
Nanophotonics with charged particles

Doctoral Thesis

Dissertation submitted by
Valerio Di Giulio

in partial ful�lment of the requirements for the degree of
Doctor of Philosophy

Supervisor: Prof. Francisco Javier García de Abajo

ICFO - Institut de Ciències Fotòniqes
Barcelona, 2023



This Thesis was defended in front of a selected committee, composed by
the following members:

• External member:
Prof. Mathieu Kociak,
Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides,
91405, Orsay, France.

• External member:
Prof. Claus Ropers,
Max Planck Institute for Multidisciplinary Sciences, and Physical
Institute – Solids and Nanostructures, University of Göttingen, 37077
Göttingen, Germany.

• Internal member:
Prof. Alejandro Manjavacas,
Instituto de Óptica (IO-CSIC), Consejo Superior de Investigaciones
Cientí�cas, Madrid 28006, Spain, and Department of Physics and
Astronomy, University of New Mexico, Albuquerque, New Mexico
87106, USA.

ii



This doctoral dissertation has been carried out in the Nanophotonics Theory Group at
ICFO - The Institute of Photonic Sciences in Castelldefels (Barcelona), thanks to the
funding of the European Commission through the Marie Skłodowska-Curie Grant n.

713729.





To
my mother

and
my father.

v



vi



Acknowledgments

After all, it has been almost 5 entire years. I started that I was 24, and I �nish the I am
29. During this long period of time, I have interacted, exchanged ideas, had joyful and
sad moments with several people. Most of them are still close (or spatially far) to me,
while unfortunately others, are not walking with us anymore. However, I dedicate this
Thesis to both of them whom I warmly thank for sharing with me such time. Even tough
among my best qualities I cannot enumerate memory, I believe I will not forget to thank
anyone in these acknowledgments as the time spent in doing this research is profoundly
impressed in myself.

My special and deep recognition goes to my PhD advisor and mentor Javier. His
knowledge of all physical processes and his ability of exploring the world with the only
help of paper, pen and a, no so powerful, computer have always surprised me. He taught
me how to practically take an idea a made it real, from the far from reality equation to
the actual numbers, which could be measured in a lab.

At my mother Roberta, I want to say thank you! to be always close to me, which
does not mean always taking my side as most of the times you were on the other, but
means to be there in helping me and making me feel that whatever happened there was
always a place which I could call home. I want to also thank my brother Ivan, to also be
there, immutable in his relation with me, keeping to be one of the few people who really
understands who I am.

Proudly, to my dare Laura, with whom I shared almost all the feelings and memories
in these last two and half years, I owe my gratitude for supporting me throughout maybe
the darkest moments of my life and reorienting me towards the path leading to light in
every occasion. If I had the strength to reach this moment is because you were at my side,
and at this point, I am happy to have the chance to say that: the best still needs to come!

I thank also my friends, still colleagues or not, at ICFO, Hani, Robin, Stefano, Francesco
and Arvin for the nice discussions, parties and experiences shared together. A profound
gratitude goes to all NPT members, especially to my colleagues Eduardo and Alvaro for
sharing with me almost the entire path in which we discussed, su�ered, laughed and
traveled together. Thanks! The day-to-day life at the institute would not have been the
same without your company.

Impossible to miss are my acknowledgments to the "Gruppo U+1F4A9", namely to
its current members Gabriele, Alessia, Arianna, Daniele, Giulio, Matteo D. C., Raul, Rita,
Simone e Matteo G., for the ever active support and because luckily after so many years
and so many kilometers dividing each other, our fellowship is still so strong.

I want also to thank Susanna for supporting me during the �rst part of this path.

vii



Grazie, to my friends in Rome. You were always ready to welcoming me whenever I
was coming back craving for a taste of home. This happening unavoidably in an osteria
in front of a good, maybe not that good wine and a you-need-to-grow size plate of pasta.

I would like also to share my gratitude with Timm, who made the graphics on the
bottom part of the Thesis cover. I am sure, it was not easy to capture whatever nonsense
impression I gave him when he asked me "What’s your thesis about?", and I did not
know exactly where to start from. Despite this, he did an incredible job at capturing the
uncapturable, in just an image.

viii



Contents

Thesis outline 1

Abstract 3

Resumen 5

1 Introduction 7
1.1 Introduction to classical electrodynamics . . . . . . . . . . . . . . . . . . 10

1.1.1 Maxwell’s equations . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.2 Electromagnetic potentials and gauge invariance . . . . . . . . . 12
1.1.3 The electromagnetic Green tensor . . . . . . . . . . . . . . . . . 13
1.1.4 The electric �eld of a free electron . . . . . . . . . . . . . . . . . 16
1.1.5 Planar interfaces and surface-plasmon polaritons . . . . . . . . . 16
1.1.6 Small-particle limit: the dipole approximation . . . . . . . . . . . 19
1.1.7 Classical electron energy-loss and cathodoluminescence

probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2 Quantum charges and classical �elds . . . . . . . . . . . . . . . . . . . . 21

1.2.1 Relativistic and nonrelativistic dynamics . . . . . . . . . . . . . . 21
1.2.2 Paraxial beams and nonrecoil approximation . . . . . . . . . . . 22
1.2.3 Classical photon-induced near-�eld electron microscopy (PINEM) 23
1.2.4 Multiple free charges: second quantization . . . . . . . . . . . . . 25

1.3 Quantum charges and �elds . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3.1 Light quantization . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3.2 The macroscopic quantum electrodynamics framework (MQED) 28
1.3.3 The limit of discrete modes . . . . . . . . . . . . . . . . . . . . . 29
1.3.4 Brief introduction to quantum optics . . . . . . . . . . . . . . . . 30

1.4 Microscopic theory of screening . . . . . . . . . . . . . . . . . . . . . . . 33
1.4.1 Linear response theory . . . . . . . . . . . . . . . . . . . . . . . . 34
1.4.2 The random-phase approximation (RPA) . . . . . . . . . . . . . . 34

2 Quantum photon-induced near-�eld electron microscopy 39
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2 Interaction between a nonrecoil electron and a quantum optical excitation 41

2.2.1 Weak-coupling limit . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2.2 The high-�uence limit . . . . . . . . . . . . . . . . . . . . . . . . 46

ix



2.3 The coupling to a dipolar excitation . . . . . . . . . . . . . . . . . . . . . 47
2.3.1 Coupling strength for plasmonic cavities . . . . . . . . . . . . . . 48

2.4 Interaction strength of quantum emitters and beam electrons with
dielectric optical cavities . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.5 General dependence on boson population statistics . . . . . . . . . . . . 51
2.6 Interaction with an optical cavity populated through pumped QEs . . . . 51
2.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Free-electron shaping using quantum light 55
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2 Electron density matrix produced upon PINEM interaction . . . . . . . . 57

3.2.1 The quantum PINEM interaction . . . . . . . . . . . . . . . . . . 57
3.2.2 E�ect of free propagation . . . . . . . . . . . . . . . . . . . . . . 59
3.2.3 Talbot e�ect and periodicity of the density matrix . . . . . . . . . 61

3.3 Electron pulse compression with di�erent optical mode statistics . . . . . 62
3.3.1 High-�uence and classical limits . . . . . . . . . . . . . . . . . . 62
3.3.2 Coherent squeezed light . . . . . . . . . . . . . . . . . . . . . . . 64
3.3.3 Electron compression with minimum-phase-uncertainty light . . 66
3.3.4 Electron self-interference . . . . . . . . . . . . . . . . . . . . . . 66

3.4 E�ect of the electron density matrix on the excitation of a sample . . . . 67
3.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Electron di�raction by vacuum �uctuations 73
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 Vacuum phase shift induced by macroscopic media . . . . . . . . . . . . 75

4.2.1 Vacuum phase shift . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.2 Quantum phase and Aharonov-Bohm e�ect in arbitrary geometries 78
4.2.3 Quantum phase in nonlocal media . . . . . . . . . . . . . . . . . 78

4.3 Elastic phase shift from explicit QED solution . . . . . . . . . . . . . . . 79
4.4 Elastic di�raction by metallic plates . . . . . . . . . . . . . . . . . . . . . 81

4.4.1 Perfect conductor . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4.2 Real conductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4.3 Graphene �lm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5 Elastic di�raction by a small particle . . . . . . . . . . . . . . . . . . . . . 86
4.6 Di�raction in the far-�eld . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6.1 Interaction with a planar surface . . . . . . . . . . . . . . . . . . 88
4.6.2 Interaction with a small object . . . . . . . . . . . . . . . . . . . 89

4.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Modulation of cathodoluminescence emission by interference with
external light 93
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2 First-principles description of CL interference with external light . . . . 95
5.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3.1 Optical modulation of CL from a dipolar scatterer . . . . . . . . . 102
5.3.2 CL modulation for gaussian electrons . . . . . . . . . . . . . . . . 102
5.3.3 CL modulation for PINEM-compressed electrons . . . . . . . . . 103

x



5.3.4 Temporal control of the emission . . . . . . . . . . . . . . . . . . 104
5.3.5 Energy pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6 An image interaction approach to quantum-phase engineering of two-
dimensional materials 111
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2.1 Theoretical framework . . . . . . . . . . . . . . . . . . . . . . . . 114
6.2.2 Modulation of the electronic band structure . . . . . . . . . . . . 116
6.2.3 Optical response of Q-phase materials . . . . . . . . . . . . . . . 118
6.2.4 Metal-insulator transition . . . . . . . . . . . . . . . . . . . . . . 119
6.2.5 Inhibition of the thermal conductivity . . . . . . . . . . . . . . . 121

6.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7 Nanophotonics for pair-production 123
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.2 Pair production from the scattering of a surface-polariton and a γ-photon 125

7.2.1 Consequences of polariton �eld compression and translational
symmetry breaking . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.2.2 Pair production close to threshold . . . . . . . . . . . . . . . . . . 127
7.2.3 Pair production by scattering polaritons and GeV γ-photons . . . 129

7.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8 Conclusions and outlook 131

A SI and Gaussian units 137

B Derivation of the quantum PINEMHamiltonian from the Dirac equation139

C On the �eld commutator and the electromagnetic Green tensor 143
C.1 Relevant �eld commutators . . . . . . . . . . . . . . . . . . . . . . . . . . 143
C.2 Derivation of Eq. (1.44) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

D Solution of the quantum PINEM Hamiltonian 147
D.1 Solution for a single nonrecoil electron and a multi-mode system . . . . 147
D.2 Solution using second-quantized operators and MQED . . . . . . . . . . 149

E Quantum CL emission: proofs of some expressions presented in Chapter
5 153
E.1 Far-�eld radiation emission: derivation of Eq. (5.1) . . . . . . . . . . . . . 153
E.2 Photon intensity produced by a free electron and a laser pulse: derivation

of Eq. (5.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
E.3 Generalization to multiple electrons: derivation of Eq. (5.5) . . . . . . . . 156
E.4 Cathodoluminescence from a dipolar object: derivation of Eq. (5.6) . . . . 157
E.5 Energy pathways from the MQED formalism . . . . . . . . . . . . . . . . 158

xi



F Contribution of Coulomb repulsion to a 2DEG Q-phase material 163
F.1 The Hartree potential in reciprocal space: derivation of V H

G in Eq. (6.3) . 163
F.2 Quanti�cation of the image energy . . . . . . . . . . . . . . . . . . . . . 164

G Pair-production rate in the interaction picture: derivation of Eq. (7.3) 167
G.1 QED Hamiltonian and matrix elements for a general polychromatic �eld 167
G.2 Pair production by scattering of a surface polariton and a γ-photon . . . 169

List of Figures 174

List of Acronyms 176

List of publications and conference contributions 179

Bibliography 183

xii



1

Thesis outline

This PhD Thesis, entitled Nanophotonics with charged particles, is composed of
several chapters, each one based on one or more published scienti�c articles. Generally,
they address di�erent topics but at the same time, they meaningfully link to each other by
following a continuous line of research. In particular, their content and interconnections
has been organized in the following chapters:

(1) Introduction: the background notions required to be capable of understanding
the content of the Thesis are brie�y presented in a self-contained manner. In
particular, we cover several topics such as classical electromagnetism, quantum
electrodynamics, the classical description of photon-induced near-�eld electron
microscopy technique, quantum optics, and the basic theory of electron liquids.

(2) Quantum photon-induced near-�eld electron microscopy: we present a
work generalizing the classical theory of photon-induced near-�eld electron
microscopy by describing the optical �eld to be prepared and evolve quantum
mechanically. Here, an analytical solution of the post-interaction electron-�eld
state is found for any initial quantum state of light.

(3) Free-electron shaping using quantum light: the solution found in Chapter (2)
is exploited in order to discuss the e�ect of quantum light on the shaping of the
wave function of a free electron beam. In addition, such theory is also expanded in
order to accommodate free space propagation.

(4) Electron di�raction by vacuum�uctuations: the results of this chapter are also
intimately connected to Chapter (2). Indeed, it aims at deepening our understanding
about a phase appearing in the quantum electrodynamical solution found in Chapter
(2). In a systematic way, the phase is analyzed by means of di�erent theoretical
tools such as the continuous quantization of the electromagnetic �eld degrees of
freedom.

(5) Modulation of cathodoluminescence emission by interference with
external light: this chapter is devoted to the analyses of the cathodoluminescence
emission from syncronized laser and electron pulses whose wave function has
been previously shaped. In this regard, it connects with Chapter (3). In addition,
the results of this work are mainly based on the �eld quantization presented in
Chapter (4).
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(6) An image interaction approach to quantum-phase engineering of
two-dimensional materials: we present a work inspired in the application of
the knowledge acquired in Chapter (4) to two-dimensional solid-state systems. In
particular, the acquired electron phase is exploited to modify the dynamics of the
charge carriers and in turn the optical and transport properties of the material
itself.

(7) Nanophotonics for pair-production: we investigate the possibility of tailoring
the rates associated with high-energy processes by leveraging the optical �eld
con�nement concept of common use in nanophotonics. In particular, we focus on
electron-positron production as a result of the collision between polaritons and
high-energy photons. This research represents the only work in this Thesis that
does not consider electrons as protagonists and, therefore, is more detached from
the rest of the chapters, apart from Chapter (1), where the necessary theoretical
tools are discussed.

(8) Conclusions and outlook: a summary of all the results achieved and presented
in this Thesis is made. Special attention is devoted to the impact that these works
have on the related research communities. Finally, a look at current and future
possible directions is given by taking the contents of this Thesis as the starting
point of an ongoing discussion.

The Thesis is supplemented by appendices on the unit system employed and technical
details to make the work self-contained. We conclude with lists of �gures, acronyms, and
publications and conference contributions derived from the present work.
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Abstract

Among the fundamental constituents of matter, charged particles such electrons and
positrons are leading protagonists in physical phenomena associated with small (∼ meV)
and high (∼ MeV) energy scales. For example, conductive electrons in condensed-matter
systems can collectively respond to the action of an external electromagnetic �eld and
sustain plasmon excitations that dominate their visible optical behavior. The presence of
material boundaries produces a dramatic modulation of such modes, allowing us to
mold their interaction with light for the exploration of fundamental phenomena and
the design of practical applications, which are central themes in the �eld of nanophotonics.

Electrons traveling in free space, such as those in electron microscopes, constitute
ideal probes for imaging materials with nanometric resolution. In an e�ort to push
energy resolution down to the meV regime and simultaneously perform time-resolved
measurements with fs precision, laser and electron pulses in transmission electron
microscopes can now be synchronized to meet at the specimen in the so-called
photon-induced near-�eld electron microscopy (PINEM). Here, e�cient electron
coupling to intense laser-driven evanescent �elds results in a strong energy reshaping of
the electron wave function. Over the last decade, PINEM has been used to tailor the
wave function of free electrons, thus emphasizing the role of these microscopy probes as
information carriers.

This Thesis lies in this general and broad context as an e�ort to explore new scenarios
in the interaction between free electrons and optical excitations. In particular, Chapter
2 addresses the theoretical investigation of quantum-mechanical aspects associated
with PINEM interaction by means of a quantum-optics description of the optical �eld.
Building up on those results, in Chapter 3 we show that improved control over electron
pulse shaping, compression, and statistics can be gained by replacing coherent laser
excitation by interaction with quantum light, such as phase- and amplitude-squeezed
optical �elds.

Chapter 4 explores the role played by �uctuations of the electromagnetic vacuum in
the coupled dynamics of a free-electron beam and a macroscopic object, producing elastic
di�raction and decoherence. In particular, we show that di�raction can dominate over
decoherence, therefore suggesting a nondestructive approach to microscopy based on
the speci�c choice of parameters that minimize the inelastic interaction with the specimen.
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As a radically di�erent aspect of electron-light interaction, Chapter 5 is devoted to
the study of the interference produced in the cathodoluminescence emission by the
synchronized interaction of free electrons and dimmed laser pulses scattered by the
specimen. Here, we argue that such e�ect may enable measurements combining the
spectral and temporal selectivity of the light with the atomic resolution of electron
beams to resolve the phase associated with optical modes in the sample.

In Chapter 6, we consider that elastic di�raction, similar to that studied in Chapter 4,
is also experienced by conduction electrons in a two-dimensional material, therefore
altering the properties of the latter by simply adding a neighboring neutral structure.

Going to higher energy scales, Chapter 7 explores the potential of con�ned optical
modes to assist electron-positron pair production arising from the scattering of gamma
rays by surface polaritons propagating along a material interface.

In summary, throughout this Thesis we exploit the coupling between evanescent
light, harnessed in the vicinity of material boundaries, and charged free particles in order
to access new e�ects only found at the point where nanophotonics, quantum optics and
high-energy physics meet through strong light-matter interaction.
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Resum

Entre els constituents fonamentals de la matèria, partícules carregades com electrons i
positrons són protagonistes en fenòmens físics associats amb escales d’energia petites
(∼ meV) i altes (∼MeV). Per exemple, els electrons conductors en sistemes de matèria
condensada poden respondre col·lectivament a l’acció d’un camp electromagnètic extern,
exhibint excitacions de plasmó que dominen el seu comportament òptic en el visible.
La presència de límits materials produeix una modulació dramàtica d’aquests modes
que permet modelar la seva interacció amb la llum per a l’exploració de fenòmens
fonamentals i el disseny d’aplicacions pràctiques, temes centrals en el camp de la
nanofotònica.

Els electrons que viatgen a l’espai lliure, com els dels microscopis electrònics,
constitueixen sondes ideals per a observar materials amb resolució nanomètrica. Per
tal de millorar la resolució energètica �ns al règim dels meV i alhora realitzar mesures
resoltes en el temps amb precisió de fs, els polsos làser i els electrons en microscopis
electrònics de transmissió es poden sincronitzar per trobar-se a la mostra en l’anomenada
microscòpia electrònica de camp proper induïda per fotó (PINEM). L’e�ciència de
l’acoblament de l’electró a camps evanescents intensos produïts per làser provoca
una forta remodelació d’energia de la funció d’ona dels electrons. Durant l’última
dècada, la tècnica PINEM s’ha utilitzat per adaptar la funció d’ona dels electrons lliures,
emfatitzant així el paper d’aquestes sondes de microscòpia com a portadores d’informació.

Aquesta tesi representa un esforç per explorar nous escenaris en la interacció
entre electrons lliures i excitacions òptiques. En particular, el Capítol 2 aborda la
investigació teòrica dels aspectes de mecànica quàntica associats amb la interacció
PINEM mitjançant una descripció d’òptica quàntica del camp òptic. Basant-nos en
aquests resultats, en el Capítol 3 mostrem que es pot millorar el control sobre la formació,
compressió i estadística del pols d’electrons mitjançant la substitució de l’excitació
làser coherent per la interacció amb llum quàntica, com ara camps òptics de fase i amplitud.

El Capítol 4 explora el paper que juguen les �uctuacions del buit electromagnètic en
la dinàmica acoblada d’un feix d’electrons lliures i un objecte macroscòpic, produint
difracció elàstica i decoherència. En particular, demostrem que la difracció pot dominar
sobre la decoherència, suggerint un enfocament no destructiu de la microscòpia basat en
l’elecció especí�ca de paràmetres que minimitzen la interacció inelàstica amb l’espècimen.
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Com a aspecte radicalment diferent de la interacció entre llum i electrons, el Capítol
5 està dedicat a l’estudi de la interferència produïda en l’emissió de catodoluminescència
per la interacció sincronitzada d’electrons lliures i polsos làser enfosquits dispersats
per l’espècimen. Argumentem que aquest efecte pot permetre mesures combinant
la selectivitat espectral i temporal de la llum amb la resolució atòmica dels feixos
d’electrons per resoldre la fase associada amb els modes òptics en la mostra.

En el Capítol 6, considerem que la difracció elàstica, similar a l’estudiada en el Capítol
4, també és experimentada per electrons de conducció en un material bidimensional,
alterant així les seves propietats simplement afegint una estructura neutral veïna.

A escales d’energia més altes, el Capítol 7 explora el potencial dels modes òptics
con�nats per assistir en la producció de parells electró-positró que sorgeix de la dispersió
de raigs gamma per polaritons de superfície que es propaguen en la interfície d’un
material.

En resum, a través d’aquesta tesi explotem l’acoblament entre la llum evanescent,
apro�tada en la proximitat dels límits dels materials, i les partícules lliures carregades
per tal d’accedir a nous efectes només observables en el punt on la nanofotònica, l’òptica
quàntica i la física d’altes energies es troben a través d’una forta interacció llum-matèria.
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1
Introduction

Not all who wander are lost.
J.R.R. Tolkien, The Fellowship of the Ring.

Starting an in-depth reading can increase the chances of getting lost and leaving the
reader in a more confused state than when they started. This often happens due to a lack
of a solid foundation when jumping directly into advanced sections of the text. To avoid
this, this Chapter is meant to guide the reader through the main concepts of the Thesis,
saving time and improving understanding.
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The use of charged particles such as ions, electrons, and positrons to address di�erent
problems can be traced back to the time of the discovery of electricity. For instance,
electrons in materials have been used since the 19th century to transmit information
through electrical signals in metals and, even before the discovery of the electron itself, in
radio communication thanks to their ability to produce free space electromagnetic waves.
A few decades later, the invention of instruments such as the electron microscope (E.
Ruska, Ref. 1) presented free electrons as candidate probes that, through electromagnetic
interaction with a specimen, could retrieve spectral and structural information.

It is therefore clear that control over the coupling between free electrons and
electromagnetic �elds is of great interest for several communities. In this context,
the realm of Nanophotonics (the study of light-matter interaction at the nanometer
scale), enters naturally as an important element by suggesting ways to produce �elds
concentrated in a region of spatial extension commensurate with the one of the free
electron. A perfect example is represented by the con�ned excitations called plasmons,
which are collective oscillations of electrons in conductive materials, able to provide
nanoscale focusing of the optical �eld.

This promise of high coupling to increase more with decreasingly structure sizes has
resulted in a booming interest in combining Nanophotonics with other research areas:
quantum optics with free electrons, dynamical modi�cation of charge carriers in solid
state matter, �eld enhancement boosting of quantum electrodynamics processes such as
electron-positron pair production.

In order to be capable of capturing all the details behind these e�ects, here we
review the fundamental theoretical tools used as building blocks for the development
and understanding of this Thesis. In particular, the following topics are covered:

• Classical electrodynamics and nanophotonics: we �rst introduce Maxwell’s
equations in the presence of complex media, focusing on the speci�c case in which
nonlocal e�ects are negligible. We then review the concept of gauge invariance of
the electromagnetic theory including the gauge choice mostly used in this Thesis.
We introduce the electromagnetic Green tensor to solve electromagnetic problems,
focusing on simple con�gurations. Among them, the planar interface is also utilized
to introduce the concept of surface plasmons. Finally, with the help of these tools,
we review how to estimate classical probabilities related to electron energy-loss
and cathodoluminescence spectroscopies.

• The interaction of classical �elds with quantum matter: we begin by
reviewing the Dirac equation trough which relativistic quantum charges of spin
1/2 can be described to be coupled to classical electromagnetic �elds. Then, we
gradually introduce di�erent key approximations needed to transform the complex
non-perturbative electron-light interaction to a treatable problem, highlighting the
fact that they remarkably work under experimental conditions typical of electron
microscopy. Finally, we present the theory behind the classical PINEM interaction
in which an electron strongly couples to evanescent optical �elds created by a
laser pulse scattered by a material boundary.
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• The interaction of quantized �elds in complex environments with
quantum matter: we introduce the theoretical framework of macroscopic
quantum electrodynamics through which the electromagnetic degrees of freedom
are quantized in the presence of local, absorbing, non-magnetic media. We pay
special attention to presenting the physical arguments on which the framework is
grounded. Furthermore, by reviewing a quantization procedure that employs a
discrete number of modes, we introduce the reader to the fundamental building
elements of quantum optics.

• Theory of screening and linear response: we review the standard theory used
to compute linear response functions from �rst-principles quantum mechanics.
We focus on the evaluation of the induced charge density produced in a medium
when perturbed by interaction with an external electric scalar potential. This is
done through the use of the random-phase approximation (RPA) based on the
self-consistent �eld theory, which is also brie�y discussed. Finally, we apply these
tools both to introduce the reader to a key analytical result related to the response
of a two-dimensional (2D) free-electron gas and to present speci�c methods used
to deal with periodic systems.
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1.1 Introduction to classical electrodynamics

If one wishes to describe the interaction among charged particles and with other complex
material structures, which ultimately are also formed by the same kinds of particles, one
should �rst understand how all these elements talk to each other and the underlying
equations governing their dynamics. The theory describing such interaction between
classical particles is known as classical electrodynamics.

1.1.1 Maxwell’s equations
Charges represent the sources of a �eld which in turn act on their dynamics in a self-
consistent fashion. In particular, the rules determining how such �eld, the electromagnetic
�eld, evolves in space and time were the result of a combined e�ort involving many
scientist who were studying the subject in the 19th century. They, with the culminating
work by J. C. Maxwell [2], were able to beautifully condense them into four equations,
Maxwell’s equations (MEQS), which in frequency domain read1 [3]

∇ ·D(r, ω) = 4πρ(r, ω), (1.1a)
∇ ·B(r, ω) = 0, (1.1b)
∇×E(r, ω) = ikB(r, ω), (1.1c)

∇×H(r, ω) =
4π

c
j(r, ω)− ikD(r, ω), (1.1d)

where we have introduced the wave vector modulus of an electromagnetic wave in free
space k = ω/c. In practice, Eqs. (1.1) determine the displacement �eld D, the electric
�eld E, the magnetizing �eld H and the magnetic �eld B, once the free charges ρ and
currents j are given2. We highlight the fact that charges and currents depend on one
another through the continuity equation

∇ · j(r, ω) = iωρ(r, ω), (1.2)

which can be derived from Eqs. (1.1). If we assume that all the media under consideration
have a negligible nonlinear response, we can write general constitutive relations
D(r, ω) =

´
d3r′ ε(r, r′, ω)E(r′, ω) and H(r, ω) =

´
d3r′ µ−1(r, r′, ω)B(r′, ω), by

introducing the permittivity ε and the permeability µ, which are the response functions
encapsulating all the microscopic characteristics of the materials composing the system
under study. In general, these response functions have the form of 3 × 3 tensors and
depend both on the spatial position where the �eld is applied r′ and where it is probed r.
Since they contain the details of the motion of all the material constituents, such as
electrons and nuclei in solids, their accurate evaluation typically requires advanced
theoretical and numerical tools, some of which we shall describe in Section 1.4.

In situations for which all the distances involved are much larger than the
microscopic features, usually . 1 nm, as dictated by inter-atomic spacing, and the

1Throughout this work, we use the convention f(r, t) =
´

(d3k dω/16π4) eik·r−iωt f(k, ω) to go from
space and time domain (r, t) to Fourier space (k, ω). Furthermore, Gaussian Units (GU) are adopted. See
Appendix A to learn how to transform electromagnetic quantities from Gaussian to SI units.

2With the word free, we mean to distinguish them from the charges and currents that are bound to a material
or molecule. See, for example Ref. 4, and the discussion on surface charges and currents therein.
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material isotropically polarizes along the three Cartesian directions, the so-called
local isotropic approximation can be safely employed and the response tensors
turn out to be proportional to the identity matrix. In this case, the relations
ε(r, r′, ω) = ε(r, ω)δ(r− r′)I and µ(r, r′, ω) = µ(r, ω)δ(r− r′)I lead to

D(r, ω) = ε(r, ω)E(r, ω), (1.3a)

H(r, ω) =
1

µ(r, ω)
B(r, ω), (1.3b)

which we assume to always hold throughout this Thesis, unless otherwise speci�ed.
Furthermore, we also take all the studied systems to be nonmagnetic by setting µ = 1.

In order to solve Eqs. (1.1), they need to be complemented by a set of boundary
conditions gluing together the solutions separately found in each material region. This
can be done by making use of the integral version of MEQS, and for each interface
dividing two media indexed as 1 and 2, one has [3]

[Electric/displacement field]

{
E
‖
1 −E

‖
2 = 0,

D⊥1 −D⊥2 = σs,
(1.4a)

[Magnetic/magnetizing field]

{
B⊥1 −B⊥2 = 0,

H
‖
1 −H

‖
2 = js,

(1.4b)

where σs and js denote surface free charges and currents located at the boundaries,
respectively. The parallel and perpendicular superscripts refer to the parallel and
perpendicular components of the �elds with respect to the interface surface.

Conservation laws

Since MEQS describe the �eld dynamics of a closed system, in their formulation they
contain the equation regulating the exchange of energy stored in the electromagnetic
�elds and in the charges. This can be seen by evaluating the rate of work done by the
�elds on the current, which by making use of Eqs. (1.1) written in their time domain
version, lead to [3]

−j(r, t) ·E(r, t) = ∂tu(r, t) +∇ · S(r, t),

where

[EM energy] u(r, t) =
1

8π
E(r, t) ·D(r, t) + B(r, t) ·H(r, t)], (1.5a)

[Poynting vector] S(r, t) =
c

4π
[E(r, t)×H(r, t)]. (1.5b)

Equation (1.5a) represents the energy stored in the �eld, while the quantity in Eq. (1.5b)
is known as Poynting vector and keeps track of the energy per unit time per unit area
carried by the electromagnetic �eld.
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Charge dynamics

Up to now, we discussed how sources can determine the evolution of the electromagnetic
�eld without subjecting their motion to its in�uence. However, if we take a system of N
classical point charges, labeled by the index i, the current j(r, t) =

∑N
i=1 qiviδ[r−ri(t)]3

will be determined by the position ri(t) and velocity vi(t) = ∂tri of each particle, which
must be found by solving N dynamics equations (e.g., Newton’s equations if they move
much more slowly than light), each one including the presence of any external force at
the particle position F(ri, t). When an electromagnetic �eld is present (e.g., one created
by other charges and currents), the Lorentz force

F(ri, t) = qi [E(ri, t) + (vi/c)×B(ri, t)] . (1.6)

Therefore, Eqs. (1.1) together with Eq. (1.6) represent a set of coupled di�erential equations
able to track both the trajectory of each particle and the evolution of the electromagnetic
�eld also allowing for the inclusion of complex con�gurations in which several materials
with arbitrary shapes and response functions are present. Even though for high electric
and magnetic �elds the Lorentz force can play an important role, for electrons interacting
with nanostructures and used to study loss and cathodolumnescence spectral intensities,
the trajectory perturbations introduced by Eq. (1.6) are commonly negligible.

1.1.2 Electromagnetic potentials and gauge invariance
A useful property of MEQS, especially in quantum theory, is that their mathematical
structure can accept a solution which is equivalent to the one obtained through the �elds
E and B but given in terms of other quantities known as electromagnetic potentials. In
particular, the �eld properties embedded in Eq. (1.1b) and Eq. (1.1c)4 allow writing

B(r, ω) = ∇×A(r, ω), (1.7a)
E(r, ω) = −∇φ+ ikA(r, ω), (1.7b)

where φ is the so-called scalar potential, of central importance in electrostatics (c� 1)
as it is enough to determine the electric �eld, and A is known as vector potential. By
expressing the �elds as done in Eqs. (1.7), we immediately highlight an important property:
they are not unique, and as a consequence, they cannot represent measurable quantities.
In order to illustrate this fact, one can directly verify that for any function Λ(r, t) the
transformations A → A′ = A + ∇Λ and φ → φ′ = φ + ikΛ leave the electric and
magnetic �elds both unchanged. Such transformation is known as gauge transformation
and the invariance under its application is called gauge invariance.

Among all the possible gauge choices, the most common ones are de�ned by the
following conditions [3]

[Coulomb gauge] ∇ ·A(r, ω) = 0, (1.8a)
[Lorentz gauge] ∇ ·A(r, ω)− ikφ(r, ω) = 0,

[Weyl gauge] φ(r, ω) = 0. (1.8b)
3Here, qi is the charge of the i-th particle, which throughout this work is taken to be −e (i.e. with e > 0).
4Firstly, one writes B = ∇×A because of the divergenceless nature of B, which then leads to∇× [E−

(iω/c)A] = 0. In addition, an irrotational �eld can always be written as the gradient of a scalar potential,
namely −∇φ = E− (iω/c)A.
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The Coulomb gauge (CG) is often used in free space, where ε = 1 at any spatial
position and frequency, as it allows us to directly express the scalar potential in terms
of the charge distribution by constraining the vector potential to be transverse [see Eq.
(1.1a)]. In contrast, the Lorentz gauge (LG) yields to a more symmetric form of MEQS
that makes their relativistic invariance explicit5. Throughout this Thesis, we make use of
the Weyl gauge (WG) given by the condition in Eq. (1.8b), as with this choice, and for
ρ = 0, the vector potential satis�es the transverse condition of Eq. (1.8a) at points far
from any material interface.

1.1.3 The electromagnetic Green tensor

We now proceed to solve MEQS by means of introducing a Green function. To do so, we
�rst combine Eq. (1.1c) and Eq. (1.1d) by setting µ = 1, and we make explicit use of the
WG together with Eq. (1.7b) to obtain

∇×∇×A(r, ω)− k2ε(r, ω)A(r, ω) =
4π

c
j(r, ω). (1.9)

The solution of Eq. (1.9) can be immediately written in terms of the so-called
electromagnetic Green tensor G(r, r′, ω) as

A(r, ω) = −4πc

ˆ
d3r′G(r, r′, ω) · j(r, ω), (1.10)

where the Green tensor is taken to satisfy

∇×∇×G(r, r′, ω)− k2ε(r, ω)G(r, r′, ω) = − 1

c2
δ(r− r′). (1.11)

We thus understand that the electromagnetic Green tensor contains all the information
regarding both the space morphology and the material response of each element
comprising a physical system. General considerations on the physical system under
study makes the Green tensor to satisfy several useful properties, which are of particular
importance for the following discussions. For instance, due to causality, it respects
the Schwartz re�ection principle6 G(r, r′, ω) = G∗(r, r′,−ω) as well as the Onsager
reciprocity theorem, G(r, r′, ω) = GT(r′, r, ω), valid for time-symmetrical systems [7].

An important step toward �nding the solution of Eq. (1.11) is the separation of G
into a sum of inhomogeneous and homogeneous terms. If we take our physical system to
be composed by several bodies, each one de�ning a spatial region Vj [see Fig. (1.1)], for
r, r′ ∈ Vj , we can write

G(r, r′, ω) = G0(r, r′, ω) +Gs(r, r′, ω), (1.12a)
[
∇×∇×−k2εj

]
G0(r, r′, ω) = − 1

c2
δ(r− r′), for r, r′ ∈ Vj , (1.12b)

[
∇×∇×−k2εj

]
Gs(r, r′, ω) = 0, (1.12c)

5The reader can �nd more details on the di�erent gauge choices and their consequences in Refs. 5 and 6.
6We remark that this property is a direct consequence of the fact that ε(r, ω) is also a response function for

which ε(r, ω) = ε∗(r,−ω).
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Figure 1.1: The electromagnetic Green tensor. Explanatory sketch of the separation into bulk
and scattering electromagnetic Green tensors [see Eq. (1.12a)]. In an environment formed by
several regions Vj , each one with a di�erent permittivity εj , when a source, placed at r′, induces a
�eld at r with r, r′ ∈ Vj then both G0 and Gs contribute, while, if r ∈ Vj and r′ /∈ Vj , G = Gs.

where we have de�ned the permittivity εj(ω) of each region Vj as well as the scattering
Gs and bulk G0 Green tensors corresponding to the homogeneous and inhomogeneous
solutions of Eq. (1.11), respectively. Whenever r ∈ Vj and r′ /∈ Vj , r 6= r′ holds and
therefore Gs represents the full solution of the di�erential equation as

G(r, r′, ω) = Gs(r, r′, ω), for r ∈ Vj , r′ /∈ Vj . (1.13)

Finally, since the electric �eld has to respect the boundary conditions shown in Eqs. (1.4a),
the Green tensor must satisfy similar equations7 in order to completely solve Eq. (1.11).

The bulk Green tensor

As already anticipated, the inhomogeneous part ofG corresponds to a situation in which a
source current is placed in an in�nite medium where the material boundaries are ignored.
We thus seek the solution of Eq. (1.12b), which can be directly derived from the scalar
Green function corresponding to the Helmholtz operator and reads [8]

G0(r, r, ω) =
−1

4πω2εj

(
k2
jI +∇⊗∇

)eikj |r−r′|

|r− r′| , (1.14)

where the complex root kj =
√
εjω/c needs to be chosen such as Im{kj} > 0. Given our

choice of gauge, the form of G0 accounts for charge-charge Coulomb repulsion as well
as for the emission of free transverse photons, as required from MEQS. These two types
of electromagnetic couplings are immediately apparent by taking the static (c → ∞)
and the far-�eld (kr → ∞) limits of Eq. (1.14), respectively. The two corresponding

7They can be found, for instance, in Ref. 7.
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expressions read [7]

G0(r, r′, ω) ≈ −1

4πω2εj




∇⊗∇|r− r′|−1 [Static limit],

eikj(r+r̂·r′)(r̂⊗ r̂− I)k2/r [Far-field limit].
(1.15)

When charges are present, the �rst expression in Eq. (1.15) is responsible for the
interaction at short distance (e.g., for Coulomb repulsion and for the creation of the
near-�eld: the Coulomb �eld produced by charges lying on the material interfaces). The
second form of the bulk Green tensor accounts for the emission of spherical waves freely
propagating from the sources throughout the uniform medium.

Expansion in normal modes

In situations for which the response of the system is con�ned within a �nite spectral
range, a very useful way of writing the scattering part of the Green tensor is through
a combination of electromagnetic modes. Here, we analyze the scenario in which the
space is composed by media with real and frequency-independent permittivity ε(r). For
this case, Eq. (1.11) admits a solution of the form [9]

G(r, r′, ω) =
1

2π

∑

i

~Ei(r)⊗ ~E∗i (r′)
~ωi[ω2 − ω2

i + i0+]
+

1

4πω2
∇r ⊗∇r′G

L(r, r′), (1.16)

where 0+ is positive in�nitesimal and ~Ei(r) are a set of eigenvectors, representing the
mode electric �eld distribution, with eigenvalues ωi satisfying the equation

∇×∇× ~Ei(r)− ε(r)
ω2
i

c2
~Ei(r) = 0. (1.17)

These modes are normalized according to
´
d3r ε(r)~Ei(r) · ~E∗i′(r)/2π = δii′~ωi and form

a complete basis set8 satisfying the transverse completeness relation ε(r)
∑
i
~Ei(r) ⊗

~E∗i (r′)/2π~ωi = δT(r− r′)9. The second term of Eq. (1.16) takes care of the longitudinal
interaction and therefore can be found by solving the equation

ε(r)∇r ⊗∇r′G
L(r, r′) = 4πδL(r− r′), (1.18)

with δL(r − r′) begin the longitudinal Dirac delta function satisfying
´
d3r′ δL(r −

r′)A(r′) = A(r) for any vector A(r) that satis�es the condition∇×A = 0.
Expansions similar to the one in Eq. (1.16) can also be formulated in the limiting

case of c → ∞ allowing for the incorporation of dispersion and inelastic losses in
the description [10]. Furthermore, in a general situation where retardation e�ects are
important and ε(r, ω) represents a complex and dispersive permittivity, such expansion
requires the introduction of the concept of quasinormal modes [11,12].

8This is true in the space of vectors that ful�ll the generalized CG constraint∇ · [ε(r)~E(r)] = 0.
9The name derives from the fact that δT(r− r′) satis�es the property

´
d3r δT(r− r′)AT(r′) = AT(r)

for any vector for which∇ ·AT = 0 holds.
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1.1.4 The electric �eld of a free electron
One of the main reasons behind the extensive use of electrons as probes to perform
microscopy and spectroscopy in EMs is the promise of achieving a spatial resolution
beyond the capabilities provided by similar techniques using light combined with far-�eld
optics. Indeed, since the di�raction limit constraints the ability of focusing waves to
∼ λ/210 (half the wavelength), the spatial resolution with visible light (~ω ∼ 1 eV)
cannot be pushed well below ∼ 1 µm, while for an electron of similar energy, focusing
can reach the size of a small molecule (∼ 1 nm, i.e., 1000-fold smaller). We remark that
the di�raction limit only refers at the minimum spatial extension that the particle wave
function can assume, which does set a lower limit to spatial resolution but often takes
higher values under the in�uence of other factors. One of them is represented by the
intrinsic nature of the source of electromagnetic �eld, namely by the spatial extension of
the electric �eld produced by a moving charged particle from its trajectory. By combining
Eqs. (1.14) and (1.10), taking the current associated with a single electron fully focused at
the center of the xy-plane and traveling at constant velocity v = vẑ (here we ignore any
�eld backreaction on the particle), the generated vector potential reads [8]

Ael(r, ω) = − 2iec

v2γjεj
eiωz/v

[
i

γj
K0

(
ωR

vγj

)
ẑ−K1

(
ωR

vγj

)
R̂

]
, (1.19)

where Km is the modi�ed Bessel function [13] of order m and γj =
√

1− εjv2/c2 is the
relativistic contraction factor in a dielectric of permittivity εj . Equation (1.19) highlights
several properties of electrons when they are used as probes: (i) the divergence of the
Bessel functions for points close to the beam trajectory [see Fig. (1.2)a] resembles the
one of a Coulomb �eld containing evanescent components able to couple to any type
of excitation; (ii) the exponential dependence on velocity and light frequency renders
the spatial resolution strongly dependent both on the targeted spectral range and on the
electron kinetic energy; (iii) the frequency in the argument of the Bessel functions leads
to �nite �eld amplitudes even in the soft x-ray range (∼ 50 eV) at a distance of R ∼ 5 nm
for a 100 keV electron. We therefore conclude that a charged particle in constant motion
cannot produce propagating radiation unless εj is real and the condition v > c/

√
εj is

satis�ed 11. In these materials, Cherenkov radiation is indeed possible, and actually, it is
commonly used as a mechanism of detection of charged particles in scintillators [14].

1.1.5 Planar interfaces and surface-plasmon polaritons
The case of a planar interface represents the simplest electromagnetic problem involving
two di�erent media of di�erent permittivies ε1 and ε2 [see Fig. (1.2b)]. Despite its
theoretical simplicity, surfaces and interfaces have been extensively studied especially
through the use of electron beams (e-beams) to probe surface states and collective modes
of conductive electrons [16–18].

As usually done in classical electrodynamics textbooks for re�ection and transmission
from a planar interface [3], the problem is solved by expanding the Green tensor in waves

10Here, λ is λlight = 2πc/ω for light, while for matter waves is the de Broglie wavelength which, for a
nonrelativistic electron of kinetic energy ~ε, is λe = π

√
2~/meε.

11When this condition is satis�ed, γj is a pure imaginary number and the Bessel functions display an
oscillating behavior [13].
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Figure 1.2: Near-�eld produced by free- and bound- charges. (a) Behavior of the Bessel
functions describing the decay of the electron electric �eld in vacuum [see Eq. (1.19)] as a function
of the normalized distance from its trajectory x = ωR/vγ. (b) Sketch of a propagating surface
plasmon propagating with wave vector k‖ along the interface between a medium with permittivity
ε2 and vacuum (ε1 = 1). In the inset, we show the dispersion relation of a surface plasmon for an
Al-vacuum interface with the aluminum described by a Drude permittivity [see Eq. (1.23)] with
ωp = 15 eV and a vanishing inelastic decay rate γ. (c) Validity of the electric dipole approximation
in the EEL (dashed black line) and CL (dashed blue line) probabilities associated to an electron
interacting with an Al sphere compared with the full analytical solution, taken from Ref. 15 for
both signals (see corresponding colors). All the curves are computed with v = 0.7c, a = 10 nm,
and b = 5 nm. The sphere polrizability is computed through the Mie coe�cient of Eq. (1.25) using
a Drude permittivity ε1 with ωp = 15 eV and γ = 0.5 eV.



1. Introduction 18

having the same symmetry of the problem, therefore simplifying the application of the
boundary conditions in Eqs. (1.4). By taking the interface extending over the plane
z = 0 [see Fig. (1.2b)], two polarization vectors in the j-th medium are de�ned as
ês = (kyx̂ − kxŷ)/k‖ and êj±p = (k‖ẑ ∓ kjzk̂‖)/kj , where k(j)

z =
√
k2
j − k2

‖ with
Im{kjz} > 0, in order to form a right-handed triad12. The Green tensor Gs is then found
by invoking the electromagnetic boundary conditions [7]. When both the source and the
probed coordinates lie in the top layer, it reads

Gs, surf(r, r′, ω) =
−i

8π2c2

ˆ
d2k‖ eik‖·(R−R′)+ik(1)z (z+z′)

for z, z′ > 0, (1.20)
×
[
rs ês ⊗ ês + rp ê

1+
p ⊗ ê1−

p

]
/k(1)
z .

Equation (1.20) contains all the possible electromagnetic waves sustained by the material
con�guration under analysis and their strength is measured by the so-called Fresnel
re�ection coe�cients entering in the expressions:

[p-polarization] rp =
ε1k

(2)
z − ε2k(1)

z

ε1k
(2)
z + ε2k

(1)
z

, (1.21a)

[s-polarization] rs =
k

(2)
z − k(1)

z

k
(2)
z + k

(1)
z

. (1.21b)

Structural resonances are found by taking the real part of each denominator, which
provides the dispersion relation of each related mode. Of particular importance are the
p-polarized modes found to follow the condition

ω

c
= k‖

√
1

ε1
+

1

ε2
, (1.22)

derived from Eq. (1.21a). They identify a set of traveling waves that are bound to the
surface and cannot couple to free photons reaching the far �eld. For a vacuum-metal
interface, we can take ε1 = 1 and assume ε2 to be given only by the free oscillations of
electrons in the conduction band of a metal or of a doped semiconductor. In this regard,
a Drude dielectric function does remarkably describe their actual local response [19] and
it reads

ε2(ω) = 1− ω2
p

ω(ω + iγ)
, (1.23)

where the classical bulk plasma frequency ωp =
√

4πe2n0/me relates to the conduction
electron density n0 and γ is a phenomenological damping rate accounting for relaxation
of excited electronic states in the material [19]. By plugging Eq. (1.23) into Eq. (1.22), and
by considering only subluminal solutions (i.e., satisfying k‖ > ω/c for γ = 0), we �nd
the dispersion relation ω = (ω2

p/2 + c2k2
‖ −

√
ω4

p/4 + c4k4
‖)

1/2 of the surface-plasmon

12They indeed satisfy the completeness relation I = êj±p ⊗ êj±p + ês ⊗ ês + k̂j± ⊗ k̂j±, with k̂j± =

k‖ ± k
(j)
z ẑ.
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modes, which we depict in Fig. (1.2b). Because the surface-plasmon line does not cross
the light cone, the �eld in vacuum decays exponentially as the distance from the interface
plane increases, therefore allowing for a strong �eld con�nement13.

1.1.6 Small-particle limit: the dipole approximation
As nanophotonics deals with light-matter interaction involving scatterers of characteristic
size a of the order of tens of nanometers, it often happens that we are interested in a
spectral range for which a/λlight � 1. In this regime, we can assume the Green tensor
G0 to vary negligibly within the particle volume centered at position r0, and therefore,
by only retaining the 0-th order Taylor expansion of the scattered �eld in terms of the
a/λlight parameter, from Eq. (1.10), we immediately obtain the vector potential produced
in an uniform medium

Adip(r, ω) = 4πiωcG0(r, r0, ω)p(ω),

where we have de�ned the dipole moment as p(ω) = (i/ω)
´
d3r j(r, ω). In addition, p

can be connected to the external �eld generating the current inside the particle through
a polarizability tensor α(ω) as p(ω) = α(ω)Eext(r0, ω). Finally, we can link Eext(r0, ω)
to its source current, leading to the de�nition of the Green tensor for a dipolar scatterer

Gs, dip(r, r′, ω) = −4πω2G0(r, r0, ω)α(ω)G0(r0, r
′, ω). (1.24)

Equation (1.24), with the right choice of polarizability, has been shown to be capable
of successfully model relevant aspects of the dipolar electromagnetic response. For
instance, for a self-standing perfect sphere of permittivity ε1 placed in vacuum, the
polarizability can be approximated by α(ω) = 3tE1 /2k

3 [8] in terms of the electric Mie
scattering coe�cient [20]

tE1 =
−j1(x0)[x1j1(x1)]′ + ε [x0j1(x0)]′j1(x0)

h
(+)
1 (x0)[x1j1(x1)]′ − ε [x1h

(+)
1 (x1)]′j1(x0)

, (1.25)

where jl and h(+)
l are the spherical Bessel and Hankel14 functions respectively [13], while

x0 = ka and x1 = k1a. This expression incorporates retardation corrections in the
dipolar modes of the particle. In Fig. (1.2c), we observe how the dipole approximation
compares to the full analytical solution for the far-�eld cathodoluminescence emission
(CL) and the electron-energy loss (EEL) probability, which we shall encounter in the next
subsection, for a small metallic sphere [15].

1.1.7 Classical electron energy-loss and cathodoluminescence
probabilities

When a free charged particle, like an electron in EM, interacts with a sample through the
�eld in Eq. (1.19), the dynamical response of the involved materials induces an electric
�eld that acts back on the particle producing a stopping force and, thus, reducing its

13This is because k(1)z becomes a purely imaginary part, which leads to a real exponential in Eq. (1.20).
14Here, we adopt the notation of Messiah, which can be found in Ref. 21.
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kinetic energy. Far from the specimen, the total energy lost by the electron is simply
given by the work done by such �eld on the classical current associated with the moving
charge j(r, t) = −evδ[r − re(t)] integrated over the entire trajectory, which one can
write as

∆E = e

ˆ ∞
−∞

dtv ·E[re(t), t].

By taking the electron trajectory to be re(t) = (R0, vt) and by dividing the average
energy in frequency components as ∆E =

´∞
0
dω ~ω ΓEEL(R0, ω), one can exploit the

de�nition of the �eld in terms of the full Green tensor leading to the well-known classical
formula for the EEL probability [8]

ΓEEL(R0, ω) =
4e2

~

ˆ ∞
−∞

dz dz′ cos
[ω
v

(z − z′)
]
Im {−Gzz(R0, z,R0, z

′, ω)} . (1.26)

Equation (1.26) represents a powerful result to compute the coupling between an e-beam
and the optical modes supported by a sample (e.g., a nanoparticle), which remarkably
matches experimental results measured for several di�erent metallic and dielectric
nanostructures [22]. Interestingly, the separation in Eq. (1.12a) naturally allows for the
division of the energy loss probability into two contributions as ΓEEL = Γbulk + Γs,
with Γbulk corresponding to G0 and Γs to Gs. Since free electrons cannot emit or absorb
photons in vacuum15, Γbulk = 0 unless εj 6= 1 [8].

Because during the interaction not all the �eld scattered by the sample is reabsorbed
by the electron, there is a nonzero probability to measure a photon at a detector far from
the specimen. Such probability can be calculated by resorting to the Poynting vector
of Eq. (1.5b) in order to evaluate the total energy �owing out of a spherical surface of
in�nite radius:

∆E = lim
kr→∞

ˆ ∞
−∞

dt

ˆ
dΩr̂ r

2 S(r, t) · r̂. (1.27)

Then, by following similar steps as done for the calculation of the electron energy loss,
we obtain the angle-resolved di�erential photon emission probability

dΓCL

dωdΩr̂
= lim
kr→∞

r2

4π2k
Re{E(r, ω)×B∗(r, ω)} · r̂. (1.28)

By means of this expression, the probability of coherent cathodoluminescence16 can be
computed, predicting with good accuracy experimental results aimed at mapping optical
excitations such as surface plasmons propagating on metallic surfaces [23]. Intuitively,
Eqs. (1.26) and (1.28) lead to the same value for an electron interacting with samples
having negligible inelastic losses (i.e., for real ε).

15For a classical electron, the energy dispersion along the particle propagation direction is ω = vk < ck
[see Eq. (1.19)]. Such a line never crosses the projection of the light cone, thus preventing the coupling to free
space light.

16Here, the word coherent is used to discern from di�erent processes yielding the emission of a photon with
energy di�erent from the energy lost by the electron [8].
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1.2 Quantum charges and classical �elds

We shall now turn our attention to the description of e�ects that can be explained only if
the quantum nature of charged particles is taken into account. Indeed, concepts such as
interference of matter waves, quantum nonlinearity, and decoherence cannot be captured
by the classical theoretical analysis conducted so far. Furthermore, since we want to deal
with particles traveling at a considerable fraction of the speed of light, we will also need
a relativistic description of the quantum mechanical interaction between charges and
electromagnetic �elds.

1.2.1 Relativistic and nonrelativistic dynamics

A theoretical framework capable of dealing with all the previously mentioned ingredients
is quantum electrodynamics (QED), which was mostly developed during the �rst half
of the 20th century. Its cardinal building element is represented by the Dirac equation,
given by [21,24,25]

{
mec

2β + c~α ·
[
p +

e

c
A(r, t)

]}
Ψ(r, t) = i~∂tΨ(r, t), (1.29)

where p = −i~∇ is the momentum operator and

β =

[
I2 0
0 −I2

]
, ~α =

[
0 ~σ
~σ 0

]

are matrices de�ned in terms of the 2 × 2 identity and the Pauli matrices I2 and ~σ,
respectively. Equation (1.29) describes the interaction between a 1/2-spin charged particle
(in Eq. (1.29) for an electron) and a classical vector potential A(r, t) through the 4-
component spinors Ψ(r, t) by taking into account the relativistic dispersion relation
~εk = c

√
m2

ec
2 + ~2k2 for the electron energy as well as spin e�ects embedded in the

multidimensional nature of the wave function. The time dependent spinor in Eq. (1.29)
is usually written as a linear combination of the noninteracting eigensolutions17 with
positive and negative energies:

Ψ+
ks(r, t) = Ak

[
ŝ

Bk (~σ · k) ŝ

]
e−iεkt+ik·r,

Ψ−ks(r, t) = Ak

[
−Bk(~σ · k)ŝ

ŝ

]
eiεkt+ik·r,

where Ak =
√

(εk +mec2/~)/2εkV , Bk = c/(εk + mec
2/~), V is the quantization

volume used as a normalization factor and ŝ denotes one of the two orthonormalized
2-dimensional unit spin vectors18 indexed by s as Ψ(r, t) =

∑
±
∑

ks α
±
ks(t)Ψ

±
ks(r, t).

When the coe�cients of the expansion take non-negligible values up to wave vectors
satisfying kc/εk � 1, it is well known that the Dirac equation can be transformed into

17Solutions found from Eq. (1.29) by setting A = 0.
18A possible choice of vectors would be the two independent eigenvectors of the Pauli matrix satisfying the

equation σz ŝ = ±ŝ.
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the nonrelativistic Schrödinger equation i~∂tχ(r, t) = Hχ(r, t) with a Hamiltonian
formed by the sumH = H0 +H1 +H2 +H3

[25], where

H1 = − i~e
2mec

[∇ ·A(r, t) + A(r, t) · ∇] , (1.31a)

H2 =
e2

2mec2
A2(r, t), (1.31b)

H3 =
e~

2mec
~σ ·B(r, t), (1.31c)

and H0 = −~2∇2/2me. Now, the wave function χ is a 2-dimensional spinor. The
contribution H1 represents the linear light-matter coupling, H2 accounts for the
ponderomotive force, andH2 yields a nonzero probability to spin �ip events.

We can estimate the relative importance of the each term by assuming an electron with
wavelength λe and an electric �eld of amplitude E with photon energy ~ω varying over a
distance L. Doing so, the relative magnitude of the di�erent contributions is |H2/H1| ∼
e Eλe/2π~ω, |H2/H3| ∼ e EL/~ω, and |H1/H3| ∼ 2πeL/λe. We immediately notice
that, for an electron moving at a signi�cant fraction of the speed of light and for light in
the optical spectral region, the term linear in the vector potential dominates the dynamics
over the ponderomotive and spin couplings. In contrast, the term in Eq. (1.31b) and the
one in Eq. (1.31c) can take similar values under certain circumstances. However, in this
Thesis we focus on situations in which either a high amplitude �eld (E > 108 V/m) is
considered or the targeted excitation energies belong to the infrared spectrum, therefore
always disregarding the in�uence ofH3 as a safe approximation.

1.2.2 Paraxial beams and nonrecoil approximation

According to the previous discussion, we can solve the Schrödinger equation dismissing
the spin degrees of freedom. Therefore, the general scalar solution ψ must admit the
expansion ψ(r, t) =

∑
k αk(t)eik·r−iεkt/

√
V .

In the experimental scenarios on which we are interested, an electron interacts with
excitations of energies ~ω several orders of magnitude smaller than its kinetic energy
and, in state-of-the art TEM and SEM, reaches the specimen with initial components
α0
k describing a well-collimated19 e-beam, with a central wave vector k0 de�ning the

frequency ε0 = εk0 and the velocity v = k0c
2/ε0. In this regime, the so-called nonrecoil

approximation, which is equivalent at linearizing the electron energy around k0 as

εk ≈ ε0 + v · (k− k0), [Nonrecoil approximation] (1.32)

can be adopted, and the Dirac equation can be transformed into a scalar Schrödinger
equation i~∂tψ(r, t) = (Hpar

0 +Hpar
1 +Hpar

2 )ψ(r, t) with [see Appendix B for a

19Here, with the word collimated we mean that α0
k takes negligible values when the transverse components

of k (relative to the electron velocity v) are not very small compared to the longitudinal component.
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detailed proof]

Hpar
0 = ~ε0 − ~v · (i∇+ k0), (1.33a)

Hpar
1 = (ev/c) ·A(r, t), (1.33b)

Hpar
2 =

e2

2mec2γ

[
A2
x(r, t) +A2

y(r, t) +
1

γ2
A2
z(r, t)

]
. (1.33c)

Interestingly, we notice that, once the nonrecoil approximation is assumed any initial
wave function ψ0(r, t) of an impinging electron can be written in the form ψ0(r, t) =
eik0·r−iε0tφ0(r−vt), where φ0(r−vt) =

∑
k α

0
k0+k eik·(r−vt)/

√
V represents a slowly

varying envelope.
We identify Eqs. (1.33) as the basic starting point in the development of the theoretical

framework describing the interaction between light and fast free electrons in EMs. Indeed,
as we shall see in the next subsection, they are able to successfully model a plethora of
phenomena connected to the interaction of synchronized e-beams and light at a specimen.

1.2.3 Classical photon-induced near-�eld electron microscopy
(PINEM)

We now consider a situation in which an electron reaches a specimen while it is irradiated
by an intense laser pulse. Here, the electron dynamics is dominated by a high number of
inelastic scattering events induced by its interaction with the external vector potential
A. Even though the electron cannot couple to free light for the reasons mentioned in
Section 1.1.3, modes having subliminal dispersion like the ones shown in Fig. (1.2b) can
overcome the energy-momentum mismatch and produce high interaction strengths. As a
consequence, a fast dynamics is generated in which many quanta are exchanged between
the electron and light, a process that goes under the name of photon-induced near-�eld
electron microscopy (PINEM) interaction [26] given the fact that it was �rstly proposed as
a way to obtain time-resolved images of nanostructures. Assuming that the Hamiltonian
in Eq. (1.33) describes well the physics during the entire duration of the interaction, the
Schrödinger equation admits the analytical solution20 [27–30]

ψ(r, t) = ψ0(r, t) exp

[
− i

~

ˆ t

−∞
dt′Hpar

int (r− vt+ vt′, t′)

]
, (1.34)

where we have de�ned the paraxial interaction HamiltonianHpar
int = Hpar

1 +Hpar
2 .

In most cases of practical interest, the laser pulse illuminating the scattering
structure can be considered to carry a single frequency ω21. In such situations, time
and spatial dependence in the vector potential can be separated by writing it as
A(r, t) = (2c/ω)Im{~E(r) e−iωt}, where ~E(r) is the electric �eld amplitude resulting
from the sum of the external laser and scattered amplitudes. Since we are interested in
the electron wave function far from the sample, we evaluate Eq. (1.34) at long times such

20One shall try to plug this ansatz into the Schrödinger equation to verify its correctness.
21For works in which several light colors induce a PINEM interaction, we point the reader to Ref. 31, where

A carries several harmonics generated by the nonlinear response of the sample, and to Ref. 32, where the
electron undergoes stimulated Compton scattering in free space.
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that ψ0 vanishes in the interaction region. Doing so, and by taking v = vẑ, the previous
expression can be rewritten as [33]

ψ(r, t) = ψ0(r, t) eiϕ(R) (1.35a)
× P0[β1(R), ω, z − vt]P0[β2(R), 2ω, z − vt],

with

P0[β, ω, z] = exp
(
−βeiωz/v + β∗e−iωz/v

)

=

∞∑

`=−∞
J`(2|β|) ei`arg{−β}ei`ωz/v, (1.35b)

where J` is the `-th Bessel function and P0 encapsulates the energy reshaping that
the electron undergoes during its interaction with the �eld, whose coupling strength is
measured by the parameters

β1(R) =
e

~ω

ˆ ∞
−∞

dz Ez(r) e−iωz/v, (1.36a)

β2(R) = − i

2Mω2

ˆ ∞
−∞

dz

[
E2
x(r) + E2

y (r) +
1

γ2
E2
z (r)

]
e−2iωz/v, (1.36b)

and by the elastic phase

ϕ(R) = − 1

Mω2

ˆ ∞
−∞

dz

[
|Ex(r)|2 + |Ey(r)|2 +

1

γ2
|Ez(r)|2

]
. (1.37)

We note that to obtain Eq. (1.35b) from the previous line, the Jacobi-expansion eiu sin θ =∑
` J`(u)ei`θ needs to be applied with u = 2|β| and θ = arg{−β}+ ωz/v22. The factor

M = meγv/cα is an e�ective mass and α ≈ 1/137 is the �ne-structure constant.
In Eq. (1.35b), the index ` counts the number of photons absorbed (` > 0) and

emitted (` < 0) by the electron, which, as we have already anticipated, reshapes its
wave function according to Eq. (1.35a). The factor β1 is called the PINEM coupling
coe�cient23 and it is usually orders of magnitude larger than the ponderomotive coupling
β2 for �eld amplitudes that do not degrade the sample. In particular, the relative strength
|β2/β1| ∼ |~E|/Ethres with Ethres = 2meγvω/e (≈ 5 × 1012 V/m for ~ω = 1.5 eV and
100 keV electrons) sets a threshold �eld amplitude that is∼ 4 orders of magnitude greater
than the typical values used so far in PINEM experiments [36]. When ~E(r) does not
carry evanescent components, like in a laser pulse in free space, the energy-momentum
mismatch yields β1 = β2 = 0, which in turn implies zero inelastic scattering events
signaled by the fact that P0 = 1. Here, the phase ϕ [see Eq. (1.37)] remains the only trace
of the interaction and it gives rise to elastic di�raction analogous to the Kaptiza-Dirac
e�ect [37,38].

22See, for example, Eq. (9.1.41) of Ref. 13
23In other works (see, for example, Refs. 34 and 35), this coe�cient is indicated with the letter g and

sometimes it brings an additional factor of 2 in the denominator that comes from a di�erent de�nition of the
�eld amplitude taken as A(r, t) = (c/ω)Im{~E(r) e−iωt}.
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(a) (b)
<latexit sha1_base64="5xwrTT87Q613xRvCbkBc+x21B6w="></latexit>v

fs

electron

delay

sample

laser 
pulse

PINEM 
spectrum

<latexit sha1_base64="wnXkV9vecA+FndN+xb3yFJc8Sh4="></latexit> |�
1
|

<latexit sha1_base64="jbRwd7Sqm5FNY4kX6xtYzWRFITw="></latexit>

("k � "0)/!

Figure 1.3: Classical PINEM interaction. (a) Schematic of the experimental realization of a
PINEM interaction in which a fs laser pulse is synchronized with a an electron pulse at the sample.
After leaving the interaction region the electron is collected into a spectrometer and then analyzed.
(b) The resulting electron energy loss spectrum resulting from a PINEM interaction as a function
of the coupling parameter |β1| according to the peak intensities given by Eq. (1.38). For illustrative
purposes the peaks have been broadened by means of a Lorentzian function with FWHM= 0.12.

Coming back to the presence of a material interface (β1 6= 0), the linear energy
superposition shown in Eq. (1.35a) can be easily observed by looking at the spectrum
of the transmitted electrons, as shown in Fig. (1.3a) for β2 = 0. According to the rules
of quantum mechanics, the peak intensities are directly obtained by squaring the plane
wave amplitudes in Eq. (1.35b), yielding

P` = J2
` (2|β1|). (1.38)

The average net number of quanta exchange is 〈`〉 ∝ |β1|, thus growing linearly with
the �eld amplitude, together with the presence of coherent oscillations in the scattering
order `.

We conclude this subsection by noticing that, neglecting the ponderomotive coupling,
since the relation P0(β1, ω, z)P0(β̃1, ω, z) = P0(β1 + β̃1, ω, z) holds, the e�ect of two
consecutive PINEM interactions happening under the e�ect of two synchronized laser
pulses with the same frequency can be reduced to a single interaction with a coupling
given by the sum of the respective coe�cients corresponding to each isolated stage, as
experimentally observed in Ref. 39.

1.2.4 Multiple free charges: second quantization

When dealing with systems including many free charges, such as in an e-beam composed
by several correlated electrons, it is useful to introduce the formalism of second
quantization [40]. Indeed, this formalism allows for a more compact and elegant way of
writing equations having the property of maintaining their meaning even when the
exact number of particles is not speci�ed. In such framework, every single particle
Hamiltonian written in �rst quantization is transformed into its second-quantized
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version via the prescription

H(r)→ Ĥ =

ˆ
d3r ψ̂†(r)H(r)ψ̂(r),

where, in the nonrelativistic limit24, ψ̂(r) =
∑
i ϕi(r)ĉi is the fermionic �eld operator, ĉi

are the annihilation operators respecting the anticommutation relations {ĉi, ĉ†j} = δij and
{ĉi, ĉj} = 0, while the functions ϕi(r) form a complete set of single-particle eigenstates.

For instance, by again disregarding spin, the QED Hamiltonian of Eqs. (1.31) reduces
to

Ĥ0 = − ~2

2me

ˆ
d3r ψ̂†(r)∇2ψ̂(r), (1.39a)

Ĥint(t) = −1

c

ˆ
d3r ĵ(r, t) ·A(r, t), (1.39b)

where we have de�ned the current operator

ĵ(r, t) =
i~e
2me

[
ψ̂†(r)∇ψ̂(r)−∇ψ̂†(r)ψ̂(r)

]
+

e

2mec
ρ̂(r)A(r, t), (1.40)

together with the charge operator ρ̂(r) = −eψ̂†(r)ψ̂(r). The advantage of expressing
the light-matter Hamiltonian as done in Eq, (1.39b) is to explicitly present the quantum
current ĵ thus allowing us to easily go from a full quantum-mechanical description of
charges, to its classical version. However, we remark that, due to the lack of gauge
invariance, the current in Eq. (1.40) cannot be identi�ed as the real measurable current
appearing in Eqs. (1.1), but it can be calculated from it as ĵg = ĵ + eρ̂A/2mec.

1.3 Quantum charges and �elds

By taking a closer look at the electron wave function after a PINEM interaction with a
classical vector potential A(r, t) [see Eq. (1.35a)], someone could have noticed that, by
extending it from −∞ to∞, the summation over the net number of exchanged quanta
must implicitly assume a �eld able to supply an unlimited amount of photons. However,
if one could dim it enough, the laser should in principle be able to inject a �nite amount
of quanta in the sample, such that an electron with su�ciently strong coupling could
absorb them all. In what follows, we introduce the quantum theory of light necessary
to incorporate these types of e�ects, including the possibility of dealing with scarcely
populated cavities.

1.3.1 Light quantization
In order to account for the aforementioned e�ects, the theoretical framework of QED
presented so far requires another ingredient aiming at the inclusion of the light degrees of

24In relativistic QED, the second-quantized version of the Dirac equation [Eq. (1.29)] must also incorporate
the creation and annihilation of positrons represented in �rst quantization by the negative energy solutions
(see Chapter 7).
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freedom into a dynamical description: light quantization. Even though, light quantization
in free space is a task addressed in almost all ordinary textbooks of quantum mechanics [41],
the de�nition of elementary excitations in complex media is a subject that presents many
di�culties and it is still a subject of research. The main problem arises from the fact that
every medium di�erent from vacuum, comprising a large number of sub-components
such as atoms and molecules, is characterized by its own microscopic dynamics, therefore
building complicated electromagnetic responses. However, if one is not interested in
the fast processes taking place in the material, but only in the transitions between its
collective light-matter states, we can still assume the macroscopic MEQS to hold at an
operatorial level, namely upgrading the vector potential function to a �eld operator

A(r, t)→ Â(r, t),

where now the time dependence is introduced through a Hamiltonian Ĥ = Ĥ0 + Ĥint as
Â(r, t) = eiĤt/~Â(r)e−iĤt/~. Here, Ĥ0 = Ĥf

0 + Ĥj0 accounts for the coupled dynamics
of all the components of matter and photons through Ĥf

0 as well as the free dynamics of
any external source de�ning a current ĵ via Ĥj0, while Ĥint is given by Eq. (1.39b).

A �rst step connecting classical and quantum worlds can consist in calculating,
in �rst Born approximation, the average of the quantum vector potential over the
state |ψ(t)〉 = e−iĤ(t−t0)|ψ(t0)〉. In order to do so, we rewrite the state as |ψ(t)〉 =

e−iĤ0t/~Ŝ(t)|ψ(−∞)〉 by means of the scattering operator [40]

Ŝ(t) = T exp

{
(−i/~)

ˆ t

−∞
dt′Ĥint(t

′)

}
, (1.41)

where T denotes the time-ordering operator and Ĥint(t) = eiĤ0t/~Ĥinte
−iĤ0t/~ is

the Hamiltonian of interaction written in the interaction picture. Here, we choose
|ψI(−∞)〉 = |g〉25 to be the lowest energy state satisfying the equation Ĥ0|n〉 = ~εn|n〉,
where |n〉 runs over a complete set of states of the entire system. By putting all of these
elements together, and by using a classical current j as a source in Ĥint, we obtain the
relation [40]

〈Â(r, t)〉 ≈ −4πc

ˆ ∞
−∞

dt′
ˆ
d3r′GR(r, r′, t− t′)j(r′, t′), (1.42)

where we have introduced the retarded response function

GR(r, r′, t− t′) = − i

4π~c2
〈g|
[
ÂI(r, t), ÂI(r′, t′)

]
|g〉 θ(t− t′), (1.43)

in which the superscript I stands now for a time dependence given by the interaction
picture, namely ÂI(r, t) = eiĤf

0t/~Â(r)e−iĤf
0t/~. From Eq. (1.42), moving to the

frequency domain, we obtain an equation equivalent to Eq. (1.10), which therefore implies
the strong equivalence between quantum and classical worlds set by the correspondence
GR = G. For systems that are invariant under time reversal, this analogy allows one

25We consider all the media to be a T = 0 K (zero temperature), but the generalization to �nite T is
straightforward.
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to deduce another fundamental relation on the average of the �eld �uctuations [see
Appendix C for a self-contained proof]

1

2
〈g|
{
ÂI(r, ω), ÂI†(r′, ω′)

}
|g〉 = −8π2c2~ Im{G(r, r′, ω)} δ(ω − ω′). (1.44)

In particular, the previous expression sets a constraint on the form that the quantized
vector potential Â can take in order to describe the dressed excitations of matter and
photons that we wish to model through a single operator.

1.3.2 The macroscopic quantum electrodynamics framework
(MQED)

We shall now proceed to present one of the existent theoretical frameworks to
describe quantum states of light in the presence of absorbing and dispersive materials,
commonly known as macroscopic quantum electrodynamics (MQED) and consisting in
quantizing the electromagnetic �eld while respecting the electromagnetic Green tensor
correspondence and the �uctuation-dissipation relation of Eq. (1.44). In particular,
MQED has been used for several di�erent developments such as the description of van
der Waals [42] and Casimir-Polder forces [43,44], electron scattering generating x-rays and
plasmon polaritons [45], and to develop part of the research contained in this Thesis. A
full description of such framework can be found in Ref. 7 in the CG, while here we adapt
it to the WG.

MQED relies on the introduction of a quantum noise current operator ĵnoise(r, ω),
satisfying the continuity equation ∇ · ĵnoise(r, ω) = iωρ̂noise(r, ω), as an additional
contribution to the real material currents appearing in the usual de�nition of the
displacement �eld that now reads

D̂I(r, ω) = ε(r, ω)ÊI(r, ω) +
4πi

ω
ĵnoise(r, ω). (1.45)

Since we want the operators ĤI, B̂I, D̂I, and ÊI to satisfy the operatorial version of Eqs.
(1.1) with no external sources, the vector potential operator can be directly written in
terms of the noise current as

ÂI(r, ω) = −4πc

ˆ
d3r′G(r, r′, ω)̂jnoise(r′, ω). (1.46)

By plugging Eq. (1.46) into Eq. (1.44), a relation for the noise currents is obtained. MQED
is based on a speci�c form of the currents which, for a non-magnetic, local, and linearly
responding environment are written as [7]

ĵnoise(r, ω) = ω
√
~ Im{ε(r, ω)} f̂(r, ω), (1.47)

where f̂(r, ω) are a continuous set of bosonic ladder operators satisfying the commutation
relations

[
f̂(r, ω), f̂†(r′, ω′)

]
= Iδ(r−r′)δ(ω−ω′), and

[
f̂(r, ω), f̂(r′, ω′)

]
= 0, which

create and annihilate photon-matter dressed excitations. By identifying the ground state
|g〉 as the vacuum state such that f̂(r, ω)|0〉 = 0 and by using the relationˆ

d3r′′Im{ε(r′′, ω)}G(r, r′′, ω)G∗(r′′, r′, ω) = − 1

ω2
Im{G(r, r′, ω)} (1.48)
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[direct consequence of Eq. (1.11) [7]], one can verify that Eq. (1.44) holds true. In addition,
we require the Fourier transform of the �eld ÂI(r, t) =

´∞
0
dω ÂI(r, ω)e−iωt/2π +´∞

0
dω ÂI†(r, ω)eiωt/2π to match the time-evolved operator eiĤf

0t/~Â(r)e−iĤf
0t/~. This

is achieved by choosing the free Hamiltonian to be diagonal in the ladder operators,
namely

Ĥf
0 =

ˆ ∞
0

dω

ˆ
d3r ~ω f̂†(r, ω) · f̂(r, ω). (1.49)

We are now ready to introduce external charges coupling to the quantized �eld-matter
modes. This is accomplished by coupling the �eld degrees of freedom to the free sources
via Ĥint in Eq. (1.39b). With the help of the commutators reported in Appendix C, the
Heisenberg equations for the �eld operators lead to the last three MEQS for the quantized
�elds and currents, speci�cally

∂tÂ(r, t) =
i

~

[
Ĥ, Â(r, t)

]
→ ∇× Ê(r, t) = −1

c
∂tB̂(r, t),

∂tD̂(r, t) =
i

~

[
Ĥ, D̂(r, t)

]
→ ∇× Ĥ(r, t) =

1

c
∂tD̂(r, t) +

4π

c
ĵg(r, t),

If the continuity equation∇ · ĵg(r, t) = −∂tρ̂(r, t) holds26, we also have∇ · D̂(r, t) =
4πρ̂(r, t), thus completing the entire set of macroscopic MEQS.

As a �nal remark, we note that, since the operator ÂI is proportional to the commuting
ladder operators, the commutator of two vector potentials ÂI turns out to be always
a c-number (see, for example, Appendix C), that is a scalar multiplied by the identity
in operator space. We shall see that this result has strong implications in solving the
dynamics of di�erent con�gurations, especially in the interaction between an electron
and a cavity.

1.3.3 The limit of discrete modes

Despite the generality of the MQED framework, the fact that it is based on the possibility
of creating an destroying a in�nite continuum of excitations renders it hard to be applied
when one is interested in studying the exact state produced by the interaction with one
of the bosonic modes (a dominant one). In addition, as we have seen in the context
of the dipole approximation [see Fig. (1.2c)], there are cases in which the response of
the electromagnetic response of a system in a speci�c range of frequencies can be well
modeled by explicitly considering just one or a few modes.

By following a quantum-optics approach [46,47], and in analogy to the expansion in Eq.
(1.46), we write the vector potential operator as a discrete sum of modes

Â(r) =
∑

i

(−ic/ωi)
[
~Ei(r)âi − ~E∗i (r)â†i

]
, (1.50)

26This can be shown to hold for any system with a non-interacting Hamiltonian Ĥj0 commuting with the
density operator (i.e., [Ĥj0, ρ̂(r)] = 0). For instance, it is valid when a scalar and local potential V (r) acts on
the particle motion yielding Ĥj0 =

´
d3r ψ̂†(r)[−~2∇2/2me + V (r)]ψ̂(r) .
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where we have introduced a set of bosonic ladder operators âi ful�lling the commutation
relations [âi, âi′ ] = 0, [âi, â

†
i′ ] = δii′ as well as the electric �eld amplitude distributions

~Ei(r) and frequencies ωi corresponding to each mode, which still need to be de�ned.
Again, in analogy to Eq. (1.49), when the previous expansion is taken to be valid, we
write the free �eld Hamiltonian as

Ĥf
0 =

∑

i

~ωiâ†i âi, (1.51)

and we append a factor e−iωit to âi when writing ÂI(r, t).
While we can always expand the vector potential in the general form presented in

Eq. (1.50), both the form of the vectors ~E(r) and the type of evolution associated with
the electromagnetic modes can vary depending on the quantization procedure that is
employed. For instance, in a system composed of only dielectric structures, the modes
can be de�ned in the same way as done in Eq. (1.16) and the time evolution can be
directly introduced through a Schrödinger equation with a Hamiltonian Ĥf

0 + Ĥj0 + Ĥint

supplemented by an additional term Ĥc that takes care of the Coulomb interaction
modi�ed by the dielectric environment:

Ĥc =
1

2

ˆ
d3r d3r′ρ̂(r)GL(r, r′)ρ̂(r′). (1.52)

In general, this term can be disregarded when looking at the interaction of a single free
electron with a cavity, as long as the longitudinal self-image attraction can be considered
to be negligible [see Section 4].

A more general quantization procedure that includes the possibility of dealing with
leaky cavities is provided by quasinormal modes [48]. However, this approach requires
the use of the density matrix ρ̂ in order to correctly describe the evolution of the state
of the quantized excitation, which in the single-mode limit is governed by the Lindblad
master equation [48,49]

∂tρ̂ =
i

~

[
Ĥf

0 + Ĥj0 + Ĥint + Ĥc, ρ̂
]

+ L[ρ̂], (1.53)

with L[ρ̂] = (γ/2)[2âρ̂â† − â†âρ̂ − ρ̂â†â] standing for the Lindblad operator that
phenomenologically accounts for cavity losses at a rate γ. For long-lived cavity modes
having lifetimes τ = 1/γ of the order of ∼ 1 ps, the operator L can be safely omitted
when interacting with a fast e-beam because the interaction time is ∼ 1000× τ for an
electron kinetic energy of ∼ 1 keV and a cavity of ∼ 100 nm in size.

1.3.4 Brief introduction to quantum optics
One of the main consequences of light quantization is that, in order to describe the time
evolution of the �eld and predict the result of an eventual measurement of its phase
and intensity, the classical vector amplitude A(r, t) used in Section 1.1 is not su�cient
anymore, as it only contains part of the information describing the photonic state. Now,
the full de�nition of the �eld can only be given upon provision of both the form of the
vector potential operator Â and the �eld quantum state |ψ〉. In a single-mode system
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and for a pure-state evolution, such state can be written as a sum of Fock states |n〉 in
the form

|ψ〉 =
∑

n

cn|n〉, (1.54)

where cn are expansion coe�cients. The possibility of engineering this linear combination
to improve measurements as well as to tune the properties of light-based processes is the
main objective of quantum optics (QO) [50]. Here, we quickly review just a few examples of
quantum states of light such as single-mode coherent, squeezed, and thermal states, which
will be used in the next chapters, putting more emphasis on their particular statistical
properties.

Single-mode coherent state

The light state that makes the behavior of a quantum electromagnetic �eld the closest
to its classical version is called coherent state. Its discovery can be traced back to the
work of Schrödinger, who was seeking situations in which the quantum and classical
descriptions coincided [51], but which were later used in a more systematic way to tackle
quantum electrodynamics problems by R. J. Glauber in 1963 [52]. In particular, it is de�ned
by the relation

|α〉 = D̂(α)|0〉, (1.55)

where we have introduced the so-called displacement operator D̂(α) = eαâ
†−α∗â. By

projecting onto a Fock state, we can compute the expansion coe�cients in Eq. (1.54) for
a coherent state:

cchn = e−|α|
2/2 α

n

√
n!
.

One immediately notices that the probability of measuring n photons in a coherent state
is given by a Poissonian distribution of mean value 〈n̂〉ch =

∑∞
n=0 n|cchn |2 = |α|2, and

equal variance 〈∆n̂2〉ch = 〈n̂2〉 − 〈n̂〉2 = |α|2, where n̂ = â†â. The connection between
a coherent state and the classical �eld amplitude come from the fact that, by using the
property D̂†(α)âD̂(α) = â+α [46], one can show that a coherent state is an eigenstate of
the lowering operator, namely â|α〉 = α|α〉, therefore transforming part of the operator
in Eq. (1.50) into a number. However, |α〉 is not an eigenstate of the rising operator â†,
and therefore, it preserves some quantum properties for a low number of photons. The
full quantum-classical equivalence is only met for n� 1, especially when â†|n〉 ≈ â|n〉
as
√
n+ 1 ≈ √n in this limit.

We now introduce the quadrature operators X̂ = (â+ â†)/2 and Ŷ = (â− â†)/2i as
they become particularly important in QO because they are proportional to the position
and momentum operators, respectively. In particular, their variances are bounded by the
relation 〈∆X̂2〉〈∆Ŷ 2〉 ≥ 1/16, and therefore, the coherent state constitutes a minimum
uncertainty state that saturates the inequality through 〈∆X̂2〉ch = 〈∆Ŷ 2〉ch = 1/4.

Another important quantity in the characterization of a quantum state of light is
given by the corresponding intensity �uctuations measured by a single detector sensitive
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to the i-th �eld polarization and placed at position r. This is given by the zero-delay
second-order Glauber correlation function [53]

G(2)(0) = 〈ÊI−
i (r, t)ÊI−

i (r, t)ÊI+
i (r, t)ÊI+

i (r, t)〉,

where we separated the single-mode version of ÊI(r, t) derived from Eq. (1.50) into a
sum of two components such that Ê−(r, t) ∝ eiωt and Ê+(r, t) ∝ e−iωt 27. Normalized
by the square of the average intensity, it becomes

g(2)(0) =
〈n̂(n̂− 1)〉
〈n̂〉2 . (1.56)

By plugging Eq. (1.55) into Eq. (1.56), we obtain g(2)
ch (0) = 1. For this reason, when a

quantum state of light provides values of g(2)
ch (0) > 1, it is said to have super-Poissonian

statistics, while in the opposite limit, it is referred to as sub-Poissonian. The measurement
of g(2)(0) is therefore of primal importance in understanding the statistics of an unknown
light source. For instance, it is widely used to certify single-photon sources, as Eq. (1.56)
vanishes when computed for the Fock state |1〉 [54].

Single-mode coherent-squeezed state

Even though the coherent state is a minimum uncertainty state, other states can also
saturate the Heisenberg uncertainty principle by simply decreasing the �uctuations of
one of the two operators at the expense of the other. These states are called vacuum
squeezed states [55] and they are de�ned as

|ζ〉 = Ŝ(ζ)|0〉, (1.57)

with Ŝ(ζ) = eζ
∗â2/2−ζâ†2/2 being the unitary squeezing operator. Performing the

average on the state in Eq. (1.57) and setting ζ = s eiθ , we see that the quadratures
take the form 〈∆X̂2〉s = e−2s/4 and 〈∆Ŷ 2〉s = e2s/4. Therefore, the magnitude
of s de�nes the precision with which a measurement on the position or momentum
associated with the electromagnetic mode can be performed. In addition, the second-
order correlation function g(2)

s (0) = 3 + 1/〈n̂〉s predicts a vacuum-squeezed state to
display super-Poissonian statistics because 〈n̂〉s > 0.

In most realistic systems, the nonlinear generation of squeezed states is usually also
accompanied by a linear coupling in the dynamics, such that the �nal state in the mode
is given by a squeezed-coherent state of the form

|α, ζ〉 = D̂(α)Ŝ(ζ)|0〉, (1.58)

which, when projected onto Fock states, reads

cschn =
(ξ/2)n/2√
n! cosh(s)

e−(|α|2+α∗2ξ)/2Hn

[
α+ α∗ξ√

2ξ

]
, (1.59)

27The ordering of the operators in the correlation function is called normal ordering and its meaning can be
found in the actual physical realization of photon detection [see, for example, Ref. 46].
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where Hn is the n-th Hermite polynomial [13] and ξ = eiθ tanh s. The corresponding
average of the number of photons and variance can be directly computed as

〈n̂〉sch = |α|2 + sinh2(s), (1.60a)
〈∆n̂2〉sch = |α|2

[
e−2s cos2(ϕ) + e2s sin2(ϕ)

]
+ 2 sinh2(s) cosh2(s), (1.60b)

where ϕ = θ/2 − arg{α}. In particular, Eq. (1.60b) strongly depends on the phase
di�erence ϕ: the variance takes minimum and maximum values for ϕ = 0 and ϕ = π/2.
Since the number of photons represents the phase conjugate variable [46], in the former
case |α, ζ〉 receives the name of an amplitude-squeezed state, while the latter is called
phase-squeezed state.

Single-mode thermal state

As a last example, we consider a state that is typically found when a physical system
is in thermal equilibrium with an external reservoir at a temperature T . This state is
composted by an incoherent superposition of Fock states, as such it cannot be expressed
in the form of Eq. (1.54), but only through the use of the density matrix. The thermal
state is thus given by

ρ̂th =
[
1− e−θ

]
e−θn̂, (1.61)

where θ = ~ω/kBT . The average number of photons corresponds to the Bose-Einstein
distribution 〈n̂〉th = (eθ−1)−1 and the variance is 〈∆n̂2〉th = 2〈n̂〉th[〈n̂〉th +1]. Finally,
from these results we see that g(2)

th (0) = 2.

1.4 Microscopic theory of screening

In all previous sections, we assumed the functional form of the permittivity ε(ω)28 to
be well-know and, from it, we derived all the properties related to the electromagnetic
response of an arbitrary distribution of di�erent media. Even though in most situations,
such as for noble metals, simple models like Drude [see Eq. (1.23)] are su�cient to
take into account the motion of electrons in the conduction band in the optical regime,
a rigorous description able to capture more exotic e�ects, such as nonlocality [56], the
creation of excitons [57,58], and the in�uence of complex non-parabolic electronic bands [59],
is still remaining as a subject of current investigation. From the theoretical viewpoint, a
substantial fraction of this research relies on density functional theory calculations [60],
which have shown a remarkable success in predicting material properties from �rst
principles and matching experimental results [59].

Here, we introduce a standard analytical framework based on linear response theory
and the RPA to describe the electronic contribution to the permittivity of a medium.
Despite its simplicity, it can fully incorporate nonlocal e�ects and accommodate e�ects
derived from the electronic band structure.

28Here, the missing spatial dependence derives from the fact that we have used the local approximation in
the preceding sections. Indeed, under this assumption the spatial dependence only accounts for the geometrical
distribution of the di�erent media [see Fig. (1.3)].
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1.4.1 Linear response theory
If we wish to obtain the linear optical properties of a system, we �rst need to compute the
response of its components under an external electromagnetic perturbation. In particular,
we restrict our analyses to electrostatic �elds (c → ∞), for which the disturbance is
provided by a classical scalar potential φext(r, t) coupling to the electrons inside the
material via the Hamiltonian

Ĥ = Ĥj0 +

ˆ
d3r ρ̂(r)φext(r, t), (1.62)

where now Ĥj0 contains any additional external potential such as the one generated by
the ions in a solid as well as the Coulomb repulsion between electrons. By following
similar steps as the ones in Section 1.3, one can compute the induced charge density in a
system at thermal equilibrium at temperature T in �rst-order Born approximation. We
�nd

ρind(r, ω) = 〈ρ̂(r, ω)〉 − ρ0

=

ˆ
d3r′χ(r, r′, ω)φext(r′, ω), (1.63)

which is given in terms of a susceptibility χ and where ρ0 is the unperturbed charge
density in the medium at t = −∞. This response function can be conveniently expressed
by introducing a set of the states |n〉29 satisfying the eigenvalue equation Ĥj0|n〉 = ~εn|n〉.
This leads to

χ(r, r′, ω) =
−1

~
∑

nm

exp [−(~εm − µNm + logZ)/kBT ] (1.64)

×
[
ρmn(r′)ρnm(r)

ω + εnm + i0+
− ρmn(r)ρnm(r′)
ω − εnm + i0+

]
,

where we have introduced the matrix elements ρnm(r) = 〈n|ρ̂(r)|m〉, the frequency
di�erence εnm = εn − εm, the partition function Z =

∑
m exp [−(~εm − µNm)/kBT ],

the number of particles Nm in the m-th eigenstate, and the chemical potential µ.

1.4.2 The random-phase approximation (RPA)
At �rst glance, one could think of computing Eq. (1.64) by directly inserting the
eigenstates of the system in the expression. However, their evaluation cannot be
performed analytically, as it would require the digonalization of Ĥj0, which also includes
the mutual Coulomb interaction among electrons. To overcome this problem, we �rst
de�ne another kind of susceptibility that measures the response of the system to the
total scalar potential φtot = φext + φind as

ρind(r, ω) =

ˆ
d3r′ χ0(r, r′, ω)φtot(r′, ω). (1.65)

29This useful method to express response functions is called Lehmann spectral representation [40] and it is
fundamental to understand their analytical properties without directly solving the full problem.
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Due to the presence of the induced scalar potential, the evaluation of χ0 turns out to be
slightly more involved. In order to retrieve the new susceptibility, we make use of what
is known as RPA [61], based on the use of a single-particle picture in which the electron
feels the presence of the rest of the charges through a Hartree self-consistent term [62]

HF = e2

ˆ
d3r′

δn(r′)
|r− r′| , (1.66)

where δn(r) =
∑
n fn|ψn(r)|2−n0 is the variation of the density of electrons at position

r relative to the doping density n0 and fn = 1/[e(~εn−µ)/kBT + 1] is the Fermi-Dirac
distribution. By again applying linear response theory to a system governed by a new
HamiltonianHjF that containsHF instead of the Coulomb potential, we obtain [61]

χ0(r, r′, ω) =
e2

~
∑

nm

(fm − fn)
ψn(r)ψ∗m(r)ψ∗n(r′)ψm(r′)

ω − εnm + i0+
, (1.67)

where now the states ψn(r) are solutions of the equationHjFψn(r) = ~εnψn(r). From
Eq. (1.67), the susceptibility χ can be computed in a self-consistent fashion by writing
ρind = χ · φext and then by remembering that φind = GL · ρind 30, which yields the
relations

φext = (1−GL · χ0) · φtot →
{
ε = 1−GL · χ0,

χ = χ0 · (1−GL · χ0)−1,
(1.68)

where we adopted the matrix notation f · g =
´
d3r′f(r, r′)g(r′). We therefore reduced

the calculation of the electromagnetic properties of a medium to the calculation of the
system eigenstates ψn(r). In Chapter 6, we numerically compute them for the speci�c
case of a 2D periodic system.

The two-dimensional electron gas (2DEG)

When a metallic material is composed of a few vertically31 assembled atomic layers,
conduction electrons are con�ned within the material thickness t ∼ 1 nm, which is
� λlight in the optical range. In this regime, the eigenfunctions can be approximated
as ψn(r) = ψ

‖
n(R)ψ⊥(z) with |ψ⊥(z)|2 = δ(z), therefore yielding χ0(r, r′, ω) =

χ̃0(R,R′, ω)δ(z)δ(z′) and also implying a similar separation of coordinates for χ.
If we consider now the case of a two-dimensional free electron gas (2DEG), namely

electrons in a material that are not subject to any external potential, we obtain the
eigensolutions ψ‖k‖(R) = eik‖·R/

√
A associated with the eigenvalues εk‖ = ~k2

‖/2me,
with A the sample area. Upon insertion of these solutions into Eq. (1.67) and by going to
momentum space, the susceptibility at zero temperature (T = 0 K) reads [62]

Re
{
−χ0

2DEG(q‖, ω)
}

=
me

π~2

{
1 +

[
f−(q‖, ω)− f+(q‖, ω)

]
/q̃‖
}
, (1.69a)

Im
{
−χ0

2DEG(q‖, ω)
}

=
me

π~2q̃‖

[
g−(q‖, ω)− g+(q‖, ω)

]
, (1.69b)

30Here, GL(r, r′) = 1/|r − r′| because the interaction between elementary charges in a medium takes
place in vacuum, where ε = 1 everywhere.

31We set the atomic layers to extend over the xy plane, while extending vertically along the z axis.
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Figure 1.4: Single-particle and collective excitations in a two-dimensional electron gas
(2DEG). (a) Imaginary part of the susceptibility χ0 for a 2DEG as a function of the normalized
photon energy ~ω/E0

F and parallel wave vector q‖/k0F. The black dashed lines mark the
kinematically allowed region for electron-hole pairs creation. (b) Loss function associated with the
susceptibility χ0

2DEG(q‖, ω) and calculated from Eq. (1.70), as a function of normalized parallel
wave vector and photon frequency. The bright black line shows the dispersion relation of the bulk
plasmon in a 2DEG, which is approximated by the curve ~ω/E0

F = e
√
q‖/k0Fme.

where f±(q‖, ω) = sign(ν±)θ(ν2
± − 1)

√
ν2
± − 1, g±(q‖, ω) = θ(1 − ν2

±)
√

1− ν2
±,

ν± = (~ω/q̃‖E0
F ± q̃‖)/2, q̃‖ = q‖/k0

F, and we have introduced the Fermi energy and
wave vector E0

F and k0
F, respectively. The imaginary part of the susceptibility in Eq.

(1.69b) represents a resonant single-particle excitation in which an electron is promoted
to a higher energy state by the absorption of a photon [see Fig. (1.4)a]. As we previously
mentioned, once χ̃0 is computed, the permittivity directly follows from the application
of Eq. (1.68). In particular, the collective oscillations of electrons in the material, which
are surface plasmons of an extended 2D layer, can be visualized through the so-called
loss function Im{r2DEG

p (q‖, ω)} de�ned in terms of the p-polarized Fresnel re�ection
coe�cient 32

r2DEG
p (q‖, ω) =

1

1−
[

2π
q‖
χ0

2DEG(q‖, ω)
]−1 , (1.70)

as shown in Fig. (1.4b). We notice that the plasmon dispersion for q‖/k0
F � 1 follows the

curve ω = e
√

2πn0q‖/me [see the green dashed line in Fig. (1.4b)], where n0 = k0
F

2/2π
in a 2DEG.

Two-dimensional periodic systems

When the wave vectors entering in Eq. (1.67) reach values of the characteristic length
along which the potential varies inHjF, such as the interatomic spacing (∼ 0.1 nm) in

32Equation (1.70) can be obtained by using the de�nition of the re�ection coe�cient in terms of the external
and induced potentials φind(q‖, 0) = −r2DEG

p (q‖, ω)φext(q‖, 0), with φ(q‖, z) =
´
d2R e−iq‖·Rφ(r),

and then by making use of Eq. (1.68).
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solids, electrons cannot anymore be regarded as free because the presence of the external
disturbance can yield strong anharmonicities in their motion.

If the potential V (R) acting on the 2DEG produces a 2D real space lattice
such that V (R + Ri) = V (R) with Ri being any vector connecting two
lattice sites, Bloch’s theorem [19] ensures that all eigenfunctions can be written as
ψk‖n(R) = eik‖·Ruk‖n(R)/

√
A, where n is a band index and the in-plane wave vector

k‖ is now restricted to the �rst Brillouin zone (1BZ). In particular, the functions uk‖n(R)
must respect the same symmetry as the potential, namely uk‖n(R) = uk‖n(R + Ri).
This fact implies that they can be decomposed into a Fourier sum given by

uk‖n(R) =
∑

G

eiG·Ruk‖nG,

withG running over the reciprocal lattice vectors, uk‖nG =
´

UC
d2R e−iG·Ruk‖n(R)/AUC

and AUC = A/N is the area of one of the N unit cells (UCs) composing the 2D
material [19]. As a consequence, the susceptibility has to satisfy the equation

χ̃0(R,R′, ω) = χ̃0(R + Ri,R
′ + Ri, ω),

which is readily veri�ed upon insertion of ψk‖n into Eq. (1.67). Even though the missing
continuous translational invariance prevents the analysis of single excitations in the
Fourier domain, one can still express χ̃0 as a matrix by noticing that any plane wave
can be decomposed as ei(q‖+G)·R, with q‖ restricted to the 1BZ. As a consequence, the
susceptibility matrix elements read33

χ̃0
GG′(q‖, ω) =

1

A

ˆ
d2R

ˆ
d2R′ e−iG·R+iG′·R′e−iq‖·(R−R′)χ̃0(R,R′, ω). (1.71)

In Eq. (1.71), the components with G = G′ 6= 0 introduce the so-called local-�eld
corrections [63] taking into account fast variations of the total microscopic potential φtot

inside the UC. Because of the self-consistent origin of the collective response of a system,
local-�eld corrections may play a fundamental role in its description even if the external
potential φext is composed of wavelengths larger than the interatomic distance, as it is
strongly in�uenced by the local potential landscape.

33The inverse transform can be computed by evaluating the expression χ̃0(R,R0, ω) =∑
GG′ e

iG·R−iG′·R′ ´
1BZ

d2q‖
(2π)2

eiq‖·(R−R′)χ̃0
GG′ (q‖, ω).
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2
Quantum photon-induced near-�eld electron

microscopy

May the force be with you.
Star Wars

In this chapter, we present a study aimed at extending the classical theory of PINEM
presented in Section 1.2 to cases in which the synchronized light cannot be described by
a highly populated coherent state, but a quantum description is needed. In particular,
what follows is based on the published work, Ref. 64.
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2.1 Introduction

EELS performed in electron microscopes is a fertile source of information on the dielectric
properties of materials down to the nanometer scale [65–67]. This technique is widely
used to identify chemical species with atomic resolution through their characteristic
high-energy core losses [68,69]. Additionally, low-loss EELS provides insight into the
spatial and spectral distributions of plasmons in metallic nanostructures [8,70–73] and, more
recently, also of phonons in polaritonic materials [67] thanks to remarkable advances
in instrument resolution. In a parallel e�ort, the ultrafast dynamics of nanostructured
materials and their in�uence on optical near-�elds can be studied by synchronizing the
arrivals of fs light and electron pulses at the sample [26,74,75]. Indeed, although photons and
electrons interact extremely weakly in free space due to the lack of energy-momentum
matching, the evanescent �eld components produced upon light scattering by material
structures breaks the mismatch, giving rise to e�cient light-electron interaction, and
e�ectively producing exchanges of multiple quanta between the electron and the optical
�eld, accompanied by a complex sub-fs dynamics [26–29,36,39,76–83]. Based on this principle,
PINEM is performed by analyzing the resulting multiple gain and loss features in the
electron spectra.

PINEM experiments have so far relied on coherent light sources (i.e., lasers),
for which the measured spectra are well reproduced by assuming sample bosonic
excitations that are coherently populated with a large number of quanta. The probability
of each electron spectral peak associated with a net exchange of ` quanta is then
simply given by the squared Bessel function J2

` (2|β1|), where a single parameter
β1 = (e/~ω)

´
dz Ez(z)e−iωz/v captures the strength of the electron-light interaction,

mediated by the optical electric �eld component Ez(z) along the direction of electron
propagation z for an electron velocity v and photon frequency ω [36] (see Section 1.2).
For nanometer-sized samples (e.g., ∆z ∼ 100 nm) illuminated at optical frequencies
(~ω ∼ 1 eV), a �eld amplitude E ∼ 107 V/m renders |β1| ∼ e∆zE/~ω ∼ 1. Eventually,
even the zero loss peak (ZLP, corresponding to ` = 0) is fully depleted for |β1| ≈ 1.2.
The underlying physics is thus described in terms of a classical optical �eld interacting
with the electron through sample-mediated harmonic evanescent �elds. However, we
expect new physics to arise when departing from this regime by considering anharmonic
states of the illuminated sample, such as those associated with fermionic excitations [84–86]

or when the external light source is not in a coherent state such as that provided by
a laser. As an interesting avenue in this direction, electron-photon entanglement has
been recently predicted to in�uence the interaction with an electron when the sample is
previously excited by a trailing electron [87]. In a related context, quantum aspects of
fermionic two-level excitations have been probed in the cathodoluminescence signal
emitted from single atomic defects [84–86]. In combination with external illumination,
e�cient excitation of bosonic and fermionic systems could be achieved in order to
investigate the di�erence in quantum behavior between them and how this a�ects their
interaction with electron beams.

In what follows, we discuss the interaction of electron beams with individual optical
modes and predict nontrivial characteristics of this interaction when the modes are
excited through external illumination depending on the mode nature and population
statistics. Speci�cally, the electron spectra resulting from the interaction with bosonic
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Figure 2.1: Coupling regimes in the interaction of a beam electron with an optical mode.
Weak and strong coupling corresponds to the regions roughly separated by the contour n̄|β0|2 ∼
1 (white line), where n̄ is the average mode population and β0 is the single-mode interaction
coe�cient [Eq. (2.5)]. The density plot shows the ratio of integrated gains and losses in the electron
spectra for Fock (a), coherent (b), and thermal (c) populations.

and fermionic excitations exhibit a radically di�erent dependence on the external light
intensity. Additionally, the electron spectra for bosonic modes depend dramatically on the
photon statistics, giving rise to a varied phenomenology of asymmetric gain and loss peaks
at low �uences and distinct intensity dependences under strong pumping. Interestingly,
the autocorrelation functions can be directly retrieved from ratios of measured electron
gain intensities. We further propose a feasible experimental realization of these ideas
based on a sample consisting of an optical cavity that is fed by optically pumped three-
level quantum emitters (QEs).

2.2 Interaction between a nonrecoil electron and a
quantum optical excitation

We start by considering a sample characterized by a single boson mode1 of frequency
ω0 interacting with a focused beam electron of momentum and kinetic energy tightly
peaked around ~k0 and ~ε0, respectively. Assuming the sample to have an extension
along the beam direction su�ciently small as to preserve the transversal beam pro�le
in the sample region, we can write the incident electron wave function as ψ0(r, t) =
ei(k0·r−ε0t)φ0(r−vt), whereφ0 is a slowly varying function of the moving-frame position
r − vt. Further adopting the nonrecoil approximation [see Eq. (1.32)] and neglecting
inelastic boson losses (>ps lifetimes) during the interaction time (in the fs range), the
components of the system Hamiltonian Ĥ = Ĥpar

0 + Ĥpar
1 correctly approximating the

dynamics can be taken from Eqs. (1.33), which by neglecting the ponderomotive term

1The case of a fermionic system is analyzed later only in the weak-coupling regime. We redirect the reader
to Ref. 88 for more information on the non-perturbative interaction between a free electron and a two-level
system.



2. Quantum photon-induced near-�eld electron microscopy 42

and upgrading the vector potential to an operator, reads

Ĥpar
0 = ~ω0â

†â+ ~ε0 − ~v · (i∇+ k0),

Ĥpar
1 = (ev/c) · Â(r).

Upon inspection, taking v along z, we �nd the wave function of the sample-electron
system to admit the solution

|ψ(r, t)〉=ψ0(r, t)

∞∑

`=−∞

∞∑

n=0

eiω0[`(z/v−t)−nt]fn` (r)|n〉, (2.1)

where fn` represents the amplitude of the boson Fock state |n〉 combined with a change
`~ω0 in electron energy. Inserting Eq. (2.1) into the Schrödinger equation Ĥ|ψ〉 = i~∂t|ψ〉,
we �nd that it is indeed a solution, provided the amplitudes satisfy the equation

dfn`
dz

=
√
nu∗ fn−1

`+1 −
√
n+ 1u fn+1

`−1 , (2.2)

where u(z) = (e/~ω0)E0z(z)e−iω0z/v . Interestingly, this expression guarantees thatn+`
is conserved along the interaction (i.e., the number of excitations in the electron-boson
system is preserved), which in turn allows us to treat each initial population pn of the
boson state |n〉 as an independent subsystem (i.e., the subset of states in which n+` equals
the initial value of n before any electron interaction takes place, that is, when ` = 0).
However, if we are just interested in the transmitted electron spectrum, we can dismiss the
relative phases of these subsystems and initialize the amplitudes as fn` (−∞) = δ`0

√
pn,

with the electron prepared in the incident state ` = 0. After propagation according to Eq.
(2.2), the transmitted EELS probability reduces to Γ(ω) =

∑∞
`=−∞ P` δ(ω+ `ω0), where

P` =

∞∑

n=max{0,−`}
|fn` (∞)|2 (2.3)

is the probability for the electron to change its energy by `~ω0. As explained in details in
Appendix D, the solution of Eq. (2.2) is formally equivalent to the Schrödinger equation
for a classically driven quantum harmonic oscillator for which it exists the analytical
solution [89,90]

fn` (∞) =
√
pn+` eiχ

√
(n+ `)!n! e−|β0|2/2(−β0)`

×
∑

n′

(
−|β0|2

)n′

n′!(`+ n′)!(n− n′)! , (2.4)

where the sum is limited to the range max{0,−`} ≤ n′ ≤ n, χ is a global phase that
describes the image potential felt by the electron during the interaction and results to be
irrelevant for this analysis2, and

β0 =
e

~ω0

ˆ ∞
−∞

dz E0z(r) e−iω0z/v (2.5)

2The reader is invited to jump directly to Chapter 4 if interested in the role of χ.
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is an electron-boson coupling coe�cient (like the PINEM β0 coe�cient, but with the
electric �eld normalized to one quantum); this result, which is in excellent agreement with
direct numerical integration of Eq. (2.2), shows that the interaction depends exclusively
on the initial mode population pn and the parameter β0 de�ned by Eq. (2.5) (i.e., the
details of the ~E0 �eld are irrelevant; for instance in the case of dielectric media, they are
de�ned by Eq. (1.17) and well-established procedures exist to obtain such �elds [48]).

2.2.1 Weak-coupling limit

Bosonic excitations

A perturbative solution can be produced for Eq. (2.2) in the weak-coupling limit, provided
the variations of all amplitudes fn` are small during electron-boson interaction. When
preparing the incident electron in ` = 0 and the boson in state |n〉, the nonvanishing
elements of the perturbation series fn` =

∑∞
s=0 f

n,s
` satisfy the equations

dfn+1,1
−1

dz
=
√
n+ 1 u∗,

dfn−1,1
1

dz
= −√n u,

dfn+2,2
−2

dz
=
√
n+ 2 u∗ fn+1,1

−1 ,

dfn,20

dz
=
√
n u∗ fn−1,1

1 −
√
n+ 1 u fn+1,1

−1 ,

dfn−2,2
2

dz
= −
√
n− 1 u fn−1,1

1 ,

. . . ,

where u(z) = (e/~ω0)E0z(z)e−iω0z/v . After interaction, the �rst-order (s = 1)
amplitudes reduce to fn+1,1

−1 (∞) =
√
n+ 1β0 and fn−1,1

1 (∞) = −√nβ0, which upon
insertion into Eq. (2.3) lead to

P−1 = (1 + n̄)|β0|2, (2.6a)
P1 = n̄|β0|2, (2.6b)

where β0 =
´∞
−∞ dz u(z) [see Eq. (2.5)] and n̄ =

∑∞
n=0 n pn is the average population

corresponding to the boson occupation distribution pn. These expressions allow us to
identify the weak-coupling limit condition as

√
n̄|β0| � 1. We then �nd that both loss

and gain peaks increase in strength with |β0|2, but their di�erence is independent of n̄.
In fact, the electron-boson interaction strength is determined by n̄|β0|2, which allows
us to separate the regimes of weak and strong coupling depending on |β0|2 and n̄, as
shown in Fig. (2.1). We remark that this separation between weak and strong coupling
regimes is consistent with the commonly used criterium based on the existence of a
perturbative solution to the dynamics of the system, which in the present case depends on
the combined value of the mode population n̄ and coupling parameter |β0|. Additionally,
we observe that the ratio of gains to losses approaches 1 in the n̄ � 1 limit, which is
consistent with the behavior of the weak-coupling ratio n̄/(n̄+ 1).
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Figure 2.2: Photonic correlation functions in the weak electron-mode coupling regime.
(a,b) Ratio of the ` = 2 gain peak intensities for di�erent average numbers of excitations (see
color-coordinated labels) with coherent (a) and thermal (b) populations. (c,d) Same as (a,b) for
` = 3. Black horizontal lines correspond to the analytical weak-coupling limit.

In the above series expansion, the lowest-order contribution to the ` > 0 gain peak
corresponds to the amplitude fn−`,`` , which satis�es the equation

dfn−`,``

dz
= −
√
n− `+ 1 u fn−`+1,`−1

`−1 .

By iteratively solving this concatenated series of equations, we �nd the post-interaction
solution

fn−`,`` (∞) = (−1)`
√
n(n− 1) . . . (n− `+ 1)

ˆ ∞
−∞

dz1

ˆ z1

−∞
dz2

· · ·
ˆ z`−1

−∞
dz` u(z1)u(z2) · · ·u(z`)

=
1

`!

√
n(n− 1) . . . (n− `+ 1) (−β0)`,

where the rightmost expression is derived upon examination of the symmetry of the
`-dimensional integrand upon permutation of its ` arguments [40], which allows us to
push the upper integration limits to∞ by creating `! copies of it. The intensity of the
` > 1 gain peak thus becomes P` = |β0|2` 〈n(n− 1) · · · (n− `+ 1)〉 /(`!)2, where 〈〉
denotes the average over the mode population. This leads to the powerful result

P`
P `1

=
g(`)(0)

(`!)2
, (2.7)
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where g(`)(0) = 〈n(n− 1) · · · (n− `+ 1)〉 /n̄` is the `-th order correlation function at
zero delay, which can then be directly inferred from a ratio of peak intensities measured
in the transmitted electron spectrum. We present some illustrative examples in Fig.
(2.2). For coherent states (i.e., a Poissonian distribution), we have g(`)(0) = 1 (with
` > 0) [46], leading to gain peak intensity ratios P`/P `1 = (1/`!)2. In contrast, for a
thermal distribution one has g(`)(0) = `! [46], which produces more intense gain peaks
with P`/P `1 = 1/`! We stress that these results are valid only for weak interactions, as
we are assuming that |β| =

√
n̄|β0| � 1.

A case of practical interest is represented by a situation in which the bosonic mode
has been previously pumped by an external laser source. In this scenario, the boson
density matrix admits a rigorous analytical solution [89,91]: ρ̂ = |ξ(t)〉〈ξ(t)|, where |ξ〉 =

e−|ξ|
2/2
∑∞
n=0

(
ξn/
√
n!
)

e−inω0t|n〉 is a coherent state of amplitude ξ (in the interaction
picture) satisfying a|ξ〉 = e−iω0tξ|ξ〉 [52] and describing a Poissonian distribution with
occupation probabilities pn = 〈n|ρ̂|n〉 = e−|ξ|

2 |ξ|2n/n! and average population n̄ =
|ξ|2. By inserting this expression of ρ̂ into the equation of motion, one �nds the
solution ξ(t) = (−i/~)

´ t
−∞ dt′g(t′)eiω0t

′−(t−t′)κ/2 for the mode amplitude driven by
and external classical perturbation g(t). In particular, for the monochromatic light �eld
considered above, this integral leads to

ξ(t) =
E0p

~

[
ei(ω0−ω)t

(ω0 − ω − iκ/2)
+

ei(ω0+ω)t

(ω0 + ω − iκ/2)

]
.

Assuming again resonant illumination (ω = ω0) and neglecting the o�-resonance term
∝ e2iω0t, the average population reduces to n̄ = |ξ|2 ≈ (2E0p/~κ)2 = I/2Is. The
interaction with an electron in the weak coupling regime is then given by Eqs. (2.6) with
the mode occupation written as n̄ = I/2Is.

Fermionic excitations

The interaction with a fast electron can be described following exactly the same formalism
as previously done for a bosonic mode, but replacing the commutating bosonic operator
â by the anticommutating fermionic operator σ̂. This prescription leads to Eq. (2.2) with
fn` vanishing unless n = 0 or 1. In the weak electron-fermion coupling regime, this
results in loss and gain probabilities

P−1 = p0|β0|2 = (1− n̄)|β0|2,
P1 = p1|β0|2 = n̄|β0|2,

where |β0|2 accounts for the electron-mode coupling strength [see Eq. (2.5)] and n̄ must
be determined from the the analysis of any previous excitation process the two-level
system has experienced prior interaction with the electron.

For instance, a two-level system (states j = 0,1 of energies ~εj) coupled to a
monochromatic light �eld E(t) = E0e−iωt + E∗0eiωt constitutes a textbook example of
light-matter interactions, commonly described through the optical Bloch equations [92].
The density matrix of the system satis�es the equation of motion

dρ̂

dt
=

i

~
[ρ̂, Ĥ] +

γ

2
(2σ̂ρ̂σ̂† − σ̂†σ̂ρ̂− ρ̂σ̂†σ̂), (2.8)
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where the Hamiltonian Ĥ =
∑
j ~εj |j〉〈j|+ g(t)

(
σ̂† + σ̂

)
incorporates the interaction

with the transition dipole p through the coupling energy g(t) = −E(t)p (we assume
E0p to be real and the �eld aligned with the dipole), and we de�ne σ̂ = |0〉〈1| and
σ̂† = |1〉〈0|. Additionally, we account for inelastic 1 → 0 transition losses at a rate κ
through a Lindbladian term in Eq. (2.8). Writing the density matrix in the interaction
picture as ρ̂ =

∑
j,j′ ρjj′e

i(εj′−εj)t|j〉〈j′|, Eq. (2.8) reduces to the Bloch equations

˙̄n = (−2/~)Im{ρ10 ge−iω0t} − κn̄,
ρ̇10 = (−i/~)(1− 2n̄) geiω0t − κρ10/2

for the average population n̄ = ρ11 ≡ p1 and the coherence ρ10; the other two elements
of the density matrix are given by ρ00 ≡ p1 = 1 − n̄ and ρ01 = ρ∗10. At resonance
(ω = ω0), adopting the rotating-wave approximation (RWA), we have ge±iω0t ≈ −E0p,
leading to the steady-state solution ( ˙̄n = ρ̇10 = 0)

n̄ =
1

2

1

1 + Is/I
, (2.9)

which depends on the ratio of the light intensity I = (c/2π)|E0|2 to the saturation
intensity of the system Is = c(~κ)2/16πp2. Therefore from Eq. (2.9), we �nd n̄ = 1/2 in
the high light-intensity limit.

2.2.2 The high-�uence limit
When the optical mode is strongly pumped prior interaction with the electron, its average
photon number can be assumed to overcome the number of exchanged quanta `, condition
which formally corresponds in taking the n̄ � 1 limit in Eq. (2.2). In this scenario,
the bulk of the electron-boson interaction involves high n’s, which we consider to be
much larger than the net number of quanta exchanges `. This condition is satis�ed
if the interaction-strength parameter is small (|β0| � 1), which is still compatible
with a high total e�ective interaction n̄|β0|2 ∼ 1 for su�ciently large n̄. We can then
approximate both

√
n and

√
n+ 1 by

√
n+ ` in Eq. (2.2); for each value of n+ `, which

is conserved during propagation of the electron amplitudes fn` along z, the resulting
equation coincides with Eq. (2.3) of Ref. 93 for the PINEM interaction with an optical
�eld Ez = E0z

√
n+ `, and therefore, we take from that reference the solution fn` (∞) =√

pn+`e
i` arg{−β0}J`(2

√
n+ `|β0|), where β0 is the electron-mode interaction parameter

de�ned by Eq. (2.5) and pn+` is the population distribution of the mode Fock state |n+ `〉
before interaction with the electron. Because n � |`|, we can further approximate
n+ ` ≈ n and write the probability associated with a net number ` of quanta exchanges
[see Eq. (2.3)] as

P` ≈
∞∑

n=0

pnJ
2
` (2
√
n|β0|). (2.10)

For a boson prepared in the Fock state |n〉, the interaction probabilities reduce to
P` = J2

` (2|β0|), where β =
√
n̄β0 and obviously the average mode population is

n̄ = n. Likewise, for a coherent state the population distribution approaches a Gaussian
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pn ≈ e−(n−n̄)2/2n̄/
√

2πn̄ in the n̄ � 1 limit [94], the width of which (∼
√
n̄) becomes

increasingly small compared with the average population n̄ as this one increases; we can
thus approximate n ≈ n̄ inside the Bessel function of Eq. (2.10), which leads to the result
valid both for Fock and coherent states

P` = J2
` (2|β|), [Fock, coherent] (2.11)

We thus conclude that in the large average population limit both Fock and coherent states
of the boson mode produce the same types of electron spectra as observed in PINEM
experiments.

The situation is however di�erent for a chaotic thermal distribution pn = (1 −
e−θ) e−nθ with average population n̄ = 1/(eθ − 1), where θ = ~ω0/kBT and T is the
mode temperature. We approach the n̄� 1 limit at high temperatures, for which θ � 1,
and consequently, θ ≈ 1/n̄ and pn ≈ e−n/n̄/n̄. Inserting these expressions into Eq. (2.10)
and approximating the sum as an integral with the change of variable n/n̄ = x2, we �nd
P` ≈

´∞
0
x dx e−x

2

J2
` (2x|β|) which reduces to

P` = e−2|β|2I`(2|β|2), [thermal] (2.12)

where again β =
√
n̄β0, and the rightmost analytical equality (Eq. (6.633-2) of Ref. 95)

allows us to express the result in terms of the modi�ed Bessel function I`. Reassuringly,
we can use the analytical results of Eq. (2.11) and Eq. (2.12) in combination with the
small argument approximation ≈ (z/2)`/`! of both J`(z) and I`(z) with ` ≥ 0 [13], to
�nd P` ≈ |β|2`/(`!)2 and P` ≈ |β|2`/`!, respectively, therefore directly recovering the
above results for the P`/P `1 ratio. Additionally, we note that Fock states lead to the
same ratio as coherent states in the n̄ � 1 limit because they are characterized by
g(`) = n̄(n̄− 1) . . . (n̄− `+ 1)/n̄` ≈ 1 (with ` > 0).

2.3 The coupling to a dipolar excitation

As already mentioned in Section 1.1, reducing the response of a system to its dipolar
resonance can be considered an excellent approximation for plasmonic particles and
Mie resonators in certain spectral regions [see Fig. (1.2)]. In view of this, we consider
a dipolar mode of frequency ω0 characterized by a transition electric dipole moment p
placed at the origin. We write the single-mode electric �eld as the one produced by this
dipole, by means of the ansatz

~E0(r) = [k2
0p + (p · ∇)∇]

eik0r

r

where k0 = ω0/c. The interaction parameter β0 can be now calculated upon insertion
of this �eld into Eq. (2.5). Integrating by parts, we �nd that each of the z derivatives in
the expression for ~E0 can be replaced by iω0/v. Finally, assuming a distance b from the
electron beam to the dipole and using the integral

´
dz eik0r−iω0z/v/r = 2K0(ζ), where

r =
√
b2 + z2, ζ = ω0b/vγ, and γ = 1/

√
1− v2/c2 [see Eq. (3.914-4) in Ref. 95, which

we use here under the assumption that k0 has an in�nitesimal positive imaginary part],
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Figure 2.3: Coupling of an electron beam to a dielectric sphere. (a,b) Optical extinction
cross-section normalized to projected area for a silicon sphere (ε = 12) of radius a = 100 nm.
Panel (b) shows a zoom around a TE mode with orbital angular number l = 6 [see arrow in (a)]. (c)
EELS probability for a 200 keV electron under grazing incidence with respect to the sphere in (a,b).

we readily �nd the expression

β0 =
−2eω0

~v2γ

[
ipxK1(ζ) +

pz
γ
K0(ζ)

]
,

In the weak-coupling regime (see Section 2.2.1), the integral of the EELS probability
over the mode spectral peak when the mode is initially depleted (n̄ = 0) reduces
to P−1 = |β0|2 = (2eω0/~v2γ)2

[
|px|2K2

1 (ζ) + (|pz|/γ)2K2
0 (ζ)

]
. For an isotropic

particle characterized by a triply-degenerate mode of electric dipoles along the Cartesian
directions, the probability is given by the sum over the three polarization directions,
which amounts to setting px = py = pz = p; this leads to

P isotropic
−1 = |β0|2 = |2eω0p/~v2γ|2f(ω0b/vγ), (2.13)

where f(ζ) = K2
1 (ζ) +K2

0 (ζ)/γ2.
In order to corroborate the correctness of the normalization of ~E0 in the above ansatz,

we compare P isotropic
−1 with the result derived from the classical EELS probability for

an isotropic dipolar particle [8], ΓEELS,dip(ω) = (1/~π)(2eω/v2γ)2f(ωb/vγ) Im{α(ω)},
where α(ω) is the polarizability. Linear response theory allows us to write the latter
as [96] α(ω) = (|p|2/~) [1/(ω0 − ω − i0+) + 1/(ω0 + ω + i0+)] in terms of the mode
dipole p and frequency ω0, which upon insertion into the spectral integral P−1 =´∞

0
dω ΓEELS,dip(ω) reproduces Eq. (2.13), therefore con�rming the ansatz.

2.3.1 Coupling strength for plasmonic cavities
Plasmons in metallic nanoparticles constitute excellent candidates to explore the
interaction between electrons and optical cavities. Here, we estimate the coupling
parameter |β0| [see leading factor in Eq. (2.13)] for two types of metallic nanoparticles
in which the aspect ratio allows one to tune their frequency, also a�ecting the values
of |β0|; in particular, we consider prolate ellipsoids and spherical shells made of
silver (permittivity ε(ω) ≈ εb − ω2

p/ω(ω + i/τ) with εb ≈ 4, ~ωp = 9.17 eV, and
~/τ = 21 meV [97]). Following similar methods as those of Ref. 98, a prolate ellipsoid
of volume V is found to exhibit a normal-to-the-symmetry-axis resonance frequency
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ω0 = ωp/
√
εb − ε0 and an e�ective transition dipole p ≈ (1− ε0)

√
~ω0V/8π(εb − ε0),

where ε0 = 1 − 1/L, L = (r2/2)∆−3
[
π/2− arctan(1/∆)−∆/r2

]
is the

depolarization factor for a height-to-diameter aspect ratio r > 1, and ∆ =
√
r2 − 1. For

a spherical metal shell of small thickness t compared with the radius a, �lled with a
core dielectric εc, and treated in the t � a limit, we �nd ω0 ≈

(
ωp/
√
εc + 2

)√
2t/a

and p ≈
√

3~ω0a3/2(εc + 2). Numerical inspection of these two types particles yields
optimum coupling values that can reach |β0| ∼ 0.1 with plasmon energies in the 1 eV
region, particle diameters of ∼ 20 nm, and electron energies ∼ 10 keV when considering
either disk-like prolate ellipsoids (aspect ratio r ∼ 5) or thin shells (t/a ∼ 0.2) �lled
with silica (εc = 2). The values that we adopt in what follows are commensurate with
these parameters.

2.4 Interaction strength of quantum emitters and
beam electrons with dielectric optical cavities

High-index dielectric nanostructures can trap light with small radiative leakage. For
example, a Si sphere of radius a modeled with a permittivity ε = 12 exhibits a narrow
resonance at a size parameter ρ0 = ω0a/c ≈ 2.6775 with a quality factor (frequency
divided by width) Q = ω0/κ ∼ 104. Analytical EELS calculations based on a previously
published formula [8] predict a peak-integrated excitation probability ∼ 10−3 (i.e., |β0| ∼
0.03) for grazingly passing electrons of 100-200 keV kinetic energy [see illustrative
calculation in Fig. (2.3)]. Besides this relatively high probability, the large Q value of the
Mie resonance under consideration produces a high Purcell enhancement in quantum
emitters (QEs) when they are embedded inside the structure, implying nearly perfect
QE-cavity coupling and negligible radiative losses. Indeed, following a quantum optics
formalism for dispersionless and lossless dielectrics [9], we can express the electromagnetic
Green tensor as done in Eq. (1.16); we now argue that the modes contributing to the Mie
resonance ω0 should have similar spatial pro�les inside the cavity, so we approximate the
transverse part G(r, r′, ω) ≈ f0(r)⊗ f∗0 (r′)/(ω(ω + iκ)− ω2

0) by phenomenologically
introducing the resonance width κ and where we have introduced f0 = (−i/

√
2π~ω0)~E0;

the Purcell enhancement factor (EF) is then proportional to the local-density of optical
states (LDOS) normalized to the vacuum value [99], which can be calculated from G as
EF≈ (−6πc3/ω)Im{n̂ · G(r, r, ω) · n̂}, with r = r′ corresponding to the position of
the QE; for resonant coupling ω = ω0, arguing from the normalization condition that
|f0|2 ∼ 1/εV , where V = 4πa3/3 is the cavity volume, we �nd EF∼ 9Q/2ερ3

0 ∼ 250
for the cavity under consideration. We now envision QEs with a natural decay rate
g0 ∼GHz, whose coupling rate increases to g = EF × g0 ∼ 102 GHz; for an optical
frequency in the ω0 ∼ 100 THz range, the cavity damping rate is κ ∼ ω0/Q ∼ 10 GHz,
thus leading to small values of κ/g ∼ 0.1 similar to those used in this study.
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2.5 General dependence on boson population
statistics

As we have already seen from the previous sections, the electron spectra strongly depends
on the quantum state of light. Figure (2.1) shows a clear in�uence on boson population
statistics by examining the gain-to-loss ratio

(∑
`>0 P`

)
/
(∑

`<0 P`
)
. In particular, this

quantity displays oscillations for a Fock state when either n̄ or |β0| is varied, presumably
as a remnant of similar oscillations observed in the associated electron spectra (see below).
In contrast, averaging over the di�erent Fock states involved in coherent and thermal
distributions produces more monotonic ratios. Interestingly, Fock states lead to ratios
closer to 1 within the range of parameters explored in the �gure, indicating that the
probabilities for climbing or descending the n ladder (i.e.,∝ n+1 and n) quickly approach
similar values as n increases compared with coherent and thermal distributions, which
involve a substantial contribution from low n’s up to relatively large n̄.

We further present in Fig. (2.4d-o) the evolution of the transmitted electron spectra
for each of the distributions as a function of the coupling parameter

√
n̄|β0| (vertical

scales). The spectra become more asymmetric for smaller n̄ because the number of gains
cannot substantially exceed n̄ (i.e., the electrons cannot absorb more bosons than present
already in the sample; see also Fig. (2.1), as observed in recent experiments [100], while
the number of losses increases inde�nitely with |β0|. Incidentally, the similarity between
spectra obtained for coherent and thermal states for low n̄ stems from the fact that their
respective mode populations pn, although di�erent, also bear some similarity in that
limit, and the resulting spectra are fully determined by pn, as shown by Eqs. (2.3) and
(2.4).

In contrast, in the n̄� 1 limit, as expected from Eq. (2.11) and Eq. (2.12) the electron
spectra become symmetric with respect to ` = 0 [Fig. (2.4g,k,o)] when |`| � n̄. In
particular, for Fock and coherent distributions, this expression coincides with the well-
known PINEM probability [27,36,93] for an optical �eld amplitude Ez =

√
n̄E0z ; the resulting

spectra [Fig. (2.4g,k)] present the predicted [28] and subsequently measured [29] quantum-
billiard oscillatory structure as a function of both ` and �eld strength, as previously
studied for model multilevel atoms [101]. In contrast, a thermal boson distribution leads to
a monotonic decrease with increasing ` and |Ez| [Fig. (2.4n,o)]. In all cases, we �nd an
average 〈|`|〉 ∼ |β|. The theoretical n̄� 1 limit is nearly reached under the conditions
of Fig. (2.4) for n̄ = 50 (cf. two rightmost panel columns).

2.6 Interaction with an optical cavity populated
through pumped QEs

As a feasible system to explore the above ideas, we consider an optical cavity (e.g., a Mie
resonator, similar to those already probed by EELS [102]) hosting a spectrally isolated mode
(frequency ω0, inelastic damping rate κ) fed by a number N of 3-level QEs, as illustrated
in Fig. (2.5a). A similar scheme applies to 4-level systems, which are also extensively used
in experimental realizations of QEs coupled to optical cavities [103]. We note that optical
cavities hosting quantum emitters are customarily used as gain media, for example in
in�ltrated silica nanoparticles [104] and photonic crystals [105]. The emitters are initialized
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in their excited state at t = 0 (e.g., by optical pumping with a π pulse, typically requiring
moderate laser �uences that depend on the kind of QE), from which they decay to an
intermediate state by coupling to the cavity at a rate g (same for all QEs for simplicity)
with a resonant transition frequency ω0. We further assume fast internal decay from the
intermediate to the ground state, so that each QE interacts with the cavity only once.
Incidentally, if inhomogeneous irradiation of the emitters takes place, so that only a
fraction of them are excited, the system can then be understood as consisting of a smaller
e�ective number of QEs. The combined probability pmn for a cavity Fock state |n〉 with
m remaining excited emitters follows the equation of motion

dpmn /dt = g
[
n(m+ 1)pm+1

n−1 − (n+ 1)mpmn
]

+ κ
[
(n+ 1)pmn+1 − npmn

]
,

which we solve numerically to obtain the time-dependent distribution pn =
∑N
m=0 p

m
n .

Figure 2.5: Interactionwith an optical cavity coupled to pumped quantum emitters (QEs).
(a) We consider a bosonic optical cavity (e.g., a Mie resonator) sustaining a single mode (frequency
ω0, inelastic decay rate κ) and in�ltrated with N three-level QEs. Optical pumping prepares the
emitters in their upper energy state at time t = 0, from which they decay to an intermediate level
by resonant coupling to the cavity mode at a rate g. (b,c) Temporal evolution of the average cavity
mode population n̄ (b) and second-order autocorrelation function at zero delay g(2) (c) for N = 2,
10, and 50 with κ = 0 (solid curves) and κ/Ng = 0.1 (dashed curves). (d-i) Evolution of the
populations pn (d-f) and the electron spectra (g-i) as a function of the delay time for N = 50 and
di�erent cavity decay rates: κ/Ng = 0 (d,g), 0.01 (e,h) and 0.1 (f,i). We assume an electron-mode
coupling |β0| = 0.7.

Examples of the evolution of the resulting average mode population n̄ and second-



53 2.7. Concluding remarks

order autocorrelation g(2)(0) are shown in Fig. (2.5b,c). The latter starts at g(2)(0) =
2(1−1/N) at t = 0 and in the absence of damping evolves toward 1−1/N at long times,
as expected for an assembly of N single-photon emitters. For �nite cavity damping, n̄
reaches a maximum < N , from which it exhibits an exponential decay, while g(2)(0)
eventually jumps to large values when n̄ becomes very small. For a su�ciently large
number of QEs, we �nd a substantial average population while g(2)(0) varies from nearly
2 down to a quantum regimes characterized by < 1. This evolution strongly a�ects
the resulting electron spectra as a function of the time t at which the electron-boson
interaction occurs after pumping the QEs, shown in Fig. (2.5g-i) under the assumption
that the interaction time is small compared with both 1/g and 1/κ. The spectra initially
resemble those of the thermal distributions of Fig. (2.4), as expected from the g(2)(0) ≈ 2
values, and gradually become similar to those of Fock states; for �nite cavity damping,
they undergo an attenuation similar to Fig. (2.4g) as

√
n̄|β0| decreases [right part of

Figs. (2.5h,i)]. In particular, as the average number of photons in the cavity goes down
with time, gain and loss peaks concentrate at increasingly lower orders `. Incidentally,
under the conditions of Fig. (2.5i), the oscillations in the spectra as a function of ` are
attenuated compared with those of less lossy cavities [Figs. (2.5g,h)], and additionally, an
oscillation-free regime is reached at long times when the population is severely reduced
and g(2)(0) takes high values [see also dashed green curves in Figs. (2.5b,c)].

2.7 Concluding remarks

In summary, in this chapter we have shown that the interaction of electron beams
with near optical �elds depends on both the quantum nature of the sample excitations
(fermionic vs bosonic) and the statistics of their populations. For bosonic modes, the
spectral distribution of losses and gains varies dramatically when comparing Fock,
coherent, and thermal distributions. Our simulations reveal that these regimes can be
explored by populating an optical cavity through optically pumped quantum emitters, for
which we have elaborated a model based on realistic optical cavities (e.g., Mie resonators,
such as those used in a recent PINEM experiment [106]) in�ltrated with optically pumped
quantum emitters (e.g., gain atoms or molecules like rhodamine). We predict that the
autocorrelation functions of the population distributions are directly retrievable from
the peak intensities in the electron spectra. An implementation of this idea to probe the
statistics of light with electron beams might be facilitated by schemes in which light-
electron coupling is enhanced, for example by using mirrors [36], photonic cavities [106,107],
or aloof interaction with total internally re�ected light in a prism [35]. Our results hold
strong potential for resolving the nature of many-body excitations supported by complex
materials, including strongly correlated systems, and open an unexplored avenue for
the study of ultrafast plasmon, hot-electron, and phonon dynamics in optically pumped
nanostructures using time-resolved electron microscope spectroscopy.
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3
Free-electron shaping using quantum light

The most exciting phrase to hear in science, the one that heralds new discoveries, is not
"Eureka!" but "That’s funny...".
Isaac Asimov

In this chapter, we present a study exploiting the analytical solution for the interaction
between a cavity and an electron beam previously found. Speci�cally, we investigate
the role of di�erent quantum light states in tailoring the longitudinal component of
the wave function. We pay particular attention to electron density compression after
free-space propagation takes place over a macroscopic distance. These results are based
on a published work, Ref. 108.
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3.1 Introduction

The exploration of ultrafast phenomena generally relies on the use of short probe pulses,
such as those provided by femtosecond visible-infrared lasers and attosecond x-ray
sources [109–111]. Electrons can potentially reach much shorter durations than light for
typical beam energies in the 102-105 eV range, as they are characterized by oscillation
periods of 20-0.02 as. Electron pulse compression is also capital for free-electron lasers [112],
relying on the ∝ N2 superradiance emission produced by N electrons when acting as a
single point charge. With applications such as imaging, spectroscopy, and light generation
in view, strong interest has arisen in manipulating the free electron density matrix using
light.

With the advent of PINEM, several experimental [26,29,35,36,39,74–78,81,83,106,107,113–115]

and theoretical [27,28,31,82,87,93,116–118] studies have demonstrated that interaction with the
optical near �elds scattered from illuminated nanostructures provides an e�cient way to
manipulate the temporal and spatial distribution of free electrons. In PINEM, electron
and light pulses are made to interact in the presence of a sample, giving rise to multiple
photon exchanges between the optical �eld and the electron, and leading to comb-like
energy spectra characterized by sidebands that are associated with di�erent numbers of
exchanged photons and separated from the incident electron energy by a multiple of the
photon energy. Recent experiments have measured hundreds of such sidebands produced
through suitable combinations of sample geometry and illumination conditions [35,106].
Additionally, electron pulse compression has been observed by free propagation of
PINEM-modulated electrons over a su�ciently long distance [75,80,83,119]. The electron
transforms into a series of pulses with duration down to the attosecond regime [75,80],
which can be made even smaller by increasing the strength of the PINEM light [117].

While this type of electron-light interaction a�ects only the longitudinal part of the
electron wave function, lateral control can be achieved either by the use of electron phase
masks [120–123] or through modulating the optical �eld with a transverse spatial resolution
limited by the light wavelength, and more generally, by the polariton wavelength when
relying on the excitation of optical modes in material surfaces. By analogy to elastic
electron di�raction by light gratings in free space (the Kapitza-Dirac e�ect [37,38,124]),
which has been shown to also enable the formation of vortex beams [125], surface-plasmon
standing waves can produce intense inelastic electron di�raction [93], as con�rmed by the
observation of discrete electron beam de�ection upon absorption or emission of a given
number of photons re�ected from a thin metal plate [36]. Similarly, optical near �elds
can transfer orbital angular momentum [82], also demonstrated through the synthesis
and observation of vortex electron beams produced by inelastic interaction with chiral
near �elds [115]. As a practical application of these phenomena, lateral phase imprinting
on electron beams through optical �elds has been recently proposed to provide a viable
approach to aberration correction and lateral electron beam pro�ling [126].

By sweeping the photon energy of the light used for PINEM interaction, the near
�eld experienced by the electrons undergoes amplitude modulations that map the optical
response of the sample. This strategy has been proposed as a form of spectrally-resolved
microscopy that can combine the subnanometer spatial focusing of electron beams [127]

with an excellent energy resolution limited by the spectral width of the light source [128,129].
A �rst demonstration of this possibility has enabled spatial mapping of plasmons in
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silver nanowires with ∼ 20 meV energy resolution without any need for electron
monochromators [81], a result that is rivalling the energy resolution achieved through
state-of-the art electron energy-loss spectroscopy [67].

The above studies rely on coherent light, such as that generated by laser sources, while
an extension to quantum optical �elds has been recently predicted to introduce quantum
e�ects in the electron spectra [64]. Quantum light thus presents an opportunity to further
manipulate the electron wave function in applications such as pulse compression and
modulation of the electron statistics.

Here, we show that a wide range of electron statistics can be reached through
interaction of free electrons with quantum light. Besides changing the focusing properties
of the optically-modulated electrons, this interaction reveals a strong dependence of the
electron density matrix on the statistics of the light �eld, which can be observed in a
self-interference con�guration setup. Speci�cally, we show that interaction with phase-
squeezed and minimum-phase-uncertainty light sources produce faster compression of
the electron, while amplitude-squeezed light gives rise ultrashort double-pulse electron
pro�les. Additionally, we �nd that the interaction of the modulated electron with a target
produces a Poissonian distribution of sample excitations with o�-diagonal coherences
that are strongly dependent on the statistics of the light used to modulate the electron.
Besides the fundamental interest of this wealth of phenomena, we envision applications
in the control of electron compression and in the generation of light with nontrivial
statistics.

3.2 Electron density matrix produced upon PINEM
interaction

3.2.1 The quantum PINEM interaction

Free electron-light interaction has been extensively studied under the assumption of
classical illumination [27,28]. An extension to describe the quantum evolution of the joint
electron-light state has been recently presented [64], which we use here to investigate the
modi�cation produced in the electron density pro�le following propagation after PINEM
interaction with nonclassical light. We �rst provide a succinct summary of this quantum
formalism.

We consider the sample response to be dominated by a single bosonic optical mode
oscillating at frequencyω0 and characterized by an electric-�eld distribution ~E0(r) de�ned
as either a normal [9] or a quasi-normal [48] bosonic mode. In addition, we assume that
the electron always consists of a superposition of states with relativistic momentum and
energy tightly focused around ~k0 and ~ε0 (i.e., having small uncertainties compared with
~ω0/v and ~ω0, respectively, where v is the electron velocity). Also, we ignore nonunitary
elements in the dynamics by considering that the electron-light interaction happens on
a fast time scale compared with the decay of the bosonic mode. These assumptions
allow us to linearize the electron kinetic energy operator (nonrecoil approximation).
Therefore, as shown in the previous chapter, the e�ective Hamiltonian of the system can
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be approximated by the noninteraction and interaction pieces [64]

Ĥpar
0 = ~ω0â

†â+ ~ε0 − ~v · (i∇+ k0), (3.1a)

Ĥpar
1 = −i(ev/ω0) ·

[
~E0(r)â− ~E∗0 (r)â†

]
, (3.1b)

respectively, where a and a† are annihilation and creation operators of the bosonic
optical mode, and v = k0/ε0 = vẑ is the electron velocity vector, taken to be along
ẑ. We remark that the aforementioned QED model accurately reproduces the electron-
�eld dynamics when spin-�ips, ponderomotive forces, and electron recoil can be safely
disregarded. However, in situations departing from these conditions, the full minimal-
coupling Hamiltonian has to be considered, and thus, numerical integration provides
a more suitable method to explore the resulting physics [130–132]. We can then write the
solution for the electron-optical mode wave function as a sum of energy sidebands, each
of them describing the amplitude associated with a net exchange of ` quanta with the
optical mode (` > 0 for electron energy gain and ` < 0 for loss). More precisely, we have
(see Chapter 2 or Appendix D)

|ψ(r, t)〉 =ψ0(r, t)

∞∑

`=−∞

∞∑

n=0

eiω0[`(z/v−t)−nt]fn` (r)|n〉, (3.2)

where r denotes the electron coordinate, |n〉 runs over Fock states of the optical �eld,
ψ0(r, t) is the incident electron wave function, and the amplitude coe�cients admit the
closed-form expression

fn` =ei(χ+`arg{−β0}) cn+` F
n
` (3.3)

Fn` =|β0|`e−|β0|2/2
√

(n+ `)!n!

n∑

n′=max{0,−`}

(−|β0|2)n
′

n′!(`+ n′)!(n− n′)! ,

with

β0(R, z) =
e

~ω0

ˆ z

−∞
dz′ E0,z(R, z′)e−iω0z

′/v

acting as a single-mode coupling coe�cient and

χ = (−e/~ω0)

ˆ z

−∞
dz′ Im{β∗0(R, z′)E0,z(R, z′)e−iω0z

′/v}

representing a global phase that is irrelevant in the present study (see Chapter 4 for
more details). A dependence on lateral coordinates R = (x, y) is imprinted by the
spatial distribution of the optical mode �eld. In the initial state (i.e., before quanta
exchanges), only ` = 0 terms are present, so we can write fn` (z → −∞) = δ`0cn,
where the amplitudes cn de�ne the starting optical boson �eld, which must satisfy the
normalization condition

∑

n

|cn|2 = 1. (3.4)
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Interestingly, the number of excitations n′ = n + ` is conserved along the temporal
evolution of the system [64], thus allowing us to propagate each initial n′ component
separately and multiply it by the initial boson amplitude cn+` when writing Eq. (3.3).
Because the expansion coe�cients de�ned in this equation are obtained from the evolution
operator [64], they satisfy the normalization condition

∑
`n |fn` |2 =

∑
`n′ |cn′Fn

′−`
` |2 = 1

for any optical �eld, which leads to the condition
∑

`

(Fn−`` )2 = 1 (3.5)

satis�ed for any n.
Electron propagation prior to interaction is described through the linearized

Hamiltonian Ĥ0, which essentially assumes that the electron beam is well collimated and
energy dispersion is negligible in the PINEM interaction region, such that we can write

ψ0(r, t) = eik0·r−iε0tφ0(r− vt),

where φ0 is a slowly varying function of relative position r− vt. Importantly, Eq. (3.3)
prescribes that the evolution of the electron-boson system is uniquely determined by the
nondimensional coupling parameter β0 in combination with the amplitudes αn de�ning
the initial optical wave function. In what follows, we assume no dependence on R (see
below) and set β0 ≡ β0(z → ∞) because we are interested in studying free-electron
propagation after PINEM interaction has taken place, even though this dependence
plays a fundamental role in the observed transfer of orbital angular momentum between
photons and electrons [115], and in addition, it could be useful to correct electron beam
aberrations [126]. Nevertheless, the coe�cients of the quantum light state in Eq. (3.3) could
provide an additional knob to further intertwine longitudinal and transverse electron
degrees of freedom beyond what is possible using classical light. Additionally, they could
a�ect the maximum achievable probability associated with speci�c PINEM sidebands, as
well as the dependence on pulse duration, which also deserve further study.

3.2.2 E�ect of free propagation
Our purpose is to investigate the electron characteristics after free propagation over a
macroscopic distance of several mm from the PINEM interaction region [see Fig. (3.1a)].
We identify in Eq. (3.2) a propagation phase eik`z associated with each ` sideband, in which
the electron wave vector is replaced by its linearized nonrecoil version k` ≈ k0 + `ω0/v.
While this approximation does accurately describe propagation over the relatively small
extension of the PINEM interaction region, the exact expression

k` = ~−1
√
E2
` /c

2 −m2
ec

2 (3.6)

≈ k0 + `ω0/v − 2π`2/zT + · · · ,

needs to be used to deal with arbitrarily long propagation distances z, where the second-
order correction, characterized by a distance

zT = 4πmev
3γ3/~ω2

0 (3.7)
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Figure 3.1: Talbot e�ect and electron compression with classical light. (a) An electron
Gaussian wave packet (green) is transformed through PINEM interaction followed by propagation
along a distance z into a substantially modi�ed electron density pro�le in the propagation-distance-
shifted time τ = t− z/v due to superposition of di�erent energy components. (b) Electron density
pro�le (vertical τ coordinate) as a function of propagation distance z (horizontal axis) after PINEM
interaction with coherent light. We consider 100 keV electrons, a photon energy ~ω0 = 1.5 eV,
and a coupling coe�cient |β| = 5. Trains of compressed electron pulses are periodically observed
at discrete multiple values of the Talbot propagation distance zT . (c-e) Details of the τ -z map in (b)
corresponding to the color-matched square regions of z width ∆ = 4 mm. (f) Same as (e), but for z
near 2zT.
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(e.g., zT ≈ 159 mm for ~ω0 = 1.5 eV and 100 keV electrons), is su�ciently accurate under
the conditions here considered, giving rise to numerical results that are indistinguishable
from the full expression in the examples shown below.

Our purpose is to study electron propagating and dismiss any entanglement with the
PINEM optical �eld. We thus consider the electron density matrix, obtained from the
pure-joint-state density matrix |ψ(z, t)〉〈ψ(z′, t)| by tracing out the optical degrees of
freedom:

ρ(z, z′, t) =

∞∑

n=0

ψn(z, t)ψ∗n(z′, t), (3.8)

with

ψn(z, t) = φ0(z − vt)
∞∑

`=−∞
cn+` F

n
` eik`z−i`ω0(t−tp),

where the phase of β0 enters only through a time shift tp = arg{−β0}/ω0. We remark
here that the mathematical operation of tracing out the degrees of freedom associated
with the photonic mode to obtain a density matrix for the electron subsystem is physically
justi�ed by the fact that this operation ensures the correct measurement statistics if one
only needs to measure electron properties (i.e., without performing any measurement on
the rest of the system) [133].

We note that di�raction e�ects involving the transverse evolution of the wave function
are disregarded. Under attainable experimental conditions, an initial 100 keV electron
beam with ϕ ∼ 50µrad divergence, focused to a 2/k0ϕ ∼ 25 nm spot over the PINEM
interaction region, becomes just a factor ∼ 2 wider after free propagation over a distance
z ∼ 1 mm due to di�raction. In addition, the results here presented are valid under the
assumption that φ(z − vt) involves a su�ciently narrow wave vector decomposition to
neglect corrections beyond the linear energy dependence of the wave vector during the
propagation distances under consideration, so φ enters the electron density matrix just as
a broad envelope factor. However, we note that these assumptions may break in scenarios
involving slow electrons (~ε0 . 102 eV) or very strong electron-�eld coupling, in which
the ponderomotive force can lead to a non-negligible beam spreading after interaction
with the sample [132].

3.2.3 Talbot e�ect and periodicity of the density matrix

Retaining just up to `2 corrections in Eq. (3.6) for k` and considering relative positions
|z − z′| � zT , we can recast the electron density matrix (Eq. (3.8)) as

ρ(z, z′, t) = eik0(z−z′)φ0(z − vt)φ∗0(z′ − vt)ρ̃(z, τ, τ ′),

where

ρ̃(z, τ, τ ′) =
∑

n``′

cn+`c
∗
n+`′ F

n
` F

n
`′ (3.9)

× e2πi[(`′2−`2)z/zT+(`′τ ′−`τ)/τ0],
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τ = t − tp − z/v, and τ ′ = t − tp − z′/v. Disregarding the trivial phase propagation
factor eik0(z−z′) and the slowly varying envelope introduced by φ, the density matrix
is periodic in both of the time-shifted coordinates τ and τ ′ with the same period as the
light optical cycle τ0 = 2π/ω0. Additionally, we �nd that ρ̃(z, τ, τ ′) portrays a periodic
pattern as a function of propagation distance z similar to the Talbot e�ect [134–138], with a
period given by zT in Eq. (3.7).

To illustrate this e�ect, we plot in Fig. (3.1b) the diagonal elements ρ(z, z, t) =∑∞
n=0 |ψn(z, t)|2 normalized to the envelope density |φ(z − vt)|2 for coherent light

illumination, which represent the scaled electron density pro�le as a function of time and
propagation distance z from the PINEM interaction region, calculated in the high-�uence
classical limit (see below). Incidentally, o�-diagonal elements are also considered and
represented below in Fig. (3.4). The plot clearly reveals a train of temporally focused
electron pulses at z ∼ 1.5 mm, followed by a series of focusing revivals at intervals of
zT ≈ 159 mm and accompanied by temporally shifted revivals at fractional values of the
Talbot distance zT [139].

3.3 Electron pulse compression with di�erent optical
mode statistics

Before analyzing the e�ect of light statistics in the evolution of the electron after PINEM
interaction, we remark that the previous formalism is only valid for pure initial optical
states, whose density matrix is given by

∑
nn′ cnc

∗
n′ |n〉〈n′|. In contrast, for a perfect

mixture (i.e., an initial optical density matrix
∑
n |cn|2|n〉〈n| with no coherences), the

outcome of interaction and propagation has to be separately calculated for each Fock
state |n〉 and then averaged incoherently. Using the normalization conditions of Eqs. (3.4)
and (3.5), we �nd an electron density matrix ρ̃(z, τ, τ ′) = 1, which is not altered due to
interference between di�erent energy components after PINEM interaction. We note
that a well-de�ned optical Fock state belongs to this category and thus does not produce
changes in the electron density matrix either.

3.3.1 High-�uence and classical limits
Electron coupling to a single optical mode is generally weak and therefore characterized
by a small coupling coe�cient |β0| � 1 (e.g., we set |β0| = 0.2 here, as a feasible value
for coupling to Mie and plasmon modes in nanoparticles [64]). Still, a strong PINEM
e�ect can be produced with a high average number of photons n̄ =

∑
n n|cn|2, while

only sidebands |`| � n̄ can then be e�ciently populated. In this limit, the dominant
contribution to the sum in Fn` comes from n′ � n terms, so we can approximate

Fn` ≈
∞∑

n′=0

(−1)n
′ |β0|2n

′+`

n′!(`+ n′)!

√
(n+ `)!n!

(n− n′)! .

We now apply the Stiling formula n! ≈
√

2πn (n/e)n to the factorials in the rightmost
fraction and neglect ` and n′ in front of n in the factors that are not a�ected by an
exponent n. This allows us to approximate

√
(n+ `)!n!/(n − n′)! ≈ (n/e)n

′+`/2eM ,
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whereM = n ln
[√

1 + `/n/(1− n′/n)
]
. We then retain only terms up to �rst order in

the Taylor expansion of the logarithm to �ndM ≈ n′+ `/2. Upon insertion of this result
into the above expression forFn` , we �ndFn` ≈

∑∞
n′=0(−1)n

′ |√nβ0|2n
′+`/[n′!(`+n′)!],

which directly yields

Fn` ≈ J`(2
√
n|β0|). (3.10)

by identifying the sum as the Taylor expansion of the Bessel function Jn with argument
2
√
n|β0|1. Additionally, if the optical mode is prepared in a coherent state (e.g., by exciting

it with laser light), its population follows a Poissonian distribution |cn|2 = e−n̄ n̄n/n!,
which approaches a normal distribution [94] |cn|2 ≈ e−(n−n̄)2/2n̄/

√
2πn̄ for n̄ � 1.

Introducing this expression in Eq. (3.9), approximating n ≈ n̄ in Eq. (3.10), and using
the normalization condition

∑
n |cn|2 = 1, we can write the density matrix in the

high-�uence classical limit as

ρ̃(z, τ, τ ′) ≈ ψcl(z, τ)ψ∗cl(z, τ
′),

where

ψcl(z, τ) =
∑

`

J`(2|β|)e−2πi(`2z/zT+`τ/τ0)

and

β =
√
n̄β0 (3.11)

is the e�ective coupling coe�cient, which is proportional to the light intensity used
to excite the optical mode. This result is consistent with previous theoretical [29,117]

and experimental [80,119] studies of free propagation after high-�uence classical PINEM
interaction. Electron compression and Talbot revivals in this limit are shown in Fig. (3.1b)
for coherent illumination with |β0| = 0.2 and |β| = 5, while a zoom of the focal region
is presented in Fig. (3.2a).

Interestingly, for any population of the optical mode that is smooth and strongly
peaked around n̄� 1, we can approximate cn+` ≈ cn for |`| � n, so the wave function
completely separates into light and electron components in Eq. (3.2), which becomes

|ψ(r, t)〉 ≈
∞∑

n=0

cne−inω0t|n〉

× ψ0(r, t)

∞∑

`=−∞
ei(χ+`arg{−β}) J`(2|β|) ei`ω0(z/v−t),

in agreement with a well-known expression for PINEM with classical light [36].

1Indeed, the Taylor expansion of the Bessel Jn function reads Jn(x) =
∑∞
m=0[(−1)m/m!(m +

n)!](x/2)2m+n [13].
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3.3.2 Coherent squeezed light

We now explore squeezed light as an experimentally feasible alternative to classical
laser light to excite the PINEM optical mode. Single-mode coherent squeezed states
D̂(g)Ŝ(ζ)|0〉 are de�ned by applying the displacement and squeezing operators, D̂(g) =
exp
(
ga† − g∗a

)
and Ŝ(ζ) = exp

[
(ζ∗aa− ζa†a†)/2

]
, to the optical vacuum (see Section

1.3).

Figure 3.2: Electron compression using squeezed light. (a-d) Evolution of the electron
density pro�le following PINEM interaction with (a) classical, (b) MPU, (c) phase-squeezed, and
(d) amplitude-squeezed light using a single-mode coupling coe�cient |β0| = 0.2 and average
population n̄ = 625 (i.e., |β| =

√
n̄|β0| = 5). (e) FWHM [see panel (a)] of the compressed electron

density in (a-d) as a function of propagation distance z. (f) Minimum in the FWHM along the
curves in (e) as a function of coupling coe�cient |β| (varying |β0| and keeping n̄ = 625). We
consider 100 keV electrons and a 1.5 eV photon energy.

We consider the two extreme possibilities of PINEM interaction with purely phase-
and amplitude-squeezed light in Fig. (3.2c,d), where we plot the density pro�le ρ(z, z, t) =
ρ̃(z, τ, τ) as a function of propagation distance z for �xed coupling strength [|β| = 5,
obtained with n̄ = 625 and |β0| = 0.2, see Eq. (3.11)]. Electron focusing takes place at a
similar propagation distance z ∼ 2 mm for all light statistics under consideration. When
the illumination has classical [Fig. (3.2a)] or amplitude-squeezed [Fig. (3.2d)] statistics,
the density shows oscillations as a function of relative time τ before focusing. These
oscillations disappear with phase-squeezed light [Fig. (3.2c)]. Additionally, the latter
produces a focal spot spanning a larger interval of propagation distances z and emerging
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Figure 3.3: Tailoring the electron wave packet with amplitude-squeezed light. (a-c)
Electron density pro�le produced by PINEM interaction with classical (dashed curves) and
amplitude-squeezed (solid curves) light after at propagation distance z as indicated by labels.
The electron-light coupling coe�cient is assumed to be |β| = 5 with |β0| = 0.2 and n̄ = 625. (d)
Evolution of the density pro�le using amplitude-squeezed light for di�erent coupling strengths |β|
obtained by varying |β0| with n̄ = 625. We consider 100 keV electrons, a photon energy 1.5 eV,
and a single-mode coupling coe�cient |β0| = 0.2 in all cases.

at a shorter value of z in comparison with classical light [Fig. (3.2e)]. The behavior with
amplitude-squeezed light is the opposite, and in particular, the minimum FWHM of the
focal spot is approximately twice larger than the result obtained with phase-squeezed
or classical light. As already discussed for classical light [117], the degree of compression
increases with increasing coupling |β| [Fig. (3.2f)].

Incidentally, upon visual inspection of the z-τ pattern for coherent-state illumination
in Fig. (3.2a), smoothing along z would lead to vertical elongation of the density features,
similar to those obtained using phase-squeezed light [Fig. (3.2b)]; in contrast, smoothing
along τ would produce a pattern more similar to that of amplitude-squeezed illumination
[Fig. (3.2d)]. This is consistent with the intuitive picture that phase-squeezing should
generate sharper features in the wave function snapshots (i.e., narrower peaks as a
function of τ , accompanied by broadening along z in order to preserve the total electron
probability); conversely, amplitude-squeezed light should produce the opposite e�ect
(broadening along τ and sharpening along z).

Synthesis of double-peak electron pulses

Although PINEM interaction with amplitude-squeezed light renders comparatively poorer
focusing, it shows an interesting double-peak pattern for z below the focal spot. This
e�ect, which is already observed in Fig. (3.2d), is analyzed in more detail in Fig. (3.3) for
di�erent degrees of squeezing. We also show in the same �gure the pro�les obtained
with classical light, revealing amplitude squeezing as a better strategy to produce such
double-pulse pattern. We remark that the width and distance between the two pulses
can be controlled by varying the coupling strength parameter |β| [Fig. (3.3d)]. Related to
this, we note that a recent experiment [140] has shown that a single double-peak electron
density pro�le can be achieved by exploiting classical midinfrared single-cycle laser
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pulses.

3.3.3 Electron compression with minimum-phase-uncertainty
light

One expects that better focusing can be achieved by reducing phase uncertainty in the
optical �eld. In the limit of large average photon number n̄� 1, the state that produces
a minimum phase uncertainty (MPU) has been shown to be given by [141]

cn ≈
C√
n̄

Ai [s1(1− 2n/3n̄)] ,

where Ai is the Airy function, s1 ≈ −2.3381 is its �rst zero, C =
√

2|s1|/3/Ai′(s1) ≈
2.7805, and Ai′(s1) is the derivative of Ai. PINEM focusing with MPU light is illustrated
in Fig. (3.2b). In contrast to classical light, the Rabi-like oscillations along z are now
replaced by a well-de�ned short-period comb of electron density peaks. This is similar to
what we obtain with phase-squeezed light [Fig. (3.2c)], but the pattern with MPU light
becomes more pronounced. Further deviations from coherent illumination are found in
the speed at which compression is achieved: among the statistics under consideration,
the shortest FWHM pulse with �xed light intensity and propagation distance is obtained
when using MPU light [Fig. (3.2e)]. Nevertheless, after a su�ciently large distance
z, the FWHM reaches similar values with MPU, coherent, and phase-squeezed light,
while amplitude-squeezed light systematically leads to lower compression, and this e�ect
becomes more dramatic when increasing the coupling coe�cient |β| [Fig. (3.2f)].

3.3.4 Electron self-interference

We can further modify the focal properties of the electron by mixing it with a delayed
version of itself, using for example a beam splitter and di�erent lengths z and z′ of the
two electron paths converging at the observation region, as sketched in Fig. (3.4a). We
assume that z − z′ is tuned to be a multiple of the electron wavelength, thus rendering
ρ ∝ ρ̃ [see Eq. (3.9)], considering for simplicity an incident electron plane wave [i.e.,
φ(z − vt) = 1/

√
L, where L is a quantization length]. Using the notation of Eq. (3.8),

the electron density pro�le obtained in this way then results from the superposition
(L/2)

∑
n |ψn(z, t)+eiϕψn(z′, t)|2 = ρ̃(z, τ, τ)/2+ρ̃(z, τ ′, τ ′)/2+Re{e−iϕρ̃(z, τ, τ ′)},

where an overall phase ϕ is introduced (e.g., by means of electrostatic elements along one
of the electron arms [122]) to allow us to switch between the real and imaginary parts of
ρ̃(z, τ, τ ′). An example of how this quantity depends on PINEM light statistics is shown
in Fig. (3.4b-i), plotted over a discrete dense sampling of τ and τ ′ points satisfying the
condition that v(τ−τ ′) are multiples of the electron wavelength. Interestingly, we observe
a rotation of the focal spot feature when going from classical to amplitude-squeezed light.
This is consistent with the poorer focusing properties observed for the latter. Through the
proposed electron self-interference, the focal spot pro�le can be modi�ed to cover a wide
variety of patterns observed for di�erent light statistics. In particular, phase-squeezed
and MPU light produce a radical departure in ρ̃(z, τ, τ ′) relative to classical coherent
light.
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Figure 3.4: Measuring the electron density matrix through self-interference. (a) Sketch of
an experimental arrangement to explore electron auto-correlation by means of a beam splitter and
di�erent lengths (z and z′) along the two electron paths before recombination at the detection
region. (b-i) Real (left panels) and imaginary (right panels) parts of the electron density matrix as a
function of shifted times τ and τ ′ for z = 1.6 mm and di�erent statistics of the PINEM light, as
indicated by labels. We consider 100 keV electrons, 1.5 eV PINEM photons, a squeezing paramerter
s = 2, and coupling parmameters |β0| = 0.2 and |β| = 5.

3.4 E�ect of the electron density matrix on the
excitation of a sample

A commonly asked question relates to how the probability and distribution of excitations
produced in a sample are a�ected by the pro�le of the beam in an electron microscope.
The dependence on the transverse component of the electron wave function has been
shown to reduce to a trivial average of the excitation produced by line-like beams over
the lateral electron density pro�le [33,142]. In the present study, we concentrate instead
on the longitudinal electron wave function (i.e., along the beam direction). Within �rst-
order Born approximation, the excitation probability is known to be independent of
the longitudinal electron wave function when the initial states of the sample and the
electron are not phase-correlated [33,143], although a dependence has been shown to arise
when the sample state is a coherent superposition of ground and excited states that is
phase-locked with respect to the electron arrival time [143], and for example, this e�ect
is actually observed in double-PINEM experiments [80]. Here, we concentrate on the
common scenario of a sample prepared in its ground state before interaction with the
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electron. Remarkably, even when considering higher-order interactions, the number of
excitations created by the electron has been shown to still remain independent of the
longitudinal wave function [144], which incidentally implies that the cathodoluminescence
intensity is also independent. We generalize this result below by calculating the full
density matrix of the bosonic mode, which turns out to have a Poissonian diagonal
part equally independent of electron wave function, although the coherences exhibit a
dependence on the quantum state of light used in the PINEM interaction to modulate the
electron.

For simplicity, we consider a single sample bosonic mode of frequency ω′0 interacting
with an incident PINEM-modulated electron wave packet [Fig. (3.5a)]. We can then
treat the electron-sample interaction using the same formalism as in Section 3.2 by just
iterating Eq. (3.2). We �nd the expression

|Ψ(z, t)〉 = eik0z−iε0tφ0(z − vt)
∞∑

`=−∞

∞∑

n=0

∞∑

n′=0

fn` f
′n′
−n′

× eiω0[`(z/v−t)−nt]−2πi`2d/zT−in′ω′0z/v|nn′〉 (3.12)

for the wave function of the entire system, comprising the electron, as well as the PINEM
and sample bosonic modes, the Fock states of which are labeled by their respective
occupation numbers n and n′. Primed quantities are reserved here for the sample [i.e., fn`
refers to the �rst PINEM interaction, while f ′n′`′ describes the coupling to the sample in
Eq. (3.12)], and in particular the condition `′ = −n′ (i.e., sample initially prepared in its
ground state |0〉) is used to write the coe�cients f ′n′−n′ . Additionally, we introduce a phase
correction ∝ `2 accounting for propagation over a macroscopic distance d separating
the PINEM and sample interaction regions, but we neglect this type of correction for
relatively short propagation along the extension of the envelope function φ(z) and within
the sample interaction region [see Fig. (3.5a)]. The density matrix of the sample mode
after interaction with the electron,

ρsample =
∑

n′1n
′
2

ρsample
n′1n

′
2

e−i(n′1−n′2)ω′0t|n′1〉〈n′2|,

is then obtained by tracing out electron (integral over z) and PINEM boson (sum over n)
degrees of freedom. More precisely, we �nd the coe�cients

ρsample
n′1n

′
2

= ei(n′1−n′2)ω′0t

ˆ
dz
∑

n

〈nn′1|Ψ(z, t)〉〈Ψ(z, t)|nn′2〉

= f
′n′1
−n′1

f
′n′2∗
−n′2

∞∑

`1=−∞

∞∑

`2=−∞
φ`1`2n′1n′2

∞∑

n=0

fn`1f
n
`2
∗, (3.13)

where

φ`1`2n′1n′2 = e2πi(`22−`21)d/zT (3.14)

×
ˆ
dz |φ0(z)|2 ei[(`1−`2)ω0−(n′1−n′2)ω′0]z/v.
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Incidentally, further electron propagation beyond the sample should also involve
corrections to the linearized momentum n′ω′0/v, on which we are not interested here.

We remind that the momentum decomposition of φ involves small wave vectors
compared with ω/v, so its role in the integral of Eq. (3.14) consists in introducing some
broadening with respect to the perfect phase-matching condition

(`1 − `2)ω0 = (n′1 − n′2)ω′0. (3.15)

Such broadening produces nonzero (but small) values of φ`1`2n′1n′2 even when ω0/ω
′
0 is

not a rational number. For simplicity, we consider ω0/ω
′
0 to be a rational number and

further assume the spectral width of the sample mode to also be small compared with
ω0; the coe�cients of Eq. (3.14) then reduce to

φ`1`2n′1n′2 = e2πi(`22−`21)d/zT ,

subject to the condition given by Eq. (3.15).
We note that the diagonal elements ρsample

n′n′ involve just `1 = `2 terms in virtue of Eq.
(3.15), so the only nonzero coe�cients in Eq. (3.13) for those elements are φ``n′n′ = 1, and,
using the normalization condition

∑
`n |fn` |2 = 1, we �nd ρsample

n′n′ = |f ′n′−n′ |2, which does
not depend on the PINEM coe�cients fn` : we corroborate that the number of excitations
created in the sample is independent of how the incident PINEM electron is prepared [144];
additionally, the distribution of those excitations is also independent. More speci�cally,
upon inspection of Eq. (3.3), we �nd f ′n′−n′ = eiχ′e−|β

′
0|2/2β′0

∗n′
/
√
n′!, and therefore,

ρsample
n′n′ =

∣∣∣f ′n′−n′
∣∣∣
2

= e−|β
′
0|2 |β

′
0|2n

′

n′!

reduces to a Poissonian distribution regardless of the quantum state of the incident
electron, with average |β0|2 corresponding to the contribution of the mode under
consideration to the EELS probability. This result, which was found for excitation by an
electron treated as a classical probe [91,145], is now generalized to a quantum treatment
of the electron. We remark that this conclusion is in essence a result of the nonrecoil
approximation.

Combining the above results, the elements of the sample density matrix can be written
as

ρsample
n′1n

′
2

= e−|β
′
0|2 (−β′0)n

′
1∗(−β′0)n

′
2

√
n′1!n′2!

×
∑

`1`2

′
e2πi(`22−`21)d/zT

∞∑

n=0

fn`1f
n∗
`2 ,

where the sum is subject to the condition imposed by Eq. (3.15). The symmetry property
ρsample
n′1n

′
2

= ρsample∗
n′2n

′
1

is easily veri�ed from this expression. We can now calculate di�erent
observables involving the sample mode, as for example∝ (a′†+a′). The expectation value
of this quantity, which vanishes unless the ratio of sample-to-PINEM mode frequencies
ω′0/ω0 = m is an integer, only involves terms in which n′1 and n′2 di�er by 1. A
straightforward calculation leads to the result

〈a′† + a′〉 = 2Re{−β′0∆meiω′0t},
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Figure 3.5: Dependence of sample polarization on electron density matrix. (a) Sketch of
an electron wave packed undergoing PINEM modulation, followed by propagation along a distance
d, and interaction with a single-mode sample of frequency ω′0 = mω0 that is a harmonic m of the
PINEM photon frequency. (b-e) Amplitude ∆m of the oscillation at frequency ω′0 displayed by the
sample polarization after interaction with the electron. We plot |∆m| for a few values of m as a
function of PINEM-sample distance d and di�erent PINEM-light statistics. All parameters are the
same as in Fig. (3.4).

where

∆m = e2πim2d/zT

∞∑

`=−∞
e4πi`md/zT

∞∑

n=0

fn` f
n∗
`+m. (3.16)

This polarization matrix element has been recently shown to exhibit some degree of
coherence with the light used to modulate the electron in the �rst PINEM interaction [144].
We show in Fig. (3.5b-e) the dependence of |∆m| on PINEM-sample separation d for a
few values of m and di�erent PINEM statistics. This quantity is periodic in d with a
period zT /2m, as it is clear from the exponential inside the sum of Eq. (3.16). Dramatic
di�erences are observed in |∆m| for di�erent PINEM statistics; in particular, a clear trend
is observed toward concentration of ∆m at speci�c distances d when the uncertainty in
the light coherence is reduced (i.e., when moving from coherent or amplitude-squeezed
light to phase-squeezed light, and eventually to MPU light).

Incidentally, a similar analysis for the N th moment ∝ (a′† + a′)N leads to a
contribution oscillating at frequency Nω′0 with a coe�cient ∆mN . An e�ect at that
order is produced if mN is an integer, a condition that can be met for noninteger values
of the sample-PINEM frequency ratio ω′0/ω0 = m; for example, an oscillation with
frequency ω0 is induced in ∝ (a′† + a′)2 after electron-sample interaction if the sample
mode frequency is half of the PINEM photon frequency.

The time-dependent of the o�-diagonal sample density matrix components under
discussion could be measured through attosecond streaking [146,147], as a function of
the delay between the times of arrival of the electron and an x-ray pulse, giving rise
to oscillations in the energy of photoelectrons produced by the latter as a function of
such delay. For low-frequency sample modes, a direct measurement could be based on
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time-resolved quantum tomography of the sample state; this strategy could bene�t from
low-frequency beatings resulting from the combination of multiple sample modes of
similar frequency. More direct evidence should be provided by the nontrivial interference
that has been shown to emerge when mixing the PINEM light with cathodoluminescence
emission from the sample [144].

3.5 Concluding remarks

We demonstrated that the interaction of free electrons with quantum light opens a new
direction for modulating the longitudinal electron pro�le, the degree and duration of
electron pulse compression, and the statistics associated with this compression. By
squeezing the interacting light in phase, the formation of electron pulses is accelerated,
and this e�ect is maximized when using optical �elds with an Airy number distribution
that minimizes phase uncertainty. Interestingly, amplitude-squeezed light leads to
the emergence of double-pulse electron pro�les, which could be useful to investigate
dynamical processes in a sample. The in�uence of light statistics becomes more dramatic
when examining the electron density matrix after interaction, a quantity that can be
accessed through our proposed self-interference experiment. Additionally, we have
shown that the excitation of a sample by the electron is a�ected by how the latter is
modulated, and in particular, by the statistics of the modulating light. Indeed, although
no dependence is predicted in the probability of exciting sample modes, the temporal
evolution of the electron-induced o�-diagonal sample density matrix elements shows a
departure from the results observed with laser-modulated electrons when considering
instead electrons that have interacted with quantum light. Besides their practical interest
to shape and temporally compress free electrons, the results here presented reveal a
wealth of fundamental phenomena emerging from the interaction with nonclassical light.
We further anticipate potential application in the creation of light sources with nontrivial
statistics through electron-induced optical emission using gratings and undulators.
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4
Electron di�raction by vacuum �uctuations

When a distinguished but elderly scientist states that something is possible, he is almost
certainly right. When he states that something is impossible, he is very probably wrong.
Arthur C. Clarke

In this chapter, we study the decoherence and the elastic di�raction associated with
the image self-interaction experienced by an electron beam when interacting with a
complex material environment. In particular, we connect the latter e�ect to the phase
χ encountered in the previous chapters and we compute its magnitude for di�erent
geometrical con�gurations. The following results are based on a published work, Ref.
148.
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4.1 Introduction

On-demand coherent manipulation of the transverse electron wave function in electron
beams is of fundamental interest to improve spatial resolution in transmission electron
microscopes. The problem can be simply stated as the question of how to introduce a
position-dependent phase in the electron wave function. Currently, energetic electron
beams can be focused down to sub-Ångstrom spots by phase shaping their transverse
wave functions using electrostatic and magnetostatic lenses, which produce macroscopic
changes in the phase pro�le to correct aberrations in the electron optics. Recently,
perforated transmission phase plates have been successfully demonstrated to create
beams carrying high values of angular momentum [120], while dynamical phase patterning
has been explored with the use of pixelated electrostatic plates [122]. An alternative
possibility consists in exploiting photon-electron interactions, for example in the Kapitza-
Dirac e�ect [37,38], and also in the recently demonstrated angular momentum transfer
between light and electron beams [115], which has been theoretically proposed to be useful
for aberration correction [126], although this approach involves the emission or absorption
of real photons, therefore producing inelastic rather than elastic di�raction.

In a related context, vacuum �uctuations can also induce a phase modulation without
the exchange of real photons, an e�ect that has been theoretically investigated in the
presence of nondissipative media [149] and is still lacking experimental con�rmation
to the best of our knowledge. For an electron moving parallel to a perfect conductor
surface, this phase has been explained as arising from the Aharonov-Bohm e�ect [150]

produced by the electron image potential [149], while an alternative derivation has been
given in terms of path integrals [151]. The presence of material excitations with which
the electron may interact could add new degrees of freedom to manipulate the quantum
phase, although their study would be di�cult to undertake using existing theoretical
approaches. It should be noted that the same type of electron phase was analysed in
detail in early pioneering works, although in a di�erent context related to electron
microscopy and the understanding of elastic scattering by atomic crystal lattices for
penetrating trajectories [152,153]. However, the real part of the correction to the optical
potential computed in these works was found to be too small in samples with thickness
smaller than the electron mean free path, and therefore, never experimentally observed
to the best of our knowledge. In this context, aloof trajectories may enormously increase
the interaction length, thus making this e�ect observable in practice.

In this chapter, we present an alternative derivation of vacuum phases produced
during the interaction of electron beams with arbitrary media, enabling us to readily
include the e�ect of material excitations for aloof electron trajectories. In Section 4.2,
we show how vacuum �uctuations can induce both phase shifts and decoherence in an
Aharonov-Bohm-like con�guration. In Section 4.3, by analytically solving the evolution
of an electron wave function at energy scales typical of electron microscope setups,
we provide a demonstration that the vacuum phase shift can transversally modulate
the electron beam. In Section 4.4, we discuss the phase produced on electrons moving
parallel to either perfect or real planar conductor surfaces, whereas in Section 4.6 we
analyze far-�eld di�raction induced by either a planar surface or a small particle. We
anticipate that our results could be corroborated in either interference or angle-resolved
experiments.
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In brief, we discuss a general theory of the interaction between fast electrons and
electromagnetic modes in the vicinity of material media, leading to the emergence of a
quantum phase imprinted on the electron transverse wave function. For aloof interaction
with a planar surface, this phase is related to the Aharonov-Bohm e�ect due to the image
potential [149], although an accurate determination of its magnitude requires a proper
quantum treatment of the electromagnetic vacuum in the presence of material boundaries.
We illustrate the e�ect that such phase has on a free electron by investigating two di�erent
experimental scenarios: a holographic measurement in which one compares the phase of
an electron wave function component passing near a sample with the phase of another
component that does not interact with the sample; and a di�raction measurement in
which the electron distribution in the far-�eld Fourier plane is modi�ed by the dependence
of the imprinted phase on transverse beam coordinates.

4.2 Vacuum phase shift induced by macroscopic
media

4.2.1 Vacuum phase shift
We now obtain an expression for the elastic electron amplitude under interaction with
a macroscopic quantized electromagnetic �eld. We consider an Aharonov-Bohm-like
experiment in which the electron wave function is split into two paths (1 and 2). Before
interaction with the electromagnetic �eld, the system density matrix is

ρ(t0) = [|ψ1(t0)〉〈ψ1(t0)|+ |ψ2(t0)〉〈ψ2(t0)|
+|ψ2(t0)〉〈ψ1(t0)|+ |ψ1(t0)〉〈ψ2(t0)|]⊗ σ(t0),

where σ(t0) stands for the initial state of the photon �eld at time t0, while |ψ1(t0)〉 and
|ψ2(t0)〉 are the electron states in paths 1 and 2, respectively. We take the interaction
between the electromagnetic �eld and the electron to be described by the minimal
coupling Hamiltonian in the temporal gauge of Eq. (1.39b) with the vector potential being
quantized within MQED framework (see Section 1.3), which in the interaction picture
reads

Ĥint(t) = −1

c

ˆ
d3r ÂI(r, t) · j(r, t).

Assuming the electron current to be well described by its classical version on each of the
two electron paths1, we can write the electron density matrix at a later time t > t0, with
t0 → −∞, as

ρe(t) =|ψ1(t0)〉〈ψ1(t0)|+ |ψ2(t0)〉〈ψ2(t0)| (4.1)
+ |ψ2(t0)〉〈ψ1(t0)|Tr{Ŝ2σ(t0)Ŝ†1}
+ |ψ1(t0)〉〈ψ2(t0)|Tr{Ŝ1σ(t0)Ŝ†2},

1More formally, we can think at the states |ψ1/2(t0)〉 to be eigenstates of the quantum current operator
ĵI(r, t) [see Eq. (1.40)] from which we neglect the ponderomotive contribution.
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where Ŝj is the scattering operator of Eq. (1.41) for the current along path j = 1 or
2, and we have traced out the photon degrees of freedom. The �rst two terms on the
right-hand side of Eq. (4.1) represent the part of the electron wave function that is not
a�ected by interaction with the electromagnetic �eld. The remaining two terms describe
the coherence of the electron state. We now take the initial photon density matrix to be
in a thermal state at temperature T and use the fact that the commutator between the
vector potentials is a pure imaginary c-number [see Eq. (C.2)] to rewrite the scattering
operator as (see Appendix D)

Ŝj = eiχje
− i

~
´ t
t0
dt′Ĥj(t′) = eiχj Ûj , (4.2)

which, by going to t =∞, leads to

〈Ŝ†2 Ŝ1〉T = ei(χ1−χ2)〈Û†2 Û1〉T

with phase shifts given by

χj =
i

2~2c2

ˆ ∞
−∞

dt dt′
ˆ
d3r d3r′ jj(r, t) ·

[
ÂI(r, t), ÂI(r′, t′)

]
· jj(r′, t′). (4.3)

Now, we use the Baker-Campbell-Hausdor� formula to recombine the evolution of the
two paths, leading to

〈Ŝ†2 Ŝ1〉T = ei(χ1−χ2)eiϕeP ,

where we have

ϕ =
−i

2~2c2

ˆ ∞
−∞

dt dt′
ˆ
d3r d3r′ j2(r′, t′) ·

[
ÂI(r′, t′), ÂI(r, t)

]
· j1(r, t), (4.4)

P =
−1

2~2c2

ˆ ∞
−∞

dt dt′
ˆ
d3r d3r′ j1,2(r, t) · 〈ÂI(r, t)ÂI(r′, t′)〉T · j1,2(r′, t′), (4.5)

and j1,2 = j1 − j2. In this derivation, we have used the fact that ÂI(r, t) is linear in the
�eld operators, and therefore 〈ÂI(r, t)〉T = 0 [see Eq. (1.46)], which leads to a cumulant
expansion limited only to the second-order term [49]. The phase shift given by Eq. (4.4)
relates to the interference between the two paths due to photon emission. This is clear
by noticing that it appears only because of the cyclic property of the trace, which allows
us to obtain the product Ŝ†2 Ŝ1. In contrast, the expression in Eq. (4.5) is guaranteed to
be a real number, so it represents the total decoherence experienced by the electron,
which has been extensively studied from theoretical [151,154–156] and experimental [157–159]

fronts. Importantly, it should be noted that, although the impressive increase of accuracy
achieved in recent experiments served to rule out alternative theories, further decrease
in experimental error is still needed to conclusively support a physical model [156]. The
path-dependent phase and decoherence, which can a�ect the fringes observed in an
interference experiment, was derived as a dynamical scattering correction to the electron
virtual interaction with sample excitations in a pioneering work [152] that related it
to the so-called optical potential [153,160,161]. A subsequent formulation of such phase
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was then separately given in the context of quantum �eld theory [149] assuming zero
temperature and neglecting inelastic losses, while an extension to �nite temperature was
later presented [49]. However, not much attention has so far been paid to the vacuum
phase shift χj [Eq. (4.3)] and the role played by dissipation and �nite conductivity in
metallic structures, on which we focus here using a macroscopic QED formalism.

We �nd it useful to rewrite the phase shift of Eq. (4.3) in terms of the electromagnetic
Green tensor by using Eqs. (1.43) and (C.3). This allows us to write

χj =
2

~

ˆ ∞
−∞

dt dt′
ˆ ∞

0

dω

ˆ
d3r d3r′ cos [ω(t− t′)]

× jj(r, t) · Re{−G(r, r′, ω)} · jj(r′, t′), (4.6)

where we have also used the Onsager reciprocity relation G(r, r′, ω) = GT(r′, r, ω).
Now, if we consider the electron to be a point particle traveling along the z direction
with constant velocity v and �xed transverse coordinates Rj = (xj , yj) (di�erent for
each of the two paths j = 1 and 2), the electron current is

jj(r, t) = −ev δ(z − vt) δ(R−Rj) ẑ, (4.7)

which upon insertion into Eq. (4.6) leads to the expression

χj =
2e2

~

ˆ ∞
0

dω

ˆ ∞
−∞

dz dz′ cos
[ω
v

(z − z′)
]

Re{−Gz,z(Rj , z,Rj , z
′, ω)} (4.8)

for the impact-parameter-dependent electron phase shift. This result clearly emphasizes
the fact that the quantum phase is the integral of a nonresonant quantity (the real part of
the Green tensor), and thus it is expected to be small, although the numerical examples
discussed below reveal a measurable e�ect. In more physical terms, the electron has to
undergo an even number of virtual inelastic processes during its interaction with the
sample before recovering its initial energy, so the phase change is at least a second-order
process (indeed it arises from a commutator), although its e�ect is accumulated over an
in�nite number of electromagnetic modes that renders it non-negligible. We also remark
that the phase does not depend on how the electromagnetic modes are populated, so
it takes the same value if the sample starts from the ground state or from an excited
state. For completeness, we calculate the decoherence from Eq. (4.5), which requires the
evaluation of the thermal average of the vector potentials,

〈Âi(r, t)Âi′(r′, t′)〉T = −4~c2
ˆ ∞

0

dω Im{Gi,i′(r, r′, ω)}

×
[
2nT (ω) cos[ω(t− t′)] + e−iω(t−t′)

]
.

Upon insertion of this expression into Eq. (4.5), using again the Onsager reciprocity
relation and the Bose-Einstein distribution nT (ω) at temperature T and frequency ω [see
Section 1.3], we �nd

P =
2

~

ˆ ∞
0

dω

ˆ ∞
−∞

dt dt′
ˆ
d3r d3r′ cos[ω(t− t′)][2nT (ω) + 1]

× j1,2(r, t) · Im{G(r, r′, ω)} · j1,2(r′, t′).
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Considering now the two parallel paths described by the currents of Eq. (4.7), the
decoherence takes the simple form

P =
−1

2

ˆ ∞
0

dω [2nT (ω) + 1] [ΓEEL(R1,R1ω) + ΓEEL(R2,R2, ω)

−ΓEEL(R1,R2, ω)− ΓEEL(R2,R1, ω)] , (4.9)

where

ΓEEL(Rj ,Rj′ , ω) =
4e2

~

ˆ ∞
−∞

dz dz′ cos
[ω
v

(z − z′)
]

Im{−Gz,z(Rj , z,Rj′ , z
′, ω)}

[compare this expression with Eq. (4.8)], so the �rst two terms inside the ω integral of
Eq. (4.9) arise from the separate-path EELS probabilities [i.e., ΓEEL(Rj ,Rj , ω) is the
EELS probability for an electron following path j of Eq. (1.26)] , whereas the last two
terms stand for the inelastic path-interference contribution, all of which are weighted
by a thermal factor that results from the sum of electron energy losses (∝ nT + 1) and
gains (∝ nT ).

4.2.2 Quantum phase and Aharonov-Bohm e�ect in arbitrary
geometries

As an extension of the explanation of the vacuum phase in terms of the Aharonov-Bohm
e�ect associated with the image potential for an electron moving parallel to a perfect-
conductor plate [149], we now argue that Eq. (4.8) results from the Aharonov-Bohm
e�ect associated with a vector potential in the current temporal gauge. Indeed, direct
application of Eq. (1.10) allows us to write the expectation value of the z component
of the vector image potential produced by the electron current given by Eq. (4.7) as
Az(r, t) = (2ec)

´∞
0
dω
´∞
−∞ dz′Re{Gzz(r,Rj , z

′, ω)eiω(z′/v−t)}, where an overall
factor of 1/2 is introduced to re�ect the fact that the potential arises from the electron
self-interaction rather than from an external source, and we use causality to reduce
the ω integral to the positive frequency part. We now plug this expression into the
phase (−e/~c)

´∞
−∞ dz Az(Rj , z, t) due to the Aharonov-Bohm e�ect [150], which

is proportional to the integral of the vector potential acting on the electron along
its trajectory t = z/v. Combining these expressions, we readily obtain Eq. (4.8),
thus demonstrating that the quantum phase under discussion can be ascribed to the
Aharonov-Bohm e�ect produced by the electron self-image potential for any sample
geometry.

4.2.3 Quantum phase in nonlocal media
We have so far considered materials characterized a frequency-dependent dielectric
function ε(r, ω) that bears a local dependence on spatial position r. While this
assumption is generally safe to describe the response of dielectric optical cavities and
plasmons in noble metal nanostructures with size features larger than ∼ 10 nm, it
becomes inaccurate in smaller particles [56,162], in strongly nonlocal materials such as
graphene [163], or in the analysis of free-electron interactions with tightly bound modes
near metal surfaces [164], where quantum con�nement, electron spill-out [165,166], and the
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�nite ∼ 1 nm screening length [56,61] contribute to make the material response nonlocal.
A more complete description requires the use of a nonlocal dielectric function ε(r, r′, ω),
where the displacement at r depends on the electric �eld at di�erent positions r′.
Unfortunately, a �rst-principles description of such function is only feasible for relatively
simple geometries (e.g., planar surfaces and ultrathin �lms, as well as molecules and
atomic clusters with up to a few hundred atoms). A classical hydrodynamic model of
the conduction electron gas in metals [167–169] provides a simple description of nonlocal
e�ects that has been extensively used to study inelastic electron interactions [170], while
the specular re�ection model [171] gives a general prescription to relate the nonlocal
response of arbitrarily shaped nanostructures to the bulk nonlocal dielectric function [56].
In this context, the leading linear-order nonlocal correction in the surface response
function captured by the Feibelman d parameters [172] has recently been revisited as
a powerful tool to incorporate nonlocal e�ects in the electromagnetic response of
metallic nanostructures [173]. Here, we do not enter into the details of the calculation of
ε(r, r′, ω) and simply argue that the local description of the preceding sections remains
essentially unchanged when nonlocal e�ects are taken into consideration. Indeed, Eq.
(1.46) represents again the complete solution of Maxwell’s equations with the Green
tensor satisfying a generalization of Eq. (1.11):

∇×∇×G(r, r′, ω)− ω2

c2

ˆ
d3r′′ ε(r, r′′, ω)G(r′′, r′, ω) = − 1

c2
δ(r− r′).

Following reference [174], we impose the commutation relations
[
ĵnoise(r, ω), ĵnoise†(r′, ω′)

]
= ~ω2 Im{ε(r, r′, ω)} δ(ω − ω′)I

for the noise currents and exploit the identityˆ
d3r′′ d3r′′′ Im{ε(r′′, r′′′, ω)}G(r, r′′, ω)G∗(r′′′, r′, ω) = − 1

ω2
Im{G(r, r′, ω)},

to verify that Eqs. (C.2) and (C.3) also old for nonlocal media. Finally, because Eq. (4.3)
does not depend on the explicit form of the electromagnetic potentials, as long as they
are linear in the bosonic ladder operators, Eqs. (4.8) and (4.9) retain its validity when
including nonlocal e�ects in the de�nition of the Green tensor.

For translationally invariant samples, the dielectric response is only a function of
position di�erence r− r′, which yields a local dielectric function in momentum space
ε(q, ω). In particular, the response of noble metals deviates from the local limit mainly for
ω/vF . q [56], where vF is the Fermi velocity. This allows us to estimate the importance
of nonlocal e�ects for an electron passing at a distance ≥ 10 nm from a gold surface,
which should involve components q ≤ 0.1 nm−1, so we can neglect nonlocal e�ects for
energy exchanges ~ω & ~qvF ∼ 0.1 eV. As we show in Section 4.4 below, the frequencies
involved in the calculation of the phase for the examples considered in this work lie
above this value, and therefore we can safely neglect nonlocal e�ects.

4.3 Elastic phase shift from explicit QED solution

We now restrict ourselves to a situation similar to the one explored in Chapter 2 and 3 in
which a fast collimated e-beam interacts with a an in�nite set of modes supported by
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a macroscopic structure. For this system, we can write the Hamiltonian describing its
dynamics as

Ĥpar
0 =

∑

i

~ωi â†i âi + ~ε0 − ~v · (i∇+ k0),

Ĥpar
1 = (ev/c) · Â(r),

de�ning the solution of the Schrödinger equation (Ĥpar
0 +Ĥpar

1 )|ψ(r, t)〉 = i~∂t|ψ(r, t)〉.
We remark that now the vector potential is constructed by an in�nite summation over the
modes of the system as shown in Eq. (1.50). Taking the electron beam to be oriented along
the z direction, the full problem admits an analytical solution given by (see Appendix D)

|ψ(r, t)〉 = ψ0(r, t)
∑

{n},{`}
ei

∑
i ωi[`i(z/v−t)−niit]f{n}{`} (r)|{n}〉,

with
f
{n}
{`} (r) = eiχ(r)c{n+`}

∏

i

√
(ni + `i)!ni! e−|βi(r)|2/2

× (−βi(r))`i
ni∑

n′i=max{0,−`i}

(−|βi(r)|2)n
′
i

n′i!(`i + n′i)!(ni − n′i)!
, (4.10)

where the coe�cients c{n} represent the state of the photonic �eld right before interaction
with the electron, βi(r) = (e/~ωi)

´ z
−∞ dz′ Ei,z(R, z′)e−iωiz

′/v and

χ(r) = −
∑

i

e2

~2ω2
i

ˆ z

−∞
dz′ dz′′θ(z′ − z′′) (4.11)

× Im
{
E∗i,z(R, z′′)Ei,z(R, z′)e−iωi(z

′−z′′)/v
}
.

Equation (4.10) represents the nonperturbative solution of the scattering between a
scalar relativistic electron and all optical modes of the vacuum-sample system. There is
obviously a part of the joint photon-electron state that represents the contribution without
net photon (emission or absorption) exchanges. From the electron point of view, this
component relates to elastic transitions and can be calculated from the associated density
matrix after tracing out the photon degrees of freedom and isolating the zero quanta
exchange term. Additionally, we are interested in samples held at some temperature, so
we need to deal with thermal electromagnetic mixtures of states, which can be treated by
calculating Eq. (4.10) for Fock states (i.e., taking c{n} =

∏
i δni,n0,i for a given realization

of Fock states {n0,j} before interaction with the electron) and averaging over thermal
populations (i.e., over a Bose-Einstein distribution pn0,i

= e−n0,i/n̄i/n̄i with average
mode population n̄i = 1/ [exp(~ωi/kBT )− 1]). We �nd an elastic electron density
matrix

ρelastic(r, r′, t) =
∑

{n0}
p{n0} Tr {|ψ(r, t)〉〈ψ(r′, t)|}elastic

= ψ0(r, t)ψ∗0(r′, t)
∑

{n0}
p{n0} f

{n0}
{0} (r)[f

{n0}
{0} (r′)]∗

= ψ0(r, t)ψ∗0(r′, t) ei[χ(r)−χ(r′)] Delastic(r, r′), (4.12)
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where

Delastic(r, r′) =
∏

i

e−[|βi(r)|2+βi(r
′)|2]/2 (4.13)

×
∑

n0,i

pn0,i(n0,i!)
2

n0,i∑

ni=0

(−|βi(r)|2)ni

(ni!)2(n0,i − ni)!

n0,i∑

n′i=0

(−|βi(r′)|2)n
′
i

(n′i!)
2(n0,j − n′j)!

contains the remaining factors beyond exp[iχ(r)] from Eq. (4.10). We note again that we
are forcing the electromagnetic �eld to return to its initial state (i.e., we neglect emission
and absorption of degenerate photonic states that leave the electron energy una�ected,
although electron-mediated transfer of excitations between degenerate electromagnetic
states could play a role in the elastically scattered electron signal). Interestingly, Eq. (4.12)
includes both a phase shift χ(r) and a real decoherence amplitude Delastic(r, r′), which
we present in a self-contained form that can be computed for any general pure quantum
state, in contrast to the speci�c case of a thermal mixture considered in Eq. (4.5). At
T = 0, the second line of Eq. (4.13) reduces to 1, so Delastic(r, r′) = eP (r)+P (r′), which
allows us to de�ne a position-dependent decoherence

P =
−1

2

∑

i

|βi(r)|2 (4.14)

directly in the elastic electron wave function.
Here, we focus on the elastic phase shift, which is given by χ(r) of Eq. (4.11) [64].

This phase shift can be shown to be equivalent to Eq. (4.3) by directly substituting the
expansion of the vector potential [Eq. (1.50)] in the commutator of Eq. (1.43), keeping in
mind that the ladder operators of the electromagnetic modes evolve in time according to
the free Hamiltonian Ĥrad

0 as

âi(t) = âie
−iωit, â†i (t) = â†i e

iωit,

and considering a classical current centered at R = Rj as in Eq. (4.7). Finally, because
the retarded Green tensor satis�es the correspondence GR = G (see Section 1.3), we
conclude that Eqs. (4.11) and (4.8) represent the same quantity.

4.4 Elastic di�raction by metallic plates

We now illustrate the vacuum-induced phase by considering electrons moving parallel to
a planar conductor surface at a distance x from it [see inset in Fig. (4.1a)]. We take the
conductor to span a large distance along the direction of motion compared with both
x and any of the photon wavelengths e�ectively contributing to the electron-surface
interaction. The Green tensor can then be written as the sum of free-space and scattered
components G0 + Gs. The phase shift arising from the free-space Green tensor G0 is
formally in�nite, but it does not depend on the transverse coordinate of the electron,
therefore becoming unobservable [149]. The remaining scattered component is given by
[see Eq. (1.20)]

Gs
z,z(R, z,R, z

′, ω) =
i

2c2

ˆ
d2k‖
(2π)2

1

k2
‖kx

eikz(z−z′)+2ikxx

(
rp
k2
zk

2
x

k2
− rsk

2
y

)
, (4.15)



4. Electron di�raction by vacuum �uctuations 82

Figure 4.1: Phase shift and decoherence. (a) Vacuum phase shift induced on an electron
traveling parallel to a planar surface of a metal of DC conductivity σ normalized to the scaled
e�ective path length D̄ = Dσ/c as a function of the scaled electron-surface distance x̄ = xσ/c
for di�erent electron velocities βe = v/c. Upper and right scales correspond to gold (σ = 257 eV)
with D = 1µm. (b) Velocity dependence of the vacuum phase shift for a perfect conductor (blue
curve, σ →∞); gold described by the Drude permittivity in the low-frequency limit (solid-orange
curve); gold described using its measured dielectric function in the 0.64-6.6 eV [97] and > 6.6 eV [175]

photon-energy ranges, and extended by matching the Drude-like expression ε = εb−ω2
p/ω(ω+iγ)

with εb = 13.31 − 0.19i, ~ωp = 9.14 eV, and ~γ = 0.071 eV at lower photon energies (dashed-
orange curve); and a graphene monolayer (Fermi energy EF = 0.5 eV, damping ~τ−1 = 10 meV,
room temperature T = 300 K) on top of a SiO2 substrate (green curve) with values of x and D as
shown by labels. (c) Total decoherence experienced by a single electron-path passing aloof above
a gold surface, as calculated from Eq. (4.18) [156] for the same parameters as in Fig. (4.1b) at room
temperature with (blue curve) and without (yellow curve) inclusion of nonlocal e�ects.



83 4.4. Elastic di�raction by metallic plates

where k = ω/c, the integral extends over wave vectors k‖ = (ky, kz) parallel to the
surface, and kx =

√
ω2/c2 − k2

‖ + i0+ with the square root taken to yield a positive real
part.

4.4.1 Perfect conductor
For a perfect electric conductor, we have Fresnel coe�cients rp = 1 and rs = −1, which
permit obtaining a closed-form expression from Eq. (4.8). We �rst note that the in-plane
translational invariance of the Green tensor component in Eq. (4.15) allows us to replace
one of the spatial integrals by the e�ective electron path length D, which, neglecting
inelastic de�ections occurring during the interaction, may be approximated by the length
of the plate (we refer to Ref. 176, where the de�ection due Johnson noise is estimated
to produce a correction of only a few hundred nanometers in the e�ective length for
D = 10µm; additionally, Fig. (4.1c) shows that the fraction of inelastically scattered
electrons is, for example, ∼ 0.1 at 300 K for an electron passing with velocity v = 0.1 c
at a distance of 10 nm from a 10-µm-long gold plate). The remaining integral over the
di�erence z − z′ yields δ functions, leading to

χ(x) =
απ

c
D

ˆ ∞
0

dω

ˆ
d2k‖
(2π)2

[
δ
(
kz −

ω

v

)
+ δ

(
kz +

ω

v

)] e−2xκx

k2
‖κx

(
k2
zκ

2
x

k2
− k2

y

)
,

where κx =
√
k2
‖ − ω2/c2 and α ≈ 1/137 is the �ne structure constant. We now

perform the frequency integral using the delta functions and write the remaining 2D
integral in polar coordinates (kz, ky) = k‖(cos θ, sin θ). We obtain

χ(x) =
α

2π

D

βeγ2

ˆ ∞
0

dk‖

ˆ π/2

−π/2
dθ

exp
(
−2k‖x

√
1− β2

e cos2 θ
)

√
1− β2

e cos2 θ
,

where βe = v/c. Finally, using the integral
´ π/2
−π/2 dx (1− a cos2 x)−1 = π/

√
1− a [Eq.

(3.653-2) of Ref. 95], we �nd

χ(x) =
αD

4x

1

βeγ
, (4.16)

which coincides with the Aharonov-Bohm phase shift induced on a moving charge under
the e�ect of its image potential, as pointed out in previous studies [149,177].

4.4.2 Real conductor
We now extend the previous result to real metals by including inelastic losses in the
material, which we model through a frequency-dependent local dielectric function ε(ω).
Inserting Eq. (4.15) into Eq. (4.11) and following similar steps as in Section 4.4.1, we �nd
the phase

χ =
αD

2πβe

ˆ ∞
0

dk‖

ˆ π/2

−π/2
dθ

exp
(
−2xk‖

√
1− β2

e cos2 θ
)

√
1− β2

e cos2 θ

× Re{rp − β2
e

(
rp cos2 θ − rs sin2 θ

)
}, (4.17)
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Figure 4.2: Vacuum elastic di�raction by a planar surface. Evolution of the elastic part of
the transverse electron wave function in real space ψx (a) and in momentum space ψkx (b) as a
function of the scaled interaction length L = αD/4γβeσx when the electron is traveling aloof
and parallel to a planar perfect-conductor surface. The electron wave function is assumed to be
initially prepared in a Gaussian transverse pro�le centered around x0 with standard deviation
σx/x0 = 1/4 before interaction with the surface. The electron velocity is v = 0.1 c.

where the Fresnel coe�cients rp = (εkx−k′x)/(εkx+k′x) and rs = (kx−k′x)/(kx+k′x),
with kx =

√
ω2/c2 − k2

‖ and k′x =
√
εω2/c2 − k2

‖ , must be evaluated at frequency
ω = vk‖ cos θ. Equation (4.17) con�rms the validity of neglecting nonlocal e�ects because
for an electron with βe = 0.1 passing 10 nm above the surface we have ~ω ≈ ~v/x ∼ 2 eV
(see Section 4.2.3); the local approximation starts failing at angles that make cos θ small,
and thus contribute only negligibly to the integral, and also at low velocities. Using
the Drude approximation ε = 1 + 4πiσ/ω for the metal dielectric function, where σ is
the DC conductivity, we �nd from Eq. (4.17) the results presented in Fig. (4.1a) for an
electron moving above a gold surface (~σ ∼ 257 eV, upper and right axes) with di�erent
velocities v = βec. Finite conductivity in the real metal a�ects very little the decay of
the phase shift as a function of electron velocity compared to Eq. (4.16), as shown in
Fig. (4.1b). We further corroborate good agreement with results obtained by using the
measured dielectric function of gold taken from references [97,175] [see Fig. (4.1b)], which
is in agreement with the intuition that low frequencies (i.e., those that are well captured
by the Drude model) contribute dominantly for the surface-electron distances under
consideration.

Upon inspection of Eq. (4.17), we �nd that the phase depends on metal conductivity
σ and geometrical parameters (separation x and path length D) as χ = (D/x)F (x̄, βe),
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where F is a function of the scaled distance x̄ = xσ/c and the electron velocity v = βec.
This expression justi�es the universal scaling used in Fig. (4.1a) (left and lower axes). In
particular, in the βe � 1 limit, we can approximate rp ≈ 1 + iω/2πσ − ω2/4π2σ2 to
obtain

χ ≈ αD

4πxβe

[
1−

(
βe

4πx̄

)2
]
, βe � 1.

This expression shows that the perfect conductor approximation [Eq. (4.16)] describes
well the phase shift in front of gold for slow electrons, in agreement with the results of
Fig. (4.1b).

The above results need to be contrasted with the e�ect of decoherence in order to
determine whether the predicted phase shift may be observed in practice. As mentioned
in Section (4.2.1), decoherence was calculated in reference [156] by assuming local response
and neglecting retardation e�ects. Here, we calculate decoherence from Eq. (4.9) including
retardation and nonlocal e�ects in the EELS probability. For a single electron path running
parallel to a planar surface, we have [8]

P = − De2

π~v2

ˆ ∞
0

dω

ˆ ∞
0

dky
k2
‖

Re

{
kxe

2ikxx

[(
kyv

kxc

)2

rs − rp

]}
, (4.18)

where k‖ =
√
ω2/v2 + k2

y . We introduce nonlocal e�ects in this expression by adopting
the specular-re�ection model [171] and using the Feibelman d-parameters approach [172].
Only the Fresnel coe�cient

rp =
εkx − k′x + (ε− 1)ik2

‖d⊥

εkx + k′x − (ε− 1)ik2
‖d⊥

(4.19)

needs to be corrected [178], where [179]

d⊥ = − 2

π

ε

ε− 1

ˆ ∞
0

dk

k2

[
1

εNL(k, ω)
− 1

ε(ω)

]
(4.20)

is the perpendicular Feibelman parameter and εNL(k, ω) is the nonlocal metal permittivity.
We approximate the latter following the prescription of Ref. 56. Fig. (4.1c) con�rms that
nonlocal e�ects contribute only at low velocities for the electron-surface distances under
consideration, and additionally, decoherence takes negligible values ∼ 0.1. We also �nd
that low electron velocities are more favorable for the observation of interference fringes
produced by the vacuum phase shift.

4.4.3 Graphene �lm

The above formalism allows us to discuss the quantum phase shift induced on a swift
electron �ying parallel to a graphene monolayer deposited on a semi-in�nite substrate
of permittivity ε. Describing graphene as a zero-thickness layer with local, frequency-
dependent surface conductivity σg(ω), the phase of Eq. (4.8) can be easily computed from
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Eq. (4.17) by now writing the Fresnel coe�cients as [180]

rp =
εkx − k′x + 4πσgkxk

′
x/ω

εkx + k′x + 4πσgkxk′x/ω
,

rs =
kx − k′x − 4πσgω/c

2

kx + k′x + 4πσgω/c2
,

where kx and k′x are the out-of-plane light wave-vector components outside and inside
the substrate (see expressions above), respectively. In order to numerically calculate the
phase shift, we evaluate the graphene conductivity within the local-RPA model at �nite
temperature T using the analytical expression [181,182]

σg(ω) =
e2

π~2

i

ω + iτ−1

{
µD −

ˆ ∞
0

dE
fE − f−E

1− 4E2/ [~2(ω + iτ−1)2]

}
,

where µD = µ + 2kBT log
(
1 + e−µ/kBT

)
, τ is a phenomenological relaxation time,

and fE =
[
e(E−µ)/kBT + 1

]−1 is the Fermi-Dirac distribution depending on graphene
electron energy E and chemical potential

µ ≈
√√

(EF)4 + (2 log2 4)2(kBT )4 − (2 log2 4)(kBT )2

for a given Fermi energy EF. In Fig. (4.1b), we show the dependence of the resulting
phase [Eq. (4.17)] on electron velocity for high-quality doped graphene (EF = 0.5 eV,
~τ−1 = 10 meV) supported on a silica substrate described by a permittivity ε taken from
Ref. 175. At high velocity, we recover the perfect-conductor limit because low frequencies
are dominant in that regime.

4.5 Elastic di�raction by a small particle

We now consider a geometry lacking any translational symmetry by computing the
vacuum phase for an electron interacting with a small particle, the electromagnetic
response of which is described within the dipolar approximation in terms of the particle
polarizability tensor α. The scattering part of the associated Green tensor admits an
analytical expression in terms of the free-space Green tensor G0 given by [see Eq. (1.24)]:

Gs
z,z(R, z,R, z

′, ω) = −4πω2
∑

i,i′

G0
z,i(R, z, r0, ω)αi,i′G

0
i′,z(r0,R, z

′, ω), (4.21)

where r0 is the particle position (r0 = 0 for simplicity) and the indexes i, i′ run over
Cartesian directions. In what follows, we consider a diagonal polarizability tensor α of
components αx, αy , and αz . Now, by plugging Eq. (4.21) into Eq. (4.8) and then using the
integrals

´∞
−∞ dz eiωz/veikr/r = 2K0 (ζ) and

´∞
−∞ dz eiωz/v

[
eikr/r2 − ieikr/kr3

]
=

2icK1 (ζ) /Rvγ, where r =
√
R2 + z2 and ζ = ωR/vγ [see Eqs. (3.914-4) and (3.914-5)

in Ref. 95, where we consider that k = ω/c+ i0+ has a positive in�nitesimal imaginary
part], we obtain the expression

χ(x, y) =
2e2

π~v4γ2

ˆ ∞
0

ω2dωRe

{[
αxx

2 + αyy
2

R2
K2

1

(
ωR

vγ

)
+
αz
γ2
K2

0

(
ωR

vγ

)]}
.
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Figure 4.3: Quantum phase compared with decoherence for small particles. We present
the ratio of the T = 0 position-dependent phase shift χ and decoherence P for (a) gold and (b)
silver spheres of 6 nm radius and di�erent electron velocities v = βec (see labels). We use measured
dielectric permittivities [97] to describe these materials.

For an isotropic particle (α = αx = αy = αz), the phase depends only on radial distance
R and this expression reduces to

χ(R) =
2e2

π~v4γ2

ˆ ∞
0

ω2dω f

(
ωR

vγ

)
Re {α} , (4.22)

where f(ζ) = K2
1 (ζ) + K2

0 (ζ)/γ2. We study below a small homogeneous sphere, in
which the approximation α = 3c3tE1 /2ω

3 in terms of the dipolar electric Mie coe�cient
tE1 captures retardation e�ects and compares well with full calculations in EELS for
realistic metal spheres similar to the one considered in next section [8], which leads to a
position-dependent decoherence [see Eq. (4.14) and the analytical result for the coupling
coe�cient βj presented in Ref. 64]

P (R) =
−2e2

π~v4γ2

ˆ ∞
0

ω2dω f

(
ωR

vγ

)
Im {α} (4.23)

at T = 0.
Incidentally, for a particle hosting a dominant sharp mode of frequency ω0, we can

approximate α = A/(ω0 − ω − i0+), which upon insertion in Eqs. (4.22) and (4.23) leads
to

P (R) =
−2e2Aω2

0

~v4γ2
f

(
ω0R

vγ

)
, (4.24)

χ(R) =
−2e2Aω2

0

~v4γ2
g

(
ω0R

vγ

)
, (4.25)

where

g(θ) =
1

π
P

ˆ ∞
0

x2dx

x− 1
f(xθ).

In EM one is interested in imaging without damaging, for which a high ratio χ/P = |g/f |
becomes advantageous. We explore such ratio in Fig. (4.3) for the interaction with gold
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and silver spherical particles, where we �nd that χ takes much larger values than P
(in particular, we �nd vacuum phase shifts χ ∼ 3◦ for the gold sphere at a distance
R = 15 nm, see below), thus supporting the use of holography (i.e., measurement of
the quantum phase) as an advantageous route to imaging without damaging compared
with bright-�eld electron acquisition (i.e., resolving P ). We present calculations based on
direct use of Eqs. (4.22) and (4.23) [solid curves in Fig. (4.3)]. For silver, which diplays a
well-de�ned plasmon mode, these results compare well with the analytical calculation
obtained from Eqs. (4.24) and (4.25) (broken curves).

4.6 Di�raction in the far-�eld

4.6.1 Interaction with a planar surface
Equation (4.8) shows a position-dependent phase shift that the electron wave function
experiences after interaction with the electromagnetic vacuum. This phase shift may
be observed through an interference experiment, as the one described in Section 4.2,
consisting in splitting an electron beam in two parts and then recombining them after
interaction of one of the components with the structure. The theory developed in
Section 4.3 shows how this phase a�ects the transverse component of the electron
wave function, and consequently, an alternative to beam splitting techniques may be
provided by a combined energy- and angle-resolved experiment. Indeed, the elastic
component of the electron beam density matrix contains the vacuum phase through
ρelastic(r, r′) = ψ0(r)ψ∗0(r′) exp {i[χ(r)− χ(r′)]}Delastic(r, r′) (see Eq. (4.12)). We
remark that, although we only study the e�ect of the quantum phase associated with
vacuum �uctuations on elastic electron components, it also a�ects inelastic components,
where a certain degree of coherence is preserved, which could be analyzed following the
approach used to study inelastic electron holography [183]. Obviously, the elastic electron
density ρelastic(r, r) is not modi�ed, and therefore, it does not lead to any measurable
e�ect if decoherence is neglected, as shown in Fig. (4.2a), where only the x-dependent
part of the wave function ψx is plotted.

In contrast, the diagonal coe�cients of the electron density matrix in momentum
space, which we calculate by Fourier-transforming the electron wave function as

ψelastic,Q(z) =

ˆ
d2R ψ0(r) exp [iχ(R) + P (R)− iQ ·R] (4.26)

with r = (R, z) and R = (x, y), display a dependence on the imprinted position-
dependent quantum phase χ and decoherence P , with the latter expressed at T = 0
from Eq. (4.14). For illustration, we assume the initial electron wave function along the
out-of-plane direction x to be well described by a Gaussian of standard deviation σx
centered at a distance x0 from the metallic plate. Since the electron wave function does
not experience any change along in-plane directions, these Fourier components can be
factorized. The only nontrivial component is thus ψkx ≡ ψelastic,kx , the squared modulus
of which presents an evolution as illustrated in Fig. (4.2b) for an electron traveling parallel
to a perfect conductor, which, as shown above, provides a good approximation to gold
surfaces for the large values of x0 under consideration, and furthermore results in P = 0.
The presence of the distance-dependent phase shift a�ects the out-of-plane electron wave
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function, which is progressively bent toward the surface, as expected from image charge
attraction.

Figure 4.4: Quantum-vacuum-induced phase shift produced by a small particle. (a)
Frequency-resolved contribution to the vacuum phase χ(ω) induced on an electron moving with
velocity v = 0.1 c and passing near a gold nanosphere of 6 nm radius, plotted as a function of
photon energy ~ω and impact parameter R (see inset). We describe the particle through its electric
polarizability α evaluated in turn using the measured dielectric function for this material [97]. (b)
Phase shift (i.e., integral of χ(ω) over ω) for di�erent values of βe. (c) Angular dependence of the
electron current scattered in the far-�eld due to di�raction of an focused electron wave under the
same conditions as in (a) as a function of polar scattering angle θ for di�erent azimuthal angles
ϕ (see legend) relative to the direction speci�ed by the impact parameter R0 ‖ x̂. The incident
electron beam has a transverse Gaussian pro�le of width σR = 5 nm centered at coordinates
R0 = (15 nm, 0). For reference, we show the pattern obtained without quantum phase and
decoherence (χ = 0 curve).

4.6.2 Interaction with a small object
Quantum-vacuum-induced di�raction can be equivalently quanti�ed in terms of the
electron current measured far from the scatterer. In particular, if we assume the interaction
region to be limited to z < z1, the acquired phase χ can be considered a function only of
the transverse coordinates R = (x, y). Additionally, outside that region the elastic part of
the scattered electron ψe

elastic must satisfy the Helmholtz equation (∇2 +k2
0)ψelastic = 0,

where k0 is the electron wave vector. We thus have for z > z1

ψelastic(r) =

ˆ
d2Q

(2π)2
ψelastic,Q(z1) exp [ikz,Q(z − z1) + iQ ·R] , (4.27)
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where kz,Q =
√
k2

0 −Q2 + i0+ and ψelastic,Q(z1) is de�ned in Eq. (4.26). Equation
(4.27) guarantees the continuity of the wave function at z = z1. In the far-�eld limit
(k0r � 1), Eq. (4.27) can be approximated, using the stationary-phase method 2, as

ψelastic(r) ≈ − ik0 cos θ

2π
ψQr̂

eik0r

r
,

where Qr̂ = k0 R/r and cos θ = z/r. Taking now an incident beam with transverse
Gaussian pro�le of width σR focused at r = (x0, 0, 0) (i.e., an incident electron wave
function ψ0(r) ≈ eik0z−[(x−x0)2+y2]/4σ2

R/(2πσ2
RL)1/2 near the region of interaction

with the particle, where L is the quantization length along the beam direction), we can
calculate the electron current collected within a far-�eld solid angle dΩ as

dI = (~/me) Im{ψ∗ r̂ · ∇ψ} r2dΩ = Iinc
k2

0 cos2 θ

4π2
|
√
LψQr̂

|2dΩ, (4.28)

where Iinc = ~k0/meL. We use this expression to study the e�ect of vacuum �uctuations
produced by interaction of the electron with a small particle, for which we apply the
formalism of Section 4.5, so we plug Eq. (4.22) into Eq. (4.28) and focus on a nanosphere
of radius a located at the origin and described by its dipolar response. We obtain

dI

dΩ
= Iinc

k2
0 cos2 θ

2πσ2
R

e−x
2
0/2σ

2
R (4.29)

×

∣∣∣∣∣∣

ˆ ∞
0

RdR e−R
2/4σ2

R+iχ(R)+P (R)−Re{
√
a2−R2}/λeI0


R
√(

x0

2σ2
R

− iQx

)2

−Q2
y



∣∣∣∣∣∣

2

,

where we use the notation Qr̂ = (Qx, Qy), the modi�ed Bessel function I0 is the result
of applying the tabulated integral (3.937-2) in Ref. 95, and an elastic attenuation length λe
is introduced to account for the depletion of the transmitted electron wave function due
to heavy collisions inside the metal. We plot the resulting electron angular distribution
calculated from Eq. (4.29) in Fig. (4.4c) (χ 6= 0 curves) for a gold nanosphere of radius
a = 6 nm (� λe) and an electron beam of velocity v = 0.1 c, width σR = 5 nm, and
impact parameter x0 = 15 nm relative to the particle center. We further compare the
scattering pattern with the one obtained in the absence of the nanoparticle (i.e., setting
χ = 0), which takes the analytical form (also assuming a� λe)

dI

dΩ
= Iinc (2k2

0σ
2
R cos2 θ/π) e−2k20σ

2
R sin2 θ. (4.30)

Reassuringly, for the large values of k0σR > 103 under consideration, the right-hand
side of Eq. (4.30) yields I ≈ Iinc when integrated over solid angle Ω. Remarkably, the
in�uence of vacuum �uctuations modi�es the electron wave function, introducing in the
far-�eld current distribution an azimuthal dependence as well as substantial scattering up
to θ ∼ 1◦, in contrast to the result otained from the direct beam without particle-mediated
coupling to vacuum �uctuations [see Fig. (4.4c) and Eq. (4.30)).

2Such method provides the asymptotics of Fourier integrals of the type f(r) =
´

(d2Q/4π2) exp

[
iQ ·

R + i
√
k20 −Q2z

]
f(Q) which reduce to f(r) = (−ik0 cos θ/2πr)eik0rf(Q = k0R/r) in the limit of

k0r →∞ (see proof in Ref. 184).
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4.7 Concluding remarks

In summary, we have shown that the elastic part of an electron beam has a phase shift
imprinted in its transverse wave function dependence upon interaction with the vacuum
electromagnetic �eld in the presence of a material structure. This e�ect, which can
be attributed to �uctuations characterizing the quantum electromagnetic �eld, could
be experimentally measured by means of either interference or di�raction of electron
beams using an electron microscope. Speci�cally, our calculations predict that the aloof
vacuum interaction of a βe = 0.1 (∼ 2.5 keV kinetic energy) electron with a planar
gold surface results in a signi�cant phase shift for a path length D ∼ 1µm [see Fig.
(4.1)], which should produce discernible interference fringes only marginally a�ected
by decoherence [see Fig. (4.1c) and Ref. 156]. Indeed, the recombination of the two
parts of the electron wave function ψjeiχj following di�erent paths j = 1, 2 that are
a�ected by their corresponding phases χj leads to an electron probability at the detector
∝ |ψ1|2 + |ψ2|2 + 2Re{ψ1ψ

∗
2ei(χ1−χ2)}; when one of the paths passes near a 12 nm

gold particle [Fig. (4.4)], the phase-shift di�erence can be as large as |χ1 − χ2| ∼ 3◦,
which could be resolved in an electron holography setup. Additionally, we conclude that
signatures of vacuum �uctuations should also be observed by monitoring the angular
distribution of electrons after such interaction [e.g., in the Fourier plane of an electron
microscope; see Fig. (4.2b) and Fig. (4.4c)]. However, the electron de�ections involved in
such type of di�raction experiment could be overshadowed by very-low-energy inelastic
contributions associated with Johnson noise [176,185,186], so the previously noted two-path
holography experiment appears to be a more plausible solution to measure the quantum
vacuum phase shift. It is our hope that the present work contributes to clarify the
role of vacuum �uctuations in macroscopic quantum electrodynamics and supports the
fact that an experimental veri�cation is feasible using state-of-art electron microscopes.
Considering the strong e�ect induced on the electron wave function by the quantum
vacuum phase, we anticipate further e�orts oriented toward the engineering of structures
capable of tailoring vacuum �uctuations as a novel route to design free-electron phase
plates. Additionally, this e�ort can lead to optimized strategies for electron microscope
imaging: indeed, from the holography con�guration discussed in Section 4.2.1, taking
path 2 to be far from both the sample and path 1, we have an interference term

〈Ŝ†2 Ŝ1〉T = exp

{−2ie2

~

ˆ ∞
0

dω

ˆ ∞
−∞

dz dz′ cos
[ω
v

(z − z′)
]
Gs
z,z(R1, z,R1, z

′, ω)

}

at T = 0, clearly showing that the imaginary part of the Green tensor produces a
depletion of the signal, while possibly creating excitations in the sample, whereas the
real part determines the phase shift under discussion; for practical purposes in electron
microscopy, it is useful to reduce the former (i.e., limit sample damage) while increasing
the latter (i.e., enhance phase contrast), a task that leads to a problem of optimization
in the present formalism. Our results for small noble-metal spheres [Fig. (4.3)] already
indicate that measurement of the quantum phase can be advantageous compared with
bright-�eld imaging to avoid sample damage.
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5
Modulation of cathodoluminescence

emission by interference with external light

Above all, don’t fear di�cult moments. The best comes from them.
Rita Levi-Montalcini

In this chapter, we study how light and free-electron pulses can interfere when
interacting with a nanostructure, therefore giving rise to a modulation in the spectral
distribution of the cathodoluminescence light emission that is strongly dependent on
the electron wave function. Speci�cally, we show that for a temporally focused electron,
cathodoluminescence can be cancelled upon illumination with a spectrally modulated
dimmed laser that is phase-locked relative to the electron density pro�le. What follows
is based on a published work, Ref. 187.
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5.1 Introduction

Coherent laser light provides a standard tool to selectively create optical excitations in
atoms, molecules, and nanostructures with exquisite spectral resolution [188]. Additional
selectivity in the excitation process can be gained by exploiting the light polarization
and the spatial distribution of the optical �eld to target, for example, modes with speci�c
angular momentum in a specimen [189]. However, the di�raction limit constraints our
ability to selectively act on degenerate excitation modes sustained by structures that are
separated by either less than half the light wavelength when using far-�eld optics (unless
ingenious, sample-dependent schemes are adopted [190–192]) or a few tens of nanometers
when resorting to near-�eld enhancers such as metallic tips [193–195]. In contrast to light,
electron beams, which are also capable of producing optical excitations [8], can actuate
with a spatial precision roughly determined by their lateral size, currently reaching
the sub-Ångstrom domain in state-of-the-art electron microscopes [67,127,196]. Indeed,
the evanescent electromagnetic �eld accompanying a fast electron spans a broadband
spectrum that mediates the transfer of energy and momentum to sample excitation
modes with such degree of spatial accuracy [8]. But unfortunately, spectral selectivity is
lost because of the broadband nature of this excitation source, unless post-selection is
performed by energy-�ltering of the electrons, as done for instance in EELS [8,71,197].

Photons and electrons team up to extract the best of both worlds in the rapidly
evolving �eld of ultrafast transmission electron microscopy (UTEM), whereby the high
spatial precision of electron microscopes is combined with the time resolution and
spectral selectivity of optical spectroscopy. In this technique, ultrashort electron pulses
created by photoelectron emission are used to track structural or electronic excitations
with picosecond and femtosecond temporal resolution [26,29,79,198–205]. Regarding
electron-photon interaction, UTEM allows us to exploit the evanescent optical �eld
components created by light scattering at nanostructures, so that the interaction is
facilitated by passing the free-electron beam through these �elds, thus enabling spectrally
and temporally resolved imaging with combined resolution in the nanometer–fs–meV
domain via the PINEM technique [26–29,35,36,39,64,74,76–83,87,93,100,106,107,113–116,118,119,206–209].
This approach has been exploited to investigate the temporal evolution of plasmons [77,78]

and optical cavity modes [106,107], as well as a way to manipulate the electron by
exchanging transverse linear [34,36,93] and angular [82,115] momentum with the photon �eld.

Following concepts from accelerator physics [210], temporal compression of the
electron beam into a train of attosecond pulses can be achieved by periodic momentum
modulation and free-space propagation, using either ponderomotive forces [211–213]

or PINEM-like inelastic electron-light scattering interactions [29,80,83,119,140,214].
Accompanying these advances in our ability to manipulate free electrons, recent
theoretical studies have explored the use of modulated free electrons to gain control
over the density matrix of excitations created in a sample [108,144,215–217]. Intriguingly,
the CL emission produced by a PINEM-modulated electron has been predicted to bear
coherence with the laser used to achieve such modulation, which could be revealed
through correlations in an interferometer [144]. This scenario holds the potential to
combine light and electrons as coherent probes acting on a sample, possibly enabling
practical applications in pushing the space-time-energy levels of resolution beyond their
current values. We remark that with the word coherence, we refer in what follows in a
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precise way at the interference of two phase-locked processes.
The CL intensity is extremely low in most samples (. 10−5 photons per electron),

unless we restrict ourselves to special classes of targets (e.g., those enabling phase
matching between the emitted radiation and the electron [35,87,218]). When measuring
far-�eld radiation, the visibility of the interference between CL emission and external
light could be enlarged by dimming the latter to match the former. Shot noise that
could potentially mask the resulting interference is avoided if photon measurements are
performed at a single detector (i.e., after the amplitudes of CL and external light have
been coherently superimposed). Based on this idea, we anticipate that the use of dimmed
illumination in combination with CL light emission represents a practical route towards
the sought-after push in space-time-energy resolution with which we can image and
manipulate optical excitations at the nanoscale.

In this chapter, we show that the optical excitations produced in a structure by the
combined e�ect of light and free electrons can add coherently, therefore providing a tool
for actively manipulating sample excitations. The combination of light and electrons adds
the spatial resolution of the latter to the spectral selectivity of the former in our ability to
manipulate and probe nanoscale materials and their optical response. Speci�cally, we
illustrate this possibility by showing that the CL emission produced by a free electron
can be coherently manipulated by simultaneously exciting the sample with suitably
modulated external light. We demonstrate that it is possible to strongly modulate the
CL emission using currently existing technology, while complete cancellation of CL is
physically feasible using tightly compressed electron wavepackets, which act as classical
external point charges. The present work thus capitalizes on the correlation between
CL from modulated electrons and synchronized external light as discussed in Ref. 144,
so we propose a disruptive form of ultrafast electron microscopy based on the direct
observation of interference between CL emission and dimmed light scattering at a single
photon spectrometer. We anticipate the application of interference in the excitations
produced by the simultaneous action of light and electrons as a route towards spectrally
resolved imaging and selective excitation of sample optical modes with an improved level
of space-time-energy resolution. The sensitivity provided by the measurement of the
relative phases between electron and laser waves could be further enhanced through
lock-in ampli�cation schemes that isolate the interference e�ects to gain information
on both the electron density pro�le and the temporal evolution of the targeted optical
excitations.

5.2 First-principles description of CL interference
with external light

We consider the combined action of external light and free electrons on a sampled
structure, such as schematically illustrated in Fig. (5.1). Under common conditions
met in electron microscopes, the electrons can be prepared with well-de�ned velocity,
momentum, and energy, such that their wave functions consist of components that
have a narrow spread relative to those values. Additionally, we adopt the nonrecoil
approximation by assuming that any interaction with the specimen produces negligible
departures of the electron velocity with respect to its average value (i.e., small momentum
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Figure 5.1: Sketch of the system under consideration. A laser pulse and a modulated electron
are made to interact with a sample and produce light scattering and CL emission, respectively. The
electron is synchronized with the laser pulse to maintain mutual phase coherence. The resulting
emitted and scattered photons are collected by a spectrometer. A laser pulse shaper is inserted
in this scheme to bring the scattered light amplitude to a level that is commensurate with the CL
emission �eld.

transfers relative to the central electron momentum). Under these conditions, we calculate
the far-�eld radiation intensity produced by the combined contributions of interaction
with the electron and scattering from a laser, based on the far-�eld Poynting vector [see
Eq. (1.5b)]. In a fully quantum treatment of radiation, the angle- and frequency-resolved
far-�eld (�) photon probability reduces to

dΓff

dΩr̂dω
= lim
kr→∞

r2

4π2~k
Re
{〈
Ê(r, ω)× B̂†(r, ω)

〉}
· r̂, (5.1)

where k = ω/c (see detailed derivation in the Appendix E). This expression is the
quantum counterpart of a classical result for CL of Eq. (1.28), now involving the position-
and frequency-dependent positive-energy part of the electric and magnetic �eld operators
Ê(r, ω) and B̂(r, ω), respectively. We use the MQED formalism to calculate this quantity
for a free electron of incident wave function ψ0(r) and external light characterized by a
spectrally resolved electric �eld amplitude Eext(r, ω). After some analysis (see Appendix
E), taking the electron velocity vector v along z, we �nd

dΓrad

dΩr̂dω
=

1

4π2~k

[ ˆ
d2R′M0(R′)|fCL

r̂ (R′, ω)|2 (5.2)

+ |f scat
r̂ (ω)|2 + 2

ˆ
d2R′Re

{
Mω/v(R

′) fCL∗
r̂ (R′, ω) · f scat

r̂ (ω)
} ]
,

where

Mω/v(R) =

ˆ ∞
−∞

dz eiωz/v |ψ0(r)|2 (5.3)
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is the Fourier transform of the electron probability density, which acts as a coherence
factor. Here, we use the notation r = (R, z) with R = (x, y) and we de�ne the electric
far-�eld amplitudes fCL

r̂ (R′, ω) and f scat
r̂ (ω) through the asymptotic expressions

4πieω

ˆ
dz′ eiωz′/v G(r,R′, z′, ω) · ẑ −−−−→

kr→∞
eikr

r
fCL
r̂ (R′, ω), (5.4a)

Escat(r, ω) −−−−→
kr→∞

eikr

r
f scat
r̂ (ω), (5.4b)

corresponding to the classical CL and laser scattering contributions, respectively. It
should be noted that we only retain the 1/r radiative components of the far �eld in
dΓrad/dΩr̂dω [see Eqs. (5.2) and (5.4)], which is a legitimate procedure when considering
directions in which they do not interfere with the external illumination. Nevertheless,
interference between the incident and forward 1/r radiative components produces
an additional contribution dΓforward/dΩr̂dω (i.e., dΓff/dΩr̂dω = (dΓrad/dΩr̂dω) +
(dΓforward/dΩr̂dω)), as we discuss below in relation to the energy pathways associated
with the interaction. The specimen is assumed to be characterized by a linear and
local electromagnetic response, which enters this formalism through the Green tensor,
implicitly de�ned by Eq. (1.11). The �rst and second terms in Eq. (5.2) describe the
separate contributions from CL and light scattering, respectively, whereas the third term
accounts for interference between them. We remark that this result relies on the nonrecoil
approximation for the electron, which allows us to replace its associated current operator
by the average expectation value under the the assumption that v remains una�ected by
the interaction.

Interestingly, the CL emission in the absence of external illumination (i.e., the �rst
term in Eq. (5.2)], is constructed as an incoherent sum of contributions from di�erent
lateral positions R′ across the electron beam [33,142] (i.e., no interference remains in
this signal between the CL emission from di�erent lateral positions of the beam). In
contrast, the signal associated with the interference between CL and light scattering
[third term in Eq. (5.2)] contains further interference between the contribution of di�erent
lateral electron-beam positions R′. Interestingly, this e�ect is genuinely associated with
interference between di�erent lateral positions of the beam because the light scattering
amplitude f scat

r̂ (ω) in that equation does not depend on R′.

For completeness, we note that Eq. (5.2) can be written in the more compact form

dΓrad

dΩr̂dω
=

1

4π2~k

ˆ
d3r′ |ψ0(r′)|2

∣∣e−iωz′/v fCL
r̂ (R′, ω) + f scat

r̂ (ω)
∣∣2,

which directly re�ects the interference between CL and laser scattering. In addition, our
results can easily be generalized to deal with several distinguishable electrons (labeled
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by superscripts j), for which we have

dΓrad

dΩr̂dω
=

1

4π2~k

{∑

j

ˆ
d2R′M j

0 (R′)|fCL
r̂ (R′, ω)|2 (5.5)

+ |f scat
r̂ (ω)|2 + 2

∑

j

ˆ
d2R′Re

{
M j
ω/v(R

′) fCL∗
r̂ (R′, ω) · f scat

r̂ (ω)
}

+
∑

j 6=j′

[ˆ
d2R′M j

ω/v(R
′)fCL∗

r̂ (R′, ω)

] [ˆ
d2R′′M j′∗

ω/v(R
′′)fCL

r̂ (R′′, ω)

]}

(see derivation in the Appendix E), where M j
ω/v is given by Eq. (5.3) with ψ0 replaced

by ψj (the wave function of electron j). In the absence of external light (i.e., with
fCL
r̂ = 0), this expression converges to the multi-electron excitation probability described

elsewhere [33].
While the above results are derived for electrons prepared in pure states (i.e., with

well-de�ned wave functions), the extension to mixed electron states is readily obtained by
evaluating the averages in Eqs. (E.7) as Tr{ĵel(r′, ω)̂jel(r′′, ω)ρ̂j} and Tr{ĵel(r′, ω)ρ̂j},
respectively, where ρ̂j is the electron density matrix of electron j. This leads exactly to
the same expressions as above but replacing |ψj(r)|2 by the probability densities 〈r|ρ̂j |r〉,
which allow us to describe electrons that have undergone decoherence processes before
interacting with the sample.

We present results below for nanoparticles whose optical response can be described
through an isotropic, frequency-dependent polarizability α(ω). Considering a well-
focused electron with impact parameter R0 relative to the particle position r = 0 (i.e., an
electron probability density |ψ0(r)|2 ≈ δ(R−R0)|ψ‖(z)|2), we �nd that Eq. (5.2) then
reduces to

dΓrad(R0)

dω
=

2k3

3π~
|α(ω)|2

[∣∣Eext(0, ω) +M∗ω/v E
el(R0, ω)

∣∣2

+
(

1−
∣∣Mω/v

∣∣2
)
|Eel(R0, ω)|2

]
, (5.6)

where

Eel(R0, ω) =
2eω

v2γ

[
K1

(
ωR0

vγ

)
R̂0 +

i

γ
K0

(
ωR0

vγ

)
ẑ

]
, (5.7)

is the bare electron �eld [see Eq. (1.19)], and we now have

Mω/v =

ˆ ∞
−∞

dz eiωz/v |ψ‖(z)|2 (5.8)

for the electron coherence factor. These expressions clearly reveal that, although the
phase of the electron wave function is erased because only the probability density appears
in Eq. (5.8), the mutual electron-light coherence is controlled by the temporal pro�le of
that density, as well as its timing with respect to the light �eld, which produces a global
phase inMω/v relative to the light �eld that in turn enters through the �rst term inside the
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square brackets in Eq. (5.6) (e.g., to partially cancell the CL emission). Obviously, without
electron-laser timing, averaging over this phase di�erence cancels such interference.

Reassuringly, Eq. (5.6) reduces to well-known expressions for the CL emission when
setting Eext = 0 (i.e., in the absence of external light). This result is independent of
the electron wave function [33,108,143,144]. Moreover, we recover the photon scattering
cross section ∝ ω3|α|2 when Eel = 0 (i.e., without the electron). An additional element
of intuition is added by the fact that the expression for Eel(R0, ω) corresponds to the
spectrally resolved evanescent �eld produced by a classical point electron [8], which
decays exponentially away from the trajectory, as described by the modi�ed Bessel
functions K0 and K1.

The electron coherence factor Mω/v in Eq. (5.8) [and similarly Mω/v(R) in Eq. (5.3)]
determines the degree of coherence (DOC) of the electron excitation (i.e., the CL emission)
relative to the signal originating in the laser (i.e., light scattering). This factor enters Eq.
(5.6) through terms proportional to DOC(ω) = |Mω/v|2, where we use the de�nition
of DOC introduced in Ref. 144. Indeed, for Mω/v = 0, the scattered light �eld does
not mix at all with the CL emission �eld, so they are mutually incoherent. In contrast,
if Mω/v = 1, we have a maximum of coherence, so that the external illumination can
fully suppress the CL emission. Speci�cally, we stress that the point-particle limit of
the electron (i.e., |ψ0(r)|2 → δ(r)) produces Mω/v = 1, thus recovering the intuitive
result for a classical point charge: the radiation from the passage of the electron is a
deterministic solution of the Maxwell equations, and thus, it can be suppressed by an
external light �eld with the same frequency-dependent amplitude and an opposite phase.
This is not the case in general, so for arbitrarily distributed electron wave functions, the
degree of coherence is partially reduced. We also note that the phase of the electron wave
function is entirely removed from the coherence factor [see Eq. (5.3)].

We have shown that the CL emission can be modulated by interference with external
laser light. As a way to illustrate this e�ect, we discuss in what follows the maximum
achievable minimization of the overall far-�eld (scattered+emitted) photon intensity by
appropriately selecting the external far-�eld amplitude. If we have complete freedom to
choose the external �eld, we readily �nd from Eq. (5.6) that dΓrad/dω is minimized by
taking

Eext(0, ω) = −M∗ω/vEel(R0, ω). (5.9)

Alternatively, when one adopts light pulses Eext(0, ω) = f(ω)E0 with a predetermined
spectral pro�le f(ω) (e.g., a Gaussian f(ω) = e−(ω−ω0)2σ2

t /2), the minimization condition
at a given sample resonance frequency ω = ω0 is readily achieved by setting the �eld
amplitude to E0 = −M∗ω0/v

Eel(R0, ω0) f∗(ω0)/|f(ω0)|2. As an estimate of the laser
intensity needed to optimally modulate the CL emission, we take

∣∣Mω/v

∣∣ = 1 and consider
the electric �eld amplitude from Eq. (5.7) for a 100 keV electron passing at a distance
R0 =50 nm (10 nm) away from the dipolar particle, so that, setting ~ω = 1 eV, we have
|Eel(R0, ω)|∆ω ∼ 50 kV/m (280 kV/m), assuming a depletion bandwidth ~∆ω = 0.1 eV;
also, the corresponding laser �uence is (c/4π2)|Eel(R0, ω)|2∆ω ∼ 10 nJ/m2 (400 nJ/m2).
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5.3 Results and discussion

Motivated by potential application of electron beams in controlling the excitations of
small elements in a sample (e.g., molecules), we consider a dipolar scatterer as that
depicted in Fig. (5.2a), consisting of a 60 nm silicon sphere coated with a silver layer of
5 nm thickness (i.e., an outer radius a = 35 nm), which exhibits a spectrally isolated
plasmon resonance at a photon energy ~ω0 = 1.3 eV. In practice, we calculate the dipolar
polarizability of small spheres from the corresponding electric Mie scattering coe�cient
as α = (3/2k3)tE1 (see Section 1.1). The relatively low level of ohmic losses in silver
produces a narrow resonance, with 14% of its FWHM (~γ = 0.013 ~ω0 ≈ 17 meV)
attributed to radiative losses, as estimated from the ratio (≈ 0.86) of peak absorption
to extinction cross sections. Similar dipolar resonances can be found in other types of
samples, such as metallic nanoparticles of di�erent morphology [219,220] and dielectric
cavities [221], for which we anticipate a variability in their coupling strength to light and
electrons that should not however a�ect the qualitative conclusions of the present work.

In what follows, we consider modulated electrons, focusing on their interaction with
a particle under simultaneous laser irradiation. The production of sub-fs-modulated
electrons has become practical thanks to PINEM-related advances in ultrafast electron
microscopy, whereby an ultrashort laser pulse is used to mould each electron into a
train of pulses [75,80,83,119,213,214], from which an individual wavepacket can be extracted by
applying a streaking technique [140]. Speci�cally, we consider either Gaussian electron
wavepackets de�ned by the wave function

ψ‖(z) =
1

(2πσ2
t v

2)1/4
e−z

2/4σ2
t v

2+iq0z, (5.10)

where the duration is expressed in terms of the standard deviation σt of the electron pulse
probability density |ψ‖(z)|2 and q0 is the central wave vector, or electrons modulated by
PINEM interaction with scattered laser light followed by free-space propagation over
a macroscopic distance d before reaching the sampled particle. The wave function of
the so modulated electron consists of a Gaussian wavepacket envelope [i.e., Eq. (5.10)]
multiplied by an overall modulation factor [33,108]

Pd(β, ω, z) =

∞∑

`=−∞
J`(2|β|) ei`ωP (z−zP )/v−2πi`2d/zT , (5.11)

where ` labels a periodic array of energy sidebands separated by the laser photon energy
~ωP ; the modulation strength is quanti�ed by a single complex coupling parameter β
that is proportional to the laser amplitude and whose phase determines the reference
position zP ; and we have introduced a sideband-dependent recoil correction phase∝ `2 to
account for propagation over d, involving a Talbot distance zT = 4πmev

3γ3/~ω2
P . These

expressions are valid under the assumption that the laser is quasi-monochromatic (i.e, its
frequency spread is small compared with ωP ). Then, for an optimum value of d, the factor
Pd(β, ω, z) renders a temporal comb of periodically spaced pulses (time period 2π/ωP )
that are increasingly compressed as |β| is made larger, eventually reaching attosecond
duration [75,80,83,119,213,214]. We remark that mutual electron-laser phase coherence can
be achieved by using the same laser to both modulate the electron and subsequently
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Figure 5.2: Interference between cathodoluminescence and external light scattering. (a)
We consider a sample consisting of a small isotropic scatterer described through a frequency-
dependent polarizability α(ω) that is dominated by a single resonance of frequency ω0 and
width γ. For concreteness, we take a nanosphere (see inset) comprising a silicon core (60 nm
diameter, ε = 12 permittivity) coated with a silver layer (5 nm thickness, permittivity taken from
optical data [97]), for which ~ω0 = 1.3 eV and γ = 0.013ω0. In the plot, the polarizability is
normalized using the outer particle radius a = 35 nm. (b) Electron density pro�le of a 100 keV
electron Gaussian wavepacket (50 fs standard-deviation duration in probability density) after
modulation through PINEM interaction (coupling coe�cient |β| = 5, central laser frequency tuned
to ωP = ω0) followed by free propagation over a distance d = 2.5 mm, which produces a train of
temporally compressed density pulses. (c) Time dependence of the CL, laser-scattering, and total
�eld amplitudes for the electron in (b) and a laser Gaussian pulse of 50 fs duration in amplitude.
The light amplitude is optimized to deplete the CL signal at frequency ω0. (d) Spectral dependence
of the resulting angle-integrated far-�eld CL (maroon curve), laser-scattering (red curve), and total
(blue curve) light intensity for the optimized amplitude of the Gaussian laser pulse. The incoherent
sum of CL emission and laser scattering signals is shown for comparison (green curves). The
shaded region corresponds to spectra obtained with partially optimized laser pulses. The inset in
(d) shows details of the geometry under consideration, also indicating the position P at which the
�eld in (c) is calculated.



5. Modulation of cathodoluminescence emission by interference with external light 102

interact with the sample. For concreteness, we set the electron energy to 100 keV and
tune the PINEM laser frequency to the resonance of the aforementioned sample (i.e.,
~ωP = ~ω0 = 1.3 eV). The corresponding Talbot distance is then zT ≈ 211 mm.

5.3.1 Optical modulation of CL from a dipolar scatterer
An example of PINEM-modulated electron density pro�le is shown in Fig. (5.2b) for
σt = 50 fs, |β| = 5, and d = 2.5 mm. Direct application of Eq. (5.6) to this electron
allows us to calculate the CL emission spectrum, along with its modulation due to
interference with light scattering from a phase-locked Gaussian pulse (50 fs duration in
�eld amplitude), as shown in Fig. (5.2d), where the inset depicts further details of the
geometrical arrangement and con�guration parameters. Starting from the CL spectrum
in the absence of external illumination (maroon curve, which we insist is independent of
electron wave function pro�le [33,108,143,144]), we then superimpose the phase-locked laser
pulse in which we optimize the light �eld amplitude E0 as prescribed above to produce a
maximum of depletion in the resulting photon intensity at the peak maximum (blue curve).
The achievable depletion is not complete because we have DOC(ω0) = |Mω0/v|2 ≈ 0.31
for the considered electron, which di�ers from the limit of perfect coherence (see below),
so a fraction of the original CL signal given by 1 − DOC(ω0) ≈ 69% remains after
complete cancellation of the coherent part. If the electron and light pulses are not
phase-locked, relative phase averaging renders Mω/v = 0, so the resulting probability
of detecting CL or scattered photons (green curve) is just the incoherent sum of the
probabilities associated with these two processes (i.e., the sum of the blue and red curves).

It is instructive to compare the electric near �eld associated with CL versus light
scattering by computing the quantum average of the corresponding �eld operator
Ê(r, t). Although this quantity is an observable, we note that its measurement is not
straightforward. Following the approach explained in the Appendix E and retaining only
terms that are linear in the electron current operator ĵ(r, ω), we �nd the average �eld to
be given by 〈Ê(r, t)〉 = −2i

´∞
−∞ ω dω e−iωt

´
d3r′G(r, r′, ω) · 〈̂j(r′, ω)〉, which under

laser and electron exposure becomes
〈
Ê(r, t)

〉
= (2π)−1

ˆ ∞
−∞

dω e−iωt

[
Elight(r, ω) +

ˆ
d2R′M∗ω/v(R

′)ECL(r,R′, ω)

]
,

where ECL is de�ned in the Appendix E [Eq. (E.9)]. The scattered part of the resulting
time-dependent �eld is plotted in Fig. (5.2c) as calculated from this equation at the
position P indicated in the inset of Fig (5.2d). We corroborate that the optimized laser
scattering �eld (red) can be made to cancel the CL �eld (blue), therefore producing a
nearly vanishing total �eld (blue) that is consistent with the depletion of CL observed in
Fig. (5.2d). It is important to stress that the average of the electric �eld amplitude cancels,
while non-vanishing �uctuations give rise to the incoherent part of the emission, which
is not suppressed.

5.3.2 CL modulation for gaussian electrons
In Fig. (5.3), we consider an electron prepared in a Gaussian wavepacket with standard-
deviation duration σt of either 0.3 fs or 0.9 fs [Fig. (5.3a)]. These values are consistent
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Figure 5.3: Modulation of the CL emission by Gaussian electron and laser pulses. (a)
Gaussian electron wavepackets of 0.3 fs and 0.9 fs duration. (b) Frequency dependence of the
electron coherence factor Mω/v (Fourier transform of the pro�les in (a)). (c) Angle-integrated
CL, laser scattering, and total far-�eld photon intensity using the electron pulses in (a), the same
particle and geometrical con�guration as in Fig. (5.2), and an optimized spectral pro�le of laser
�eld amplitude. We also show the incoherent sum of CL emission and laser scattering signals for
comparison (green curve).

with those achieved in recent experiments [140]. The corresponding coherence factor
Mω/v = e−ω

2σ2
t /2 [Fig. (5.3b), as calculated from Eqs. (5.8) and (5.10)] quickly dies o� as

the electron pulse duration exceeds the optical period 2π/ω of the targeted excitation.
In the point-electron limit (σt → 0), full coherence is obtained in accordance with the
intuitive picture that the electron then generates a classical �eld that is well described by
the solution of Maxwell’s equations for a classical external source. The corresponding
CL emission probability [Fig. (5.3c), maroon curve] is again independent of electron
wave function, while maximal depletion can be obtained upon sample irradiation with
an optimum spectral pro�le of the external �eld amplitude [Eq. (5.9)], so that only a
fraction 1− |Mω/v|2 of the CL emission remains [see Eq. (5.6)]. Consequently, the level
of depletion depends dramatically on pulse duration, as illustrated by comparing solid
and dashed curves in Fig. (5.3c).

5.3.3 CL modulation for PINEM-compressed electrons

The wave function of a PINEM-modulated electron at the sample interaction region is
given by the product of Eqs. (5.10) and (5.11) when using a quasi-monochromatic laser.
The corresponding coherence factor can be calculated from Eq. (5.8), and reads

Mω/v =
∑

``′

e−
σ2t
2 [(`−`′)ωP+ω]2J`(2|β|)J`′(2|β|) e

i(`′−`)ωP zPv +2πi(`′2−`2) d
zT , (5.12)

which we evaluate numerically for �nite σt. In the ωPσt � 1 limit,Mω/v takes negligible
values unless the excitation frequency is a multiple of the PINEM laser frequency (i.e.,
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ω = mωP ). Then, only `′ = `+m terms contribute to the above sum, which reduces to

Mω/v = eimωP zP /v+2πim2d/zT
∑

`

J`(2|β|)J`+m(2|β|) e4πim`d/zT (5.13)

and using Graf’s addition theorem [13], we have |Mω/v| = |Jm[4|β| sin(2πmd/zT )]| [217].
Equation (5.12) is a function of the PINEM coupling coe�cient β, the free propagation
distance d, the excitation frequency ω, the electron velocity v, and a slowly varying
envelope pro�le of width σt. In addition, for ωσt � 1, which is reached in practice
for instance with σt ∼ 2 fs for sample excitations of ~ω = 1.3 eV energy, we can use
Eq. (5.13) to generate the universal plot for |Mω/v| shown in Fig. (5.4a), where the
dependence on ω, d, and v is fully encapsulated in the d/zT ratio, using the Talbot
distance zT de�ned above. Importantly, we �nd a region of maximum coherence (blue
contour) in which |Mω/v| ≈ 0.582, and therefore, the fraction of excitations produced by
the electron that are coherent with respect to the external phase-locked laser is limited
to DOC(ω) = |Mω/v|2 ≤ 34%. This maximum value can be reached for coupling
parameters |β| ≥ 0.46, while the corresponding free-propagation distance d can be
controlled by changing the modulating laser intensity. We note that the d position at
which maximum coherence is found does not coincide with that of maximal temporal
compression of the electron pulse train due to a substantial electron probability density
remaining in the region between consecutive peaks [108].

In Fig. (5.4b), we consider a dipolar scatter with a broad spectral response to better
illustrate the optically driven depletion of CL for PINEM-compressed electrons. In
particular, we take a 160 nm Pt spherical particle, which produces a wide CL emission
peak (maroon curve). For comparison, we show the depletion obtained under optimized
laser irradiation [i.e., with the external light �eld amplitude given in Eq. (5.9)] for a
Gaussian electron wavepacket of 0.3 fs duration [Fig. (5.4b), dashed curve], showing a
stronger e�ect at lower photon energies in accordance with Fig. (5.3b). In contrast, for a
nearly-optimum PINEM-modulated electron [the same as in Fig. (5.2b)], we �nd instead
discrete depletion features, corresponding to the PINEM energy ωP (i.e., ~ωP = 1.3 eV
in this case) and its harmonics ω = mωP [only m = 1 and 2 peaks are visible in the solid
and dotted curves of Fig. (5.4b)]. We note that the leftmost depletion does not reach as
deep as that produced by the Gaussian wavepacket electron, whereas the second one has
nearly the same magnitude. In the ωσt � 1 limit, the depletion observed at the excitation
frequencies ω = mωP is equally ruled by universal behaviors of Mω/v analogous to
that in Fig. (5.4a), showing a similar dependence on β and d, but with an increasingly
reduced magnitude as the harmonic order m is increased. When the envelope of the
PINEM-modulated electron is reduced from 50 fs (solid blue curved) to 10 fs (dotted curve),
the depletion features are broadened, but their depth is maintained, directly mimicking
the behavior of DOC(ω). In other words, shorter electron pulses allow us to suppress a
larger fraction of the CL power, and of course, this suppression requires illuminating the
sample with a synchronized, amplitude-optimized laser that covers the range of sampled
excitation frequencies ω.

5.3.4 Temporal control of the emission
The studied CL modulation strongly depends on the timing between the laser and electron
interactions with the sampled structure, as illustrated in Fig. (5.5). To elaborate on this
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Figure 5.4: Coherence factor of PINEM-modulated electrons. (a) We show the coherence
factor |Mω/v| for modulated electrons in the limit of long pulse duration (ωσt � 1) as a function
of the PINEM coupling parameter β and free propagation distance d. This function is periodic
along d with a period given by half the Talbot distance zT . Additionally, |Mω/v| presents an
absolute maximum of ≈ 0.582 along the blue contour superimposed on the density plot. (b)
Unperturbed (maroon curve) and optically depleted (blue curves) CL spectra from a 160 nm Pt
spherical particle and electrons prepared in Gaussian wavepacket (dashed blue curve, σt = 0.3 fs)
or PINEM-modulated (solid and dotted blue curves obtained with |β| = 5 and either σt = 50 fs or
σt = 10 fs, see labels) states. The inset shows the geometrical arrangement and parameters. The
laser amplitude is taken to be optimized for all emission frequencies.

point, we reduce the number of parameters by considering electron wavepackets with a
Gaussian pro�le (i.e., without an additional PINEM modulation) and vary their temporal
delay relative to laser pulses [see sketch in Fig. (5.5a)], using the same standard deviation
duration σt = 10 fs both for the electron probability density and for the light �eld
amplitude. We consider the same particle as in Fig. (5.1) and integrate the CL signal over
frequency to cover the resonance region. The result is plotted in Fig. (5.5b). For optimal
CL suppression, the polarization induced in the particle by the electron and the laser
must have overlapping envelopes with a temporal delay precision well below an optical
cycle. For �nite delay, we show that the interference signal oscillates as a function of τ
with a period that coincides with the resonance optical period 2π/ω0. Additionally, the
amplitude of these oscillations is e�ectively attenuated by a factor e−γ|τ |/2 away from
zero delay; this attenuation takes place at a pace that is half of the resonance decay rate
γ because interference is governed by the resonance amplitude rather than the intensity.

5.3.5 Energy pathways
Within the formalism developed in Appendix E, we obtain the partial probabilities
for processes associated with energy changes in the electron (Γel) and emission of
radiation along forward (Γforward). On the contrary, the distributions associated with
the accumulated excitations and subsequent decays of the particle mode (Γdecay) and
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with the inelastic absorption events (Γabs = Γdecay − Γrad) are evaluated by means of a
density matrix formalism reported in Section E.5. The combination of the two analyses
leads to the following expressions for the corresponding frequency-resolved probabilities:

dΓel

dω
= − 1

π~
Im

{
α(ω)Eext(0, ω) ·Eel∗(R0, ω)Mω/v

}
(5.14a)

− 1

π~
∣∣Eel(R0, ω)

∣∣2 Im {α(ω)} ,
dΓdecay

dω
=

1

π~
Im{α(ω)}

[
|Eext(0, ω)|2 + |Eel(R0, ω)|2 (5.14b)

+ 2 Re
{
Eext(0, ω) ·Eel∗(R0, ω)Mω/v

}]
,

dΓforward

dω
= − 1

π~
Im
{
α(ω)Eext∗(0, ω) · [Eext(0, ω) + Eel(R0, ω)M∗ω/v]

}
. (5.14c)

Importantly, the probabilities in Eqs. (5.14) satisfy the energy-conservation condition

dΓel

dω
+
dΓdecay

dω
+
dΓforward

dω
= 0. (5.15)

We interpret Γforward as the change in photon forward emission (i.e., toward the
direction of propagation of the incident light beam) associated with interference between
emitted and externally incident photons (i.e., the type of stimulated process that is
neglected in the non-forward far-�eld radiation probability Γrad). In particular, the �rst
term inside the squared brackets of Eq. (5.14c) agrees with the depletion of the incident
light that is described by the optical theorem [3] (i.e., (1/π~)Im{α(ω)} |Eext(0, ω)|2 =
σext(ω)I(ω)/~ω, where σext(ω) = (4πω/c)Im{α(ω)} is the extinction cross section
and I(ω) = (c/4π2)|Eext(0, ω)|2 is the light intensity per unit frequency), whereas the
remaining term originates in electron-light interference. The probabilities given above
are derived for isotropic dipolar particles, but a similar analysis leads to expressions
corresponding to a particle characterized by a polarizability tensor α(ω) û⊗ û (i.e., linear
induced polarization along a certain direction û), for which the partial probabilities
are given by Eqs. (5.6) and (5.14) by substituting Eext and Eel by û · Eext and û · Eel,
respectively.

We explore the aforementioned energy pathways in Fig. (5.5b-e), where we plot
the frequency-integrated probabilities Γrad, Γforward, Γdecay, and Γel, respectively, as a
function of electron-light pulse delay τ . We �nd that the decay probability follows a
similar symmetric pro�le as the radiative emission [cf. panels (b) and (d), both of them
independent of the sign of τ . In contrast, the electron energy-change probability [Fig.
5.5e)] is markedly asymmetric [and so is the forward-emission probability [Fig. 5.5c)]
as a result of energy conservation via Eq. (5.15)]: we �nd the intuitive result that the
electron energy remains nearly unmodulated if the electron arrives before the optical
pulse, while the opposite is true for the forward light emission component.
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Figure 5.5: Control of the far-�eld photon intensity and energy pathways through the
electron-laser temporal delay. (a) We consider the same con�guration as in Fig. (5.2), using
electron and laser Gaussian pulses that act on the sample with a relative time delay τ . (b) Angle-
and frequency-integrated photon intensity (orange, in units of photons per electron), showing
oscillations of period 2π/ω0 as a function of τ , as calculated for 100 keV electrons, 10 fs Gaussian
pulse durations (i.e., f(ω) = e−(ω−ω0)

2σ2
t /2, see black pro�le for comparison, referring to the

standard deviation of the electron density pro�le and the laser �eld amplitude), and the same particle
as in Fig. (5.2a). The interference attenuation for γτ � 1 is indicated by the blue curve, where γ is
the decay rate of the sampled resonance. The laser �eld amplitude is �xed to (1.4 eω0/v

2γ) f(ω)
and contained within the plane of the �gure. (c-e) Frequency-integrated probability associated
with additional energy pathways: laser-stimulated forward scattering (c), total decay following
excitation of the particle plasmon (d), and change in the electron energy (e). Calculations in (b-e)
correspond to the orientations of the light (incident wave vector kinc) and the electron (velocity v)
shown in the central inset.

5.4 Concluding remarks

Electron-beam-based spectroscopy techniques provide unrivalled spatial resolution for
imaging sample excitations by measuring electron energy losses (EELS) or light emission
(CL) associated with them. In this study, we propose the opposite approach: suppression
of sample excitations produced by free electrons through combining them with mutually
coherent laser irradiation. Indeed, our �rst-principles theory con�rms that electrons and
light can both be treated as mutually coherent tools for producing optical excitations. They
form a synergetic team that combines optical spectral selectivity with the high spatial
precision of electron beams. In contrast to EELS, where free electrons act as a broadband
electromagnetic source, so that only a posteriori selection of speci�c mode frequencies is
performed by spectrally resolving the inelastically scattered probes, the methods here
explored allow us to target designated mode frequencies with sub-Ångstrom control over
the excitation process. In addition, the excitation of on-demand nanoscale optical modes
through the combined use of modulated electrons and tailored light pulses is amenable
to the implementation of coherent control schemes [222,223] for the optimization of the
desired e�ects on the specimen.

From a practical viewpoint, PINEM interaction provides a way of moulding the
electron wave function to produce the temporally compressed pulses that are required
to address speci�c sample frequencies. However, this method has a limited degree
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of achievable coherence in the electron-driven excitation process when using quasi-
monochromatic light, quanti�ed through the degree of coherence [144] 0 < DOC(ω) =
|Mω/v|2 ≤ 1; more precisely, it can produce values DOC(ω) . 34%, as we show
above. We remark that the frequency-dependent function DOC(ω) is a property of the
electron: this function is univocally determined by the probability density pro�le. Full
coherence at a frequency ω, corresponding to the DOC(ω)→ 1 limit, can be delivered
by δ-function-like combs of electron pulses (i.e., for an electron probability density
|ψ(z)|2 ≈ ∑m bm δ(z − 2πmv/ω) along the beam [33], with arbitrary coe�cients bm,
including single pulses for bm = δm,0), the synthesis of which emerges as a challenge for
future research.

By putting free electrons and light on a common basis as tools for creating excitations
in a specimen, one could additionally envision the combined e�ect of multiple electron
and laser pulses, which would increase the overall probability of exciting an optical mode,
provided that their interactions take place within a small time interval compared with
the mode lifetime. This idea capitalizes on the concept of superradiance produced by
PINEM-modulated electrons [215], which our �rst-principles theory supports for probing
and manipulating nanoscale excitations including the extra degrees of freedom brought
by synchronized light and electron probes.

We remark that CL is just one instance of sample excitation, but the present study
can be straightforwardly extended to optically bright modes in general (see independent
analysis in Ref. 33), including two-level resonances of di�erent multipolar character. A
key ingredient of our work is the use of dimmed illumination, so that the weak probability
amplitude that the electron typically imprints on the sample has a magnitude that is
commensurate with the e�ect of the external light. Because the measurement is performed
once interference between electron- and light-driven excitation amplitudes takes place
(i.e., at the far-�eld photospectrometer in CL, or by the e�ect of any subsequent inelastic
process following the decay of the excited sample mode in general), the studied electron-
light mutual coherence is una�ected by additional sources of shot noise other than the
intrinsic ones associated with the detection process (e.g., like in conventional CL).

Our prediction of unity-order e�ects in the modulation of electron-sample interactions
through the use of external light enables applications in the manipulation of optical
excitations at the atomic scale. Additionally, it suggests an alternative approach to
damage-free sensing, whereby the spectral response of a specimen could be monitored
through the modulation produced by the combined action of light and electrons, involving
a reduced level of sample exposure to electrons because the targeted interference is
proportional to the polarization amplitudes that they induce, so the outcome of a weak
electron interaction could be ampli�ed by applying a lock-in technique to the laser.
This approach could be useful for imaging biomolecules, as well as strongly correlated
materials in which probing without invasively perturbing the system is essential and
remains a challenge in the exploration of spin and electronic ultrafast dynamics. Besides
the experimental con�guration proposed in Fig. (5.1), one could alternatively �ip the
semitransparent mirror horizontally to mix the external laser light with the CL emission
at the detector instead of undergoing scattering at the specimen.

We �nd it interesting the possibility of adjusting the amplitude of the external light
�eld, for example through a temporal light shaper, to determine the frequency-dependent
magnitude and phase of the CL amplitude �eld (fCL

r̂ (R, ω) in our formalism),
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thus providing temporal resolution when probing the specimen by direct Fourier
transformation of this quantity. This method could yield a time resolution limited by the
width of the frequency window in the CL measurement at the spectrometer, without
a�ecting the intrinsic temporal resolution associated with the short duration of electron
and light pulses, and likewise, retaining the sub-Ågnstrom spatial resolution associated
with tightly focused electron beams. In a related direction, spatial light modulation
and raster scanning of the electron beam could also be employed to gain further
insight into the symmetry and nanoscale spatial dependence of the sample response.
Additionally, for a sample in which fCL

r̂ (R, ω) is well characterized (e.g., a dielectric
sphere [221]), the modulation of CL by varying the external �eld could be used to resolve
the coherence factor Mω/v , thus allowing us to retrieve the electron density pro�le
from the Fourier transform of this quantity. Besides far-�eld optical measurements, the
present analysis can also be extended to alternative ways of probing optical excitations
that are coherently created by light and electrons, such as electrical or acoustic detection
of the modi�cations produced in the specimen.
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6
An image interaction approach to

quantum-phase engineering of
two-dimensional materials

An expert is a person who has made all the mistakes that can be made in a very narrow
�eld.
Niels Bohr

In this chapter, we theoretically show that electrons in a semiconductor atomic
monolayer acquire a quantum phaseχ analogous to that studied in Chapter 4 and resulting
from the image potential induced by the presence of a neighboring periodic array of
conducting ribbons, which in turn modi�es the optical, electrical, and thermal properties
of the monolayer, expressed in terms of additional interband optical absorption, plasmon
hybridization, and metal-insulator transitions. What follows is based on a published
work, Ref. 224.
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6.1 Introduction

At the heart of condensed-matter physics is the drive to manipulate materials in a
purposeful fashion to improve or enable functionalities. To that end, the sustained
advances in fabrication capabilities along with the continuous emergence of novel material
platforms have together fuelled the �eld over the past half-century. Moreover, when
suitably engineered, nanostructured materials can generally exhibit new properties
beyond those found in their native, bulk form. A paradigmatic example that bene�ted from
such approach was the development of semiconductor devices [225,226], whose electronic
properties were controlled by modifying the band structure through, for example, spatially
patterning their compositional or doping characteristics [226–231].

With the advent of 2D and atomically thin materials [232–235], those ideas were swiftly
transferred to this arena as well, leading to the realization of 2D superlattices that
incorporated not only vertical stacks, but also laterally assembled heterostructures [236–241],
as well as electrically modulated graphene [242,243], arti�cial graphene [244,245], and optical
near-�eld dressing through periodic patterning of the supporting dielectric substrate [246].
More recently, similar band structure engineering concepts have been explored to
create moiré superlattices [236,247–250] and moiré excitons [251–253], and also to investigate
topological phenomena [254–257]. However, these approaches are generally invasive, as
they require physical material nanostructuring or the injection of charge carriers. Now,
the question arises, can a more gentle engineering of a 2D material be realized without
structural modi�cations or exposure to external �elds?

In this chapter, we introduce a disruptive approach for tailoring the electrical, optical,
and thermal properties of 2D materials based on the manipulation of their electronic band
structures by means of the gate-free, noncontact image-potential interaction experienced
by the material’s electrons in the presence of a neutral neighboring structure [see Fig.
(6.1)]. Indeed, when a charged particle (e.g., an electron in the 2D material) is placed
near an interface, an image potential is induced that a�ects the particle dynamics. For
free electrons, the image interaction is tantamount to the position-dependent Aharonov–
Bohm quantum phase (Q-phase) imprinted on their wave functions by the self-induced
electromagnetic �elds in the vicinity of the interface (see Chapter 4) Likewise, valence
and conduction electrons in a material should acquire a Q-phase that depends on the
geometrical and compositional details of the environment. This phase is expected to
modify the electronic energy bands and, consequently, the dynamical response and
transport properties of the hosting material as well. In reference to the origin of these
modi�cations, hereinafter we refer to such 2D-material-based con�gurations as Q-phase
materials.

Here, we introduce a speci�c realization of Q-phase materials consisting of a 2D
semiconductor that is modi�ed by the presence of a one-dimensional (1D) periodic array
of ribbons. Speci�cally, we demonstrate that the periodic image potential produced by
this pattern on the semiconductor electrons gives rise to substantial modi�cations in its
band structure that translate into changes in the optical, electrical, and thermal properties,
which are controlled by purely geometrical parameters [the separation and period of the
array, see Fig. (6.1)]. We present rigorous theoretical calculations of the self-consistent
electronic band structure, the ensuing optical response, and the electrical and thermal
conductivities, all of which reveal dramatic modulations due to the aforementioned image
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Figure 6.1: Realization of a quantum-phase (Q-phase) material. (a) Sketch of the noncontact
interaction between a 2D material and a neighboring structure. The image potential experienced by
conduction electrons in the material imprints a Q-phase on their wave functions ψj(r) that in turn
changes the optical, electrical, and thermal transport properties. (b) Possible realization of a Q-phase
material. In the absence of an additional structure, there is no image interaction (A), so conduction
electrons exhibit a characteristic parabolic dispersion (B), leading to a collective response function
like that of a 2DEG (C). An image potential landscape (D) is produced by introducing a neighboring
neutral structure (a periodic array of conducting ribbons of period a, width b, and separation d).
The electron wave functions then acquire a Q-phase that reshapes the band structure, opening
gaps (E) and enabling additional electronic transitions that translated into modi�cations of the
material properties (F).
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interaction. More precisely, we predict the opening of electronic gaps, which enable
interband optical transitions and hybrid plasmon-interband modes that are otherwise
optically forbidden in the absence of the image interaction. In addition, we observe
a metal-insulator transition as the pattern is brought closer to the semiconductor and
the image interaction increases, essentially re�ecting a reduction in carrier propagation
induced by the periodic patterning. This also a�ects the thermal conductivity, which
we predict to undergo a corresponding conductor-insulator transition. Importantly, the
image interaction is long-range and nonresonant, so this method can be generally applied
to any 2D material, adding a brand new tool to design nanodevices.

6.2 Results

6.2.1 Theoretical framework

We consider an atomically thin semiconductor of area L2, doped to a Fermi level E0
F

(corresponding to a carrier density n0 in the conduction band), and lying in the z = 0
plane at a distance d > 0 from a 1D periodic array of conductive ribbons [period a,
width b, see Fig. 6.1b]. The latter are taken to be in�nitely extended along the y direction,
periodic along x, and made of a material with a high DC conductivity and low infrared
absorbance (e.g., indium tin oxide [258]), so that it behaves as a perfect conductor with
regards to the determination of the equilibrium con�guration of the electronic structure
in the semiconductor. A patterned and doped semiconductor monolayer with a partially
�lled conduction band could serve this purpose. We further consider the periodic array
to be embedded in a medium of permittivity ε matching that of the ribbon material at
the optical frequencies discussed below, such that the array appears to be invisible. The
semiconductor electrons can however interact with the array through a image potential
energy −V0

[259–261], which for distances d & 1 nm can be well approximated by the
local electrostatic limit [262–264] (i.e., V0 = e2/4εd). Incidentally, �lms consisting of three
atomic layers of hexagonal boron nitride are now commonly used to introduce a dielectric
spacing of ∼ 1 nm in 2D material heterostructures [265], but other materials amenable to
exfoliation down to a few monolayers could also be employed for that purpose, as well as
atomic layer deposition [173] methods. Neglecting ribbon edge e�ects by assuming d� a,
we describe the image interaction of each semiconductor electron through the periodic
stepwise energy function V im(x) = −V0p(x), where p(x) = 1 for x directly below a
ribbon and p(x) = 0 otherwise. In this work, we set ε = 1 for simplicity and remark that
the image potential is the result of the Q-phase introduced in the electron wave functions
due to their interaction with the surrounding patterned structure, as illustrated for free
electrons moving near a material surface [148].

We describe the semiconductor electrons in the single-particle approximation [61],
and further consider them to be strongly con�ned to an atomic layer of small thickness
compared with the separation d from the conductive ribbons. This allows us to factorize
the one-electron wave functions as ψkn(r) = ψk‖n(R)ψ⊥(z), with out-of-plane
components yielding a probability density pro�le |ψ⊥(z)|2 ≈ δ(z). The remaining
in-plane components depend on R = (x, y) and are determined by the self-consistent
equation [61]

[
H0 + V im + V H

]
ψk‖n(R) = ~εk‖nψk‖n(R), (6.1)
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where H0 = −~2∇2
R/2m

∗ is the unperturbed electron Hamiltonian, m∗ denotes the
e�ective mass, V im is the aforementioned image potential, and V H is the Hartree potential
of Eq. (1.66).

The numerical solution of the eigenvalue problem

We note that Eq. (6.1) can be solved by factorizing the one-electron wave functions as
ψk‖n(R) = ψkxn(x)ϕky (y), leading to

( ~2

2m∗
∂2
y + ~εykyn

)
φky (y) = 0, (6.2a)

[ ~2

2m∗
(kx − i∂x)2 + Vim(x) + VH(x)− ~εykxn

]
ukxn(x) = 0, (6.2b)

where we have used Bloch’s theorem to express ψkxn(x) = eikxxukxn(x)/
√
L in terms

of a periodic function ukxn(x) with the same period a as the ribbon array. From Eq. (6.2a),
the component along the direction of translational invariance admits plane-wave solutions
φky (y) = eikyy/

√
L with parabolic dispersion. In the remaining in-plane direction, Eq.

(6.2b) transforms into an eigenvalue problem by expanding ukxn(x) =
∑
G eiGxukxn,G

as a sum over reciprocal lattice vectors G (multiples of 2π/a). More precisely, Eq. (6.2b)
becomes
[ ~2

2m∗
(kx +G)2−~εxkxn

]
ukxn,G +

∑

G′

(
V im
G−G′ + V H

G−G′
)
ukxn,G′ = 0, (6.3)

where V im
G = i

(
V0/aG

)[
1− e−iGb

]
and V H

G = 2πe2(1− δG,0)nG
/
|G| are the Fourier

components of the image and Hartree potentials [see Appendix F for the evaluation of
the Hartree potential in reciprocal space]. We solve Eq. (6.3) iteratively by calculating
the components of the electron density nG = (2/a)

´ a
0
dx e−iGx

∑
k‖n

fk‖n|ψk‖n(R)|2
calculated from the (spin-degerate) electron wave functions and the Fermi-Dirac
distribution fk‖n (e.g., fk‖n = θ(EF − ~εk‖n) at T = 0) at every step and adjusting the
Fermi energy EF to meet the condition that nG=0 is equal to the unperturbed electron
density n0.

Summarizing, the electron eigenstates and spectrum, labeled by the in-plane wave
vector k‖ and the band index n, such that ψk‖n(R) = eik‖·R uk‖n(R)/L, where
uk‖n(R) = uk‖n(R + `ax̂) for any integer `, assume the form

ψk‖n(R) = eik‖·Rukxn(x)/L, (6.4a)
εk‖n = εxkxn + ~k2

y/2m
∗, (6.4b)

and are found from Eq. (6.1) by means of an iterative method. Importantly during the
application of such method, we assume the semiconductor to remain electrically neutral
in its environment, so that no charge imbalance is introduced by doping. Then, the charge
neutrality condition

´
d2R

[
n(R)− n0

]
= 0 needs to hold at every iteration step and is

used to determine the Fermi energy EF, which generally deviates from the value E0
F in

the homogeneous semiconductor (i.e., in the absence of image interaction). Incidentally,
we note that the parabolic band assumed to describe the unperturbed conduction band of
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Figure 6.2: Modulation of the electronic band structure for di�erent patterning ratios
b/a. We plot the electronic bands (solid curves) in the direction of periodic patterning for di�erent
values of b/a (see color-matched labels). Results are presented for V0/E

0
F = 3 (a), V0/E

0
F = 5

(b), and V0/E
0
F = 8 (c), along with the corresponding normalized Fermi energies (dashed lines).

Dotted curves stand for the 2DEG limit.

the doped semiconductor should be an excellent approximation because the patterning
period a exceeds by several orders of magnitude the interatomic distance, thus leading to
a comparatively small 1D 1BZ of extension ∼ 1/a.

6.2.2 Modulation of the electronic band structure

Once the conducting ribbons are brought close to the semiconductor, electrons in the latter
are no longer free to move along the patterning direction x because they are modulated
by the self-induced potential resulting from the image interaction. In particular, the
electronic band structure is modi�ed by the emergence of band gaps at the center and
edges of the 1BZ [see Fig. 6.2a)], which also imply changes in the electron velocity
component ∂kxεxkxn ≡ vkxn and the e�ective mass. We note that the normalized band
energies ~εxkxn/E

0
F and the dimensionless eigenvectors aψk‖n(R/a) depend only on

four independent parameters: (i) the geometrical ratio b/a [see Fig. 6.1b], which regulates
the tunneling rate across barriers introduced by the image potential; (ii) the size of the
1BZ kBZ = π/a relative to the unperturbed Fermi wave vector (i.e., kBZ/k

0
F); (iii) the

strength of the image energy relative to the unperturbed Fermi energy, V0/E
0
F; and

(iv) the normalized electron-electron Coulomb interaction energy across a unit cell
VC/E

0
F, where VC = e2/a. As illustrated in the dispersion diagrams shown in Fig. (6.2a)

for di�erent values of V0/E
0
F, when the ribbons are moved far apart, and thus V0/E

0
F

approaches 0, we rapidly recover a folded 2DEG (dotted curves) at the center of the 1BZ,
while small gaps of decreasing size remain visible at the zone edge. Reassuringly, we
�nd that for vanishing value of VC/E

0
F the Hartree potential contributes negligibly to

the energy of the system and the eigenvalues εxkxn agree well with those obtained in the
Krönig–Penney model [266]. In addition, when scanning the geometrical ratio b/a, we
�nd oscillations in the magnitude of the band gap produced by the image-interaction
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Figure 6.3: Modulation of the electronic band structure and optical response in a Q-phase
material. (a) Electronic bands (solid curves) in the periodic patterning direction for di�erent
strengths of the normalized image potential V0/E

0
F (see color-matched labels), along with the

corresponding normalized Fermi energies (dashed lines). Dotted curves stand for the 2DEG
limit. (b-i) Single-particle excitations described by the 2D noninteracting susceptibility χ̃0

00 (b-e)
and collective response resonances revealed by the loss function Im{rp00} (f-i) as a function of
transferred energy ~ω and in-plane wave vector q‖ = |(qx, qy)|, normalized to the Fermi energyE0

F

and wave vector k0F, respectively, for �xed qx/k0F = 0.1. In (b), the black-dashed curves indicate the
boundaries of the continuum of electron-hole pair excitations ~ω/E0

F = q‖(2± q‖/k0F)/k0F. The
plasmon dispersion relation in a 2DEG is shown for comparison in (f-i) (white-dashed curves), along
with its q‖/k0F � 1 limit (green-dashed curves). All calculations are performed for E0

F = 0.29 eV,
m∗/me = 0.1, a = 10 nm, and b = 5 nm.

modulation as a consequence of the functional dependence V im
G , with the extreme cases

of b/a = 0 and 1 reducing to just a rigid shift in the energy bands [see Fig. (6.2)].

Here, we are interested in a regime where the image potential strongly a�ects the
transport properties of the material. Such a regime is reached when the total (i.e.,
summed for all electrons) image energy Eim dominates over the kinetic energy Ekin,
as otherwise the latter would push the system towards a ballistic behavior. The ratio
between these two energies scales as Eim/Ekin ∼ V0/E

0
F, assuming that the condition

(VC/E
0
F)/(kBZ/k

0
F)2 = (2/π2) e2m∗a/~2 � 1 is satis�ed [e.g., for a � 2.6 nm

if m∗ = 0.1me, see Appendix F]. This behavior is observed in the band structure
calculations presented in Fig. (6.3a), where the in�uence of the image potential is visible
through a monotonic increase in the band gaps with increasing strength of the image
interaction V0 (i.e., when bringing the ribbon pattern closer to the semiconductor). The
reshaping of the semiconductor energy bands also produces a wealth of new dynamical
and static properties which we investigate below. It should be noted that, in order to
open a band gap Vgap ∼ kBZV0/k

0
F in the infrared range (e.g., 0.1− 0.2 eV) using a ratio

V0/E
0
F ∼ 3 and an image potential energy V0 ∼ 0.3 eV (requiring a patterning distance

d ∼ 1.2 nm) in combination with a period a = 10 nm, materials withm∗/me ∼ 0.1−0.4
are needed [see, for example, Fig. (6.3a)]. Such values are found in black phosphorus [267]

and transition-metal dichalcogenides [268], from which monolayers can be isolated for a
direct implementation of the concepts here explored.
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6.2.3 Optical response of Q-phase materials

The modi�cations produced in the electronic band structure by the image interaction
translate into substantial changes in the optical response. Given the symmetry of the
system, we can work in the in-plane reciprocal space and separately deal with each 2D
wave vectorq‖ (with qx within the 1BZ). In addition, our structures involve small distances
and periods compared with the light wavelength, so that the optical response can be
safely described in the electrostatic limit. Consequently, we consider an external electric
potential φext(q‖, z, ω) =

∑
G φ

ext
G (q‖, z, ω)ei(q‖+Gx̂)·R acting on the Q-phase material

at optical frequency ω and expanded in Fourier components labeled by 1D reciprocal
lattice vectors G. Introducing a matrix notation, we can express the resulting induced
potential in terms of the Coulomb interaction υ and the noninteracting 2D susceptibility
χ̃0 as φind(q‖, z, ω) = υG(q‖, z) · χ̃0(q‖, ω) · [I−υ(q‖, 0) · χ̃0(q‖, ω)]−1 ·φext(q‖, 0, ω)

(see Section 1.4), where dots indicate matrix multiplication, φext and φind are vectors
of components φext

G and φind
G , respectively, and we use the matrices IGG′ = δGG′ ,

υGG′ = δGG′υG, and χ̃0
GG′ . More precisely, the diagonal Coulomb matrix elements take

the form υG(q‖, z) = 2π e−|q‖+Gx̂||z|/|q‖+Gx̂|1, while we adopt the RPA which allows
us to input the one-electron eigenstates directly into Eqs. (1.67) and (1.71) to obtain (see
Section 1.4)

χ̃0
GG′(q‖, ω) =

e2

2π2~
∑

nn′

ˆ π/a

−π/a
dkxM

nn′

G (kx, qx)[Mnn′

G′ (kx, qx)]∗

×
ˆ ∞
−∞

dky
fk‖−q‖,n′ − fk‖n

ω − εk‖n + εk‖−q‖n′ + i0+
, (6.5)

where we have introduced the matrix elements

Mnn′

G (kx, qx) = (1/a)

ˆ a

0

dx e−iGx u∗kx−qx,n′(x)ukxn(x).

The energy di�erences in the denominator of Eq. (6.5) correspond to one-electron
excitations, which show up as intraband (n = n′) and interband (n 6= n′) transitions in
the plots of χ̃0

GG′(q‖, ω) presented in Fig. (6.3b-e) as a function of photon energy ~ω and
parallel wave vector q‖ for the G = G′ = 0 component and di�erent strengths of the
image interaction V0. At low V0, the dispersion diagram is dominated by the intraband
excitation region that characterizes the conduction band of a doped semiconductor (i.e.,
the homogeneous 2DEG limit). As we increase V0 [see Fig. (6.3b-e)], the gap openings
discussed above [Fig. (6.3a)] enables interband excitations, and in particular, vertical
transitions become available due to the proximity of the ribbon array.

The RPA accounts for the self-consistent interaction with the induced
potential, thereby resulting in collective electron excitations. To explore
these so-called plasmons, we calculate the Fresnel re�ection coe�cient for
p-polarized waves rp, which relates the induced and external potentials via [269]

1For simplicity, we assume the material in the ribbon array to be perfectly conducting at zero frequency,
but invisible at the infrared optical frequencies under consideration (e.g., by embedding the entire structure in
an index-matching medium), so that υ can be well approximated by the bare Coulomb potential υ(r, r′) ≈
1/|r− r′| in the calculation of χ.
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φind
G (q‖, 0, ω) = −∑G′ r

p
GG′(q‖, ω)φext

G′ (q‖, 0, ω). Using the formalism outlined
above, the Fourier components of rp are given by

rp
GG′(q‖, ω) =

1

1−
[
υ(q‖, 0) · χ̃0(q‖, ω)

]−1

∣∣∣∣∣
GG′

.

In Fig. (6.3f-i), we plot the loss function Im{rp
GG′} obtained from this equation as a

function of q‖ and ω. We note that even though we concentrate on the specular-re�ection
coe�cient corresponding toG = G′ = 0, the condition kBZ � k0

F requires the evaluation
of G components up to G � k0

F in the υ and χ̃0 matrices to correctly account for
transitions happening close to the Fermi surface.

Collective plasmon excitations are identi�ed as intense features in Fig. (6.3f-i), which
should be measurable for instance through electron energy-loss spectroscopy. For
relatively small V0/E

0
F [Fig. (6.3f)], the dispersion diagram is dominated by a single,

continuous plasmon band, in excellent agreement with the plasmon dispersion of the
textbook uniform 2DEG (superimposed). This agreement re�ects the fact that the plasmon
behavior is mainly controlled by the average electron density n0, provided the external
perturbation produced in the band structure by the periodic image potential is still
weak [see the relatively small gap openings in Fig. (6.3a) for V0 = E0

F]. Incidentally, at
low V0 the plasmon is qualitatively well described by the dispersion relation ωp(q‖) ∼
e
√
nq‖/m∗ obtained in the q‖/k0

F � 1 limit. In contrast, as the ribbon structure is
brought closer to the semiconductor, so that the image potential energy increases and
eventually dominates in the system, a zoo of excitations emerge in the dispersion diagram:
besides the 2DEG plasmon, features associated with interband transitions and their
hybridization with plasmons are revealed. In addition, all of these features are dressed
by electron-electron interactions, leading to a blue shift of the plasmon relative to the
2DEG limit, as well as spectral shifts of the interband transitions relative to the undressed
excitations depicted in Fig. (6.3b-e).

6.2.4 Metal-insulator transition

Beyond the optical response, we expect the image interaction to also modify the static
properties of Q-phase materials. In this regard, an external static in-plane electric
�eld E produces a 2D current density je = σDCE, where σDC is the local DC (ω =
0) electrical conductivity tensor. We compute this quantity in the relaxation-time
approximation [19], introducing a phenomenological inelastic scattering time τ , so the
conductivity is uniquely determined by the band energies ~εk‖n and the chemical
potential, which we approximate by the Fermi energy EF [Fig. (6.3a)]. We remark that
this assumption safely holds for temperatures and doping levels such that kBT � E0

F, a
condition that is satis�ed over the range of parameters considered in this work. Because
of the symmetry of the system, the 2×2 conductivity tensor should only contain diagonal
xx and yy components (i.e., along directions parallel and perpendicular to the periodic
modulation). In addition, the yy component remains unchanged with respect to the
unperturbed semiconductor because the x−averaged electron density is conserved (i.e.,
σDC
yy = (e2τ/π2m∗)

∑
n

´ π/a
−π/a dkx

´∞
0
dky
[
e
(~εk‖n−EF)/kBT + 1

]−1, which reduces to
σDC
yy = e2E0

Fτ/π~2 at zero temperature). The conductivity along x can then be directly
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Figure 6.4: Q-phase modulation of the DC electrical and thermal conductivities. (a)
Component of the 2D electrical (a) and thermal (b) conductivity tensors along the periodicity
direction as a function of the normalized image potential strength V0/E

0
F for several values of the

b/a ratio (see legend), calculated at T = 200 K and divided by the respective conductivities of a
2DEG at the same temperature. (c,d) Temperature dependence of the electrical (c) and thermal
(d) conductivities for b/a = 0.5 and di�erent values of V0/E

0
F, normalized to the respective

2DEG conductivity at T = 200 K. (e,f) Temperature-dependence of the ratio between thermal and
electric conductivities, revealing deviations from from the Wiedemann-Franz law for b/a = 0.5
and various values of the ratio V0/E

0
F (e), as well as for �xed V0/E

0
F = 5 and several values of

b/a (f). We use the same material parameters as in Fig. (6.4).

computed from the energy distribution in Eq. (6.4b) through the equation

σDC
xx =

e2τ

π2~
∑

n

ˆ π/a

−π/a
dkx

ˆ ∞
0

dky (∂2
kxε

x
kxn)

[
e
(~εk‖n−EF)/kBT + 1

]−1

. (6.6)

We use this expression in combination with the bands plotted in Fig. (6.3a) to obtain the
results presented in Fig. (6.4). Remarkably, the thermal conductivity exhibits a steady
decrease with increasing image interaction V0, starting from the 2DEG value in the
unperturbed semiconductor at V0 = 0 and evolving towards a substantial suppression
when the V0/EF ratio reaches a few times unity [see Fig. (6.4a)]. This behavior is a direct
consequence of the reduction in the ability of charge carriers to move within the periodic
potential landscape produced by the image interaction. We thus predict a metal-insulator
transition as the latter is switched on by placing the conductive ribbons closer to the
semiconductor (i.e., the transition happens with respect to the order parameter V0/E

0
F,

not to be confused with a phase transition driven by a change in temperature). This
phenomenon is observed for all ribbon sizes under consideration, with an optimum
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behavior found for b/a ∼ 0.75, alongside a minor dependence on temperature up to
T = 200 K [see Fig. (6.4c)].

6.2.5 Inhibition of the thermal conductivity
Similarly to the case of an external electric �eld, an in-plane temperature gradient
induces a 2D thermal current density jth = −σth∇RT , where σth is the electronic
thermal conductivity tensor. This latter undergoes strong modi�cations due to the image
interaction, since it is equally mediated by carrier propagation. We adopt again the
relaxation-time approximation [19] and compute σth from the electronic band structure
(see below). Following similar arguments as above, we �nd the conductivity tensor to be
diagonal, with its yy component almost una�ected by the image interaction, so it can
be well approximated by the relation σth

yy ≈ (πE0
FkB

2Tτ/9~2)
[
3− (πkBT/E

0
F)2
]
. The

remaining xx component can be directly computed from

σth
xx =

1

e2T

[
σ(2)
xx −

(
σ(1)
xx

)2
/σDC

xx

]
, (6.7)

where σDC
xx is the DC electrical conductivity in Eq. (6.6) and

σ(α)
xx =

e2τ

π2kBT

∑

n

ˆ π/a

−π/a
dkx

ˆ ∞
0

dky (~εk‖n − EF)α (6.8)

× (∂kxε
x
kxn)2 e

(~εk‖n−EF)/kBT

[
e
(~εk‖n−EF)/kBT + 1

]2 .

The V0-dependent thermal conductivity plotted in Fig. (6.4b,d) reveals a transition from
a thermal conductor to a thermal insulator analogous to the electrical behavior both
at low and at �nite temperatures, which we also attribute to the reduction in carrier
propagation produced by the periodic image potential. In addition, we observe a clear
departure from the Wiedemann—Franz law [270] when comparing Fig. (6.4a) with Fig.
(6.4b), as revealed by the di�erent behavior at �nite temperature displayed by σth

xx as
a function of V0 with respect to σDC

xx . Such deviation from the linear regime, which is
also highlighted by the ratio between thermal and electrical conductivities plotted in Fig.
(6.4e,f) for several image potential strengths and di�erent b/a ratios, stems from the fact
that conduction electrons are not free, in contrast to the ideal-gas conditions for which
the law is best suited. Incidentally, the thermal conductor-insulator transition is again
faster for b/a ∼ 0.75.

6.3 Concluding remarks

In conclusion, we have demonstrated, based on rigorous theory, that the optical, electrical,
and thermal properties of a 2D material can be substantially modi�ed by introducing a
neutral, noncontact structure in its vicinity. This constitutes a genuinely radical departure
from currently available methods to engineer material properties, as instead we capitalize
on the image interaction, which translates into a quantum phase imprinted on the valence
electrons of the 2D layer. We remark the nonresonant nature of such interaction, which
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should therefore be generally applicable to modulate the properties of di�erent types of
materials, provided their thickness is small enough as to be strongly in�uenced by the
image interaction with the added structure.

As a possible realization of these engineered media, which we term Q-phase materials,
we have studied the modi�cation in the properties of a 2D semiconductor when an array
of conductive ribbons is brought in close proximity. Speci�cally, energy gaps are induced
in the electronic band structure, interband electronic transitions are enabled, a rich
landscape of additional plasmon bands emerges, and the electrical/thermal conductivity
displays a metal/conductor-insulator transition as the semiconductor-array distance is
reduced and the image interaction is increased. In the limits of either small ribbons [e.g.,
b/a = 0.1 in Fig. (6.4a,b,f)] or a ribbon width approaching the period (e.g., b/a = 0.9),
we obtain a spatially featureless image interaction, therefore resulting in a relatively
small modulation of the material, and consequently, an optimized e�ect is observed at
intermediate values of the width-to-period ratio b/a for a �xed separation from the 2D
material.

In passing, we note that a transition of di�erent nature is expected when the 2D
semiconductor is in contact with the patterned structure (e.g., through structural
reconstruction or via electron hopping), while here we are concerned instead with
transitions occurring without touching, in which the order parameter is the strength
of the image interaction. The predicted modi�cations in the optical, electrical, and
thermal properties of the 2D material are driven by a rearrangement of its electronic
bands in the presence of the image potential landscape, without requiring any physical
contact. However, the strain caused by the structure could also play a role and introduce
additional modi�cations in the material properties, although we expect this e�ect to be
comparatively small when the 2D material and the patterned structure are separated by
at least a few monolayers through which any possible microscopic reconstructions are
attenuated.

As a practical realization of the present concept, materials such as black
phosphorus [267] and transition-metal dichalcogenides [268] o�er parameters similar to
those considered above for the 2D layer. In addition, application of this scheme to
graphene is anticipated to produce qualitatively di�erent features due to the exotic
nature of charge carriers in this material (e.g., electronic bands would be primarily
renormalized in the direction parallel to the ribbons, in contrast to the results presented
above). Furthermore, the decorating structure could be amenable to modulation through
external means of control (e.g., by resorting to phase-change materials such as GST), still
without having physical contact with the 2D layer. Although we focus here on large
features of the decorating structure compared with the atomic lattice parameters of the
material, so that conduction electrons in the latter are well described in the continuum
limit, an interesting regime comes about when the characteristic patterning length is
commensurate with the atomic lattice (e.g., by using a self-organized vicinal surface [271]

stamp). From a more general perspective, arbitrarily structured external structures could
be employed to, for example, shape the Q-phase material into quasicrystals, and even
to draw electrical and thermal circuits controlled by the presence of a nontouching
structure. Our results represent a �rst step towards the realization of gate-free material
tunability, potentially granting us access into a whole range of properties that could �nd
application in the design of nanodevices.
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7
Nanophotonics for pair-production

Ludwig Boltzmann, who spent much of his life studying statistical mechanics, died in
1906, by his own hand. Paul Ehrenfest, carrying on the same work, died similarly in 1933.
Now it is our turn to study statistical mechanics. Perhaps, it will be wise to approach the
subject cautiously.
David Goodstein

In this chapter, we explore how optical �eld con�nement, typical of electromagnetic
waves bounded to material interfaces in the form of polaritons, can be used to tailor
high-energy physics processes. In particular, we compute the cross section associated
with the scattering between gamma-rays and surface polaritons propagating along a
planar interface. What follows is based on a recently submitted unpublished work, Ref.
272.
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7.1 Introduction

The creation of massive particles from electromagnetic energy emerged as a prominent
focus of attention in 1934, when the materialization of an electron and its antiparticle –the
positron– was predicted to occur with nonvanishing probability by Breit and Wheeler
(BW) from the scattering of two photons [273], by Bethe and Heitler (BH) from the
interaction of a photon and the Coulomb potential of a nucleus [274], and by Landau
and Lifshitz (LL) from the collision of two other massive particles [275]. A main di�erence
between these processes relates to the real or virtual nature of the involved photons.
While only real electromagnetic quanta lying inside the light cone (i.e., satisfying the
light dispersion relation in vacuum, k = ω/c) participate in the BW mechanism for
pair production, the LL process is mediated by two virtual photons, and both real and
virtual photons participate in BH scattering. Eventually, pair production was achieved by
colliding energetic electrons and real photons delivered by high-power lasers [276], and
more recently using only real photons generated from atomic collisions [277].

Besides the fundamental interest of these processes, the generation of positrons
�nds application in surface science [278] through, for example, positron annihilation
spectroscopy [279–281] and low-energy positron di�raction [282], as well as in the study of
their interaction with atoms and molecules [283,284]. Positrons are also used to create
antimatter (e.g., antihydrogen [285–288]) and positronium [289]). In these studies, slow
positrons are commonly obtained from beta decay, decelerated through metallic
moderators [290], and subsequently stored in di�erent types of traps, from which they are
extracted as low-energy, quasi-monochromatic pulses [291–294].

Direct positron generation from light would not require nuclear decay and could
further leverage recent advances in optics to produce ultrashort photon pulses. However,
the cross sections associated with the aforementioned processes are extremely small. As
a possible avenue to increase the pair-production rate, we consider the replacement of
free photons by con�ned optical modes in the hope that they alleviate the kinematic
mismatch between the particles involved in BW scattering, for instance. In particular,
surface polaritons, which are hybrids of light and polarization charges bound to material
interfaces, can display short in-plane wavelengths compared with the free-space light
wavelength. Actually, a broad suite of two-dimensional (2D) materials have recently
been identi�ed to sustain long-lived, strongly con�ned polaritons [295,296], including
plasmonic [235,297,298], phononic [299,300], and excitonic [301] modes that cover a wide spectral
range extending from mid-infrared frequencies [235,297,299,300] to the visible domain [298,301].

In this chapter, we calculate the pair-production cross section associated with
the annihilation of γ-ray photons (γ-photons) and 2D surface polaritons, leading
to a substantial enhancement compared to free-space BW scattering. Part of this
enhancement relates to the in-plane spatial con�nement of surface polaritons. In
addition, the lack of translational invariance in the out-of-plane direction enables pair
production for γ-photon energies just above the 2mec

2 threshold (e.g., ~ωγ ∼ 1.1 MeV
combined with a polariton energy ~ωp of a few eV), in contrast to free-space BW
scattering, for which visible-range photons need to be paired with GeV photons such
as those existing in astrophysical processes [302]. By demonstrating the advantages of
using deeply con�ned light, our work inaugurates an avenue in the exploration of
nanophotonic structures as a platform for high-energy physics.
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Figure 7.1: Pair production by interaction of surface polaritons and γ-photons. (a)
Schematic representation of a possible realization of the studied interaction. An external laser
pulse (red) is coupled to surface polaritons (orange) in a 2D material (e.g., through a metallic tip),
while energetic γ-rays (dark gray) impinge normally to the surface. The interaction of these two
�elds gives rise to electron-positron pairs. The positron (purple) is emitted with angles (θ, ϕ) that
also determine the electron direction (blue) by conservation of energy and in-plane momentum. (b)
Direct and time-reversed Feynman diagrams contributing to the investigated pair production. We
indicate the energies and wave vectors of the polariton, the γ-photon, and the fermions by color-
coordinated labels. Both polariton absorption and emission processes (double arrow) contribute to
pair production.

7.2 Pair production from the scattering of a surface-
polariton and a γ-photon

We assume the con�guration presented in Fig. (7.1a), where surface polaritons (frequency
ωp, wave vector kp = kpx̂) are launched on a 2D material (z = 0 plane) by in-coupling a
laser through a metallic tip (or by a grating or a launching antenna), while γ-photons
(frequency ωγ , wave vector kγ = ẑωγ/c) are normally impinging from the bottom. We
study pair production using the relativistic minimal coupling Hamiltonian (see Chapter 1
and Ref. 303)

Ĥint(t) =
−1

c

ˆ
d3r ĵ(r) ·A(r, t), (7.1)

where ĵ(r) =−ec :Ψ(r)~γΨ̂(r): is the fermionic current, A(r, t) is the classical vector
potential associated with the polariton and photon �elds, and we adopt a gauge with
vanishing scalar potential. Here, : · : denotes normal product concerning electron and
positron annihilation (ĉq,s and d̂q,s, respectively) and creation (ĉ†q,s and d̂†q,s) operators
(for fermions of momentum ~q, spin s, and energy ~εq = c

√
m2

ec
2 + ~2q2), and Ψ̂(r) =
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∑
q,s

(
uq,sĉq,se

iq·r + vq,sd̂
†
q,se
−iq·r) is the fermionic �eld operator, with uq,s (vq,s)

representing 4-component electron (positron) spinors.
We work in the continuous-wave regime and eventually normalize the

resulting production rate to the number of polaritons and photons in the
system. The vector potential is thus the sum of two monochromatic components,
A(r, t) = −(ic/ωp) ~Ep(r)e−iωpt − (ic/ωγ) ~Eγ(r)e−iωγt + c.c., expressed in terms of the
polariton and γ-photon �eld amplitudes

~Ep(r) ∝
[
iκpx̂− kpsign{z}ẑ

]
eikpx−κp|z|, (7.2a)

~Eγ(r) ∝ êje
ikγz, (7.2b)

where êj (= x̂ or ŷ for j = 1 or 2, respectively) is the γ-ray polarization vector, κp =√
k2
p − ω2

p/c
2, and we neglect material losses and γ-ray screening.

We calculate the production rate for a state d̂†q,sĉ
†
q′,s′ |0〉 comprising a positron

(wave vector q, spin s) and an electron (wave vector q′, spin s′) to the lowest (second)
nonvanishing-order of time-dependent perturbation theory for the Hamiltonian in
Eq. (7.1). This process involves the annihilation of a γ-photon accompanied by the
emission (upper signs below) or absorption (lower signs) of a polariton, as indicated in
the Feynman diagrams in Fig. (7.1b). Incidentally, we note that boson emission (polaritons
in the present instance) is forbidden in free space. Parallel momentum conservation leads
to q′‖± = −q‖ ∓ kp for the in-plane electron wave vector components, while energy
conservation determines the electron energy εq′± = ωγ ∓ωp− εq and out-of-plane wave
vector q′z± =

√
ε2
q′±
/c2 −m2

ec
2/~2 − q′ 2‖±, subject to the threshold-energy conditions

ε2
q′±
> m2

ec
4/~2−c2q′ 2‖± and ωγ > ±ωp +εq . Following a standard procedure detailed in

Appendix G, the positron-momentum-resolved pair-production cross section associated
with polariton and γ-photon scattering is found to be

dσpol

dq
=

α2c3κp
π ωpωγk2

p

∑

±

εq′±
q′z±

∑

ss′jµ

∣∣∣uq′µ±,s′M
±
j (q′µ±,q) vqs

∣∣∣
2

, (7.3)

where α ≈ 1/137 is the �ne-structure constant, q′µ± = q′‖± + µq′z±ẑ is the electron
wave vector for upward (µ = 1) and downward (µ = −1) emission contributions, we
average over γ-ray polarizations j = 1, 2, and we de�ne the 4× 4 matrix

M±j (q′,q) =γj GF (q′ − kγ , εq′ − ωγ) f±(kγz−qz−q′z) · ~γ
+~γ · f±(kγz−qz−q′z)GF (kγ − q, εq′ ± ωp) γj

in terms of the Dirac γ matrices, the Feynman propagator [303] GF (q, ω) = [ωγ0 −
c~γ · q + (mec

2/~)]/(ω2 − ε2
q + i0+), and the vector fkz = (κ2

p x̂ + kpkz ẑ)/(κ2
p + k2

z)
encapsulating the out-of-plane momentum distribution of the polariton �eld in Eq. (7.2a).

7.2.1 Consequences of polariton �eld compression and
translational symmetry breaking

An immediate e�ect of out-of-plane symmetry breaking is that the allowed kinematical
space for which we obtain nonzero pair-production cross sections extends down to the
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Figure 7.2: Enhanced pair-production enhancement. (a) Comparison between the regions
allowed by energy-momentum conservation in either BW photon-photon scattering (yellow)
and polariton-photon scattering under the con�guration of Fig. (7.1a) (purple) as a function of
polariton/photon energies. The BW threshold ~2ωpωγ = 2m2

ec
4/(1− cos θpγ) [304] is indicated

for a relative photon-photon angle θpγ of π (absolute threshold) and π/2. (b) Pair-production
cross sections for polariton-photon scattering (σpol, purple curves) and BW scattering (σBW for
θpγ = π/2, black curves [305]). Dashed and solid curves are obtained for ~ωp = 1 eV and 4 eV,
respectively, with kp = 0.05 nm−1 in both cases, while solid vertical lines indicate the γ-photon
BW threshold energy [θpγ = π/2 curve in (a)].

infrared polariton regime even when using γ-photons just above the absolute energy
threshold & 2mec

2 ≈ 1.02 MeV [Fig. (7.2a)]. In contrast, BW scattering with one of
the photons in the optical regime requires the other photon to have energy exceeding
∼ 0.1 TeV, which explains why free-space pair production has traditionally been observed
only in its nonlinear version, where the energy-momentum mismatch is overcome by
engaging a high number of photon exchanges [306,307].

In Fig. (7.2b), we show that, for low-energy polaritons/photons (up to a few
eV), the momentum-integrated polariton-assisted pair-production cross section
σpol =

´
d3q (dσpol/dq), with dσpol/dq given by Eq. (7.3), takes substantial values

at γ-photon energies far below the BW kinematical threshold (vertical solid lines). In
addition, σpol is consistently several orders of magnitude higher than the BW cross
section up to γ-photon energies in the TeV regime. Part of this enhancement can be
attributed to the spatial compression of polaritons relative to free-space photons.

7.2.2 Pair production close to threshold
From the analysis above, we expect positron production by mixing polaritons and& 1 MeV
photons, such as those available from commonly used sources [308,309] (e.g., 60Co [308,309],
which emits at ∼ 1.17 and ∼ 1.33 MeV with a lifetime of ∼ 5.13 years, yielding ∼ 1014

photons/s out of 1 g of material).
To put this in context, we note that the BW cross section [305] is too small for pair

production out of such γ-photons alone (e.g., the maximum cross section is σBW . 1.7×
10−11 nm2 for two 1.33 MeV photons). We illustrate this by considering an arrangement
consisting of two 60Co sources spaced by a few meters so that ∼ 106 photons are
simultaneously traveling across that distance, and therefore, ∼ 1012 photon-photon
collisions take place during the traveling time ∼ 10−8 s. Now, multiplying the number
of collisions by σBW and dividing by both a transverse area of ∼ 1 m2 and the traveling
time, we estimate a pair-production rate of ∼ 10−9/s.
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Figure 7.3: Pair-production cross section close to threshold. (a) Di�erential cross section
for positron emission as a function of polar angle θ and kinetic energy Ekin

q = ~εq − mec
2

(normalized to the γ-photon energy ~ωγ = 1.1 MeV and averaged over a window ∆Ekin
q = 8 keV)

for �xed polariton wave vector kp = 0.05 nm−1 and energy ~ωp = 4 eV, as computed from
dσpol/dEqdθ = sin θ (qεq/~c2)

´ 2π
0
dϕ (dσpol/dq) with the integrand taken from Eq. (7.3). The

dashed line represents the limit imposed by energy-momentum conservation for ϕ = 0. (b)
Same as (a) integrated over θ for di�erent polariton energies ~ωp [see color labels in (d)]. (c)
Energy-integrated cross section dσpol/dθdϕ = sin θ

´∞
0
q2dq (dσpol/dq) as a function of polar

and azimuthal emission angles (θ, ϕ) under the conditions of (a). (d) Same as (c) integrated over
ϕ for di�erent polariton energies. (e) Total cross section [q-integral of Eq. (7.3)] as a function of
polariton wave vector kp and energy ~ωp. We show the dispersion relation of free-space light
ω = ck as a broken line for reference.

Polaritons can then be advantageous in this context because these optical modes are
in large supply over small spatial regions by relying on ultrafast lasers (e.g., one has
∼ 1019 photons in 1 J pulses of 100 fs duration, such as those delivered by tabletop setups,
which could be schemed to achieve nearly complete coupling to polaritons [310]). This
allows us to compensate for the even smaller polariton-induced pair-production cross
section at such relatively small γ-photon energies [e.g., σpol ∼ 10−23 nm2 for few-eV
polaritons and 1.1 MeV γ-photons, see Fig. (7.3e) below]. For example, considering again
γ-photons delivered by a 60Co source close to a polariton-supporting surface, we can
have a �ux of 1014 γ-photons/s cm2, which, when multiplied by σpol, by a number of
polaritons Np ∼ 1019, by the polariton lifetime (e.g., nanoseconds for high-index planar
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dielectric waveguides with quality factors ∼ 106), and by a pulse repetition rate of 108/s,
leads to a production rate of ∼ 10−5 pairs per second.

Considering the use of these kinds of sources, we take ~ωγ = 1.1 MeV, close to the
minimum required energy, and compute the emitted positron distribution predicted by
Eq. (7.3) as a function of kinetic energy Ekin

q = ~εq −mec
2 and polar angle θ under the

con�guration depicted in Fig. 7.1(a). The result [Fig. 7.3(a)] indicates a preference for
polar angles close to normal when the positron takes most of the energy (electron emitted
nearly at rest), and conversely, grazing emission for low-energy positrons. The spectral
distribution obtained by further integrating over θ displays a symmetric behavior with
respect to the central peak found at Ekin

q = (~ωγ − 2mec
2)/2 ≈ 39 keV [Fig. 7.3(b)],

as expected from the electron-positron kinematical symmetry. In addition, the energy-
integrated positron-emission cross section exhibits two preferential azimuthal angles ϕ
corresponding to forward and backward emission with respect to the plasmon propagation
direction [Fig. 7.3(c)], while the polar dependence presents a maximum at θ ∼ 59◦,
in good correspondence with the symmetrically arranged electron-positron emission,
dominated by the spectral maximum in Fig. 7.3(b). Finally, the full q-integrated cross
section [Fig. 7.3(e)] shows a nearly uniform increase with polariton frequency and plasmon
wave vector as ∝ ωp and ∝ kp, respectively, except for the depletion observed when kp
moves close to the light cone (dashed line). Overall, we conclude that the studied process
leads to a strong angular and energy dependence of the resulting positron emission,
which should facilitate an experimental veri�cation of these results.

7.2.3 Pair production by scattering polaritons andGeV γ-photons

Incidentally, σpol increases as ∼ ω3
γ with the γ-photon frequency, and thus, much higher

production rates are expected at 1 GeV. We analyze the emitted positron distribution
in Fig. (7.4) for γ-photons at such energy, which are experimentally produced by
bremsstrahlung and Compton backscattering [311], while several proposals for more
e�cient sources have recently been put forward based on electron-beam collisions
with intense laser spots [312,313], strong laser irradiation of electron plasma [314,315],
simultaneous laser and electron plasma bombardment [316], and electrons impinging on
solid targets [317].

Similarly to Fig. (7.3), Fig. (7.4a) illustrates how the di�erential cross section is strongly
peaked around normal emission (polar angle θ ∼ 0). The positrons are preferentially
sharing about half of the photon energy [Fig. (7.4b)], with a spectral distribution una�ected
by the polariton energy and a strong increase in emission e�ciency with ωp [already
observed in Fig. (7.2b) at ∼ 1 GeV].

We remark that polaritonic modes can be strongly populated by irradiation
with ultrafast laser pulses at �uences creating a surface polariton density as high as
ρp ∼ 1/nm2 without causing material damage, such that the scattering of 1 GeV
photons [σpol ∼ 10−16 nm2, see Fig. (7.4b)] at a currently attainable illumination rate
rγ ∼ 106/s [318] would lead to a pair-production rate ρprγσpol ∼ 10−10/s, while higher
rates could potentially be achieved with alternative designs for e�cient GeV photon
sources [312,316].



7. Nanophotonics for pair-production 130

(b)

4
ħωp =1 eV

3

2

kinem
atical

constraint

(a)

Figure 7.4: Pair production with polaritons and GeV γ-photons. (a) Pair-production
di�erential cross section as a function of positron polar angle θ and kinetic energy Ekin

q =
~εq − mec

2 (normalized to the γ-photon energy ~ωγ = 1 GeV and averaged over an energy
window ∆Ekin

q = 1 keV) for �xed polariton momentum kp = 0.05 nm−1 and energy ~ωp = 4 eV.
The dashed line represents the limit imposed by energy-momentum conservation for an azimuthal
angleϕ = 0. (b) Spectral distribution of positron emission (integrated over θ) for di�erent polariton
energies.

7.3 Concluding remarks

In summary, in this chapter we advocate for the use of optical excitations con�ned
to nanostructured materials in combination with γ-rays as a way of producing
electron-positron pairs with higher e�ciency than free-space BW scattering and
requiring substantially lower photon energies. Spatial symmetry breaking is responsible
for the latter, whereas the spatial compression of the optical �elds associated with surface
polaritons facilitates the coupling to high-momentum products (the fermions), thus
resulting in larger emission cross sections. We have analyzed in particular the interaction
between γ-rays and polaritons con�ned to a 2D material, for which di�erent types of
modes exist [295,296], covering a broad range of energies and levels of spatial con�nement.
We remark that the combination of polaritons with the relatively low-energy γ-photons
that we consider in this work (e.g., radioactivity from 60Co) can lead to positron emission
thanks to the breaking of translational symmetry associated with surface con�nement,
as otherwise, BW scattering is kinematically forbidden for collisions of few-eV and
few-MeV free-space photons. The positron-creation probability can be further enhanced
by concatenating several polaritonic structures (e.g., in a multilayer fashion). In a more
general scenario, one could also consider γ-rays combined with the near �elds produced
upon laser irradiation of nanostructured materials, such as particle arrays, for which a
higher degree of con�nement commensurate with the particle size can be achieved in all
three spatial dimensions [10]. An appealing advantage of the current positron creation
scheme relates to spatiotemporal localization, as determined by the spatial distribution
of the polaritons and the duration of the laser pulses used to create them. Future work in
this direction could lead to a new generation of pulsed positron sources based on γ-ray
interaction with con�ned optical excitations that are strongly populated by short laser
pulses. Besides its practical use, the predicted e�ect of antimatter production from a
collective optical excitation bears fundamental interest as an example of the application
of nanophotonics to high-energy physics.
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8
Conclusions and outlook

You should call it "entropy". No one knows what entropy really is, so in a debate you will
always have the advantage.
John von Neumann to Claude Shannon

In conclusion, this Thesis tries to answer, by means of analytical and numerical tools,
several questions regarding the fast dynamics associated with charged free particles
traversing regions permeated by evanescent electromagnetic �elds. We showed that
this interaction can be exploited to meet di�erent needs: from extracting information
contained in a sample by measuring e-beam properties, encoded in their spatio-temporal
correlations; from redesigning the transport properties of solid state systems by changing
the dynamics of their charge carriers, to completely redraw the kinematical constraints
of high-energy physics processes.

In particular, since each chapter addresses a speci�c topic but still leaves several open
questions, in what follows we both summarize the conclusions drawn in each of them
and provide some perspectives for future research:

• Quantum photon-induced near-�eld electron microscopy (Chapter 2): this
work, together with another published article by O. K�r [87], sets the basis for
the study of quantum correlations between fast electrons and optical excitations
stored in long-lived cavity modes. In this regard, we explored the intimate relation
between the initial cavity population and the peaks recorded in the electron spectra
by showing how the latter are distributed for di�erent scenarios [see Eqs. (2.11)
and (2.12)] as well as their connection with the `-th order correlation function [see
Eq. (2.7)]. In addition, we showed how these results can be applied to track the
time evolution of the mode population, when coupled to several types of excited
three-level systems, by following the post-interaction electron energy distribution.
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After this work was published, other theoretical studies pursued the same line of
research, trying to merge the �eld of quantum optics with free electron beams.
Among them, the possibility of producing exotic quantum cavity states by either
relying on the sequential interaction of multiple electrons and their subsequent
energy post-selection [319] or by going to low-energy (∼ eV) e-beams, where
kinematical recoil becomes signi�cant [88], represents an interesting route to
explore new quantum regimes. In parallel, advances in experimental designs have
already showed to be capable of strongly coupling an electron and a cavity [106],
which recently, in combination with electron-photon coincidence measurements,
led to the corroboration of the strong correlations described by Eq. (2.1) [320].

• Free-electron shaping using quantum light (Chapter 3): in this chapter, we
showed how the wave function of a free electron can be molded through a PINEM
interaction in which coherent laser illumination is replaced by quantum light. We
focus on the e�ect on the modulation of the beam density after a macroscopic
propagation in free space takes place by comparing equal-intensity coherent,
amplitude- and phase-squeezed states. Here, the control over the phase uncertainty
of the light state transforms into a control over the coherence of the electron
temporal dynamics transitioning from a vanishing modulation in the limit of an
incoherent state of light to a faster beam compression when phase-squeezing is
employed.
In a more general context, the idea of gaining additional control over scattering
processes involving free electrons and light may still deserve some attention. In this
respect, a recent theoretical study investigated the spectrum of emission connected
to Compton scattering and predicted a band-width broadening when driven by
thermal and squeezed vacuum states of light [321].

• Electron di�raction by vacuum �uctuations (Chapter 4): this work was
devoted to the exploration of the quantum phase arising from the solution of
the electrodynamical problem of a nonrecoil e-beam coupling to a macroscopic
electromagnetic environment. Here, we �rst connected it to the Aharonov-Bohm
e�ect (see Section 4.2) induced by the self-image interaction acting back on the
electron, and then, we explored its connection to elastic di�raction in di�erent
con�gurations. In addition, we found that electron decoherence, linked to the
inelastic scattering events taking place during the trip from the electron gun to
the analyzer, represents the resonant counterpart of such phase [see Eq. (4.8) in
relation with Eq. (4.9)], thus suggesting the existence of a parameter space in which
one of the two (inelastic and elastic scattering) prevails over the other.
From the the two quantities explored, decoherence somehow represents the
one having the closest connection to practical applications such as sensing and
holography. In this regard, the e�ect of small-frequency excitations, leading to
infrared divergences in the EEL probability [see Eq. (4.9) and Ref. 322], supported
by macroscopic samples, still represents a theoretical challenge but has strong
practical implications due to the fact that the detection of distant objects directly
implies the exchange of photons with commensurate wavelenghts.
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• Modulation of cathodoluminescence emission by interference with
external light (Chapter 5): in this chapter, we carried out an analysis of the
far-�eld emission originated from the phase-locked interaction of a dimmed
laser and a previously modulated electron. In particular, we demonstrated how
interference between the two synchronized far �elds (from CL emission and from
light scattering) can strongly modulate the total CL signal, showing a complete
suppression at optical frequencies by employing attosecond-compressed electrons.
This e�ect may lead to a new path towards pump-probe measurements able to
resolve excitations in time with meV-nm-fs precision.
Even though this interference could directly be observed at a detector placed far
from the sample, by producing CL emission coming from its interaction with the
e-beam, as suggested in Ref. 144, both con�gurations share the same main practical
challenge of designing a CL setup equipped with PINEM capabilities to shape the
electron before its interaction with the specimen. Therefore, future e�orts could
be directed towards the realization of a compact and practical methodology, for
instance leveraging all three space dimensions in which the electron is moving,
capable of rendering a free electron beam fully coherent.

• An image interaction approach to quantum-phase engineering of
two-dimensional materials (Chapter 6): in this work, we analyzed the
modi�cations of the transport properties induced in a 2D semiconductor by the
presence of a neutral neighboring structure composed by a periodic patterning of
conductive ribbons. We computed the modi�ed band-structure, where we found
that the opened band-gaps yield to a new zoo of single-particle and collective
excitations.
Besides the use of thin semiconductors, graphene may represent another viable
option. Unfortunately, due to the spinorial nature of its charge carriers, gaps
in graphene cannot be opened by acting with an external scalar potential [323].
Nonetheless, e�ects similar to the one presented in our work could still originate
from the formation of satellite Dirac cones. In this respect, modulation of the static
conductivity has been already demonstrated by directly shaping an applied gating
potential [324], thus suggesting that equivalent results could be obtained with our
con�guration based on quantum-phase interactions.

• Nanophotonics for pair-production (Chapter 7): in this submitted work, we
advocate for the use of optical �eld con�nement provided by electromagnetic
modes bounded to material surfaces to redesign the rules associated with high-
energy processes. Speci�cally, we propose a con�guration in which a surface
polariton traveling on a thin conductive material scatters with gamma rays to
generate electron-positron pairs. While the kinematical constrains related to
similar processes taking place in free space forbid their exploration, here we show
how the breaking of translational symmetry along the direction perpendicular to
the material surface relaxes them and, as one of the consequences, opens the door
to the production of positrons with commercially available low-energy gamma ray
sources.
In light of these results, the question "can nanophotonics have a signi�cant impact
in high-energy physics? " naturally arises. In principle, the idea of compensating for
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the dramatically low probabilities associated with these kinds of processes through
intense stimulation by external pumping of polaritonic modes could be generally
applied as long as electromagnetic forces mediate the interaction. For instance,
muons (with mass mµ/me ∼ 211) represent an other example of charged particle
whose rate of creation could be similarly boosted by the interaction between strong
near-�elds and GeV photons. In this scenario, the currently feasible ability of
molding the spatial �eld distribution of these collective excitations introduces an
additional unexplored research path, which may lead to a new level of control over
matter creation out of electromagnetic energy.

Particles characterized by a nonzero net charge have the ability to both create
and being in�uenced by an electromagnetic �eld, which, in the presence of material
boundaries, can be con�ned to the nanometer scale. The e�cient light-matter coupling
deriving from this property gives rise to a variety of e�ects, among which, only a few
have been studied in this Thesis. However, we hope that the �ndings outlined here will
serve as the starting point for future research in the �eld of nanophotonics combined
with charged particles.
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A
SI and Gaussian units

Because the International System of Units (SI) is widely used in many �elds, especially
in engineering, which has a deep connection with physics, it is convenient to provide
a guide to the link between the units used in this Thesis and SI. In particular, we use
Gaussian Units (GU) throughout the entire manuscript.
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We remark that conversions between quantities in these two unit systems are not
direct unit conversions, because the quantities themselves are de�ned di�erently in
each system. As a result, the equations expressing laws of physics governing the
electromagnetic interactions, such as MEQS, will change depending on the system of
units that is adopted. Therefore, with the objective of helping the reader in this task,
below we provide a table that can be used to transform any equation from one unit
system into the other.

Quantity Symbol SI GU Conversion

Electric charge q A · s L3/2M1/2/T qGU = qSI/
√

4πε0

Current density j A/m2 M1/2/T 2L1/2 jGU = jSI/
√

4πε0

Scalar potential φ V M1/2L1/2/T φGU =
√

4πε0 φ
SI

Vector potential A T/m M1/2/L3/2T AGU =
√

4π/µ0 A
SI

Electric �eld E V/m M1/2/L1/2T EGU =
√

4πε0 E
SI

Displacement �eld D A · s/m2 M1/2/L1/2T DGU =
√

4π/ε0 D
SI

Magnetic �eld B T M1/2/L1/2T BGU =
√

4π/µ0 B
SI

Magnetizing �eld H A/m M1/2/L1/2T HGU =
√

4πµ0 H
SI

Table A.1: Conversion between SI and Gaussian units. In the �rst column (starting from the
left) the electromagnetic quantity under analysis is speci�ed and the corresponding symbol, as
it appears in this Thesis, is shown in the second column. In the third column, the units in SI are
shown and in the fourth column we provide the associated dimensions of the same quantity in GU.
In the latter, we use the nomenclature M = mass = g, T = time = s, and L = length = cm.
The right-most column provides the conversion relations between the two systems of units through
the vacuum permittivity ε0 ≈ 8.854× 10−12 F/m and permeability µ0 ≈ 1.256× 10−6 N/A2.
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B
Derivation of the quantum PINEM

Hamiltonian from the Dirac equation

In this appendix, we follow Ref. 30 to show how to reduce the spinorial Dirac equation to
a scalar Schrödinger equation governed by the Hamiltonians in Eqs. 1.33 (Section 1.2), in
which a classical electromagnetic �eld is introduced through the vector A(r, t) by using
the general minimal coupling scheme and maintaining A2 terms, but neglecting kinetic
energy corrections beyond the nonrecoil approximation.

We begin by writing the Dirac equation reported in Eq. (1.29)
{
mc2β + c~α ·

[
p +

e

c
A(r, t)

]}
Ψ(r, t) = i~∂tΨ(r, t), (B.1)

where the matrices β and ~α are the ones introduced in Section 1.2. Then, by using a
complete basis set of eigenstates Ψ±ks with �xed spin and momentum, s and k respectively,
given by Eqs. (1.30) (provided that one dismisses the complex exponentials and pulls out
the factor 1/

√
V ) satisfying the eigenvalue relations

(mec
2β + ~c~α · k)Ψ±ks = ±~εkΨ±ks,

we expand the 4-component spinor solution as

Ψ(r, t) =
∑

±

∑

ks

α±ksΨ
±
kse

ik·r∓iεkt. (B.2)

Now, under the conditions stated in Section 1.2, which are commonly met in EMs,
with electron beams composed by a combination of momentum states lying close to
a central value k0, namely satisfying the condition |k − k0| � k0, and interacting
with an electromagnetic �eld of energy and momentum producing �nal electron states
satisfying the same condition, we insert Eq. (B.2) into Eq. (B.1) and take the following
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approximations: (1) for each component Ψ±ks, we linearize the energy (nonrecoil
approximation) as εk ≈ ε0v · (k − k0) → ε0 − (i∇ + k0), where ε0 = εk0 , and
v = c2k0/ε0 is the central electron velocity; (2) the momentum variation of Ψ±ks under
a photon exchanges is neglected, so these spinors are replaced by Ψ±k0s

. The latter
assumption allows us to write the full spinor solution as

Ψ(r, t) =
∑

±

∑

s

ψ±s (r, t)Ψ±k0s
, (B.3)

where we have de�ned the scalar wave functions

ψ±s (r, t) =
∑

k

α±kse
ik·r∓iεkt/

√
V . (B.4)

We now multiply both sides of Eq. (B.1) by the hermitian conjugate of Ψ±k0s
from the left

in order to obtain the following coupled equations
[
~ε0 − ~v · (i∇+ k0) + (ev/c)·A(r, t)− i~∂t

]
ψ+
s (r, t) (B.5a)

+ e
∑

s′

A(r, t) · bss′ψ−s′(r, t) = 0,

−
[
~ε0 − ~v · (i∇+ k0) + (ev/c)·A(r, t)− i~∂t

]
ψ−s (r, t) (B.5b)

+ e
∑

s′

A(r, t) · bss′ψ+
s′(r, t) = 0.

In the evaluation of Eqs. (B.5), we made use of the following spinorial relations

Ψ±†k0s
Ψ±k0s′

= δss′ , (B.6a)

Ψ±†k0s
Ψ∓k0s′

= 0, (B.6b)

Ψ±†k0s
~αΨ±k0s′

= ±(v/c)δss′ , (B.6c)

bss′ ≡ Ψ±†k0s
~αΨ∓k0s′

= ŝ†[~σ − (1− 1/γ)v̂(v̂ · ~σ)]ŝ′. (B.6d)

In order to proceed with the proof, we introduce the slowing varying functions φ±s (r, t)
as ψ±s (r, t) = eik0·r∓iε0tφ±s (r, t), which upon insertion into Eqs. (B.5) yield

[−i~v · ∇+ e(v/c) ·A(r, t)]φ+
s (r, t)

+ eA(r, t) ·
∑

s′

bss′φ
−
s′(r, t)e

2iε0t = i~∂tφ+
s (r, t), (B.7a)

[i~v · ∇ − e(v/c) ·A(r, t)]φ−s (r, t)

+ eA(r, t) ·
∑

s′

bss′φ
+
s′(r, t)e

−2iε0t = i~∂tφ−s (r, t). (B.7b)

These equations describe the coupling between positive and negative energy components,
φ+
s and φ−s , respectively. We expect the one associated with positrons (φ−s ) to be small at

the energy scale on which we focus in this Thesis, so we decouple them by �rst neglecting
the φ−s term in the left-hand side of Eq. (B.7b) compared with the φ+

s′ terms, as well as by
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noticing that the e2iε0t factor dominates the time variation close to the latter. This allows
us to integrate Eq. (B.7b) to yield the relation

φ−s (r, t) ≈ e

2~ε0
A(r, t) ·

∑

s′

bss′φ
+
s′(r, t)e

−2iε0t. (B.8)

Then, we plug it into Eq. (B.7a) to retrieve the di�erential equation

[−i~v·∇+ (ev/c) ·A(r, t)]φ+
s (r, t) (B.9)

+
e2

2~ε0

∑

s′,s′′

(A(r, t) · bss′) (A(r, t) · bs′s′′)φ+
s′′(r, t) = i~∂tφ+

s (r, t).

By assuming the electron to travel along the z axis (i.e., v = vẑ), and evaluating the spin
summations through a long, but straightforward algebra, we �nd the identity

∑
s′′(A ·

bss′′)(A · bs′′s′) = δss′(A
2
x + A2

y + A2
z/γ

2), which transforms Eq. (B.9) into the more
familiar form

i~∂tφ+
s (r, t) = Hφ+

s (r, t), (B.10)

with the Hamiltonian

H = −i~v · ∇+ (ev/c) ·A(r, t) (B.11)

+
e2

2mec2γ

[
A2
x(r, t) +A2

y(r, t) +
1

γ2
A2
z(r, t)

]
,

where we used the relativistic relation ~ε0 = γmec
2. Finally, Eq. (B.11) reduces to the

sum of Eqs. (1.33) when Eq. (B.10) is written for the ψ+
s component.

We remark that in Section 1.2 we dismiss the negative energy solutions as smaller
compared to φ+

s according to the ratio |φ−s /φ+
s | ∼ eA/meγc

2, which is obtained by
inspecting Eq. (B.8) and, since the Hamiltonian in Eq. (B.11) is spin independent, we
neglect any possibility of spin-�ip.
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C
On the �eld commutator and the

electromagnetic Green tensor

C.1 Relevant �eld commutators

In this appendix, we provide a derivation of commutators between quantum �elds in the
interaction picture extensively used in Section 1.3 and Chapter 5. In addition, we use
them to prove the correspondence between the quantum retarded response in Eq. (1.43)
and its classical counterpart de�ned in Eq. (1.11).

Commutator between two vector potentials. One key relation in the computation
of quantum electrodynamical quantities is represented by the commutator
[ÂI(r, t), ÂI(r′, t′)] as it is required for the evaluation of the retarded response function
GR [Eq. (1.43)]. Its computation is done by recalling that the potential frequency
components are related to the time-dependent components through (see Section 1.3)

ÂI(r, t) =

ˆ ∞
0

dω

2π
e−iωtÂI(r, ω) + h.c., (C.1)

which, together with the use of the explicit form of ÂI(r, ω) in terms of the noise current
[see Eq. (1.46) and Eq. (1.47)] and by exploiting the commutators between bosonic
operators and Eq. (1.48), leads to

[
ÂI(r, t), ÂI(r′, t′)

]
= 8ic2~

ˆ ∞
0

dω sin [ω(t− t′)] Im{G(r, r′, ω)}. (C.2)

As in vacuum, this commutator is a purely imaginary c-number, i.e. represents a multiple
of the identity matrix in the Fock space of the dressed excitations. Incidentally, by using
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the fact that G(r, r′, ω) satis�es the Kramers-Kronig relations, as well as the causality
property G(−ω) = G∗(ω), we can plug Eq. (C.2) into Eq. (1.43) to �nd

Gi,i′(r, r
′, ω) =

ˆ ∞
−∞

dt eiωtGR(r, r′, t), (C.3)

which corroborates that within the MQED framework the quantum retarded Green
tensor coincides with the classical Green tensor as Eq. (1.42) requires.

Commutators between the electric/magnetic �eld operators and the vector
potential. Of particular interest are the di�erent-time commutators between
the quantum electromagnetic vector potential and the �elds. These quantities
can easily be obtained by using Eqs. (1.46) and (C.1), together with the relations
Ê(r, t) = (−1/c) ∂tÂ(r, t) and B̂(r, t) = ∇× Â(r, t), which lead to
[
B̂I(r, t), ÂI(r′, t′)

]
= 8ic2~

ˆ ∞
0

dω sin[ω(t− t′)]∇× Im {G(r, r′, ω)} , (C.4a)
[
ÊI(r, t), ÂI(r′, t′)

]
= −8ic~

ˆ ∞
0

ω dω cos[ω(t− t′)]Im {G(r, r′, ω)} . (C.4b)

where again we made use of Eq. (1.48). In the calculation of the CL emission probability
[Eq. (5.1)], we also need the retarded Green tensors constructed from the commutators
in Eqs. (C.4) as

GR
BA(r, r′, t− t′) = − i

4πc2~

[
B̂I(r, t), ÂI(r′, t′)

]
θ(t− t′), (C.5a)

GR
EA(r, r′, t− t′) = − 1

4πc~

[
ÊI(r, t), ÂI(r′, t′)

]
θ(t− t′) (C.5b)

in the time domain, or equivalently,

GR
BA(r, r′, ω) =

ˆ ∞
−∞

dt eiωtGR
BA(r, r′, t) = ∇×G(r, r′, ω), (C.6a)

GR
EA(r, r′, ω) =

ˆ ∞
−∞

dt eiωtGR
EA(r, r′, t) = ωG(r, r′, ω) (C.6b)

in the frequency domain. In the derivation of Eqs. (C.6), we used the fact that the
electromagnetic Green tensor G(r, r′, ω) satis�es the Kramers-Kronig relations and the
causality property G(r, r′,−ω) = G∗(r, r′, ω).

Zero-time commutator between the displacement operator and the vector
potential. In order to verify the connection between the Heisenberg and Maxwell’s
equations in the MQED formalism, the rest of the commutators already computed must
be complemented with the zero-time product [D̂(r), Â(r′)]. In order to evaluate the
latter expression, we make use of Eq. (1.45) and of the relations previously exploited to
obtain

[
D̂(r), Â(r′)

]
= −8c~i

ˆ ∞
0

dω Im {ε(r, ω)G(r, r′, ω)} . (C.7)
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Due to the fact that the Green function G(ω) and the dielectric function ε(ω) are analytic
function in the upper-half of the complex plane [see below and Eqs. (1.67), (1.68)], the
integral in Eq. (C.7) can be translated into an integral over an in�nitely distant arch as

[
D̂(r), Â(r′)

]
= 4ic~ lim

|ω|→∞

ˆ π

0

dθ z2ε(r, z)G(r, r′, z), (C.8)

where z = |ω|eiθ , we used again the aforementioned causality property and we wrote
Im{G(ω)} = [G(ω)−G(−ω)]/2i. Now, by plugging the relations

lim
|ω|→∞

{
z2G(r, r′, z) = δ(r− r′)I,
ε(r, z) = 1,

into Eq. (C.8), it becomes
[
D̂(r), Â(r′)

]
= 4ic~πδ(r− r′)I. (C.9)

Finally, we remark that the same procedure to obtain Eq. (C.9) can be implemented in
the calculation of the zero-time commutators in Eqs. (C.4) in order to render simpler
expressions.

C.2 Derivation of Eq. (1.44)

In order to establish the validity of Eq. (1.44), we �rst wish to derive a few properties of
the retarded tensor GR. In order to do so, we start with its de�nition in a gauge with
zero scalar potential at zero temperature [see Eq. (1.43)],

GR(r, r′, t− t′) = − i

4π~c2
〈g|
[
ÂI(r, t), ÂI(r′, t′)

]
|g〉θ(t− t′),

where θ is the step function, whereas |g〉 represents the system ground state. Now,
we introduce a complete set of eigenstates |n〉 of the light+matter Hamiltonian Ĥf

0 (i.e.,
Ĥf

0|n〉 = ~εn|n〉), use the relation ÂI(r, t) = eiĤf
0t/~Â(r)e−iĤf

0t/~ between operators in
the Schrödinger and interaction pictures, and apply the integral

´∞
0
dt eist = i/(s+ i0+)

to write [325]

GR(r, r′, ω) =
1

4π~c2

ˆ ∞
0

dω′
[
J(r, r′, ω′)
ω − ω′ + i0+

− J∗(r, r′, ω′)
ω + ω′ + i0+

]
, (C.10)

where
J(r, r′, ω) =

∑

n

〈g|Â(r)|n〉〈n|Â(r′)|g〉δ(ω − εn0)

is the spectral tensor and εn0 = εn− ε0, and GR(r, r′, ω) =
´∞
−∞ dt eiωtGR(r, r′, t). As

we have seen from Eq. (1.42), the retarded Green tensor in Eq. (C.10) directly corresponds
to the classical electromagnetic Green tensor de�ned by Eq. (1.11), provided the optical
response of the system is assumed to be described by a local, frequency-dependent
permittivity ε(r, ω). Now, we introduce the quantum mechanical version of the time-
reversal operator Θ̂. Under the assumption of time-reversal symmetry, we have [Ĥf

0, Θ̂] =
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0, and consequently, Ĥf
0|Θ̂n〉 = ~ωn|Θ̂n〉. Furthermore, assuming a non-degenerate

ground state |g〉, it must obviously satisfy |Θ̂g〉 = |g〉, and therefore, because the time-
reversed eigenstates form a complete basis set with the same energies, we can rewrite
the spectral tensor as

J(r, r′, ω) =
∑

n

〈Θ̂g|Â(r)|Θ̂n〉〈Θ̂n|Â(r′)|Θ̂g〉δ(ω − εn0).

Then, using the relation [326]

〈n|Ô|n′〉∗ = ±〈Θ̂n|Ô|Θ̂n′〉,

which is valid for any Hermitian operator Ô (e.g., with − for Ô = Â), we �nd that

J(r, r′, ω) = J∗(r, r′, ω)

is real. Finally, taking the imaginary part of Eq. (C.10) and using the above property of J ,
together with 1/(s+ i0+) = P [1/s]− iπδ(s), we obtain

J(r, r′, ω) = −4~c2 Im {G(r, r′, ω)} , (C.11)

for ω > 0. Then, we by just taking the Fourier transform of the �elds in the interaction
picture and by restricting ourselves to positive frequencies, we can write

1

2
〈g|
{
ÂI(r, ω), ÂI(r′, ω′)

}
|g〉 = 2π2J(r, r′, ω),

which by making use of Eq. (C.11) directly leads to Eq. (1.44).
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D
Solution of the quantum PINEMHamiltonian

D.1 Solution for a single nonrecoil electron and a
multi-mode system

In this section, we prove how the e�ective Schrödinger equation presented in Chapters 2
and 3 for a single-mode cavity, and in Chapter 4 for a medium supporting an in�nite set
of modes, admits the analytical solution in Eqs. (2.1), (3.2), and (4.10), respectively.

We start by describing the quantum radiation �eld by incorporating the radiation
Hamiltonian Ĥf

0 [see Eq. (1.51)] into Eq. (1.33a), and using the quantum vector �eld Â
instead of A in Eq. (1.33b). In this e�ective theory, we now expand the wave function of
the joint electron-�eld system as |ψ(r, t)〉 =

∑
{n} ψ{n}(r, t)|{n}〉 to describe a distinct

scalar electron wave function ψ{n}(r, t) for each of the possible number states |{n}〉 of
the boson ensemble, so that we �nally write the Schrödinger equation by disregarding
the ponderomotive terms:

(Ĥpar
0 + Ĥpar

1 )|ψ(r, t)〉 = i~∂t|ψ(r, t)〉 (D.1)

with

Ĥpar
0 =

∑

i

~ωi â†i âi + ~ε0 − ~v · (i∇+ k0), (D.2)

Ĥpar
1 = (ev/c) · Â(r). (D.3)

Taking the electron beam to be oriented along the z direction, we can write the ansatz
solution

|ψ(r, t)〉 = ψ0(r, t)
∑

{n}{`}
ei

∑
i ωi[`i(z/v−t)−nit]f{n}{`} (r)|{n}〉, (D.4)
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where ψ0(r, t) = eik0·r−iε0tφ0(r − vt), while {`} denotes the set of net numbers
of photons exchanged with each of the modes `1, . . . , `i, . . . (positive `i for photon
absorption and negative for emission). By plugging Eq. (D.4) into Eq. (D.1), we �nd that
the expansion coe�cients in this expression must satisfy the di�erential equation

∂zf
{n}
{`} =

∑

i

[√
ni u

∗
i f

n1,...,ni−1,...
`1,...,`i+1,... −

√
ni + 1ui f

n1,...,ni+1,...
`1,...,`i−1,...

]
, (D.5)

where ui(z) = (e/~ωi)Ei,z(z)e−iωiz/v . We note that Eq. (D.5) guarantees that ni + `i
is conserved along the interaction for each i, indicating that the number of excitations
in the electron-boson system is preserved. This interesting property implies that Eq.
(D.5) corresponds to the time evolution of a set of classically driven quantum harmonic
oscillators, and therefore, it can be solved analytically [89]. Indeed, we can write the
Hamiltonian of such harmonic oscillators as

Ĥ =
∑

i

[
~ωiâ†i âi + gj(t)âi + g∗i (t)â†i

]
,

which, by introducing a general state |ψ(t)〉 =
∑
{n} c{n}(t)e

−i
∑
i niωit|{n}〉 into the

associated Schrödinger equation, leads to

i~∂tc{n}=
∑

i

[√
ni g

∗
i cn1,...,ni−1,...e

iωit + e−iωit
√
ni + 1 gi cn1,...,ni+1,...

]
. (D.6)

We immediately notice that Eq. (D.6) is equivalent to Eq. (D.5) if we make the substitutions

gie
−iωit → −i~vui, t→ z/v. (D.7)

This allows us to use the well-known solution of Eq. (D.6) in terms of the evolution
operator [52]

Ŝ(t, t0) = eiχ
∏

i

eβ
∗
i â
†
i−βiâi , (D.8)

where βi(t, t0) = i
~
´ t
t0
dt′gi(t′)e−iωit

′ and χ = − 1
~
∑
i

´ t
t0
dt′Re{βi(t′, t0)g∗i (t′)eiωit

′}.
Incidentally, χ has been shown to be a Berry phase [327] in the context of a driven quantum
harmonic oscillator, so it underlies the fact that the system under study is open, and
not all the degrees of freedom are taken into account. We show below that the role of
χ in the interaction with the electron is to produce a phase shift in its wave function.
Incidentally, this phase is exploited in Chapter 6 as a way to modify material properties
through the presence of neighboring neutral structures. From Eq. (D.8), we can calculate
the transition amplitudes between photon number states as

〈{n}|Ŝ(t, t0)|{n0}〉 = eiχ
∏

i

Ai,

where we de�ne the single-mode transition amplitude as

Ai = 〈ni|eβ
∗
i â
†
i−βiâ

†
i |n0,i〉 (D.9)

=
√
n0,i!ni! e−|βi|

2/2(−βi)n0,i−ni
ni∑

n′i=max{0,ni−n0,i}

(−|βi|2)n
′
i

n′i!(n0,i − ni + n′i)!(ni − n′i)!
.
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Now, we can perform the substitution (D.7) to solve our QED model by �nding the
coe�cients of Eq. (D.4). In particular, taking the photon �eld state to be represented by
some coe�cients α{n0} right before interaction with the electron, we have

f
{n}
{`} (r) = eiχ(r)c{n+`}

∏

i

√
(ni + `i)!ni! e−|βi(r)|2/2(−βi(r))`i (D.10)

×
ni∑

n′i=max{0,−`i}

(−|βi(r)|2)n
′
i

n′i!(`i + n′i)!(ni − n′i)!
,

where we have used the conservation of quantum numbers n0,i = `i + ni together with
the fact that the initial electron state has `0,i = 0 for all modes. Finally, by restricting to
a single mode with label i = 0, we recover the solutions given in Chapters 2 and 3.

D.2 Solution using second-quantized operators and
MQED

General evolution operator
A solution of the dynamics in the nonrecoil approximation, as provided in the previous
section, can be equally obtained in the context of second quantization, therefore also
allowing for the presence of several electrons in a beam. Within this framework, by using
the recipe described in Section 1.2 to go from �rst to second quantization, we can write
the free electron part of Eq. (D.2) as Ĥel

0 =
∑

k [~ε0 + ~v · (k− k0)] ĉ†kĉk and Eq. (D.3)
in the interaction picture as

Ĥint(t) =
−1

c

ˆ
d3r ĵel(r, t) · ÂI(r, t), (D.11)

where the electron current reads

ĵel(r, t) = −ev
V

∑

q,k

eik·(r−vt) ĉ†qĉq+k. (D.12)

V is the volume of the quantization box, so wave vector sums can be transformed into
integrals using the prescription

∑
k → (V/8π3)

´
d3k. A fundamental property of the

current in Eq. (D.12) can be found by repeatedly using the anticommutation relations to
pull all electron creation operators to the left, leading to

[
ĵel(r, t), ĵel(r′, t′)

]
= 0. (D.13)

Equation (D.13) tells us that, by commuting at di�erent times, the electron current can
be treated as a scalar function by at the same time maintaining its operatorial character.
An important consequence of this property is given by the commutator between two
Hamiltonian operators, which reads

[
Ĥint(t), Ĥint(t

′)
]

=
1

c2

ˆ
d3rd3r′ ĵel(r, t) ·

[
ÂI(r, t), ÂI(r′, t′)

]
· ĵel(r′, t′).
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Additionally, Eq. (C.2) directly implies that
[
ÂI(r, t), ÂI(r′, t′)

]
is a c-number, which in

turn leads to the nested commutation relation
[
Ĥint(t

′′),
[
Ĥint(t), Ĥint(t

′)
]]

= 0. (D.14)

This expression is important to derive the expression in Eq. (4.2) for the scattering operator
starting from its de�nition Ŝ(t, t0) = T exp

[
(−i/~)

´ t
t0
dt′ Ĥint(t

′)
]
, where T denotes

time ordering. This can be done by resorting to the so-called Magnus expansion [328],
which asserts that Ŝ can be written in terms of a perturbative expansion of an operator
in the exponent as

Ŝ(t, t0) = exp

{ ∞∑

i=1

Ω̂(i)(t, t0)

}
,

with

Ω̂(1)(t, t0) =
−i

~

ˆ t

t0

dt′ Ĥint(t
′),

Ω̂(2)(t, t0) =
−1

2~2

ˆ t

t0

dt′dt′′ θ(t′ − t′′)
[
Ĥint(t

′), Ĥint(t
′′)
]
,

...
Ω̂(n)(t, t0) = . . . ,

and where the n-th order operator is formed by nesting n− 1 commutators. By making
use of the property in Eq. (D.14), the chain of commutators can be closed to Ω̂(2)(t, t0),
which allows us to write the scattering operator in the simple form (by setting t0 = −∞)

Ŝ(t,−∞) = eiχ̂(t,−∞)Û(t,−∞), (D.15)

where we have introduced the phase operator

χ̂(t,−∞) =
i

2~2c2

ˆ t

−∞
dt′dt′′

ˆ
d3r d3r′ θ(t′ − t′′) (D.16)

× ĵel(r, t′) ·
[
ÂI(r, t′), ÂI(r′, t′′)

]
· ĵel(r′, t′′)

and the inelastic operator

Û(t,−∞) = exp

{
i

~c

ˆ t

−∞
dt′
ˆ
d3r ĵel(r, t′) · ÂI(r, t′)

}
. (D.17)

Interestingly, since the commutator between the electromagnetic potentials is a c-number,
the operator χ̂(t,−∞) acts only on the degrees of freedom associated with the currents
and represents the e�ect of the image potential acting on the free charges (see Chapter 4).

One is often interested in calculating asymptotic quantities such as electron spectra
at t = ∞. We then need to know the scattering operator Ŝ(∞,−∞), which can be



151 D.2. Solution using second-quantized operators and MQED

obtained by using Eqs. (C.1) and (D.12), leading to

Û = exp

{[ −ie

2π~cL2

∑

q,k

ˆ ∞
0

dω

ˆ
d3r eik·Re−iωz/vÂz(r, ω) ĉ†qĉq+k−(ω/v)ẑ

]
− h.c.

}
.

When the electron is focused around a point R = R0 and its wave function can be
separated in longitudinal and transverse components, we can approximate ĉq ≈ ĉq⊥ ĉqz
and replace the operator in the exponent of Û by its average over a transverse electron
state |ψ⊥〉 =

∑
q⊥
αq⊥ |q⊥〉 satisfying the relation

∑
k⊥
αk⊥α

∗
k⊥+q⊥

= eiq⊥·R0 , from
which we �nd

Û = exp

[ˆ ∞
0

dω gω(b̂†ωâω − b̂ωâ†ω)

]
. (D.18)

Here, we have introduced the operators âω = (−ie/2π~c gω)
´∞
−∞ dze−iωz/vÂz(R0, z, ω)

and b̂ω =
∑
qz
ĉ†qz ĉqz+ω/v , as well as the coupling coe�cient gω =

√
ΓEEL(R0, ω),

which reduces to the square root of the classical EEL probability (see Section 1.1)

ΓEEL(R0, ω) =
4e2

~

ˆ ∞
−∞

dz dz′ cos [ω(z − z′)/v] Im {−Gzz(R0, z,R0, z
′, ω)} .

We de�ne these operators in such a way that they satisfy the commutation relations
[âω, â

†
ω′ ] = δ(ω − ω′) and [b̂ω, b̂

†
ω′ ] = 0, where the former can be proven by using

Eq. (1.48). Importantly, Eq. (D.18) allows us to quickly compute observables after
electron-sample interaction. As an example of this, we �nd that the average of
the positive-energy electric �eld operator Ê(+)(r, ω) = ikÂ(r, ω) over the state
|ψ(∞)〉 = Ŝ(∞,−∞)|ψ(−∞)〉 with |ψ(−∞)〉 =

∑
qz
αqz ĉ

†
qz |0〉 (proportional

to the photonic vacuum) reduces to 〈Ê(+)(r, ω)〉 = 8πeωG(r, ω)M∗ω/v , where
G(r, ω) =

´∞
−∞ dz′ eiωz′/vIm{G(r,R0, z

′, ω)} · ẑ. To derive this result, we
need to use the relation [Â, eB̂ ] = CeB̂ (valid if [Â, B̂] = C is a c-number),
as well as the commutation relation [f̂(r, ω),

´∞
0
dω′gω′(b̂ω′ â

†
ω′ − b̂†ω′ âω′)] =

(−2ieω/~) b̂ω
√

~Im{ε(r, ω)}
´∞
−∞ dz′ eiωz′/vG(r,R0, z

′, ω) · ẑ together with the fact
that the fermionic operators b̂ω and b̂†ω commute.
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E
Quantum CL emission: proofs of some

expressions presented in Chapter 5

E.1 Far-�eld radiation emission: derivation of Eq.
(5.1)

In this section, we calculate the far-�eld emission produced by quantum currents taking
into consideration the quantum nature of the electromagnetic excitations. To this aim
and similarly for the classical case, we de�ne the average electromagnetic energy �ow
through a solid angular region ∆Ω as

∆E = lim
kr→∞

r2

ˆ ∞
−∞

dt

ˆ
∆Ω

d2Ωr̂

〈
ψ(−∞)

∣∣ŜH(r, t) · r̂
∣∣ψ(−∞)

〉
, (E.1)

where k = ω/c, ŜH(r, t) = (c/8π)
[
ÊH(r, t)× B̂H(r, t)− B̂H(r, t)× ÊH(r, t)

]
is the

quantum mechanical counterpart of the classical Poynting vector de�ned in Eq. (1.5b),
and |ψ(−∞)〉 is the initial quantum state at time t = −∞. The superscript H indicates
that operators have to be calculated in the Heisenberg picture, and thus evolved with the
total Hamiltonian

Ĥtot = Ĥf
0 + Ĥel

0 + Ĥint,

where the Hamiltonians Ĥel
0 and Ĥint are the ones used in Section D.2. As already done

in Section 1.3, the full time evolution can be expressed in terms of the scattering operator
Ŝ(t,−∞) by incorporating an adiabatic switching of the interaction, which leads to the
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relation e−iĤtott/~ = e−i(Ĥf
0+Ĥel

0 )t/~Ŝ(t,−∞) [40], and from here, Eq. (E.1) becomes

∆E = lim
kr→∞

r2

ˆ ∞
−∞

dt

ˆ
∆Ω

d2Ωr̂ (E.2)

× 〈ψ(−∞)|Ŝ†(t,−∞) Ŝ(r, t) · r̂ Ŝ(t,−∞)|ψ(−∞)〉.
We now describe the interaction between the electromagnetic �eld and a total quantum
current ĵ(r, t) through the minimal coupling Hamiltonian in the WG as

Ĥint(t) = −1

c

ˆ
d3r Â(r, t) · ĵ(r, t), (E.3)

where the time dependence in Ĥint(t) indicates that it is expressed in the interaction
picture (i.e., the free part of the Hamiltonian, Ĥf

0 + Ĥel
0 , is taken care of through the

scattering matrix). If we now assume that the current ĵ commutes at di�erent times, we
can use the results obtain in Section D.2 to write the scattering operator as Ŝ(t,−∞) =

exp [i χ̂(t,−∞)] exp
[
(−i/~)

´ t
−∞ dt′ Ĥint(t

′)
]
. From here, we plug it into Eq. (E.2) and

then use twice the identity [Â, eB̂ ] = CeB̂ (valid if [Â, B̂] = C is a c-number) to bring
the rightmost scattering operator to cancel its Hermitian conjugate on the left. This leads
us to

∆E = lim
kr→∞

c r2

8π

ˆ ∞
−∞

dt

ˆ
∆Ω

d2Ωr̂

〈{
Ê(r, t)− i

~

ˆ t

−∞
dt′
[
Ê(r, t), Ĥint(t

′)
]}

×
{
B̂(r, t)− i

~

ˆ t

−∞
dt′
[
B̂(r, t), Ĥint(t

′)
]}〉

· r̂ + c.c., (E.4)

where we have de�ned the quantum average as 〈·〉 = 〈ψ(−∞)| · |ψ(−∞)〉. The
term Ê(r, t) × B̂(r, t) in Eq. (E.4), which is independent of the sources, represents
the contribution from the zero-point energy, so it bears no relevance to this analysis. In
addition, since the commutators between the vector potential and the �eld operators are
c-numbers, the terms linear in the currents (i.e., through Ĥint) in Eq. (E.4) vanish when
they are averaged over an initial state |ψ(−∞)〉 in which the radiation part is prepared
in the photonic vacuum. Now, we use the retarded Green functions [Eqs. (C.5)] and their
Fourier transforms [Eqs. (C.6)] to obtain

∆E =

ˆ ∞
0

~ω dω
ˆ

∆Ω

d2Ωr̂
dΓff

dΩr̂dω
,

where
dΓff

dΩr̂dω
= lim
kr→∞

r2

4π2~k
Re
{〈
Ê(r, ω)× B̂†(r, ω)

〉}
· r̂ (E.5)

is the angle- and frequency-resolved, time-integrated, far-�eld (�) photon emission
probability of Eq. (5.1). Here, we have de�ned the new �eld operators

Ê(r, ω) =− 4iπ ω

ˆ
d3r′G(r, r′, ω) · ĵ(r′, ω),

B̂(r, ω) =− 4π c ∇×
ˆ
d3r′G(r, r′, ω) · ĵ(r′, ω),
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and we have introduced ĵ(r, ω) =
´∞
−∞ dt eiωt ĵ(r, t). We note that Eq. (E.5) resembles its

classical counterpart given by Eq. (1.28), but now the currents are commuting quantum
mechanical operators.

E.2 Photon intensity produced by a free electron and
a laser pulse: derivation of Eq. (5.2)

We consider that the quantum current operator ĵ is the sum of a classical term jext (i.e.,
the source of the external laser light) and the quantum part associated with the free
electrons ĵel. According to the analysis in Section D.2, for a highly energetic electron
the second-quantized currents commute at di�erent times and thus Eq. (E.5) can be
directly employed to compute the far-�eld emission connected to this con�guration.
Then without loss of generality, we take v along the z and calculate the Fourier transform
of Eq. (E.5)

ĵel(r, ω) = −ẑ e

L2
eiωz/v

∑

q,k⊥

eik⊥·R ĉ†qĉq+k⊥+(ω/v)ẑ, (E.6)

where k⊥ ⊥ ẑ is the transverse component of the exchanged wave vector k. This
allows us to evaluate the average in Eq. (E.5) for an initial state consisting of an electron
prepared in a wave function ψ0(r) =

∑
q αq〈r|ĉ†q|0〉 and zero photons (i.e., |ψ(−∞)〉 =∑

q αqĉ
†
q|0〉) by �rst computing the intermediate results

〈̂jel(r′, ω)̂jel†(r′′, ω)〉 = e2 ẑ⊗ ẑ δ(R′ −R′′)eiω(z′−z′′)/vM0(R′), (E.7a)

〈̂jel(r′, ω)〉 = −e ẑ eiωz′/vM∗ω/v(R
′), (E.7b)

where we use the notation r = (R, z). Also, Mω/v(R) =
´∞
−∞ dz eiωz/v |ψ0(r)|2 is a

coherence factor that captures the dependence on the electron wave function through
the probability density |ψ0(r)|2. We note that there is no dependence on the phase of
ψ0(r). By using Eqs. (E.7) to work out the evaluation of Eq. (E.5), we obtain

dΓff

dΩr̂dω
= lim
kr→∞

r2

4π2~k
Re

{
Elight(r, ω)×Blight∗(r, ω) (E.8)

+

ˆ
d2R′Mω/v(R

′) ECL∗(r,R′, ω)×Blight(r, ω)

+
i

k

ˆ
d2R′M0(R′) ECL(r,R′, ω)×

[
∇×ECL(r,R′, ω)

]∗

+
i

k

ˆ
d2R′Mω/v(R

′) Elight(r, ω)×
[
∇×ECL(r,R′, ω)

]∗
}
· r̂,

where we have de�ned the CL-related vector

ECL(r,R′, ω) = 4πieω

ˆ ∞
−∞

dz′ eiωz′/v G(r,R′, z′, ω) · ẑ (E.9)
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and the total (external+scattered) light �elds

Elight(r, ω) = −4πiω

ˆ
d3r′ G(r, r′, ω) · jext(r′, ω)

and Blight(r, ω) = (−i/k)∇× Elight(r, ω). At this point, it is convenient to separate
the light �eld into external and scattered components as Elight(r, ω) = Eext(r, ω) +
Escat(r, ω), where the �rst term arises from the free-space part of the Green tensor,
whereas the second-term decays as 1/r far from the sample. We consider �rst emission
directions in which the external light does not interfere with the scattered and CL
�elds. Then, in the far-�eld limit (kr � 1), we can approximate ∇ ≈ ikr̂ in the above
expressions, and the electric and magnetic �elds only retain components perpendicular
to r. This allows us to rewrite Eq. (E.8) in the form given by Eq. (5.2) in terms of far-�eld
electric �eld amplitudes fCL

r̂ (R′, ω) and f scat
r̂ (ω) associated with CL emission and laser

scattering contributions [see de�nitions in Eqs. (5.4)]. Under typical electron microscope
conditions, for a well-focused electron beam, we can factorize the electron wave function
as ψ0(r) = ψ⊥(R)ψ‖(z) and approximate |ψ⊥(R)|2 ≈ δ(R−R0), where R0 de�nes
the beam position. Inserting this wave function into Eq. (5.2), we �nd

dΓrad(R0)

dΩr̂dω
=

1

4π2~k

[
|fCL
r̂ (R0, ω)|2 + |f scat

r̂ (ω)|2 (E.10)

+ 2 Re
{
Mω/v f

CL∗
r̂ (R0, ω) · f scat

r̂ (ω)
} ]
,

where now Mω/v =
´∞
−∞ dz eiωz/v |ψ‖(z)|2.

E.3 Generalization to multiple electrons: derivation
of Eq. (5.5)

The above formalism can be readily extended to deal with more than one electron by
taking the initial state as |ψ(−∞)〉 =

∏
j

(∑
kj
αjkjc

†
kj

)
|0〉, where j runs over di�erent

electrons and the photonic �eld is prepared in the vacuum state. Then, using the de�nition
of the electron current operator ĵel(r, ω) in Eq. (E.6), the averages in Eqs. (E.7) can be
readily computed for the multi-electron state to yield

〈̂jel(r′, ω)̂jel†(r′′, ω)〉 = e2 ẑ⊗ ẑ eiω(z′−z′′)/v (E.11a)

×


δ(R′ −R′′)

∑

j

M j
0 (R′) +

∑

j 6=j′
M j∗
ω/v(R

′)M j′

ω/v(R
′′)


 ,

〈̂jel(r′, ω)〉 = −e ẑ eiωz′/v
∑

j

M j∗
ω/v(R

′), (E.11b)

where M j
ω/v is given by Eq. (5.8) with ψ0(r) substituted by ψj(r) =

∑
k α

j
k〈r|ĉ

†
k|0〉 (the

wave function of electron j). Finally, plugging Eqs. (E.11) into Eq. (E.5) and following
similar steps as done above for a single electron, we obtain Eq. (5.5).
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E.4 Cathodoluminescence from a dipolar object:
derivation of Eq. (5.6)

We present results in Chapter 5 for sample objects whose response is dominated by
an electric dipolar mode represented through an isotropic polarizability α(ω) placed at
r = 0. We now carry out the limit in Eq. (5.4a) by realizing that the free-space component
of the Green tensor [Eq. (1.14)] to the z′ integral vanishes exponentially away from the
electron beam (i.e., just like the electromagnetic �eld accompanying a freely moving
classical charge), so we only need to account for the contribution from the scattering
part [see Eq. (1.24)]

Gscat(r, r′, ω) −−−−→
kr→∞

−α(ω)

4πc2
eikr

r
(1− r̂⊗ r̂) · (k2 +∇r′ ⊗∇r′)

eikr′

r′
.

Plugging this expression into Eq. (5.4a), we can carry out the z′ integral by
using the identities

´∞
−∞ dz eiω(z/v+r/c)/r = 2K0 (ωR/vγ) and

´∞
−∞ dz (1 +

i/kr) eiω(z/v+r/c)/r2 = (2ic/Rvγ)K1 (ωR/vγ), where r =
√
R2 + z2 and

γ = 1/
√

1− v2/c2 [see Eqs. (3.914-4) and (3.914-5) in Ref. 95]. This leads to

fCL
r̂ (R′, ω) = k2 α(ω) (1− r̂⊗ r̂) ·Eel(R′, ω), (E.12)

where Eel(R′, ω), de�ned in Eq. (5.7), coincides with the electric �eld produced at the
particle position r = 0 by a classical point electron whose trajectory crosses (R′, 0) at
time t = 0. Similarly, from Eq. (5.4b), the scattered external �eld amplitude is readily
found to be

f scat
r̂ (ω) = k2 α(ω) (1− r̂⊗ r̂) ·Eext(0, ω), (E.13)

where Eext(0, ω) is the external laser �eld acting on the particle. Finally, by inserting
Eqs. (E.12) and (E.13) into Eq. (E.10), we obtain

dΓrad

dΩr̂dω
=

k3

4π2~
|α(ω)|2 (E.14)

×
{(
|Eel(R0, ω)|2 − |r̂ ·Eel(R0, ω)|2

)

+
(
|Eext(0, ω)|2 − |r̂ ·Eext(0, ω)|2

)

+ 2 Re
{
Mω/v

[
Eel∗(R0, ω) ·Eext(0, ω)−

(
r̂ ·Eel∗(R0, ω)

) (
r̂ ·Eext(0, ω)

)]}}
.

The total far-�eld photon probability per unit frequency is then obtained by integrating
Eq. (E.14) over solid angles, leading to

dΓrad(R0)

dω
=

2k3

3π~
|α(ω)|2

[
|Eel(R0, ω)|2 + |Eext(0, ω)|2 (E.15)

+ 2Re
{
Mω/vE

el∗(R0, ω) ·Eext(0, ω)
} ]
.

This expression can readily be recast in the form of Eq. (5.6).
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E.5 Energy pathways from the MQED formalism

Derivation of Eq. (5.14c)
There is an additional component in dΓff/dΩr̂dω [Eq. (E.8)] arising from the
interference between the external light �eld Eext(r, ω) and the scattered+CL
far-�eld amplitudes. For plane wave light incidence with wave vector kinc,
the former can be written Eext(0, ω)eikinc·r, which contributes to dΓff/dΩr̂dω
through the three last terms of Eq. (E.8). In particular, using the notation
2Re

{
Eext(0, ω)eikinc·r−iωt

}
for the time-dependent external light electric

�eld, the frequency-space light electric far-�eld (kr � 1) takes the form
Elight(r, ω) ≈ Eext(0, ω) eikinc·r + f scat

r̂ (ω) eikr/r, where k = |kinc| = ω/c which we
insert into Eq. (E.8), to separate dΓff/Ωr̂dω = (dΓrad/Ωr̂dω) + (dΓforward/Ωr̂dω) into
the contributions coming from the 1/r part (i.e., dΓrad/Ωr̂dω, which is extensively
discussed in Chapter 5) and the remaining interference between Eext(0, ω)eikinc·r and
f

CL/scat
r̂ terms [see also Eqs. (5.4)]. The latter generates dΓforward/Ωr̂dω, which can be

integrated over angles Ωr̂ following a similar asymptotic analysis as used in the derivation
of the optical theorem [329], based on the integral

´
d2Ωr̂ ei(k+i0+)r−ikinc·r = 2πi/kr

(valid in the kr →∞ limit), where k is supplemented by an in�nitesimal imaginary part
i0+, in accordance with the retarded formalism here adopted. This leads to

dΓforward

dω
= − 1

π~k2
Im
{
Eext∗(0, ω) ·

[
f scat
k̂inc

(ω) +M∗ω/vf
CL
k̂inc

(ω)
]}

,

which, using Eqs. (E.12) and (E.13), reduces to Eq. (5.14c) for a dipolar particle.

Derivation of Eq. (5.14a)
In order to compute the probability linked to the electron energy variation [i.e., Eq.
(5.14a)] for a dipolar particle, we start from the electron mean energy after interaction at
t→∞:

∆Eel = 〈Ŝ†(∞,−∞)Ĥel
0 Ŝ(∞,−∞)〉 − 〈Ĥel

0 〉,

where the average 〈·〉 is de�ned as in Eq. (E.4). Noticing that the interaction Hamiltonian
[Eq. (E.3)] is linear in the total current ĵ, we use the evolution operator [Eq. (D.15)] and
retain terms just up to quadratic order in ĵ to �nd

∆Eel ≈− i
〈[
χ̂(∞,−∞), Ĥel

0

]〉
(E.16)

+
1

~2

ˆ ∞
−∞

dt dt′
〈[
Ĥint(t)Ĥel

0 Ĥint(t
′)− 1

2

{
Ĥint(t)Ĥint(t

′), Ĥel
0

}]〉
.

Following the same approach as in Section E.2, we consider the total current to be the
sum of the classical laser source jext and the electron current operator ĵel [Eq. D.12]. An
important technical point refers to the operator χ̂(∞,−∞) [Eq. (D.16)], in which only
the terms that are linear in ĵel are not commuting with Ĥel. In the absence of external
illumination, such linear terms disappear and the remaining part of χ̂ gives rise to an
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image-potential interaction with the sample, which produces elastic di�raction of the
electron, but does not change its energy. However, in the present scenario of combined
electron and light interactions with the sample, χ̂ gives rise to changes in the electron
energy, so it needs to be retained in the calculation. We now use Eqs. (C.1), (C.5) and (C.6),
together with the Onsager reciprocity relation G(r, r′, ω) = GT(r′, r, ω), to rewrite Eq.
(E.16) as

∆Eel ≈
4i

~
∑

i,i′

ˆ ∞
0

dω

ˆ
d3r d3r′

×
{

i Im
{
Gi,i′(r, r

′, ω)
}〈

ĵ†i (r, ω)Ĥelĵi′(r
′, ω)− 1

2

{
ĵi(r, ω)ĵi′(r

′, ω), Ĥel

}〉

+
1

2
Re
{
Gi,i′(r, r

′, ω)
}〈[

ĵel†
i (r, ω), Ĥel

]
jext
i′ (r′, ω) + jext∗

i (r, ω)
[
ĵel
i′ (r
′, ω), Ĥel

]〉}
.

Finally, we evaluate the averages 〈·〉 using Eqs. (E.7) and the de�nition of Ĥel
0 . After some

algebra, this leads to ∆Eel =
´∞

0
dω ~ω dΓel/dω with

dΓel

dω
≈−

ˆ
d2RM0(R) ΓEELS(R, ω) (E.17)

− 4e

~

ˆ
d3r

ˆ
d3r′Im

{
e−iωz/vMω/v(R) ẑ ·G(r, r′, ω) · jext(r′, ω)

}
,

where Mω/v(R) is the same as in Eqs. (E.7) and ΓEEL(R, ω) is the classical EEL
probability for an electron beam focused at R [see Eq. (1.26)]. Equation (E.17) represents
a generalization of Eq. (5.14a) to arbitrary samples and incident electron wave functions.
Indeed, this result reduces to Eq. (5.14a) if the electron wave function can be factorized as
ψ0(r) = ψ⊥(R)ψ‖(z) with |ψ⊥(R)|2 ≈ δ(R−R0) (i.e., the tightly focused beam limit)
and the sample can be described by a dipolar polarizability α(ω). Under such conditions,
taking the particle at the origin, we can write the scattered part of the Green tensor
as Gscat(r, r′, ω) = −4πω2α(ω)Gfree(r, ω) · Gfree(r′, ω), in terms of the free-space
component Gfree(r, ω) = (−1/4πω2)(k2 +∇⊗∇)

(
eikr/r

)
, and then, combining all

of these elements, using the integral
´∞
−∞ dz eiω(z/v+r/c)/r = 2K0 (ωR/vγ) [see Eq.

(3.914-4) in Ref. 95], and identifying Eext(0, ω) = −4πiω
´
d3rGfree(r, ω) · jext(r, ω),

we obtain Eq. (5.14a).

Derivation of Eq. (5.14b)
In order to obtain Eq. (5.14b), we present an alternative treatment of a dipolar scatterer
that hosts a single optical mode. This approach does not require photon quantization
and it can be applied to any two-level system that can be characterized by a transition
dipole. As a starting point, we write the Hamiltonian

Ĥ = ~ω0 â
†â+ ~

∑

q

εq ĉ
†
q ĉq + g(t)

(
â† + â

)
+
∑

qq′

gqq′ ĉ
†
q ĉq′

(
â† + â

)
, (E.18)

where ω0 is the mode frequency, â† and â represent the corresponding creation and
annihilation operators, ĉ†q and ĉq create and annihilate an electron of wave vector q and



E. Quantum CL emission: proofs of some expressions presented in Chapter 5 160

kinetic energy ~εq along the e-beam direction, the real coe�cient g(t) describes the mode
coupling to classical external light, and gqq′ are electron-scatterer coupling coe�cients.

In what follows, we ignore transverse coordinates under the nonrecoil approximation,
together with the assumption that the e-beam is focused around a lateral position R0 =
(x0, y0) relative to the scatterer, with a small focal spot compared to both c/ω0 and R0.
A basis set of longitudinal wave vector states 〈z|q〉 = eiqz/

√
L is then used to describe

the electron, where L is the quantization length along the e-beam direction. In addition,
the scatterer is considered to be prepared in its ground state before interaction with
the external light and the electron. We further assume typical conditions in electron
microscopy, characterized by a weak electron-scatterer interaction, so that we can work to
the lowest possible order of perturbation theory. The external light is taken to be dimmed,
such that its interaction strength becomes commensurate with that of the electron. Under
these conditions, the density matrix of the combined electron-scatterer system can be
written as

ρ̂ =
∑

nn′,qq′

αnn′,qq′(t) ei(n′−n)ω0t+iεq′qt |nq〉〈n′q′|, (E.19)

where |nq〉 ≡ (â†)nĉ†q|0〉/
√
n! and we adopt the notation εq′q = εq′ − εq . A �nite

lifetime τ0 of the optical mode is now introduced through the equation of motion

dρ̂

dt
=

i

~

[
ρ̂, Ĥ

]
+

1

2τ0

(
2âρ̂â† − â†âρ̂− ρ̂â†â

)
. (E.20)

Before interaction, the coe�cients of the density matrix are αnn′,qq′(−∞) =
δn0δn′0α

0
qα

0∗
q′ , where α0

q de�nes the incident longitudinal electron wave function

ψ‖(z) =
∑

q

α0
q〈z|q〉 =

√
L

ˆ ∞
−∞

dq

2π
α0
q eiqz. (E.21)

Here, we have used the prescription
∑
q → (L/2π)

´∞
−∞ dq to transform the sum over

the electron wave vector q into an integral.
We consider external light characterized by an electric �eld Eext(r, t) at the position

of the scatterer, so we have

g(t) = −p0 ·Eext(0, t), (E.22)

where p0 is the transition dipole, which is taken to be real. Additionally, the electron-
scatterer coupling coe�cients are given by [330]

gqq′ = g∗q′q = − v
L
p0 · gq′−q, (E.23)

where

gq =
2e

vγ

[
|q|K1 (|q|R0/γ) R̂0 +

iq

γ
K0 (|q|R0/γ) ẑ

]
,

v is the average electron velocity, and γ = 1/
√

1− v2/c2.
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The excitation probabilities here investigated are determined by the diagonal elements
αnn,qq(t), which we calculate to the lowest order of perturbation theory by plugging
Eqs. (E.18) and (E.19) into Eq. (E.20). Identifying the coe�cient of each |nq〉〈n′q′| term in
both sides of the resulting equation, iteratively evaluating the correction to αnn′,qq′ at
perturbation order l + 1 by inserting the order-l correction into the [ρ̂, Ĥ] term of Eq.
(E.20), and starting with αnn′,qq′(−∞) for l = 0 (see above), we �nd

dα01,qq′(t)

dt
=

i

~
g(t)α0

q α
0∗
q′ e−iω0t (E.24a)

+
i

~
∑

q′′

gq′′q′ α
0
q α

0∗
q′′ e−i(ω0+εq′q′′ )t − 1

2τ0
α01,qq′(t),

dα11,qq(t)

dt
=

2

~
g(t) Im

{
α01,qq(t) eiω0t

}
(E.24b)

+
2

~
∑

q′

Im
{
gqq′ α01,q′q(t) ei(ω0+εqq′ )t

}
− 1

τ0
α11,qq(t),

dα00,qq(t)

dt
=− 2

~
g(t) Im

{
α01,qq(t) eiω0t

}
(E.24c)

− 2

~
∑

q′

Im
{
gq′q α01,qq′(t) ei(ω0+εq′q)t

}
+

1

τ0
α11,qq(t),

where we have used the Hermiticity of ρ̂ and Ĥ. The integral of Eq. (E.24a) can be readily
written as

α01,qq′(t) =
i

~
α0
q α

0∗
q′

ˆ t

−∞
dt′ g(t′) e−iω0t

′−(t−t′)/2τ0

− 1

~
∑

q′′

gq′′q′ α
0
q α

0∗
q′′

e−i(ω0+εq′q′′ )t

ω0 + εq′q′′ + i/2τ0
.

At this point, we express the coupling coe�cients in terms of the scatterer mode dipole p0

through Eqs. (E.22) and (E.23), use the nonrecoil approximation (see Section 1.2) to write
εq′q′′ ≈ (q′ − q′′)v, and convert the q′′ sum into an integral by means of the prescription
noted above. Following this procedure, we �nd

α01,qq′(t) =

ˆ ∞
−∞

dω

2π
e−iωt α̃01,qq′(ω),

where

α̃01,qq′(ω) =
1

~
1

ω + i/2τ0
p0 ·

[
Eext(0,ω − ω0)α0

q α
0∗
q′ (E.25)

+ g(ω−ω0)/v α
0
q α

0∗
q′−(ω−ω0)/v

]

and Eext(r, ω) =
´∞
−∞ dt eiωtEext(r, t). In order to compute the probability of

inelastic losses (see below) , we need to compute the time-integrated quantity Tq =
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´∞
−∞ dt α11,qq(t). From Eq. (E.24b), we �nd Tq =

´∞
−∞ dt e−t/τ0

´ t
−∞ dt′ et

′/τ0 F (t′) =

τ0
´∞
−∞ dt F (t), where F (t) is given by the �rst two terms in the right-hand side of that

equation. This leads to

Tq =
2τ0
~

ˆ ∞
−∞

dt Im

{
g(t)α01,qq(t) eiω0t +

∑

q′

gqq′ α01,q′q(t) ei(ω0+εqq′ )t

}
. (E.26)

We note that the accumulated probability of decay from the excited state of the particle
is given by Γdecay = (1/τ0)

∑
q Tq . Now, by identifying the particle polarizability as [96]

α(ω) =
|p0|2
~

(
1

ω0 − ω − i/2τ0
+

1

ω0 + ω + i/2τ0

)
, (E.27)

and by assuming ω0τ0 � 1, which allows us to approximate Eq. (E.27) by the �rst
(resonant) term for ω > 0, and by taking ω ≈ ω0 in the multiplicative factors, we obtain

dΓdecay

dω
≈ 1

π~
Im{α(ω)}

[
|Eext(0, ω)|2 + |Eel(R0, ω)|2

+ 2 Re
{
Eext(0, ω) ·Eel∗(R0, ω)Mω/v

}]
,

which exactly corresponds to the term shown in Eq. (5.14b). We remark that in order to
retrieve this last expression, we made use of the normalization property

∑
q |α0

q |2 = 1,
the spatial form of the wave function in Eq. (E.21) and of the de�nition ofMω/v appearing
in Eq. (E.10).
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F
Contribution of Coulomb repulsion to a

2DEG Q-phase material

F.1 The Hartree potential in reciprocal space:
derivation of V H

G in Eq. (6.3)

In this section, we show how the Hartree potential of Eq. (1.66) can be easily evaluated in
reciprocal space for a structure where charge neutrality is assumed. In order to do so, we
start from its 2D version, which we compute for the case of a Q-phase material by using the
eigenstates in Eq. (6.4a) to evaluate the carrier density n(R). We employ the prescription∑

k‖
→ (L/2π)2

´
d2k‖, use the integral and limit

´ b
0
dy/
√

(x− x′)2 + y2 = log[b +√
(x− x′)2 + b2]− log |x− x′| −−−→

b→∞
log(2b)− log |x− x′|, and apply the condition

of charge neutrality
´
d2R [n(R)− n0] = 0 to eliminate x-independent terms, to �nally

obtain the expression

V H(x) = −2e2

ˆ ∞
−∞

dx′
[
n(x′)− n0

]
log |x− x′|, (F.1)

where n(x) = (1/π2)
∑
n

´ π/a
−π/a dkx

´∞
0
dky |ukxn(x)|2 θ(EF − ~εxkxn − ~2k2

y/2m
∗) is

the 1D electron density pro�le. Now, we move to Fourier space de�ned via the relations
fG = (1/a)

´ a
0
dx f(x)e−iGx and f(x) =

∑
G fGeiGx, to compute the coe�cients of

the Hartree potential which read

V H
G = 2πe2

{
nG/|G|, for G 6= 0,

0, for G = 0,
, (F.2)
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where we made use of the integral
´∞
−∞ dx eiGx log |x| = −π/|G| [see Eq. (4.441-2)

in Ref. 95]. Equation (F.2) is used in Chapter 6 in order to numerically integrate the
self-consistent Schrödinger equation.

F.2 Quanti�cation of the image energy

In this section, we intend to quantify the in�uence of the image interaction on the
electronic behavior in the semiconductor considering the di�erent parameters that de�ne
the system. We start from the density n = k2

F/2π and the kinetic energy Ekin =
L2π~2n2/2m∗ of a 2DEG. Following a density functional theory approach in the local-
density approximation, we write the total energy as a functional of the electronic density
n(R):

E[n] =
π~2

2m∗

ˆ
d2Rn2(R) +

ˆ
d2RV im(R)n(R) (F.3)

+
e2

2

ˆ
d2Rd2R′

∆n(R)∆n(R′)
|R−R′| ,

where ∆n(R) = n(R) − n0. The ground-state density in the many-electron system
is then obtained by minimizing Eq. (F.3), subject the constraint

´
d2R∆n(R) = 0.

By introducing a Lagrange multiplier λ and imposing the vanishing of the functional
derivative with respect to n (i.e., δnE[n] = λ), we �nd

π~2

m∗
[∆n(R) + n0] + V im(x) +

e2

2

ˆ
d2R′

∆n(R′)
|R−R′| = λ,

which, transforming all quantities to reciprocal space as in done Section F.1, can be
written as

π~2

m∗
[∆n(x) + n0] + V im(x) + e2π

∑

G 6=0

∆nG
|G| eiGx = λ. (F.4)

Now, as a crude approximation, we assume that ∆n(x) has the same periodicity and
shape as V im(x), oscillating between the values n1 and −n1 for b = a/2 so that the
average electron density is conserved. By specifying Eq. (F.4) at two di�erent points
0 < x1 < b and b < x2 < a, and then subtracting the two resulting equations, we �nd
the ratio

n1

n0
=

1

2

V0/EF
0

1 +A[(VC/EF
0)/(kBZ/kF

0)2]
, (F.5)

whereA =
∑
G6=0(π2/4a|G|2)KG(eiGx1−eiGx2),KG = ∆nG/n1 = (2i/aG)(e−iGb−

1), and we use the coe�cients VC = e2/a and kBZ = π/a de�ned in Chapter 6. We have
veri�ed that A evolves in the (0, 1) interval as the values of x1 < x2 are varied. For
instance, if x1 = a/4 and x2 = 3a/4, we obtain A =

∑∞
n=0(−1)n/(2n + 1)2 ∼ 0.91.

We are interested in �nding the ratio of the kinetic energy to the image potential energy,
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which in this approximation becomes
∣∣∣∣
Ekin

Eim

∣∣∣∣ =
π~2

2m∗

´
dxn2(x)∣∣´ dxV im(x)n(x)

∣∣ =
EF

0

2V0

1 + n2
1/n

2
0

|1 + n1/n0|
,

and �nally, for small perturbations (|n1| � n0), it reduces to
∣∣∣∣
Ekin

Eim

∣∣∣∣ ≈
∣∣∣∣
EF

0

2V0
− 1/4

1 +A[(VC/EF
0)/(kBZ/kF

0)2]

∣∣∣∣ . (F.6)

The second fraction in the right-hand side of this equation can be neglected under the
conditions investigated in Chapter 6 (i.e., for VC/EF

0/(kBZ/kF
0)2 � 1), so the in�uence

of the image potential on the material is simply quanti�ed through the parameter V0/EF
0.
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G
Pair-production rate in the interaction

picture: derivation of Eq. (7.3)

In this appendix, we provide a detailed derivation of the pair-production cross section
[Eq. 7.3] based on the quantum �eld theory formalism of QED [303], of more common
use in the high-energy physics community. An alternative derivation based on standard
second order perturbation theory can be found in the Supplemental Material of Ref. 272.

G.1 QED Hamiltonian and matrix elements for a
general polychromatic �eld

We study pair production produced by a classical electromagnetic �eld that is described
through the vector potential A(r, t) in the WG (see Section 1.1). We adopt the minimal-
coupling relativistic QED Hamiltonian in the Schrödinger picture (see Section 1.2 and
Ref. 303)

Ĥint(t) = −1

c

ˆ
d3r ĵ(r, t) ·A(r, t),

where now the current operator takes the form ĵ(r, t) = −ec : Ψ(r, t)~γΨ̂(r, t) :, we
de�ne Ψ = Ψ̂†γ0, and the notation : · : is used to indicate normal product acting on the
fermionic �eld operators Ψ̂(r) and Ψ̂†(r) in analogy with the ordering of the bosonic
operators seen in Section 1.3. Here, ~γ and γ0 [303] are the spatial and temporal Dirac
matrices1. The �eld operator is then expanded as

Ψ̂(r, t) =
1√
V

∑

q,s

(
uq,sĉq,se

iq·r−iεqt + vq,sd̂
†
q,se
−iq·r+iεqt

)
,

1These matrices connect to the ones used in Section 1.2 through the relations γ0 = β and ~γ = γ0~α.
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where V is the normalization volume and we introduce the anticommuting annihilation
operators ĉq,s and d̂q,s and the corresponding creation operators ĉ†q,s and d̂†q,s for electron
and positron plane waves of wave vector q and spin s. The associated 4-component
electron and positron spinors uq,s and vq,s are chosen to satisfy the equations2

(~c~γ · q +mec
2I4)uq,s = ~εqγ0uq,s, (G.1a)

(~c~γ · q−mec
2I4) vq,s = ~εqγ0vq,s, (G.1b)

subject to the orthonormalization conditions u†q,suq,s′ = δs,s′ , v†q,svq,s′ = δs,s′ and
u†q,sv−q,s′ = 0. Here, me is the electron/positron mass, ~εq = c

√
m2

ec
2 + ~2q2 is the

relativistic particle energy, and I4 is the 4× 4 identity matrix.
We are interested in obtaining the leading contribution to the probability amplitude

connecting the initial fermionic vacuum state |0〉 to a �nal pair state |pqs, eq′s′〉, which
we write asCpqs,eq′s′ = 〈pqs, eq′s′| Ŝ(∞) |0〉 in terms of the scattering operator Ŝ(t) =

T e−(i/~)
´ t
−∞ dt′ Ĥint(t

′). By retaining only quadratic terms in the electromagnetic �eld
and working out time ordering through Wick’s theorem [303], we obtain

Cpqs,eq′s′ ≈
−ie2

~2

ˆ ∞
−∞
dt

ˆ t

−∞
dt′
ˆ
d3r

ˆ
d3r′ (G.2)

×〈pqs, eq′s′| : Ψ(r, t)~γ ·A(r, t)GF (r− r′, t− t′)~γ ·A(r′, t′)Ψ̂(r′, t′) : |0〉 ,

where GF (r, t) = (2π)−4
´∞
−∞ dω

´
d3q eiq·r−iωtGF (q, ω) is the real-spacetime

representation of the Feynman propagator given by

GF (q, ω) =
ωγ0 − c~γ · q + (mec

2/~) I4

ω2 − ε2
q + i0+

, (G.3)

where 0+ is a positive in�nitesimal. Plugging a vector potential taken to consist of
monochromatic components of frequencies ωi, such that can be written as

A(r, t) = −i c
∑

i

1

ωi
~Ei(r)e−iωit + c.c., (G.4)

where ~Ei(r) are the time-independent amplitudes of the �eld components, and carrying
out the required Dirac matrix algebra, this expression reduces to

C±pqs,eq′s′ ≈
2πie2c2

V 2~2

∑

ii′

′∑

q′′

1

ωiωi′
δ(εq + εq′ − ωi ± ωi′)

× uq′s′ ~γ ·
[
~Ei,q′−q′′ GF (q′′, εq′ − ωi) ~E±i′,q+q′′

+ ~E±i′,q′−q′′ GF (q′′, εq′ ± ωi′) ~Ei,q+q′′

]
· ~γ vqs,

where we have de�ned ~E+
i′,k ≡ ~E∗i′,−k and ~E−i′,k ≡ ~Ei′,k with ~Ei,k =

´
d3r e−ik·r~Ei(r)

and the± sign refers to channels involving either two frequencies of opposite sign (+) or
2These spinors are directly related to the solutions of the Dirac equation presented in Appendix B through

the relations uq,s = Ψ+
qs (for s = ±1), vq,−1 = Ψ−−q1, and vq,1 = −Ψ−−q−1.
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Figure G.1: Momentum distribution associated with the polariton �eld. We plot the
components of fkz [Eq. (G.7)] along (a) out-of-plane and (b) in-plane directions as a function
of kz (normalized to the polariton wave vector kp) for various polariton frequencies ωp (normalized
to kpc).

two positive frequencies (−). The prime in the summation symbol restricts it to ωi′ < ωi
terms because the rest of the terms vanish due to energy conservation. Finally, the
transition rate is obtained as Γ

(2)
pqs,eq′s′ = |C±pqs,eq′s′ |2/T , where T is the interaction

time. This expression produces a squared δ-function that we need to reinterpret by
retaining one of such functions coming from one of the two C±pqs,eq′s′ factors and then
undoing the time integral in the other factor through the prescription δ → (2π)−1

´
dt;

the remaining δ-function still imposes energy conservation, whereas the undone time
integral yields a factor T that cancels with the denominator. Following this procedure,
we readily �nd the second-order pair-production rate

Γ
(2)
pqs,eq′s′ =

2πe4c4

V 4~4

∑

ii′

′ 1

ω2
i ω

2
i′

∑

±
δ(εq + εq′ − ωi ± ωi′) (G.5)

×
∣∣∣∣uq′s′ ~γ ·

∑

q′′

[
~Ei,q′−q′′ GF (q′′, εq′ − ωi) ~E±i′,q+q′′

+ ~E±i′,q′−q′′ GF (q′′, εq′ ± ωi′) ~Ei,q+q′′

]
· ~γ vqs

∣∣∣∣
2

,

G.2 Pair production by scattering of a surface
polariton and a γ-photon

While the rate in Eq. (G.5) can be generally applied to an arbitrary number of �eld
components, we are here interested in calculating the pair-production rate associated
with the scattering of surface polaritons of frequency ωp (i = p) and highly energetic
(> 1 MeV) γ-ray photons of frequency ωγ (i = γ).

We consider polaritons bound to a planar material interface of area A placed in
the z = 0 plane (e.g., a two-dimensional material capable of supporting strongly
con�ned polaritons [295,296], such as graphene [235], few-atomic-layer hexagonal boron
nitride [300], or ultrathin metal �lms [298]). Polaritons are taken to be lossless and
traveling with a real in-plane wave vector kp = kpx̂ (with kp > ωp/c) oriented
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along the x direction, so that their associated electric �eld can be written as
~Ep(r) = (Epc/ωp)

(
iκp x̂ − kp sign{z} ẑ

)
eikpx−κp|z|, where Ep is a global amplitude

and κp =
√
k2
p − ω2

p/c
2 describes the evanescent �eld decay away from the interface.

Likewise, we write ~Eγ(r) = Eγ êσ eikγ ·r for a γ-ray �eld of amplitude Eγ , arbitrarily
oriented wave vector kγ (with kγ · ẑ > 0), and unit polarization vector êσ . The two
possible polarization vectors (for σ = s or p) together with k̂γ form a right-handed triad,
such that ês ⊗ ês + êp ⊗ êp + k̂γ ⊗ k̂γ = I3 is the 3 × 3 identity matrix. Here, we
neglect material polarization at the high γ-photon frequency. Under these conditions,
the Fourier components of the two �elds read

~Epk =
2iAc

ωp
Ep fkz δk‖,kp , (G.6a)

~Eγk = V Eγ êσ δk,kγ , (G.6b)

where the subscript ‖ denotes the in-plane x-y components. Here, we have performed
the r integral over the quantization volume V and de�ned the real vector

fkz =
κ2
p x̂ + kpkz ẑ

κ2
p + k2

z

. (G.7)

The lack of translational symmetry along the out-of-plane direction enables a �nite range
of momentum mismatch in that direction relative to the qz + q′z = kγz condition, as
described by the kz dependence of fkz , which we illustrate in Fig. (G.1) [see also Eq. (G.8)
below]. Inserting Eqs. (G.6) in Eq. (G.5), and noticing that the only term in the (i, i′) sum
satisfying ωi′ < ωi corresponds to the choice i = γ and i′ = p, we �nd the rate

Γ
(2)
pqs,eq′s′ =

8πA2α2c8
∣∣EpEγ

∣∣2

V 2~2ω4
pω

2
γ

×
∑

±

∣∣∣uq′s′M±σ (q,q′) vqs
∣∣∣
2

δkγ‖−q‖−q′‖,±kp δ(εq + εq′ − ωγ ± ωp),

where α ≈ 1/137 is the �ne-structure constant, we recall that primed (unprimed)
quantities refer to the electron (positron), and the 4× 4 matrix

M±σ (q,q′) = ~γ ·
[
êσ GF (q′ − kγ , εq′ − ωγ) f±(kγz−qz−q′z) (G.8)

+ f±(kγz−qz−q′z)GF (kγ − q, εq′ ± ωp) êσ
]
· ~γ

incorporates the anticipated �nite out-of-plane momentum distribution through
f±(kγz−qz−q′z).

It is convenient to recast this result in the form of a polariton-driven pair-production
cross section σpol

pqs,eq′s′ = Γ
(2)
pqs,eq′s′

/
NpFγ , calculated by normalizing the rate

to both the number of polaritons in the material (Np) and the γ-photon �ux
traversing the polariton-supporting interface (Fγ ). More precisely, we obtain Np
as the space integral of the �eld energy density divided by the polariton energy:
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Np = (1/4π~ωp)
´
d3r

[
|~Ep(r)|2 + (c/ωp)2|∇ × ~Ep(r)|2

]
= A |Ep|2k2

pc
2/2π~ω3

pκp.
Likewise, the γ-photon �ux is derived from the associated intensity divided by the
photon energy as Fγ = |k̂γ · ẑ| c|Eγ |2/2π~ωγ . Putting these elements together, we �nd

σpol
pqs,eq′s′ =

16π3α2c5κp
V Lωpωγk2

p

1

|k̂γ · ẑ|

×
∑

σ= s,p

∑

±

∣∣∣uq′s′M±σ (q,q′) vqs
∣∣∣
2

δkγ‖−q‖−q′‖,±kp δ(εq + εq′ − ωγ ± ωp),

where L is the out-of-plane quantization length (i.e., V = AL) and we average over
photon polarization σ. For a given emitted positron wave vector q, the electron wave
vector q′ is determined by the Kronecker (in-plane components) and Dirac (out-of-
plane component) δ-functions. Therefore, we use these functions to carry out the sum
over electron wave vectors and, in addition, also sum over spin degrees of freedom. In
particular, the in-plane electron wave vector is given by q′‖± = kγ‖ − q‖ ∓ kp. Also, by
applying standard properties of the Dirac δ-function and noticing that ∂q′zεq′ = q′zc

2/εq′ ,
we can recast it into

δ(εq + εq′ − ωγ ± ωp) =
εq′±
c2q′z±

[
δ(q′z − q′z±) + δ(q′z + q′z±)

]

× θ
(
ε2
q′±
−m2

ec
4/~2 − c2q′ 2‖±

)
θ
(
ωγ ∓ ωp − εq

)

with

q′z± =
√
ε2
q′±
/c2 −m2

ec
2/~2 − q′ 2‖± (G.9)

denoting the out-of-plane electron wave-vector component and εq′± = ωγ ∓ ωp − εq the
electron energy. This allows us to write the wave-vector-resolved di�erential positron
emission cross section as

dσpol

dq
=

V

(2π)3

∑

ss′

∑

q′

σpol
pqs,eq′s′

=
α2c3κp
π ωpωγk2

p

1

|k̂γ · ẑ|
∑

±

εq′±
q′z±

θ
(
ε2
q′±
−m2

ec
4/~2 − c2q′ 2‖±

)
(G.10)

× θ
(
ωγ ∓ ωp − εq

) ∑

ss′µ=±1

∑

σ= s,p

∣∣∣uq′‖±+µq′z±ẑ,s
′M±σ (q,q′‖± + µq′z±ẑ) vqs

∣∣∣
2

,

with q′z± given in Eq. (G.9), such that the two terms inside the square brackets stand
for the contributions associated with upward (q′z = +q′z±) and downward (q′z = −q′z±)
electron emission, respectively. The cross section in Eq. (G.10) [which corresponds to Eq.
(7.3) in Chapter 7] is normalized such that the total positron-emission cross section is
given by σpol =

´
d3q (dσpol/dq). In deriving this result, we have used the prescription∑

q → (2π)−3V
´
d3q to transform the positron wave-vector sum into an integral, and

likewise
∑
q′z
→ (L/2π)

´
dq′z for the out-of-plane electron wave vector.
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Finally, the energy- and polar-angle-resolved positron-emission cross section is
obtained by integrating Eq. (G.10) over the azimuthal emission angle ϕ as

dσpol

dEqdθ
= sin θ

qεq
~c2

ˆ 2π

0

dϕ
dσpol

dq
, (G.11)

where Eq = ~εq is the positron energy and θ is the emission angle relative to the surface
normal [see Fig. (7.1a) in Chapter 7]. In Figs. (7.3) and (7.4), we present this quantity after
further integrating over a �nite positron energy range ∆Eq just to make the plot clearer
by smoothing the integrable divergence introduced by the 1/q′z± factor in Eq. (G.10) at
the onset of positron emission, as also done in Fig. (7.3a,b).
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