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Abstract

Advances in capturing technologies have yielded a massive production of large-scale
molecular data that describe different aspects of cellular functioning. These data
are often modeled as networks, in which nodes are molecular entities, and the edges
connecting them represent their relationships. These networks are a valuable source
of biological information, but they need to be untangled by new algorithms to reveal
the information hidden in their wiring patterns. State-of-the-art approaches for de-
ciphering these complex networks are based on graphlets and network embeddings.
This thesis focuses on the development of novel algorithms to overcome the limita-
tions of the current graphlet and network embedding methodologies in the field of
biology.

Graphlets are a powerful tool for characterizing the local wiring patterns of
molecular networks. However, current graphlet-based methods are mostly appli-
cable to unweighted networks, whereas real-world molecular networks may have
weighted edges that represent the probability of an interaction occurring in the cell.
This probabilistic information is commonly discarded when applying thresholds to
generate unweighted networks, which may lead to information loss. To address this
challenge, we introduce probabilistic graphlets, a novel approach that can capture
the local wiring patterns of weighted networks and uncover hidden probabilistic
relationships between molecular entities. We use probabilistic graphlets to gen-
eralize the graphlet methods and apply these to the probabilistic representation of
real-world molecular interactions. We show that probabilistic graphlets robustly un-
cover relevant biological information from the molecular networks. Furthermore, we
demonstrate that probabilistic graphlets exhibit a higher sensitivity to identifying
condition-specific functions compared to their unweighted counterparts.

Network embedding algorithms learn a low-dimensional vectorial representation
for each gene in the network while preserving the structural information of the molec-
ular network. Current, available embedding approaches strictly focus on clustering
the genes’ embedding vectors and interpreting such clusters to reveal the hidden
information of the biological networks. Thus, we investigate new perspectives and
methods that go beyond gene-centric approaches. First, we shift the exploration of
the embedding space’s functional organization from the genes to their functions. We
introduce the Functional Mapping Matrix and apply it to investigate the changes in
the organization of cancer and control network embedding spaces from a functional
perspective. We demonstrate that our methodology identifies novel cancer-related
functions and genes that the currently available methods for gene-centric analyses
cannot identify. Finally, we go even further and switch the perspective from the
organization of the embedded entities (genes and functions) in the embedding space
to the space itself. We annotate axes of the network embedding spaces of six species
with both, functional annotations and genes. We demonstrate that the embedding
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space axes represent coherent cellular functions and offer a functional fingerprint of
the cell’s functional organization. Moreover, we show that the analysis of the axes
reveals new functional evolutionary connections between species.
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Chapter 1

Introduction

1.1 Motivation

Current technology is producing high-throughput biological data at an ever-growing
rate. These data are often modeled as networks, in which nodes are molecular enti-
ties, and edges define their relationships, e.g., in protein-protein interaction networks
(PPIs), nodes represent proteins and edges indicate physical interactions (binding)
between them, as measured by biological experiments. These networks are a valuable
source of biological information, but they need to be untangled by new algorithms
to reveal the information hidden in their wiring patterns [1].

A powerful approach for uncovering information from a biological network is
to measure the local wiring patterns of its nodes. Nodes with similar local wiring
patterns share biological functions regardless of their proximity in the biological
network, e.g., in a PPI network, functions are not only shared among proteins that
physically interact but also among proteins with similar wiring patterns [2]. The best
measures to quantify the local wiring patterns rely on graphlets, small, connected,
non-isomorphic, induced subgraphs of a larger network [3]. Graphlets and their
statistics have been used in network biology to compare biological networks [4],
to uncover their functional organization [3, 2, 4] as a base for network alignment
algorithms (GRAAL family [3, 5]), or to relate genes in these networks with their
biological functions [2, 4, 6]. Moreover, to account for the complex information
in molecular systems, graphlets have been generalized in different ways, including
directed networks [7], in which the directions of the interactions play an essential role;
hypergraphs and simplets, that capture the multi-scale organization of biological
systems [8, 9].

However, graphlet-based measures are mostly applicable to unweighted networks,
while some molecular interactions, such as gene coexpression [10] or PPIs [11], can
be modeled as probabilistic networks, in which edges have an associated probabil-
ity to reflect the level of confidence in the existence of the molecular interaction.
This probabilistic information is usually discretized by applying thresholds to de-
cide which interactions are considered to be real. While this approach permits the
removal of noise from the data, it can also eliminate crucial information [10]. In
Chapter 3, we propose solutions to extract the additional information hidden in the
wiring patterns of probabilistic networks by extending the graphlet-based method-
ology to probabilistic networks.

Graphlet-based approaches have been successfully applied in network biology,
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but they also present several limitations. The number of graphlets containing k
nodes increases super-exponentially with k. The computation complexity of count-
ing graphlets on k nodes in a network with n nodes is O(nk), but in practice, it is
much lower since biological networks are sparse. This makes the methods inefficient
when dealing with large-scale data limiting their application in increasingly complex
biological networks. In addition, even when graphlets are computed, their biological
interpretation can be challenging due to their large number. In particular, for some
graphlet generalizations, such as hypergraphlets, this number goes up to 450 [12].
These limitations highlight the need for alternative approaches that can decipher
these notoriously complex biological networks.

An alternative to graphlet-based approaches is network embedding technique, also
called graph representation learning. Unlike graphlet-based methods, which oper-
ate on biological networks, network embedding techniques employ dimensionality
reduction techniques, such as matrix factorization, autoencoders, or graph neural
networks, to represent the networks in a low-dimensional space facilitating the anal-
ysis of these extremely complex networks [13, 14]. These algorithms aim to map
nodes in a network to a low-dimensional embedding space, spanned by a system of
coordinates (a.k.a., embedding axes), in which the closeness of nodes in the original
network is preserved [14, 15]. Defining an optimal number of dimensions of the
embedding space is key to properly representing the closeness between the nodes.
However, there is no gold-standard approach to finding the optimal dimensional-
ity of the embedding space. Thus, researchers have to rely on grid search, domain
knowledge, or heuristics [16], e.g., the cophenetic correlation coefficient [17] and
rule of thumb [18]. In Chapters 4 and 5, we propose solutions to find the optimal
dimensionality of the embedding space.

Network embedding includes a variety of algorithms, such as Natural Language
Processing (NLP)-inspired methods [14], e.g., DeepWalk [19], and node2vec [20], and
matrix factorization-based approaches, e.g, the Non-negative Matrix Tri-Factorization
(NMTF), and the Non-negative Matrix Factorization [21]. These algorithms have
been widely applied to uncover new biological knowledge from biological networks,
such as novel associations of miRNA with diseases [22], new protein functions [14],
or new drug target associations [23]. However, as shown with graphlet-based meth-
ods, current embedding approaches also have several drawbacks. These gene-centric
methods use the learned embedding vectors of the genes as input to machine learning
algorithms to perform downstream tasks [13], such as node clustering and classifi-
cation [13]. Hence, other possible information sources, such as the embedding axes,
remain unexplored. Moreover, by only taking as input the genes’ embedding vectors
and not the functions of these genes, these gene-centric approaches offer an incom-
plete analysis of biomedical data. In Chapters 4 and 5, we propose solutions to these
limitations by introducing two new network embedding approaches.

In the rest of this Chapter, we first present the objectives of this dissertation.
Following this, we introduce the contributions of this dissertation including the
resulting scientific papers, posters, and talks. We conclude this section with the
dissertation outline.
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1.2 Objectives

The goal of this thesis is the development of new computational methods to extract
biological information from biological networks. The state-of-the-art approaches to
deciphering these complex data are based on graphlets and network embeddings.
Thus, in this thesis, we focus on the development of novel algorithms to overcome
the limitations of the current graphlet and network embedding methodologies in
the field of biology. In this context, our first objective is the generalization of
the graphlet-based methodology to probabilistic networks. Our second objective is
the development of alternative approaches to the current gene-centric embedding
techniques for mining new biological information from network embeddings. The
third objective, ideally, is to combine the graphlets’ generalization with the new
network embedding approaches to extend their capabilities.

1.3 Contribution

During this dissertation, we introduce three new computational methods, one graphlet-
based method and two network embedding approaches, to mine biological informa-
tion from biological networks.

First, we introduce probabilistic graphlets as a tool for analyzing the local wiring
patterns of probabilistic networks. This method extends the use of graphlets and
graphlet-based measures to probabilistic networks. In Chapter 3, we introduce and
apply probabilistic graphlets on the probabilistic representation of real-world molec-
ular interaction networks and synthetic networks (generated by well-known network
models). We demonstrate that probabilistic graphlets outperform their unweighted
counterparts in capturing the overall topological similarity between synthetic net-
works. Moreover, our probabilistic graphlets robustly manage low signal topology
information without sacrificing their ability to recover relevant biological information
from molecular networks. In contrast, the original unweighted graphlets applied in
thresholded networks are highly sensitive to both, the noise and the chosen thresh-
old. Finally, we show that probabilistic graphlets robustly capture condition-specific
cellular processes such as stress response mechanisms, which in turn benefit from
the use of probabilistic models. Hence, the use of our probabilistic graphlets com-
plements the biological information uncovered by their original unweighted counter-
parts.

Then, to overcome the limitations of the current gene-centric embedding ap-
proaches, we propose a new, function-centric perspective and approach to explore
the functional organization of the network embedding space from a functional per-
spective. We introduce the Functional Mapping Matrix (FMM), this matrix captures
the mutual positions of functional annotations that we embed in the gene embedding
space. In Chapter 4, we introduce and apply our FMM-based method to capture
the functional organization of different tissue-specific PPI embedding spaces gener-
ated by the NMTF algorithm. We show that our FMM can efficiently be applied to
address different problems, e.g., to find the optimal dimensionality of the embedding
space, to analyze the similarities between the functional organization of different em-
bedding spaces (in Chapter 4, those corresponding to cancer and control), and to
find the functional changes produced by cancer. Moreover, we demonstrate that
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our FMM-based method predicts new cancer-related genes that could not have been
identified by currently available methods for gene-centric analysis. We validate these
predicted genes by literature curation and retrospective analyses of patient survival
data. To conclude, we show that our FMM-based method can be easily extended
to other bioinformatics tasks, such as patient and tissue stratification, or to uncover
evolutionary similarities between species.

While our FMM-based methodology changes the exploration of the embedding
space from the genes’ embedding vectors to the vectorial representation of their
functional annotations, both approaches still focus on embedded entities (genes and
functional annotations) to decipher information from embed networks. In Chapter
5, we propose to change the perspective from the organization of the entities in the
embedding space to the space itself. In particular, we introduce a new method that
uses the axes of the embedding space where the entities are embedded to capture
the cell’s functional organization from molecular networks. In Chapter 5, we apply
our axes-based method to uncover the fundamental mechanisms of the functioning
of a cell. To this end, we use it on different species-specific PPI embedding spaces
generated by the NMTF and Deepwalk algorithms. We demonstrate that the axes
of the embedding space disentangle biological information, with functionally similar
gene annotations being associated with the same axis. Moreover, we demonstrate
that the embedding axes better disentangle biological information than the classic
gene-centric approach. Furthermore, we show that the embedding in orthonormal
spaces, which only NMTF-based frameworks allow for, leads to the embedding spaces
that best capture the cell’s functional organization from the biological networks,
i.e., to better disentangle functional information about the cell’s mechanisms. In
addition, we demonstrate that our axes-based methodology can be applied to find
the optimal dimensionality of the embedding space. Finally, we introduce the Axes-
Specific Functional Annotations (ASFA for short) for summarizing the functional
annotations associated with the axes. We demonstrate that ASFAs are not only
functionally coherent, but also can be used to get insights into the evolutionary
history of humans.

In the rest of this section, we first list the scientific papers contained in this thesis
and their current publication status. Then, we list the posters and talks that were
presented at international scientific congresses as a result of this thesis.

1.3.1 Resulting papers

The research conducted as part of this thesis resulted in three scientific papers:

• Doria-Belenguer Sergio, Kirolos Markus, Böttcher René, Malod-Dognin Noël
and Pržulj Nataša. “Probabilistic graphlets capture biological function in
probabilistic molecular networks”. Bioinformatics 36. Supplement 2 (2020),
pp. i804–i812. (DOI: https://doi.org/10.1093/bioinformatics/btaa812).

• Doria-Belenguer Sergio, Xenos Alexandros, Ceddia Gaia, Malod-Dognin Noël
and Pržulj Nataša. “A functional analysis of omic network embedding spaces
reveals key altered functions in cancer”. Bioinformatics (2023).
(DOI: https://doi.org/10.1093/bioinformatics/btad281).

• Doria-Belenguer Sergio, Xenos Alexandros, Ceddia Gaia, Malod-Dognin Noël
and Pržulj Nataša. “The axes of biology: a novel axes-based network embed-
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ding approach to decipher the fundamental mechanisms of the cell”. (under
submission).

1.3.2 Posters and Talks

The research carried out during the development of this thesis was presented at two
scientific conferences through one poster and one oral presentation:

• 19th European Conference on Computational Biology (ECCB2020) virtually
held from September 31st to 8th, 2020.

– Doria-Belenguer Sergio, Kirolos Markus, Böttcher René, Malod-Dognin
Noël and Pržulj Nataša. “Probabilistic graphlets capture biological func-
tion in probabilistic molecular networks.” (Proceedings Systems Track -
Speaker).

• 21st European Conference on Computational Biology (ECCB2022) held from
18th to the 21st of September, 2022, in Sitges, Spain.

– Doria-Belenguer Sergio, Xenos Alexandros, Ceddia Gaia, Malod-Dognin
Noël and Pržulj Nataša. “A functional analysis of omic network embed-
ding spaces reveals key altered functions in cancer.” (Posters track).

1.4 Thesis outline

The thesis is structured as follows:
In Chapter 2 we provide an overview of the current state of the knowledge

and research in the field of biological networks, highlighting the main issues and
questions that the present dissertation aims to address.

In Chapter 3, we extend the graphlet-based methodology to probabilistic net-
works by introducing our probabilistic graphlets. First, we assess their performance
compared to unweighted graphlets, by generating synthetic networks based on dif-
ferent well-known random network models and edge probability distributions. We
demonstrate that probabilistic graphlets outperform their unweighted counterparts
in distinguishing network structures. Following this, we model various real-world
molecular interaction networks as weighted graphs with probabilities as weights on
edges and we analyze them with our new probabilistic graphlets-based methods.
We show that due to their probabilistic nature, probabilistic graphlet-based meth-
ods more robustly capture biological information in these data, while simultaneously
showing a higher sensitivity to identify condition-specific functions compared to their
unweighted graphlet-based method counterparts.

In Chapter 4, we introduce the FMM, a new network embedding approach
for exploring the functional organization of the embedding space from a functional
perspective. We use our FMM-based methodology to explore the functional orga-
nization of different tissue-specific PPI embedding spaces generated by the NMTF
algorithm. Also, we use our FMM to define the optimal dimensionality of these
molecular interaction networks embedding spaces. For this optimal dimensional-
ity, we compare the FMMs of the most prevalent cancers in humans to the FMMs
of their corresponding control tissues. We find that cancer alters the positions in
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the embedding space of cancer-related functions, while it keeps the positions of
the non-cancer-related ones. We exploit this spacial “movement” to predict novel
cancer-related functions. Finally, we predict novel cancer-related genes that the cur-
rently available methods for gene-centric analyses cannot identify; we validate these
predictions by literature curation and retrospective analyses of patient survival data.

In Chapter 5, instead of using the organization of the embedded entities (e.g.,
genes or functional annotations) in the embedding space, we propose to use the
axes of the space where these entities are embedded to uncover the fundamental
mechanisms of the cell, i.e., those mechanisms that summarize the most important
functions of the cell. We introduce a new network embedding approach that shifts
the exploration of network embeddings from the genes’ embedding vectors to the
axes of the embedding space. We apply our axes-based method to uncover new
biological information from the functional organization of different species-specific
PPI embedding spaces generated by the NMTF and Deepwalk algorithms. First, we
demonstrate that the embedding axes disentangle coherent biological information
from the functional organization of these species-specific PPI embedding spaces.
We also show that the properties of the embedding spaces produced by NMTF,
such as orthonormality and positive constraint, improve the organization of such
embedding spaces resulting in the disentangling of more biological information by
their embedding axes. Then, we use our axes-based method to define the optimal
dimensionality of the NMTF embedding spaces of each species. For this optimal
dimensionality, we perform an in-depth analysis of the biological meaning of the
GO BP terms associated with their axes by generating their ASFAs. We investigate
the functional coherence of those ASFAs with manual literature curation and analyze
them in the context of evolution. Finally, we explore the biological meaning of those
axes that do not capture any GO BP terms.

Finally, in Chapter 6, we conclude the dissertation by providing a summary of
the thesis achievements and future steps.
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Chapter 2

Background

In this section, we introduce the background for the research presented in this dis-
sertation. We begin by introducing the main types of real-world biological networks.
Then, we introduce the relevant network theoretic analysis of biological networks,
including the most simple measures of network topology. We continue by introduc-
ing the basic random network models that are used to understand the structural
properties of biological networks. After this, we introduce the most frequently used
approach to link the topology of a network with biological knowledge, clustering
and functional enrichment analysis. Finally, as the main focus of this dissertation
is the development of new computational applications to extract biological infor-
mation from biological networks, we conclude this Chapter by introducing state-of-
the-art computational approaches for uncovering the biological information hidden
in their wiring patterns: graphlets-based methods and network embedding-based
approaches.

2.1 Biological networks

Biological networks are an abstract conceptual model of a definite set of biological
entities (e.g., proteins, genes, or metabolic pathways), and the relationships between
those entities (i.e., interactions among proteins). These networks appear in different
forms and represent different types of information about the cell. Mining these
biological networks uncovers valuable insights into the organization and dynamics
of biological systems.

Biological networks can be directed or undirected, depending on the presence of a
direction among node pairs that form the edges. Similarly, edges can be unweighted
or weighted for representing their relative importance in the network (network mod-
els are defined in section 2.2). In Chapter 3 of this dissertation, we focus on a
special case of undirected and weighted biological networks. In particular, we focus
on probabilistic networks, in which the weights represent the probability that an
interaction between two nodes occurs. On the other hand, in Chapters 4 and 5,
we mainly concentrate on undirected and unweighted biological networks, since the
networks of this form still carry valuable amount of information, and the embedding
approaches for analyzing these networks are much more scalable to large networks
than their weighted counterparts.

The main types of biological networks are PPI networks, genetic interaction net-
works, gene co-expression networks, metabolic networks, transcriptional regulation
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networks, and cell signaling networks. In this section, we describe these biological
networks and specify in which chapters of this dissertation we analyze them.

PPI networks: Proteins are responsible for the majority of cellular activities
and serve as the fundamental components for the structure and function of cells.
Most cellular functions need stable and transient PPIs to be formed. PPI networks
represent the binding information among all proteins of an organism; nodes repre-
sent the proteins and edges represent physical interactions between two proteins.
Protein interactions are highly correlated with gene expression. Changes in gene
expression alter the number of available proteins in a cell, therefore regulating the
type of possible protein interactions in the cell. These changes occur as part of nor-
mal cellular processes, such as cell differentiation, or as part of pathological events,
such as cancer transformation. Gene expression data is usually used to construct
tissue-specific PPI networks. This is achieved by isolating the subnetwork of in-
teractions from the global PPI network that involve proteins expressed within the
tissue of interest [1, 24]. PPI networks appear as undirected networks. While the
interactions in these networks are typically represented as unweighted edges, some
studies assign weights to these edges to reflect the level of confidence in the existence
of the interaction [25, 11].

PPIs can be detected through various experimental essays, and can also be pre-
dicted by computational methods. Experimental PPI detection methods can be
characterized by the number of interactions (high vs low-throughput), the types of
proteins involved (e.g., membrane, soluble), whether the proteins are modified, the
types of interactions detected (e.g., direct and indirect), and the settings where in-
teractions are detected [26]. Specific detection methods identify different numbers of
interactions: Low-throughput methods (LT), such as affinity chromatography essays
or affinity precipitation [27], identify in the order of tens of interactions. In con-
trast, high-throughput (HR) methods, such as yeast two-hybrid screening or affinity
purification-mass spectrometry experiments [28], detect hundreds to thousands of
interactions. The main difference between LT and HR methods is the reliability
of their results. Studies based on LT methods usually employ a combination of
approaches to identify PPIs [29], and consequently, their results are considered re-
liable [30, 31]. On the other hand, HR methods bring the possibility of identifying
a large fraction of all PPIs in an organism in a relatively short amount of time.
However, they have not replaced LT methods due to their higher cost, larger com-
plexity, as well as, concerns about their accuracy [32]. Indeed, the error rates of
these high-throughput methods are quite high, and it has been demonstrated that
only 35-83% of the PPIs detected by these methods are actually real [33]. Hence,
PPIs identified by HR methods have to be validated with LR approaches.

Apart from the number of PPIs that they can detect, experimental PPI detec-
tion methods also vary on the type of proteins involved in the interactions they can
identify. For instance, some detection methods, such as yeast two-hybrid methods,
do not detect interactions between membrane proteins, while other methods, such
as mammalian membrane two-hybrid assays, only capture interactions between this
type of proteins [34]. Another important distinction between detection methods is
the type of interactions that they can capture. PPIs are commonly divided into two
classes: direct interactions (when two proteins physically interact) and indirect in-
teractions (when they are part of the same complex but not in direct contact). Some
methods, such as affinity purification-mass spectrometry, can identify complexes in-
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volving more than two proteins but do not report which pairs of proteins are in
direct contact. In contrast, detection methods, such as mammalian membrane two-
hybrid, detect direct interaction between proteins but not indirect ones [35]. Hence,
the selection of a specific PPI detection method will result in PPI networks with
very different properties [26].

Finally, a common limitation of most detection methods is that they do not de-
tect PPIs in an entirely natural setting. Most methods, including yeast two-hybrid,
luminescence-based mammalian interactome mapping, and fluorescence resonance
energy transfer, require modifications to candidate interacting proteins (e.g., tagging
them with a specific binding domain or a fluorescent label), which can potentially
interfere with the interactions being studied [36, 37]. Moreover, common methods,
including yeast two-hybrid and membrane yeast two-hybrid, are carried out in yeast
cells regardless of the organisms the genes are taken from. The genes from different
organisms may not behave as in their native environment when they are in the yeast
nucleus. Indeed, it is estimated that 50% of the PPIs identified by yeast two-hybrid
screening assays are noisy [30].

Regarding the computational methods to predict PPIs, there are numerous
approaches that rely on machine learning, statistical, and graph-theoretical ap-
proaches. However, interaction predicted by these methods should be used with
caution or excluded in most analyses, since PPI networks already contain high lev-
els of experimental noise which will exponentially increase with the inclusion of
predicted interactions. Hence, during this dissertation, we build our PPI networks
with those PPIs that are experimentally validated and exclude those that are pre-
dicted by computational approaches.

Finally, one of the main problems with PPI networks is their incompleteness. For
a network of n nodes, there exists n(n − 1)/2 possible interactions. The estimated
size of the human proteome is approximately 70,000 [38], raising the need for testing
2.5 billion PPIs for their existence. In addition to this huge number of possibilities,
most of the PPIs identification studies are focused on a certain process or disease,
leaving the other parts of the PPI network uncovered. In fact, less than 40% of the
human PPI network is known, assuming a total of about 650,000 interactions [39].
Moreover, even for Saccharomyces Cerevisiae, the most well-studied organism for
PPI networks, only about half of its PPI network has been discovered, assuming an
estimated number of interactions ranging from 37,800 to 75,500 [40].

Over the last decades, there has been a great effort to build biological databases
and resources on PPI data. The main public databases that contain PPI networks
are the Biological General Repository for Interaction Datasets (BioGrid) [41], the
Saccharomyces Genome Database (SGD) [42], the Munich Information Center for
Protein Sequences (MIPS) [43], the Database of Interacting Proteins (DIP) [44],
the Human Protein Reference Database (HPRD) [45], the Molecular Interaction
database (MINT) [46], and the Search Tool for the Retrieval of Interacting Genes /
Proteins Database (STRING) [47].

In Chapter 3 of this dissertation, we apply our graphlet-based method to the
unweighted and probabilistic PPI networks of Homo sapiens sapiens and Saccha-
romyces Cerevisiae. We collect these PPI networks from the STRING database. In
Chapter 4 of this dissertation, we apply our new network embedding method to an-
alyze the tissue-specific PPI networks of the most prevalent cancers in humans and
their corresponding control tissues. The human PPI network used for generating
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these tissues-specific PPI networks was collected from BioGrid. Finally, in Chapter
5, we use a new network embedding approach to investigate the PPI networks of
five species. We obtain these species-specific PPI networks from BioGrid. Details
about the construction and acquisition of these PPI networks can be found in their
corresponding chapter.

Genetic interaction networks: These networks link genes that genetically
interact. Two genes are said to have genetic interaction if simultaneous mutations
to both genes result in a phenotype that would have not been expected by the
phenotype of both single mutations [48]. The most commonly used phenotype for
measuring the effects of gene mutations is the cell fitness; i.e., the ability of a cell
to survive and reproduce in the cells’ culture. The effects of the mutations on the
cell fitness are usually measured as follows. When a single gene is mutated, we
quantify the fitness of the mutated cell by measuring its growth rate compared to
that of the wild type (non-mutant). Then, we mutate a pair of genes, A and B, in
the same cell (double mutant) and measure the fitness of the double mutant. We
expect the fitness of the double mutant to be a function of the fitness of the two
single mutants, i.e., of the cell with only gene A mutated and the cell with only
gene B mutated. When the fitness of the double mutant is significantly different
from the expected combined fitness of the single mutants, then we say that genes
A and B interact [26]. Genetic interactions include two broad categories: positive
and negative [49]. Positive genetic interactions refer to double mutants with a less
severe fitness defect than expected. Conversely, negative genetic interactions refer
to a more severe fitness defect than expected, with an extreme case being synthetic
lethality [50]. Examples of genetic interactions are synthetic lethality, synthetic sick-
ness, and synthetic growth defect. Genetic interactions are detected by synthetic
genetic array (SGA) [51] or synthetic lethal analysis by microarray (SLAM) [52]
experiments. In genetic interaction networks, nodes represent the genes and edges
connect two genes if the observed phenotypes after the mutation of genes are un-
expected. These networks are undirected. Edges can be weighted based on the
Z-scores of the observed phenotypes.

Recently, a special case of genetic interaction network has been proposed, the
genetic interaction similarity networks (GIS) [53]. These networks link genes with
similar genetic interaction profiles. It has been demonstrated that genes belonging
to the same pathway or biological process tend to share similar profiles of genetic
interactions [54]. Hence, GIS networks highlight genetic relations between diverse
biological processes capturing the inherent functional organization of the cell [53].
The similarities between the genetic interaction profiles of the genes are quantified by
computing Pearson’s correlation coefficient (PCC) between them. In GIS networks,
nodes represent the genes and edges connect two genes if the similarity between
their genetic interactions profiles is higher than a given threshold. These networks
are undirected. Edges can be weighted based on the PCC of the genes’ genetic
interaction profiles.

The main public databases for obtaining genetic interaction data are BioGRID [41]
and Flybase [55]. Contrary to PPIs, genetic interactions have not been deeply
studied in all organisms. Saccharomyces Cerevisiae, Schizosaccharomyces Pombe,
Drosophila Melanogaster, and Caenorhabditis Elegans are the only well-studied or-
ganisms for genetics interactions in the last years. Genetic interaction networks
are not analyzed in the scope of this dissertation. Regarding GIS data, the only
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available data source is the study by Costanzo et al. [53]. In this study, Costanzo
et al. examine 5.4 million gene-gene pairs generating gene interaction profiles for
approximately 75% of the genome of Saccharomyces Cerevisiae.

In Chapter 3 of this dissertation, we apply our graphlet-based method to the
unweighted and probabilistic GIS network of Saccharomyces Cerevisiae. The GIS
data used to construct these networks was obtained from the study by Costanzo et
al. [53]. The construction and acquisition of these networks are detailed in Chapter
3 of this dissertation.

Gene co-expression (CoEx) networks: These networks represent the cor-
relation of the expression of the genes over time. Two genes are linked if their
expression is significantly correlated over time [26]. CoEx networks are built on
gene-expression databases. These databases contain different expression profiles that
show how gene expression is perturbed by developmental stages, different growth
conditions, stress, disease, and specific mutations [56]. The correlation of expression
profiles for a set of genes across different experimental conditions suggests that the
sets of genes are functionally related. Usually, PCC is used as a measure of gene co-
expression. A PCC between two genes of “1”, indicates a strong relationship in an
aspect of gene expression regulation, and “0” indicates no relationship [57]. There
are many genes that only have low PCC co-expressed gene pairs, but are still func-
tionally relevant. Thus, PCC is not usually applied to build co-expression networks.
Instead, the PCC is used to compute the mutual rank between the genes. This mea-
sure keeps the weak but significant gene co-expression from being discarded [57].
The mutual rank between two genes, A and B, is computed by first ranking gene B
in relation to gene A, and then ranking gene A in relation to gene B, using PCCs
(this is called the correlation rank). Then, the mutual rank between genes A and
B is obtained by geometrically averaging their correlation ranks. Finally, differ-
ent thresholds on the mutual rank between the genes are applied to choose those
genes that are co-expressed [10, 58]. Gene expression profiles are generally obtained
from DNA microarray experiments. In gene co-expression networks, nodes repre-
sent genes and edges connect two genes if their mutual rank is higher than a given
threshold. These networks are undirected. Edges can be weighted based on PCCs
or the mutual rank between the expression profiles of the genes.

The main public databases for obtaining gene co-expression data are COX-
PRESdb [59] and GeneFriends [60]. Specifically, COXPRESdb provides gene co-
expression data for 11 species. In Chapter 3 of this dissertation, we apply our
graphlet-based method to the unweighted and probabilistic CoEx networks of Sac-
charomyces Cerevisiae. The gene co-expression data used to build these networks
was obtained from COXPRESdb.

Metabolic networks: These networks model the metabolism of a cell. The col-
lection of all metabolic reactions that occur in a cell forms a metabolic network [61,
62]. A metabolic reaction transforms one metabolite (substrate) into another (prod-
uct) and it is catalyzed by an enzyme (protein). Metabolites can be small molecules,
such as glucose, or larger molecules, such as polysaccharides. A metabolic reaction
involves at least two metabolites (substrate and product) and an enzyme. Metabolic
reactions can be divided into two main categories: catabolic reactions, which involve
the breakdown of metabolites to release energy (e.g., glucose to pyruvate by cellu-
lar respiration), and anabolic reactions, which involve the synthesis of molecules
using energy (e.g., synthesis of glycogen from glucose) [63]. These reactions are
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often represented by directional edges since they represent the chemical conversion
of the substrate to a product. However, most metabolic reactions are reversible,
e.g., glycogenesis (synthesis of glycogen from glucose) and glycogenolysis (break-
down of glycogen to glucose). Hence, these reactions can also be represented by
undirected edges. Since metabolic reactions involve two biological entities (metabo-
lites and enzymes), bipartite networks are a natural choice to represent metabolic
reactions [64]. In a bipartite metabolic network, there are two distinct sets of nodes:
one set representing metabolites and the other set representing enzymes. Edges
exist only between nodes from different sets (i.e., enzymes to metabolites) but not
between nodes from the same set (i.e., enzymes to enzymes) [64]. That is, an en-
zyme is linked to metabolites that are inputs and outputs of the reaction that it
catalyzes. Edges in these bipartite networks can be either directed or undirected.
Also, there exist metabolite-centric and enzyme-centric network representations. In
a metabolite-centric network representation, nodes represent metabolites and edges
connect two metabolites if there is an enzyme that mediates the reaction that trans-
forms one metabolite into the other. In an enzyme-centric network representation,
nodes represent enzymes and edges connect two enzymes if they catalyze reactions
involving the same metabolite. The choice of the metabolic network representation
variate depending on the problem being studied.

The main databases for obtaining metabolic data are the Kyoto Encyclopedia of
Genes and Genomes (KEGG) [65], GeneDB [66], metaTIGER [67], and ERGO [68].
Analyses of metabolic networks are out of the scope of this dissertation.

Transcriptional regulation networks: These networks model gene expres-
sion regulation. The regulation of the gene expression typically involves the binding
of proteins (known as transcription factors) to cis-regulatory sequences, such as en-
hancers and promoters, in the genome [69]. Transcriptional regulation networks are
a simplified representation of this phenomenon, where nodes represent genes and
two nodes, A and B, are connected if the protein product of gene A (transcription
factor A) regulates the transcription of B. These networks are directed, since the
relation between the nodes is asymmetric, e.g., gene A controls the expression of
Y, but Y may not influence the expression of A. One limitation of this represen-
tation is that there is no difference between repression and enhancement of gene
expression. This is usually remedied by using weighted networks to represent this
phenomena [26]. Techniques to detect the gene expression regulation by transcrip-
tion factors include chromatin immunoprecipitation followed by high-throughput se-
quencing (ChIP-Seq), chromatin immunoprecipitation followed by microarray anal-
ysis (ChIP-chip), and electrophoretic mobility shift assay (EMSA) [70].

The databases that contain transcription regulation information are KEGG [65],
EcoCyc [71], GeneNet [72], Reactome [73], RegulonDB [74], JASPAR [75], Phos-
pho.ELM [76], The PHOsphorylation SIte DAtabase (PHOSIDA) [77], TRANSPATH [78],
and The Small Molecule Pathway Database (SMPDB) [79]. Analysis of transcription
regulatory networks is out of the scope of this dissertation.

Cell signaling networks: These networks model the complex signaling mech-
anisms inside the cell, or between a cell and the extracellular environment [80].
Regulation of cellular processes allows cells to maintain homeostatic balance and
make decisions as to whether to divide, differentiate, or die [81]. In each case, the
cell responds to chemical, mechanical, or electrical signals. These signals can be
intracellular, when they occur within a single cell, and intercellular, which occurs
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between cells. Cells respond to these signals through signaling pathways. Signaling
pathways transduce the signal from a cell membrane receptor to the nucleus. This
transduction is achieved by an ordered sequence of reactions. In short, after the first
protein (usually a receptor) in the pathway receives a signal, it activates another
protein. This process is repeated through the entire signaling pathway until the sig-
nal arrives at the nucleus. As a result, transcription happens in the nucleus enabling
the cell to react [81]. A cell signaling network captures this transient sequence of
interactions between proteins that transduce a signal from the first protein in the
pathway to the nucleus. All signaling pathways of a cell from its signaling network.
The nodes of these networks are proteins and the directed edges connecting these
proteins represent the signals propagated from one protein to another. These net-
works are used for modeling the cellular responses to different internal and external
stimuli by means of pathways.

The databases that contain cell signaling information are TRANSPATH [78] and
the Microbial Signal Transduction (MiST) database [82]. Cell signaling networks
are not analyzed in the scope of this dissertation due to their limited availability.

Other biological networks: Biological networks also include neural networks
modeling the connections of the neurons in the brain [83], disease-genes networks
modeling the genes that are affected by the same diseases [84], drug-target networks
modeling the proteins that are targeted by the same drugs [85], and protein structure
networks modeling the tertiary (3D) structure of a protein [83]. These networks are
not analyzed in the scope of this dissertation.

2.2 Concepts on Networks

A graph, or a network G, is a mathematical representation of a set of objects and
the relations among them. A network is formally denoted by G = (V,E), where V is
the set of nodes that represent the objects, and E is the set of edges that define the
relations among the elements of V . An edge e ∈ E corresponds to a pair of nodes
(u, v) ∈ V 2. Edge e = (u, v) is said to join the nodes u and v, which, in turn, are
called the ends of edge e. An edge is incident to both its ends and the nodes joined
by an edge are called adjacent. If both ends on an edge correspond to the same
vertex, e = (v, v), this edge is called a loop. A network is undirected if the edges of
the network have no orientation; i.e., ∀(u, v) ∈ E : (u, v) = (v, u). These networks
represent a symmetric interaction between the nodes, for instance, a physical contact
between two proteins in a PPI network. On the other hand, a network is directed
if the edges of a network have direction; i.e., ∀(u, v) ∈ E : (u, v) ̸= (v, u). Directed
edges are used to represent asymmetric interactions between the nodes, for instance,
the regulation of the expression of gene A by the protein product of gene B. Directed
edges are represented by arrows and a directed edge originates from at the source
node and points to the target node. If two nodes are joined by two or more edges,
then we say that there is a multi-edge between those two nodes. Edges in directed
and undirected networks can be weighted or unweighted. A weighted network has a
weight, or score, associated with each edge. Formally, a weighted graph is defined
by its nodes and edges sets (V and E), as well as a set of possible weights Ω and a
function ω : E → Ω assigning a weight to each edge. Weighted networks can be used
to include the probability of the existence of a given interaction between two nodes
(in this case Ω = [0, 1]). This special case of weighted networks is called probabilistic
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networks and is widely used in biology to represent the uncertainty associated with
molecular interactions (we focus on these networks in Chapter 3). As opposed to
weighted networks, unweighted networks do not have weights assigned to the edges.
Thus, in an unweighted network, each connection between nodes is either present
or absent, which is why these networks are also referred to as binary networks.
Finally, a simple network is an undirected and unweighted network that contains no
loops (∀v ∈ V : (v, v) ∄ E), and no multiple edges (we focus on these networks in
Chapters 4 and 5). The different networks introduced in this section are illustrated
in Figure 2.1.

Figure 2.1. Examples illustrating: a simple network G; an unweighted directed network
H with a multi edge between nodes c and d; an undirected weighted network I; an un-
weighted directed network K with a loop in node a.

The degree of a node v corresponds to the number of edges incident to v and
is denoted by d(v). The neighborhood of node v, N(v), is the set of nodes that
are adjacent to v. Consider network G of Figure 2.1: node c has degree 3 (d(b) =
3) and the nodes in its neighbourhood are a, b, and d. A network H(V ′, E ′) is a
subnetwork of G(V,E) if it contains a subset of nodes of G, V ′ ⊆ V , and a subset
of edges connecting those vertices, E ′ ⊆ E. A subgraph H(V ′, E ′) of G is induced
if it contains all the edges in G between the nodes in V ′; otherwise, it is a partial
subgraph. Two networks G(V,E) and H(V ′, E ′) are isomorphic if there exists a
function f : V → V ′ such that vu ∈ E if and only if f(v)f(u) ∈ E ′. The function f
is a bijection, which means that f is a one-to-one mapping of the nodes in G to the
nodes of H. In other words, we say that two networks are isomorphic if their nodes
and edges can be mapped one-to-one onto each other.

A walk in an undirected network G(V,E) is a sequence of nodes of V such that
the consecutive vertices are adjacent. A walk w = v0...vn ∈ V n+1 is closed if the
starting and ending nodes are identical, i.e., if a walk starts and ends at the same
node (v0 = vn), otherwise it is open. The length of a walk w corresponds to the
number of edges it contains; here w is of length n [86]. A v-u walk, where (v, u) ∈ V 2,
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is a walk that starts at node v and ends at node u. The shortest v-u walk is a v-u
walk of minimum length. Hence, a path between nodes v and u is an ordered set
of edges that need to be traced for reaching node v without visiting any node more
than once. Similar to the shortest walk, the shortest path is a path of minimum
length. For example, consider network G of Figure 2.1: the shortest path between
node a and d is the path the a-c-d. If a walk never visits any node in V more than
once, it is called path. A network is connected if there exists a path from every node
to every other node in the network, otherwise, it is disconnected. A random walk is
a walk that starts in a certain node and proceeds from node to node along the edges
by randomly choosing the edge to be followed [87]. This process continues until a
stopping criterion is met, such as a certain number of steps or reaching a specific
node. In an unweighted network, the probability of choosing a certain edge is equal
across all available edges. Hence, the transition probability from node vi to node vj,
denoted by P (vi, vj) is given by:

P (vi, vj) =

{ 1
d(vi)

if (vi, vj) ∈ E

0 otherwise
(2.1)

Where d(vi) denotes the degree of node vi. Similar notions are defined for di-
rected networks with the difference being that the direction of the edges needs to
be followed, i.e., a walk w = v0...vn ∈ V n+1 if defined in a directed network if for
any consecutive pairs of nodes, there is a directed edge with source vi−1 and target
vi, with i ∈ [1, n].

2.2.1 Network Representations

There are two standard ways to represent a network G(V,E), with V nodes and
E edges: Adjacency list and adjacency matrix [88]. Either way applies to both
directed and undirected graphs. The adjacency list of G(V,E) consists of an array
AL of |V | lists, one for each node in V . For each v in V , the adjacency list AL[v]
contains all the nodes such that there is an edge (v, u) ∈ E. That is, AL[v] consists
of all nodes adjacent to v in G. For representing weighted networks, an extra list
of edge weights should be kept for each node. The adjacency matrix of G(V,E)
is a |V | × |V | matrix Adj, where Ajd[v, u] is a non-zero value when nodes u and
v are connected, and equal to 0 otherwise. This matrix is symmetric when G is
undirected. For representing weighted networks, the edge weights can be encoded
in the value of Adj[u, v]. Figure 2.2 presents the adjacency lists and adjacency
matrices of an unweighted undirected network and a weighted undirected network.
The choice of which representation to use depends on the network and the task at
hand. If a network is sparse (as most biological networks are), the adjacency list
representation is more efficient to store and traverse the network.

Recently, an alternative way of representing a network has been introduced, the
Positive Pointwise Mutual Information (PPMI) matrix [89]. The PPMI matrix orig-
inated in the NLP field to represent the association between words in a lexical corpus
(e.g. a passage or a document). In NLP, rows and columns of this matrix represent
words and their cells quantify if two words co-occur more frequently than expected
at random assuming they are independent. Similarly, the PPMI representation of
network G(V,E) is a |V | × |V | matrix PPMI, where rows and columns represent
nodes and entry PPMI[v, u] quantify if node v and u co-occur more frequently in
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Figure 2.2. An illustration of networks G and I and their adjacency matrices Adj(G)
and Adj(I), and their adjacency lists AL(G) and AL(I). In Adj(G) the 1s represent the
existence of an edge from the node in a row to the node in the column. In Adj(G) the
non-zero values represent the edge weight between the node in a row to the node in the
column.

a random walk than expected by random. In opposite to the previous network rep-
resentations, the PPMI matrix captures high-order proximities between the nodes
in the network; hence, the PPMI matrix is considered a richer representation than
the adjacency matrix and the adjacency list (in Chapter 3, we investigate if the
extra information encoded in the PPMI can be exploited to capture more biological
information from molecular networks). We give more background about the PPMI
network matrix representation in section 2.7.1 of this Chapter.

2.2.2 Network Properties

Measures of network structure, also called network properties, are historically and
roughly divided into two categories: local and global ones. In general, if they involve
the full network, then they are global; if they involve only one node and its neigh-
borhood, then they are local [26]. Global network properties give an overall view
of the network with respect to all nodes and edges, and local network properties
evaluate the topology of a network in terms of its subgraphs. In the rest of this
section, we describe the most basic measures of global and local network properties,
and we illustrate them on the example network, G, that is shown in Figure 2.2. The
most complex measures are covered in section 2.6 of this Chapter.

The most elementary local property of a node is its degree (or connectivity).
The degree of a node is the number of links that the node has to other nodes in the
network. For example, the degree of node a in G is 1, and the degree of node c is
3. In molecular networks, it has been shown that the degree of a node is connected
to its biological essentially. For instance, proteins with a high degree in the human
PPI network are connected with multiple diseases, such as cancer [90]. Moreover,
mutations in genes with a high degree in the molecular network cause the death
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Figure 2.3. Degree distribution of network G and the human PPI network (obtained
from BioGrid database v.4.2.191). For the human PPI network, the power-law γ = 0.93
is also presented.

of the cell [91]. However, these observations may not be universal since they were
shown not to hold for more complete PPI networks such as the one of Saccharomyces
Cerevisiae [92]. This demonstrates that simple topology measures are not enough
to capture biological signals, i.e., more sophisticated measures are needed (detailed
at the end of this section and in the last two sections of this Chapter).

The average degree of a network is the arithmetic average of the degrees of all
nodes in the network. The average degree of G is equal to (1 + 1 + 3 + 2 +
1)/5 = 1.6. The degree distribution P (k) of a network gives the probability that
a selected node has exactly degree k. P (k) is obtained by counting the number
of nodes N(k) with k = 1, 2... and dividing by the total number of nodes in the
network. For instance the P (1) of network G is 3 / 5 = 0.6. Figure 2.3 illustrates
the degree distribution of G. Most biological networks have a degree distribution
that approximates a power law, P (k) kγ, where the degree exponent γ > 0[100, 101]
indicates “proportional to.” In a log-log plot, a power law distribution corresponds
to a straight line with slope −γ. Networks with a power-law degree distribution
are called scale-free. The name comes from the fact that power laws have the same
forms at all scales. Scale-free networks share an important property: some nodes
have a tremendous number of connections to other nodes (high degree), whereas
most nodes have just a few [93]. These high-degree nodes are called hubs. In a
scale-free network, the value of γ determines different properties of the system. The
smaller it is, the more important role of the hubs is in the network. In contrast,
for γ > 3 hubs are not relevant. For 2 > γ > 3 there is a hierarchy of hubs, with
the most connected hubs being in contact with a small fraction of all nodes [94].
Such networks display an unexpected degree of robustness, the ability of their nodes
to communicate being unaffected even by extremely high failure rates. However,
high-degree nodes (hubs) are open for targeted attacks which results in the overall
failure of the network [95]. Figure 2.3 illustrates the degree distribution of the PPI
network of human. The cumulative degree distribution, Pc(k), is the probability that
a randomly selected node has a degree smaller than k.

The density of a network describes the portion of all possible edges between the
nodes that are actual edges in the network: density = 2|E|

|V |(|V |−1)
. The density of

G is equal to 8/20 = 0.4. If the number of edges is close to the maximal number
of possible edges (density close to 1), the network is said to be dense. In contrast,
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a network is sparse if the number of edges is low in comparison to the number
of possible edges (density close to 1). Most biological networks are sparse. For
instance, the density of the human PPI network is 0.002 (obtained from BioGrid
database v.4.2.191). The low sparsity of molecular networks is linked with a process
of natural selection and evolution [96]. Sparsity allows the biological systems to have
specialized interactions between molecules preventing cross-talk between different
processes. Moreover, sparse molecular networks are less costly than dense ones, since
they require fewer resources to maintain the interactions between molecules. Finally,
although it may seem intuitive that dense networks are more robust, molecular
networks have evolved to maintain specific wiring patterns that make them also
robust.

To describe how spread the nodes in a network are, we use the average path
length of the network and the diameter of the network. The average path length is
measured by computing the shortest paths between all pairs of nodes and averaging
them. For instance, the average path length is 1.8 for G. The diameter of the
network corresponds to the maximum shortest path distance over all pairs of nodes
(e.g., the diameter is 4 for G). Another network measure is the clustering coefficient,
which is the probability that two neighbors of a node are linked by an edge. The
clustering coefficient of a node v, Cv, is computed as:

Cv =
2× T (v)

deg(v)× (deg(v)− 1)
(2.2)

where deg(v) is the degree of node v and T (v) is the number of triangles through
node v. The clustering coefficient is a measure of the degree to which nodes in a
graph form transitive relations. For instance, all the nodes of G have a clustering
coefficient of 0, since non of their neighbors are connected. The clustering coefficient
can also be thought of as the ratio of the number of triangles containing node v to the
number of triplets of nodes containing node v. The clustering coefficient takes values
between 0 and 1, 0 if no edges connect any pair of nodes in the neighborhood of the
node, and 1 if the neighborhood forms a complete network. The average clustering
coefficient is the arithmetic average of the clustering coefficients of all nodes in
the network and characterizes the overall tendency of nodes to form clusters. It is
formally defined as: C̄ = 1

n

∑
v∈V Cv. A C̄. For a given network, the higher the

C̄ is, the more its nodes tend to form clusters. The C̄ of most molecular networks
is statistically significantly higher than that of an equivalent random network [97]
(random models are introduced in section 2.3). For instance, the average clustering
coefficient of the human PPI (from BioGrid database v.4.2.191) is 0.11, while the
average clustering coefficient of a random network model with the same number of
nodes and edges is 0.04. This indicates that the high clustering is a generic feature
of biological networks and suggests a modular organization of such networks, i.e.,
the organization of its molecular entities into functional sub-units that are sparsely
interconnected [98, 99, 99].

Centrality measures the significance of a node within a network. There are
different well-known centrality measures. The simplest centrality definition is the
degree centrality. which is defined as the degree of a node. The degree centrality
assumes that important nodes of a network are connected to many other nodes
(have a high degree). In network biology, it has been shown the degree of a node
in a molecular network is an indicator of its biological relevance. For instance, the
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dysfunction of proteins with a high degree in the Saccharomyces Cerevisiae PPI
network is lethal for the cell. In contrast, the mutation of proteins with a low degree
does not alter the functioning of the cell [100]. Closeness centrality, Cc(v), is another
centrality measure that evaluates how closely a node is connected to all other nodes
in the network. It is computed as:

Cc(v) =
1∑

v∈V dist(v,u)

(2.3)

where dist(v, u) is the number of edges in a shortest path between nodes v and u.
For instance, in G, the closeness centrality of nodes c and e of G are respectively
0.8 and 0.4; higher values representing more central (important) nodes. In network
biology, this measure of centrality has been used to identify important metabolites,
study the evolution of metabolic networks topology, and compare the metabolic
networks of different species [101, 102]. Betweenness centrality, Cb(v), is a more
detailed centrality measure, for a given node, it evaluates the number of shortest
paths in the network that pass through the node. The betweenness centrality is
computed as:

Cb(v) =
∑

s ̸=t,s ̸=v,v ̸=t

σst(v)

σst

(2.4)

where σst is the total number of shortest paths between nodes s and t and σst(v) is
the number of shortest paths between nodes s and t that pass through node v. In
G, the betweenness centrality of node a is 0 since none of the shortest paths in the
network pass through it. In contrast, the betweenness centrality of node c is 0.83,
which highlights its importance in connecting the rest of the nodes in the network.
Nodes with high betweenness are known to be bottlenecks in the network, i.e. all the
information has to pass through them. In network biology, this measure of centrality
is connected with important regulation processes. For instance, proteins with high
centrality in metabolic networks act as switchboards for regulating cell metabolism
by controlling the trafficking of intracellular metabolites [102].

The eccentricity of a node is the maximum of the shortest path distances between
the node and all other nodes in the network. Hence, low eccentricity of a node means
that the node is in the periphery of the network, while high eccentricity means that
the node is “in the middle” of the network. The eccentricity centrality is computed
as:

Ce(v) =
1

E(v)
(2.5)

where E(v) represents the eccentricity of node v. In G, the eccentricities of nodes
a c are respectively 3 and 2, and the corresponding eccentricity centralities are 0.33
and 0.5. In network biology, this measure of centrality has not yet been linked with
the importance of a molecule in a molecular network. For instance, this centrality
measure is not capable of distinguishing between essential and not essential proteins
of Saccharomyces Cerevisiae from its PPI network [103].

So far, we have introduced the most commonly used centrality measures and we
have shown examples of their use in network biology. There exist other centrality
measures that are not discussed in this section. They include eigenvector centrality,
which identifies nodes that are connected to important nodes as measured by a
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relative score associated with each node, subgraph centrality, which measures the
participation of a node in all subgraphs in a network, and the K-Shell decomposition,
which divides the nodes of a network into groups based on their degrees.

Finally, the most sophisticated network measures are network motifs and graphlets.
Network Motifs (or simply called motifs) are small partial subgraphs that occur in
a network at frequencies statistically significantly higher than expected by random
according to a certain random model [104, 105] (detailed description of the clas-
sical random models is provided in section 2.3). Several studies have investigated
the motifs of biological networks, e.g., in signaling networks and gene regulatory
networks [106, 107, 105], finding that they are functional. Moreover, it has been
shown a correlation between specific motifs and biological functions [108]. However,
Artzy-Randrup et al [104] criticizes the dependence of network motifs on the choice
of the random model used in their identification. They claim that most biological
networks do not have a random topology, i.e., comparing the frequency of the sub-
graphs of input with the frequencies in the random network contains some bias as
the random network model is not a good model for the real network. Since network
comparison is computationally intractable, finding a random network model that
accurately mimics a specific network’s topology is difficult, i.e., this problem can
not be easily solved. On the other hand, motifs are partial subgraphs (they do not
include all the nodes and edges of the original network). Because of it, their ability
to capture topological similarities is not as strong as that captured by the induced
subgraphs. Hence, Przuljet al [3] introduced graphlets; that is small, induced, con-
nected, and non-isomorphic subgraphs of a large network. In comparison to network
motifs, graphlets are independent of any random network model. Moreover, they
are more powerful in capturing the network topology because they are defined as
induced subgraphs of a network. Actually, graphlets and graphlet-based methods
are considered one of the best approaches to capture the local wiring patterns of
the nodes and uncover information from biological networks. In section 2.6 of this
Chapter, we focus on graphlet and graphlet-based approaches.

2.3 Network Models

A network model is a collection of rules for generating random networks with specific
topological properties. The study of network models aims at understanding the
functional mechanisms in the real-world system. Network models have been applied
for multiple purposes; e.g., for identifying the overrepresented subgraphs (network
motifs) in the network [109, 104, 106], investigating dynamic processes on networks,
such as diseases spreading [110, 111], denoising biological networks [112], predicting
interaction [112], or guiding interactome detection experiments [113].

In this section, we present some of the most widely used network models in
the representation of biological networks namely Erdös-Renyi Random networks,
Scale-free networks, geometric networks, and Stickiness Index-based networks.

2.3.1 Erdös-Renyi Random networks

The first random model was introduced by Erdös and Renyi [114]. There are two
related ways of computing an Erdös-Renyi (ER) random network of n nodes and
m edges. The first is to pick a pair of nodes uniformly at random to form the m
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edges. The second is to start with a pair of nodes and, for each possible pair of
nodes, add an edge connecting the pairs with a probability p, with p = m

(n2)
. This

creates a network with approximately pn(n−1)
2

randomly placed edges. ER networks
have many proven topological properties [115]. The node degrees follow a Poisson
distribution, which indicates that most nodes have approximately the same number
of links. The average degree equals (n1)×p. The clustering coefficient is independent
of a node’s degree and low (since the edges in the network are distributed uniformly
at random). The diameter is low, in an order of log(n).

An extension of ER model is the Generalized Random Model (ER-DD). In this
model, the network is generated as for ER networks, but the degree distribution
is forced to match a specified distribution (e.g., the distribution of a molecular
network) through the use of the “stubs” method [116]. To generate an ER-DD
network of n edges, we first associate to a node a number of stubs that correspond
to its degree. We add edges by randomly picking node pairs that have available
stubs and connecting them. When an edge is added, the number of available stubs
of the connected nodes is decreased by one. Therefore, the degree distribution of
these models matches with the given distribution when all stubs are filled. Note
that this procedure may not terminate, as it may encounter impossible constraints
for adding new edges. In that case, it needs to be restarted until it produces a model
network. Similar to ER models, due to the random distribution of the edges, the
clustering coefficient of ER-DD models is low [94].

In Chapter 3, we extend the ER model to probabilistic networks and use them
to assess the performance of our new graphlet-based method in detecting different
network topologies. An illustration of an ER network can be seen in Figure 2.4.

2.3.2 Scale-free Networks

Scale-free networks are characterized by their power-law degree distributions (de-
tailed in section 2.2.2). Barabasi and Albert preferential attachment model (BA)
is the most well-known scale-free network model [94]. The BA model of scale-free
networks starts from a small seed network G0(V0, E0) and at each time point t a
new node v is added to the network, which is connected to an already existing node
u with a probability of:

d(u)∑
w∈Vt

d(w)
(2.6)

where d(u) denoting the degree of node u and Vt being the set of nodes of the
network at time t. As can be seen, new nodes tend to be connected to those nodes
that already have a large number of edges, this process is known as the “rich-gets-
richer principle.” The clustering coefficient and diameter of BA networks are low.
These networks are good models of the World Wide Web [26].

Another scale-free model is the Scale-free Gene Duplication and Divergence model
(SF-GD) [117]. SF-GD imitates the gene duplication and mutation events for the
scale-free network generation. Similarly to the BA model, these networks are gen-
erated iteratively from a small seed network (containing at least an edge). Each
iteration can be decomposed into two main steps: duplication and divergence. In
the duplication step, an existing node v in the network is selected uniformly at
random, and a new node u that is connected to all neighbors of v is added to the
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network. The selected node v and the new node u are also connected with proba-
bility p. In the divergence step (also known as the mutation step), for each node
connected to v and u, one of the two edges (to v or u) is chosen and deleted with a
probability q.

In Chapter 3, we extend the BA model to probabilistic networks and use them
to assess the performance of our new graphlet-based method in detecting different
network topologies. An illustration of a BA network can be seen in Figure 2.4.

2.3.3 Geometric Networks

Geometric networks incorporate spatial information into the representation of a
complex system.

In a geometric random graph (GEO) [118], nodes are independently and uni-
formly distributed in a metric space and they are connected if the distance between
them is smaller than or equal to a distance threshold, r (also called the radius).
The radius is chosen to adjust the density of the network. GEO model can be al-
tered based on the dimensionality of the metric space and the distance measure used
among the nodes (e.g., euclidean or cosine distances). These graphs have Poisson
degree distributions, but there exist variants of geometric networks in which this is
not the case. Their clustering coefficient is large and their diameters are small. It
has been shown that GEO networks model PPI networks much better than other
commonly used network models despite the fact that parts of degree distributions
of PPI networks often follow a power-law [119, 120].

Inspired by the evolutionary dynamics that are observed in nature, Przulj et
al. [119] adapt geometric models to imitate the gene duplication and mutation events
that occur during the evolution of a biological network defining Geometric graph with
gene duplications and mutations (GEO-GD) [119]. Instead of randomly distributing
the nodes uniformly at random in space, the GEO-GD model, the model starts with
a small network and adds nodes to mimic gene duplication and mutations. A node is
randomly selected and duplicated. Then, the duplicated node is placed uniformly at
random within a distance of 2r of the original node, where r is the distance threshold
introduced earlier. The duplication process is repeated until a certain number of
nodes, specified by the user, is reached. The nodes are then connected if they are
within a radius r. GEO-GD networks have been shown to fit real PPI networks
better than the traditional GEO networks [119].

In Chapter 3, we extend the GEO model to probabilistic networks and use them
to assess the performance of our new graphlet-based method in detecting different
network topologies. An illustration of a GEO network can be seen in Figure 2.4.

2.3.4 Stickiness Index Based Networks

As the GEO-GD model, another biologically motivated network model is the Sticki-
ness Index Based Network Model (STICKY) [121]. This model is built on two main
assumptions: high-degree proteins have many binding domains and these domains
are highly involved in physical interactions, and a pair of proteins are more likely
to interact if they both have high degrees (many domains). Based on these as-
sumptions, the idea is to assign a “stickiness” index to a protein proportional to its
degree. The stickiness index of a node v is defined as:
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Figure 2.4. Illustration of networks that have 500 nodes and 1% edge density and
generated from three network models. The corresponding models are Erdös-Renyi random
network (ER), Barabasi and Albert preferential attachment model (BA), and geometric
random graph (GEO).

θv =
d(v)√∑

u∈V (G) d(u)
(2.7)

where V (G) is the set of all nodes in network G and d(v) is the degree of node
v. Nodes are connected with a probability proportional to the product of their
“stickiness” indices. This model is applied to investigate the topological structure
of PPI networks [121]. In this dissertation, we do not consider STICKY-based model
networks.

2.4 Network Comparison

The network comparison problem includes three sub-problems: Network topology
comparison, network alignment, and network querying. Briefly, the network topol-
ogy comparison problem focuses on defining a distance measure that evaluates the
overall topological similarity between two networks. The network alignment prob-
lem aims to produce a mapping between the nodes of two networks such that the
correspondence between the edges of the two networks is maximized. Finally, the
network querying problem searches for a small topological pattern in a large graph.
In the third Chapter of this dissertation, we face this problem by introducing a new
graphlet-based method to compare synthetic probabilistic networks and real-world
molecular networks modeled as probabilistic networks.

The easiest approaches to compare two networks are based on comparing the
global topological properties that are introduced in section 2.2.2. Some of these
global properties (i.e., average degree, average clustering coefficient, and diameter)
can be directly compared by taking their absolute difference. For those global prop-
erties that are in form of distributions (e.g., degree distribution), the most direct
approach is to compute the Euclidean distance of the two distributions. Given two
distributions di and dj, the Euclidean distance D(di, dj) is computed as:

D(di, dj) =

√√√√max(di,dj)∑
k=0

(di(k)− dj(k))2 (2.8)
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The distributions are usually normalized before computing the Euclidean dis-
tance in order to highlight a specific part of the distribution. An alternative ap-
proach to compare distributions is by the use of standard statistical tests such as
Kolmogorov-Smirnov [122] or Mann-Whitney U [123]. Other approaches to com-
pare networks are based on more complex measures. Among them, the leading edge
method to compare the topological similarity between networks is the Graphlet
Correlation Distance (GCD) [4]. To compute this distance, we have to obtain the
graphlet correlation matrices (GCMs) of the networks that we want to compare.
These matrices summarize the topology of a network of any size into an 11 × 11
symmetric matrix with values between -1 and 1. Then, the GCD between two net-
works, G1, and G2, is defined as the Euclidean distance of the upper triangle values
of their GCMs. The GCD outperforms other measures when applied to synthetic
and real networks. Moreover, it has been broadly applied to several real-world prob-
lems [4]. In section 2.6 we give details about this graphlet-based distance (details
about GCM and GCD can be found in section 2.6.3 of this Chapter).

2.5 Network Clustering and Functional Enrich-

ment Analysis

One of the most commonly used approaches in network biology is the clustering and
enrichment analysis approach. This approach is divided into two different steps:
(1) the clustering of the nodes, and (2) the functional enrichment analysis of the
clusters. Network clustering involves grouping the biological entities in the network
into clusters based on a similarity metric (e.g., the local topological similarity of the
nodes or distance of their vectorial representations in the embedding space). On
the other hand, functional enrichment analysis evaluate the biological significance
of the clusters by assessing the statistical over-representation of specific biological
functions (represented by functional annotations) within the clusters. Together,
these approaches are powerful tools in various scenarios, such as finding the link
between the local topology of the nodes and their biological functions [2], the pre-
diction of protein functions [124], or the identification of new oncogenes [125]. In this
section, we first give an overview of the most used network clustering algorithms.
Then, we focus on the functional enrichment analysis of the clusters and provide a
description of the most used functional annotations databases. We end this section
by describing methods to summarize large lists of functional annotations.

2.5.1 Network Clustering

Network clustering is one of the most popular approaches for analyzing the topolog-
ical and functional properties of biological networks. The goal of network clustering
is to identify clusters of nodes in the molecular network that exhibit significant clus-
tering properties. Network clustering methods usually require a topological measure
of the nodes in the network, e.g., their local wiring patterns, to cluster them based
on their similarity. These clusters uncover topological and functional modules of
the network. Moreover, they enable the prediction of the functions of unknown
molecules by assigning to it the function of another molecule that belongs to the
same cluster [124]. Depending on the way the biological entities are clustered, net-
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work clustering methods can be broadly divided into two categories: hard clustering
approaches and soft clustering methods. Hard clustering approaches assign each
node to only one cluster, i.e., there are no overlapping clusters. In contrast, soft
clustering methods allow each node to be assigned to more than one cluster at the
same time, i.e., there are overlapping clusters.

Network clustering methods include several clustering algorithms. One of the
most well-known hard clustering algorithms is k-means. This method groups the
nodes into k clusters based on their distance in a d-dimensional Euclidean space.
The algorithm starts by initializing k cluster centers randomly in the space. Then,
for each node, the algorithm computes its Euclidean distance to all the cluster cen-
ters and assigns the node to the closest one. Thereafter, the centers are updated
based on the nodes assigned to each cluster. This process of assigning nodes to the
clusters and updating the cluster centers is iteratively repeated until convergence.
In biomedicine, k-means has been widely applied for several tasks, such as clustering
gene expression data [126] or clustering proteins based on their topological struc-
ture [127]. However, its application to the analysis of biological networks is limited.
One reason is that the algorithm requires the d-dimensional Euclidean space [26].,
i.e., it does not capture the non-linear relationships between the nodes. In addition,
it is not robust against outliers, which limits its use on biological networks where a
few highly connected nodes can have a significant impact on the results. A variant
of this algorithm is k-medoids. K-medoids follow the same concept as k-means by
iteratively assigning the nodes to the closest cluster center and updating the center.
However, these methods use medoids (objects from the data set) instead of means
to define cluster centers, i.e., are less sensitive to outliers. Additionally, k-medoids
can handle non-numeric data and do not require a Euclidean space, making them
more versatile compared to k-means [128]. Despite these benefits, k-medoids also
present the same drawback as k-means, they both require the number of clusters, k,
to be specified beforehand.

A totally different clustering algorithm is the Hierarchical clustering. This hard
clustering method takes as input only a N × N distance matrix and dynamically
builds a hierarchy of clusters based on the similarity of the objects. The process of
building this hierarchy can be done in two different ways: agglomerative and divisive.
In agglomerative clustering, the algorithm starts with each node as its own cluster
and successively merges smaller clusters into larger ones until all nodes are in the
same cluster or a stopping criterion is met. On the other hand, In divisive clustering,
the algorithm starts with all nodes in the same cluster and splits it into smaller ones
until each node forms its own cluster or a stopping criterion is met. Hierarchical
clustering has two main advantages over k-means and k-medoids algorithms. First,
it does not require the number of clusters as input. Second, this method not only
provides a separation of the objects into clusters but also gives the hierarchical
relationship between the clusters.

During this dissertation, we use different clustering algorithms for different tasks.
In Chapters 3, 4, and 5, we apply the k-medoids algorithm to cluster genes and
proteins based on different similarity measures, such as the similarity of their local
wiring patterns in the PPI network or the cosine distances of their embedding vectors
in the PPI embedding space. Also, in Chapter 4, we use hierarchical clustering to
explore the hierarchical organization of the genes’ embedding vectors in different
tissues-specific PPI network embedding spaces.
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2.5.2 Functional Enrichment Analysis

Functional enrichment analysis is a statistical method used to determine whether
certain biological functions, pathways, or disease-related processes are over-represented
in a set of genes or proteins. In network biology, this method is usually applied after
clustering the nodes (e.g., genes or proteins) of the molecular network to interpret
and understand the biological significance of the clusters. Functional enrichment
analysis involves computing the probability that a biological function is enriched
(over-represented) in a cluster. This probability is computed by using sampling
without replacement strategy (also called the hypergeometric test) [129]. The prob-
ability that a biological function represented by annotation a is enriched in a cluster
of genes Cj is computed as:

p(a) = 1−
X−1∑
i

(
K

i

)(
M − k

N − i

)
/

(
M

N

)
(2.9)

where N is the number of genes in Cj (only annotated genes from the cluster are
taken into account), X is the number of genes in Cj that is annotated with a, M is
the number of annotated genes in the molecular network, and K is the number of
genes in the molecular network that are annotated with a. The biological functions
of genes (or, more properly, the proteins and non-coding RNA molecules expressed
by the genes) are often represented by functional annotations. Functional annota-
tions provide a computational representation of current scientific knowledge about
the functions of genes from many different organisms making this information com-
putationally tractable [130]. These annotations are usually organized in ontologies.
An ontology is a formal representation of knowledge of a body of knowledge within
a given domain. Ontologies usually consist of a set of concepts (functional annota-
tions) with relations that operate between them. Over the past few decades, several
curated ontology resources such as the Gene Ontology (GO) [130], Reactome [73],
and KEGG [65] have been developed and demonstrated to significantly enhance the
progress of biological and medical research [131]. Each of these ontologies provides
different information about the functioning of the genes, e.g., the pathways in which
they are involved or the cellular location in which their protein products perform
their functions.

Among the previous resources, GO has the largest concepts and records. GO
describes our knowledge of the biological domain with respect to three aspects: (1)
Molecular Function, (2) Cellular process, and (3) Biological processes. GO Molecular
Function (ML) annotations describe activities that occur at the molecular level, such
as “catalysis” or “transport” without specifying where, when, or in what context
the action takes place. GO Cellular Component (CC) annotations give information
about locations relative to cellular structures in which a gene product performs a
function, either cellular compartments (e.g., mitochondrion) or stable macromolec-
ular complexes of which they are parts (e.g., the ribosome). GO Biological Process
(BP) annotations provide a higher-level perspective of the larger processes that are
accomplished by multiple activities. The structure of GO can be defined in terms
of a directed acyclic network, where each GO annotation is a node, and the links
between the annotations are edges between the nodes [130]. GO acyclic network
is loosely hierarchical, with “child” annotations being more specialized than their
“parent” annotations, but unlike a strict hierarchy, an annotation could have more
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than one parent annotation. Thus, the “level” of a GO annotation is the position
of the annotation in the hierarchy, and it indicates the specificity of the function
represented by the annotation. The GO annotations are designed to be species-
agnostic, i.e., a single GO can annotate the genes of multiple organisms. Finally,
each annotation has an evidence code to indicate how the biological function of
a particular gene is supported. The evidence can be: experimental, phylogenetic,
computational, author, curatorial, and automatically generated. To avoid noise, in
this dissertation we only keep those annotations that are experimentally validated.

Finally, a common limitation of all curated ontology resources is their update
rate. These ontologies aim to represent the current state of knowledge in biology,
hence they are constantly revised and expanded as biological knowledge accumulates.
However, the assignment of annotations to genes is a very time-consuming process
because there are millions of genes mentioned in biomedical literature, and the
database curators need to find evidence passages for each gene.

The main databases for obtaining functional annotations data are GO [130],
KEGG [65], Reactome [73], and the National Center for Biotechnology Information
(NCBI) [132]. In combination with clustering algorithms, during this dissertation,
we use the functional annotations as follows. In Chapter 2, we use GO BP, GO ML,
and GO CC annotations to evaluate the ability of our new graphlet-based method
to capture biological information from different probabilistic molecular networks. In
Chapter 4, we employ GO BP terms to assess the functional organization of differ-
ent tissues-specific PPI embedding spaces (if they capture the organization of the
cell) and explore their functional organization from a functional perspective. These
annotations were obtained from the NCBI web server. Finally, in Chapter 5, we
use GO BP terms to uncover biological information from the functional organiza-
tion of different species-specific PPI embedding spaces. These annotations were also
obtained from the NCBI web server.

2.5.2.1 GO terms Summary

One problem when interpreting the biological meaning of the clusters is that the list
of GO terms that are statistically overrepresented in each cluster is usually large
and highly redundant [133]. Redundancy between GO terms can be explained by
their functional similarity. For instance, let GO1 be the parent annotation of GO2

in the GO hierarchy. Let GO1 represent a generic function such as “Carbohydrate
metabolic process” and let GO2 represent a more specific function that is connected
with the previous, such as “Carbohydrate biosynthetic process.” Then, the proba-
bility of having GO1 and GO2 enriched in the same cluster is high since they both are
likely to annotate the same genes. Thus, the chances of having enriched functionally
related annotations in the same cluster are high. The functional relationship and
redundancy between functional annotations are usually evaluated by their semantic
similarity, which is a measure of the similarity of their meaning. These functional
relationships are then exploited to summarize large lists of GO terms (as we show
below). Semantic similarity between GO annotations can be calculated based on
various methods such as lexical and ontological measures.

The most known lexical measure of similarity is based on the TF-IDF (Term
Frequency-Inverse Document Frequency). TF-IDF is a statistic that reports how
important a word is to a document (e.g., chapters of a book) in a corpus (e.g., a
textbook) [134]. The TF-IDF of a word w in a document d is computed as:
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TF-IDFw,d = (1 + log TFw,d) · log
N

DFw

, (2.10)

where w is a word in the document, d, TF is the number of occurrences of w in
d, DF is the number of documents containing w, and N is the total number of
documents. For two GO terms, GO1 and GO2, their TF-IDF-based similarity is
computed as follows. Consider s1 and s2 as the description (documents) of GO1 and
GO2 and s1 ∩ s2 as the vocabulary, v (the set of words that forms the description of
the two annotations). For each word i in the vocabulary v, the TF-IDF of i in s1 and
s2 is computed obtaining the TF-IDF vector of each annotation, TF − IDFGO1 and
TF − IDFGO2 . These vectors have a size of |v| and each entry i corresponds to the
TF-IDF value of the word i in s1 and s2, respectively. Then, the similarity between
GO1 and GO2, S(GO1, GO2), is computed as S(GO1, GO2) = 1−cosine(GO1, GO2),
where cosine(GO1, GO2) corresponds to the cosine distance between vectors A1 and
A2. This similarity ranges from 0 if the GO terms are not similar to 1 if they
are similar. Apart from the similarities between annotations, TF-IDF can be also
applied to summarize a large list of annotations by finding the most important words
in their descriptions (those with a high TF-IDF).

TF-IDF-based measures are a good measure of similarity between two GO terms,
however, they do not take into account the information of the ontology. Thus,
ontological measures are preferred when analyzing the functional similarity between
two functional annotations. These measures compare the meaning of two functional
annotations based on their relationships in an ontology. The most used ontological
measures of semantic similarity are Resnik’s semantic similarity [135] and Lin’s
semantic similarity [136]. For two GO terms, GO1 andGO2, these measures calculate
their similarity based on the information content (how specific is the information)
of their most informative common ancestor (their closest shared parent annotation)
in the ontology. The values of Resnik’s semantic similarity range from 0 to infinite.
Thus, Lin’s semantic similarity is preferred. Lin’s semantic similarity is based on
Resnik’s similarity and ranges from 0 for terms without similarity to 1 for terms
with maximum similarity.

Several available methods, such as REVIGO [133], use semantic similarity mea-
sures to summarize the GO terms of a large list. These methods summarize long
lists of GO terms by finding a representative subset of the terms using clustering
algorithms that relies on semantic similarity measures. In Chapter 3, we use the
TF-IDF between different GO terms to summarize their meaning. In Chapter 4,
we use Lin’s semantic similarity between GO BP terms to evaluate the organization
of tissues-specific PPI embedding spaces from a functional perspective. Finally, in
Chapter 5, we apply Lin’s semantic similarity to evaluate the functional coherence
of GO BP terms associated with the same embedding axis. In the same Chapter,
we develop a new TF-IDF-based measure to uncover the biological meaning of the
embedding axes of different species-specific PPI embedding spaces.

2.6 Graphlets and Graphlet-based methods

As introduced in section 2.2.2 of this Chapter, to efficiently capture network topologi-
cal patterns, many network measures have been proposed. Among them, graphlets [3]
have been shown to be the most sensitive measures for capturing the topological
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characteristics of complex biological networks. Thus, graphlets have been used as
the basis for sensitive measures of network [3, 137, 4], and nodes (or edges) [2, 138].
At the same time, graphlets have been used to develop state-of-the-art graphlet-
based algorithms for many computational problems, such as node centrality compu-
tation [139], clustering [140], link prediction [141], network comparison [4, 142, 143,
144, 145], and network alignment [146, 129, 147]. In the context of biomedicine,
graphlet-based methods have been efficiently applied to various problems, such as
the study of human aging [148], cancer [149, 150, 151], and other diseases [152].
Importantly, graphlets have been shown to be superior to many other measures of
network topology, such as network motifs [153, 105], and many various centrality
measures [139, 148].

In the rest of this section, we first introduce the original graphlets and provide
an overview of their extended versions. Then, we describe graphlet-based measures
that focus on the topology of individual nodes, including the Graphlet Degree Vector
and the Graphlet Degree Distance. Finally, we provide an overview of the graphlet-
based measures of the entire network, with a particular emphasis on the Graphlet
Correlation Matrix and the Graphlet Correlation Distance.

2.6.1 Graphlets

Formally, graphlets are defined as connected non-isomorphic induced subgraphs of
an undirected network [3] (these concepts are defined in section 2.2.2). Figure 2.5, il-
lustrates all possible graphlets containing two to five nodes. The number of graphlets
containing k nodes increases exponentially with k. The computational complexity
of counting graphlets of k nodes in a network of n nodes is O(nk). For these rea-
sons, in practice, graphlets up to five nodes have typically been studied. Yet, the
statistics of 2- to 5-node graphlets have been proven to be detailed enough to cap-
ture most of the network topological properties, as most molecular networks have a
short diameter. Moreover, in some cases, it has been shown that the use of 4-node
graphlets can be sufficient to extract information from the network topology [141,
140, 154]. Hence, the need of using 5-node graphlets is an open question that needs
to be investigated.

The nodes of all 2- to 5-node graphlets are also annotated with automorphism
orbits (simply called orbits), where each orbit defines a group of nodes that are
topologically symmetrical in a graphlet. See Figure 2.5 for an illustration. There
are 73 orbits for 2- to 5-node graphlets [2]. Using the orbits of graphlets, Przulj et
al. [137] generalize the notion of node degree to graphlet degree: the ith graphlet
degree of a node N is the number of graphlets that N touches at orbit i. Note that,
with this definition, the 0th graphlet degree corresponds to the standard definition
of node degree. The graphlet degree of the nodes is the basis for the majority of the
graphlet-based measures that we introduce in the next subsections.

Graphlets were originally designed to analyze undirected unweighted networks.
However, in the last decade, graphlets have been generalized to many different net-
work models, such as directed networks [7], dynamic networks [140], hyper net-
works [12], or heterogeneous networks [155]. That is, graphlets have been adapted
to accommodate the increasing complexity of biological data, which demands more
sophisticated network models. However, current graphlets have not been extended
to weighted networks, which are one of the most widely used network models in
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Figure 2.5. All 2- to 5-node graphlets G0, G1, G2, ..., G29, and their automorphism orbits
0,1,...,72. Nodes belonging to the same automorphism orbit are of the same shade in each
graphlet.

biology (detailed in section 2.1). In Chapter 3 of this dissertation, we address the
limitations of the current graphlet methodology by extending it to weighted net-
works, specifically probabilistic networks. For the next of this section, we will focus
on the measures based on the original unweighted graphlets.

2.6.2 Graphlets-based Measures of Nodes Topology

Many network tasks require a way of summarizing the topology around a node in
the network. This information is captured by the graphlet degree vector. Assuming
the existence of o orbits (o = 15 for 2- to 4-node graphlets and o = 73 for 2- to 5-
graphlets), the Graphlet Degree Vector (also known as graphlet degree signature) of
a node is a o-dimensional vector where each value represents the graphlet degree of
the node for a particular orbit. The Graphlet Degree Vector (GDV) computation
for a node a in a toy network of four nodes is illustrated in Figure 2.6. The GDV
of all n nodes in a network can be represented by an n × o matrix (named GDV
matrix ), where matrix entry (i, j) contains the information of how many times node
i touches orbit j.

Comparing the GDVs of two nodes give a measure of the topological similarity
of the nodes. However, directly comparing their GDVs could not be appropriate
since orbits are not completely independent of each other [2]. For instance, the
differences in orbit 0 of two nodes will automatically imply the differences in all
other orbits of these nodes, since all orbits contain orbit 0. The GDV-similarity was
designed to remove orbit dependencies [2]. This approach assigns a higher weight
wi to those orbits that are independent, and a lower weight to those orbits that
are dependent. Specifically, if an orbit i is affected by oi number of other orbits,
then its corresponding weight is computed as wi = 1− ( log(oi)

log(no)
), where no represents

the total number of different orbits for graphlets of up to size n. For example, for
n = 4, there are no = 15 different orbits. Although these weights remove some
orbit dependencies, it was shown that for a given node, some of its orbit counts
(columns in the GDV) are redundant, meaning that their counts can be derived

39



Figure 2.6. An illustration of the GDV for 2- to 4-node graphlets (i.e., their 15 orbits)
of a node a in a toy network of four nodes, and its computation.

from the counts of non-redundant orbits [4]. Hence, the GDV-similarity is usually
computed by considering only non-redundant orbits. Given two nodes u and v, their
GDV-similarity is computed as follows [2]. Let ui and vi denote the ith coordinate
of the GDVs of u and v, respectively. Then, the distance Di(u, v) between the ith

orbits of nodes u and v is:

Di(u, v) = wi ×
|log(ui + 1)− log(vi + 1)|

log(max{ui, vi}+ 2)
(2.11)

Given the Di(u, v) values for each orbit i (e.g., for all 15 orbits of the 2- to 4-node
graphlets), the GDV distance between u and v, D(u, v) is computed as:

D(u, v) =

∑14
i=0Di∑14
i=0wi

(2.12)

The value of D(u, v) is 1 if the nodes are topologically different and 0 otherwise.
Finally, the GDV-similarity S(u, v) between the nodes u and v is: S(u, v) = 1 −
D(u, v). As mentioned above, to avoid redundancies between orbits, one can simply
discard from the GDV those columns that contain counts for the redundant orbits
and then apply the above formulas. The GDV similarity between nodes is frequently
used as input for clustering algorithms to sub-group nodes based on their topological
similarity. Afterward, functional enrichment analysis is applied to these clusters
to uncover the biological information hidden in the wiring patterns of molecular
networks (details about network clustering and functional enrichment analysis can
be found in section 2.5).

As graphlets, GDV, and GDV similarity have been generalized to directed net-
work [7], dynamic networks [140], or heterogeneous networks [155]. However, up to
date these graphlet-based measures have not been extended to weighted networks.
To address this issue, in Chapter 3, we extend the GDV and GDV similarity to
weighted networks, precisely to probabilistic networks.
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2.6.3 Graphlets-based Measures of Entire Network Topol-
ogy

The GDV similarity is an efficient measure of the topological similarity between two
nodes. However, sometimes we aim to capture the compare the topological similarity
between two entire networks. In this case, the leading edge graphlet-based method to
compare the topological similarity between two networks is the Graphlet Correlation
Distance (GCD) [4]. The GCD between two networks, N , and N1, is defined as
the Euclidean distance of the upper triangle values of their Graphlet Correlation
Matrices (GCMs). The GCM of each network is computed as follows. Consider
network N with n nodes and its GDV matrix of size n × o (o = 11 non-redundant
orbits for 2- to 4-node graphlets and o = 25 non-redundant orbits for 2- to 5-node
graphlets). Recall that each entry (i, j) in the networks’ GDV matrix represents
the number of times that a node i touches orbit j. The GCM of this network N ,
GCMN , is defined as a matrix of size o × o, where the value at position (i, j) in
the GCMN represents the Spearmans’ correlation coefficient between columns i and
j of the GDV matrix. Then, having the respective GCMs of N and N1, GCD is
defined as the Euclidean distance of the upper triangle matrix values of GCMN and
GCMN1. Formally the GCD between these two GCMs, GCD(GCMN , GCMN1),
for 1- to 4-node graphlets (o = 15) is computed as:

GCD(GCMN , GCMN1) =

√√√√ 14∑
i=0

14∑
j=i+1

(GCMN(i, j)−GCMN1(i, j))2 (2.13)

GCM and GCD are only applicable for undirected unweighted networks. How-
ever, in Chapter 3 of this dissertation, we extend them to probabilistic networks.

2.7 Network Embeddings-based Methods

The complexity of biological data has been increasing. As a result, biological net-
works have gradually incremented their size becoming more complex and complete.
In this new scenario, the application of topological measures, such as graphlets and
graphlet-based approaches (introduced in section 2.6), that operate directly on the
networks is time-consuming and sometimes computationally intractable. Thus, a
growing body of work applies network embedding techniques to simplify, visualize,
and facilitate the analysis of this large and notoriously complex network data [14].
Network embedding techniques (also called graph representation learning) generate
vector representations for network elements such that the learned representations,
i.e., embeddings, capture the structure and semantics of networks [156]. This prob-
lem is often formalized as follows: Given a network G(V,E), with V nodes and E
edges, and its corresponding adjacency matrix (introduced in 2.2.1), the goal is to
learn a function V → Rd that maps each node to a d-dimensional (d < |V |) vec-
tor that captures its structural properties. Figure 2.7 illustrates the d-dimensional
embedding space of a toy network G of 14 nodes.

To extract biological information from molecular networks, classic network ap-
proaches rely on network properties (e.g., degrees or clustering coefficients, intro-
duced in section 2.2.2 of this Chapter) or on carefully engineered features to measure
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network structures (e.g., graphlets, introduced in section 2.6 of this Chapter) [156].
In contrast, network embedding techniques automatically learn to encode networks
into low-dimensional representations (i.e., embeddings) using transformation tech-
niques based on deep learning and nonlinear dimensionality reduction [156]. The
flexibility of learned representations shows in a variety of downstream tasks that
representations can be used for. In particular, in the biomedical field, these learned
representations are often used for the following tasks:

Node, link, and network property prediction: The objective is to learn
representations of network elements, such as nodes, edges, subgraphs, and the entire
network. Representations are optimized so that performing algebraic operations in
the embedding space reflects the network topology, e.g., topologically similar nodes
are embedded close in the embedding space [14]. Optimized representations are
usually used as input for models to predict properties of the network elements, such
as the function of proteins in a molecular networks [157] (i.e., node classification
task), the binding affinity of a chemical compound to a target protein [158] (i.e.,
link prediction task), and the toxicity profile of a candidate drug [159] (i.e., graph
classification task).

Latent network learning: Network embedding techniques exploit relational
inductive biases for data that come in the form of networks. However, in many
biological problems, the networks are not readily available for learning, e.g., gene
regulatory networks are not complete. In this context, latent network learning is
concerned with inferring the network from the data [156]. The latent graph can be
application-specific and optimized for the downstream task.

Network generation: The objective is to generate a network G representing
a biomedical entity that is likely to have a property of interest, such as high drug-
likeness [160]. The model is given a set of networks M with such a property and is
tasked with learning a non-linear mapping function characterizing the distribution
of networks in M . The learned distribution is used to optimize a new network G
with the same property as input networks [156].

Figure 2.7. An illustration of the d-embedding space of a toy network G of 14 nodes.
The node closeness in the original network G is preserved in the embedding space.

Network embedding techniques encompass a wide range of methods, including
manifold learning, topological data analysis, graph neural networks and generative
graph models [156, 14], that have been widely applied in biomedical research to iden-
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tify cancer-related genes [125], to subtype cancers [161], to stratify patients [162], or
to repurpose drugs [163]. These algorithms include NLP-inspired approaches, such
as DeepWalk [19], and node2vec [20], and matrix factorization-based approaches,
such as Non-negative Matrix Tri-Factorization (NMTF) [21]. In the rest of this
section, we first introduce the most used NLP-inspired embedding approaches, such
as node2vec, Deepwalk, and LINE [164]. We show that these algorithms implic-
itly factorize the PPMI matrix network representation (introduced in section 2.2.1).
Following this, we focus on factorization-based embedding approaches, specifically
the NMTF.

2.7.1 NLP-inspired Embedding Approaches

The recent advantages in network embeddings have been largely influenced by
word2vec, a skip-gram model originally proposed for embeddings [165], whose input
is a text corpus composed of sentences in natural language and output is the latent
vector representation of each word in the corpus [166]. Inspired by these settings,
NLP-inspired approaches consider the node paths traversed by random walks over
networks as the sentences and leverage skip-gram for learning the vectorial rep-
resentation of the nodes. By doing it, diffusion-based methods preserve both the
local and the global network structures. In the last decade, many NLP-inspired em-
bedding approaches have been developed, such as DeepWalk, LINE, and node2vec.
The main difference between these models lies in the type of random walk that they
use to generate the node representations. DeepWalk algorithm uses simple random
walks over the network to generate the sentences [19]. Node2vec extends DeepWalk
by introducing a flexible notion of random walks, called biased random walks [20].
These biased random walks allow balancing the exploration-exploitation trade-off
and learning node representations that capture diverse information from the graph
(details about the exploration-exploitation trade-off can be found in [20]). Finally,
LINE uses both first- and second-order proximity of the nodes (their neighbors and
the nodes connected to their neighbors) to learn the embeddings [164].

Recently, it was shown that skip-gram models used to obtain word embeddings
in NLP are implicitly factorizing a word-context matrix, called the shifted Pointwise
Mutual Information (PMI) matrix [167]. The cells of this matrix are the PMI values
of the respective word and context pairs, shifted by a global constant. However, the
PMI values of a word context pair (w, c) that did not occur in the corpus would be
PMI(w, c) = log0 = −∞. To address this issue, in the field of NLP, the negative
entries of this matrix are replaced with 0s, resulting in a sparse matrix called the
shifted positive PMI (PPMI) matrix (introduced in section 2.2.1 of this Chapter).
Levy et al., [167] showed that the exact factorization of the shifted PPMI matrix
with Singular Values Decomposition (SVD) could achieve solutions that are at least
as good skip-gram models for word similarity tasks. Formally the PPMI of two
words, w and c, is defined as:

PPMI(w, c) = max

{
0, log

#(w, c)× |C|
#w#c

}
(2.14)

where |C| is the size of the corpus, #(w, c) is the number of times two words co-occur
in the corpus, and #w and #c are the number of times the words w and c occur in
the corpus, respectively.
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Motivated by these observations, Qiu et al., [166] investigated the theoretical
mechanism behind DeepWalk, LINE, and node2vec. In their work, Qiu et al., [166]
demonstrated that these algorithms are implicitly factorizing a random-walk-based
mutual information matrix. This matrix is equivalent to the shifted PMI matrix on
networks, as its cells quantify how frequently two nodes, i and j, of the network co-
occur in a random walk compared to what would be expected if the co-occurrences
of the nodes were independent. Qiu et al., [166] also found the closed formulas
to approximate the shifted PMI matrices that DeepWalk, LINE, and node2vec are
implicitly factorizing. As in NLP, to ease the use of these shifted PMI matrices
of networks in matrix factorization approaches, such as SVD, while preserving the
resulting network qualities, these matrices are substituted by the simpler PPMI
matrix by setting the shifted parameter to zero and replacing all negative values
with zeros [166]. Contrary to the adjacency matrix representation introduced in
section 2.2.1 of this Chapter, the PPMI matrix captures high-order proximities be-
tween the nodes in the network, hence, the PPMI matrix is a richer representation
than the adjacency matrix (we demonstrate this in Chapter 3).

Taking advantage of the previous findings, Xenos et al., [89] extended the NLP-
inspired embedding methods to the Non-negative Matrix Tri-Factorization (NMTF),
a well-known embedding technique that has successfully been used in the biological
context to analyze large-scale omics data types [21] (we introduce NMTF in the next
subsection), by applying NMTF to the PPMI matrix representations of molecular
networks obtained by the Deepwalk closed formula with its default settings [89] (see
equation 2.15). One of the advantages of using NMTF over the previous NLP-
inspired embedding approaches is that it requires way fewer parameters to tune,
thanks to the careful modeling of the relationships between the data points that it
takes as input. Moreover, contrary to these embedding approaches, the embedding
space produced by NMTF can have valuable properties, e.g., orthonormality, that
may lead to an easier interpretation and deeper scientific insight [168]. In Chapter 5,
we demonstrate that these properties have an impact on the ability of the embedding
space to capture the functional organization of the cell.

Deepwalk : X = max

{
0, log

(
vol(N)

(
1

T

T∑
r=1

(D−1Ajd)r

))
− log b

}
(2.15)

where Ajd is the adjacency matrix of the network N , D is the diagonal matrix of
Ajd, vol(N) is the volume of G, T = 10 is the length of the random walk and b = 1
is the number of negative sampling in skip-gram. Note that the second argument
corresponds to the Deepwalk closed formula by [19], i.e., to the shift PMI matrix
implicitly decomposed by the Deepwalk algorithm.

2.7.2 Matrix factorization-based approaches

The most frequently used approach for matrix factorization is NMTF, an extension
of Non-negative Matrix Factorization (NMF) and a well-known machine learning
(ML) technique introduced for co-clustering and dimensionality reduction [21]. In
an NMTF, a non-negative matrix, X ∈ Rn1×n2 such as the PPMI matrix or the
adjacency matrix is approximated by the product of three lower-dimensional matrix
factors, P ∈ Rn1×k, S ∈ Rk×k, and G ∈ Rk×n2 , where k << min(n1, n2) [169].
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Setting the rank parameter k << min(|v|, |v|) provides a dimensionality reduc-
tion [170]. NMTF is closely related to k-means clustering [21]. From a clustering
point of view, entries in X represent the relationship between two different types of
objects, e.g., the relation between n1 patients (type 1) and n2 genes (type 2). This
matrix is factorized into P , S, and G, where U is the cluster indicator matrix of type
1 object (grouping the n1 objects of type 1 in k clusters), G is the cluster indicator
matrix of objects of type 2 (grouping the n2 objects of type 2 into k clusters), and
S is the compressed representation of X that related the clusters of P in G.

NMTF is a co-clustering approach, which means that one can extract objects
from P clusters that group together objects of type 1 according to their relationships
with objects of type 2 while extracting from G objects of type 2 according to their
relationship with objects of type 1. Such clusters can be extracted from P and
G with a procedure called “hard-clustering” [171], in which each data point i is
assigned to a cluster j, 1 ≤ j ≤ k, such that Pi,j, is the maximum value in row
i (same for G). Another important property of NMTF is its completion property.
Namely, after solving NMTF, the reconstructed matrix X̂ = PSGT has new entries
not observed in X but emerging from inferred factors (also called latent factors)
that can be used for prediction.

NMTF can be also described from an embedding point of view. To simplify,
consider a non-negative matrix X of size n1 × n1, where each entry represents an
interaction between two objects of the same type, for instance, edges between genes
in a molecular network. This matrix is decomposed into three factors, P , S, and G,
where the set of the rows of the matrix P · S defines the set of embedding vectors
of the genes, E, and the set of the columns of G defines the basis (also called em-
bedding axis), B, of the space in which the genes are embedded. Orthonormality
constraint can be applied to the basis-defining matrix (GTG = I). This constraint
leads to minimal col-linearities (hence, minimizing the dependencies) between the
vectors of the basis, B, of the embedding space [172]. It has been hypothesized that
this orthonormality improves the ability of NMTF to reveal the cell’s functional
organization. However, this hypothesis has not been properly tested, i.e., the real
impact of orthonormality remains unclear. In Chapter 5, we assess this hypoth-
esis by comparing orthonormal PPI embedding spaces with non-orthonormal PPI
embedding spaces generated by NMTF. The NMTF decompositions with orthonor-
mality constraint, NMTForthonormal, and without this constraint NMTF , are done
by minimizing the functions:

NMTForthonormal : minP,S,G≥0∥X − PSGT∥2F , GTG = I,

NMTF : minP,S,G≥0∥X − PSGT∥2F ,

where F denotes the Frobenius norm. These optimization problems are NP-hard [21];
thus, they are heuristically solved by using a fixed point method that starts from
an initial solution and iteratively uses multiplicative update rules [21]. Such rules
guarantee convergence towards a locally optimal solution that verifies the Karush-
Kuhn-Tucker (KKT) conditions [21] (these rules can be found in Supplementary
section B.1.1). In Chapters 4 and 5, we apply NMTF on different PPI networks to
capture the cell’s functional organization.
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Chapter 3

Probabilistic graphlets capture
biological function in probabilistic
molecular networks

In this chapter, we extend the graphlets to probabilistic networks by introducing
probabilistic graphlets. We use probabilistic graphlets to generalize the state-of-
the-art graphlet-based methods to capture the local topology of the nodes in a
network (i.e., GDV and GDV distance) and to capture the topology of an entire
network (GCM and GCD). First, we evaluate the ability of probabilistic graphlets
to capture the overall topological similarity between probabilistic networks based
on well-known random network models. Then, we apply our methodology to ana-
lyze the probabilistic representations of different molecular interaction networks and
investigate the biological information uncovered by our probabilistic methodology.
The results of this chapter are published in Doria-Belenguer et al., [173] and were
presented at the ECCB’19 conference.

3.1 Motivation

A powerful approach for uncovering information from a biological network is to
measure the local wiring patterns of its nodes. The best measures to quantify the
local wiring patterns rely on graphlets -small, connected, non-isomorphic, induced
subgraphs of a larger network [3]-(Figure 2.5). The descriptive power of graphlets
has been widely exploited for comparing network topologies and mining networks
for local topological similarities [2, 4]. Moreover, to account for the increasing
complexity of biological network data, the original graphlets have been extended to
concepts of directed [7], dynamic [140], heterogeneous [155], or node-ordered [143]
graphlets.

However, current models do not account for uncertainty associated with molecu-
lar interactions, which is an integral part of biological systems. Uncertainty can be
defined as the confidence that a specific interaction is occurring and has been linked
to the accuracy of the underlying measurements. For network representations, it is
common to discretize these measurements by applying thresholds to decide which
interactions are considered to be real. While this approach permits the removal of
noise from the data, it can also eliminate crucial information. To overcome this lim-
itation and utilize more of the available information about biological interactions,
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thresholded networks can be replaced by probabilistic networks with probabilities
as weights on edges (links). In weighted networks, each edge is assigned a weight
that contains additional information about the edge, such as the strength of the
interaction. A special case of these models is probabilistic networks, in which the
weights represent the probability that an interaction between two nodes occurs. We
hypothesize that probabilistic networks can accurately represent the uncertainty
about molecular interactions and capture their probabilistic nature. Nevertheless,
the currently available network methodology is mostly defined for unweighted net-
works and is not applicable to these probabilistic networks.

To extract the additional information hidden in the wiring patterns of prob-
abilistic networks, in this chapter of the dissertation, we generalize the graphlet-
based methodology to probabilistic networks and demonstrate its utility in cap-
turing additional information when compared to the original, unweighted graphlet-
based methodology applied to thresholded, unweighted networks. We generalize the
GCD [2] to probabilistic graphlets (pGCD) and use it for comparing probabilistic
networks based on three random network models: Barabasi and Albert preferential
attachment [94], Erdös-Renyi [114], and Geometric random graph [118]. We evaluate
the ability of pGCD to detect differences between not only unweighted different net-
work topologies (generated by different network models) but, on top of that, edge
weight probability distributions for the same, unweighted, topologies. Moreover,
we assess its capability to detect different edge weight distributions by randomly
applying edge probabilities to each of the network models based on the empirical
distributions of real molecular interaction networks, as well as a uniform distribu-
tion. We observe that pGCD can differentiate between probabilistic distributions
and network topologies, while GCD can only differentiate between network topolo-
gies. We conclude that pGCD is an accurate alternative for comparing probabilistic
networks.

Lastly, using probabilistic graphlets, we analyze the probabilistic representations
of molecular interaction networks for budding yeast and human and compare our
methodology against unweighted graphlets. We show that probabilistic graphlets
not only deal more efficiently with noise but also capture additional, more specific
biological information compared to their unweighted counterparts. We argue that
these differences arise from the information contained in lower confidence interac-
tions that are lost when thresholding the data.

3.2 Materials and Methods

3.2.1 Definition of probabilistic graphlets

A probabilistic network is a weighted graph G = (V, E, p), where V is a set of nodes,
E is a set of edges that connect nodes in V , and where each edge, e ∈ E, is associated
with probability, p(e), between 0 and 1. Implicitly, each edge, e, is also associated
with the probability of not being connected, p(¬ e) = 1-p(e). Each pair of nodes in
the network that is not connected by an edge is associated with probability 0.

Since these probabilities are independent, the outcome probability of a weighted
subgraph can be calculated by the product of the probabilities of the edges and
non-edges (see example in Figure 3.1). This outcome probability can also be seen as
a measure of “how much induced” the chosen subgraph is in a probabilistic sense.
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To that end, we define a probabilistic graphlet to be any subgraph, weighted by
the probability of its corresponding product of edge weights. For instance, given a
triangle with edge-probabilities p1, p2, and p3, the probability that the 3-node path
consisting of edge p1 and p2 results in an induced subgraph is given by product,
p1p2(1-p3). Hence, this subgraph is considered a probabilistic graphlet with weight
p1p2(1-p3), even though it is not an induced subgraph of the network when ignoring
the probabilities on the edges (see Figure 3.1).

Figure 3.1. Counting probabilistic graphlets for a triangle with edge probabilities p1, p2,
and p3. Displayed are all 23 possible outcomes of a probabilistic triangle (graphlet G2 in
Figure 2.5). Out of these eight outcomes, only four results in 3-node graphlets (shown in
green). Note that 3-node paths can appear as graphlets (second, third, and fifth outcome)
even though they are not induced subgraphs in the original probabilistic network (shown
on the very left). In case p1, p2, and p3 only take values in 0 and 1, there is only one
possible outcome with non-vanishing probability, leading to a coherent definition of a
probabilistic and an unweighted graphlet. The fact that certain realizations result in non-
connected 3-node subgraphs (shown in red) can be exploited to exclude these outcomes a
priori when calculating graphlet counts, making the computation of probabilistic graphlet
counts feasible.

For a fixed graphlet, Gi (Figure 2.5), its probabilistic graphlet count within a
network is now defined to be the weighted sum over all instances of the probabilis-
tic graphlet, Gi. This definition is equivalent to taking the expected value of the
“classical” (unweighted) graphlet counts of Gi across all possible realizations of the
probabilistic network. If unweighted networks are replaced by probabilistic networks
with edge weights being zero (non-existing edge) or one (existing edge), all graphlet
counts of the unweighted network coincide with the probabilistic graphlet counts
of the probabilistic network. In that sense, probabilistic graphlets form a natural
generalization of unweighted graphlets.

We further extend the notion of graphlet orbits (or simply orbits) to probabilistic
orbits and their counts. Orbits are equivalence classes of nodes within graphlets,
accounting for “symmetries” within a graphlet, and are usually labeled from 0 to
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73 for up to 5-node graphlets [137] (detailed in Chapter 2, section 2.6.1). In short,
given orbit, i, the number of times a node is being “touched” by that orbit is called
the ith graphlet orbit count of the node. Note that the 0th orbit count coincides
with the degree of a node and thus, orbit counts are also referred to as graphlet
degrees. The vector comprising all graphlet degrees for a given node is referred to
as the GDV of the node [2] (see Figure 2.6). Remind that the matrix consisting
of the row-wise collection of these node feature vectors is called the GDV matrix
(introduced in Chapter 2, section 2.6.2). It has 73 columns, describing the global
behavior of the orbits over all nodes, and one row for each node describing the local
topology of the node via its graphlet degrees.

In analogy to the probabilistic graphlet counts described above, we define the
probabilistic graphlet degrees to be the expected number of (unweighted) graphlet
degrees across all realizations of the probabilistic network. We call the resulting
feature vector the probabilistic graphlet degree vector (pGDV) and the matrix com-
posed of all pGDVs the pGDV matrix. We demonstrate that the pGDV matrix of a
probabilistic network captures valuable information, which the GDV matrix of the
thresholded network fails to encompass.

Due to the computational complexity of the probabilistic method, we perform
our calculations for only up to 4-node graphlets, resulting in 15 orbits labeled from
0 to 14.

3.2.2 Probabilistic graphlet count implementation

We modify the gtrieScanner software [174] to extend its applicability to probabilistic
networks. Given a fixed number of nodes in a graphlet, n, the algorithm calculates
all instances of graphlets of size n, ignoring calculations of non-connected subgraphs
a priori to avoid redundant calculations (Figure 3.1, red). The output is the proba-
bilistic graphlet count, as well as the probabilistic orbit count, for each node in the
network and each graphlet of size n. This function was written in C++ version 11
and compiled using g++ (version 7.4.0) under Ubuntu 18.04.

3.2.3 Definition of topological distance measures

As introduced in Chapter 2, section 2.6.2, the current state-of-the-art measure of
topological similarity between local wiring patterns of the nodes in an unweighted
network is the GDV. We generalize the GDV distance formula 2.11 on the pGDV
distance of nodes in probabilistic networks to measure their wiring pattern similarity.

The leading edge method to compare the topological similarity between un-
weighted networks is GCD (introduced in Chapter 2, section 2.6.3). We extend the
GCD to probabilistic networks by first calculating the GCM from the pGCV matrix
of the nodes and then applying the formula 2.13. We define the extension of this
distance to probabilistic networks as probabilistic GCD (pGCD). As introduced in
Chapter 2, section 2.6.3, Yaveroglu et al. [4] showed that the GCD based on eleven
non-redundant orbits performs better than the GCD based on all fifteen orbits for
up to 4-node graphlets, due to redundancy equations describing relationships be-
tween different orbits. However, these equations are not applicable to probabilistic
networks, and thus we use all fifteen orbits to calculate the pGCD between the
networks.
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3.2.4 Biological datasets

We use three types of molecular interaction networks for budding yeast and human
(see Table 3.1). From STRING v11.0 [47] we collect the experimental PPIs of
human and budding yeast and we use the experimental scores from STRING as the
edge probabilities. From the study by Costanzo, et al. [53] we collect the GIS and
we used the PCC between the genetic interaction profiles of each pair of genes as
edge probabilities, all negative PCCs were set to 0. From COXPRESdb (v7.3) [59]
we obtain the CoEx network and we define the edge probability as 1 minus the
value of the mutual rank of a gene pair divided by the total number of genes (see
https://coxpresdb.jp for details). Details about these biological networks can be
found in Chapter 2, section 2.1.

Network Confidence Threshold # Nodes # Edges Density

PPI Budding yeast
High >=0.7 2130 15.226 0.75%
Low all edges 4980 788,548 0.36%

GIS Budding yeast
High >=0.4 1555 2912 0.24%

Medium >=0.2 4732 30137 0.26%
Low >=0.05 5707 1,635,781 10%

CoEx Budding yeast
High >=0.82 5757 171,384 1%

Medium >=0.66 5855 856,905 5%
Low >=0.60 5855 1,713,792 10%

PPI Human
High >=0.7 3903 39,790 0.24%
Low all edges 9890 119,116 0.52%

Table 3.1. Statistics for the biological networks in this study. Threshold values (3rd

column) depend on network type: for PPI, experimental evidence of the interaction; for
GIS, PCC of the genetic interaction profiles; for CoEx, 1 minus Mutual Rank divided by
the total number of genes. “# Edges” contains the number of edges of the network. “#
Nodes” contain the number of nodes of the network. “Density” contains the edge density
of the network.

To compare probabilistic and unweighted networks, we form probabilistic and un-
weighted counterpart networks by applying different thresholds to the raw data and
only retaining edges whose assigned probability passed the corresponding thresh-
old. In particular, we define high and low confidence thresholds for the two PPI
networks, as well as high, medium, and low confidence thresholds for the GIS and
CoEx networks (see Table 3.1).

For each of these thresholds, we generate a probabilistic model with all edge
probabilities satisfying the applied threshold. We also generate unweighted network
representations of the probabilistic networks presented above by applying the same
thresholds on the edge probabilities, as summarized in Table 3.1.

Details about the applied thresholds can be found in Table 3.1. Briefly, PPI
thresholds are applied as recommended by the STRING authors. In GIS, thresholds
are chosen following the methodology of Costanzo et al. [53]. Finally, the CoEx
thresholds for high, medium, and low confidence are selected using the top 1%, 5%,
and 10% of genes based on mutual rank.

To investigate functional enrichments as well as to test the amount of biological
information that our methodology is capable of extracting from the networks, we
decide to collect all the GO terms that are associated with each gene (details in
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Chapter 2, section 2.5.2). To do so, from the most specific experimentally validated
GO terms [130] of each gene, we perform a back-propagation to the most general
term using GOATOOLS [175] keeping all the GO terms in the process. GO annota-
tions are obtained from the GO Consortium database (accession date: 20.09.2019)
(Gene Ontology Consortium: going forward, 2015), National Center for Biotechnol-
ogy Information (accession date: 22.11.2018; https://www.ncbi.nlm.nih.gov/) and
Ensembl (accession date 27.02.2020) [176].

3.2.5 Synthetic datasets

To assess the performance of pGCD in detecting different edge probability distri-
butions, as well as different network topologies, we use synthetic networks that we
generate from three random network models: BA [94], ER [114], and GEO [118]
(these models are introduced in Chapter 2, section 2.1). Given that the budding
yeast networks shown in Table 3.1 feature around 3000 nodes with an edge den-
sity of 0.3%, we choose these parameters for generating the model networks. Since
these models are defined only for unweighted networks, we develop a pipeline to
extend these synthetic networks to probabilistic models. This protocol consisted of
three steps: first, we generate an unweighted network from one of the three random
network models mentioned above. Then, we obtain the empirical probability distri-
bution of weights on edges from the real-world biological network data. Finally, for
each edge in the unweighted model network, we randomly sample one probability
from the empirical distribution and use it as the probability of the corresponding
edge.

3.2.6 pGCM visualization and measuring the utility of pGCD
for clustering of model networks

To visualize the pGCM and GCM matrices, we use heatmaps. To visualize GCD and
pGCD distances between networks, we use the uniform manifold approximation and
projection for dimension reduction (UMAP) [177]. UMAP is a non-linear dimension
reduction method similar to tSNE [178]. However, unlike tSNE which focuses only on
preserving local structures, UMAP additionally aims to preserve the overall structure
of the high-dimensional data cloud. We use the latter technique to embed our data
points (networks) in two dimensions and visualize how the networks are clustered
according to pGCD or GCD.

To evaluate the performance of the pGCD for clustering probabilistic networks,
we test how well our distance measure groups probabilistic networks of the same
type by using standard Precision-Recall (PR) curves: for small increments of pa-
rameter ϵ < 0, if the distance between two networks is smaller than ϵ, then the pair
of networks is retrieved. For each ϵ, precision is the fraction of correctly retrieved
pairs (i.e., grouping together two probabilistic networks from the same model and
with the same edge probability distribution), while recall is the fraction of the cor-
rectly retrieved pairs overall correct ones. The Area Under the Precision-Recall
curve (AUPR), also called average precision, standardly measures the quality of the
grouping by a given distance measure. We choose Precision-Recall curve analysis, as
it is known to be more robust to large numbers of negatives (in our case, negatives
would be pairs of networks from different models that are grouped together) than
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Receiver Operator Characteristic (ROC) curve analysis [6].

3.2.7 Measurement of functional enrichments in clusters

To compare the performance of unweighted graphlets and probabilistic graphlets
for extracting biological information from unweighted and probabilistic molecular
networks, we apply a clustering and functional enrichment analysis approach (intro-
duced in Chapter 2, section 2.5). In particular, we apply k-medoids (this algorithm
is detailed in Chapter 2, section 2.5.1) based on GDV and pGDV distances (equa-
tion 2.11) between genes in networks to generate clusters of genes with similar local
wiring patterns. To account for the random initialization of k-medoids, we per-
form 10 iterations for each chosen k. For the k clusters found in each iteration, we
perform a GO term enrichment analysis while controlling the false discovery rate
(FDR) [179]. We consider a cluster as enriched when at least one GO term is signif-
icantly enriched among its constituent genes (FDR < 0.05). Likewise, we consider
a gene in a cluster to be enriched when it is associated with at least one enriched
GO term in the cluster. For each k, we calculate the mean and the 95% confidence
intervals (based on bootstrapping) [180] of the percentage of enriched clusters, the
percentage of GO terms enriched across all clusters, and the percentage of enriched
genes per cluster.

To see whether the unweighted and probabilistic networks capture different bi-
ological information, we compute the Jaccard Index (JI) [181] of the enriched GO
terms found in both methods for each k. Furthermore, we calculate the mean level
of the enriched GO terms captured specifically by each method, as well as the in-
tersection of both methods (unweighted and probabilistic). Lastly, we analyze the
ability of both methods to capture different and complementary functions of genes.

To do so, we first fix k following the rule of thumb (k ≈
√

N
2
, where N is the number

of nodes) [18] and select the enriched GO terms that are captured by each method.
We use these terms to retrieve the genes responsible for their enrichment and we
divide them into three sets: unique for probabilistic (s1), unique for unweighted
(s3), and the intersection between the two methods (s2) (see Figure, a Venn dia-
gram). To conclude, we test the robustness of our method by counting the number
of times that a GO term is captured in all ten repetitions and compare it against
the corresponding counts for the unweighted method.

3.2.8 Assessment of GO annotation similarity

To further understand the differences between the biological information captured
by each method, we fix a specific k following the rule of thumb mentioned in the
previous section. For each method, we keep only those GO terms that are enriched in
all ten repetitions. We subdivide these GO terms into three groups: probabilistic-
only, unweighted-only, and intersection. Next, analogous to REVIGO [133], we
summarize and remove the redundant GO term information using two steps: 1)
for every GO term, perform a back-propagation to the parent term of level 2 or
3; 2) generate a TF-IDF [182] matrix and group the description of the terms by
their pairwise cosine similarity. Given these simplifications, two descriptions are
considered the same if their cosine similarity was equal to or higher than 0.7. The
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most common approaches to summarize large lists of GO terms can be found in
Chapter 2, section 2.5.2.

3.3 Results and Discussion

3.3.1 Probabilistic graphlets are superior for network com-
parisons

To determine whether probabilistic graphlets are equally sensitive as unweighted
ones, we assess their ability to distinguish probabilistic networks by their topology,
edge probability distribution, or both. First, we visualize the GCMs and pGCMs of
the model networks introduced in section 3.2.5 and the clustering results obtained
from applying UMAP on GCD and pGCD distances between these networks. Then,
we evaluate the ability of pGCD to capture differences between network models
(topologies) and edge probability distributions.

We compute the pGCMs of the 600 synthetic probabilistic networks described
in section 3.2.5 and measure the pGCD distances between them. To compare our
methodology with the unweighted graphlet-based methodology, we also compute the
GCMs and GCD distances between their unweighted synthetic network counterparts
(detailed in section 3.2.3). As previously shown by Yaveroglu et al., [4], we observe
that unweighted networks generated from different network models are characterized
by clearly distinct GCMs, as visualized by differences in their heatmaps (Figure 3.2
A and B). In contrast, the GCMs of unweighted networks generated by thresholding
the probabilistic networks (recall that the probabilistic networks were obtained by
weighting the edges of unweighted networks by different edge probability distribu-
tions) are mostly identical, leading to indistinguishable heatmap representations (in
Figure 3.2, heatmaps in panels A and C are almost identical, and so are heatmaps in
panels B and D). This behavior is expected, as the unweighted counterparts of the
probabilistic networks have the same topology, which is slightly altered by assigning
probabilities to edges (from different probability distributions). When we instead
visualize the heatmaps of pGCMs of these probabilistic networks, clear differences
are visible in the heatmaps that are dependent on the edge probability distribution
applied during the generation of each network (Figure 3.2, E-F).

Likewise, when visualizing these model networks by performing UMAP-based
embeddings using the pGCD distances between the networks (detailed in section 3.2.6),
we find that probabilistic networks belonging to the same random graph model are
well-separated by their edge probability distribution (Figure 3.3 A and Supplemen-
tary Figure A.1). Curiously, a synthetic uniform distribution cluster with the em-
pirical PPI distribution (Figure 3.4). Upon closer inspection, we observe that the
variance and the mean of both distributions are practically identical (see Table in
Figure 3.4), which confirms that the two networks are accurately clustered based
on pGCD. We investigate this behavior further, by choosing the Beta distribution,
a continuous and versatile family of distributions on [0,1], to fit the weight dis-
tributions of the real-world networks (PPI, GIS, and CoEx). In particular, we fit
the parameters alpha and beta such that the resulting Beta distribution matches
the first two moments (mean and variance) of the empirical distributions; this is
known as the “Method of moments” [183]. As before, our methodology correctly
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Figure 3.2. Different edge probability distributions of the same network model are char-
acterized by different pGCMs. Heatmaps of the GCMs of (A) a Geometric Random Graph
(GEO) unweighted network using the empirical CoEx distribution; (B) an Erdös-Renyi
(ER) unweighted network using the empirical CoEx distribution; (C) GEO unweighted
network using the empirical GIS distribution; (D) ER unweighted network using the em-
pirical GIS distribution. Note that GCMs struggle to distinguish edge probability distri-
butions and thus all empirical distributions will result near identical heatmaps. Heatmaps
of the pGCMs of (E) a probabilistic GEO model using the empirical CoEx edge proba-
bility distribution; (F) a probabilistic GEO network using the empirical GIS probability
distribution. Columns and rows in each heatmap represent orbits 0 to 14 clustered by
their pairwise Spearman correlation coefficient.

clustered distributions with similar moments, including the empirical distributions
from the real-world networks (Supplementary Figure A.2). These results again con-
firm that the pGCD is highly sensitive and able to group networks correctly by their
edge probability distributions. Furthermore, when embedding all networks into a
single space using UMAP with pGCD distance, we find that the clusters separate
the networks by both topology (network model) and probability distribution (Fig-
ure 3.3 B), while GCDs only cluster the networks by their underlying network model
(Figure 3.3 C). Thus, probabilistic graphlets offer superior sensitivity to distinguish
network topologies compared to their unweighted counterparts.

To formally assess the sensitivity of probabilistic graphlets to distinguish be-
tween different network models (topologies) and edge probability distributions, we
use our pGCD to cluster model networks with different underlying edge probabil-
ity distributions. We obtain these distributions from different real-world networks.
Then, we evaluate this clustering by using AUPR (detailed in section 3.2.6). We
find that our method efficiently groups networks with similar topology (generated
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Figure 3.3. pGCMs can separate networks by topology and edge probability distribu-
tion. Edge probabilities were sampled based on empirical distributions from GIS, CoEx,
and PPI or from a synthetic uniform distribution. Panels represent the UMAP embedding
of (A) pGCMs from probabilistic networks based on the Barabasi and Albert preferential
attachment model (BA) using the indicated probability distribution; (B) pGCMs from
probabilistic networks based on the Erdös-Renyi (ER), BA or Geometric random graph
(RG) model using the indicated probability distributions; (C) GCMs of unweighted net-
works created from thresholding the unweighted networks shown in (B). Colors represent
the utilized edge probability distribution, while solid, dotted, and dashed lines indicate
the model used for generating the networks.

from the same random graph model) by their edge weight distributions (AUPRs
of 0.894, 0.899, and 0.939 for ER, BA, and RG networks, respectively). Moreover,
when clustering all model networks simultaneously, pGCD accurately clusters them
by random graph model (AUPR = 0.999), as well as by both model and edge dis-
tribution (AUPR = 0.980). However, when solely grouping all model networks by
their edge probability distribution independent of their network model, pGCD is
incapable of doing so (AUPR = 0.53). This behavior is expected, as the model used
for generating a network may have a much higher impact on its topology compared
to the applied edge probability distribution.

Figure 3.4. pGCMs clustering is highly dependent on the variance and mean of the under-
lying edge probability distributions. Edge probabilities were sampled based on empirical
distributions from GIS, CoEx, and PPI or from a synthetic uniform (Unif) distribution.
The panel represents the UMAP embedding of pGCMs of the probabilistic network gener-
ated by the Barabasi and Albert preferential attachment model (BA) using the indicated
probability distribution.
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In conclusion, while topological measures based on unweighted graphlets, such
as GCM and GCD, are able to differentiate networks by the topology of their under-
lying network model, probabilistic graphlets are additionally capable of accurately
differentiating probabilistic networks of the same model by their edge probability
distributions.

3.3.2 Probabilistic graphlets have similar or better perfor-
mances than their unweighted counterpart

Here, we compare the ability of our probabilistic graphlets to capture biological in-
formation from real molecular networks to that of their unweighted counterparts. To
this aim, we apply our methodology to real-world examples of probabilistic molecu-
lar networks of budding yeast (PPI, GIS, and CoEx) and human (PPI) (detailed in
section 3.2.4). To evaluate the amount of information uncovered from these proba-
bilistic networks, we cluster genes based on the distances between their pGDVs and
analyze the enrichment of these clusters in GO biological process (BP), cellular com-
ponent (CC), and molecular function (MF) annotations (detailed in sections 3.2.3
and 3.2.7). Finally, we examine the difference in the GO term enrichments resulting
from unweighted and probabilistic graphlet-based techniques.

For budding yeast PPI and GIS networks, we find that probabilistic graphlets
yield similar, or higher percentages of enriched clusters, GO terms, and genes, com-
pared to their unweighted counterparts. For instance, we see that probabilistic
graphlets consistently capture higher percentages of enriched GO BP, GO MF, and
GO CC terms in these networks regardless of being of high, medium, or low con-
fidence (Figure 3.5 A-E and Supplementary Figures A.3- A.5). Similarly, the per-
centage of enriched clusters in these molecular networks is comparable to, or greater
than, the percentage for unweighted graphlets, as shown in Figure 3.5 A-E). More-
over, with the exception of high confidence GIS network (Figure 3.5 M), probabilis-
tic graphlets exhibit higher percentages of enriched genes for all types of GO terms
(BP, MF, and CC) across these networks (Figure 3.5 N-O and Supplementary Fig-
ures A.3- A.5). We explain the results observed in high confidence GIS network by
its low number of genes that results from the stringent threshold that was used to
define high-confidence interactions (see Table 3.1).

In addition to the previous results, we also observe that the clustering and en-
richment analysis is dependent on the number of clusters, k, as we see variations in
the performance of both methods across different values of k, However, as shown in
Figure 3.5, our probabilistic approach outperforms its unweighted counterparts over
all the tested values of k.

Finally, all of these results also hold for the human PPI network as well, with
probabilistic graphlets exhibiting even better performance in the human than in the
budding yeast PPI network (Supplementary Figures A.6 and A.7).

Contrary to our earlier findings, we do not find any differences in the percentage
of enriched clusters, genes, or GO terms in the budding yeast CoEx network (Supple-
mentary Figures A.8-A.10). We hypothesize that the variation in the performance of
probabilistic graphlets is linked to the type of molecular interactions represented in
each network and the meaning of the probabilities assigned to each network’s edges.
In particular, PPIs are physical interactions between proteins that can vary based on
environmental changes or tissue specificity, which makes it important to represent
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Figure 3.5. Probabilistic graphlets capture as much or more biological information than
their unweighted counterparts. Lines represent the mean and the shaded area represents
the 95% confidence intervals based on bootstrapping of each enrichment statistic for un-
weighted and probabilistic graphlets depending on the number of clusters k, across 10
repetitions. High, medium, and low indicate the confidence threshold for the underlying
networks.

them using edge probabilities to capture their dynamic nature [47]. Likewise, the
connections between genes in GIS networks reflect shared regulatory mechanisms
whose activity varies based on conditions [53]. In contrast, CoEx networks present
more complex gene interactions as co-expression can result from shared regulatory
mechanisms, like transcription factor binding and spatial proximity [184], but can
also happen randomly depending on the chosen co-expression method [185]. There-
fore, the benefits of representing CoEx networks by probabilistic networks may be
limited. Yet, even in that case, our methodology has similar or better performances
than its unweighted counterpart.

Collectively, our results demonstrate the better performance of probabilistic
graphlets across a range of different enrichment metrics, as well as their capabil-
ity to utilize the additional network topology resulting from lower measurements of
biological signals (captured by lower probabilities on edges) to cluster network nodes
and extract biological information. In contrast, unweighted graphlets struggle with
increasing noise levels and as a result, their performance deteriorates when adding
low-confidence interactions to unweighted networks.

3.3.3 Probabilistic graphlets capture different biological in-
formation

To further elucidate whether probabilistic graphlets are capable of capturing addi-
tional and different biological information compared to their unweighted counter-
parts, we compare the GO BP terms that we find enriched in the previous clustering
and enrichment analysis (section 3.3.2) using Jaccard index (JI) (introduced in sec-
tion 3.2.7).

For budding yeast and human PPI networks, we find that the enriched GO
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BP terms enriched are different in both, low and high-confidence PPI networks (JI
different to 1), i.e., probabilistic graphlets captured distinct biological information
in these data. However, we see the GO BP terms enriched are more different in low-
confidence PPI networks than in high-confidence ones (see 3.6 A-B). Similarly, we
find that our methodology captures different GO BP enriched in both budding yeast
GIS and CoEx networks. In these networks, we find the highest differences in the
medium confidence ones (see 3.6 C-D). whereas the low confidence networks produce
results either similar to the high confidence (for GIS), or the medium confidence ones
(for CoEx). In addition, the results show that the number of clusters, k, affects the
similarity of the enriched GO BP terms captured by each methodology. However, the
trend remains consistent across most values of k tested, meaning that the differences
in the biological information between the methods are similar (see 3.6). Most of the
results discussed for GO BP annotations also hold for GO MF and CC terms (see
Supplementary Figure A.11 and A.12).

Figure 3.6. Probabilistic graphlets capture distinct information compared to their un-
weighted counterparts. Jaccard index (JI) of the BP GO terms captured by probabilistic
and unweighted networks across different confidence thresholds and for different numbers
of clusters. Lines represent the mean and the shaded area represents the 95% confidence
intervals based on bootstrapping for ten repetitions.

Taken together, these results suggest that the differences between the biological
information captured by each method depend on the threshold chosen and the bio-
logical network modeled. As seen in section 3.3.2, this dependence is a consequence
of the impact of the chosen threshold on the topology of the resulting unweighted
network, which also depends on the molecular data that is modeled. For instance,
if we compare the number of edges in high-confidence PPI networks for humans
and budding yeast. The resulting high-confidence human network, obtained from a
common source and thresholded at ¿=0.7, encompasses 33.4% of all available edges,
while the corresponding fraction for the budding yeast network is only 7.63%. Thus,
as pointed out earlier, selecting a confidence threshold can strongly influence the net-
work´s local structure and the biological information that graphlets can extract from
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its wiring patterns. However, this limitation does not affect probabilistic graphlets
since all interactions in the network are taken into account and no information is
discarded

3.3.4 Probabilistic graphlets uncover more specific biologi-
cal information

Besides the overlap of the enriched GO terms, we also investigate the specificity of
the biological information captured by each methodology. To this aim, we assess the
mean level in the GO hierarchy of the enriched GO terms. The level of a term in the
GO hierarchy is the distance of the term from the ontology root node, where higher
levels describe more specific functions (more information can be found in Chapter
2, section 2.5.2).

Figure 3.7. Mean level of the BP GO terms captured by probabilistic and unweighted
networks in human PPI network and budding yeast PPI, GIS, and CoEx networks. Panels
represent the mean level of the GO terms captured by each method or their intersection
across a range of cluster sizes k, as well as the shaded area represents the 95% confidence
intervals based on bootstrapping of the means across ten repetitions.

We find only small differences in the mean level of enriched GO terms when
comparing terms unique to probabilistic graphlets, unique to unweighted graphlets,
or their intersection in high confidence budding yeast PPI network. In contrast,
probabilistic graphlets show clearly higher mean levels for the low confidence yeast
PPI networks (see Figure 3.7 A-B). Thus, probabilistic graphlets capture more spe-
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cific biological functions in low-confidence yeast PPI networks than their unweighted
counterparts. Also, this suggests that our methodology benefits from retaining low-
confidence interactions.

Regarding the low and high-confidence human PPI networks, we find that both,
probabilistic and unweighted graphlets, individually capture more specific terms
than their intersection (see Figure 3.7 C-D). This indicates that the specificity of
the biological functions captured by each method is the same, but more interestingly,
that they could be capturing complementary information that is not shared in their
intersection.

For GIS networks, probabilistic graphlets capture more specific functional in-
formation than unweighted graphlets, as do their intersection for high-confidence
interactions. However, we do not see this for medium confidence interactions (see
Figure 3.7 E). Lastly, as previously seen for the enrichment measures, both proba-
bilistic and unweighted graphlets show only small differences in the mean levels of
enriched GO terms for CoEx networks (see Figure 3.7 G-H), which could mean that
using the co-expression values (section 3.2.4) as edge-probabilities in CoEx networks
or that CoEx networks, in general, do not benefit from a probabilistic model (as also
found in section 3.3.3).

In conclusion, these results suggest that probabilistic graphlets capture equally or
more specific biological information (GO terms) in some molecular networks when
compared to the unweighted graphlet-based methodology. Moreover, as seen for
human PPI networks, the two graphlet methodologies might be capturing comple-
mentary functional information. In the next section, we further investigate the
biological information that is uniquely captured by our probabilistic graphlets.

3.3.5 Probabilistic and unweighted graphlets find different
functions of a gene

To further understand the reasons for the differences in the biological information
captured by each method, we choose a specific value of k and retrieve all enriched
GO terms that are captured by each method. For these terms, we extract the
genes responsible for the corresponding functional enrichments and divided them
into three sets (section 3.2.7).

First, we observe that both, the total number of genes responsible for the func-
tional enrichments as well as the proportion of uniquely enriched genes, are higher in
probabilistic graphlets than in unweighted ones, i.e., our probabilistic methodology
extracts biological information from a larger number of genes (see Figure 3.8). More-
over, Moreover, the existence of an intersection between the gene sets (Figure 3.8,
yellow) indicates that the methodologies extract different and complementary bio-
logical information from the same set of genes.

In summary, these results demonstrate that the two methods identify different
functional information from different genes, as well as complementary functional
information from the same genes. Moreover, it suggests that the two approaches
may complement each other to extract biological information from the molecular
interaction datasets. This complementarity is a consequence of the fact that pGDV
vectors can capture functional information that cannot be captured by GDV vec-
tors, and vice versa (we investigate these topological differences in Supplementary
Section A.1.1).
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3.3.6 Robustness analysis

We also test the robustness of our methodology in capturing biological information
from different networks by counting how often an enriched GO term is specific to or
shared between the ten cluster repetitions performed for each network. Interestingly,
across all networks and GO annotation domains, probabilistic graphlets are more ro-
bust in finding the same GO terms throughout all ten independent repetitions when
compared to unweighted graphlets (Supplementary Figures A.13-A.15). This could
once again be a limitation of thresholding probabilistic networks when creating un-
weighted representations, as specific interactions may or may not be retained, which
can result in more divergent clusterings when compared to probabilistic graphlets.

Figure 3.8. Probabilistic graphlets capture different biological information than un-
weighted graphlets from the same set of genes. Each panel represents a Venn diagram
with the mean count of genes responsible for enriched GO terms (BP) uniquely captured
by each methodology in different networks (rows) and at different confidence thresholds
(columns), across 10 repetitions. The value of k for each network is fixed based on the

rule-of-thumb (k ≈
√

N
2 , where N represents the number of nodes in the network) and is

displayed in each panel.

To further assess the robustness of our method in a biological context, we select
all BP GO terms captured by either graphlet methodology across all ten repetitions.
We select BP GO terms over MF and CC ones since they represent a higher-level
perspective of biological functions (details in Chapter 2, section 2.5.2). Then, we
generate simplified GO (sGO) terms using a two-step procedure (see section 3.2.8 for
details) and identify all sGO terms that are specific to either graphlet methodology.
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In budding yeast and human PPI networks, probabilistic graphlets identify a
high number of biological response processes, such as response to oxygen-containing
compounds, response to heat, response to hormones, and others. Furthermore, we
find that response terms are detected significantly more often using the probabilistic
methodology for low-confidence PPI networks (budding yeast PPIs: p-value of 0.012
and human PPIs: p-value of 0.01). These results suggest that our methodology is
able to more reliably capture condition-specific biological processes that are only
activated when cells are responding to specific stimuli and that therefore might ben-
efit more from a probabilistic nature modeling approach. A possible explanation
for the enrichment of these response terms is that the corresponding PPIs are less
likely to be experimentally detected due to them occurring only in specific condi-
tions [30], which in turn would result in these interactions being removed from high
confidence networks (if the associated scores are too low). Hence, such interactions
would only be included in unweighted networks when a low confidence threshold is
applied, but would then be indistinguishable from spontaneous interactions that are
likewise reported with low confidence.

In the case of GIS networks, when we examine the union of all sGO terms de-
tected regardless of the confidence threshold applied, we find that 79.36% of these
sGO terms are uniquely identified by probabilistic graphlets, while the rest are cap-
tured by both methodologies or uniquely by the unweighted one (6.34% and 14.28%,
respectively). Among these 79.36% sGO terms, we find that functions related to the
cytoskeleton are particularly frequent (15.34% of these sGO terms). For instance, bi-
ological functions related to microtubule-based movement, spindle localization, and
cellular component assembly. Once again, these findings may suggest that processes
related to behavior and control of the cytoskeleton can benefit from probabilistic
models, perhaps due to influences of the cell cycle on the detectability of interac-
tions [186, 187, 188].

Lastly, for CoEx networks we do not find any particular differences between
the sGO terms captured by either methodology, which is in line with our previous
observations regarding enriched clusters, GO terms, and genes (Figure 3.5) as well
as gene signatures (Figure 3.8 G-H).

We once again observe that the chosen confidence threshold has a large impact
on the information captured by each method. For example, in GIS networks, un-
weighted graphlets do not find any enriched terms for the low-confidence network,
nor do they identify any of the terms found by probabilistic graphlets for the high-
confidence network. Moreover, in the case of CoEx, we observe that most of the
terms captured by unweighted graphlets are also found by probabilistic graphlets
when we change from a high to a medium confidence threshold (for instance, “re-
sponse to drug” or “response to nitrogen compound.” As seen in previous sections,
these results highlight the importance of thresholding and its influence on the topol-
ogy of the data as well as the biological information that can be decoded from the
network.

We also observe that probabilistic graphlets capture more stable biological in-
formation when comparing the same biological network across different confidence
levels, while unweighted graphlets rarely find the same or related terms (Supplemen-
tary Table A.13). Thus, as seen previously, probabilistic graphlets are less affected
by the introduction of noise due to low confidence interactions and are able to con-
sistently identify relevant biological processes, regardless of the chosen confidence
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threshold.

3.4 Conclusions

Taken together, our results demonstrate that probabilistic graphlets robustly man-
age low signal topology information without sacrificing their ability to recover rel-
evant biological information from the network, while unweighted graphlets used in
thresholded networks are sensitive to noise, as well as the chosen threshold and its
impact on network topology. Moreover, we find that probabilistic graphlets can
robustly extract condition-specific processes such as stress response mechanisms,
which in turn benefit from the use of probabilistic models.
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Chapter 4

A functional analysis of omic
network embedding spaces reveals
key altered functions in cancer

In this Chapter, we propose to explore the functional organization of the gene em-
bedding space from a functional perspective. We introduce a new function-centric
approach, the Functional Mapping Matrix (FMM), and apply it in the context of
cancer research. First, we evaluate the ability of the FMM in capturing the func-
tional organization of the PPI tissue-specific embedding spaces of the most preva-
lent cancers in humans (breast, prostate, lung, and colorectal cancer) and their
corresponding control tissues (breast glandular cells, prostate glandular cells, lung
pneumocytes, and colorectal glandular cells). Then, we use our FMM-based method
to investigate the changes in the functional organization of the cancer embedding
spaces with respect to their control spaces, we exploit these changes to predict new
cancer-related functions. Finally, we extend our FMM-based method to predict new
cancer-related genes. he results of this chapter is published in Doria-Belenguer et
al., [189] and were presented at the ECCB’21 conference.

4.1 Motivation

In cancer research, different network embedding algorithms have been used to iden-
tify cancer-related genes [125], to subtype cancers [161], to stratify patients [162]
and to repurpose drugs [163]. These algorithms include NLP-inspired methods,
e.g., DeepWalk [19] and node2vec [20]; and matrix factorization-based approaches.
In particular, NMTF is an extension of NMF and a well-known machine learn-
ing (ML) technique introduced for co-clustering and dimensionality reduction [21].
Unlike NMF, which factorizes the matrix representation of a network into two low-
dimensional non-negative matrices, NMTF generates the embedding space by de-
composing it into the product of three non-negative matrices, providing more degrees
of freedom in the data modeling and analysis than NMF does [21]. One of the ad-
vantages of NMTF over deep neural network-based ML approaches is that it requires
way fewer parameters to tune, thanks to the careful modeling of the relationships
between the data points that it takes as input. As shown by Xenos et al., [89], the
molecular network embedding space produced by NMTF can have valuable prop-
erties, e.g., orthonormality, that may lead to an easier interpretation and deeper
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scientific insight [168].
However, current approaches for mining embedded biological networks use the

genes’ embedding vectors as input to machine learning algorithms to perform down-
stream tasks. These gene-centric approaches have demonstrated their potential in
identifying new gene mutations in cancer cells involved in the initiation and progres-
sion of the disease [190]. However, they offer incomplete analyses of cancer data,
since they do not take as input the functional implications of such genomic varia-
tions. Thus, changing the gene-centric paradigm to a functional-based one could be
key to revealing additional functional information about cancer.

To improve our understanding of cancer, we generate cancer and control (healthy)
gene embedding spaces by applying the NMTF algorithm to the corresponding
tissue-specific PPI networks (detailed below). Then, to explore these gene embed-
ding spaces from a functional perspective, we propose to embed biological functions,
represented by GO BP annotations [191], into these gene embedding spaces. Finally,
we capture the functional organization of a given gene embedding space with our
new FMM, which encodes the mutual positions of the biological function embed-
ding vectors in the space. First, we use our FMM-based method to identify the
optimal dimensionality of cancer and control gene embedding spaces. Then, we ap-
ply the FMM to explore the functional changes in the most prevalent cancers (breast,
prostate, lung, and colorectal) compared to their corresponding control tissues. We
find that the changes in the distances between the embedding vectors of biological
functions in cancer compared to the control embedding space are related to cancer.
Indeed, we observe that cancer changes the distances between embedding vectors of
cancer-related biological functions, while it preserves the positions of other biologi-
cal functions. We exploit this observation to predict novel cancer-related functions,
e.g., alternative translational mechanisms, or the response to unfolded protein ac-
cumulation. Moreover, we find a set of 8 annotations that are altered in all four
cancer types. These annotations describe important cellular functions that may be
commonly altered in different cancers, e.g., stress-activated MAPK cascade. Also,
we demonstrate that our approach is not restricted only to functionally-based anal-
yses of cancer, but also that it can be used to mine for new genomic knowledge from
the embedding space. For instance, we use it to identify novel cancer-related genes,
i.e., PRDM11, C9orf72, MINDY3, and H4C6, that could have an important role in
the studied cancer types.

4.2 Materials and Methods

4.2.1 Biological datasets

Tissue-Specific PPI networks. We analyze cancer and control tissue-specific PPI
networks that we generate by using the same methodology as in [1]. To this end, we
collect the experimentally validated PPIs of human from BioGRID v.4.2.191 [41].
We model this human PPI data as a PPI network, in which nodes represent genes
(or equivalently in this study, their protein products) and edges connect the nodes
(genes) whose corresponding proteins physically bind. We use this generic human
PPI network to generate our tissue-specific PPI networks. Following [1], we collect
the tissue-specific gene expression data for breast, prostate, lung, and colorectal can-
cer tissues, as well as their corresponding control tissues of origins (breast glandular
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cells, prostate glandular cells, lung pneumocytes, and colorectal glandular cells, re-
spectively) from the Human Protein Atlas (HPA) database v.20.0 [192]. For each
tissue, we only consider the genes whose expression value is available in the HPA
and that have at least one PPI in the generic human PPI network. We generate our
eight tissue-specific PPI networks, in which nodes are genes that are expressed in
the corresponding tissue, and two nodes are connected by an edge if they interact
in the generic human PPI network (details about PPI tissues-specific networks can
be found in Chapter 2, section 2.1). The network statistics of the tissue-specific
networks are presented in Supplementary Table B.1.

Network Representation. We represent the tissue-specific PPI networks with
their PPMI matrices, X, where each entry in the matrix contains information about
how frequently two nodes co-occur in a random walk in the corresponding PPI
network (details about PPMI matrices can be found in Chapter 2, section 2.7.1).
Following Xenos et al., [89], we use the DeepWalk closed formula by Perozzi et
al., [19] (see formula 2.15) with its default settings to compute the PPMI matrix.
This formula can be interpreted as a diffusion process that captures high-order prox-
imities between the nodes in the network; hence, PPMI is a richer representation
than the adjacency matrix [89]. As a result of the extra information encoded in the
PPMI, its corresponding embedding spaces better capture the functional organiza-
tion of the cell than the ones generated by using the adjacency matrix (the details
of this comparison are presented in Supplementary section B.2.1).

Biological Annotations. We use the GO BP annotations of genes’ biological
functions in a cell [191] (functional annotations are introduced in Chapter 2, sec-
tion 2.5.2). We collected the experimentally validated GO BP annotations of genes
from NCBI’s web server (collected on 28 September 2021).

4.2.2 Definition of cancer-related biological annotations

Computational cancer research is usually based on computationally processing in-
formation about genes and not their annotations. Although a standard definition
of a cancer driver (oncogene) exists [193], there does not exist a standard defini-
tion of a cancer-related GO BP term. Oncogenes are a functionally heterogeneous
group of genes whose products regulate multiple cellular processes [194]. Despite
this heterogeneity, oncogenes also participate in common molecular mechanisms that
are known to be cancer-related, e.g., cell proliferation [195]. Thus, we propose to
consider as cancer-related the most representative biological functions in which the
oncogenes participate (detailed below).

We download the set of all 725 genes considered to be oncogenes in COSMIC [196]
(collected on 01 December 2021). We find the most representative biological func-
tions of these oncogenes by performing an enrichment analysis of our oncogenes
set in GO BP functions (based on the hypergeometric test [197], see Chapter 2,
section 2.5.2). A GO BP annotation is considered to be significantly enriched in
our set of oncogenes, compared to all other genes if its enrichment p-value is lower
than or equal to 5% after correction for multiple hypothesis testing [198]. We find
104 significantly enriched GO BP annotations in our set of oncogenes: these are
our cancer-related annotations. To validate our set of cancer-related annotations,
we calculate the Lin’s semantic similarity [136] between our set of cancer-related
functions and the set of 135 “cancer hallmark” annotations defined by [199]. With
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an average Lin’s semantic similarity between the sets of 0.67, (see Supplementary
Figure B.1) we conclude that the two sets are highly functionally related, i.e., our
set of cancer-related annotations is related to the cancer hallmarks.

4.2.3 Embedding the PPI networks

To embed genes according to the PPMI matrix representation of a molecular net-
work, X, we use NMTF to decompose X as the product of three non-negative factors,
X ≈ P ·S ·GT , where the set of the rows of the matrix P ·S defines the set of embed-
ding vectors of the genes, E, and the set of the columns of G defines the basis, B, of
the space in which the genes are embedded [200] (Figure 4.1 A illustrates the NMTF
factorization on two different PPMI matrices, cancer, and control). Importantly, we
apply the orthonormality constraint to the basis-defining matrix (GTG = I), since
it leads to minimal co-linearities (hence, minimizing the dependencies) between the
vectors of the basis, B, of the embedding space [172]. The decomposition of the
orthonormal NMTF is done by minimizing the function 2.7.2. To generate initial P ,
S, and G matrices, we use the SVD-based strategy [201]. This strategy makes the
solver deterministic and also reduces the number of iterations that are needed to
achieve convergence [201]. The quality of the factorization is usually evaluated by
the Relative Square Error (RSE) between the input matrix, X, and its corresponding

decomposition, PSGT , as RSE =
∥X − PSGT∥2F
||X||2F

. The iterative solver is normally

stopped when the RSE is not increasing anymore.

4.2.4 Definition of the Functional Mapping Matrix

To explore the functional organization of the gene embedding space, obtained as
detailed above, we introduce the Functional Mapping Matrix (FMM ). This matrix
captures the mutual positions of the functional annotations that we embed in the
gene embedding space. In particular, we obtain an FMM by taking as input: the
matrix factor, G, which contains the basis, B, of the gene embedding space, and
the relation-matrix between the genes and their functional annotations, A, in which
entry A[ai, gj] is one if annotation ai annotates gene gj, and it is zero otherwise.
First, we generate the embedding vectors of the functional annotations in the gene
embedding space by decomposing the matrix A as the product of two matrix factors,
U and GT , as A ≈ UGT , where rows of matrix U (that we call ui) are the embedding
vectors of the annotations, ai, in the gene embedding space defined by the basis,
B (illustrated in Figure 4.1 for two embedding spaces, cancer, and control). Note
that, since matrix A is known and matrix factor G is computed as explained in
section 4.2.3, we can obtain U by: U ≈ (GT )−1A, where (GT )−1 is the Moore-
Penrose pseudoinverse of GT [202]. Finally, the FMM is obtained by computing
the pairwise cosine distances between all pairs of the embedding vectors ui of the
annotations ai (the bottom panel of Figure 4.1 A illustrates two examples of FMMs).
In particular, each entry FMM[i, j] = cos(ui, uj) corresponds to the cosine distance
between the embedding vectors ui and uj of the annotations ai and aj. Thus, the
resulting FMM is a symmetric distance matrix that captures the mutual positions,
that henceforth we call distances, between the annotation vectors in the embedding
space. We choose cosine distance over other distance measures, e.g., the dot-product,

67



since it is a well-known normalized measure [203], which permits direct comparison
between different FMMs, i.e., we do not need any normalization step after computing
the FMM.

4.2.5 Measuring the similarity of functional organization of
the embedding spaces by using their FMMs

For a pair of embedding spaces, we measure the similarity of their functional orga-
nization by computing the relative squared error (RSE) between their FMMs. We
use the following method to find the smallest number of dimensions, which we call
the “optimal dimensionality”, after which the functional organization of the gene
embedding spaces, as measured by the RSE between the FMMs with increasing
numbers of dimensions, does not change anymore. First, we produce the gene em-
bedding space of each cancer and control, tissue-specific PPI networks by using the
NMTF algorithm (detailed in section 4.2.3) with different dimensionalities (from 50
to 300 dimensions with a step of 50). Then, we obtain the embedding vectors of
each of the GO BP annotations in each of the cancer and the corresponding control
gene embedding space and then capture the difference in the position of a GO BP
annotation between cancer and control space, measured by our FMM (detailed in
section 4.2.4). By tracking the RSEs of the FMMs across dimensions (from 50 to
300 dimensions with a step of 50), we find that the distances of the annotation
embedding vectors converge to a stable, i.e., non-changing functional organization,
after 200 dimensions for all tissue-specific PPI network embedding spaces (RSE be-
tween their FMMs plateaus, i.e., stops decreasing, see Supplementary Figure B.2).
In the analysis presented below, we use the optimal dimension of the embedding
space that we obtained as described here (for all tissue-specific PPI networks, their
optimal dimensions are presented in Supplementary Table B.4).

4.2.6 Evaluating the functional organization of an embed-
ding space with its FMM

From a gene-centric perspective, an embedding space is considered to be functionally
organized if genes that participate in similar biological functions are located close
in the space [204]. This organization is commonly evaluated by applying various
types of clustering methods to the embedding vectors of the genes in the space,
followed by functional enrichment analyses of the genes that the clustered vectors
correspond to [1] (detailed in Chapter 2, section 2.5). Here, we propose to examine
the functional organization of the embedding space from a function-centric perspec-
tive. Similar to the gene-centric perspective, we consider an embedding space to
be functionally organized if semantically similar annotations, i.e., annotations with
high Lin’s semantic similarity are embedded close in the space. To evaluate it, we
apply our FMM to capture the distances of all pairs of the embedding vectors of the
functional annotations in the embedding space (detailed in section 4.2.4).

Then, we analyze the link between the functional similarity of the annotations,
measured by their pairwise Lin’s semantic similarity, and the distances of their
embedding vectors in the embedding space by performing two different experiments.
We compute the PCC [205] between the mutual positions of all pairs of annotation
vectors in the embedding space, i.e., the cosine distances over all pairs of annotation
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embedding vectors, and the Lin’s semantic similarities over all pairs of annotations.
Hence, a negative correlation coefficient indicates that those annotations that are
embedded close in the space (lower cosine distance) tend to be functionally similar
(high Lin’s semantic similarity). Also, we apply the k-medoid algorithm [206] to
cluster the annotations based on the distances of their vectors in the embedding
space, as captured by our FMM. To define the number of clusters, we use the rule
of thumb [18], k =

√
(n/2), where k corresponds to the number of clusters and

n to the number of annotations. Finally, we measure the intra and inter-cluster
Lin’s semantic similarity for the obtained clusters to assess if the annotations whose
embedding vectors cluster in the embedding space are similar in biological function.

4.2.7 Quantifying the “movement” of the annotation em-
bedding vectors in cancer and control embedding spaces

We propose to quantify the changes in the mutual positions (distances), which we
call “movement,” of the annotation embedding vectors in two different gene embed-
ding spaces defined by bases, B and B′. In this study, we analyze the “movement” of
the annotation embedding vectors in cancer and control embedding spaces. To this
end, given the pairwise cosine distances of the annotations embedding vectors in the
cancer and control embedding spaces, FMMCancer and FMMControl, we quantify the
change in the distance between two embedding vectors of annotations ui and uj as
FMMControl[i, j] - FMMCancer[i, j]. This distance is negative if ui and uj are farther
in the cancer embedding space than in the control embedding space, positive if they
are closer, and zero if there is no change between their positions in the embedding
space of cancer and control. By taking all the pairwise distances over all i and
j, FMMControl[i, j] - FMMCancer[i, j], we define the distribution of pairwise “move-
ments” (see Supplementary Figure B.3). We define that two annotation embedding
vectors, ui and uj, are “moving significantly apart” in the embedding space of cancer
if their distance is greater than or equal to the 95th percentile of the aforementioned
distribution. In contrast, we define that they are “moving significantly closer” in the
embedding space of cancer if their distance is smaller than or equal to the distance
that corresponds to the 5th percentile of the distribution.

To identify the annotations whose embedding vectors change the most between
the cancer and control embedding spaces, first, we calculate the distance between the
embedding vectors of each annotation ui in the control and the cancer embedding
spaces, that we call FMMControl[i] (which is the ith row of matrix FMMControl) and
FMMCancer[i] (which is the ith row of matrix FMMCancer, respectively. So the coor-
dinate of vector FMMControl[i] contains the cosine distances of ui to all other annota-
tion embedding vectors in the control embedding space. Then, for each annotation
embedding vector, ui, we define the “movement vector” as D[i] = FMMControl[i] -
FMMCancer[i]. Hence, the “movement vector” contains the differences of the mutual
positions in cancer compared to control embedding space (cosine distances) between
ui and all other annotation embedding vectors. Next, we define the “total move-
ment” of annotation, ui, as the Euclidean norm of its corresponding “movement
vector,” D[i]. In this way, for each annotation, ui, we define the score of its “total
movement” in cancer over control, which is high when its distance to the other an-
notations changes between the cancer and control embedding spaces (that we call
shifted) and it is close to zero when it does not change (that we call stable). By
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considering the “total movement” of all annotations, we define the “total movement
distribution” (see Figure B.4). We consider as shifted biological functions those
functional annotations whose embedding vectors’ “total movement” is two standard
deviations above the mean of the “total movement distribution”. In contrast, we
define as stable biological functions those functional annotations whose embedding
vectors’ “total movement” is two standard deviations below the mean of the “total
movement” distribution.

4.2.8 Distances between the embedded entities in the em-
bedding space

We use the cosine distance to determine the distance between the embedding vec-
tors of two entities (genes or functions in this study) in the same gene embedding
space defined by basis B. We recall that in the embedding space defined by B, the
embedding vector of gene gi is the ith row of matrix P · S, and that the embed-
ding vector of annotation aj is the jth row of matrix U (detailed in section 4.2.4
and illustrated in Figure 4.1 B). Before using the cosine distance, we confirm that
the embedding vectors of the biological functions (GO BP terms) are significantly
closer in space to the embedding vectors in the same space of the genes that they
annotate than to the embedding vectors of other genes (Mann-Whitney U p-value
≤ 0.05, see Supplementary Table B.5). This confirms that annotations and genes
are functionally organized in the embedding space.

4.3 Results and Discussion

Inspired by Malod-Dognin et al., [1] who, in a gene-centric analysis, observed that
cancer-related genes are the most rewired between cancer and control embedding
spaces and used this property to predict novel cancer-related genes, we use our
FMM-based method to confirm that the embedding spaces of both, cancer and con-
trol, are functionally organized and that this organization changes between cancer
and control. We exploit this observation to predict new cancer-related functions,
which we validate by analysis of their enrichment in known cancer-related functions
(detailed below), automatic literature search, and manual literature curation for the
most promising predictions (section 4.3.2). Moreover, we go beyond and exploit
the “movement” of the annotation embedding vectors to predict new cancer-related
genes (section 4.3.3), finding four new cancer-related genes, which we validate by
literature curation and retrospective analyses of patient survival, but whose role
with cancer has yet to be experimentally validated.

4.3.1 Cancer alters the functional organization of the healthy
cell embedding space

Here, we focus on applying our FMM-based method to confirm that the embed-
ding spaces of both, cancer and control, are functionally organized (detailed in sec-
tion 4.2.6). To this end, we generate the embedding spaces of the most prevalent can-
cers (breast, prostate, lung, and colorectal cancer) and their control tissues (breast
glandular cells, prostate glandular cells, lung pneumocytes, and colorectal glandular
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cells) by applying the NMTF algorithm on the corresponding tissue-specific PPI net-
works (detailed in sections 4.2.1 and 4.2.3). Then, we use our FMM-based method
to embed GO BP terms into these gene embedding spaces and to capture their dis-
tances over the cancer and control embedding spaces (detailed in section 4.2.4). By
analyzing the FMM of each embedding space, we find that the annotation embed-
ding vectors that cluster together based on their cosine distances in each space have,
on average, Lin’s semantic similarity 1.32 times larger than those that do not cluster
together in space (see column “Fold” in Table 4.1 for the corresponding results for
each embedding). Hence, the GO BP terms corresponding to the embedding vectors
that cluster together in space are more functionally related than those whose embed-
ding vectors do not cluster in space (see Table 4.1). Thus, both cancer and control
embedding spaces are functionally organized. We further confirm this conclusion
by comparing these results against a randomized experiment, i.e., when randomly
rewiring the PPI networks (detailed in Supplementary section B.2.4). As expected,
we find that annotations whose embedding vectors are close in these randomized
spaces are not more functionally similar (as measured by the Lin’s semantic simi-
larity) than those whose embedding vectors are far in the space, i.e., they are not
functionally organized in the randomized space (see Table 4.1 and Supplementary
Table B.6).

Having confirmed that both embedding spaces, cancer, and control, for all four
cancers, are functionally organized, we investigate if this organization changes be-
tween them. To do so, we assess if there are pairs of annotation embedding vectors
whose distances in the embedding space are significantly altered in cancers (detailed
in section 4.2.7). For the four studied cancers, we find an average of 72,326 (5% of
the total number) of pairs that move significantly closer in the cancer space com-
pared to control (see Figure 4.2 for an illustration of this variation). We find that
this set of pairs (that are closer) is 1.3 times closer in the cancer space than in the
control one. Similarly, we find the same percentage of pairs that move significantly
apart in the cancer embedding space compared to the control. Here, we find that
this set of pairs (that move apart) is 1.4 times farther in the cancer space in compar-
ison to the control one. In conclusion, these results demonstrate that cancer alters
the functional organization of the healthy (control) cell.

We have shown above that cancer alters the functional organization of the con-
trol PPI network embedding space by changing the distances of the annotation
embedding vectors in the space. Now, we investigate how this change is related to
cancer (and if it can be used to predict novel cancer-related functions). We use our
FMM-based methodology to identify the annotation embedding vectors that change
their distances (that we call “movement”) between cancer and control embedding
spaces. Then, we compare the “movement” of our set of cancer-related functions and
the rest of the annotations. Interestingly, we observe that the embedding vectors
of cancer-related functions move the most between cancer and control embedding
spaces compared to those of other annotations. Indeed, these annotation vectors
move on average 2.4 times more than the rest of the annotation embedding vec-
tors in all four cancers (Mann-Whitney U test with p-value < 0.05). This suggests
that the “movement” of the annotation vectors is related to cancer, i.e., it could be
exploited to find new cancer-related functions (presented in the next section).
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Embedding Intra Inter Fold p-value

Control breast 0.22 0.17 1.29 2.12× 10−6

Cancer breast 0.23 0.16 1.43 2.68× 10−5

Control prostate 0.24 0.17 1.41 2.24× 10−6

Cancer prostate 0.21 0.15 1.40 1.04× 10−6

Control colorectal 0.19 0.16 1.18 4.04× 10−3

Cancer colorectal 0.21 0.16 1.31 1.68× 10−5

Control lung 0.19 0.17 1.11 2.17× 10−4

Cancer lung 0.22 0.15 1.46 5.32× 10−6

Random Example 0.17 0.17 1.00 0.14

Table 4.1. The embedding spaces of the most prevalent cancers (breast, prostate, lung,
and colorectal cancer) and their control tissues (breast glandular cells, prostate glandular
cells, lung pneumocytes, and colorectal glandular cells) are functionally organized. The
first column, “Embedding,” lists the tissues. The second column, “Intra,” shows the
average Lin’s semantic similarity of those annotations whose embedding vectors cluster
together based on their cosine distances in the embedding space. The third column,
“Inter,” shows the average Lin’s semantic similarity of those annotations whose embedding
vectors do not cluster together based on their cosine distances in the embedding space. The
fourth column, “Fold,” displays how many times the average Lin’s semantic similarity of
those annotations whose embedding vectors cluster together based on their cosine distances
in the embedding space is higher than of those annotations whose embedding vectors do
not cluster together. The fifth column, “p-value,” shows the p-value from a one-sided
Mann-Whitney U test comparing the Lin’s semantic similarity between annotations whose
embedding vectors cluster together and those with non-clustered embedding vectors. This
table also includes an example of a randomly rewired PPI network (Random Example).
The complete information with all the random tissue-specific PPI networks can be found
in Supplementary Table B.6.

4.3.2 The “movement” of the annotations in the embedding
space predicts cancer-related functions

Here, we exploit the “movement” of the annotations’ vectors to predict novel cancer-
related functions. Following the approach detailed in section 4.2.7, we find two
groups of annotations based on their “movement:” shifted and stable group of an-
notations (the numbers of GO BP annotations in the two sets for each of the four
cancers are presented in Supplementary Table B.7). For these sets of annotations, we
perform the hypergeometric test (with alpha = 0.05, [197]) to assess if they have sig-
nificantly more, or significantly less cancer-related functions than the background set
of genes (the background set of genes contains all genes that are in the correspond-
ing tissue-specific PPI network). We observe that for three out of four cancers, the
shifted annotations are significantly enriched in cancer-related functions (p-value of
0.85, 0.02, 0.02, and 0.04 for breast, colorectal, prostate, and lung, respectively). In
contrast, the stable annotations are significantly depleted in these functions (p-value
of 0.49, 0.88, 0.80, and 0.68, for breast, colorectal, prostate, and lung, respectively),
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Figure 4.2. The embedding vectors of GO BP terms change their mutual positions
in the cancer embedding space with respect to the control embedding space, for each
cancer type (breast cancer, prostate cancer, lung cancer, and colorectal cancer) and its
corresponding control. Heatmaps in the first and second columns show the cosine distances
(mutual positions) between the embedding vectors of the GO BP annotations in control
embedding space (FMMControl) and cancer embedding space (FMMCancer), respectively.
Heatmaps in the third column show changes in the mutual positions of the embedding
vectors of the functional annotations between cancer embedding space with respect to the
control embedding space (computed as FMMControl - FMMCancer).

i.e., they have a significant lower percentage of cancer-related functions than the
background (see Figure 4.3). This observation does not hold only for the shifted
annotations of breast cancer (p-value of 0.85). This discrepancy can be attributed
to the type of cancer samples used in this analysis and to our definition of cancer-
related annotations. While the TCGA’s samples of colorectal, lung, and prostate
are mostly from adenocarcinomas, over 99% of the TCGA’s samples of breast cancer
are from neoplasms (see Table 4.2). Indeed, as detailed in section 4.2.2, we use the
COSMIC oncogenes to define our cancer-related GO BP terms. These oncogenes
are mainly defined from adenocarcinomas samples; in particular, for breast cancer,
only 8% of the samples in COSMIC come from neoplasms, while in TCGA, over 99%
of the samples come from neoplasms. This highlights the importance of improving
the definition of cancer-related functions to include different types of cancer of the
same organ.

74



Figure 4.3. “Movement” in the embedding space is related to cancer. The panel contains
the percentages of enriched cancer-related GO BP terms out of all GO BP terms (vertical
axis) in the shifted annotations set (in blue), stable annotations set (in orange), and the
expected by random (in green), for each cancer type (on the horizontal axis).

Despite the results discussed above, we also find several annotations in the shifted
set that are not considered to be cancer-related according to our definition. In par-
ticular, we find that only 2 (2%), 5 (12%), 5 (10%), and 6 (10%) of the annotations
in the shifted set are cancer-related for breast, prostate, lung, and colorectal cancer,
respectively. Thus, to validate the remaining unknown to be cancer-related annota-
tions, we extend the systematic approach used in the study by Ceddia et al., [163]
and conduct a systematic literature search in the PubMed database [207]. We auto-
matically retrieve the number of scientific publications that associate each GO BP
term with a specific cancer type. To do so, we search for co-occurrences between the
GO BP term and the cancer type in the abstracts of PubMed publications. We find
that 33 (58%), 31 (65%), 29 (63%), and 36 (52%) of these annotations have at least
one publication demonstrating their role in breast, lung, prostate, and colorectal
cancer, respectively. These high percentages of literature validation indicate that
the remaining annotations, which we could not validate in the currently available
literature, are candidates for novel cancer-related functions.

Finally, we do manual literature curation for the most promising predictions
identified above. In particular, we rank the predictions by the magnitude of their
“movement” and we investigate the top 10 most “moved” ones. We detect that,
although these functions are not reported in the literature to be directly related to
cancer, their link with cancer is clear: for instance, we find “the positive regulation
of activated T cell proliferation” in breast cancer. This is a well-known regulation
process in breast cancer development, and it could be connected to the “cooperation”
of breast cancer cells with the immune cells [208]. Other examples include “cleavage
furrow formation” and “mitotic spindle midzone assembly” in prostate and colorectal
cancers, respectively. The failure of these processes during cell division has been
associated with carcinogenesis [209, 210]. Finally, we find “the positive regulation
of endodeoxyribonuclease activity” in lung cancer. A deficiency in this process is
linked with most of the mutations and genomic alterations that are relevant to
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Cancer TCGA Project # of patient samples Disease Type

Breast BRCA 1,098
1,095 neoplasms
3 adenocarcinomas

Prostate PRAD 467
459 adenocarcinomas
8 neoplasms

Lung LUAD, LUSC 1,062
533 neoplasms
529 adenocarcinomas

Colorectal COAD, READ 456
389 adenocarcinomas
63 neoplasms

Table 4.2. The statistics for the tissue-specific PPI networks in this study. Column one,
“Cancer,” specifies the type of cancer that we analyzed; column two, “TCGA Project,”
gives the name of the project from TCGA that produced the data that we used; column
three, “# of patient samples” specifies the number of patient samples in the project from
column two; column four, “Disease Type,” specifies the numbers of patient samples from
the corresponding project with a specific cancer type.

cancer [211]. An extended discussion for the rest of the annotations in each cancer
type top 10 predictions can be found in Supplementary section B.2.5.

4.3.3 The “movement” of cancer-related annotations in the
embedding spaces predicts oncogenic genes

In this section, we investigate if the functions that are shifted in cancer (compared
to control) can be used to identify novel cancer-related genes. To this aim, we first
demonstrate that the embedding space captures the functions of a given gene by
placing its embedding vector close (low cosine distance) to the embedding vectors
of those GO BP terms that describe the gene’s biological functions (detailed in
section 4.2.8). We hypothesize that the alteration in the cosine distance between the
gene embedding vector and the GO BP embedding vector may indicate that the gene
is losing a function (if the distance increases), or that the gene is gaining a function
(if the distance decreases). Hence, we prioritize as cancer-related those genes whose
embedding vectors change their distances to the vectorial representations of the
shifted functions in the embedding space the most.

To evaluate this hypothesis, we first assess if literature-validated genes (see the
definition below) change significantly more their distances to our shifted functions
than the background genes in the cancer space compared to control. To this end,
similar to the methods explained in section 4.2.7, for each gene, we compute a vector
with n positions, where n corresponds to the number of the “shifted” GO terms and
in which each entry corresponds to the “movement” (change of mutual positions) of
the gene and the GO term. Since this “movement” is bi-directional (getting closer
or further), we use the absolute value of the “movement” at each coordinate of this
vector, to keep only the magnitude of this “movement” independently of the direc-
tion of the “movement”. Then, since all the values in the n-dimensional vector are
now positive, for each gene we assign as its cancer-related score the maximum value
(maximum magnitude of movement) in its corresponding vector. Hence, we define
the maximum “movement distribution” of the gene embedding vectors as the set
of all aforementioned maximum values of “movement.” For each cancer type, we
consider as literature-validated the genes with at least one publication in PubMed
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indicating their role in the corresponding cancer type. To do this evaluation, we
apply the same systematic approach as the one used to validate the “shifted” anno-
tations in section 4.3.2. In all four cancers, we find that literature-validated genes
“move” significantly more towards or away (higher cancer-related score) from our
shifted functions than the background genes (we compare these two “movement”
distributions with Mann-Whitney U test with p-value < 0.05). Thus, we use this
property to predict new cancer-related genes. We predict as cancer-related those
genes that are above or at the 95th percentile of the maximum “movement” distri-
bution (see Supplementary Figure B.5). In this way, we predict as cancer-related
346, 234, 325, and 379 genes in breast, lung, prostate, and colorectal cancer, re-
spectively, which we call shifted genes. In the rest of this section, we validate these
predicted cancer-related genes in two ways: systematic literature curation and by
retrospective analyses of patient survival curves (detailed below).

Gene name PubMed Counts Pan-Cancer Prognostic Marker

C9orf72 0 0
PIK3R2 2 0
TAF13 0 2
MINDY3 0 0
EIF5B 1 3
SSB 7 3
SGSM3 0 1
NKX3-1 314 0
RPS4X 0 2
FAM204A 0 1

Table 4.3. op 10 shifted genes (the most shifted ones) in prostate cancer. The first
column, “Gene name,” presents the gene names of the top 10 shifted genes. The second
column, “PubMed Counts,” contains the number of publications in Pubmed that relate the
gene to prostate cancer. The third column, “Pan-Cancer Prognostic Marker,” indicates
how many cancer types the gene is considered to be a prognostic marker based on survival
curves collected from the Human Protein Atlas [192].

We validate in the literature that 233 out of 346 (67%), 144 out of 234 (61%),
179 out of 325 (55%), and 187 out of 379 (49%) of our predictions are cancer-
related in breast, lung, prostate, and colorectal cancer, respectively. Indeed, among
our literature-validated predictions, we find well-known cancer genes, i.e., BRAF in
breast cancer (225 publications), CASP8 in lung cancer (123 publications), or MSH6
in colorectal cancer (205 publications). Also, we assess if our cancer gene predictions
are prognostic markers of patient survival, which we measure with patient survival
curves (we collected the data from the Human Protein Atlas (HPA) [192]). We
find that 16 (4.6%), 7 (2.9%), 4 (1.2%), and 17 (4.4%) of these genes are registered
in the HPA as breast, lung, prostate, and colorectal cancer prognostic markers,
respectively. Since these survival curves are based on differential gene expression
analyses [212], we hypothesize that our method prioritizes genes that are not differ-
entially expressed. Indeed, only 38 (11%), 85 (36%), 19 (6%), and 56 (15%) of our
predicted cancer-related genes are deferentially expressed in breast, lung, prostate,
and colorectal cancer tissues with respect to their corresponding control tissues, re-
spectively (using expression data from TCGA projects, as detailed in Table 4.2).
These results align with [1], who demonstrated that there exist important cancer-
related genes (validated by wet-lab experiments) that are not differentially expressed
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in control and cancer. We hypothesize that the role of these genes in cancer could
be connected with post-translational modifications (PTM) of their expressed pro-
teins. These modifications modulate the functions and interactions of the proteins
after translation [213] and have been reported in several cancer types, e.g., ovar-
ian cancer [214] or skin cancer [215]. In conclusion, our method identifies genes
whose transcriptional patterns have not changed and thus is complementary to the
traditional differential expression analysis.

Finally, we go beyond the above validation and focus on the top 10 shifted genes
(the most shifted ones) of each cancer type. We largely validate these top 10 shifted
genes, either as cancer biomarkers (of prognosis) or as cancer-related in the literature
(see Table 4.3 and Supplementary Tables B.8-B.10). Thus, we conjecture that the
remaining four non-validated genes (PRDM11 in lung cancer, C9orf72 and MINDY3
in prostate cancer, and H4C6 in colorectal cancer) are also cancer-related. Indeed,
PRDM11 is part of a broad family of transcriptional regulators, several of which are
deregulated in cancer [216]. It is highly expressed in the lungs, as well as in periph-
eral blood immune system cells. Although it has been linked with the enhancement
of lymphomagenesis [216], our study is the first one to suggest its role in lung cancer.
Another example is MINDY3 in prostate cancer; MINDY3 codes for a protein that
contains a caspase-associated recruitment domain and may be involved in apopto-
sis [217]. Even though it has been identified as a tumor suppressor in lung and gastric
cancers [218], our study is the first to link it with prostate cancer. For the same
cancer type, prostate cancer, we find C9orf72, a gene that has been associated with
several neurodegenerative disorders [219]. Although its role in cancer is unknown,
its participation in important cancer-related processes, such as autophagy [216] and
inflammation [220], supports our observation that it may be cancer-related. Finally,
we predict gene H4C6 as being involved in colorectal cancer, which is a member of
the histone H4 family that encodes a replication-dependent histone. Although no
publication relates this gene to cancer, its involvement in cellular senescence and
mitotic prophase [217] suggests that this gene may have an important role in cancer
progression. In conclusion, we introduce a method to predict new cancer-related
genes based on their distance to the most shifted functional annotations in cancer
over control molecular network embedding space. We validate our predictions of
new cancer-related genes through literature curation and retrospective analyses of
patient survival data. Importantly, these newly predicted cancer-related genes can
not be identified by using the traditional differential-expression analysis.

4.4 Conclusion

By introducing our new FMM methodology, we initiate the investigation of the em-
bedding spaces of the tissue- and disease-specific molecular networks from a func-
tional point of view. In the Supplementary section B.2.2, we demonstrate that our
FMM methodology better captures the functional interaction between GO BP terms
than the traditional gene-centric approach. We show that our FMM can efficiently
be applied to address different problems, i.e., to find the optimal dimensionality
of the embedding space, to analyze the similarities between the functional organi-
zation of different embedding spaces (in this study, those corresponding to cancer
and control), or to find the functional changes produced by cancer. Moreover, we
use our method to predict four new cancer-related genes for which we found some
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literature indicating their involvement in cancer, but whose role in cancer has yet
to be experimentally validated. Furthermore, our methodology could be easily ap-
plied to other bioinformatics tasks, such as patient and tissue stratification, or to
uncover evolutionary similarities. Moreover, in the Supplementary section B.2.3, we
demonstrate that our FMM captures the hierarchical organizations of the GO BP
terms in network embedding spaces. However, extracting novel knowledge from that
higher-level organization is left for future study. Finally, our new methodology is
generic and can be applied to any discipline that analyzes embedded network data
in which the embedded network nodes can be functionally annotated, e.g., social,
or economic networks, paving the road to new algorithms for mining the data by
utilizing the embedding space from a functional perspective.
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Chapter 5

The axes of biology: a novel
axes-based network embedding
approach to decipher the
fundamental mechanisms of the
cell

While our FMM-based methodology changes the exploration of the embedding space
from the genes’ embedding vectors to the vectorial representation of their functional
annotations, both approaches still focus on the organization of the embedded entities
(genes and functional annotations) in the space to decipher biological information
from embed networks. Thus, in this Chapter, we propose to change the perspective
from the embedded entities to the space itself. In particular, we introduce a new
method that uses the axes of the embedding space where the entities are embedded
to capture the cell’s functional organization from molecular networks. First, we eval-
uate if the axes of the embedding space uncover the cell’s functional organization
from species-specific PPI networks. Then, we analyze if the ability of the embed-
ding axes to uncover the cell’s functional organization is affected by the embedding
spaces’ topological properties, such as orthonormality and non-negativity. Also, we
investigate the impact of dimensionality on the ability of the embedding axes to
reveal the cell’s functional organization. We investigate the functional coherence of
the biological information captured by the axes and analyze them in the context of
evolution. The content of this chapter is adapted from Doria-Belenguer et al., [221]
currently under submission.

5.1 Motivation

Recent approaches for deciphering biological networks are based on network em-
bedding techniques [14]. These algorithms aim to find the vectorial representation
of the network nodes in a low-dimensional embedding space spanned by a system
of coordinates (a.k.a., embedding axes) while preserving the structural information
of the network [14, 15]. Current gene-centric and functional-centric approaches for
mining embedded networks uniquely use the organization of the learned vectorial
representation of the genes and functions in the space to uncover the cell’s func-
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tional organization. Hence, other possible information sources, such as the axes of
the embedding space where these entities are embedded, remain unexplored.

Revealing the hidden information of a biological network requires not only an
embedding algorithm but also methods to integrate their results into biologically in-
terpretable models [222]. Network clustering analyzes the topological and functional
properties of the molecular networks by grouping (clustering) together genes whose
embedding vectors are in proximity in the embedding space. These clusters repre-
sent subgraphs of the original molecular network that exhibit significant clustering
properties, i..e., genes within each cluster are more densely connected to each other
than to genes outside the cluster. This allows for uncovering topological and func-
tional modules within the molecular network [124]. To functionally interpret these
clusters, current approaches rely on several curated ontologies, such as KEGG [223],
Reactome [73], and GO [191]. Among these resources, GO has the largest number of
concepts and records [131, 191]. GO terms are often used in functional enrichment
analysis to evaluate the statistical over-representation of specific biological func-
tions in the genes’ clusters [224]. A closely related problem to network clustering
is the summarization of such networks, which involves condensing the information
contained in large-scale molecular networks by allowing visual interpretation of the
clusters [124]. The state-of-the-art summarization techniques, such as spatial anal-
ysis of functional enrichment (SAFE) [225], construct a global bird’s-eye view of
functional organization underlying the molecular network by detecting regions with
over-represented functional annotations and providing their visual representation.

Current clustering and summarization network methods have demonstrated their
potential in functionally characterizing molecular networks, leading to a better un-
derstanding of the cells’ machinery and biological processes [225, 124]. However,
they present several limitations that hinder the identification and interpretation of
the fundamental mechanisms of the cells, i.e., those mechanisms that summarize
the most important functions of the cell. First, these methods uncover the cell’s
functional organization by identifying those functions that are statistically overrep-
resented in each cluster of genes. Although these clusters attempt to represent the
different functional modules of the molecular network, they usually present high
redundancy among their enriched functions [124]. Second, the number of functions
that can be analyzed is restricted to a pre-defined set of functional annotations.
Since the update rate of these annotations by the database curators is slow, it
presents a bottleneck for their use [222, 131]. Third, the number of functions that
are usually overrepresented in each cluster is large, i.e., their interpretability is not
intuitive [133]. Finally, the current methods fail to generate a high-quality functional
summary for those clusters of genes that lack functional information [124].

To overcome these limitations, we innovatively propose to use the axes of the
embedding space to identify the fundamental mechanisms of a cell. Contrary to
the current state-of-the-art approaches that focus on the organization of the genes’
embedding vectors or the organization of the genes’ functions embedding vectors in
the embedding space to find these mechanisms, our method focuses on the axes of
the embedding space itself. To identify these mechanisms, we generate the gene em-
bedding spaces of different species by applying the NMTF and Deepwalk algorithms
to the corresponding species-specific PPI networks. We apply the NMTF algorithm
with and without orthonormality constraints to gain insights into their impact on
the functional organization of the embedding space axes. Then, to untangle the bi-
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ological information hidden in the resulting gene embedding spaces, we embed GO
terms in the gene embedding spaces and associate them with the axes of each space.

For the first time, we demonstrate that the axes of the embedding space disen-
tangle biological information from the space, with semantically similar GO terms
associated with the same axis, i.e., each axis represents a specific biological func-
tion. Moreover, we show that the axes of the orthonormal NMTF gene embedding
spaces better untangle biological information from the embedding space than Deep-
walk (with orthonormal NMTF associating on average 1.6 times more GO terms
to the axes than Deepwalk) and that this information is more coherently stratified
across the axes (the GO terms associated to the same axis from the embedding
space of orthonormal NMTF have on average 1.2 times higher semantic similarity
than the ones associated to the same axis from the embedding space of Deepwalk).
We demonstrate that this observation is connected to the properties of the NMTF
embedding spaces, such as orthonormality and positive constraint, which improve
the organization of such embedding space.

Furthermore, we use our novel axes-based method to define the optimal dimen-
sionality of different species-specific PPI embedding spaces. For this optimal dimen-
sionality, we explore the meaning of the GO terms associated with their axes. To
this aim, we apply an NLP-based approach to summarize all the GO terms that are
associated with a given axis into a higher-level functional annotation that we term
ASFA. We find that these ASFAs define the cell’s fundamental mechanisms, and we
evaluate their coherence by literature curation. Interestingly, the ASFAs not only
define coherent biological processes, such as the cellular response to the accumula-
tion of misfolded proteins or the sensory perception of light but they can also be
exploited to find new evolutionary connections between species. For instance, some
ASFAs suggest that complex human functions, such as synapses between neurons,
are inherited from prokaryotic organisms.

Finally, due to the scarcity of GO annotations, we find that not all axes have
associated GO terms, i.e., the biological meaning of the non-annotated axes can not
be discovered using the current functional annotations. Thus, we go beyond this
limitation and propose to use the description of the genes that are associated with
the axes to define their ASFAs. We demonstrate that the corresponding ASFAs are
also biologically coherent and complement the biological information obtained from
the biological annotations.

5.2 Materials and Methods

5.2.1 Biological datasets

Species-Specific PPI Networks We collect the experimentally validated PPIs of
Homo sapiens sapiens (human) and of five frequently used model organisms Saccha-
romyces cerevisiae (budding yeast), Schizosaccharomyces pombe (fission yeast), Rat-
tus norvegicus (rat), Drosophila melanogaster (fruit fly) and Mus musculus (mouse)
from BioGRID v.4.2.191 [41] (details about PPI networks be found in Chapter 2,
section 2.1). We model these species-specific PPI data as PPI networks in which
nodes represent genes (or in this study, protein products), and edges connect nodes
(genes) whose corresponding proteins physically bind. The network statistics of
these species-specific PPI networks are described in Supplementary Table C.1.
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Network Representation. We represent the species-specific PPI networks
with their PPMI matrices, X (details about PPMI matrices can be found in Chapter
2, section 2.7.1). These matrices measure the associations between any two nodes
in the corresponding PPI network by comparing the probability that the two nodes
co-occur in a random walk to what this probability would be if the occurrences of the
nodes in random walks were independent. Following Xenos et al., [89], we use the
Deepwalk closed formula by Quiu et al., [166] with its default settings to compute
the PPMI matrix (see equation 2.15). This formula can be interpreted as a diffusion
process that captures high-order proximities between the nodes in the network. As
demonstrated in Chapter 4 section B.2.1, as a result of the extra information encoded
in the PPMI, its corresponding embedding space better captures the cell’s functional
organization than the ones generated by using the adjacency matrix.

Biological Annotations. We use the GO Biological Process (BP) terms to rep-
resent the biological functions in a cell [191] (this ontology is introduced in Chapter
2, section 2.5.2). We collect the experimentally validated genes to GO BP terms
from NCBI’s FTP (gene2go file, collected on 28 September 2021). To better capture
the higher level functional organization of the cell, we not only annotate the genes
with the GO BP terms that they are associated with in the gene2go file, but also
with the ancestors of these terms in the GO ontology. To uncover these ancestor
terms, we use GOATOOLS [175] and follow the ‘is a’ and ‘part of’ links between the
GO terms in the ontology’s directed acyclic graph (go-basic.obo file, collected on 04
November 2021 from the GO website). Thus, for a given gene, we annotate it with
the ancestors of the GO BP terms that annotate it. Supplementary Table C.2 shows
the total number of GO BP terms that annotate genes in each species-specific PPI
network. From the same gene2go file, we also keep the information about in which
species (taxons) each annotation appears after considering extension with ancestor
terms (out of the 20 taxons included in the file).

5.2.2 Embedding the PPI networks

To obtain the species-specific PPI embedding spaces, we use two different network
embedding algorithms: NMTF [21] and Deepwalk [19] (details about these algo-
rithms can be found in Chapter 2, section 2.7).

NMTF. We use NMTF to decompose the PPMI matrix representation of a
molecular network X as the product of three non-negative factors, X ≈ P · S ·
GT , where rows of the matrix E = P · S define the set of embedding vectors of
the genes, and the columns of G defines the basis (a.k.a, axes) of the space in
which the genes are embedded [200]. We use NMTF with and without applying
the orthonormality constraint (“ONMTF” and “NMTF,” respectively) to the basis-
defining matrix (GTG = I). This constraint leads to minimal co-linearities (hence,
dependencies) between the vectors of the axes of the embedding space [172]. The
ONMTF and NMTF decompositions are done by minimizing functions in 2.7.2. To
generate initial P , S, and G matrices, we use the SVD-based strategy [201]. This
strategy makes the solver deterministic and also reduces the number of iterations
that are needed to achieve convergence [201]. The quality of the factorization is
usually evaluated by the Relative Square Error (RSE) between the input matrix,

X, and its corresponding decomposition, PSGT , as RSE =
∥X − PSGT∥2F
||X||2F

. The
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iterative solver is normally stopped when the RSE is not increasing anymore.
Deepwalk. We use Deepwalk with its default settings [19] to learn the em-

bedding vectors of the genes. Similarly to other NLP-based network embedding
algorithms, Deepwalk learns these vectors by considering the node paths traversed
by random walks over the PPI network as word sentences and leveraging a skip-gram
neural network for learning the embedding vectors of the nodes (which are genes
in this case) [19]. It has been demonstrated that Deepwalk, like other NLP-based
network embedding algorithms, is implicitly performing a matrix factorization [166]
(detailed in Chapter 2, section 2.7.1). Thus, we take advantage of the fact that
Deepwalk implicitly decomposes the shifted PMI to obtain the basis from Deepwalk
embeddings (see Chapter 2, section 2.7.1) as follows. Following Quiu et al., [166],
we obtain the shifted PMI matrix by setting the shifted parameter to 0 (number
of negative sampling in skip-gram to one, b = 1) and substituting all the negative
values with zeros (see equation 2.15). Note that with these parameters, the matrix
obtained from the Deepwalk closed formula corresponds to the same PPMI, X, that
we use as input for NMTF. Then, we obtain the basis from Deepwalk embeddings,
as follows: X ≈ E × GT → G ≈ XT (ET )−1, where -1 denotes the Moore-Penrose
pseudoinverse. Importantly, the implicit deposition from Deepwalk has fundamental
differences with those from NMTF. First, it is not constrained to be non-negative,
i.e., the coordinates of the embedding vectors of the genes, E, can be either positive
or negative. Second, the basis, G, can not be a constraint to be orthonormal, i.e.,
leading to more correlated axes. In other words, Deepwalk decomposition has more
degrees of freedom than the NMTF one, which may affect the topology of the gene
embedding space.

5.2.3 Annotating the axes of the gene embedding space with
GO BP terms

In Chapter 4, we introduced the FMM to explore the functional organization of
the gene embedding space from a functional perspective. The FMM uncovers the
functional organization of the embedding space by capturing the interactions be-
tween all gene functions (in our previous study represented by GO BP terms) based
on their mutual positions in the embedding space (details about our FMM-based
methodology can be found in Chapter 4, section 4.2.4). While the FMM captures
all the pairwise interactions between functions, it does not allow for identifying the
most important functional interactions. To overcome this limitation, we propose to
use the axes of the embedding space in which the genes are embedded to capture
the most relevant interactions between the functional annotations that we embed in
the gene embedding space. Our method takes as input: the matrix factor, G, which
contains the axes of the gene embedding space, and the relation-matrix between the
genes and their functional annotations, A, in which entry A[i, j] is one if annotation
ai annotate gene gj, and it is zero otherwise.

First, we generate the embedding vectors of the functional annotations in the
gene embedding space. To this aim, we decompose the matrix A as the product
of two matrix factors, U and GT , A ≈ UGT , where rows of the matrix U (that we
call ui) are the embedding vectors of the annotations, ai, in the gene embedding
space defined by the axes G, i.e., the entry ui[j] corresponds to the coordinate of
the vector ui in respect to the axis j in G. Since matrix A and G are known, we

84



obtain U by: U ≈ (GT )−1A, where (GT )−1 is the Moore-Penrose pseudoinverse of
GT [202]. Then, we associate annotation ai to axis j if the value of the projection of
ai on j, ui[j], is statistically significantly larger than expected by random. We assess
this statistical significance by performing the following bootstrapping-based method
with 100,000 iterations. In each iteration, we randomly shuffle the relation-matrix A
and use it as input to obtain the random vectorial representations of the annotations.
After all the iterations, the p-value of entry ui[j] is computed as p − value = c+1

p+1

where c corresponds to the number of times that the observed value of ui[j] is lower
or equal to that value of the corresponding random vectorial representation. For
each annotation, we correct the resulting p-value for multiple hypothesis testing by
applying the False Discovery Rate (FDR [179]) method overall axes. We consider
the project of annotation ai on axis j to be statistically significant if its corrected
p-value is lower than or equal to 5%. Finally, following the hard clustering procedure
introduced by [17], we consider that annotation ai is associated with axis j if ui[j]
is statistically significant and is the entry with the maximum value in vector ui.

5.2.4 Quantifying the evolutionary conservation of biologi-
cal functions

The extant species are the culmination of billions of years of evolution. During this
process, several cellular functions have been conserved, lost, or gained by the species
(taxons) via natural selection. To quantify the evolutionary conservation of a given
biological function (represented by a GO BP annotation in this study), we introduce
the “conservation degree,” which we define as the number of different taxons in which
the annotation appears (out of the 20 taxons available in the gene2go file obtained
from NCBI’s FTP, detailed in section 5.2.1). Intuitively, the higher the conservation
degree of a function is, the more evolutionary conserved it is (from 1 to 20).

We evaluate if the conservation degree also carries information about the speci-
ficity of the function represented by the GO BP term (if it is a high-level or a spe-
cialized cellular function) by computing the Pearson’s correlation coefficient [205]
between our conservation degree and two known measures of functional specificity:
the number of genes that are annotated by a particular GO BP term (number of
genes for short) and the level of the GO BP terms in the GO hierarchy (level for
short). GO BP terms that represent generic cellular functions annotate a large num-
ber of genes and have low levels in the GO hierarchy. In contrast, GO BP terms that
annotate a low number of genes and have high levels in the GO hierarchy represent
more specialized cellular functions. We find that the conservation degree is posi-
tively correlated with the number of genes (Pearson correlation coefficient of 0.44
with a p-value lower than 0.05) and negatively correlated with the level (Pearson
correlation coefficient of −0.27 with a p-value lower than 0.05). Thus, a high con-
servation degree relates to generic functions that annotate larger sets of genes, while
low conservation degrees relate to more specific functions that annotate smaller sets
of genes.

We also investigate if the conservation degrees of the GO BP terms relate to their
embedding vector positions in the embedding space. To this aim, we embed GO
BP terms into the species-specific PPI embedding spaces (detailed in sections 5.2.2
and 5.2.3) and we study the correlation between the mutual positions of their embed-
ding vectors in the embedding space (measured by their pairwise euclidean distances)
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and their conservation degree. We find that the higher the conservation degree of a
GO BP term, the most likely its vectorial representation is spread (higher average
pairwise euclidean distance) in the embedding space (Spearman correlation coeffi-
cient of 0.72 with p-value lower than 0.05). Interestingly, we find that after a specific
conservation degree (17 in human ONMTF embedding space), the average pairwise
euclidean distance drastically increases (from 1.20 to 16.48 in Human orthonormal
embedding spaces, see Supplementary Figure C.1). Thus, we use this observation to
divide the GO BP terms into three categories: “specific” (conservation degree be-
tween 17 to 20), “generic” (conservation degree between 1 to 4), and “background”
(GO terms that are neither generic nor specific) for human ONMTF embedding
spaces.

5.2.5 Evaluating our axes-based methodology

Current embedding approaches rely on the organization of the genes in the embed-
ding space to uncover the cell’s functional organization from molecular networks.
These approaches apply functional enrichment analysis to identify those GO BP
terms that are statistically overrepresented in the cluster of genes. The GO BP
terms that are statistically enriched in each cluster are then summarized in order
to represent the cell’s functional organization (details about the gene clustering and
functional enrichment analysis can be found in Chapter 2, section 2.5). The ability
of the gene-centric approach to uncover the cell’s functional organization is usually
quantified by the number of gene clusters enriched in GO BP terms (“enriched clus-
ters”), the number of GO BP terms enriched across these gene clusters (“enriched
GO BP terms”), and the semantical similarity of GO BP terms enriched in the same
cluster.

Instead of using the organization of the embedded entities (genes and genes’
functions) in the embedding space, in this Chapter, we propose using the axes of
the embedding space where the entities are embedded to uncover the cell’s func-
tional organization from biological networks. Similar to the standard gene-centric
approach, we propose to evaluate the ability of our axes-based method to capture
the cell’s functional organization by analyzing the amount of GO BP terms that
are associated with them. We report both: the percentage of the total GO BP
terms that are associated with the axes and the percentage of axes with at least
one associated GO BP term. We also investigate whether this captured biological
knowledge is coherently stratified across the axes, i.e., if GO BP terms associated
with the same axis are more functionally similar than those associated with different
axes. To this aim, we compute Lin’s semantic pairwise semantic similarity [136] be-
tween any two GO BP terms. This measure captures the similarity in the biological
concepts represented by the GO BP terms, i.e., a high semantic similarity indicates
that two GO BP terms are functionally related. We term “intra-semantic similar-
ity” the average semantic similarity of the pairs of GO BP terms that are associated
with the same axis, and “inter-semantic similarity” the average semantic similarity
of the pairs of GO BP terms that are associated with different axes. We report
how many times the “intra-semantic similarity” and “inter-semantic similarity” are
in comparison to the expected random semantic similarity and the p-value of the
corresponding one-tailed Mann-Whitney U test. Alternatively, we apply the same
methodology but replace Lin’s semantic similarity with the shortest path distance
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in the ontology-directed acyclic graph (DAG) as a measure of functional similarity
between the GO BP terms. The lower the shortest path distance between two GO
BP terms is, the more functionally related they are.

We also assess if our axes-based methodology better uncovers the cell’s functional
organization from biological networks than the gene-centric approach. To this aim,
we compare the percentage of enriched GO BP terms and the percentage of enriched
clusters to the percentage of GO BP terms associated with the axes and the percent-
age of axes with at least one associated GO BP term, respectively. We also evaluate
if GO BP terms associated with the same axis are on average more semantically sim-
ilar than GO BP terms enriched in the same gene cluster. In addition, we assess the
agreement between our axes-based methodology and the gene-centric by evaluating
if GO BP terms associated with the same axis are also enriched in the same gene
cluster. We measure this agreement with the adjusted Rand Index [226]. At the
time this thesis is submitted, we only have preliminary results for these comparisons
and we are still developing a proper method to compare our axes-based methodology
to our previous FMM-based approach (see them in Chapter 6, section 6.3.3).

5.2.6 Generating the Axes-Specific Functional Annotations

To obtain annotations that globally summarize the biological functions captured by
each axis of the embedding space, we propose to use the GO BP terms captured by
them to generate new data-driven functional annotations, which we call Axes-Specific
Functional Annotations (ASFAs). To this aim, we adapt the Term Frequency In-
verse Document Frequency (TF-IDF) used in the NLP field (this methodology is
introduced in Chapter 2, section 2.5.2.1). The TF-IDF is a numerical statistic that
reports how important a word is to a document (e.g., chapters of a book) in a corpus
(e.g., a textbook) [134]. We extend this statistic to our problem by considering all
the GO BP terms associated with the axes of the embedding space (all their text
descriptions) as the corpus. On the other hand, we consider as a document of this
corpus the union of the text descriptions of the GO BP terms that are associated
with an axis (ideally having as many documents as axes). Then, we compute the
TF-IDF of a word in a document by applying the equation 2.10.

Since not all the words add any semantic meaning to the text (e.g., “where” or
“of”), they could add noise to the TF-IDF, i.e., these so-called “stop words” are
usually removed before applying the TF-IDF [227]. We take the list of stop words
from the NLTK package version 3.6.7 [228]. Similarly, we filter all the “stop words”
from the text definitions of the GO BP terms before computing the TF-IDF. Finally,
for each axis, we build its ASFA by taking all the words with a TF-IDF higher than
0, i.e., words that are relevant to the document.

Since GO ontology is incomplete, many genes lack GO BP term annotation [227].
Because of this, many genes are left non-annotated (with no associated GO terms).
Thus, some axes may not capture any embedded functional annotations from the
embedding space. To overcome this issue, we propose to use the description of
the genes that are associated with the axes to define their ASFAs. To this aim, we
download the gene descriptions file from the Alliance of Genome Resources database
v.5.2.1. Then, we associate each gene to the axis for which the projection of the
gene’s embedding vector has the largest value (in the spirit of the hard clustering
procedure of Brunet et al., [17]). Finally, having a set of gene descriptions for

87



each axis, we apply the same TF-IDF-based approach used with the functional
annotations to build their ASFAs. In particular, we consider all the genes associated
with the axes of the embedding space (all their gene descriptions) as the corpus. On
the other hand, we consider as a document of this corpus the union of the gene
descriptions of the genes that are associated with an axis (ideally having as many
documents as axes). Then, we compute the TF-IDF of a word in a document by
applying the equation 2.10.

5.2.7 Analyzing the connection between the ASFAs and evo-
lution

To gain insights into the human evolutionary history, we propose to investigate the
link between the ASFAs and evolution. To this aim, we order the ASFAs based on
their conservation degree (we introduced the concept of the conservation degree for
a GO BP term in section 5.2.4). For an individual ASFA, we obtain its conservation
degree by the union of the different taxons in which the GO BP terms associated
with its corresponding axis appear. We also search for evolutionary patterns across
our ASFAs by identifying those ASFAs that describe biological functions that are
conserved from prokaryotic organisms, that appeared for the first time in eukaryotes,
or that are unique for vertebrates. To this aim, for a given ASFA, we take all the GO
BP terms associated with its corresponding axis and classify the ASFA according to
the different taxons in which these GO BP terms appear. Based on these taxons,
we consider this ASFA to be related to “prokaryotes” if at least one of the taxons
is a prokaryote, “eukaryotes” if all the taxons are eukaryotes, and “vertebrates” if
all the taxons are vertebrates.

5.3 Results and Discussion

5.3.1 The axes of the embedding spaces capture the cell’s
functional organization

In this section, we evaluate if the axes of the embedding space uncover the cell’s
functional organization from PPI networks. To this end, we generate the embed-
ding spaces of six species (human, budding yeast, fission yeast, rat, fruit fly, and
mouse) by applying ONMTF, NMTF, and Deepwalk algorithms on the correspond-
ing species-specific PPI networks (detailed in sections 5.2.1 and 5.2.2). To analyze
the impact of dimensionality on the ability of the embedding methods to reveal the
cell’s functional organization, for each species-specific PPI network and for each em-
bedding method, we generate the embedding spaces with different dimensionalities
(from 50 to 1000 dimensions with a step of 50). Then, we embed GO BP terms
into these embedding spaces and associate them to the axes of the space (detailed
in section 5.2.3). We evaluate the ability of the embedding axes to uncover the cell’s
functional organization by analyzing the percentage of axes having at least one as-
sociated GO BP term, the percentage of the total GO BP terms that are associated
with the axes, and the functional similarity of the captured GO BP terms (detailed
section 5.2.5). For this section, we focus on human PPI networks indicating whether
the results hold for the rest of the species.
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Figure 5.1. The axes of the human ONMTF, NMTF, and Deepwalk embedding spaces
uncover the cell’s functional organization from the human PPI network. For each PPI
embedding space, we use our new axes-based method to capture the GO BP terms that
we embed in the embedding space (detailed in section 5.2.3). The top panel shows the
percentage of axes that captures at least one embedded GO BP term. The bottom panel
shows the percentage of the total embedded GO BP terms that are captured by the axes
of the space. For each panel, the horizontal axis displays the number of dimensions of the
embedding space. For each panel, the color of the lines corresponds to the three tested
embedding algorithms: ONMTF (blue), NMTF (orange), and Deepwalk (green).

We observe that Deepwalk embedding spaces have, on average, the largest num-
ber of axes with associated GO BP terms (88.05%) followed by ONMTF (59.25%)
and NMTF (42.78%), see Figure 5.1. However, the axes of ONMTF embedding
spaces capture a larger number of GO BP terms (37.12%) than the axes of Deep-
walk (33.8%), and NMTF embedding spaces (11.95%), see Figure 5.1. These re-
sults suggest that Deepwalk embedding spaces capture fewer biological functions
but “spreads” them more across the axes (average of 9.7 GO BP terms per axis),
while ONMTF spaces capture more biological functions and group them on a smaller
number of axes (average of 16 GO BP terms per axis). Furthermore, we investigate
whether this captured information is coherently stratified across the axes, i.e., if the
GO BP terms that are associated with the same axis are more functionally similar
(higher semantic similarity and closer in the ontology DAG) than those associated
with different axes (detailed in section 5.2.5). We find that ONMTF embedding
spaces not only group more GO BP terms per axis, but the functions that are asso-
ciated with the same axis are functionally more coherent (3.12 times higher average
semantic similarity than expected by random, Mann-Whitney U test with p-value
3.39 × 10−8) than the ones associated with the same axis in NMTF and Deepwalk
embedding spaces (2.6 and 2.1 times larger than expected by random, respectively,
Mann-Whitney U test with p-values 3.38× 10−8 and 2.41× 10−7, respectively), see
Supplementary Table C.3. Moreover, GO BP terms associated with the axes of the
ONMTF spaces are on average closer in the ontology DAG (average shortest path of
4.21), than the ones captured in NMTF and Deepwalk embedding spaces (average
shortest path of 4.70, and 5.35, respectively). We find similar results for the rest of

89



the species-specific embedding spaces (see Supplementary Tables C.4 and C.5).
Altogether, these results confirm that the embedding axes capture biological

knowledge from the PPI network and that this information is correctly distributed
across dimensions, i.e., each axis captures a set of GO terms that are functionally
related. Moreover, we demonstrate that the axes of the ONMTF embedding spaces
capture more and better-stratified information than the other methods. Hence, the
axes of the ONMTF embedding spaces better uncover the cell’s functional organi-
zation.

5.3.2 Orthonormality and positive constraints improve the
functional organization of the gene embedding space

Here we analyze if the ability of ONMTF to produce embedding spaces whose axes
capture more, and better stratified functional information can be attributed to the
properties of the embedding spaces produced by the ONMTF. ONMTF embedding
spaces have two properties, orthonormality, and non-negativity, we assess the ef-
fect of these properties in disentangling functional knowledge from the biological
networks. Since the embedding space is orthonormal, its axes should represent non-
ambiguous and non-dependant directions of the space [89]. We confirm this first
property by computing the average pairwise cosine similarity in-between the axes
of the ONMTF, NMTF, and Deepwalk embedding spaces. It is important to note
that Deepwalk embedding spaces are not constrained to be positive, which means
that the cosine similarity is bounded from -1 to 1 instead of from 0 to 1. Thus,
to make it comparable to the NMTF and ONMTF spaces, we report the absolute
pairwise cosine similarity in-between their axes. A cosine similarity of 1 indicates
that two axes are identical (i.e., redundant), and a value of 0 indicates that the axes
are orthogonal (i.e., perpendicular).

We observe that the axes of the NMTF embedding spaces have, on average, the
largest number of similar axes (average pairwise cosine similarity of 0.014), followed
by Deepwalk (average pairwise cosine similarity of 0.10), and ONMTF (average
pairwise cosine similarity of 0.76). These results suggest that the majority of the
axes in the NMTF embedding space are redundant, i.e., some dimensions do not
contribute to disentangling functional knowledge from the biological networks. This
high redundancy, in turn, explains the low percentage of GO BP terms associated
with the axes of NMTF spaces (11.95%) in comparison to ONMTF (37.12%). We
also see that, although the axes of the Deepwalk spaces are not constrained to be
orthonormal, their axes have a lower average pairwise cosine similarity (average
of 0.10) than the ones of the NMTF. We explain this observation by the degrees
of freedom of Deepwalk spaces. In other words, since Deepwalk spaces are not
constrained to be positive, the chance that two random vectors are identical is low.
This also makes the Deepwalk spaces sparse in comparison to the non-negative
ONMTF and NMTF spaces, as can be seen in the percentage of axes with at least
one associated GO BP term of the three embedding methods (88.05%, 59.25%, and
42.78% for Deepwalk, ONMTF, and NMTF, respectively). Finally, we observe the
absence of non-negativity constraints in Deepwalk embedding spaces decreases its
ability to capture the cell’s functional organization (GO BP terms less coherently
stratified than ONMTF and NMTF, results presented in the previous section). We
hypothesize that this observation is connected with the fact that biological processes
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are often non-negative and additive [169], i.e., positive embedding spaces are more
suitable to capture these complex biological mechanisms.

In conclusion, the embedding in positive and orthonormal spaces, which only
NMTF-based frameworks allow for, leads to the embedding axes that best capture
the cell’s functional organization from the biological networks. Thus, in the next
sections, we will focus on ONMTF embedding spaces.

5.3.3 Specific biological functions are disentangled by the
axes of the embedding space with the increment of
dimensions

Having demonstrated that the embedding axes capture GO BP terms from the
functional organization of the species-specific PPI embedding spaces, we investigate
if the space’s dimensionality affects the specificity of the GO BP terms captured by
the axes, the amount of GO BP terms captured by the axes, the number of axes
with at least one associated GO BP term, and the coherence of the stratification
of the GO BP terms across the axes. In particular, to analyze the impact of the
dimensionality on the specificity of the GO BP terms captured by the axes, we
divide them into three groups: “specific,” “generic,” and “background” (detailed in
section 5.2.4). Then, we take as reference the lowest dimensional embedding space
(50 dimensions) and compare the fold increase between the number of “specific,”
“generic,” and “background” GO BP terms associated with its axes and with those
captured by the axes of the subsequent species-specific PPI embedding spaces.

Figure 5.2. Specific biological functions are captured by the axes of the human ONMTF
embedding spaces with the increment of dimensions. We take as reference the lowest
dimensional embedding space (50 dimensions) and compare the fold increase between the
number of “specific,” “generic,” and “background” GO BP terms associated with its axes
and with those captured by the axes of the subsequent species-specific PPI embedding
spaces. The horizontal axis displays the number of dimensions of the embedding space.

We find that most of the “generic” functions (average of 90%) are associated
with the axes of human lowest dimensional embedding space (50 dimensions). Im-
portantly, we find that increasing the dimensionality of the embedding space does
allow us to capture more “generic” functions (fold increase remains close to 1, see
Figure 5.2). In contrast, increasing this dimensionality allows for capturing more
“background” and “specific” functions, with the specific ones being the ones that
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most benefit from the increase in the number of dimensions (see Figure 5.2). More-
over, we find that increasing this dimensionality also enhances the stratification of
the biological information captured by axes, with more semantic similar GO BP
terms associated with the same axis (see Figure 5.3). These results suggest that the
embedding space needs more dimensions to disentangle “specific” biological func-
tions encoded in the species-specific PPI networks. Nevertheless, this disentangle-
ment has a limit since after 500 dimensions we observe three signs that indicate no
significant benefit in increasing the space’s dimensionality. First, the number of axes
capturing at least one GO BP term reduces to less than 50% and the total amount
of GO BP terms captured flattens after 500 dimensions (see Figure 5.1). Second,
the fold increase of “specific” functions is significantly reduced after 500 dimensions
(see Figure 5.2). Third, the semantic similarity of GO BP terms associated with
the same axis flatters after 400-500 dimensions. Thus, adding more dimensions does
not improve the capture of either more biological information or more specific in-
formation from the embedding space. Interestingly, these observations are in line
with the results reported in other artificial intelligence fields, such as NLP, where a
low dimensionality of the word embedding fails to capture all possible word relations
(“specific” relations), and after a certain number of dimensions, the embeddings can
not disentangle more word relations [229]. We find similar results for the rest of the
studied species-specific ONMTF embedding spaces (see Supplementary Figures C.2
and C.3).

Based on these results, we consider the optimal dimensionality of a given specie-
specific PPI embedding space as the one that finds a balance between the three
observations introduced above (i.e., amount of information captured, specificity of
this information, and the coherence in the stratification of the information captured
across the axes). Based on these criteria, we choose 500 dimensions as the optimal
dimensionality for the human ONMTF embedding space (the optimal number of
dimensions for the rest of species-specific ONMTF embedding spaces can be found
in Supplementary Table C.6). This optimal dimensionality is coherent with the
number of dimensions usually applied in NLP [230, 231]. In the following sections,
we investigate the biological meaning of the axes of the optimal dimensional human
ONMTF embedding space in detail.

5.3.4 The axes of the embedding space represent the fun-
damental mechanisms of the cell

In this section, we perform an in-depth analysis of the biological meaning of the axes
of the human PPI embedding space. To this aim, we summarize the set of GO BP
terms captured by each axis into ASFAs (as detailed in section 5.2.6). We assess if
the ASFAs correctly summarize the set of GO BP terms captured by the axes and
evaluate if they describe coherent biological functions by literature curation.

Globally, we find that the ASFAs correctly summarize the biological informa-
tion captured by the axes and confirm that our ASFAs describe coherent func-
tions of the human cell (see Table 5.1). For instance, axis 12 captures seven
GO BP terms (GO:0060354, GO:2000647, GO:190233, GO:1904995, GO:1903121,
GO:1903122 and GO:1902034). Individually, these GO BP terms describe the reg-
ulation of various cellular processes such as cell adhesion (GO:0060354), leukocyte
adhesion (GO:1904995), stem cell proliferation (GO:2000647), hematopoietic stem
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Figure 5.3. Specific biological functions are disentangled by the axes of the human ON-
MTF embedding spaces with the increment of dimensions. For each dimensional human
ONMTF embedding space, we compute Lin’s semantic pairwise semantic similarity be-
tween any two GO BP terms. The blue line shows the average semantic similarity of the
pairs of GO BP terms that are associated with the same axis (intra-SS). The orange line
shows the average semantic similarity of the pairs of GO BP terms that are associated
with different axis (inter-SS). The horizontal axis displays the number of dimensions of
the embedding space.

cell proliferation (GO:190233 and GO:1902034), and TRAIL-dependant apoptotic
pathways (GO:1903121 and GO:1903122). As can be seen in Table 5.1, the resulting
ASFA summarizes and combines the keywords of this set of GO BP terms. Moreover,
it describes a coherent cellular function connected to the induction of apoptosis of
tumor and infected cells via TNF-related apoptosis-inducing ligand (TRAIL) [232].
This apoptosis signaling pathway is usually activated by different leukocytes, such
as natural killer cells and T cells [233]. TRAIL also coordinates the immune re-
sponse to tumor cells and infected cells by activating the production of leukocytes
by hematopoiesis and controlling the inflammatory processes [233].

Another example is axis 495, which captures five GO BP terms (GO:1900101,
GO:1903891, GO:1990440, GO:0036003 and GO:1903893). These GO BP terms
describe the response to endoplasmic unfolded protein (GO:1900101, GO:1903891,
and GO:1903893) and the regulation of gene expression in response to cellular stress
(GO:1990440 and GO:0036003). Their corresponding ASFA correctly summarizes
these terms and displays a coherent biological function related to the cellular re-
sponse against the accumulation of misfolded proteins in the Endoplasmic Reticu-
lum [234] (see Table 5.1). Finally, axis 51 captures twenty-seven GO BP terms that
describe multiple cellular processes such as the regulation of telomere, chromosome
stability, Cajal body, protein location and stability, and RNA location to the nucleus
and gene expression. Hence, the resulting ASFA is connected to the functions of the
Cajal bodies that include the biogenesis and modification of different types of ri-
bonucleoprotein, such as Cajal body-specific RNPs (scaRNPs) and telomerase [235]
(see Table 5.1). The observed biological coherence of our ASFAs can be explained
by the fact that GO BP terms associated with the axes are already functionally
coherent (shown in section 5.3.1). We find similar results for the rest of the species
(see Supplementary section C.1.1).

In conclusion, by analyzing the biological coherence of the ASFAs, we demon-
strate that the axes of the embedding space capture coherent complex cellular func-
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Axis Terms #GO Taxons

12 endothelial, negative, regulation, apoptotic,
molecule, signaling, cell, stem, activated,
leukocyte, vascular, TRAIL, proliferation,
adhesion, hematopoietic, production

7 7227, 7955, 9606, 10090,
10116

495 polymerase II, mediated, RNA, unfolded,
response, regulation, protein, stress, retic-
ulum, ATF6, promoter, positive, transcrip-
tion, endoplasmic

5 3702, 4896, 6239, 9606,
10090, 10116, 352472,
559292

51 maintenance, activity, telomere, scaRNA,
RNA, telomeric, biosynthetic, Cajal, regula-
tion, protein, stability, nucleus, localization,
process, lengthening, establishment, body,
DNA, positive, via, stabilization, telom-
erase, chromosome, organization

27 3702, 4896, 6239, 7227,
7955, 9031, 9606, 9615,
9823, 9913, 10090, 10116,
352472, 511145, 559292

144 activity, anion, negative, aminobutyric, reg-
ulation, signaling, inhibitory, assembly,
inorganic, chloride, store, pathway, acid,
transmembrane, transport, synapse, oper-
ated, gamma, calcium, channel

8 4896, 10116, 9606, 9031,
511145, 10090, 9615,
7955, 3702, 352472, 7227,
559292, 6239

61 subunit, spliceosome, processing, nucle-
obase, RNA, aromatic, heterocycle, snRNP,
complex, compound, process, capping, nu-
cleophile, assembly, containing, reactions,
spliceosomal, cellular, 3’, mRNA, adenosine,
ribonucleoprotein, organization, organic,
cyclic, bulged, transesterification, splicing,
nucleic, metabolic

20 3702, 4896, 6239, 7227,
7955, 9031, 9606, 9615,
9823, 9913, 10090, 10116,
36329, 39947, 195103,
214684, 227321, 352472,
511145, 559292

492 spliceosome, cis, response, menadione, cellu-
lar, via, mRNA, splicing

2 4896, 7227, 9606, 511145

446 vitamin K2, biosynthetic, menaquinone,
process

2 511145, 7955, 7227, 9606

120 system, light, visual, nervous, stimulus, pro-
cess, sensory, perception

4 6239, 7227, 7955, 9606,
10090, 10116

64 neural, crest, cell, stem, specification, fate 3 6239, 7227, 7955, 9031,
9606, 10090

79 heart, thyroid gland, organ, anatomical de-
velopment

5 10116, 9031, 10090, 9823,
7955, 7227, 6239, 9606,
4896, 214684, 352472,
559292, 227321, 39947,
3702, 352472

473 negative, regulation, activation, cell, prolif-
eration, lymphocyte

3 9031, 9606, 9913, 10090,
10116

370 mediated, natural, killer, leukocyte, activa-
tion, cytotoxicity, immunity, lymphocyte,
cell, activation

6 7955, 9606, 9615, 9823,
10090, 10116

68 cranial, development, nerve 2 7955, 9031, 9606, 10090,
10116

402 remodeling, regulation, bone, positive, re-
sorption

3 9606, 10090, 10116

36 muscle, skeletal, regeneration, tissue 1 9606, 10090, 10116
406 potential, action, cell, muscle, cardiac 1 7955, 9606, 10090, 10116

Table 5.1. The ASFAs describe coherent functions of the human cell. For the human
ONMTF embedding space, we use the GO BP terms associated with its axes to generate
the ASFAs (detailed in section 5.2.6). The first column, “Axis,” lists the name of the axes
from which each ASFA was obtained. The second column, “Terms,” shows the description
of the ASFAs. The third column, “#GO,” displays the number of GO BP terms that are
associated with the axis. The fourth column, “Taxons,” shows the Taxonomy ID of the
different species for which the associated GO BP terms appear.

tions from the functional organization of the embedding space. These results open
a new opportunity for the development of data-driven ontologies using the set of
ASFAs to summarize the functional organization of the cell.
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5.3.5 The axes of the embedding space uncover the human
evolutionary history

Having demonstrated that our ASFAs represent coherent functions of the human
cells, in this section, we investigate if they can be used to get insights into the
evolutionary history of humans. To this aim, we divide the ASFAs according to
their conservation degree into three classes: “prokaryotes,” “eukaryotes,” and “ver-
tebrates” (detailed in section 5.2.7). We end up with 156 (53%), 101 (35%), and
31 (10%) ASFAs classified as “prokaryotes,” “eukaryotes,” and “vertebrates” in the
human PPI embedding space, respectively. We analyze in detail the meaning of
these groups of ASFAs in the context of evolution.

We find that “prokaryotes” ASFAs define functions that are highly conserved in
evolution (average conservation degree of 13.7, see Figure 5.4). Interestingly, these
functions connect complex human cellular functions to ancient prokaryote ones. For
instance, the ASFA of axis 144 has a high conservation degree of 13. Among the
taxons that are connected to this ASFA, we find several vertebrates, including rats
(taxon id: 10116), mice (taxon id: 10116), and chicken (taxon id: 9031), but also
bacteria, such as E. coli (taxon id: 511145). This suggests that the biological func-
tion represented by this ASFA may be originated in prokaryotes, but is conserved
across evolution. Indeed, this function describes the regulation of neuronal synapses
in vertebrates by the gamma-Aminobutyric acid (see Table 5.1). Interestingly, the
sets of proteins comprising synapse receptors, signaling, and biosynthetic pathways
necessary for this regulation arose in prokaryotes to enable prokaryotic organisms
to respond and adapt to changing environments [236, 237]. Another example is
the ASFA of axis 61, which is extremely conserved across evolution (conservation
degree of 20). This ASFA is connected with the RNA preprocessing by the spliceo-
some (see Table 5.1). Although there is a longstanding debate about the origins
of the spliceosome, many researchers agree that it evolved from the group II intron
ancestor, which originated within bacteria billions of years ago, during eukaryoge-
nesis [238, 239]. We also find two outliers, i.e., “prokaryotes” ASFAs that are not
conserved in evolution. In particular, the ASFAs of axes 492 and 446 show the low-
est conservation degree among all prokaryotic ones (average conservation degree of
4 in both cases, see Figure 5.4). Interestingly, both are connected with vitamin K
(see Table 5.1). In particular, the ASFA of axis 492 describes the cellular response
to vitamin K3. This vitamin is a synthetic form of vitamin K that is often used as a
supplement in animals [240]. The response to K3 has been analyzed in some model
organisms to verify the safety of its intake, i.e., the conservation degree may not
reflect evolutionary conservation in this case. On the other hand, the ASFA of axis
446 describes the synthesis of vitamin K2. In animals, including humans, vitamin
K2 is synthesized by bacteria in the gut [241]. Hence, we hypothesize that this
ASFA is not describing human functions but the functions of the gut microbiome
(e.g., E. coli with taxon id: 511145), which explains why this function has not been
conserved across evolution and yet is found in humans.

On the other hand, “eukaryotes” ASFAs are newer in evolutionary history since
they have an average conservation degree lower than the “prokaryotes” ones (7.3
and 13.7, respectively). We find that these ASFAs reveal evolutionary connections
between humans and other eukaryotes. For instance, the ASFA of axis 120 describes
a function related to the visual sense (see Table 5.1). Among the taxons that are

95



Figure 5.4. The human ASFAs give insights into the evolutionary story of humans. We
use the conservation degree of the ASFAs to divide them into three groups: “prokaryotes,”
“eukaryotes,” and “vertebrates” (detailed in section 5.2.7). Then, we order the ASFAs
according to their conservation degree. The horizontal displays the conservation degree
of the ASFAs. The vertical axis shows the number of ASFAs with a certain conservation
degree. Each ASFA is represented in the plot by the number of the axis from which it was
obtained.

connected to this ASFA, we find mammals, such as mice (taxon id: 10090) and rats
(taxon id: 10116), but also insects, such as the fruit fly (taxon id: 7227). Despite the
divergence in the light receptors between these species, this axis further confirms
these receptors evolved from a common photoreceptor eukaryotic ancestor [242].
Similarly, the ASFA of axis 64 shed light on the evolutionary divergence in neuroge-
nesis. In particular, this ASFA is connected to the embryonic stem cell differentiation
into neural crest (see Table 5.1). Unexpectedly, although this process is considered
a functional innovation of vertebrates, we find that the ASFA is connected to two
invertebrates, the fruit fly (taxon id: 7227) and C. elegans (taxon id: 6239). To
understand this observation, we analyze the three GO BP terms associated with
axis 64 (GO:0001708, GO:0014036 and GO:0048866). We find that these annota-
tions are connected to stem cell fate differentiation (GO:0001708 and GO:0048866)
and neural crest stem cell differentiation (GO:0014036). From these GO terms, the
two that appear in fruit fly and C. elegans are GO:0001708 and GO:0048866. This
supports the hypothesis that regulatory programs involved in neural crest forma-
tion evolved from programs already present in the common vertebrate-invertebrate
ancestor [243]. Indeed, recently, a group of cells in invertebrates was identified with
the characteristics of the neural crest ones [243]. We also focus on the “eukaryote”
ASFA that shows the highest conservation degree. With a conservation degree of
16, this ASFA corresponds to axis 79 and describes the molecular mechanisms in-
volved in the development of the human heart and thyroid gland (see Table 5.1).
Among the species that are connected to this ASFA, we find a variety of animals
that possess these organs, such as rats (taxon id: 10116), chickens (taxon id: 9031),
and mice (taxon id: 10090), but also eukaryotes that lack these structures, including
budding yeast (taxon id: 559292), fission yeast (taxon id: 4896), and rice (taxon id:
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39947). This suggests that the molecular mechanisms involved in the development
of these anatomical structures arose early in eukaryotic evolution. Indeed, it has
been hypothesized that molecular pathways involved in human organogenesis, such
as the Hedgehog proteins, appeared early in the evolution of multicellular organisms
through the redeployment of components found in unicellular organisms [244]. The
high conservation of such pathways explains the presence of Hedgehog homologs in
a variety of evolutionarily distant eukaryotes, including fungi and plants [245, 246].

Finally, the “vertebrate” ASFAs are on average the newest in the evolutionary
history of humans (average conservation degree of 3.4, see Figure 5.4). In general,
they describe specific traits that are unique to vertebrates. Among them, we find
ten ASFAs that describe cellular functions related to the adaptive immune system,
which is a system restricted to vertebrates [247, 248]. For instance, lymphocyte
proliferation and the activation of natural killer lymphocytes (see axes 473 and 370
in Table 5.1). Moreover, we find eight ASFAs that define functions connected to the
development of tissues that are unique to vertebrates, such as cranial development,
bone remodeling, skeletal muscle, and cardiac muscle (see axes 68, 402, 36, and 406
in Table 5.1, respectively). Finally, the rest of the “vertebrate” ASFAs are connected
to different regulatory processes of the cell and to metabolic processes.

In conclusion, we demonstrate that each axis of the embedding space represents
a well-defined function of the human cell. Moreover, by analyzing our new ASFAs,
we find evolutionary connections between different species. We find similar results
between the rest of the studied species (see Supplementary sections C.1.1 and C.1.2).

5.3.6 Non-Annotated Axes also capture the functional mech-
anisms of the cell

Finally, in this section, we investigate the biological meaning of those axes without
any associated GO BP term (a.k.a. empty axes). To this aim, we recall that
genes that form densely connected regions of a PPI network tend to share biological
functions [249]. Hence, we investigate if the genes that are associated with the
empty axes tend to form such densely connected neighborhoods in the human PPI
network. We do this by associating genes to the 206 (41.2%) empty axes of the
ONMTF human embedding space. We associate each gene to the axis for which the
projection of the gene’s embedding vector has the largest value (detailed in 5.2.6).
Then, we evaluate the connectivity in the original human PPI network by computing
the clustering coefficient between genes associated with the same empty axis.

We see that the average clustering coefficient of those genes associated with
the same non-empty axis (axes with associated GO BP terms) is statistically signifi-
cantly higher than those genes associated with the same empty axis (Mann-Whitney
U test p-value of 1.76× 10−63). However, we find that the average clustering coeffi-
cient of those genes associated with the same empty axis is statistically significantly
higher than expected by random (Mann-Whitney U test p-value of 6.46×10−28), i.e.,
they form more densely connected sub-networks than randomly chosen genes, which
suggests that they are indeed functionally related. Hence, we explain the absence
of associated GO terms on these empty axes by the lack of biological functional
information (only 48.6% of the human genes in the PPI network are annotated with
GO BP terms). In other words, the empty axes capture parts of the human PPI
network that have not been yet annotated. We find similar results for the rest of
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the studied species (see Supplementary Table C.8).

Axis Terms #Genes Empty

9 neurotransmission, glycinergic, gonadotropin, un-
saturated, choline, activating, glycosylation, glycine,
adenylate, cyclase

19 Yes

76 chylomicron, brood, thymocyte, folding, transcription,
microtubule, polymerase, leukocyte, helper, thymus

27 Yes

68 transcription, somitogenesis, polymerase, developmen-
tal, skeletal, commitment, midbrain, development,
binding, dopaminergic

78 No

370 natural, killer, immunoglobulin, zinc, biosynthesis,
transamidation, glutaminyl-tRNAGln, cytotoxicity,
eye, adhesion

20 No

Table 5.2. The empty axes of the human ONMTF embedding space capture human
cellular functions. For the human ONMTF embedding space, we use the genes associated
with its empty axes (axes without associated GO BP terms) and non-empty axes to
generate the ASFAs (detailed in section 5.2.6). The first column, “Axis,” lists the name
of the axes from which each ASFA was obtained. The second column, “Terms,” shows
the description of the ASFAs. The third column, “#Genes,” displays the number of genes
that are associated with the axis. The fourth column, “Empty,” indicates if the axis is
empty (“Yes”) or not (“No”).

To find the biological meaning of empty axes, we propose to generate their AS-
FAs from the text description of their associated genes rather than from the text
description of their associated GO BP terms (section 5.2.6). Using this approach,
we obtain the ASFAs for 97.8% of the axes. We find that the interpretation of
these ASFAs is less intuitive (average of 55.47 words) than the ones built using
GO BP terms (average of 17.27 words) but are equally coherent. For instance,
the ASFA of the empty-axis 461 is connected with the regulation of neural activity
(see Table 5.2). Indeed, among the words that define this ASFA, we find glycine
(an inhibitory neurotransmitter [250]), choline (regulator of neurological develop-
ment [251]), and adenylate cyclases (regulator of the energy balance in different
parts of the brain [250]). Another example is the ASFA of the empty-axis 76, which
is connected to the functions of the thymus (see Table 5.2). This ASFA supports
the observation that lipid metabolism (“chylomicron”) affects lymphocyte differen-
tiation and survival in the thymus [252].

Finally, we investigate if the ASFAs generated using genes’ descriptions (a.k.a,
genes’ perspective) agree with those generated using functional annotations (GO
terms’ perspective). Interestingly, we find that the gene perspective ASFAs are
not only in agreement with the GO terms perspective ones but also complement
them. For instance, from the GO terms perspective, the ASFA of axis 68 is con-
nected to cranial development (see Table 5.1). In this case, the genes’ perspective
not only agrees with it but also indicates that the ASFA is linked to the neural
tube development (see Table 5.2). Similarly, the genes’ perspective ASFA of axis
370 complements its GO terms’ perspective ASFA. From the GO terms’ perspec-
tive, this ASFA is connected to the activation of natural killer lymphocytes (see
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Tables 5.1). The gene’ perspective hallmarks the importance of the “glutaminyl-
tRNAGln” and amidotransferase for the correct functioning of their mitochondria,
which is connected to the activation of lymphocytes [253] (see Table 5.2).

In conclusion, we demonstrate that all the axes of the embedding space have
a coherent biological meaning. For those axes that do not have any GO BP term
associated, we propose an approach method that finds the meaning of empty axes.
We demonstrate that the ASFAs generated by using it agree with and complement
the ones obtained by using the GO BP terms.

5.4 Conclusions

By introducing our new axes-based method, we shift the exploration of the gene
embedding spaces’ organization from the genes’ embedding vectors to the axes of
the embedding space. For the first time, we do not discard the axes of the gene
embedding space; instead, we demonstrate that they can be used to decipher bio-
logical information from the gene embedding space. Moreover, we show that each
axis represents a non-redundant cellular function (a.k.a. ASFAs) and their combi-
nation offers a summarized functional fingerprint of the cell. This fingerprint can
go from a generic overview of the cell to a most specific one depending on the num-
ber of dimensions used for generating the gene embedding space. Furthermore, we
demonstrate that these ASFAs can be exploited to get insights into the evolutionary
history of different species, including humans, i.e., it opens a new way to decipher
the functional connections between different species. However, one of the limitations
of our approach is the lack of biological information about the genes (only 48.6% of
the human genes in the PPI network are annotated with GO BP terms), which re-
sults in axes without GO BP associated. We also overcome this issue by associating
genes to the embedding axes and using their descriptions to build the corresponding
ASFAs. We demonstrate that these ASFAs are also biologically coherent and com-
plement the ASFAs generated using GO BP terms. Finally, our methodology could
be easily applied to other bioinformatics tasks, such as the development of data-
driven ontology (using the ASFAs as functional annotations and connecting them
based on their similarity) or as the bases for network drawing algorithms (using
the axes to summarize the functional organization of molecular networks). Finally,
our new methodology is generic and can be applied to any discipline that analyzes
the organization of networks by using network embeddings, e.g., social, or economic
networks, paving the road to new algorithms for mining the data by utilizing the
axes of the embedding space.
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Chapter 6

Conclusion

In this chapter, we provide a brief summary of our results and contribution presented
in this dissertation. We continue by listing the conclusions of the thesis. We finish
the dissertation by presenting some future directions to which our new graphlet-
based and embedding-based approaches can be applied.

6.1 Summary of thesis achievements

Cells are the basic building blocks of all living organisms. Understanding the com-
plex intracellular processes is crucial not only to identify the fundamental mecha-
nisms of life but also to elucidate the molecular mechanisms of a broad range of
diseases. The increasing availability of “omic” data has yielded an unprecedented
opportunity to understand the functioning of the cell. This data is often represented
as networks. Networks are a valuable source of biological information, but they need
to be untangled by new algorithms to reveal the information hidden in their wiring
patterns [1]. The state-of-the-art approaches to deciphering these complex data are
based on graphlets and network embeddings. In this thesis, we focus on the devel-
opment of novel algorithms to overcome the limitations of the current graphlet and
network embedding methodologies in the field of biology.

In Chapter 3, we propose the use of probabilistic networks to represent the un-
certainty about molecular interactions. To extract the biological information hidden
in the wiring patterns of probabilistic networks, we generalize the state-of-the-art
graphlet-based methods to capture the local topology of the nodes in a network (i.e.,
GDV and GDV distance) and to capture the topology of an entire network (GCM
and GCD) to probabilistic networks. By applying probabilistic graphlets to the
probabilistic synthetic networks, we demonstrate that probabilistic graphlet outper-
forms their unweighted counterparts in capturing the overall topological similarity
between synthetic networks. Moreover, we model different molecular interactions as
probabilistic networks and show that probabilistic graphlets robustly manage low
signal topology information without sacrificing their ability to recover relevant bi-
ological information from molecular networks. In contrast, the original unweighted
graphlets applied in thresholded networks are highly sensitive to both, the noise and
the chosen threshold. Thus, probabilistic graphlets allow for the use of all available
data avoiding the use of thresholds that could lead to the loss of crucial information.
Finally, we compare the biological information uncovered by probabilistic graphlets
to the information uncovered by original graphlets. Interestingly, while original
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graphlets capture cellular functions that are usually active in all the cells (e.g., car-
bohydrate metabolic process or oxidative metabolic process), probabilistic graphlets
uncover condition-specific cellular functions (e.g., stress response mechanisms or cel-
lular differentiation). We hypothesize that this difference is connected to the prob-
abilistic nature of condition-specific cellular functions that could benefit from the
use of probabilistic models. Hence, probabilistic can be used to complement the
biological information uncovered by their original unweighted counterparts. How-
ever, computing probabilistic graphlets in large networks, such as human molecular
networks, is computationally challenging. We leave this issue for future research.

In Chapter 4, we introduce a new, function-centric perspective and approach
to explore the functional organization of gene embedding spaces from a functional
perspective. Unlike the current gene-centric perspective that focuses on the organi-
zation of the vectorial representations of the genes in the embedding space, our new
perspective exploits the organization of the genes’ functions (represented by func-
tional annotations) in the space to uncover biological information from molecular
networks. We introduce the FMM that captures the organization of the annota-
tions’ embedding vectors in the gene embedding space by their mutual positions.
We develop FMM-based approaches to address fundamental tasks in the network
embedding field, e.g., measure the similarity between the functional organization of
gene embedding spaces, identify the optimal dimensionality of a gene embedding
space, and capture the functional changes between two gene embedding spaces. In
this Chapter, we apply our FMM-based methodology to investigate the functional
changes produced by the most prevalent cancers in humans (breast, prostate, lung,
and colorectal cancer). To this aim, we generate cancer and control (healthy) gene
embedding spaces by applying the NMTF algorithm to the corresponding tissue-
specific PPI networks. First, we use our FMM to define the optimal dimensionality
of these molecular interaction networks embedding spaces. For this optimal di-
mensionality, we demonstrate that both embedding spaces, cancer, and control, for
all four cancers, are functionally organized, i.e., functionally similar annotations are
embedded close in the space, and we investigate if this organization changes between
them. We show that cancer alters the positions in the embedding space of cancer-
related functions, while it keeps the positions of the non-cancer-related ones. We
exploit this spacial “movement” to predict novel cancer-related functions, such as
alternative translational mechanisms, or the response to unfolded protein accumula-
tion, and we validate them by systematic literature search in the PubMed database.
Furthermore, we demonstrate that our FMM-based methodology is not restricted
only to functionally-based analyses of cancer, but it can be used to mine for new
genomic knowledge from the embedding space. We use our FMM-based method-
ology to predict cancer-related genes. We show that most of the cancer-related
predicted genes are not differentially expressed between cancer and control, i.e., the
FMM-based methodology identifies genes whose transcriptional patterns have not
changed and this is complementary to the traditional differential expression anal-
ysis. Among the most promising cancer-related genes predictions, we identify four
genes (PRDM11, C9orf72, MINDY3, and H4C6) for which we found some liter-
ature indicating their involvement in cancer, but whose role in cancer has yet to
be experimentally validated. In conclusion, our new function-centric approach can
complement the knowledge obtained by current gene-centric approaches from omic
data by providing a different perspective and additional insights.
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In Chapter 5, we propose to change the analysis of the network embeddings from
the embedded entities (genes for the gene-centric approach and functional annota-
tions for our functional-centric perspective) to the space itself. We introduce a new
approach that uses the axes of the embedding spaces, in which the genes and func-
tions are embedded, to capture the cell’s fundamental mechanisms from molecular
networks. We apply our axes-based approach to different species-specific PPI em-
bedding spaces that we generate by NMTF and Deepwalk algorithms. To untangle
the biological information hidden in the resulting gene embedding spaces, we embed
GO terms and genes in the spaces and associate them with the embedding axes.
For the first time, we demonstrate that the axes of the embedding space disentan-
gle biological information from the space, with semantically similar GO BP terms
associated with the same axis, i.e., each axis captures a coherent cellular function.
Moreover, we demonstrate that the embedding in positive and orthonormal spaces,
which only NMTF-based frameworks allow for, leads to the embedding axes that
best capture the cell’s functional organization from the biological networks. We also
investigate the impact of dimensionality on the ability of the axes to reveal the cell’s
functional organization. We demonstrate that, with the increment of dimensions, the
axes disentangle specific cellular functions from the molecular networks. However,
we find that after reaching a certain number of dimensions, the disentanglement of
specific functions stops. We use this observation to define the optimal dimensional-
ity of the embedding spaces and explore the biological meaning of the axes in detail.
To this aim, we apply an NLP-based approach to summarize all functional annota-
tions associated with a given axis into a higher-level functional annotation that we
term ASFAs. We show that each ASFA represents a coherent cellular function, and
we confirm their coherence by literature curation. We demonstrate that ASFAs not
only define coherent biological processes, such as the sensory perception of light, but
they can also be exploited to find new evolutionary functional connections between
the species. Finally, due to the scarcity of GO annotations, we find that not all axes
have associated GO terms, i.e., the biological meaning of the non-annotated axes
can not be discovered using the current functional annotations. Thus, we propose
associating genes to the axes and using their descriptions to define their ASFAs.
We demonstrate that the corresponding ASFAs are also biologically coherent and
complement the biological information obtained from the biological annotations.

6.2 Conclusions

In this section, we present the general conclusions of the Thesis:

• Methodological:

1. We generalize graphlets to probabilistic networks by introducing proba-
bilistic graphlets.

2. We introduce a new function-centric methodology to explore network
embeddings from a function perspective.

3. We introduce a new axes-based approach that changes the exploration
of network embeddings from the embedded entities (genes and genes’
functions) to the embedding space itself.
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• Applications:

1. Probabilistic graphlets do not require the use of thresholds and prevent
the loss of relevant information.

2. Probabilistic graphlets manage low signal topology information uncover-
ing more biological information from the network than their unweighted
counterparts.

3. Probabilistic graphlets extract condition-specific processes, which in turn
benefit from the use of probabilistic models.

4. Our function-centric methodology offers a functional map of the embed-
ding space’s topology by capturing the functional organization of the
genes’ functions in the embedding space.

5. Our function-centric methodology can be applied to address fundamental
problems in network embeddings (e.g., to find the optimal dimensionality
of the embedding space or to assess the similarity in the topology of
different embedding spaces).

6. Applied to cancer research, our function-centric perspective can be used
to predict new cancer-related genes and functions that cannot be detected
by using the current gene-centric approaches.

7. We demonstrate that the embedding axes decipher coherent biological
information from the gene embedding space.

8. Our axes-based methodology captures new interactions between pairs of
GO BP terms that are not described in the gene ontology but are still
biologically coherent.

9. We use these newly captured interactions to define new data-driven func-
tional annotations (ASFAs).

10. We applied our ASFAs to get insights into the biological history of hu-
mans.

6.3 Future work

In this section, we propose extensions of our approaches to various biological ap-
plications as well as future methodological directions that are relevant to the work
presented in this Thesis.

6.3.1 Identifying Pan-cancer functions with our FMM

In this thesis, we apply our FMM-based methodology in the context of cancer re-
search to identify the functional changes produced by the most prevalent cancers
in humans (breast, prostate, lung, and colorectal cancer). We demonstrate that
our FMM-based methodology can be used to identify cellular functions that are
relevant to each cancer type. However, one open question is if the FMM can un-
cover common cellular functions that are important for all cancer types (a.k.a.,
pan-cancer functions). We investigate this potential application by analyzing the
intersection between functions that are shifted (predicted to be cancer-related) in
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breast, prostate, lung, and colorectal cancer (de definition of shifted function can be
found in Chapter 4, section 4.2.7).

We find a statistically significant intersection of eight annotations between the
shifted functions in each cancer type (permutation test with p-value < 0.05). We
see that these annotations are connected with cellular response to a chemokine
(GO:1990869 and GO:0008543), histone phosphorylation (GO:0016572), positive
regulation of the RNA export from the nucleus (GO:0046833), response to radiation
(GO:0009314 and GO:0006970), and stress-activated MAPK cascade (GO:0051403
and GO:0007254). We find that these functions are normally deregulated in all
types of cancer. For instance, the MAPK signaling cascades are known to be in-
volved in the progression of various human cancers [254]. On the other hand, the
cellular response to radiation involves several cellular processes, such as the arrest
of cell cycle progression, repair of DNA lesions, or apoptosis, that are known to be
linked to cancer [255]. Regarding the histone phosphorylation and the RNA export
from the nucleus, these processes could be related to the epigenetic alterations, and
the dysregulation of nuclear trafficking observed in cancer [254, 256]. Finally, the
response to chemokines has been identified to play an important role in the tumor
microenvironment [257].

These preliminary results suggest that there exist common functions between
cancer types that could be identified with our FMM-based methodology. This hy-
pothesis could be validated by extending this analysis to the 20 cancer types for
which expression data is available in the Human Protein Atlas (HPA) [192]. In ad-
dition, as the FMM allows for the identification of cancer genes based on the spatial
movement of the functions (see Chapter 4, section 4.3.3), these pan-cancer functions
could be used to potentially identify those genes that are important for all cancer
types.

6.3.2 Measuring the evolutionary closeness between species
using the FMM

In this thesis, we apply our FMM-based methodology in the context of cancer.
However, this methodology could be easily extended to other biological research
areas, such as evolutionary biology or patient stratification. To demonstrate it, we
generate the species-specific PPI embedding spaces by applying NMTF on the PPI
network of Homo sapiens sapiens (denoted by human), Saccharomyces cerevisiae
(denoted by budding yeast), Schizosaccharomyces pombe (denoted by fission yeast),
Drosophila melanogaster (denoted by fly), and Mus musculus (denoted by mouse).
Then, we use our FMM-based method to embed GO BP terms into these embedding
spaces and to capture their distances over the species-specific embedding spaces (see
Chapter 4, section 4.2.4 for details about the FMM methodology). We measure the
similarity between the FMMs of these five species by computing their pairwise RSE
(details about this methodology can be found in Chapter 4, section 4.2.5).

We find that the FMMs of evolutionarily related species are more similar (lower
RSE between their FMMs) than the FMMs of evolutionarily distant species. For
instance, the RSE between human and mouse FMMs is 0.15, while it is 0.20 be-
tween human and budding yeast (see Tables 6.1 and 6.2). Hence, this preliminary
results demonstrate that our FMM-based methodology can be used to identify the
evolutionary closeness between the species but more work is needed on optimizing
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Human Budding yeast Fission yeast Fruit fly Mouse

Human 0.000 0.204 0.228 0.182 0.159
Budding yeast 0.204 0.000 0.157 0.178 0.217
Fission yeast 0.228 0.157 0.000 0.195 0.242
Fruit fly 0.182 0.178 0.195 0.000 0.180
Mouse 0.159 0.217 0.242 0.180 0.000

Table 6.1. Pairwise RSE between the species-specific FMMs. For the five species:
Homo sapiens sapiens (denoted by “Human”), Saccharomyces cerevisiae (denoted by
“Budding yeast”), Schizosaccharomyces pombe (denoted by “Fission yeast”), Drosophila
melanogaster (denoted by “Fruit fly”) and Mus musculus (denoted by “Mouse”). The
table specifies the relative error between their FMMs.

the FMM to enhance the applicability of our approach for evolutionary studies.

Human Budding yeast Fission yeast Fruit fly Mouse

Human 0 529 1,017 736 89
Budding yeast 529 0 529 1,017 1,017
Fission yeast 1,017 529 0 1,017 1,017
Fruit fly 736 1,017 1,017 0 736
Mouse 89 1,017 11,017 736 0

Table 6.2. Common ancestor time, Million Yeats Ago (MYA) [258]. For the five species:
Homo sapiens sapiens (denoted by “Human”), Saccharomyces cerevisiae (denoted by
“Budding yeast”), Schizosaccharomyces pombe (denoted by “Fission yeast”), Drosophila
melanogaster (denoted by “Fruit fly”) and Mus musculus (denoted by “Mouse”). The
table shows the million years from the common ancestor between the species.

6.3.3 Uncovering complementary information from network
embeddings using different perspectives

In this thesis, we describe three perspectives to uncover biological information from
network embeddings. The classic gene-centric perspective focuses on the organiza-
tion of the genes in the embedding space to uncover this information. Our new
function-centric perspective (introduced in Chapter 4), uses the organization of the
genes’ functions (represented by functional annotations) in the embedding space to
capture this biological information. Finally, our axes-centric perspective (introduced
in Chapter 5) directly uses the embedding space itself to uncover this information.
As of the submission of this thesis, we are still working on our axes-based approach,
i.e., there are several open questions that need to be solved.

One question is the benefit of using the axes of the embedding space instead of
the entities embedded in it (genes and functional annotations) to uncover biological
information from network embeddings. One direction to solve this question is to
compare the ability of each perspective (gene-, function- and axes-based approaches)
to capture the cell’s functional organization from network embeddings. We assess
it by analyzing the functional coherence in the stratification (grouping) of the GO
BP terms captured by each method. First, we use the three methodologies to
obtain the clusters of GO BP terms. For the gene-centric approach, GO BP terms
are clustered together if they are statistically significantly overrepresented in gene
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clusters. Similarly, for our axes-centric method, GO BP terms are clustered together
if they are statistically significantly associated with the same axis. Finally, for our
function-centric approach, GO BP terms are clustered together if their embedding
vectors are in proximity in the embedding space. Then, we evaluate the functional
coherence in the stratification of the GO BP terms as follows. We compute the
pairwise Lin’s semantic similarity (SS) [136] between all the GO BP terms. A SS
between a pair of GO BP terms is one if they represent an identical biological
process and zero if they represent a totally unrelated biological process. We report
the mean pairwise SS between GO BP terms that cluster together (Intra SS) and
the mean pairwise SS between GO BP terms that do not cluster together (Inter SS).
Intuitively, the higher the mean Intra SS and the lower the mean Inter SS the most
functional coherence in the stratification of the GO BP terms, i.e., better captures
the cell’s functional organization.

To conduct the preliminary comparison between methods, we generate a gene
embedding space by applying NMTF to the human PPI network. We choose to
generate this embedding space with 300 dimensions, as it was found to be optimal
based on our FMM-based approach and is close to being optimal based on our axes-
based method (see Chapter 4, section 4.2.5 and Chapter 5, section 5.3.3). Then, we
follow the criteria detailed above to cluster the GO BP terms based on the gene-,
functional-, and axes-centric approaches. Then, we report the fold change between
the mean Intra SS and the mean Inter SS.

We find that the axes-based approach stratifies the GO BP terms the best (a fold
of 2.8), followed by the FMM-based approach (a fold of 1.6) and the gene-centric
approach (a fold of 1.35). Hence, this preliminary result suggests that using the
embedding space itself, rather than the spatial organization of the entities (genes
and functions) embedded in it, leads to better stratification of biological information
uncovered, i.e., the axes of the embedding space are the most effective at capturing
the cell’s functional organization from molecular networks. We speculate this ob-
servation may be connected to the importance of the axes in the embedding space’s
topology. As introduced in Chapter 2, section 2.7, the embedding spaces are spanned
by their axes. Hence, the embedding axes may be essential for the organization of
the embedded entities (genes and functions) in the space. To have a proper represen-
tation of the cell’s functional organization in the embedding space, the axes should
capture the most essential biological information hidden in the wiring patterns of
molecular networks. While this observation is promising, we need to further validate
it.

In conclusion, there are still some open questions that need to be assessed. Cur-
rently, we are still working on finding the fairest methods to solve them.

6.3.4 Generalizing probabilistic graphlets to network em-
beddings

Finally, a future direction is to generalize our probabilistic graphlets to network
embeddings. Currently, one of the students in the group is following this research
line. In particular, Xenos et al., [89] extended the original graphlets to network
embeddings by introducing the GDV PPMI matrix. In their work, Xenos et al.,
demonstrated that the gene embeddings generated by the NMTF-based decompo-
sition of the GDV PPMI matrix representation of the human PPI network lead to
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the highest prediction accuracy of cancer genes (at least 89%) [89]. The GDV PPMI
matrix is generated by applying the Deepwalk closed formula (introduced in Chapter
2 section 2.7.1) on the GDV matrix. Thus, a simple approach for extending prob-
abilistic graphlets to network embedding would be to directly apply the Deepwalk
closed formula on our pGDV (introduced in Chapter 3, section 3.2.7). On the other
hand, Xenos et al., are currently working on improving their GDV PPMI matrix as
follows. Recall that cells in a PPMI matrix quantify how frequently two nodes, i
and j, of the network co-occur in a random walk compared to what would be ex-
pected if the co-occurrences of the nodes were independent (see details in Chapter 2,
section 2.7.1). Instead of using random walks, the idea behind their new graphlet-
based PPMI is to use the graphlet-based (i.e., graphlet adjacency) representation of
the network and then quantify how frequently the nodes appear as part of a given
graphlet (e.g., triangle). Similarly, we could generalize our probabilistic graphlets
to network embeddings by quantifying how frequently the nodes appear as part of
a given probabilistic graphlet.

In conclusion, the work of Xenos et al., opens a new research line for extending
probabilistic graphlets to network embeddings.
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[9] Noël Malod-Dognin and Nataša Pržulj. “Functional geometry of protein in-
teractomes”. In: Bioinformatics 35.19 (2019), pp. 3727–3734.

[10] Bin Zhang and Steve Horvath. “A general framework for weighted gene
co-expression network analysis”. In: Statistical applications in genetics and
molecular biology 4.1 (2005).

[11] Steve Horvath. Weighted network analysis: applications in genomics and sys-
tems biology. Springer Science & Business Media, 2011.

[12] Jose Lugo-Martinez et al. “Classification in biological networks with hyper-
graphlet kernels”. In: Bioinformatics 37.7 (2021), pp. 1000–1007.

[13] Daokun Zhang et al. “Network representation learning: A survey”. In: IEEE
transactions on Big Data 6.1 (2018), pp. 3–28.

[14] Walter Nelson et al. “To embed or not: network embedding as a paradigm in
computational biology”. In: Frontiers in Genetics 10 (2019), p. 381.
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Appendix A

Supplementary Information for
Chapter 3

A.1 Supplementary Results and Discussion for Chap-

ter 3

A.1.1 pGDV captures different functional information that
is not seen by GDV

To show that the probabilistic and unweighted graphlets extract different biological
information from the same set of genes, we test the ability of pGDV to capture
different functional information that is not identified by GDV. Following section 3.2.7
of Chapter 2, we fix the number of clusters, k, following the rule-of-thumb, and
we select the enriched GO terms that are captured uniquely by probabilistic or
unweighted graphlets. Then, we retrieve those genes that are responsible for the
enrichments of the previous GO terms. Following this, we divide the genes into three
sets: unique in probabilistic (s1), unique in unweighted (s3), and the intersection
between the two methods (s2). Then, for each of the clusters obtained by our
probabilistic method (c1), we computed the pGDV and GDV distances between s1
and s2. Similarly, for each of the clusters obtained by the unweighted method (c2),
we compute the pGDV and GDV distances between s3 and s2. Finally, for each
cluster, c1i, we compute the pGDV and GDV distances between s1 genes in c1i and
the s2 genes clustered in c2. We repeat this method for all k clusters and calculate
the mean between all the clusters across the 10 clustering runs.

As expected, the similarity between the gene signatures (GDVs and pGDVs) of
the unique probabilistic genes (s1) and genes in the intersection (s2) is higher when
using the pGDV. On the other hand, the similarity between unique unweighted
genes (s3) and genes in the intersection (s2) is higher when using the GDVs. In
other words, the different clustering of the s2 genes by each method results from
their ability to identify different topological similarities.

For instance, in low confidence human PPI, we observe a mean distance of 0.15
between the unique to probabilistic method genes (s1) and the intersection genes
(s2) when using pGDV, while this distance is 0.20 when we using GDV. Similarly,
we observe that these differences between methods decrease when higher confidence
networks are analyzed. For example, in the high-confidence budding yeast PPI
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network, the mean distance between the unique to unweighted method genes (s3)
and the shared genes (s2) is 0.20 and 0.21 when using GDV and pGDV, respectively.
These results are expected since when a high confidence threshold is applied, the
edge probability distribution in the probabilistic network is higher (see Table 3.1 in
Chapter 2), being closer to one and, consequently closer to a binary network.

All these results support our hypothesis that pGDV captures functional informa-
tion that differs from the information captured by GDV. This suggests that the two
approaches may complement each other in extracting functional information from
the molecular interaction networks.

A.2 Supplementary Figures for Chapter 3

Figure A.1. pGCMs can separate networks by edge probability distribution. Edge prob-
abilities were sampled based on empirical distributions from GIS, CoEx, and PPI or from
a synthetic uniform distribution. Panels represent the UMAP embedding of (A) pGCMs
of probabilistic geometric random graph (RG) networks using the indicated probability
distribution; (B) pGCMs of probabilistic Erdös-Renyi (ER) networks using the indicated
probability distribution.
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Figure A.2. pGCMs of networks with edge probability distribution sampled based on
beta distributions with mean and variance from empirical distributions cluster according
to these parameters. Edge probabilities were sampled based on empirical distributions
from GIS, CoEx, and PPI or from three different synthetic beta distributions with mean
and variance corresponding to each of the empirical distributions. The panel represents the
UMAP embedding of probabilistic networks based on the Barabasi and Albert preferential
attachment model (BA) using the indicated probability distribution.

Figure A.3. GO-CC and GO-MF enrichments in the clusters obtained on budding
yeast PPI network. Lines represent the mean and the shaded area represents the 95%
confidence intervals based on bootstrapping of each enrichment statistic for unweighted
and probabilistic graphlets depending on the number of clusters k, across 10 repetitions.
High, medium, and low indicate the confidence threshold for the underlying networks.
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Figure A.4. GO-CC enrichments in the clusters obtained on budding yeast GIS network.
Lines represent the mean and the shaded area represents the 95% confidence intervals based
on bootstrapping of each enrichment statistic for unweighted and probabilistic graphlets
depending on the number of clusters k, across 10 repetitions. High, medium, and low
indicate the confidence threshold for the underlying networks.

Figure A.5. GO-MF enrichments in the clusters obtained on budding yeast GIS network.
Lines represent the mean and the shaded area represents the 95% confidence intervals based
on bootstrapping of each enrichment statistic for unweighted and probabilistic graphlets
depending on the number of clusters k, across 10 repetitions. High, medium, and low
indicate the confidence threshold for the underlying networks.
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Figure A.6. GO-BP enrichments in the clusters obtained on human PPI network. Lines
represent the mean and the shaded area represents the 95% confidence intervals based
on bootstrapping of each enrichment statistic for unweighted and probabilistic graphlets
depending on the number of clusters k, across 10 repetitions. High, medium, and low
indicate the confidence threshold for the underlying networks.
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Figure A.7. GO-CC and GO-MF enrichments in the clusters obtained on human PPI
network Lines represent the mean and the shaded area represents the 95% confidence inter-
vals based on bootstrapping of each enrichment statistic for unweighted and probabilistic
graphlets depending on the number of clusters k, across 10 repetitions. High, medium,
and low indicate the confidence threshold for the underlying networks.

Figure A.8. GO-BP enrichments in the clusters obtained on budding yeast CoEx net-
work. Lines represent the mean and the shaded area represents the 95% confidence inter-
vals based on bootstrapping of each enrichment statistic for unweighted and probabilistic
graphlets depending on the number of clusters k, across 10 repetitions. High, medium,
and low indicate the confidence threshold for the underlying networks.
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Figure A.9. GO-CC enrichments in the clusters obtained on budding yeast CoEx net-
work. Lines represent the mean and the shaded area represents the 95% confidence inter-
vals based on bootstrapping of each enrichment statistic for unweighted and probabilistic
graphlets depending on the number of clusters k, across 10 repetitions. High, medium,
and low indicate the confidence threshold for the underlying networks.

Figure A.10. GO-MF enrichments in the clusters obtained on budding yeast CoEx
network. Lines represent the mean and the shaded area represents the 95% confidence
intervals based on bootstrapping of each enrichment statistic for unweighted and prob-
abilistic graphlets depending on the number of clusters k, across 10 repetitions. High,
medium, and low indicate the confidence threshold for the underlying networks.
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Figure A.11. Probabilistic graphlets capture distinct information compared to their
unweighted counterparts. Jaccard index (JI) of the MF GO terms captured by probabilistic
and unweighted networks across different confidence thresholds and for different numbers
of clusters. Lines represent the mean and the shaded area represents the 95% confidence
intervals based on bootstrapping for ten repetitions.

Figure A.12. Probabilistic graphlets capture distinct information compared to their
unweighted counterparts. Jaccard index (JI) of the CC GO terms captured by probabilistic
and unweighted networks across different confidence thresholds and for different numbers
of clusters. Lines represent the mean and the shaded area represents the 95% confidence
intervals based on bootstrapping for ten repetitions.
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Figure A.13. Probabilistic graphlets are more robust in capturing BP GO terms than
unweighted graphlets. The panels show the total count of GO terms that appeared en-
riched in one to ten repetitions. The value of k was fixed for each network as indicated.

The value of k was fixed for each network based on the rule-of-thumb (k ≈
√

N
2 , where N

represents the number of nodes in the network) and is displayed in each panel.
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Figure A.14. Probabilistic graphlets are more robust in capturing CC GO terms than
unweighted graphlets. The panels show the total count of GO terms that appeared en-
riched in one to ten repetitions. The value of k was fixed for each network as indicated.

The value of k was fixed for each network based on the rule-of-thumb (k ≈
√

N
2 , where N

represents the number of nodes in the network) and is displayed in each panel.
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Figure A.15. Probabilistic graphlets are more robust in capturing MF GO terms than
unweighted graphlets. The panels show the total count of GO terms that appeared en-
riched in one to ten repetitions. The value of k was fixed for each network as indicated.

The value of k was fixed for each network based on the rule-of-thumb (k ≈
√

N
2 , where N

represents the number of nodes in the network) and is displayed in each panel.
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Appendix B

Supplementary Information for
Chapter 4

B.1 Supplementary Materials and Methods for

Chapter 4

B.1.1 Multiplicative update rules

As presented in section 4.2.3 of Chapter 4, the Non-negative Matrix Tri-Factorization,
NMTF, can be formulated as the following minimization problem:

min
P,S,G≥0

f(P, S,G) = minP,S,G≥0∥X − PSGT∥2F , GTG = I,

where F denotes the Frobenius norm, X is the PPMI matrix representation of a
molecular network (whose nodes are genes), rows in matrix P ·S are the embedding
vectors of the genes, and columns in GT are the axis of the basis describing the
space in which the genes are embedded.

Following the semi-NMTF simplification [259] for a more computationally tractable
solution, we remove the non-negativity constraint on S ≥ 0. To solve the optimiza-
tion problem, we derive the Karush-Kuhn-Tucker (KKT) conditions for our NMTF
as follows:

∂f

∂G
= −XTPS +GSTP TPS − η1 = 0,

∂f

∂S
= −P TXG+ P TPSGTG = 0,

∂f

∂P
= −XGST + PSGTGST − η2,

η1, G ≥ 0,

η1 ⊙G = 0,

η2, P ≥ 0,

η2 ⊙ P = 0,

where ⊙ is the Hadamard (element wise) product and matrices η1 and η2 are the
dual variables for the primal constraint G,P ≥ 0. For S, we have the following
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closed formula:
S = (P TP )−1(P TMG)(GTG)−1

As explained in [26], we derive the following multiplicative update rule to solve
the KKT conditions above:

Gij ← Gij

√
(XTPS)+ij +G(STP TPS)−ij
(XTPS)−ij +G(STP TPS)+ij

Pij ← Pij

√
(XGST )+ij + P (SGTGST )−ij
(XGST )−ij + P (SGTGST )+ij

.

We start from initial solutions, Ginit, Pinit, Sinit, and iteratively use Equations (1)
and (2) to compute new matrix factors G, P and S until convergence. To gen-
erate initial Ginit, Pinit and Sinit, we use the Singular Value Decomposition based
strategy [201]. However, SVD matrix factors can contain negative entries; thus, we
use only their positive entries and replace the negative entries with 0, to account
for the non-negativity constraint of the NMTF. This strategy makes the solver de-
terministic and also reduces the number of iterations that are needed to achieve
convergence [201].

We measure the quality of the factorization by the sum of the relative square
errors (RSE) between the decomposed matrices and the corresponding decomposi-
tions:

RSE =
||X − PSGT ||2F
||X||2F

.

In our implementation, the iterative solver stops after 1000 iterations, the value for
which the RSE of the decomposition is not decreasing any more.

B.2 Supplementary Results and Discussion for Chap-

ter 4

B.2.1 Impact of the PPI network matrix representation to
the functional organization of the embedding space

In this section, we compare the ability of the adjacency and PPMI matrix repre-
sentations of the tissues-specific PPI networks (detailed in sections 4.2.1 of Chapter
4) to produce functionally coherent network embedding spaces. To this aim, we
embed each tissue-specific PPI network by applying our NMTF-based methodology
(see section 4.2.3 of Chapter 4) on either its adjacency matrix representation or
on its PPMI matrix representation. We generate these embedding spaces with 200
dimensions since this dimensionality corresponds to the optimal dimensionality of
such spaces (as detailed in section 4.2.5 of Chapter 4).

In a first step, as standardly done in the literature, we compare the ability of
the adjacency and PPMI matrix representations to produce functionally coherent
embedding spaces from the gene-centric point of view. For each embedding space,
we cluster together genes that are embedded close in space by applying the k-
medoid algorithm [206] on the genes’ embedding vectors. For the number of clusters,
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we use the heuristic rule of thumb (k =
√

n
2
, where n is the number of nodes

in the tissue-specific network) [18]. We end up with 65, 45, 44, 44, 42, 38, 47,
and 47 clusters for breast cancer, breast glandular cells, prostate cancer, prostate
glandular cells, lung cancer, lung pneumocytes, colorectal cancer, and colorectal
glandular cells, respectively. After clustering, we measure the enrichment of those
clusters in GO BP annotations by using the sampling without replacement strategy
(hypergeometric test) and we consider a GO BP term to be significantly enriched
in a gene cluster if the corresponding enrichment p-value, after Benjamini Hochberg
correction for multiple hypothesis testing [179], is smaller than or equal to 5%. For
each embedding space, we report the percentage of enriched clusters (clusters with
at least one enriched GO BP term), the percentage of enriched genes (genes that are
annotated with at least one GO BP term that is enriched in their clusters), and the
percentage of enriched GO BP terms. As detailed in Supplementary Table B.2, we
find that the embedding spaces obtained from the PPMI matrix representations are
functionally more coherent, with 74.80% of enriched clusters, 22.87% of enriched
genes and 51.10% of enriched GO BP terms (on average over the eight tissues-
specific PPI networks), compared to the embedding spaces that are obtained from
the adjacency matrix representations (with 71.33% of enriched clusters, 16.23% of
enriched genes and 37.56% of enriched GO BP terms on average).

In a second step, we compare the ability of the adjacency and PPMI matrix rep-
resentations to produce functionally coherent network embedding spaces from our
new function-centric point of view. To this aim, we use our FMM-based method to
embed and capture the relative positions of the GO BP terms in the eight tissues-
specific PPI network embedding spaces described above (detailed in section 4.2.4
of Chapter 4). We evaluate the functional organization of these embedding spaces
by assessing if functionally similar GO BP terms (with high Lin’s semantic simi-
larity) are located close in the embedding space, and thus have low values in the
corresponding FMM. To this aim, we first compute the pairwise Lin’s semantic sim-
ilarity [136] between any two GO BP terms. Then, we cluster GO BP terms based
on their proximity in the embedding space (detailed in section 4.2.6 of Chapter 4)
and report both the average semantic similarity of the pairs of GO BP terms that
are in the same cluster (“intra-SS”) and the average semantic similarity of the pairs
of GO BP terms that are not clustered together (“inter-SS”). Intuitively, the higher
the intra-SS and the lower the inter-SS, the better functionally organized the em-
bedding space is. As detailed in Table 4.1 and Supplementary Table B.3, we find
that the embedding spaces obtained from the PPMI matrix representations are more
functionally coherent, with an intra-SS of 0.21 and an inter-SS of 0.161 (on average
over the eight tissues-specific PPI networks), compared to the embedding spaces
obtained from the adjacency matrix representations (with an intra-SS of 0.18 and
an inter-SS of 0.165, on average).

Furthermore, for each tissues-specific PPI network, the pairs of GO BP terms
that are clustered together in the PPMI-based network embedding spaces have sta-
tistically significantly higher Lin’s semantic similarity than the pairs of GO BP terms
that are clustered together in the adjacency-based network embedding spaces (with
all one-sided Mann-Whitney U test p-values being smaller than or equal to 4 ×10−3,
as detailed in Supplementary Table B.3).

To conclude, both the gene-centric and our FMM approach show that the embed-
ding spaces obtained from the PPMI matrix representations of our tissues-specific
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PPI networks better capture the cell’s functional organization than the embedding
spaces obtained from the adjacency matrix representations of these networks. These
results further demonstrate that the PPMI matrix is not only a richer representation
compared to the adjacency matrix [89], but also that the extra information that it
contains is useful for producing a more functionally organized embedding space.

B.2.2 Our FMM-based methodology captures more biolog-
ical information from the embedding space compared
to the actual gene-centric approaches

In this section, we compare the ability of our FMM-based method to uncover func-
tional interactions between GO BP terms from the PPI network embedding spaces
to that of the standard gene-centric approach. To this aim, we consider the eight
cancer and control tissues-specific PPI networks described in section 4.2.1 of Chapter
4, which we embed by applying our NMTF-based methodology on their PPMI ma-
trix representations (see section 4.2.3 of Chapter 4). We generate these embedding
spaces with 200 dimensions since this dimensionality corresponds to the optimal
dimensionality of such spaces (as detailed in section 4.2.5 of Chapter 4).

For a given tissues-specific PPI network embedding space, our FMM directly
quantifies all the functional interactions between any two GO BP terms that anno-
tate genes in the PPI network by measuring the cosine distance between the GO BP
terms’ embedding vectors (see section 4.2.4 of Chapter 4). On the other hand, the
gene-centric approach does not directly uncover such functional interactions between
GO BP terms. Instead, we indirectly uncover them by performing the following gene
clustering and enrichment analysis. For each embedding space, we cluster together
genes that are embedded close in space by applying the k-medoid algorithm [206]
on the genes’ embedding vectors. For the number of clusters, we use the heuristic
rule of thumb (k =

√
n
2
, where n is the number of nodes in the tissue-specific net-

work) [18]. We end up with 65, 45, 44, 44, 42, 38, 47, and 47 clusters for breast
cancer, breast glandular cells, prostate cancer, prostate glandular cells, lung can-
cer, lung pneumocytes, colorectal cancer and colorectal glandular cells, respectively.
Then, we measure the enrichment of the resulting gene clusters in GO BP terms
by using the sampling without replacement strategy (hypergeometric test) and we
consider a GO BP term to be significantly enriched in a gene cluster if the corre-
sponding enrichment p-value, after Benjamini and Hochberg correction for multiple
hypothesis testing [179], is smaller than or equal to 5%. Then, we consider that
two GO BP terms functionally interact if they are both significantly enriched in the
same gene cluster. Finally, for the GO BP terms that are significantly enriched in
at least one gene cluster, we measure the agreement between the functional inter-
actions uncovered by the gene-centric approach and the functional interactions that
are captured by our FMM methodology by using the following receiver operating
characteristic (ROC) curve analysis. In particular, for each GO BP pair, we consider
the result of the gene-centric approach as the ground truth, i.e., a pair of GO BP
terms is considered as “true” if the two terms are enriched in the same cluster, or
as “false” otherwise. Also, for each GO BP pair, we consider as the prediction score
their cosine similarity in the embedding space (1 minus their associated value in the
FMM). Then, we compute the area under the ROC curve (AUROC) [260] between
the ground truth and the prediction score over all the considered GO BP pairs. Note
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that an AUROC score of 0.5 corresponds to a random classification and a score of
1 to a perfect one. Hence, the closer to one the AUROC score is, the higher the
agreement between our FMM-based method and the gene-centric approach.

On average over our eight tissues-specific PPI networks, we find that only 51.1%
of the GO BP terms that annotate genes in a network are found to be signifi-
cantly enriched in at least one gene cluster, leaving about one-half of the functional
space unexplored (see Supplementary Table B.2). For the significantly enriched GO
BP terms, the functional interactions uncovered by the gene-centric and the FMM
approaches are in significant agreement, with an average AUROC of 88% and all p-
values ≤ 1×10−323 (see Supplementary Figures B.6 and B.7). These results confirm
that the GO BP terms that are enriched in the same gene cluster tend to be located
close in the embedding space and thus, tend to have small association values in the
FMM.

In conclusion, our FMM-based method is not only able to uncover the functional
organization of biological functions that are identified by the gene-centric approach,
but it goes beyond and characterizes the functional organization of all available GO
BP terms.

B.2.3 The FMMs reveal the higher-order functional orga-
nizations of the GO BP terms in the network embed-
ding spaces

In the previous section, we showed that our FMM better capture the pairwise func-
tional interactions between GO BP terms than the traditional gene-centric approach.
Here, we ask if the FMM can uncover the higher-order functional organization of
the GO BP terms in a network embedding space. To this aim, we embed all tissue-
specific PPI networks by applying our NMTF-based methodology on the PPMI ma-
trix representations of the networks (detailed in sections 4.2.1 and 4.2.3 of Chapter
4). We generate these embedding spaces with 200 dimensions since this dimen-
sionality corresponds to the optimal dimensionality of such spaces (as detailed in
section 4.2.5 of Chapter 4). Then, we apply our FMM-based method to embed and
capture the relative positions of the GO BP terms in the resulting network em-
bedding spaces (detailed in section 4.2.4 of Chapter 4). To reveal the higher-order
functional organization of the GO BP terms in the network embedding spaces, we
apply the hierarchical clustering method Pvclust [261] to the rows and columns (rep-
resenting GO BP terms) of the FMMs. Pvclust evaluates the statistical significance
of each cluster in the hierarchy by computing its Approximately Unbiased p-value
(AU) [261]. Clusters with an AU value greater than or equal to 95% are considered
to be strongly supported by the data, i.e., they are not expected by random.

On average over our eight tissues-specific PPI network embedding spaces, we find
that about 53.62% of the clusters in the hierarchies are statistically significant with
AUs greater than or equal to 95%. In detail, we find that 54%, 54%, 55%, 52%, 53%,
54%, 53%, and 54% of the clusters in the hierarchy are statistically significant with
AUs greater than or equal to 95% for breast cancer, breast glandular cells, prostate
cancer, prostate glandular cells, lung cancer, lung pneumocytes, colorectal cancer
and colorectal glandular cells tissue-specific PPI embedding space, respectively. Im-
portantly, these significant clusters cover all the GO BP terms that annotate the
tissues-specific PPI networks. Furthermore, by reordering the rows and columns
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of the FMMs according to their corresponding hierarchical clusterings, we observe
evident hierarchical organizations of the GO BP embedding vectors in the different
network embedding spaces (see Supplementary Figures B.8 and B.9)

In conclusion, these results demonstrate that our FMM methodology captures
the higher-order organization of the GO BP terms in the network embedding space.
While these results motivate us to compare FMMs across different conditions to un-
cover condition-related changes in the functional organization of GO BP terms in the
network embedding spaces, the extraction of novel knowledge from the hierarchical
organization of the GO BP terms is a subject of future study.

B.2.4 FMM discriminates between functionally and not func-
tionally organized embedding spaces

In section 4.3.1 of Chapter 4, we use our novel FMM-based method to confirm that
the embedding spaces of both, cancer and control, are functionally organized. Here,
we compare these results against a randomized experiment, i.e., when rewiring the
previous PPI networks. In particular, for each tissue-specific PPI network, we ran-
domly rewire the corresponding adjacency matrix and compute its corresponding
PPMI matrix (detailed in section 4.2.1, of Chapter 4). We follow the same protocol
as used for the real tissue-specific networks to generate the corresponding “ran-
dom” embedding space (detailed in section 4.2.3, of Chapter 4). Next, we apply our
FMM-based methodology to obtain the embedding vectors of each of the GO BP an-
notations and the mutual positions of these vectors, which we call “distances”, in the
“random” embedding spaces (detailed in section 4.2.4, of Chapter 4). We evaluate
the functional organization of these “random” embedding spaces by using the same
clustering method as we use with the real PPI networks (detailed in section 4.2.6,
of Chapter 4). For each tissue-specific PPI network, we repeat this procedure 100
times. In each repetition, we statistically test if those annotations whose embedding
vectors cluster together based on their mutual positions in the space, have a sta-
tistically significant higher Lin’s semantic similarity than those annotations whose
embedding vectors do not cluster. For this test, we use the Mann-Whitney U test
(keeping the corresponding p-value in each repetition). After all the repetitions are
finished, we correct the p-values for multiple tests by using the Bonferroni correc-
tion [198]. As expected, we do not find a statistically significant difference in the
Lin’s semantic similarity between the annotation whose embedding vectors cluster
and the annotations whose embedding vectors do not cluster in the space. Hence, we
conclude that the “random” embedding spaces are not functionally organized (see
Supplementary Table B.6). These results demonstrate that our methodology cor-
rectly discriminates between functionally and not functionally organized embedding
spaces.

B.2.5 FMMs identify novel cancer-related functions

In section 4.3.2, of Chapter 4, we use our novel FMM-based methodology to predict
new cancer-related functions and we verify the importance of one of our cancer-
related predictions (the first annotation in our top 10 annotations predicted to be
cancer-related, that we could not validate in the currently available literature). In
this section, we extend this discussion to the remaining top 10 predicted cancer-
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related annotations. Starting with breast cancer, first, we discuss the viral transla-
tional termination reinitiation. This function could be connected with the alterna-
tive transcriptional regulation pathways described in cancer [262]. In the same can-
cer, we also find as predicted to be cancer-related the RNA phosphodiester bond hy-
drolysis, endonucleolytic. This function could be connected with the regulatory roles
of RNA modifications reported in this cancer type [263]. Following with prostate
cancer, we find the positive regulation of endoplasmic reticulum unfolded protein
response. The accumulation of unfolded protein in the ER induces this unfolded pro-
tein response as our predicted cancer-related function. It has been shown that the
upregulation of this response could provide a growth advantage to tumor cells [264].
Regarding lung cancer, we find the viral translational termination reinitiation as
predicted cancer-related function. As discussed for breast cancer (see section 4.3.2
of Chapter 4), this process could also be connected with the alternative transcrip-
tional regulation pathways described in cancer [262]. In lung cancer, we also find
the positive regulation of transcription regulatory region DNA binding as predicted
cancer-related function. These processes could be connected with the well-known
deregulation of the gene expression observed in different cancers [265].

In conclusion, we demonstrate that our predicted cancer-related functions are
indeed cancer-related. Thus, our novel FMM-based methodology can be used to
identify new cancer-related functions.
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B.3 Supplementary Figures for Chapter 4

Figure B.1. Lin’s semantic similarity between our set of cancer-related GO BP terms
(104 annotations) and the set of GO BP terms classified as the set of GO BP cancer
hallmark defined by [199] (135 annotations). For each GO BP term in our set, we show
its maximum Lin’s semantic similarity to one annotation in the cancer hallmarks set.
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Figure B.2. For each cancer type (breast cancer, prostate cancer, lung cancer, and
colorectal cancer) and its corresponding control. Each panel shows the Relative Square
Error (RSE) of FMMs corresponding to the cancer and control tissues-specific embedding
spaces of increasing dimensions (dimension increasing by 50 starting from 50 and ending
with 300).
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Figure B.3. Change in the pairwise distances (cosine distances), that we call “move-
ment”, of the functional annotation embedding vectors between breast, cancer, and control
embedding spaces. For a pair of annotation embedding vectors, its “movement” is the dif-
ference between the cosine distance between the two embedding vectors in one embedding
space (control) and the corresponding cosine distance in the other space (cancer) (defined
in section 4.2.7, of Chapter 4). Thus, positive “movement” means that the two annotation
embedding vectors got closer in the cancer embedding space, and negative “movement”
means that the two annotation embedding vectors got further apart in the cancer em-
bedding space. The red lines represent the 95th and 5th percentiles of the distributions.
We use these thresholds to define when two annotation embedding vectors are “moving
significantly apart” in the embedding space of cancer (95th percentile) or are “moving
significantly closer” in the embedding space of cancer (5th percentile). The panels are for
breast, lung, colorectal, and prostate cancers versus controls.
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Figure B.4. “Total movement distribution” of the functional annotation embedding vec-
tors. For each annotation embedding vector, we compute its “total movement” (defined in
section 4.2.7, of Chapter 4). Thus, those annotation embedding vectors that change their
mutual positions, “movement”, the most between control embedding space and cancer
embedding space have higher “total movement” than those annotation embedding vectors
that do not change their “movement”. The red lines represent two standard deviations
above and below the mean of the distribution. We use these thresholds to define as shifted
biological functions those functional annotations whose embedding vectors’ “total move-
ment” is two standard deviations above the mean of the “total movement distribution.”
In contrast, we define as stable biological functions those functional annotations whose
embedding vectors’ “total movement” is two standard deviations below the mean of the
“total movement” distribution. The distributions are for breast, lung, colorectal, and
prostate cancers.
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Figure B.5. Gene maximum “movement” distribution. For each gene, we have a vector
with n positions, where n corresponds to the number of the “shifted” GO terms. Each
entry of this n-dimensional vector corresponds to the “movement” (change of mutual
positional) of the gene and the GO term. This “movement” can either be positive (a gene
is going closer to the GO term in the cancer space), or negative (a gene is going further
from the GO term in the cancer space). Since this “movement” is bi-directional (getting
closer or further), we use the absolute value of the “movement” at each coordinate of this
vector, to keep only the magnitude of this movement independently of the direction of the
“movement”. Then, since all the values in the n-dimensional vector are now positive, for
each gene we assign as its cancer-related score the maximum value (maximummagnitude of
movement) in its corresponding vector. The red lines represent the 95th and 5th percentiles
of the distributions. Based on these thresholds, we consider cancer-related gene predictions
whose genes that are above the 95th percentile of the maximum “movement” distribution.
The distributions are for breast, lung, colorectal, and prostate cancers.
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Figure B.6. Our FMM-based method uncovers the functional interactions between GO
BP terms that are identified by the standard gene-centric approach (based on clustering
and functional enrichment analyses) in four cancer tissue-specific PPI embedding spaces
(breast, lung, colorectal, and prostate). For each cancer tissue-specific PPI embedding
space, we take the subset of GO BP terms that are statistically enriched based on the
gene-centric approach (detailed in Supplementary section B.2.2). Then, for a pair of GO
BP terms, we set the ground truth as one if they are enriched in the same cluster (zero
otherwise). For the same pair, we set the prediction score as the value of their embedding
vectors’ cosine distance in the embedding space, as captured by the FMM. Finally, we
compute the area under the receiver operating characteristic curve (AUROC) [260] between
the ground truth and the prediction score. Each panel shows the corresponding ROC
curves with its AUROC.
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Figure B.7. Our FMM-based method uncovers the functional interactions between GO
BP terms that are identified by the standard gene-centric approach (based on clustering
and functional enrichment analyses) in the control tissue-specific PPI embedding spaces
of four cancer types (breast, lung, colorectal, and prostate). For each control tissue-
specific PPI embedding space, we take the subset of GO BP terms that are statistically
enriched based on the gene-centric approach (detailed in Supplementary section B.2.2).
Then, for a pair of GO BP terms, we set the ground truth as one if they are enriched in
the same cluster (zero otherwise). For the same pair, we set the prediction score as the
value of their embedding vectors’ cosine distance in the embedding space, as captured by
the FMM. Finally, we compute the area under the receiver operating characteristic curve
(AUROC) [260] between the ground truth and the prediction score. Each panel shows the
corresponding ROC curves with its AUROC.
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Figure B.8. Heatmaps of the FMMs of breast, lung, colorectal and prostate cancer
tissues-specific PPI embedding spaces. For each FMM, we reorder it based on the hier-
archical clustering obtained by Pvclust (detailed in Supplementary section B.2.3). For
completeness, we plot on the left and the top of each FMM heatmap the dendrogram tree
of the corresponding hierarchical clustering.
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Figure B.9. Heatmaps of the FMMs of the control tissue-specific PPI embedding spaces
of four cancer types (breast, lung, colorectal, and prostate). For each FMM, we reorder
it based on the hierarchical clustering obtained by Pvclust (detailed in Supplementary
section B.2.3). For completeness, we plot on the left and the top of each FMM heatmap
the dendrogram tree of the corresponding hierarchical clustering.
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B.4 Supplementary Tables for Chapter 4

Network #Nodes #Edges #Density

Breast cancer 8,498 163,893 0.45
Breast control 7,999 160,520 0.50
Prostate cancer 7,885 137,701 0.44
Prostate control 7,837 148,797 0.48
Lung cancer 7,031 126,744 0.51
Lung control 5,912 95,774 0.54
Colorectal cancer 8,941 175,081 0.43
Colorectal control 8,974 185,342 0.46

Table B.1. The statistics for the tissue-specific PPI networks in this study. Column
“Network” presents the tissue-specific PPI network that we analyzed column; column, “#
Nodes,” presents the number of nodes in the PPI network; column, “# Edges,” presents
the number of edges between the nodes; column, “#Density,” presents the edge density
of the corresponding PPI network.
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Matrix Data set %Clusters %Genes %GO

PPMI breast cancer 81.00 23.12 52.44
PPMI breast control 68.25 22.69 51.73
PPMI prostate cancer 76.19 23.28 49.36
PPMI prostate control 80.95 25.37 52.28
PPMI lung cancer 73.13 25.28 53.01
PPMI lung control 79.10 24.33 55.97
PPMI colorectal cancer 77.97 22.05 49.2
PPMI colorectal control 62.96 16.89 44.86
Adj breast cancer 70.77 17.87 36.24
Adj breast control 76.19 18.07 41.84
Adj prostate cancer 77.78 14.25 40.83
Adj prostate control 77.19 16.96 38.33
Adj lung cancer 74.62 20.89 38.76
Adj lung control 79.10 17.89 41.70
Adj colorectal cancer 57.63 13.08 30.96
Adj colorectal control 57.41 10.88 31.87

Table B.2. The embedding spaces of the most prevalent cancers (breast, prostate, lung,
and colorectal cancer) and their control tissues (breast glandular cells, prostate glan-
dular cells, lung pneumocytes, and colorectal glandular cells) are functionally organized
according to the mutual positions (cosine distances) of the gene embedding vectors in
the embedding space (gene perspective). For each tissue-specific PPI embedding space,
we cluster genes whose embedding vectors are close in the space based on their cosine
distance, and then we measure the enrichment of those clusters in GO BP annotations.
The first column, “Matrix,” indicates the matrix representation of the tissue-specific PPI
network. The second column, “Data set,” specifies the tissue-specific PPI network. The
third column, “%Clusters,” shows the percentage of clusters with at least one GO BP
term enriched. The fourth column, “%Genes,” presents the percentage of enriched genes
in the clusters (out of the total number of genes in the corresponding tissue-specific PPI
network). The sixth column, “%GO,” shows the percentage of GO BP terms enriched in
the clusters (out of the total GO BP terms that annotate the genes of the corresponding
tissue-specific PPI network).
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Embedding Intra-SS Inter-SS Fold p-value Fold p-value (PPMI)

Control breast 0.18 0.16 1.10 0.0001 0.004
Cancer breast 0.18 0.16 1.10 0.0004 1.31× 10−8

Control prostate 0.18 0.17 1.08 0.0074 0.0004
Cancer prostate 0.18 0.17 1.08 0.0002 8.05× 10−38

Control colorectal 0.18 0.16 1.11 0.0004 0.0008
Cancer colorectal 0.18 0.16 1.10 0.0004 5.00× 10−42

Control lung 0.18 0.17 1.06 0.0020 2.53× 10−71

Cancer lung 0.18 0.17 1.09 0.0020 9.73× 10−57

Table B.3. The adjacency embedding spaces of the most prevalent cancers (breast,
prostate, lung, and colorectal cancer) and their control tissues (breast glandular cells,
prostate glandular cells, lung pneumocytes, and colorectal glandular cells) are functionally
organized. The first column, “Embedding,” lists the tissues. The second column, “Intra-
SS,” shows the average Lin’s semantic similarity of those annotations whose embedding
vectors cluster together based on their cosine distances in the embedding space. The
third column, “Inter-SS,” shows the average Lin’s semantic similarity of those annotations
whose embedding vectors do not cluster together based on their cosine distances in the
embedding space. The fourth column, “Fold,” displays how many times the average Lin’s
semantic similarity of those annotations whose embedding vectors cluster together based
on their cosine distances in the embedding space is higher than of those annotations whose
embedding vectors do not cluster together. The fifth column, “p-value Fold,” shows the p-
value from a one-sided Mann-Whitney U test comparing Lin’s semantic similarity between
annotations whose embedding vectors cluster together and those with non-clustered em-
bedding vectors. The sixth column, “p-value (PPMI),” shows the p-value from a one-sided
Mann-Whitney U test comparing Lin’s semantic similarity between annotations that clus-
ter together based on their proximity in the PPMI embedding space and those annotations
that cluster together based on their proximity in the corresponding adjacency embedding
space.

Network #Optimal Dimensions

Breast cancer 200
Breast control 200
Prostate cancer 200
Prostate control 200
Lung cancer 200
Lung control 200
Colorectal cancer 200
Colorectal control 200

Table B.4. Optimal number of dimensions for each tissue-specific embedding space.
Column “Network,” specifies the tissue-specific PPI network. Column, “# Optimal Di-
mensions,” contains the optimal number of dimensions that we found experimentally as
explained in section 4.2.5 of Chapter 4, which we then used for generating the correspond-
ing embedding space by our NMTF-based procedure explained in Chapter 4.
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Sample Avg Distance Annotate Avg Distance Not-Annotate

Breast cancer 0.571 0.920
Breast control 0.575 0.921
Prostate cancer 0.598 0.912
Prostate control 0.576 0.926
Colorectal cancer 0.520 0.922
Colorectal control 0.514 0.908
Lung cancer 0.578 0.920
Lung control 0.593 0.922

Table B.5. The embedding vectors of the biological functions (GO BP terms) are signif-
icantly closer in space to the embedding vectors in the same space of the genes that they
annotate than to the embedding vectors of other genes. Column, “ Sample,” presents
the tissues-specific PPI networks. Column, “Avg Distance Annotate,” presents the av-
erage cosine distance in the embedding space between the embedding vectors of genes
and embedding vectors of those functional annotations that annotate them; column, “Avg
Distance Not-Annotate,” presents the average cosine distance in the embedding space
between the embedding vectors of genes and embedding vectors of those embedded func-
tional annotations that do not annotate them. In all samples, the difference between these
distances is statistically significant (p-value of the Mann-Whitney U test < 0.05).

Embedding Intra Inter Fold p-value

Random control breast 0.17 0.17 1.00 0.14
Random cancer breast 0.17 0.17 1.00 0.09
Random control prostate 0.17 0.17 1.00 0.06
Random cancer prostate 0.18 0.17 1.05 0.07
Random control colorectal 0.16 0.16 1.00 0.10
Random cancer colorectal 0.17 0.16 1.05 0.08
Random control lung 0.16 0.17 0.94 0.09
Random cancer lung 0.15 0.15 1.00 0.07

Table B.6. Our FMM-based method discriminates between functionally organized em-
bedding spaces and those that are not. For each tissue-specific PPI network, we randomly
rewire the networks and generate the random embedding space by using the NMTF algo-
rithm. Then, we use our new FMM-based method to evaluate the functional organization
of these tissue-specific PPI embedding spaces (detailed in section 4.2.6 of Chapter 4). The
first column, “Embedding,” lists the randomized tissue-specific PPI embedding space. The
second column, “Intra,” shows the average Lin’s semantic similarity of those annotations
whose embedding vectors cluster together based on their cosine distances in the embedding
space. The third column, “Inter,” shows the average Lin’s semantic similarity of those an-
notations whose embedding vectors do not cluster together based on their cosine distances
in the embedding space. The fourth column, “Fold,” displays how many times the average
Lin’s semantic similarity of those annotations whose embedding vectors cluster together
based on their cosine distances in the embedding space is higher than of those annotations
whose embedding vectors do not cluster together. The fifth column, “p-value,” shows the
one-sided Mann-Whitney U test p-value.
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Shifted Stable

Breast 58 29
Prostate 49 26
Lung 53 15
Colorectal 68 13

Table B.7. Numbers of GO BP annotations in the shifted and stable sets in each cancer
type. For the four cancer types: breast cancer (denoted by “Breast”), prostate cancer
(denoted by “Prostate”), lung cancer (denoted by “Lung”), and colorectal cancer (denoted
by “Colorectal”). Column, “shifted,” presents the number of annotations in the set of
shifted functions; column, “Stable”, presents the number of annotations in the set of
stable functions. The details about the definitions of shifted and stable sets can be found
in section 4.2.7 of Chapter 4.

Gene name PubMed Counts Prognostic Marker Pan-Cancer Marker

LDHA 87 - cervical cancer (unfavorable), liver cancer (unfavorable), lung cancer (unfavorable)
COPG1 1 - liver cancer (unfavorable)
RPL11 10 yes breast cancer (favorable), renal cancer (unfavorable)
STK36 0 - liver cancer (unfavorable)
CD86 94 - renal cancer (unfavorable)
SMURF1 15 - -
VRK3 0 - renal cancer (favorable), urothelial cancer (favorable)
MAPK8IP1 2 - renal cancer (favorable)
RPL17 1 - liver cancer (unfavorable)
PIAS4 10 - endometrial cancer (favorable), pancreatic cancer (favorable)

Table B.8. Top 10 shifted genes (the most shifted ones) in breast cancer. The first
column, “Gene name,” presents the gene names of the top 10 shifted genes. The second
column, “PubMed Counts,” presents the number of publications in Pubmed that relate
the gene to breast cancer. The third column, “Prognostic Marker,” indicates if the gene
is a prognostic marker (“yes” if it is a marker, “-” otherwise) in breast cancer (based on
survival curves collected from the Human Protein Atlas [192]); the fourth column, “Pan-
Cancer Marker,” presents whether the gene is a prognostic marker for other cancer types.

Gene name PubMed Counts Prognostic Marker Pan-Cancer Marker

CPSF6 0 - liver cancer (unfavorable), renal cancer (unfavorable)
PRDM11 0 - -
SDHB 0 - renal cancer (favorable)
GLRX2 1 - renal cancer (unfavorable)
IFITM2 0 - renal cancer (unfavorable)
C1orf116 0 - renal cancer (favorable)
H2BC4 0 - pancreatic cancer (unfavorable), renal cancer (unfavorable)
FUS 13 - liver cancer (unfavorable)
DDX39B 0 - renal cancer (unfavorable), urothelial cancer (favorable)
UMAD1 0 - renal cancer (favorable)

Table B.9. Top 10 shifted genes in lung cancer. The first column, “Gene name,” presents
the gene names of the top 10 shifted genes. The second column, “PubMed Counts,”
presents the number of publications in Pubmed that relate the gene to lung cancer. The
third column, “Prognostic Marker,” presents if the gene is a prognostic marker (“yes” if
it is a marker, “-” otherwise) in lung cancer (based on survival curves collected from the
Human Protein Atlas [192]). The fourth column, “Pan-Cancer Marker,” presents whether
the gene is a prognostic marker for other cancer types.
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Gene name PubMed Counts Prognostic Marker Pan-Cancer Marker

H4C6 0 - -
RPL11 1 - breast cancer (favorable), renal cancer (unfavorable)
VRK3 0 - renal cancer (favorable), urothelial cancer (favorable)
RPL17 0 - liver cancer (unfavorable)
GGA3 0 - endometrial cancer (unfavorable), liver cancer (unfavorable), renal cancer (unfavorable)
RPS4X 0 - renal cancer (unfavorable), thyroid cancer (favorable)
C1orf116 0 - renal cancer (favorable)
NAXE 1 - endometrial cancer (unfavorable)
RARG 0 - endometrial cancer (unfavorable), renal cancer (unfavorable)
FUS 1 - liver cancer (unfavorable)

Table B.10. Top 10 shifted genes (the most shifted ones) in colorectal cancer. The first
column, “Gene name,” presents the gene names of the top 10 shifted genes. The second
column, “PubMed Counts,” presents the number of publications in Pubmed that relate
the gene to colorectal cancer. The third column, “Prognostic Marker,” presents if the gene
is a prognostic marker (“yes” if it is a marker, “-” otherwise) in colorectal cancer (based
on survival curves collected from the Human Protein Atlas [192]). The fourth column,
“Pan-Cancer Marker,” presents whether the gene is a prognostic marker for other cancer
types.
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Appendix C

Supplementary Information for
Chapter 5

C.1 Supplementary Results and Discussion for Chap-

ter 5

C.1.1 The Axes of the embedding space synthesize the core
functions of different species cells

In section 5.3.4 of Chapter 5, we analyze the biological meaning of the ASFAs
obtained from the axes of the human ONMTF embedding space. Here we extend
this analysis to the rest of the species-specific embedding spaces obtained by applying
ONMTF on the species-specific PPI network of Homo sapiens sapiens (denoted by
human), Saccharomyces cerevisiae (denoted by budding yeast), Schizosaccharomyces
pombe (denoted by fission yeast), Rattus norvegicus (denoted by rat), Drosophila
melanogaster (denoted by fruit fly), andMus musculus (denoted by mouse) (detailed
in sections 5.2.1 and 5.2.2 of Chapter 5). We generate these embedding spaces with
different dimensionalities (from 50 to 1000 dimensions with a step of 50). To select
the optimal dimensionality of these embedding spaces, we follow the same criteria
we did for the human PPI embedding spaces (detailed in section 5.3.3 of Chapter 5).
This dimensionality corresponds to 200, 200, 300, 250, and 400 for Budding yeast,
Fission yeast, Fruit fly, Rat, and Mouse embedding spaces, respectively. Then, we
use the GO BP terms captured by each axis to generate the Functional AxNotations
of each species (detailed in section 5.2.6 of Chapter 5), and we analyze their biological
coherence by literature curation.

Similar to human, we find that all the species-specific ASFAs describe coherent
functions of their corresponding species. For instance, the ASFA of axis 79 in bud-
ding yeast represents the trafficking of endosomes (see Supplementary Table C.7).
Curiously, this yeast is one of the most used models to study this transport pro-
cess [266]. Another example in budding yeast is the ASFA of axis 82, which is con-
nected to regulating gene expression via mRNA degradation (see Supplementary Ta-
ble C.7). Precisely with a process that involves the capping of the 7-methylguanosine
residue that occurs after the deadenylation of the 3’ poly(A) tracts of eukaryotic
mRNAs and that serves as a backup mechanism to trigger mRNA decay if initial
deadenylation is compromised [267]. Moreover, the ASFA of axis 20 in fission yeast
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is connected to the generation of large the ribosomal subunit necessary to synthesize
proteins [268] (see Supplementary Table C.7). Another example in this yeast is the
ASFA of axis 32, which is also related to the synthesis of proteins (see Supplemen-
tary Table C.7). However, in this case, the ASFA describes the regulation of protein
synthesis via the rapamycin kinase complex I (TORC1) and II (TORC2). In the
presence of ample nutrients, TORC1 and TORC2 activate and drive protein, lipid,
and nucleotide synthesis by phosphorylating a wide range of proteins [269].

Regarding the fruit fly, we find ASFAs that represent functions that are more
complex that the ones observed for the previous yeasts, such as the development
of specific tissues. For instance, the ASFA of axis 1 describes the development of
the visual nervous system (see Supplementary Table C.7). Briefly, this tissue ap-
pears after the differentiation of the neuroectoderm by activating different epidermal
growth factor receptors, such as ERBB2 [270]. Another example in the fruit fly is
the ASFAs of axis 28, which is related to the wing imaginal disc of this fly (see
Supplementary Table C.7). This disc is a tissue of undifferentiated cells that are
precursors of the wing and serves as a commonly used model system to study the
regulation of growth [271]. Finally, we find that the ASFAs of mouse and rat are also
connected to complex cellular functions, such as the immune system or the nervous
system. For instance, the ASFA of axis 41 of mouse describes the production of
interferon-alpha, interleukins, and cytokines, during the cellular response to a virus
infection [272] (see Supplementary Table C.7). On the other hand, the ASFAs of
axes 69 and 84 in rat, are connected to the synapsis of neurons and the production
of steroids, respectively (see Supplementary Table C.7).

In conclusion, these results demonstrate that the ASFAs describe coherent bio-
logical functions. The complete Tables with all the sets of species-specific ASFAs
can be found in the Supplementary online data.

C.1.2 The Axes of the embedding space give insights into
the evolutionary story of species

In section 5.3.5 of Chapter 5, we show that the human ASFAs give insights into
the evolutionary history of humans. In this section, we extend this analysis to
the ASFAs of five species, Saccharomyces cerevisiae (denoted by budding yeast),
Schizosaccharomyces pombe (denoted by fission yeast), Rattus norvegicus (denoted
by rat), Drosophila melanogaster (denoted by fruit fly), and Mus musculus (denoted
by mouse). To this aim, we divide the ASFAs of each species into three classes ac-
cording to their conservation degree: “prokaryotes,” “eukaryotes,” and “vertebrates”
(detailed section 5.2.7 of Chapter 5). Then, We analyze in detail the meaning of
these groups of ASFAs in the context of evolution.

We find that 78%, 69%, 59%, 63%, and 40% of all ASFAs in budding yeast, fission
yeast, fruit fly, rat, and mouse, respectively are classified as “prokaryotes.” These
ASFAs present the lowest conservation degree in all the studied species, i.e., they
are conserved in evolution (see Supplementary Figure C.4). We observe that they
represent the most basic molecular mechanisms of the cell, such as the translational
process in budding yeast, the homeostasis of proteins in fission yeast, the homeostasis
of ions in the fruit fly, or the lipid metabolism in mice (see axes 77, 57, 4, and 5,
respectively in Supplementary Table C.7).

On the other hand, we find that 22%, 31%, 41%, 33%, and 41% of all ASFAs in
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budding yeast, fission yeast, fruit fly, rat, and mouse, respectively are classified as
“eukaryotes.” These ASFAs have on average a lower conservation degree than the
“prokaryotes” ones, i.e., they are newer in the evolutionary history. We find that
they describe cellular functions that are connected to basic eukaryotic functions,
e.g., with Golgi apparatus in budding yeast, signaling transduction in fission yeast,
or cytoskeleton (see axes 79, 32, and 51, respectively in Supplementary Table C.7).

Finally, as expected, the only organism that has “vertebrates” ASFAs are rat
and mouse. Precisely, we find that 11% and 10% of all ASFAs are classified as
“vertebrates” in rats and mice, respectively. These ASFAs have on average the
lowest conservation degree, i.e., are the newest in evolution and they describe com-
plex biological functions, such as estrous cycle or odontogenesis in rats, and eyes’
lens development or blastocyst development in mice (see axes 81, 19, 86, and 80,
respectively in Supplementary Table C.7).

In conclusion, these results demonstrate that the ASFAs of different species can
be used to give insights into their evolutionary history.

C.2 Supplementary Figures for Chapter 5
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Figure C.1. The conservation degree of the GO BP terms influences the positions of
their embedding vector in the species-specific PPI embedding space. We embed GO BP
terms into the embedding spaces generated by applying ONMTF, NMTF, and Deepwalk
algorithms on the species-specific PPI network of Homo sapiens sapiens (denoted by hu-
man), Saccharomyces cerevisiae (denoted by budding yeast), Schizosaccharomyces pombe
(denoted by fission yeast), Rattus norvegicus (denoted by rat), Drosophila melanogaster
(denoted by fruit fly), and Mus musculus (denoted by mouse) (detailed in sections 5.2.1
and 5.2.2 of Chapter 5). We study the correlation between the mutual positions of their
embedding vectors in the space (measured by their pairwise euclidean distances) and their
conservation degree (detailed in section 5.2.4 of Chapter 5). In each panel, the horizontal
axis displays the conservation degree of the GO BP terms and the vertical axis shows the
pairwise euclidean distance distribution of their embedding vectors.
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Figure C.2. Specific biological functions are captured by the axes of the species-specific
ONMTF embedding spaces with the increment of dimensions. We generate the species-
specific PPI embedding spaces by applying ONMTF on the species-specific PPI network of
Homo sapiens sapiens (denoted by human), Saccharomyces cerevisiae (denoted by budding
yeast), Schizosaccharomyces pombe (denoted by fission yeast), Rattus norvegicus (denoted
by rat), Drosophila melanogaster (denoted by fruit fly), and Mus musculus (denoted by
mouse) (detailed in sections 5.2.1 and 5.2.2 of Chapter 5). We generate these embedding
spaces with different dimensionalities (from 50 to 1000 dimensions with a step of 50). For
each species-specific embedding space, we take as a reference the 50-dimensional embed-
ding space and we compute the fold between the number of “specific,” “generic,” and
“background” functional annotations associated with its axes and that of the subsequent
species-specific PPI embedding spaces (detailed in sections 5.2.4 and 5.3.3 of Chapter 5).
The horizontal axis displays the number of dimensions of the embedding space. The hor-
izontal axis displays the number of dimensions of the embedding space.
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Figure C.3. Specific biological functions are disentangled by the axes of the species-
specific ONMTF embedding spaces with the increment of dimensions. We generate the
species-specific PPI embedding spaces by applying ONMTF on the species-specific PPI
network of Homo sapiens sapiens (denoted by human), Saccharomyces cerevisiae (denoted
by budding yeast), Schizosaccharomyces pombe (denoted by fission yeast), Rattus norvegi-
cus (denoted by rat), Drosophila melanogaster (denoted by fruit fly), and Mus musculus
(denoted by mouse) (detailed in sections 5.2.1 and 5.2.2 of Chapter 5). We generate these
embedding spaces with different dimensionalities (from 50 to 1000 dimensions with a step
of 50). For each species-specific embedding space, we compute Lin’s semantic pairwise
semantic similarity between any two GO BP terms (detailed in section 5.2.4 of Chapter
5). The blue line shows the average semantic similarity of the pairs of GO BP terms that
are associated with the same axis (intra-SS). The orange line shows the average semantic
similarity of the pairs of GO BP terms that are associated with different axis (inter-SS).
The horizontal axis displays the number of dimensions of the embedding space.
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Figure C.4. The ASFAs give insights into the evolutionary story of Saccharomyces
cerevisiae (denoted by budding yeast), Schizosaccharomyces pombe (denoted by fission
yeast), Rattus norvegicus (denoted by rat), Drosophila melanogaster (denoted by fruit
fly), and Mus musculus (denoted by mouse). For each species, we use the conservation
degree of its ASFAs to divide them into three groups: “prokaryotes,” “eukaryotes,” and
“vertebrates” (detailed in section 5.2.7 of Chapter 5). Then, we order the ASFAs according
to their conservation degree. In each panel, the horizontal axis displays the conservation
degree of the ASFAs and the vertical axis shows the number of ASFAs with a certain
conservation degree. Each ASFA is represented in the panels by the number of the axis
from which it was obtained.
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C.3 Supplementary Tables for Chapter 5

Network #Nodes #Edges #Density

Human 18,290 368,180 0.0022
Budding yeast 5,887 111,307 0.0064
Fission yeast 3,269 10,958 0.0020
Fruit fly 8,917 49,756 0.0012
Mouse 8,043 26,661 0.0008
Rat 2,847 5,252 0.0013

Table C.1. The statistics of the species-specific PPI networks. For the six species:
Homo sapiens sapiens (denoted by “Human”), Saccharomyces cerevisiae (denoted by
“Budding yeast”), Schizosaccharomyces pombe (denoted by “Fission yeast”), Drosophila
melanogaster (denoted by “Fruit fly”), Mus musculus (denoted by “Mouse”) and Rattus
norvegicus (denoted by “Rat”). The first column, “Network,” lists the species. The second
column “# Nodes,” show the number of nodes in the species-specific PPI network. The
third column, “# Edges,” contains the number of edges between the nodes. The fourth
column, “# Density,” specifies the edge density of the corresponding species-specific PPI
network.

Species # GO BP terms

Human 6,864
Budding yeast 3,042
Fission yeast 1,864
Fruit fly 3,712
Rat 2,828
Mouse 6,343

Table C.2. Number of GO BP annotations for each species-specific PPI network. For
the six species: Homo sapiens sapiens (denoted by “Human”), Saccharomyces cerevisiae
(denoted by “Budding yeast”), Schizosaccharomyces pombe (denoted by “Fission yeast”),
Drosophila melanogaster (denoted by “Fruit fly”), Rattus norvegicus (denoted by “Rat”)
and Mus musculus (denoted by “Mouse”). The first column, “Network,” lists the species.
The second column, “# GO BP terms,” presents the number of GO BP terms that anno-
tates at least one gene in the corresponding species-specific PPI network.
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Embedding algorithm Intra SS Inter SS Random SS Shortest Paths

ONMTF 0.50 0.16 0.16 3.71
NMTF 0.42 0.16 0.16 3.90
Deepwalk 0.35 0.16 0.16 4.31

Table C.3. On average, the GO BP terms captured by the axes of the human PPI
embedding spaces generated by the ONMTF embedding algorithm are more coherent and
better organized than those of the NMTF and Deepwalk spaces. We generate the human
PPI embedding spaces by applying ONMTF, NMTF, and Deepwalk algorithms on the
PPI network of Homo sapiens sapiens (detailed in sections 5.2.1 and 5.2.2 of Chapter
5). We generate these embedding spaces with different dimensionalities (from 50 to 1000
dimensions with a step of 50). For each human PPI embedding space, we use our new
axes-based method to capture the GO BP terms that we embed in the space (detailed
in section 5.2.3). Then, we investigate how coherently the captured GO BP terms are
distributed across the axes according to the gene ontology (detailed in section 5.2.5 of
Chapter 5). The first column, “Embedding algorithm,” lists the embedding algorithms
used for generating the embedding spaces. The second column, “Intra SS,” shows the
average Lin’s semantic similarity between the GO BP terms that are associated by the
same axis averaged across dimensions and species. The third column, “Inter SS,” presents
the average Lin’s semantic similarity between the GO BP terms that are captured by
different axes averaged across dimensions and species. The fourth column, “Random SS,”
shows the global average Lin’s semantic similarity between any two GO BP terms. The
fifth column, “Shortest Paths,” displays the mean shortest paths in the GO ontology-
directed acyclic graph between the GO BP terms associated with the same axis averaged
across dimensions and species.

Embedding algorithm % Axes % GO

ONMTF 53.72 57.40
NMTF 61.80 48.12
Deepwalk 68.00 35.50

Table C.4. On average, the axes of the species-specific PPI embedding spaces generated
by the ONMTF embedding algorithm are the best for capturing the cell’s functional or-
ganization from PPI networks. We generate the species-specific PPI embedding spaces
by applying ONMTF, NMTF, and Deepwalk algorithms on the species-specific PPI net-
work of Homo sapiens sapiens, Saccharomyces cerevisiae, Schizosaccharomyces pombe,
Rattus norvegicus, Drosophila melanogaster, and Mus musculus (detailed in sections 5.2.1
and 5.2.2 of Chapter 5). We generate these embedding spaces with different dimension-
alities (from 50 to 1000 dimensions with a step of 50). For each species-specific PPI
embedding space, we use our new axes-based method to capture the GO BP terms that
we embed in the space (detailed in Material and Methods, section 5.2.3). The first column,
“Embedding algorithm,” lists the embedding algorithms used for generating the embed-
ding spaces. The second column, “ % Axes,” presents the percentage of axes that captures
at least one embedded GO BP term averaged across dimensions and species. The third
column, “ % GO,” shows the percentage of the total embedded GO BP terms that are
associated with the axes of the space averaged across dimensions and species.
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Embedding algorithm Intra SS Inter SS Random SS Shortest Paths

ONMTF 0.54 0.16 0.16 3.71
NMTF 0.48 0.18 0.16 3.90
Deepwalk 0.46 0.18 0.16 4.31

Table C.5. On average, the GO BP terms captured by the axes of the species-specific
PPI embedding spaces generated by the ONMTF embedding algorithm are more coher-
ent and better organized than those of the NMTF and Deepwalk spaces. We generate
the species-specific PPI embedding spaces by applying ONMTF, NMTF, and Deepwalk
algorithms on the species-specific PPI network of Homo sapiens sapiens, Saccharomyces
cerevisiae, Schizosaccharomyces pombe, Rattus norvegicus, Drosophila melanogaster, and
Mus musculus (detailed in sections 5.2.1 and 5.2.2 of Chapter 5). We generate these em-
bedding spaces with different dimensionalities (from 50 to 1000 dimensions with a step of
50). For each species-specific PPI embedding space, we use our new axes-based method to
capture the GO BP terms that we embed in the space (detailed in section 5.2.3). Then,
we investigate how coherently the captured GO BP terms are distributed across the axes
according to the gene ontology (detailed in section 5.2.5 of Chapter 5). The first column,
“Embedding algorithm,” lists the embedding algorithms used for generating the embed-
ding spaces. The second column, “Intra SS,” shows the average Lin’s semantic similarity
between the GO BP terms that are associated by the same axis averaged across dimensions
and species. The third column, “Inter SS,” presents the average Lin’s semantic similarity
between the GO BP terms that are captured by different axes averaged across dimensions
and species. The fourth column, “Random SS,” shows the global average Lin’s semantic
similarity between any two GO BP terms. The fifth column, “Shortest Paths,” displays
the mean shortest paths in the GO ontology-directed acyclic graph between the GO BP
terms associated with the same axis averaged across dimensions and species.

Species # Dimensions

Human 500
Budding yeast 200
Fission yeast 200
Fruit fly 300
Rat 250
Mouse 400

Table C.6. The optimal number of dimensions for the six species-specific ONMTF
embedding spaces. For the species-specific PPI embedding spaces generated by apply-
ing the ONMTF algorithm on the species-specific PPI network of Homo sapiens sapiens
(denoted by human), Saccharomyces cerevisiae (denoted by budding yeast), Schizosaccha-
romyces pombe (denoted by fission yeast), Rattus norvegicus (denoted by rat), Drosophila
melanogaster (denoted by fruit fly), and Mus musculus (denoted by mouse), we use our
axes-based method to find their optimal dimensionality (detailed in section 5.3.3 of Chap-
ter 5). The first column, “Species,” lists the species. The second column, “# Dimensions,”
shows the optimal dimensionality of the species-specific PPI embedding space according
to our axes-based method.
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Species Axis Terms #GO Taxons

Budding yeast 79 endosome, Golgi, early, transport, 1 559292, 9606, 6239
Budding yeast 82 decapping, methylguanosine, RNA, cap,

nuclear, deadenylation, mRNA, dependent,
transcribed

3 4896, 9606, 10090, 3702,
7227, 559292, 6239

Budding yeast 77 methylation, subunit, benzene, regulation,
translation, nucleus, initiation, compound,
fidelity, process, gene, export, rRNA, as-
sembly, amide, expression, small, con-
taining, tRNA, positive, transport, post-
transcriptional, ribosomal, cellular, transla-
tional, metabolic

12 4896, 214684, 10116, 9606,
9031, 511145, 10090,
36329, 39947, 195103,
9615, 7955, 3702, 352472,
9913, 7227, 559292,
227321, 6239, 9823

Fission yeast 20 subunit, large, biogenesis, complex, riboso-
mal, ribonucleoprotein

2 4896, 9606, 36329, 10090,
511145, 7955, 3702, 7227,
559292

Fission yeast 32 TORC2, regulation, TORC1, reproductive,
signaling, process, positive

6 4896, 10116, 9606, 9031,
10090, 9615, 7955, 3702,
352472, 9913, 7227,
559292, 227321, 6239, 9823

Fission yeast 57 catabolic, protein, removal, conjugation,
organonitrogen, compound, process, dened-
dylation, small, cellular, SCF, proteaso-
mal, dependent, proteolysis, ubiquitin,
metabolic, modification

9 4896, 214684, 10116,
9606, 9031, 36329, 10090,
511145, 195103, 39947,
9823, 9615, 7955, 3702,
352472, 9913, 7227,
559292, 227321, 6239

Fruit fly 1 synaptic, olfactory, mediated, vesicle, fol-
licular, factor, negative, tyrosine, pep-
tidyl, regulation, photoreceptor, epithelium,
clathrin, filament, neuron, dorsal-ventral,
transduction, eye, specification, signaling,
cell, compound, commitment, learning, epi-
dermal, growth, ERBB2, assembly, path-
way, positive, transport, cascade, communi-
cation, dependent, organization, phosphory-
lation, fate, signal, modification, receptor

25 4896, 10116, 9606, 9031,
511145, 10090, 9823, 9615,
7955, 3702, 352472, 9913,
7227, 559292, 6239

Fruit fly 28 negative, vein, regulation, disc, derived,
specification, imaginal, wing

1 7227

Fruit fly 4 cation, biosynthetic, metal, divalent, reg-
ulation, retinal, aldehyde, ion, compound,
lipid, process, olefinic, inorganic, transport,
diterpenoid, cellular, retinoid, homeostasis,
metabolic

9 4896, 214684, 10116,
9606, 9031, 511145, 10090,
36329, 39947, 9823, 9615,
7955, 3702, 352472, 9913,
7227, 559292, 6239

Mouse 41 immune, type, lipopolysaccharide, nega-
tive, alpha, interferon, response, regulation,
innate, pattern, signaling, involved, recog-
nition, pathway, virus, dsRNA, interleukin,
inflammatory, cytokine, production, recep-
tor

10 10116, 9606, 9031, 511145,
10090, 9823, 9615, 7955,
3702, 352472, 9913, 7227,
559292, 6239

Mouse 7 biosynthetic, estrogen, glycerophospholipid,
glycerolipid, lipid, process, phosphatidyl-
choline, metabolic

5 4896, 214684, 10116,
9606, 9031, 36329, 10090,
511145, 39947, 195103,
9823, 9615, 7955, 3702,
352472, 9913, 7227,
559292, 6239

Mouse 86 type, induction, lens, eye, camera 1 10090
Mouse 80 blastocyst, development 1 10090, 9606
Rat 69 synaptic, signaling, trans, anterograde,

transmission, chemical
4 10116, 9606, 10090, 7955,

7227, 6239
Rat 84 mediated, intracellular, signaling, steroid,

pathway, hormone, androgen, receptor
3 10116, 9606, 10090, 3702,

7227
Rat 51 negative, regulation, polymerization, ion,

microtubule, polymerization, import, cal-
cium

4 4896, 10116, 9606, 9031,
10090, 7955, 3702, 352472,
9913, 7227, 559292, 6239

Rat 81 estrous, cycle, ovulation 2 10090, 10116
Rat 19 odontogenesis 1 10090, 7955, 10116, 9606

Table C.7. The species-specific ASFAs describe coherent functions of six species. For
the species-specific PPI embedding spaces generated by applying the ONMTF algorithm
on the species-specific PPI network of Homo sapiens sapiens (denoted by human), Sac-
charomyces cerevisiae (denoted by budding yeast), Schizosaccharomyces pombe (denoted
by fission yeast), Rattus norvegicus (denoted by rat), Drosophila melanogaster (denoted
by fruit fly), and Mus musculus (denoted by mouse), we use our new axes-based method
to capture the GO BP terms that we embed in the space (detailed in sections 5.2.1, 5.2.2,
and 5.2.3 of Chapter 5). Then, we use the GO BP terms captured by the axes of the
embedding spaces to generate the ASFAs (detailed in section 5.2.6 of Chapter 5). The
first column, “Species,” lists the species. The second column, “Axis,” lists the name of
the axes from which each ASFA was obtained. The third column, “Terms,” shows the
description of the ASFAs. The fourth column, “#GO,” displays the number of GO BP
terms that are associated with the axis. The fifth column, “Taxons,” shows the Taxonomy
ID of the different species for which the associated GO BP terms appear.
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Species Empty vs Non-Empty Empty vs Random

Human 1.76× 10−63 6.46× 10−28

Budding yeast 1.67× 10−8 6.94× 10−43

Fission yeast 7.42× 10−17 1.81× 10−62

Fruit fly 8.85× 10−15 1.05× 10−42

Rat 0.11 7.89× 10−6

Mouse 0.01 9.18× 10−30

Table C.8. Genes that are associated with the empty axes tend to form densely connected
neighborhoods in the species-specific PPI networks. We generate the species-specific em-
bedding spaces by applying the ONMTF algorithm on the species-specific PPI network of
Homo sapiens sapiens (denoted by human), Saccharomyces cerevisiae (denoted by budding
yeast), Schizosaccharomyces pombe (denoted by fission yeast), Rattus norvegicus (denoted
by rat), Drosophila melanogaster (denoted by fruit fly), and Mus musculus (denoted by
mouse). For each species-specific PPI embedding space, we associate genes with their
embedding axes. Then, we evaluate the connectivity in the original species-specific PPI
network by computing the clustering coefficient between genes associated with the same
axis (detailed in section 5.2.6 of Chapter 5). The first column, “Species,” lists the species.
The second column, “Empty vs Non-Empty,” shows the p-value from a one-sided Mann-
Whitney U test comparing if the clustering coefficient of the genes associated with non-
empty axes (axes with at least one associated GO BP term) is statistically higher than the
clustering coefficient of genes associated with empty axes (axes with non-associated GO
BP terms). The third column, “Empty vs Random,” displays the p-value from a one-sided
Mann-Whitney U test comparing if the clustering coefficient of the genes associated with
empty axes is statistically higher than expected by random.
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