect of which is reflected in the improved results for those
tasks. This motivates the need to extend the model to capture longer-time interpersonal de-
pendencies, characteristic of human interactions, across a series of ordered chunks along time,
to truly benefit from this extended information. The positive effects of including extended vi-
sual information are better seen in the presence of metadata. “LEm” obtains lower error than
“Lm” on average for all tasks except Animals, where it only outperforms the variant without
extended context for Conscientiousness and Agreeableness. This suggests that some features in-
cluded within the session and dyadic metadata are crucial for the proper integration of the
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Arch.
Trait

O C E A N Avg.

Animals
M 0.731 0.871 0.988 0.672 1.206 0.894
L 0.742 0.879 0.955 0.674 1.133 0.877

Lm 0.721 0.874 0.946 0.684 1.154 0.876
LE 0.733 0.832 0.988 0.672 1.221 0.889

LEm 0.736 0.834 0.968 0.669 1.192 0.880
LEa 0.722 0.827 0.954 0.672 1.211 0.877

LEam 0.737 0.756 0.887 0.580 1.023 0.797
Ghost

M 0.733 0.887 0.991 0.674 1.220 0.901
L 0.744 0.891 1.010 0.677 1.242 0.913

Lm 0.759 0.859 1.027 0.642 1.208 0.899
LE 0.731 0.905 0.956 0.676 1.291 0.912

LEm 0.743 0.944 0.868 0.657 1.153 0.873
LEa 0.730 0.872 0.950 0.672 1.199 0.885

LEam 0.741 0.893 0.844 0.667 1.139 0.857
Lego

M 0.738 0.871 0.990 0.676 1.204 0.896
L 0.723 0.852 0.917 0.676 1.164 0.866

Lm 0.725 0.798 0.857 0.618 1.101 0.820
LE 0.731 0.885 0.949 0.676 1.230 0.894

LEm 0.727 0.763 0.826 0.611 1.037 0.793
LEa 0.742 0.867 0.941 0.672 1.229 0.890

LEam 0.745 0.839 0.953 0.659 1.099 0.859
Talk

M 0.731 0.872 0.991 0.673 1.211 0.896
L 0.769 0.769 0.997 0.664 1.177 0.875

Lm 0.743 0.798 0.962 0.636 1.168 0.861
LE 0.738 0.793 0.964 0.673 1.094 0.852

LEm 0.825 0.718 0.878 0.639 1.047 0.821
LEa 0.757 0.728 0.970 0.664 1.106 0.845

LEam 0.773 0.790 0.869 0.670 0.985 0.817

TABLE 3.3: Obtained results on different tasks. Legend: Mean value prediction (M) obtained from the
mean of the per-trait ground truth labels of the training set; and the proposed baseline with/without
Local (L) and/or Extended (E) context, Metadata (m), and Audio (a) information.
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context provided by the interaction partner. We further validate the importance of metadata
next.

Effect of including metadata (m) information. The inclusion of metadata validates our in-
tuition that personal, task, and dyadic details provide relevant information to the model to
produce overall better predictions, particularly if the cases “L” vs. “Lm”, “LE” vs. “LEm”, and
“LEa” vs. “LEam” are compared, with the largest improvement observed for Lego (11.29%,
“LE” vs. “LEm” case). Considering the high heterogeneity and dimensionality of behaviors
revealed in an interaction and their multiple meanings, these concise features appear to be
beneficial to better guide the model and establish meaningful patterns in the data. Nonethe-
less, a systematic study would be needed to assess the effect of each feature individually.

Effect of including audio (a) information. From comparing “LE” vs. “LEa” and “LEm” vs.
“LEam”, we observe that better results are obtained, on average, for all the tasks when audio
information is considered. In line with previous literature [390], it is clear that paralinguistic
acoustic features are required to better model personality. However, the observed improve-
ment is smaller for Lego. One plausible reason would be the noise produced by the Lego
pieces while being moved, or by the instructions book while turning its pages close to the
microphones, which would interfere with the learning process. In the case of more natural
routines like Talk, the influence of audio is not as strong as we would have expected. In con-
trast, Animals, another speaking-based task, obtains the best results for almost all traits when
audio is considered. There is one salient difference among these two tasks that may explain
this pattern. The latter elicits more individual covert thinking and cognitive processes that
cannot be entirely observed from the visual modality, so most of the overt information comes
from the spoken conversation. In contrast, the former elicits a larger range of visual cues
which may be more relevant than acoustic features for certain traits.

Putting everything together. In the last experiment (“LEam”), the model is aware of the
overall contextual information. We notice that apart from Lego, for which the audio draw-
backs were already commented, all the other tasks seem to benefit from the provided knowl-
edge, obtaining the lowest error value on average.

Mean prediction comparison. We observe that Agreeableness, followed by Open-mindedness,
obtain the lowest error among mean value prediction (“M”) results, indicating that ground
truth labels for such traits are more concentrated. In those cases, none of the models achieve
a substantial improvement over the mean prediction, except for Animals, where “LEam” ob-
tains an error of 0.58, the lowest overall. At the other end we find Negative emotionality, which
is the trait with most spread values, but also the one for which we obtain the largest benefits
with the evaluated models. In particular, the largest improvement overall (18.66%) is given
by “LEam” for Talk.



3.3. The Dyadformer 53

3.2.4 Limitations

The proposed baseline model shows promise in integrating multiple sources of context, en-
abling it to capture some of the complexity of dyadic interactions. As we have discussed, this
can be seen by the consistent improvement in personality regression results as more context
is added. Nonetheless, there are noteworthy limitations in its approach.

One significant constraint arises from the fact that the multimodal concatenation occurs
outside the Transformer architecture. As they are linearly mapped before being tokenized,
this could lead to features from different modalities being mixed. In this sense, the Trans-
former may fail to selectively attend to different modalities, potentially incurring in the omis-
sion of relevant cues that are crucial for understanding the nuances of personality dynamics.
Furthermore, the compression of information into a reduced query vector might result in the
loss of fine-grained information from the target participant, which can limit the model’s po-
tential to accurately capture the intricacies of personality regression in dyadic interactions.
Transformers’ lack of inductive biases makes them a promising tool for multi-modal integra-
tion that could be exploited for our purposes.

Another notable limitation is the reliance on short 3-second chunks as input to the base-
line model. Personality is a complex human characteristic that often manifests over longer
durations and patterns. Consequently, attempting to infer personality solely from brief in-
teractions can be misleading and excessively noisy. These short segments might not be truly
indicative of the individuals’ underlying personality traits, thereby introducing a significant
level of uncertainty and potential misinterpretation. In order to develop a more robust model,
it is imperative to incorporate longer-range interactions to provide a comprehensive view of
how personality traits manifest and evolve within a dyadic context.

Finally, this baseline treats one participant as the target and the other as supplementary
context. This is inherently equivalent to modeling just one of the participants in the interac-
tion, while the other is bunched together with all remaining contextual factors. In this sense,
the baseline overlooks the potential benefits of considering both interactants as independent
but equally important entities within the interaction. Dyadic interactions are inherently co-
dependent, and the personality dynamics of both participants influence the interaction’s over-
all nature. By treating each participant as an individual with their own personality traits and
characteristics, the model could be better equipped to capture the mutual influence, power
dynamics, and interplay that contribute to the dyadic interaction, fostering a more accurate
prediction of individual behaviors.

Guided by these limitations, we next propose a novel design to better integrate multi-
modal cues, leverage longer temporal contexts, and jointly model both participants.

3.3 The Dyadformer

In this section, we present the Dyadformer (depicted in Figure 3.3). The Dyadformer is a
multi-subject multi-modal architecture that is composed of a set Transformer layers. The
Dyadformer receives as input a sequence of N small, consecutive and temporally aligned
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FIGURE 3.3: Proposed Dyadformer including different kinds of attention (self, cross-modal, and cross-
subject). The model jointly infers the self-reported personality of both participants (P1 and P2). Model
complexity is reduced by sharing weights between parallel encoders (as illustrated by their colors) and
across layers within each encoder. M are the corresponding metadata embeddings of each participant
added to both their video and audio embeddings.

video/audio chunks and infers the personality traits for both subjects in a dyadic interaction.
It is composed of two main streams, each of which simultaneously processes a single subject.

As discussed in Section 3.1.2, context and interpersonal features are crucial to predict
individual features in dyadic and small group interaction scenarios. For this reason, we pro-
pose a model which is capable of (a) fusing information from multiple sources (video, au-
dio, and contextual metadata), and (b) allowing per-subject streams to access each other, in
order to consider crossed influence during the interaction. To satisfy both, we exploit the
cross-attention used in MHCA sub-layers (see Equation (3.4)). For a Transformer focusing on
dyadic interactions, the input Z̄ will be from the subject of interest, while the memory M will
be from the other one. The intuition behind this is to allow information from a given subject
to query for useful information from the other. But first, each stream will create an individ-
ual representation for each subject. In order to do so, we draw inspiration from multi-modal
Transformer models [468, 180, 173], and use this same cross-attentional mechanism to fuse
data coming from video and audio modalities. In this cross-modal module, Z̄ is from the
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video modality, while M is from the audio one, thus enriching video information with the
audio signal. Finally, personality scores for both individuals are predicted jointly in a single
forward pass.

Input. As done for the baseline, we temporally divide videos and audios into small chunks
first. Next, we precompute per-chunk feature representations using pre-trained networks
(see Section 3.4.1 for details). Doing so, we can then feed our model with two pairs of se-
quences (Ẋp

V, Ẋp
A), where p ∈ {P1, P2} denote the participants, Ẋp

V = [X̃p
V1

, . . . , X̃p
VN

] is a
sequence of precomputed per-chunk video features and Ẋp

A = [X̃p
A1

, . . . , X̃p
AN

] is the corre-
sponding sequence of precomputed audio features. Note that ẊP1

V , ẊP1
A , ẊP2

V , and ẊP2
A are all

temporally aligned. Apart from these, the model also receives the metadata handcrafted fea-
tures, namely mp. Then, the precomputed video and audio features, as well as metadata, are
linearly projected into dm-dimensional embeddings via three independent linear layers. Next,
for each participant, positional encodings and their respective metadata embeddings are
summed to their video and audio embeddings. Given mp has no temporal dimension, before
the summation, mp is replicated N times using the outer product operation: Mp = 1⊗mp,
where 1 is a N-sized vector of ones. Different from the baseline, we here use the positional
encodings as defined in the original Transformer [385] (see Section 3.1.1). We only use them to
signal temporal position for both video (EV ∈ RN×dm) and audio (EA ∈ RN×dm). This results
in the final features Xp

V = Ẋp
V +Mp + EV and Xp

A = Ẋp
A +Mp + EA, which will be fed as

input to the Dyadformer.

Attentional Encoder modules. In our design, we use two main modules to build the com-
plete architecture: the self-attention encoder TxSA (X), which is used to enhance features by
attending to themselves, and the cross-attention encoder TxCA (Z, M), which is used to allow
for a set of features to attend to a different source. First, we formalize the sub-layer introduced
in Section 3.1.1 as SubLayerBlock(x) = LayerNorm(x + Block(x)), where Block can be instan-
tiated by either MHSA (see Equation (3.2)), MHCA (see Equation (3.4)), or PFFN (see Equa-
tion (3.3)). Tx modules can be composed of several consecutive layers, and the output from
each of them is fed as input to the next. On the one hand, one layer of a self-attention encoder
TxSA (X) follows the canonical encoder Transformer and is composed of two consecutive sub-
layers: X̄ = SubLayerMHSA (X) and SubLayerPFFN (X̄). On the other hand, one layer of a
cross-attention encoder TxCA (Z, M) follows the canonical decoder Transformer and is com-
posed of three consecutive sub-layers: Z̄ = SubLayerMHSA (Z), ¯̄Z = SubLayerMHCA (Z̄, M),
and SubLayerPFFN

(
¯̄Z
)

. It is important to note that, when consecutive cross-attention encoder
layers are used, M is the same for all of them, allowing the features in Z to iteratively attend
M and be progressively augmented.

Cross-modal and cross-subject attention. In order to build the multi-modal representation
for each subject, we first feed the audio features Xp

A to an audio self-attention encoder module
TxSA

aud composed by Laud layers, such that X̂p
A = TxSA

aud
(
Xp

A

)
where X̂p

A ∈ RN×dm . Then, we
use a cross-attention encoder TxCA

xm with Lxm layers to enhance video features Xp
V with the
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new audio features, such that X̂p = TxCA
xm (Xp

V, X̂p
A), where X̂p ∈ RN×dm are the multimodal

features of subject p.
The audio-enhanced video features of each subject X̂p are transformed through a subject

encoder TxSA
sbj with Lsbj layers, such that Sp = TxSA

sbj (X̂
p), in order to learn rich relationships

within individual subject features. This subject encoder is followed by a cross-attention en-
coder with Lxs layers as to allow the features from each subject to draw relevant information
from each other, such that ŜP1 = TxCA

xs (SP1, SP2) and ŜP2 = TxCA
xs (SP2, SP1), where Sp and

Ŝp ∈ RN×dm .

Inference. For a given sequence, to infer the personality of the participant p in the dyad, we
feed the output subject representations Ŝp = {ŝp

1 , . . . , ŝp
N} through an average pooling and

two FC layers in order to regress the final OCEAN values for p, i.e. ôp = (ReLU(ypWFC1)WFC2),
where yp = 1

N ∑N
n=1 ŝp

n, yp ∈ Rdm , WY1 ∈ Rdm×4∗dm and WY2 ∈ R4∗dm×5.

3.4 Experimental evaluation

Next, we experimentally evaluate a set of variants of the Dyadformer architecture for the
task of self-reported personality traits regression and discuss the obtained results. We first
describe the experimental setting, then thoroughly ablate the various design choices of the
Dyadformer and finally compare against other state-of-the-art models on the UDIVA v0.5
dataset.

3.4.1 Experimental setting

Pre-segmented chunks and feature extraction. For the sake of comparison, we utilize the
same set of video and audio chunks of UDIVA v0.5 used for the baseline. As described in Sec-
tions 3.2.1 and 3.2.2, chunk availability was limited by the face detection algorithm, such that
chunks with no detected face were discarded. Given also the difference in duration through-
out sessions and tasks, the final number of chunks per task was uniformly subsampled based
on the median. For the Dyadformer we require contiguous sequences of N chunks, resulting
in some of them being further discarded. Given these limitations, some tasks do not contain
many chunks and, to avoid losing more data, we limited our experiments to N ≤ 12. As
Transformers are known to be data hungry [91], we follow other works [131, 195] in which
Transformers have been successfully trained on smaller datasets by leveraging backbones
pre-trained on Kinetics [57].

As for the experiments with the baseline, each video chunk is composed of 32 frames
at 12.5 fps (∼2.56 seconds), but for the Dyadformer we use a larger spatial resolution of
224 × 224 pixels (normalized between [0, 1]). Audio chunks are 3 seconds long, acquired
at 44.1 kHz, and time-synchronized to its respective video chunk (i.e., the centers of corre-
sponding video/audio chunks are aligned). Video, audio, and contextual metadata features
are generated for each subject individually. Visual features are computed with R(2+1)D [377]
pre-trained on IG-65M [128] and Kinetics [57]. We also fine-tuned its 5th block on the train-
ing set of UDIVA v0.5 during 13 epochs (after having replaced the last fully connected layer
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by another one of size 5 to predict OCEAN). Once trained, all the pre-segmented chunks of
UDIVA v0.5 were reprocessed and the 512-dimensional feature representations output by the
second to last layer of R2+1D were saved. Analogously, for audio, we used a VGGish [159]
pre-trained on AudioSet [126] to compute a 128-dimensional representation for each audio
chunk. Sequences of N such video/audio precomputed features were used as input for each
subject in our method.

Parameters and implementation details. Following [88], we fixed dm = 768 and h = 12,
and hence dk = 64. We set Laud = Lxm and Lsbj = Lxs for our experiments. To maximize
the number of consecutive N-length training sequences, they were sampled with a stride of
1 chunk. Metadata was included for all the experiments if not otherwise stated (the set of
metadata used can be seen in Table 3.1), based on the results from the baseline.

Transformer models quickly grow in number of parameters. In our simplest model (see
TFv in Table 3.4) one Transformer layer accounted for ∼7.1M, whereas 8 layers accounted
for ∼56.8M parameters (disregarding the backbones and final linear layers). Nevertheless,
recent studies on Transformer models in NLP [22, 202], later extended to the audiovisual
domain with similar results [205], have shown that weight sharing does not hurt representa-
tional power nor performance, while allowing for lighter and faster-to-train models. For this
reason, in this work we always shared weights between all equivalent layers of both subject’s
streams. In other words, both streams were exactly the same. Also, for experiments where
layers for any given module L· ≥ 1, we shared parameters across them (e.g., all cross-modal
Transformer layers share weights).

Our model was trained by minimizing a MSE loss measuring the error of the inferred per-
sonality traits at sequence level versus its associated ground truth: L = ∑p∈P ∑5

i=0(o
p
i − ôp

i )
2,

op is the ground truth of self-reported personality and P ⊆ {P1, P2} (depending on the ex-
periment). Model weights were trained by minimizing L via SGD optimization with weight
decay 5e−3. Training was early stopped after 6 epochs if no improvement was observed on
the validation loss. The learning rate was initially set to 5e−4 and reduced by a factor of 2 after
3 epochs without improvement. The dropout rate throughout all the layers in the architecture
was set to 0.2.

Evaluation metrics. For the following experiments, we report the average per-trait MSE
at two levels: (a) sequence-level (MSEseq), where the error was computed for every N-length
sequence by comparing the predictions against ground truth personality of the subject ap-
pearing in them. The MSEseq reported is the mean over all the N-length sequences in the test
set; and (b) participant-level (MSEpart), for which we first aggregated the predictions over all
the sequences of a given participant by the median, and then compared it to that participant’s
personality ground truth (akin to how results are reported in Section 3.2.2). In contrast to
MSEseq, MSEpart removes bias towards participants that appear more in the test set, hence
being a more balanced metric for this problem. We choose to report both in this work to
compare the effect of the different aggregation mechanisms.
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3.4.2 Ablations

Here we include experiments performed to assess the validity of various design choices for
the proposed Dyadformer. First, we evaluate an alternative design for the cross-attentional
modules, and re-evaluate the usefulness of metadata. Second, we evaluate our two main
contributions: (1) the use of multi-modal information and joint modeling of both participants
against vanilla self-attention (using only video and one participant at a time); and (2) the
inclusion of longer-range temporal context (N = 6 and N = 12 chunk sequences, corre-
sponding to 15.36 and 30.72 seconds, respectively) with respect to the baseline (N = 1, i.e.,
2.56 seconds). And finally, we explore the usefulness of the self-attentional modules at dif-
ferent stages of our model. In order to mitigate the stochasticity introduced by the random
initialization of the network weights, we repeated each experiment 4 times (or 8 for models
with N = 12) and report the average of their results.

To assess the cross-attention’s contribution we test four variants of our model: (1) a self-
attention Transformer (TFv) on the visual modality only and for each participant separately,
i.e., attention is applied within each subject’s sequence and neither cross-modal nor cross-
subject attention are considered; (2) the Dyadformer with either only cross-modal attention
(DFxm) or (3) cross-subject attention (DFxs); and (4) the full architecture with both cross-
attentions (DFxm,xs).

Cross-attention versus bidirectional encoding. Besides CA for both cross-modal and cross-
subject interactions, we also tried to follow the approach of bidirectional encoding from
BERT [88] (introduced in Section 3.1.2). Instead of using cross-attention, the tokens from the
two sequences are concatenated before being fed to canonical Transformer encoder layers3.
This alternative was implemented through two stages. First, two parallel multi-modal BERT
encoders (which share weights among them and within them), each performing video-audio
joint attention on its corresponding subjects. Then, their outputs are concatenated and fed
to a second stage with one BERT encoder, effectively attending over the two subjects. For a
fair comparison with our DFxm, xs with Lxm, Lxs ∈ {1, 2}, we tried with different number of
layers for the encoders of this BERT-like architecture such that the number of MHA blocks
in both was similar. In particular, BERT with Lbm, Lbs, where Lbm, Lbs ∈ {3, 6} are, respec-
tively, the number of layers in the multi-modal BERT encoders and the multi-subject one. The
BERT configuration Lbm = Lbs = 3 corresponds to the same number of attention layers in-
cluded in our model with Lxm = Lxs = 1 and Lbm = Lbs = 6 corresponds to Lxm = Lxs = 2.
Moreover, regardless of the combination of (Lbm, Lbs), the number of parameters of the ar-
chitecture is 17.1M, which is comparable to either DFxm or DFxs (both with 19.4M). We set
N = 12 for these experiments. We show the results at the bottom of Table 3.4. This variant
resulted slightly worse than the equivalent Dyadformer variants (DFxm,xs) for all metrics and
combinations of layers. These results highlight the effectiveness of the used cross-attentional
modules. One possible reason for this to happen is that our cross-attentional design helps

3Additional details on various multi-modal fusion mechanisms will be presented in Section 4.3.4. Whilst
the Dyadformer employs cross-attention for multi-modal interactions and co-attention for the inter-subject ones,
BERT-like approaches use encoder fusion for both.
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Arch. L
MSEseq MSEpart ParamsN = 6 N = 12 N = 6 N = 12

TFv

2 0.807 0.771 0.742 0.732

10.0M
4 0.857 0.792 0.781 0.744
6 0.919 0.856 0.837 0.807
8 0.948 0.860 0.867 0.804

Lxm Lxs N = 6 N = 12 N = 6 N = 12

DFxm

1 - 0.797 0.767 0.738 0.732
19.4M2 - 0.845 0.767 0.777 0.722

3 - 0.880 0.802 0.824 0.762

DFxs

- 1 0.802 0.768 0.763 0.745
19.4M- 2 0.831 0.760 0.778 0.738

- 3 0.843 0.767 0.794 0.743

DFxm,xs

1 1 0.831 0.760 0.794 0.741

36.0M
1 2 0.847 0.765 0.802 0.748
2 1 0.854 0.738 0.809 0.722
2 2 0.894 0.758 0.842 0.737

Lbm Lbs N = 6 N = 12 N = 6 N = 12

BERT

3 3 - 0.818 - 0.784

17.1M
3 6 - 0.820 - 0.780
6 3 - 0.814 - 0.766
6 6 - 0.800 - 0.761

TABLE 3.4: Ablation of different architectures and sequence lengths (N chunks) in terms of average
sequence- and participant-level mean squared errors: TFv, a Transformer on each subject’s sequence
separately; DFxm or DFxs, the Dyadformer with only cross-modal (“xm”) or cross-subject (“xs”) atten-
tion respectively; DFxm,xs with both; and BERT, an alternative for multi-modal multi-subject modeling.
L· are the number of layers in the encoders. Best result per column in bold.

decouple self-attention from accesses to the external memory (through separate MHSA and
MHCA operations). The bidirectional encoding, however, emulates accesses to internal and
external representations through a single multi-head attention, which may hinder learning to
attend differently to one and the other. For these reasons, the BERT variant was discarded
and all remaining experiments used the described cross-attentional layers.

Use of metadata. The results obtained with the baseline showed the benefits of using meta-
data at a marginal computational cost, we here further verify this is also the case for the
Dyadformer. As it can be seen in Table 3.5, for the simplest ablated model TFv (L = 2),
that using only video results in very low values for the standard deviation. This regression to
the mean problem is alleviated by allowing the model to access metadata information. Note
that the lack of metadata especially hurts Extraversion (“E”), Agreeableness (“A”), and Nega-
tive emotionality (“N”). If we compute the mean of the two sets of standard deviations (with
and without metadata, from Table 3.5), we obtain 0.332 versus 0.116, respectively. This in-
dicates the models are more willing to deviate the personality trait predictions from a mean
value when incorporating the extra context provided by metadata. This is in line with current
state-of-the-art research in personality psychology, which states that personality needs to be
expressed in situations [321], i.e., taking the interaction context into account. For this reason,
all remaining experiments include metadata information.

Cross-modal and cross-subject attentions. As shown in Table 3.4, the two strongest vari-
ants were DFxm and DFxm,xs. Although TFv was already a strong baseline model, it did not
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O C E A N

Training (ground truth) 0.255 0.160 −0.053 −0.006 −0.346
±1.136 ±1.020 ±0.969 ±0.957 ±1.085

TFv (L = 2) wo/ metadata −0.008 0.057 −0.186 −0.178 −0.431
±0.256 ±0.112 ±0.062 ±0.086 ±0.064

TFv (L = 2) w/ metadata −0.053 0.126 −0.321 −0.134 −0.238
±0.323 ±0.313 ±0.364 ±0.345 ±0.317

TABLE 3.5: Ablation on the regression to the mean problem. Mean and standard deviations of person-
ality trait predictions by one run of the simpler TFv (L = 2) without and with metadata and the same
values over the training ground truth for comparison.

obtain the best result in any metric, suggesting that involving multiple modalities and explic-
itly modeling interaction among subjects is indeed beneficial for this task. The diminishing
trend we observed on the performance of the models when further increasing their depth
(number of encoder layers) discouraged us from trying further combinations and/or increas-
ing their capacity with more parameters.

Temporal context. We then evaluated different temporal context lengths, i.e., N ∈ {6, 12},
for the aforementioned combinations. As shown in Table 3.4, N = 12 achieves better results
(lower MSEseq and MSEpart) throughout all the ablation. Interestingly, the Dyadformer vari-
ants with cross-subject attention, DFxs and DFxm,xs, benefited more from longer sequences.
This is aligned to the fact that interpersonal dynamics can span very different temporal
ranges. That is, the behavior of one interlocutor could be considerably delayed in time.
Hence, using N = 12 allows such long-term interdependencies to emerge and be further
leveraged.

Self-attention before cross-attention. In preliminary experiments, the Dyadformer included
self-attention modules before every cross-attention module. However, motivated by the ob-
servation of an overfitting trend for overly complex models, we considered discarding all
self-attention modules so as to reduce the number of parameters. As a result, for our model
in Figure 3.3, we removed the self-attention encoder between the video embedding and the
cross-modal encoder, which had no detrimental effect. The self-attention after the audio em-
beddings was kept to give the audio features a chance to evolve (as video embeddings do
during the cross-modal attention), especially given the fact that audio embeddings were ex-
tracted from a model not fine-tuned on the personality prediction task – differently from
video ones. Regarding the self-attention encoders prior to cross-subject encoders, we experi-
mentally found the impact was negative when removing those layers in our best cross-subject
models, i.e., DFxs and DFxm, xs. Without those layers, MSEpart increases from 0.738 and 0.722
(reported in Table 3.4) to, respectively, 0.758 and 0.740. It is for these reasons that we removed
the self-attention in the video branch, but kept all other.
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3.4.3 Analysis across personality traits and tasks

Here, we analyze the results obtained by the four Dyadformer variants ablated in the previous
section. First, we evaluate the results from the four different tasks present in the UDIVA v0.5
dataset, as each of them was designed to elicit different behaviors. Then, we study how dif-
ferent tested variants of the Dyadformer model the different OCEAN traits, given that not all
traits are equally expressed nor captured. We compare our results to the two best-performing
baseline models “LEm” and “LEam”. Note that such models were trained per task, whereas
our tested models were trained on all tasks jointly. We first analyze them per-trait and per-
task in terms of MSE and later comment on the Pearson correlation results (typically used in
personality psychology [39]). For all Dyadformer results reported next, we always use the
best combination of N and L· for that particular variant (reported in Table 3.4).

Per-task analysis. As with the baseline, we analyze the performance of the different model
variations predicting the OCEAN traits separately depending on the task at hand. The results
are shown in Table 3.6. As we can observe, among our models there is not a clear winner
regarding MSE metrics. For Animals, TFv is the one which provided more accurate results
on average (“Avg”) both in terms of MSEseq and MSEpart, although DFxm did equally well
for “A”. DFxs outperformed the rest for the “N” trait in this task. Both for Ghost and Lego,
DFxm, xs and DFxm got the lowest error in terms of MSEseq and MSEpart, respectively. Finally,
for Talk, DFxm, xs outperformed the rest of the models on average, doing better than the rest for
Open-mindedness (“O”) and Conscientiousness (“C”) measuring MSEseq and also for “O” and
“E” measuring MSEpart instead. Some of the findings diverge from the ones we observed
with the baseline. For instance, whereas the baseline Animals benefited more from audio than
Lego, we see a contrary trend here. However, note that Dyadformer models are not trained in a
task-specific fashion, thus the network has been able to learn from a wider range of behaviors
encountered across tasks, which might impact the relative importance of each modality.

Per-trait analysis. Transversely to all tasks except for Animals, DFxm, xs is the most accurate
model predicting “O” at participant-level. It is also the best at predicting “E” at participant-
level and “C” at sequence-level, whereas DFxm does a better job at participant-level for the
latter across all tasks. For “A”, DFxm, xs is a close second after DFxs. Interestingly, for “A”, both
variants incorporating cross-subject attention improved results.“A” is positively correlated
with kindness, consideration, and cooperativeness, pro-social behaviors that are more clearly
understood when the network attends to both interactants. In contrast, “N” does not usually
benefit from cross-subject attention as this trait is more associated to the individual’s inner
context (i.e., stress, mood changes) [135]. Surprisingly though, we find opposite trends for
Animals, for which “N” does highly benefit from cross-subject whereas “A” does not.

Per-trait vs. per-task discussion. While, on average, Talk is the task obtaining the lowest
MSEpart error, that is not the case per trait. If we focus on participant-level, the Talk scenario
does allow to better predict “C”, and “E”, but Animals is more informative for “O” and “A”,
and Lego for “N”. At sequence-level, “E” is better predicted with Lego and “N” with Ghost.
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Arch.
Trait O C E A N Avg

Animals (A)
Baseline (LEm) 0.736 0.834 0.968 0.669 1.192 0.880
Baseline (LEam) 0.737 0.756 0.887 0.580 1.023 0.797

TFv
0.186 0.722 0.659 0.049 1.511 0.626
0.455 1.062 1.283 0.054 0.975 0.766
-0.533 0.440 -0.638 0.894 0.110 0.055

DFxm
0.206 0.691 0.677 0.050 1.658 0.656
0.515 1.008 1.328 0.054 1.041 0.789
-0.020 0.524 0.458 0.406 0.339 0.342

DFxs
0.242 0.927 0.672 0.123 1.367 0.666
0.628 1.227 1.433 0.134 0.889 0.862
0.267 0.490 0.494 0.353 0.599 0.441

DFxm,xs
0.263 0.920 0.670 0.115 1.520 0.698
0.674 1.239 1.448 0.134 0.947 0.888
0.373 0.592 0.705 0.341 0.283 0.459

Ghost (G)
Baseline (LEm) 0.743 0.944 0.868 0.657 1.153 0.873
Baseline (LEam) 0.741 0.893 0.844 0.667 1.139 0.857

TFv
1.217 0.609 0.665 0.595 0.783 0.774
0.858 0.633 0.723 0.589 0.988 0.758
-0.535 0.608 -0.693 0.896 0.137 0.083

DFxm
1.231 0.563 0.629 0.615 0.778 0.763
0.889 0.584 0.707 0.617 0.989 0.757
-0.028 0.565 0.470 0.387 0.343 0.347

DFxs
1.156 0.619 0.778 0.564 0.786 0.781
0.808 0.707 0.781 0.604 1.039 0.788
0.251 0.517 0.496 0.353 0.588 0.441

DFxm,xs
1.122 0.582 0.733 0.577 0.775 0.758
0.771 0.691 0.754 0.616 1.029 0.772
0.363 0.603 0.706 0.334 0.277 0.457

Lego (L)
Baseline (LEm) 0.727 0.763 0.826 0.611 1.037 0.793
Baseline (LEam) 0.745 0.839 0.953 0.659 1.099 0.859

TFv
0.925 0.806 0.514 0.614 0.534 0.679
0.808 0.657 0.755 0.710 0.866 0.759
-0.588 -0.042 -0.741 -0.212 0.193 -0.278

DFxm
0.916 0.753 0.488 0.647 0.537 0.668
0.827 0.616 0.743 0.732 0.844 0.752
0.103 0.427 0.381 0.382 0.282 0.315

DFxs
0.847 0.801 0.575 0.555 0.567 0.669
0.749 0.663 0.789 0.709 0.975 0.777
0.351 0.495 0.512 0.354 0.511 0.445

DFxm,xs
0.808 0.727 0.517 0.527 0.555 0.627
0.741 0.635 0.736 0.747 0.908 0.753
0.510 0.580 0.714 0.388 0.215 0.481

Talk (T)
Baseline (LEm) 0.825 0.718 0.878 0.639 1.047 0.821
Baseline (LEam) 0.773 0.790 0.869 0.670 0.985 0.817

TFv
1.107 0.472 0.561 0.846 1.074 0.812
0.736 0.513 0.462 0.708 1.076 0.699
-0.573 0.114 -0.726 -0.020 0.213 -0.198

DFxm
1.117 0.467 0.526 0.862 1.057 0.806
0.735 0.488 0.440 0.719 1.081 0.693
0.193 0.452 0.419 0.404 0.312 0.356

DFxs
0.896 0.454 0.707 0.771 1.095 0.785
0.632 0.529 0.479 0.671 1.124 0.687
0.401 0.542 0.529 0.370 0.525 0.473

DFxm,xs
0.861 0.450 0.617 0.794 1.082 0.761
0.574 0.504 0.419 0.683 1.135 0.663
0.585 0.597 0.743 0.403 0.229 0.511

TABLE 3.6: Results per trait and task. For each model, first row is MSEseq, second row is MSEpart, and
third row is Pearson Correlation also at participant level (ranging in [−1, 1], closer to 1 is better). The
“Avg” column depicts the average performance per row (over all the traits). We also compare to the
best baseline results in terms of MSEpart. Best result per task, trait, and metric in bold. Also, best result
among Dyadformer variants underlined.
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These findings are consistent with those from the baseline. This can be useful for psycho-
logical research, because it provides evidence that different situations actually enact different
traits [116]. Trait-enactment refers to the idea that some situations enact, or activate, certain
levels of traits required for this situation [113]. For the case of Animals, we can observe a
strikingly low error for “A” followed by “O”. This suggests that these two traits are likely
enacted by this task. This pattern is further confirmed when we look at Talk. Extraverted in-
dividuals are generally more talkative, but conscientious participants, even though they are
not particularly extraverted, will engage in active talking when they are demanded to.

Correlation analysis. We also report the Pearson correlation metric among the per-trait/per-
task predictions and the self-reported personality ground truth for the participants in the test
partition in Table 3.6. The Pearson correlation represents a normalized measurement of the co-
variance between the predictions and the ground truth for the test set. By looking at this met-
ric, TFv displayed the worst average results, mostly correlating negatively with the ground
truth. A notable exception is, however, that it obtained the highest correlation (over 0.8) for
“A” in Animals and Ghost. In contrast, it can be observed that all of our Dyadformer variants
correlated positively with the ground truth scores (except for DFxm in “O”, for which corre-
lation is usually close to zero). DFxm was less accurate for “C”, “E” and “N” than DFxs when
looking at the Pearson correlation, despite the opposite trend was observed looking at MSE-
based metrics. DFxs correlated best with “N”, although it showed poor correlation with “A”
and “O”. DFxm,xs obtained the best “Avg” performance in terms of correlation for all the tasks,
followed by DFxs. This shows that explicitly modeling cross-subject interactions helps better
approximate the distributions of the traits. The former achieved the highest correlation when
predicting “O” and “E”, even for Animals, where MSEpart was very high. More concretely, its
strongest correlations were found for the latter trait (∼0.7). DFxm,xs was also the best correlat-
ing with “C”, except for Ghost, where it ranked second. Nevertheless, and opposite to DFxs, it
correlated very poorly with “N”, while obtaining reasonably good results in “A” for Lego and
Talk. Overall, modeling cross-modal interactions seems to boost results in terms of MSE, both
at chunk and participant level, whereas explicit handling of cross-subject interactions seems
to provide a better Pearson correlation on average. We hypothesize that multi-modality is
guiding the model to make accurate but coarse predictions about individuals by integrating
video and audio, and in some way providing relevant cues of their relationship with their
environments. Whereas cross-subject attention is providing information about the other par-
ticipant, aiding with detailed information about that specific part of the context and, in that
sense, aiding with refining the prediction. This could be interpreted as multi-modality ex-
celling at modeling the central most populated part of the distribution, while joint modeling
of both interlocutors would be helping to better shape it around the periphery. This culmi-
nates in the DFxm,xs attaining the best balance across both metrics and establishing itself as
the best Dyadformer variant for modeling interaction settings from varied sources of context.

Comparison to the baseline. First of all, it is noteworthy to mention that the results from
both the baseline and the Dyadformer confirm that as more sources of context are added,
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personality recognition sees improved performance. Apart from this, we can clearly see that
the Dyadformer outperforms the baseline by a substantial margin. The best average baseline
result is obtained by the “LEam” variant at a MSEpart of 0.818 (see Table 3.7). This is largely
reduced by the best Dyadformer results by 11.8% (0.722 in Table 3.7). In very few cases (spe-
cific task-trait combinations) we find the baseline outperform some Dyadformer variants, but
as we discuss in Section 3.4.5 it is expected that different models are better suited for specific
traits in specific situations. Nonetheless, despite the baseline being trained separately by task,
our different proposed models outperform the two best baseline variations in 15/20 cases, as
can be seen in Table 3.6.

The main reason we find for this is the extended temporal context, which we already es-
tablished in Section 3.4.2. Personality traits are relatively stable over time [79], following spe-
cific patterns of change that evolve very gradually, such as the increase of trait "C" throughout
life [325]. Yet, when dealing with short temporal segments self-reported personality predic-
tions can be noisy. In fact, within-person variability becomes greater than between-person
variability [112], hence aggregation and final personality estimates should be taken with cau-
tion. This points towards the possibility that the median from 2.56-second chunks, as em-
ployed by the baseline, might be too susceptible to variability. As we have shown with the
Dyadformer, the use of longer time windows (up to 30 seconds) capable of capturing long-
term interdependencies is very promising to address this problem.

Beyond this, and as we have already discussed, the cross-modal and cross-subject layers
are working together to build useful representations that further enhance the performance of
the Dyadformer over that of the baseline. On the one hand, the cross-attentional mechanism
to fuse video and audio compared to straightforward concatenation provides better chances
to enhance visual features with relevant audio cues. On the other hand, the joint modeling of
both interlocutors contrasts with the setting of the target participant and additional context.
The Dyadformer handles both participants with a shared model, and their respective features
are then swapped to be used as context for the other one. Different from the baseline where
audio, as well as the video from the other participant and interaction metadata, are bunched
together and treated as bulk information, the Dyadformer captures the nuances of the other
participant to be used as context, allowing for more nuanced processing of the interaction
itself.

3.4.4 Comparison with the state-of-the-art

In [281], we organized a challenge on the UDIVA v0.5 dataset for the task of personality re-
gression. Aside from our baseline, the challenge participants are the only other available
results on the UDIVA v0.5 dataset that we can compare against. The scores obtained by the
challenge participants for each personality trait and the average scores are reported in Ta-
ble 3.7. As can be seen, the SMART-SAIR team outperformed the baseline for all the person-
ality traits and was declared the winner of the challenge. However, the FGM Utrecht team
can be highlighted for achieving competitive performance by using a straightforward Ran-
dom Forest regressor trained solely on metadata features (i.e., age, gender, and number of
sessions). The table also includes the error obtained by the mean prediction, which uses the
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Team MSE error ↓
Avg. O C E A N

Mean prediction 0.889 0.725 0.877 0.991 0.673 1.179
Baseline (LEam) 0.818 0.744 0.794 0.886 0.653 1.012

SMART-SAIR 0.769 0.711 0.723 0.867 0.548 0.997
FGM Utrecht 0.825 0.752 0.687 0.917 0.671 1.098

TFv 0.732 0.749 0.653 0.696 0.612 0.949
DFxm 0.722 0.763 0.613 0.673 0.615 0.944
DFxs 0.738 0.684 0.687 0.736 0.602 0.982
DFxm,xs 0.722 0.646 0.664 0.699 0.614 0.989

TABLE 3.7: Challenge results compared to Dyadformer on self-reported personality recognition. Per-
trait scores are reported by means of Mean Squared Error (MSE) per participant. ↓ indicates the lower
the score, the better. Mean prediction refers to the performance of a system that returns the average
per-trait personality ground truth labels of the training set as the predicted personality. Best results in
bold, while second best results are underlined.

mean of the per-trait ground truth personality labels of the training set as the prediction for
the individuals on the test set. We observe that both teams outperform this mean predic-
tion on average and for all traits except for “O”, for which this mean is only outperformed
by the winning team. This metric is useful to quantify how proposed approaches alleviate
the regression-to-the-mean effect, which as we have seen, is characteristic of tasks that tackle
the inference of attributes with Gaussian-like distributions such as personality. Detailed in-
formation about challenge participant’s methods can be found in their respective fact sheets:
SMART-SAIR4 and FGM Utrecht5.

The bottom of Table 3.7 shows how all Dyadformer variants outperform both challenge
participants on average. This is also true for “C”, “E” and “N”. For “O” only the variants
including cross-subject attention are capable of surpassing them, while for the “A” trait the
SMART-SAIR team outperforms us, leaving our DFxs variant in second place. The winning
team uses visual features including facial and body pose landmarks, as well as textual fea-
tures precomputed from the literal transcriptions (talk-turn duration, content, and sentiment).
As we have commented, modeling cross-subject interactions explicitly helps predict “A”, and
while they model each subject separately, the turn-taking features may have helped them in
this regard. Despite this, the SMART-SAIR team was no match for the Dyadformer. Their use
of lighter input, compared to raw audio and video, allowed them to use longer contexts but
sacrificing fine-grained modeling. Furthermore, their multi-modal fusion is limited to aggre-
gating the prediction of each uni-modal stream. Our model uses raw data as input, allowing
it to discover rich fine-grained interactions of multi-modal context while modeling both par-
ticipants jointly. This highlights that a proper balance between these three factors is key for
adequate modeling of self-reported personality in a challenging setting such as interaction.

Finally, it is noteworthy that the Dyadformer outperforms the SMART-SAIR team despite

4https://chalearnlap.cvc.uab.cat/media/results/None/Track-1_top-1_ICCV_Learning_
Personalised_Models.pdf

5https://chalearnlap.cvc.uab.cat/media/results/None/Track_1-Honorable_Mention_Fact_sheet___
Challenge.pdf

https://chalearnlap.cvc.uab.cat/media/results/None/Track-1_top-1_ICCV_Learning_Personalised_Models.pdf
https://chalearnlap.cvc.uab.cat/media/results/None/Track-1_top-1_ICCV_Learning_Personalised_Models.pdf
https://chalearnlap.cvc.uab.cat/media/results/None/Track_1-Honorable_Mention_Fact_sheet___Challenge.pdf
https://chalearnlap.cvc.uab.cat/media/results/None/Track_1-Honorable_Mention_Fact_sheet___Challenge.pdf
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them using one model per gender group. Both challenge teams suggested that some cor-
relation between personality and gender exists, which is supported by the literature on the
field [407, 246]. Although previous work on personality computing identified the existence
of distinct types of gender bias on related datasets [305, 100, 177], most methods found in the
personality computing literature are proposing to advance the research on the topic without
explicitly taking such correlation into account. The Dyadformer is one of such methods, yet it
is still able to outperform both teams. Nonetheless, we believe that further analysis could help
assess if the Dyadformer has learned these by-gender differences, which could help explain
its improved results.

3.4.5 Discussion

Results have shown that the Dyadformer is better able to model self-reported interactions in
dyadic interactions. This is supported by multiple factors. We have seen how the longer tem-
poral windows have a clear effect on prediction, compared to the baseline. The joint modeling
of both participants together has proven to be key. This follows observations that understand-
ing the interaction setting provides useful cues to better represent the individuals themselves.
Our ablations measured on the Pearson correlation confirm this, as the best results were ob-
tained by DFxm,xs, followed on average by DFxs. It can be further seen by the Dyadformer
being the only model to explicitly do this on UDIVA v0.5 which has defined a new state-
of-the-art. Finding a balance between fine-grained multi-modal information and long-term
interactions is key. This is exemplified by comparing our results to the SMART-SAIR team,
tied with our ablations showing the DFxm boosting performance. The SMART-SAIR team did
use longer temporal contexts, but sacrificing their ability to model fine-grained features, and
multi-modality is only used for final agreement. Our multi-modal Transformer provides a
better interplay between long contexts and the integration of multiple fine-grained cues, as
shown by the results.

Several other lessons can be drawn from these analyses. For instance, challenge partic-
ipants have shown that vocal behavior (both speech features and transcripts) provides rich
cues for personality recognition, which is aligned with previous work on personality percep-
tion [142]. While the Dyadformer has shown to be competitive without these, we deem these
features to be a potential venue for future research. Results also reveal a recurrent and consis-
tent finding in personality computing [176] that there is no single model that works best for
all possible settings and personality traits, suggesting that different traits can be better mod-
eled and recognized by distinct feature representations and methodologies. This can also
be observed in our per-trait analysis provided in Section 3.4.3, where we saw some variants
outperform others for specific traits.

A final aspect that can be derived from these results is some potential limitations of
UDIVA v0.5. On the one hand, it is an unbalanced dataset, at least in some regards. For
instance, although the dataset is relatively balanced with respect to the gender attribute, it is
extremely unbalanced regarding the spoken language. Besides that, and as mentioned in Sec-
tion 2.4.2, the dataset is biased towards people with high levels of the Open-mindedness trait
due to the recruitment procedure. This has been made explicit by the FGM Utrecht team, who
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used the number of sessions as one of the three metadata fed into their Random Forest. They
suggested that the number of sessions could be correlated with the Open-mindedness trait,
considering the time investment and social energy required to participate in these sessions.
On the other hand, during the experimental phase of both the baseline and the Dyadformer,
we encountered severe overfitting issues that were hard to overcome. We hypothesize this
may be related to another limitation of the UDIVA and UVIDA v0.5 dataset: the number of
subjects, i.e., 147 and 134, respectively. While being one of the face-to-face interaction datasets
with the highest number of participants (see Section 2.1.3), correlations are known to achieve
their point of stability around 160 subjects for typical scenarios in personality psychology,
achieving full stability at 250 [335]. From a psychology standpoint, this means that our find-
ings reveal trends that will not radically change but can vary in terms of size, not in terms of
direction of correlation. Thus, the experimental findings of the Dyadformer are reliable. Note
that, this limitation refers to the number of participants in the context of regressing person-
ality scores, and is not representative of other features where UDIVA still excels, such as the
number of hours of recordings, which could prove useful in setting such as self-supervised
learning, or the variety of situations. In this sense, from a machine learning point of view,
this limitation may influence supervised training for personality-related tasks, and specially
in the case of Transformers, result in overfitting due to the limited number of distinct sub-
jetcs. If we aim to infer personality from overt behavior, the need for further data that covers
a wider spectrum of behavior combinations significantly increases. Consequently, our study
can motivate the research and design of novel datasets and annotation protocols, in partic-
ular large-scale datasets aiming for greater variety of participants for shared, social-related
downstream tasks.

3.5 Conclusion

In this chapter, we have started probing the possibilities offered by the UDIVA dataset as a
complex scenario of human interaction. In doing so, our exploration also aimed to uncover
the abilities of Video Transformers to model such intricate settings, especially for the nuanced
and complext task of personality regression.

We have first validated our hypothesis that Transformers can harness multiple contex-
tual cues from the challenging interaction setting offered by UDIVA by adapting an existing
Video Transformer. We incrementally combined different sources of context (both interlocu-
tors’ scene, acoustic, and task information) finding consistent improvements as they were
added, which is consonant with human interaction research in the psychology field. These
results already suggest that Transformers are indeed capable of handling intricate environ-
ments while retaining semantically meaningful cues. Nonetheless, this method exhibited still
some limitations that we tackle with our proposed Dyadformer.

The Dyadformer is a multi-modal multi-subject Transformer for modeling individual and
interpersonal features in dyadic interactions with the flexibility to accommodate different
time windows, thus allowing the capture of long-term interdependencies. We thoroughly ab-
late our model in the UDIVA v0.5 dataset for the task of self-reported personality prediction to
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demonstrate the contributions of each attentional module, as well as the modeling of longer
timesteps. Experimental results demonstrated the reliability of our approach by surpassing
previous results in UDIVA v0.5, reducing the error by 11.8% with respect to the baseline and
6.1% with respect to the challenge winner. Results also showed that context (or situations)
matters in personality computing. Recently, situations have been put at the forefront of per-
sonality research to understand and predict real behavior [321]. In this sense, a promising
extension of this work into the psychological realm would be to extract situational percep-
tions as we compute personality scores, since considering both features would undoubtedly
improve behavior understanding.

Finally, we have seen some limitations of UDIVA for personality modeling, opening the
door to many future research developments of novel datasets and bias mitigation mecha-
nisms. Nevertheless, the modeling of context-aware long-term interdependencies is chal-
lenging in itself, particularly in the case of multi-modal scenarios. In this sense, we observed
strong overfitting, which we partially attribute to the reduced number of participants of
UDIVA, but also to an inherent feature of Transformers, which seem to be data hungry [91].
This demands a better understanding of architectures and training strategies for modeling
human behavior. Especially for addressing the challenges of training Transformers on small
to medium datasets, which highlights the need further research on this novel architecture. To
fully harness their capabilities, we require a more profound comprehension of this architec-
ture and a deeper analysis of its inner workings. This involves unraveling the architectural
and training needs of successful spatio-temporal and multi-modal representation learning
within the Transformer family. It is for this reason that in the next chapter, we embark on
an in-depth analysis of Video Transformers, in the hopes of gaining the necessary insights to
exploit their full potential.
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Chapter 4

Video Transformers: A Comprehensive
Survey

4.1 Introduction

As we saw in Section 3.1.1, the Transformers [385] are a recent family of models that process
sequencial data in a parallel fashion. The two key features that make Transformers special
are their non-local core operation and their lack of inductive biases. On the one hand, this
lack of inductive biases makes Transformers very versatile, as seen by the quick adoption for
modeling many data types [88, 299, 136, 91, 54], including videos [31, 131, 17, 236, 468, 215].
However, and as we have seen with the Dyadformer in Chapter 3, Transformers have a ten-
dency to overfit. As concurrent work has demonstrated for images [91], the lack of inductive
biases makes Transformers require large amounts of data. In our particular case we hipothe-
size this may be related with the limited number of participants, and not the amount of video
hours. On the other hand, the use of non-local token mixing causes Transformers to scale
quadratically with sequence length N (i.e., O(N2), due to the pair-wise affinity computation
in Equation (3.1)). Moreover, the video domain further introduces its own challenges, namely
a large increase in dimensionality, linked with a high level of information redundancy, and the
need to model motion dynamics. This is aggravated when tackling tasks such as personality
recognition in interaction, which also demand for long-term modeling. As we will see, Trans-
formers will require several modifications to adapt to the highly redundant spatio-temporal
structure of video.

Transformers are still in its infancy, and despite the many claims of their abilities to form
semantic representations of the input, and to integrate multi-modal cues into a cohesive rep-
resentation, much is yet to be understood. Furthermore, the recent surge in Video Transformer
(VT) works makes it convoluted to keep track of the latest advances and trends. Existing
surveys focus on design choices for Transformers in general [226], NLP [187], images [428,
232], or efficient designs [369, 114]. Given the sequential nature of video, as well as the large
dimensionality and redundancy introduced by the temporal dimension, directly adopting
image-based solutions or NLP-based designs for long-term modeling will not suffice. While
other existing surveys include video, they are limited to superficial comments of a few VTs in
the broader context of vision Transformers [190, 145, 435], techniques to integrate visual data
with other modalities [344, 426], or video-language pre-training [330]. In this sense, they miss
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an in-depth analysis that properly captures the challenges of modeling raw image sequences
or highly redundant spatiotemporal visual features through Transformers.

In this chapter, we comprehensively survey and analyse advances and limitations of Trans-
formers when considering the particularities of modeling video data. To do so, we review
over 100 VT works and provide detailed taxonomies of the various design choices through-
out the VT pipeline (namely input, architecture, and training). Finally, we extensively com-
pare performance on the task of video classification based on self-reported results from the
state-of-the-art on Kinetics 400 [57] and Something-Something-v2 [241]. With these in depth
analysis we aim at better understanding Transformers as a tool, in order to be able to harness
their potential to model complex scenarios, such as human interaction.

For an introduction of the original Transformer, we kindly refer the reader to Section 3.1.1.
The structure of this chapter is as follows: in Section 4.2 we explore how videos are han-
dled prior to the Transformer; Section 4.3 describes architectural design adaptations to video;
Section 4.4 investigates common training strategies; Section 4.5 outlines trends for specific
application scenarios; Section 4.6 discusses VTs performance on action classification; and in
Section 4.7 we discuss the main trends and limitations. For an extensive list of all VT works
surveyed, and details on how each section in this chapter relates to a given work, see Ta-
bles 4.1 and 4.21.

4.2 Input pre-processing

Here, we review how video is processed before being input to the Transformer. This involves
tokenization, embedding, and positioning (see Figure 4.1). Note that, in the context of video,
embedding often comes before tokenization: a separate network embeds the raw data to a
continuous and compact representation, which can be used directly as a token or be further
tokenized into more atomic units.

4.2.1 Embedding

In order to embed video, we find VTs following two main trends: embedding networks2 or min-
imal embeddings. The key difference between the two is size: while minimal embeddings are
generally limited to single linear layers, large embedding networks are instantiated as full
CNN architectures. Furthermore, while minimal embeddings follow the classic tokenization-
then-embedding approach, full embedding networks can be used to embed full input se-
quences for later tokenization. In the context of video, embedding layers also function as a
crucial dimensionality reduction mechanism.

Embedding network. Leveraging an embedding network (such as a CNN), can potentially
ease the learning of the Transformer by providing strong initial features thanks to locality

1Note that due to its length, the table has been split into two subtables
2Note that, in previous chapters, we have refered to embedding networks as “backbones”. In this chapter

we distinguish between “embedding networks” (the topic of the current section) and Transformer backbones (the
core architecture, see Table 4.1)
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Name Ref. Yr.
Architecture Input Train.

Arch. Aggr. Restr. Long-t. Backbone Embedding Network Tknz. Pos. SSL

C
la

ss
ifi

ca
ti

on

TimeSformer [31] '21 E - LAS - - Minimal Embedding P LA -
PE [205] '21 E - - - - SlowFast[110], RN-50[152] C LA P
CBT [360] '19 E - - - - S3D[423] C - P
ViViT [17] '21 E H A - ViT [91] Minimal Embedding P LA -
ELR [308] '19 E - - - - I3D[57] P - -
FAST [441] '21 E - - - - Minimal Embedding P LA -
VATNet [131] '19 E Q - - - I3D[57], Faster R-CNN (RP only)[323] P + I FA -
VATT [7] '21 E - S - - Minimal Embedding P LA P
MViT [106] '21 E H - - - Minimal Embedding P LA -
SCT [451] '21 E H L - - Minimal Embedding P LA -
CATE [362] '21 E - - - - SlowFast[110] (Slow br.) C - P
LapFormer [199] '20 E - - - - RN-50[152] P FA -
TRX [294] '21 E - - - - RN-50[152] F FA -
LTT [186] '20 E - - - - R(2+1)D[377] F LA -
Actor-T [122] '20 E - - - - I3D[57], HRNet[395] I FA -
STiCA [290] '21 E - - - - R(2+1)D-18[377], RN-9[152] F LA A
GroupFormer [217] '21 ED Q L - - I3D[57] I + F LA -
Video Swin [236] '21 E H L - - Minimal Embedding P LR -
VTN [268] '21 E H L - ViT [91] Minimal Embedding P LA -
Video-Swin-V2 [234] '22 E H L - - RN-50[152] P LR P
MTV [430] '22 E H - - ViT [91] Minimal Embedding P LA -
Motionformer [288] '21 E - - - - Minimal Embedding P LA -
X-ViT [47] '21 E - L - ViT [91] Minimal Embedding P LA -
ObjTr [416] '21 E - - - - Faster R-CNN [323], RN-101 [152] I FA + LA -
MViTv2 [219] '22 E H - - - Minimal Embedding P LR -
MaskFeat [406] '22 E H - - MViT [219] Minimal Embedding P LR P
LSTCL [396] '22 E - - - Swin [236] Minimal Embedding P LA P
RViT [432] '22 E - - R ViT [91] Minimal Embedding P LA -
Direcformer [378] '22 E - A - TimeSformer [31] Minimal Embedding P LA -
VideoMAE [374] '22 E - S* - ViT [91] Minimal Embedding P LA P
BEVT [398] '22 E H L - Swin [236] Minimal Embedding P LA P
TIME [446] '22 E - - - Motionformer [288] Minimal Embedding P LA A
TokenLearner [331] '21 E H - - ViT [91] Minimal Embedding P LA -
SVT [319] '22 E - A - TimeSformer [31] Minimal Embedding P LA P
UniFormer [214] '22 E H L - - Minimal Embedding P LA + LR * -

C
ap

ti
on

in
g

ActBERT [468] '20 E - - - - R(2+1)D[377], Faster R-CNN [323] I + C LA P
HERO [215] '20 E H - - - RN-101[152], SlowFast[110] F FA P
MART [207] '20 ED - - R - RN-200[152], BN Inception[175] F FR -
VideoBERT [361] '19 E - - - - S3D[423] C LA P
E2E-DC [467] '19 ED - - - - RN-200[152], BN Inception[175] F FA -
BMT [173] '20 ED - - - - I3D[57] F FA -
AMT [443] '21 ED - - - - RN-200[152], BN-Inception[175] F FA -
MDVC [174] '20 ED - - - - I3D[57] F FA -
RLM [220] '20 D - - - - I3D[57] C FA -

R
et

ri
ev

al

HiT [231] '21 E - - - - S3D[423], SENet-154[166] F + C LA T
COOT [130] '20 E H - - - RN-152[152]; ResNext-101[422]; I3D[57] F - T
MMT [118] '20 E - - - - S3D[423], DenseNet-101[169], RN-50[152], SENet-154[166] P + F FA T
Support-set [289] '21 E - - - - RN-152[152], R(2+1)D-34 F - T
TCA [340] '21 E - - - - iMAC[137], L-3-iRMAC[200] F - T
MDMMT [96] '21 E - - - - CLIP[312] F LA T
Fast and Slow [259] '21 D - - - - TSM RN-50[223] P - T
ClipBERT [206] '21 E - S* - - RN-50[152] P LA -
CACL [144] '22 E - - - - RN-50[152] F LA P

Tr
ac

ki
ng

Hopper [466] '21 ED - - - - ResNeXt-101[422], DETR[54] I + F LA -
DTT [440] '21 ED - - - - RN-50[152] P LA -
TrDIMP [397] '21 ED - - - - RN-50[152] P - -
TransT [68] '21 E - - - - RN-50[152] P FA -
STARK [429] '21 ED - - - - RN-50[152] P FA -
Trackformer [254] '22 ED Q - MR - RN-50[152] P FA -
VDRFormer [464] '22 ED Q - MR - RN-101[152] P FA -

*: Non-attentional sparsity (e.g., input level).

TABLE 4.1: General overview of relevant Video Transformers surveyed. In Architecture, “Arch.”: ar-
chitecture, that is Encoder (E), Decoder (D), or Encoder-Decoder (ED); “Aggr.”, aggregation strategy,
either Hierarchical (H) or Query-driven compression (Q); “Restriction”, can be Local (L), Axial (A),
Sparse (S), or a mix. “Long-t.”: long-term temporal modeling, Memory (M), Recurrence (R), or a both.
In Input, “Backbone” refers to Transformer backbone; “Tknz’, the tokenization strategy, patch- (P),
instance- (I), frame- (F), or clip-wise (C); and “Pos.”, the positional embedding, can be Fixed Absolute
(FA), Fixed Relative (FR), Learned Absolute (LA), Learned Relative (LR), or a combination. (Continu-
ation in Table 4.2)
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Name Ref. Yr.
Architecture Input Train.

Arch. Aggr. Restr. Long-t. Backbone Embedding Network Tknz. Pos. SSL

Lo
w

-l
ev

el

ET-Net [409] '21 ED - - - - ConvLSTM[343] P FA T
STTN [450] '20 ED - - - - 2D CNN (custom) P - T
FuseFormer [230] '21 ED - - - - I3D[57] P - T
SAVM [408] '20 ED - L - - Minimal Embeddings P LR T
VLT [316] '20 ED - - - - VQ-VAE[274] P FR T
TransformerFusion [41] '21 E - S* M - RN-18[152] F LA -

Se
gm

en
ta

ti
on

VisTR [405] '21 ED - - - - RN-50[152] P FA -
MFN [404] '21 E - - - - 3D CNN (custom) P FA -
CMSANet [437] '21 E - - - - DeepLab-101[64] P FA -
IFC [172] '22 ED Q - - - RN-101[152] P FA -
TeViT [434] '22 ED Q - - MsgShifT [434, 399] Minimal Embedding P FA -
AOT [436] '21 E - L MR Swin [236] MobileNet-V2[332] P FA + RL -

O
.D

.

PCSA [141] '20 E - L - - MobileNet-V3[163] P - -
TCTR [445] '21 ED - - - - RN-50[152] P FA -
PMPNet [439] '20 ED - - - - GraphCNN (custom) P - -
ORViT [160] '22 ED - - - - Faster R-CNN[323], RN-50 [152] P + I LR -

Su
m

m
. H-MAN [233] '19 E - - - - VAE-GAN[240] F - -

VasNet [105] '19 E - - - - GoogLeNet[366] F FA -
BiDAVS [225] '20 E - - - - GoogLeNet[366] F LR -
VMTN [337] '19 E Q - - - ResNet-18[152], SENet-101[166] P FA -

Lo
ca

li
z.

HISAN [304] '19 E - - - - Faster R-CNN[323] I + F - -
STVGBert [357] '21 E Q - - - RN-101[152] P - -
MeMViT [417] '22 E H - M MViTv2 [219] Minimal Embedding P LR -
MSAT [456] '21 E - - - - C3D[375] C FA -
RTD-Net [367] '21 D - - - - I3D[57] F LR -
LSTR [425] '21 ED Q - M - RN-50[152] F FA -

O
th

er
s SiaSamRea [442] '21 E - S* - ClipBERT [206] RN-50[152] P LA A

Perceiver [178] '21 E Q - - - Minimal Embedding P LA -
AVT [132] '21 E H - - ViT [91] Minimal Embedding P LA A
OadTR [400] '21 ED - - - - RN-200[152], BN-Inception[175] F LA -
STTran [77] '21 ED - L - - RN-101 F R-CNN[323] I + F LA -
E.T. [286] '21 E - - - - Faster R-CNN[323], Mask R-CNN[151] F FA -
SMT [107] '19 ED Q S* M - RN-18[152] F FA -
JSLT [53] '20 ED - - - - InceptionV4[365] F FA -
MSLT [52] '20 ED - - - - InceptionV4[365] F FA -
SBL [239] '20 ED - - - - RN-18[152] F - -
MDAM [194] '19 E Q - - - RN-152[152] F FA -
PSAC [460] '21 E - - - - Minimal Embedding P FA -
BTH [218] '21 E - - - - VGG-16[346] F FA P
BERT4SessRec [70] '20 E - - - - GoogLeNet[366] C FA P
Dyadformer [80] '21 E - - - - R(2+1)D-152[377] C FA -
MM-Transformer [329] '22 ED - L - - Mask R-CNN [151] I FA -

*: Non-attentional sparsity (e.g., input level)

TABLE 4.2: (Continuation of Table 4.1)
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inductive biases. We can roughly categorize the choice of embedding network by the types
of relationships they encode into spatial and spatiotemporal. Within spatial embeddings, we
find 2D CNN networks, typically ResNet variants [152, 422], pre-trained on large image cor-
pora (most commonly ImageNet [86, 324]) to learn general filters that can extract meaningful
representations of individual frames. This has been shown to work effectively in the context
of video [207, 308, 158, 141, 199, 183, 220, 230]. However, 2D convolutions lack the ability
to model temporal information. For this reason, we also find the use of spatiotemporal em-
bedding networks (e.g., in [401, 308, 360, 131, 220]). These are generally instantiated as 3D
CNNs (such as I3D [57] and S3D [423]), commonly pre-trained on large video datasets, such
as Kinetics [57, 56] or HowTo100M [261], to produce features involving temporal relation-
ships. Alternatively, LSTMs [233] or a hybrid ConvLSTM [343, 404, 409], are also leveraged
to embed local temporal information. While spatial embeddings produced by spatial embed-
ding networks are limited to per-token spatial interactions, spatiotemporal counterparts help
provide initial locally-based temporal interactions.

Minimal embeddings. Inspired by the success of ViT [91], some works [17, 230, 31, 441,
178, 91] omit deep embedding networks and subdivide the input (i.e., tokenize) and then
perform embedding with only few linear projections or convolutions. In this sense, they
are guaranteed to not share information between tokens, leaving the learning of interactions
between them entirely to the Transformer. Empirical studies like [31, 178], show that stand-
alone Transformers (i.e., without complex CNN embedding networks) are as performant as
CNN counterparts, although the resulting model becomes data-hungry and computationally
expensive. Given that, training and deploying VTs with minimal embeddings may benefit
from architectural modifications inducing necessary biases (see Section 4.3).

4.2.2 Tokenization

When dividing a video into smaller tokens to form the input sequence to the Transformer,
we find several categories depending on the token input receptive field (i.e., the extent of

FIGURE 4.1: Overview of the input-preprocessing step, showing tokenization, embedding strategies,
and positioning (inclusion of positional information).
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the original input covered by a given token before being processed by the Transformer). We
distinguish between patch, instance, frame, and clip tokenization (see Figure 4.1).

Patch-wise tokenization. Most VTs follow ViT [91] and employ a 2D-based patch tokeniza-
tion [460, 31, 441, 450], dividing the input video frames into regions of fixed spatial size [31,
441, 460] or even multi-scale patch sizes [450]. Others propose using 3D patches instead [236,
17, 7, 106, 374] (also regarded as cubes), allowing to consider local motion features within the
tokens themselves. While non-overlapping patches are the most common, a few works pro-
pose using overlapping 2D [230] or 3D [106] patches for smoother information flow between
neighbouring patches. Due to their access to neighbouring information in the input, we also
regard positions of intermediate feature maps from CNN embedding networks as patches
(e.g., 2D in [230, 357, 397, 405] or 3D in [122, 308]), as their exact receptive field will depend on
the specific setting in which they are produced. Overall, patch-based tokenization provides
the finer granularity, allowing to properly model spatiotemporal interactions in the VT.

Instance-wise tokenization. We refer to instances as semantically meaningful (foreground)
regions that extend their reach beyond small patches but still smaller than whole frames [416,
286, 468, 131]. On the one hand, a Region Proposal Network (RPN in Figure 4.1), such as a
Faster R-CNN [323], can be used to generate region proposals and their corresponding em-
beddings [416]. Thus, they allow to reason about foreground objects or region interactions.
Alternatively, in [468, 131, 217], this kind of tokenization is combined with other coarser
tokenizations (frame- and clip-wise tokenization) allowing to form instance-context relation-
ships. Instance-based tokenization can be regarded as a form of sparse sampling (e.g., [160,
329]), potentially reducing redundancy and allowing to input relatively large temporal se-
quences of per-frame instance representations to the VT without running into efficiency limi-
tations.

Frame-wise tokenization. In this case, the learning of per-frame local spatial interactions is
entirely left to the embedding network, while the Transformer focuses on modeling the tem-
poral interactions among the resulting frame tokens (e.g., [289, 450, 286, 215, 467, 443, 400,
294]). This allows longer videos to be modeled, as the input sequence length will be shorter
for a given input video, specially compared to patch tokenization. Nevertheless, the Trans-
former may have a hard time modeling fine-grained spatial interactions. Still, some tasks
focusing on frame-level predictions (such as video summarization [105]) may not require
them.

Clip-wise tokenization. Condensing the information of several frames (clip) into each indi-
vidual token allows further reducing the input sequence length (e.g., in [118, 468, 205, 361, 360,
130]). This way, the Transformer can effectively consume more frames to cover longer tempo-
ral spans. This makes clip tokenization very suitable for long-term modeling tasks. Given the
high dimensionality of clips, it is necessary to embed them into single token representations
through large embedding networks: for instance [456] with C3D, [468] with 3D ResNet-50,
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[361] with S3D, [186] with R(2+1)D, or [205] with SlowFast, to mention a few. This tokeniza-
tion could also be suitable for retrieval tasks, where a high-level representation of the video
is required [118, 468]. Clip-based tokenization exacerbates pros and cons of frame-based tok-
enization where fine-grained information may be lost or mixed, preventing the Transformer
from disentangling it later, in favor of efficiency when handling longer videos.

4.2.3 Positional Embeddings (PE)

Given that SA is an operation on sets, signaling positional information is necessary in order to
exploit the spatiotemporal structure of videos. This is done via positional embeddings (PE),
which can be either fixed or learned and then absolute or relative: fixed absolute [404, 131, 106],
learned absolute [178, 468, 205], fixed relative [207, 316], or learned relative [225, 408, 236].
Absolute variants are summed to the input embeddings but can also be concatenated [405,
178, 437], while for the relative ones the positional information is introduced directly in the
multi-head attention [418].

Absolute. These positional embeddings are generally 1D. This naturally fits frame or clip to-
kenization to indicate position in the only remaining (temporal) dimension. However, when
dealing with patch-wise tokenization, fixed 1D in raster order may seem counter-intuitive, as
the last patch i-th from row j, will be regarded as closer to the first patch in the next row j + 1,
than to patch i at row j− 1 (or j + 1). For this reason, 2D absolute PE [132, 122] accounting
for joint space wh and time t dimensions, and 3D absolute PE [178, 441, 404, 405] for width
w, height h, and t have also been proposed, disregarding [91] who found 1D learned absolute
PE to suffice – at least for images.

Relative. The idea behind relative PEs is that the positional information added when com-
puting attention between token i and j depends on their relative position, making them trans-
lation equivariant. In other words, 1D relative PE added when computing attention between
token at position i and j = i+ k will be the same regardless of the value for i (i.e.,−k). Relative
PEs are generally added as an additional bias term (as in [207, 342, 82, 234]) in the dot-product
between Q and K (modifying Equation (3.1)). We find different variants of relative PEs ap-
plied to VTs, for instance [408, 236, 367] are based on decomposable attention [283], whereas
[225] follows the approach of relation-aware attention [342]. Still, to the best of our knowl-
edge, there is yet no study providing insights on their functional differences and effects on
performance.

4.2.4 Discussion on input pre-processing

Most VTs employ large CNN embeddings to reduce input dimensionality (aiding with data
redundancy) and to exploit their ability to produce strong representations (thanks to local
inductive biases). This significantly alleviates complexity and simplifies training when em-
ploying Transformers for video tasks. The success of these methods is clearly visible by the



76 Chapter 4. Video Transformers: A Comprehensive Survey

amount of works which utilize large embedding networks as opposed to minimal embed-
dings (see Table 4.1). While minimal embeddings are indeed lighter than large CNN counter-
parts, they do result in overall more costly models if used naively. As they do not provide the
necessary inductive biases, these will have to be provided elsewhere (such as in the Trans-
former design – see Section 4.3 –, or during training, through large-scale (self-)supervised
pre-training – see Section 4.4). Regarding tokenization, it has an impact on two main factors:
(1) it will affect the granularity at which information is modeled by the VT (longer tempo-
ral spans by using frame- or clip-based tokenization, and more fine-grained spatiotemporal
modeling when employing patches); (2) it will impact the input sequence length, and con-
sequently the computational complexity of the model. For these reasons, most works use a
patch-based approach accompanied by some efficient design, or frame-based tokenization, as
it provides better long-term modeling scalability.

We find that the interactions between embedding and tokenization play a crucial role in
defining the abstraction level and granularity at which the Transformer can model interac-
tions. On the one hand, large embedding networks allow to produce tokens sharing infor-
mation between them, guided by interactions defined by the CNN’s inductive biases. In this
regard, it may be desirable to leverage 3D CNNs that provide local interactions among spa-
tiotemporally neighboring positions. On the other hand, some tokenization strategies (such
as 3D patches or clips) allow the formation of fine-grained temporal interactions within the
token itself. This can be further motivated by most state-of-the-art VTs employing 3D patches.
In this sense, the choices of embedding network and tokenization need to be carefully con-
sidered, as they will affect the level at which spatial and temporal interactions can be formed.

Finally, the fixed absolute PEs proposed in [385] require less parameters than the learned
counterpart. However, the latter could be learning relevant positional relations that Fourier-
like approaches are unable to capture (similarly to how learned convolutional filters replaced
the handcrafted ones). The vast majority of VTs employ these absolute variants while the
use of relative counterparts is still marginal (see Table 4.1). We believe, however, that the
translation equivariance the latter provide could prove beneficial for generalizing to unseen
lengths (see Section 4.7). This is highly valuable for the video domain as it is much more
prone to display inconsistent temporal length (and cannot be re-scaled as easily as spatial
dimensions, without harming fine-grained motion modeling – see Section 4.3.5).

4.3 Architecture

In this section we overview Transformer designs. The different alternatives focus on specific
limitations of VTs or on better exploiting the abundant information in videos. In Section 4.3.1
we analyse approaches to reduce the number of tokens accessible in a single attention opera-
tion, aiming to reduce quadratic complexity. Then, in Section 4.3.2 we describe proposals to
enhance the long-range temporal modeling capabilities of VTs. Next, in Section 4.3.3 we ex-
plore specialized designs to separately capture fine-grained and coarse-level features. Finally,
and for the sake of completeness, we comment on multi-modal fusion designs to accomodate
multiple modalities together with video in Section 4.3.4.
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4.3.1 Efficient designs

Given the high dimensionality of video it may be challenging to represent long time spans
without potentially incurring in information loss or stumbling upon the quadratic attention
matrix problem. For this reason, many works decompose full attention into multiple smaller
SA operations. This has a two-fold benefit, as it will reduce the size of individual attention
matrices while infusing different inductive biases. Two main trends are observed: (1) re-
stricted approaches, which limit the scope of a single SA operation, but maintain the sequence
length throughout the network; and (2) aggregation approaches, which focus on progressively
condensing information into smaller sets of tokens. A complete overview of our proposed
taxonomy for efficient video designs can be seen in Figure 4.3.

Restricted approaches

In order to approximate full receptive field (i.e., the whole input sequence), restriction relies
on stacking multiple such smaller SA (similar to local filters in CNNs). We categorize re-
stricted approaches by how subsets of tokens are selected for each SA. It can be by attending
local token neighborhoods, specific axis (i.e., height, width or time) or sparsely sampled subsets
of tokens (see Figure 4.2a).

Local approaches. These are defined as the restriction by limiting attention to specific neigh-
borhoods. Similar to sliding filters in CNNs, the works in [268, 141, 31, 77, 436] define the
neighborhoods by sampling nearby tokens given a query. Instead, other works [236, 234,
408, 451] proposed limiting SA to small fixed windows, performing full SA separately in each
of them. Relaxing the locality constraint only to time, in [434, 47] the fixed windows span
all patches of a given frame. While sliding window local attention allows for more flexi-
ble learning (as each query has an independent local neighborhood), it has been shown to
be cumbersome to implement [29]. Let S and T be the number of tokens in space and time
respectively (i.e., S · T = N), local approaches reduce the computational complexity of VTs
from O((S · T)2) down to O(S · T) assuming a small (and constant) spatiotemporal neigh-
borhood size. These approaches gain locality biases and linear complexity at the expense of
non-local receptive fields, and will require depth to account for it. For this reason, in order to
allow information to flow between windows, we find different neighborhood sizes for each head
in [141, 408], shifting the fixed windows on every layer in [236, 234] and swapping groups of
features or neighborhood aggregation tokens between windows in [434, 47]. Instead, the use
of global tokens is seen in [31, 451] (alternating between local and sparsely global attention),
in [268] (where the [CLS] token attends and is attended by all tokens, acting as a bottleneck
for non-local information) and in [47] (which includes a global Transformer layer at the end).

Axial approaches. Different from local approaches, axial ones define the restriction to at-
tention by specific axes (i.e., height, width, or time). These can only be applied in patch-based
tokenization models, where the underlying structure of the data along the different axes is
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kept. Full axial attention decomposition has been tested for VTs, either by attending over indi-
vidual axes in three consecutive MHSA sub-layers [31], or in a single one where each query
token attends to all tokens that share with it the position in at least two axis [95]. However,
it is more common to decompose attention into spatial and temporal, for modeling intra-
frame and inter-frame interactions respectively. Spatiotemporal decomposition reduces com-
putational complexity from O(S2 · T2) to O(S2 · T + S · T2). The way in which spatial and
temporal attention are related in the architecture will define the granularity at which spa-
tial, temporal, and spatiotemporal interactions of the input tokens are learned. On the one
hand, allowing attention to both axes at each Transformer layer allows for spatiotemporal
relationships to form throughout layers. This can be done sequentially, through two MHSA
sub-layers, as in [31, 17] (and subsequent work [378, 446, 319]) or in parallel for latter com-
bination, seen in [17] through independent spatial and temporal heads and in [217] through
separate streams for each axis. On the other hand, entirely separating spatial from temporal at-
tention into consecutive modules as explored in [77, 132]. In this sense, it is not until the latter
layers that temporal modeling occurs, where it may be too late for certain spatial relationships
to form.

Sparse approaches. Sparse restrictions do not limit the scope of attended tokens, opposed
to local and axial approaches. Instead, given the high redundancy in video data [461], sparse
models provide a way to reduce unnecessary computation while maintaining a global re-
ceptive field at each layer. Sparsity can be embedded in the SA operation by restricting it to
fixed strided patterns for each query [31, 95]. In other words, a given query is only allowed
to attend (at most) to every other token on each axis. These are generally used to comple-
ment dense local attention. Other approaches involve some form of clustering. This can be
done through a hard assignment, where tokens get separated into groups (e.g., by k-means),
allowing only attention within each of them. Intuitively, as SA contextualizes token repre-
sentations through their relationships, these groupings allow to attend directly to the most
relevant ones for each token, discarding the ones that will contribute less. In order to al-
low inter-group flow of information, [217] employs centroid SA, broadcasting contextualized
cluster representations to each token within, whereas [451] uses an aggregation mechanism
for later global modeling. Alternatively, in [288] Q and K are softly clustered into a subset
of maximally orthogonal prototypes sampled from Q and K themselves, performing SA in
that reduced space. This can also be seen as computing SA between a reduced (sparse) set of
queries with the full K and V, followed by the full Q attending to the (sparse) result from the
previous operation.

Aggregation approaches

Aggregation can take many forms, which we roughly categorize into transformer-based and
pooling-based. Most commonly, thanks to Transformers’ ability to encode highly contextual
representations, they themselves can be used as global-based aggregation techniques, either
through the [CLS] token (for instance in [17, 132]) or a small set of queries (e.g., [131, 217], see
below). Nevertheless, we also find works employing learned pooling, which can be applied
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(A) Section 4.3.1 (B) Section 4.3.1 (C) Section 4.3.1

(D) Section 4.3.2 (E) Section 4.3.3

FIGURE 4.2: Visualization of the different design choices for VTs. Data tokens are shown in light
gray (and black stroke if the token is used), whereas augmented tokens are in darker gray; those in
white are initialized learnable tokens; and [CLS] tokens are indicated with “C” (filled black after being
augmented). Data flowing into the (T)ransformer from the side is used for cross-attention.

globally or locally. For the former, a fully connected layer (e.g., [130, 337]) or a set of convo-
lutional layers ([331]) map the token sequence into an attention-like matrix, used to perform
a weighted pooling over the whole sequence. For the latter, individual neighborhoods of to-
kens are aggregated by concatenating their embeddings into a single vector and mapping it to
lower dimensionality through a linear layer (e.g., [236, 417]). This is similar but not equivalent
to strided convolutions, where each element of the kernel would weight a different token of
the neighborhood. Although this method only aggregates in local neighborhoods, it is gener-
ally used in works which enrich the tokens with non-local context prior to aggregation (e.g.,
[236, 417]), and as we discuss in Section 4.3.5 this may prove to be a crucial feature.

We note that it is not clear whether any of these is an absolute better option, as each has
proven more valuable than others on different areas of application. However, in some cases
it can make more intuitive sense to use one over the others, for instance in MViT [417] or
Swin [236] where aggregation happens at many local levels, pooling is more straightforward,
whereas [CLS] tokens may be easy to use when predefined bigger neighborhoods are used
instead. And although not necessarily efficient on its own (for instance, when used as final
representation for a downstream task, such as computing a classification score [17, 91, 70, 361,
468] or measuring similarity for retrieval [118, 289, 96]), these ideas can be used to build effi-
cient models by progressively condensing information in a smaller set of tokens throughout
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the network.
Aggregation-based VTs can be roughly categorized into hierarchical and query-driven com-

pression. The key distinction is whether the input sequence length is reduced for all Q, K and
V, or if a small set of tokens (Q) is used to condense information from the full input sequence
(K and V).

Hierarchical. These designs can be further divided into abrupt or progressive hierarchy.
The former employ bigger neighborhoods (e.g., whole frames) and perform a single aggre-
gation step, whereas the latter tend to work on smaller neighborhoods and involve multiple
such steps (see Figure 4.2b). In both cases, the improvement to efficiency comes from the fact
that deeper layers will have to process a smaller sequence length.

Abrupt approaches divide the input tokens into separate groups which are independently
processed by a Transformer, to learn intra-group relationships. Then, information from each
subset is aggregated, generally through a [CLS] token (e.g., [17, 132]), although some use
learneable global pooling in the form of linear [130] or convolutional layers [331]. The aggre-
gated representations are then fed into the next stage, modelling inter-group relationships.
We only find one work leveraging pure temporal hierarchy [130], which models frame-then-
clip interactions. It is more common to employ spatiotemporal hierarchical models. These
works ([17, 132, 268, 47, 439, 451, 172]) are the aggregation equivalent of spatiotemporal axial
methods: a first module (generally a ViT [91] or Swin [235] architecture), learns spatial patch-
wise interactions, and a second one models frame-level temporal interactions. Interestingly,
in [331] multiple aggregation tokens are used for each frame, containing different features. As
we discuss later in Section 4.3.5, these approaches may loose the ability to model fine-grained
features after aggregation, potentially missing on relevant temporal cues.

Progressive approaches, tackle this limitation by learning spatiotemporal interactions at all
levels. In works such as Video Swin [236] and MViT [106] (as well as their followups [219,
234, 417, 406, 396, 398, 160]) non-local interactions are learned at each level, whereas in [214]
the first layers are limited to local interactions. In both cases, sequence length is progressively
aggregated by local neighborhoods (i.e., through learneable local pooling) while expanding
the tokens’ dimensionality. While this increased model capacity for deeper layers will re-
quire more parameters (weight matrices W quadratically grow with the number of feature
channels), it is generally compensated by smaller dimensionality in shallower layers. Inter-
estingly, the work of [451] combines both types of hierarchy, by progressively downsampling
in the spatial module, for latter aggregation and high-level temporal modeling.

Query-driven compression. Another aggregation-based approach consists in defining the
set of queries Q, such that N(Q) � N. Then, the computations are reduced from O(N2) to
O(N · N(Q)). In these, SA is performed only on the tokens that correspond to Q, while K
and V will be attended over via CA. With this, the N(Q) queries will iteratively access the
whole input to distill the most useful information and aggregate it in the token embeddings
corresponding to the queries. The intuition behind this is similar to how the input tokens to
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the decoder get refined by repeatedly cross-attending to the encoder’s memory M (see Fig-
ure 3.1). In the context of VTs, these queries are generally defined to be either an aggregated
or sub-sampled version of the input data, or they are an independent set of tokens.

Aggregating the input into queries (e.g., through global pooling) can be used to build global
streams while maintaining access to a broader low-level context within K and V. This may
be useful for tasks that require a high level representation of the input clip (e.g., video re-
trieval [130], scene or action classification [337] or group activity recognition [217]). Interest-
ingly, in [357] this idea is developed by forming a reduced set of queries at each layer. In
particular, T and S embeddings resulting from spatial and temporal average pooling respec-
tively, are concatenated and used to attend the full set of keys and values. Another alternative
to produce a reduced set of query tokens results from sub-sampling the input. In this manner,
the queries can be used to reason about specific regions or objects (e.g., by extracting a small
set of boxes from the input clip to be used as queries [131, 466]).

Using a fixed set of learnable queries to cross-attend the input was first explored in [178]
to build a global stream, where latent embeddings are used to progressively gather informa-
tion from the raw high-dimensional input. In VT literature it is more common to use these
learneable queries in an object-centric fashion, extending on DETR [54] (used to detect objects
at each frame) and propagating detection tokens to build recurrent Transformers (e.g., [254,
464], see Section 4.5.4). Alternatively, a set of independent text-based queries can be defined
from the text modality to aggregate relevant visual information for video question answer-
ing [194]. This idea naturally extends the original Transformer, replacing the textual encoder
by a video one while maintaining the auto-regressive text decoder, for video captioning [207,
215, 173, 259] or dense captioning [173, 467, 443] (through further event sampling).

4.3.2 Long-term (temporal) modeling

Capturing capturing long-term dynamics might be crucial for video tasks, as events observed
at a given moment could potentially be only understood by looking far away in time. We
saw a clear example of this in Chapter 3, where some human behavior can only be under-
stood by events occurred long ago. We here focus on works that propose dealing with long-
term temporal modeling. We roughly categorize them into memory- (e.g., [417, 207]) and
recurrence-based approaches (e.g., [432, 254]). Whereas recurrent ones aggregate information
into fixed-size representations, memory-based are variable-size and allow selective attention.
In both, portions (i.e., frames/clips) of the videos are processed sequentially in a sliding win-
dow fashion to keep manageable compute and GPU-memory but still making sure relevant
information from past windows is at reach.

Memory

Naively caching many past raw (high-dimensional) input frames quickly becomes prohibitive.
Instead, one can store global frame features [425, 107] or convolutional maps late in the em-
bedding network [436], intermediate embeddings across Transformer layers (e.g., those from
patches [417]), or the Transformer’s output embeddings [41]. In particular, when dealing with
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patch embeddings, aggregation might be needed before storing them [417]. On top of that,
some works maintain several memories with different temporal reach (long/short) [425, 436],
abstraction level [417], or granularity (fine/coarse) [417, 41].

Memory access. Memories are mostly accessed via either cross-attention [107, 425, 436] or
self-attention [417, 41]. By concatenating input and memory tokens sequence-wise to per-
form self-attention, the cost of the operation is O((NM + NX)

2). Although manageable with
small memories, cross-attention turns out to be much more affordable, with cost O(NM · NX)

if we assume NX � NM. Either way, if N(M) happens to be too large, one can reduce the
number on the tokens on-the-fly when accessing them [107, 425, 417] by either query-driven
compression [107, 425] or progressive aggregation [417] – both seen in Section 4.3.1. On the
one hand, existing works using query-driven compression for efficient memory access follow a
two-stage bottleneck compression: a first Transformer compresses the memory into a smaller
set of tokens, whereas a second one “decompresses” the output of the former into a larger set
but still much smaller than the original memory. In the case of [425] the second Transformer
is also deeper than the one in the first stage. It also uses two separate sets of learnable to-
kens to perform the aggregation in both stages, while [107] uses a hard selection of memory
tokens in the first stage (obtained via Farthest Point Sampling [309]). Besides the efficiency
gained from such two-stage factorisations, we intuit distinguished underlying roles of each
stage. While the first focuses on rough selection/compression, the second tries to recover as
much information as possible, aggregating and further refining embeddings. On the other
hand, progressive memory aggregation throughout the Transformer layers provides later access
to finer-to-coarser details. For instance, [417] keeps spatially aggregated K`

(t−M`):(t−2) from
previous timesteps after a learnable pooling and concatenates with lastly cached memory
that is to be compressed in this iteration (i.e., K`

t−1), and the current input’s K`
t to be used in

the `-th MHSA sub-layer (and analogously for V embeddings).

Multiple memories. Multiple memories (e.g., short- and long-term) can be separately ac-
cessed and their respective memory-enhanced embeddings fused [436]. Alternatively, a short-
term memory (with fewer tokens) driving the compression of the long-term one [425]. In
multi-layer memories [417], the ones in later Transformer layers implicitly access information
provided by earlier ones, effectively allowing local memory accesses to approximate the full
receptive field of the memory in deeper layers.

Memory update. As we move forward in time, memories are discarded in a First-in First-
out (FIFO) fashion [107, 425, 417, 436]. A notable exception is [41], which leverages the self-
attention weights to discard memory token(s) that are less attended by the rest.

Recurrence

Drawing inspiration from RNNs/LSTMs, recurrence mechanisms have also been proposed
to deal with long video sequences. Here we distinguish between recurrence applied between
intermediate layers in the VT [432, 207] and outside of it [254, 464].
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FIGURE 4.3: Venn diagram displaying our proposed taxonomy of efficient VT designs (best viewed in
color). We describe Local, Axial and Sparse approaches in Section 4.3.1, and Hierarchical and Query-
driven compression in Section 4.3.1. While not efficient on their own, we have also considered Memory
and Recurrence (see Section 4.3.2), as they could be seen as mechanisms to efficienly handling long
sequences.

Recurrence between layers. Within the first category, we find RViT [432] and MART [207].
RVIT [432] is essentially a ViT-like spatial Transformer that propagates the output of every
self-attention sub-layer forward in time. Acting as recurrent states, these are added to the
embeddings from the current time step after projecting both to its own Q, K, and V. Instead,
MART [207] leverages the embeddings alone to form Q whereas a sequence-wise concate-
nation of those with the recurrent state is used to derive K and V. Differently from RViT,
the recurrent state is not the output of SA, but the result of a gating mechanism between the
previous state and the current input embedding.

Recurrence outside layers. Recurrence can also be established outside the Video Trans-
former. In other words, the output embeddings from the Transformer at time t− 1, namely
X̂D

t−1, can be propagated to its own input at t. In the context of object detection, the works
of [254, 464] propose an encoder-decoder architecture for object tracking where the decoder
augments a set of learnable tokens while attending to the encoder’s representation of the cur-
rent frame. At time t = 0, the decoder augments an initial set of learnable tokens that will
become recurrent tokens. At t > 0, the decoder augments the sequence-wise concatenation
of the recurrent tokens at t − 1 and added learnable tokens at t to capture newly appeared
objects. Trained using pairs of frames, these can still deal with long sequences during in-
ference. One may argue that having a token for each object could be regarded as a form of
memory, but from the point of view of time the information is being recurrently aggregated
into a fixed-size representation.
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4.3.3 Multi-view approaches

Opposed to dense sampling of single views, a few VTs define multiple views of a given video
to solve the task at hand in a cooperative fashion. Note that the use of multiple views can
be seen in various scenarios. For example, instance-based contrastive approaches employ
multiple views but to drive the loss (see Section 4.4.2). Note that the multi-view approaches
we discuss here are related to multi-view sampling at inference (see Section 4.6.1), where
multiple views of the input are independently processed and the outputs averaged. Crucially,
here this technique is leveraged also during training. A clear example of this parallel is [206],
which defines sparse views by uniformly sampling video frames with a fixed stride but varying
starting positions. Then, separate streams process each view and the final classification is
reached by averaging predictions in a late fusion manner. This work could be seen as the
sparse equivalent to fixed window local restriction. In this sense, it only incursO(R2k), where
k is the number of sparse sequences (i.e., R · k = N). As weights are shared across streams, no
parameter increase is incurred.

Interestingly, many approaches define views by varying the resolution of a given clip, while
allowing interactions between them to form throughout the network (i.e., early fusion). This
was first explored for video in [450] by using patches of different spatial size at each head,
and later extended to time in [430] by using 3D patches instead. In the latter case, a multi-
stream network is used where each stream models the same video but tokenizes with dif-
ferent temporal resolution (inspired by the SlowFast Network [110]), allowing information
flow between views through CA and a final global stream (in an abrupt hierarchical fashion).
In [409] a similar architectural setting is used, but the views are sampled from the output of
progressively deeper layers of a ConvLSTM embedding network. In this sense, each view
holds smaller spatial resolution, but bigger temporal context. Intuitively, these methods use
redundancy to their advantage, helping the network become robust to missing information
in single views, while each stream models a coherent representation of the full input.

4.3.4 Multi-modal fusion

The human experience of the world is inherently multi-modal. Studies in both Psychol-
ogy [347] and Computer Vision [277, 9] have consistently found that multi-modality provides
useful cues for learning without the need for supervision [260]. This, tied with the versa-
tility of Transformers for handling any type of data, leads into many VTs to be deployed in
multi-modal settings.

One very generalized multi-modal approach is to leverage multi-modal fusion strategies
to combine the embeddings of different modalities into a joint multi-modal representation.
When done properly, it allows to exploit complementary cues across modalities and reinforce
cross-modal information. In this section we discuss these task-agnostic architectural changes
to accomodate multi-modal input. In Section 4.5.2 we discuss modifications for particular
tasks, particularly those regarding multi-modal translation, where the objective is to autoregres-
sively produce the output by incorporating contextual video (or multi-modal) information.
Beyond this, we also find multi-modal alignment. Alignment, differently from the previous
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FIGURE 4.4: Four main trends to arrange encoder modules when performing multi-modal fusion (best
viewed in color). See Section 4.3.4 for the details.

two, does not require architectural changes, but is performed during training via contrastive
learning. We refer the reader to Section 4.4.2 for an introduction of contrastive losses in gen-
eral, and Section 4.5.3 for a brief overview on how these are used for video retrieval in the
context of multi-modality.

Video can be fused with many modalities, but most often with audio [173, 178], text [361,
207, 468], and optical flow derived from the video itself [186, 122, 308]. Some challenges when
fusing modalities is difference in size, sampling rate, or the redundancy of their contained
semantics. Text is much lower dimensional than video, but at the same time it provides
useful high-level semantics that could help pinpoint salient parts of the video or establish
priors about its relationships. In contrast, audio is sampled at much higher frequencies than
text and hence SA among video and raw audio frames is impractical without embedding
audio first into a more compact representation. Commonly, log-mel spectrograms are used
to represent relatively long-term temporal audio chunks into a 2D image-like representation
that can be input to an off-the-shelf 2D-CNN [159].

To fuse modalities, Transformer-based strategies typically rely on the concatenation of
input sequences from all input modalities or, alternatively, on some form of cross-attention
(see Figure 4.4). Within the first alternative, we distinguish encoder fusion and hierarchical
encoder fusion. Among cross-attention based strategies, we find cross-attention fusion, which
is one-sided attention of one stream over the other, and co-attention fusion where two streams
attend to each other simultaneously. The latter two are typically implemented as encoder-like
Transformer layers but modified to include MHCA sub-layers (as we did for the Dyadformer
in Chapter 3), i.e., decoder-like layers but without the masking (and occasionally dropping
the initial SA sublayer). Moreover, we not only discuss “how” but also “where” the fusion
takes place in the architecture, i.e., early, middle, or late stages.
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Encoder fusion (EF). Before being input to the encoder, the token embeddings of different
modalities are concatenated either sequence-wise [361, 118, 231, 220, 215] (see Figure 4.4a)
or channel-wise [107]. One can think of the former as how BERT [88] deals with pairs of
language sentences. Encoder fusion considerably increases the computation cost of the SA
operation up to O((N1 + . . . + NM)2), where M is the number of modalities and Mm the
number of tokens in the m-th modality.

In order to identify which tokens belong to each modality, most VTs incorporate the so-
called modality embeddings (e.g., [205, 468, 118, 289, 231]). These are similar to positional em-
beddings, but signaling the source modality of the tokens in the multi-modal input sequence,
so the Transformer can treat them accordingly. These learned modality embeddings are summed
(or concatenated) with the feature embeddings and the positional embeddings altogether. Ex-
ceptionally, there are works that handle this differently. One example is the work of [361], in
which a separator token is used in a similar fashion to [SEP] in BERT [88], originally used to
indicate that a new sentence is starting, adapted here to indicate that the following tokens are
from a different modality. On a different note, [178] comments on the limitation that all input
modalities ought to have the same dimensionality in order to concatenate them. To solve this,
the authors concatenated fixed modality embeddings of different sizes for each modality so
tokens from all modalities end up having the same dimensionality.
Hierarchical encoder fusion (HEF). Encoder fusion can also be done hierarchically by aug-
menting modality-specific token embeddings on individual encoders first, concatenating their
outputs, and sending those to a multi-modal encoder[205, 286, 360] (see Figure 4.4b). This
kind of fusion allows intra-modal information to be handled before modeling the inter-modal
patterns, which can be beneficial when dealing with modalities that are not highly correlated
or precisely aligned at the input level. The point at which to do so has to be determined ex-
perimentally. Also, computational cost is reduced with respect to the previous encoder fusion
by a constant factor, depending on the number of layers in both the uni-modal and the multi-
modal encoders. Although utilizing multiple encoders increases the amount of parameters,
this can be alleviated through weight sharing [205].

Despite being more rigid, encoder fusion allows for an unbounded number of modalities.
Cross-attention, even when limited to two modalities only, allows for more flexible modal-
ity fusion. We distinguish between cross-attention (one-sided) and co-attention (two-sided),
the first being from one modality over another and the second being mutually conducted in
parallel.
Cross-attention fusion (CAF). When fusing modalities through CA, one modality will query
information from an auxiliary modality that will provide context (see Figure 4.4c). The sim-
plicity of this idea together with the flexibility it provides, causes many works to use it very
differently. In [194, 174] separate encoder-decoders for each modality are proposed, each
cross-attending to text embeddings, before the outputs of the different encoders are com-
bined. The work of [178] proposes only one stream that keeps augmenting a small set of
latent embeddings by repeatedly cross-attending to the same very long multi-modal input
sequence of minimal embeddings. For this case, CA layers are interleaved with SA layers
that refine the cross-attended information. In [468], a three-stream Transformer is proposed
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where the central one cross-attends to the other two, and these will then attend to the em-
beddings generated by their respective opposite previous cross-attentions. The work of [52]
also uses three streams, one per modality. The fusion, however, is achieved within a master
stream which substitutes its SA by asymmetric cross attention over the other two at the same
time (concatenating both sets of keys and values). CAF only involves two modalities at once,
but has a reduced cost compared to encoder fusion, i.e., O(N1 · N2). Notably, asymmetric
attention allows the master stream to discard information from a specific modality when it is
not relevant.
Co-attention fusion (CoAF). Differently from cross-attention fusion, the two modalities in
co-attention are augmented in parallel by attending to each other’s embeddings. The MHCA
sub-layer in each of the streams computes the queries from its own embeddings, whereas
keys and values come from the other stream (see Figure 4.4d). It was originally proposed for
images and language in ViLBERT [237] and followed by a few video works [80, 357, 173]. In
[80, 357], SA is entirely replaced by CA, but it can also be kept [173]. Indeed, [456] has their
modalities co-attending to each other and self-attending to themselves, claiming this keeps
intra-modal and inter-modal dynamics separate, up to some degree. In contrast to encoder
fusion, the computational cost is reduced to O((N1 · N2)2).

All of these fusion strategies allow for different early and middle fusion strategies. How-
ever, another alternative is to simply late fuse modalities. In order to do that, the differ-
ent modalities are run through parallel encoders and, then, their outputs are combined.
These outputs could be class score distributions [122], as typically done for Two-stream Con-
vNets [345] in classification problems. Although suboptimal for Transformers, this strategy
might still be beneficial when training data is scarce. Alternatively, late fusion could also be
regarded as combining the augmented aggregation token (or pooling over all output token
embeddings) by concatenation [174, 186, 194] (or summation [303]) and then using this for
classification. In either case, the modalities do not share information explicitly.

4.3.5 Discussion on architecture

VT designs focus on reducing computational complexity and handling the redundancy of
videos without compromising spatiotemporal modeling capabilities. Furthermore, restric-
tions imposed on VTs to make them more efficient will bias them towards favoring certain
kinds of relationships. Some examples of this are abrupt hierarchy, which learns temporal
translation equivariance in spatial layers by modeling each frame independently, or local ap-
proaches, which enforce locality biases.

However, efficient designs and inductive biases do not explicitly handle redundancy.
Video redundancy can be mostly attributed to appearance-based semantics varying slowly
through time, even when small variations in specific pixels occur [461]. However, the ex-
tended information provided by these subtle changes in many consecutive frames may be
crucial to properly model fine-grained motion features [110]. In order to learn spatiotempo-
ral relationships from video, this must be taken into account. Reducing spatial redundancy
may be desirable, as it will allow to focus on more relevant parts of the video (e.g., through
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aggregation or sub-sampling of tokens). However, this requires careful consideration: re-
moving certain information too early into the network may limit the formation of crucial
temporal interactions later on. Prior works on modeling CNN with video have shown this
to be the case: early aggregation of spatial features hinders the formation of fine-grained
motion features [339, 375, 224], and temporal pooling seems to hurt spatiotemporal represen-
tation learning [61, 109]. With Transformers, tackling this may involve taking into account
non-local neighborhoods before deciding which information is to be discarded.

Motivated by this, we derive three crucial aspects for spatiotemporal modeling: (1) ex-
plicit spatial redundancy reduction while (2) allowing to model temporal features at all levels
in (3) high-fidelity temporal contexts. Different VTs exhibit varying degrees of capabilities in
these three aspects. Restricted approaches allow for low-level temporal modeling and, due to
the lack of aggregation, always maintain temporal fidelity. Given their potential to overlap
low- and high-level features they can be suitable for both low-level (e.g., segmentation [95])
and high-level (e.g., classification [31]) tasks, but with certain limitations. Hierarchical ap-
proaches effectively exhibit (1) and (3) through aggregation on the spatial dimensions only
(except in [214]). Particularly, for progressive hierarchy (e.g., [219, 234]), the gradual increase
in channel dimensionality provides deeper layers with larger capacity to represent high-level
concepts while further limiting the modeling of redundant low-level features. Furthermore,
by leveraging different levels of spatiotemporal non-local contexts (e.g., [236, 106]) at least
in deeper layers (e.g, [214]), they guarantee that extended temporal fidelity is exploited be-
fore aggregation. In contrast, the abrupt counterparts (e.g., [132]) may be suffering from early
aggregation. While training end-to-end may infuse temporal feedback into spatial layers
(which may be sufficient for appearance-biased video benchmarks, see Section 4.4.3), they
may lack proper motion modeling. This can be addressed by allowing to form spatiotempo-
ral interactions before aggregation, either locally (by explicitly sharing information between
neighborhoods [47, 434, 451, 172] as well as by using 3D patches [17, 430]) or globally [331].
Query-driven compression approaches reduce redundancy through aggregation when used to
derive global streams [130, 337, 217], or through sparsity when reasoning about individual
objects or regions [217, 131]. In both cases, the small set of queries form high-level repre-
sentations of (parts of) the input, while maintaining temporal fidelity in keys and values.
However, they may exhibit a limited capability to form low-level temporal features. While
iterative accesses may alleviate the dangers of early aggregation for high-level tasks (e.g., clas-
sification [337, 178, 131]), low-level tasks may require to also evolve the fine-grained input
representations [217] or to infuse them back with high-level features from the queries [357]
(akin to clustering-based sparse approaches). This is similar to the behaviour exhibited by
recurrent VTs. As temporal information is collapsed into the recurrent state, they may suf-
fer from early aggregation (losing temporal fidelity), which may be specially detrimental for
high-level tasks [432]. However, these approaches may excel on applications that only re-
quire low-level reasoning of the current observation, enhanced with the forwarded high-level
past context (such as for tracking [254], segmentation [436] or dense video captioning [207]).
Memory-based approaches exhibit great capabilities for preserving temporal resolution of the
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input. They can tackle redundancy through aggregation (e.g., upon storing [417] or dynam-
ically on access [425]) or sparsity (either by storing only some past observations [436], by
dropping elements in the memory according to their relevance [41], or only attending to a
small subset of memory tokens [107]). Finally, multi-view approaches working at different in-
put resolutions explicitly allow the formation of separate coarse- and fine-level features while
allowing interactions between them [409, 450]. However, as redundancy is not explicitly man-
aged, the success of these methods may be limited to computationally heavy models [430].
Sparse counterparts heavily downsample the input sequence, hurting temporal fidelity and
requiring to compensate with other modalities [442, 206, 7].

Regarding multi-modality, concatenation-based strategies trade extended sequence lengths
for efficiency. While more computationally expensive, EF does not require experimentally
validating the fusion point as with HEF. Cross-attention fusion methods also grapple with
finding optimal fusion points, yet middle fusion could help with asynchronous input modal-
ities. They are more efficient than concatenation counterparts, given they do not extend se-
quence length at any point. As cross-attention variants collapse multiple uni-modal streams
into single sequences, we hypothesize they could be better suited to enforce unified multi-
modal representation spaces, potentially reducing redundancy. On the contrary, concatenation-
based methods might be more approapriate for facilitating independent modality-wise learn-
ing, but some features could be redundantly represented. Finally, although CAF and CoAF
are inherently restricted to two modalities, cumbersome approaches can be found that lever-
age this kind of fusion for more than two streams [468].

4.4 Training a Transformer

The two main limitations of Transformers will heavily influence the way in which they are
trained. On the one hand, large-scale pre-taining aids Transformers overcome their lack
of inductive biases [91, 67, 88], but recent studies suggest that self-supervised pre-training
(see Section 4.4.2) alleviates the need for large supervised datasets [374, 406]. On the other
hand, some solutions to the lack of inductive biases aggravate computational costs. CNN em-
bedding networks add to the memory footprint and potentially overflow GPU memory when
training, specially if done end-to-end. Avoiding overfitting big models requires strong reg-
ularization [427] and lots of data [452], which is further problematic when handling several
stages of training that require more time and compute. Finally, leveraging self-supervised
tasks is computationally heavy, specially for video.

4.4.1 Training regime

We next explore how VTs are trained, from a lens of embedding networks and pre-training.
Pre-training involves one or more training stages before transferring the network to a down-
stream task, for which the model is either fine-tuned or linearly probed (training a few linear
layers on top of the frozen Transformer).



90 Chapter 4. Video Transformers: A Comprehensive Survey

End-to-End training with minimal embeddings. End-to-end training of deep neural net-
works has proven to outperform multiple stage algorithms. To ease memory limitations while
allowing for end-to-end training of the Transformer, it is common to use minimal embed-
dings. Some train in a supervised fashion [31, 178, 17, 408, 106, 451], directly for a downstream
task on large datasets, such as Kinetics-700 [56]. However, all these works leveraged efficient
architectures and thanks to the inductive biases these designs provide, the network will pick
up on relevant patterns faster, and more capacity can be given to Transformer layers. Other
works aiming for smaller datasets train aided by some data augmentation [445, 409, 441] or
self-supervised losses [450, 230, 132, 259, 7] on medium to large datasets. Stand-alone Trans-
formers seem to be able to learn without large CNN embeddings if aided by the inductive
biases that efficient designs, data augmentation or self-supervised losses provide. Still, most
of these require multiple stages of training either through large datasets or computationally
heavy self-supervised techniques.

End-to-End with embedding networks. Other works train Transformer and deep CNN
embedding layers end-to-end either with a pre-trained embedding network [357, 68, 194],
fine-tuning just the later layers [360, 337], or training end-to-end from scratch [404, 239, 397,
290]. Some were able to train end-to-end by capping Transformers to 1∼4 layers [460, 186,
439], suggesting that just a few Transformer layers after a large embedding network may
be enough to boost performance. Some others’ success is attributable to leveraging efficient
designs (e.g., local SA [141]) or weight sharing [205] – that reduces the effective number of
parameters to be stored in memory (discussed later in Section 4.7). Finally, [405, 131] report
having substantial computational resources available, which allowed them to fit in mem-
ory both, a large embedding network and a big Transformer. Empirical studies on both
image [317, 81] and video [214] Transformers have consistently found improvements when
training Transformers and CNN embedding layers end-to-end. This may further be seen in
works reporting improved CNN-based results alone after being trained as the embedding net
of a Transformer [205, 360, 362], pointing towards CNNs benefiting from long-term temporal
feedback provided by the Transformer layers.

Frozen embedding networks. The most common approach by far for VTs is leveraging
some large pre-trained and frozen CNN embedding network. These are then used for feature
extraction, which further boosts cost-effectiveness, as these features can be pre-computed.
Transformer layers are then trained for a downstream task on those features. Compared to
end-to-end training from scratch, it is often cheaper and more efficient to employ state-of-the-
art models, which have been carefully tuned to perform well on some supervised task. While
it is definitely common to use medium to large datasets (as in [207, 467, 286, 173, 294, 456, 443,
174]), with this approach, many video works [308, 304, 53, 70, 307, 122, 52, 367, 400, 220] are
still able to train the Transformer on small datasets (<10k training samples). Nevertheless,
these approaches are limited by the quality of the pre-trained features, and could be biased
towards the task they were trained on (which are generally supervised).



4.4. Training a Transformer 91

Pre-trained Transformers. Video-based pre-training has proven to work best for video clas-
sification tasks [406, 396], maybe due to the distribution gap, as pre-training only on im-
ages does not provide any motion cues. Nevertheless, image-based pre-training may provide
stronger spatial features, given the higher variability of appearance and number of categories
(providing better semantics regarding objects) compared to video datasets (where many con-
secutive frames contain similar appearance statistics). It is for this reason that we find many
VTs leveraging image pre-trained Transformers, commonly on some ImageNet variant [86,
324]. This is generally done in one of two fashions. On the one hand, some works [17, 132, 430,
268, 436, 47] leverage a pre-trained image Transformer (generally ViT [91] or Swin [235]) as the
spatial stage of an abrupt hierarchical VT, training the later temporal layers from scratch. On
the other hand, a pre-trained image Transformer can be directly adapted by using 3D patches
to factor time in (as well as inflating linear embeddings and positional biases to account for
this change) before fine-tuning for video [236, 234, 106, 406]. Finally, some object-centric ap-
proaches (e.g., [466, 405, 254]) leverage a pre-trained Transformer-based object detectors (e.g.,
DETR [54]) as initialization for a tracking Transformer.

4.4.2 Self-supervised pretext tasks

Harvesting large annotated datasets incurs in additional labeling costs, and may further in-
fluence towards human-induced annotation biases [326, 71]. Self-supervised learning (SSL) has
been recently shown to alleviate data needs for an equivalent supervision-based pre-training
(e.g., [374, 406]), while providing more robust [155] and general features [192, 140, 69]. De-
spite the great success of SSL in both NLP [88] and Image Transformers [149], they are not as
widespread in the video domain, which could be attributed to the large costs involved in such
process. Therefore, we next analyse benefits and limitations of SSL for VTs, so as to motivate
further research on this area.

Traditional time-related pretext tasks (e.g., arrow of time or playback speed, see [334] for a
complete review) are rarely used in the context of VTs. They are generally limited to shuffling
the input sequence, and training the network to correctly reorder it [215, 446, 144, 378]. The
task can be formulated either token-wise (by classifying correct position of each token [215,
446]) or sequence-wise (by predicting the permutation from a predefined set [378] or the edit
distance from the original sequence [144]). Intuitively, by solving such a task, the network
learns what coherent temporal dynamics look like. Alternatively, we find a few works lever-
aging generative losses, akin to traditional inpainting [287]. These are only used in VTs where
they themselves are the task being solved for downstream. In these cases, it is only natural
to use SSL, given that the objective is the data itself. These models are trained through a
reconstruction similarity loss [316] (e.g. L2 or LPIPS [457]), sometimes accompanied by an
adversarial setting [230, 450] or other techniques to enforce temporal consistency [409].

However, these have not found as much success [334] compared to (1) Instance-based
learning and (2) Masked Token Modeling (MTM), which we explore next. The former learns
sequence-level representations that are invariant to different spatiotemporal perturbations,
whereas the latter masks individual token representations of the input and tries to recon-
struct them.
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Instance-based learning

Instance-based approaches for VTs leverage contrastive losses (generally InfoNCE [273]) to
make representations of whole sequences invariant to certain augmentations. These ap-
proaches define one anchor x, a positive sample x+ and a set of G negative samples to contrast
against {x−g }, where 1 ≤ g ≤ G. These tasks force representations for the positive pair to be
similar, while it drives apart representations for the negative (dissimilar) pairs. Minimising
InfoNCE can be seen as maximising a lower bound on the mutual information between x and
x+ [273]. It does so by means of a similarity function sim(·), which measures the affinity be-
tween two elements. This function assigns a high score to positively correlated pairs (x, x+)
and a low score to negatively correlated ones (x, x−). These losses have also been used in the
context of cross-modal matching for VTs, but this has already been explored in [330]. Hence,
we only briefly discuss them in the context of video retrieval (see Section 4.5.3), and focus
here on their uses for video only.

View mining. Positive pairs tend to be differently augmented versions (generally regarded
as views) of the same video sample. In VTs, it is customary to apply spatial augmentations
(e.g., random cropping, color jittering, horizontal flips or Gaussian blur) consistently through
time (i.e., applying the same augmentation to all frames [310]). By aligning multiple views’
representations, the model learns to be invariant to such perturbations. However, spatial aug-
mentations alone are not enough for video SSL [334], and generating temporal views needs to
be done carefully. For instance, reversing or randomly shuffling a clip may make the model
invariant to temporal causality. In VTs (similar to other video literature [111]), it is common to
use multiple temporal [416, 362, 396, 144] or spatiotemporal [319, 290] crops of a given video
to form the positive pairs, with varying temporal spans [396, 290, 319] and frame-rates (i.e,
speed) [319, 396], whereas negatives are sampled among all other training videos. Learning
invariance to such changes may be useful for high-level tasks where a wide abstract under-
standing of the video is enough. Nevertheless, this could disregard local view-dependent
information in favour of redundant cross-view information [306], favouring the formation of
appearance-biased features (see Section 4.4.3). We hypothesize this is related to the level of
features learned by enforcing this type of invariance, i.e., appearance features that describe
the overall video clip, but not low-level motion cues that evolve over time and are different
among the various views. By forcing the network to similarly represent all positive pairs
(clips from the same video), it is left only with shared information among them, i.e., overall
appearance of the video. In this sense, we regard proper positive and negative sampling to be
crucial to ensure that both general abstract features as well as fine-grained view-dependent
local ones are preserved. For instance, balancing the modeling of local and global representa-
tions [444], or sampling positives nearby in time to the anchor with higher probability [310],
so the network is not forced to depend entirely on high-level appearance features. In VTs we
find several approaches to tackle this. Some works use multiple global and local potentially
overlapping views as positives [319, 290, 396], which may allow for better modeling of part-
whole relationships. Intuitively, this forces global views to preserve information in the local
ones, while maintaining global context awareness in local views. Alternatively, the alignment
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task can be relaxed, skewing away from learning absolute invariance to changes between
views. One example is seen in [362], which conditions alignment on the temporal shift be-
tween crops. Another solution found in VT works consists in introducing asymmetries in the
networks computing the different views’ representations: using additional predictors [396],
momentum encoders [319, 396] (originally proposed in [150]) and even CNNs [144] (probably
helping infuse some locality bias from CNN representations into the Transformer). Introduc-
ing some of these asymmetries has indeed been found to boost downstream performance on
image [372] and video tasks [111]. Intuitively, they may be relaxing the alignment task into a
more predictive setting, allowing features to be aware of context, not so much invariant to it.
In other words, it enforces one view to contain enough information so that when projecting
it, it can be aligned with the other view, making the representation of a given crop predictable
from another without directly sharing all the information. On a different note, we also find
some works combining instance-level learning with token-level learning through MTM [360,
362, 416] (see Section 4.4.2), which as we will discuss, seem to better preserve local token-wise
information of different parts of the video.

Negative sampling. One crucial limitation of contrastive approaches is their need for large
negative sets [66]. These are generally mined from the batch, which can be very limiting in the
context of full video representations, as it may not always be possible to hold enough differ-
ent instances in a batch. VTs tackle this through large memory banks that store representations
of past batches [396, 340, 231] (which may further serve as regularizers, due to storing sam-
ple representations from past iterations produced by the same model with slightly different
weights) or through hard negative mining (forcing the network to learn small nuances in the
views by trying to separate somewhat similar samples, measured by feature representation
distances [205, 218]). Finally, we also find works dropping negatives altogether. One example
is seen in [319], which formulates learning as instance-based classification, where every posi-
tive view has to be classified in the same pseudo-class. Another example is the work in [442],
where, during training, multiple sparse views of the input are independently processed and
the aggregated prediction is used to distill the consensus into single view streams (which are
the ones later being deployed).

Masked Token Modeling

MTM draws inspiration from the Masked Token Prediction loss proposed in BERT [88]. It ran-
domly replaces some input tokens with a learnable [MSK] token and the network is trained to
predict (classify) the original tokens. This forces the Transformer to learn contextualized rep-
resentations by trying to retrieve the masked part of the input based on all remaining tokens.
However, different from language tokens, visual tokens cannot be easily mapped to a discrete
and limited-size vocabulary so as to pose MTM as a classification task. For perspective, a pixel
codebook would require 2563 ≈ 16M distinct elements, whereas BERT employed a vocabu-
lary of 30K. Furthermore, posing it as a classification task would disregard the distance of
the prediction to the actual ground truth value, distracting the network with high-frequency
details of the data which could be irrelevant. To solve this issue in the context of VTs, we
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roughly find three families of approaches, categorized by the type of target: (1) working at
feature level either through regression [215, 63, 218, 406] or contrasting [215, 205, 360, 70], as
well as (2) quantization of visual tokens [361, 398]. Interestingly, some works have actually
found success (3) regressing the original token in pixel space [374, 234]. We also find VTs clas-
sifying token contents [468, 416], but as these require manual annotations, we do not delve
into them here.

Feature-based MTM. These works regress a feature-based representation of the masked
tokens. This can be posed as a prediction (e.g., using an MSE loss) [215, 63, 218] or as a
contrastive task [215, 205, 420, 70]. The target token representation is obtained from the input
embedding network (e.g., [215, 205, 420]) or from an external encoder [360]. In this sense, by
requiring an additional network, these models potentially incur in additional compute and
memory costs. In order to avert this, [406] proposes using the HOG features of the masked
region, which are cheaper to compute and can be pre-computed. Interestingly, the work
of [132] uses masked causal self-attention instead of replacing tokens with [MSK]. In this sense,
all tokens are tasked with solving feature-based MTM by trying to predict the next token’s
representation (similar to a predictive coding setting [320, 273]).

Quantization-based MTM. Employing this technique involves discretizing video tokens to
a limited codebook, generally requiring some pre-trained network to define it. For instance,
in [361] a S3D [423] followed by hierarchical k-means is used for both, embedding the tokens
prior to the Transformer, and the discrete (cluster assignment) pseudo-label for the prediction,
whereas in [398] a VQ-VAE [318] is used instead, but only to generate the ground truth for the
masked tokens. The use of quantization makes it possible for these models to optimize the
network with a classification objective, akin to NLP counterparts. However, similar to many
feature-based MTM, these approaches also require an additional pre-trained network.

Pixel-based MTM. Opposed to previous approaches, pixel-based alternatives directly regress
the pixel space for masked regions [374, 234]. They do not require any further networks nor
computing additional features, making them very simple to implement. However, pixels as
targets have been argued to focus on irrelevant high-frequency details of data, which could be
detrimental for high-level tasks [146]. Nevertheless, this may be more nuanced and require
further research, as we discuss next in Section 4.4.3.

4.4.3 Discussion on training strategies

Training stand-alone VTs requires balancing solutions to the lack of inductive biases with po-
tentially limited computational budgets. This implies factoring in large datasets, SSL and ef-
ficient designs while accounting for the large dimensionality of videos, properly sized clips,
batches and architectures. VTs are dominated by fully supervised training aided by large
frozen CNN embeddings (which are not so common in other fields, such as NLP), and disregard
pre-training of Transformer layers. The benefits of the CNN-Transformer tandem are two-
fold. On the one hand, long-range temporal interactions provided by Transformers boosts
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CNN’s performance in many application scenarios[308, 286, 173, 304, 53, 199, 122, 367, 225].
On the other hand, the embedding network provides initial representations and dimensional-
ity reduction, alleviating Transformers’ training limitations. Nevertheless, this approach caps
the potential of Transformers to model spatiotemporal interactions (specially long-term ones)
and depends on the transferability of the pre-trained embedding features (e.g., problems with
distribution or task shift).

The canonical pre-training then fine-tunning paradigm acts as a smart form of initialization.
We hypothesize that skewing from it may allow to avoid catastrophic forgetting [250] while
achieving more generalizable features. For example, by incorporating self-supervised auxil-
iary losses during fine-tuning, as done by some VTs [132, 446]. In [215] a training schedule is
proposed which samples a different (self-)supervised task at each batch, showing improved
results for video retrieval as more tasks are added. Alternatively, recent works (e.g., [398, 133,
453]) deviate from the trend of image-based pre-training, and achieve promising results by
optimizing for image and video tasks in a joint manner.

SSL is not as widespread for VTs when compared to supervised or image-based initial-
ization. However, we believe VTs could greatly benefit from large-scale unlabeled videos, as
well as from the inductive biases SSL provides. In this sense, we see great promise on the cur-
rent developments on SSL that are better suited to train visual Transformers. MTM could be
seen from the lense of generative-based pre-training as it bears great resemblance with CNN-
based inpainting [287]. However, the tendency of CNNs to overfixate on high-frequency
features [2, 182] (which does not seem to be the case in vision Transformers [30]), may ex-
plain why generative-based approaches have not gained as much popularity for pre-training
CNNs [334, 181]. We believe that the success of MTM may be attributable to Transformers
providing explicit granularity through tokenization. In order to conquer the complex global
task of inpainting large missing areas of the input, MTM divides it into smaller local predic-
tions. This is specially true in both 2D- and 3D-based patch tokenization approaches [406,
374, 398]. Intuitively, the model needs understanding of both global appearance and motion
semantics as well as low-level local patterns to properly gather the necessary context to solve
token-wise predictions. This may allow VTs to learn more holistic representations (i.e., better
learning of part-whole relationships). Nevertheless, given the high redundancy of videos it
could be trivial for the network to find shortcuts, borrowing information from neighboring
spatiotemporal positions instead. It has been found that high masking ratios (e.g., 40%-60%
in MaskFeat [406] or even 75%-90% in VideoMAE [374]), specially compared to NLP (15%-
20% in BERT [88]) or images (20%-50% in MAE [149]), indeed force the network to capitalize
on global relationships of the data, as seen by improved performance on high-level semantic
tasks (see Section 4.6.2). Furthermore, ablations in [406, 374] suggest that the masking strat-
egy can also impact the learning of such shortcuts, showing that masking blocks of tokens
in space consistently through time helps to avoid them. Regarding the choice of target for
MTM, quantized and feature-based seem to work best for video [406] (albeit requiring an
additional pre-trained network). Pixel based provide the cheapest target, but are generally
discarded arguing they may fixate on irrelevant high-frequency details of data. However, the
generally used MSE loss has been shown to disregard such details [458, 275, 287], so further
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research may be needed. Finally, we highlight HOG features, which provide the best com-
pute/performance trade-off (see Section 4.6.2), as they are cheap to compute while providing
partial invariance to various deformations.

Despite requiring large batches for negative mining, instance-based contrastive approaches
have consistently shown potential for high-level video tasks [334]. By contrasting differently
spatiotemporal augmented views, the network learns invariance to appearance perturba-
tions, spatial scale and occlusions, as well as changes of perspective or illumination naturally
present in video [138, 403]. However, the model may also become invariant to temporal trans-
lation and deformation, effectively disregarding fine-grained motion dynamics and biasing it
towards appearance-based static cues (which is enough for appearance-biased datasets – e.g.,
UCF101 or Kinetics – where the presence of certain objects may suffice to predict an action
class [168, 46]). As we discussed in Section 4.4.2, re-introducing motion modeling requires re-
laxing the alignment task through network asymmetries (e.g., [144, 319]) or careful sampling
techniques (e.g., [290, 396]) to balance part-whole relationship learning. However, compared
to MTM, it is easier for these approaches to overlook low-level view-dependent temporal
information, crucial for proper motion modeling [444, 310].

In this context, we see promise in combining instance-based contrastive learning and
MTM, both in multi-task scenarios [360, 362, 416] as well as feature-based contrastive MTM [215,
205, 420, 360] (as opposed to direct regression). These latter could combine the holistic fea-
ture learning of MTM while potentially accounting for the uncertainty of modeling missing
information through contrastive losses (as the model is not tasked with explicit hard predic-
tion [146]). For instance, in [215], this alternative is found to outperform L2 feature regression
in the context of video-moment retrieval. These approaches remain, to the best of our knowl-
edge, unexplored in the context of patch-based tokenization, where the cardinality of the
negative set would be much larger than for instance-based approaches (allowing for many
hard negatives from the same sequence as well as easy negatives from all other sequences
in the batch). Nevertheless, it is still unclear what these models are actually learning, so fu-
ture research is needed for proper interpretation of SSL features, which currently are mostly
evaluated based on their success on downstream performance [334, 181].

4.5 Task-specific designs

In this section, four major subsections review specific designs of the most popular video tasks
(see Table 4.1): Action classification in Section 4.5.1, Video translation (e.g., captioning) in Sec-
tion 4.5.2, Retrieval in Section 4.5.3, and Object-centric tasks (e.g., detection and tracking) in
Section 4.5.4. For the sake of completeness, these are followed by short summary subsections
regarding the remaining tasks: Low-level in Section 4.5.5, Segmentation in Section 4.5.6, and
Summarization in Section 4.5.7.

Transformers have also been applied for action anticipation [132, 400], sign-language
translation [53, 52], visual-question answering [194, 460], autonomous driving [303], robot
navigation [107], visual-language navigation [286], personality recognition [80], lip read-
ing [239], dynamic scene graph generation [77], and multimedia recomendation [70]. As not
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many video Transformers have tackled this, it is too early to ascertain specific trends, so we
have simply listed them here for completeness.

4.5.1 Classification

Regarding video classification, most works rely on pure Transformers [17, 236, 31, 451, 7]
that for the most part focus on efficiency: both [17] and [31] test various space-time decom-
positions, whereas [17] also tests tokenization strategies (2D vs 3D patches). They found
that a pre-trained ViT [91] encoding 2D patches with a temporal encoder on top performed
the best. The works of [236] and [451] propose different types of restricted attention: the
former restricts locally in shifting windows and the latter by only attending to previous
frame’s patches after having exchanged information with another efficient attention mech-
anism [197]. In [106] they opt for 3D patches whose receptive field is enlarged across stages
by subsequently merging token embeddings. Others pursue building very deep Transform-
ers by maintaining a very compact latent representation [178]. These larger Transformers for
classification require large labeled datasets for fully-supervised training [106, 236] or heavily
rely on self-supervised pre-training [361, 205]. For multi-modal datasets, encoder fusion [361]
or hierarchical encoder fusion is utilized [360].

Several other works rely on larger (usually CNN-based) embedding networks [361, 205,
360, 294, 186, 122, 290, 362], facilitating the training on smaller datasets. When equipped
with these embedding networks, shallow encoders can serve as mere pooling operators [186,
122, 290, 308]. For detection, Transformers are also a natural way to fuse information among
detections initially made by these embedding networks [217] or to allow them to attend over
a larger visual context [131]. Although mostly used in pure Transformers, efficient designs
have been explored for this kind of works as well, for instance through weight sharing [205].
We note that these architectures can also be used for regression tasks, by simply replacing the
final output head to produce continous values.

4.5.2 Video translation

The translation task intends to map the raw input video to an output signal of a different
nature and with an arbitrary length. In the context of video literature, translation can be con-
sidered a multi-modal task: given video (and possibly additional modalities) it is translated
into a set of (generally) non-video outputs. Although the output could also be video, it is of-
ten a signal in another modality (e.g., language) or simply a sequence of discrete symbols. The
most popular instantiation of translation is video captioning [207, 215, 173, 259] that consists
in producing natural language descriptions of what is globally going on in the video. When
producing separate captions for different video subparts independently, this is referred to as
dense video captioning [467, 443]. A more specialized type of video captioning is sign-language
translation [53, 52]. Additional other forms of translation are: video reasoning [466], that ex-
tends the task of captioning by allowing a natural language prompt along with the video;
video-language dialogue systems, which add to reasoning the requirement of back and forth
communication with an external agent while reasoning about the visuals [220]; temporal (or
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spatiotemporal) action localization [367] to produce a list of, respectively, temporal begin and
end times or a “tube” of bounding boxes containing the human actions in the video; or robot
video-based navigation [107], in which the video – and perhaps other sensory inputs – are trans-
lated to the next action (a sequence of next actions) to take. Most commonly exploited input
modalities for the translation task along with video are text [207, 220], audio [173, 220], and
optical flow [367], but others are also used (e.g., human pose [52] or depth [107]).

VTs tackling translation typically leverage encoder-decoder architectures, in which video
is passed through the encoder and served as context to the decoder – similarly to the original
Transformer (see Section 3.1.1), only that the encoder is a video encoder instead of a language
one. Task-specific modifications of this design are found for dense video captioning [173, 467,
443], where a temporal proposal generator is attached after the encoder to tell the decoder
where/when in the sequence it has to focus. While most methods first divide the video in
regions and then re-encode them independently to produce per-clip captions [173, 467], the
work in [443] eliminates the re-forwarding by making the most of local self-attention, which
limits the leakage of information across the encoded proposals. [367] tackled temporal action
detection by relying only on a Transformer decoder. Inspired by DETR [54], proposals are
sourced from a set of learnable token embeddings input to the decoder. The decoder aug-
ments these tokens which are later classified into actions and used to regress their temporal
position and length.

Multi-modal translation generally uses encoder-decoder or decoder-only schemes. When
multi-modal input is provided, multi-modal fusion (see Section 4.3.4) can be adopted before
the translation. Yet some works completely skip the prior fusion [220, 259] or opt for a hybrid
module that fuses and decodes at the same time [207]. Except for the latter approach, the
decoder roughly maintains its canonical form, although there are works who propose small
variations. For instance, the MHSA sub-layer can be removed to slim the models [220] or
substituted by a moving average [443]. The decoder layers can also cross-attend to the en-
coder layers of equivalent depth [467, 173], or simultaneously to the output embeddings of
different modalities separately [52]. There are also designs that go without a Transformer
encoder, replacing it by an external non-Transformer module [367] or relying entirely on the
decoder [220, 207]. The work in [220] follows the prompt-based input of GPT-2 [314] and feds
n video features as the first tokens in the decoding sequence and decodes the caption starting
at the n + 1-th input embedding. In particular, [207] prompts not only the visual features but
the current language sentence features to generate the next sentence in a paragraph. All in
all, prompting is the generalization of the original shifting operation in the original Trans-
former [385], where the decoding starts at a shifted position to account for the start token.

4.5.3 Video retrieval

The task of retrieval consists in recovering a piece of information associated to a particu-
lar query. Those associations can be video-video pairs [340] or pairs composed of different
modalities (video with, most often, language [130, 231, 259, 289] or language plus audio [118,
96]). Retrieval relies on a distance metric among the representations of the queries and the
retrieval candidates. The representations are learnt during training using the ground truth
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to minimize the distances between the representations of the corresponding pairs while re-
pelling those from the query the non-corresponding candidates’ representations in a joint
space. This can be done through classification, by extending BERT’s Next Sentence Prediction
(see [88]) to a cross-modal matching task, forcing the network to find co-occurrent informa-
tion in both modalities [205, 361, 468]. Alternatively, this can naturally extended into a con-
trastive setting. In retrieval, it is common to use two anchors (which form the positive pair)
and two negative sets, one from each modality. In VT literature we find these losses instan-
tiated through a combined hinge loss [215, 130] or Bi-directional Max-Margin [118, 96, 289],
which enforce similarity for true pairs to be higher than that of negative pairs, by at least a
given margin. Alternatively, InfoNCE is also used [231, 290], normalizing the similarity score
of positive pairs by that of a set of negative pairs, effectively forcing the network to learn
similar representations for correctly paired samples and viceversa for negative ones. While
the most common approach is to align final output representations, some works leverage hi-
erarchical contrastive losses, which also align intermediate feature representations [130, 231].
During inference, the aligned representations are fixed, so the task simply becomes a search
(e.g., K-Nearest Neighbors) to find the top-k examples most similar to a given query within
the database of candidates’ pre-computed representations.

One interesting variation of this pipeline is [259], in which the alignment is performed
on the outputs of a siamese two-stream video-and-language CNN for faster retrieval instead.
Then, a decoder-only Transformer fed with the text as input and CNN-based video features
as context re-ranks the previously top-k retrieved elements using the decoding likelihood
score. In a similar spirit, [289] also leverages the likelihood of a language-based decoder-
only Transformer during training as a loss that measures how well the query language cap-
tion can be reconstructed from the weighted combination of the features from all the non-
corresponding videos in the batch. Those weights are based on the similarity of the query
caption with the captions of those other videos. Finally, [118] aligns at the same time video,
audio, and recognized speech with a language caption. The language-video, language-audio,
and language-speech similarities are aggregated before contrastive alignment with a mixture
of weights governed by the content of the caption (i.e., the language-video similarity is given
more weight if the caption refers to something that is more salient in the video than in the
other modalities).

4.5.4 Object-centric tasks

Tasks such as object detection, tracking, and segmentation are inherently object-centric in na-
ture, and recent works [160, 172, 434, 254, 464] within these tasks have begun to leverage
temporally coherent object representations. These designs tend to focus on per object out-
puts. A large part of the information within a given frame is redundant (as mentioned in Sec-
tion 4.3.1), therefore leveraging known and relevant content from previous frames can be
used to focus the global attention to object relevant cues. As such, these approaches typically
leverage memory or recurrency (see Section 4.3.2) to correlate object information temporally.
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Recent works [172, 434] leverage a set of “messenger” tokens to relay contextual infor-
mation between frames within abrupt hierarchical architectures (see Section 4.3.1), result-
ing in hierarchical-like approaches for temporal information sharing. IFC-transformer [172]
processes the relationship of frame-specific aggregation tokens (akin to [CLS]) by interleav-
ing isolated encoder layers. The temporally enhanced tokens are then brought back to their
neighborhoods to communicate temporal information. Instead, TeViT [434] shifts individual
tokens between consecutive frames to achieve object specific aggregation, effectively accumu-
lating temporal information across different steps sequentially. The work of [436], performs
both long-term and short-term information sharing in parallel, being later concatenated. Due
to varied framerate and inter-frame changes in content, smoothness cannot be guaranteed
through long-term alone, thus short-term attention is computed on a smaller spatiotemporal
neighbourhood to ensure smooth and continuous predictions between frames. With regards
to tracking, most approaches leverage recurrent architectures. On the one hand, some use
object specific tokens derived from the output bounding box of previous time-steps. Both
spatial and size information can then be reccurently propogated[254, 464] or used to pro-
duce region-specific attention for each bounding box concurently between frames[160]. On
the other hand, and inspired by recent works in vision Transformers (particularly DETR [54]
and its variants), some works propagate “detection tokens” to the next frames in a recur-
rent fashion. DETR is an object detection tool which enhances learned input query tokens
by attending to image features through a Transformer decoder (similar to query-driven com-
pression, see Section 4.3.1). The augmented query tokens are then each decoded to either a
detected object or background. The works of [464, 254] extend this design to video by con-
catenating detection tokens from previous frames to the existing learned query tokens, in
addition to storing each detection in memory for increased robustness to occlusions in the
video sequence.

Different to these, some architectures leverage the object features to aggregate contextual
information such as [304, 160], which attempt to enhance existing representations with more
focus on object centric information. ORViT [160] leverages auxiliary bounding boxes at each
Transformer layer, whereas the GroupFormer [217] uses them to isolate objects into specific
action classification branches. Simply put, these approaches try to reduce redundancy by
focusing on a few object-centric tokens that attend to the whole input. Unlike recurrent and
memory based designs, these types of approaches do not aim for a computationally efficient
design, but rather efficient in the sense of information-rich representation, leveraging object-
centric information in addition to global context information.

4.5.5 Low-level tasks

Given the high dimensionality of video data, video generation tasks are quite challenging,
and not many video Transformers try to address them. In particular, [408, 316] tackle future
frame prediction, [409] generates grayscale video from event-based videos and [450, 230] per-
form video inpainting. Most of these propose to embed a Transformer in between some form
of convolutional auto-encoder, in order to evolve representations between encoder and de-
coder [409, 450, 230]. The only exception is [408], which performs local attention and generate
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video autoregressively one pixel-channel at a time. Interestingly, [230] outperforms [450] in
all tested benchmarks for inpainting by using an overlapping patch tokenization strategy.

4.5.6 Segmentation

Most works in segmentation leverage temporal relations to refine intermediate feature repre-
sentations[404, 405, 441]. Most notably, [405] leverages the Transformer’s ability to view the
entire sequence to include an auxiliary loss where representations of individuals are matched
temporally. In this way, the network effectively learns to implicitly track objects and leverage
temporal fine-grained information. Another example is [437], that leverages a word-visual
attention mechanism allowing a textual query to attend to specific content in multiple spatial
scales, performing segmentation based on said query.

4.5.7 Summarization

Few works have used Transformers for the task of video summarization by predicting frame-
wise importance scores. We find two key trends when solving this task through VTs: the
use of RNNs as an intial step [233, 364] and using individual frames to attend to aggregated
subsets of the video, either from a GRU [364] or by using a masked Transformer [225].

4.6 Performance on video classification

The task of video classification has attracted the most research in Transformers for video,
given the generality of the task and availability of large datasets for training and evaluation,
things that allow for a more comprehensive performance analysis. Next, we overview the
particularities of video classification (Section 4.6.1) and then analyse VT state-of-the-art per-
formance on it (Section 4.6.2).

4.6.1 Video classification

Video classification aims to predict the class of a given input sequence of frames. For the task,
a VT will encode descriptive high-level global representations of a given sample. Then, some
linear layers followed by a softmax provide with a class-score probability distribution. The
category with maximum probability should match the ground-truth class. VTs competing to
become state-of-the-art in classification tend to be standalone (i.e., use minimal embedding),
and thus will be the ones we cover. Next, we present the benchmarking datasets, experimen-
tal protocols, and details on clip sampling.

Evaluation datasets. The most popular dataset is the large-scale Kinetics-400 (K400) [57],
consisting of 306K 10-second clips and 400 manually annotated human actions categories
with at least 400 examples per class. Kinetics-600 (K600) – an extension of K400 with 495K
clips and 600 classes – is only used for pre-training, but not for evaluation. K400/K600 are
however known to be appearance-biased [446]. To better assess the modeling of more com-
plex temporal dynamics, most works are also evaluated on Something-Something v2 (SSv2) [139,
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241]. SSv2 is an egocentric human action dataset where some of the categories can only be dis-
tinguished by having an understanding of the arrow of time (e.g., “Moving [sth] away from
[sth]” vs “Moving [sth] closer to [sth]”). SSv2 consists of 220K videos of duration ranging
from 2 to 6 seconds and 174 fine-grained categories.

Experimental protocols. We find two learning protocols being followed: training from scratch
or pre-training the model first. Training from scratch is rarer because of the size of the mod-
els (especially, their larger variants). When following pre-training, the weights learnt during a
first stage are used to initialize the model that is to be trained in the downstream dataset/task.
Common pre-training strategies for video classification are (a) image-based pre-training on
ImageNet, and either (b) supervised or (c) a self-supervised video pre-training (generally on
video datasets larger than the downstram one, e.g., K600 for evaluating K400 and K400/K600
for SSv2). After initialization, the models are trained on the downstream dataset, fine-tunning
existing weights and adapting new ones.

Clip sampling. Models are fed with trimmed video clips. These are relatively short, with a
number of frames T′ typically 8 to 64 frames and fixed spatial resolution S′ = H′ ×W ′ pixels
(often H′ = W ′ = 224, hence shortened to S′ = 2242, see “Input” in Tables 4.3 and 4.4). How-
ever, to make sense of these numbers, and specially T′, it is crucial to consider the temporal
stride τ, i.e., the step between frames when sampling them from the original video. A larger
τ extends the temporal span of the clip w.r.t. the video without incurring in extra compu-
tation costs, while also reducing the redundancy among otherwise nearby sampled frames.
For instance, with τ = 4 and T′ = 64, a clip covers a temporal span equivalent to a densely
(τ = 1) sampled clip of 256 frames. Importantly, τ must be chosen factoring in the temporal
resolution of videos (e.g.,∼25 FPS in K400) considering fine-grained motion modeling will be
sacrificed in favour of context.

Views. The clips generated can be regarded as temporal views (related to the views described
in Section 4.4.2, which are used for some methods during pre-training). During training, one
temporal view per video is gathered at a random temporal position. These are constructed
with fixed size T′× S′ and stride τ. For inference, most models follow a multi-view approach:
the classification decision for the video is achieved by averaging the prediction obtained from
different spatiotemporal crop views.

4.6.2 Comparison among state-of-the-art models

To draw comparisons we consider the factors defined by the columns of Tables 4.3 and 4.4.
Among those, the most interesting one to study is perhaps the pre-training strategy, which
will drive the rest of the section, separately analysing K400 and SSv2.

K400: training from scratch. Doing so, we only find MViTv2 [219] and its predecessor
MViT [106]. The main difference between the two is the inclusion of an extra residual pooling
connection and the use of relative positional encoding. With these, “MViTv2-B 32@3” (82.9%)
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performs better than its older counterpart “MViT-B 32@3” by +2.7%. In fact, it also surpasses
“MViT-B 64@4” – which has an increased temporal receptive field (2.6x) – by +1.7%. Later
in [406], the same authors explored different initialization strategies and showed overfitting
of the larger variants of MViTv2 when not using effective initialisation. This can be seen for
“MViTv2-L↑”, with increased spatial resolution (from 224 to 312) and compute (from 51 MP
to 218 MP), performing worse (-0.7%) than “MViTv2-B 32@3’. Although this is to be expected,
the smaller variants are still able to learn from scratch successfully – as we will see later, even
better than 3D ConvNets. Given the need of pre-training for larger models, we next discuss
the two most popular strategies in the context of K400 and demonstrate its large positive ef-
fect (e.g., “MViTv2↑ 32@3” boosts its results from 82.2% to 85.3% by leveraging image-based
pre-training).

K400: image pre-training. The majority of VTs pre-train on either ImageNet-1K (“IN”),
ImageNet-21K (“IN21”), or JFT-300M (“JFT”). IN and IN21 consist of 1K and 21K classes and
over 1.2M and 14M examples respectively, whereas JFT is a non-public dataset with 300M
multi-label images and 18,291 non-mutually-exclusive labels. Other works have been using
their own image datasets or extending public ones. For instance, “Video-SwinV2-G” [234]
(86.8%), being the best performing model, extended IN21 (14M images) with a private dataset
of images (“P” in Tab. 4.3), totalling 70M samples. Close second is “MViTv2-L↑ 40@3” [219]
(86.1%), with weights pre-trained exclusively on IN21 while only dropping by -0.7% with re-
spect to the first one, but with 14x less parameters. Third is “MTV-H”[430] (85.8%), this one
pre-trained on JFT with 300M images. Unfortunately, in this work, the authors used JFT to
pretrain their largest models (“MTV-L” and “MTV-H”) and IN21 to train “MTV-B”/“MTV-
B (320)”, therefore not validating the actual contribution of JFT w.r.t. IN-21K for any of the
variants, making it difficult to discern the actual contribution of the model scaling. Also To-
kenLearner [331] completely relies on JFT for all the experiments, with its best model “Token-
Learner 16at18 (L/10)” (85.4%) coming fourth. It was ViViT [17] that showed how the same
model variant trained on JFT, “ViViT-L (JFT)” (83.5%), was considerably improving upon the
same variant pre-trained on IN-21K (“ViViT-L”), by +1.8%. It is, hence, of great merit that
“MViTv2-L↑ 40@3” (86.1%) still surpasses, respectively by +0.3% and +0.7%, the results of
“MTV-H” and “TokenLearner 16at18 (L/10)”. It is true that compared to those, MViTv2 vari-
ant utilizes larger spatial (3122, versus 2242 and 2562 pixels) and temporal receptive field (120
vs 64 frames), but the number of TFLOPs and the amount of pre-training data to process are
still both lower: 14 MP versus 300 MP in JFT for MTV and TokenLearner, and 42 TFLOPs
versus 47 and 48 TFLOPs.

In terms of cost-effectiveness, we find “UniFormer-B” [214] (83.0%), “SCT-L” (83.0%) [451],
“Direcformer” [378] (82.8%) – this one based on [31]-, and “MViTv2-S” (82.6%) [406]. These
models only suffer a drop between -3.1% and -3.3% of accuracy but between 10x and 70x less
FLOPs w.r.t. “MViTv2-L↑ 40@3”.

K400: video (self-supervised) pre-training. An emerging trend in the literature is to per-
form all SSL pre-training, fine-tunning and evaluation on the same dataset [406, 374, 396,
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Pretrain Name Ref. Input TF × vt × vs MP. Acc.

C
on

vN
et

s

-
SlowFast (R101+NL) [110] 16@8 × 2562 0.23 × 10 × 3 60 79.8
X3D-XXL [109] 16@5 × 3122 0.19 × 10 × 3 20 80.4

IG65
(video)

R(2+1)D-152 [128] 32@1 × 1282 0.25 × 10 × 1 118 81.3
ir-CSN-152 [376] 32@2 × 2242 0.10 × 10 × 3 NA 82.6

Sc
ra

tc
h

-

MViT-S
[106]

16@4 × 2242 0.03 × 5 × 1 26 76.0
MViT-B 32@3 × 2242 0.17 × 5 × 1 37 80.2
MViT-B 64@4 × 2242 0.46 × 3 × 3 37 81.2
MViTv2-S

[219]
16@4 × 2242 0.06 × 5 × 1 35 81.0

MViTv2-B 32@3 × 2242 0.23 × 5 × 1 51 82.9
MViTv2-L↑ [406] 32@3 × 3122 2.06 × 5 × 3 218 82.2

Im
ag

e
pr

et
r.

(I
)

IN
UniFormer-B

[214]
16@4 × 2242 0.10 × 4 × 1 50 82.0

UniFormer-B 32@4 × 2242 0.26 × 4 × 3 50 83.0

IN21

Swin-B [236] 32@2 × 2242 0.28 × 4 × 3 88 80.6
SCT-L [451] 24@10 × 2242 0.34 × 4 × 3 60 83.0
Swin-B

[236]
32@2 × 2242 0.28 × 4 × 3 88 82.7

Swin-L↑ 32@2 × 3842 2.11 × 10 × 5 200 84.9
TS [31] 8@16 × 2242 0.20 × 1 × 3 121 78.0
ViViT-L-FE [17] 32@2 × 2242 3.98 × 1 × 3 352 81.7
VTN-3 (Aug) [268] 250@1 × 2242 4.22 × 1 × 1 114 79.8
DirecFormer [378] 8@32 × 2242 0.20 × 1 × 3 124 82.8
Mformer

[288]
96@3 × 2242 0.96 × 10 × 3 NA 81.1

Mformer↑ 64@4 × 3362 1.19 × 10 × 3 NA 80.2
X-ViT

[47]
16@1 × 2242 0.28 × 1 × 3 92 80.2

X-ViT 16@1 × 2242 0.28 × 2 × 3 92 80.7
MTV-B

[430]
32@2 × 2242 0.4 × 4 × 3 310 81.8

MTV-B↑ 32@2 × 3202 0.96 × 4 × 3 310 82.4
RViT-XL [432] 64@NA × 2242 11.90 × 3 × 3 108 81.5
MViTv2-S

[406]
16@4 × 2242 0.07 × 10 × 1 36 82.6

MViTv2-L↑ 32@3 × 3122 2.06 × 5 × 3 218 85.3
MViTv2-L↑ [219] 40@3 × 3122 2.83 × 5 × 3 218 86.1

(IN-21 + P)
SwinV2-G↑ [234] 8@NA × 3842 NA × 4 × 3 3 K 86.8

(SSL)

JFT

ViViT-L-FE
[17]

32@2 × 2242 3.98 × 1 × 3 352 83.5
ViViT-H 32@2 × 2242 3.98 × 4 × 3 352 84.9
MTV-L

[430]
32@2 × 2242 1.50 × 4 × 3 NA 84.3

MTV-H 32@2 × 2242 3.71 × 4 × 3 NA 85.8
TokenLearner [331] 64@1 × 2562 4.08 × 4 × 3 450 85.4

V
id

eo
pr

et
r.

(V
)

K400 (SSL)

LSTCL (Swin-B*) [396] 16@8 × 2242 0.36 × 5 × 1 88 81.5
MaskFeat-S

[406]

16@4 × 2242 0.07 × 10 × 1 36 82.2
MaskFeat-L↑ 32@3 × 3122 2.06 × 5 × 3 218 86.3
MaskFeat-L↑ 40@3 × 3122 2.83 × 4 × 3 218 86.4
MaskFeat-L↑↑ 40@3 × 3522 3.79 × 4 × 3 218 86.7
VideoMAE (ViT-B)

[374]
16@4 × 2242 0.18 × 5 × 3 87 80.9

VideoMAE (ViT-L) 16@4 × 2242 0.60 × 5 × 3 305 84.7
VideoMAE↑ (ViT-L) 32@4 × 3202 3.96 × 5 × 3 305 85.8

K600 (SSL)
MaskFeat-L

[406]
16@4 × 2242 0.34 × 10 × 1 218 85.1

MaskFeat-L↑↑ 40@3 × 3522 3.79 × 4 × 3 218 87.0

I+
V

IN +
SVT (TS) [319]

8@NA × 2242 +
0.20 × 1 × 3 121 78.1

K400 (SSL) 64@NA × 962

IN (SSL) + BEVT
[398]

16@NA × 2242 0.28 × 4 × 3 88 80.6
K400 (SSL) BEVT (Dall-E tknzr.) 16@NA × 2242 0.28 × 4 × 3 88 81.1

↑: increased spatial resolution.
“IN21 + P”: extension of IN21 with a private dataset (70M images in total).

TABLE 4.3: Accuracy (top-1) on Kinetics-400. “Pretrain”: pre-training strategy; “Input”: temporal and
spatial size of the views; “TF”: TFLOPs; vt and vs: the number of temporal and spatial views; and
“MP”: parameters (×106).
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398]. “MaskFeat-L↑ 40@3” [406] reaches 86.4%, thus showing the contribution of MaskFeat
(SSL) pre-training compared with supervised training on the same architecture, i.e., MViTv2,
by +0.3%. That result of MaskFeat is also only -0.2% behind the best image-based pre-trained
model (i.e., “Video-SwinV2-G”). Then, “MaskFeat-L↑↑ 40@30” by switching K400 with K600
and slightly increasing the spatial resolution from 312 to 352 (still lower than 382 of “Video-
SwinV2-G”), the model obtains state-of-the-art results (87%), outperforming any of the image
pre-trainings. VideoMAE [374] comes second in this category consisting of a ViT backbone
with 3D inflation of the patch embeddings. This outperforms all image-based pre-trained
models, except for “Video-SwinV2-G”. Thus it seems learning motion priors during pre-
training has a very positive effect on performance when targeting video classification.

K400: ConvNets. For the sake of completeness, we compare VTs to 3D ConvNets, which
were state-of-the-art right until VTs managed to surpass them. See how “MViTv2-S” (81.1%)
trained from scratch, exceeds the performance of comparable ConvNets: “SlowFast R101+NL”
(79.8%) and “X3D-XXL” (80.4%). This might be attributable to the higher temporal fidelity of
MViTv2 being more profitable than extra context – at least on short videos. The number of
views for testing were also higher for both (30 versus 5 in ” MViTv2-S” ). Nonetheless, it
also consumes 18x - 22x less TFLOPs and works on a smaller spatial resolution (224 only,
versus 256 or 312). Switching to “MViTv2-B 32@4” (82.9%), we see how trained from scratch
this model does better than ConvNets pre-trained on the very-large weakly-annotated video
dataset IG65 (i.e., ‘R(2+1)D-152” [128] (81.3%) and “ir-CSN-152” [376] (82.6%)), even when
using half the views.

Moving to the study of SSv2, we found none of the works train from scratch. Another
thing to note is the number of temporal views used because of the shorter duration of SSv2
videos compared to Kinetics. Despite that, the temporal dynamics are harder to capture as
we will see next.

SSv2: image pre-training. Although less common than for K400, there are works that pre-
train on image datasets. Among the ones using IN, “DirecFormer” [378] (64.9%) is the one
performing the best. It surpasses its own backbone (“TS” [31]) in all the variants by forcing
the learning of temporal order of shuffled input frames via auxiliary SSL. “TIME” [446] is
another one using auxiliary SSL ablated with different VT backbones. This one, not so much
competing in performance with larger model variants, still points out the effectiveness of
temporal guidance for image-based pre-trained models when transferred to the downstream
video task. Finally, trained on IN-21K, “X-ViT” (66.4%) [47] is the absolute winner in this
category. Unfortunately, by focusing on efficiency alone, it is not able to compete with heavier
models that are supervisedly pre-trained on K400.

SSv2: video (supervised) pre-training. It is quite common reusing supervisedly trained
checkpoints on Kinetics by transferring them to SSv2 for fine-tuning. These have often also
been pre-trained on IN-1K/IN-21 before Kinetics. However, to better disentangle video and
image contributions, we focus first on video-only pre-training models, and particularly on
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Pretrain Name Ref. Input TF × vt × vs MP. Acc.
C

N IN TDN (R101) [110]
8@1 × 2562 +

0.2 × 1 × 3 198 69.6
16@1 × 2562

Im
ag

e
pr

et
r.

(I
) IN

TS*

[446]

8@NA × 2242 NA × 1 × 3 121 62.1
Mformer* 8@NA × 2242 NA × 1 × 3 NA 63.8
TIME (TS*) 8@NA × 2242 NA × 1 × 3 121 63.7
TIME (Mformer*) 8@NA × 2242 NA × 1 × 3 NA 64.7
DirecFormer [378] 8@32 × 2242 0.20 × 1 × 3 124 64.9

IN21

TS
[31]

8@16 × 2242 0.20 × 1 × 3 121 59.5
TS-HR 16@16 × 4482 1.70 × 1 × 3 121 62.2
TS-L 96@4 × 2242 2.38 × 1 × 3 121 62.4
ViViT-L [17] 32@2 × 2242 3.98 × 1 × 3 352 65.9
X-ViT

[47]
16@NA × 2242 0.28 × 1 × 3 92 66.2

X-ViT 32@NA × 2242 0.42 × 1 × 3 92 66.4

V
id

eo
pr

et
r.

(V
)

K400
MViT-B

[106]
32@3 × 2242 0.17 × 1 × 3 37 67.1

MViT-B 64@4 × 2242 0.46 × 1 × 3 37 67.7
MViTv2-B [219] 32@3 × 2242 0.23 × 1 × 3 51 70.5

K600
MViT-B

[106]
32@3 × 2242 0.17 × 1 × 3 37 67.8

MViT-B-24 32@3 × 2242 0.24 × 1 × 3 53 68.7

K400 (SSL)
LSTCL (Swin-B*) [396] 16@8 × 2242 0.36 × 5 × 1 88 67.0
MaskFeat-L↑ [406] 40@3 × 3122 2.83 × 4 × 3 218 74.4

K600 (SSL) MaskFeat-L↑ [406] 40@3 × 3122 2.83 × 1 × 3 218 75.0

SSv2 (SSL)
VideoMAE (ViT-B)

[374]
16@2 × 2242 0.18 × 2 × 3 87 70.6

VideoMAE (ViT-L) 16@2 × 2242 0.60 × 2 × 3 305 74.2
VideoMAE (ViT-L) 32@2 × 3202 1.44 × 1 × 3 305 75.3

Im
ag

e
+

vi
de

o
pr

et
r.

(I
+

V
)

IN + K400
UniFormer-B

[214]
16@4 × 2242 96.67 × 1 × 3 50 70.4

UniFormer-B 32@4 × 2242 259.00 × 1 × 3 50 71.2

IN21 + K400

Swin-B [236] 32@2 × 2242 0.28 × 1 × 3 88 69.6
X-ViT [47] 16@1 × 2242 0.28 × 1 × 3 92 67.2
MViTv2-B

[219]
32@3 × 2242 0.23 × 1 × 3 51 72.1

MViTv2-L↑ 40@3 × 3122 2.83 × 1 × 3 218 73.3
Mformer

[288]
96@3 × 2242 0.96 × 1 × 3 NA 67.1

Mformer↑ 64@4 × 3362 1.19 × 1 × 3 NA 68.1
MTV-B

[430]
32@2 × 2242 0.40 × 4 × 3 310 67.6

MTV-B↑ 32@2 × 3202 0.96 × 4 × 3 310 68.5
RViT-XL [432] 64@NA × 2242 35.70 × 1 × 3 108 67.9
MViTv2-S [219] 16@4 × 2242 0.06 × 1 × 3 35 68.2
ORViT MF-L [160] 32@4 × NA 1.26 × 1 × 3 148 69.5

IN + K600
UniFormer-B

[214]
16@4 × 2242 96.67 × 1 × 3 50 70.2

UniFormer-B 32@4 × 2242 259.00 × 1 × 3 50 71.2
IN21 + K600 SCT-L [451] 24@10 × 2242 0.34 × 4 × 3 60 68.1

IN + K400 (SSL) SVT (TS) [319]
8@NA × 2242 +

0.20 × 1 × 3 121 59.2
64@NA × 962

IN21 + K400 (SSL) MaskFeat-L [406] 40@3 × 2242 2.83 × 1 × 3 218 73.3
IN (SSL) +
K400 (SSL)

BEVT
[398]

16@NA × 2242 0.32 × 1 × 3 88 70.6
BEVT (Dall-E tknzr.) 16@NA × 2242 0.32 × 1 × 3 88 71.4

*: re-implementation.
↑: increased spatial resolution.

TABLE 4.4: Accuracy (top-1) in Something-Something v2. “Input”: temporal and spatial size of the
views; “TF”: TFLOPs; vt and vs: the number of temporal and spatial views; “MP”: parameters (×106);
and “Pretrain”: pre-training strategy.
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those relying on K600. Looking at “MViT-B 32@3” (67.8% pretrained on K600) and “MViT-B
64@4” (67.7% pretrained on K400), with temporal receptive field of 96 to 128 frames respec-
tively, we see there is no improvement in SSv2 by extending temporal context, but slightly
better performance when keeping finer temporal resolution (stride 3 instead of 4). Even more
interesting is that the deeper “MViT-B-24 32@3” (with 24 layers) outperforms +0.9% upon the
12-layered 32@3 variant. This suggests more complex temporal dynamics might require not
necessarily increasing temporal resolution, but higher abstract spatiotemporal semantics be-
ing modelled. That or advancements on architectural designs to better model those without
going deeper, as done by “MViTv2-B 32@3” (70.5%) also with 12 layers. Finally, if we have
a look at models that leverage image-based pre-training before Kinetics, we find further im-
provement (e.g., “MViTv2-B 32@3” from 70.5% to 72.1%). What does not seem to be as useful,
according to “UniFormer” variants, is to switch from K400 to K600.

SSv2: video (self-supervised) pre-training. The only model pre-training on SSv2 is Video-
MAE (“VMAE”), which turns out to be the best performing one. In particular, “VMAE (ViT-L)
32@2” (75.3%) slightly improves upon “MaskFeat-L↑ 40@3”, despite it being self-supervisedly
pre-trained on K400 (74.4%) or K600 (75.0%). It does so with almost half the temporal con-
text, half the FLOPs, and – importantly – with less data. All in all, VideoMAE and MaskFeat
seem to point out pixel- and feature-based MTM approaches compare favourably with “SVT”
(instance-based invariance learning) or “BEVT” (quantization-based MTM) despite the latter
are also using image-based pre-training.

4.6.3 Discussion on performance

We have introduced the task of video classification and analysed the performance of state-
of-the-art models on Kinetics-400 and Something-Something v2. Our main finding was that
the pre-training strategy was the biggest factor influencing the performance of VTs for video
classification, thus the following discussion will address three questions related to this: (1)
Can Video Transformers be trained from scratch?, (2) Which is the best pre-training strategy?, and
(3) How can we effectively model stronger spatiotemporal dynamics?.

For the smallest models, training from scratch seems to be doable. In particular, MViT [106]
and MViTv2 [219] are able to, respectively, compete with and slightly surpass 3D ConvNets
trained from scratch. In fact, MViTv2 even outperforms those pre-trained on very large
weakly-annotated video datasets (e.g., IG-65M). In particular, we attribute the success of
those to the locality bias they infused (via the local pooling-based progressive aggregation
– discussed in Section 4.3.1) –, which allow these models to go deeper without exploding in
computational complexity while still keeping their self-attention operation global. However,
training from scratch seems to be the least desirable strategy to follow.

Among pre-training strategies, video-based ones, either supervised (e.g., on K400/K600
before fine-tuning SSv2) or self-supervised, are superior to image-based pre-training alone.
Image-based supervised pre-trained models seem to be able to partially compensate the lack
of temporal modeling with appearance diversity by leveraging huge – often non-public –
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image datasets (e.g., JFT [430, 331, 17] or extensions of IN21 [234]). Alternatively, image-
based self-supervised learning only competes with video pre-training when leveraging pro-
hibitevely large models [234]. However, starting from very diverse and general appearance
features will not harm the modeling of time in later stages, but serve as a good initializa-
tion for subsequent video-based pre-training (e.g., all those works that combine IN/IN21 and
K400/K600 before fine-tuning on SSv2) or fine-tuning stages with temporal SSL auxiliary
losses (e.g., [378, 446]). Nevertheless, we can see how self-supervised video pre-training sur-
passes supervised regimes. In particular, MaskFeat [406] (with MViTv2 [219] backbone) and
VideoMAE [374] (with a plain ViT [17]) outperform those pre-trained on video in a supervised
way.

For the successful modeling of spatiotemporal patterns, Masked Token Modeling stands out
(see Section 4.4.3). Concretely, MaskFeat (feature-based MTM) obtains the best results on
K400 and is second best on SSv2, which is dominated by VideoMAE (pixel-based MTM).
Interestingly, these models do not require extra data or manual annotations to surpass all
other models, being able to self-supervisedly pre-train on the evaluation dataset itself. Un-
fortunately, instance-based invariance learning (e.g., [319, 396]), being that popular for image
representation learning, heavily underperforms compared to MTM for video classification.

Apart from the importance of pre-training, other findings in Section 4.6.2 we want to
highlight are: first, that the modeling of the complex spatiotemporal dynamics seem to benefit
more from deeper models and temporal fidelity than extended temporal spans; second, that
naive adoptions of image and NLP models (e.g., VTN [268], which leverages the image-based
ViT [29] to model space and the language-based Longformer [29] to model time) might not
work that well; and third, that although joint self-supervised learning on image and video
(i.e., BEVT [398]) is promising, still has a long way to go.

4.7 Final Discussion

In this chapter we have comprehensively analysed trends and advances on leveraging Trans-
formers to model video.

Complexity. Given the inherent complexity of Transformers and the great dimensionality
of videos, most changes focus on handling the computational burden. This is done transver-
sally across the various stages of the VT pipeline. We find this is most generally addressed
with frozen embedding networks, easing Transformer learning through the provided induc-
tive biases and reducing input dimensionality. The Transformer in this context is used to
enhance these representations through long-range interactions, which seems enough to boost
performance in many areas of application. However, this trend alone may be limiting the po-
tential of Transformers to learn non-local low-level motion cues. We are excited to see novel
VT designs (e.g., MViT [106]) which greatly reduce complexity thanks to the inductive biases
embedded in the Transformer itself (sometimes becoming lighter than CNN counterparts,
see Section 4.6.2). We also see great promise in MTM when separating the representation
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learning from the reconstruction which is done by an additional decoder discarded after pre-
training [374]. This separations allows the (deeper) encoder to only leverage unmasked to-
kens, which greatly alleviates training complexity when using large masking ratios. Crucially,
this sacrifices the possibility to leverage certain designs for the VT, as input structure is lost
(e.g., local or hierarchical approaches may not find enough tokens in a given neighborhood to
learn valuable representations).

Spatial redundancy and temporal fidelity. Modeling temporal interactions requires special
considerations not present when only modeling appearance (i.e., with image Transformers).
On the one hand, the highly redundant appearance information in videos [461, 374] makes it
difficult to model information-rich representations that avoid repeatedly representing similar
or same sub-representations. It has been proven that pure attentional models loose expressiv-
ity with depth, collapsing towards uniform attention in deeper layers [90, 91, 178]. It further
seems that this smoothing of the attention matrix is accompanied by highly uniform token
representations and even redundant weight matrices [65]. Proper handling of video redun-
dancy is crucial in VTs, where we hypothesize these observations may get exacerbated. On
the other hand, few exceptions aside, many current designs and SSL approaches directly in-
herit from image approaches without careful consideration of the nuances that come with
time, making them strongly biased to learn appearance features. As we have seen, allowing
temporal features to form at both low- and high-level while accounting for the necessary tem-
poral fidelity is also critical. In this sense, reducing redundancy for video should be mostly
targeting appearance features.

Key advancements on VTs. Regarding architectural choices, we find progressive hierarchical
approaches to stand out. They carefully consider non-local temporal contexts before spatial
aggregation. This effectively tackles the redundancy problem while avoiding early aggre-
gation problems that hinder learning of fine-grained motion features. However, to properly
handle long-range interactions without loosing temporal fidelity memory-based approaches
with adequate sampling or aggregation techniques may be crucial. Regarding self-supervised
learning, MTM forces to leverage global spatiotemporal semantic contexts through high mask-
ing ratios when solving local token-wise predictions. By doing so, it is driven to learn both
motion and appearance cues necessary to solve the task. Nevertheless, we look forward to
further developments in sampling techniques for instance-based contrastive approaches that
skew from appearance biases towards motion-specific features.

Inductive biases. As we have seen, inductive biases are a pivotal aspect for all facets of
VTs. They alleviate the need for data by providing stronger cues that the Transformer can
pick up faster. Frozen embedding networks could be regarded as infusing task-specific biases,
as the Transformer is bounded to learn on the provided representations, which in turn are
dependant on the pre-training auxiliary task. Some examples include detected bounding
boxes of objects [132, 160], higher-level (action) features [468], or scene, motion, OCR and
facial features, among others [118]. We have also seen how most architectural designs infuse
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some inductive biases to aid training the Transformer. However, in this regard, VT litera-
ture so far is limited when considering infusing motion specific biases that help the network
to pick up relevant spatiotemporal cues. Just two works deviate from this trend. Motion-
former [288] proposes trajectory attention to reason about aggregated object or region rep-
resentations through implicit motion paths in both time and space. Differently, OrViT [160]
leverages separate motion and appearance streams. The former learns trajectories of individ-
ual objects or regions which get later added to patch-wise token representations of the whole
video appearance, effectively infusing motion into it. Finally, beside locality biases or invari-
ance to perturbations induced by different training losses, we deem interesting to highlight
works infusing causality biases by training the network to sort shuffled video sequences [378,
446]. Or in a different vein, the work in [144], which combines the benefits of both CNNs and
Transformers for video learning through a siamese distillation setting, effectively inducing
CNN locality biases into the Transformer.

4.7.1 Generalization

It has been shown that vision Transformers are robust to various perturbations [33, 242], sug-
gesting they may be better able to form abstract semantic representations [454], probably due
to their ability to leverage non-local contexts [292]. These findings point towards Transform-
ers favouring out-of-distribution (OOD) generalization [154]. A few VTs have studied this
on OOD data [468, 289, 409, 230, 340, 233] or evaluated the learned features in other set-
tings [130, 361, 441, 367], showing consistent results. Nevertheless the issue of generalization
of video may entail studying other aspects that are still under-researched. For instance, we
hypothesize that generalizing to varied frame sampling rates may require further training
or conditioning the network to said rates such that it may become robust. We do observe,
however, that some existing work may display capabilities to generalise to unseen sequence
lengths, as we discuss next.

Unseen sequence length. One issue to account for when processing sequences of unseen
length is positional encodings. While we expect them to generalize to shorter sequences, they
may have trouble when dealing with longer ones (which may be desirable to provide with
extended temporal fidelity during deployment), as no positional information is present to ac-
count for them. We find few VTs showing that PEs can easily be extended by fine-tunning the
model on longer sequence lengths [7, 106]. Recent VT works have also seen promising results
when leveraging input conditioned RPEs [214] or by learning a small network that computes
log-scale relative positional biases [234], which pose a great potential to easily generalize to
unseen sequence lengths. Similarly, long-range modeling architectures could also handle se-
quences of any given length, as they process inputs sequentially within fixed windows, but
they may require RPEs [417].

Multi-modality. Video is inherently multi-modal (i.e., contains visual and aural informa-
tion), which could be leveraged to learn more general representations. As we have repeat-
edly explored, the lack of inductive biases makes Transformers very versatile tools to handle
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this multi-modality. It has been found that high-level semantic features learned by language-
based Transformers generalize to other modalities [363, 238]. In the context of VTs we find
VideoBERT [361], where a pre-trained language BERT [88] model is used as initialization
for the video stream, showing promising results in this direction. Lately, there has been a
great interest in using these architectures to solve multi-modal tasks (see [330] for a com-
plete review). We hypothesize that the lack of inductive biases may allow Transformers to
learn shared multi-modal representation spaces that exhibit better generalization capabili-
ties. When targeting video-only tasks (e.g., tracking, segmentation, classification) we see po-
tential in multi-modal SSL to learn such spaces. We find a few VTs leveraging instance-based
multi-modal learning approaches [130, 205, 360, 215] to align representations from various
modalities. For instance, [7] successfully performs heavy downsampling of video by aligning
it with audio and textual modalities, the model in [290] learns to attend to the spatial sources
of audio within the video by aligning audio with visual crops. Interestingly, this alignment is
further enforced in some works by sharing weights between Transformer streams modeling
different modalities [7], sometimes even showing improved results compared to not shar-
ing [205]. As pointed out in [334], alignment has proven to be very useful for video (at least
in the context of classification) outside of Transformers, specially when pairing video with
audio or text.

4.8 Conclusion

In this chapter, we have presented an overview of Video Transformer across all elements:
input pre-processing, architectural designs, and training strategies. We have also detailed
multi-modal fusion mechanisms, per-application trends, and provided an in-depth compari-
son of performance on action classification. Despite its recent appearance, VTs have already
seen an explosion in attempts to capture the nuances of spatiotemporal video representation
learning, but we believe there is still a long way to go. We hope that with the release of this
study, we can motivate further research on better architectures, more motion-focused SSL,
and more careful integration of Transformers with CNNs to better exploit the advantages
each of them provides.

With regard to our exploration of Video Transformers for human analysis, we have gained
a deeper understanding of the type of changes that would be required to capture fine-grained
long-term relationships that could benefit human interaction modeling. In this sense, we
believe that the Dyadformer could benefit from more granularity in the tokens used, as well
as some form of progressive aggregation to integrate it. Currently, we have already started
to test out some of the observations from this chapter, namely, end-to-end training of the
embedding layers, as well as some potentially useful SSL losses tailored for our case. We
detail these next in Section 5.1.
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Chapter 5

Conclusions

The current dissertation has presented the work done in the past years to advance research
toward more powerful and humane technologies. We have worked in the direction of two
long-term objectives: 1) developing systems that can interact with us in a more humane way,
for which we require 2) building automatic methods capable of understanding and dealing
with complex environments. In order to pave the way towards these objectives, our multi-
faceted contributions cover a wide range of aspects of the machine learning pipeline: from
data gathering and curation, to literature search and review, and through novel model de-
velopments. These endeavors, which have been thoroughly documented in this dissertation,
have culminated in significant contributions to the field of video understanding. In line with
objective 1), we have released UDIVA, a pioneering large-scale human interaction dataset
that will be a valuable resource for future research in this area. Intersecting both objetives
1) and 2), we have developed the Dyadformer, an innovative architecture able to learn fine-
grained long-range spatiotemporal dependencies between humans in interaction. Finally, as
an in-deph exploration of objective 2), we have conducted a meticulous analysis of the recent
advances in Video Transformers, which provides a comprehensive overview of the state-of-
the-art in this field. In the following, we review the main contributions and findings derived
from the development of this thesis, as well as ongoing work to extend it, and exciting venues
for future research that steers navigation of the road ahead.

On the path to building artificial perceptual systems capable of making sense of the world
and interacting with us in a natural way, two crucial components are necessary: extensive
data and advanced algorithms. First of all, in Chapter 2 we have detailed the collection and
initial annotation of the UDIVA dataset, the largest multiview audiovisual dataset of dyadic
face-to-face non-scripted interactions up to this date. It involved the recruitment of 147 par-
ticipants, who were distributed among 188 interaction sessions, resulting in 90.5 hours of
audiovisual recordings of human interaction. The participants were involved in a variety of
tasks each eliciting, and hence allowing to study, different patterns of behavior. The data in-
cludes 8 camera views (two of which are first-person views), audio, heart rate, transcriptions
of the spoken words, self- and peer-reported personality as well as extensive individual so-
ciodemographic metadata. The UDIVA dataset is an ongoing effort of synchronization and
annotation. Despite this, and as we saw in Chapter 3, the current release1 already provides
interesting challenges for human interaction modeling. Finally, we have seen that the UDIVA

1https://chalearnlap.cvc.uab.cat/dataset/41/description/.

https://chalearnlap.cvc.uab.cat/dataset/41/description/
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dataset still exhibits biases and limitations, at least when aiming for personality recognition
tasks. Particularly, the dataset is slightly biased towards people with high levels of the Open-
ness trait, and it may fall a bit short on the number of participants. These and other possible
sources of bias make the problem of human modeling harder, but also stimulate research on
bias identification and mitigation methods and related areas, in addition to the multi-modal
personality computing problem by itself. Nevertheless, we believe UDIVA will help advance
research in human understanding and interaction, as well as incentivize the development of
new algorithms for automatic perception that can exploit relevant cues in complex environ-
ments. It can also prove useful as a large-scale pool of 90.5 hours of data for self-supervised
pre-training, and to be combined with other interaction datasets, in scenarios such as dataset
fusion or cross-dataset evaluation. We hope that its limitations will motivate further research
on bias mitigation, the collection of larger datasets (specially in terms of the number of par-
ticipants), and the design of novel annotation protocols.

In Chapter 3 we showed how the available subset of UDIVA (v0.5) is useful to start bench-
marking Transformers on the challenging task of personality recognition. In this second part
of the thesis, we have analyzed the abilities of Transformers to deal with an intricate task
in the complex environment of human interaction. We started by evaluating this ability
through direct extension of an existing Video Transformer architecture, proving the feasi-
bility of tackling personality regression through these models. We incrementally combined
different sources of context (both interlocutors’ scene, acoustic, and task information) finding
consistent improvements as they were added, which is consonant with human interaction
research in the psychology field. We then develop the Dyadformer, a Transformer-based de-
sign specifically tailored for multi-modal human interaction settings. We compare several
forms of aggregation, either by plain concatenation as done by the baseline, or in a BERT-
like fashion by extending sequence length. Both approaches have demonstrated to be worse
(both in terms of performance and computation) compared to the cross-attentional mecha-
nism used by the Dyadformer. Thanks to these, our model is able to integrate information
from different sources and interactants successfully to form a complete dyadic representa-
tion. Furthermore, the use of longer time windows (up to 30 seconds) was a clear key point,
as personality predictions from shorter periods of time can be very noisy, as they lack enough
temporal context to contain longer-term behavioral patterns. Even if not a single variant of
our model is best for predicting all traits, as we have discussed, this is consistent with pre-
vious literature. Nonetheless, it is clear that joint modeling of both interlocutors, building
multi-modal representations through our cross-subject layer, and extending temporal context
improves performance. This is further reinforced by the Dyadformer outperforming not only
the baseline, but also all challenge participants. This chapter validates two key aspects of the
thesis: first, that the UDIVA offers a challenging environment to study the capabilities of neu-
ral networks to model complex environments when tackling noisy and subjective tasks; and
second, that Transformers are capable of successfully doing so. These two points have been
demonstrated by comparing to the baseline and challenge participant results, where 1) some
participants failed to improve upon the baseline and 2) the Dyadformer was established as
the new state-of-the-art for personality recognition on the UDIVA dataset, by a substantial
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margin.
Despite these promising results, Transformers still pose several challenges. In particu-

lar, and as we have seen in Chapter 4, they require large quantities of data and cumbersome
training regimes. When dealing with video, its large dimensionality will aggravate Trans-
former’s quadratic complexity. While this further highlights the need for larger datasets such
as UDIVA, it also signals to the current limitations of the novel Transformer family. It is for
this reason that in this final chapter, we have embarked on an in-depth exploration of video
Transformers. We found that most works still leverage CNNs as embedding networks to re-
duce the dimensionality of the input. But this should be done carefully. As we have detailed,
if dimensionality is reduced too much it could hinder learning of some crucial relationships
later on. This is especially seen for long-term dependencies if either space or time are irre-
versibly compressed before Transformer’s non-local operations come into play. Alternatively,
we find many Video Transformers opting to re-introduce relevant inductive biases into the
architecture itself. This has a double effect: on the one hand, it helps alleviate some train-
ing limitations of Transformers (e.g., it can mitigate the need for larger datasets), as certain
relationships can be learned faster, as well as reducing complexity; but on the other hand,
this generally implies sacrificing globality. As we also saw, this can also be achieved through
self-supervised learning, which has an impact on the kinds of relationships the model learns,
as well as using data augmentation. Nevertheless, these latter methods still pose a com-
putational challenge by themselves. In addition, we saw how novel Transformer models are
starting to outperform CNN counterparts in both Kinetics 400 [57] and Something-Something
v2 [139], and in some cases even with reduced parameter count and fewer FLOPs. As we have
explored, the improved results may be partially attributable to Transformers’ abilities to learn
more semantically abstract representations. On the one hand, the architecture itself (and par-
ticularly the non-local self-attention operation), as well as the use of patches as the minimum
building blocks, offer greater abilities to disregard high-frequency details and focus on larger
semantically relevant patterns. On the other hand, the training objective also plays a crucial
role in shaping the kinds of relationships that the Transformer learns. In this sense, MTM
seems to provide a better part-whole balance, hence skewing learning towards more holistic
representations. This can be seen by the works using such objectives while preserving non-
locality in the earlier layers before reducing input dimensionality, which outperform other
approaches (see Section 4.6.2). We hope that with the release of this survey, we contribute to
the advancement of Video Transformers and to a deeper understanding of the intricate ways
in which they operate.

5.1 Future work

As we have previously mentioned, the UDIVA dataset is an ongoing effort. It has already
been extended with landmark and gaze annotations using automatic methods. In particular,
68 face fiducials were regressed by the 3DDFA_v2 algorithm presented by Guo et al. [143]; 24
full-body joints and detection confidence were retrieved by using the MeTRAbs method [333];
21 hand landmarks were retrieved with the hand estimator module from FrankMocap [327];
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and 3D eye gaze direction vector was computed with the ETH-XGaze baseline method [459].
Furthermore, a challenge and associated workshop on “Social dyadic interactions” was orga-
nized around this dataset, aiming to solve the task of personality recognition, as well as one of
behavior forecasting based on the aforementioned landmarks. We kindly refer the interested
reader to [281] for a detailed description of the process to extract all of these annotations, as
well as the challenge organization and results. Regarding next steps, there is still much more
work pending. First of all, further processing and synchronization of ego-cameras and heart-
rate monitors, as well as pair-wise camera calibration, are yet to be completed. Also, we are
currently planning on extending it with further annotations, such as facial emotion expres-
sions, continuous action/intention for human-object-human interaction, as well as high-level
behavior labels and perceived personality states over time. We hope that these will allow for a
more holistic analysis of human interaction from both individual and dyadic perspectives and
to further evaluate learned patterns of behavior. Furthermore, regarding the aforementioned
limitations and biases for personality recognition, if we want the next generation of intelligent
systems for personality computing to be fair with respect to different contexts, setups, and de-
mographics, we need to address the fairness problem in some way, either through the design
and development of new datasets and annotation protocols or through new methodologies
capable of mitigating different types of bias. A future research question to be addressed on
this domain could be: is it possible to build generic and “bias-free” features for different kinds of
modalities (e.g., audio, visual) and attributes (e.g., gender, age)? Finally, we plan on releasing the
remaining sessions and camera views, still not publicly available.

Regarding our work surveying advances on Video Transformers, we find that, despite
seeing clear trends, VTs are still in their infancy and much more research is needed. First of
all, we find a severe lack of explainability tools that properly asses the kind of spatiotemporal
representations that different designs and self-supervised losses provide. Overlaying head-
specific attention heat-maps of the first layer over a given input may provide some ad-hoc
explanations on what the model deems relevant [338, 179, 411]. Even if some VTs have ex-
plored this direction (e.g., [286, 289, 178, 268, 290, 41, 132, 215]), this technique may prove
overly cumbersome for video, as it requires inspecting such per-sample activations for multi-
ple full video sequences. Possible future venues could analyze the learned patterns of atten-
tion preferred by different heads (as in [266]), which may clue on relevant design choices that
favor such patterns, or leveraging the aforementioned versatility of Transformers to probe
the model through textual descriptions (as done for images in [371]). Furthermore, we see
an interesting future direction in analyzing whether video-based features would also gener-
alize to other modalities. For instance by following a similar approach as in [363] and tuning
a few adapter layers to map other modalities into the video representation space. Beyond
current MTM approaches, other traditional losses could be adapted to the token granularity,
such as 3D jigsaw puzzles [193]. Regarding instance-based methods, adapting recent de-
velopments to images such as Barlow Twins [449] or VicReg [25] which focus on preserving
views-dependent information, may prove beneficial to video modeling. Nevertheless, further
research is still needed to alleviate the computational burden of self-supervision in video. Fi-
nally, key advancements in architectural choices and training techniques for VTs are mostly
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limited to high-level tasks, hindering analysis of the contributions they provide for general
video representation learning. In these lines, VTs have barely tackled generative tasks such
as frame prediction [408, 316] or inpainting [230, 450]. We believe that token granularity and
long-range modeling capabilities of Transformers could benefit these tasks. However, the
high dimensionality and the complex interactions within video data, as well as the tendency
of Transformers to disregard high-frequency details may pose severe challenges to solving
these tasks. In this sense, combining the strenghts of CNNs and Transformers could be key
for generative tasks.

Finally, regarding the Dyadformer, and after the lessons learned during the development
of Chapter 4 we have already started working on extending our model in several directions.
First of all, we have skewed away from leaving the video embedding network fixed, and it is
now trained end-to-end with the rest of the Dyadformer, while the audio one is still frozen.
But more exciting are our advances on the training objective for the Dyadformer. In particular,
we are working on two self-supervised losses: Interaction Prediction (IP) and Masked Token
Alignment (MTA). Preliminary results deem these pre-training losses to be very promising.

Interaction Prediction is inspired by BERT’s Next Sentence Prediction [88]. Simply put, via
their corresponding [CLS] tokens, we predict if a pair of sampled sequences of the two par-
ticipants temporally correspond or not. Intuitively, this forces the network to leverage useful
interaction information when learning to represent the input. We define LIP = −y log ỹ +

(1− y) log (1− ỹ) as the binary cross-entropy, where y is the true label and ỹ is the predic-
tion. Positive interactions (y = 1) are from the same session and aligned in time. Negative
interactions (y = 0) are either sampled randomly from different sessions or within the same
session but with a random time offset (see Figure 5.1).

FIGURE 5.1: Illustration of the Interaction Prediction SSL loss. Binary classification of correspondence
between the sequences of Subject P1 and Subject P2. Positive interactions (y = 1) are used 50% of
the time. Within negative interactions, 10% come from another random session, 80% from the same
session with a time offset and 10% are kept unchanged.
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Masked Token Alignment combines contrastive learning with Masked Token Modeling.
As we discussed in Section 4.4.3, we see great promise in these combined approaches, as
working with tokens allows to build large negative pools for contrastive learning while MTM
strives for a holistic part-whole based representation of the input. In particular, for the con-
trastive part, we leverage a siamese setting, akin to the one used by BYOL [140] (see Fig-
ure 5.2). On the one hand, the weights of the online network ωo are trained normally by
optimizing the LMTA loss (see Equation (5.1)). On the other hand, the momentum network’s
weights are updated by a moving average ωm

t ← βωm
t−1 + (1− β)ωo

t , where β is a decay rate
controlling the speed at which the momentum network weights become the online ones, and
t is a given training iteration. Regarding the MTM part of MTA, we randomly mask 20%
input tokens when used as input to the online network, while the momentum one receives
the equivalent unmasked sequence. The objective for the online network is to learn token in-
teractions such that the masked tokens’ representation xo

i matches the one of that same token
from the momentum network xm

i more than it does any other token xm
j (where i 6= j). In doing

so, we force the online network to leverage the necessary context from unmasked tokens. The
LMTA loss can be formalised as an InfoNCE [273] loss:

LMTA = −
M

∑
i=1

log
exp( f (xo

i )
T) f (xm

i )

exp( f (xo
i )

T) f (xm
i ) + ∑M

j=1,i 6=j exp( f (xo
i )

T) f (xm
j )

, (5.1)

where i, j represent the position of a given token, whereas o, m indicate whether the token be-
longs to the online or momentum networks, respectively, and M is the total number of distinct
tokens in the batch.

FIGURE 5.2: Illustration of the Masked Token Alignment SSL losse. Randomly masked tokens are con-
trastively aligned with their representation from a siamese network (trained as a momentum encoder)
using InfoNCE. Following BERT [88], within masked tokens, 80% are replaced by a learned [MSK] to-
ken, 10% are replaced by a random token and 10% are kept unchanged.

With this preliminary approach, we are seeing very promising results, which are summa-
rized in Table 5.1. As it can be observed, pre-training with either MTA or IP achieves lower
error compared to the baseline of fully supervised training. This is further improved when
both SSL losses are combined, achieving the lowest error when fine-tuning.

In the future, we will continue to pursue this research direction, in order to fully exploit
Transformers’ abilities to capture semantic representations of complex environments. We are
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Pre-training Training Min(MSE)↓ #(pre-training epochs)
0 10 20 30 40 50

None Fine-tuning (40 epochs) 0,8044 - - - - -
MTA Probing (20 epochs) - 0,8272 0,7906 0,8370 0,8352 0,8541
IP Probing (20 epochs) - 0,8164 0,8817 0,8608 0,8676 0,7903
MTA + IP Probing (20 epochs) - 0,8133 0,8298 0,7687 0,8127 0,7994
MTA + IP Fine-tuning (20 epochs) - 0,8865 0,8419 0,7932 0,7592 0,8473

TABLE 5.1: MSE validation error for variants of the proposed SSL losses to pre-train the Dyadformer.
Best results are highlighted row-wise and column-wise. Note that these values have been computed
on a different data fold of the UDIVA dataset than the one used in Chapter 3, thus they are not com-
parable to the results provided there.

currently experimenting with masking strategies to maximize results as well as the proper
balance between the two losses. Moreover, in addition to audio/video-based personality
computing, our model allows for straightforward adaptations to other modalities, as well as
extending our analysis to other individual and dyadic features, beyond personality recogni-
tion. On the one hand, seeing that the use of language features proved to be beneficial for
other models in the challenge (as we discuss in Section 3.4.5) we plan to extend the multi-
modality layers of the Dyadformer to also leverage the transcriptions as an additional cue to
be combined with the audio. Also, future work will include the validation of the architecture
for longer time windows, both through increased sequence length, but also by recomputing
the chunks without the face detection limitations, which will surely boost the Dyadformer
human modeling capabilities. Finally, we believe that poses could be used as an additional
cue for supervision, forcing the network to include necessary information in its input rep-
resentation so that pose sequences could be recovered. On the other hand, the Dyadformer
could be easily extended to model other individual (e.g., emotion or engagement) and inter-
action constructs (e.g., rapport or synchrony) as it exploits both by design, as well as to other
interaction datasets (e.g., [97, 62]).

5.2 Final remarks

The remarkable cognitive abilities we humans possess have gifted us with an increasingly
profound understanding of physics, enabling us to unravel its mysteries through the pursuit
of scientific discovery. This knowledge has not only empowered us to craft tools and refine
technology, but it has also deepened our comprehension of one another, nourishing meaning-
ful connections and collaborative efforts that have led to the development of more advanced
societies. Science, technology, and society seem to form a symbiotic relationship where ad-
vancements in science and technology empower us to refine our interactions and behaviors,
which in turn further encourage collaboration to deepen our understanding of science and to
develop novel technologies.

We aim for a future where the boundaries between computational systems and human
dynamics blur, yielding not just sophisticated technologies, but also profound insights into
the universe and our own nature. Through this work, we hope to have laid some of the nec-
essary groundwork to make us one step closer to not only refining the capabilities of AI but
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also to fostering a deeper empathy between machines and humans. By providing a novel
large-scale dataset, deep insights on the new Transformer technology, and a novel architec-
ture for automatic human analysis, we hope our work can help to develop more humane
computational systems that are able to better understand and interact with humans. There is
still a long road ahead towards more human-centered technology. We believe that the contri-
butions laid here collectively mark a significant milestone in the evolution of computational
systems in that direction. As we conclude this dissertation, hope that our work has the power
to inspire new avenues of research, ignite innovative applications, and propel the develop-
ment of more humane computational systems. These avenues will necessarily require the
involvement of experts from fields as diverse as machine learning, psychology, and human-
computer interaction to collaborate in unison, unraveling the nuances of human behavior
modeling and paving the way for the next generation of empathetic machines. It will also
require strengthening the cornerstones of trustworthy AI through unwavering commitments
to responsibility, rigorous bias mitigation, and a vigilant regulatory framework that ensures
that this remarkable technology remains a force for good.

Through this, we hope humanity will achieve democratization of technology, making it
more accessible to people of all ages and cultural backgrounds. This open access can then
form the foundation for stimulating collaboration, giving rise to an environment where collec-
tive creativity drives advancements in science and overall human development. The horizon
ahead holds promise for enriching our lives, amplifying our collective wisdom, and creating
a more positive future through unity, innovation, and shared purpose.
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