ICFO"®

Advanced single molecule fluorescent

tools to reveal spatiotemporal multi-

molecular interactions in living cells

PhD Thesis

Nicolas Mateos Estévez

April 2023

Supervised by:
Prof. Dr. Maria F. Garcia-Parajo (Supervisor)

Dr. Juan A. Torreno-Pina (Co-Supervisor)

ICFO - Institut de Ciencies Fotoniques

UPC - Universitat Politecnica de Catalunya






Abstract

The spatiotemporal organisation and compartmentalisation of molecules in
living cells is crucial to regulate cell function. Dysregulation in how molecules
dynamically explore their environment and interact with other molecules can
lead to disease and death. Therefore, understanding the nature of these dynamic
interactions is pivotal in cell biology studies. Fluorescence light microscopy is
the preferred approach to perform the necessary biophysical studies and it has
led to major findings in the field. Nevertheless, spatial and temporal studies are
typically conducted separately due to technical limitations. Moreover,
quantitative imaging and novel analysis toolboxes are required to address new
questions in the field. The aim of this thesis is three-fold: (1) develop and
implement novel algorithms to analyse super-resolution microscopy data to
study the spatial organisation of a variety of proteins at the plasma membrane
of cells; (2) develop a novel methodology to study the spatiotemporal
organisation of receptors at the plasma membrane of cells based on high-density
single particle tracking; and (3) apply our novel methodology in a multi-colour
scheme to study the compartmentalisation of DC-SIGN and its multi-

component interactions with CD44 and Galectin 9 during viral engagement.

In Chapter 1, we overview how cells are compartmentalised from the intra-
cellular organisation to how the cell membrane is compartmentalised by
multiple organisers acting most probably in synergy. Also, in Chapter 1, we
review the main fluorescence microscopy techniques used in the field of cell
biology to study the spatiotemporal organisation of molecules in cells. In
Chapter 2, we present the analyses that we have performed to super-resolution
microscopy techniques such as stimulated emission depletion (STED) and
stochastic optical reconstruction microscopy (STORM). We have used these
techniques to elucidate the spatial organisation of proteins at the plasma
membrane such as Siglec-1, integrins or PRL-3. We have implemented state-of-
the-art algorithms into our analysis workflow to resolve the biological inquiries
of our research. In Chapter 3, we change gears and present our novel
methodology to analyse high-density single particle tracking, which consists on

generating high-density maps (HiDenMaps). In this chapter, we specify the



technical requirements to obtain a faithful representation on how molecules
explore space. In Chapter 4, we study CD44 which is a transmembrane protein
extremely interesting because it can interact with the underlying cortical actin
and the extracellular milieu. Moreover, it is thought to act as a key actor in the
spatiotemporal compartmentalisation of the plasma membrane for third
receptors that do not interact directly with actin. In this Chapter, we have used
HiDenMaps to elucidate the hierarchical organisation of CD44 at the plasma
membrane of living cells. In Chapter 5, we present a palette of analysis tools to
further quantify the patterns revealed by HiDenMaps and resolve the temporal
dynamics of these patterns. Moreover, our work reveals a multi-scale
organisation of CD44 ranging from fast single molecules dynamics with a
mesoscale dynamic compartmentalisation. In Chapter 6, we present a functional
study on viral capture by DC-SIGN in immature dendritic cells. We extended
our HiDenMap methodology to a multi-colour scheme to study the multi-
component interactions of DC-SIGN with CD44 and Galectin 9 during viral
engagement. Importantly, we demonstrate the existence of DC-
SIGN/CD44/Galectin 9 tripartite pre-docking platform that enhances the
successful engagement of HIV-1 and SARS-CoV-2 virus-like particles in
immature dendritic cells. Finally, in Chapter 7 we summarise the main results

of this thesis and highlight future directions of our research.



Resumen

La organizacién espacio-temporal y compartimentalizacion de moléculas en
células vivas es crucial para regular multiples funciones celulares. La
desregulacion en como las moléculas exploran dindmicamente su entorno e
interactian con otras moléculas puede llevar a una gran variedad de
enfermedades e incluso a la muerte. Por lo tanto, comprender la naturaleza de
estas interacciones dinamicas es fundamental en los estudios de biologia celular.
Durante muchos anos, la microscopia de fluorescencia ha sido el enfoque
preferido para visualizar dindmicamente los componentes moleculares de las
células con alto contraste y de manera no invasiva. Ademads, el surgimiento de
la microscopia de super-resolucién basada en fluorescencia y la deteccién de
fluorescencia de moléculas individuales ha revolucionado los campos de la
microscopia y también la biologia. Ha proporcionado detalles sin precedentes
sobre la organizacion dinamica de las moléculas en células vivas, y en particular,
a nivel de la membrana plasmatica. Desafortunadamente, debido a limitaciones
técnicas asociadas con estas novedosas técnicas, los estudios temporales y
espaciales se realizan por separado. Ademaés, aunque los microscopios de super-
resolucién estan disponibles en la mayoria de los laboratorios, el andlisis
cuantitativo de los datos proporcionados por estas técnicas sigue siendo
extremadamente desafiante. Por lo tanto, se requiere el desarrollo de nuevas
herramientas de andlisis para lograr un verdadero entendimiento en el campo

de la biologia celular.

El objetivo de esta tesis ha sido abordar algunos de estos desafios actuales. En
particular, nos hemos enfocado en: (1) desarrollar e implementar algoritmos
innovadores para analizar los datos de microscopia de super-resolucion para
estudiar la organizacién espacial a escala nanométrica de una variedad de
proteinas en la membrana plasmética de las células; (2) desarrollar una
metodologia innovadora basada en el seguimiento de particulas individuales de
alta densidad (multicolor) para estudiar la organizacién espacio-temporal a
multiples escalas de diferentes biomoléculas en la membrana plasmatica; y (3)
aplicar nuestra metodologia innovadora para abordar dos preguntas principales

en el campo de la biologia celular: a) el papel del citoesqueleto de actina y el

5



medio extracelular para modular la organizaciéon espacio-temporal del receptor
transmembrana CD44, y b) el papel de CD44 y Galectina 9 en la modulacién
de la capacidad de DC-SIGN para capturar virus en células del sistema
inmunologico. En conjunto, esta tesis ha proporcionado herramientas
sofisticadas que van mas alla de los métodos actuales de visualizacion basados
en moléculas individuales. Ademds, hemos estudiado cémo las células regulan
la compartimentalizacién (en espacio y tiempo) de componentes moleculares

para orquestar la funcion celular.

En el Capitulo 1, revisamos el papel de la compartimentalizacién celular en
general con énfasis en la membrana celular, que estd compartimentada por
multiples organizadores que actiian probablemente en sinergia. También, en el
Capitulo 1, revisamos las principales técnicas de microscopia de fluorescencia
utilizadas en el campo de la biologia celular para estudiar esta organizacion
espacio-temporal. En particular, nos centramos en la microscopia de super-
resoluciéon y los métodos de fluorescencia de moléculas individuales. En el
Capitulo 2, presentamos los andlisis que hemos realizado en imagenes de
microscopia de super-resolucién, en particular, la deplecién por emision
estimulada (STED) y la microscopia de reconstruccién éptica estocastica
(STORM). Hemos implementado algoritmos de vanguardia en nuestro flujo de
trabajo de analisis para abordar diferentes preguntas biolégicas de nuestra
investigacién. Combinando estas técnicas con nuestras herramientas de andlisis,
hemos abordado la organizacion espacial de diferentes proteinas en la membrana

plasmética como Siglec-1, integrinas y PRL-3.

En el Capitulo 3, presentamos una metodologia novedosa desarrollada durante
esta tesis para analizar datos de seguimiento de particulas individuales en alta
densidad (HD-SPT). El método consiste en generar mapas de alta densidad
(HiDenMaps) a partir de las posiciones identificadas de moléculas en miles de
imégenes de SPT. Describimos en detalle nuestro nuevo método y especificamos
los requisitos técnicos para obtener una representacion fiel de como las
moléculas exploran el espacio mediante HiDenMaps. En el Capitulo 4,
describimos la primera aplicacién de HiDenMaps para esclarecer la organizacién
jerarquica de la proteina transmembrana CD44 en la membrana plasmatica de
células vivas. Nos enfocamos en CD44 debido a su capacidad para interactuar

tanto con la actina cortical subyacente como con el medio extracelular. Cabe
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destacar que se cree que CD44 actia como un actor clave regulando la
compartimentalizacion espacio-temporal de la membrana plasmatica para otros
receptores que no interacttian directamente con la actina. Combinando
HiDenMaps con transferencia de energia de resonancia de fluorescencia
(FRET), hemos demostrado que CD44 forma nanoagregados en la membrana
plasmaética de diferentes células. Ademads, revelamos que su organizacién tanto

a nivel nano- y meso- escala esté regulada el citoesqueleto de actina cortical.

En el Capitulo 5, presentamos una gama de herramientas de andlisis para
cuantificar patrones espaciales en la difusion de receptores en la membrana
revelados por HiDenMaps y para resolver sus dinamicas temporales. Utilizando
estas herramientas, nuestro trabajo desvela una organizacion multiescalar de
CD44 que va desde la dindamica de moléculas individuales hasta una
compartimentalizacion dinamica a nivel mesoscopico. La dindamica descubierta
en los mapas de difusiéon probablemente corresponde a las diferentes escalas
temporales de remodelado del citoesqueleto cortical de actina. En el Capitulo
6, presentamos un estudio biofisico sobre la captura viral mediada por el
receptor de reconocimiento del patégeno, DC-SIGN, en células inmaduras
dendriticas del sistema inmunitario. Extendimos nuestra metodologia
HiDenMap a wun esquema multicolor para estudiar interacciones
multicomponente entre DC-SIGN, CD44 y Galectina 9 durante la interaccién
con los virus. Adicionalmente, demostramos la existencia de plataformas
tripartitas de pre-amarre de DC-SIGN/CD44/Galectina-9 que mejoran el éxito
de la interaccién de los virus HIV-1 y SARS-CoV-2. Finalmente, en el Capitulo
7, resumimos los resultados principales de esta tesis y destacamos las futuras

direcciones de nuestra investigacion.
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Chapter 1

Chapter 1
Spatiotemporal organisation of molecules
in cell biology and fluorescence optical

microscopy techniques to study them

The spatiotemporal organisation and compartmentalisation of molecules in
living cells are highly important to regulate cell function. Visualising and
understanding the role of this dynamic organisation requires the use of non-
invasive microscopy techniques that can access the relevant spatiotemporal
scales, down to the molecular level and with milli-second temporal resolution.
In this chapter, we first overview the multiple levels of spatiotemporal
compartmentalisation of proteins and molecules in living cells. We mainly focus
on the cell membrane of living cells, which has been the subject of study of this
thesis. Then, we review different fluorescence-based optical microscopy
approaches since they are the preferred tools to investigate the spatiotemporal
organisation of proteins in cells. We present the state-of-the-art microscopy
techniques to study the nanoscale organisation of molecules as well as how

dynamic information on the diffusion of molecules can be retrieved.
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Chapter 1

1.1 Spatiotemporal organisation of molecules in living cells

Cells are the basic unit of life and are an exquisite piece of machinery that
makes life possible. Cellular functions are achieved through the spatiotemporal
compartmentalisation of multiple components. In fact, cells are organised into
membrane-bound compartments, called organelles. Different cellular functions
take place within these organelles, from DNA transcription in the nucleus,
protein synthesis at the endoplasmic reticulum, energy generation at the
mitochondria, protein glycosylation and export from the Golgi apparatus, .. All
these cellular functions take place in well-defined compartments(1).
Nevertheless, not all compartmentalisation takes place within membrane-bound
compartments. In fact, liquid-liquid phase separation (LLPS) has recently been
proposed as a physical mechanism to transiently compartmentalise biomolecules
in membrane-less compartments(2-5). The cell membrane is particularly
interesting because it separates the interior of the cell from its extracellular
surroundings and it has multiple roles beyond that of being a simple physical
barrier: it is involved in signalling pathways between the cell and its
environment, it carries sensing processes, it is in-charge of the selective
transport of ions, molecules, etc(6). All these processes are performed by a
myriad of different proteins and other molecules found on the cell membrane.
Not surprisingly, the cell membrane is a complex fluid consisting on a
phospholipid bilayer with embedded proteins and other molecules (cholesterol,
glycolipid and peripheral proteins).

Understanding the cell membrane organisation has been a pivotal quest in the
field of cell biology to comprehend how proteins and lipids are dynamically
compartmentalised in health and disease. The first level of
compartmentalisation is explained by the lipid raft hypothesis(7-9). Lipid rafts
are cholesterol-enriched and sphingolipid-enriched nanodomains which also
contain signalling proteins such as glycosylphosphatylinositol-anchored proteins
(GPI-AP, (7, 10, 11)). Lipid rafts nanodomains are short-lived and dynamic
and there is still quite some controversy in the field regarding their existence

(12). In fact, it has been proposed that GPI-AP aggregation is not due to lipid
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rafts but rather orchestrated by short-lived “actin-asters” (short myosin-driven

actin filaments), which also is a controversial mechanism in the field(13, 14).

A second level of compartmentalisation of the plasma membrane is due to the
cortical actin cytoskeleton which is in close vicinity of the inner leaflet of the
membrane. This model was first proposed by Michael Sheetz based on diffusion
studies of proteins on the cell membrane of red blood cells(15) four decades ago.
Later, Kusumi’s Lab gain further insights onto how cortical actin could
compartmentalise the plasma membrane of cells hindering the diffusion of
receptors(16). From their observations they referred to the cortical actin as
membrane cytoskeleton fences. According to their model, proteins at the plasma
membrane sense the underlying cortical actin and they are confined within
corrals (~30-250 nm compartments) which hinder their long-range diffusion at
the plasma membrane. Since the actin cytoskeleton is not static but dynamic,
fluctuations in the cortical actin would lead to proteins to “hop” between
compartments(17). Moreover, they proposed the existence of transmembrane
proteins that could “anchor” to the underlying cortical actin and would act as

pickets forming the corrals and hindering the diffusion of other proteins(18-21).

A third level of compartmentalisation of the plasma membrane is provided by
the extracellular matrix (ECM). The ECM is a complex fuzzy coating consisting
on sugars, carbohydrates, collagen fibres, etc. that interconnect glycoproteins
at the plasma membrane and serve as a platform for cells to interact with their
environment(22, 23). The ECM poses another level of complexity into the
organisation of the plasma membrane molecules since it is a local organiser of
proteins. A clear example is the so-called galectin lattice, which interconnects
glycoproteins at the plasma membrane of cells to create a network with multiple
functions(24).

Finally, a fourth level of compartmentalisation is given by protein-protein
interactions that could lead to their clustering at the plasma membrane(25).
Proteins can form nano-clusters that could then interact with lipid rafts (26),

or other external organisers such as cortical actin (27)or, the ECM(28).

Importantly, all these mechanisms are thought to act in synergy to
compartmentalise the plasma membrane in a hierarchical manner(29). A

canonical example of this complex synergy is the spatiotemporal organisation
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of CD44, a transmembrane protein that can bind to cortical actin, to
extracellular matrix components such as galectins and hyaluronan acid, and
even, it has been proposed to interact with lipid rafts(21, 30, 31). Elucidating
the mechanisms that lead to compartmentalisation of specific components of
the plasma membrane is therefore of paramount importance to determine how

compartmentalisation influences their function.

1.2 Optical microscopy to investigate the spatiotemporal

organisation of biomolecules in living cells

Light is the preferred tool to study the spatiotemporal organisation of molecules
in living cells by the cell biology community. The reasons are obvious: light is

not invasive and it is fully compatible with living specimens.

The development of optical microscopy starts many centuries ago when
Ptolemy observed how water bends light. In fact, it was in the 1% century AD
that Seneca used a flask of water to magnify small letters, i.e. creating the first
magnifier. Later, in the 13" century in Italy, the first high-quality silicate glass
lenses were manufactured, allowing to produce the first lenses to be worn as
glasses. It was not until the end of the 16™ century when Zacharias and Hans
Janssen combined several lenses within a tube to obtain a higher magnification
than single lenses. This was a breaking point in history because it meant that
new optical instruments could be built by combining lenses. From this point,
Galileo Galilei built his occholiolino in 1609 and together with his colleague
Giovanni Faber, termed the word microscope (from the Greek words micron
(small) and skopien (to view)). The next breaking point in the use of microscopy
was the discovery of the basic unit of life, the cell, by Robert Hooke in the 17
century, using a microscope to observe cork. Nevertheless, one of the most
important scientists and pioneer in microbiology is Antonie Van Leeuwenhoek,
who using his own microscopes observed bacteria, yeast cells and blood cells
amongst other microscopic specimens for the first time in human history. The
development of the optical microscope has been ever evolving to the date, with

novel technologies and more sophisticated equipment.
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However, the study of cell biology does not stand alone with optical microscopy
itself. Another key discovery that led to major breakthroughs in the field was

fluorescence and the biochemistry tools that allow to label specific proteins.
1.2.1 Fluorescence microscopy

Fluorescence is the spontaneous emission of photons by an excited molecule
after absorbing light. Molecules have multiple energetic states, the main ones
are electronic energetic states (Sp,1,»,..) and vibronic states within each electronic
energy state. Typically, molecules are found in their ground energy state, Sy,
and upon photon excitation they will get excited to a higher state if the energy
of the photon is high enough. Once in the excited state, multiple energetic
transitions can take place. First, a fast vibronic relaxation, where the molecule
relaxes from the excited vibronic state to the corresponding electronic state in
a non-radiative way (no emission of photons). When the molecule is at the
lowest excited electronic state, Sy, it can either decay back to the ground state,
So, emitting a photon (fluorescence), decay in a non-radiative way (not emitting
a photon) or if the electrons change their spin, decay to the triplet state (T:)
via intersystem crossing. At the triplet state, it can decay to the ground state
via emission of photons (phosphorescence) or in a non-radiative manner. The
wavelength of the excitation photon, A, is shorter than the fluorescence
wavelength, Amer, because of the energy loss during the energetic transitions.
The shift in wavelength is known as the Stokes shift. Moreover, the wavelength
of phosphorescence is even longer than the one of fluorescence and the lifetime,
i.e., the time it stays at the triplet state before decaying, is also much longer
(in the order of milliseconds) as compared to fluorescence which typically occurs
in the nanosecond time scale. All these processes are depicted in the Jablonski
diagram (Figure 1.1). Fluorescent molecules (fluorophores) can undergo this
cycle a limited number of times (10%10° times) before photobleaching
occurs(32). Thus, fluorophores emit a certain number of photons, their photon

budget (~10%-107 photons), before being permanently photobleached.
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Figure 1.1 A Jablonski diagram depicts the energetic states of a molecule and the transitions that
can occur upon light absorption (blue straight arrow). The energy levels, which can be electronic
(thick line) or vibronic (thin line), are depicted as black horizontal lines with energy increasing
vertically. The transitions between energy states can be either radiative (fluorescence or
phosphorescence) or non-radiative (internal conversion, vibrational relaxation and intersystem
crossing). The typical timescales of the processes are shown in the legend. Figure adapted from
Edinburg instruments.

Fluorescence microscopy relies on the use of fluorescent probes to generate an
image that provides superior contrast as compared to the simple absorption of
light by the specimen. For the incorporation of fluorescence contrast, one mainly
needs two separate units: a specific module to label the molecule of interest and,
a fluorophore that emits fluorescence and enables the visualisation of the
molecule of interest. In terms of fluorophores, the most commonly used are
fluorescent proteins, fluorescent dyes and quantum dots. Fluorescent proteins,
such as the green fluorescent protein (GFP; (33, 34)) and derivatives(35), are
very interesting because they can be genetically encoded to directly tag the
molecule of interest and are especially suitable to study intracellular processes.
Fluorescent dyes (organic and synthetic) are versatile fluorophores that can be
used to easily label any kind of molecule. However, organic dyes, suffer from
low photostability and low brightness which limits their application for certain
studies. More recently, a new family of organic dyes have emerged as powerful
fluorescent probes for fluorescence microscopy studies due to their superior

performance, Janelia dyes (36, 37). Finally, quantum dots (QD) are
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semiconductor nanocrystals whose emission wavelength is tuned by their size.
They are extremely useful in multi-colour applications because of their broad
absorption and narrow emission spectra (38, 39). Moreover, when excited at
low-to-moderate excitation powers, they are extremely bright, stable and highly
resistant to photodissociation(39). However, QDs are bulky when bioconjugated

to make them compatible with live cell imaging.

In order to tag the fluorophores to the biomolecule of interest, there are mainly
three approaches. The first approach is immunolabelling which uses antibodies
(or subunits, such as nanobodies or single-chain antibodies) to tag the specific
molecule. Antibodies can be fluorescently label with fluorescent dyes and
quantum dots using proper bio-conjugation protocols. The second approach is
genetic tagging which covalently labels the molecule of interest with a
fluorescent protein. Genetic tagging is especially interesting for live cell
experiments and it is extremely precise. However, overexpression of the targeted
molecule and the size of fluorescent proteins poses a challenge. The third
approach consists on using self-labelling protein tags such as SNAP-tag (40),
JHALO-tag (41) tag and CLIP-tag (42). These tags are fused to the molecule
of interest and then they can be fluorescently labelled with fluorescent dyes.
These techniques are becoming very popular in the field due to the advent of
the Janelia dyes, which are highly photostable. However, the main limitation
as with genetic tagging is the overexpression of the tagged molecule. Overall,
given the fact that each type of fluorophore and labelling modules have
advantages and drawbacks, experimentalists need to survey which is the most

convenient labelling approach for their specific biological question.

The most basic optical implementation of fluorescence microscopy relies on the
use of a light source at a given wavelength to excite the fluorophores, a filter
to spectrally separate the emission of the fluorescent photons from the
excitation ones and a detector to collect the fluorescence photons being emitted
by the sample. Although extremely simple and powerful, a main limitation of
the first fluorescence microscopes was the background noise originated from the
fluorescence signal coming from molecules out of the plane of interest. This
background noise resulted into blurred images. Confocal microscopy was born
to resolve this problem by focusing the excitation laser into a single point in

the sample and using a pinhole in the optical detection path to remove out-of-

21



Chapter 1

focus fluorescence (32). Confocal microscopy is a point-by-point illumination
technique that creates images by performing line scans in the field of view with
an axial resolution of roughly the excitation wavelength. Additionally, using
confocal microscopy we can perform 3D imaging by moving the sample in the
7 direction and creating a z-stack. Nowadays, confocal microscopy is one of the
most widely used fluorescence microscopy techniques due to its versatility and
simplicity. Moreover, it is possible to perform multi-colour imaging choosing
properly the fluorophores and using different detection filters and laser lines (or

super-continuum white light sources).

Total internal reflection fluorescence (TIRF) microscopy is another technique
widely used in the field of cell biology specially for membrane dynamics studies.
In TIRF, an evanescent wave is generated at the interface between the glass
and the medium where cells are, by total reflection of the excitation laser. This
is accomplished by focusing the laser at the back-focal plane of the objective
and not at the centre of the objective (it would be EPI illumination) but
displaced towards the edge (Figure 1.2). A high numerical aperture (NA)
objective allows that the incidence angle of the excitation light into the sample
reaches the critical value needed to have the total internal reflection and to
generate an evanescent field within the sample. The evanescent field only
penetrates ~ 200 nm, so that only fluorophores at this range in the sample are
excited and not those deeper within the cell. TIRF provides great signal-to-
background ratios but studies are limited to the basal membrane of cells or to

the cytosol close to the membrane.
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Figure 1.2 TIRF illumination provides better signal-to-background than Epifluorescence. a)
Different excitation schemes including TIR, HILO and Epi, in which the laser is focused at the
back focal plane but at different positions with respect to the centre of the objective. Adapted
from Manzo and Garcia-Parajo (43). b) Clathrin-light chain tagged with GFP and imaged in
Epifluorescence (bottom left triangle) and TIRF (top right triangle). Image adapted from Rao et

al. (44).

Highly inclined and laminated optical (HILO) sheet illumination can be
implemented if the laser is not fully displaced to the edge of the objective (45).
With HILO, we can illuminate the sample with a rather thin (~ 1 ym) sheet of
light that enables to study regions inside the cell, beyond that of the cell
membrane. However, the imaging is still limited to a certain depth of the cell
and the signal-to-background ratio is worse than for TIRF due to the thickness
of the sheet.

1.2.2 Diffraction limit of light

Despite the revolution that fluorescence microscopy meant to the field of cell
biology, it suffers from a major drawback: the diffraction limit of light.
According to Abbe’s limit(46), two objects cannot be resolved if they are closer
than:

d ~ —— (1.1)
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where A is the wavelength of the excitation light, and NA is the numerical
aperture of the objective. This limit arises because a light source (fluorophore)
that emits light on the sample is imaged as a diffraction limited spot and due
to the optical properties of the setup, it is imaged as an Airy disk. Considering
typical objectives and visible light used to excite photons, the diffraction limit
of light is roughly ~ 200 — 300 nm. Therefore, we cannot resolve small proteins
(1-10 nm in size) in crowded regions as the plasma membrane or any other
region of the cell. Confocal microscopy, epi-fluorescence microscopy and TIRF
are all techniques that suffer from diffraction despite their improvement in
terms of SNR. Aside from the limited spatial resolution afforded by these
techniques, its impact is particularly troublesome in studies focussed on
determining interactions or proximity between different biomolecules. This is
because what it would appear to spatially colocalise by means of one of these
diffraction limited techniques, might in fact be spatially separated by distances
smaller that the diffraction limit. These artefactual results would thus bias the

conclusions from such studies.
1.2.3 Super-resolution microscopy

As already mentioned, the diffraction limit of light is an obstacle to study finer
structures and to better resolve the spatial organisation of molecules in cell
biology and requires the use of super-resolution techniques that overcome
diffraction. In the last 15 years, a multitude of such super-resolution approaches
have been implemented and applied to different cellular contexts. Below, we

summarise the main working principle of the most notable ones.

1.2.3.1 Near-field optical microscopy (NSOM)

A sophisticated optical technique to break the diffraction limit is near-field
scanning optical microscopy (NSOM). In this technique, excitation is done
through a sub-wavelength aperture on the tip of a glass fibre that creates an
evanescent field confined both laterally and axially. The imaging is performed
by raster scanning the sample with the probe in close vicinity (few nm) from
the surface using a feedback-loop similar to the one used for atomic force
microscopy (AFM) imaging (47) (Figure 1.3a). The resolution achieved by
NSOM depends on the aperture size, and it is typically between 50-100 nm (48—
50).
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Figure 1.3 Working principle of NSOM and improved spatial resolution. a) The NSOM probe is
built on a confocal microscope. The probe raster scans the sample and excites locally the
fluorophores at each step. An electron microscopy image shows the used tip by Van Zanten et
al. The scale bar is 100 nm. b) LFA-1 nanocluster imaging with NSOM (left) and confocal (right).
A line profile is drawn over the same cluster demonstrating the improved spatial resolution of
NSOM (85 nm) with respect to confocal (270 nm). Adapted from Van Zanten et al. (11)

NSOM has given insights into the spatial organisation of different receptors at
the plasma membrane of cells(11, 50) (Figure 1.3b). Despite the great
capabilities of NSOM, the studies are limited to the surface of cells and also,

technically, it is a very complex approach to implement.

1.2.3.2 Structured illumination microscopy (SIM)

Structured illumination microscopy (SIM) is a technique that pushes the
diffraction limit and allows an increase in resolution to ~100 nm(51, 52). SIM
uses structured illumination to excite the sample with well-controlled
illumination patterns. Since the molecules of interest are not homogenously
distributed on the space but are within sub-diffraction patterns themselves, the
detected emission consists on Moiré fringes. These fringes arise from the
combination of the structured illumination and the pattern of fluorophores at
the sample. Then, the illumination pattern is rotated and displaced to generate
multiple images, each containing a different Moiré fringe. Since the used

structured excitation pattern is known beforehand, using Fourier inverse
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transform it is possible to recover the pattern of fluorophores, a.k.a. the

distribution of molecules of interest.

SIM is a fast imaging technique, with low excitation intensity and compatible
with 3D imaging, which is ideal for live cell imaging. Moreover, it is compatible
with any fluorophore. However, it is also technically complex, in particular the
reconstruction of the final image, and its modest increase in terms of spatial
resolution still limits its broad applicability for studying the spatial organisation

of molecules with nanometre resolution.

1.2.3.3 Single molecule localisation microscopy (SMLM)

According to Abbe’s diffraction limit, two fluorescent particles cannot be
resolved if they are closer than the diffraction of light. But, what if they emit
at different moments in time? If first a molecule emits light and then the other,
both molecules can be localised unambiguously. Single molecule localisation
microscopy (SMLM) techniques rely on using the temporal component to

resolve molecules that are very close in space and to localise them accurately.

Ground truth Diffraction limited image

Molecules in a pattern

S00 1
]

Stochastic fluorescence and localisation Reconstructed image

eoes oste,
0 e, .0' .,

Frame | Frame N

Figure 1.4 Working principle for SMLM techniques. Molecules are located in a given pattern very
close to each other. Using conventional fluorescence microscopy, the pattern is barely visible due
to the diffraction limit of light. However, if the molecules are made to fluoresce stochastically (or
with photoactivation) and sequentially, at each frame only a subset of molecules emit light and
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the centre of mass position can be determined by fitting a 2D gaussian. This process is repeated
thousands of times (N>>1000) until a faithful reconstruction of the image can be performed.

The advent of photo-activatable and photo-switchable dyes was the trigger for
for the advent of SMLM techniques which occurred almost simultaneously:
photoactivated localisation microscopy (PALM, (53)), stochastic optical
reconstruction microscopy (STORM, (54)) and fluorescence photoactivated
localisation microscopy (fPALM, (55)) were born and reported in 2006. All
SMLM techniques share the same working principle despite the technical
difference on how they accomplish the turning of the ON (bright) and the OFF
(dark, not emitting) states of individual fluorophores (Figure 1.4). In SMLM a
small subset of fluorophores is turned ON so that the distance between them is
larger than the diffraction limit of light (A/2NA). Since any point source (i.e. a
fluorescence emitter) acquired with an optical microscope appears as a
diffraction limited Airy disk, the central lobe is fitted to a 2D spatial gaussian
and the centre of mass can be determined with very high accuracy, a few
nanometres. This process of turning ON a subset of fluorophores and localising
them in space is performed sequentially over thousands of frames until all of
the fluorophores have been localised. Then, using the acquired localisations, the

final super-resolution image is reconstructed.

The main difference between STORM and PALM relies on the fluorescent
probes used in each case. STORM uses photoswitchable dyes and certain buffers
containing oxygen scavengers, redox chemicals and glucose to control the ON-
OFF states. On the other hand, PALM wuses photoactivatable or

photoconvertible fluorescent proteins that can be genetically encoded.

In the case of STORM, at the beginning of the experiment, all fluorophores are
in their bright state (ON) emitting fluorescence. The first step consists on
bringing all the fluorophores from the ON state to the OFF state by exciting
the sample with high laser powers at the proper wavelength. In the presence of
photoswitching buffers, dark states become stable for several seconds before the
fluorophores decay back to the singlet ground state by reacting with residual
oxygen(56). Thus, in the photoswitching buffer also oxygen scavengers are
added to avoid this unspecific decay to a ground state where the fluorophore
can be excited and emit fluorescence. Finally, the photoswitching of these

fluorophores from the OFF state to the ON state in a controlled manner can
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be achieved either using an activator dye (STORM)(54, 57) or without it (as
in direct STORM, dSTORM)(58, 59). In either case, fluorescent dyes are
stochastically turned ON from the OFF state and emit fluorescence, which is
then detected. Importantly, the transition between ON and OFF states is
reversible in photoswitchable dyes, which means that a single fluorophore can

undergo multiple times this process and blink many times(60).

In the case of PALM, photoconvertible and photoactivatable fluorescent
proteins are used. Both photoactivation and photoconversion are irreversible
processes. Photoactivatable fluorophores are activated (from OFF to ON) with
a UV light (Apprson = 405 nm) and imaged with a longer wavelength which
will return the fluorophores from the ON to the OFF emitting state (60). In
this case, the ability to localise individual molecules relies on the fact that not
all of the fluorescence proteins are simultaneously activated with the activation
laser, just a small subset. Photoconvertible fluorophores on the other hand, can
switch from emitting in one wavelength to another wavelength upon radiation
with the appropriate excitation light. For instance, Eos can be photoconverted

to emit in the green or in the red by UV radiation(61, 62).

An alternative SMLM technique, that does not rely on photoswitching,
photactivation or photoconversion, is point accumulation in nanoscale
topography (PAINT) (63). PAINT relies on freely diffusing fluorescent dyes
that interact with the target protein with certain kinetic rates of binding and
unbinding. When the fluorescent dyes are bound to the target molecule, they
will get excited by the excitation laser and will emit fluorescence. Once the dye
gets unbound from the target molecule, excitation will not occur and therefore
no emission of fluorescence. DNA-PAINT is the most well-known variant of
PAINT where fluorescently labelled single strands of DNA are used to target
the protein of interest and to perform the imaging (64, 65). A powerful
application of DNA-PAINT is the fact that one can engineer the DNA single
strands to target different molecules and by imaging sequentially it has been

possible to perform multiplexed imaging of 124 colours successfully(66).
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1.2.3.4 Stimulated emission depletion (STED)

Stimulated emission depletion (STED) microscopy is a super-resolution
microscopy technique based on the precise control of the fluorophore’s photo-
physics to break the diffraction limit of light(67, 68). STED exploits the
transitions between energetic states of fluorophores to control which
fluorophores emit fluorescence and which do not. When a molecule is at the
lowest excited state (S;, Figure 1.5a) one can de-excite the molecule down to
the ground state by stimulated emission. This is done by illuminating the
excited molecule with a red-shifted STED laser, forcing the molecule to decay
emitting a photon of the same wavelength as the stimulated excitation. In order
to exploit this property to achieve super-resolution, in STED microscopy two
lasers are combined. The first laser provides the excitation for the molecules
using a gaussian beam as it is standard in confocal. The second laser is the
STED laser (or depletion laser) which is doughnut-shaped and overlaps with
the excitation laser. Therefore, at the centre of the doughnut, molecules are
excited and will emit fluorescence normally (Figure 1.5b). However, at the ring
of the doughnut, molecules undergo stimulated emission which is filtered at the
detection path. As for the case of confocal microscopy, STED is a point-by-
point scanning technique. By controlling the intensity of the STED laser, one
can readily tune the size, d, of the resultant, effective spot and thus increase

the spatial resolution:

A
NA- (1+é) , (1.2)

Where NA is the numerical aperture of the objective, I is the STED intensity

d =~

and Is is the saturation intensity (which accounts for the absorption cross-
section of the molecule and lifetimes). The measured dependence of the effective
excitation diameter, i.e., spatial resolution is shown in Figure 1.5b, bottom

panel.

Nowadays, STED is a powerful technique widely used to study cellular
structures(69), protein clusters(70, 71), DNA organisation(72, 73), etc.
Additionally, STED is compatible with multi-colour imaging and allows
colocalisation studies between different molecules. However, STED also suffers
from some drawbacks. First, the STED laser powers required are high (Isrep ~
1-10 MW /cm?, (74)) which makes live cell imaging highly challenging. Indeed,
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live cell STED experiments have poorer resolution since lower excitation STED
powers are used to preserve cell viability. Thus, for the best performance in
terms of resolution most researchers work with fixed cells. Second, the choice
of fluorophores is critical because working at such high laser powers induces
photobleaching. Therefore, the development of bright and photostable
fluorophores is crucial for STED microscopy. In fact, new fluorescent dyes
require less powerful STED laser powers opening the door to STED live cell
imaging. Third, optically, the STED set-up is a complex system because of the
laser engineering required to (1) create the doughnut shape with a wave-plate

and (2) align it properly to fully overlap with the excitation laser.
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Figure 1.5 Working principle of STED microscopy. a) Jablonski diagram for STED showing how
stimulated depletion takes place. b) Top: showing how the excitation and STED laser illuminate
the sample and the effective excitation spot. Bottom: how the effective excitation spot diametre

decreases with increasing STED laser intensity. Adapted from Eggeling et al. (74).
1.2.4 Microscopy techniques to assess temporal information

Super-resolution techniques suffer from poor temporal resolution, which limits
the study of dynamic processes in living cells. Therefore, to access temporal
information of diffusing molecules a different set of techniques are used by the

community.

1.2.4.1 Fluorescence Recovery After Photobleaching (FRAP)

Fluorescence recovery after photobleaching (FRAP) consists on photobleaching
an area of the cell using a high intensity laser and measuring the recovery of
fluorescence as function of time by incoming diffusing fluorescent molecules. By

monitoring the time that takes to recover the fluorescence in the area, one can
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measure the ensemble mobility of the fluorescently labelled molecules as well as

the fraction of mobile molecules (Figure 1.6).
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Figure 1.6 Fluorescence Recovery After Photobleaching (FRAP) working principle. a) A given
region of the cell is photobleached using a high intensity laser and then the fluorescence recovers
over time in the photobleached area. Green denotes fluorescence and black the photobleached
area not emitting fluorescence. b) The fluorescence intensity is measured throughout the process
and the diffusion coefficient of the ensemble diffusing molecules (mobile fraction) can be retrieved.
Adapted from (75).

FRAP was one of the first techniques used in cell biology to measure diffusions
and it became even more popular when it became possible to express GFP-
labelled proteins(76-79). However, the main disadvantage of using FRAP is
that one cannot observe the dynamics of individual molecules and just have a

measure of the whole ensemble of labelled molecules.

1.2.4.2 Fluorescence correlation spectroscopy (FCS)

Fluorescence correlation spectroscopy (FCS) is another powerful technique
that allows to have access to the temporal information of fluorescently labelled
molecules (80-82). In FCS, the fluorescence intensity fluctuations of molecules
diffusing through an illumination volume as a function of time is measured
(Figure 1.7a). Usually the illumination volume consists on a confocal excitation
volume but FCS has also been combined with STED and NSOM to obtain
diffusion information in the nanoscale (83, 84). For the analysis, the time traces

are auto-correlated with different time-lags and from the autocorrelation curve
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it is possible to fit parameters such as the diffusion coefficient and the number

of molecules among other parameters (Figure 1.7b).
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Figure 1.7 Working principle of Fluorescence Correlation Spectroscopy (FCS). a) Molecules
diffuse through the excitation volume and emit fluorescence which is detected as a function of
time. b) Time traces of fluorescence are recorded and the autocorrelation function is computed
form them. From the autocorrelation function (Go), one can obtain the diffusion and the number

of molecules.

1.2.4.3 Single particle tracking (SPT)

Single particle tracking (SPT) is another impressive technique that combines
high spatial and temporal resolution. In SPT single molecules are located with
nanometric precision and tracked over time to generate trajectories that can be
further analysed. Figure 1.8a shows how SPT works from acquisition to
tracking. First, sparsely labelled molecules are imaged during hundreds (or
thousands) of frames at high frame rates. In the processing step, all molecules
are localised at each frame of the movie. Since any point source (i.e. a
fluorescence emitter) acquired with an optical microscope appears as a
diffraction limited Airy disk, the central lobe is fitted to a 2D spatial gaussian.
The centroid position is then determined from the gaussian fitting of each
fluorescent spot. The localisation precision on the determination of the centroid
position is typically 10-30 nm, and it is affected by the background noise, the
number of detected photons and other sources of noise. Moreover, the

localisation accuracy is the difference between the emitters actual position and
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the determined centroid. SPT has great capabilities and algorithms typically
localise single molecules with nanometre accuracy. Once the molecules are
localised at each frame, the next step is to link the localisation from frame to
frame in order to build trajectories. For this step, low labelling is crucial because
it simplifies the reconnection, and the reconnection algorithms merely need to
connect nearest-neighbours within frames. However, more sophisticated
algorithms have emerged to account for the blinking of fluorophores, missed
localisations, possibility of particles crossing each other, etc (85-88). In fact,
after reconnection, there must be a cross-check from the user to ensure that all
trajectories retrieved have been successfully reconnected to avoid artefacts.
Once the trajectories are generated and checked, one can extract large amount
of information from them: instantaneous velocity, diffusion, confinement zones,
turning angles, ... All these parameters allow to understand how single molecules
explore the space and dynamically interact with their environment and with
other molecules. The mean square displacement (MSD) is one of the most
commonly used analysis to quantify the trajectories obtained with SPT. The
MSD describes how the molecule explores the space in average as a function of

the time lag. The MSD for a single trajectory is calculated as follows:

N-m

: Z [x(t; + mAD) — x(t)]2  (1.3)
i=1
Here, x denotes the space vector containing the spatial coordinates (x =

1

MSD(tqy = mAt) = T—

{x,y,2}) and N is the total number of frames of the trajectory. The MSD curve
as a function of ti, has different slopes (Figure 1.8b) depending on the type of
motion of the studied molecule that arise from single molecule interactions with
its surroundings (43, 89-91).
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Figure 1.8 Principle of Single Particle Tracking (SPT). a) Schematic representation on the
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working principle of SPT. During acquisition sparsely labelled molecules (red dots) are recorded
as a function of time generating hundreds (or thousands) of images. During the localisation step,
the centre of mass position of each fluorescent molecule is retrieved. The localisation accuracy
ultimately depends on the full-width at half-maximum (FWHM) of the emitter Airy disk, the
number of collected photons from the emitters and the different sources of noise. After localising
all the fluorescent molecules as a function of time, reconnection is done by linking the localisations
between consecutive frames to generate trajectories. Adapted from Manzo and Garcia-Parajo
(43). b) The mean-square displacement (MSD) plot as a function of lag time has different
behaviours depending on the diffusing nature of the studied trajectories.

One of the challenges of SPT is the photostability of fluorescent probes used to
label the molecules of interest. Ideally, one would like to have long trajectories
in order to compute the MSD in a robust manner without noise, and be able to
study how a single molecule explores different regions of space. Traditional
organic dyes suffer from low photostability, high photobleaching and low
brightness, which pushed researchers to use other types of fluorophores to
perform SPT. For studies at the plasma membrane of cells, QDs have been used
to overcome the limitations of traditional fluorescent dyes due to their great
photo-physical properties(92, 93). However, using QDs for intracellular studies
is challenging and prone to artefacts, albeit some groups have proven to be
possible(93, 94). Another less popular approach is the use of gold-colloidal
particles that scatter light and allow to track the molecules for several minutes
with extremely high temporal resolution (us regime) (16). Nonetheless, because
they are not fluorescence, their applications are limited to single-colour

experiments and they are rather large which might hinder the diffusion of
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molecules(95). Finally, the recent advent of more photostable and bright
fluorescent dyes such as the Janelia dyes(36, 37) allow for good performance in
SPT and because of their small size they are ideal to study the dynamics both

at the plasma membrane and at the interior of the cell.

Despite the potential and importance of SPT in the field of cell biology, the
technique suffers from low statistics. As the number of trajectories obtained per
experiment is low, SPT requires to perform many replicates in order to collect
enough statistics. In the light of this limitation, high-density single particle
tracking (HD-SPT) is emerging as a powerful approach to obtain large number
of trajectories from single cell experiments and derive spatial information from
the trajectories. Deeper insights into HD-SPT are given in Chapters 3, 4 and 5
of this thesis.

1.3 Current challenges in the field

Understanding the spatiotemporal organisation of molecules in the cell is
intrinsically linked to the evolution of the microscopy techniques herein
described. Gaining access to the nanoscale by means of super-resolution
microscopy allowed to resolve structures and image clusters of proteins beyond
what was ever possible with traditional fluorescence microscopy. In fact, super-
resolution techniques have been applied to study many different components in
cells: nuclear pores(96), chromatin substructures(97, 98), centrioles (99, 100),
Golgi apparatus(101, 102), the endoplasmic reticulum(103), plasma membrane
receptors (28, 71), etc. and the amount of research is exponentially growing.
Unfortunately, super-resolution microscopy suffers from poor temporal
resolution limiting the studies to either fixed cells or imaging very slow
dynamics. To gain access to the temporal information and dynamics in cell
biology a set of techniques have developed being FRAP, FCS and SPT the most
commonly used. These techniques have provided great insights onto the
dynamics in cell biology: lipid diffusion(76), DNA(104), membrane
receptors(105), etc. But these techniques fail to give a comprehensive
understanding on the ensemble spatial organisation of molecules. Therefore,

when one wants to elucidate the spatiotemporal organisation of a receptor or
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molecule with high temporal and spatial resolutions, one finds itself in a
crossroad: either one can get high spatial resolution using super-resolution
microscopy or access the temporal information using FRAP, FCS or SPT. This
poses a major bottleneck to real quantitative cell biology studies because ideally
one would like to have a full understanding on how molecules dynamically

explore their surroundings with high temporal and spatial resolutions.

In the light of this void, current research is conducted to bridge between both
families of techniques and to reach a compromise between spatial and temporal
resolutions. A fascinating new field of hybrid methodologies is emerging where
super-resolution microscopy techniques are combined with other techniques.
Some examples are STED-FCS(106), sptPALM(107), universal PAINT
(uPAINT)(108), live cell STED(109), ... Our goal is to contribute to this field

with the development of novel methodologies.

1.4 Concept of the thesis

In this thesis we aim to push the limits of what is currently possible and
contribute to the field of quantitative cell biology and fluorescence microscopy
with new tools to understand the spatiotemporal organisation of proteins. We
have developed novel analysis tools for quantitative super-resolution imaging.
Moreover, we propose a novel methodology to bridge between super-resolution
microscopy techniques and temporal techniques by using high-density single
particle tracking. In this first Chapter we have reviewed most current models
of spatiotemporal organisation in the field of cell membrane biology as well as
a state-of-the-art overview on the fluorescence microscopy tools. In Chapter 2,
we focus on quantitative super-resolution STED and STORM microscopy,
showing newly developed algorithms during the span of the thesis. In Chapter
3, we present a novel methodology that takes advantage of high-density SPT,
that we called high-density maps (HiDenMaps). We explain the technical
requirements in HD-SPT to have faithful HiDenMaps that describe the full
spatial exploration of molecules. In Chapter 4, we apply HiDenMaps to study

the spatiotemporal organisation of CD44, a transmembrane receptor that
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interacts both with the extracellular matrix and cortical actin. In Chapter 5,
we present a set of analysis tools to further exploit the information encoded in
HiDenMaps and study different temporal scales in actin-driven plasma
membrane compartmentalisation. In Chapter 6, we extend our HiDenMap
methodology to a multi-colour scheme and we study virus infection of immature
dendritic cells. We show that the dynamic establishment of pre-docking
platforms constituted by tripartite proteins ensures the successful engagement
of viruses on the plasma membrane. Finally, in Chapter 7, we highlight the

main findings of our research and provide new avenues for further research in

the field.
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Chapter 2

Quantitative super-resolution imaging

The advent of new super-resolution fluorescence microscopy techniques has
provided access to the spatial organisation of molecules in intact cells with
unprecedented resolutions. The new kind of data provided by these images has
revealed details never anticipated and thus has opened up new questions
regarding how these molecules organise in space, whether and how they interact
with other molecules in their immediate surrounding, and ultimately, how this
organisation impacts their function. However, addressing these questions in a
truly quantitative fashion requires the development of novel ways to visualise
and analyse the data. In this chapter, we focus on several approaches to
quantitatively analyse stimulated emission depletion (STED) super-resolution
images and single molecule localisation microscopy (SMLM) data. Moreover,
we show how these analyses have contributed to a better understanding of the
spatial organisation of different receptor proteins located at the plasma

membrane of intact cells.

This work has been partially published as:
Enric Gutiérrez-Martinez, Susana Benet, Nicolas Mateos, Itziar Erkizia, Jon Ander Nieto-Garai, Maier
Lorizate, Carlo Manzo, Felix Campelo, Nuria Izquierdo-Useros, Javier Martinez-Picado, Maria F. Garcia-
Parajo, “Actin-regulated Siglec-1 nanoclustering influences HIV-1 capture and virus-containing
compartment formation in dendritic cells”, eLife, second revision
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2.1 Motivation

The advent of fluorescence microscopy has been a game-changer in cell biology
research. It has allowed to image cells in a non-invasive manner and together
with the development of new fluorescent probes it has been possible to virtually
tag any protein of interest. A milestone in fluorescence microscopy has been the
invention of super-resolution (SR) microscopy techniques that overcome the
diffraction limit of light. As discussed in Chapter 1, the most widely used SR
approaches are stimulated emission depletion (STED) and single molecule
localisation microscopy (SMLM) methods such as STORM (stochastic optical
reconstruction  microscopy) and PALM  (photoactivated localisation
microscopy)(1-5). These SRs approaches have enabled the study of the spatial
organisation of proteins with unprecedented high resolutions. However, these
new SR techniques require the development of novel analysis tools in order to

provide truly quantitative information on the images obtained.

Quantitative analyses of SR images are far beyond trivial and demand enormous
care because they are prone to pitfalls and artefacts (reviewed in (6-8)). Thus,
SR microscopy requires proper calibrations and controls to ensure reliable
results. Moreover, it is crucial that the experiments are performed
methodologically maintaining constant the imaging conditions, labelling

strategies, fluorescent probes, etc for the same set of experiments.

In the case of STED, the analytical tools needed to quantify the images should
in principle be rather simple because the images generated contain true
fluorescence information (i.e., intensity, spectral and even lifetime information).
Yet, in practice, STED analysis is challenging. For instance, one of the most
straightforward analysis that one can perform in STED images is counting the
number of biomolecules (stoichiometry) in the fluorescent spots by directly
linking the fluorescent signal to the number of emitters. Although this approach
is very powerful, deriving stoichiometric information on STED images requires
proper modelling of the detected photon statistics and careful experimental
imaging (8). In our lab, we have implemented an algorithm to derive

stoichiometric information from STED images(9-11) and in this chapter we
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show our latest results using this methodology to study the nanoclustering of

a membrane receptor expressed on cells of the immune system.

In the case of SMLM images, they consist on discrete single molecule localisation
maps, and thus, it might be tempting to count the number of localisations to
derive the stoichiometry of a given nanocluster. However, this approach can
lead to major artefacts because a single fluorophore can reappear multiple times
during the acquisition time leading to multiple localisations (amongst other
plausible sources of artefacts, (6, 12-14)). Nevertheless, if one considers all the
possible sources of artefacts, it is likely to make an estimate on the number of
molecules per cluster by performing the proper statistics(15-17). Another line
of quantification refers to studying the spatial organisation of nanoclusters by
performing colocalisation analysis. At the birth of SMLM techniques, super-
resolution images were obtained by voxelating the space and counting the
number of localisations within each voxel to generate intensity-like images(18).
These images were then processed similarly to confocal, TIRF or STED images
and used typical colocalisation analysis such as the Pearson’s or the Manders’
coefficients (18, 19). However, this approach kind of takes away the fun and
the enormous potential of having single molecule data. In the past decade, new
methods have emerged to perform localisation-based colocalisation using
different strategies and giving better insights in SMLM(20-23). In this chapter,
we will exploit the data from STORM imaging to quantify our experiments

using state-of-the-art algorithms for SMLM.

The aim of this chapter is to present the reader with novel algorithms to
quantify SR images. We focus on STED microscopy and more extensively in
STORM analysis. We have implemented algorithms published by other Labs
and have also developed novel algorithms based in MATLAB. Using these
advanced algorithms, we show some of our latest findings in the context of

different biological questions.
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2.2 Spatial organisation of the transmembrane receptor Siglec-

1 in dendritic cells

2.2.1 Motivation

A great advantage of STED is that one can rely on the fluorescence intensity
obtained in the images and provide a quantitative view on the stoichiometry of
molecules in nanoclusters by performing the proper modelling and statistics. In
this section, we focus on studying a receptor on the plasma membrane of

immune cells which is crucial for the recognition of HIV-1.

Dendritic cells (DCs) are a specialised group of leukocytes that play an essential
role in the innate and adaptive immunity through their function as antigen
presenting cells (see Chapter 6 for a more detailed explanation, Ref (24)).
Amongst other viruses and pathogens DCs recognise HIV-1 viruses and capture
them. In the case of immature DC (iDCs), the recognition of HIV-1 is mainly
performed by the receptor DC-SIGN(25); while in the case of mature DC
(mDCs), it has been shown that the recognition and capture of HIV-1 is mostly
mediated by the receptor Siglec-1(26, 27). Since Siglec-1 takes over DC-SIGN
in mDCs, we wanted to ascertain if, aside from the different expression levels
of these receptors, there is a different spatial organisation of Siglec-1 in iDCs

compared to mDCs that could impact in the capture capacity of the receptor.

We thus used STED microscopy to map the spatial organisation of Siglec-1 in
DCs. We discovered that Siglec-1 forms nanoclusters on mDCs, while on iDC
Siglec-1 remains mostly randomly organised. We quantified the nanoclusters by
means of the number of molecules within the clusters, their size and the nearest-
neighbour distance between nanoclusters in iDCs and mDCs. In this Chapter
we show a small part of a larger thorough study performed by Dr. Enric

Gutiérrez-Martinez et al. in our group(28).
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2.2.2 Methods

2.2.2.1 Determining the number of molecules per nanocluster in STED
microscopy
To define the area of Siglec-1 individual spots, STED images were processed
using Fiji to apply a subtraction of the background and a Gaussian blur filter
(sigma radius 1) followed by a difference of Gaussian (smaller/greater sigma
1:3). Then an intensity threshold was used to create binary masks of the
individual spots from which we obtain the mean intensity values per each spot
within the original images. Thereafter, we used a MATLAB custom code to fit
the distribution of intensities of individual spots from antibodies on glass to a

lognormal function (f1).

_(nI1-p?

202 (2.1)

1
) = N, e

This model corresponds to the expected theoretical distribution for the intensity
corresponding to the detection of a single fluorescent emitter (29-31). The
intensity values obtained from spots on glass were used to define the i (mean)
and o (standard deviation) of the lognormal distribution, through its fit to a
linear combination of N = 2 functions. These parameters were used as a single
molecule reference to define the stoichiometry of the fluorescence of Siglec-1

receptors in the cells measured under identical experimental conditions (10, 32).

The intensity histograms of Siglec-1 spots on cell samples showed higher
intensities and broader distributions than the antibodies on glass, indicative of
nanoclustering and of a mixture of different populations of nanoclusters
composed by a different number of molecules (Figure 2.1). To calculate the
probability distribution of molecules per spot, the intensity histograms of Siglec-
1 spots on cells was fitted to a model distribution gy (I) composed of a linear

combination of functions as described in (9).

N

NOEDWRYAG) (2.2)

n=1
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Where f,, shows the intensity distribution of a spot containing n receptors, and
@, is the relative weight of this distribution so that, YN a,, = 1, being N the
maximum number of receptors (in our analysis 12) (30). We considered that
the distribution for a spot containing n receptors could be obtained recursively

as

fa=ha® f (23)

where @ represents the convolution of the intensity distribution lognormal
functions for n= 1,2,..,12 (10, 30, 31).
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Figure 2.1 Distribution of intensities of spots on glass and of siglec-1 in mDCs. a) STED image
of siglec-1 antibodies non-specifically adhered to glass and labelled with secondary antibody Fah-
Atto488 and the gaussian fit of the intensity per spot (left). b) STED image of siglec-1 on mDCs
with a zoom-in region of interest (right). ¢) Histogram of spot intensities for spots on glass with
the lognormal fit of the experimental data (black line and shaded region). The dashed lines
correspond to the calculated intensity distribution functions for different number of molecules
per spot. d) Histogram of spot intensity distribution for the representative image shown in panel
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b. The inset shows the fitted probabilities of the number of molecules per spot for the
representative figure. Figure adapted from Gutierrez-Martinez et al. (28).

2.2.3 Results

2.2.3.1 DC activation induces the formation of Siglec-1 nanoclusters

The trans-infection capacity of DCs correlates with the expression levels of
Siglec-1, which are increased upon cell activation with (lipopolysaccharide) LPS
or (interpheron) IFN (26, 27). However, the spatial organisation of Siglec-1
receptors in resting or activated DCs is not yet known. To address whether DC
maturation alters Siglec-1 distribution in the plasma membrane, we first
examined the nanoscale organisation of Siglec-1 by STED microscopy in iDCs
and LPS-treated DCs (mDCs) differentiated from peripheral blood monocytes
(PBMCs) (Figure 2.2a). With a lateral resolution of ~ 80 nm, we discriminated
individual Siglec-1 fluorescent spots on the cell surface and measured their peak
intensities. To quantify the number of Siglec-1 molecules per spot in the plasma
membrane of iDC and mDC we relied on the intensity obtained from individual
antibodies (Abs) on glass, corresponding to single molecules (9). LPS-mediated
DC maturation induced a higher fraction (~ 57% vs. ~37%) of Siglec-1 dimers
and small nanoclusters with > 3 molecules/spot as compared to iDCs, where
Siglec-1 was mainly found as monomers (~57% vs. ~22%) (Figure 2.2a,b). The
increase in the average number of molecules per spot also coincided with an
average increase in spot sizes (Figure 2.2c¢) and a significant increase in the
proximity of Siglec-1 spots on mDCs as compared to iDCs (Figure 2.2d). These
results thus indicate that Siglec-1 forms nanoclusters on activated mDCs,

whereas its organisation is more random in non-activated iDCs.

To rule out possible artefacts during fixation and labelling of Siglec-1, we
proceeded to image Siglec-1 in mDCs using different fixation protocols and
labelling approaches. The summary of the results is shown in Figure 2.3. First,
we performed the labelling with full chain antibodies and fixed the samples with
4% paraformaldehyde (PFA) (Figure 2.3a). These are the same conditions as
to the ones used for Figure 2.2. Second, we used single-chain antibodies to label
siglec-1 and fixed the samples with 4% PFA (Figure 2.3b). In this case, we rule
out any possible protein aggregation due to the full-chain antibodies. Finally,
we used single-chain antibodies and we modified the fixation protocol by using
4% PFA + 0.2% GA (glutaraldehyde) (Figure 2.3¢). Analysis on multiple STED
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images in all three conditions showed no difference in terms of nanoclustering
capacity of Siglec-1, ruling out any potential artefacts due to sample fixation or

labelling conditions.
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Figure 2.2 Siglec-1 distribution at the plasma membrane of dendritic cells. a) Representative
STED images of Siglec-1 at the plasma membrane of iDCs (top) and mDCs (bottom). The image
at the right corresponds to the enlarged region-of-interest highlighted by the white box on the
left images. The pseudo-colour code denotes the intensity of siglec-1 signal from monomers (blue)
to nanoclusters (red). b) Frequency of the number of Siglec-1 molecules per spot in iDCs (black)
and mDCs (white). Bars represent the mean and the errors bars represent the standard deviation
of the mean of 3 different donors (with minimum 9 cells/donor and condition). The statistical
test is a two-way ANOVA with multiple comparison Bonferroni tests. ¢) Average Siglec-1 spot
area per cell. d) Nearest-neighbour distance (NND) between Siglec-1 spots per cell. In ¢) and d),
each symbol corresponds to a single cell, red lines are the mean value per donor (4 donors, 9
cells/cell type). Paired T-test analysis was performed in ¢) and d). Figure adapted from Gutiérrez-
Martinez et al. (28).
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Figure 2.3 Control measurements to discard artefacts on the clustering of Siglec-1 in mDCs.
Representative Siglec-1 STED images in: a) mDC fixed with 4% PFA and Siglec-1 lahelled with
full-length antibodies. b) mDC fixed with 4% PFA and Siglec-1 lahelled with single-chain
antibodies. ¢) mDC fixed with 4% PFA + 0.2% GA and Siglec-1 labelled with single-chain
antibodies. d) Quantification on the number of Siglec-1 molecules per cluster for the three

conditions (a-c), showing no significant difference between them.

Therefore, these experiments show a difference in the spatial organisation of
Siglec-1 in mDCs as compared to iDCs. In iDCs, most of Siglec-1 appear as
monomers while in mDCs, Siglec-1 clusterises in a larger extend. Considering
that nanoclustering is essential in the functional performance of many
receptors(33), it becomes clear why in mDCs Siglec-1 is the canonical receptor
in HIV-1 capture and not DC-SIGN.
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2.3 Quantitative STORM analysis to elucidate the spatial

organisation of proteins

In this section we focus on the analysis tools that we have implemented and
developed during the span of this thesis for STORM data. Because in our Lab
we perform studies on proteins at the plasma membrane of cells, STORM is a
great asset. We have implemented already existing algorithms to quantify our
data such as studying the clusters of localisations, but we have also developed
new algorithms. In this section, we show how we have implemented these
algorithms to solve different biological questions and how these analyses have
enabled us to learn more about the spatial organisation of different proteins at

the plasma membrane.
2.3.1 Density-based spatial clustering of applications with noise (DBSCAN)

DBSCAN is a widely used algorithm in the field of SMLM in order to define
clusters of localisations(34). The algorithm requires to define two parameters:
the radial distance, r, and the minimum number of neighbour localisations, Ny,
within the radial distance. The working principle of DBSCAN is schematically
depicted in Figure 2.4a. Let’s consider a set of localisations obtained with any
SMLM technique and we define a certain radius, r, and a minimum number of
neighbours, Nui,. The algorithm starts by taking one localisation randomly from
the data set, Ly, defining a circle centred at that localisation and counting the
number of localisations within the circle, Ni. There are two options: 1) the
number of localisations is smaller than the threshold, N < Np,,, or, 2) the
number of localisations is equal or greater than the threshold, N = Npi,. In
the first scenario, the localisation Ly is classified temporally as noise. Therefore,
another localisation is randomly picked and the process is repeated. In the
second scenario, the localisation is classified as a core point or seed of the cluster
and we proceed to study what happens with the neighbouring localisations of
Ly, Ly j. For each Ly ; the process is repeated and the localisations will be
classified as core points or border points depending on whether they fulfil the
requirements (number of neighbouring localisations within the circle) or not.
Importantly, the border points do belong to the cluster but if let’s say some

localisations were neighbours of this border point, the algorithm doesn’t
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continue analysing them at this stage. It could be that a localisation that
initially was considered to be noise, it was actually a border point. Since the
algorithm has to run over all the localisations, it will re-visit that localisation
but as a connectivity process from another cluster. Once the algorithm ends,
those unconnected localisations to any clusters (not core nor border points) are

classified as noise.

The main downfalls of DBSCAN are the sensitivity to the density of
localisations and the background(35). Moreover, it requires the researcher’s
input to determine the parameters and it is often challenging to account for cell
to cell variability in expression levels of the protein of interest. Moreover,
determining the radius and the minimum number of localisations is a task that
must be performed cautiously. Taking too large radiuses can merge independent
clusters into a single large cluster. Moreover, if the minimum number of
localisations is too small, then the condition to include localisations into a
growing cluster is too lax and will overestimate the number of clusters. As a
rule of thumb, one must consider how many localisations a single fluorophore
can report (performing controls with spots on glass). Ultimately, the human eye
is the best tool to find and recognise patterns, clusters, etc. Thus, the
parameters chosen must deliver clusters that are similar as the ones visually

recognised by the human eye for all the samples studied.

As an example on how DBCAN works, we have analysed a STORM image of
CD44, a transmembrane protein, at the plasma membrane of iDCs (Figure
2.4b). We have used the DBSCAN parameters of r=25 nm and Nmin = 20
points to detect the clusters in the image on the left. The output of DBSCAN
is shown on the right of Figure 2.4b colour-coding the clusters to tell them
apart. Finally, we have computed the cluster area of the detected clusters for

CD44 at the plasma membrane of immature DCs (Figure 2.4c).

Despite its potential drawbacks, DBSCAN is one of the most commonly used
techniques in order to determine the cluster of localisations. Once the clusters
are defined, a whole palette of analysis can be performed in order to obtain
quantitative information such as the cluster area or the number of localisations
per cluster. Additionally, more sophisticated analysis can be performed as for

example nearest-neighbour distributions, colocalisation analysis or distances to
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a given structure. In the following section, we present some methods that we
have implemented to extract the most out of the cluster information obtained
from DBSCAN.

DBSCAN algorithm
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Figure 2.4 Working principle of DBSCAN. a) If we have a set of localisations, we need to define
a radius, r, and a minimum number of neighbours, Nui.. We take a random localisation, in the
figure depicted as the purple point on the left. Then, a circle of radius r is drawn and those
localisations falling within the circle (vellow with purple edge), the neighbours, are counted. If
the number of neighbours is equal or larger to Nmin, then the purple point is considered to belong
to the core of the cluster and the process propagates throughout the neighbours (arrow towards
the right picture). In this case, Nmn was set to 3. The connectivity propagates while the neighbour
condition is fulfilled (purple points), when is no longer fulfilled, then those localisations are
considered as border points (in green). Moreover, those localisations that do not fulfil at all the
conditions, are tagged as noise (light blue). Adapted from Pageon et al. (36). b) Raw STORM
localisations of CD44 at the plasma membrane of an iDC (left) and the clusters detected using
DBSCAN with r=25 nm and Nmin = 20 points. On the right, the detected clusters colour-coded
randomly. The scalebar is 1 pm. ¢) Quantification of the cluster area for CD44 at the plasma

membrane.
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2.3.2 Spatial organisation of integrins in focal adhesions

Focal adhesions are highly dense structures that allow the cells to interact with
their environment by adhering to the substrate, the extracellular matrix
(ECM). One of the key components in focal adhesions are integrins,
heterodimeric transmembrane receptors consisting on an alpha and a beta
subunit(37, 38). Integrins engage specifically to their ligands on the ECM and
to the actin cytoskeleton on the cytosolic region via adaptor proteins such as
paxillin, vinculin, focal adhesion kinase, kindlin,... (39-42). Moreover, integrins
are sensitive to mechanical changes in their environment such as the stiffness

of the substrate and act as mechano-sensing receptors for the cell(38).

In our lab we have vast experience on the study of integrins, such as LFA-1,
using single molecule techniques(32, 43-45). More recently, Dr Sarah Keary in
our group has performed an exquisite and thorough PhD dissertation
unravelling the lateral spatial organisation of integrins and key adaptor proteins
at focal adhesions of fibroblasts using STORM. STORM microscopy is an
excellent technique to explore the lateral nanoscale organisation of proteins in
focal adhesions because it relies on TIRF, which only excites a very thin section

of the basal membrane of cells where focal adhesions are located.

Together with Dr Keary, we have developed a wide range of analysis tools in
order to quantify the organisation of integrins and adaptor proteins in focal
adhesions (46). Herein, we explain how we quantified the spatial organisation
of nanoclusters with respect to an external structure, the focal adhesion. We
focused on two proteins: the integrin asf; and an adaptor protein, paxillin.

Both proteins were imaged using dual-colour STORM.

For the analysis, a binary mask of the focal adhesions was first manually-
selected from the raw dual-colour STORM data. Then, using MATLAB, we
defined the edges of the different focal adhesions using morphological operations
on the binary mask (Figure 2.5a, blue boundaries). Second, the clusters of a5/,
and paxillin were identified using DBSCAN with a radius of 20 nm and Ny, of
3 localisations. Later, those identified clusters with less than 10 localisations
were removed. The centre-of-mass (CoM) of the detected clusters were plotted
on the top of the binary mask (Figure 2.5b). If one zooms into a focal adhesion,

one can visualise note that agf; appears more at the periphery of the focal
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adhesion while Paxillin seems more homogeneously distributed (Figure 2.5¢).
In order to validate quantitatively our observations, we measured the nearest
neighbour distance (nnd) from the CoM to the nearest edge of the focal

adhesion.
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Figure 2.5 Quantifying the lateral spatial organisation of integrin asf; and paxillin in focal
adhesions imaged in STORM. a) Binary mask of the manually-selected focal adhesions with the
edges detected by MATLAB. b) Centre of mass position of the detected clusters of integrin asf;
and paxillin overlaid on the mask of figure (a). ¢) Zoom-in of the yellow box in image (b). On
the top, the CoM positions of integrin asf;, in the middle for paxillin and the bottom both
together. d) Histograms of the distance to the focal adhesion edge, for the clusters of integrin
asP; (top) and paxillin (bottom). In black solid line, the histograms for simulated randomly
distributed clusters. e) Edge proximity factor (EPF) per cell inside focal adhesions for integrin
asf; and paxillin. Statistical significance test with one-way ANOVA test (p<0.001). The scalebar

is 10 pm. Figure adapted from Dr Sarah Keary’s thesis (46)
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In order to assess whether the distance-to-edge distributions found for

experimental data are relevant and differ from randomly distributed clusters,

we developed an in-silico simulated routine consisting of the following steps:

1)

Identify the clusters within each focal adhesion. The first step consists
on segmenting the clusters that fall inside focal adhesions and pairing
each cluster to their focal adhesion. After this step, we have a list of
clusters (for both proteins) for each focal adhesion.

Randomly distributing the same number of clusters accounting for their
physical size. The second step consists on randomly placing the same
number of clusters as the experimentally detected ones inside the focal
adhesion. However, since the detected clusters are well-segregated, we
need to include a mnon-overlapping condition for the randomly

distributed clusters, thus, accounting for their size. We approximate

. . . Area
clusters to be circles, of a given radius (r = / - ) and we compute

the edge-to-edge distance between the clusters finding the k nearest-

neighbours and subtracting their radii:

di'kedge—to—edge =nnd; —1; =Ty, (2.4)
Where nndi, is the nearest-neighbour distance of the k-nearest-
neighbours, 1; is the radius of the cluster of interest and rix are the
radiuses of those nearest neighbour clusters. The bold typing is because
we define this equation as vectors of multiple neighbours. If the distance
is smaller than 0, then it means that the clusters overlap. Therefore, we
reject those nearest-neighbours with negative edge-to-edge distance and
they will be randomly thrown again until no overlapping occurs. The
process of randomly distributing the clusters is performed in a two-step
fashion accounting for the size. First, the larger clusters (the 20% of
clusters with largest areas) are randomly placed ensuring that no
overlapping occurs. Second, the smaller clusters (remaining 80% of
clusters) are thrown keeping the larger clusters fixed and always
checking the no-overlap condition. The reason for splitting the
distribution of clusters between large and small cluster is because of the
high-density of detected clusters and the small sizes of focal adhesions.

If we place all the clusters simultaneously, we find that the number of
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large clusters rejected at each iteration is large and after each iteration
there is less space where large clusters can fit. Importantly, the no-
overlapping condition is only performed for the clusters of the same
protein.

3) Placement of the last 10 clusters. At each iteration of the routine, a
certain number of clusters are rejected, Nrej, which are the ones that
will be randomly placed at the following iteration. However, we found
that when the Nrej is equal or less than 10 clusters, it becomes more
efficient to place the remaining clusters one by one. To do so, we
randomly place 1000 clusters within the focal adhesion, all with the
same cluster radius. We find which of those 1000 clusters satisfy the no-
overlapping condition (distance > 0) with the already placed clusters
and we pick one of those. We repeat this cycle until no rejected clusters
remain.

4) Repeat the process 10 times. To ensure a close-to-theoretical random
distribution of clusters to the edge of the focal adhesion, we iterate the
whole process 10 times and compute the distance to the edge of the

adhesion for each iteration.

Finally, we plotted the distance to the focal adhesion edge for all the
experimental and simulated clusters for the integrin asf; and paxillin (Figure
2.5d). Despite the similarities between the experimental and simulated
distributions, we can observe subtle (statistically significant) differences for the
integrin distribution compared to the simulated distribution. Analytically, it
makes sense that the randomly distributed clusters appear to be close to the
edge. If we think of a focal adhesion as an ellipse, we can draw concentric rings
of the same width, Ar, from the edge to the centre. The area of outer rings is
larger than the rings closer to the centre. Therefore, the number of clusters that
can allocate outer rings is larger at the edge than the centre of the focal
adhesion. Nevertheless, the subtle differences in the distributions between
experimental and simulated can be significant. In order to measure the
deviation from random and to compare how the proteins are spatially
distributed with respect to each other, we calculated what we termed as the

edge proximity factor (EPF). The EPF is calculated by subtracting the median
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values of experimental and simulated distance to edge distributions and

normalised by the median value of the simulated data:

dexP sumn

__ Tedge edge
EPF = — (2.5)
edge

The results for the integrin asf; and paxillin are shown in Figure 2.5e. Negative
values of the EPF means that the median experimental distance to the edge is
closer to the edge than the expected from the randomly distributed clusters.
From this, we clearly see that integrin agf; is significantly closer to the edge
than paxillin, revealing a preferential location of this integrin towards the edge
of the adhesions(46).

2.3.3 1%t rank Voronoi tessellation of localisations

Voronoi tessellation is becoming a popular method in SR-SMLM data analysis
due to its unique properties(22, 23, 47). The Voronoi tessellation consists on
partitioning the space using seeds (localisations) and generating a Voronoi cell
for each seed. The Voronoi cells have the unique property that any point within
the cell is closer to the corresponding seed than to any other seed. Because of
this, if the seeds are densely packed, the corresponding Voronoi area of the cell
is smaller than if the seeds are more sparsely located. This can be extrapolated
to the nearest neighbours and if all the seeds are densely packed in a region of
space, all those areas will be small. Accordingly, in less crowded regions, the
areas will be larger. Levet et al. have implemented the Voronoi tessellation in
the analysis of SR-SMLM to study clusters by separating the localisations into
low and high density fractions and then either running DBSCAN on the high-
density localisations or perform colocalisation analysis between two channels
(23, 47). In fact, using the 1** rank Voronoi density to remove low-density
localisations prior to running the DBSCAN algorithm is more efficient because
low-density localisation (i.e. noise) are removed. This is especially interesting

for datasets with a large number of localisations.

The 1% rank Voronoi tessellation consists on assigning a density value to each
individual localisation considering the vicinity of nearest-neighbour
localisations. Given a set of N localisations, (herein called seeds), Sk kef1,n] , We

perform a Voronoi tessellation of the space such that each seed, s;, belongs
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within a polygon, P;, of area A;. The 1* rank neighbours of seed s; are those
seeds whose polygons share an edge with seed s;. The concept behind computing
the rank 1 Voronoi density is to calculate the density accounting also for the
areas of the 1*" rank neighbours (Figure 2.6a, see also Chapter 5 for a more

detailed explanation).
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Figure 2.6 1% Rank Voronoi tessellation of localisations. a) Schematic example on how the Rank
1 Voronoi density is computed for the localisation within the purple area. The cyan areas
correspond to the first neighbours to the localisation of interest. b) In-silico generated localisations
clustered as a circle and noise localisations around. ¢) The same localisations as in (b) but colour-
coding them with their 18 rank Voronoi density values. d) The distribution of 1** rank Voronoi
densities (in logarithmic scales) for the in-silico cluster and the same number of localisations

uniformly distributed in space.

To demonstrate the potential of using the 1°* rank Voronoi density and to
validate the performance of our algorithm, we reproduced the in-silico datasets
presented by Levet et al. (47). We have in-silico simulated a circular cluster
(radius = 3 pixels) and random localisations on a 10-by-10 pixels grid (Figure

2.6b). Then, we computed the 1* rank Voronoi density for these localisations
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and plotted them in a scatter plot colour-coding the localisations according to
their normalised 1* rank Voronoi density, (')Ql-lﬁ. Those localisations within the
circle have higher densities than the ones randomly distributed outside the
cluster (Figure 2.6¢). In fact, if we plot the distribution of normalised 1* rank
Voronoi densities for the data in Figure 2.6b and for the exact same number of
localisations uniformly random distributed, we observe a clear difference (Figure
2.6¢). While the uniformly distributed data has a monomodal distribution, the
data of the circular cluster has a bimodal distribution. The first population (left
peak) belongs to randomly distributed points and the second population (right

peak) to the clustered localisations.

Therefore, we can use this methodology to segment the SR-SMLM localisations
into high-density and low-density fractions. In principle, low-density
localisations will arise from spontaneous emission and noise during acquisition,
while the high-density localisations arise from clusters and structures. In order
to segment the data, we use the 1" rank Voronoi density distribution of
uniformly distributed and take the 99% value of the cumulative density function
(CDF).

2.3.4 Inter-cluster distance

Once the clusters are defined using DBSCAN, one can proceed to obtain
relevant information as the inter-cluster distance between clusters of different
proteins in multi-colour SR-SMLM, such as dual-colour STORM. The inter-
cluster distance is a valuable parameter because it allows to measure the
distance between different protein species and also to quantify the fraction of

colocalising clusters.

We have used dual-colour STORM to study the spatial organisation of the
phosphatase of regenerating liver-3 (PRL-3) with respect to clathrin-coated pits
(CCPs). PRL-3 is involved in promoting tumour progression and metastasis
with poor prognosis(48-50). PRL-3 interacts directly with integrins g1 and focal
adhesion kinases regulating the contact between focal adhesions and the
extracellular matrix and, ultimately, inducing cell migration(51, 52). Moreover,
the recycling of integrins (internalisation) is a clathrin-mediated endocytosis
(CME) process. For CME to occur, first clathrin coated pits need to be formed

by recruiting adaptor proteins which enable clathrin polymerisation and
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eventual CCP formation, a process that is called nucleation. Within a broader
study on the plausible role or PRL-3 in CME, we evaluated the recruitment of
PRL-3 to CCPs using dual-colour STORM. We studied over-expressed wild-
type (WT) PRL-3 and a hyperactive PRL-3 mutant (E50R), which slows down
CCP maturation.

First, the STORM raw data was processed using Insight3 software to retrieve
the localisations and to correct for drift and channel cross-talk(53). The
resulting STORM images for WT and Mutant PRL-3 together with Clathrin
are shown in Figure 2.7(a, b). We then segmented the area to be analysed into
4-by-4 pm? regions of interest (ROIs). Next, we filtered out isolated random
localisations using the 1*" rank Voronoi tessellation and removed the low-density
fraction of localisations. Subsequently, the DBSCAN algorithm was used to

identify clusters using the following parameters:

Table 2.1 DBSCAN parameters used to identify the clusters of localisations for PRL-3 and
Clathrin after a thorough screening of possible radiuses and minimum number of points.

Clathrin PRL-3
Radius (nm) 52.8 64.3
Nmin 20 10
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Figure 2.7 Recruitment of PRL-3 to Clathrin coated pits. Reconstructed two-colour STORM
images of the plasma membrane of HeLa cells over-expressing 3xFlag-PRL-3 (WT) (a) and
3xFlag-PRL-3 ES0R (Mutant) (b). The PRL-3 constructs are in purple and clathrin coated pits,
labelled via the light chain (CLTC) in yellow. For both images, we show enlarged ROIs below
the main image which show the merged (left), PRL-3 (middle) and clathrin (right). The scalebar
is 10 nm. ¢) Schematic representation on how the edge-to-edge distance between a clathrin
nanocluster (yellow) and the nearest PRL-3 construct nanocluster (purple) is computed. d is the
distance between the centre-of-mass positions of the clusters and r1 and r2 are the radii of the
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clathrin and PRL-3 constructs respectively. The top illustration depicts non-overlapping clusters
(edge-to-edge distance > 0) and the bottom illustration depicts overlapping clusters (edge-to-
edge distance < 0). d) Edge-to-edge distance histogram for the experimental WT (solid line) and
randomly distributed clusters (simulated, dashed line). e) Edge-to-edge distance histogram for
the experimental Mutant (solid line) and randomly distributed clusters (simulated, dashed line).
f) Boxplot plot of the ratio between experimental and simulated fractions of nanoclusters
colocalising (edge-to-edge distance < 15 nm) with clathrin clusters. g) Number of localisations of
PRL-3 within clathrin clusters as a function of the clathrin cluster radius. Unpublished data.

Having identified the clusters, we then proceeded to compute the edge-to-edge
distance between PRL-3 clusters and clathrin. We computed the centre-of-mass
position for each cluster and calculated the cluster area. By approximating the
clusters to circles, we obtained an effective radius, r; for each cluster. To
determine the edge-to-edge distance, we measured the nearest-neighbour
distance (nnd) between the centre-of-mass positions of neighbouring clusters
and subtracted the radii of both clusters from the nnd (Figure 2.7c).
Considering the STORM localisation accuracy (~30 nm), we considered that
those clusters with edge-to-edge distances smaller than 15 nm (half the
localisation accuracy) were overlapping clusters. Interestingly, the edge-to-edge
distance can give negative values if the clusters are partially overlapping.
Additionally, we performed simulations to estimate the degree of overlap
expected from uniformly distributed clusters. Such simulations consisted on
taking the same number of PRL-clusters and their sizes, and reshuffling them
in the 4-by-4 pm? ROIs. Importantly, the simulated random clusters cannot
overlap between them, so once the clusters are placed in the ROI, the edge-to-
edge distance is calculated between nearest-neighbours. In the case of
overlapping (distance < 15 nm), then those clusters are removed and thrown
randomly again. Since clathrin is the reference protein to compare the spatial
organisation with, the clathrin clusters remained unaltered. Finally, we
computed the edge-to-edge distance between the randomly distributed PRL-3
clusters with respect to clathrin clusters. Compared to the edge-to-edge distance
of randomly placed clusters, the experimental data clearly show a higher degree
of overlapping, indicating a preferential organisation of PRL-3 clusters towards
being close to clathrin coated pits (Figure 2.7d,e). To ascertain any difference
between the WT and the mutant, we computed the ratio between the
percentage of overlapping clusters in experimental and simulated data (Figure

2.7f) and the number of PRL-3 localisations within clathrin clusters as a
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function of the clathrin cluster radius (Figure 2.7g). This methodology thus
allowed us to quantitively show an increased colocalisation between PRL-3 and
clathrin coated pits as compared to the mutant. Since the mutant slows down
CCP maturation, the growth of CCP and recruitment of PRL-3 to them is
hampered, which is consistent with less colocalisation between the mutant and
clathrin compared to the WT PRL-3 which is properly recruited to CCPs

2.3.5 1** rank Voronoi tessellation--based colocalisation analysis

Despite the potential applications of using DBSCAN to detect clusters and
perform colocalisation analysis as we have presented above, DBSCAN can be
challenging to implement. For instance, in datasets that contain clusters of
localisations of very different sizes, when clusters are too close together, the
expression levels of the proteins are high, then, it becomes difficult to use
DBSCAN to identify clusters. In the light of these challenges, different types of
localisation-based colocalisation analysis have emerged(20-23, 54). All of these
methods provide new approaches to quantify the degree of colocalisation
between the different channels in dual-colour SMLM images. During the span
of this research, we have implemented these alternative algorithms in MATLAB
for our analysis. The Clus-DoC (Cluster Degree of Colocalisation) algorithm
(21)combines DBSCAN with the degree of colocalization (DoC) algorithm by
Malkusch et al (20). The ClusterVisu algorithm uses Voronoi cell areas obtained
from the Voronoi tessellation to remove noisy localisations(22). However, as we
have shown above, using the 1* rank Voronoi density is more reliable to account
for local densities, so we switch to the algorithms proposed by Levet et al. (23,
47). Finally, we implemented in MATLAB the Coloc-Tesseller colocalisation
algorithm presented by Levet et al for our analysis(23, 47). The advantage of
this algorithm is that it is quasi-automated (only the threshold in the CDF has
to be fixed, see also previous section on Voronoi tessellation). Moreover, the
algorithm gives a single value per each analysed ROI, which is convenient and

easier.

The Coloc-Tesseller relies on pairing localisations of each channel and
generating pair-density histograms. The pairing is performed using the unique

properties of Voronoi cells: if we have a set of Voronoi cells generated from a
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set of localisations (from channel A), the space is segmented such that any point
within a cell is closer to the seed that generated the Voronoi cell than to any
other point. Therefore, we can pair the localisations of channel B with the
localisations of channel A by placing them on their respective Voronoi density
cells. This pairing is done taking channel A as reference first, and then channel
B (see Ref. (23) for further details). Moreover, we assign to each localisation
their 1* rank Voronoi density (per channel), so once we pair the localisations of
each channel we can correlate their 1°' rank Voronoi densities. In other words,
we can determine if a localisation of channel B that is in a cluster (high density)
is paired with a high-density localisation of channel A (thus, colocalising in
high-density regions). Or, it can happen that a high-density localisation in A is
paired to a low-density localisation in B, which leads to anti-correlation. Finally,
from these correlated density values one can compute the Manders Coefficient
(M) and the Spearman Rank (S) correlation to quantify the correlations. The
Spearman Rank measures the monotonicity between two ranked variables and
quantifies the strength of the interaction between these variables(55, 56). These
quantifications are performed always from one protein with respect to the other,

so that two values are in fact obtained per coefficient.

To demonstrate the sensitivity of this approach, we have simulated clusters of
localisations in two channels and the quantifications (Figure 2.8). We show
three conditions in which the clusters are separated at different distances d,
from the centre of mass (with d = 0, 50 and 125 nm). When the clusters fully
overlap, both correlation coefficients are close to 1, denoting high correlation
(Figure 2.8a). When the clusters partially overlap, both Manders and Spearman
Rank rapidly decrease their value (Figure 2.8b). In the case of not overlapping
clusters, the Manders is 0 while the Spearman Rank becomes negative, which
denotes anticorrelation (Figure 2.8¢). The advantage of using this approach is
that the quantification is performed in an automated manner without any
required input from the user. For further details in the algorithm, refer to Levet
et al. (23).
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Figure 2.8 Voronoi-based colocalisation analysis of two-colour simulated data. Channel A (yellow)
and channel B (blue) simulate two circular clusters, both with added noise. The centres of the
clusters are fully overlapping (a), partially-overlapping separated by 50 nm (b) and separated a
distance of 125 nm (c¢). The Manders (M) and Spearman Rank (S) correlation coefficients are

shown below the simulated data. The scalebar is 125 nm.

We have implemented this algorithm to further study the colocalisation of PRL-
3 with clathrin coated pits (Figure 2.9). Consistent with our previous results
shown in Figure 2.7, we find that WT PRL-3 colocalises to a higher extent with
clathrin than the mutant PRL-3 (Figure 2.9a,b). Moreover, clathrin coated pits
seem to also have a preferential colocalisation with WT PRL-3 as compared to

the mutant (Figure 2.9¢,d).
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Figure 2.9 Colocalisation analysis of PRL-3 constructs with Clathrin coated pits. a) Manders
coefficient of PRL-3 with respect to Clathrin. b) Manders coefficient of Clathrin with respect to
PRL-3. ¢) Spearman rank coefficient of PRL-3 with respect to Clathrin. b) Spearman rank
coefficient of Clathrin with respect to PRL-3. The median of the distribution is depicted with the
red line and outliers with black crosses. The distributions are significantly different (p<107)

running a Kruskal Wallis analysis.

2.4 Discussion

During this research thesis, we have developed and implemented state-of-the-
art algorithms to analyse super-resolution microscopy data. We have
implemented an automated analysis to quantify the number of molecules per
cluster in STED images and developed a GUI (graphical-user interface) in
MATLAB to allow an easy interaction of the fellow researchers with the
analysis. Nevertheless, STORM analysis has evolved to be a heavy part of the
implemented algorithms to analyse datasets of fellow group members. Most of
the research that we have performed lately in the lab has involved studying
proteins at the plasma membrane of cells and we required of novel, state-of-the-

art, analyses to quantify our observations. Together, we have worked on finding
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new ways to crunch the data and find solutions to our questions. Although
extremely challenging at times, herein we have presented a palette of algorithms
and tools that have enabled us to push the knowledge of the field. We have
gained further understanding on multiple fields, for instance in the organisation
of focal adhesions or the interactions of phosphatases with clathrin coated pits.
In addition to these two studies, we have also applied these algorithms in other
studies which are not included in this thesis such as the role of Galectin-1 in
cancer fibroblasts (unpublished results) and the study of RNA polymerase II
(Pol 1II) transcriptional condensates within the nucleus of living cells

(unpublished results).

Regarding our STORM data, we can classify the analyses performed into
cluster-based analysis and non-cluster colocalisation analysis. The advantage of
working with algorithms such as DBSCAN that enable to identify clusters of
localisations is that it provides a more tangible visualisation of the data. Also,
the quantifications deliver a more physical understanding such as the nearest-
neighbour distribution, distances to the edge of structures (such as focal
adhesions), cluster area, etc. Regarding the colocalisation analysis presented in
this chapter, we have used two distinct approaches for the same dataset. First,
we have presented an analysis based on clusters defined with DBSCAN.
Considering the well-defined clusters of PRL-3 and clathrin, this approach is
preferred because it enables studying overlap of clusters and provide a more
physical measure of colocalisation. Nevertheless, as we have mentioned, defining
the parameters for DBSCAN is non-trivial and one needs to be very careful
when choosing the radius and the minimum number of points. Second, we have
shown an alternative approach that is quasi-automated to quantify the
colocalisation based on Voronoi tessellation. The advantage of using this
approach is the fact that one can quantify colocalisation without having to
define parameters for DBSCAN. In the case of datasets with a heterogeneous
distribution of cluster sizes and densely packed clusters which are difficult to
segment properly, this approach is better suited. In fact, we have used Voronoi
based colocalisation analysis to study transcriptional condensates in the nucleus
because the sizes of the condensates vary between cells and within the nucleus

(unpublished data). Moreover, the expression levels of the Polll vary from cell
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to cell. In this case, using DBSCAN is less than ideal because one would have

to change the parameters from cell to cell to define the clusters.

In summary, depending on the nature of the data to be analysed one can use
different tools to study colocalisation. If the dataset consists on well-defined
clusters of localisations and separated enough, using DBSCAN is the perfect
choice because one can perform multiple quantifications based on the clusters,
as we have shown here. On the other hand, if the dataset consists on clusters
with various sizes, very close between them and/or with high expression levels,
then using the Voronoi based colocalisation is the most advantageous approach
to quantify the colocalisation. Finally, if the dataset consists on well-defined
clusters but with some background (i.e., sparse localisations arising from
unspecific blinking during acquisition), then it could be interesting to combine
both approaches. In this case, one could first use the Voronoi tessellation to
segment the localisations between high and low regions and then run the
DBSCAN algorithm on the high-density regions.

Despite the challenges of STORM imaging and data analysis, if done properly
and carefully, the data analysis of STORM imaging is engaging and attractive

due to its potential.
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Chapter 3
High-Density Single Particle Tracking to
generate spatiotemporal exploration

maps on the cell membrane

Molecules in living cells are dynamically compartmentalised in space and time,
with the smallest scales going down to the molecular level. Importantly, this
organisation regulates many of the cell functions. Since dysregulation in how
molecules explore the space and interact with their environment leads to a large
variety of diseases, understanding their spatiotemporal behaviour is key in cell
biology. Unfortunately, due to technical limitations, spatial and temporal
studies at the nanoscale are mostly conducted separately. High-density single
particle tracking (HD-SPT) has recently emerged as a powerful technique to
bridge between super-resolution approaches and standard SPT to investigate
the spatiotemporal organisation of molecules with extreme sensitivity and
selectivity. In this Chapter, we introduce a novel concept to exploit HD-SPT
acquired data in order to generate high-density maps (HiDenMaps). We stablish
the technical requirements to generate HiDenMaps that allow us to go beyond
already existing methods. We show the versatility of the method and provide
guidelines on how to reconstruct faithful HiDenMaps that deliver exquisite
information on how molecules dynamically explore their environment from the

nano- to the meso-scale in few seconds.
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3.1 Introduction

The spatiotemporal organisation and compartmentalisation of molecules in
living cells are highly important to regulate cell function(1-4). Dysregulation in
the way that molecules dynamically explore the space and/or interact with
other molecular partners can lead to disease and even death. Therefore,
understanding the nature of these dynamic interactions is pivotal in cell biology
studies. However, spatial and temporal studies are typically conducted

separately due to technical limitations.

Super-resolution single molecule localisation microscopy (SR-SMLM)
techniques such as PALM (5, 6), STORM (7) or PAINT(8, 9), enable the study
of the nanoscale spatial organisation of molecules at high labelling densities.
These SR-SMLM techniques rely effectively on reducing the number of emitting
fluorophores so that the distance between emitting probes is larger than Abbe’s
diffraction limit(10). PALM and STORM rely on the stochastic “on/off”
switching of fluorescent probes to artificially reduce the number of fluorescent
molecules at a given time allowing their detection and localisation at the single
molecule level. PAINT relies on the chemical binding kinetics of fluorophores:
freely diffusing fluorophores are too fast to be detected but once the
fluorophores attach reversibly to the target structure, they become immobile so
that they can be detected and localised at the single molecule level. Overall, in
SR-SMLM, at these artificially induced sparse fluorophore conditions, the
centre of mass position can be determined with nanometre precision. This
procedure of “on/off” switching or reversible binding is repeated thousands of
times and over thousands of frames until the localisation positions of virtually
all the molecules labelling the sample are mapped and used to reconstruct a full
image of the structure under study with nanometric localisation accuracy. In
this way, SR-SMLM methods allow for an effective increased spatial resolution
and the study of the full ensemble of proteins. However, as SR-SMLM
techniques still suffer from poor temporal resolution, imaging is commonly
performed on fixed cells precluding dynamic studies at relevant temporal scales.
Moreover, the applicability of SR-SMLM, in particular STORM, is limited due

to the need of photo-switchable fluorescent probes and the use of blinking
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buffers (which are not compatible with live cell imaging and challenges multi-
colour imaging). Moreover, quantitative analysis of STORM images is
challenging and the results might be biased due to labelling density and sample

preparation protocols.

To gain access to temporal information, several fluorescence-based optical
techniques have been developed over the past years (11-17). FRAP(11),
FCS(12) and STED-FCS(13) reveal temporal information on the average
dynamics of molecules over small regions of the sample (typically the diffraction
limited spot in the case of FRAP and standard FCS, and sub-diffraction regions
in the case of STED-FCS). Although these techniques have high temporal
resolution since they rely on the use of fast point detectors, they cannot be
easily implemented to resolve the spatial heterogeneity present in most cellular
processes. A well-known and simple to implement technique is single particle
tracking (SPT) which provides similar localisation accuracy as SR-SMLM at an
increased millisecond temporal resolution. SPT is based on imaging the motion
of sparsely labelled fluorescent molecules over multiple frames. Each molecule
is localised with nanometric precision and the localisations are reconnected
between frames. Once the trajectory is retrieved, one can access the dynamic
information of each individual molecule (diffusion, velocity, trapping, etc.) as a
function of space and time (18). An advantage of SPT is the availability of
small labelling probes and labelling strategies, including the use of
autofluorescent proteins. However, the main limitation of standard SPT is the
poor statistics obtained from single experiments. In order to localise individual
molecules and track them accurately in time, only a small population of
molecules can be labelled. Therefore, the number of experiments required to
have enough statistics becomes large. Moreover, since each individual trajectory
maps only a small region of its surrounding (limited by the fluorophore
photobleaching), correlating molecular diffusion to its environment becomes

highly challenging.

More recently, high-density SPT (HD-SPT) has emerged as a powerful
approach which bridges technically between SR-SMLM and SPT to increase
the statistics on the number of trajectories that can be obtained in a single
experiment(19). The first methodology proposed to obtain more trajectories per

experiment is sptPALM(20), which relies on the use photo-activatable
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fluorescent probes (21, 22). As in the case of PALM, one can reduce the effective
labelling density by stochastically activating a small subset of fluorescent probes
allowing for single particle tracking. Once those fluorescent probes have
photobleached, a new subset is stochastically activated and imaged. This
process is repeated many times until enough trajectories are retrieved. The main
disadvantage of sptPALM is the need to use photo-activatable/convertible
proteins which need to be transfected and expressed together with the protein
of interest. Generally, this means that the proteins are overexpressed, leading
to non-physiological conditions. Moreover, the photo-physics and poor photo-
stability of autofluorescent proteins limit the length of the obtained trajectories.
Recently, new photo-activatable/convertible dyes based on Janelia fluorophores
that overcome the disadvantages of autofluorescent proteins in terms of over-
expression and photo-stability but, unfortunately, their use is still far from
routine(23-25). Another approach to generate HD-SPT datasets is universal
points-accumulation-for-imaging-in-nanoscale-topography ~ (uPAINT)  (26).
uPAINT is based on stochastic labelling of molecules at the plasma membrane
by having a constant pool of fluorescent probes (tagged with the ligand) on the
medium while imaging in TIRF (total internal reflection fluorescence) or HILO
(highly inclined and laminated optical sheet) configurations. Fluorescent probes
not bound to their biomolecule will diffuse too fast to be detected. And thus,
only those fluorescent probes that are bound to the biomolecule at the plasma
membrane are tracked. Since the concentration of fluorescent probes is low, the
amount of labelled proteins at a given point is low enabling point reconnection
and tracking. Fluorescent probes can be tracked until they either photobleach
or dissociate from the studied biomolecule. The limitation of uPAINT is that
only plasma membrane studies can be conducted. Overall, HD-SPT can be a
valuable approach to get more trajectories from single experiments, increasing
the statistics as compared to standard SPT. However, recording hundreds of
trajectories on the same cell still requires long acquisition times in the order of

minutes which will wash-out any fast dynamics of the environment.

Here, we propose an alternative approach that combines the advantages of SR-
SMLM and standard SPT: live cell imaging, single molecule localisation
accuracy, dynamic information at the nano- and meso- scale and simplicity. In

this chapter we show how we can easily explore the whole plasma membrane of
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living cells using high density maps (HiDenMaps) generated for HD-SPT data

and what parameters are required for a faithful representation of the images.

3.2 Materials and Methods

3.2.1 Supported Lipid Bilayers (SLB) preparation.

No.1 Coverslips (CS 25R/ 64-0705, Warner Instruments), were sonicated with
Hellmanex IIT (0.5%) for 40 min followed by 5M KOH for 10 min. The glass
was washed extensively in MilliQ after each treatment. The glass was then dried
under N, and stored in a desiccator until further use. Just before making the
bilayer, a coverslip was taken out of the desiccator, a cylindrical chamber (made
from a cut PCR tube) was stuck on to the coverslip with transparent UV glue.
The coverslip was then place in an Ozone/UV cleaner for 15 min after which it
was washed with PBS. Small Unilamellar Vesicles with DOPC(98%) and
NiNTA-DGS(2%) were prepared in advance according to the protocols
mentioned in (32). 2uLL of 4mM SUVs were added to the chambers and were
incubated for 15 min. Unbound vesicles were washed off with buffer. The
coverslip was incubated with 0.1mg/ml of beta-Casein for 10 min to block the
exposed surfaces where vesicles did not form a bilayer which was subsequently
washed off. HSE-RA (A SNAP tagged version of the construct HYE-R579A used
in (32)) was used as a bilayer marker. HSE-RA has a Deca-His tag which allows
it to bind to the Nickel containing lipids on the bilayer. It has a SNAP tag for
visualisation, which was labelled with JF-549. HSE-RA was added to the bilayer
at a final concentration of 100 picomolar and allowed to bind for 40 min before
washing it off. PCA/PCD/Trolox described in (33) were added at 4mM, 125nM

and 2mM respectively to reduce photobleaching and triplet state transitions.
3.2.2 CD44 labelling on immature dendritic cells

Peripheral blood mononuclear cells (PBMC) were harvested from the buffy coat
interface after using Ficoll-Hypaque gradient (Alere Technologies AS) on HIV-
1 seronegative donor leukocytary layer. The monocytes were then isolated by
plastic adherence for 1h. Immature dendritic cells (iDCs) were obtained after

culturing the monocytes in complete RPMI supplemented with 1,000 IU/ml
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granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-
4 (IL-4) (both from R&D) for six days and replacing media and cytokines every
two days. Experiments were conducted at day 6. For CD44 labelling, we
generated single chain antibodies using the antibody G44-26 (BD-Biosciences),
biotinylated them and conjugated with streptavidin QDot 605 (Thermofisher).

3.2.3 STORM imaging

Day 6 human immature dendritic cells (iDCs) were plated on an eight-well plate
Lab-Teck #1 at a density of 50.000 cells/well. Cells were incubated at 37°C for
1h before fixation with 4% PFA in PBS for 15 min at room temperature. After
fixation, samples were blocked using 3% wt/vol bovina serum albumin (BSA)
in PBS during 30 min at room temperature. Cells were labelled with primary
antibody rabbit-antihuman CD44 (HPA005785, Sigma-Aldrich) at a
concentration of 5 pg/ml for 1 hour at room temperature. The corresponding
secondary antibody, an anti-rabbit antibody, was tagged in-house with Alexa
Fluor 647 (Invitrogen) as reporter and Alexa Fluor 405 as an activator. We
incubated the secondary antibody for 1 hour at room temperature. The STORM
buffer used was the same as in (28, 34): Glox solution (40 mg/ml Catalase
[Sigma Aldrich], 0.5 mg/ml glucose oxidase, 10% glucose in PBS) and MEA 10
mM (Cysteamine MEA [Sigma-Aldrich; #30070-50G] in 360 mM Tris-HCI).

3.2.4 Supported Lipid Bilayer Imaging.

The SLBs were imaged on a Nikon Ti-E microscope body equipped with a
motorised TIRF arm (from Nikon) with a 100x, 1.45NA objective. Agilent
(MLC-300) laser combiner was used with a 561 nm laser line, giving 9 mW at
the back focal plane. Images were acquired on Prime95B sCMOS camera at

frame rate of 100 Hz for 2 min.

3.2.5 Monte Carlo in-silico simulations of molecules diffusing with

Brownian motion.

We performed Monte Carlo simulations of Brownian diffusing molecules with
diffusion coefficient D in 2D. We define a square imaging region consisting of
L=256 pixels (100 nm per pixel). To avoid edge effects, we randomly place 1500
molecules in a 356-by-356 pixels grid, but our imaging region consists on the

256-by256 pixels in the centre of the simulation. The total observation time is
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set to 1000 seconds and the frame rate to 100 Hz. To account for the diffusion,
at each temporal step molecules are displaced according to a normal distribution
8xy ~N(0,v2 -dt - D). While diffusing, molecules cannot interact with each
other. In the case of results showing slower frame rates than 100 Hz, we have
down-sampled the data from the 100 Hz. With this, we are capable of generating
multiple sub frame rate simulations from a fast simulation. Moreover, we only
perform one simulation at a high labelling density (p~1.18 molecules/pim?) and

then remove molecules to obtain lower labelling densities.
3.2.6 Expected observation time to explore 90% of the ROI’s area

We run a simulation for each diffusion coefficient condition (D = [0.001, 0.01,
0.1, 1, 10] pm?/s) at a high labelling density (p~1.18 molecules/pm?) for a total
observation time of 1000 seconds. However, for some conditions we estimated
that we would need ~10%-10°¢ seconds to explore 90% of space. In order to derive
these long observation times, we first computed the curve explored space vs
observation time. Then, we fitted the curve using MATLAB’s function

“linearinterp” and extrapolated the curve until it would hit the 90% boundary.
3.2.7 Cluster analysis for STORM and HiDenMap datasets

We used the DBSCAN algorithm (35) to determine the clusters of localisations
for STORM and HiDenMap datasets (see also Chapter xx for more details).
For the STORM data, we used an epsilon of 50 nm and 50 as the minimum
number of points. For the HiDenMap data, we used an epsilon of 100 nm and

12 as the minimum number of points. We used the dbscan function in
MATLAB.

3.3 Results

3.3.1 Generation of high-density single molecule maps (HiDenMaps).

Our approach is similar to HD-SPT, i.e., the protein of interest is labelled at
high density conditions, typically two orders of magnitude higher than for
standard SPT. At each image frame, we localise single molecules with

nanometre precision. However, in contrast to standard SPT where the centre-

83



Chapter 3

of-mass position of individual molecules are reconnected in time to build up
trajectories, here we simply collapse all the recorded localisations into a single
image, similar to SR-SMLM methods. The resulting high-density map
(HiDenMap) thus contains all the localisation positions of individual molecules
as they dynamically explore the space (Figure 3.1). While the localisation
accuracy of the HiDenMaps are similar to those of SR-SMLM, the temporal
resolution is given by the camera framerate, typically tens of milliseconds. For
a sufficiently long observation time and high labelling conditions, a HiDenMap
resembles that of a SR-SMLM image, with similar spatial resolution but
acquired in living cells and in only a few hundreds of seconds. Importantly, the
HiDenMap encodes both spatial and temporal information that report on the

motion of molecules and their interactions with the environment.

Video frames Localisations per frame HiDenMap

Figure 3.1 Schematic on how HiDenMaps are generated. Individual fluorescent molecules are
localised at each frame of the video and collapsed into a single image, the HiDenMap. Scale bar
is 10 pm.

Generating a HiDenMap is straightforward and experimentally simple.
However, one needs to account for several technical requirements in order to
generate a faithful representation of how the molecule of interest dynamically

explores its surrounding.
3.3.2 Technical requirements for the generation of reliable HiDenMaps

We investigated how multiple parameters (labelling density, imaging frame
rate, observation time and fluorophore diffusion coefficient) affect the generated
HiDenMaps. To assess the influence of these parameters we performed in-silico

simulations of particles diffusing in a Brownian fashion in 2D with a mean
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diffusion coefficient of 0.1 pm?/s. Our hypothesis is that the resulting
HiDenMaps of Brownian diffusion should reveal a homogeneous image since
molecules can explore the whole space without constraints. Nevertheless, if the
technical settings are not chosen properly, it might be that we do not observe
such homogeneous HiDenMap. To qualitatively illustrate the effect of labelling
density (p), frame rate and observation time, we have represented four
HiDenMaps, colour-coding the localisations by occurrence time (purple

localisations appeared at initial times and yellow, at later times) (Figure 3.2).

1 Hz

2

0.1 molecules/pm

Occurrence
Time (s)
1000

900

p:

2

1 molecules/pm

Figure 3.2 HiDenMap images of in-silico simulations of molecules diffusing in a Brownian
fashion at D=0.1 pm?/s at two labelling densities (0.1 molecules/nm® (top row) and 1
molecule/pm? (bottom row) and two frame rates (1Hz -1 column- and 100 Hz -second

column-). Localisations are colour-coded according to the occurrence time. Scale bar is 2 pm.

On the one hand, for a sparse labelling density, (p = 0.1 molecules/pm?) similar
to the one used in standard SPT and a slow frame rate (1 Hz), the HiDenMap

appears mostly empty after an observation time of 1000 seconds. Increasing the

85



Chapter 3

camera frame to 100 Hz and collecting localisations during 1000 seconds leads
to an almost full HiDenMap. Nevertheless, imaging for 1000 seconds at 100 Hz
framerate is unrealistic with typical fluorophores or fluorescent proteins due to
their limited photon budget and photostability. Additionally, the high
excitation powers needed to record enough photons from individual molecules
at an integration time of 10 ms (i.e., camera framerate of 100Hz) for such long

periods of time increase the chances of cell phototoxicity.

On the other hand, at high labelling densities (p = 1 molecule/pm?) and a slow
frame rates (1 Hz), the whole space has been explored in 1000 seconds. But,
again, imaging for 1000 seconds is experimentally challenging. In contrast, at
high labelling densities and at fast frame rates (100 Hz), a homogeneous
exploration of the full space is achieved in roughly 100-200 seconds. Thus, from
these simulations, it is clear that faithful HiDenMaps can be best generated by
working at high labelling densities (but still at levels in which single molecules

can be discriminated individually) and by imaging at fast frame rates.

d) 2 b)
p = 0.1 molecules/pm
100 100
E100 1z
= 20 Hz
80| [N 10 Iz 80
] 5 Hz
2 Hz
_ 1 Hz
60 0.1 Hz

pie=1 molecules/p.m2

60

% Explored area

Y% Explored area

0 50 100 150 0 50 100 150
Observation time (s) Observation time (s)

Figure 3.3 Percentage of explored area by molecules diffusing in 2D in a Brownian fashion
at D = 0.1 pm?/s and at different frame rates (0.1, 1, 2, 5, 10, 20, 100 Hz). a) Labelling

density of 0.1 molecules/pm?. b) Labelling density of 1 molecule/pm?.

To quantitively show these results, we calculated the percentage of explored
area as a function of observation time for two labelling densities and different
acquisition frame rates (Figure 3.3). To compute the percentage of the explored

area, we binned regions of interest (ROIs) of 10-by-10 pm into 25 nm squared
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pixels and counted how many pixels had localisations at each given observation

time.

As expected, at low labelling densities, the observed explored area barely
reaches to 50% after imaging for 150 seconds at 100 Hz. At slower frame rates,
the explored area decreases significantly. We have restricted to 150 seconds to
account for the photobleaching of fluorophores, since imaging for longer periods
of time with typical fluorophores is not possible, besides the phototoxicity. At
high labelling density, the whole space is explored in 100 seconds when imaging
at a frame rate of 100 Hz. Moreover, imaging at slower frame rates of 20 Hz or

even 10 Hz can reveal a full homogenous HiDenMap.
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Figure 3.4 Expected observation time required to observe 90% of the area explored, for varying
labelling densities as a function of the frame rate, with molecules diffusing at different diffusion
coefficients (D=0.01, 0.1, 1 and 10 um?/s)

Next, we investigated the effect of molecular diffusion on the exploration of
space. We performed in-silico simulations of Brownian motion at different
diffusion coefficients (D = 0.001, 0.01, 0.1, 1, 10 pm?/s) and computed the
expected observation time required to explore 90% of the ROI (Figure 3.4). For
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each diffusion coefficient we also investigated the effect of the imaging frame
rate and the labelling densities. In the case of slowly diffusing molecules
(D~0.001 pm?/s, Figure 3.4a) the main parameter allowing to observe more area
explored is the labelling density rather than the frame rate (this is valid for
frame rates > 1Hz), i.e., the higher the labelling density the shorter the
observation time. At fixed labelling densities, the time required to observe 90%

of the area explored is essentially constant for all the frame rates faster than
0.1 Hz.

As we increase the diffusion coefficient of the molecules, the role of the frame
rate becomes more important. For a diffusion coefficient of 0.01 pm?/s, we
would need to image at least at 5 Hz (rather slow) and at high labelling densities
(Figure 3.4b) to effectively reduce the observation time which in turn, remains
essentially constant regardless of the frame rate used. For faster diffusion
coefficients (D > 0.1 pm?/s), increasing the frame rate reduces the estimated
observation time (Figure 3.4c-e). At these diffusion coefficients, working at
frame rates > 20 Hz and high labelling densities ( p = 0.75 molecules/pm?)
allow to explore the whole space in less than 100 seconds. Finally, for fast
diffusion coefficients (D € [1,10] pm?/s) the estimated observation times decay
fast both with increasing frame rate and labelling density. Interestingly, for very
fast diffusing molecules, the estimated time required to observe 90% of the area
explored at frame rates slower than 20 Hz is longer than for slow diffusing
molecules. This effect results from the temporal under sampling, i.e., although
the molecules explored the full space, we only sample at specific points missing

all the data in between.

To better illustrate the effect of the diffusion coefficient, we plotted the same

data as above but separating the curves according to the labelling density (p =
0.1, 0.25, 0.5, 0.75, 1 molecules/pm?) (Figure 3.5).
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Figure 3.5 Expected observation time required to observe 90% of the area explored, for varying
diffusion coefficients (D=0.01, 0.1, 1 and 10 pm?/s) as a function of the frame rate, at different
labelling densities (p = 0.1, 0.25, 0.5, 0.75 and 1 molecules/ pm?).

As mentioned above, the estimated observation time for an exploration of 90%
of space is longer for fast diffusing molecules than for slower diffusing at slow
frames rates. This is of course an artefact of the imaging and shows the
importance of working at high frame rates (>20 Hz) especially for fast diffusing
molecules. Additionally, these results reflect how critical is to work at high
labelling densities (p~ 1 molecule/pm?) in order to have a faithful

representation on how molecules explore the space.

Overall, the crucial requirements to obtain reliable HiDenMaps are high
labelling densities (between 0.75 and 1 molecules/nm?) and fast frame rates
(above to 20 Hz and preferably 100 Hz). Moreover, this methodology is
especially suitable for molecules with diffusion coefficients between D = 0.01
and 0.1 pm?/s. Slower diffusing molecules can also be studied with our
methodology but at the expense of retrieving a lower fraction of the space

visited during a given observation time window. Importantly, the parameters
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obtained from our simulations in terms of labelling density, camera frame rates,
molecular diffusion coefficients and observation times are all compatible with
single molecule imaging of most receptors on the cell membrane using standard
labelling probes. Therefore, the use of HiDenMaps should provide unique
information on how receptors explore the cell membrane with high spatial and

temporal resolution.
3.3.3 HiDenMaps in experimental data, is everything Brownian?

We have shown that in-silico simulations of diffusing molecules exhibiting
Brownian motion reveal a homogeneous HiDenMap exploring the full space. To
validate these simulations, we performed experiments on supported lipid
bilayers containing Nickel-chelating lipids to anchor His-SNAP-EzrRA
recombinant protein labelled with JE549-SNAP. This system serves as an in-
vitro control of Brownian diffusing proteins with a Di4 of ~1 pm?/s. The
HiDenMap of the lipid bilayer system renders a homogeneous map (Figure 3.6,
I* and 2™ columns) consistent with the in-silico simulations of Brownian
motion. In addition, we could also observe the effect of down-sampling the frame
rate. The original data was recorded at a frame rate of 100 Hz (2™ column) and
we down-sampled it to 33.33 Hz by dropping two out of three frames. As
observed, both HiDenMaps are homogeneous regardless of the effective frame
rate used. Nevertheless, and in full agreement with our simulations, increasing

the frame rate results in an increased coverage of the space.

We then performed experiments on live mouse embryonic fibroblasts (MEFS)
labelling the receptor CD44. CD44 is a type II transmembrane adhesion
receptor that can interact both with the intracellular cortical actin and with
multiple molecules of the extracellular matrix(27). Since the reported diffusion
coefficient of CD44 is rather low (D1.4~0.048 nm?/s (28, 29)), we first performed
in-silico simulations of proteins diffusing randomly with the same characteristic
diffusion coefficient as CD44. Using a frame rate of 33.3 Hz and 30 nM labelling
density, the in-silico generated HiDenMap exhibits a homogeneous uniform
distribution of localisations with most of the space being explored at 75-100
seconds (Figure 3.6, 3" column). Thus, these simulations indicate that under

realistic experimental settings we should be able to map with single molecule
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sensitivity and nanometric accuracy how CD44 dynamically explores the cell

membrane.
Supported lipid CD44 CD44
bilayers Brownian Motion  Experimental
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Figure 3.6 HiDenMaps at multiple observation times (10, 25, 50, 75 and 100 seconds) and different
frame rates for supported lipid bilayers (1st and 2nd columns), Brownian motion in-silico
simulation of CD44 (3rd column) and experimental CD44 in MEFs for two different camera

frame rates (4th and 5th columns). Scale bar is 1 pm.

Remarkably, the HiDenMaps obtained experimentally differ dramatically from
the in-silico simulations (Figure 3.6, 4" and 5" columns). Rather than a
homogenous exploration of the space, the HiDenMaps of CD44 reveal patterns
in the diffusion of the receptor, which are built over time as one can infer from
the different observation times. Increasing the frame rate from 16.67 Hz to 33.33
Hz does not result in a more homogeneous HiDenMap, but instead, it enriches

the patterns that are being built. These results clearly indicate that CD44
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diffusion is far from homogeneous and suggest that CD44 strongly interacts
with its surrounding environment at the nano- and meso-scale (~ lum),
describing diffusion patterns as the receptor explores the plasma membrane. In
Chapters 4 and 5 of this thesis we present detailed insights on the biophysical

origin of these patterns.

3.3.4 Exploring the nanoscale spatial organisation of molecules using
HiDenMaps

The single molecule localisations of HiDenMaps encode both spatial and
temporal information. We can thus access different spatial scales by tuning the
observation times. Integrating over long periods of time (~100 s range) will
provide access on the mesoscale organisation of the proteins, whereas

integrating for short periods of time (~1 s range) reveals nanoscale information.

In order to assess the potential of HiDenMaps to investigate processes at the
nanoscale, we compared super-resolution images taken by STORM and
HiDenMaps (integrating for 1 seconds) of CD44 at the plasma membrane of
immature dendritic cells (Figure 3.7). It is important to note that whereas
STORM imaging was performed on fixed cells using secondary antibodies for
CD44 labelling, the HiDenMaps were generated from single molecule imaging
in living cells using single chain-antibodies. The STORM image was generated
by collecting 1.930.700 single molecule localisations while the HiDenMap
contains 36.842 localisations. The lower number of localisations on the
HiDenMap results in part from the lower labelling density used to generate the
map as compared to the full labelling required for STORM, but most
importantly, they arise because of the short integration time used (1 s) as
compared to the STORM image which is generated by collecting single molecule
localisations over 45 min. Despite this difference in terms of the number of
localisations, the two images look remarkably similar. In both cases, we observe
nanoclusters of localisations as well as some wiggles, albeit the sources of
localisations are very different. Indeed, the STORM image is a snapshot of the
protein distribution at one time point because the sample is fixed. The
HiDenMap results from integrating 1 second (with a frame rate of 30 Hz), and

shows how the labelled proteins have diffused over that period of time.
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Figure 3.7 Nanoscale spatial organisation of CD44 using STORM (left) and HiDenMaps (right)

with an integration time of 1 second at a frame rate of 30 Hz.

To provide a more quantitative basis for the interpretation of both images, we
took both images, detected clusters of localisations using the DBSCAN
algorithm (as described in Chapter 2) and quantified both, the cluster area and
the cluster radius (Figure 3.8). Despite the similarity of the distributions, they
are statistically different. Nevertheless, the median values of both the cluster
areas are similar; the median area for the STORM image is Agrormy = 0.0169
pm® and the median area of the HiDenMap is Apipenmap = 0.0160 pm’
Moreover, assuming the clusters to be circles, then the radius of the clusters for
STORM have a median radius of 73 nm while the ones for the HiDenMaps have

a median radius of 71 nm.
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Figure 3.8 Quantification of STORM and HiDenMap images of CD44 on immature dendritic
cells. a) Cluster area in pm? and, b) Approximated cluster radius assuming clusters to be circles.
We analysed 8 cells for the STORM data and 11 cells for the HiDenMap data.

Therefore, although STORM and HiDenMaps are different techniques, we can
access the nanoscale organisation of molecules using HiDenMaps with short
integration times. Of course, one could argue that the nanoclusters detected by
STORM and HiDenMap arise from different biological mechanisms. One the
one hand, the nanoclusters detected in the STORM images arise from the
spatial clustering of proteins. On the other hand, the nanoclusters in the
HiDenMap data are clusters of localisations of probably a single or few proteins

diffusing in a confined region of the cell membrane.

3.4 Discussion

Understanding the spatiotemporal organisation of receptors at the plasma
membrane of cells is crucial to elucidate their functions. However, spatial and
temporal studies are typically conducted separately. On the one hand, super-
resolution (SR) microscopy techniques are focused on revealing the spatial
organisation of receptors, sacrificing temporal information because either cells
are fixed or it takes too long to perform the imaging. On the other hand, single

particle tracking (amongst other techniques) is focused on studying the
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dynamics of single receptors, but only mapping a sparse number of molecules
which results in low statistics. Recently, HD-SPT has emerged as a powerful
technique to obtain more trajectories and therefore more statistics from single
experiments by either using stochastic emission(20) or stochastic labelling(26).
However, the temporal framework is in the order of minutes, which limits the
study of fast dynamics for instance at the plasma membrane of living cells. In
this work, we propose a mnovel methodology based on single molecule
fluorescence live cell imaging with high-labelling density (but sub-saturating
conditions) to generate high density maps (HiDenMaps) and bridge between
both approaches.

HiDenMaps consist on generating super-resolution single molecule localisation
images with temporal information encoded. In this Chapter we have performed
a thorough study on the parameters in order to obtain a faithful exploration
map. We have focused on how to adjust a proper imaging frame rate and
observation time considering the diffusion coefficient of the studied protein. Our
methodology relies on generating localisation-based exploration maps, which do
not require of any reconnection. Therefore, we can simplify greatly our
experimental settings and work at higher labelling concentrations as far as we

can still detect single molecules.

We have performed in-silico simulations of Brownian motion to determine how
would molecules explore space randomly. As we had initially expected, the
resulting HiDenMaps of these simulations reveal a homogeneous exploration of
the space. We translated our in-silico simulations towards in-vitro
measurements of Brownian motion by studying proteins embedded in lipid
bilayers which reveal the same homogeneous exploration. An interesting finding
of our work is the emergence of diffusion patterns for receptors that interact
with their plasma membrane environment. Therefore, HiDenMaps are sensitive
to heterogeneities of the environment that proteins can feel during their
diffusion on the membrane. Because of the temporal scales of our measurements,
we can potentially access different dynamics of the proteins just by studying
the HiDenMap as we will see in the next chapters. Certainly, this simple
methodology that consists on localising single molecules at each frame and
collapsing them into a HiDenMap already unlocks a novel view on how

molecules dynamically explore the space.

95



Chapter 3

Moreover, we have shown that we can also investigate the nanoscale
organisation of a receptor such as CD44 by tuning the integration time of our
obtained HiDenMap. We have compared a STORM image obtained for CD44
on immature dendritic cells with a HiDenMap composed of single CD44
localisations collected during an observation time of only 1 second. We
quantified the nanoclusters of proteins in STORM and those from the
HiDenMaps and retrieve similar values in terms of median nanocluster area and
radius. Although the biological mechanism leading to the emergence of these
nanoclusters might be different, the HiDenMaps provide dynamic information
at the nanoscale in short times. This is also quite astonishing if we consider the
imaging time required for each method; a STORM image can take easily 30
minutes, while the HiDenMap to reveal this information takes 1 second.

Moreover, in STORM cells are fixed while in HiDenMaps, cells are alive.

The HiDenMap methodology can be extended to other cellular contexts besides
the plasma membrane. For instance, we have used HiDenMaps to study
progesterone receptor (PR) transcription factor condensates in the nucleus of
living cells(31). Indeed, using HiDenMaps we observed an accumulation of PR
in nanoscale hotspots upon hormone treatment compared to the control in
which no hotspots were visible. The emergence of these hotspots originate from

the formation of PR condensates within the nucleus(31).

In the next chapter we will focus on exploiting HiDenMaps to its maximum by
developing new algorithms to quantify them. We will investigate the patterns
of CD44 and how other molecules also reveal diffusion patterns that arise from

their interactions with their environment.
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Chapter 4
HiDenMaps reveal nano- and meso-
organisation of the CD44 transmembrane

receptor in living cells

Transmembrane adhesion receptors at the cell surface, such as CD44, are often
equipped with modules to interact with the extracellular matrix (ECM) and the
intracellular cytoskeletal machinery. CD44 has been recently shown to
compartmentalise the membrane into domains by acting as membrane pickets,
facilitating the function of signalling receptors. While spatial organisation and
diffusion studies of membrane proteins are usually conducted separately, here
we exploit HiDenMaps in combination with fluorescence resonance energy
transfer anisotropy measurements to investigate the nano- and meso-scale
organization of CD44 in living cells. We combine observations of organisation
and diffusion by using high spatiotemporal resolution imaging on living cells to
reveal a hierarchical organisation of CD44. Our results show that CD44 is
present in a meso-scale meshwork pattern where it exhibits enhanced
confinement and is enriched in nanoclusters of CD44 along its boundaries. This
nanoclustering is orchestrated by the underlying cortical actin dynamics.
Interaction with actin is mediated by specific segments of CD44 intracellular
domain. This influences the organisation of the protein at the nano-scale,
generating a selective requirement for formin over Arp2/3-based actin-
nucleation machinery. The extracellular domain and its interaction with
elements of ECM do not influence CD44 meso-scale organisation, but may serve
to reposition the meshwork with respect to the ECM. Taken together, our
results capture the hierarchical nature of CD44 organisation at the cell surface,
with active cytoskeleton-templated nanoclusters localised to a meso-scale

meshwork pattern.

This work has been published as Parijat Sil*, Nicolas Mateos*, Sangeeta Nath, Sonja Buschow, Carlo Manzo,
Kenichi G. N. Suzuki, Takahiro Fujiwara, Akihiro Kusumi, Maria F. Garcia-Parajo, and Satyajit Mayor,
“Dynamic actin-mediated nano-scale clustering of CD44 regulates its meso-scale organization at the plasma
membrane”, Molecular Biology of the Cell 31(7) (2020). *Equally contributing authors.
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4.1 Motivation

Heterogeneity in the distribution of membrane proteins and lipids is becoming
an increasingly appreciated paradigm in the context of the organisation of
molecules at the plasma membrane (1). This regulated, non-random
distribution of membrane proteins, such as signalling receptors, is implicated in
their molecular function and signalling output (2). The advent of super-
resolution microscopy and breakthroughs in single molecule techniques has
revolutionised our understanding of cellular organisation at the molecular level
(3-5). The major goal from such techniques has traditionally been to obtain
detailed descriptions of protein clustering, cluster sizes, or intermolecular
distances. However, these super-resolution techniques are often technically
demanding, and associated invasive sample preparation methods are fraught
with criticism for being non-physiological. Additionally, although such studies
of membrane constituents inform us on the organisational details at the
molecular level, there have been fewer efforts to understand the organisation
and dynamics of proteins at larger spatial scales, to ascertain whether there

exists any spatial hierarchy in membrane protein organisation.

Studies of the membrane organisation of many transmembrane receptors such
as TCRs, EGFR, E-cadherin, GPCRs, or chemokine receptors such as CXCR-
4 have advanced our understanding of changes at the nano-scale due to receptor
dimerisation or oligomerisation (~2-40 nm) in the presence or absence of the
cognate ligand (6-12). At the same time, studies elucidating the inhomogeneous
diffusion behaviour of membrane proteins such as transferrin receptors (13) or
CD44 (14) have revealed the presence of compartments in the cell membrane
at a larger length scale (approximately a few hundred nanometres), templated
by the underlying cytoskeletal meshwork. The potential hierarchy in the nature
of organisation of membrane proteins has been speculated in the past based on
evidences from clustering and diffusion studies of different proteins (15). It is
likely that a unified study of diffusion and organisation interrogating the
distribution of a particular membrane protein at different spatial scales will
provide information of any underlying hierarchy in spatial scales of

organisation.
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Type-1 transmembrane proteins are a major and abundant class of integral
membrane proteins that span three distinct environments: the extracellular
space, transmembrane, and cytoplasmic milieu. The lymphocyte homing
receptor CD44, is a type I transmembrane protein involved in cell-matrix
adhesion (16). It has a heavily glycosylated extracellular domain (ECD) that
ensures binding to extracellular lectins such as galectins, besides being able to
bind to its ligand hyaluronic acid (HA) as well as other components of the extra
cellular matrix (ECM) such as fibronectin and osteopontin (16, 17). Previous
studies have shown that the ECD of CD44 is clustered by Galectin-3, which in
turn also binds glycosphingolipids and is important for the endocytosis of the
protein by a clathrin-independent pathway (18, 19). Additionally, HA binding
has been shown to influence the dynamics of the protein at the plasma
membrane (14, 19). The juxtamembrane O-glycosylation site and the
transmembrane region with two putative palmitoylation sites confer the ability
on the protein to partition into detergent-resistant membrane fractions or

cholesterol-enriched domains on the plasma membrane (20, 21).

At the intracellular side, the relatively short 70 amino acid-long cytoplasmic
tail of CD44 interacts with multiple cytoskeletal adaptor proteins. The
association of the protein with ezrin has been shown to be important for T-cell
migration in interstitial spaces of endothelial cells (22). The interaction with
ezrin also influences the protein’s ability to act as membrane picket in
macrophages providing a functional partitioning of the FcyRITA at the plasma
membrane and facilitating its phagocytic function in macrophages (14).
Ankyrin binding has been shown to be important for HA binding by CD44 (23).
A proteomic analysis of the interacting partners of the CD44 cytoplasmic tail
has also revealed an interaction with other cytoskeletal adaptors such as
vinnexin, IQGAP1 and talinl (24). The modularity of these potential
cytoskeletal interactions in the tail of CD44 via its multiple cytoskeletal adaptor
binding sites opens up possibilities to study how they may independently

regulate organisation and turnover of the protein at the cell surface.

Thus, the diverse structural attributes of CD44 impart this receptor with the
ability to be influenced by extracellular interactions, membrane composition,
and the actin cytoskeleton. Hence, it also provides an ideal platform to uncover

general principles of how such molecules are organised at varying length scales,
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determined by distinct modes of interaction in the different milieu and also the
interplay between these length scales. Nevertheless, studies so far have not
systematically investigated the role of the different structural domains of the
protein in the organisation and dynamics of the liganded, as well as the native

unliganded receptor on the membrane, at multiple spatial scales.

In this study, we have exploited various imaging methods in living cells to
characterise the organisation of CD44 at the single molecule level over multiple
spatiotemporal scales. High-density single particle tracking (HD-SPT) allowed
us to capture the dynamics of CD44, at both the nano- and meso-scale levels.
We define nano-scale organisation as being built of individual molecules brought
together within an ~10-nm scale and meso-scale as domains ~100 nm—<1 um
in scale. By means of interleaved homo-Forster’s resonance energy transfer
(FRET)-based anisotropy and high-density maps (HiDenMaps), we show that
the meso-scale organisation of CD44 is significantly associated with its
nanoclusters. Overall, our data provide evidence for a hierarchical organisation
of CD44, wherein each layer of organisation is determined by distinct

interactions of the receptor.

4.2 Materials and Methods

4.2.1 Plasmids, cell lines, and antibodies

CD44-GFP, CD44ECDTm-GFP, and CD44TmICD-GFP cloned in p-EGFP N1
vector were gifts from Rob Parton at the University of Queensland, Australia.
SNAP- and FR-tagged CD44 constructs were designed and cloned into a
lentiviral pHR transfer backbone and cloned between Mlul and BamHI/NotI
sites using the Gibson Assembly method. All constructs were sequenced and
verified using appropriate primers. SNAP CD59 GPI was obtained from
Addgene (Addgene #50374). Cell line-expressing FR-CD44TmICD and FR-
CD44Tm were generated by transfecting and selecting transfected cells by
staining for FR-expressing cells with anti-FR MOV19 antibody using
fluorescence-assisted cell sorting. CHO cells were cultured in Ham’s F12 media
(HiMedia, Mumbai, India); MCF-7, COS-7 (African green monkey kidney cells),
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and MEFs were cultured in DMEM high glucose (Gibco, 21720-024). The media
was supplemented with fetal bovine serum (FBS) (Gibco, 16000044) and a
cocktail of penicillin, streptomycin, and l-glutamine (Sigma; G1146-100 ml).
MEFS, COS-7, or CHO cells were seeded sparsely and grown for 2 d on 35-mm
cell culture dishes fitted with a glass bottom coverslip for imaging. Cells were
transfected with the different CD44 plasmids, 12-16 h before imaging, using
FuGENE 6 Transfection Reagent (E2692; Promega).

4.2.2 Antibody labelling and expression level estimation

Endogenous and overexpressed CD44 on the cell surface in the different cell
lines, plated on cover slip bottom 35-mm dishes, after 2 d of plating, were
labelled using IM7 antibody (14-0441-82; eBioscience) on ice for 1 h followed
by incubation with anti-Rat secondary antibody tagged to Alexa 633 (A21094;
Life Technologies) on ice for 1 h. The antibodies were diluted in 10% FBS
containing culture media (DMEM). The cells were washed and imaged in
HEPES buffer and imaged using a 20x objective on a spinning-disk microscope.

Mean intensity from ROIs drawn around cells was quantified using ImagelJ.
4.2.3 Actomyosin perturbation

Formin perturbation was carried out using 10-25 pM SMI-FH2 (Calbiochem;
Cat. No. S4826-5MG) for 15 min—1 h based on experimental requirement.

4.2.4 STORM sample preparation and imaging

CHO cells were plated on an eight-well Lab-Tek #1 chamber slide system
(Nunc) at a density of 30,000 cells/well. Cells were incubated at 37°C for 24 h.
After incubation, the samples were fixed with 4% paraformaldehyde in
phosphate-buffered saline (PBS) at room temperature for 20 min. After fixation,
blocking solution (3% wt/vol bovine serum albumin in PBS) was applied for 30
min. Cells were labelled with rat-anti-mouse-anti-CD44 primary antibody
(Clone KM114; BD Pharmingen #558739) at a concentration of 5 pg/ml for 1
h at room temperature. The corresponding secondary antibody (anti-rat) was
tagged with Alexa Fluor 647 (Invitrogen) as a reporter and with Alexa Fluor
405 as an activator. The secondary antibody was incubated for 1 h at room
temperature. Cells were stored in 1% PFA in PBS. The STORM buffer used

was the same as that of Gomez-Garcia et al. (25): Glox solution (40 mg/ml
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Catalase [Sigma Aldrich], 0.5 mg/ml glucose oxidase, 10% glucose in PBS) and
MEA 10 mM (Cysteamine MEA [Sigma-Aldrich; #30070-50G] in 360 mM Tris-
HCI). The imaging for STORM on endogenous CD44 from top surface in CHO

cells is from one experiment.

To study the nearest-neighbour distribution (NND) of clusters, we identified
the clusters of localisations based on intensity (i.e., high density of localisations)
and determined the position of the centre of mass. With this information, we
calculate the NND for the experimental set. For the simulations, we take the
same identified clusters (keeping their size) and reshuffle them in space. We
repeat this process many times (100x) to get more robust information on the
simulated NND.

4.2.5 Live cell imaging for fluorescence emission anisotropy and HiDenMap

experiments

All live cell imaging was interchangeably carried out, based on requirement, in
one of the following setups: 1) Total internal reflection fluorescence (TIRF)
microscope setup was equipped with Nikon Eclipse Ti body; a 100x, 1.45NA
Nikon oil objective; photometrics Evolve EMCCD cameras; an Agilent laser
combiner MCL400 (Agilent Technologies) whose 488, 561, and 640 nm
excitation wavelengths were used as necessary; and p Manager for image
acquisition. 2) TIRF microscope setup was equipped with Nikon TE2000 body;
a 100x, 1.49NA Nikon oil objective; EMCCD Cascade 512 cameras
(Photometrics, Tuscon, AZ); a home-built laser combiner equipped with 488
and 561 nm lasers; and Metamorph/pManager for image acquisition. Wherever
necessary, live imaging was performed in a temperature-controlled stage-top
incubator chamber with immersion thermostat, ECO Silver, from Lauda

Brinkmann.
4.2.6 Fluorescence emission anisotropy measurements

We measure emission anisotropy of our protein of interest by labelling them
with GFP, which is suitable for fluorescence anisotropy measurement to report
on Homo-FRET (26, 27). Cells were treated with 50-100 pg/1 cycloheximide in
complete media for 2.5-3 h prior to imaging for anisotropy measurement of

GFP-based constructs, in order to prevent signal from GFP from the ER/Golgi-
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based internal pool contaminating the fluorescence signal from the plasma
membrane pool. This is in accordance with anisotropy measurements of GFP-
tagged membrane proteins conducted in Major’s lab in the past (28). Cells were
imaged in HEPES buffer containing 2 mg/ml glucose on an inverted TIRF
microscope using a polarised excitation light source. Emission was split into
orthogonal polarisation components using a polarisation beam splitter and
collected simultaneously by two EM-CCD cameras to detect polarisation of
emitted fluorescence. Fluorescence emission anisotropy measurements were
interchangeably carried out, based on requirements, in one of the dual camera-
equipped imaging systems described before. Steady-state fluorescence emission
anisotropy was calculated as elaborated in Ghosh et al. (27). The absolute value
of anisotropy is a function of the effective numerical aperture of the imaging
system (27). Since the effective numerical aperture is determined by the
combinatorial effect of individual lenses in the light path of the microscope
system, the absolute anisotropy value of the same protein varied from one
system to another. Also, since the different experiments reported here have been
conducted over several years, absolute values of anisotropy for the same
constructs would have varied based on the status of the optics in a given
microscope system. Hence, the measurements typically contained an internal
control for sensitivity of anisotropy change, which was generally a measurement
of the extent of anisotropy change between the wild-type CD44-GFP and
CD44ECDTm-GFP (or CD44-TmICD-GFP and CD44-Tm-GFP).

4.2.7 Fluorescence anisotropy image analysis

Image analysis was carried out using the imaging software: ImagelJ or
Metamorph. Fluorescence emission anisotropy of GFP-tagged proteins was
calculated using images from the two cameras, which were individually
background corrected, and the perpendicular image was additionally G-Factor
corrected (27) to rectify effects of inherent polarisation bias of the imaging
system. Regions of interest (ROIs) of size 20 x 20 or 30 x 30 pixels were drawn
to sample the cell membrane, and anisotropy values from these regions were
obtained. Anisotropy maps were generated after aligning the images from the
two cameras and calculating pixelwise anisotropy value as described in (27)
using a custom code written in MATLAB (MathWorks, Natick, MA). For data

plotting, intensity was binned for appropriate intensity range, and each data

107



Chapter 4

point represents mean, and an error bar represents SD of anisotropy
corresponding to the intensity bin. We ensured that data comparisons were
done between conditions across similar intensity ranges. Intensity range chosen
was decided based on different microscope properties, especially the bit depth

and noise levels of the cameras.
4.2 8 Labelling of SNAP-tagged CD44 membrane receptors

MEFS, COS-7, or CHO cells were seeded sparsely and grown for 2 days on 35-
mm cell culture dishes fitted with a glass coverslip at the bottom. Cells were
transfected with the different SNAP-tagged CD44 plasmids 16-18 h prior to
the experiment using FuGENE 6 Transfection Reagent. Labelling was done
with SNAP tag-specific photo-stable fluorescent probes, SNAP Alexa 546,
SNAP-surface 549 (Aex/Aem: 560/575 nm, purchased from New England
Biolabs, Ipswich, MA), or JF646-SNAP ligand (A ex/ A em: 646/664 nm) by
incubating for 10 min at 37°C using a dilution of 50-100 nM (for HiDenMap
experiments) with 10% serum containing F12 medium and then washed
extensively with glucose-M1 buffer (150 mM NaCl, 5 mM KCI, 1 mM CaCl2, 1
mM MgCl12, 20 mM HEPES, pH 7.3; supplemented with d-glucose at 2 mg/ml)
to get rid of free dyes. The dyes were chosen to ensure they are spectrally
different from GFP with minimum bleed-through. Dual colour labelling was
done with JF549-cpSNAP ligand (A ex/ A em: 549/571 nm) and JF646-SNAP
ligand (A ex/ A em: 646/664 nm) fluorophores by incubating for 10 min at 37°C
with F12 serum medium at mixed concentrations of 50 and 150 nM for the
respective dyes. Singly or dually labelled cells were subsequently washed and
imaged at 37°C in the presence of HEPES buffer containing 2 mg/ml glucose.

4.2.9 Generation of high-density maps (HiDenMaps)

HiDenMaps were generated from movies (1000 frames, 100 Hz) recorded in
TIRF mode, as explained in the previous section, using sub-saturating labelling
conditions (50-100 nM). Identification of single molecules essentially
corresponds to the identification of individual fluorescent spots at each given
time frame. For this, we apply two criteria: First, the spots should have a size
that is limited by diffraction, that is, this corresponds to the point-spread
function (PSF) of the microscope. Second, the intensity of each spot should be

higher than the surrounding background. The localisation precision of each
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individual spot is given by the number of counts on that spot, which in the case
of our videos corresponds to ~20 nm. The spatial (x, y) coordinates of the
labelled membrane receptors (for each of the constructs investigated) were thus
retrieved from each frame using a MATLAB routine based on that of Crocker
and Grier (29), with subpixel accuracy. Finally, all the receptor coordinates of
all frames were collapsed into a single image, the so-called HiDenMap. With
this approach, one not only can access the nano-scale organisation of the
labelled receptor but also can access the mesoscale organisation without the
need of reconnecting trajectories (see Chapter 3 and ref (30)). Experiments to
obtain HiDenMaps of the receptor and the mutants have been conducted at
least twice in MEFs and once in COS-7 cells. Formin perturbation and
mesoscale organisation imaging has been done at least twice and the represented
experiment here is done in COS-7 cells. SNAP-CD44-GFP HiDenMap in CHO

cells and GPI mesoscale organisation experiment has been conducted once.
4.2.10 Analysis of the HiDenMaps

Since the HiDenMaps are generated from localisations obtained as a function of
time, their evolution is dynamic. Therefore, we restricted our analysis to time
windows of 2 s by collapsing all the localisations from sequential 20 frames into
a single, less crowded HiDenMap image. Confinement areas were identified
using the MATLAB routine DBSCAN (density-based spatial clustering of
applications with noise) with settings (¢ = 1.0 and MinPts = 10, see Chapter
2 for further details). Finally, we defined the confinement area as the area

occupied by a cluster of localisations.

For the time-evolution analysis of the meso-scale domains, the time windows
correspond to 2 s, that is, 20 frames. Initially, clusters are defined at the time
window 0 (frames within fO0 and fO + 19). Since we slide the window through

the HiDenMap, at each time window we move 100 ms in the HiDenMap.
4.2.11 Analysis of the interleaved anisotropy and HiDenMaps

To compare the HiDenMaps with the anisotropy images, we performed
interleaved anisotropy imaging together with high-density SPT generating one
anisotropy image before starting SPT, a second anisotropy at frame 500 of the

SPT recording, and a final one once the SPT recording was finished (after frame
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1000). To reduce temporal variations on both the anisotropy and the
HiDenMaps, we focused on anisotropy images at the corresponding frame 500
of the SPT movie. The anisotropy image was divided into small ROIs (22 x 22
pixels, with a pixel size of 106 nm). This was done in order to select only those
regions where the plasma membrane is completely flat and therefore the
anisotropy arises exclusively from the lateral distribution of the labelled
receptors. In addition to this, for each ROI, we classified each pixel of the
anisotropy map into three groups: low anisotropy (Low A), median anisotropy
(Medium A), and high anisotropy (High A).

We then took the localisations between frames 480 and 520 of the SPT movie
and generated a HiDenMap for each of the ROIs. We identified the clusters of
localisations using the MATLAB routine DBSCAN with settings ( ¢ = 1.0 and
MinPts = 10). With the localisations belonging to clusters, we assigned to each
of them an anisotropy value corresponding to their location in the anisotropy
ROI and classified them within the three groups. Simultaneously, we randomly
distributed the same number of localisations on the anisotropy ROIs and also
assigned their corresponding anisotropy value and posterior classification.
Comparative anisotropy-HiDenMap analysis has been done from an experiment
with COS-7 cells where localisation and GFP-based FRET information was
obtained using dual cameras at specific intervals during acquisition of single

molecule localisation time series of the SNAP tag fluorophore.
4.2.12 Statistical analysis

Quantification from HiDenMap experiments was tested for significance using
the Kruskal-Wallis test along with the post hoc Tukey-Kramer test and the
Wilcoxon sum rank test of MATLAB unless otherwise mentioned. In the figures,
ns indicates no statistically significant difference between two populations. *
indicates p < 0.05, ** indicates p < 0.005, *** indicates p < 0.0005.
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4.3 Results

4.3.1 Spatiotemporal mapping of CD44 reveals a mesh-like distribution of

the protein at the mesoscale

To explore the dynamics of CD44 with high spatiotemporal resolution, we
utilised the standard isoform of mouse CD44 (16) tagged with a SNAP domain
at the N-terminus and GFP at the C-terminus (SNAP-CD44-GFP) (Figure
4.1a). This chimeric protein can be labelled at the extracellular side using cell-
impermeable benzylguanine (BG)—conjugated fluorophores that covalently link
to the extracellular SNAP domain. SNAP-CD44-GFP was expressed in wild-
type mouse embryonic fibroblast (MEF) cells that endogenously express CD44
as well as produce the ligand HA (31, 32) and labelled with SNAP-Alexa 546
(or BG-Alexa 546). In order to generate HiDenMaps and to ensure a faithful
representation on how CD44 explores the plasma membrane we worked at high
labelling densities (50-100 nM). At these densities, we guarantee high sampling
frequencies of the membrane protein and yet maintaining the ability of
detecting individual molecules in each single frame to determine their
coordinates with subpixel accuracy (Figure 4.1b). Moreover, this density regime
offers the possibility of building up a large number of localisations to construct
a dynamic meso-scale HiDenMap of CD44 distribution over the entire cell

membrane (Figure 4.1Db).

Time-lapse images were acquired at 100 Hz for 100 s, and the spatial coordinates
of identified individual molecules over multiple frames were collapsed into a
single frame to obtain a time-dependent HiDenMap of the regions dynamically
explored by the receptor, as described in Chapter 3. Remarkably, we found that
CD44 diffusion and distribution are largely inhomogeneous, describing a clear
mesh-like spatiotemporal distribution at the meso-scale (Figure 4.1b’, zoomed
in). This mesh results from regions frequently revisited by the receptor and/or
by its temporal arrest on the cell membrane. This is in stark contrast with the
distribution of in-silico simulated Brownian motion localisations on the plasma
membrane (as shown in Chapter 2), which appears homogeneous at the same
length scale. Indeed, enlarged regions of the HiDenMap generated at two

different time windows and from the same area of the cell membrane, show the
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dynamic character of the mesh (Figure 4.1, ¢ and ¢’). Most importantly, these
temporally separated maps reveal sites of confinement /trapping of the receptor,
which we refer as to hotspot regions, evidenced by the large number of
localisations (>106 for Figure 4.1¢’) occurring within regions between ~90 and
200 nm in size. Moreover, some of these hotspot regions have a long persistence
time (~50-60 s, Figure 4.1, ¢ and ¢’, and merged image in ¢”), indicating that
the receptors could be stably confined in these hotspot regions and/or

transiently tethered repeatedly to the same regions.

Y D44 b
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Figure 4.1 CD44 exhibits a non-random distribution at the plasma membrane at multiple
spatiotemporal scales. a) Schematic of a standard isoform of CD44 showing key domains of the
protein, namely, the ECD, the Tm, and the ICD. The SNAP is added at the N-terminus and the
GFP is encoded at the C-terminus. b) HiDenMap of SNAP-CD44-GFP obtained at high labelling
conditions (~50-100 nM); (x, v) coordinates from 1000 frames (1,354,066 localisations) collapsed
in a single map with a zoomed-in region of interest (ROI) (b’). ¢) HiDenMap of (x, v) coordinates
in the marked ROI in b from 50 consecutive frames obtained at two different experimental time
windows, between 30-35 s (magenta, ¢) and 90-95 s (green, ¢’) and merged image (right, ¢”).
Blue arrows highlight regions of confinement, and white dots represent persistent confinement

regions or sites revisited by the receptor. Adapted from Sil and Mateos et al. (33).
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Figure 4.2 Non-random distribution of CD44. a) HiDenMap of SNAP-CD44-GFD expressed in
COS-7 cells, obtained at sub-saturation labelling conditions (~50-100 nM); (x,y) coordinates
obtained from 1000 frames collapsed in a single map with a zoomed-in ROI . a’) HiDenMap
construction of (x,y) coordinates in the marked ROI in (a) from 50 consecutive frames obtained
at two different experimental time windows, between 30s-35s (magenta, left) and 90s-95s (green,
centre) and merged image indicating persistent domains in white (right), also highlighted by the
blue arrowheads. b) Representative HiDenMap of SNAP-CD44-GFP expressed in CHO cells. ¢)
Representative STORM images of endogenous CD44 acquired from the top membrane in CHO
cells indicating the mesh-like pattern with white dotted lines. d) Nearest neighbour distance
(NND) plot of CD44 nanoclusters detected in STORM (and cluster radius d’) compared to
randomised simulated localisations depicting the non-random distribution of clustered CD44 at
the membrane (by Wilcoxon rank sum test, p<e-18). e) HiDenMap of SNAP-CD59 GPI obtained
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under similar labelling conditions as CD44 depicted at two different magnifications. Adapted
from Sil and Mateos et al. (33).

Similar experiments conducted in cells that exhibit very low surface levels of
endogenous CD44 (COS-7 cells; Figure 4.2, a and a’) and the extracellular
ligand, HA (34, 35) (CHO cells in Figure 4.2b), yielded comparable results.
Together, these results indicate that CD44 is dynamically organised in a
meshwork pattern on the plasma membrane. Importantly, this distribution is
independent of the surface levels of endogenous proteins or the binding to its

ligand HA on the extracellular side.

Since the experiments were conducted on the surface of the cell close to the
coverslip, it is conceivable that the observed meso-scale pattern visualised for
CD44 could be an artefact of the patterning of the membrane due to its adhesion
to the cell substrate, in addition to the overexpression of the protein. To rule
out the possibility that overexpression of the chimeric SNAP-tagged CD44
protein induces such a distribution, we investigated how endogenous CD44 is
organised at the plasma membrane by labelling the protein using anti-CD44
antibody and performing super-resolution stochastic optical reconstruction
microscopy (STORM) in fixed CHO cells (Figure 4.2c). Endogenous CD44 at
non-adherent membrane of the lamella, away from the adhesion surface, also
revealed a meshwork-like pattern of the protein at the meso-scale. Indeed,
STORM images revealed a nano-scale clustered distribution of CD44 laid out
in a non-random mesoscale mesh-like pattern (see Figure 4.2c). Nearest
neighbour distance (NND) analysis on CD44 nanoclusters and cluster size of
multiple STORM images further confirmed that these nanoclusters are
distributed in a manner distinct from simulated randomised distribution of
nanoclusters (Figure 4.2d, d’). Interestingly, we also imaged MEF cells
expressing SNAP-CD59-GPI, a GPI anchored protein, unrelated to CD44.
Remarkably, HiDenMaps of CD59 revealed a clear meso-scale meshwork
pattern on the cell surface similar to that of CD44, suggesting a general
compartmentalised state of the plasma membrane (Figure 4.2e). As a whole,
the HiDenMaps and the STORM analysis suggest the formation of CD44
nanoclusters that might be organised in a meso-scale meshwork on the plasma

membrane.
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4.3.2 The dynamic meso-scale meshwork of CD44 is strongly related to its

nanoclustering.

STORM imaging of endogenous CD44 in CHO cells as described above, as well
as an earlier study (19), provide evidence for the existence of nano-scale clusters
of CD44 at the plasma membrane. Moreover, CD44 exhibits spatially confined
localisations that emerge as a mesh-like pattern in the HiDenMaps. Together,
these observations motivated us to investigate a potential relationship between
CD44 nanoclustering and its meso-scale dynamics organisation by combining
HiDenMaps with homo fluorescence resonance energy transfer (FRET)

microscopy (27).

Fluorescence emission anisotropy-based homo-FRET measurements probe the
proximity of fluorescently tagged proteins at a molecular length scale ~Forster’s
radius (~5 nm for the GFP fluorophore (27)) on the living cell membrane,
reporting on molecular interactions at a length scale ~10 times smaller than
achievable resolution in STORM. In addition, homoFRET provides information
in living cells avoiding any potential artefacts associated to cell fixation, in
contrast to STORM or other super-resolution methods. Indeed, this technique
has been extensively used to assess the degree of GPI-AP nanoclustering on the
surface of living cells (27, 28, 36-38). Moreover, to avoid any potential artefacts
associated to high expression levels of CD44 (which would artificially induce
nanoclustering) or to ligand-induced nanoclustering, we used COS-7 cells as
they have very low surface levels of endogenous CD44 and do not synthesise
HA, a major ECM component that can bind CD44 from the extracellular side
(34, 36, 37). Using homoFRET, we identified regions of low and high anisotropy
in the membrane of unperturbed living COS-7 cells (Figure 4.3a). In here,
regions of low anisotropy correspond to the enrichment of CD44-GFP molecules
at <5 nm intermolecular distances, thus indicating the occurrence of CD44
nanoclustering at a steady state. These results are consistent with the STORM

data and agree well with the hotspot regions observed in the HiDenMaps.
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Figure 4.3 Meso-scale meshwork of CD44 colocalises with regions enriched in CD44 nanoclusters.
a) Total GFP fluorescence intensity and anisotropy map of the SNAP-CD44-GFP protein
expressed in COS-7 cells. Note that the anisotropy image shows regions of low anisotropy (blue)
and high anisotropy (red), corresponding respectively, to regions enriched in or depleted of CD44
molecules in nano-scale proximity (CD44 nanoclusters). (b) Schematic depicting the methodology
by which FRET based anisotropy maps was correlated to localisation maps obtained from high-
density single molecule imaging and HiDenMap analysis. ¢, ¢, ¢”’) Representative ROI image
depicting the anisotropy map overlaid with localisations from raw HiDenMaps integrated over 40
frames (left), random localisations obtained from simulations (centre), and detected localisation
hotspots (red dots) of SNAP-CD44-GFT (right). d) Histogram of the anisotropy values for the
ROI shown in ¢. Red vertical lines indicate the thresholds chosen to classify regions of low
anisotropy (Low A), medium anisotropy (Medium A), and high anisotropy (High A), where
medium anisotropy is binned around the median value of anisotropy in a given ROL (e) Fraction
of detected localisations in the localisation hotpots in low, medium, and high anisotropy regions
compared with simulated random localisations. Each symbol in the plot corresponds to a single
ROI, and the data are obtained from at least six different cells from > 15 ROIs. Difference
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between distributions has been tested using Kolmogorov—Smirnov test. Adapted from Sil and
Mateos et al. (33).

To ascertain the relationship between nano- and meso-scale dynamic
organisation of CD44, we expressed the SNAP-CD44-GFP construct in COS-7
cells. In this way, we could obtain FRET-based anisotropy maps from the GFP
tag, interleaved with single molecule imaging from the sub-saturation labelled
SNAP tag, and thus amenable for generating HiDenMaps. We selected different
anisotropy ROIs and superimposed the corresponding spatial coordinates of
individual molecules integrated over 40 frames (20 frames preceding and 20
frames following the anisotropy image) (Figure 4.3, b and ¢). We restricted our
analysis to windows of 40 frames around an anisotropy image to reduce
temporal variations that might occur between the anisotropy and HiDenMap
(see Methods). We then identified spatially restricted enriched localisations, i.e.,
hotspots on the HiDenMaps, and classified these localisation hotspots according
to the corresponding anisotropy value (see Methods and Figure 4.3¢, ¢’, ¢”’, and
d). A significantly higher fraction of localisation hotspots were found in regions
of low anisotropy as compared to simulations of randomised localisations
(Figure 4.3e). Concomitantly, such localisation hotspots were consistently
depleted from the high anisotropy regions when compared with randomly
dispersed localisations. Since the low anisotropy regions correspond to
nanoclustering, these data strongly indicate that the meso-scale regions
observed on the HiDenMaps coincide with regions of increased nano-scale
clustering of the receptor. As a whole, our results reveal a multiscale
organisation of CD44 on the cell membrane with the distribution of nano-scale

clusters correlated to the meso-scale meshwork.

4.3.3 Meso-scale organisation of CD44 is influenced by its cytoplasmic

interactions

Since CD44 nanoclustering is spatially correlated to its meso-scale distribution,
we then tested whether alteration in the nanoclustering potential of different
CD44 mutants would also affect their meso-scale organisation. For this, our
collaborators generated the following constructs: a mutant that lacks the
extracellular domain of CD44, denoted as CD44TmICD-GFP; and a mutant
with a deletion of the entire intracellular domain in the CD44TmICD-GFP

construct to create a transmembrane domain (Tm)-only protein, denoted as
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CD44Tm-GFP. SNAP-CD44-GFP, SNAP-CD44TmICD-GFP, and SNAP-
CD44Tm-GFP constructs were expressed in MEFs, exogenously labelled, and
imaged at a temporal resolution of 100 Hz, as described earlier, in order to
generate HiDenMaps of the different constructs (Figure 4.4, a and b). Visual
inspection of the HiDenMaps already shows more tightly bound localisations in
the case of the full-length receptor whereas a larger number of dispersed
localisations were visually apparent on the SNAP-CD44Tm-GFP mutant.
Comparison of the confinement areas revealed similar confinement strength for
the full-length receptor (0.028 + 0.013) pum? and the mutant lacking the
extracellular domain (ECD) (0.027 + 0.013) pm? (Figure 4.4, ¢ and d),
indicating that the ECD does not play a major role on the meso-scale
organisation of the receptor. Consistent with these results, we did not find
significant differences on the fractional number of localisations found on the
meshwork between the full-length receptor (SNAP-CD44-GFP) and the mutant
lacking the ECD (SNAP-CD44TmICD-GFP) (Figure 4.4e). In contrast, the
mutant lacking the cytoplasmic tail as well as the ECD (SNAP-CD44Tm-GFP)
exhibited larger confinement areas (0.032 £+ 0.013) um® (Figure 4.4, ¢ and d)
and a significantly lower number of localisations associated to the meshwork as
compared with the full-length receptor (SNAP-CD44-GFP) or the mutant
lacking the ECD alone (SNAP-CD44TmICD-GFP) (Figure 4.4e). We also
performed similar experiments in HA-deficient COS-7 cells and obtained
comparable results (Figure 4.5). As a whole these results strongly indicates that
the cytoplasmic domain of CD44 mediates the tight confinement of the receptor

at the plasma membrane.

We also performed simulations of random localisations and overlaid them to an
experimentally obtained meshwork to obtain a “basal” fraction of localisations
that are stochastically found over the meshwork (labelled as random in Figure
4.4e). Comparison with the in silico-generated data revealed that even in the
absence of the cytoplasmic tail, the SNAP-CD44Tm-GFP mobility is somewhat
constrained by this underlying mesh albeit to a much lower extent than the
cytoplasmic domain containing counterparts. Therefore, our results strengthen
the arguments for cytoplasmic interactions as a major player in orchestrating
the nano- and meso-scale organisation of CD44. Since the cytoplasmic tail of

CD44 interacts with multiple cytoskeletal adaptor proteins such as ezrin and
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ankyrin (22, 23, 40, 41), our results suggest that CD44 nanoclustering might be
induced by its tethering to the actin cytoskeleton. This finding resonates with
the recently published results of CD44 in macrophages where diffusion
characteristics of the protein are affected by tethering to the cytoskeleton
mediated by ezrin (14) and leads us to investigate the role of the actin
cytoskeleton in the nanoclustering as well as in the meso-scale organisation of

the protein.
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Figure 4.4 Meso-scale organisation of CD44 is determined primarily by interactions of the ICD.
a) Schematic drawings of the indicated CD44 constructs. b) Representative HiDenMaps of the
indicated CD44 constructs expressed in MEFs obtained from imaging at 100 Hz and accumulating
the spatial coordinates of individual molecules over 2 s (20 frames). ¢) Quantification of the
confinement areas for the different constructs during 2 s. Black lines correspond to the mean
value. d) Relative fractions of confinement areas for the different constructs, classified as a
function of the confinement length, i.e.; d < 170 nm, 170 < d < 230 nm, or d > = 230 nm. )
Fraction of localisation events that belong to the meshwork for the different constructs and
compared with the fraction of similar type of localisations measured from randomised
localisations. The data are from one representative experiment. The experiment has been
conducted at least twice with similar results. Data were obtained from a number of cells
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expressing SNAP-CD44-GFP (8), SNAP-CD44TmICD-GFP (11), or SNAP-CD44Tm-GFP (9).
Adapted from Sil and Mateos et al. (33).
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Figure 4.5 : Analysis of the meso-scale organisation of the different constructs in CD44-deficient
COS-7 cells. a) HiDenMaps of the indicated SNAP tagged CD44 constructs expressed in CD44-
null COS-7 cells, obtained by imaging at 50-100 nM labelling conditions, at 100 Hz and
accumulating the spatial coordinates of individual molecules over 2 s period. b) Quantification of
the confinement areas for the different constructs over 2 s. Black lines correspond to the mean
value. ¢) Normalised fraction of confinement areas/area for the three different constructs. A
significantly lower number of confined regions per unit area are observed in the SNAP-CD44Tm-
GFP as compared to the full-length receptor or the mutant lacking the extra-cellular domain.
This can also be directly inferred from the HiDenMaps where the localisations are more tightly
bound for the full-length receptor and much more disperse in the case of the SNAP-CD44Tm-
GFP mutant. d) Fraction of localisation events belonging to the meshwork for the wild type and
the mutant construct in COS-7 cells. SNAP-CD44-GFP (n) = 9 cells; SNAP-CD44TmICD-GFP
(n) = 6 cells; SNAP-CD44Tm-GFP(n)= 5 cells. Difference between distributions was tested for
significance using Kruskal-Wallis and post hoc test with Tukey-Kramer. (b): SNAP-CD44-GFP
& SNAP-CD44TmICD-GFP: p<e-9; SNAP-CD44-GFP & SNAP-CD44Tm-GFP: p <e-8, SNAD-
CD44TmICD-GFP & SNAP-CD44Tm-GFP: p<e-9. (c): SNAP-CD44-GFP & SNAP-
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CD44TmICD-GFP: p<0.05; SNAP-CD44-GFP & SNAP-CD44Tm-GFP: p < 0.05; SNAP-
CD44TmICD-GFP & SNAP-CD44Tm-GFP: p=0.997 (ns). (d): SNAP-CD44-GFP & SNAP-
CD44TmICD-GFP: p=0.5386 (ns); SNAP-CD44-GFP & SNAP-CD44Tm-GFP: p = 0.0855 (ns);
SNAP-CD44TmICD-GFP & SNAP-CD44Tm-GFP: p< 0.005. Adapted from Sil and Mateos et
al. (33).

4.3.4 Meso-scale organisation and turnover of CD44 is regulated by formin-

nucleated actin dynamics

The diffusion of CD44 has been suggested to be sensitive to formin-generated
actin filaments (14)since upregulation of Rho activity (which in turn regulates
formin activity) influences the diffusion behaviour of CD44. To test which actin
nucleation machinery is responsible for CD44 nanoclustering, we inhibited
formin- and Arp2/3-mediated actin filament-nucleation activity in CHO cells
using small molecule inhibitors, SMI-FH2 and CK-666, respectively (33).
HomoFRET experiments performed by our collaborators showed that CD44
nanoclustering was much more sensitive to inhibition of formin nucleation as
compared with Arp2/3 perturbation (33). These results indicate that formin-
nucleated F-actin filaments not only influence the mobility of the receptor as
reported previously (14) but importantly, also promotes its nanoclustering and,

as a consequence, may also influence its meso-scale organisation.

To ascertain the effect of formin perturbation on the meso-scale meshwork, we
conducted high-density SPT of SNAP-CD44-GFP in COS-7 cells before and
after formin perturbation and built up HiDenMaps in both conditions. Our
results show that meso-scale meshwork of CD44 is perturbed in formin-
perturbed cells. Although the confinement area distribution is not significantly
altered in formin-perturbed cells as compared to the vehicle (dimethylsulfoxide
[DMSO])-treated cells (Figure 4.6a), the fraction of localisation events detected
along the meshwork in formin-inhibited cells was significantly reduced (Figure
4.6b), which is reminiscent of the distribution of the SNAP-CD44Tm-GFP that

lacks both the cytoplasmic and the exoplasmic domains and is also defective in
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nanoclustering.
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Figure 4.6 Formin-mediated actin polymerisation affects the meso-scale distribution and turnover
of CD44. a) Plot depicting confinement area size of the meso-scale domains in formin-perturbed
cells (cyan) compared with untreated ones (magenta). b) Fraction of localisations detected on
the meshwork in control cells (DMSO) compared to formin-inhibited condition (p < e-8). ¢)
Temporal evolution of meso-scale domains on control (DMSO) vs. formin inhibitor treatment.
The x-axis depicts time as 2 s sliding window (depicted as frame number) and the y-axis depicts
confinement area. (DMSO [n] = 12 cells, SMIFH2 [n] = 9 cells). Adapted from Sil and Mateos et
al. (33).

A striking difference in the formin-inhibited cells compared with the untreated
cells was in the turnover time of the meso-scale domains. Time evolution
analysis of the meso-scale domains revealed that while untreated (vehicle-
treated) cells exhibited a visible disassembly/reorganisation of the mesoscale
domains, formin-inhibited cells exhibited a marked persistence of meso-scale
domains (Figure 4.6¢) during the observed time window. These results indicated
that dynamic remodelling of the meso-scale meshwork is dependent on formin
activity, consistent with the suggestion that formin-driven actin polymerisation

is a key contributor to dynamic remodelling of the actin meshwork (42).

4.4 Discussion

CD44 has a multitude of extracellular and cytoplasmic interactions that makes
it an ideal candidate for studying regulation of the organisation of a typical
transmembrane protein. Here we have used non-invasive methods to study

nanoclustering and dynamics of CD44 using live-cell compatible techniques such
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as homo-FRET imaging and SPT methods to generate spatial maps of the
protein at the plasma membrane at the nano- and meso-scale. Previous studies
have attempted to understand CD44 organisation by multiple approaches, from
characterising graded distribution of GP-80 in motile fibroblasts (43) to super-
resolution imaging wherein CD44 was found clustered at the cell membrane
using STORM, and extracellular galectins were found to be responsible for their
nanoclustering (19). In another study, the intracellular domain was implicated
in supporting mobile clusters at the membrane based on hetero-FRET
measurements, brightness number analysis, and biochemical cross-linking
studies in mammalian cells (44). In a more recent study, SPT on CD44 revealed
that CD44 diffusion is confined to pickets and fences and may indeed determine

the corralling of other membrane proteins such as the FeyRITA (14).

The results reported here provide a comprehensive understanding of the
organisation of CD44 by combining the determination of distribution and
diffusion behaviour of the protein across varying spatial scales at the plasma
membrane of living cells. HiDenMap analysis (to probe the meso-scale
organisation of the protein) and its correlation with anisotropy measurements
(reporting on nanoclustering), for the first time, bridge the gap between SPT-
based diffusion studies and the steady-state nanocluster detection method of
homo-FRET. Complemented with the HiDenMap analysis of single particle
localisations and nanocluster distribution in STORM images, the combination
of these approaches enabled us to build a hierarchical framework for the
organisation of a type-1 transmembrane protein at the plasma membrane
(Figure 4.7). Together with additional experiments performed by our
collaborators not shown in here but included in our joint publication (33), we
found that CD44 nanoclusters depend on the actomyosin machinery. CD44
actomyosin templated nanoclusters spatially enrich the receptors along a
mesoscopic meshwork pattern, laid down by frequent localisations of the protein
at the plasma membrane. These nanoclusters resemble actomyosin-based
clusters observed for model transmembrane proteins with actin-binding
domains (45, 46).

The correlation between nano-scale and meso-scale organisation of the protein
reported in this Chapter reconciles the apparent heterogeneity in diffusion

modes retrieved when performing SPT of CD44 (14, 33). From our meso-scale
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organisation and SPT studies reported in Ref. 33, the regions on the membrane
where the receptors are transiently confined/ temporarily arrested correspond
to regions of increased receptor localisation as well as potentially localisation
hotspots. These regions have an area ~100-300 nm, outlining a fragmented
meshwork-like pattern. Moreover, the timescale of turnover of localisation
hotspots (Figure 4.6¢) corresponds to the timescale of transient confinement of
single molecules of CD44 (~few < 3 s (33)). Thus, the receptor transiently
associates with such regions and eventually unbinds to diffuse again, often
guided by the underlying actin cytoskeleton-laid fences, until it encounters
another suitable site at the membrane-cytoskeleton interface to be arrested
again. Thus, we propose that our localisation hotspots could correspond to the
picket fences described earlier (47, 48).

To ascertain whether actin dynamics-driven mechanisms could template the
nano- and the meso-scale organisation of CD44, we investigated the role of
formin nucleation-based actin polymerisation. As nanoclustering of CD44 is lost
on formin perturbation, we also observe concomitant lowering of the CD44
localisations detected on the underlying meshwork. This is reminiscent of the
Tm of CD44 (CD44Tm-GFP) that cannot bind to actin. Additionally, the
meso-scale domain turnover is remarkably slowed down. This is consistent with
previous studies that implicate the role of formin activity in the turnover of the
underlying cortical actin meshwork (42). These findings lead us to an important
conclusion: the meso-scale spatiotemporal meshwork of CD44 arises as a
consequence of the association of CD44 with the underlying actin cortex, and
it is likely that the formin-mediated actin nucleation and turnover of the
cortical actin meshwork contribute to the pool of dynamic actin necessary to
template the nanoclustering of the protein as proposed previously (45). This
also provides a natural explanation for the enrichment of CD44 nanoclusters
along the meso-scale mesh, which appears to mirror the cortical actin
cytoskeleton mesh. At this time, it should be noted that further experiments
are necessary to prove the relationship between the cortical actin meshwork and

the mesoscale meshwork of CD44.
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Figure 4.7 Proposed model for plasma membrane organisation of CD44. In the cell membrane a
ROI is outlined to show the distribution of monomers as well as clusters of CD44 receptors.
Nanoclustered receptors are shown coupled to actin cytoskeletal elements by adaptors such as
ezrin/ankyrin (see zoomed-in nanocluster) interspersed with unattached CD44 molecules. The
clusters of receptors are depicted as being driven by the action of formin polymerised actin
filaments and myosin driven actin motility (molecules not depicted in the schematic). The meso-
scale domains are CD44 localisation hotspots identified in our experiment that are characterised
by their close association with nanoclusters of the protein. The emerging meso-scale meshwork of
the cell membrane receptor (depicted by the orange dotted line) may reflect the cytoskeletal
meshwork juxtaposed to the plasma membrane. Adapted from Sil and Mateos et al. (33).

Nanoclustering of CD44 is also abrogated on removal of the cytoplasmic domain
of CD44 (33). This finding is further supported by cytoskeletal sensitivity of
nanoclustering of the protein. The sensitivity of CD44 nanoclustering
particularly to formin and ezrin perturbation is well aligned with the changes
in CD44 diffusion on similar perturbations, observed in SPT recently (14). In
that study, formin- and ezrin-mediated picketing function of CD44 had been

implicated in regulating FcyRITA dynamics and function in phagocytosis.
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Involvement of similar molecular machinery in nanoclustering, as reported here,
strongly suggests that the picketed CD44 receptors are nanoclustered by the
underlying dynamic actin filaments generated as a consequence of formin-driven

actin polymerisation, and driven by myosin activity.

In this study, we have attempted to gain insights into specific interactions
mediated by the ECD and ICD of CD44 in determining its diffusion and
organisation at the cell membrane. We find a strong correlation between
nanoclustering potential and the tethering strength for the different truncation
mutants of CD44 at the cell surface. Although removal of the ECD has little
effect on the confinement radius of CD44, removal of the ICD from the mutant
already lacking the ECD (CD44Tm-GFP) has a stronger effect on its
confinement as well as localisation on the meshwork at the mesoscale (Figure
4.4e and Figure 4.5d). The ICD thus emerges as a stronger determinant for
tighter confinement of CD44 at the membrane and as the domain that augments
the registry of the mesoscale distribution with a meshwork pattern. Together
with the result suggesting that the ECD deleted mutant still exhibits acto—
myosin-sensitive nanoclustering, we believe that the meso-scale organisation is
templated on an underlying cortical actin mesh and serves to orchestrate the

emergence of transient nanoclusters in its proximity (33).

The meshwork pattern that we observe may have a larger significance, since
SNAP-CD44Tm-GFP and SNAP-CD59-GPI, proteins that are not directly
coupled to actin, also exhibit a meshwork-like appearance at the meso-scale.
FeyRITA, which cannot interact with actin but associates with a CD44 defined
mesh (14), also exhibits a spatially restricted diffusion pattern and non-random
diffusion at the meso-scale. This is likely to be mediated via lateral association
of their membrane anchoring domains with actin-binding membrane pickets, or
confinement within membrane compartments demarcated by picketing proteins.
These data support the picture of a tightly coupled actin-membrane composite
where even proteins that do not couple to actin are impacted by the patterning

of the underlying meshwork.

With further sophistication of imaging and analysis methods, the correlation of
HiDenMap and anisotropy can be studied with higher temporal resolution.

While our study is currently restricted to cytoskeletal interactions of CD44,
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there remains scope for detailed analysis of the influence of the exo-plasmic
interactions with molecules such as galectins and HA. Simultaneous imaging of
signalling and cytoskeletal adaptors along with CD44 can open up possibilities
for exploring potential outside-in (ligand binding can lead to signalling adaptor
recruitment) as well as inside-out signalling (ankyrin binding can influence
hyaluronic acid binding; (49)) at the nano- and meso-scale domains. Since CD44
is implicated in processes such as metastasis, phagocytosis, or lymphocyte
rolling (41, 50-52), they provide physiologically relevant scenarios where local
and global organisation of CD44 may have an impact on relevant physiological
scenarios. Indeed, in Chapter 6 of this thesis we provide evidence on the
coupling of CD44 and galectins to regulate the ability of a pathogen recognition
receptor (DC-SIGN) to capture viruses such as HIV-1 and SARS-CoV-2 on cells

of the immune system.

We believe that the spatial organisation of CD44, determined by the dynamic
remodelling of the actin cytoskeleton, defines dynamic fences that partition the
receptor in different regions of the cell membrane. These fences have been
implicated in the phagocytic function of FcyRITA and the endocytic capacity
of DC-SIGN, which are transmembrane receptors that do not exhibit direct
interaction with the actin cytoskeleton (14, 30). In conclusion, our approach
and findings provide a multiscale view of organisation of a transmembrane
protein at the cell membrane, revealing a hierarchical framework where
actomyosin-driven nanoclusters emerge in close association with an underlying
dynamically remodelling meso-scale meshwork, enabling the cells to

spatiotemporally regulate receptor organisation.
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Chapter 5
Quantitative High-Density Maps

High-density maps (HiDenMaps) obtained from high-density single particle
tracking (HD-SPT) data allow to investigate how molecules dynamically
explore their surroundings. In this Chapter, we present a palette of analysis
tools to extract relevant quantitative information from HiDenMaps. We focused
our studies on the prototypical transmembrane receptor CD44, that interacts
with the underlying cortical actin cytoskeleton and the extracellular milieu. The
HiDenMaps of this receptor revealed meshwork-like patterns that arise from
multiple single molecule interactions with the environment. Using multiple
constructs of CD44 having different affinities to bind actin, we revealed that
the mesoscale dynamics of CD44 correlates with its ability to bind to actin.
Moreover, we correlated the nanoscale dynamics of CD44 with its mesoscale
spatiotemporal organisation. Finally, using HiDenMaps we revealed a
spatiotemporal compartmentalisation at three distinct temporal scales most
probably arising from the interaction of the receptor with its environment, but
also importantly, from dynamic changes of the environment itself. Overall,
HiDenMaps promise to become an incredibly useful tool to study the
spatiotemporal organisation of molecules in living cells due to its simplicity and

potential in terms of analysis.

This work has been published as Nicolas Mateos', Parijat Sil', Sankarshan Talluri, Satyajit Mayor, Carlo
Manzo, and Maria F. Garcia-Parajo, “HiDenMaps: a biophysical tool to understand the interactions of single
molecules with their environment ”, in preparation. 'Equally contributing authors.
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5.1 Introduction

The advent of high-density single particle tracking (HD-SPT) approaches has
increased significantly the number of individual trajectories that could be
retrieved on a single experiment (1, 2). First applications of HD-SPT by means
of spt-PALM(1) (single particle tracking photo-activated localisation
microscopy) have revealed the dynamics of individual integrins within and
outside focal adhesions(3), contributed to the understanding of how AMPA
receptors are spatiotemporally organized inside synapses(4) and provided
insights on how TNF-o influences the lateral dynamics of TNF receptor I in
living cells(5). These examples demonstrate the potential of HD-SPT to
correlate the dynamics of single molecules with their environment and to
generate a general view on how the diffusion of individual molecules depends

on their surroundings.

Parallel to the development of HD-SPT, several groups started to address the
issue of membrane heterogeneity and how to infer the forces applied to
molecules from individual trajectory data(6, 7). Later, inference Bayesian
methods found on HD-SPT the perfect source of trajectories in order to generate
diffusion, force and potential-well maps of the plasma membrane(8-10). More
complex analytical tools that include variational Bayesian approaches together
with a hidden Markov model have been also developed to deal with the short
length of the trajectories obtained by sptPALM (11). This analytical approach
allows in principle to reveal multiple diffusive states and their transition rates
of short single-molecule trajectories of intracellularly diffusing proteins, and it
has been applied to study diffusive states of intracellular RNA (11). These
works show the potential of HD-SPT data, yet, they still rely on reconnecting
trajectories (which can be very short) which in turns requires the use of specific
labelling, either with photo-activatable fluorescent probes as used for sptPALM,
or by means of stochastic labelling used for universal point accumulation for

imaging in nanoscale topography (uPAINT).

In previous chapters we have presented an alternative approach to HD-SPT
analysis workflows that allows to explore the full membrane in few seconds, by

generating high density maps (HiDenMaps). HiDenMaps can be generated with
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any standard single molecule-compatible fluorophore and the time required to
record a full set of data is faster than for sptPALM and uPAINT experiments.
Moreover, HiDenMaps are simple to generate and compatible with other
techniques, such as fluorescence resonance energy transfer between identical
fluorophores homo-FRET as shown in Chapter 4 and Ref(12). Although other
groups have already generated HiDenMaps from their HD-SPT data (1, 2, 4, 9,
13, 14) they have mostly focused on generating trajectories and extracting

relevant information from them.

We have already shown that HiDenMaps can readily reveal how molecules
explore the space and interact with their environment. However, we have not
yet demonstrated the full potential of HiDenMaps. In this chapter, we present
a set of methodologies to exploit the data retrieved by HiDenMaps in the
context, of molecules interacting with the underlying cortical actin network. We
have adapted algorithms used in super-resolution single molecule localisation
microscopy (SR-SMLM) and exploited the temporal information encoded in the
localisations of HiDenMaps. We have studied the spatial patterns of the
transmembrane receptor CD44 which are built dynamically over time and
computed multiple typical temporal scales that range from the single molecule
dynamics to the mesoscale dynamics of the patterns. Moreover, we present the
potential of using correlative HiDenMaps with SPT to correlate single molecule
dynamics with the mesoscale spatiotemporal organisation of the molecular

environment.

5.2 Materials and Methods

5.2.1 Primary cell culture

Human immature dendritic cells (iDCs) were obtained from the peripheral
blood mononuclear cells (PBMC) from HIV-1-seronegative donors using a
Ficoll-Hypaque gradient (Alere Technologies AS). The monocyte population
was selected by adherence on a T75c¢m? flask for 1 hour. iDCs were obtained by
culturing the monocytes in complete RPMI with 1.000 IU/ml GM-CSF

(granulocyte-macrophage colony-stimulating factor) and IL-4 (interleukin-4)
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both from R&D for 6 days. The medium was replaced every two days with fresh
GM-CSF and IL-4. Experiments were performed at day 6 from the monocyte

extraction.
5.2.2 tmABD and tmRA cell preparation

TrVbl cells (Chinese hamster ovary (CHO) cells expressing human transferrin
receptor) stably expressing FR-TmEz (tmABD) or FR-TmEz*(tmRA) were
cultured in Ham’s-F12 media (HF-12) (HiMedia, Mumbai, India),
supplemented with 10% fetal bovine serum (FBS) (GibcoTM, 16000044 ),
cocktail of Penicillin, Streptomycin, L-Glutamine (PSG) (Sigma, G1146-100ml),
Geneticin (200ug/ml) and Hygromycin (100ug/ml) at 37° C and 5% CO2. For
imaging, cells were seeded on glass coverslip fitted 35mm cell culture dishes and
grown in Ham’s-F12 media (with PSG but without selection antibiotics) for 2
days. Cells were labelled using MOV F(ab) fragment (a generous gift from Dr.
Mariangela Figini, Dipartimento di Ricerca Applicata e Sviluppo Tecnologico
(DRAST), Fondazione IRCCS Istituto Nazionale dei Tumori, Milan ITALY)
was conjugated with STAR-635 (Abberior ST635). MOV F(ab) specifically
recognizes and binds to the FR domain of the receptor. The labelling
concentration was ~50-100 nM. MOV-635 was diluted in 10% FBS containing
phenol red free HF-12 and incubated at 37° C, 5% CO, for 5 minutes. Cells
were washed and imaged in HEPES buffer containing 2mg/ml glucose, in a

stage top incubator, set to 37° C.
5.2.3 Supported Lipid Bilayers composition.

No. 1 Coverslips (CS 25R/ 64-0705, Warner Instruments), were sonicated with
Hellmanex III (0.5%) for 40 min followed by 5M KOH for 10 min. The glass
was washed extensively in MilliQ after each treatment. The glass was then dried
under N, and stored in a desiccator until further use. Just before making the
bilayer, a coverslip was taken out of the desiccator, a cylindrical chamber (made
from a cut PCR tube) was stuck on to the coverslip with transparent UV glue.
The coverslip was then placed in an Ozone/UV cleaner for 15 min after which
it was washed with PBS. Small Unilamellar Vesicles with DOPC (98%) and
NiNTA-DGS(2%) were prepared in advance according to the protocols
mentioned in (15). 2ul of 4mM SUVs were added to the chambers and were

incubated for 15 min. The unbound vesicles were washed off with buffer. The
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coverslip was incubated with 0.1mg/ml of beta-Casein for 10 min to block the
exposed surfaces where vesicles did not form a bilayer which was subsequently
washed off. HSE-RA (a SNAP-tagged version of the construct HYE-R579A used
in Ref. (15)) was used as a bilayer marker. HSE-RA has a Deca-His tag which
allows it to bind to the Nickel containing lipids on the bilayer and a SNAP tag
for visualization, which was labelled with JF-549. HSE-RA was added to the
bilayer at a final concentration of 100 picomolar and allowed to bind for 40 min
before washing it off. PCA/PCD/Trolox described in Ref. (16) were added at
4mM, 125nM and 2mM respectively to reduce photo-bleaching and triplet state

transitions.

3.2.4 Monte Carlo in-silico simulations of molecules diffusing with

Brownian motion.

We performed Monte Carlo simulations of 2D Brownian diffusing molecules
with diffusion coefficient D. We define our imaging region to be a square of side
L=256 pixels (100 nm per pixel) and to avoid edge effects, we randomly place
1500 molecules in a 356-by-356 pixels grid, with the centre being our imaging
region. The total observation time is set to 1000 seconds and the frame rate to
100 Hz. For the diffusion, at each temporal step molecules are displaced
according to a normal distribution 8xy ~N(0,v2-dt-D). While diffusing,
molecules cannot interact with each other. In the case of results showing slower
frame rates than 100 Hz, we have down-sampled the data from the 100 Hz.
With this, we are capable of generating multiple sub frame rate simulations

from a fast simulation.

5.2.5 Monte Carlo in-silico simulations of diffusing molecules interacting

with an imposed network.

These simulations add a layer of complexity to the Brownian diffusing
simulations. We generate an imposed network in our simulations that molecules
can interact with. The imposed network consists of a Voronoi network with 0.5
nm? mean patch size and a filament thickness of 10 nm (similar to actin). We
define the space in the same way as for the Brownian motion simulation, as
well as the number of diffusing molecules, observation time and frame rate. For
the simulation itself, molecules diffuse randomly (Brownian motion with
éxy ~N(O, m) within the patches of the imposed network. However,

137



Chapter 5

when a step dxy crosses a filament or ends on the filament, then the molecule
has a certain probability, 0 < Pyinq < 1, to bind. The interaction is determined
by randomly generating a number from a uniform distribution between 0 and
1. If the number is smaller than Pya, then the interaction takes place. Else, the
molecule proceeds with its Brownian motion. The interaction with the network
consists on staying on the network for a time that is given by an exponential
probability distribution with 1 = Tjpter. After this time, the molecule can rebind
(interact again) to the network with a probability, 0 < Preping < 1. If the
molecule actually rebinds to the network, then it would again spend some time
in the network as before. For our simulations, we studied two scenarios: either
not rebinding at all or rebind with Pying = Preping- We repeat this process for
all the simulated molecules for the total observation time (1000 s) and at a
frame rate of 100Hz. Finally, once all the trajectories have been generated we
add white Gaussian noise to all localisations with a standard deviation of 20

nm to account for the localisation accuracy.
5.2.6 Simultaneously obtained single particle tracking and HiDenMaps.

We performed the experiments in CHO cells and labelled CD44 with a SNAP-
tag JF560 and JF640. The imaging was performed on a home-built total
internal reflection (TIRF) microscope which consists on a Nikon Eclipse Ti body
and a Nikon 100X Apochromat 1.49 (NA) objective. The set-up is equipped
with two high-speed CMOS camera (FASTCAM-SA1,Photron, Tokyo — Japan
- (17-19)) coupled to a two-stage micro-channel plate intensifier (C8600-03,
Hamamatsu Photonics, Hamamatsu, Japan) by means of an optical-fibre
bundle. The imaging was performed at a frame rate of 60 Hz and an acquisition
time of 90 seconds. The excitation power at the back focal plane (BFP) was of
18 mW (Agge = 640nm) and 13.9 mW (A, = 561 nm). For the set of
experiments, we determined a localisation accuracy to be 6569 = 22 nm and
Oga0 = 20 mm. Although we performed dual colour experiments, we did the

analyses per channel.
5.2.7 Manders coefficient formula

The Mander’s overlap coefficient (MOC) and the Mander’s fractional coefficient
(M;) of the Rivers network (R) with respect to the imposed network (N) are

computed as follows:
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Xij(Rij *Nij)
(R - (5N7)

and
_ IRy
My = YR (5.2)

Where, Ry refers to the pixels of R that coincide with full pixels in N(20).

5.2.8 Fitting parameters for the double exponential decay

The fitting consists on a double exponential decay with a constant term:
F(t) = Ale_t/fl + Aze_t/rz + B

We performed the fitting in MATLAB’s Curve Fitting Tool setting the bounds
of Aj,A, and B € [0,1] and 1, and 7, € [0,00). We chose ‘0.5’ as the starting
point for all the variables. The rest of parameters used for the fittings are
summarised in the following table:

Table 5.1 Table summarizing the fitting options used in MATLAB for the double exponential

fitting.
Trust-Region
Algorithm

Robust On
Maximum iterations 10°
Maximum number of evaluations 10°
Minimum change in coefficients 10
Maximum change in coefficients 102
Termination tolerance on model value 101
Termination tolerance on coefficient 1071

values
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5.2.9 Trajectory reconnection.

We used Image] plugin Trackmate (21, 22) for the detection of the single
molecules (Diameter blob = 8 pixels and Threshold = 1.5). For the tracking we
set used the simple LAP tracker with a maximum distance between frames of
5 pixels and we did not allow for blinking (missing frames). Overall, we obtained

> 1000 trajectories for N = 9 cells.
5.2.10 Trajectory segmentation using simultaneously obtained HiDenMaps.

We segment the trajectories considering whether the molecule has visited a
high- or low-density region of the HiDenMaps. First, we define a 1-by-1 pm?
region of interest (ROI) around the trajectory. In order to establish if a region
of the ROI has a high or low density of localisations, we have performed a 1*
rank Voronoi density segmentation. For the segmentation, we took the 90%
value of the cumulative distribution function of the uniformly distributed data.
For each localisation in the trajectory, we count the nearest neighbours in the
ROI at a maximum distance of 50 nm and we compute the ratio of high vs
total. If the ratio is larger than 50%, then we assign that localisation in the
trajectory to be in a high-density region. Finally, to split the trajectory between
high-density and low-density, at least 3 consecutive frames must be in the same
type of region to classify that segment. For each trajectory we stitch together
all the partial segments to obtain, in the best case, two segments per trajectory:

high density and low density.
2.2.11 Quantification of segmented trajectories.

Once the trajectories have been divided into high and low visited regions, we
proceeded to quantify the segments by means of the apparent diffusion
coefficient, Dy, (for segments longer than 20 frames), the instantaneous velocity
and the turning angle. The turning angle refers to the angle between consecutive

segments.
5.2.12 Transient confinement zones (TCZ) and hotspot identification

First, we identify TCZ of individual trajectories using an algorithm adapted
from Simson et al. (23). Then, we correlate these TCZ with confinement regions
of the HiDenMap close to the TCZ. For each trajectory with a TCZ, we
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determine an ROI around it (£ 200 nm) on the HiDenMap and we search for
high localisation-density regions (hotspots) using the 1* rank Voronoi-based
tessellation. Then, if a hotspot exists, we proceed to calculate its lifetime by
measuring the time it takes for the cumulative distribution function of the

localisation appearances in the hotspot to go from 5% to 80%.

5.3 Results

5.3.1 Design of algorithms to quantify HiDenMaps

As reported in Chapter 3, when generating a HiDenMap we need to acquire
single molecule data for a certain time in order to have a faithful representation
on how molecules explore the space. In fact, if we acquire localisations for a
short period of time, then molecules will not have sufficient time to explore the
full space. The recovered HiDenMap from this short acquisition can be biased
and reveal an inhomogeneous pattern even if the molecules diffuse in a
Brownian fashion. The pattern simply arises because not enough localisations
are recorded in time to generate a homogeneous HiDenMap. Moreover, and
most importantly, when running any further analysis, it would be interesting
to differentiate those localisations that arise from interactions with the
environment from those that come from freely diffusing molecules. In order to
tackle this question, we relied on already existing algorithms used in the field

of SR-SMLM to perform cluster analysis and cleaning the data.

5.3.1.1 1st rank Voronoi filtering of localisations

Voronoi tessellation is becoming a popular method in SR-SMLM data analysis
due to its unique properties. The Voronoi tessellation consists on partitioning
the space using seeds (localisations) and generating a Voronoi cell for each seed.
The Voronoi cells have the unique property that any point within the cell is
closer to the corresponding seed than to any other seed. Because of this, if the
seeds are densely packed, the corresponding Voronoi area of the cell is smaller
than if the seeds are more sparsely located. This can be extrapolated to the
nearest neighbours and if all the seeds are densely packed in a region of space,

all those areas will be small. Accordingly, in less crowded regions, the areas will
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be larger. Levet et al. have implemented the Voronoi tessellation in the analysis
of SR-SMLM to study clusters by segmenting the localisations into low and
high density(24, 25).

Inspired by the work of Levet, we have implemented the 1% rank Voronoi
tessellation algorithm in our analysis workflow to filter those localisations that
arise from Brownian motion from those that originate from actual interactions
with the environment. The algorithm consists of two parts; first, we compute
the normalised rank 1 Voronoi density for each localisation and second, we

apply a filter based on these densities.

Given a set of N seeds, sy ke[1,n] » We perform a Voronoi tessellation of the space
such that each seed, s;, belongs within a polygon, P;, of area A;. The 1** rank
neighbours of seed s; are those seeds whose polygons share an edge with seed
s;. The concept behind computing the rank 1 Voronoi density is to calculate

the density accounting also for the areas of the 1*" rank neighbours.

Normalised rank 1 Voronoi density

n =145
1st _
at =l
st
st n st st
ST =L L5 =
t A%St t Srand

Figure 5.1 Schematic example on how the Rank 1 Voronoi density is computed for the localisation
within the purple area. The cyan areas correspond to the first neighbours to the localisation of
interest.

The rank 1 Voronoi density is computed as follows:

St 1 + n1
v i (5:3)
it XA
Where n} corresponds to the number of 1* rank neighbours, 4; the area of the
Voronoi cell for seed s; and A}, ; are the Voronoi areas of the 1* rank neighbours.
Then, we normalise the density by dividing 8l-1$t by the mean density of

uniformly distributed localisations (same number as the experimental data):
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(5.4)

(Srand
The normalisation is performed in order to centre the distribution around 0 in

a logarithmic scale. Figure 5.1 shows an example on how the normalised 1** rank

Voronoi density is computed for the seed in the purple Voronoi cell.
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Figure 5.2 Performance of the 1st rank Voronoi density filter with in-silico simulated Brownian
motion and uniformly distributed localisations. a) Distributions of the normalised 1st rank
Voronoi density in logarithmic scale. b) The cumulative density function (CDF) for the
normalised 1st rank Voronoi density in logarithmic scale. ¢) Filter efficiency as a function of the
threshold on the normalised 1st rank Voronoi density from uniformly distributed data, in
logarithmic scale. The dashed line is the response for the uniformly distributed data, i.e., when
the horizontal and vertical coordinates are equal (x =y).

The goal is to set a threshold to determine the cut-off between high-density and
low-density localisations. Ideally, for a given experimental dataset one would
in-silico simulate Brownian motion diffusion to obtain the same number of

localisations and set the threshold on that data set. However, computationally
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this would be very expensive and inefficient. Using uniformly distributed
localisations to set the threshold is computationally more efficient and faster.
To determine which is the most appropriate method to determine the threshold,
we generated a set of in-silico simulations of Brownian diffusion with different
diffusion coefficients (D = 1073,1072,107%,10° and 4.8 - 1072 um?/s). The
last diffusion, D = 4.8 - 1072 um? /s corresponds to the diffusion coefficient of
CD44, the same protein receptor studied in Chapters 3 and 4. Figure 5.2a shows
the distributions of the normalised 1* rank Voronoi densities in a logarithmic
scale. For slow diffusions, D < 1072 uym?/s, the distributions are shifted
towards the right (high densities). This is due to the slow diffusion of the
molecules so that they do not explore homogenously the space and the distance
between consecutive steps is small. Nevertheless, for faster diffusions, the
distributions are centred around zero as it is also the case for random uniformly
distributed localisations. In order to set the threshold, we computed the
cumulative density function (CDF) for the normalised 1* rank Voronoi density
(Figure 5.2b). We would need to work at rather high thresholds in order to be
able to remove as many localisations as possible. We screened the filtering
efficiency by testing thresholds on the uniformly distributed localisations from
90% up to 99.99% (Figure 5.2¢). From this plot, it is clear that we need to
define the threshold as the 99.99% of the CDF for the normalised 1* rank
Voronoi density. To validate the performance of this algorithm as a filter to
remove Brownian motion localisations, we have computed the efficiency of the

filter as the percentage of localisations removed by the filter.

5.3.1.2 Rivers algorithm for in-silico pattern recognition in HiDenMaps

As shown in Chapter 4, the HiDenMaps of receptors that interact with the
underlying cortical actin, such as CD44, reveal a meshwork-like pattern. These
patterns originate from multiple dynamic interactions of receptors with their
environment and are the finger-print on how molecules have explored the space
in a non-Brownian manner. In order to study in depth the characteristics of
these patterns, we developed an algorithm to reconstruct these patterns in an
automated way. We have named the algorithm Rivers because it combines the
Watershed(26-28) and the Skeletonisation(29-31) methods and it connects the

patterns in HiDenMaps. Figure 5.3 shows a schematic illustration of the full
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pipeline that the data go through, from raw data to an in-silico reconstructed

network.

Voronoi .
Raw . Density
N Tessellation- = . y
localisations . . image
based filtering

Figure 5.3 Schematic illustration of the analysis pipeline of the Rivers algorithm to generate in-

Watershed

In-silico
reconstructed
network

Skeletonisation

silico reconstructed patterns from HiDenMaps. Briefly, first we take the raw localisations and
apply a Voronoi tessellation-based filtering using the normalised 1% rank Voronoi density. Then,
we voxel the space and generate a density image with the high-density localisations. Next, we
apply two morphological transformations on the image in parallel, a Watershed and a
Skeletonisation. Finally, we merge the outputs of both morphological transformations to obtain
the in-silico reconstructed network.

The first step of the algorithm is to remove the localisations that do not
contribute to the pattern, i.e., random localisations from Brownian-like motion.
We apply a 1 Rank Voronoi density filter to remove these localisations. We
consider the same number of localisations as in the experimental data and we
distribute them uniformly in space. After computing the normalised 1*' rank
Voronoi density, we use the 99.99% of the CDF of the uniformly distributed
localisations as the threshold for the experimental data. With this step we
classify the experimental localisations into sparse (6’1? < thggggy,) and dense
(6/1F > thgggoy,). The sparse localisations arise from molecules that diffuse
freely on the space whereas the dense localisations are those composing the
pattern. Next, we generate a density image of the high-density localisations by
defining a voxel (half of the imaging pixel size, in our case 50 nm) and counting
the number of localisations per voxel. Once we have this image, we can apply
different morphological operations to extract the backbone of the high-density
regions of the image. Our strategy comsists on applying two morphological
operations independently and convoluting the results of both to obtain the
reconstructed network. We apply a Watershed algorithm which connects the
high-density regions by finding the centre of the regions and adding
directionality to connect them(27). Unfortunately, since the Watershed also
generates a network on those regions that are actually of lower density, we need

to complement Watershed with another morphological operation. We chose the
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Skeletonisation algorithm because it identifies the skeletons of all high-density
regions(31) but it also generates smaller ramifications within the areas, which
we are not interested in. When we convolute both Watershed and
Skeletonisation, we obtain a clean network which removes the links between
high-density regions from Watershed and the ramifications of the
Skeletonisation. The final output is a binary image which contains the

backbones of the high-density regions of the HiDenMaps.

To validate the performance of the algorithm, we performed in-silico simulations
of a molecule that can freely diffuse until it encounters an imposed underlying
network. When it encounters the imposed network, it can interact with the
network with a given probability (see the Materials section for more detailed
information on the simulations). As a negative control, we have also performed
in-silico simulations of the same molecule diffusing with Brownian motion but
not interacting with the imposed network. Figure 5.4 shows illustrations for the
in-silico simulations mentioned above, a Brownian motion simulation (P =
0, top row) and molecules interacting with the network (Piye = 1, bottom row).
The first column shows the imposed network used for the simulations and the
second column corresponds to the HiDenMap resulting from integrating for 100
s. The resultant HiDenMaps are clearly different (see second column in Figure
5.4) and comparable to the HiDenMaps shown in Chapter 3 when we
investigated lipid bilayers and CD44. The HiDenMap of molecules that interact
with the underlying imposed network exhibit a clear pattern that is very
resembling to the network. The third column is the result of running the Rivers
algorithm and shows the resulting in-silico reconstructed network. Finally, on
the fourth column we show the overlay of the previous three images. In the case
of Brownian motion simulations, we do reconstruct a small network but in the
overlay image we do not observe any meaningful overlap with the imposed
network (no white regions). Remarkably, in the case of molecules that do
interact with the imposed network, the in-silico reconstructed network does
overlap to the imposed one to a great extent. Thus, these simulations visually
show the excellent performance of our Rivers algorithm to in-silico re-construct

patterns from HiDenMaps data.
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Lnposed network HiDenMap Reconstructed Overlay

Brownian Motion

Interacting
with the network

A

=,

Figure 5.4 In-silico simulated examples for a molecule exhibiting two types of diffusing patterns
(Brownian motion —top- and Interacting with a network — bottom-), with an imposed network
(I column), the obtained HiDenMap image (2" column), the in-silico reconstructed pattern
(3¢ column) and the overlay of all the columns (4" column). The colour-code in the overlay
image is conserved from the previous images, and in white we depict the overlap between the
reconstructed and the imposed network. The interaction probability with the network for the

two scenarios is shown on the right.

To evaluate the performance of the Rivers algorithm in a more quantitative
fashion, we performed in-silico simulations of receptors interacting with
different probabilities (Pjpter = [0,0.25,0.5,0.75,1]) with the underlying
imposed network. Note that the condition of Piw = 0, refers to Brownian
motion. For these simulations we set the interaction time, Ti,ter, to 500 ms and
do not allowed for molecule rebinding (Preina = 0), i.e., molecules will not
interact and bind again to the same site of the network. Moreover, the
simulations herein shown are performed for a receptor with mean diffusion
coefficient of 0.05 pm?/s, which is similar to that of CD44. Figure 5.5
summarises all the quantifications performed to evaluate the performance of the

Rivers algorithm.
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Figure 5.5 Quantifying the performance of the Rivers algorithm with in-silico simulations of
Brownian motion (black) and molecules with different interaction probabilities with an imposed
network (Pimer = 0.25, 0.50, 0.75 and 1) without rebinding. a) Percentage of localisations that
survived the Voronoi-based filtering, i.e., the percentage of non-random localisations. b)
Percentage of localisations on the network. b) Manders overlap coefficient (MOC) between the
imposed network and the resultant Rivers pattern. d) Manders fractional coefficient (MFC)
between the imposed network and the resultant Rivers pattern. e) The Pearson coefficient
between the imposed network and the resultant Rivers pattern. f) The true positive rate (TPR)
of the Rivers algorithm. g) The false positive rate (FPR) and the Receiver Operating
Characteristic (RoC) curve h). In the ROC curve we shaded a green and red triangles referring
to good and bad performance respectively. All of the parameters to quantify the performance of
the Rivers algorithm are plotted as a function of the observation time.

First, we studied the percentage of localisations that survived the 1% rank
Voronoi density filter (Figure 5.5a). As shown in the previous section, the
efficiency of the filter with purely Brownian diffusion is excellent, removing

almost all the localisations. As expected, for those simulations in which
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molecules do interact with an imposed network, the filtering efficiency is lower
because there is a higher percentage of localisations more densely packed.
Second, we quantified the percentage of localisations that fall on the
reconstructed network (Figure 5.5b). Considering the high filtering efficiency
for the Brownian motion case, the reconstructed network is minimal. Thus, the
percentage of localisations on the network is small. On the contrary, the
percentages of localisations on the network for those simulations in which
molecules interact with the imposed network are much higher. In fact, the
percentage scales with the probability of interacting with the network: the
higher the interaction probability, the higher the percentage of localisations on
the network. Next, we studied how faithful is our Rivers-reconstructed network
compared to the imposed one. We used three indicators to measure the
similarity: the Manders overlap coefficient (MOC, Figure 5.5¢), the Manders
fractional coefficient (M, Figure 5.5d)(Equation (5.2),(20)) and the Pearson
coefficient (Figure 5.5e) of the reconstructed network with respect to the
imposed one. For all three indicators there is a clear correlation between the
reconstructed and the imposed networks for all interaction probabilities. The
fact that we do not reach to a 100% is because the molecules probe
stochastically the space and bind to the network randomly without fully probing
the whole network within the observation window of the simulation.
Remarkably, the Manders fractional coefficient is above 80% already at 50 s
observation time, indicating that our algorithm is able to reconstruct the visited

network with outstanding accuracy in short integration times.

Finally, we assessed the predictive capability of the Rivers algorithm by
computing the true positive rate (TPR, Figure 5.5f), the false positive rate
(FPR, Figure 5.5g) and the receiver-operator curve (ROC, Figure 5.5h) in a
pixel-based manner. The true positive rate is the ratio between the number of
pixels correctly classified as a network and the total number of pixels of the
imposed network. The TPR, increases as a function of observation time for all
the interacting simulations. This is because as we observe for longer times, the
molecules can explore more of the imposed network. For Brownian motion
simulations, the TPR plateaus at 0.05 which is expected since the HiDenMaps
reveal no patterns (Figure 5.5f). The false positive rate is the ratio between the

number of pixels that the algorithm classifies as empty incorrectly (i.e., the
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imposed network exists in those pixels) and the total number of pixels classified
as empty. Figure 5.5g shows an increase of the FPR, for the simulations with
imposed network as a function of time, plateauing at 0.07. In the case of
Brownian motion simulations, the FPR decreases as a function of observation
time plateauing at 0.05. Despite these tendencies, the FPRs are very small.
Finally, we plot the ROC (Receiver Operating Characteristic) curve that assess
the overall performance of the algorithm (Figure 5.5h). It plots the true versus
the false positive rates. In the ROC curve, the x=y line serves as a divider
between bad (bottom right triangle) and good (top left triangle) classifiers, and
the line represents random classifiers. Moreover, the closer the points are to the
top left corner of the plot the more accurate the algorithm is. For the
simulations of interacting molecules, as the observation time increases, the
values in the ROC curve tend towards the top left corner of the plot. On the
other hand, for the Brownian motion simulations, the values fall on the x=y
curve which is expected since the network is inexistent. Overall, the algorithm

proves to perform remarkably well.

5.3.1.3 Unravelling characteristic temporal scales from HiDenMaps

The patterns observed in the HiDenMaps are built dynamically over time.
Therefore, segmenting the HiDenMaps into time windows should allow for
observing how they evolve in time, potentially revealing different dynamics. To
assess different dynamic scenarios and to contrast simulated with experimental
data, we performed once more in-silico simulations on two extreme scenarios,
the first one when molecules diffuse in a purely Brownian fashion, and a second
one where the molecules remain permanently trapped in the network. We then
generated HiDenMaps by integrating the number of localisations during 5
seconds on different time windows (see Figure 5.6). For in-silico simulations of
Brownian motion, the 5-second HiDenMaps reveal random exploration at
different observation time points (Figure 5.6a). For in-silico simulations of static
trapping on a network, the temporal windows show no exploration of the space
since the molecules are static on the network (Figure 5.6b). Interestingly, when
we compared these simulations with a 5-second HiDenMap retrieved for the
experimental data on CD44 at different temporal windows, we observed a
mixture of both behaviours (Figure 5.6¢). Indeed, we find clusters of

localisations (pointed with red arrows) which have a certain temporal
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persistence and they dissolve in time, as well as clusters of localisations that
appear at arbitrary time windows. In addition, we also find scattered
localisations which would arise from a random exploration of the space (Figure
5.6¢). The way the clusters dissolve is directional since the molecules seem to
move following underlying paths. This is clearly visible when collapsing all the
time windows in a final HiDenMap (last column in Figure 5.6¢): the multiple
clusters (or hotspots of confinement) built up larger patterns in the HiDenMaps.
Thus, HiDenMaps encode dynamic information on how molecules interact with

their environment.
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Figure 5.6 HiDenMaps of 5 s time windows during different observation times: T€[20,25] s (1st
column), T€[55,60] s (2nd column) and T€[90,95] s (3rd column)) and the overlay of the three
time windows (4rd column). The rows correspond to Brownian motion simulation (a), in-silico
static trapping on network (b) and experimental CD44 on mouse embryonic fibroblasts (MEFs)
(¢). The number of localisations at each time window is the same for the three different scenarios.

The scale bar is 2 pm.

To extract the temporal scales of the interaction of molecules with their

environment we have developed an autocorrelation algorithm (Figure 5.7).
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Considering our previous results showing that molecules interacting with their
environment exhibit patterns in the HiDenMaps, our algorithm classifies the
localisations depending on whether they appear on the pattern or not. First, we
reconstruct the Rivers network from the HiDenMap as previously described.
We then use the Rivers network as a mask in order to classify the localisations
of the HiDenMap. This leads to two populations: one population of localisations
of the HiDenMap that are inside the network and a second population of
localisations that are outside. Second, we make a sliding time window, At, of
500 ms for the localisations. The length of the window results from a
compromise of having to accumulate enough localisations and still be short
enough so that fast dynamics are not washed out. Third, we compute the

autocorrelation curve as follows:

N-m

L < I(At) >-<I(At; + mAt) > (5.5)

Here, I(At;) refers to the image of the i-th temporal window. To generate the
images from localisations, we pixelized the space into 100 nm squared pixels
and counted the number of localisations per pixel. Fourth, we normalise the
curve to the first point (t;4y = 0 s). Finally, we fit the decay curves from the
second point onwards until t;,4 = 50 s. The fitting consists on a double

exponential decay with a constant term:
F(t) = Aje t/™ + A,e /"2 + B (5.6)

Finally, once the fitting is performed, we rescale the amplitudes of the
exponential decays as follows:

Ay Ay
A1 =——— and AZ = = (57)
A+ A4, A+ A4,

We note that the autocorrelation functions are generated for both types of

localisations, i.e., those that belong to the patterns and those that are outside
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the pattern. By doing this procedure we can thus distinguish the different

interaction dynamics of the molecules as they explore the space.
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Figure 5.7 Schematic illustration on how the autocorrelation analysis is performed. From left to
right: we take the HiDenMap and we apply the Rivers algorithm to generate an in-silico
reconstructed pattern. We use the Rivers pattern as a mask to segment the localisations of the
HiDenMap into inside and outside the pattern. For each set of localisations, we make time

windows of 500 ms and we perform the autocorrelation function, giving two different decays.
5.3.2 Biological insights using quantitative HiDenMaps

5.3.2.1 Unravelling the mesoscale dynamics of actin-binding receptors

Having established a set of quantitative tools to analyse the experimentally
obtained HiDenMaps, we then proceeded to investigate the spatiotemporal
organisation of different membrane receptors that interact with the underlying
cortical actin with distinct strengths. The first protein of study is a
transmembrane actin-binding domain (tmABD) construct that consists on a tm
domain with an Ezrin protein anchored to the cytosolic tail. Ezrin is a protein
found on the cytosol of cells close to the plasma membrane and belongs to the
group of ERM proteins (Ezrin/radixin/moesin)(32-34). ERM proteins function
as linkers between transmembrane proteins such as CD44 and the actin
cytoskeleton(35-37). Thus, tmABD serves as a positive control to a receptor
that actively binds to cortical actin. The second protein under study is the
tmRA construct, which has the same structure as tmABD but with a point
mutation on the actin binding recognition domain, and thus not being able to
actively bind to actin (38, 39). Nevertheless, the mutated Ezrin region can still

interact with endogenous Ezrin and therefore passively sense the cortical actin.
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Finally, CD44 is the most complex receptor studied since it not only binds to
actin via Ezrin, but it also interacts with the extracellular matrix(40). For the
experiments described below we studied CD44 on immature dendritic cells
(iDCs, refer to Chapter 6 for further details) in control conditions and after
treating the cells with lactose. Lactose is a B-galactosidase that competes with
galectins by blocking the binding sites of glycoproteins so that galectins are not
able to bind(41, 42). Therefore, lactose treatment removes the interaction of

CD44 with the extracellular milieu via galectins.

In order to apply the analytical tools described above, we first evaluated the
Voronoi filter efficiency in order to remove localisations that originate from
random diffusion of the different proteins. For completeness and to allow a full
comparison of the data, we also include the results of the lipid bilayer
experiments described in Chapter 3 as well as simulations of Brownian diffusion
to each set of experimental data (Figure 5.8). For the lipid bilayer data, the
filter performs excellently well by removing almost 99.5% of localisations,
comparable to the simulations of Brownian motion. When comparing the results
of the three proteins of interest (tmRA, tmABD and CD44, with and without
lactose) to their corresponding Brownian motion simulations, the number of
filtered localisations is significantly less. This is because a percentage of
localisations from the experimental data are identified by the Voronoi algorithm
as belonging to high density regions, i.e., not random, and therefore, they are
not removed by the Voronoi filter (see also section 5.3.1.1). These initial results
already indicate a certain degree of non-Brownian exploration of the
environment by the three different proteins of study. Moreover, although the
differences between the three proteins are not statistically significant, the
percentage of removed localisations is slightly higher for tmRA as compared to
tmABD and CD44. These results are consistent with the fact that tmRA
interacts less with actin and therefore exhibits a higher degree of random
motion. Interestingly, in the case of CD44, the spread on the percentage of
removed random localisations is much larger than for the other two proteins
(tmRA and tmABD). This is due to the complexity of the interactions of CD44

with its environment.
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Figure 5.8 Percentage of removed localisations using the 1** rank Voronoi filter for experimenta
data (blue) and the corresponding in-silico Brownian motion (BM) simulations (orange). Number
of ROIs analysed: lipid bilayer (8 ROIs), tmRA (20 ROIs), tmABD (8 ROIs), CD44 (24 ROIs)
and CD44 with lactose (29 ROIs). The ROIs were taken from different cells and different samples.

At least from two different experimental dates.

After performing the Voronoi filtering step on the HiDenMaps, we run the
Rivers algorithm, generated the reconstructed Rivers network for the three
proteins of interest, classified the localisations from the experimental
HiDenMaps as function of their partitioning inside or outside the Rivers
network and finally generated autocorrelation functions of the localisations
inside and outside the network (see section 5.2 for full details). The results of
the fitting of the autocorrelation functions to a double exponential decay are
shown in Figure 5.9, for localisations inside (orange) and outside (blue) the

Rivers pattern, for the three proteins under study.
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Figure 5.9 Average autocorrelation decays (Go) for tmRA (a), tmABD (b), CD44 (c) and CD44
with lactose (d). In orange we show the decay curves inside the pattern and in blue the decay
curves outside the pattern. The shaded area corresponds to the standard deviation over the
analysed cells while the solid line corresponds to the mean value. The insets show radar plots
with the median values of the parameters retrieved from fitting the autocorrelation curves to a
double exponential decay. Number of cells (and ROIs analysed per receptor): tmRA: 12 (32),
tmABD 8 (16): CD44 15 (19): and CD44 with lactose: 20 (17).

The plots show the average autocorrelation decay for multiple ROIs (12-by-12
pm) in multiple cells. As expected, the curves decay very fast for those
localisations outside the network (blue curves) consistent with the fact that
they mainly correspond to random localisations originating from Brownian

diffusion of the proteins. In contrast, the temporal decay is much longer for
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those localisations inside the network (orange curves), an indication of the
temporal persistence of the network. The median fitted parameters to the
autocorrelation curves are represented in the radar plots within the
corresponding decays in Figure 5.9. The amplitudes, A; and As, correspond to
the strength of the interactions, i.e., how much the receptors feel the temporal
changes in the environment, with A; and A, being the amplitudes of the fast
and slow decay components, respectively. Accordingly, 11 and 1. are the decay
times of the fast and slow decay components, respectively. Interestingly, for
both tmRA and tmABD and outside the network, the fast exponential
component is predominant (A;>A) (see Figure 5.9 a, b). In addition, for these
two receptors and inside the network, the slow decay component takes a higher
importance (A>>A;). In the case of CD44, the decay curves show higher
variability and the changes in the radar plots, i.e., outside vs. inside are subtler,

both in control cells and those treated with lactose (see Figure 5.9 ¢, d).

Figure 5.10 shows the fitted decay times and the amplitudes for all the receptors
studied. Overall, we find two characteristic times in our HiDenMaps, a fast
decay (11~2-4 s, Figure 5.10a) and a slow decay (7,~10-40 s, Figure 5.10b). We
find that the fast decay outside the network is shorter (~2 s) than inside (~4 s)
and with reduced variability, indicating that the fast interactions of receptors
outside the network are more homogeneous. Thus, outside the network,
receptors have shorter and more frequent interactions with the environment
(i.e., A1 > A,). Interestingly, the parameters that characterize the fast
component outside the network, i.e., A; and 7; have similar magnitudes
regardless of the receptor investigated, suggesting that outside the network all
receptors explore and interact briefly but frequently to the environment to a
similar extent (see Figure 5.10a, c¢). What happens with the long decay
component, 1, outside the network? In here the difference amongst the three
proteins is remarkably high (see Figure 5.10b). For both tmRA and tmABD, 1,
is significantly shorter than for CD44, ~ 10 s compared to ~ 30 s, respectively.
These results are entirely consistent with the proneness of tmRA and tmABD
to selectively interact with actin and to a much lesser extent with other
components of the membrane. Since the network is primarily defined by the
cortical actin (as demonstrated in Chapter 4), the long-lived interactions with

the environment outside the network will be less prominent and brief for these
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two constructs, i.e., small A, and short 12). In stark contrast, CD44 can interact
both with the cortical actin as well as with many other components of the
membrane, and thus the long decay component outside the network should be
longer than for tmRA and/or tmABD, which is entirely consistent with our
experimental observations. Interestingly, reducing the interactions of CD44
with galectins does not produce a major change on the long decay component
outside the network, indicating that interactions of CD44 with other binding
partners on the membrane, aside from actin and galectins, play an important
role in its mesoscale dynamics. Yet, it is important to note that the strength of
the long-decay interaction outside the network is smaller than for inside, i.e.,
A, outside < A, inside, indicating a preference for CD44 to interact with the

network.

Even more interesting are the results obtained inside the network. Regarding
the fast decay component, t; is somewhat longer for tmABD than for the other
proteins and with larger A, values (see Figure 5.10a, ¢), consistent with the fact
that this construct actively interacts with cortical actin. Moreover, the 1, values
vary significantly depending on the protein and its ability to interact with
cortical actin. Indeed, the median values of 1, for tmRA and tmABD are 18 s
and 26.3 s, respectively. These results are fully consistent with the fact that
tmABD actively binds to actin, and thus longer interactions are expected as
compared to the tmRA construct whose binding site to actin is mutated and
its interaction with actin is only passive. Notably, CD44 has median A, and 1>
similar to tmABD inside the network (Figure 5.10b, ¢), which further supports
the notion that the pattern revealed by the HiDenMaps arises from interactions
with cortical actin. The variability on the CD44 data is also large inside the
network, an indication of the complex interactions of this receptor with its
environment. In fact, treating the cells with lactose reduces the variability on

the CD44 data (A; and t2), without significantly affecting the median values.
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Figure 5.10 Boxplots for the fitted double exponential decays for the proteins mentioned above
inside (orange) and outside (blue) the Rivers pattern. a) The fast temporal decay, ;. b) The
slow temporal decay, T,. ¢) The normalised exponential amplitudes, A (left axis) and A (right
axis). Statistical test performed is the non-parametric Kruskal Wallis

It is challenging to associate these two characteristic times to specific biological
processes, since they could be due to interactions of the receptors with the
environment, dynamic remodelling of the nano-environment, or both.
Nevertheless, tmRA interacts more passively with the actin cytoskeleton but it
could still be sensitive to a slowly remodelling actin. In the case of a reduced
interaction with the cytoskeleton, we would expect shorter interaction times
and lower interaction probabilities. In the case of tmRA, we find that A; is
smaller and t; shorter as compared to the other proteins. Moreover, the A; (and
71) values are higher (and longer) for tmABD, the construct that actively
interacts with actin. Based on these results, it is tempting to speculate that the
fast decay component corresponds to interaction of the receptor with the actin
cytoskeleton. Regarding the long decay component, the 7, and A, values are
quite similar for all the proteins, albeit slightly shorter for tmRA and with
larger A,. Since tmRA is less sensitive to actin changes, the similarity of the T,
and A, values for all the other proteins suggests that the long 7, component

preferentially corresponds to slow remodeling of the cortical actin cytoskeleton.

5.3.2.2 Linking the nanoscale with the mesoscale temporal scales

So far, we have retrieved two very distinct temporal scales from the
HiDenMaps. These timescales refer to the mesoscale dynamics of the receptors
interacting with the underlying cortical actin. However, we still miss how these

mesoscale dynamics are built from the nanoscale dynamics of single molecules.
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HiDenMaps are a versatile approach that enables to correlate the mesoscale
spatiotemporal organisation of molecules with single molecules dynamics. This
is because despite the high-labelling densities (>10 nM) used to generate the
HiDenMaps it is still possible to retrieve single molecule trajectories from the
same data by taking advantage of photo-bleaching. When the acquisition of the
data starts, the density of fluorophores is too high to track individual molecules.
Nevertheless, as the acquisition continues, fluorophores will stochastically
photo-bleach decreasing the effective labelling density and enabling single
molecule tracking. In this way, we can obtain HiDenMaps and SPT from the

same data set.

To correlate the nano- and meso-scale dynamics of receptors on the cell
membrane using HiDenMaps together with SPT, we performed experiments on
CHO cells and labelled CD44 with SNAP-tag JF640 at a 100 nM. Imaging was
performed at a frame rate of 60 Hz and an acquisition time of 90 seconds. To
avoid any crosstalk in the analysis, localisations belonging to individual
trajectories were removed from the HiDenMap. Figure 5.11a shows four
representative trajectories (in green) overlaid with the HiDenMap, where black
areas correspond to regions not visited by the receptor. We classified the
trajectories’ segments according to whether the molecule had visited a high-
density or a low-density localisation region (more details in Materials and
Methods). The zoom-in of Figure 5.11a, shows a trajectory from an individual
molecule that diffuses freely on a low-density region of the HiDenMap, then
gets temporally arrested in a high-density region and finally escapes from this
region to start diffusing freely again. We used this information to directly
correlate the dynamics of single molecules with their dynamic environment. We
quantified the segmented trajectories considering the visitation regions of the
HiDenMaps (Figure 5.11b-d). Molecules in high-density regions diffused slower
than when they explore low-density regions (Figure 5.11b), which correlates
with their faster instant velocity on low-density regions (Figure 5.11c).
Moreover, we computed the turning angle for the segmented trajectories (Figure
5.11d). The turning angle is the angle between consecutive displacements within
a trajectory and provides a measure on the confinement of trajectories. If a
protein is freely diffusing, we expect a homogeneous turning angle, since the

molecule can move freely in any direction. In contrast, a protein having a
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directed motion tends to go always forward, so the turning angle plot will be
shifted towards 0°. Finally, if a protein is confined in an area, it will bounce
backwards when it encounters the boundary and thus the turning angle plot
will be shifted towards 180°. In the case of CD44 we observe that in high density
regions, the plot is more shifted towards 180°as compared to low-density regions
(Figure 5.11d). Since the high-density regions in the HiDenMap correspond to
the network being explored by CD44, our results thus indicate that single
molecules interact with the hotspots in the HiDenMaps by a transient arrest or

full confinement of CD44 in these regions.
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Figure 5.11 Correlative HiDenMap and SPT. a) Single molecule trajectories (in green and pointed
with a magenta arrow) overlaid on a simultaneously obtained HiDenMap (left). Zoom-in of a
trajectory, colour-coded as to whether the molecule visits high- or low-density localisation regions
(right). b) Apparent diffusion coefficient for the segmented trajectories according to their
partitioning in high- or low-density regions. ¢) Instant velocity and d) Turning angle between

consecutive segments within a trajectory.

To better quantify these results, we investigated how the transient confinement
zones (TCZ) of single molecule trajectories correlate with the HiDenMap
localisation hotspots (see Materials and Methods). We classified the TCZ
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according to whether they occurred within hotspots or not, and quantified the

TCZ arrest times, Trcz.
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Figure 5.12 Correlating the arrest times of transient confinement zones from single molecule data
with the HiDenMap. a) TCZ times for CD44 trajectories outside (cyan) and inside (orange)
hotspots. The arrest times for in-silico simulated Brownian motion trajectories are shown in
white. b) 2D histogram correlating the TCZ arrest times of single molecule trajectories (x-axis,
orange) that overlap with hotspots. And the lifetime of the hotspots where the TCZ occurred (y-
axis, purple).

In addition, we ran in-silico simulations of Brownian motion and computed the
Trcz that could be detected with our TCZ algorithm, in order to compare with
the experimental data (Figure 5.12a). As expected, the distribution of Tr¢y
inside hotspots shows a tail towards longer confinement times as compared to
the TCZ occurring outside hotspots. In addition, the TCZs outside the
localisation hotspots show the same distribution of times as for the in-silico
simulated Brownian motion trajectories to which we applied the TCZ
algorithm. Thus, these results confirm that individual molecules preferentially
arrest on the high-density regions described by the HiDenMaps. Finally, we
correlated the transient arrest times, Tz, with the lifetime of the hotspots
(Figure 5.12b). We took those TCZ occurring on HiDenMap hotspots and
measured the lifetime of the hotspots themselves. Remarkably, we retrieve two
very distinct temporal scales. The lifetime of the HiDenMap hotspots is of the
same order of magnitude as t,, the slow time component obtained from the

autocorrelation decays in the previous section. Moreover, the arrest time of
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single molecules, Trcz~250 ms, is an order of magnitude shorter than t,, the
fast component in the autocorrelation decay. Together, these results reveal that
CD44 transiently and dynamically interact with the hotspots of the network
getting arrested for a few hundred of milliseconds, while the network itself
dynamically remodels in the tens of seconds time scale. As such, HiDenMaps
combined with SPT reveals dynamic molecular interactions within a

dynamically changing environment.

5.4 Discussion

In this Chapter, we have presented a palette of analysis tools to study the
emergence of patterns in the HiDenMaps of receptors that interact with the
underlying cortical actin. First, we have adapted the algorithms by Levet et al.
(24, 25) on the 1*" rank Voronoi density to filter the localisations arising from
Brownian motion. This is especially useful in the case of studying slow molecules
that would require very long acquisition times (see Chapter 3 on the technical
details of HiDenMaps) and cannot be met by the experimental conditions. Using
the 1°" rank Voronoi density as a filter, we can discriminate random diffusion
and actual patterns arising from interactions of the molecules with the
environment. In fact, by using the filter on experimental data we can measure
the degree of randomness (Brownian motion) by computing the filter efficiency.
We have observed that for those receptors that interact with the underlying
cortical actin, the percentage of localisations removed is much lower than for
Brownian motion simulations or the in-vitro Brownian motion controls (lipid

bilayers).

We have developed a localisation-based pattern reconstruction algorithm, the
Rivers algorithm, that allows to extract the diffusion patterns from HiDenMaps.
We validated the performance of the Rivers algorithm by using in-silico
simulations of molecules diffusing and interacting with an imposed network
with different binding affinities. Our results show that we can reconstruct the
underlying network orchestrating the spatiotemporal organisation of receptors

with high fidelity. A limitation of the algorithm is that we can only reconstruct

163



Chapter 5

the network that has been visited and bound to by the receptors, and not the
full network. Nevertheless, we can reconstruct the fraction of the network that

has affected the diffusion of the tagged receptors.

The patterns arising from HiDenMaps are built dynamically over time as
molecules explore the space. Such patterns are generated because of the higher
persistence in time of molecules on those regions, i.e., where molecules interact
stronger  with  their environment. Therefore, the spatiotemporal
compartmentalisation experienced by the receptors differs inside and outside
the patterns. We used the Rivers algorithm to reconstruct the underlying
pattern and to classify the localisations of the HiDenMap into inside and outside
the pattern for experimental data of receptors interacting with the underlying
cortical actin with different strengths. We studied the mesoscale dynamics
inside and outside the Rivers method by computing the autocorrelation decay
to measure the temporal persistence of the mesoscale dynamics. From the
double exponential decay fittings, we retrieved two very distinct temporal
scales: a short lived (7i~4s) and a long lived (75~ 30s). Moreover, the
amplitudes of the fitted exponential decays measure the frequency and/or
strength of each temporal scale. While outside the pattern the interactions are
shorter lived but more frequent, inside the pattern the interactions are longer
lived. These results indicate that the spatiotemporal organisation of receptors
interacting with underlying cortical actin is driven by multiple temporal

processes of different strengths and times.

HiDenMaps not only provide a measure on the mesoscale dynamics but we can
use them to correlate single molecule dynamics with the mesoscale
spatiotemporal organisation of receptors. We have performed correlative
HiDenMaps and SPT from the same dataset using photo-bleaching to our
advantage to reconnect trajectories at later stages of the acquisition. We have
correlated the single molecule transient arrest times, 7z, with the localisation
hotspots that appear on HiDenMaps. From this analysis we retrieve a third
temporal scale in the order of ~250 ms that accounts for the interactions of
single molecules with the environment. Therefore, using HiDenMaps we have
been able to measure the spatiotemporal compartmentalisation at three distinct
temporal scales which range from the spatial nanoscale to the mesoscale.

Correlative SPT and HiDenMaps is incredibly powerful since we can directly
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correlate single molecule dynamics to what the ensemble of receptors is feeling

simultaneously.

HiDenMaps open new frontiers in image acquisition and analysis. Although in
this chapter we have focused our research on receptors interacting with cortical
actin, HiDenMaps can be also applied to intracellular studies (43) or to other
receptors of the plasma membrane (see Chapter 6). Additionally, the data
shown in this chapter have been conducted in a single colour scheme, but
HiDenMaps can be extended to multi-colour applications to study interactions

between multiple proteins simultaneously (see Chapter 6).

In summary, the amount of data that can be obtained in a simple HiDenMap
experiment is massive. The beauty of having localisations in space and time
that reveal how molecules sense the environment is magnificent. In this chapter
we have exploited the data analysis in the direction of pattern recognition and
spatiotemporal correlations and dynamics, but surely, we are only grasping the
tip of the iceberg in terms of analysis and applications. HiDenMaps proves to
be a valuable approach due to its experimental simplicity to elucidate how
single molecules interact with their environment at multiple spatiotemporal
scales. Thus, it can fill the void in the field of biophysics left by the standard

approaches to study the spatial and temporal organisation of molecules.
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Chapter 6
Pre-docking nanoplatforms of DC-SIGN,
CD44 and Galectin 9 increases virus

engagement in immature dendritic cells

DC-SIGN is pathogen-recognition transmembrane receptor exclusively
expressed at the plasma membrane of immature dendritic cells (iDCs), an
important sub-set of cells from the immune system. DC-SIGN is responsible for
recognising multiple pathogens and viruses, including HIV-1 and SARS-CoV-2
amongst others. It is known that DC-SIGN interacts with multiple proteins at
the plasma membrane, and previous work from our group and others have
identified CD44 and Galectin-9 as main interaction partners. In this Chapter
we have generated multi-colour high-density maps (HiDenMaps) to
simultaneously monitor in real time the interactions between these three
proteins, prior to virus engagement. Moreover, we succeeded on generating
GFP-labelled HIV-1 and SARS-CoV-2 virus-like particles (VLPs) enabling us
to generate for the first time four-colour HiDenMaps. Using this approach, we
have studied interactions between DC-SIGN and the VLPs in space and time,
while monitoring at the same time the influence of CD44 and Galectin-9 on
viral capture. Our results show an increased binding success of HIV-1 and
SARS-CoV-2 virus-like particles when binding to CD44/DCSIGN/Gal9
tripartite as compared to DC-SIGN alone (i.e., without their membrane
partners). Moreover, using mock viruses, we demonstrate that this tripartite
nanoplatform is important for increased capture of HIV-1 and SARS-CoV-2.
Overall, our results suggest a potential generalised mechanism of virus capture
being mediated by CD44/DCSIGN/Gal9 pre-docking nanoplatforms on iDCs.

This work has been published as Nicolas Mateos, Enric Gutiérrez-Martinez, Irene Carlon-Andres, Sergi
Padilla-Parra, Maria F. Garcia-Parajo, and Juan A. Torreno-Pina, “Multicolour single molecule imaging
reveals optimised virus capture by pre-docking receptor nanoplatforms”; in preparation
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6.1 Motivation

The immune system is responsible for the defence of the human body against
pathogens (1) and is made out of two parts based on specificity and speed: the
innate and the adaptive immunity. The innate immunity is the immediate
response of the body against invading pathogens. Pathogens have conserved
pathogen-associated molecular patterns (PAMPS) which are recognised by toll-
like receptors (TLRs) present on the membrane of immune cells such as
dendritic cells(2). The adaptive immunity occurs at later stages of infection but
it is antigen-specific and it is orchestrated by T cells and B cells. Interestingly,

both immune responses are connected through dendritic cells (3).

Dendritic cells (DCs) were discovered by Ralph Steinman in the 1970s(4-7) and
led him to win the Nobel Prize in Physiology and Medicine in 2011. The main
role of DCs is to capture pathogens and present them to T cells. DCs are present
in the human body in mainly two states: immature and mature. Immature DCs
(iDCs) patrol the peripheral tissue in search of pathogens and antigens.
Following antigen recognition, iDCs get activated (maturing) and migrate to
the lymph nodes where now mature DCs (mDCs) will present the antigens to

T cells and initiate the adaptive response(3).

Besides TLRs, DCs are equipped with C-type lectins(8) such as the dendritic
cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN;
CD209)(9). Lectin-type receptors recognise self-antigens and act as adhesion
receptors(10). Nonetheless, they also bind to carbohydrate structures present
on the membrane of multitude of viruses, bacteria, parasites and yeast. In fact,
DC-SIGN is responsible for recognising HIV-1(11), hepatitis C virus(12), Ebola
virus(13), severe acute respiratory syndrome (SARS) coronavirus(14, 15),
candida albicans(16) or mycobacterium tuberculosis(17) amongst other
pathogens. Notably, HIV is able to trigger a hijacking process of the DC thereby
mediating a trans-infection process of T cells in the lymph nodes(11). Indeed,
when HIV-1 binds to DC-SIGN via its glycoprotein gp120(18), rather than
undergoing an internalisation and a degradation process, HIV-1 triggers a

downstream signalling that induces the migration of iDCs towards the lymph
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nodes. Once at the lymph nodes, DCs mediate the productive trans-infection of
T-cells in a DC-SIGN dependent manner.

DC-SIGN is a tetrameric transmembrane protein with a carbohydrate-
recognition domain (CRD) at the C-terminal, a neck region formed by a seven-
and-a-half tandem repeat of 23 amino acids, a single N-glycosylation site located
at the N-terminal of the neck region, a transmembrane domain and a cytosolic
tail(19, 20). The CRD is responsible for both the recognition of pathogens and
for the binding to the adhesion molecules ICAM-3(10). The neck domain is
responsible for the tetramerisation of DC-SIGN at the plasma membrane(21-
23) inducing a multivalent binding to ligands via avidity(23). Moreover, the

cytosolic tail contains recycling and internalisation motifs (19, 20).

In our lab and by using single molecule sensitive techniques and advanced
super-resolution imaging, we have studied the spatiotemporal organisation of
DC-SIGN on the cell membrane of iDCs. FEarly studies using electron
microscopy and near-field scanning optical microscopy (NSOM), showed that
the neck region of DC-SIGN regulates the formation of nanoclusters on the cell
membrane of ~100nm in mean(24-27) and these nanoclusters were essential for
trapping virus-size particles. Our lab also focused on the impact of the N-
glycosylation motif of DC-SIGN on the spatiotemporal organisation of the
receptor using single molecule and super-resolution microscopy(28). By using
STED nanoscopy, it was shown that the N-glycosylation motif of DC-SIGN
does not impact on its nanoclustering. Moreover, and by using high-density
single particle tracking (HD-SPT), the meso-scale organisation of DC-SIGN and
the potential role of the N-glycosylation motif was studied. HD-SPT showed
that the diffusion of WT-DC-SIGN was confined into micron-sized patches. In
contrast, the mutant lacking the N-glycosylation motif, N80A, showed less
confinement at the meso-scale. Importantly, it was shown that these WT-DC-
SIGN micron-sized patches were enriched with clathrin-coated pits (CPPs)
thereby impacting on the receptor internalisation route(16, 28, 29). Indeed,
abrogation of the galectin-network with lactose (25 mM for 2 days) induced a
reduced colocalisation of DC-SIGN with CCPs on iDCs(28). Thus, revealing

the importance of galectins in the spatiotemporal organisation of DC-SIGN.
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Galectins are a family of soluble glycan-binding lectins(30) that are thought to
cross-link glycoproteins at the plasma membrane by creating the so-called
galectin lattice(31, 32). So far, 15 different galectins have been identified and
classified into three major groups from the protein architecture point of
view(33). First, the proto-type group includes those galectins with only one
carbon recognition domain (CRD) and can act as monomers (Gal-5,-7,-10) or
homodimers (Gal-1,-2,-11,-13,-14,-15). Second, the tandem-repeat group refers
to galectins containing two homologous CRDs linked by a protein residue (Gal-
4,-6,-8,-9,-12). Third, the chimeric group consists galectins with a CRD and a
N-terminal domain which can polymerise (Gal-3)(34, 35). Galectins show

different binding affinities to N-glycans on the plasma membrane of cells(36).

In the context of DC-SIGN, it was previously shown that Gal-9 was enriched
on the DC-SIGN phagosome(37). Gal-9 is a tandem-repeat galectin, which
means that it is formed by two homologous but not identical CRDs connected
by a protein link. Because the CRDs are not identical, Gal-9 can cross-link
different glycoproteins, and it has been shown to induce cell-signalling and even
cell death (38, 39). Our Lab showed that removal of Gal-9 from the cell surface
by means of lactose impaired DC-SIGN spatiotemporal organisation at the
meso-scale and hampered virus-like particle internalisation(28). In addition, it
has been also shown that cytosolic Gal-9 interacts with cortical actin and DC-
SIGN, contributing to the regulation of DC function (40). Altogether, these
finding strongly indicate that Gal-9 has the potential to influence the
spatiotemporal organisation of DC-SIGN. However, direct visualisation of Gal-
9 and DC-SIGN at the relevant spatiotemporal scales has not been reported

yet.

In addition to Gal-9, CD44 has been also found at DC-SIGN phagosome,
amongst other proteins(37). Moreover, it has been extensively reported that
Gal-9 binds to CD44 inducing different cellular signalling responses (41-43) and
that CD44 has the ability to connect the extracellular milieu with the
intracellular actin network (44, 45). Using confocal microscopy, our lab
previously showed that CD44, Gal-9 and DC-SIGN colocalise at the plasma
membrane of iDCs(28). Furthermore, preliminary studies by means of dual-
colour HD-SPT exploration maps of DC-SIGN and CD44 on iDCs showed that

these receptors explore the space together, not fully colocalising but in
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contiguous patches, one next to the other. Interestingly, as we showed in
Chapter 4, CD44 interacts with the cortical actin cytoskeleton(46) and
independent work from the Grinstein group also showed that CD44 functions
as a picket, affixing the cortical actin cytoskeleton to the cell membrane(47).
Based on all these findings, it seems highly likely that CD44 plays an important
role regulating the galectin-dependent spatiotemporal organisation of DC-
SIGN.

One of the main goals of this thesis is to resolve the role of CD44 and galectins
in the spatiotemporal organisation of DC-SIGN. Importantly, we aim at
understanding how this spatiotemporal organisation affects the successful
engagement of viral particles in iDCS. Although quite some research in the field
of virology has been devoted to the study of viral infection by means of single
virus tracking (SVT) (48-52), they have not resolved interactions of virus-like

particles with their receptors in real-time.

In this Chapter, we introduce a novel methodology based on multi-colour
HiDenMap, as described in Chapter 3, of DC-SIGN, CD44 and Galectin-9. We
will develop a three-colour quantum dot labelling strategy of each individual
membrane protein allowing the simultaneous characterisation of three
components with high temporal and spatial resolution at the single molecule
level. Furthermore, we will extend our methodology to a four-colour
configuration by introducing single virus HiDenMap thereby combining
HiDenMaps of membrane proteins with freely diffusing virus like particles in
the medium. To show the biological significance of our approach, we will apply
our methodology to study virus capture by DC-SIGN of HIV-1 and SARS-CoV-
2. Moreover, by developing novel analysis algorithms, we will characterise how
DC-SIGN, CD44 and Galectin-9 form pre-docking nanoplatforms on the cell
membrane thereby inducing enhanced viral capture on iDCs. Overall, this
chapter introduces a novel technological framework to study early viral capture
events by a multi-component system on the cell membrane at the single

molecule level.
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6.2 Materials and Methods

6.2.1 Primary cell culture

Human immature dendritic cells (iDCs) were obtained from peripheral blood
mononuclear cells (PBMC) from HIV-1-seronegative donors using a Ficoll-
Hypaque gradient (Alere Technologies AS). The monocyte population was
selected by adherence on a T75cm?2 flask for 1 hour. iDCs were obtained by
culturing the monocytes in complete RPMI with 1.000 IU/ml GM-CSF
(granulocyte-macrophage colony-stimulating factor) and IL-4 (interleukin-4)
both from R&D for 6 days. The medium was replaced every two days with fresh
GM-CSF and IL-4. Experiments were performed at day 6 from the monocyte

extraction.
6.2.2 Antibodies and reagents

Monoclonal mouse anti-human CD44 (Clone G44-26) and monoclonal mouse
anti-CD209 (Clone DCN46) were obtained from BD Biosciences. Recombinant
human Galectin-9 protein (Cat. number 9064-GA) was obtained from R&D
systems. SARS-CoV-2 spike protein recognition binding domain (S-RBD) 9x
His tag was kindly provided by Dr Jose Francisco Rodriguez Aguirre and Dr
Cesar Augusto Santiago Hernandez (CNB, CSIC). SARS-CoV-2 Spike Protein
(RBD) Chimeric Recombinant Rabbit Monoclonal Antibody (PO5DHuRD)
tagged with Alexa Fluor™ 647 was obtained from eBioscience. Streptavidin
Quantum Dots (565, 605, 655 and 755) were obtained from Thermo Fisher

scientific.
6.2.3 Single Chain antibody generation

Both anti-human CD209 and CD44 single chain antibodies were generated using
a similar protocol. First, the full chain antibodies were dialysed using 10K
dialysis devices (Thermo Scientific™ Slide-A-Lyzer™ MINI Dialysis Devices,
10K MWCO) against PBS for 8 hours at 4°C. Second, we concentrate the
dialysed full chain antibodies to a concentration of 1 mg/ml. Third, we reduce
the antibodies using DTT (1,4-dithiotrheritol, Sigma Aldrich) at 1 mM. We let
the mix reduce at room temperature for 1 hour rotating. Then, we proceed to

dialyse overnight against PBS using the 10K dialysis devices at 4°C. Fourth,
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we stabilise the broken sulphide-bonds with Iodoacetamide at 20 mM. We let
the mix at room temperature for 1 hour rotating gently and we dialyse to
remove excess iodoacetamide overnight at 4°C. Figure 6.1 shows the
electrophoresis gel for the single chain antibodies and the full chain antibodies

as a control.
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Figure 6.1 Electrophoresis gel showing for DC-SIGN and CD44 the bands for full-chain antibodies
(F) and single-chain antibodies (SC).

6.2.4 Biotinylation and conjugation

We performed the biotinylation of single chain antibodies and rhGal9 with EZ-
Link Sulfo-NHS-LC-Biotin (Thermo Fisher). We add a 20x mol excess of biotin
and we let the mixture to shake for 1 hour in ice. Then, we dialyse using 10K
units overnight at 4°C to remove excess of non-reacting biotin. To generate the
conjugation of single-chain/rhGal9 + QD, we mixed equal ratios of single-
chain/rhGal9 and QDs and 5x excess of free biotin. To obtain a target
concentration of 300 nM of stock conjugates, we first mixed 300 nM of QD with
1.5 pM biotin and then added 300 nM of single-chain/rhGal9.

6.2.5 Labelling strategy

To perform the single particle tracking experiments, we used conjugates of
rhGal9/QD565, «a-CD44/QD655 and «-DC-SIGN/QD705 at a concentration
of 1 nM. For the HiDenMap experiments, we used conjugates of rhGal9/QD605,
a-CD44/QD705 and «-DC-SIGN/QD655 at a concentration of 30 nM.
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6.2.6 Pseudo-virus like particle generation

All the plasmids except the pr8 AEnv.2 (obtained from addgene, Plasmid
#12263) were kindly provided by Dr Sergi Padilla Parra and Dr Irene Carlon-
Andres (KCL, London) as well as the protocol. Together with Dr Enric
Gutierrez, we adapted the protocol in our lab as follows: 57 pL of Trans-IT
reagent (Mirus) were added to 2 pg of pR8AEnv.2, 3 ng of Gag GFP, 1 ng of
pcRev and 3 pg of BL4-3 to generate HIV VLPs as this plasmid expresses gp120
or 0.5 ng of SARS-CoV-2-Spike[D614G]| to generate SARS-CoV-2 VLPs. To
generate mock viruses, no plasmid generating the Env or the Spike protein was
added. Then, we add the mixture to 1.9 mL of OPTIMEM (Gibco) and incubate
for 15 min at room temperature. We add the mixture to 18 mL of DMEM with
FBS and L-Glut and without antibiotics. We add the medium to HEK-293T
cells at 80-90% confluency and we collect the supernatant at day 3. We first
centrifuge briefly the supernatant (500 x g for 10 min) and filter the supernatant
through a 0.45 pm filter. We concentrate the supernatant with Lenti-X
concentrator (Takara) following the manufacturer’s protocol and resuspend it
in RPMI. Finally, we aliquot the VLPs and freeze them using liquid nitrogen

before storing them at minus 80°C.
6.2.7 Sample preparation for SPT and HiDenMap experiments.

We plated ~50.000 cells on either glass coverslips (#1) coated with PLL (20
ng/ml) for control cells or on 35 mm Glass bottom dish with 10 mm micro-well
(#1, Cellvis) also coated with PLL. We seeded the cells for at least 1 hour in
RPMI without FBS, L-Gluy or antibiotics. The labelling strategy using the
single chain-QDs was performed sequentially by diluting 1 pL of DC-
SIGN/QD655 and 3 uL of CD44/QD705 in 46 pL of PBS with 6% BSA. We
incubate the conjugates and the cells for 5 min. After washing 3 times in RPMI,
we take 5 pL of rhGal9/QD605 and 45 pL of PBS diluted in 6% BSA and
incubate for 5 min. Importantly and to avoid removing of the Gal-9 conjugate,
we wash only once with RPMI. We then add RPMI to perform the imaging.
For the experiments with VLPs (HIV, SARS-CoV-2 or mock) we added the
VLPs defrosted and added 10 ng/ml of LPS. The mixture was added to the

cells and imaged. The imaging is performed at 37°C.
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6.2.8 iDC response to S-RBD

To study the iDC response to S-RBD, we seeded 30.000 day 6 iDCs on Lab Tek
8-well plates (#1), which we previously coated with PLL (20 ng/ml). We led
the cells adhere for 1 hour before starting any treatment. The conditions were
either control (RPMI), S-RBD (50 nM in RPMI) and LPS (10 ng/ml in RPMI).
After adding the medium with the different conditions, we fixed the cells using
PFA 4% at either 10, 30, 60 or 90 min. We then labelled the samples with anti-
human CD44 labelled with a secondary antibody tagged with AF488. We
performed the confocal imaging in a Leica SP8 microscope making a Z-stack

with a 100x objective.
6.2.9 Multi-colour SPT and generation of multi-colour HiDenMaps

Our strategy to resolve the interactions of DC-SIGN, Galectin-9 and CD44 at
early stages of virus capture relies on the generation of multi-colour HiDenMaps
by means of of HD-SPT. As mentioned in Chapter 3, HD-SPT provides high
spatial (~20 nm) and temporal (30 frames/s) resolution at the single molecule
level. Of crucial importance, the high labelling density required for multi-colour
HiDenMaps allows the simultaneous localisation of a multi-component system
at the single molecule level in living cells. This represents a step forward to
other traditional techniques such as multi-colour SPT, where the probability of
observing real time interactions between different components is quite low due
to the high number of components (e.g., the expression level of membrane
proteins) and the low labelling density required to reconstruct individual
trajectories (typically 1-2 orders of magnitude lower as compared to HD-SPT,
see also Chapter 3 or details regarding HD-SPT and HiDenMaps).

To optimise the design of the multi-colour single molecule setup, we took
advantage of both the narrow fluorescence emission and broad excitation
spectra of quantum dots (QDs) (Figure 6.2). We thus used QDs emitting at
different spectral windows to label DC-SIGN, Gal-9 and CD44 (see also below).
Moreover, the core of the virus-like particles (VLPs) was tagged with the green

fluorescent protein (GEFP). This exquisite combination of fluorescent emitters
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allowed simultaneous excitation of our multicomponent system using a single

488 nm laser line.

1 L

g Figure 6.2 Excitation and emission spectra
2081 for GFP (green), QD605 (dark yellow),
}: QD655 (orange) and QD705 (dark red).
2 061 The excitation laser is drawn in blue and
L the band-pass filters are depicted by the
E shaded area. The green shaded area is the
2 0.4 dichroic mirror with reflectance below 580
% nm.
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In order to immuno-label the proteins of interest DC-SIGN and CD44, specific
single-chain antibodies were generated and biotinylated. Moreover, and in order
to label Gal-9, recombinant human Gal-9 (rhGal9) was also biotinylated and
conjugated with the corresponding QDs. In our experiments DC-SIGN was
labelled with QD705 (SPT) or QD655 (HiDenMaps), CD44 with QD655 (SPT)
or QD705 (HiDenMaps) and rhGal9 with QD565 (SPT) or QD605 (HiDenMap).

The optical setup is built around an inverted Nikon Ti-U microscope working
under total internal reflection (TIR) illumination (Figure 6.3). The excitation
light consists on a single diode-pumped solid-state 488 nm laser line which is
circularly polarised using a quarter waveplate. The beam diameter is then
increased using a telescope and ultimately focused at the back focal plane of a
Nikon CFI APO TIRF 60x objective.
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Figure 6.3 Schematics of our custom-built 4-colour TIRF inverted microscope. The sample is
illuminated by a 488 nm laser line focused on the back focal plane of the objective. The
fluorescence emission is collected through the objective and split into multiple optical paths using
dichroic mirrors (DM) and filtered with band-pass filters. Each emission is focused on two
different regions of an EM-CCD camera, leading to a four-colour detection scheme.

In order to obtain the TIR excitation, the beam is accurately shifted towards
the edge of the objective using a mirror at the entrance of the inverted
microscope. The emitted fluorescence light from the sample is collected through
the same objective and the excitation light is filtered out using a notch-filter at
488nm. After creating the image using a slit, the emission light is split into two
optical paths, each leading to a separate EM-CCD camera. Importantly, two
images will be formed at each of the optical paths, obtaining a total of four
simultaneously channels with different wavelengths. When single QDs or GFP-
VLPs are placed on the set-up, the cross-talks between channels ranges from 5
to 20% in intensity. However, when all the QDs and GFP-VLPs are on the
sample, then the intensity cross-talk becomes smaller and using proper

thresholding in the particle detection, then the cross-detection is negligible.

Our analysis pipeline consists on generating four-colour HiDenMaps by
localising single molecules at each frame of each channel and collapsing them
all into a single image (Figure 6.4). In order to account for optical aberration

due to differences in the optical paths of each channel, several images of
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Tetraspeck™ beads visible in all the four channels were systematically acquired.
By setting the channel corresponding to the GFP-labelled VLPs as the fixed
channel, the affine transformation of the other three channels was defined. The
affine transformation was then applied to all the localisations before collapsing

them into a single image.

Video frames per channel Localisations per frame 4-colour HiDenMap

o0 80

Figure 6.4 Schematics on how four-colours HiDenMaps are generated. From left to right: Video
frames for each of the four channels. For each channel individual fluorescent molecules are
localised at each frame of the video. Then, localisations per frame and channel are transformed
using an affine transformation to correct the aberration of the optical paths and collapsed into a

single image, the 4-colour HiDenMap. Scalebar: 10 pm.
6.2.10 Spatiotemporal autocorrelation decay

We took all the localisations of the HiDenMaps and applied a sliding time
window, At, of 500 ms to temporally separate the localisations. The length of
the window results from a compromise of having to accumulate sufficient
localisations and still be short enough so that fast dynamics are not washed

out. We then compute the autocorrelation curve as follows:

N—-m
1 z < I(At,) * I(At; + mAb) >
m

= A =
Go(t1ag = mAL) N—m £ <1(At) >< I(At; +mAt) > (6.1)

Here, I( At;) refers to the image of the i-th temporal window. To generate the
images from localisations, we pixelated the space into 100 nm squared pixels
and counted the number of localisations per pixel. We then normalised the

curve to the first point (ti; = 0 s). Finally, we fitted the decay curves from the
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second point onwards until tn, = 50 s. The fitting consists on a double

exponential decay with a constant term:

F(t) =Ae V™ + A,e” /"2 + B (6.2)

We performed the fitting in MATLAB’s Curve Fitting Tool setting the bounds
of A1, A, and B € [0,1] and 7; and 7, € [0,0). We chose ‘0.5’ as the starting
point for all the variables. The rest of parameters used for the fittings are

summarised in the following table:

Table 6.1 Table summarizing the fitting options used in MATLAB

Algorithm Trust-Region
Robust On
Maximum iterations 10°
Maximum number of evaluations 10°
Minimum change in coefficients 10°®
Maximum change in coefficients 102
Termination tolerance on model value 10716
Termination tolerance on coefficient values 10716

Finally, once the fitting is performed, we rescaled the amplitudes of the

exponential decays as follows:

T A+ 4, (6.3)

6.2.11 Multi-colour colocalisation algorithm

We first took the VLP channel and run a DBSCAN algorithm (61), as described
in Chapter 2, with parameters MinPts = 10 and ¢ = 150 nm to localise clusters
of VLP localisations. With these settings, the algorithm will find events of VLPs
that have visited the membrane for at least 10 frames. Moreover, at least 95%
of the localisations for each defined cluster must have appeared at the
membrane continuously as a function of time. Once the clusters are detected,
we take each cluster of VLP localisations and define the visitation region of

interest (ROI), which corresponds to the area visited by the virus. Then, we
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search for those localisations in the other three channels that explored the
visitation ROI within the same time window that the VLP was on the
membrane. If the three proteins visit the VLP area during the same time
window, we then consider to have a true spatiotemporal colocalisation with the
three proteins. If only one or two of the tripartite proteins visit the VLP area
during the same time window, we then consider that the VLP colocalised with
one or two proteins (denoted as “others” in the plots shown in Figure 6.13a and
Figure 6.16a).

6.2.12 Software

For the single particle detection and to perform the linking of trajectories, we
have used ImageJ’s FIJI plugin Trackmate (53, 54). For all the analysis of our
data, we have used MATLAB R2020a.

6.3 Results

6.3.1 Single molecule imaging of Gal-9 on the membrane of iDCs.

To the best of our knowledge, no previous reports have documented the
dynamics, nano- and the meso-scale organisation of Gal-9 on the surface of
living cells. We thus used recombinant human Gal-9 (rhGal9) and first
performed standard SPT experiments at low labelling conditions (1 nM) to
investigate the dynamics of individual rhGal9 at the plasma membrane of iDCS.
We labelled rhGal9 with streptavidin QD565 on living iDCs and performed
imaging at a speed of 30 Hz. Representative trajectories showing the mobility
of thGal9 are presented in Figure 6.5a. A visual inspection of the trajectories
reveals a large heterogeneity in the diffusion of rhGal9, ranging from fully
immobile, restricted and highly mobile. To quantify the actual diffusion of
rhGal9 we considered trajectories longer than 50 frames (>1.5 s) and calculated
the apparent diffusion, pi.4, of hundreds of individual trajectories from multiple
cells following the approach explained in Chapter 2. The histogram of the D4
values shows a bimodal distribution with a very slow population centred around
1.4-10° pm?/s and a faster population centred at ~ 2.2-107% pm?/s with a
median value of Dy = 1.9 - 10 pm?/s (Figure 6.5b).

182



Chapter 6

a) b)
0.04
003 _
=0.02/
e
0.01!
0 5 | 3 2 1 0
10°10*10% 102 10 10
2

Figure 6.5 Single molecule dynamics for thGal9 labelled with QD565 and imaged at 30 Hz. a)
Representative single molecule trajectories of rthGal9. For the analysis we filtered the trajectories
to be at least 50 points. b) Normalised semi-log distribution of Di.s values for rhGal9. The scalebar
is Ipm.

We than performed HD-SPT experiments in order to generate HiDenMaps of
rhGal9 at the surface of living iDCs. We labelled rhGal9 with QD605 for the
HiDenMap experiments at a concentration of ~30 nM, and imaged at 30 HZ for
90 s.

Figure 6.6 Representative HiDenMaps of rhGal9 labelled with QD605 and an integration time of
30 seconds. The number of localisations in each ROT are: 57.955 (a), 24.318 (b) and 111.140 (c).
Each region of interest (ROI) corresponds to a different cell from a different donor taken on
different dates. The scalebar is 2 pm.

Interestingly, the HiDenMap reveals a rather heterogeneous exploration of

rhGal9 at the plasma membrane of iDCS with clearly defined hotspots enriched
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in localisations and other regions with more random-like localisations (Figure
6.6). These results indicate that over the course of imaging (30 s), a population
of rhGal9 remains highly confined in regions around 100 nm, whereas other
population of rhGal9 diffuses more freely and explores larger regions of the cell
membrane. Moreover, we observed a large variability in rhGal9 mobility and

spatiotemporal mapping of the cell membrane amongst different donors.

6.3.2 DC-SIGN, CD44 and Gal-9 interactions on the plasma membrane of
iDCs.

To study the dynamics of single DC-SIGN and CD44 receptors by means of
SPT, specific biotinylated single-chain antibodies conjugated with streptavidin
QD705(for DC-SIGN) and QD655 (for CD44) were generated. Three-colour
videos of DC-SIGN, CD44 and Gal-9 were recorded at 30 Hz and individual
trajectories of the three different proteins were generated (Figure 6.5a for
rhGal9 and Figure 6.7a,b for DC-SIGN and CD44 respectively). For each
individual trajectory, the apparent diffusion, Dy, was extracted and compiled
in a histogram. The distribution of D4 values for both DC-SIGN and CD44
revealed a large spread, spanning several orders of magnitudes (Figure 6.7¢,d),
as expected for most transmembrane proteins. The median values obtained for
both receptors are: DPSIN = 5421072 yum? /s and DEPH* = 3.0 - 1072 um?/
s, which in in agreement with previously published data (28, 47, 55).
Interestingly, these values are an order of magnitude faster than for rhGal9

(Figure 6.5)

Simultaneously to the experiments of SPT and HiDenMaps for rhGal9 we also
studied the dynamics of DC-SIGN and CD44. We labelled DC-SIGN and CD44
using biotinylated single-chain antibodies conjugated with streptavidin QD705
(for DC-SIGN) and QD655 (for CD44) (Figure 6.7a,c). The apparent diffusion,
Dy, distributions for DC-SIGN and CD44 reveal a small shoulder at slow
diffusions and a bigger at faster diffusions (Figure 6.7b,d). The median values
for these two proteins are which are an order of magnitude faster than for
rhGal9 (Figure 6.5b).

To then enquire if there is any spatiotemporal relationship between these three
different proteins, we generated multi-colour HiDenMaps. Fort this, DC-SIGN
was labelled with QD655, CD44 with QD705 and rhGal9 with QD605, using all
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of them at a concentration of 30 nM. Three-colour videos were acquired at a
frame rate of 30 Hz and localisations were accumulated for 90 seconds in total.
The three-colour HiDenMaps revealed distinct patterns for the three proteins
on the cell membrane but in close proximity to each other (Figure 6.8a). In
fact, in the time window shown in Figure 6.8b (30 s), the three proteins show
regions of confinement around ~200 nm together with a more diffusive pattern.
Remarkably, these patterns are in close proximity to each other suggesting once
more that the diffusion and spatial exploration of the three proteins on the cell

membrane is highly coordinated.
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Figure 6.7 a) Representative single molecule trajectories of DC-SIGN labelled with streptavidin
QD705. b) Representative single molecule trajectories of CD44 labelled with streptavidin QD655
¢) Normalised semi-log distribution of Dis values for DC-SIGN. D) Normalised semi-log
distribution of Di.1 values for CD44. e) Normalised semi-log distribution of Di.1 values for CD44,
DC-SIGN and Gal-9. The scalebar is 1 pm.

In order to quantify a potential interaction between the three proteins at the
mesoscale, the spatiotemporal autocorrelation decay for each HiDenMap was

calculated (see Materials). Moreover, the different temporal scales of each
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HiDenMap was extracted by performing a fitting with a double exponential
function. Importantly, the autocorrelation was performed in time windows of
500 ms allowing a compromise between the number of localisations and an

optimal high temporal resolution.

Figure 6.8 Representative 3-colour HiDenMaps with an integration time of 30 seconds. a) From
left to right: DC-SIGN, CD44, rhGal9 and overlay of the three proteins. b) Zoom-in 3-by-3 pm
ROIs of the same cell at different regions than for the top row.

From the autocorrelation analysis, two different time scales, a short decay,
7,~3 s, and a long decay, t,~30 s, as well as the corresponding amplitudes, A;
and A,, respectively were extracted. Interestingly, the distributions of the time
scales and the amplitudes from each different protein are not statistically
different (Figure 6.9). This suggests that although the three proteins exhibit
different diffusions at short time scales as observed by SPT, there is a persistent
dynamic structure at the meso-scale inducing a preferred interaction between
DC-SIGN, CD44 and Gal-9.
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Figure 6.9 Temporal evolution of HiDenMaps. a) 2 seconds time windows of three-colour
HiDenMaps at different observation times. b) Temporal autocorrelation decay for DC-SIGN,
CD44 and rhGal9 with a AT of 500 ms. The weighted line corresponds to the mean between
donors and the shaded area de standard deviation between donors. ¢) The parameters (A1, A2,
11, 12) fitted from the decays for DC-SIGN, CD44 and rhGal9. Each point in the scatter plot

corresponds to a single cell. The Scalebar: 2 pm
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6.3.3 Dynamic behaviour of GFP-tagged HIV VLPs at the plasma

membrane of iDCs

After showing the successful implementation of the three-colour single molecule
sensitive setup and the novel HiDenMap based analysis to unravel a meso-scale
interaction between DC-SIGN, CD44 and rhGal9, there is an open question as
to whether this pre-existing interaction could promote virus capture by DC-
SIGN. To address this question, GFP-tagged HIV VLPs were introduced
thereby expanding the experimental system into four colours. The three
proteins of interest were labelled using QDs (DC-SIGN/QD655, CD44/QD705
and rhGal9/QD605) and the HIV-VLPs contained GFP proteins in the core.
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Figure 6.10 Single virus tracking and landing on the membrane, where it interacts with
preestablished docking-platforms. a) SPT of the HIV-GFP VLP (green) and single molecules of
DC-SIGN (yellow), CD44 (magenta) and rhGal9 (cyan). b) Cluster tracking of DC-SIGN
(vellow), CD44 (magenta) and rhGal9 (cyan) while they diffuse together prior to HIV-GFP VLP
(green) engagement. The three time-windows shown are: AT; € [2,4]s, AT, € [25,27]s and ATz €
[70,72]s. Scalebar is 500 nm. ¢) Quantification of cluster radius (left axis) and the number of
VLP localisations per time-window (2 s time windows). d) Number of localisations per cluster
and time-window for the three proteins and the VLI localisations per time-window (2 s time

windows).
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As a preliminary approach, SPT of the individual components was performed
and their trajectories overlaid (Figure 6.10) showing a direct engagement of the
VLP with a pre-formed docking platform of DC-SIGN, CD44 and Gal-9. Indeed,
individual cluster tracking showed correlated diffusion of the three proteins
prior to their encountering of the VLPs. Remarkably, there is a decrease in the
cluster radius of the three components when engaging with the virus suggesting
that the virus rearranges the spatiotemporal organisation of the docking

platform at the nanoscale.

In order to extend this approach to a systematic analysis, four-colour
HiDenMaps were generated from HD-SPT videos using time windows of 90 s at
a frame rate of 30 Hz. Remarkably, by visually observing the obtained four-
colour HiDenMaps, HIV VLPs appear to be engaged preferentially on hotspots
where DC-SIGN/CD44 and Gal-9 colocalise (Figure 6.11). To rigorously
quantify these observations, an algorithm based on a multi-colour DBSCAN
analysis between the four components was developed (see Materials &
Methods). This analysis showed that there is a significant enhanced (10-30%)
colocalisation between DC-SIGN and the HIV VLP compared to a mock virus
lacking the Env protein (from now on Agpl20 VLP, Methods) in three out of
four donors (Figure 6.11b). A similar colocalisation degree was observed
between CD44 and HIV VLP in two out of the four donors. As for Gal-9, there
is a strong enhanced colocalisation (up to 60%) with HIV VLPs in all the
donors. Remarkably, when analysing the four components together, there is an
enhanced colocalisation (10-20%) of the three proteins and HIV VLPs compared
to Agpl20 VLP in three out of the four donors (Figure 6.11b). Overall, our
results reveal an enhanced interaction of HIV VLPs with the pre-docking
nanoplatforms formed by DC-SIGN, CD44 and Gal-9.
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Figure 6.11 a) Representative 4-colour HiDenMap ROI with an observation time of 50 s and a
frame rate of 30 Hz. The four channels correspond to DC-SIGN (yellow), CD44 (magenta), rhGal9
(cyan) and HIV-GFP VLP (green stars with dark dot, and the clusters are pointed with red
arrows). h) Percentage of VLPs colocalising with at least DC-SIGN (top left), CD44 (top right),
rhGal9 (bottom left) or with all three proteins (bottom right). Total number of HIV-GFP VLPs
detected: 92 for donor A, 64 for donor B, 53 for donor C and 26 for donor D. Total number of
gpl20 VLPs detected: 106 for donor A, 88 for donor B, 52 for donor C and 216 for donor D.
Number of cells analysed: 40 for donor A, 40 for donor B, 40 for donor C and 30 for donor D.
The Scalebar: 1 pm.

We then addressed whether there is a functional consequence of this multi-
component colocalisation. For this, the lateral behaviour of single viruses was
analysed and correlated with their interaction probability with CD44, DC-SIGN
and Gal-9. In other words, HIV VLPs HiDenMaps were generated and classified
according to whether (I) the VLP disengaged from the plasma membrane during
the acquisition time (vanishing); (II) the VLP transiently appeared (transient);
(III) the VLP appeared and remained engaged (appearing); (IV) the VLP
remained engaged (persistent). Figure 6.12 shows representative examples of
these four different scenarios. Importantly and from the biological point of view,
transient and vanishing VLPs were considered as unsuccessful engagements
whereas appearing and persisting VLPs as successful. By correlating the
dynamic engagement behaviour of the VLPs with the different colocalising
membrane proteins, an increased successful engagement was found when the
three different proteins (DC-SIGN, CD44 and Gal-9) colocalised together with
the VLPs (Figure 6.13a). This trend was clearly found in two of the four donors
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(donors C and D), while no significant differences were found for donor B. In
addition, and for completeness, we also include data for donor A, in which viral
engagement was unsuccessful. Importantly, gpl120-VLPs showed a reduced
engagement (vanishing or transient) compared to WT-VLPs even if they
colocalised with DC-SIGN, CD44 and Gal-9. Thus, our data shows that
colocalisation of HIV VLPs with DC-SIGN, CD44 and Gal-9 enhances the
probability of a successful engagement of VLPs on the cell membrane of

immature DCs.
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Figure 6.12 HiDenMaps revealed different engagement probabilities of HIV-GFP VLPs on the
plasma membrane. Multiple ROIs display the localisations within a temporal window of 2
seconds. The last column shows the plot of localisations per second for the ROI on the same row.
a) VLDs can vanish from the field of view due to unbinding or because the signal was too low to
be detected. h) VLDPs can show a transient behaviour, which means that the VLI arrives to the
membrane but disengages and disappear. ¢) VLPs can appear on the field of view, which means
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that the VLPs arrive at the plasma membrane and remain bound until the end of the acquisition
time. d) VLPs can persist, which means that the VLI is visible throughout all the observation

time (90 seconds). Scalebars: 1 pm.

Vanishing VLPs are those that either disengage from the plasma membrane
and freely diffuse elsewhere or that because of the thresholding in the detection,
we cannot detect them any longer. Photobleaching is discarded since we did
tests at the same excitation conditions on HIV-GFP VLPs on glass and we were
able to observe them for longer than the observation time. Transient VLPs are
those that appear during the acquisition but leave the membrane after few
seconds, thus not having a successful engagement with the membrane.
Appearing VLPs are those that engage with the membrane during the
acquisition and remain on the plasma membrane until the end of the
observation time. Persistent VLPs are visible throughout the acquisition time.
From a biological point of view, we classify the VLP engagement as successful

(appearing and persistent) or unsuccessful (vanishing and transient).
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Figure 6.13 Dynamic engagement of individual HIV-GFP VLPs as function of the colocalising
proteins. a) Percentage of HIV-GFP VLPs showing different engagement dynamics when they
colocalise with all three proteins (DC-SIGN, CD44 and rhGal9) i.e., denoted as “All” in the plot;
or with only a subset of the proteins, denoted as “Others”. b) Dynamic engagement for VLPs
colocalising with all three proteins, for HIV-GFPs and the mutant Agpl120 VLIPs. White and
light grey bars correspond to successful engagement, while black and dark grey correspond to
unsuccessful engagement. Total number of HIV-GFP VLPs detected: 92 for donor A, 64 for donor
B, 53 for donor C and 26 for donor D. Total number of gpl120 VLPs detected: 106 for donor A,
88 for donor B, 52 for donor C and 216 for donor D. Number of cells analysed: 40 for donor A,
40 for donor B, 40 for donor C and 30 for donor D.
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6.3.4 SARS-CoV-2 and DC-SIGN

After having established with our novel methodology that the multi-component
CD44/DC-SIGN/Gal-9 nanoplatforms indeed enhance HIV viral engagement
on the cell membrane of iDCs, it remains to be elucidated whether our approach
can be extended and generalised to other viruses. As such, and taking into
consideration the global COVID-19 pandemics, we applied our experimental
settings to SARS-CoV2 VLPs. It has been recently reported that DC-SIGN
might indeed mediate SARS-CoV-2 viral binding even in the absence of the
canonical receptor ACE-2 (14, 15, 56-59). Hence, we enquired whether SARS-
CoV-2 virus capture could be enhanced by the presence of pre-interaction of
DC-SIGN with CD44 and Gal-9.

Control

Figure 6.14 iDCs activation upon exposure to S-RBD for 90 min and membrane labelled with
anti-CD44 (AF488). a) Control cells. b) Cells exposed with S-RBD (50 nM) during 90 min. ¢)
Cells exposed with 10 ng/ml of LPS during 90 min. Scalebars: 10 pm.

As a first approach and to test whether SARS-CoV-2 could have an impact on
iDC engagement and activation, iDCs were challenged with the soluble S-RBD

spike protein. As a positive control for iDC activation, we also stimulated iDCs
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with the toll-like receptor 9 ligand LPS (Lipopolysaccharide, 10 ng/ml).
Remarkably, after only 90 min of exposure to the soluble S-RBD spike protein,
iDCs displayed an activation phenotype similar to that of LPS-treated iDCs
(Figure 6.14).

In addition to iDC activation, we then asked whether SARS-CoV-2 VLPs could
be preferentially engaged by the CD44/DC-SIGN/Gal-9 pre-docking
nanoplatforms. In order to generate SARS-CoV-2 VLPs, a plasmid encoding
the S-protein ([D614G| the Wuhan variant with a point mutation) was
expressed using the HIV VLP backbone. The same mock virus without any
receptor specific membrane protein, i.e., ASpike, was used as a negative control,
in analogy to HIV VLP experiments. Using multi-colour HiDenMaps and DB-
SCAN analysis as previously shown for HIV-VLPs, SARS-CoV-2 VLPs
colocalised with DC-SIGN in 20% of the cases in the three donors analysed
(Figure 6.15a). CD44 and Gal-9 also showed an enhanced colocalisation with
SARS-CoV-2 VLPs in two of the three donors (Figure 6.15b,c). Remarkably,
enhanced colocalisation of SARS-CoV-2 VLPs with the three proteins was
observed in two of the three donors, as compared to experiments performed
using Spike VLPs (Figure 6.15d). Thus, these results indicate that also in the
case of SARS-CoV-2, pre-docking platforms formed by the tripartite proteins

increase the capture of the virus.
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Figure 6.15 SARS-CoV-2 GFP VLPs show enhanced colocalisation with DC-SIGN (a), CD44 (b),
rhGal9 (¢) and with the three proteins (d). Note that the y-axis range is shorter in d, than for
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the previous plots. As a negative control we used the same A gp120 VLPs which here we denote
as A Spike. Total number of SARS-CoV-2-GFP’ VLDs detected: 132 for donor A, 74 for donor B
and 87 for donor C. Total number of ASpike VLPs detected: 106 for donor A, 88 for donor B
and 52 for donor C. Number of cells analysed: 40 for donor A, 40 for donor B and 40 for donor
C.
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Finally, the dynamic engagement behaviour of individual SARS-CoV-2 VLPs
were also correlated with their colocalisation degree with CD44/DC-SIGN and
Gal-9. SARS-CoV-2 VLPs colocalising with the three proteins showed enhanced
membrane engagement as compared to a lower number of colocalising proteins
(Figure 6.16a). Indeed, SARS-CoV-2 VLPs remained more efficiently engaged
to the plasma membrane compared to mock viruses (Figure 6.16b). Overall,
these results show that SARS-CoV-2 VLPs show enhanced engagement when
binding to the multi-component CD44/DC-SIGN/Gal-9 pre-docking

nanoplatforms.
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Figure 6.16 Dynamic engagement of individual SARS-CoV-2-GFP VLPs as function of the
colocalising proteins. a) Percentage of SARS-CoV-2-GFP VLPs showing different engagement
dynamics when they colocalise with all three proteins (DC-SIGN, CD44 and rhGal9) i.e., denoted
as “All” in the plot; or with only a subset of the proteins, denoted as “Others”. b) Dynamic
engagement for VLPs colocalising with all three proteins, for SARS-CoV-2-GFP and the mutant
A Spike VLIs. White and light grey bars correspond to successful engagement, while black and
dark grey correspond to unsuccessful engagement. Total number of SARS-CoV-2-GFP VLPs
detected: 132 for donor A, 74 for donor B and 87 for donor C. Total number of A Spike VLPs
detected: 106 for donor A, 88 for donor B and 52 for donor C. Number of cells analysed: 40 for
donor A, 40 for donor B and 40 for donor C.
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6.4 Discussion

In this Chapter we have focused on resolving multi-component interactions of
DC-SIGN with CD44 and Galectin-9 on the plasma membrane of iDCs and
their impact on virus capture. We have established a novel multi-colour
methodology that has allowed us to map in real time and with nanometric
localisation accuracy interactions between four different molecular components,
three of them being proteins located in the plasma membrane of living cells and
a four-channel devoted to the dynamic visualisation of individual viruses and
their interaction with the tripartite proteins. To the best of our knowledge,

such powerful methodology has not been described before.

The galectin lattice has been proposed to compartmentalise glycoproteins at
the plasma membrane of living cells by cross-linking them, regulating their
diffusion and endocytosis. The roles of galectins have been widely studied and
specially their effect in cell biology, cancer biology or immunity (31, 32, 39).
However, to our knowledge, a direct visualisation of an intact galectin lattice
has not yet been accomplished by means of microscopy. In order to tackle this,
we have studied the single molecule dynamics of recombinant human Galectin-
9 (rhGal9) using SPT on the plasma membrane of iDCs. Remarkably, we found
that, although being a soluble protein, Gal-9 shows a stable 2-D diffusive
behaviour on the cell membrane. Moreover, the distribution of diffusion
coefficients is shifted towards lower values as compared to CD44 and DC-SIGN.
This suggests that Gal-9 might be potentially connecting different diffusing
membrane proteins on the cell membrane thereby effectively reducing their
lateral mobility. Moreover, by applying HiDenMaps, we found a heterogeneous
organisation of Gal-9 consisting on localised hotspots of around 200 nm in size
and diffusive patterns supporting the concept that the Galectin lattice is indeed
highly dynamic.

When studying the spatiotemporal organisation of DC-SIGN, Gal-9 and CD44
using SPT and HiDenMaps, we found that their dynamics are not correlated at
the nanoscale. However, and remarkably, their meso-scale organisation shows a
strong multi-component correlation as extracted from the autocorrelation

analysis applied to the HiDenMaps. Importantly, the temporal scales retrieved
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from the analysis (~3 seconds and ~30 seconds) are consistent with the ones
extracted in Chapter 5 suggesting that cortical actin might be the master
regulator of the lateral behaviour of CD44, DC-SIGN and Gal-9 at the micron-
scale. Indeed, CD44 has been suggested as a picket protein that links the
underlying actin cytoskeleton and the extracellular milieu (47). In this chapter,
we show that the galectin lattice adds a new organisation layer thereby linking
DC-SIGN with CD44 at the meso-scale (28).

We wanted to further assess a potential functional outcome of the inter-
connected meso-scale organisation of these three proteins. To tackle this, we
extended the three-colour setup to a four-colour configuration where we
introduced in the extra channel single virus HiDenMaps of VLPs. Remarkably,
we found an enhanced colocalisation between HIV ~VLPs and
CD44/DCSIGN/Gal-9 on three of the four donors tested. This interaction is
gp120-specific, and thus DC-SIGN dependent, since mock viruses lacking the
envelope protein gpl20 showed reduced colocalisation with the tripartite
proteins. This finding thus suggests that nanoclusters of CD44/DCSIGN /Gal-
9 can act as viral pre-docking nanoplatforms on the cell membrane.
Interestingly, this interaction could be further enhanced by the direct binding
of Gal-9 to gpl20 as it has been observed for Galectin-1 and Galectin-3 (60—
62). We further expanded our single virus HiDenMap analysis by directly
visualising the dynamic engagement of single viruses on the cell membrane in
relation to their location with pre-formed nanoplatforms. We found an increased
successful engagement of HIV VLPs when the viruses colocalised with the
tripartite proteins indicating that pre-docking nanoplatforms of the three

proteins promote a more efficient viral capture.

Finally, to show that our methodology can be applied to other viruses, we
extended our multi-colour HiDenMap measurements to SARS-CoV-2 VLPs.
Since it has been reported that DC-SIGN is a receptor for SARS-CoV-2 viruses
(14, 15, 56-59), we hypothesised that SARS-CoV-2 capture could also be
mediated by CD44/DCSIGN/Gal9 pre-docking nanoplatforms on iDCs. Indeed,
our results show increased binding of SARS-CoV-2 viruses to the
CD44/DCSIGN/Gal9 tripartite compared to mock viruses. This suggests a
potential generalised mechanism of virus capture being mediated by
CD44/DCSIGN/Gal9 pre-docking nanoplatforms on iDCs.
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From the technological point of view, we have presented a novel generalised
experimental and analysis framework that represents a step forward in the
study of the spatiotemporal organisation of a multi-component system at the
single molecule level. Our experimental approach offers the possibility to study
the interaction between different components with high temporal and spatial
resolution. We have applied this technique to follow the dynamics of individual
viruses in combination with up to three receptors on the cell membrane but it
can certainly be extended to other multi-component processes in the cell. As
such, our experimental approach opens a new door in the quantitative study of
dynamic processes at the nanometre scale, allowing multiplexing at the single

molecule level.
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Chapter 7

Conclusions and outlook

In this final chapter we draw some general conclusions of the thesis. The main
aim of this PhD research has been to develop new quantitative methodologies
and novel approaches that rely on single molecule imaging with the final goal
of contributing to a deeper understanding on how molecules on the cell
membrane organise in space and time to regulate cellular function. First, we
shortly recapitulate our super-resolution studies where we have devised novel
analysis tools to quantify the data. Second, we summarise the principle and
main characteristics of our novel method called high-density maps
(HiDenMaps) to quantify high-density single particle tracking data. Third, we
summarise and discuss our studies on CD44 using HiDenMaps, namely,
revealing its hierarchical and multi-scale temporal organisation mediated by the
cortical actin cytoskeleton. Lastly, we highlight our research on virus capture
by DC-SIGN in immature dendritic cells where we revealed the existence of
pre-docking platforms of the DC-SIGN/CD44/Galectin-9 tripartite and their
relevance for enhanced viral capture. We also provide some future perspectives

on the use of HiDenMaps and potential improvements.
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Understanding the spatiotemporal compartmentalisation of proteins in living
cells at the nanoscale is crucial to elucidate their functions. A great deal of
information has been obtained in the last years by the use of fluorescence-based
super-resolution (SR) microscopy, or by the application of single particle
tracking (SPT) approaches. Typically, these spatial (obtained via SR) and
temporal (derived from SPT) studies are conducted separately due to technical
limitations. Nevertheless, they provide different pieces of information that have
greatly contributed to a wider understanding of molecular organisation and its
dynamics. In this thesis, we have first shown some of the analyses approaches
that we have developed to quantify SR data. SR microscopy is a great asset to
study the spatial organisation of proteins and together with our algorithms and
novel analyses have enabled us to gain further insights onto the organisation of
different biomolecules: the pathogen recognition receptor Siglec-1 on mature
dendritic cells, integrins and adaptor proteins in focal adhesions, the
phosphatase PRL-3 and is role in clathrin mediated integrin endocytosis and

RNA polymerase II (not shown in the thesis).

Unfortunately, SR microscopy techniques still suffer from poor temporal
resolution, which hampers temporal studies of proteins. High-density single
particle tracking (HD-SPT) has recently emerged as a powerful technique to
bridge between SR-SMLM (super-resolution single molecule localisation
microscopy) and SPT to investigate the spatiotemporal organisation of
molecules(1-3). In this thesis, we have developed an approach to exploit HD-
SPT without reconnecting trajectories to generate high-density maps
(HiDenMaps) in just few seconds. HiDenMaps allow to study how molecules
dynamically explore their environment from the nano- to the meso-scale. In
Chapter 3, we stablished the technical requirements to generate faithful
HiDenMaps using in-silico simulations of molecules diffusing in a Brownian
motion fashion. We showed that proteins diffusing in a Brownian motion
manner, such as proteins embedded on a lipid bilayer, render a homogeneous
HiDenMap. On the contrary, CD44, a transmembrane protein that interacts
with both the underlying cortical actin and components of the extracellular
matrix (ECM), exhibits a highly inhomogeneous HiDenMap, diffusing in a
meshwork-like pattern. Therefore, by simply collapsing the localisations into a

single image as we have done to generate HiDenMaps, we can begin to ascertain
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heterogeneities on how molecules interact with their environment. Moreover, a
key property of HiDenMaps is the temporal information encoded in the
localisations and thus, by tuning the integration time of the HiDenMap we can
probe the nanoscale and the mesoscale spatial organisation of the protein of
interest. For instance, we have shown that by integrating during one second all
the localisations from a HD-SPT experiment, we can obtain a HiDenMap of
CD44 that contains similar information as to a STORM image of the same
receptor. Both approaches have indeed revealed CD44 nanoclustering with
comparable nanocluster sizes. Despite the biological mechanisms leading to the
nanoclusters in STORM and HiDenMap (1 second integration) might be
different, HiDenMaps provide additional and new dynamic information on the

emergence of nanoclusters and their dynamic evolution in time and space.

We further showed that HiDenMaps is a methodology fully compatible with
other live cell imaging techniques such as homo-Forster’s resonance energy
transfer (homo-FRET)(4). In a collaboration with Major’s Lab at the National
Centre for Biological Sciences (NCBS, Bangalore), we combined HIDenMaps
with homo-FRET to further study CD44. Aside from its ability to interact with
both the cortical actin cytoskeleton and with the extracellular milieu as
described above, CD44 is especially interesting because it has been shown to
act as a transmembrane picket compartmentalising other receptors at the
plasma membrane of cells(5). Our joint research enabled us to build an
understanding on the hierarchical organisation of CD44 at the plasma
membrane of cells(6). Combining anisotropy measurements with homo-FRET
and HiDenMaps we could directly ascertain that the nanoclusters measured by
anisotropy corresponded to localisation hotspots in HiDenMaps. Moreover,
these hotspots were enriched throughout a meshwork-like pattern. Interestingly,
the lifetime of the hotspots (~ 3 seconds) corresponded well with the timescale
of the transient confinements exhibited by single CD44 molecules(6). We also
identified the actin cytoskeleton as being responsible for the transient
confinement of the receptor. Thus, the receptor associates with actin-enriched
regions transiently and unbinds to resume its diffusion until it finds another
actin region to bind again. We believe that the localisation hotspots identified
by the HiDenMaps correspond to the events in which CD44 binds to actin

acting as a transmembrane picket as described by Freeman et al (5). Because
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the nanoclustering ability of CD44 is lost upon formin perturbation and the
pattern revealed by HiDenMaps are affected by removing the cytosolic tail of
the receptor and by formin perturbation, we concluded that the mesoscale
spatiotemporal meshwork of CD44 indeed arises from its interactions with
cortical actin. As a whole, our data support the picture of a tightly coupled
actin-membrane composite where even proteins that do not directly couple to
actin are impacted by the patterning of the underlying cortical actin
meshwork(5, 7, 8).

Motivated by the actin-driven patterns revealed from CD44 HiDenMaps, we
focused our efforts to develop novel algorithms to further analyse and quantify
these patterns. These tools are described in detailed in Chapter 5 and
summarised here. Using a new algorithm developed, which we call Rivers, we
have been able to extract the patterns from the point-like data and use these
patterns to filter the localisations in the HiDenMaps to perform a more
segmented analysis. Because the patterns arise dynamically from multiple
interactions of receptors with the underlying actin network, we analysed the
temporal scales of such patterns. From the pattern dynamics, we found two
distinct temporal scales, a short lived (~4 seconds) and a long lived (~ 30 s).
Analysing also the dynamics outside the patterns, we found that the
interactions outside the pattern are short lived and frequent. On the other hand,
within the patterns the interactions are mostly long lived and more persistent.
To further investigate the nature of long-lived persistent interactions in the
pattern, we performed correlative HiDenMaps and SPT. We took advantage of
photobleaching to reconnect trajectories at later stages of the acquisition of
HiDenMaps where the effective labelling is dampened. Using standard SPT
routines we then determined transient arrests of single CD44 molecules in the
order of ~250 ms and correlated the transient confinement zones of single
molecule trajectories with the localisation hotspots that appear in the
HiDenMaps. Remarkably, we discovered that the hotspots in HiDenMaps are
in fact built from multiple transient arrests of single molecules in the same
region. These findings strengthen the hypothesis from Chapter 4, where we
accounted the hotspots in the HiDenMaps as events where CD44 interacts with
actin and acting as a transmembrane picket. A major finding of our work has

been the measurement of three distinct temporal scales that regulate the
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spatiotemporal compartmentalisation of CD44, ranging from the nano- to the

meso-scale.

Foreseeing the potential of using HiDenMaps to ascertain the interactions of
single molecules with their environment and build analysis schemes that range
from the nano-scale to the meso-scale, we further extended our methodology to
study viral capture by cells of the immune system. In particular, we have
focused on elucidating multi-component interactions of the pathogen
recognition receptor DC-SIGN with CD44 and Galectin-9 and their role in virus
capture. DC-SIGN is responsible for recognising a multitude of pathogens and
viruses in immature dendritic cells (iDCs). DC-SIGN is a transmembrane
receptor known to form nanoclusters that enhance the capture capability of
trapping virus-sized particles (9). Preliminary studies from our group indicated
that the spatiotemporal compartmentalisation of DC-SIGN at the plasma
membrane of iDCs could be mediated by the interaction with CD44 and
Galectin-9(10). Motivated by these earlier studies we implemented a multi-
colour HiDenMap experimental scheme that enabled us to simultaneously follow
the diffusion of these three different proteins as well as the virus (i.e., four
colour scheme). We tagged the proteins using quantum dots and used GFP to
tag HIV-1 and SARS-CoV-2 virus-like particles (VLPs). Using both SPT and
HiDenMaps we found that while the diffusion of DC-SIGN, CD44 and Galectin-
9 where different from each other, their mesoscale organisation showed a strong
interaction with correlated temporal scales. The temporal scales retrieved from
the global mesoscale dynamics match well with those measured in Chapter 5,
suggesting that cortical actin might be the master regulator of the lateral
behaviour of DC-SIGN, CD44 and Galectin-9 at the micron-scale. To assess the
functional outcome of this inter-connected mesoscale organisation, we studied
the interaction of VLPs with DC-SIGN while also tagging the other proteins.
Trying to perform this study with standard SPT or even with HD-SPT
approaches would be a huge struggle. Fortunately, using HiDenMaps we could
determine where the interactions take place simply by overlaying the four
individual HiDenMaps. Using this approach, we found an increased successful
engagement of VLPs (both HIV-1 and SARS-CoV-2) when the viruses
colocalised with the DC-SIGN/CD44/Galectin9 tripartite. Since HiDenMaps

are so versatile, we could identify events where VLPs engaged with the plasma
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membrane at mid acquisition times and assess the spatial organisation of the
tripartite prior the engagement. Remarkably, we revealed the existence of pre-
docking nanoplatforms of the DC-SIGN/CD44/Galectin9 tripartite which
promoted a more efficient viral capture. Thus, with our novel approach of
multi-colour HiDenMaps we found a potential generalised mechanism of virus
capture mediated by DC-SIGN/CD44/Galectin-9 pre-docking nanoplatforms on
iDCS.

In summary, during the span of this thesis we have investigated the
spatiotemporal organisation of multitude proteins mainly at the plasma
membrane of cells. We have implemented novel algorithms to quantify super-
resolution microscopy images to answer the biological questions regarding the
spatial organisation of integrins, Siglec-1 and PRL-3. More importantly, the
gross of this thesis has been devoted to the development of HiDenMaps to
elucidate the spatiotemporal organisation of proteins at the plasma membrane

of cells.

HiDenMaps is a simple concept but as we have shown, it is extremely powerful
in the study of how molecules explore the space. Although in this thesis we
have mainly focused on the plasma membrane of cells, HiDenMaps can be
extended to other cellular contexts besides the plasma membrane. For instance,
we have used HiDenMaps to study progesterone receptor (PR) transcription
factor condensates in the nucleus of living cells(11). Indeed, using HiDenMaps
we observed an accumulation of PR in nanoscale hotspots upon hormone
treatment compared to the control in which no hotspots were visible. The
emergence of these hotspots originate from the formation of PR condensates
within the nucleus(11). Additionally, the multi-colour HiDenMap scheme herein
presented has a huge potential to study interactions between multiple proteins
simultaneously. As an example of a plausible application would be in the study
of blocking antibodies for HIV-1 prevention, since we could label the antibodies,
the proteins of interest and the viruses to see in-situ the real effect on blockage
of the viral engagement. Moreover, we could study complex systems such as
focal adhesions and obtain spatiotemporal information on the organisation of
multiple integrin species and adaptor proteins as a function of substrate
stiffness. Other possible applications could be the study of membrane contact

sites, condensates within the nucleus,.. The amount of possibilities on using
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HiDenMaps to elucidate the spatiotemporal organisation of molecules in cells is
almost infinite, we believe that we have contributed with a methodology that
can make an impact in the field of biophysics. Indeed, because of its simplicity,
HiDenMaps have the potential to be easily implemented in any analysis

workflow in any lab.

However, HiDenMaps analysis still needss improvement in order to provide
additional quantitative information. For instance, HD-SPT algorithms
developed by Masson’s lab provide energy potential maps and diffusivity maps
which are extremely powerful(3, 12, 13). Since HiDenMaps do not rely on
trajectory reconnection, this is currently beyond its capabilities. Moreover, for
slow diffusing molecules (D<10* pm?/s) the time required to observe the full
exploration of space is very long (To,s > 10* s) which poses a major limitation
in terms of acquisition. Currently, in the Rivers algorithm we use a 1°* rank
Voronoi tessellation to filter-out Brownian diffusing molecules. However, we use
uniformly distributed localisations as a blank control to set the threshold on
the Voronoi densities, which works well for fast diffusing molecules but not for
slow diffusing molecules. Therefore, the next step to improve the Rivers
algorithm is to find a better blank control that enables to improve the filter
efficiency for slowly diffusing molecules. A possible direction that we have not
yet exploited is to implement machine learning (ML) algorithms to further
quantify the data obtained with HiDenMaps. First, we would investigate if ML
algorithms could be used to filter the localisations in HiDenMaps instead of
using our Voronoi tessellation algorithm. Second, working at slightly lower
densities it would be interesting to investigate whether we could infer diffusivity
maps without trajectory reconnection. Third, for multi-colour HiDenMaps it
would be specially interesting to rely on ML algorithms because each channel
would be considered as a layer and the localisations as nodes. Thus, we could
seek for multi-layer connections to predict future interactions between the
multiple proteins studied. So far, we have mostly developed analysis tools to
investigate the spatiotemporal organisation of molecules at the plasma
membrane that interact with the cortical actin network. Therefore, the next
step is to continue developing algorithms to study intracellular processes such

as in the nucleus, in the endoplasmic reticulum or the Golgi apparatus.
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