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Abstract

Novel vision-based monitoring systems present a compelling value proposition within the realm

of Structural Health Monitoring (SHM) applications. They serve as a non-intrusive alternative

to conventional contact-based sensors, capable of capturing comprehensive measurements

across the entire structural field, even when placed at considerable distances from the

structure. This inherent characteristic renders vision-based techniques highly cost-effective

when compared to their contact-based counterparts. However, these techniques, although

promising, still exhibit some technical limitations due to their relative immaturity.

The primary objective of this thesis is to develop, enhance, and validate a cutting-edge

computer vision methodology grounded in learning-based video motion magnification. This

methodology is specifically designed to facilitate the implementation of SHM strategies in

complex structures, employing optical means to capture full-field data.

The research conducted in this thesis establishes the robust capability of learning-based video

motion magnification techniques in accurately and consistently amplifying intricate structural

movements. Consequently, this allows for the precise detection of subtle changes in the dynamic

response of the structure under scrutiny. Furthermore, the integration of Eulerian video

motion magnification with advanced deep learning techniques, such as visual transformers

and convolutional neural networks, significantly elevates both accuracy and efficiency beyond

what is currently considered state-of-the-art in video motion magnification image quality.

In addition to these technical achievements, this work also provides a comprehensive method-

ology and software toolset, which can prove invaluable for researchers and engineers engaged

in the efficient and effective monitoring and maintenance of complex structures.
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Resum

Els nous sistemes de monitoratge basats en la visió presenten una proposta de valor convincent

dins de l’àmbit de les aplicacions de monitoratge de la salut estructural (SHM). Serveixen

com una alternativa no intrusiva als sensors convencionals basats en el contacte, capaços

de capturar mesures exhaustives a tot el camp estructural, fins i tot quan es col·loquen a

distàncies considerables de l’estructura. Aquesta característica inherent fa que les tècniques

basades en la visió siguin molt rendibles en comparació amb les seves contraparts basades en

el contacte. No obstant això, aquestes tècniques, encara que prometedores, encara presenten

algunes limitacions tècniques degudes a la seva relativa immaduresa.

L’objectiu principal d’aquesta tesi és desenvolupar, millorar i validar una metodologia d’última

generació de visió per ordinador basada en l’amplificació del moviment de vídeo basada en

l’aprenentatge. Aquesta metodologia està dissenyada específicament per facilitar la imple-

mentació d’estratègies SHM en estructures complexes, utilitzant mitjans òptics per capturar

dades de camp complet.

La recerca realitzada en aquesta tesi estableix la capacitat robusta de les tècniques

d’amplificació del moviment de vídeo basades en l’aprenentatge per amplificar amb

precisió i consistència els moviments estructurals intricats. En conseqüència, això permet

la detecció precisa de canvis subtils en la resposta dinàmica de l’estructura sotmesa a

escrutini. A més, la integració de l’amplificació del moviment de vídeo eulerià amb tècniques

avançades d’aprenentatge profund, com ara els transformadors visuals i les xarxes neuronals

convolucionals, eleva significativament tant la precisió com l’eficiència més enllà del que

actualment es considera l’estat de l’art en la qualitat d’imatge de l’amplificació del moviment

de vídeo.

A més d’aquests assoliments tècnics, aquest treball també proporciona una metodologia com-

pleta i un conjunt d’eines de programari que poden resultar inestimables per als investigadors

i enginyers que es dediquen al monitoratge i manteniment eficaços i eficients d’estructures

complexes.
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Resumen

Los nuevos sistemas de monitoreo basados en la visión presentan una propuesta de valor

convincente en el ámbito de las aplicaciones de monitoreo de la salud estructural (SHM).

Sirven como una alternativa no intrusiva a los sensores convencionales basados en el contacto,

capaces de capturar mediciones exhaustivas en todo el campo estructural, incluso cuando se

colocan a distancias considerables de la estructura. Esta característica inherente hace que las

técnicas basadas en la visión sean muy rentables en comparación con sus contrapartes basadas

en el contacto. Sin embargo, estas técnicas, aunque prometedoras, aún presentan algunas

limitaciones técnicas debido a su relativa inmadurez.

El objetivo principal de esta tesis es desarrollar, mejorar y validar una metodología de

vanguardia de visión por ordenador basada en la amplificación del movimiento de video

basada en el aprendizaje. Esta metodología está diseñada específicamente para facilitar la

implementación de estrategias SHM en estructuras complejas, utilizando medios ópticos para

capturar datos de campo completo.

La investigación realizada en esta tesis establece la capacidad robusta de las técnicas de

amplificación del movimiento de video basadas en el aprendizaje para amplificar con precisión

y consistencia los movimientos estructurales intrincados. En consecuencia, esto permite la

detección precisa de cambios sutiles en la respuesta dinámica de la estructura sometida a

escrutinio. Además, la integración de la amplificación del movimiento de video euleriano con

técnicas avanzadas de aprendizaje profundo, como transformadores visuales y redes neuronales

convolucionales, eleva significativamente tanto la precisión como la eficiencia más allá de lo

que actualmente se considera el estado del arte en la calidad de imagen de la amplificación del

movimiento de video.

Además de estos logros técnicos, este trabajo también proporciona una metodología completa y

un conjunto de herramientas de software que pueden resultar invaluables para los investigadores

e ingenieros que se dedican al monitoreo y mantenimiento eficientes y efectivos de estructuras

complejas.
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1
Introduction

This initial chapter presents the underpinning motivation for this thesis and outlines its central

hypotheses and objectives. The chapter also delivers a brief overview of the outline of the

contents of this work.
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1.1 Motivation

Infrastructure collapses, although rare, happen all over the world. These incidents have

serious consequences, including significant economic losses, delays, injuries, and even loss of

life. Unfortunately, these events are more frequent than most people realise. For example, in

July 2023, a bridge undergoing renovations collapsed near Patras (Greece), killing one person

and injuring four more. Earlier in June, a bridge crossing over the Yellowstone River near

Columbus, Montana (USA) also collapsed, causing several cars of a freight train carrying

hazardous materials to fall into the water below. Further, in October 2022, a bridge in Morbi,

India, collapsed killing 135 people and injuring many more.

Infrastructure plays a key role in society, and therefore ensuring its safety is of vital importance.

For this reason, regular monitoring and maintenance is key to ensure optimal operation.

Structural Health Monitoring (SHM) is a field of research that provides a set of tools to civil

engineers for ensuring the integrity and safety of in-service structures. SHM systems monitor

and assess structures by collecting data from sensor networks that allow for the tracking,

identification, and measurement of structural responses that have powerful applications for

operational cost reduction, maintenance, and public safety [1].

SHM systems are designed to continuously monitor the condition of a structure in order to

detect defects or damage that may be difficult to identify during routine visual inspections.

Early defect detection can help prevent catastrophic failure and reduce maintenance costs

by allowing proper maintenance scheduling, allowing the performance of maintenance duties

and repairs before damage propagates or becomes more severe. SHM provides a layer of

improved safety against structural degradation on top of significant cost and time savings due

to a decrease in unplanned service disruptions. Moreover, SHM can help ensure compliance

with safety standards and regulations, as many structures are required to undergo regular

inspections.

Nevertheless, the use of SHM systems in civil infrastructure is not ubiquitous as instrumenting

those structures is generally a costly process. Sensors need to be installed, calibrated, and

maintained to keep data flowing to the signal processing systems. In addition, the installation

costs significantly increase with structural complexity, as larger and more complex structures

require greater sensor coverage, thus requiring larger and costlier communications systems.

Novel vision-based monitoring systems offer an interesting value proposition as they are a non-

intrusive alternative to contact-based sensors, being able to obtain full-field measurements with

a single sensor placed far away from the structure. This makes vision-based techniques more

cost-effective than their contact counterparts, nevertheless, these techniques are still immature

and consequently present some technical shortcomings.
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Vision-based techniques are more sensitive to environmental conditions, changes in lighting,

weather, or temperature can affect the quality of the images captured, and in turn, the

measurement’s accuracy. Another shortfall, is the amount of data generated by these systems,

as vision-based systems generate large amounts of data which can be challenging to manage

and analyse. Effective data management and processing techniques are essential to ensure

that the information generated is used effectively. Moreover, vision-based techniques may not

be suitable for some applications due to visibility limitations, harsh environments, or privacy

concerns.

Despite the challenges associated with vision-based approaches, they remain a promising option

for lowering the barrier of entry to the use of SHM systems. The ubiquity of cost-effective cloud

solutions, combined with the recent advancements in computer vision and deep learning, allow

for the storage and processing of large amounts of data, thus enabling the exploration of new

technical frontiers.

1.2 Hypotheses and research objectives

After analysing the context that inspired this work, five main hypotheses were formulated to

guide the research presented and establish testable predictions about the expected outcome of

this thesis.

• Learning-based video motion magnification techniques could be capable of accurately

and reliably magnifying the complex movements of a structure, enabling the detection of

subtle changes in its structural dynamic response.

• Combining Eulerian video motion magnification with deep learning techniques such

as visual transformers and convolutional neural networks could significantly improve

accuracy and efficiency over the state-of-the-art video motion magnification image quality.

• Incorporating advanced techniques such as procedural data generation, visual transform-

ers, and convolutional neural networks into learning-based vision models could improve

their accuracy and efficiency for structural dynamic response identification in complex

monitoring systems, outperforming the state-of-the-art.

• Displacement-over-time signals obtained from video motion magnification could be

precise enough to detect shifts in a structure’s natural frequencies caused by changes

in stiffness or mass.

• An automatic structural health monitoring video processing pipeline could be established

using learning-based video motion magnification techniques to obtain displacement-over-

time signals with high accuracy. Therefore, enabling the development of automated tools

for vision-based monitoring.
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Following these guidelines, this thesis’ objectives are to develop, improve, and validate a

learning-based Video Motion Magnification (VMM) methodology for the vibration-based

monitoring of structures. This research focuses on showing how deep learning techniques

can be applied in structural damage detection using optical means. This work also aims to

produce practical tools for scientists and engineers who need to monitor and maintain structures

efficiently and effectively by providing the methodology and the software described within it.

Based on the aforementioned hypotheses, the following specific objectives establish the mile-

stones for the development of this research.

• Adapt and validate the use of machine learning for the detection of structural dynamic

responses through optical means by developing a novel algorithm that combines video

motion magnification with deep learning techniques.

• Improve the state-of-the-art learning-based vision models for the purpose of damage

detection in complex monitoring systems by incorporating advanced techniques such as

procedural data generation, visual transformers, and convolutional neural networks.

• Benchmark other learning-based vision systems against the proposed model by conduct-

ing experiments on a dataset of structural videos.

• Combine and integrate the advances in machine learning vision systems achieved in this

thesis to develop a tool for the detection of structural performance degradation.

• Validate and verify the performance of the resulting tool on complex structures in

a laboratory environment, using a comprehensive set of metrics and benchmarks to

demonstrate its effectiveness and reliability.

1.3 Thesis outline

This document is structured in six chapters that summarise the theoretical framework,

methodology, results, and conclusions of this thesis exploring novel vision-based approaches

for the obtention of the dynamic response of structures.

• Chapter 1 covers the motivation, hypotheses and research objectives of this thesis.

• Chapter 2 establishes a basic theoretical foundation of deep learning concepts required

for understanding this work and its methods.

• Chapter 3 reviews the most influential works in the three areas of knowledge related

to this thesis. This chapter first presents an overview of the history and the state-of-

the-art of deep learning in the computer vision space. Next, it discusses the context
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around academic research on video motion magnification. And finally, introduces the

topic of structural health monitoring along with its benefits and drawbacks, presenting

the intersection with motion magnification techniques and their potential benefits.

• Chapter 4 presents the methodology and results of the work undertaken to understand

and surpass state-of-the-art learning-based video motion magnification techniques and

benchmarks the technical advances developed in the context of this thesis.

• Chapter 5 presents experimental work on using learning-based video motion magnification

for damage detection purposes. It includes preliminary tests to validate the usage of the

learning-based methodology, as well as validation of the improved motion magnification

methodology and software tools developed in this thesis.

• Chapter 6 summarises the most relevant contributions and insights of this work and

reflects on the future avenues of research for video motion magnification based techniques

and their applications in mechanical and civil engineering.
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2
Fundamentals of deep learning

The aim of this chapter is to establish a basic theoretical foundation to support the contents of

this work, presenting the inner workings of modern deep learning models.





2.1. Introduction 9

2.1 Introduction

Artificial neural networks (ANNs) [2, 3] are computational models inspired by the structure and

function of biological neurons. They consist of interconnected units called artificial neurons that

process information through weighted connections and activation functions. ANNs can learn

from data by adjusting their weights and biases using various learning algorithms. ANNs have

been widely used for various tasks such as classification, regression, clustering, dimensionality

reduction, natural language processing, computer vision, speech recognition, etc.

Deep-learning is a branch of machine learning that focuses on building and training ANNs

with multiple layers of artificial neurons. These layers can extract features from raw data

at different levels of abstraction and complexity, enabling ANNs to handle large-scale and

high-dimensionality data with minimal human intervention or domain knowledge. Note that,

machine learning is sometimes considered a synonym for deep learning, however this is an

inaccurate use of the term. Machine learning encompasses multiple techniques besides deep

learning, such as decision trees, support vector machines, k-means clustering, among others.

Three types of learning behaviour [4] can generally be differentiated based on the form of

training employed:

• Supervised learning refers to the class of algorithms and techniques that train a model

(or agent) by using input/output pairs as examples. This implies providing the algorithm

with both the problem and the intended solution so that it can learn the underlying logic

or function.

• Unsupervised learning algorithms work with datasets that only provide inputs,

requiring the discovery of patterns in the data. This means that unsupervised algorithms

learn from data that has not been assigned any labels, categories, or classes. Unsupervised

learning algorithms recognise common features in the data and respond according to

whether these features are present or absent in each new data point.

• Reinforcement learning is a methodology that enables agents to perform actions in

a specified environment with the aim of maximising a predefined cumulative reward. It

is typically used in real-time applications, where the agent’s actions on the environment

elicit positive or negative feedback from the agent, who is programmed to optimise the

acquisition of reward. Usually, the most challenging aspect of reinforcement learning is

accurately defining rewards and penalties to facilitate a fast learning rate while forcing

the agent to learn what is expected of it.

In recent years, deep learning has achieved remarkable results in many domains such as image

recognition [5], natural language processing [6], machine translation [7, 8], self-driving cars [9],
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etc. That makes deep learning one of the most relevant and influential technologies in the

present and for the coming years.

2.2 Overview

ANNs are mathematical models that can learn from data to perform various tasks [4]. They are

regarded as universal function approximators, provided that they have sufficient neurons and

layers in their configuration. ANNs typically consist of linear algebraic operations interspersed

with non-linear activation functions.

The learning process, or training, involves optimising the weights and biases of the mathemat-

ical model based on the discrepancy between the model’s output and the desired outcome for

a given input. A loss function is employed to measure the performance of the network during

training. Subsequently, the gradient of the loss with respect to each weight is computed to

determine the contribution of each weight to a specific result; this process is also known as

backpropagation. Then, an optimiser algorithm adjusts the weights accordingly to minimise

loss, and this process is repeated until the loss function attains a value within an acceptable

margin of error. Once the system has been trained the models are generally tested, validated,

and verified before their final deployment in production systems.

Training data constitutes a crucial component in any deep learning model, as it serves as

the foundation upon which the model is trained and evaluated. The quality, diversity, and

quantity of data that is employed to train a deep learning model can considerably influence its

performance and accuracy. Data structures and algorithms are also imperative for effectively

storing and processing large volumes of data, which is indispensable for training and deploying

machine learning models.

2.3 Fully connected neural networks

Fully connected or dense neural networks are a type of artificial neural network that has no

particular assumptions about the input data structure, and sometimes are also referred as

Multi-Layer Perceptrons (MLP) [10, 11]. They consist of a series of fully connected layers,

where each layer is a function from m ∈ R to n ∈ R. Each neuron in a layer is connected to

every other neuron in the next layer through a weights matrix. In addition to weights, biases

are additional parameters added to each neuron in a layer, except for the input layer. Biases

are used to shift the activation function of each node by a constant value. This can help the

network learn more complex patterns and avoid underfitting.
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Figure 2.1: A diagram of a simple fully connected neural network, with 2 input
neurons, 10 hidden layer neurons, and 3 output neurons

To calculate the output of a layer in a FCNN, first multiply the input values by the matrix of

weights, then add the biases and apply the activation function.

y = f(W × x+ b) (2.1)

where:

y : is the result of the forward pass of a single layer

f : stands for the activation function

W : is the weights matrix

x : is the input vector

b : are biases

Taking, for example, the diagram in Figure 2.1 the forward calculation of the input layer

towards the hidden layer would be:

HiddenLayer = f

(

[

i1 i2

]

×

[

w11 w12 w13 w14 w15 w16 w17 w18 w19 w110

w21 w22 w23 w24 w25 w26 w27 w28 w29 w210

]

+

[

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

]

)

(2.2)
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And continuing with the example the final output of the network would be calculated like so:

Output = f

(

HiddenLayer ×
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w31 w32 w33
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w71 w72 w73

w81 w82 w83

w91 w92 w93

w101 w102 w103











































+
[

b1 b2 b3

]

)

(2.3)

This calculation completes the forward pass of the architecture described in Figure 2.1. To

train a model like this one, after the evaluation of the forward pass the obtained results

would be compared against known-good results, attributing result deviations to the trainable

parameters (weights and biases) by using backpropagation. With these attributions calculated,

an optimisation strategy, of which many exist, would be used to change those trainable

parameters to minimise result deviation with respect to ground truth. This process would

repeat until the calculated results of the forward pass would be within acceptable margins of

error.

As can be inferred from this example, infinite architectures are possible, with more or less

layers and neurons arranged following this simple structure. In the coming sections, strategies

for choosing said structures and architectures to address concrete problems will be discussed.

2.4 Activation functions

Activation functions are used in neural networks to introduce non-linearity into the output of

each neuron. Without them, neural networks would be limited to linear transformations, and

consequently would be unable to model complex relationships between input and output data.

Non-linear activation functions allow neural networks to learn and model complex and abstract

patterns, which is crucial for many real-world applications such as image recognition, natural

language processing, and speech recognition.

Some examples amongst the most popular activation functions used in deep learning are the

Sigmoid, Tanh, ReLU, and Softmax functions. However, many more activation functions exist

or can be invented [12], these four functions do not come close to being an exhaustive list of

the available possibilities.
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The sigmoid function was a commonly used activation function in the early days of neural

networks, but it has largely been replaced by other functions due to its tendency to saturate

and slow down learning. The Tanh function is another popular choice, which is similar to the

Sigmoid function but with a larger output range. The ReLU (Rectified Linear Unit) function is

currently one of the most commonly used activation function, as it has been shown to provide

excellent performance and faster training times compared to other functions [12]. ReLU is a

simple and fast function, attractive for many applications. Some authors have implemented

modifications over ReLU such as the LeakyReLU to address the issues of "dead neurons"

by allowing small negative values to be returned. The Softmax function on the other hand,

is a specialised function commonly used in the output layer of neural networks performing

classification tasks, that converts the output of each neuron into a probability distribution

over the multiple outputs of the final layer.

Sigmoid:

σ(x) =
1

1 + e−x

Tanh:

tanh(x) =
ex − e−x

ex + e−x

ReLU:

ReLU(x) = max(0, x)

Softmax:

Softmax(xi) =
exi

∑n
j=1 e

xj

When choosing an activation function, stability is an important consideration. Stability refers

to the ability of an activation function to maintain consistent and reliable outputs over different

inputs and network parameters. Some activation functions are more stable than others,

depending on their output range, gradient behaviour, and numerical properties. For example,

Sigmoid and Tanh functions are less stable than ReLU or other more modern functions such

as ELU, as they are more prone to saturation, clipping, and numerical issues. ReLU and ELU

functions are more stable than Sigmoid and Tanh functions, as they have unbounded output

ranges and non-zero gradients for negative inputs. However, they can also cause instability if

their inputs or outputs become too large or too small. Therefore, it is advisable to use proper

initialisation and regularisation techniques to ensure the stability of the activation functions.

Additionally, activation functions need to be differentiable in order for backpropagation to

be used for training the neural network. If an activation function is not differentiable, the

gradients cannot be computed, and the backpropagation algorithm cannot be used.
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2.5 Skip-connections

Skip-connections shift the output of one or more layers as the input of one or more of the

following non-consecutive layers. These connections help to avoid overfitting, increase model

capacity, and preserve spatial information.

One of the most common types of skip-connections is the residual connection, which was

initially introduced by the ResNet [13] architecture. The residual connection allows the output

of one layer to be added to the input of another layer, bypassing some arbitrary amount of

intermediate layers. This can be expressed as y = F (x)+x, where F (x) is the function learned

by the intermediate layers, and x is the original input. The idea is that F (x) learns the residual

or difference between the desired output and the input, rather than learning the output directly.

This can help to prevent the degradation of the gradient signal and improve the accuracy of

deep neural networks. Residual connections are widely used in computer vision tasks, such as

image classification, object detection, and semantic segmentation.

Another type of skip-connection is the dense connection, which was introduced by DenseNet

[14]. A dense connection concatenates the output of one layer to the input of all subsequent

layers, creating a densely connected network. This can be expressed as y = [x, F (x)],

where [x, F (x)] denotes the concatenation operation. The idea is that each layer receives

information from all preceding layers and passes on its own information to all subsequent

layers. This can help to reduce the number of parameters, increase feature diversity, and

enhance feature propagation. Dense connections are also used in computer vision tasks, such

as image classification and segmentation.

A third type of skip-connection, which is most commonly used in encoder-decoder networks,

is the u-shaped connection (long-connection) introduced by Long et al. [15] and popularised

by the U-Net [16] architecture. A U-shaped connection connects the encoder and decoder

parts of a network, preserving the spatial information across different scales. This can be

expressed as y = F (x) + G(x), where F (x) is the function learned by the encoder part,

G(x) is the function learned by the decoder part, and + denotes an element-wise addition or

concatenation operation. The idea is that each layer in the decoder part receives information

from a corresponding layer in the encoder part with the same resolution, and combines it

with its own information to reconstruct the output. This can help to improve the localisation

accuracy and recover fine-grained details. U-shaped connections have been used in medical

image analysis tasks, such as image segmentation and reconstruction [16–19].

As for many structures in deep learning there are no hard rules indicating when and where

skip-connections should be used to improve performance. Skip-connections can have different

forms and functions depending on the architecture and task, and are generally known to help
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avoid overfitting, increase model capacity, preserve spatial information, and improve overall

accuracy.

2.6 Convolutional neural networks

Convolutional neural networks (CNNs) [5, 20] are a specialised architecture for processing

structured data, being very commonly employed in computer vision and image processing

applications. CNNs exploit their mathematical structure to reduce the computational cost of

processing ordered data. Unlike FCNNs, that require a one-dimensional fixed-size vector as

input, convolutional layers can handle different-size inputs and harness the structure of the

data to extract meaningful information. For instance, in images, neighbouring pixels are more

informative than distant pixels for capturing the local context.

The convolution operation is the key defining characteristic that differentiates CNNs from other

architectures. It involves sliding a filter or kernel over the input matrices and computing the

dot product between the filter and the input at each position. This results in a feature map

that highlights the regions of the input that match the filter. By using multiple trainable filters

and stacking multiple convolutional layers, CNNs can learn complex and hierarchical patterns

from data. In contrast, fully connected neural networks (FCNNs) require a one-dimensional

fixed-size vector as input, which breaks the two-dimensional nature of images, making them

less efficient and suitable for image processing than CNNs, which preserve the multidimensional

structure of images and thus process them more effectively.

Mathematically, the general form convolution operation can be expressed as shown in equation

2.4. Note that * denotes convolution and is different from matrix multiplication.













x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
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xm1 xm2 · · · xmn
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y11 y12 · · · y1n

y21 y22 · · · y2n
...

...
. . .

...

ym1 ym2 · · · ymn













=

m−1
∑

i=0

n−1
∑

j=0

x(m−i)(n−j)y(1+i)(1+j) (2.4)

Mechanically, convolution is performed by placing an arbitrary size filter or kernel over a matrix,

multiplying each of the masked elements of the matrix and summing the results. Next, the

calculated result is placed in the location where the centre element of the kernel was located,

and the kernel is moved to the next element to repeat the process until the full matrix has been

convoluted. However, an obvious issue appears at the edges of the matrix, where the kernel

overflows outside the bounds. Multiple criteria exist for handling edges, for example, padding

the outer border of the matrix with zeros, padding with a mirror image of the inner elements,

cropping the kernel, etc. It is common for neural networks to use zeros padding to maintain
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the dimensions of the input tensors stable. A useful formula for padding calculations is shown

below (Eq. 2.5).

O =
W −K + 2P

S
+ 1 (2.5)

where:

O : Output height/width

W : Input height/width

K : Kernel size

P : Padding

S : Stride

Convolutional operations are commonly used to implement various image processing techniques

such as blurring, sharpening, edge detection, etc. For example, to blur an image, a kernel that

assigns equal weights to each pixel and its neighbours would result in smoothing out the

variations in pixel values, thus blurring the image in the process. Using this reasoning, we

can intuitively understand how CNNs function. CNNs are generally formed of multiple layers

of trainable filters stacked together and interspersed with activation functions. Their training

strategy is very similar to the one employed with FCNNs. The model is presented with an

input, the output and loss are calculated, backwards propagation is performed, and then filters

are optimised to minimise loss.

Convolutional layers can be found in both fully convolutional neural networks or in hybrid

models. For example, it is common to find architectures for image classification that start with

a few convolutional layers to extract position-sensitive features and then flatten their feature

maps into a vector for a final stage of classification.

The context-aware architecture makes CNNs ideal for capturing the local context around data,

this however, becomes a problem if a holistic understanding of a large input matrix is required.

For that purpose, multiple strategies exist and will be further discussed in chapter 3. Most

of these strategies transform the input matrix to multiple scales to extract the local context

in multiple levels of resolution, effectively capturing the global context of the processed data.

To alter the resolution it is common to see the application of pooling operations, such as max

or average pooling, as well as convolutions with strides larger than one. Nevertheless, using

a pooling layer after the activation function of the previous convolutional layer is generally

considered the more robust option when downsampling on a convolutional model.

Pooling is a constant operation and needs no optimisation, this means that it does not require

any learning parameters. The two most common pooling operations are average pooling and

max pooling. Average pooling calculates the average value for each n× n patch on the feature

map, while max pooling returns the maximum value for each patch. The result of using a
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pooling layer and creating downsampled feature maps is a summarised version of the features

detected in the input. Which can help some models become invariant to local translations and

small-scale changes.

2.7 Recurrent neural networks

Recurrent neural networks (RNNs) are a class of neural network that specialise in processing

sequential data [21], such as time series or natural language. In contrast to feedforward neural

networks, which treat each input independently, RNNs retain a "memory" of previous inputs

and utilise it to inform the processing of the following inputs.

The main idea behind RNNs is that they use the same set of parameters at each time step,

enabling them to learn a function that maps input sequences to output sequences. This makes

them particularly suitable for tasks such as language modelling, where the objective is to

predict the next word in a sequence given the previous words.

One of the difficulties of training RNNs is the vanishing or exploding gradient problem,

where the gradients used to update the parameters of the network become very small or

very large as they propagate back in time, making it hard for the network to learn long-term

dependencies. To address this problem, several variants of RNNs have been proposed, such as

Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU), which use specialised

gating mechanisms to control the flow of information through the network and mitigate the

vanishing gradient problem. However, RNNs have been mostly superseded by the Transformer.

2.8 Transformers

Transformers are a very versatile neural network architecture that has been used to great

effect in language models, signal processing, time series forecasting, or computer vision [22].

The transformer architecture is based on the concept of self-attention, which focuses the model

on different parts of the input sequence and weights them differently based on their relevance

to the task at hand.

The transformer approach avoids the limitations of traditional recurrent neural networks that

process the input in a sequential manner. In recurrent models, the computation depends on the

symbol positions of both the input and output sequences, where, each position corresponds to

a computation step, which produces a hidden state ht as a function of the previous hidden state

ht−1 and the current input. The sequential nature of recurrent neural networks computation

prevents parallelisation within each training example, which becomes essential for longer

sequence lengths, as memory limitations restrict batching across examples. At the same time,
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the transformer architecture avoids the exploding or vanishing gradient problem altogether by

processing all of the input data at once.

Attention mechanisms are components that manage and quantify the interdependence between

different parts of an input or an output sequence. Self-attention is a particular case of an

attention mechanism that relates different positions of a single sequence to compute a weighted

representation of that sequence. This mechanism can capture long-range dependencies within

sequences without using recurrence or convolution. An attention function maps a query and

a set of key-value pairs to an output, where the query, keys, values, and output are all

vectors. The output of such function is computed as a weighted sum of the values, where

the weight assigned to each value is computed by a compatibility function of the query with

the corresponding key. Vaswani et al. [23] describe the particular self-attention mechanism

used by the transformer, named "Scaled Dot-Product Attention", as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.6)

where:

Q : Queries vector

K : Keys vector

V : Values vector

dk : Queries and keys dimension

Additive attention and dot-product or multiplicative attention are other common attention

functions in neural networks. Additive attention computes the compatibility function using a

feed-forward network with a single hidden layer. On the other hand, dot-product attention

is identical to the previously described scaled dot-product attention except for the scaling

factor. While the two attention methods are similar in theoretical complexity, multiplicative

attention is preferred since it can be implemented using optimised matrix multiplication

routines, therefore being the fastest and most efficient option in practice. Nevertheless, additive

attention outperforms dot product attention for larger values of dk [23], this effect appears

because the softmax function is pushed to small gradient regions when dot products grow large

in magnitude. For this reason, the scaled dot-product attention scales by
1

√
dk

.

The multi-head self-attention mechanism is the core component that enables the transformer

to process data efficiently, allowing the model to jointly attend to information from different

representation subspaces at different positions. Instead of performing a single attention func-

tion with keys, values, and queries multi-head attention runs h parallel attention functions with

different learned projection functions. Once calculated, the resulting vectors are concatenated

and projected once again.
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(a) Scaled dot-product attention (b) Multi-head attention

Figure 2.2: Attention mechanisms [23].

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O (2.7)

where:

headi : Attention(QWQ
i ,KWK

i , V WV
i )

And where the projections are parameter matrices WQ
i ∈ R

dmodel×dk , WK
i ∈ R

dmodel×dk ,

WV
i ∈ R

dmodel×dv and WO
i ∈ R

hdv×dmodel .

In Figure 2.3 the full transformer architecture is shown as described in [23]. The architecture

is based solely on attention mechanisms, dispensing with recurrence and convolutions entirely.

The transformer consists of an encoder and decoder each made up of N blocks, that process the

input sequence to generate an output sequence in the decoder. Each block in the encoder and

decoder consists of two sub-layers: a multi-head self-attention mechanism and a position-wise

fully connected feed-forward network (eq. 2.8). A residual connection [24] is employed around

each of the two sub-layers, followed by layer normalisation [25]. Additionally, the decoder has

a sub-layer which performs multi-head attention over the output embeddings. The multi-head

attention mechanism, that appears throughout the architecture, allows the model to jointly

attend to information from different representation subspaces at different positions.

FFN(x) = max(0, xW1 + b1) ∗W2 + b2 (2.8)

Similarly to other sequence transduction models, embeddings are used to convert the input

tokens and output tokens to vectors of dimension dmodel. However, since no recurrence or

convolution is used, positional encodings [23] are employed to maintain the order of the
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Figure 2.3: The transformer model architecture [23].

sequence. A well-known strategy is to use sine and cosine functions of different frequencies

so that each dimension of the positional encoding corresponds to a sinusoid as such:

PE(pos,2i) = sin(pos/100002i/dmodel) (2.9)

PE(pos,2i+1) = cos(pos/100002i/dmodel) (2.10)

where:

pos : position

i : dimension

At the time of writing, the transformer has become one of the most prominent and successful

architectures in the natural language processing landscape, furthermore, it has also shown

excellent results in other areas such as in vision or signal processing [22, 26].
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2.9 Transformers in vision

As discussed, the transformer has been a key concept in the field of natural language processing,

however, applying the transformer directly to images is not feasible within the constraints of

present computing capabilities. The naive application of self-attention to images would require

that each pixel attends to every other pixel, scaling quadratically with image size.

The Vision Transformer (ViT) [27] minimally modified the transformer architecture to accom-

modate image processing by breaking up images into fixed-size patches and linearly embedding

them along with positional encodings, effectively treating each patch as a token. Then the

resulting patches are fed into a standard transformer encoder. With this strategy the ViT

achieved state-of-the-art performance on multiple image recognition benchmarks, albeit, given

enough training data. Transformers lack some of the inductive biases inherent to CNNs, such

as locality or translation equivariance, and therefore do not generalise well when trained on

insufficient data.

Figure 2.4: Vision Transformer model overview [27].

In Figure 2.4 an overview of the ViT structure is depicted. The standard transformer

encoder requires a sequence of unidimensional token embeddings, however, images are naturally

structured as bidimensional arrays. To produce such unidimensional sequences the image

patches are flattened from x ∈ R
H×W×C into xp ∈ R

N×(P 2
·C), where H,W is the resolution

of the original image, C the number of channels, P is the resolution of each image patch, and

N = HW/P 2 is the resulting number of patches. At the same time, N also represents the input

sequence length for the transformer. Then, data is position embedded in a similar manner as

described in the previous section and fed into a standard transformer encoder. From there, the

architecture can be derived to perform multiple image-processing tasks.
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Subsequent iterations on the idea brought forth by the ViT have introduced new optimisations

and performance gains. For example, the Swin Transformer [28] builds a hierarchical group of

feature maps that break the image up into multiple small ViT-like processing areas to capture

local information that builds back up to the full frame. This structure has the advantage of

presenting linear computational complexity with respect to input image size, therefore allowing

the processing of bigger images or the use of deeper networks.

2.10 Model performance optimisation

One of the main challenges of deep learning is the design and optimisation of models and

their hyperparameters to optimise their performance on a given task. Hyperparameters are

parameters not learned by the model, but are set by the user before training, such as optimiser

learning rate and momentum, batch size, number of layers, etc. Tuning is essential for achieving

good results but is also a very challenging [29, 30] and time-consuming task that is not yet

fully understood.

Common pitfalls when training deep learning models include:

• Lack of training data: Deep learning models require large amounts of labelled data

to learn complex patterns and generalise well to new inputs. However, obtaining and

annotating such data might not be feasible in some cases. Time, cost or the physical

impossibility of obtaining data compels the use of techniques such as data augmentation,

transfer learning, semi-supervised learning, or synthetic data generation.

• Imbalanced data: Some applications display skewed distributions towards some classes

or categories, while other classes are underrepresented or rare. This can cause the model

to be biased towards the majority class and perform poorly when shown less common

scenarios.

• Overfitting: Overfitting occurs when a particular model performs well on the training

dataset but fails to generalise when tested with previously unseen data. This can result

from having too many parameters relative to the amount of data, or from having noisy

or irrelevant features in the data.

• Vanishing/exploding gradients: As a result of training, deep learning models can suffer

from vanishing or exploding gradients as they get calculated during backpropagation

becoming either excessively big or small. These problems are especially common in very

deep neural networks, and result in unstable models or models that learn very slowly or

not at all. To reduce these problems, normalisation techniques such as batch or layer

normalisation are often used.
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• Poor performance: General poor performance can be caused by multiple factors or

combinations of multiple factors, from insufficient network parameters and bad network

initialisation to suboptimal optimiser settings. Approaching these scenarios is a difficult

task that often requires an in-depth methodical study of the model hyperparameters and

the task to be performed. However, not many authors share their optimisation procedure

in favour of a more streamlined presentation of their models, nevertheless, some efforts

exist to establish some scientific guidelines for model optimisation [31].
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3
Literature review

This chapter reviews the history and state-of-the-art of the scientific fields related to this thesis

and points out the gaps in the literature this work addresses.
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3.1 Deep learning in computer vision

3.1.1 Origin

Deep learning is a branch of machine learning framed within the larger artificial intelligence

field. Deep learning has proven to be a powerful technology that is transforming many computer

science disciplines by providing powerful insights into data to improve translations, speech

recognition, image and pattern recognition, or generating new content.

The roots of deep learning date back to 1943 when Warren McCulloch, a neurophysiologist,

and Walter Pitts, a mathmatician, presented their mathematical bio-inspired model of a neural

network [32]. The model, known as the MCP neural model, was a linear step function

triggered by linearly interpolated weighted data. This model presents notable similarities to

modern neural networks, however it also presents significant differences with respect to modern

perceptron models. The MCP model was built as an electrical circuit with fixed non-trainable

weights, a key feature of modern ML models. Moreover, the model also presented inhibitory

inputs that could completely prevent neuron activation at any time, another feature not present

in modern models.

Despite this modelisation effort, the foundation for modern neural networks would not be

established until six years later when Donald Hebb, considered by some as the father of modern

neural networks [2], introduced the Hebbian Learning Rule [33], inspired by previous work in

neural groupings [34]. The Hebbian Learning Rule describes how neuronal activity influences

the connections between neurons; stating that when the axon of a cell is close enough to excite

a second cell and takes part in its activation in a repetitive and persistent way, the connection

between them becomes stronger. This aspect of the rule is also known as the synaptic plasticity

of Hebbian learning.

Later, in 1958, inspired by the success of the MCP model and the Hebbian Learning Rule, Frank

Rosenblatt introduced the perceptron [10]. Rosenblatt constructed an electronic device that

showed the capacity of learning by associationism. This is unlike previous theorists like Hebb

that would focus on the biological system in the natural environment. The perceptron was

fundamentally a linear function of input signals, and therefore it was limited to only represent

linear operations. This limitation was criticised by other researchers [35, 36] leading to a

stagnation period in the field, further accentuated by the limited computing power available

at the time, that lasted until the 1980s. Nevertheless, the evolution from perceptrons to

artificial neural networks was only a small step away. Placing multiple perceptrons together

into layers and stacking those layers together would yield a Multi-Layer Perceptron or MLP

[37], that is widely considered as a universal function approximator used in modern deep

learning architectures.
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The 1980s saw significant works improving, understanding, and inventing new neural network

architectures such as the Hopefield Network [3], a neural network with bidirectional weights,

the Boltzmann Machine [38], that introduced the concept of hidden layers in the Hopefield

network, or the Restricted Boltzmann Machine [39] and the first Recurrent Neural Network

(RNN) [40].

However, an especially significant development for computer vision would come in 1989 when

Yann LeCun introduced LeNet, the first convolutional neural network [20]. Inspired by the

Neocognitron [41] and the visual cortex, LeCun pioneered the Convolutional Neural Network

(CNN) and further popularised it by using it for handwritten character recognition [20].

Nevertheless, the kickstart to the modern era of deep learning would come later in the 2010s,

inspired by the introduction of Deep Belief Networks by Ruslan Salakhutdinov and Geoffry

Hinton in 2006 [42] and the concept of dropout in 2012 [43].

Figure 3.1: LeNet-5 model architecture [20].

If LeNet pioneered the convolutional neural network, AlexNet [5, 44] brought them into the

mainstream. Invented by Krizhevsky et al. in 2012, AlexNet was the first CNN that proved

this technology could perform well on historically difficult challenges such as the ImageNet

[45] dataset. AlexNet was a remarkable jump forward both in terms of structure and training,

using GPU compute to significantly improve training times, enabling the use of larger training

sets and enabling faster design iteration. However, despite its great performance, AlexNet

did not have a solid theoretical base behind some of its architectural choices [2] and for this

reason it is difficult to point out which aspects of the model contributed the most to its success.

Subsequent architectures would explore many different configurations of layers, connections,

and kernel sizes; the rest of this section will focus on some of the most relevant findings.

One of such interesting findings would come in 2014 with the Visual Geometry Group model

or VGG [46], which demonstrated how smaller kernel sizes, like 3× 3, could perform as well or

better than larger kernels used at the time like 5× 5 or 11× 11. This showed experimentally

that the parallel assignment of these small-size filters could produce the same influence in the

receptive field as larger filters, with the added benefit of reducing the computational cost.

In addition, the VGG network regulated its complexity by inserting 1 × 1 convolutions in

the middle of its convolutional layers. This allowed the network to learn linear groupings of
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Figure 3.2: The AlexNet architecture is designed to divide its calculations between
two GPUs. One GPU processes the top part of the figure, while the other handles

the bottom part of the figure, as illustrated in [44].

subsequent feature maps. Moreover, to fine-tune the network, a max pooling layer was added

after each convolutional layer, using padding to preserve the spatial resolution. Overall, VGG

achieved impressive results in both image classification and localisation tasks. However, VGG

did not win the ImageNet competition that year, but planted the seeds for highly influential

models like Residual Net [24].

The winner of the ImageNet 2014 challenge was not the VGG model but instead GoogLeNet

[47], named after LeNet [20], which introduced the concept of the inception module, later

used on the R-CNN [48, 49] object detection model. The inception module or inception block

combined multiple-scale convolutional transformations by employing merge, transform, and

split operations for feature extraction, as illustrated by Figure 3.3. The main hallmark of this

architecture was the improved utilisation of the computing resources inside the network. This

was achieved by a carefully crafted design that allowed for increasing the depth and width of

the network while keeping the computational budget under control. This architecture was 22

layers deep but had an order of magnitude less trainable parameters than AlexNet [5], which

had 14 layers less.

Then, following some of the ideas previously established by VGG, ResNet or Residual Net

[24] explored the usage of deeper architectures with simpler layers. At the time, researchers

found that deeper networks usually performed better than shallower ones, however there were

diminishing returns passed a certain point, even leading to performance degradation. ResNet,

however, was ten times deeper than other networks used at the time but managed to achieve

better results. This was made possible by the residual connection, which allowed ResNet to

avoid losing too much of the original input information in its multiple convolutional layers

while creating a deeper and more performant model. As illustrated in Figure 3.4, the residual

connection skips data over several layers and adds it to the output of subsequent layers,

enabling higher-level features to be preserved further down the model. This idea has been

highly influential in the field of deep learning, and residual connections are now commonly

found in many top-performing models.



30 3. Literature review

Figure 3.3: Inception block architecture [47].

During the last decade, many researchers have worked on particular applications of deep

learning that have enriched the literature and provided inspiration for newer architectures

and applications. The following table presents a summary of some of the most influential

models and milestones in the deep-learning field.

Table 3.1: References on the evolution and growth of the deep-learning techniques
in image-related tasks.

Reference Contribution

Bain, 1873 [34] Introduced neural groupings, a term used to refer to neural

networks, thus laying down the preliminary basis for contem-

porary neural networks.

McCulloch & Pitts, 1943

[32]

Created the first mathematical approximation to a bio-

inspired model of a neural network.
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Table 3.1: Continued from previous page.

Reference Contribution

Hebb, 1949 [33] Defined the Hebbian learning rule and established the foun-

dations for modern artificial neural networks. The Hebbian

rule specifies a variable weight in the connection between two

neurons in proportion to the product of their activation.

Rosenblatt, 1958 [10] Introduced the first perceptron.

Werbos, 1994 [50] Introduced the backpropagation algorithm.

Fukushima, 1980 [41] Defined the Neocognitron model.

Hopfield, 1982 [3] Crated the Hopefield Network.

Ackley et al., 1985 [38] Created the Boltzmann Machine.

Smolensky, 1986 [39] Created the harmonium, later known as the Restricted Boltz-

mann Machine.

Jordan, 1986 [40] Defined and introduced the Recurrent Neural Network

(RNN).

Lecun et al., 1989 [20] Introduced LeNet and pioneered the use of Convolutional

Neural Networks (CNNs).

Hochreiter & Schmidhuber,

1997 [51]

Introduced LSTM, and solved the problem of vanishing

gradients in RNN

Hinton et al., 2006 [52] Introduced Deep Belief Networks and layer-wise pretraining.

Salakhutdinov & Hinton,

2009 [42]

Introduced the Deep Boltzmann Machines.

Hinton et al., 2012 [43] Defined the Dropout mechanism to mitigate overfitting and

improve training efficiency.

Krizhevsky et al., 2012 [44] Introduced AlexNet winning the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) [45, 53] and popularising

the usage of dropout, ReLU and GPU compute. This work

had a very remarkable impact in the field of computer vision

and AI, proving the capabilities of CNNs.

Kingma & Welling, 2022 [54] Introduced the Variational Autoencoder (VAE), a type of

generative model that uses neural networks to learn a compact

representation of data. It consists of two main components:

an encoder network that maps the input data to a latent

representation, and a decoder network that reconstructs the

input data from the latent representation.

Simonyan & Zisserman,

2015 [46]

Experimented with deeper neural networks and smaller ker-

nels that reduced the computational cost of their VGG model.

This work would go on to inspire other very influential

architectures and ideas.
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Table 3.1: Continued from previous page.

Reference Contribution

Szegedy et al., 2014 [47] Introduced GoogLeNet along with the concept of blocks with

heterogeneous layers and operations. Moreover, it inspired

several improved versions of the architecture [55–57].

Goodfellow et al., 2014 [58] Introduced the Generative Adversarial Network (GAN), a

class of generative model that uses two neural networks to

generate new data samples that are similar to a training

dataset. The two networks compete to improve their per-

formance, where one generates new images similar to the

dataset, and the other trains to detect those newly generated

images. These networks create a feedback loop that improves

the generative capabilities of the resulting model.

He et al., 2015 [24] Introduced the residual connection and ResNet, enabling

deep-learning models to go deeper.

Szegedy et al., 2016 [57] Combined the inception modules with ResNet, introducing

the concept of residual links.

Vaswani et al., 2017 [23] Introduced the Transformer architecture, establishing the

foundational mechanism for many well-known natural lan-

guage processing (NLP) models, including BERT [7] and GPT

[6, 59, 60].

Huang et al., 2018 [61] Introduced DenseNet and the concept of dense connectivity,

where each layer is connected to every other layer in a feed-

forward fashion.

Howard et al., 2017 [62] Presented MobileNet a class of efficient models designed for

mobile and embedded vision applications.

Wang et al., 2020 [63] Created HRNet, a convolutional neural network that main-

tained several high-resolution representations throughout the

whole network, allowing the model to better capture fine-

grained details in images.

Dosovitskiy et al., 2020 [27] Introduced the Vision Transformer (ViT), using the well-

known transformer architecture for image processing.

Liu et al., 2021 [28] Modified the Vision Transformer by using a shifted window

approach to reduce computational cost while improving the

receptive field and performance of the original model.

Liu et al., 2022 [64] Introduced ConvNeXt, a new convolutional architecture com-

petitive with the transformer-based models.
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Figure 3.4: Diagram depicting a residual connection [24].

3.1.2 Transformers in vision: Modern deep-learning computer vision

Computer vision tasks during the 2010’s decade have experienced great advancements, mas-

sively improving the performance of tasks such as image classification, segmentation, colouri-

sation, reconstruction, among many others. These developments have in the majority of

cases made use of CNNs, which have been one of the more dominant architectural fixtures

in the space. During the same period, the field of natural language processing saw a similar

evolution mostly relying on recurrent neural networks. However, in 2017, the development

of the Transformer [23] would mark a significant architectural milestone and become the

dominant backbone architecture for language processing tasks. This development has sparked

the creation of models such as BERT [7] or GPT [6, 59, 60] that have made a significant

cultural impact on the mainstream public.

Remarkably, despite the disparity of tasks, the transformer architecture was adapted for

vision tasks in the 2020 article titled "An Image is Worth 16x16 Words: Transformers for

Image Recognition at Scale" [27], demonstrating the great flexibility of its architecture. This

adaptation left most of the original [23] transformer structure intact, only adding a preliminary

encoding step to convert images to tokens. The Vision Transformer (ViT) [27] was proven to

perform on par or better than contemporary CNN-based models and spawned many derivative

works [28, 65–77] adapting the technique for particular applications or proposing improvements

at the architectural level.

Except for the initial image encoding stage, in which the image is cut into patches and then

treated as tokens, the Transformer architecture introduces no image-specific inductive bias

and is capable of analysing scenes regardless of scale. These facts enable the transformer

to outperform standard ResNets by a significant margin given a large enough model and

dataset. At the same time, not having these inherent biases generally means that Transformers

require larger datasets to be trained well enough to outperform the more specialised CNN-based
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models.

However, the Transformer has not completely taken over the computer vision field, and some

CNN-based or hybrid models have been introduced to rival the performance of transformer-

based models [64, 78]. Moreover, the evolution of the transformer-based models has advanced

towards hierarchical transformers [28] that introduce ideas resembling CNN’s that make vision

transformers viable backbones for vision tasks other than image classification. Convolutional

neural networks still offer very compelling properties and are very unlikely to disappear.

In the last few years since the ViT introduction the debate [79–84] to determine which backbone

is better for image tasks has been active with authors claiming one or the other architecture is

the superior choice. Many of these comparisons show intense competition with slim victories,

which indicates that the debate is far from settled.

3.2 Video motion magnification

Video Motion Magnification (VMM) is a task included in the field of computer vision whose

goal is to detect and magnify movements in video sequences. These techniques have been used

to detect physiological parameters on the human body [85–89] or animals [90], to detect and

analyse vibrations in machines or buildings [91–96], to enhance movements under a microscope

[97, 98], or even to read microexpressions and detect AI generated videos [99, 100]. These

techniques are often described as microscopes for motion [101] as they produce videos in which

very subtle motions and deformations become clearly visible aiding in the visualisation of

motions that otherwise could have gone unnoticed.

Unlike traditional microscopes reliant on optics, motion magnification techniques are software

solutions that harness the inherent properties of video sequences. Thus allowing the application

of these techniques without the need for highly specialised equipment beyond a video camera. In

this sense, motion magnification techniques offer a cost-effective and low-maintenance solution

for the diagnostic of dynamic scenes.

Techniques for motion magnification can be approached from two different theoretical frames

of reference, the Lagrangian and the Eulerian approaches. On the one hand, the Lagrangian

approaches use optical flow techniques to track movement in the scene and extrapolate those

movements to generate a magnified video. Optical flow techniques [102] are algorithms used to

estimate the motion of objects in visual scenes by analysing the changes in brightness patterns

over time. These techniques generate a description of both the area of the image experiencing

motion and the velocity of that motion. Optical flow calculates and tracks the movement

of each pixel between successive frames, providing a feasible way to obtain the trajectory of

objects. On the other hand, Eulerian techniques measure and amplify variations over time
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based on pixel-wise changes with fixed spatial locations. This approach focuses on changes

at specific locations in the video frame along the temporal dimension, and is well-suited for

visualising smaller movements and changes. These approaches are named after the Eulerian and

Lagrangian descriptions of motion in fluid dynamics, which focus on describing the behaviour

of specific locations in space or individual fluid parcels, respectively.

Figure 3.5: Overview of the Eulerian video motion magnification framework,
adapted from [103]. The Eulerian Video Magnification framework processes an input
video sequence by decomposing it into distinct spatial frequency bands. A temporal
filter is applied uniformly to all bands, which are then amplified by a factor of α

and recombined with the original signal. The resulting output video is generated by
collapsing the amplified bands. The selection of temporal filter and amplification

factors can be customised to accommodate various applications.

The concept of video motion magnification was introduced in 2005 by Liu et al. [101].

Their work presented a Lagrangian perspective to amplify subtle motions in video sequences,

following particles over time and analysing feature point trajectories. The technique proposed

a procedure to automatically group several pixel clusters based on position, intensity, and

motion. Then, using a motion similarity measure, motion groups are defined based on their

trajectories over time and instantaneous velocities, allowing the system to determine which

clusters should be magnified and by how much.

This technique pioneered motion magnification techniques, however presents two notable

shortcomings with respect to more modern Eulerian approaches. The first is that optical

flow techniques tend to be computationally expensive with respect to the more modern linear

and phase-based Eulerian approaches. And the second flaw is that magnification quality is

not that good compared to Eulerian techniques, especially struggling in areas with object

occlusion or complex motion. This often results in blurry magnification and frequent visual

artefacting. Optical flow is not optimal for tracking small and sub-pixel motions, and it is often

better employed in object detection and tracking, image dominant plane extraction, movement

detection, robot navigation, or visual odometry [102, 104–108]. For this reason, subsequent

developments in motion magnification evolved towards Eulerian approaches.
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Within the Eulerian classification, three different types of techniques can be found: linear,

phase-based, or learning-based, which were developed chronologically in that order. The first

linear video motion magnification approach was introduced by Wu et al. (2012) [103] and

offered an efficient and straightforward method for magnification based on image filtering. The

structure of the model is shown in Figure 3.5. This technique involves decomposing the input

video into spatial frequency bands using a Laplacian image pyramid, applying a temporal filter

to all bands to remove frame noise, and magnifying the filtered spatial bands by a user-specified

magnification factor. The resulting magnified signal is then combined with the original signal

obtained during the decomposition step, and the spatial bands are collapsed to render the

magnified output video.

Figure 3.6: The phase-based approach manipulates motion in videos by analysing
the signals of local phase over time in different spatial scales and orientations. The
video is decomposed using complex steerable pyramids to separate the amplitude of
local wavelets from their phase (a). The phases are then independently temporally
filtered at each location, orientation, and scale (b). Optionally amplitude-weighted
spatial smoothing can be applied to increase the phase signal-to-noise ratio, which
has been empirically shown to improve results. Then temporally-bandpassed phases
are amplified or attenuated (d) before the video is reconstructed (e). Adapted from

[109].

This linear approach is characterised by using first-order Taylor expansion, which reduces

the computational cost with respect to the Lagrangian method and improves performance.

However, this method still presents some downsides, as linear Eulerian approaches tend to

suffer when dealing with high magnification factors or large input motions. These limitations

may lead to incorrect noise filtering causing noise magnification, and ultimately provoking a

significant degradation in output image quality. Zhang et al. [110] proposed an alternative

approach to address the limitation posed by large motions in video magnification by utilising

a temporal processing technique based on the second-order Taylor series expansion, effectively

converting the model from motion magnification to acceleration magnification. While this
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approach somewhat alters the goal, this technique may be used for similar applications and

thus it is worth mentioning.

On the other hand, phase-based approaches address some of these limitations presented by

the linear techniques. Wadhwa et al. [111] introduced a new approach offering better outputs

and a more robust behaviour against noise. This new technique applies filtering to the signal’s

phase at various spatial orientations and scales. Unfortunately, this improved method presents

the downside of being more computationally expensive than the linear solutions. Figure

3.6 illustrates the frame decomposition process using complex steerable pyramids, followed

by the temporal band-pass filtering, the phase manipulation process, and finally the video

reconstruction step. The goal of this process is to reconstruct a video where the phase has

been magnified but the magnitude is left unaltered. Subsequent developments by Wadhwa

et al. [109] would focus on reducing the computational cost of the phase-based method while

keeping image quality performance constant. These improvements would allow phase-based

methods to be applied in real-time applications.

Figure 3.7: Oh et al.’s learning-based architecture, with a model overview pane on
the left and its detailed components on the right. Adapted from [112].

Finally, the last branch of Eulerian techniques to be developed were the learning-based

techniques [112]. Instead of defining custom application-specific filters, these techniques rely

on learning-based approaches such as CNNs or Transformers to process the video sequences,

as shown in Figure 3.7. In other words, learning-based techniques learn the filters from

motion magnification data instead of implementing hand-designed filters out-of-the-box. This

enables state-of-the-art output image quality without the explicit need for temporal band-pass

filters that restrict the frequency of the magnified motions. Moreover, these techniques retain

the capability of using a user-configurable magnification factor. However, these models are

computationally expensive and can not be used in real-time applications.
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3.3 Structural health monitoring

Structural Health Monitoring (SHM) is a discipline that aims to monitor the condition and

performance of structures, such as bridges, buildings, wind turbines, pipelines, railways, etc.

By employing sensors, data acquisition systems, data analysis methods, and software tools,

SHM detects and identifies damage, deterioration, anomalies, or changes in the structural

behaviour. The main objectives of SHM techniques is to enhance the safety, reliability, and

efficiency of structures and infrastructure. For this reason, the main key issues of concern

for the SHM discipline can be broken down into data acquisition, data processing, damage

detection, damage diagnosis, and damage prognosis.

SHM aims to design automated processes that protect an entire structure or a significant part

of it automatically or with very little human intervention, and thus, these systems must be

capable of damage detection. Damage detection can be loosely defined as the capacity to

detect variations in the nominal operating parameters of a structure. Nevertheless, modern

understandings of SHM tend to rely on the definitions formalised by Rytter [113] that defined

four levels of damage identification. Level 1 establishes the capacity to yield a qualitative

indication of the presence of damage in a structure, also known as damage detection. Level

2 methods, should at least be able to provide information about the probable location of the

damage in addition to detecting it. Level 3 must additionally provide information about the

size or magnitude of the damage. Finally, level 4 methods inform about the actual safety of

the structure given the reported state. The four levels can be further summarised as detection,

localisation, assessment, and consequence prediction.

Other authors [114] have expanded this definition by adding two additional levels for self-

diagnosis and self-healing, meaning that the detection, localisation and quantification would

be done by the structure itself as well as being able to repair itself in case of damage.

Further, Farrar et al. [115, 116] defined the SHM process in terms of a four-step statistical

pattern recognition paradigm. Being defined as a process consisting of four stages:

1. Operational evaluation

2. Data acquisition, normalisation and cleansing

3. Feature selection and information condensation

4. Statistical model development for feature discrimination

Operational evaluation is the process by which limitations are set on what will be monitored

and how the monitoring will be accomplished. This evaluation tailors the damage identification
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process to features that are unique to the system being monitored and tries to take advantage

of unique features of the damage that is to be detected.

Data acquisition involves the selection of the excitation methods, the sensor types, and the data

acquisition storage and transmittal hardware. This process is yet again application specific,

and economic considerations play a major role in these decisions. This is also one of the major

focuses of this thesis, proposing a cost-efective alternative for vision-based data acquisition.

Feature extraction and information condensation is the area of SHM that receives the most

attention, defining the characteristic markers and data processing pipelines [117] to reliably

diagnose a structure.

Finally, the fourth stage consists of the statistical model development for discrimination

between features from the undamaged and damaged structures [118]. Statistical model

development is concerned with the implementation of the algorithms that operate on the

extracted features to quantify the damage state of the structure. And is closely related to

the levels of damage defined by [113].

SHM systems not only aim to provide advantages in safety but additionally can reduce

maintenance costs and inform engineers about the actual performance of structures so that they

can be contrasted against design assumptions and inform improvements or new constructive

techniques. Reductions in maintenance costs are linked to the capacity of these systems to

provide early warning for deterioration and damage, allowing for proper maintenance planning

and scheduling. Predictive maintenance can significantly cut down costs by reducing the

frequency in which large costly repairs must be performed, since addressing problems early

avoids unnecessary deterioration. Moreover, proper maintenance planning reduces the costs

associated with emergency maintenance operations, and of course increases safety.

SHM applications target many subfields of engineering such as the civil, aeronautical, or

automotive sectors, presenting several challenges and opening a wide field of research for

measurement technologies and damage detection algorithms. One of the most popular

approaches to structural diagnosis are vibration-based SHM techniques.

3.3.1 Vibration-based structural health monitoring

Vibration-based Structural Health Monitoring (VSHM) [115, 119–137] is a subfield within SHM

that encompasses a range of non-destructive and non-invasive techniques for monitoring the

health of structures. These techniques collect and analyse the dynamic responses of structures

to determine their inherent properties and assess their current state. Structures and objects

have natural modes of vibration that are affected by their geometry and material properties.

These mechanical properties can be easily measured and provide valuable information for SHM

purposes.
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When the vibrational signature of a structure changes, it can be inferred that either the

structure itself or the boundary conditions have changed. This allows VSHM methods to

detect damage even when there is no sensor near the damaged zone. However, this is not a

trivial task, as variations in the loading of the structure or changes in the ambient temperature

will also affect its dynamic response [138–140]. Therefore, researchers in the field of VSHM

have developed multiple methods for capturing and analysing these dynamic responses.

VSHM methodologies can be classified into three different domains: time, frequency, and the

modal domain. These approaches offer a trade-off between post-processing and the physical

input data required [137].

Time domain methods examine the vibration response of a structure to identify the presence

of damage. These methods can be further subdivided into two groups: non-parametric

methods, based on correlation functions of the vibration responses of the structure [141–145];

and parametric methods which generate a model from parameters obtained by the vibration

responses. An example of a parametric method is [146], based on the use of transmissibility

in the time domain. This method takes the discrepancy of transmissibility of the structure

response before and after damage as the basis for finite element model updating. Then, the

damage is located and quantified through iteration by minimising the difference between the

measurements at the sensor location and the reconstruction response extrapolated by a finite

element model.

Frequency domain methods [136, 147–155] on the other hand, use the frequency response

of the structure directly as a feature for damage identification, correlating changes in the

Frequency Response Function (FRF) with physical structural variations. Therefore, comparing

the different damage scenarios with the undamaged conditions results in damage-sensitive

features.

Finally, modal domain methods extract modal parameters, such as natural frequencies, mode

shapes, and damping ratios, by means of classical techniques. The modal parameters can be

extracted by input-output or only-output measurements [133]. The main idea behind modal-

based damage detection is that damage causes changes in the stiffness of a structure, which in

turn affects its dynamic response. When damage occurs, a frequency shift appears, therefore

damage can be detected by relative changes in the natural frequencies [156–162].

3.3.2 Video motion magnification for structural health monitoring

SHM systems are very powerful tools to ensure the safety and reliability of infrastructure. These

systems often employ contact sensors installed on the target structures to detect changes in the

material and geometric properties, providing key information about structural performance.
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However, despite their benefits, most buildings and civil infrastructure are not instrumented

and continuously monitored.

The adoption of SHM systems is hindered by several drawbacks. The first barrier to adoption

is complexity, SHM systems are complex and multidisciplinary systems that require expertise

to install, maintain, and operate. On top of that, a lack of standardisation for these systems,

further complicates the task to select the suitable equipment for a particular deployment, in

part because of the different monitoring needs a target structure might present depending on

their design specifications. Moreover, the lack of awareness of the existence of SHM systems

and their benefits also limits the adoption of these systems in certain sectors.

However, one of the most recognized drawbacks is cost. Not only the initial deployment of a

full-scope and long-term SHM system incurs in significant costs, but also its operational and

maintenance costs play an important role in the decision to adopt the use of these systems.

It is generally the case that a correlation exists between the cost of an SHM system and its

monitoring scope, the larger the structure, the costlier the system. Moreover, the costs are not

limited to the sensors and their installation, peripheral systems must also be considered, such as

the hardware and software to process and analyse measured data, or the storage infrastructure

to safely archive data long-term for future reference and inspections. In this sense, the cost

of instrumentation is only a fraction of the overall costs, as the installation and long-term

maintenance of a remote monitoring system can represent upwards of six times the cost of

instrumentation [163].

Currently, there is a consensus that the benefits of SHM exceed its costs [163], but in many

cases these paybacks are difficult to estimate, further disincentivising their use by infrastructure

operators.

Non-contact methods of measurement could help to avoid some of these drawbacks and are

being researched for the purposes of modal analysis. Vision-based methods are one of such

methods of interest, offering the possibility of using video cameras to monitor structures at a

distance, with the possibility to cover large structures with much fewer sensors than using

contact-based techniques. Using video cameras also means that a wide range of options

regarding specifications, optics, and prices are available to satisfy different applications.

Motion can be quantified using a number of different image processing techniques such as edge

detection or feature detection. However, these methods are most often not accurate enough

for VSHM. In this sense, motion magnification offers an interesting research path towards the

usage of vision-based techniques for vibration-based monitoring [91, 93, 164–191]. In 2014

Chen et al. [181], introduced such idea using phase-based video motion magnification on a

laboratory experiment where a cantilever beam was instrumented with accelerometers and

laser vibrometers and compared against the results of the motion magnification based system.

A very similar follow-up study [93] also described the process of visualising the operating
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deflection shapes of the test structure, demonstrating the capabilities of their proposed system.

Other authors also experimented with the capacity of motion magnification techniques for

obtaining vibration modes on more complex structures such as the well-known three-story

building benchmark [116, 186], or with structures outside of the laboratory, using motion

magnification techniques to measure full-scale buildings and bridges [94, 95, 166, 192].

3.4 Literature gaps

This thesis examines the intersection of deep learning, motion magnification, and VSHM to

add value to the existing work in the field. While some authors have used motion magnification

to diagnose structural issues, none attempted [193] to use the latest state-of-the-art learning-

based method introduced by Oh et al. [112]. Accordingly, the aim of this thesis is to develop

and validate an algorithm built on learning-based video motion magnification techniques for

use in structural condition assessment and damage detection, harnessing the superior image

quality of state-of-the-art motion magnification.

Since the introduction of learning-based video motion magnification in 2018 the computer

vision field has made major strides in several image-related tasks such as generation [194],

super-resolution [195, 196], denoising [197], or inpainting [198]. These improvements have

made use of the latest architectural stategies such as the Vision Transformer (ViT) [27] or the

Swin Transformer [28]. The application of new state-of-the-art ideas to learning-based video

motion magnification has the potential to yield superior results applicable to VSHM in the

form of new deep-learning models with superior magnification quality.

Moreover, the vision-based VSHM literature lacks publicly available tooling for ensuring

replicability and reproducibility of the existing studies. Based on the objectives of this thesis

and the mentioned literature gaps, there is a clear need for the development of open-source

tools that leverage advanced learning-based techniques.

Finally, the leveraging of these gaps in the literature should create the need for the validation

and verification of the developed algorithms and tools for their intended purpose of obtaining

the dynamic response, thus aligning with the stated objectives of this thesis.
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4
Shifted window transformer based

video motion magni�cation

This chapter presents the technical advances in the field of video motion magnification methods

developed in the context of this thesis and compares the results within the current video motion

magnification landscape.





4. Shifted window transformer based video motion magnification 45

As explained before, Video Motion Magnification (VMM) is a computer vision technique

that magnifies small motions in a video to reveal previously invisible or unseen movement.

These techniques can be divided into two general approaches regarding movement tracking,

Lagrangian methods and Eulerian methods. The Lagrangian approaches rely on motion

tracking or optical flow to isolate motion prior to magnification, while Eulerian methods observe

changes in fixed regions of pixels instead of tracking features in time and space. It is generally

understood that Eulerian methods require less computing power and produce fewer visual

errors, especially on regions with occlusion boundaries or when magnifying complex motions

[103].

VMM can be used in structural health monitoring to detect small movements or deformations

in structures that may not be visible to the naked eye. By magnifying these small motions,

potential issues can be identified before they become major problems. For example, VMM

could be used to detect cracks in a bridge or monitor the movement of a building to ensure its

structural integrity.

More advanced techniques, such as the ones discussed in the following chapter, use VMM to

extract the dynamic response of structures. Those dynamic responses can then be analysed

using advanced signal processing techniques, such as damage indicators [136], to diagnose

structural problems in areas where no cracks or defects might be visible with or without

magnification. In those applications, a sensible choice is to use Eulerian-based methods because

they produce fewer artefacts than a Lagrangian approach. When using VMM for SHM the

goal is always to yield the best quality signal possible for the subsequent analysis.

This chapter presents the technical advances developed in this thesis in deep-learning-based

video motion magnification with respect to prior art, therefore it is important to establish

the context of these techniques before building on those concepts. As previously mentioned,

structural health monitoring techniques require good quality and reliable signals to produce

accurate damage detection and diagnosis. Consequently, the choice of a method is conditioned

to a technique capable of yielding the best image quality possible when dealing with complex

movements.

Learning-based video motion magnification (LB-VMM) is an Eulerian magnification technique

that abandoned the previous approach of manually designing filters for spacial decomposition

and motion isolation in favour of learning those filters using CNNs. This technique was the

subject of study in the early stages of this thesis to verify its reliability for SHM applications

[193], as it was the top-performing video motion magnification technique in terms of output

image quality [112]. Nevertheless, its reliance on additional temporal filtering to improve image

quality occasionally produced errors in magnification. While it is possible to obtain acceptable

results without temporal filtering, its use improves the output frame’s clarity as it removes

some noise and motion prior to learning-based magnification.
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The performance degradation is especially pronounced when using temporal filters over small

motions, especially when using large magnification factors. In some cases, the method appears

to be blind to small motions resulting in patchy magnification, creating an effect where some

patches get occasionally magnified as soon as their motions get large enough to cross the

threshold for the model to detect them. This issue limits the usefulness of learning-based

magnification methods employing temporal filtering, and therefore should not be used when

attempting to obtain reliable dynamic response signals.

Advances in deep learning and computer vision have enabled the improvement of the learning-

based technique to obtain better quality results without the need to use temporal filtering. This

technique was developed as part of this thesis and has been named Shifted Window Transformer

Based Video Motion Magnification (STB-VMM). This technique relies on exploiting the

latest advances in vision-based transformers to replace the fully convolutional structure of

its predecessor.

4.1 Related work

CNNs have been a mainstay of the Computer Vision (CV) field for the last decade, with many

of the top-performing models having made extensive use of them [5, 20, 199]. This period

roughly started after Krizhevsky et al. [5] won the ImageNet Large Scale Visual Recognition

Challenge [45, 53] (ILSVRC) on September 30th 2012, which led to a surge in publications that

employed CNNs and GPUs to accelerate deep learning. CNNs use filters to generate feature

maps that summarise the most relevant parts of an image. These filters capture important

local information through the convolution operation and, when combined with multi-scale

architectures [63, 200], produce rich feature maps that can effectively represent an image’s

content, both in a local and global context.

However, the recent irruption of the transformer architecture, which has demonstrated its

massive potential in tasks such as natural language processing, with applications like ChatGPT

[6, 7, 59, 60], has changed the computer vision landscape as well. The Vision Transformer (ViT)

[27], which, employs the attention mechanism has demonstrated state-of-the-art performance

in many CV tasks.

The attention mechanism can be described as mapping from a query and a set of key-value pairs

into an output. The output, represented in vector format, is computed as a weighted sum of the

values, where the weight assigned to each value is computed by a compatibility function taking

into account the query and the corresponding key [23]. The transformer was the first model to

rely exclusively on self-attention to compute representations of its input and output without

using sequence-aligned recursive neural networks or convolution operations. Unlike CNNs,

transformers do not present translation invariance or a locally-restricted receptive field, instead
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they offer permutation invariance. Said feature enabled NLP models to infer relations between

words and ideas much further into a text than previous recurrent models could. However,

CV applications require the processing of grid-structured data, which can not trivially be

processed by a transformer. The ViT [27] overcame the challenge of processing grid-structured

data by converting it into sequential data by dividing the image into patches. These patches

are then flattened into vectors and embedded into a lower dimension before being summed

with positional embeddings and fed as a sequence to a standard transformer encoder. Image

patches essentially become sequence tokens just like words are when working in NLP, in fact,

ViT uses the exact same encoder described in [23].

Microsoft researchers later improved upon the ViT with the SWIN transformer [28], a

hierarchical vision transformer that uses shifted windows. This work further refined the

solution to adapt the original transformer from language to vision. The SWIN transformer

addressed issues caused by large discrepancies in the scale of visual entities while limiting self-

attention computation to non-overlapping local windows while still allowing for cross-window

interaction. This limitation on the scope of self-attention significantly reduced computational

complexity, which scales quadratically with respect to image size, allowing for processing

higher-resolution images that were previously unmanageable. Further developments in the

CV field have implemented the SWIN transformer for various tasks achieving state-of-the-art

performance [65, 201, 202].

Inspired by the recent prominence of the transformer and its success in many CV problems

such as image classification [27, 28, 203–207], object detection [208–210], segmentation [204,

211, 212], crowd counting [213, 214] and image restoration [215–217], Liang et al. [65] proposed

a new state-of-the-art image restoration model based on the Swin transformer [28]. The

SwinIR model consists of three modules: a shallow feature extractor, a transformer-based deep

feature extractor, and a high-quality image reconstruction module. This structure provides

excellent performance in various image restoration tasks such as image super-resolution, JPEG

compression artifact reduction, and image denoising. These applications are of particular

interest when working with VMM because current state-of-the-art methods can be negatively

affected by noisy input images, resulting in noisier and blurrier results at large magnification

rates. This phenomenon occurs due to noise not being properly filtered beforehand, causing it

to be magnified along with the motion in the magnification stage.

STB-VMM borrows its architecture from the blueprint established by previous Eulerian

techniques (see Table 4.1), which are divided into three subsystems in charge of spatial

decomposition, motion isolation and manipulation, and representation denoising. However,

it also introduces new ideas that make use of the Residual Swin Transformer Block (RSTB)

[65] to improve the filtering on those subsystems. The RSTB (see Figure 4.1) is one of

the main building blocks of the feature extractor and image reconstructor subsystems of the

model that combines multiple Swin Transformer Layers (STL) [28] with convolutional layers
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to compound the benefits of the spatially invariant filters of the convolutional layers with the

residual connections that allow for multilevel feature processing.

Table 4.1: Motion magnification techniques summary table. Adapted from [66,
112].

Method Liu et al.
[101] (2005)

Wu et al.
[103] (2012)

Wadhwa et al.
[111] (2013)

Wadhwa et al.
[109] (2014)

Zhang et al.
[110] (2017)

Oh et al. [112]
(2018)

Lado et al.
[66] (2023)

Spatial de-
composition

Tracking, opti-
cal flow

Laplacian pyra-
mid

Steerable filters Riesz pyramid Steerable filters Deep
convolution
layers

Swin
Transformer

Motion iso-
lation

- Temporal band-
pass filter

Temporal band-
pass filter

Temporal band-
pass

Temporal
bandpass filter
(2nd order
derivative)

Subtraction or
bandpass filter

Subtraction

Representation
denoising

Expectation-
Maximisation

- Amplitude-
weighted
Gaussian
filtering

Amplitude-
weighted
Gaussian
filtering

Amplitude-
weighted
Gaussian
filtering

Trainable
convolution

Swin
Transformer

The Swin transformer layer partitions an image of dimensions H×W ×C into non-overlapping
HW
M2 local windows using an MxM sliding window that then computes its local attention,

effectively reshaping the input image into HW
M2 ×M2 ×C. The main difference with respect to

the original transformer layer [23] lies in the local attention and the shifted window mechanism.

For a local window feature F ∈ R
M2

×C , the query, key, and value matrices Q, K, and V

∈ R
M2

×d are computed as

Q = FWQ; K = FWk; V = FWV (4.1)

where WQ, WK , and WV are the learnable parameters shared across different windows, and d

is the dimension of Q, K, and V . Therefore, the attention matrix is computed for each window

as

Attention(Q,K, V ) = softmax(
QKT

√
d

+ P )V (4.2)

where P is the learnable relative positional encoding. Computing the attention mechanism

multiple times yields the results of the Multi-head Self Attention (MSA), which are then passed

on to a Multi-Layer Perceptron (MLP). Therefore, the whole STL process can be summed up

like so

F = MSA(LayerNorm(F )) + F (4.3)

then

F = MLP (LayerNorm(F )) + F (4.4)

where the MLP is formed by two fully connected layers with a GELU activation layer in

between.
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(a) Swin Transformer Layer (STL)

(b) Residual Swin
Transformer Block

(RSTB)

(c) Deep Feature Ex-
tractor / Mix Magnified

Transformer Block

(d) Manipulator

Figure 4.1: STB-VMM’s fundamental architectural building blocks [66].

4.2 Architecture overview

STB-VMM’s architecture consists of three big functional blocks named: feature extractor,

manipulator, and reconstructor. A general overview of the model is shown in Figure 4.2, where

the flow of data through the model can be observed. Like Oh et al.’s learning-based method

[112], STB-VMM takes in two frames and returns a single magnified frame.

At a high level, the architecture works by sequentially applying each of the three aforementioned

functional blocks. The feature extractor takes in two frames (IA, IB), and is tasked with

decomposing the input images into high-quality abstract representations of those frames.

These abstract representations include intrinsic properties of the images such as shape,

texture, lighting, edges, etc. The extraction is carried out in two stages, first with a shallow

feature extractor and then a deep feature extractor that refines the results. In between both

stages, a residual connection is placed so that the shallow feature extractor can contribute

with less processed data further down the network, avoiding information loss. Next, the

manipulator receives the abstract representations of the input frames and magnifies the

motion by multiplying the difference between the two feature spaces by the user-selectable

magnification factor α. Finally, the reconstructor takes the conjoined manipulated feature

space that results from the manipulator and recomposes it back into a frame, effectively undoing

the encoding produced by the feature extractor and obtaining a magnified 3 channel image.

Taking a closer look at the model, it can further be described by following the sequential
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Figure 4.2: Architecture overview of the proposed model [66].

transformations of two sample frames of a target sequence [IA, IB ] ∈ R
H×W×Cin , where H is

the height of the image, W is the width of the image and Cin represents the number of input

channels. The convolutional shallow feature extractor (GSF ) maps high-level features into a

higher dimensional feature space, thus providing early local feature extraction (FAS , FBS) and

leading to a more stable optimisation and better results [218].

[FAS , FBS ] = GSF ([IA, IB ]) (4.5)

Next, the deep feature extraction module (GDF ) takes the features from the previous step and

processes them further to obtain the final motion representations. This module has N Residual

Swin Transformer Blocks (RSTB) connected in series.

[FAD, FBD] = GDF ([FAS , FBS ]) (4.6)

The manipulator (GM ) receives the resulting motion representations of both frames and

calculates the difference between the feature spaces, magnifying them by multiplying by the

user-defined magnification factor α.
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GM (FAS +FAD, FBS +FBD) = (FAS +FAD)+h(α · t(((FBS +FBD)− (FAS +FAD)))) (4.7)

Note that t(·) is a 3× 3 convolution followed by a ReLU activation function, and h(·) is a 3× 3

convolution followed by a 3× 3 residual block.

FM = GM (FAS + FAD, FBS + FBD) (4.8)

The conjoined manipulated feature space of both frames is then moved to the Mixed Magnified

Transformer Block (MMTB) (GMMTB) formed by N RSTB blocks. This stage enables the

attention mechanism to affect the combined magnified features of both frames, resulting in a

more coherent result after reconstruction.

FMMTB = GMMTB(FM ) (4.9)

Finally, a convolutional block (GR) performs the inverse operation of the initial feature map-

ping, conducted by the shallow feature extractor (GSF ), and restores the image representation

to a magnified frame (IŶ ).

IŶ = GR(FM + FMMTB) (4.10)

4.3 Modes of operation

The STB-VMM model was designed to perform inference on a full video sequence, with the

modes of operation describing the order in which the input frames IA and IB are fed into the

model to obtain the desired results. The approach can be applied to any video sequence with

two or more frames, regardless of the time scale between them. Sequences can be processed in

either static or dynamic mode.

The static magnification mode uses a reference frame against which all subsequent frames in

the sequence are magnified. This mode adheres more closely to the traditional definition of

motion magnification and uses the first frame of the sequence as a reference for all subsequent

movements. It can be mathematically expressed as model(I0, It), where t is the frame number

that increases sequentially with time. In contrast, the dynamic mode magnifies the difference

between two consecutive frames [model(It, It+1)], thus magnifying the velocity between each

frame.
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These modes do not require any changes to the network; instead, they change the order in

which the input frames are fed to the model. It is important to note that the meaning of the

magnification factor α differs between the two modes.

Additionally, Oh et al. [112] in its learning-based video motion magnification model, proposed

one more operation mode that used temporal filtering to mitigate the effects of unwanted

motion and noise. The filtering was applied in the manipulator to produce temporally-filtered

motion-magnified frames similar to those produced by classical techniques. However, this

temporal mode can cause blindness to small motions, resulting in patchy and inaccurate

magnification. While it is theoretically possible to incorporate a temporal mode into the STB-

VMM model, its magnification results do not suffer from excessive noise or blurring, rendering

temporal filtering unnecessary.

4.4 Training

The model is trained end-to-end using an L1 loss function between the network output Î

and the ground-truth magnified frame I. An additional L1 loss function is also used as an

intermediate regularisation loss to improve the robustness of the feature extraction process.

This loss is calculated by comparing the altered c frames from the chosen dataset against the

unperturbed frames once both have undergone feature extraction. The resulting regularisation

loss is then added to the overall end-to-end loss of the entire network with a weight coefficient

λ set to 0.1.

However, obtaining magnified image pairs in the real world is a very difficult task, if not

impossible. Fortunately, this problem was already solved by Oh et al. in their 2018 work [112]

in which they proposed a procedurally generated dataset.

To obtain a suitable method for generating training data for motion magnification applications,

Oh et al. [112] procedurally generated 200,000 images that were carefully constructed using

images from the MS COCO dataset [219] over which 7,000 segmented objects from the PASCAL

VOC dataset [220] were overlaid. The segmented objects were scaled, rotated, moved and

occluded with careful consideration for consistency between magnified and unmagnified pairs.

Each training sample of the resulting dataset contains between 7 and 15 foreground objects

randomly distributed and scaled from their original size. Additionally, variants with altered

contrast, blurriness, and complex motion are also present to improve model generalisation on

difficult magnification scenarios.

This dataset has been used to train and benchmark STB-VMM. The results in the following

section show the differences in image quality between STB-VMM and LB-VMM [112]. Using
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Figure 4.3: Sample frames of the training dataset [112]

the same training dataset, this allows for a better comparison and justifies the use of pre-

trained weights made available by Oh et al.
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4.5 Results

STB-VMM was designed to improve upon the image quality of previous techniques by providing

better noise filtering, resulting in higher-quality magnified images with fewer artefacts and

blurring while maintaining more stable edges. These features are critical for reliable tracking

in SHM applications.

This section presents a comparison between STB-VMM and LB-VMM in terms of image

quality. The comparison is limited to these two methods for two reasons. First, only LB-

VMM produces results comparable to STB-VMM because both methods are capable of full-

band motion magnification, meaning they can magnify the entire motion spectrum in a single

inference pass. In contrast, traditional methods require limiting the motion bandwidth to filter

noise prior to magnification. Therefore, those methods can not produce comparable results to

the learning-based methods. Since no other methods besides the ones based on deep learning

are capable of full-band magnification, comparisons with other methods would not accurately

reflect actual performance. Second, since LB-VMM has already been proven to be the state-of-

the-art model in video motion magnified image quality, there is no need to test against other

methods.

The comparison is divided into two parts: a qualitative comparison and a quantitative

comparison. The qualitative comparison involves visually comparing the results of the two

methods to assess their performance in terms of image quality, noise filtering, and preservation

of edges. The quantitative comparison, on the other hand, uses objective metrics to evaluate

the aesthetic and technical qualities of the magnified images.

The quantitative comparison of image quality, or Image Quality Assessment (IQA), is a complex

topic that involves many variables and methodologies. IQA can be divided into three main

categories based on whether or not they require a reference image: full-reference, reduced-

reference, and no-reference. Referenced algorithms [221–223] require a pristine sample to assess

the quality of a degraded image, while no-reference algorithms [224–227] produce an image score

without any reference. Since we cannot generate an ideally magnified frame, our comparison

method must be based on a no-reference assessment method.

The Multi-scale Image Quality Transformer (MUSIQ) [227, 228] is the chosen method for the

quantitative comparison, allowing us to evaluate the aesthetic and technical qualities of images.

MUSIQ was developed by researchers at Google Research to address some of the limitations of

existing IQA methods. It can process native-resolution images with varying sizes and aspect

ratios and uses a multi-scale image representation to capture image quality at different levels

of context, size, and scale. This makes MUSIQ a powerful tool for assessing the quality of

videos that have undergone motion magnification.
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(a) AC00 (b) AC01 (c) Baby

(d) Building00 (e) Car00 (f) Car01

(g) Crane00 (h) Crane01 (i) Truss00

(j) Wheel00 (k) Wheel01

Figure 4.4: Sample frames of the eleven video sequences used as a benchmark

The subject videos for this evaluation are eleven different benchmark sequences that showcase

interesting motion patterns and examples. These videos include a sequence from the test set

provided by [103] to ground the comparison against other publications. The sequences, of

which a representative frame is shown in Figure 4.4, were captured at 1080p 60fps using a

mid-range smartphone to demonstrate the potential of STB-VMM even when using accessible

video equipment (except in the case of the Baby sequence).

4.5.1 Qualitative comparison

This section compares the visual quality differences that can be observed in the benchmark

sequences presented in Figure 4.4. The comparisons focus on the image quality, with special

attention to edge stability and blurriness, which are the most common downsides introduced

by motion magnification techniques.
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(a) Split frame showing LB-VMM on the left and STB-VMM on the right

(b) LB-VMM (c) STB-VMM (d) LB-VMM (e) STB-VMM

Figure 4.5: Qualitative comparison of the car sequence. Highlighted in the bottom
row of the figure, the car’s coolant reservoir, engine cover, and ventilation slits

demonstrate that STB-VMM results are noticeably sharper and less distorted.

Starting with the Car00 sequence, Figure 4.5 shows a split frame with LB-VMM on the left

and STB-VMM on the right. It can be observed that STB-VMM resolves more detail in

the image while providing the same level of magnification. This is especially apparent in the

vertical grill below the windshield and in the highlighted details below the main image. In the

STB-VMM magnified frame, letters on the decorative engine cover are visible, while in the LB-

VMM version of the frame, those same letters are obscured by intense blurring. This example

presents a particularly challenging situation due to sub-optimal lighting conditions, which can

cause digital images to appear grainier or noisier due to limitations in the camera’s dynamic

range. STB-VMM demonstrates exceptional performance in filtering out noise to produce a

noticeably higher-quality magnified image.

Figure 4.6 on the other hand, seems to be recorded in a low-light environment but does not

seem to show the same blurring issues. Indeed, low light performance depends on multiple

factors such as the camera sensor, the optics, exposure time or digital post-processing. In
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Figure 4.6: Qualitative comparison of the Baby sequence [103]

this case, the lower resolution of the source video helps average out the noise, thus trading

resolution for a clearer image. Nevertheless, the performance of STB-VMM is still visibly

superior in areas like the feet, which appear better defined, or in the less wobbly edges of the

crib when the video is in motion. This last point can be observed statically in the edge of the

crib’s wall closest to the bottom side of the image, where STB-VMM yields a straight line,

while LB-VMM creates small artefacting around it. Additionally, the difference in sharpness

between the two methods is evident in the pacifier, which appears clearer and more well-defined

in the STB-VMM magnified frame.

If we now take a look at a benchmark recorded in much more favourable lighting conditions,

such as the Truss00 sequence, the trend observed so far continues, albeit less pronounced.

Nevertheless, STB-VMM still results sharper overall, resolving certain areas more convincingly

than its learning-based counterpart. The tubing and wiring on the ceiling are one such example,
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Figure 4.7: Qualitative comparison of the Truss00 sequence

furthermore the differences can also be seen in more subtle details such as in the carabiner that

holds a laboratory test structure to the ceiling on the lower right side of the image, or in the

edge of the curtains placed under the skylight.

Motion magnification also has interesting applications for condition monitoring [229, 230], in

Figure 4.8 the exterior unit of an air conditioning system is shown without its side cover which

is placed on top of the unit. The image comparison shows substantial differences between LB-

VMM and STB-VMM. Shadows on STB-VMM appear much sharper and more well-defined.

Also, thin elements such as tubes and wires are displayed in better definition, this might be

especially relevant for those applications that rely on monitoring thin elements of a structure

that could easily be confused with a blurry background. If we take an overview of the two

images it is quite apparent that the texture of the wall, the insulating black foam, or the

background metallic structure look noticeably sharper when using STB-VMM.
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Figure 4.8: Qualitative comparison of the AC01 sequence

Similar observations can be made about the wheel test structure shown in Figure 4.9. Letters

on the transparent plastic shielding are much sharper using the method designed in this thesis,

as well as the background elements that appear clearer and better defined.

From this qualitative comparison, it can be concluded that the higher the noise in the source

image, the greater the quality differential will be on magnification. That is not to say that STB-

VMM is not useful in low-noise video sequences, as it has demonstrated better edge stability

in motion and less blurriness and artefacting.

All digital image sensors introduce small amounts of random noise into images. While this

noise may be imperceptible to the naked eye, motion magnification techniques must be able

to filter out frame defects to prevent magnified sequences from becoming unusable due to

magnified noise. Using a higher-quality magnification method is particularly important when

relying on magnification for measurement purposes, such as in Structural Health Monitoring
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(a) Split frame showing LB-VMM on the left and STB-VMM on the right

(b) LB-VMM (c) STB-VMM (d) LB-VMM (e) STB-VMM

Figure 4.9: Qualitative comparison of the Wheel01 sequence. STB-VMM displays
sharper letters and a better-defined background with respect to LB-VMM.

(SHM), because it is often not possible to control or alter ambient conditions in the field. A

more robust method ensures that the results will be usable regardless of the conditions under

which they are recorded.

4.5.2 Quantitative comparison

To reinforce the previous observations with tangible and reproducible values, each of the eleven

video sequences shown in Figure 4.4 have been magnified, split into individual frames, and

evaluated using the MUSIQ indicator. The following results display the average of the image

quality scores for each of the benchmarks.

Table 4.2 displays the average, 1st, and 99th percentile MUSIQ scores for the benchmark

sequences tested on both the LB-VMM and STB-VMM models. For reference, the score of the

original unmagnified source sequences has also been included. It is important to note that the
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original sequence has not been magnified, so the comparison is not valid. However, it provides

a useful frame of reference for understanding the MUSIQ scores.

Table 4.2: Comparative MUSIQ scores of the original sequence, the se-
quence magnified using Learning-Based Video Motion Magnification (using
the o3f_hmhm2_bg_qnoise_mix4_nl_n_t_ds3 checkpoint), and the proposed

method. (×20)

Original LB-VMM STB-VMM

Avg. η1 η99 Avg. η1 η99 Avg. η1 η99

AC00 72.11 69.65 72.75 55.73 49.61 58.69 62.45 61.05 63.29
AC01 69.15 68.30 70.05 48.35 34.07 51.22 59.27 57.72 60.96
Baby 74.39 69.71 74.87 55.51 53.26 59.95 57.12 54.41 62.90
Building00 66.84 66.01 75.45 52.46 49.51 62.75 52.30 50.07 56.43
Car00 52.55 50.65 54.41 31.40 18.27 35.50 43.37 23.28 48.06
Car01 55.81 54.77 57.01 33.51 30.67 64.99 50.28 48.08 52.07
Crane00 75.26 74.86 75.57 56.92 52.70 65.02 59.13 56.19 62.89
Crane01 75.09 74.63 75.44 51.05 45.25 57.37 54.93 51.11 64.70
Truss00 66.94 65.92 67.49 55.90 52.65 57.98 56.27 54.93 57.61
Wheel00 72.84 71.87 73.38 51.04 28.82 54.40 57.04 36.41 61.19
Wheel01 52.15 50.23 53.55 34.84 31.12 59.03 46.21 43.68 48.48

Total avg. 66.13 51.25 75.45 48.05 32.32 60.09 54.42 45.68 63.29

% dev. to avg. 13.58% 22.50% 14.09% 20.34% 32.75% 25.04% 10.70% 16.07% 16.28%

The results in Table 4.2 demonstrate that STB-VMM produces better quality results than

LB-VMM . On average, STB-VMM scores are 9.63% higher while also showing much higher

1% lows, implying that the quality of the magnification is substantially more consistent during

the entire length of the sequence.
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Figure 4.10: Graphic representation of the average MUSIQ scores per test sequence
magnified ×20.

To aid in comparing these values and finding the underlying trends Table 4.3 and Figure

4.10 summarise the results in a more visual manner. It can be observed how STB-VMM is

remarkably stable in its output quality, maintaining the scores firmly above LB-VMM. Only

one standout case positions LB-VMM slightly over STB-VMM on the building00 benchmark,

where LB-VMM scores higher by a margin of a 0.23% on average. Nevertheless, when we

qualitatively inspect the comparison between the two methods, STB-VMM still exhibits its
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Table 4.3: MUSIQ score difference between STB-VMM and LB-VMM.

Avg. (%) η1 (%) η99 (%)

AC00 9.32 16.42 6.32
AC01 15.79 34.64 13.91
Baby 2.15 1.65 3.95
Building00 -0.23 0.86 -8.38
Car00 22.79 9.89 23.08
Car01 30.06 31.78 -22.65
Crane00 2.93 4.67 -2.81
Crane01 5.17 7.85 9.71
Truss00 0.55 3.46 -0.55
Wheel00 8.24 10.56 9.26
Wheel01 21.81 25.01 -19.72

Total 9.63 26.07 4.24

characteristic sharper look and stable magnification. Figure 4.11 shows the difference in the

top floor bolted joint detail of the sequence.

(a) LB-VMM (b) STB-VMM

Figure 4.11: Qualitative comparison of the top floor joint in the Building00
sequence

Besides this abnormal datum, none of the magnified results fall above the original’s score as

expected. Nevertheless, original and magnified scores follow very similar trends, implying that

low-quality inputs will result in lower-quality outputs. Despite this observation, STB-VMM

maintains a more stable trend than LB-VMM, not declining as sharply when input quality

is reduced. This phenomenon occurs thanks to the superior noise-filtering capabilities of the

transformer-based architecture.

4.6 Limitations

Overall, the results exhibited in this comparison are very satisfactory and achieve the design

goals set for STB-VMM. The new technique is a solid alternative that achieves better image

quality than prior motion magnification methods while still using the same training data.

However, despite the favourable comparisons, LB-VMM still has a significant advantage over

STB-VMM in terms of computing time. Using our hardware setup1, LB-VMM can magnify
1AMD Ryzen 9 5950X; Nvidia RTX 3090
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the baby sequence [103], consisting of 300 960x576 frames, in approximately 76 seconds. In

contrast, STB-VMM takes almost twice as long, clocking in at 130 seconds for the same

sequence. Nevertheless, future software optimisations and improvements in hardware may

help to reduce STB-VMM’s computing time. It is also important to note that one of the

design goals for STB-VMM was to provide a more reliable magnification technique for scientific

measurement, where a performance penalty is acceptable within practical limits.
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5
Video motion magni�cation for

vibration-based damage detection

This chapter presents and validates the deep learning video motion magnification based tech-

nique developed to assess a structure’s condition based on their dynamic response
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Regular structural maintenance is crucial for ensuring the safety and reliability of civil

structures. Suboptimal maintenance can lead to structural defects and other issues that

compromise the structural integrity, increasing the risk of a catastrophic failure. The collapse

of an infrastructure can result in injury, loss of life, and economic damages. For these reasons,

periodic inspection and monitoring are necessary to address structural problems before they

become critical.

Structural monitoring provides several benefits that can help ensure the safety and longevity of

structures. These systems can warn of early signs of structural degradation, allowing engineers

to take corrective action before the problem worsens. In cases where immediate action is not

practical, early warning systems also enable better maintenance planning, reducing emergency

maintenance actions that disrupt normal operations and create additional costs.

However, the installation of instrumentation on structures is generally a costly process that

must be assumed upfront while generally providing no immediate benefits. The instrumentation

process involves deciding the placement and principle of operation of sensors, the deployment

of communications infrastructure to receive and centralise data collection, and the provisioning

of computing infrastructure to process captured data and alert of anomalous behaviour. It is

often the case, that the sensors used, such as accelerometers or strain gauges, require to be

in contact with the structure, which creates the necessity for a more complex communications

infrastructure with data lines, repeaters, or independent power sources for wireless sensors.

Vision-based monitoring methods attempt to mitigate these issues by providing contactless

measurements, inferring the displacement of structural elements by tracking pixels or features

over time. Vision-based techniques provide full field measurements which reduce the number

of sensors required for the same amount of information. This makes vision-based techniques

very attractive as a lower-cost alternative to contact-based monitoring systems. This thesis

explores and validates the use of learning-based video motion magnification techniques for

SHM purposes.

5.1 Methodology

5.1.1 Preliminary tests

Vibration-based damage detection techniques measure the vibration response of a structure

to identify changes in its dynamic properties that may indicate the presence of damage. All

objects and structures have natural modes of vibration which are a direct consequence of their

material and geometrical properties. This implies that when the structure’s properties change,

the natural frequencies change as well, reflecting the geometric or material changes.



68 5. Video motion magnification for vibration-based damage detection

Vibration-based damage detection techniques offer several advantages for structural health

monitoring as they provide continuous information on the health state of the structure at

a global level without the need to access the damaged elements or know their location.

Furthermore, damage can be identified using the data from sensors that are not necessarily

located in the immediate vicinity of the damage.

Some vision-based techniques work by detecting geometry changes and cracks, however it is

generally unfeasible to have full visual coverage of all structural elements. Consequently, the

focus of this work is on combining the use of vision-based techniques with vibration-based

damage detection. In order to do that, video motion magnification is used to reveal and

measure the generally invisible or imperceptible dynamic response of structures.

As discussed in previous chapters, multiple approaches and techniques exist for motion magni-

fication. Amongst them, the learning-based motion magnification techniques are interesting to

our application due to their full-band motion magnification capacity as well as their superior

image quality. Nevertheless, as previously mentioned in chapter 3 these techniques remained

unproven in terms of obtaining reliable displacement measurements. Consequently, part of this

thesis has been dedicated to the validation of learning-based techniques for SHM applications.

A set of preliminary experiments was designed to test the capacities and sensibility of Oh et

al.’s [112] learning-based video motion magnification method, to test whether a trained model

is actually capable of faithfully magnifying complex motion patterns.

The validation tests were conducted on a scaled-down benchmark structure subjected to

different simulated damage scenarios. The chosen benchmark was the three-story building

benchmark from Los Alamos National Laboatory (LANL) [231]. A structure is made of

four square aluminium plates (305 × 305 × 25mm) connected by four prismatic aluminium

columns measuring 177 × 25 × 6mm. Each of the four plates is connected to the rest by four

columns, forming a laboratory-scale three-story building (see Figure 5.1). The joints between

the structural elements are all bolted together, allowing a quick replacement of the load-bearing

elements to simulate damage.

The structure is connected to an electrodynamic shaker1 that provides lateral excitation to the

centre of the base floor, which is mounted over linear rails that allow for movement in one axis.

Both the building and the shaker are then mounted over a rigid steel frame isolated from other

sources of vibration.

For validation purposes, the three-story building benchmark has been instrumented with

piezoelectric accelerometers2 placed on each floor of the test structure that serve as the ground-

truth reference for the simulated damage experiments. On the other hand, the structure was

1Brüel & Kjær electrodynamic shaker model 4824
2Brüel & Kjær type 4519-003
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Figure 5.1: Three-story building benchmark setup [193].

also being recorded with a monochrome global shutter high-speed camera3 placed in front of the

structure so that the field of view covered the full height of the building. The video recording

sampling rate was set to 200 frames per second (fps) to avoid aliased data in the experiments

with excitation frequencies ranging 0 to 100 Hz.

To measure the vibration response of a structure, the electrodynamic shaker was used to

produce different patterns of excitation. At the same time, a high-speed camera captured a

5-second video sequence of the structure. In order to obtain the dynamic response using the

recorded video sequence it was magnified using the LB-VMM model to produce a series of

motion-magnified frames. The magnification factor was chosen to be high enough to clearly

capture the movement of the target structure while avoiding excessive magnification distortion.

Next, after the magnification stage, a single-pixel-wide linear region was manually selected from

the captured video to track its displacement over time. Once selected, the linear regions were

rearranged chronologically for each magnified frame, forming an image consisting of columns

of pixels placed in chronological order. This image is known as a temporal slice and represents

the displacement of a physical area over time. It is important to select high-contrast areas so

that the displacement is clearly visible in the resulting slice.

3iX Cameras i-Speed 220 equipped with a 12.5-75mm f/1.8 2/3” format lens
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Finally, to discretise the slice into a processable signal, a colour threshold was applied to the

upper and lower sections of the time slice to find the boundary between the measured object

and the background. Depending on the input data, it may also be helpful to apply a binary

threshold to eliminate low-contrast areas. Once the boundaries were identified, their pixel

coordinates were averaged to obtain the displacements over time in pixel units. Then, the

Fast Fourier Transform (FFT) could be applied to the pixel displacement data to obtain a

frequency-domain signal that can be used for damage detection in this test setup.

The preliminary tests to validate the viability of the previously described procedure were de-

signed to address three main scenarios: single-frequency detection, multi-frequency detection,

and damage detection. In all the tests, excitation amplitude was kept minimal so that the

structure did not visibly move or vibrate without the aid of motion magnification. Meanwhile,

both measurement systems, contact accelerometers and LB-VMM, were simultaneously used

to measure the dynamic response of the subject structure.

The single-frequency tests were performed to assess the model’s ability to accurately detect

a very simple monofrequency sine excitation signal acting upon the structure. Sine waves at

20, 50, and 70 Hz were used for these tests, knowing that those frequencies roughly coincide

with the three-story building benchmark’s natural frequencies. The goal was to detect those

frequencies and verify that they matched the input excitation frequencies.

The next tested scenario, were the multi-frequency excitation tests that were performed to

evaluate the system’s performance under more realistic conditions. The structure was excited

using random noise or a periodic chirp signal within the range of 0 to 100Hz. A periodic chirp

signal is a signal that continuously sweeps through a defined frequency range, in this case 0

to 100 Hz. In these experiments the motion magnification system was expected to identify

the natural frequencies of the structure, as those frequencies get naturally amplified by the

structural resonance. The visually obtained frequency response was expected to have a higher

noise floor compared to the piezoelectric accelerometers, but still provide useful information

about the frequency response.

Finally, to test the damage detection capability of the proposed method, six scenarios were

assessed under a 100mV random noise excitation signal: the undamaged state, a 1.2 kg load

affixed to the top floor, and four column damage scenarios. The column damage scenarios

reduced the flat section of a single column of the structure by 10%, 20%, and 50%, which

translates to approximately a 20%, 50%, and 85% stiffness reduction of the subject column,

respectively. In the remaining fourth column damage scenario, the column was removed

completely. These changes were expected to significantly impact the structure’s stiffness,

therefore altering its natural frequencies.



5.1. Methodology 71

5.1.2 Tooling development for video motion magnification based

SHM

The preliminary tests showed promising results with learning-based magnification being

capable of detecting structural damage in the tested scenarios. However, the video processing

methodology required a long and manual process to define pixel coordinates, crop frames to

magnify, and rebuild slices from those magnified frames. This process, discouraged fine-tuning

of the measurements and was a big inconvenience for the adoption of the technology. Along

with the improvements to video motion magnification techniques presented in the previous

chapter, building tools for its application to SHM was key in the usability of this technology.

A tool named ViMag [232] was built to provide an easy-to-use graphical user interface aimed

at extracting time-series signals of vibrating machinery and structure videos. This software

enables the visualisation of videos, the selection of one or more magnification areas, and the

signal discretisation and processing. However, ViMag does not offer signal analysis or SHM

capabilities, its goal is to extract the dynamic response signals from videos so that other

specialised techniques and tools [233] can be used to further process the data.

Figure 5.2: Video sequence to discrete signal pipeline [232]

Figure 5.2 illustrates the process of converting a video sequence into a discrete signal using

ViMag [232]. The software employs an algorithm similar to that utilised in the preliminary

tests, but facilitates the process through the use of graphical tools and automatic implemen-

tation of the algorithm’s individual steps. The process commences when the user selects a

linear region for measurement, which is subsequently cropped and magnified using STB-VMM.

The linear regions of pixels from each magnified frame are then placed sequentially on an

image to form a temporal slice, as depicted in Figure 5.3. The newly generated image depicts

the displacement over time of the selected region of interest, which can be transformed into

a discrete signal through the application of relatively simple image processing techniques.

Once the signal has been discretised, a variety of signal processing techniques, such as the

Fourier transform or other advanced damage detection algorithms, may be employed to extract

additional information from the data.

ViMag can be configured to use any motion magnification backend, however it only officially

supports STB-VMM. Nevertheless, when comparisons between STB-VMM and LB-VMM are

presented in the results section the comparisons have been made using a modified version of

ViMag that uses LB-VMM. This modification allows the comparisons to use the same project

files and regions to provide reliable and directly comparable results.
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Figure 5.3: Video sequence transformation to temporal slice [232]

5.1.3 Model validation

After developing the STB-VMM technique and software tooling, two experimental cases were

used to validate the new tools and compare them to LB-VMM. The first case was conducted,

once again, on the three-story building benchmark [231], while the second case employed third-

party data of a large-scale cast-in-place reinforced concrete frame structure [234] from Tongji

University.

5.1.3.1 Case 1: Three-story building benchmark

In the first case, the experiments were conducted on the three-story building benchmark, a

well-known reference structure made of aluminium also used in the preliminary tests. In this

second round of experimental testing, the structure was instrumented again with piezoelectric

accelerometers placed on each floor of the test structure serving as a ground truth reference.

In addition, a new global shutter industrial camera4 was recording the experiments at 500 fps

in 8-bit depth monochrome. The resulting video sequences of this recordings were processed

using ViMag with both STB-VMM and LB-VMM as magnification backends.

The studied damages detection scenarios for these tests consisted in reducing the longitudinal

cross-section of the lower left column of the benchmark structure by 10%, 20%, 50% and

100% (column removal). These cross-section reductions impacted the stiffness of the individual

column by 20%, 50%, 85%, and 100%, respectively. Those alterations on a component of the

test structure translate into a shift in the global natural frequencies of the structure and

4Allied Vision Alvium 1800 U-158c
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therefore, mark a clear indicator of damage to be detected by the vision-based techniques. On

top of these damage scenarios, a moderate loading scenario was also reproduced adding a 1.2

kg mass to the top floor of the building in its undamaged configuration.

The excitation for these experiments was limited between 0 and 100 Hz using two different

patterns, random noise and a periodic chirp. The frequency sweep generally produces cleaner

dynamic response signals, however, it is an unrealistic scenario for large civil structure subjected

to ambiental and operational loadings. For this reason, random noise excitation is also used,

as it provides more realistic excitation to test damage detection algorithms despite producing

dirtier signals.

5.1.3.2 Case 2: Reinforced concrete frame structure

The second case study is based on the data provided by [234], which designed a vision system

to detect and track structural displacements and rotations on a 6 m tall four-story reinforced

concrete structure. Each of the stories of the test building were 1.5 m tall with a 3 × 1 m

footprint and were loaded with 2700 kg each except for the roof, which was loaded with 2580

kg. The test building was placed over a 4× 4 m 25-ton shaker table that excited the structure

using recordings of real earthquakes. Figure 5.4 shows the structure being tested on the shaker

table.

Figure 5.4: Video frame corresponding to the tests performed on the reinforced
concrete frame. The left-hand side corresponds to the original unaltered frame, while
on the right, a ×20 magnified version of the frame shows its operating deflection

shape.
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The building was instrumented with a non-contact high-speed motion capture system5 with an

acquisition rate of 128 Hz. At the same time, the experiments were recorded with a consumer-

grade camera6 equipped with wide-angle optics and placed at approximately 3 m in front of

the reinforced concrete structure. The camera recordings were performed with a resolution of

1920× 1080 and 25 fps. In the following results section, the data from the high-speed motion

capture system will be compared against the motion magnification based vision systems.

5.2 Results

The following section presents the results of the experimental campaigns previously described.

First, the results of the preliminary tests are presented and then followed by the comparison

and validation tests for STB-VMM and the visual vibration toolbox.

5.2.1 Preliminary tests

5.2.1.1 Single frequency performance

The tests for single-frequency performance reveal the capacity of the learning-based model to

detect simple and precise frequencies. Figure 5.5 compares the motion-magnified results of

different excitation frequencies at different amplitudes.

It can be observed that in both amplitude scenarios the structure’s excitation frequencies are

clearly reflected on the graphs, as should be expected. However, different frequency peaks

appear with different heights despite an equal excitation amplitude. This phenomenon occurs

due to the natural resonance of the structure, the 50 Hz frequency is the closest to one of the

natural frequencies of the structure and for this reason it gets mechanically amplified further

than the other signals tested. Exploiting this principle, we can find the natural frequencies of

a structure by using a wider spectrum of test signals.

5.2.1.2 Multi-frequency performance

The multi-frequency tests check the capacity of the vision-based method to magnify and track

complex motion. Using either a periodic signal or random noise, these tests reveal the natural

frequencies of the structure. Figure 5.6 plots the frequency domain results obtained using LB-

VMM comparing different excitation signals. The figure also shows the comparison between

the LB-VMM method and the reference accelerometers.
5NDI Optotrack Certus
6Sony HDR-PJ220
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Figure 5.5: Frequency domain response for three different tests using a 20, 50,
and 70 Hz sine wave for excitation at two different levels of amplitude: 50mV and

100mV.

Each of the categories shown in the legend of the figure display multiple curves that correspond

to the different sensors placed on each floor of the three-story building benchmark. Notice how

some curves display less prominent peaks than others as a result of the point of measurement

being closer or further to a node of that particular mode shape. In the case of the three-story

building benchmark, three different bending modes are found between 0 and 100Hz (see Figure

5.7).

Figure 5.6 demonstrates that the LB-VMM approach is capable of detecting multiple frequen-

cies at once with suitable accuracy, as the response inferred using the visual method coincides

with the piezoelectric accelerometers. However, as anticipated, the LB-VMM approach suffers

from higher noise floors than the accelerometers. Nevertheless, the following set of experiments

proved that this was not an obstacle to accurate damage detection.

5.2.1.3 Damage detection

The damage detection capability of the LB-VMM approach was evaluated through the

implementation of five distinct damage scenarios, each subjected to a 100mV random noise

excitation. The first scenario, which was the most severe, involved the removal of a column

from the lowermost story of the building, specifically on the side closest to both the shaker and

camera. Subsequently, this same column was subjected to three additional damage scenarios

of lesser severity, achieved through reductions in column thickness by 10%, 20%, and 50%,

resulting in corresponding reductions in column stiffness of approximately 20%, 50%, and

85%. The fifth scenario entailed affixing a test mass of 1.2 kg to the uppermost floor of the
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Figure 5.6: Comparison of multi-frequency performance test results inferred from
the LB-VMM approach (×20, 100 mV) between the type of excitation (right) and

acquisition sensor (left).

undamaged building. These scenarios were reproduced in accordance with the methodology

detailed in the original reference [231].

Overall, the results demonstrate small yet significant shifts in the natural frequencies of the

building (see Figure 5.8), losing stiffness as the damage increases in severity, as anticipated.

For the sake of simplicity, Figure 5.8, only shows the signal corresponding to an accelerometer

located on the top floor to represent the frequency response function. The results obtained

through LB-VMM and accelerometer data exhibit highly similar shifts in frequency, although

it should be noted that the third mode is masked on the LB-VMM spectrum. This can be

attributed to two primary factors: firstly, an inadequate selection of tracking line placement

coinciding with the position of the upper floor accelerometer, which was situated in a region

characterised by low mobility of the operating deflection shape; and secondly, due to the

elevated noise floors exhibited by LB-VMM in comparison to those of the accelerometer.

However, this result should not be interpreted as undermining the potential utility of the

LB-VMM approach; as demonstrated in the previous point (see Figure 5.6), where different

tracking lines were employed and the third mode was satisfactorily identified. In other words,

in order to capture a greater number of modes, it is necessary to determine response data from

various areas along the structure, analogous to the spatial distribution of accelerometers.

Figure 5.8 presents a comparative analysis of the results for each damage scenario. Figure

5.8a illustrates the frequency response difference between an undamaged structure and an

identical structure missing a column on its ground floor. The LB-VMM approach effectively

demonstrates its suitability for detecting such damage; however, it should be noted that
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Figure 5.7: ODS of the first three bending modes of the benchmarked structure
[193].

complete column failure represents a somewhat unrealistic scenario. Meanwhile, Figure

5.8b presents a comparison between three distinct column thickness reductions for both

accelerometer and LB-VMM data. The graphic exhibits consistent results between both

spectra, thereby confirming the capability for damage detection utilising LB-VMM techniques.

It is also noteworthy that this system proves capable of detecting modifications as small as a

10% difference in thickness for a single column. Finally, Figure 5.8c displays the comparison

between the undamaged unloaded structure and the same undamaged structure with a 1.2 kg

mass affixed to its uppermost floor. Once again, it can be observed that changes to the natural

frequencies are minimal and approach the resolution limit for the LB-VMM setup; however,

these changes remain present and verifiable against accelerometer data. Notice that in this

case, the resolution limit of the vision-based system is determined by the camera’s acquisition

frame rate.

For a more detailed validation of the system’s capacity, Table 5.1 includes the comparative

numerical data of the frequency peaks identified in each damage scenario with each sensing

method, including the calculated percentage errors. These same results have been plotted in

Figure 5.9 for easier visualisation.
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(a) (b)

(c)

Figure 5.8: Comparison between frequency-domain data from the LB-VMM model
and piezoelectric accelerometers, showing the frequency response differences between

the undamaged structure and different damage scenarios [193].

The overall results of these preliminary tests indicate that the learning-based video motion

magnification method offers suitable outputs for SHM purposes. Therefore, the results justified

the time investment into the improvement of the learning-based magnification techniques and

their tools.

5.2.2 Model validation and comparison

The following are the results of the experiments conducted using the newly developed tools and

methods that compare STB-VMM and LB-VMM on their displacement detection capabilities.
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Table 5.1: Comparative of the mode frequencies obtained from each damage
scenario with each sensing method [193]. (See Figure 5.9)

Accelerometer (Hz) LB-VMM (Hz) Error (%)
1st order
frequency

2nd order
frequency

1st order
frequency

2nd order
frequency

1st order
frequency

2nd order
frequency

Pristine 21.125 50.000 20.859 49.945 1.26 0.11
Mass 20.500 49.250 20.272 49.259 1.11 0.02
20% 21.250 48.875 21.251 50.141 0.01 2.59
50% 21.125 49.000 20.859 49.064 1.26 0.13
85% 21.125 47.500 20.468 47.692 3.11 0.41

No column 19.500 47.125 19.586 47.007 0.44 0.25

Figure 5.9: Comparative of the mode frequencies obtained from each damage
scenario with each sensing method [193]. (See Table 5.1.)

5.2.2.1 Case 1: Three-story building benchmark

This section presents and analyses the results for the three-story building benchmark and

its various configurations. Figure 5.10 compares the autospectra obtained using STB-VMM

with those from reference piezoelectric accelerometers. As expected, the vision-based method

has a higher noise floor but only requires a single sensor to obtain an array of signals, in

this case, four signals were captured to match the four accelerometers placed in the test

structure. Additionally, the visual method, as a side-effect of being based on displacement,

is more sensitive to lower frequencies. In fact, STB-VMM registers frequencies lower than

the reference piezoelectric accelerometers. This discrepancy can be explained due to the low-

frequency start of the periodic chirp signal used to excite the structure, that displaces the

whole structure creating a visible peak on the autospectrum. It must be noted then, that these

peaks do not correspond with any vibration mode of the structure. Instead, this indicates the

frequency of the displacement of the structure when the excitation cycle begins. On the other

hand, higher frequencies are better captured using accelerometers, which are better suited for
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this task and have much higher acquisition rates than industrial or general-purpose cameras.

This trade-off might be acceptable for civil infrastructures as they generally exhibit frequencies

under 15 Hz.

Figure 5.10: Frequency response functions for each floor of the three-story building
benchmark in its undamaged configuration. The structure was excited using a

periodic chirp signal ranging from 0 to 100 Hz.

Focusing the attention back on Figure 5.10 it can be seen that not all floors of the structure

have the same magnitude for their natural frequencies, this is due to their physical position

in the building. The magnitude difference for each frequency is proportional to the distance

between the measured point and the closest node of the modal shape.

After verifying that STB-VMM can correctly detect frequencies in the undamaged conditions,

the following results evaluate its sensitivity to damage. Figures 5.11a, 5.11b, and 5.11c show

the results of the damage scenarios performed on the lower column of the three-story building

benchmark, as described in section 5.1.3.1. The results are split into three figures for readability.

Figure 5.11a shows results for undamaged, 1.2 kg added mass, and missing column cases.
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Table 5.2: Results obtained from periodic excitation

Accelerometer (Hz) STB-VMM (Hz) LB-VMM (Hz)

1st order
frequency

2nd order
frequency

3rd order
frequency

1st order
frequency

2nd order
frequency

3rd order
frequency

1st order
frequency

2nd order
frequency

3rd order
frequency

Undamaged 21.38 50.12 68.38 21.10 50.33 68.27 21.10 50.36 68.30
UndamagedRepr. 21.38 50.12 68.38 21.26 50.11 68.37 21.34 50.15 68.29
Mass 21.25 49.00 68.00 20.12 49.16 68.00 20.47 49.01 67.88
20% 21.38 49.38 67.50 21.36 49.34 67.70 21.02 49.34 67.77
50% 21.38 48.62 67.62 20.86 48.59 67.52 20.78 48.55 67.48
85% 20.62 46.62 66.75 20.42 46.76 66.60 20.40 46.76 66.64
100% 19.88 45.88 62.62 19.80 45.82 62.47 19.72 45.89 62.62

The difference between the undamaged and the missing column scenarios is most noticeable,

while the structure loading experiment produces a more subtle frequency shift visible in all

three methods tested. Figures 5.11a and 5.11b present the data obtained using STB-VMM,

LB-VMM, and accelerometers in three separate side-by-side graphs. Comparing the different

measurements, the vision-based methods, which are based on displacement, present a more

significant sensitivity for lower frequencies and a noticeably higher noise floor with respect to

the contact accelerometers. Nevertheless, damage sensitivity is similar for all methods, with

LB-VMM presenting a slightly higher noise floor than STB-VMM.

The measurements and magnification for vision-based graphs were performed on the exact

same coordinates for both methods and then post-processed individually to improve signal

quality as much as possible. The differences in magnification quality between the methods

often resulted in variations in slice contrast due to blurring and artefacting, making uniform

post-processing unfeasible.

Figure 5.11b continues with the trend previously observed, showing that all three methods can

discern between the tested damage scenarios, where a single column loses 10%, 20%, and 50%

of its longitudinal section. These experiments pose a challenging test as the resulting frequency

spectrums are very close to each other.

When these same tests are performed using random noise excitation instead of a periodic

sinusoidal signal, the overall conclusions remain the same, but with a visible increase in noise

for all methods, as observed in Figure 5.11c.

Table 5.3: Relative error to the reference acceleration data when using periodic
excitation

Error STB-VMM (%) Error LB-VMM (%)

1st order
frequency

2nd order
frequency

3rd order
frequency

1st order
frequency

2nd order
frequency

3rd order
frequency

Undamaged 1.31% 0.42% 0.16% 1.31% 0.48% 0.12%
UndamagedRepr. 0.56% 0.02% 0.01% 0.19% 0.06% 0.13%
Mass 5.32% 0.33% 0.00% 3.67% 0.02% 0.18%
20% 0.09% 0.08% 0.30% 1.68% 0.08% 0.40%
50% 2.43% 0.06% 0.15% 2.81% 0.14% 0.21%
85% 0.97% 0.30% 0.22% 1.07% 0.30% 0.16%
100% 0.40% 0.13% 0.24% 0.80% 0.02% 0.00%
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(a) Undamaged, loaded, and missing column damage scenarios performed under periodic excitation ranging from 0 to
100Hz.

(b) Column damage scenarios performed under periodic excitation ranging from 0 to 100Hz.

(c) Column damage scenarios performed under random noise excitation.

Figure 5.11: Damage sensibility study of the damage scenarios presented in
section 5.1.3.1. Each signal corresponds to the second floor of the three-story
building benchmark measured under different damage conditions or using different

measurement techniques.
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Tables 5.2-5.5 present the numerical results of the experiments performed on the three-

story building benchmark as well as the errors of visual methods compared to reference

accelerometers. On average, the errors of STB-VMM compared to accelerometer data are

0.64% for periodic excitation and 1.03% for random excitation. Similarly, the errors for LB-

VMM are 0.66% and 1.38%, respectively, slightly worse than the STB-VMM results.

Table 5.4: Results obtained from random excitation

Accelerometer (Hz) STB-VMM (Hz) LB-VMM (Hz)

1st order
frequency

2nd order
frequency

3rd order
frequency

1st order
frequency

2nd order
frequency

3rd order
frequency

1st order
frequency

2nd order
frequency

3rd order
frequency

Undamaged 22.25 50.38 68.88 22.12 50.35 68.76 21.16 50.25 68.71
UndamagedRepr. 22.50 50.38 68.75 22.08 49.66 68.58 22.15 49.98 68.77
Mass 22.25 48.75 67.75 21.16 48.40 67.64 21.16 48.49 67.64
20% 22.25 49.25 67.62 21.35 49.39 67.63 22.18 50.35 67.69
50% 22.25 48.75 67.12 21.23 48.80 67.43 21.47 48.80 67.43
85% 21.12 46.88 66.62 21.01 47.03 66.79 21.50 47.03 66.79
100% 19.75 45.75 62.75 19.73 45.40 62.71 20.90 45.47 62.71

Table 5.5: Relative error to the reference acceleration data when using random
excitation

Error STB-VMM (%) Error LB-VMM (%)

1st order
frequency

2nd order
frequency

3rd order
frequency

1st order
frequency

2nd order
frequency

3rd order
frequency

Undamaged 0.58% 0.06% 0.17% 4.90% 0.26% 0.25%
UndamagedRepr. 1.87% 1.43% 0.25% 1.56% 0.79% 0.03%
Mass 4.90% 0.72% 0.16% 4.90% 0.53% 0.16%
20% 4.04% 0.28% 0.01% 0.31% 2.23% 0.10%
50% 4.58% 0.10% 0.46% 3.51% 0.10% 0.46%
85% 0.52% 0.32% 0.26% 1.80% 0.32% 0.26%
100% 0.10% 0.77% 0.06% 5.82% 0.61% 0.06%

5.2.2.2 Case 1: Visual noise resilience

To evaluate the effect of visual noise on VMM measurements, white noise was added to the

same video source files used in the previous experiments. STB-VMM, with its intensive use of

image filtering, is expected to perform better than LB-VMM in high-noise situations. Visual

noise is very disruptive for motion magnification as it masks sub-pixel motion and destroys key

information when the dynamic range is low, or noise is sufficiently pronounced. Unfortunately,

noise is a common occurrence in all image sensors that becomes more pronounced in poorly lit

scenes.

Figure 5.12 shows the difference in measured frequency response when noise is added to

original recordings. The altered video files have an average Structural Similarity Index Measure

(SSIM) [223] of 0.45, indicating a significant amount of noise while remaining legible for human

observers. However, the information loss is pronounced, causing higher frequencies to disappear

in the noise and reduce their magnitude.
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Figure 5.12: Comparison between the frequency responses obtained from the
undamaged video files on top, and the white noise altered ones, at the bottom.

As expected, STB-VMM maintained a more stable behaviour than LB-VMM, however its

results are still far from the noiseless measurements previously obtained. In less extreme

situations, STB-VMM is expected to yield better results, especially in unfavourable conditions,

or allow for the use of more economical image sensors with little or no penalty.

5.2.2.3 Case 1: Resolution study

The effect of reducing the resolution of source video files was also studied. Like noise, a

reduction in resolution deletes information present in the video, reducing key features from a

few pixels or sub-pixels to variations indistinguishable from noise. This is analogous to moving

the image sensor further away from a target subject or reducing optical zoom, as the resolution

in pixels of a particular target feature gets reduced. However, unlike adding noise, no spurious

results are expected as no new false information is added to the image sequences.

Figure 5.13 shows results of reducing the original horizontal resolution by 20%, 50%, and

80%. The videos are scaled to maintain the aspect ratio, resulting in the following video
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Figure 5.13: Frequency response graphs of decreasing resolution experiments, from
the original sized measure to a reduction of 80% in the horizontal resolution. These
measurements correspond to the second floor of the undamaged condition building

under periodic excitation.

resolutions: original (1456×384), -20% horizontal resolution (1164×307), -50% horizontal

resolution (728×192), and -80% horizontal resolution (291×77). In terms of number of pixels,

these sizes contain 36.1%, 75%, and 96% fewer pixels than the original.

The results show a clear decrease in magnitude as resolution decreases, losing higher frequency

peaks progressively to low-resolution blur. This makes sense as higher frequencies manifest as

lower amplitude displacements because excitation power is constant in all experiments. When

losing pixels to represent movement, shorter displacements end up getting lost beyond what

motion magnification can recover.

As shown in Figure 5.13, differences between STB-VMM and LB-VMM are not significant

when working with reduced resolution. In this case, better filtering cannot recover missing
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information, and no significant improvement is registered.

5.2.2.4 Case 2: Reinforced concrete frame structure

The reinforced concrete frame structure offers fewer configuration options and variability than

the three-story building benchmark, but its scale makes it a relevant test for the scalability of

visual-based measurement systems. Additionally, these videos were recorded with a consumer-

grade camera by independent third-party researchers holding no bias on their setup for

accommodating motion magnification.

Figure 5.14: Graphs comparing each floor measurement against experiment 1’s
ground truth. (Raw data provided by Wang et al. [234].)

Figures 5.14 and 5.15 show two of the experiments shared by Wang et al. [234] and

processed using STB-VMM and LB-VMM techniques. Experiments 1 and 2 show vision-

based measurements remarkably close to the ground-truth data provided, albeit with more

noise present. The spectra are represented from 0 to 2 Hz as the most relevant frequencies are

concentrated between 0.6 and 0.9 Hz depending on the floor, which is expected for a structure
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of its size and rigidity. No notable performance differences appear between STB-VMM and

LB-VMM results besides some minor differences in noise levels.

Considering the temporal resolution difference between the signal produced by the optical

vibrometers at 128 Hz and the camera at 25 Hz, the results are considered very satisfactory. It

should be noted that the camera is not optimally positioned for these measurements, instead

it should be placed directly in front and perpendicular to the measurement plane, nor is it

equipped with lenses that do not excessively distort the image. Despite these limitations, the

resulting autospectra provides relevant information on the structure’s frequencies.

Figure 5.15: Graphs comparing each floor measurement against experiment 2’s
ground truth. (Raw data provided by Wang et al. [234].)

The overall results of this study validate the use of STB-VMM and its tools for the purpose

of SHM. The experimental work has shown that these systems are capable of identifying a

structure’s natural frequencies and operating deflection shapes, thus revealing their potential

for contactless full-field damage detection.
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6
Conclusions and future works

This chapter summarises the most relevant contributions and insights of this work and reflects

on the future avenues of research for video motion magnification based techniques and their

applications in mechanical and civil engineering





6.1. General conclusions 91

6.1 General conclusions

The objective of this thesis is to develop, improve, and validate a computer vision methodology

based on learning-based video motion magnification for the purpose of using structural health

monitoring techniques in complex structures through full-field optical means. Based on the

results of this work, the following conclusions can be drawn:

• Learning-based video motion magnification enhances the sensitivity of vision-based

vibration analysis, allowing for more detailed and accurate measurements. This approach

provides several benefits, including full-field measurements that simultaneously reduce

sensor installation complexity while providing information on multiple targets. The

proposed methodology has been proven effective for dynamic response identification in

structures subjected to complex excitation patterns.

• The combination of Eulerian video motion magnification with deep learning techniques

such as visual transformers and convolutional neural networks proposed has significantly

improved video motion magnification image quality. This quality enhancement has been

proven both qualitatively, with side-by-side comparisons, and quantitatively, by using a

well-known image quality assessment algorithm. The Shifted Window Transformer Based

Video Motion Magnification (STB-VMM) method has been demonstrated to outperform

the prior state-of-the-art learning-based magnification model in terms of image quality,

displaying better noise tolerance characteristics, less blurry outputs, and better edge

stability, resulting in clearer and less noisy magnification with minimal artefacting.

• STB-VMM is a rather computationally expensive model, limiting its use in real-time

applications of motion magnification. Nevertheless, applications that require precise

magnification, like vibration monitoring, can benefit from its superior output image

quality, making this model a good fit for structural health monitoring.

• The preliminary tests performed on the three-story building benchmark constituted the

first validation tests of the usage of learning-based video motion magnification techniques

for the purpose of structural health monitoring and damage detection. This work proved

that the learning-based model (LB-VMM) yields reliable results even in complex motion

scenarios, identifying the test structure’s natural frequencies and operating deflection

shapes. Moreover, the dynamic response measurements were accurate enough to detect

several challenging simulated damage scenarios.

• Employing video motion magnification for the study and monitoring of structural and

mechanical systems allows for the reconstruction and visualization of operating deflection

shapes irrespective of the vibration source. This approach highlights abnormal patterns

in structural contacts, cracks, or excessive displacements, thereby facilitating visual

inspection.



92 6. Conclusions and future works

• Despite using learning-based models trained on an unrelated synthetic motion magnifica-

tion dataset that was not specifically designed for structural measurements, the learning-

based models yielded outstanding magnification results accurate to the ground truth

measurements.

• The validation tests for STB-VMM and ViMag successfully proved the validity of

the developed software, and established an automatic video processing pipeline that

favourably compares to the LB-VMM methodology initially developed. STB-VMM

presents clear advantages when processing noisy data with respect to LB-VMM, however,

in more favourable image conditions, these improvements become marginal. This

contrasts with the results of the comparison between STB-VMM and LB-VMM as

video motion magnification algorithms, where STB-VMM clearly showed superior image

quality results. The most probable cause for this discrepancy is that the applied dynamic

response measurement methodology just uses unidimensional strips of pixels, negating

some of the improvements in texture resolution and edge stability of the new model.

Nevertheless, STB-VMM should remain the preferred method for measurement since

conditions on the field are rarely ideal.

• The proposed motion magnification approach for SHM requires consistent lighting and a

stable camera that maintains a stationary frame of reference. Additionally, measurements

may present higher noise floors compared to contact-based solutions. Nevertheless,

these limitations depend on the particular boundary conditions and requirements of

each use case. Visual methods, although presenting higher noise floors than contact

sensors or laser techniques, open up new possibilities for applications and research

in structural health monitoring. Newer and cost-effective techniques, such as vision-

based monitoring, combined with the transition towards higher digitalisation in civil

engineering, are continuously increasing safety and reducing the costs associated with

unplanned maintenance and service disruptions. Overall, motion magnification in

vision-based vibration analysis offers a significant cost advantage for structural health

monitoring and damage detection.

6.2 Research contributions

The results achieved during this thesis contribute to the following scientific findings:

• A novel methodology based on Eulerian learning-based video motion magnification

was developed and validated for measuring the dynamic response of structures. This

methodology provides a state-of-the-art, non-contact approach to structural health

monitoring and damage detection.
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• A new state-of-the-art model for video motion magnification was designed and developed,

improving output visual quality over prior art with better noise tolerance, less blur, and

improved edge stability. This model sets a new benchmark for video motion magnification

research.

• The newly developed state-of-the-art video motion magnification model has been open-

sourced and made publicly available along with pre-trained weights.

• A software toolbox for vibration-based monitoring has been developed to provide a

graphical user interface for the dynamic response measurement methodology described

in this thesis. ViMag improves the user experience for taking measurements, automating

tedious manual work that previously required the use of multiple command-line tools.

The simplification of the process not only reduces the barrier of entry to the technology

but also allows for obtaining better results in less time, easing experimentation and

discovery of feature-rich areas of the subject video sequence.

• The newly developed video motion magnification model and tools were validated for use in

structural health monitoring applications, demonstrating their capability for contactless

full-field damage detection. This validation provides strong evidence for the practical

applicability of the developed methodology and tools.

6.3 Future research perspectives

Based on the aforementioned conclusions, several promising avenues for future research could

be taken:

• Testing the developed methodology and tools on in-service structures to further validate

their practical applicability and effectiveness in real-world scenarios.

• Conducting combined studies on the use of video motion magnification and other damage

indicators or evaluation methods to investigate the potential synergies and benefits of

combining these approaches.

• Investigating the potential applications of the developed methodology and tools in

condition monitoring, comparing their performance against existing commercial solutions.

• Exploring the use of event-based cameras [235] for video motion magnification to

potentially improve the performance and capabilities of the methodology presented in

this thesis. Event-based cameras are bio-inspired sensors that asynchronously measure

per-pixel brightness changes instead of capturing images at a fixed rate like conventional

cameras. This operating principle allows event-based cameras to achieve very high
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temporal resolution, high dynamic range, and reduced motion blur, all of them being

critical factors for VSHM.

• Continuing to improve the video motion magnification model to further enhance its

performance and capabilities by exploring newer image processing techniques in related

fields of computer vision or studying the effects of different procedural techniques for

generating a training dataset.

• Reducing the computational cost of the STB-VMM model to enable its use in real-time

applications and improve its usability. Studying different model configurations and the

effects of the model meta-parameters on output quality could optimize the computational

cost regarding the resulting image quality. Additionally, substantial performance gains

could be achieved over the current model by migrating to a newer version of Pytorch or

porting the model to C++.
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A B S T R A C T

This paper explores the viability of using learning-based state-of-the-art video motion magnification to extract
vibrational signatures for damage detection in structures. Unlike previous research, the proposed model uses
learning-based video motion magnification rather than implementing hand-designed filters. This change allows
the presented approach to detect more subtle sub-pixel movement and thus allows for greater sensibility to
vibration. This novel approach is validated and verified on a laboratory structural benchmark under different
damage scenarios. Although the learning-based model was trained on a synthetic and non-related image
dataset, the experimental results prove that the system is suitable for identifying natural frequencies and
operating deflection shapes, thus enabling damage detection algorithms to identify structural damage reliably.
The results demonstrate the feasibility and suitability of this novel monitoring technique and thus open an
avenue for further research regarding deep learning and its applications to structural health monitoring.

1. Introduction

Structural health monitoring (SHM) is the set of analysis and assess-
ment techniques applied to autonomously determine the integrity and
durability of engineering structures. This set of processes aims to track
the operational status, assess the condition, and alert to the presence
of damage [1,2]. Generally understood as damage are any undesired
changes in the geometric or material properties that can affect a struc-
ture’s overall performance, safety, reliability, and operational life [3,4].
According to this definition, damage does not necessarily imply the
complete failure of a system but a comparative deterioration causing
suboptimal performance.

The trend towards digitalization has fostered the interest in exten-
sive monitoring of civil structures to ensure the safety and reliability of
critical infrastructure. In this regard, SHM systems provide information
about structural performance under different operating conditions, thus
enabling maintenance operations optimization and the reduction of
costs by anticipating structural issues before severe damages occur.

The most basic approach for damage diagnosis of civil structures
is based on visual inspection. However, this approach presents several
issues in practice. First, the size of civil structures is relatively large,
making the inspection process laborious and time-consuming. Second,
since this inspection method relies on human judgment, it requires
skilled and highly-trained operators. Moreover, and third, it is not
always possible to visually inspect load-bearing elements since they

∗ Corresponding author.
E-mail address: marcoantonio.perez@iqs.url.edu (M.A. Pérez).

might be difficult to access or obstructed by non-structural members
or coverings.

In contrast, more sophisticated approaches, such as vibration-based
methods, provide a systematic, feasible, and consistent way of iden-
tifying, locating, and quantifying the severity of damage based on
the vibration response of the monitored structure [5–7]. To this end,
sensors are deployed to feed algorithms with structural responses [8]
to determine if any damage or change has occurred. Accelerometers are
the most commonly used type of sensor, however their installation, cali-
bration, and maintenance makes them unsuitable for most applications,
especially in those environments that may require resistance to harsh
climatic conditions. Moreover, wired sensors might be inconvenient
to run over long distances and suffer from signal degradation, while
their wireless counterparts have only recently become viable but still
need development on their power consumption. These shortcomings
have spurred interest in non-contact measurement methods [9] such
as approaches based on vision.

Vision-based methods infer the displacement of structures by track-
ing the motion of pixels or features in a sequence of images [10–13].
These techniques generally allow for spatially denser measurements us-
ing fewer sensors, however this benefit comes at the cost of less precise
data compared to contact techniques. Digital image correlation or opti-
cal flow are two such techniques currently used in other fields with very
positive results. Vision-based SHM has successfully been tested both in
laboratory experiments as well as in civil infrastructure [14–18].
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Recent developments in computer vision have brought a new tech-
nique called video motion magnification which is capable of identi-
fying and magnifying almost eye-imperceptible movements in video
data [19–24]. This set of techniques has proved effective in applica-
tions, such as producing visual representations of an object’s operating
deflection shapes [25] or recovering sound from a room behind a
soundproof glass [26]. Hence, interesting new avenues for research
open up combining video motion magnification (VMM) and SHM to
identify operating deflection shapes (ODS) and resonant frequencies
of large civil structures [27–38]. However, these techniques produce
higher signal noise floors compared to contact accelerometers by up to
several orders of magnitude. Consequently, further research is needed
for a more in-depth understanding of these techniques, expanding the
range of use cases and improving its cutting-edge approach.

Based on the above, this work explores the viability of using ma-
chine learning-based approaches combined with video motion magni-
fication (VMM) techniques to autonomously extract vibrational signa-
tures with the final aim of detecting damage in complex structures. Said
learning-based approach to VMM focuses on learning the filters from
the data instead of relying on the manually tuned filters of conventional
VMM approaches. Recently, learning-based methods have achieved
excellent results compared to other VMM approaches yielding higher-
quality magnification and noise characteristics, with fewer artifacts and
blurring [39]. Thus, its implementation into a strategy for estimating
vibrational response might bring better quality measurements, leading
to a lower damage threshold detection.

This paper validates the use of a novel learning-based video motion
magnification approach and verifies its application on a structural
benchmark under different damage scenarios. The following section
describes the deep learning model implemented for damage detection.
Section 3 describes the test setup details, the test procedure, and the
reproduced damage scenarios. The fourth section presents the results of
the verification tests conducted by comparing against high-resolution
contact accelerometers. Section 4 also includes a parametric analysis
to evaluate the technique’s resolution as well as an assessment of the
performance of the proposed approach for the detection of damage
on a benchmark structure. Finally, the conclusions of the study are
summarized in Section 5.

2. Learning-based approach for video motion magnification

In mathematical terms, given an image I(x, t) = f (x+ �(x, t)), where
�(x, t) represents the motion field as a function of position and time,
the goal of motion magnification is to amplify pixel movement so that
the magnified image Î becomes Î(x, t) = f (x + (1 + �) ∗ �(x, t)) where
� is the magnification factor [21,23]. To archive this goal, motion
magnification techniques decompose video sequences into motion rep-
resentations by using complex filters, then these motion representations
are selectively magnified and reassembled into magnified frames.

Motion magnification techniques can be approached from either a
Lagrangian or an Eulerian point of view. Lagrangian approaches explic-
itly extract the motion field by tracking pixel movement directly, using
a set of techniques often referred as optical flow. On the other hand, the
Eulerian approach decomposes a video sequence into representations
that allow for motion manipulation without the need for explicit track-
ing. The distinction between Lagrangian and Eulerian is not dissimilar
from the same terms used in fluid dynamics, where Lagrangian methods
track a volume of fluid through a flow while Eulerian-based approaches
study the evolution of flow in a fixed volume.

Eulerian motion magnification approaches consist of three stages:
decomposition, manipulation, and reconstruction. The first stage, de-
composition, yields multiple features or motion representations of a
video sequence which are then selectively manipulated in the second
stage to archive motion magnification. Proper decomposition is key to
obtaining good results as filtering out noise at this first stage avoids
its magnification in the subsequent manipulation stage. The third and

final stage must reconstruct the sequence from the manipulated rep-
resentations generated by the first and second stages. While Eulerian
techniques are suitable for revealing subtle motion, they are prone to
noise and excessive blurring due to an imperfect filter design. Learning-
based approaches aim to mitigate this drawback from Eulerian classical
approaches by learning the filters instead of hand-tuning them using a
deep convolutional neural network.

The learning-based model for video motion magnification (LB-
VMM) implemented in this work consists of three main parts, as
depicted in Fig. 1: encoder (GE), manipulator (GM ), and decoder (GD).
In Fig. 1 the nomenclature used to represent layers works as follows:
Conv c denotes a convolutional layer of c output channels, with a k×k
kernel size, and stride s; following that an activation function may be
attached to the layer, indicating its application at the end of the layer
computation. For example, Conv_16_k7s1_ReLU means: convolutional
layer with 16 output channels with a 7 × 7 kernel size, stride of 1
and a ReLU activation function. This model has been adopted from
Oh et al. proposed architecture [39], and has been implemented in
Pytorch [40] open source machine learning framework. The goal of
this neural network architecture is to extract a motion representation
(M), which can be manipulated by a simple multiplication and then
reconstructed into a magnified displacement frame (Î).

The encoder block (GE) acts as a spatial decomposition filter that
extracts a motion representation for two input frames (A and B).

GE (A) = [MA, V ] (1)

GE (B) = [MB] (2)

Then, the manipulator block multiplies the difference of these rep-
resentations, which is then passed on to the decoder that reconstructs
the motion representation into a new motion magnified frame, aided by
an unmanipulated visual representation (V ) previously yielded by the
encoder. These three elements are constituted by fully convolutional
layers, allowing for flexible learnable filters at multiple input/output
resolutions.

GM (MA,MB , �) = MA + ℎ(� ⋅ g(MB −MA)) (3)

GM (MA,MB , �) = M (4)

Where g(⋅) is represented by a 3 × 3 convolution followed by ReLU, and
ℎ(⋅) is a 3 × 3 convolution followed by a 3 × 3 residual block.

GD(M,V ) = Î (5)

To train this deep learning model a fully synthetic dataset [39] was
used, since it is impossible to obtain real motion-magnified video pairs.
It is important to stress the relevance of representative high-quality
training data to a model’s performance, in fact, machine learning
models, in general, tend to be as good as their training data. The
synthetic dataset was built by moving segmented objects from the
PASCAL VOC [41] dataset over background images taken from the
MS COCO [42] dataset, carefully considering texture, magnification
factor, and subpixel motion generation. Even though the contents of the
images are entirely unrelated to the final application, once trained, the
motion magnification model yields excellent performance, comparable
or superior to previously existing methods.

As stated in [39], the model is trained end-to-end using l1-loss
between the network output Î and the ground-truth magnified frame
I . Additionally, regularization losses are imposed between VB and V ,
VA and VB , and M ′

B
and MB , where M ′

B
is the result of the additional

intensity-perturbed frame variants provided by the dataset. Then the
model is optimized using ADAM with �1 = 0.9 and �2 = 0.999, a
batch size of 10, and set the learning rate to 10−5. The learning-
based model is trained with 100,000 training examples with different �
values contained between 0 and 100 where � ∈ R. Consequently, after
training the model, it is possible to run inference on a sequence using
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Fig. 1. Machine learning-based video motion magnification (LB-VMM) architecture implemented, adapted from [39]. � stands for magnification factor, Conv c denotes a convolutional
layer of c channels, k×k kernel size, and stride s. A residual block is composed of a Conv_32_k3_s1_ReLU + Conv_32_k3_s1 in parallel with its input. An upsampling block upsamples
by ×2 using 2D nearest neighbor.

an arbitrary magnification factor within the 0 to 100 range without any
further training.

By applying LB-VMM it is possible to obtain the time response
of a subject structure inferring from a sequence of motion magnified
frames. Following magnification, a vibration response signature can
be obtained by applying a Fast Fourier Transform (FFT) to the pixel
displacement data. Fig. 2 shows an example of a temporal signal
reconstructed using two different video magnification approaches: the
phase-based Riesz pyramids [22] method on the top frame and the
learning-based approach implemented in this work on the bottom. The
example video was obtained from the benchmark test structure, as
presented in the following section. The time sequences correspond to
the magnification of the slice, marked in red on the left-hand side,
located on the lower level of the test structure. Figs. 2 and 3 illustrate
how the LB-VMM approach yields less noisy outputs with fewer blur-
ring and ringing artifacts, thus resulting in higher-quality magnification
compared to the phase-based methods. While no significant differences
are observed in the frequencies detected, the learning-based approach
has a lower noise floor thus enabling the detection of a third peak. This
extra sensibility may be useful in cases where image resolution is low
or movement amplitude is small, enabling the learning-based vision

technique to detect damage where the phase-based techniques could
not.

3. Methodology

3.1. Experimental setup

The validation tests have been conducted on a scaled-down struc-
ture under different damage scenarios using the three-story building
benchmark, as seen in Fig. 4, proposed by Los Alamos National Lab-
oratory (LANL) [43]. The structure is made of aluminum columns
(177 × 25 × 6 mm) and plates (305 × 305 × 25 mm) attached using
bolted joints forming a four degree-of-freedom system. The structure is
connected to an electrodynamic shaker1 that provides lateral excitation
to the center of the base floor, which is mounted over linear rails
allowing for movement on one axis. Both the building and shaker are
mounted together on a rigid steel frame. For comparison and validation
purposes, the structure is instrumented with four piezoelectric ac-
celerometers2 placed centered on each floor and opposed to the shaker’s

1 Brüel & Kjær electrodynamic shaker model 4824.
2 Brüel & Kjær accelerometers type 4519-003.
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Fig. 2. Temporal signal (200 ms) reconstructed using two different video magnification
approaches: the Riesz [22] pyramids and the learning-based approach implemented in
this work.

coupling point. The accelerometers and shaker then are connected to
a Brüel & Kjær data acquisition module.3 Induced shaker excitation
was set over the range of 0 to 100 Hz. And a monochrome high-speed
camera4 was placed 2 meters in front of the structure to record the
vibration tests. The video recording sampling rate was set to 200 fps to
avoid aliased data, with a resolution of 192 by 1358 px. The camera
is set up to capture a corner of the building where each of the three
floors are clearly visible (see Fig. 2), additionally LED light was used
to improve image contrast.

3.2. Data acquisition

To obtain the vibration response, the structure was excited using
an electrodynamic shaker producing different excitation types. Con-
currently a video sequence of 5 s was captured using a high-speed
camera. Then, the resulting video sequence was run through the trained
LB-VMM model, yielding a sequence of motion magnified frames. The
magnification factor � is chosen high enough to clearly display the
target’s movement while avoiding distorting the video sequence with
excessive magnification.

Following motion magnification, a manually selected single-pixel
wide linear region of the captured video was selected for tracking
displacement over time (see Fig. 2). The criteria imposed for selecting
this regions was to pick a high contrast region on every floor of
the building, preferably close to the accelerometers. However, this
manual selection process could be automated, for example: by placing
identifiable markers on the structure or using other vision techniques
to automatically select objects or regions of interest. Once selected,
the linear regions were saved for every magnified frame, forming an
image consisting of columns of pixels placed in chronological order.
The resulting image is a temporal slice that condenses the dynamic
response of a physical point over time. It is important to select high-
contrast areas so that the displacement is clearly visible. A color

3 DAQ Brüel & Kjær Lan-XI DAQ 3160-A-4/2 and 3053-A-12/0.
4 iX Cameras i-Speed 220 equipped with a 12.5–75 mm f/1.8 2/3’’ format

lens.

Fig. 3. Frequency-domain data comparing the phase-based [22] and the learning-based
approaches. The frequencies detected in both cases are very similar, however, the
learning-based method yields a clearer signal.

threshold was then applied to the upper and lower sections of the

time slice to find the boundary between the measured object and the

background (see Fig. 5). Optionally, depending on the input data, it

is often helpful to apply a binary threshold to the time slice with

the intent to eliminate low contrast areas. Once the boundaries were

identified, the pixel values were used to average both boundaries and

obtain the displacements over time in pixels. Finally, the frequency-

domain signal was obtained using the Fast Fourier Transform (FFT) on

the pixel displacement data.
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Fig. 4. Three-story building benchmark setup for validation test.

Fig. 5. Example of a temporal response (665 ms) inferred through the trained LB-VMM
model from a random excitation. The frequency-domain data of this time sequence is
depicted in Fig. 8. This figure illustrates the process of obtaining numerical data from
an image resulting of a slice.

Fig. 5 shows an example of a temporal response inferred through
the trained LB-VMM model from a random excitation. The uppermost
image is the original magnified sequence, the image below corresponds
to the binary thresholded sequence, and finally the lower one shows the
boundary identification with their average. The frequency-domain data
of this time sequence is depicted in Fig. 8.

3.3. Validation tests

To assess the validity of the LB-VMM approach on SHM applica-
tions, the following tests were devised to address three main issues:
single frequency detection performance, multi-frequency detection per-
formance, and damage detection. Tests were performed with minimal
excitation amplitude so that the test structure was not visibly moving
or vibrating without the help of motion magnification. In addition, all
tests were performed and simultaneously measured with both contact
accelerometers and LB-VMM so that results could be reliably compared.

Testing for single-frequency performance reveals the model’s capac-
ity to detect a singular frequency vibration acting upon a structure

Fig. 6. Comparison between magnified (�=20) and unmagnified slices at two different
excitation amplitudes.

precisely. The structure was excited using a sine wave at 20, 50,
and 70 Hz individually, which roughly coincided with the structure’s
natural frequencies. The goal was to detect said frequencies and check
that they matched the input excitation frequencies.

The multi-frequency tests assess the capacity of the system to work
in slightly more realistic conditions. By exciting the structure using
random noise or a periodic chirp, i.e., a signal that is continuously
swept through a defined frequency range, the proposed motion magni-
fication system should identify the natural frequencies of the structure.
The visually obtained frequency response is expected to have a much
higher noise floor compared to the piezoelectric accelerometers but still
provides helpful information regarding the frequency response. These
tests will focus on the range of frequencies between 0 and 100 Hz.

Finally, to test the damage detection capability of the proposed
method, six possible scenarios were assessed under a 100 mV random
noise excitation: an undamaged state, a 1.2 kg load fixed on the top
floor, and four column damage scenarios. The column damage scenar-
ios consist of a longitudinal reduction of a single column’s flat section
by 10%, 20%, and 50%, which in terms of column stiffness trans-
lates to approximately 20%, 50% and 85% stiffness reductions. Lastly,
the fourth scenario completely removes the column from the struc-
ture. These changes were expected to impact the structure’s stiffness
significantly, thus altering its natural frequencies.

4. Results and discussion

4.1. Single frequency performance

Fig. 6 compares the motion magnification results between a 50 mV
and a 100 mV sinusoidal monotone signal acting upon the structure.
On the left-hand side of the figure, the left column of the benchmark
structure is displayed at its full height. Marked in red, a line on the
bottom floor highlights the region selected for tracking displacement
over time. This linear region of size 1 × 80 px is vertically displayed for
every frame of the video on the right-hand side of the figure, forming
a row of pixels placed in chronological order, which represents the
temporal response of the marked area.

Note that the unmagnified video shows imperceptibly small, seem-
ingly static movements, and only careful examination of the temporal
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Fig. 7. Frequency-domain data obtained from the LB-VMM approach (�=20) for 20,
50 and 70 Hz sine waves excitation at 50 mV (top) and 100 mV (bottom) amplitudes.

slices reveals pixel or subpixel shifts indicating movement. However,
the magnified results display clearly visible movement allowing the
identification of the waveforms. In addition, the effect of the amplitude
of the excitation signal is also evident.

Fig. 7 depicts the frequency-domain data results obtained from the
LB-VMM approach for both of the chosen excitation amplitudes. As
shown, both tests allow for the detection of single frequency signals
acting upon the structure since the three estimated frequencies match
the chosen input excitation frequencies of 20, 50, and 70 Hz.

4.2. Multi-frequency performance

The multi-frequency test assessment was conducted by exciting the
benchmark structure with both random noise and periodic chirp signals
ranging from 0 to 100 Hz. Fig. 8-top plots the LB-VMM results obtained
in the frequency domain, showing a comparison between the types
of excitation. Each curve corresponds to the results inferred from the
tracking points located on each floor. Fig. 8-bottom, on the other hand,
compares the results obtained by the LB-VMM approach against the
four piezoelectric accelerometers.

As demonstrated, the LB-VMM approach can detect multiple fre-
quencies at once with suitable accuracy. The response inferred matches

Fig. 8. Comparison of multi-frequency performance test results inferred from the LB-
VMM approach (�=20, 100 mV) between the type of excitation (top) and acquisition
sensor (bottom).

Fig. 9. Smooth of FFTs resulting from LB-VMM model, using a cubic spline
approximation to filter out noise.
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Table 1
Comparative mode frequencies obtained from each damage scenario with each sensing method. (See Fig. 12).

Accelerometer (Hz) LB-VMM (Hz) Error (%)

1st order
frequency

2nd order
frequency

1st order
frequency

2nd order
frequency

1st order
frequency

2nd order
frequency

Pristine 21.125 50.000 20.859 49.945 1.26 0.11
Mass 20.500 49.250 20.272 49.259 1.11 0.02
20% 21.250 48.875 21.251 50.141 0.01 2.59
50% 21.125 49.000 20.859 49.064 1.26 0.13
85% 21.125 47.500 20.468 47.692 3.11 0.41
No column 19.500 47.125 19.586 47.007 0.44 0.25

Fig. 10. ODS of the first three bending modes of the benchmark structure.

the accelerometer’s data and displays the structure’s natural frequencies
when excited using either a periodic chirp signal or random noise.
However, as anticipated, the LB-VMM approach suffers from a much
higher noise floor than the piezoelectric accelerometer’s output. Hence,
to improve the graphs readability, the FFTs resulting from VMM have
been smoothed using a cubic spline approximation to filter out noise
(Fig. 9).

In addition, the ODS have also been determined by taking advantage
of the magnification of the full-field displacements. Fig. 10 shows the
modal shapes of the first three bending modes of the structure, whose
frequencies correspond to the peaks shown in Fig. 8. Videos of the
operating deflection shapes are attached as supplementary material
alongside this article.

4.3. Damage detection

As stated before, to assess the damage detection capability of the LB-
VMM approach, five damage scenarios were evaluated under a 100 mV
random noise excitation. The first scenario, and the most severe one,
consists of removing a column from the lowermost story of the building,
on the side closest to the shaker and the camera. Then, the same column
was subjected to three less severe damage scenarios by reducing its
thickness by 10%, 20%, and 50%, thus reducing the column stiffness
by approximately 20%, 50%, and 85%. Finally, the fifth scenario was
conducted fixing a test mass of 1.2 kg on top of the uppermost floor of
the building. These scenarios have been reproduced as detailed in the
original Ref. [43].

Fig. 11 showcases the comparative results of each damage scenario
presented. Overall, the results depict small but significant shifts in the
building’s natural frequencies, which decrease along with the damage
severity, as expected. For the sake of simplicity, only an accelerometer
located on the top floor is used to represent the frequency response
function. It can be observed that the results between LB-VMM and the
accelerometer present very similar shifts in frequency, however, on the
LB-VMM spectrum the third mode is masked. This fact is attributed to
two reasons: on the one hand to an inadequate selection of the tracking
line placement coincident with the position of the accelerometer of
the upper floor, placed in a region of low mobility of the operating
deflection shape (see Fig. 10); on the other hand, due to the high
noise floors offered by LB-VMM compared to the accelerometer. In any
case, this result should not undermine the potential of the LB-VMM
approach since the results of the previous section (see Fig. 8), in which
different tracking lines are used, the third mode has been satisfactorily
identified. In other words, to capture a higher number of modes, it
is necessary to determine the response from different areas along the
structure, analogous to the spatial distribution of accelerometers.

Fig. 11-top shows the response frequency difference between the
undamaged structure and the same structure missing a column on the
ground floor. The LB-VMM approach demonstrates its suitability to
detect such damage, however, a complete column failure is a somewhat
unrealistic scenario. Meanwhile, Fig. 11-middle depicts the comparison
between the three column thickness reductions for both accelerome-
ter and LB-VMM data. The graphic shows consistent results between
both spectrums, thus confirming the capability for damage detection
using LB-VMM techniques. It is also remarkable that the system proves
capable of detecting modifications as small as a 10% difference in
a single column’s thickness. Finally, the third comparative scenario
(Fig. 11-bottom) displays the difference between the undamaged un-
loaded structure and the same undamaged structure with a 1.2 kg
mass bolted on the uppermost floor. Again, it can be observed that the
changes to the natural frequencies are very small and near the limit
of the LB-VMM setups resolution, however still present and verifiable
against accelerometer data.

For a more detailed validation of the system’s capacity, Table 1
includes the comparative numerical data of the frequency peaks iden-
tified in each damage scenario with each sensing method. The table
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Fig. 11. Comparison between frequency-domain data from the LB-VMM model and
piezoelectric accelerometers, showing the frequency response differences between the
undamaged structure and different damage scenarios.

Fig. 12. Comparative mode frequency obtained from each damage scenario with each
sensing method. See Table 1.

also includes the calculated percentage errors. These same results have
been plotted in Fig. 12 for better illustration. Hence, the quantitative
results are experimental evidence of the technique’s potential, whose
errors are within the resolution errors of the LB-VMM technique itself.
Please note that the accelerometers are taken as ground truth, how-
ever, both methods are subject to some amount of error. Nevertheless,
both measurement techniques display the same trend, therefore both
reflecting the structural modifications introduced. To accurately assess
the minimum detectable error, a more extensive statistical study should
be performed.

5. Conclusions

This work validates the use of a deep learning-based video motion
magnification (LB-VMM) approach and verifies its application on a
laboratory structural benchmark under different damage scenarios.
Although the model was trained on synthetic and non-related image
data, the result of the experimental validation proves that the LB-VMM
system is suitable for identifying the structure’s natural frequencies and
ODS, enabling algorithms to identify structural damage reliably. The
proposed method yields a temporal response signal that can later be
further processed to obtain parameters of interest for the application
of more sophisticated strategies of damage detection based on the
dynamic response [5,44]. Furthermore, these techniques could be com-
pounded with environmental and operational factor mitigation [45–47]
to decouple the effects of environmental conditions such as wind or
temperature from the effects of structural damage.

In contrast to previous research, the implemented learning-based
model gives a higher quality magnification than other VMM methods
that use hand-designed filters instead of learning the filters directly
from the data, thus obtaining the complete temporal vibration response
all at once. Despite this fact, the LB-VMM shows no relevant drawbacks
for the intended vibration testing applications. Therefore the preferred
solution to obtain the individual frequency components of the complete
temporal response is the application of a straightforward Fourier trans-
form. However, LB-VMM is not incompatible with the use of temporal
filters should they be required.

The use of motion magnification allows for greater sensibility when
using vision-based vibration analysis. However, this increased sensi-
bility comes with some limitations, such as the need for a stationary
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camera and the need for consistent inter-frame lighting. Further short-
comings of the method include higher noise floors than contact or
laser techniques, which, compounded with the fact that higher fre-
quencies often display smaller amplitudes, might make the method
unsuitable for some applications. Nevertheless, civil structures often
display low frequencies due to their environmental excitation, making
them suitable candidates for VMM techniques.

The methodology described in this work opens an avenue for re-
search regarding structural monitoring since this technique offers a
cost-effective tool for monitoring multiple structure points using just
one camera. Further research will address adapting this deep learning-
based technique to civil infrastructure monitoring and work to improve
the processing time of the LB-VMM model for real-time applications.
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a b s t r a c t

The goal of video motion magnification techniques is to magnify small motions in a video to reveal
previously invisible or unseen movement. Its uses extend from bio-medical applications and deepfake
detection to structural modal analysis and predictive maintenance. However, discerning small motion
from noise is a complex task, especially when attempting to magnify very subtle, often sub-pixel
movement. As a result, motion magnification techniques generally suffer from noisy and blurry outputs.
This work presents a new state-of-the-art model based on the Swin Transformer, which offers better
tolerance to noisy inputs as well as higher-quality outputs that exhibit less noise, blurriness, and
artifacts than prior-art. Improvements in output image quality will enable more precise measurements
for any application reliant on magnified video sequences, and may enable further development of video
motion magnification techniques in new technical fields.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Video Motion Magnification (VMM) is a computer vision task
consistent in magnifying small motions in a video sequence, hav-
ing several uses in many fields from bio-medical applications [1–
3] and deepfake detection [4] to structural modal analysis [5]
and condition monitoring. These techniques act like a microscope
for motion, to reveal previously invisible or unseen movements.
Despite this simple premise, discerning small motions from noise
is a complex task, especially when attempting to magnify very
subtle, often sub-pixel movement. As a result, motion magnifica-
tion techniques generally suffer from noisy and blurry outputs.
Therefore, multiple authors have explored techniques to reme-
diate these shortcomings and improve magnification quality and
performance.

Early motion magnification algorithms, such as [6], used a La-
grangian approach, reliant on motion tracking or optical flow, to
isolate motion prior to magnification. However, this approach is
very computationally expensive and difficult to execute artifact-
free, especially in regions affected by occlusion boundaries and
complex motion. On the other hand, more modern techniques [7–
11] have relied on Eulerian approaches, which observe the
changes in a fixed region of pixels instead of tracking features in
time and space. These Eulerian approaches are less computation-
ally expensive, perform better with small motions, and generally
yield better magnification results. Nevertheless, these approaches

∗ Corresponding author.
E-mail address: marcoantonio.perez@iqs.url.edu (M.A. Pérez).

still display noticeable blurring and artifacting due to the complex
challenge of designing filters for noise removal, which at the
same time, do not interfere with motion magnification. For this
reason, Oh et al. [12] proposed a novel learning-based approach
to VMM. Learning-based motion magnification departs from the
use of hand-designed filters in favor of learning those filters
using Convolutional Neural Networks (CNN) instead. This method
achieved higher-quality magnification yielding fewer ringing ar-
tifacts and showing better noise characteristics than previously
published methods. However, its reliance on additional temporal
filtering to improve image quality sometimes produces errors in
magnification. While it is possible to obtain fairly clear results
with no temporal filtering, the image quality generally improves
when filtering is applied as it removes unwanted motion and
noise before learning-based magnification.

The method presented in this work improves on the learnable
filters and abandons temporal filtering to ensure correct mag-
nification outputs. Resulting in a novel architecture capable of
producing state-of-the-art results in terms of magnified image
quality. The main contributions of this work are:

(a) A novel motion magnification architecture based on the
SWIN transformer.

(b) A discussion, comparison, and validation of learning-based
VMM techniques, both in a quantitative and qualitative
sense.

(c) The proposed novel architecture outperforms relevant
VMM techniques in both quantitative evaluation and

https://doi.org/10.1016/j.knosys.2023.110493
0950-7051/© 2023 Elsevier B.V. All rights reserved.
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Table 1

Motion magnification techniques summary table.
Source: Adapted from [12].

Method Liu et al. [6] Wu et al. [7] Wadhwa et al. [8] Wadhwa et al. [9] Zhang et al. [11] LB-VMM [12] STB-VMM

Spatial
decomposition

Tracking,
optical flow

Laplacian
pyramid

Steerable filters Riesz pyramid Steerable filters Deep convolution
layers

Swin
transformer

Motion
isolation

– Temporal
bandpass filter

Temporal
bandpass filter

Temporal
bandpass

Temporal bandpass
filter (2nd order
derivative)

Subtraction or
bandpass filter

Subtraction

Representation
denoising

Expectation–
Maximization

– Amplitude
weighted Gaussian
filtering

Amplitude
weighted Gaussian
filtering

Amplitude weighted
Gaussian filtering

Trainable
convolution

Swin
transformer

observed output quality, offering higher-quality magnifi-
cation, less blurry frame reconstruction, better noise tol-
erance, and fewer artifacts than prior-art.

The following section summarizes previous influential works
and their relation to the development of the presented model.
Section three describes in detail the model’s architecture and its
training process. The fourth section presents results and compar-
isons of the model’s performance, focusing on magnification and
image quality with respect to prior work. Finally, the conclusions
of this paper are summarized in section five.

2. Related work

2.1. Learning-based video motion magnification

Eulerian approaches to video motion magnification function
by decomposing video sequences into motion representations
that can later be manipulated mathematically and then recon-
structed into magnified frames. On the other hand, Lagrangian
approaches explicitly track a pixel or feature’s movement throu-
ghout a video sequence. This distinction between Lagrangian and
Eulerian approaches is not dissimilar to the same terms used
in fluid dynamics, where Lagrangian methods [6] track a vol-
ume of fluid through the flow, while Eulerian approaches [7–9]
study the evolution of flow in a fixed volume in space. Eulerian-
based methods generally have the upper hand when processing
small motion but produce blurry results when encountering large
motion. The technique presented in this paper belongs to the
Eulerian approach and is inspired by the work of Oh et al.’s
learning-based video motion magnification [12].

Eulerian techniques generally consist of three stages: spatial
decomposition, motion isolation and manipulation, and repre-
sentation denoising. From this blueprint, different authors have
proposed increasingly sophisticated techniques to improve
magnification quality and performance as reflected in Table 1.
In technical terms, the motion magnification problem can be
summarized as follows. Given a signal I(x, t) representing im-
age intensity at position x and time t , and δ(t) representing
translational motion in time such that

I(x, t) = f (x + δ(t)); I(x, 0) = f (x) (1)

The goal of motion magnification is to synthesize the signal

Î(x, t) = f (x + (1 + α) · δ(t)) (2)

for some amplification factor α. In practice, only certain fre-
quencies of motion δ(t) are useful to motion magnification, so
a selector T (·) is applied to δ(t), which is typically a temporal
bandpass filter.

Prior to learning-based VMM (LB-VMM), magnification tech-
niques relied on multi-frame temporal filtering to isolate mo-
tions of interest from random noise [7–9,11,13]. By contrast,
the learning-based approach [12] directly employs CNNs to both
filter noise and extract features, achieving comparable or better

quality than prior-art without using temporal filtering. The LB-
VMM model is composed of three stages: encoder, manipulator,
and decoder. Said model is designed to accept two frames and
return a single motion-magnified frame. The goal of the encoder
is to extract relevant features from each of the two input frames
and yield a visual and a motion representation. The motion repre-
sentation of both input frames is then passed to the manipulator,
which will subtract both representations and magnify the result
by an arbitrary parameter α defined by the user. Finally, the
results of the manipulator and the previously-obtained visual
representation enter the decoder, where the motion and visual
components are reconstructed into a motion-magnified frame.
These three CNN-based components allow for flexible learnable
filters that are better suited to the task of motion magnification
and thus yield better quality magnification results.

To train the model and given the impossibility of obtaining
motion magnified video pairs, Oh et al. generated and used a
fully-synthetic dataset for training their model, built by moving
segmented objects from the PASCAL VOC [14] dataset over back-
ground images taken from MS COCO [15]. Careful consideration
to the generation of the dataset was paid to ensure accurate
pixel and sub-pixel motion as well as learnability. The dataset
learning examples are parametrized to make sure they are within
a defined range. Specifically, the dataset’s magnification is upper-
limited to an α magnification factor of 100, and input motion is
sampled so that magnified motion does not exceed 30 pixels.

2.2. Transformers as a Computer Vision tool

CNNs have been a staple of the Computer Vision (CV) field
in the last few years, with many of the top-performing models
having made extensive use of them [16–18]. This period roughly
started after Krizhevsky et al. [17] won the ImageNet Large Scale
Visual Recognition Challenge [19,20] (ILSVRC) on September 30th
2012, and spurred many publications employing CNNs and GPUs
to accelerate deep learning. Through the use of filters, these
networks generate feature maps that summarize an image’s most
relevant parts. These filters capture relevant local information by
the very nature of the convolution operation, which, combined
with multi-scale architectures [21,22] result in rich feature maps
that can efficiently obtain a representation of an image’s content,
both in a local and global context. Recently, the CV field has been
revolutionized yet again by the Vision Transformer (ViT) [23],
which, employing the attention mechanism has demonstrated
state-of-the-art performance in many CV tasks. The attention
mechanism was first popularized in the field of Natural Language
Processing (NLP) by Vaswani et al. [24], where the transformer
architecture has become the de-facto standard.

The attention mechanism can be described as mapping from a
query and a set of key–value pairs into an output. The output, rep-
resented in vector format, is computed as a weighted sum of the
values, where the weight assigned to each value is computed by a
compatibility function taking into account the query and the cor-
responding key [24]. The transformer was the first model which
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exclusively relied on self-attention to compute representations
of its input and output without using sequence-aligned recur-
sive neural networks or convolution operations. Unlike CNNs,
transformers lack translation invariance and a locally-restricted
receptive field, in its place transformers offer permutation invari-
ance. Said feature enabled NLP models to infer relations between
words and ideas much further into a text than previous recurrent
models could. However, CV applications require the processing
of grid-structured data which cannot trivially be processed by a
transformer. The ViT [23] overcame this burden by mapping grid-
structured data into sequential data by splitting the image into
patches. Patches are then flattened into vectors and embedded
into a lower dimension. These flattened patches are then summed
with positional embeddings and fed as a sequence to a standard
transformer encoder. Image patches essentially become sequence
tokens just like words are when working in NLP, in fact, ViT uses
the exact same encoder described in [24].

Later, Microsoft researchers improved on the ViT publishing
the SWIN transformer, a hierarchical vision transformer using
shifted windows [25]. This work further refined the solution to
adapt the original transformer from language to vision. The SWIN
transformer solved issues caused by large discrepancies in the
scale of visual entities at the same time that limited self-attention
computation to non-overlapping local windows, yet still allowing
for cross-window interaction. The introduced limitation on the
scope of self-attention significantly reduced the computational
complexity, which scales quadratically with respect to image
size, allowing for the processing of higher-resolution images that
were previously unmanageable. Further developments in the CV
field have implemented the SWIN transformer for various tasks
achieving state-of-the-art performance [26–28].

2.3. Swinir image restoration

Inspired by the recent prominence of the transformer and its
success in many CV problems such as image classification [23,
25,29–33], object detection [34–36], segmentation [30,37,38],
crowd counting [39,40] and image restoration [41–43], Liang
et al. [27] proposed a new state-of-the-art image restoration
model based on the Swin transformer [25]. The SwinIR model
consists yet again of three modules: a shallow feature extractor,
a transformer-based deep feature extractor and a high-quality
image reconstruction module. This structure offers excellent per-
formance in various image restoration tasks such as image super-
resolution, JPEG compression artifact reduction, and image de-
noising. These applications are very interesting when working
with VMM, as current state-of-the-art methods can be negatively
affected by noisy input images, causing much noisier and blurrier
results, especially at large magnification rates. This occurs as a
result of noise not being properly filtered beforehand, therefore
as the motion gets magnified, the noise gets magnified as well.

3. Methodology

3.1. Residual swin transformer block

The Residual Swin Transformer Block (RSTB) [27] is used as
one of the fundamental building blocks of the proposed archi-
tecture, appearing in parts of both the feature extractor and the
reconstructor. The RSTB is a residual block combining multiple
Swin Transformer Layers (STL) [25] and convolutional layers,
compounding the benefits of the spatially invariant filters of the
convolutional layers with the residual connections that allow for
multilevel feature processing.

The Swin transformer layer shown in Fig. 2 partitions an
H ×W × C image into non-overlapping HW

M2 local windows using

an MxM sliding window and then computing its local attention,
effectively reshaping the input image into HW

M2 ×M2×C . The main
difference with respect to the original transformer layer [24] lies
in the local attention and the shifted window mechanism. For
a local window feature F ∈ R

M2×C , the query, key, and value
matrices Q , K , and V ∈ R

M2×d are computed as

Q = FWQ ; K = FWk; V = FWV (3)

where WQ , WK , and WV are the learnable parameters shared
across different windows, and d is the dimension of Q , K , and
V . Therefore, the attention matrix is computed for each window
as

Attention(Q , K , V ) = softmax(
QK T

√
d

+ P)V (4)

where P is the learnable relative positional encoding. Computing
the attention mechanism multiple times yields the results of the
Multi-head Self Attention (MSA), which are then passed on to a
Multi-Layer Perceptron (MLP). Therefore, the whole STL process
can be summed up like so

F = MSA(LayerNorm(F )) + F (5)

then

F = MLP(LayerNorm(F )) + F (6)

where the MLP is formed by two fully-connected layers with a
GELU activation layer in between.

3.2. Network architecture

The proposed model architecture, shown in Fig. 1, consists of
three main functional blocks: the feature extractor, the manipula-
tor, and the reconstructor. The feature extractor is further subdi-
vided into the shallow and deep feature extractors, and their job
is to extract a high-quality representation of an input frame. Next,
the manipulator, using the features from two frames, magnifies
the motion by multiplying the difference between the two feature
spaces by a user-selected magnification factor α. Finally, the
reconstructor converts the resulting manipulated feature space
back into a magnified frame.

Given two frames of a target sequence [IA, IB] ∈ R
H×W×Cin

(where H is the height of the image, W is the width of the image
and Cin represents the number of input channels) the convolu-
tional shallow feature extractor (GSF ) maps high-level features
into a higher dimensional feature space, thus providing early
local feature extraction (FAS, FBS) and leading to a more stable
optimization and better results [44].

[FAS, FBS] = GSF ([IA, IB]) (7)

Then, the features extracted in the previous step are further
processed in the deep feature extraction module (GDF ), which
consists of N Residual Swin Transformer Blocks (RSTB).

[FAD, FBD] = GDF ([FAS, FBS]) (8)

After feature extraction, both frames’ feature spaces are then
sent to the manipulator [12] (GM ), which works by taking the
difference of both frames’ feature spaces and directly multiplying
by a magnification factor α.

GM (FAS + FAD, FBS + FBD) = (FAS + FAD)

+ h(α · t(((FBS + FBD) − (FAS + FAD))))
(9)

where t(·) is a 3 × 3 convolution followed by a ReLU activation,
and h(·) is a 3 × 3 convolution followed by a 3 × 3 residual block.

FM = GM (FAS + FAD, FBS + FBD) (10)
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Fig. 1. Architecture overview of the proposed model.

The conjoined manipulated feature space of both frames is
then processed by the Mixed Magnified Transformer Block
(MMTB) (GMMTB) formed by N RSTB blocks. This stage enables
the attention mechanism to affect the combined magnified fea-
tures of both frames, resulting in a more coherent result after
reconstruction.

FMMTB = GMMTB(FM ) (11)

Finally, reconstruction is dealt with a convolutional block (GR)
that inverts the initial feature mapping, done in the shallow
feature extractor, back onto a frame (IŶ ).

IŶ = GR(FM + FMMTB) (12)

Further detail on the architecture can be found in Fig. 2 along
with a graphical representation of the Swin Transformer Layer
(STL) and the Residual Swin Transformer Block (RSTB).

3.3. Training

The whole network is trained end-to-end using the dataset
provided by [12], which allows the results comparison to depend
exclusively on network architecture. Nevertheless, in addition to
enabling fair comparison, the dataset has proven [12] to produce
good-quality models capable of generalizing trained scenarios
and returning excellent-quality magnified videos on scenes to-
tally unrelated to the dataset. These reasons led to the adoption
of the dataset as the only source of training data.

The L1-Loss cost function was chosen for end-to-end training
and placed between the network’s output IŶ and the ground truth
frame IY . Additionally, in order to improve the feature extraction
and make a more robust system, the perturbed c frames pro-
vided by the dataset were compared against their non-perturbed
counterparts after feature extraction, using yet again L1-Loss. The

resulting regularization loss was then added to the end-to-end
loss of the whole network with a λ weight coefficient set to 0.1.

Finally, the optimizer of choice for training the model was
ADAM [45] with β1 = 0.9, β2 = 0.999, batch size set to 5 and
a learning rate of 10−5 with no weight decay.

3.4. Modes of operation

The proposed approach, STB-VMM, can be applied to any input
video sequence containing two frames or more, regardless of the
time scale between the two frames. Sequences can be treated in
one of two modes, static or dynamic, borrowed from [12]. No
changes to the network are made for these modes. Instead, the
modes refer to the order in which the input frames are fed to the
model. The static mode, which follows more closely the classical
definition of motion magnification, uses the first frame of the
sequence as reference. In terms of computation, the static mode
can be expressed like so: model(I0, It ), where the t is the frame
number increasing sequentially with time. On the other hand, the
dynamic mode magnifies the difference between two consecutive
frames [model(It , It+1)], therefore magnifying velocity between
each frame. Note that in each of the modes, the magnification
factor α has different meanings.

Oh et al. [12] proposed one additional operation mode with
temporal filtering to mitigate the effects of undesired motion and
noise. The filtering was applied in the manipulator to produce
temporarily-filtered motion-magnified frames similar to those
of classical techniques. On the downside, the temporal mode
appears to cause blindness to small motions, resulting in patchy
magnification. This phenomenon occurs because motion ampli-
tude crosses the threshold to be large enough to be detected
and causes some regions to be suddenly magnified mid-sequence.
This performance degradation gets worst when the magnification
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Fig. 2. Architectural details.

factor is high and motion is small. While theoretically possible to
incorporate a temporal mode into the proposed model, the mag-
nification results do not suffer from excessive noise or blurring,
therefore, temporal filtering is unnecessary and the full spectrum
of frequencies is magnified all at once producing good results.

4. Results and discussion

In the following section, the results yielded by the STB-VMM
model are compared to the current state-of-the-art learning-
based video motion magnification model [12]. Performance is
measured quantitatively and qualitatively, showing that our
model improves on the previous state-of-the-art in magnification
quality and clarity. The video versions of all the comparisons are
available in the supplementary materials (see Data availability
section).

Quantitative comparison of image quality or Image Quality
Assessment (IQA) is a complex topic involving many variables and
methods. Said methods are divided into three main categories:
full-reference, reduced-reference, and no-reference. A referenced
algorithm [46–48] requires a pristine sample to assess the quality
of a degraded image, while no-reference methods [49–52] pro-
duce an image score without the need of any reference. When
evaluating VMM it is impossible to obtain a pristine motion-
magnified frame. Therefore, to evaluate the results presented in
the following section the MUSIQ [52,53] algorithm was chosen to
compare the models’ performance.

The following results comparative analyzes the performance of
Oh et al.’s Learning-Based Video Motion Magnification (LB-VMM)
model and STB-VMM on ten different video benchmarks that
showcase interesting motion magnification examples. In addition,
a comparison against the baby [7] sequence is added to provide a
fair point of comparison. The sequences were captured at 1080p
60fps on a mid-range smartphone to demonstrate the potential
of STB-VMM with accessible video equipment.

4.1. Quantitative comparison

Table 2 shows the average, 1st, and 99th percentile average
MUSIQ scores for the tested benchmark sequences ran on the

Learning-based Video Motion Magnification model and the STB-
VMM model. The values presented in the table are calculated for
each individual frame of the full sequences and then summarized
on an average score. The original sequences are also added as
control, and scores are expected to be higher than both of the
magnification methods.

The results on Table 2 demonstrate that STB-VMM produces
better results than LB-VMM. On average, the scores obtained by
STB-VMM are 9.63% higher, and boast a much higher 1% lows,
implying that the quality of magnification is noticeably more
consistent throughout the sequence. This trend can be observed
in Table 3 and Fig. 3, where STB-VMM shows remarkable stability
on its output quality. LB-VMM only manages a single higher score
than STB-VMM in the building benchmark by a difference of
0.23% (Building00). However, in the authors’ opinion, STB-VMM
produces better quality magnification with more stable edges and
less blurry patches.

On the other hand, none of the magnified scores fall above
the original’s, as expected. Nevertheless, magnified and original
scores follow the same trend, implying that low-quality source
videos produce worse outputs. However, STB-VMM is much more
capable of dealing with low-quality input images, even closing
the quality gap with respect to the original when input quality
declines. The sharp quality declines seen in both car sequences
can be, in part, attributed to the poor low light performance of
the camera employed.

4.2. Qualitative comparison

To reinforce the previous section’s scores and claims, this
section presents a few qualitative comparisons that demonstrate
the effectiveness of our proposed network against the current
state-of-the-art in terms of resulting image quality.

Fig. 4 shows the same frame chosen at random from the
Car00 sequence using both models. STB-VMM, shown on the right,
yields a much superior result in terms of image clarity that can
be appreciated in both edges and texture.

The car sequence recording was filmed in a rather low light
environment, thus yielding noisier/grainier video than otherwise
could have been archived. This highlights one of the main benefits
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Fig. 3. Graphic representation of the average MUSIQ scores per test sequence magnified x20.

Fig. 4. Qualitative comparison of the car sequence. Highlighted in the bottom row of the figure the car’s coolant reservoir, engine cover, and ventilation slits
demonstrate that STB-VMM results are noticeably sharper and less distorted.

of the proposed architecture, which is a much better tolerance to
noisy input. Regardless of clarity, both models perform well on
motion magnification with very few artifacts, if any.

The next example, shown in Fig. 5, was filmed in better light-
ing conditions, yet the quality score of the unmagnified video
is no better. This might have been caused, in part, due to the
framing of the sequence, which keeps only parts of the image in
focus. Regardless of the base score set by the original, STB-VMM
clearly outperforms LB-VMM, with better-defined letters and a

much more clear background. In terms of motion magnification,
both methods display good quality magnification.

On the other hand, the building sequence (Building00) is the
only benchmark where LB-VMM outperforms on average STB-
VMM. Nevertheless, the better edge stability offered by STB-VMM
enables the authors to obtain better frequency readings from the
magnified video. Such application is interesting in technical fields
where vibration needs to be monitored, such as in structural
health monitoring [5,54–56]. Fig. 6 shows the cropped upper right
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Table 2

Comparative MUSIQ scores of the original sequence, the sequence magnified using learning-based video motion magnification (o3f_hmhm2_bg_qnoise_mix4_nl_n_t_ds3

checkpoint), and the proposed method. (x20).

Original LB-VMM STB-VMM

Avg. η1 η99 Avg. η1 η99 Avg. η1 η99

AC00 72.11 69.65 72.75 55.73 49.61 58.69 62.45 61.05 63.29
AC01 69.15 68.30 70.05 48.35 34.07 51.22 59.27 57.72 60.96
Baby 74.39 69.71 74.87 55.51 53.26 59.95 57.12 54.41 62.90
Building00 66.84 66.01 75.45 52.46 49.51 62.75 52.30 50.07 56.43
Car00 52.55 50.65 54.41 31.40 18.27 35.50 43.37 23.28 48.06
Car01 55.81 54.77 57.01 33.51 30.67 64.99 50.28 48.08 52.07
Crane00 75.26 74.86 75.57 56.92 52.70 65.02 59.13 56.19 62.89
Crane01 75.09 74.63 75.44 51.05 45.25 57.37 54.93 51.11 64.70
Truss00 66.94 65.92 67.49 55.90 52.65 57.98 56.27 54.93 57.61
Wheel00 72.84 71.87 73.38 51.04 28.82 54.40 57.04 36.41 61.19
Wheel01 52.15 50.23 53.55 34.84 31.12 59.03 46.21 43.68 48.48

Total avg. 66.13 51.25 75.45 48.05 32.32 60.09 54.42 45.68 63.29

% dev. to avg. 13.58% 22.50% 14.09% 20.34% 32.75% 25.04% 10.70% 16.07% 16.28%

Fig. 5. Qualitative comparison of the wheel sequence. STB-VMM displays sharper letters and a better-defined background with respect to LB-VMM.

corner of the building [57] and the slice used for frequency mea-

suring. Below, in Fig. 6(d), the FFTs obtained from the movement

of the sequences are plotted. While both sequences detect a peak

at 14.25 Hz, STB-VMM produces a much cleaner signal. During

the experiment, the building was intentionally excited with an

electrodynamic shaker reproducing a 14.25 Hz sine wave.

The authors acknowledge that image quality can be a some-

what subjective metric and recommend watching the comparison

videos attached in the supplementary materials.

4.3. Limitations

In spite of the favorable comparisons, LB-VMM still has a
significant advantage in computing time over STB-VMM. With
our hardware setup,1 LB-VMM magnifies the baby [7] sequence,
consisting of 300 frames at a resolution of 960 × 576, in approx-
imately 76 s. Meanwhile, STB-VMM almost doubles the compute
time, clocking in at 130 s for the exact same sequence. Soft-
ware optimizations combined with upcoming improvements in

1 AMD Ryzen 9 5950X; Nvidia RTX 3090.
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Fig. 6. Vibration readings on the Building00 sequence. While the noise floor remains the same on both readings, the FFT obtained using STB-VMM displays a much
more prominent peak at 14.25 Hz.

Table 3

MUSIQ score difference between STB-VMM and LB-VMM.

Avg. (%) η1 (%) η99 (%)

AC00 9.32 16.42 6.32
AC01 15.79 34.64 13.91
Baby 2.15 1.65 3.95
Building00 −0.23 0.86 −8.38
Car00 22.79 9.89 23.08
Car01 30.06 31.78 −22.65
Crane00 2.93 4.67 −2.81
Crane01 5.17 7.85 9.71
Truss00 0.55 3.46 −0.55
Wheel00 8.24 10.56 9.26
Wheel01 21.81 25.01 −19.72

Total 9.63 26.07 4.24

hardware might help mitigate STB-VMM’s compute time short-
comings.

5. Conclusions

This work presents a new state-of-the-art model for video
motion magnification based on the Swin Transformer that has
been shown to outperform previous state-of-the-art learning-
based models. The new model displays better noise tolerance
characteristics, a less blurry output image, and better edge sta-
bility, resulting in clearer and less noisy magnification with very
few, if any, artifacts.

On the downside, the new model requires more computing re-
sources than previous models and cannot be run in real-time like

phase-based methods [8]. Nevertheless, applications that require
precise magnification for vibration monitoring [5] could greatly
benefit from improvements in the technology. Further work will
address the integration of this model in specific applications that
require precise vibration monitoring and could benefit from a
full-field solution like a camera instead of installing and wiring
multiple contact sensors such as accelerometers.
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Summary
Recent developments in computer vision have brought about a new set of techniques called
Video Motion Magnification, which are capable of identifying and magnifying eye-imperceptible
movements in video data. These techniques have proved effective in applications such as
producing visual representations of an object’s operating deflection shapes or recovering sound
from a room behind soundproof glass. Our research explores the new possibilities of motion
magnification applied to Structural Health Monitoring (SHM) and vibration testing, harnessing
the latest advances in deep-learning to achieve state-of-the-art results.
Vision-based damage detection techniques can reduce sensor deployment costs while providing
accurate, useful, and full-field readings of structural behavior. We present a new video
processing approach that allows the treatment of video data to obtain vibrational signatures of
complex structures. This approach enables the identification of very light structural damage in
a controlled lab environment. The presented software is based on the use of state-of-the-art
deep-learning video motion magnification techniques to offer an easy-to-use, effective, full-field
tool for SHM at a fraction of the cost of contact-based techniques.

Related work
This work is based on the method developed by Lado-Roigé et al. (2022) for vibration-based
damage detection and on the Swin Transformer Based Video Motion Magnification (STB-VMM)
method (Lado-Roigé & Pérez, 2023), which improves on the previous motion magnification
backend (Oh et al., 2018) in terms of image quality.
Other researchers have used similar techniques for vibration testing (Eitner et al., 2021; Molina-
Viedma et al., 2018). However, to the authors’ knowledge, non have released a software tool
to go along with their publications. ViMag offers a simple interface to replicate some of these
experiments using state-of-the-art learning-based video motion magnification.

Figure 1: Video sequence to signal pipeline

Motion magnification is a video processing technique that consists on the transformation of
input frames to exaggerate motion. The goal of these algorithms is to amplify subtle motions in
a video sequence, allowing the visualization of vibrations and deformations that would otherwise
be invisible. Video motion magnification was first developed by C. Liu et al. (2005) and opened
a new range of possibilities for research, however, this first approach produced numerous visual
artifacts on top of being computationally expensive. Years later,further developments by Wu et
al. (2012) introduced a novel Eulerian approach to magnification that produced much cleaner

Lado-Roigé, & Pérez. (2023). ViMag: A Visual Vibration Analysis Toolbox. Journal of Open Source Software, 8(87), 5491. https://doi.org/10.
21105/joss.05491.
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results with less computational cost, paving the way for newer and more refined algorithms
that produced increasingly better results such as (Wadhwa et al., 2014), (Oh et al., 2018) or
(Lado-Roigé & Pérez, 2023).

Statement of need
ViMag provides an easy-to-use graphical user interface aimed at extracting time-series signals
of vibrating machinery and structure videos. This software enables the visualization of videos,
selection of magnification area, and signal processing. Consequently, it facilitates and automates
the technique developed by Lado-Roigé et al. (2022) and allows machine learning layman to
obtain reliable results without having to apply a manual multistage image processing pipeline.
Therefore, this software facilitates the use of a camera as a functional replacement for an
accelerometer by employing STB-VMM as the motion magnification backend.
The intended use of ViMag is to support the assessment of mechanical systems’ performance,
such as machines or structures. Researchers and engineers should consider employing condition
monitoring or SHM methodologies on the outcomes yielded by ViMag. Such techniques are
defined as the set of analysis and assessment tools applied to autonomously determine the
integrity and durability of engineering structures. These techniques are aimed at tracking the
operational status, assessing the condition, and alerting to the changes in the geometric or
material properties that can affect a structure’s overall performance, safety, reliability, and
operational life (Cosenza & Manfredi, 2000; Frangopol & Curley, 1987).
However, the use for ViMag might not be constrained to mechanical engineering exclusively,
and some other interesting applications could also benefit from the software, such as medical
applications (Janatka et al., 2020) or miscellaneous technical demos like recovering sound from
video (Davis et al., 2014).

Video processing workflow
Figure 1 presents a graph depicting the process of converting a video sequence to a discrete
signal. To begin the signal extraction process, the user is asked to select a linear region of
interest, preferably on a high-contrast area of the frame. Then, the area surrounding the
selected region of interest is magnified using STB-VMM throughout the target video sequence’s
length. The motion-magnified result is then converted into a single image that represents
movement in the temporal domain, achieved by extracting the selected linear region in each of
the frames and stacking them horizontally as shown in Figure 2. Finally, an edge detection
algorithm is run over the temporal slice to determine the discrete temporal signal and convert
it into an array of values over time. From this point on, existing signal processing techniques,
such as the Fourier transform, can be used to extract further information.

Lado-Roigé, & Pérez. (2023). ViMag: A Visual Vibration Analysis Toolbox. Journal of Open Source Software, 8(87), 5491. https://doi.org/10.
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Figure 2: Video sequence transformation to temporal slice

Motion magnification acts like a microscope for motion, magnifying tiny movements on video
sequences to retrieve seemingly invisible or almost imperceptible movements. Consequently,
motion magnification may allow the naked eye to see a structure’s operating deflection shapes
as they happened in real operating conditions. The STB-VMM model consists of three main
functional blocks that extract features from frames, manipulate those features and finally
reconstruct the frames. Implemented in PyTorch (Paszke et al., 2019), STB-VMM borrows
ideas from Dosovitskiy et al. (2020), Vaswani et al. (2017), and Z. Liu et al. (2021) to
improve the image quality offered by prior motion magnification methods at the cost of some
performance. The lack of temporal filtering and the higher image quality offered by STB-VMM
play an important role in applications that require precise magnification for vibration monitoring,
as less-noisy images produce clearer signals that highlight abnormal behaviors sooner.
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Abstract

This paper presents a comprehensive evaluation of the STB-VMM motion magnification algorithm for use in structural

health monitoring applications. The video motion magnification system’s ability to accurately identify a structure’s

natural frequencies and operating deflection shapes is demonstrated through experimental testing, thus confirming

the approach as a reliable structural damage detection method. A comparative analysis of the performance of STB-

VMM and prior methods using learning-based video motion magnification under varying image conditions reveals

the advantages of STB-VMM when processing noisy data, as well as its limitations in more favourable image condi-

tions. The potential for motion magnification to increase the sensitivity of vision-based vibration analysis is explored,

discussed, and compared to existing contact and non-contact sensors.

Keywords: Computer Vision, Deep Learning, Damage Identification, Motion Magnification, Structural Health

Monitoring

1. Introduction

Structural Health Monitoring (SHM) [1, 2] is the research field that studies and analyses the behaviour of mechan-

ical systems over time in order to detect structural performance degradation. The goal of SHM is to provide updated

information regarding the ability of engineering structures to perform their intended function in light of the inevitable

degradation of the building materials and systems, often resulting from factors such as fatigue, wear, or corrosion

present in their operational environments. SHM provides the framework to determine the adequate use of monitoring

equipment as well as the processes involved in the analysis of captured signals. The SHM process involves several

steps, from data aquisition and feature extraction to EOV1 mitigation [3, 4] and decision-making. This work focuses

on the data aquisition process which generally involves selecting excitation methods, sensor types and their positions,

and the data acquisition and transmittal hardware. More precisely, this paper focuses on vision-based methods for cap-
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turing the necessary signals for the appliacation of mathematical SHM tools to detect, diagnose and predict damage

[5, 6].

To directly monitor the state of a system, it is necessary to identify features in the acquired data that allow the dis-

tinction between the undamaged and damaged structure [7, 8]. One of the most common feature extraction methods is

based on correlating measured system response quantities, such as vibration amplitude or frequency, with observations

of the degraded system.

The growing trend towards digitalization has positively impacted the practice of mechanical and civil engineering,

providing the means and infrastructure to collect, store, and process operational data for analysis [9, 10]. Structural

monitoring is key for learning about engineering structures and to enable engineers to validate their calculation as-

sumptions as well as to detect suboptimal performance due to wear, corrosion, or other factors. In turn, this improves

the visibility of incipient structural problems and allows the use of predictive maintenance strategies to prevent further

damage as well as prevent unexpected service interruptions and safety risks. Therefore, reducing maintenance costs

and improving operational safety [11, 12].

Despite these benefits, SHM has not yet been widely adopted in the civil engineering field, and thus, the most

common approach for evaluating the operational condition of civil infrastructure is for a trained operator to perform

a visual assessment of the structure. However, this presents some notable disadvantages, such as the fact that visual

inspections are time-consuming, require the attention of qualified engineers and technicians, and not all load-bearing

elements might be inspectable due to occlusion by other elements or decorative coverings.

SHM systems reinforce the information obtained by periodic inspections, and is an excellent diagnostic tool to

detect damage in hard-to-reach areas, allows continuous monitoring, and issues alerts when detecting anomalous

behaviours, therefore helping reduce repair costs. However, the downside of SHM systems tends to be the upfront

cost of instrumenting the structure and maintaining the monitoring systems operational.

For the purpose of instrumenting a structure, multiple types of sensors [13, 14] are used that measure displacement,

such as strain gauges or fibre optics sensors, acceleration, like piezoelectric or MEMS accelerometers, or inclination,

with sensors like inclinometers or tiltmeters. The obvious downside of these example sensors is that they must be

installed on the structure and must have some means of transmitting a signal, either wired or wirelessly. On the one

hand, wired sensors provide good quality signals and do not require extra power sources, but routing the cables might

not be feasible on hard-to-access or moving elements. Moreover, long cable runs might affect the signal quality and

might require of additional hardware. On the other hand, wireless sensors require an independent power source for

transmitting data, which might be unfeasible in some instances.

Vision-based monitoring methods [15–18] attempt to mitigate these issues by providing data without the need
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for contact with the structure, inferring the displacement of structural elements by tracking pixels or features over

time. Vision-based techniques provide full field measurements reducing the number of sensors that need to be de-

ployed. These advantages make vision-based options very attractive in spite of generally lower accuracy than their

contact-based counterparts. Techniques such as digital image correlation, optical flow, and video motion magnification

(VMM) [19–23] have been successfully implemented in multiple fields and applications.

This work intends to validate the novel STB-VMM motion magnification algorithm for SHM applications by

using the method described in [24, 25]. Furthermore, this paper compares the results obtained using the learning-

based video motion magnification model presented by Oh et al. against the results of STB-VMM to highlight the

differences between these methods in the SHM context. This work also includes a comparison of both learning-based

magnification methods to determine their tolerance to unfavourable imaging conditions, that are often found in the

field. Finally, this paper expands on previous tests [24] by including experiments on a large-scale structure.

The following section introduces the theoretical background regarding video motion magnification as well as

its application to SHM. The third section details the testing methodology and image processing steps. Next, the

fourth section presents and discusses the results to highlight the differences between VMM methods and ground truth.

Finally, the fifth section summarizes the conclusions of this work.

2. Related work

Motion magnification is an area of study in computer vision that involves the amplification of very small motions

present in video sequences, making them easily visible to the naked eye. These techniques find applications in diverse

fields such as biomedical research [26–28], deepfake detection [29], structural modal analysis [19–24], or condition

monitoring [30]. Acting as a microscope for motion, these methods unveil previously invisible or imperceptible move-

ments. However, despite its seemingly straightforward objective, the separation of subtle motions from noise poses

a complex challenge, particularly when attempting to enhance extremely delicate movements that often occur at sub-

pixel levels. Consequently, conventional motion magnification techniques commonly encounter issues such as noisy

and blurred outputs due to the difficulty involved in designing filters that eliminate noise without removing critical

sub-pixel data. Hence, researchers have devoted considerable efforts to addressing these limitations and enhancing

the quality and performance of magnification.

Earlier approaches to motion magnification, such as Liu et al. [31], relied on a Lagrangian approach that used

motion tracking or optical flow estimation to isolate the desired motion from noise prior to magnification. However,

this methodology proved computationally demanding and prone to artifacts, especially in regions affected by occlusion

boundaries and intricate motion patterns. On the other hand, subsequent developments [32–34, 38, 35] adopted an
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Amplitude

weighted Gaus-

sian filtering

Trainable convo-
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Table 1: Motion magnification techniques summary table. Adapted from [36, 37].

Eulerian approach that focused on observing changes within a fixed region of pixels over time, rather than tracking

specific features across space and time. The distinction between Lagrangian and Eulerian methods is not dissimilar

from the same distinction used in the field of fluid dynamics. These Eulerian-based methods offer advantages such as

lower computational requirements and improved performance with small motions, resulting in enhanced magnification

outcomes. Nevertheless, these approaches still exhibit noticeable blurring and artifacts due to the inherent challenge

of designing noise removal filters that do not interfere with the motion magnification process.

Most Eulerian approaches function by decomposing video sequences into motion representations that can later be

manipulated mathematically and then reconstructed back into magnified video frames. These stages are present in the

different approaches taken by many researchers in the field and are summarized in Table 1.

2.1. Learning-based video motion magnification

To address the challenges presented by prior motion magnification algorithms, Oh et al. [36] introduced a novel

learning-based approach to video motion magnification (LB-VMM). Departing from conventional techniques that

employed hand-designed filters, this method leverages Convolutional Neural Networks (CNNs) to learn the filters

required for motion magnification. The proposed approach achieved superior magnification quality, with fewer ringing

artifacts and improved noise characteristics compared to previously published methods. However, this technique relies

on additional temporal filtering to enhance image quality, which occasionally introduces errors in the magnification

process. Although satisfactory results can be obtained without temporal filtering, the application of filtering improves

image quality by eliminating undesired motion and noise prior to learning-based magnification.

The learning-based model as described by [36] consists of three main parts, the encoders (GE), manipulator (GM),

and decoder (GM), which are constituted by fully convolutional layers, allowing for flexible learnable filters at multiple

input/output resolutions. The goal of the model is to generate a motion representation (M), which can be manipulated

by a simple scalar product to be then reconstructed into a magnified displacement frame (Î). In this architecture, the

encoder block acts as a learnable spatial decomposition filter that extracts a motion representation for two input frames
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(A and B).

GE(A) = [MA,V] (1)

GE(B) = [MB] (2)

Then, the manipulator block multiplies the difference of these representations by a scalar value that serves as the

magnification factor α chosen by the user. This result is then passed on to the decoder that reconstructs the motion

representation into a new motion magnified frame (Î), aided by an unmanipulated visual representation (V) previously

yielded by the encoder.

GM(MA,MB, α) = MA + h(α · g(MB − MA)) (3)

GM(MA,MB, α) = M (4)

Where g() is represented by a 3 × 3 convolution followed by ReLU, and h() is a 3 × 3 convolution followed by a

3 × 3 residual block.

GD(M,V) = Î (5)

The model is trained end-to-end using l1-loss between the network output Î and the ground-truth magnified frame

I. However, obtaining real-world motion-magnified video pairs for training is challenging, if not impossible. For this

reason, Oh et al. devised a procedural strategy for generating synthetic data involving several considerations [36] to

create a suitable dataset.

The dataset is comprised of 200,000 images from the MS COCO dataset [39] used as backgrounds over which

7,000 segmented objects from the PASCAL VOC dataset [40] were carefully moved. Especial attention to detail was

paid to ensure that conflictive areas, such as the ones that should appear occluded on the magnified frame actually

do. Each training sample contains between 7 and 15 foreground objects randomly distributed and scaled from their

original size. Additionally, variants with altered contrast, blurriness, and complex motion were generated to improve

model generalization on difficult magnification scenarios.

2.2. Learning-based video motion magnification approach to vibration-based damage detection

Prior studies [24] have researched the possibility of using learning-based video motion magnification for structural

damage detection, concluding that the method is viable based on laboratory-scale tests. In [24] the authors outlined a
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methodology for extracting dynamic responses from recorded footage by delimiting a linear region within the video

that will be magnified. This linear region is extracted from each individual magnified frame and sequentially ordered

from oldest to newest onto an image, effectively converting the unidimensional linear regions into a bidimensional

image containing the displacement over time of the selected region. For this method to work, it requires linear re-

gions to be placed over elements of contrasting colour or brightness. By extracting the magnified displacement in

the described manner, the authors could calculate the frequency response autospectra of the displacement-over-time

signals to obtain frequency and magnitude graphs. Using a well-known structural benchmark [41] the authors com-

pared different damage scenarios and registered the frequency shifts using both contact piezoelectric accelerometers

and the LB-VMM method. The authors concluded that the method based on LB-VMM provided suitable accuracy for

damage detection, presenting errors no bigger than 0.9% on average with respect to the accelerometers.

Later, the displacement extraction algorithm previously described in [24] was implemented in a graphical tool [25]

that allows for fast and consistent results with respect to the original command line coordinate-based approach used

in the original paper. However, this tool uses a different motion magnification backend based on an improved version

of LB-VMM named STB-VMM or Shifted Window Transformer Based Video Motion Magnification, a yet unproven

algorithm for use in SHM applications.

2.3. STB-VMM

STB-VMM [37] is a state-of-the-art model for video motion magnification based on the Swin Transformer [42]

proven to outperform prior learning-based methods in terms of image quality. STB-VMM presents superior input

noise tolerance, less blurry results, and better edge stability, resulting in clearer and less noisy magnification with

fewer artifacts. Moreover, STB-VMM is capable of producing good quality results without temporal filtering, thus

eliminating the limitations this feature imposed on LB-VMM.

STB-VMM mostly abandons CNNs in favour of the Visual Transformer (ViT) [43], a novel architecture based

on the attention mechanism, first popularized in the field of natural language processing. The attention mechanism

maps a query and a set of key-value pairs into an output. The output, represented in vector format, is computed

as a weighted sum of the values, where the weight assigned to each value is computed by a compatibility function

between the query and the keys [44]. The transformer was the first model which solely used self-attention to compute

representations of its input and output without using sequence-aligned recursive neural networks or convolutional

operations. Unlike CNNs, transformers lack translation invariance and a locally restricted receptive field, in its place,

transformers offer permutation invariance. This feature allowed natural language processing models to infer relations

deep within a text, thus enabling a stronger contextualization of the subject matter, giving birth to wildly popular

models such as BERT [45] or GPT [46–48]. However, computer vision applications and their natural predisposition
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to using large grid structured data presented problems when trivially trying to apply the self-attention strategy, as the

full self-attention layer would be too costly for the current computing capabilities. The ViT overcame this issue by

dividing the image data into a grid to flatten and encode smaller image tiles that were later treated as tokens. This

tokenization of images allowed the ViT to directly use the original structure of the transformer first proposed by [44]

on top of significantly reducing computational costs. Further improvements on the ViT led to the Shifted Window

Transformer (Swin Transformer) [42], a hierarchical vision transformer using shifted windows to better capture image

context while keeping computing resource consumption under control.

As shown in Table 1 and Figure 1, STB-VMM has a similar structure to Eulerian methods, which consists of three

parts: the feature extractor, the manipulator, and the reconstructor. The feature extractor has two components: the

shallow and deep feature extractors, which produce a high-quality representation of an input frame. The manipulator

then amplifies the motion by multiplying the difference between the features of two frames by a user-defined factor α.

Finally, the reconstructor transforms the manipulated features back into a magnified frame.

Figure 1: Architecture overview of STB-VMM [37]

The convolutional shallow feature extractor (GS F) takes two frames of a target sequence [IA, IB] ∈ RH×W×Cin

(where H is the height of the image, W is the width of the image and Cin represents the number of input channels) and
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maps them to a higher dimensional feature space, where high-level features are extracted (FAS , FBS ). The use of an

initial convolutional layer is a deliberate choice since it provides a more stable optimization and better results when

later combined with transformers [49].

[FAS , FBS ] = GS F([IA, IB]) (6)

Next, the deep feature extraction module (GDF) takes the features from the previous step and processes them

further to obtain the final motion representations. This module has N Residual Swin Transformer Blocks (RSTB)

connected in series.

[FAD, FBD] = GDF([FAS , FBS ]) (7)

The manipulator (GM) receives the resulting motion representations of both frames and calculates the difference

between the feature spaces, magnifying them by multiplying them by the user-defined magnification factor α.

GM(FAS + FAD, FBS + FBD) = (FAS + FAD) + h(α · t(((FBS + FBD) − (FAS + FAD)))) (8)

Where t(·) is a 3×3 convolution followed by a ReLU activation, and h(·) is a 3×3 convolution followed by a 3×3

residual block.

FM = GM(FAS + FAD, FBS + FBD) (9)

The conjoined manipulated feature space of both frames is then moved to the Mixed Magnified Transformer Block

(MMTB) (GMMT B) formed by N RSTB blocks. This stage enables the attention mechanism to affect the combined

magnified features of both frames, resulting in a more coherent result after reconstruction.

FMMT B = GMMT B(FM) (10)

Finally, a convolutional block (GR) performs the inverse operation of the initial feature mapping, conducted by the

shallow feature extractor (GS F), and restores the image representation to a magnified frame (IŶ ).

IŶ = GR(FM + FMMT B) (11)

STB-VMM is a more complex and consequently a more computationally expensive model than LB-VMM, never-
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theless, the quality increase of the unfiltered magnified videos is notably better when having both models trained with

Oh et al.’s original synthetic dataset [36]. The authors speculate that the performance differential shown with respect

to LB-VMM might benefit its SHM applications. However, STB-VMM is yet untested as a suitable replacement for

LB-VMM in SHM applications that attempt frequency-based damage identification.

3. Methodology

3.1. Visual dynamic response capture

To obtain the displacement-over-time responses of the experiments that follow, this paper uses the method de-

scribed in [24] by using a graphical tool implementation [25]. The method implemented follows the methodology

described in section 2.2, by which a linear region of measure is user-selected to be magnified. Next, the selection

area is processed, and for each of the frames of the magnified video sequence, the linear regions of pixels are placed

sequentially on an image (see fig. 3). The resulting image contains the variation-over-time of the selected unidi-

mensional region, which can be transformed into a discrete displacement-over-time signal using image processing

techniques. Once a discrete signal is obtained, well-known signal processing techniques [5] can be used to analyze its

properties and characteristics.

Figure 2: Video sequence to discrete signal pipeline [25]

Figure 2 shows a chart summarizing the signal extraction process. Note that no specific VMM algorithm is re-

quired since magnification is the basis for subsequent image treatment. However, non-learning-based methods require

frequency filtering; consequently, only a narrow band of movement can be processed simultaneously. On the other

hand, learning-based approaches can magnify the complete frequency spectrum at once, enabling the visualization of

the true displacement of the target structure.

For all comparisons between STB-VMM and LB-VMM, the same software tool [25] and project files have been

used to ensure that the regions measured match strictly between both vision-based methods. In the case of LB-VMM

the graphical tool has been modified, replacing the STB-VMM backend with the LB-VMM implementation and

weights used in [24].

3.2. Experimental configuration

This work presents two experimental cases on which the results of STB-VMM are validated and compared against

LB-VMM. The first case is conducted on a laboratory-scale structure like the one described by [41] from Los Alamos
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Figure 3: Video sequence transformation to temporal slice [25]

National Laboratory. The second case studies a large-scale reinforced concrete frame structure cast in place [50].

3.2.1. Case 1: Three-story building benchmark

In the first case, the experiments are conducted on the three-story building benchmark, a well-known reference

structure made from square aluminium plates (305 × 305 × 25mm) and prismatic aluminium columns (177 × 25 ×

6mm) attached employing bolted joints forming a four degree-of-freedom system. Each plate is supported by four

columns forming a three-story building which is then mounted over linear rails that enable the lateral movement of

the structure. Parallel to the rails, an electrodynamic shaker 2 excites the centre-right of the lower floor of the building,

providing configurable excitation in intensity and type. Both the shaker and the building are mounted on a rigid steel

frame isolated from other sources of vibration. For validation purposes, the three-story building benchmark has been

instrumented with piezoelectric accelerometers 3 placed on each floor of the test structure to serve as the ground-truth

reference of the controlled damage experiments detailed below. On the other hand, a global shutter industrial camera

4 was placed in front of the structure to capture the full height of the building, acquiring ˜500 frames per second (fps)

in 8-bit depth monochrome. The resulting image sequences were processed with both LB-VMM and STB-VMM.

To validate the damage detection capacity and accuracy of STB-VMM, several simulated damage scenarios on a

column supporting the first floor are considered. The studied damage scenarios consist in reducing the longitudinal

2Brüel & Kjær electrodynamic shaker model 4824
3Brüel & Kjær accelerometers type 4519-003
4Allied Vision Alvium 1800 U-158c
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cross-section of the lower left column of the building by 10%, 20%, 50%, and 100% (removing the column). These

section reductions imply a stiffness reduction of the individual column by 20%, 50%, 85%, and 100% respectively.

The reduction of the stiffness of the constituent parts of a structure implies changes in its natural frequencies, therefore

alerting and highlighting damage. Additionally, a moderate loading scenario was also evaluated by placing a 1.2 kg

mass on the top floor of the building in its undamaged configuration.

Since no dynamic operational loading is present on the structure, external excitation is required to reveal the

dynamic response. In all of the studied scenarios, two different kinds of excitation limited between 0 and 100Hz have

been used: random and periodic sweep. The sweep vibrates sequentially from 0 up to 100Hz and repeats the signal

once it is done. This type of excitation generally allows for cleaner dynamic response signals, however, this is a rather

unrealistic excitation for larger civil structures subjected to ambient and operational conditions. For this reason, we

also used random noise to excite the structure, which contains several frequencies at random and produces slightly

more noisy results.

3.2.2. Case 2: Reinforced concrete frame structure

The second case focuses on the data provided by [50], which constructed and tested a 6m tall four-story reinforced

concrete structure. Each of the stories was 1.5m tall by 3m wide and 1m deep, loaded each with 2700 kg except for

the roof, which was loaded with 2580 kg. The test building was placed over a 4 × 4m 25-ton shaker table that excites

the structure using recordings of real earthquakes.

Each story of the structure was instrumented with a non-contact high-speed motion capture system 5 with a refresh

rate of 128 Hz. This data will be considered as ground-truth for the discussion taking place in the following results

section. At the same time, the experiments were recorded in video for post-processing. The camera used for the

recording is a consumer-grade device 6 equipped with a wide-angle lens that was placed roughly at a distance of 3m

in front of the reinforced concrete structure. The recordings were captured at 1920× 1080 and 25 fps. Figure 4 shows

a frame of an in-progress experiment.

4. Results and discussion

4.1. Case 1: Three-story building benchmark

In this subsection, the results corresponding to the three-story building benchmark and its different configurations

are presented and analyzed. Figure 5 shows a comparison between the autospectra obtained using STB-VMM and

5NDI Optotrack Certus
6Sony HDR-PJ220
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Figure 4: Video frame corresponding to the tests performed on the reinforced concrete frame. The left-hand side corresponds to the original

unaltered frame, while on the right, an ×20 version of the frame shows the operating deflection shape.

the reference piezoelectric accelerometers. As it was expected, the visual method exhibits a higher noise floor than

the accelerometers, however, it only needs a single sensor to obtain these four signals. Moreover, it can be observed

that the visual method, based on displacement, is notably more sensitive to lower frequencies. In fact, STB-VMM

registers frequencies lower than what our reference piezoelectric accelerometers do. This discrepancy is explained by

the fact that the frequency sweep used to excite the structure starts at a very low frequency, displacing the structure

and creating a visible peak on the autospectrum. On the other hand, the higher frequencies are better seen using the

accelerometers, as they are better suited for this task and generally boast much higher acquisition rates than cameras.

When working on civil structures, this might be an acceptable trade-off, as generally, these kinds of structures exhibit

frequencies under 15 Hz.

Notice that not all floors of the structure present the same magnitude for their natural frequencies, this is a conse-

quence of their physical position in the length of the building. To be more precise, the magnitude difference observed

for each frequency is proportional to the distance between the measured point and the closest node of the modal shape.

After checking that STB-VMM is capable of detecting the correct frequencies in the structure’s undamaged con-

ditions, the following results illustrate the sensitivity to damage of the technique. The results presented in figures 6a,

6b, and 6c correspond to the damage scenarios performed on the lower column of the three-story building benchmark,

as stated in section 3. The results have been split into three figures to aid in the readability of the results.
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Figure 5: Frequency response functions for each floor of the three-story building benchmark in its undamaged configuration. The structure was

excited using a periodic chirp signal ranging from 0 to 100 Hz.

Figure 6a shows the results for the undamaged, the 1.2 kg added mass, and the missing column cases. As expected,

the difference between the undamaged state and the missing column case is the most noticeable. On the other hand,

the structure loading case produces a more subtle frequency shift still visible in all three methods tested. Figures

6a and 6b present the data obtained using STB-VMM, LB-VMM, and the accelerometers in three separate side-by-

side graphs. Comparing the different measurements, the visual methods, which are based on displacement, present

a more significant sensitivity for lower frequencies and a noticeably higher noise floor with respect to the contact

accelerometers. Nevertheless, the differences between STB-VMM and LB-VMM are smaller. Damage sensitivity is

similar for both methods, with LB-VMM presenting a slightly higher noise floor than STB-VMM.

The measurements and magnification for the vision-based graphs have been performed on the exact same coor-

dinates and then post-processed individually to improve signal quality as much as possible. The differences in mag-

nification quality often result in variations in slice image contrast due to blurring, making uniform post-processing
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Table 2: Results obtained from periodic excitation

Accelerometer (Hz) STB-VMM (Hz) LB-VMM (Hz)

1st order

frequency

2nd order

frequency

3rd order

frequency

1st order

frequency

2nd order

frequency

3rd order

frequency

1st order

frequency

2nd order

frequency

3rd order

frequency

Undamaged 21.38 50.12 68.38 21.10 50.33 68.27 21.10 50.36 68.30

UndamagedRepr. 21.38 50.12 68.38 21.26 50.11 68.37 21.34 50.15 68.29

Mass 21.25 49.00 68.00 20.12 49.16 68.00 20.47 49.01 67.88

20% 21.38 49.38 67.50 21.36 49.34 67.70 21.02 49.34 67.77

50% 21.38 48.62 67.62 20.86 48.59 67.52 20.78 48.55 67.48

85% 20.62 46.62 66.75 20.42 46.76 66.60 20.40 46.76 66.64

100% 19.88 45.88 62.62 19.80 45.82 62.47 19.72 45.89 62.62

Table 3: Relative error to the reference acceleration data when using periodic excitation

Error STB-VMM (%) Error LB-VMM (%)

1st order

frequency

2nd order

frequency

3rd order

frequency

1st order

frequency

2nd order

frequency

3rd order

frequency

Undamaged 1.31% 0.42% 0.16% 1.31% 0.48% 0.12%

UndamagedRepr. 0.56% 0.02% 0.01% 0.19% 0.06% 0.13%

Mass 5.32% 0.33% 0.00% 3.67% 0.02% 0.18%

20% 0.09% 0.08% 0.30% 1.68% 0.08% 0.40%

50% 2.43% 0.06% 0.15% 2.81% 0.14% 0.21%

85% 0.97% 0.30% 0.22% 1.07% 0.30% 0.16%

100% 0.40% 0.13% 0.24% 0.80% 0.02% 0.00%

unfair.

In Figure 6b the trend previously observed continues with the three methods being capable of discerning between

the presented damage scenarios. This figure presents the different autospectra for the cases where a single column

loses 10%, 20%, and 50% of its longitudinal section. This is a challenging test as the resulting spectrums are very

close. If the same tests are performed using random noise excitation instead of a periodic sinusoidal signal, the overall

conclusions still remain the same, however, a visible increase in noise appears in all methods, as can be observed in

Figure 6c.

Tables 2-5 gather the numerical results of the experiments performed on the three-story building benchmark as

well as the errors of the visual methods with respect to the reference accelerometers. On average, the errors of STB-

VMM with respect to the accelerometer data are 0.64% for periodic excitation and 1.03% for random excitation. On

the other hand, the same errors for LB-VMM are 0.66% and 1.38% respectively, slightly worse than the results of

Table 4: Results obtained from random excitation

Accelerometer (Hz) STB-VMM (Hz) LB-VMM (Hz)

1st order

frequency

2nd order

frequency

3rd order

frequency

1st order

frequency

2nd order

frequency

3rd order

frequency

1st order

frequency

2nd order

frequency

3rd order

frequency

Undamaged 22.25 50.38 68.88 22.12 50.35 68.76 21.16 50.25 68.71

UndamagedRepr. 22.50 50.38 68.75 22.08 49.66 68.58 22.15 49.98 68.77

Mass 22.25 48.75 67.75 21.16 48.40 67.64 21.16 48.49 67.64

20% 22.25 49.25 67.62 21.35 49.39 67.63 22.18 50.35 67.69

50% 22.25 48.75 67.12 21.23 48.80 67.43 21.47 48.80 67.43

85% 21.12 46.88 66.62 21.01 47.03 66.79 21.50 47.03 66.79

100% 19.75 45.75 62.75 19.73 45.40 62.71 20.90 45.47 62.71
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(a) Undamaged, loaded, and missing column damage scenarios performed under periodic excitation ranging from 0 to 100Hz.

(b) Column damage scenarios performed under periodic excitation ranging from 0 to 100Hz.

(c) Column damage scenarios performed under random noise excitation.

Figure 6: Damage sensibility study of the damage scenarios presented in section 3. Each signal corresponds to the second floor of the three-story

building benchmark measured under different damage conditions or using different measurement techniques.
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Table 5: Relative error to the reference acceleration data when using random excitation

Error STB-VMM (%) Error LB-VMM (%)

1st order

frequency

2nd order

frequency

3rd order

frequency

1st order

frequency

2nd order

frequency

3rd order

frequency

Undamaged 0.58% 0.06% 0.17% 4.90% 0.26% 0.25%

UndamagedRepr. 1.87% 1.43% 0.25% 1.56% 0.79% 0.03%

Mass 4.90% 0.72% 0.16% 4.90% 0.53% 0.16%

20% 4.04% 0.28% 0.01% 0.31% 2.23% 0.10%

50% 4.58% 0.10% 0.46% 3.51% 0.10% 0.46%

85% 0.52% 0.32% 0.26% 1.80% 0.32% 0.26%

100% 0.10% 0.77% 0.06% 5.82% 0.61% 0.06%

STB-VMM.

4.1.1. Visual noise resilience

To evaluate the effect that visual noise has on VMM measurements, the same video source files used in the previous

experiments have been altered by adding white noise. STB-VMM, with its intensive use of image filtering, is expected

to perform comparatively better than LB-VMM. Visual noise is a very disruptive element for motion magnification as

not only masks sub-pixel motion but destroys key information when the dynamic range is low or noise is sufficiently

pronounced. Unfortunately, noise is a general occurrence in all image sensors that gets more pronounced in poorly lit

scenes.

Figure 7 showcases the difference in measured frequency response when noise is added to the original recordings.

The altered video files have an average Structural Similarity Index Measure (SSIM) [51] of 0.45, which means that the

videos have a not insignificant amount of noise while keeping them clearly legible for a human observer. However,

as the figure shows, the information loss that occurs is very pronounced, making higher frequencies disappear in the

noise and reducing their magnitude.

As was expected, STB-VMM maintains a more stable behaviour than LB-VMM but is still far from the noiseless

measurement results. In less extreme situations, STB-VMM is expected to yield better results allowing for the use of

more economic image sensors at little or no penalty.

4.1.2. Resolution study

Finally, the effect of reducing the resolution of the source video files has been studied. Like noise, a reduction in

resolution deletes information present in the video reducing key features from a few pixels to one or sub-pixel features

to variations indistinguishable from noise. This effect is akin to moving the image sensor away from a target subject

or reducing the optical zoom. Nevertheless, unlike when adding noise, no spurious results are expected to appear as

no new false information is added to the image sequences.

Figure 8 displays the results of reducing the original horizontal resolution by 20%, 50%, and 80%. The videos
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Figure 7: Comparison between the frequency responses obtained from the undamaged video files on top, and the white noise altered ones, at the

bottom.

are scaled to maintain the aspect ratio resulting in the following video resolutions: original (1456 × 384), -20%

horizontal resolution (1164×307), -50% horizontal resolution (728×192), and -80% horizontal resolution (291×77).

Consequently, in terms of number of pixels, these same sizes contain a 36.1%, 75%, and 96% less pixels than the

original.

The results show a clear decrease in magnitude as the resolution decreases, losing the higher frequency peaks

progressively to the low-resolution blur. This behaviour makes sense as the higher frequencies manifest as lower

amplitude displacements because the excitation power is kept constant in all experiments. When losing pixels to

represent movement the shorter displacements evidently end up getting lost beyond what motion magnification can

detect.

As shown in Figure 8, differences between STB-VMM and LB-VMM are not particularly significant, unlike when

working with noise. In this case, better filtering cannot recover the missing information, and therefore, no significant
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improvement is registered.

Figure 8: Frequency response graphs of decreasing resolution experiments, from the original sized measure to a reduction of 80% in the horizontal

resolution. These measurements correspond to the second floor of the undamaged condition building under periodic excitation.

4.2. Case 2: Reinforce concrete frame structure

The reinforced concrete frame structure offers fewer configuration options and variability than the three-story

building benchmark, however, its scale makes it a relevant test for visual-based measurement systems’ scalability.

Moreover, the videos recorded with a consumer-grade camera by independent third-party researchers improve the

credibility of the results.

Figures 9 and 10 show two of the cases shared by Wang et al. [50] and processed using the STB-VMM and
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LB-VMM techniques. Cases 1 and 2 show measurements remarkably close to the ground truth data provided, albeit

with more noise present. The spectra have been represented from 0 to 2 Hz as the more relevant frequencies are

concentrated between 0.6 and 0.9 Hz depending on the floor, which was expected for a structure of its size and

rigidity. No notable performance differences appear between the results obtained with STB-VMM and LB-VMM

besides some minor differences in noise levels.

Considering the resolution difference between the signal produced by the optical vibrometers at 128 Hz and the

camera at 25 Hz, the results are considered very satisfactory. It should be noted that the camera is not in an optimal

position for measurement, i.e., directly in front and perpendicular to the measurement plane, nor is it equipped with

lenses that do not excessively distort the image. Despite these limitations, the resulting autospectra provides relevant

information on the structure’s frequencies.

Figure 9: Graphs comparing each floor measurement against case 1’s ground truth. [Raw data provided by Wang et al. [50]]
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Figure 10: Graphs comparing each floor measurement against case 2’s ground truth. [Raw data provided by Wang et al. [50]]

5. Conclusions

This paper validates the use of STB-VMM as a suitable motion magnification framework for SHM applications.

Experimental work has shown that the system is capable of identifying a structure’s natural frequencies and operating

deflection shapes, allowing the algorithm to reliably detect structural damage. Compared to previous research, STB-

VMM presents advantages when processing noisy data with respect to LB-VMM, however, in more favourable image

conditions, STB-VMM only presents a marginal improvement over LB-VMM. Nevertheless, it is still preferable to

use STB-VMM as situations on the field are rarely ideal.

Motion magnification increases the sensitivity of vision-based vibration analysis but comes with limitations, such
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as the need for a stationary camera and consistent inter-frame lighting. On the other hand, vision-based techniques

such as the ones presented in this work can cut down sensor deployment costs, as a single camera can obtain multiple

measurements at once. Of course, the number of useful measurements will depend on the pixel-size of the feature

being measured. Therefore, the authors recommend performing a brief feature resolution study on a case-by-case

basis in order to obtain suitable results from learning-based motion magnification methods. Feature resolution is a

key concept that determines the quality of the output measurements and is affected by many factors such as distance

to target, resolution, optical zoom, or sensor bit-depth.

Visual methods present higher noise floors than contact sensors or laser techniques but open up new possibilities

for applications and research in structural health monitoring. Newer and cost-effective techniques combined with the

transition towards higher digitalization in civil engineering are continuously increasing safety and reducing the costs

associated with unplanned maintenance and service disruptions.
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