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ABSTRACT 

Substance use disorders (SUDs) are psychiatric disorders characterized by a 

recurring desire to continue taking a substance regardless of its destructive 

consequences. The etiology of SUDs is complex and multifactorial, where both genetic 

and environmental factors have an impact on the disease development. In addition, SUDs 

often co-occur at high prevalence with other psychiatric conditions, significantly 

impacting life expectancy, disease severity and societal burden. Over the past decade, 

genome-wide association studies (GWASs) have identified various risk loci for substance-

specific SUD, as well as a shared genetic vulnerability for addiction. In addition, post-

GWAS analyses have helped unravel the complex genetic architecture of SUDs, which can 

also involve an interplay of gene-environment interactions, and its relationship with 

comorbid mental health conditions. Current research in this field is making collective 

efforts to provide deeper and clearer knowledge into the genetic and environmental 

factors involved into the co-occurrence of SUDs and psychiatric disorders, which may be 

partially driving the high heterogeneity observed in SUDs, and the biological mechanisms 

driving these relationships. 

The present thesis comprises two studies that leverage in-house clinical cohorts, 

with both phenotypical and genetic data available, and state-of-the-art genomic 

techniques to investigate the shared genetic liability between SUDs and co-occurring 

traits, and to shed light into the genetic underpinnings of SUDs heterogeneity.  

The first study particularly focused on the relationship between SUDs and 

attention-deficit and hyperactivity disorder (ADHD). In this study, we tested whether the 

genetic liability to five SUD-related phenotypes share a common genetic background in 

both the general population and clinically diagnosed ADHD individuals, using an in-

house sample of 989 subjects and polygenic scores (PGSs) analyses. We further explored 

the genetic overlap and the causal relationship between ADHD and SUDs using genetic 

correlation and Mendelian randomization analyses. Our results confirmed a significant 

genetic correlation between ADHD and SUDs and supported the current literature on the 

causal effect of the genetic liability to ADHD on the risk for SUDs. We provided novel 

findings on the effect of the genetic liability to lifetime cannabis use on an increased risk 



 
 

for ADHD and found evidence of a shared genetic background underlying SUDs between 

general population and ADHD, at least for lifetime cannabis use, alcohol dependence 

and smoking initiation. 

The second study aimed to disentangle SUDs heterogeneity using multidimensional 

data from a deeply phenotyped SUDs cohort of 1,427 individuals and PGSs for comorbid 

psychiatric disorders, behavioral and other related traits. We systematically explored the 

associations between the PGSs and 39 SUD-related phenotypes, and performed PGSs-

environment interaction analyses using information on lifetime emotional, physical 

and/or sexual abuse. Our results revealed different patterns of associations between the 

genetic liability for mental health-related traits and SUD-related phenotypes, which may 

help explain part of the heterogeneity observed in SUDs. We also found evidence of a 

PGS-environment interaction showing that genetic liability for suicide attempt worsened 

the psychiatric status in SUDs individuals with a history of emotional physical and/or 

sexual abuse. 

Overall, the results of the present thesis provide new insights into the genetic overlap 

and causal relationships between SUDs and ADHD and contribute to a better 

understanding of the role of the genetic liability for psychiatric disorders and related 

traits, as well as its interaction with adverse life experiences, in the complexity of SUD 

heterogeneity. Lastly, this thesis provides a general discussion of the findings, which 

offers an extensive interpretation of the results in the context of existing literature, 

discusses the main methodological implications and outlines prospective directions for 

advancing in this line of research.  

  



RESUM 

Els trastorns per l'ús de substàncies (TUS) són trastorns psiquiàtrics caracteritzats per 

un desig recurrent de continuar prenent una o diverses substàncies, independentment 

de les seves conseqüències destructives. L'etiologia dels TUS és complexa i multifactorial, 

on tant factors genètics com ambientals tenen un impacte en el desenvolupament de la 

malaltia. A més, els TUS sovint es presenten simultàniament amb altres trastorns 

psiquiàtrics, afectant significativament la severitat de la malaltia, l’esperança de vida i la 

càrrega en la societat. Durant l'última dècada, els estudis d'associació del genoma 

complet (GWASs) han identificat diverses variants genètiques de risc per a TUS de 

substàncies específiques, així com una vulnerabilitat genètica compartida per a l'addicció. 

A més, les anàlisis post-GWAS han ajudat a desxifrar l'arquitectura genètica complexa 

dels TUS, que també pot implicar la interacció entre gens i ambient, i la seva relació amb 

trastorns de salut mental comòrbids. La recerca actual en aquest camp està focalitzada 

en profunditzar en el coneixement sobre els factors genètics i ambientals involucrats en 

la coexistència del TUS i trastorns psiquiàtrics, el qual pot ser parcialment responsable 

de l’alta heterogeneïtat observada en el TUS, i els mecanismes biològics implicats. 

La present tesi està composta per dos estudis que utilitzen cohorts clíniques, amb 

dades fenotípiques i genètiques disponibles, i tècniques genòmiques actuals per explorar 

la carga genètica compartida entre els TUS i els trets comòrbids, i per investigar la 

heterogeneïtat dels TUS des del punt de vista genètic. 

El primer estudi es centra particularment en la relació entre els TUS i el trastorn per 

dèficit d’atenció i hiperactivitat (TDAH). En aquest estudi, vam testar si la càrrega genètica 

per a cinc fenotips de TUS comparteixen una base genètica comuna en la població 

general i en individus amb TDAH, fent servir un mostra interna de 989 individus i anàlisis 

de puntuacions poligèniques (PGSs). Seguidament, vam explorar el solapament genètic 

i la relació causal entre el TDAH i els TUS utilitzant anàlisis de correlació genètica i de 

randomització mendeliana. Els nostres resultats confirmen una base genètic comuna 

entre el TDAH i els TUS i donen suport a la literatura actual sobre l'efecte causal de la 

càrrega genètica pel TDAH en el risc de TUS. A més, descrivim per primera vegada l'efecte 

causal de la càrrega genètica per a l'ús de cànnabis en el risc de TDAH i trobem evidències 



 
 

d'un component genètic compartit subjacent als TUS en la població general i en els 

individus amb TDAH, almenys per a l'ús de cànnabis, la dependència a l'alcohol i l'inici 

del consum de tabac. 

El segon estudi té com a objectiu desxifrar la heterogeneïtat dels TUS utilitzant dades 

multidimensionals d'una cohort de TUS de 1,427 individus dels quals es disposa una 

àmplia informació fenotípica, i PGSs per a trastorns psiquiàtrics comòrbids, trets del 

comportament i altres trets relacionats. Vam explorar les associacions entre els PGSs i 39 

fenotips de TUS, i vam portar a terme anàlisis d’interacció PGS-ambient utilitzant 

informació sobre abús emocional, físic i/o sexual al llarg de la vida. Els nostres resultats 

revelen diferents patrons d'associacions entre la càrrega genètica per a trets relacionats 

amb la salut mental i fenotips de TUS, el que pot ajudar a explicar part de la 

heterogeneïtat observada en els TUS. També trobem evidència d'una interacció PGS-

ambient que mostra que la càrrega genètica per a intents de suïcidi empitjora l'estat 

psiquiàtric en individus amb TUS que han patit abús emocional, físic i/o sexual. 

En conjunt, els resultats de la present tesi aporten noves perspectives sobre el 

solapament genètic i les relacions causals entre els TUS i el TDAH i contribueixen a una 

millor comprensió del paper de la càrrega genètica pels trastorns psiquiàtrics i trets 

relacionats, així com la seva interacció amb experiències adverses al llarg de la vida, en 

la complexitat de la heterogeneïtat dels TUS. Finalment, aquesta tesi ofereix una discussió 

general, la qual proporciona una extensa interpretació dels resultats en el context de la 

literatura existent, discuteix les principals implicacions metodològiques i detalla les 

futures direccions per avançar en aquesta línia de investigació.  
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Glossary 

GLOSSARY  

Glossary from section 1. Introduction to SUDs 

Allostasis. Process by which the body 

responds to challenges to maintain 

apparent homeostasis through changes 

in brain reward and stress mechanisms.  

Compulsivity. Preservative, repetitive 

actions that are excessive and 

inappropriate. Compulsivity dominates 

at later stages of drug addiction through 

the emergence of negative emotional 

states in the withdrawal/negative affect 

stage and anticipation of the drug in the 

preoccupation/anticipation stage. 

Impulsivity. Predisposition toward rapid, 

unplanned reactions to internal or 

external stimuli without regard for 

negative consequences of these 

reactions to one-self or others. 

Impulsivity often dominates at the early 

stages of drug addiction through 

repeated binge/intoxication and positive 

reinforcement.  

Negative reinforcement. Process by 

which removal of an aversive stimulus or 

state increases the probability of a 

response.  

Physiological dependence. Is a state that 

develops as a result of the adaptation 

(tolerance) produced by a resetting of 

homeostatic mechanisms in response to 

repeated substance use.  

Positive reinforcement. Process by which 

presentation of a stimulus increases the 

probability of a response.  

Tolerance. A state in which a substance 

produces a diminishing biological or 

behavioral response in an individual, 

which occurs when the drug is used 

repeatedly and the body adapts to the 

continued presence of the drug.  

Withdrawal. Physical, cognitive, and 

affective symptoms that occur when the 

chronic use of a substance is reduced 

abruptly or stopped among individuals 

who have developed tolerance to a drug. 

These symptoms are characteristic for a 

given category of drugs and tend to be 

the opposite to the original effects 

produced by the drug before tolerance 

development



 
 

Glossary form section 3. Etiology of SUDs 

Bonferroni correction. A method to 

adjust for multiple testing that consists 

of dividing the significance threshold by 

the number of independent tests carried 

out.  

Causal genetic variant. Genetic variant 

that carries the functional allele 

influencing disease susceptibility and 

explaining the observed association with 

the phenotype of interest  

Collider bias. A bias that occurs when 

two variables (A and B) both influence a 

third variable (C), and the third variable 

is used to condition on. This can induce 

spurious correlations between variables 

A and B. 

Confounding factor. A confounding 

variable is a third variable that influences 

the two variables of interest in a model 

assessing the causal effect of an 

exposure on an outcome.  

Discovery sample (in the context of PGS 

studies). Group or population used in the 

initial phase of the polygenic score 

calculation workflow to identify the 

genetic variants associated with a 

particular trait or disease. 

Genetic correlation (rg). Refers to the 

proportion of variance that two traits 

share due to genetic causes.  

Genome-wide association study (GWAS). 

Research approach used to identify 

genomic variants that are statistically 

associated with a risk for a disease or a 

particular trait. 

Genome-wide polygenic score (PGS). 

Quantitative metric of an individual's 

inherited liability for a trait based on the 

cumulative impact of many common 

genetic variants. 

Haplotype. A set of genetic variants (or 

SNPs) that tend to be inherited together. 

A haplotype can refer to a combination 

of alleles or to a set of genetic variants 

found on the same chromosome. 

Hardy-Weinberg Equilibrium (HWE). The 

HWE principle states that in a large, 

randomly mating population with no 

evolutionary forces acting upon it (such 

as mutation, migration, selection, or 

genetic drift), the frequencies of alleles 

and genotypes will remain constant from 

one generation to the next. If a 

population is in HWE, the observed 

genotype frequencies will match the 

expected genotype frequencies based 

on the allele frequencies.  

Heritability (h2). The proportion of 

variation in a phenotype due to genetic 

factors; traditionally measured using 

family or twin studies. It is a population-

level measure that can vary across time 

and environments. 

Heterozygous. It refers to the presence 

of two different alleles at a given SNP 

within an individual.  

Liability (for a disease). Refers to a non-

observable and continuous variable that 

reflects an individual's genetic and 

environmental susceptibility to a certain 

disease. 
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Linkage disequilibrium (LD). The 

phenomenon wherein nearby genetic 

variants are inherited non-

independently of each other. LD 

measures degree to which an allele of 

one SNP is observed with an allele of 

another SNP within a population. 

Loci. Specific positions or locations on 

the genome where alleles of different 

genetic variants are situated  

Mendelian randomization. Research 

method that provides evidence about 

putative causal relations between risk 

factors and outcomes, using genetic 

variants as instrument variables.  

Principal component analysis (PCA). 

Statistical method commonly used in 

population genetics to identify structure 

in the distribution of genetic variation 

across geographical location and ethnic 

background.  

Summary statistics. Output file form a 

GWAS containing association data and 

p-values for every variant analyzed.  

Minor Allele Frequency (MAF). The 

frequency of the less common of two 

alleles for a genetic variant in a 

population (with two alleles carried by 

each person), ranging from >0 to ≤0.5. 

For example, a genetic variant with a 

minor allele (G) frequency of 0.4 implies 

that 40% of that population has the G 

allele versus the more common allele 

(the major allele), which is found in 60% 

of the population. 

Phenome-Wide Association Study 

(PheWAS). Genomic methodology that 

investigates the association between 

genetic information for a trait (in the 

form of single SNPs or the aggregation 

of SNPs in PGSs) and a wide range of 

phenotypes or traits, allowing for a 

comprehensive exploration of the 

pleiotropic effects of genetic variants 

across phenotypes.  

Pleiotropy. Phenomenon where a single 

genetic variant influences multiple 

(seemingly related or unrelated) 

phenotypic traits. Pleiotropy plays a 

significant role in complex traits and 

diseases, where multiple genetic and 

environmental factors contribute to their 

development. 

Population stratification. The presence of 

the systematic allele frequency 

differences observed in a population as 

a consequence of ancestry, which can act 

as a confounding factor and result in 

false-positive associations. 

Single-nucleotide polymorphisms (SNPs). 

Single base-pair changes in the DNA 

sequence, which occur with high 

frequency in the human genome.  

SNP-based heritability (h2
SNP). Estimate of 

the additive genetic variance in a 

phenotype that can be explained by 

common SNPs. 

Target sample (in the context of PGS 

studies). Group or population of 

individuals for whom the PGS is being 

calculated.  
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1 
1. Introduction to SUDs 

Substance use disorders (SUDs) are psychiatric conditions characterized by a cluster 

of cognitive, behavioral, and physiological symptoms, including impaired control, social 

impairment, risky use, and pharmacological changes indicating that the individual 

continues using the substance or substances despite its significant substance-related 

problems. The core feature of SUDs is an underlying alteration in the structure and 

function of the brain, known as neuroadaptations, that progresses as the individual 

continues to misuse the substance. As a consequence of these alterations, normal brain 

function becomes impaired, which ultimately drives the transition from controlled regular 

use to harmful and compulsive misuse. Moreover, these neuroadaptations can persist 

long after the individual quits substance use, and, as a result, may experience persistent 

cravings for the substance, which ultimately may lead to relapse (Volkow et al., 2019).  

Initial or experimental substance use is commonly associated with impulsivity, where 

the individual engages in substance use without fully considering the potential 

consequences. When the experience is positive, this sensation produced by the 

substance positively reinforces the act of substance use, increasing the likelihood of 

repeated use. As the pattern of substance use continues and the positive reinforcing 

effects diminish, the individual develops tolerance, which leads to the consumption of 

the substance in greater amounts and/or more frequently. Over time, the absence of the 

substance will produce withdrawal symptoms, characterized by negative emotions such 

as stress, anxiety, depression and physical sickness. Consequently, the individual will 

transition from impulsive to compulsive use with the aim to alleviate these negative 

feelings, known as negative reinforcement (Koob & Le Moal, 2001).  

1.1. History of Addiction and The Diagnostic and Statistical Manual of Mental Disorders 

Before scientific psychiatry emerged, individuals with addiction were commonly seen 

as moral transgressors or sinners, and their behavior was often attributed to the will of 

gods (Nathan et al., 2016). However, in the late 1700s, physicians like Benjamin Rush in 

the United States and Thomas Trotter in England began to conceptualize addiction as a 

medical disease rather than a matter of bad character. Their observations of patients and 
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their families led them to document the medical and psychiatric consequences of 

excessive alcohol use, the progressive nature of the disease, its intergenerational impact, 

the persistence of cravings, and the inability to control alcohol consumption despite 

repeated attempts (Olsen, 2022). Their contributions shed light on the involvement of 

biological factors in addiction and marked a significant shift in understanding addiction 

as a medical condition. 

 The development of the Diagnostic and Statistical Manual of Mental Disorders (DSM-

I) in 1952 was a crucial milestone in establishing a comprehensive psychiatric 

nomenclature (Nathan et al., 2016) (Figure 1). However, the initial edition lacked sufficient 

detail to enable reliable and replicable diagnoses, as it included only 106 disorders. Both 

the DSM-I and its successor, the DSM-II, categorized alcoholism and drug addiction as 

personality disorders under sociopathic personality disturbance (Figure 1). Addiction was 

viewed as a symptom of an underlying personality disorder, characterized by 

maladjustment, neurotic character traits, and emotional immaturity. Individuals with 

alcoholism were seen as engaging consistently and purposefully in uncontrolled and 

compulsive drinking behaviors (Nathan et al., 2016). 

In 1980, the third edition of the DSM (DSM-III) represented a significant advancement 

in diagnostic reliability by providing a comprehensive and detailed summary of signs, 

symptoms, and operational criteria based on empirical evidence (American Psychiatric 

Association, 1980). Within this framework, SUDs were detailed in a separate section, with 

clear distinctions among substance use, substance abuse, and substance dependence. 

Substance abuse was defined by a pattern of pathological use, impairment in social or 

occupational functioning, and at least one month of use. Substance dependence, a more 

severe form of a SUD, required one or more signs of physiological dependence, such as 

tolerance or withdrawal (Figure 1). Some substances, like cocaine and hallucinogens, were 

primarily associated with symptoms of abuse and not considered to cause dependence. 

In 1983, articles highlighting the role of genetics in alcoholism emerged, suggesting 

a heritable physiological predisposition to alcohol response (Mayer, 1983). The fourth 

edition of the DSM (DSM-IV) in 1994 embraced a biological perspective on addiction, 

renaming the chapter to "substance-related disorders" and grouping substances into 11 
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1 
distinct classes (American Psychiatric Association, 1994). The distinction between 

substance abuse and substance dependence remained, with abuse characterized by 

maladaptive and repeated patterns of use leading to adverse consequences, while 

dependence involved cognitive, behavioral, and physiological symptoms indicating the 

continued use of a substance despite substance-related problems (Figure 1, Box 1).  

The latest edition of the DSM (DSM-5) in 2013 expanded the substance-related and 

addictive disorders chapter to cover 10 substance classes, gambling disorders, and 

substance-induced disorders (American Psychiatric Association, 2013). The DSM-5 

emphasized the central role of brain reward mechanisms in addiction onset and 

maintenance, maintaining the biological/genetic model of addiction. Notably, the DSM-

5 eliminated the distinction between substance abuse and substance dependence, 

replacing it with a dimensional assessment of substance use severity based on the 

number of observed symptoms (Figure 1, Box 1). However, it faced criticism for over-

diagnosing and overpromising the development of biomarkers and dimensional 

diagnosis, potentially influenced by large drug companies (G. Young, 2016). 

Figure 1. Chronology of SUDs diagnosis in the five editions of the Diagnostic and Statistical 

Manual of Mental Disorders (DSM) 
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Both the DSM-IV and DSM-5 hold significance in the context of the current thesis. 

Box 1 provides a side-by-side comparison of the diagnostic criteria for SUDs used in both 

editions (Box 1).  
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1 1.2. Current Prevalence of SUDs 

The World Drug Report (WDR), an annual publication by the United Nations Office 

on Drugs and Crime (UNODC), informed in 2021 that approximately 296 million 

individuals aged 15-64 worldwide, which accounts for 5.8% of the global population, had 

engaged in illicit substance use within the past 12 months. This represents a notable 23% 

increase over the previous decade, partly attributed to population growth (UNODC, 

2023). Cannabis is the most used substance in the vast majority of countries, with a 

prevalence of 4.3% of the global adult population, followed by opioids, with a prevalence 

of 1.18% (UNODC, 2023) (Figure 2A). 

Furthermore, an estimated 13.6% of substance users (around 39.5 million individuals) 

suffer from an illicit SUD, which corresponds to a prevalence of 0.76% among the global 

A 
 

B 
 

6% 

 
3,3% 

 0.7% 

 

Figure 2. Annual prevalence of substance use and SUDs. (A) Global estimates of number of 

substance users in millions (number inside the circle) and prevalence of substance use 

(percentage below de circle) of selected substance groups (2021). (B) Share of the population 

with alcohol or substance use disorders (2019). Sources: World drug report 2023, IHME, global 

burden of disease 2019 and our world in data. 
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population aged 15-64 (Degenhardt, Bharat, Glantz, Sampson, Scott, et al., 2019; UNODC, 

2023). Another well-documented source, the Global Burden of disease (GBD), which also 

accounts for the prevalence of alcohol use disorder, reported in 2019 that over 2% of the 

global population were dependent on alcohol or an illicit substance (Hannah Ritchie et 

al., 2022).  

Nevertheless, substantial differences in SUDs prevalence are observed across different 

regions. Higher-income countries, such as the United States of America (USA) and certain 

Eastern European nations, exhibit a higher overall SUDs prevalence, with approximately 

4-6% of the population dependent on alcohol or illicit substances. In contrast, lower-

middle-income countries, including several African nations, show lower SUDs prevalence, 

of around 0.7% (Hannah Ritchie et al., 2022) (Figure 2B). Additionally, regional differences 

extend to the preferred type of substance. For instance, in the USA, SUDs prevalence is 

dominated by illicit substances, whereas in regions such as Russia and Eastern Europe, 

alcoholism is more prevalent (Degenhardt, Bharat, Glantz, Sampson, Scott, et al., 2019).  

Historically, both substance use and SUDs have exhibited higher prevalence rates 

among men compared to women (Rehm & Shield, 2019; UNODC, 2023). This difference 

has mainly been attributed to gender-related cultural and environmental factors rather 

than sex-related biological factors. Fundamentally, men have had more access to 

substances than women (McHugh et al., 2018). However, it is important to note that 

women engage in the use of certain substance types nearly as frequently as men, such 

as non-medical pharmaceutical opioids, sedatives, and tranquilizers (Figure 3). Moreover, 

women tend to increase the amount of consumption more rapidly than men and, 

therefore, typically show an accelerated progression from the initiation of substance use 

to the development of a SUD (Fonseca et al., 2021). Nevertheless, recent epidemiologic 

studies suggest that the differences in prevalence rates between genders might be 

getting narrower (Castelpietra et al., 2022). This may be attributed to the fact that women 

are exposed to negative life events, such as trauma and intimate partner violence, which 

is directly related with the rapid development of SUDs and contributes to narrowing the 

gap in substance use between genders (Fonseca et al., 2021). Despite that, women remain 
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1 
underrepresented in SUDs treatment, likely due to social stigma or fear of legal sanctions 

(UNODC, 2023). 

1.3. Disease Burden, Mortality and Social Consequences of SUDs 

In 2019, 3.2 million people died due to all SUD-related causes, with approximately 

10% (300,000 deaths) directly attributed to substance or alcohol overdose (Abbafati et 

al., 2020). To date, opioids represent the illicit substance with the biggest impact on the 

global burden of disease, contributing to the highest number of both direct (fatal 

overdoses) and indirect deaths (70% and 77% respectively) (Abbafati et al., 2020; UNODC, 

2023) (Figure 3). A significant number of these deaths, over half, occur among individuals 

under the age of 50 (Abbafati et al., 2020). While deaths among young people are more 

commonly associated to overdose, older people are more likely to die from somatic 

causes, mainly liver diseases, as a consequence to long-term substance use (UNODC, 

2023). Importantly, liver diseases attributed to hepatitis C account for more than half of 

the total number of deaths attributed to the use of substances (Zhang et al., 2022) (Figure 

4). This can be partly attributed to the high prevalence of substance injection, which 

experienced an 18% increase in 2021 compared to the previous year. Estimates indicate 

that 50% of individuals who inject substances are living with hepatitis C, while 12% are 

living with HIV (UNODC, 2023).  

Figure 3. Prevalence of substance use by sex. About 70% of cannabis users globally are men, 

although in some regions the gender divide is reducing, such as North America were women 

account for 42% of cannabis users. The proportion of female users is higher in the case of 

amphetamine-type stimulants (45% of users are women) and non-medical use of pharmaceuticals 

(between 45% and 49% of users are women), whereas the highest share of men is found in users 

of opioids (75%) and cocaine (73%). Adapted from The World drug report 2023 (UNODC, 2023). 
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Overall, substance use and associated disease burden have been estimated to 

increase over the past few decades (UNODC, 2023). Specifically, the burden of disease 

associated with alcohol and illicit SUDs as measured by Disability-Adjusted Life Years 

(DALYs), reached as high as 6% in USA and up to 2% in the European Region in 2019 

(Vos et al., 2020). DALYs represent the combined years lost due to premature death and 

years lived with disability, serving as a comprehensive indicator of the disease's impact 

on population health.  

Furthermore, SUDs have an immense impact on an individual’s life, affecting the 

family circle, the interpersonal relationships and the job environment (Sheidow et al., 

2012). Additionally, its repercussions extend beyond the individual, impacting the society 

as a whole through violence, crime, incarceration, poverty and homelessness (Sheidow 

et al., 2012).  

In a longitudinal study of individuals entering opioid treatment programs in the USA, 

it was found that less than 8% of the participants had earned a bachelor's or advanced 

degree. This is in contrast to the estimated 32.2% of the US population with such degrees 

(Ellis et al., 2020). Another twin study revealed that individuals who initiated alcohol use 

before the age of 18 and/or had a lifetime diagnosis of alcohol use disorder completed 

fewer years of education compared to their cotwins without a SUD (Grant et al., 2012). 

Moreover, young adults not attending higher education, as well as unemployed adults 

Figure 4. Causes of death related to substance use globally in 2019. Liver diseases attributed to 

hepatitis C are a major cause of substance-related deaths, accounting for more than half of the 

total number of deaths attributed to the use of substances. Moreover, two thirds of direct 

substance-related deaths are due to opioids. Source: Global Burden of Disease Study 2019. 

Adapted from The World Drug Report 2023 (UNODC, 2023). 
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with no higher education, are more likely to abuse alcohol and/or illicit substances 

(Martins et al., 2015; Melchior et al., 2015). SUDs also increase the likelihood of 

unemployment and reduce the prospects of finding and maintaining a job (Henkel, 2011). 

The impact of SUDs also extends to the criminal justice system, as evidenced by a study 

showing that individuals with SUD by age 16 face a higher risk of incarceration for 

substance-related offenses in early adulthood and exhibit greater involvement in the 

criminal justice system (Slade et al., 2008). 

1.4. Complexity and Dynamics of SUDs Trajectory  

Substance use and SUDs exists on a continuum of severity (Figure 5). At its initial 

stages, where substance use is occasional, the urge of consuming the substance can be 

regulated. As the disease advances, there is a progressive loss of control over substance 

use. Individuals experience an increasing difficult time resisting the urge to consume the 

substance, transitioning to a state of compulsive use. A variety of factors, which will be 

further discussed, are known to influence each stage of substance use vulnerability, from 

substance use initiation to how rapidly it transitions to a severe SUD.  

SUDs are more likely to develop during young adulthood, between the ages of 18 

and 29 (Kessler et al., 2007). The rate of transition from substance use to SUD varies by 

the type of substance, highly influenced by its pharmacological properties, availability 

and legality. However, studies have shown that early adolescent onset of substance use, 

before the ages of 13-16, is a robust predictor of a future SUD. Alcohol, cannabis, and 

illicit substance use before these ages have been associated with higher rates of alcohol 

dependence and SUDs in the late 20s (Ganguli et al., 2002; S. Y. Kim et al., 2023; McGue 

Figure 5. The multiple stages of substance use vulnerability. The phases of substance use can go 

from social use (experimental use) to the development of addiction (compulsive use) to 

vulnerability to relapse (failing to quit). Adapted from Sanchez-Roige & Palmer (2020). 
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et al., 2001; Rial Boubeta et al., 2020; Rioux et al., 2018). Earlier exposure, especially to 

cannabis, increases the odds of developing a SUD for heavier substances of abuse such 

as cocaine or opioids, compared to individuals with later onset of cannabis use, who 

present higher rates of cannabis or alcohol use disorder (Butelman et al., 2021). 

Additionally, the disorder is characterized by considerable chronicity, with persistence 

rates estimates reaching as high as 45.6% (Degenhardt, Bharat, Glantz, Sampson, Al-

Hamzawi, et al., 2019). Chronic SUDs are generally associated with lower quality of life, 

both mentally and physically (Armoon et al., 2022; Na et al., 2022). The individual's mental 

health status, as well as polysubstance use, are key factors in the persistence of the 

disorder (Degenhardt, Bharat, Glantz, Sampson, Al-Hamzawi, et al., 2019; Farmer et al., 

2015). 

A substantial proportion of individuals with a SUD achieve remission, as indicated by 

a meta-analysis from 2016 which reported remission rates ranging from 35% to 54.4%. 

(Fleury et al., 2016). Specially, individuals seeking outpatient treatment, those who use 

drug-free recovery housing exhibit higher rates for substance abstinence, as well as other 

positive outcomes such as increased employment and decreased involvement in the 

criminal justice system (Mericle et al., 2022). General social support is also crucial for the 

recovery process and has been positively associated with abstinence-specific self-efficacy 

in in-treatment SUDs patients (Stevens et al., 2015).  

However, most individuals with a SUD alternate between periods of remission and 

relapse. Vulnerability to relapse is especially high during the first 12 months after 

achieving remission (McLellan et al., 2000). Relapse rates vary widely across studies, likely 

due to various external factors that can influence the remission/relapse cycle. For 

example, people in recovery from a SUD are at a higher risk of relapse if they are 

unemployed (Henkel, 2011) or if they come from families with a high density of SUDs, 

which refers to the proportion of first-degree relatives with a SUD (Farmer et al., 2022). 

Additionally, age can be a factor in relapse, with younger individuals who have abstained 

from substance use (ages 18-24) being more likely to relapse at 3- and 10 year follow-

up than older abstainers (aged 55 and over) (Dawson et al., 2007; Mertens et al., 2012).  
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1.5.  Current Treatment for SUDs 

Despite the availability of effective interventions for SUDs, less than 20% of people 

with the disorder are in treatment (Harris et al., 2019; UNODC, 2023). In addition, access 

is highly unequal, especially for women who are highly underrepresented in substance 

treatment programs. This is particularly apparent for women who use amphetamine-type 

stimulants. Nearly half the users are female, yet only one in four individuals in treatment 

is a woman (UNODC, 2023). In the majority of European countries, opioids are the most 

prevalent primary substance of people in substance treatment, accounting for 38% of 

treatment for SUDs in 2021 (UNODC, 2023).  

The "International Standards for the Treatment of Drug Use Disorders" document 

outlines various pharmacological interventions used in the treatment of SUDs (Busse et 

al., 2015). These interventions include opioid agonist therapy, which utilizes medications 

like methadone, buprenorphine, or morphine to alleviate withdrawal symptoms and 

cravings in patients with opioid use disorders. Naltrexone is another medication that 

blocks opioid effects and helps prevent relapse. Acamprosate and disulfiram are used to 

treat alcohol use disorders by reducing cravings and inducing unpleasant side effects 

when alcohol is consumed. Nicotine replacement therapy involves the use of nicotine 

patches or gum to reduce cravings and withdrawal symptoms in nicotine use disorders, 

while varenicline works by blocking nicotine effects on the brain. These pharmacological 

interventions are often combined with psychosocial interventions provided by 

psychologists, such as cognitive-behavioral therapy, motivational interviewing, and 

contingency management. Psychosocial interventions aim to develop coping skills, 

enhance self-esteem, and strengthen social support networks for patients with a SUD. 

1.6. Neurobiology of SUDs  

From a psychopathological framework, SUDs are chronically relapsing disorders that 

cycle through three stages: (i) binge/intoxication, (ii) withdrawal/negative effect, and (iii) 

preoccupation/anticipation (Figure 6). These stages involve neuroplastic changes in 

neurobiological mechanisms, such as brain reward, stress and executive function, 

differentially involved in the transition from recreational to compulsive substance use. In 

addition, each stage is specifically associated with allostatic changes in three key 
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neurocircuits: (i) basal ganglia, (ii) extended amygdala, and (iii) prefrontal cortex (Koob & 

Volkow, 2016) (Figure 6).  

In the binge/intoxication stage, an individual consumes a substance or drug of abuse 

and experiences its rewarding or pleasurable effects. This stage involves three main 

contributors: (i) The acute positive hedonic value of drugs, which referrers to the fast and 

intense pleasant sensations produced by drugs; (ii) Sensitization of incentive salience, 

where neutral stimulus acquires incentive value through association with a drug; (iii) 

Inherent poor cognitive insight, including cognitive deficiencies such as impairment of 

objectivity and resistance to corrective feedback (George & Koob, 2017) (Figure 6).  

Figure 6. Neural circuitry associated with the three stages of the addiction cycle. The overall 

neurocircuitry domains correspond to three functional domains: binge/intoxication (reward and 

incentive salience: basal ganglia [blue]), withdrawal/negative affect (negative emotional states and 

stress: extended amygdala and habenula [red]), and preoccupation/anticipation (craving, 

impulsivity, and executive function: PFC, insula, and allocortex [green]). Arrows depict major circuit 

connections between domains, and numbers refer to neurochemical and neurocircuit-specific 

pathways known to support brain changes that contribute to the allostatic state of addiction. 

PFC=prefrontal cortex. ACC=anterior cingulate cortex. OFC=orbitofrontal cortex. NAc-

VTA=nucleus accumbens-ventral tegmental area. Adapted from Koob & Volkow (2016).    
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Drugs activate the brain's reward system, increasing dopamine release through 

dopamine D1 receptors in the ventral striatum, creating a sense of "high" (Volkow et al., 

2007). Other relevant neurotransmitters and neuromodulators, such as opioid peptides, 

serotonin, glutamate, γ-aminobutyric acid (GABA), acetylcholine and endocannabinoid 

systems, play a role in this rewarding and reinforcing effects of drugs. Through these 

neurotransmitters, drugs disrupt inhibitory control, decision making and normal 

functioning of reward, motivation, stress and memory circuits (Koob & Volkow, 2016). 

Additionally, dopamine neurons exhibit phasic responding to drug reward, which means 

that after repeated exposure, the same neurons stop responding to a predictable reward, 

leading to sensitization of incentive salience and triggering the desire for the drug 

(craving) and compulsive use in response to stressful environments (George & Koob, 

2017) (Figure 6).  

In the withdrawal/negative affect stage the individual experiences a negative 

emotional state in the absence of the drug. During this stage, chronic irritability, 

emotional pain, stress and loss of motivation for natural rewards, drive drug 

consumption. This process involves within-system neuroadaptations, where the primary 

target for the drug adapts to neutralize the effect of the drug. Decreases in dopaminergic, 

serotonergic and GABAergic transmission and increases in µ opioid receptor and NMDA 

glutamatergic transmission, are studied neuroadaptations during this stage (Melis et al., 

2002). Moreover, between-system neuroadaptations, which refers to systems other than 

those involved in the positive rewarding effects of drugs, are recruited or dysregulated 

by chronic drug use to oppose the rewarding effects of the drug (Koob & Le Moal, 2008). 

These include, the dysregulation of the hypothalamic-pituitary-adrenal axis, the brain 

stress system mediated by corticotropin-releasing factor and the dynorphin-κ opioid 

receptor system (Whitfield et al., 2015). All these processes together are implicated in the 

long-term biochemical changes that contribute to the clinical manifestation of the 

withdrawal syndrome and tolerance to the drug (Whitfield et al., 2015) (Figure 6).  

Lastly, in the preoccupation/anticipation stage the individual seeks the drug again 

after a period of abstinence, commonly called craving. Two opposite systems are 

implicated: (i) In the go system (cue-induced craving) there is a reactivation of the 

dopamine release during acute craving episodes (Niendam et al., 2012). (ii) In the stop 
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system (inhibitory function), increases in GABAnergic activity and decreases in dopamine 

D2 receptor availability cause chronic executive dysfunction, including impairments in 

decision making, self-regulation, inhibitory control, attention and working-memory 

(Volkow et al., 2010) (Figure 6). 

  

KEY POINTS SECTION 1 

 SUDs are neuropsychiatric disorders characterized by a recurring desire to continue taking 

a substance or drug regardless of its destructive consequences.  

 Among the various clinical tools design to diagnose SUDs, the DSM is widely used. The 

latest edition (DSM-5) follows a 11-item criteria list to diagnose SUDs, ranging from mild 

(2-3 items) to moderate (4-5 items) to severe (6 or more items) SUDs.  

 Over 2% of the population worldwide are dependent on alcohol or an illicit substance, 

although it varies across regions. Cannabis is the most used drug worldwide whereas 

opioids are the main drug impacting the global burden of disease.  

 SUDs have detrimental effects on individuals' lives, families, and societies, contributing to 

unemployment, crime, and poverty. However, treatment for SUDs remains limited, 

especially for women.  

 Substance use and SUDs exists on a continuum of severity: drug experimentation → regular 

use → harmful use → compulsive use → quit attempts → relapse.  

 Neurobiological adaptations occur in the brain during substance use that drive the 

transition from initial to compulsive use. Three stages of addiction are identified: 

binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation, involving 

neuroadaptations in different brain circuits. 
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2. SUDs and Psychiatric Comorbidity  

Many individuals who develop a SUD also experience comorbid psychiatric disorders, 

making it a rule rather than an exception. According to recent data (Carliner et al., 2017), 

approximately 53% of individuals with a primary diagnosis of a SUD have at least another 

co-occurring diagnosis for a mental, behavioral, or emotional disorder. Moreover, this 

estimate is even higher (58%) when looking at the young adult population, between 18 

and 25 years old.  

Numerous systematic reviews, as well as population-based studies, have assessed the 

comorbidity rates between SUDs and relevant psychiatric disorders. Overall, post-

traumatic stress disorder (PTSD) and schizophrenia have the highest comorbidity rates 

with SUDs, with estimates around 46% and 40%, respectively, followed by bipolar 

disorder with 35%, major depressive disorder, anxiety disorder and attention-

deficit/hyperactivity disorder (ADHD) with 25% each, and obsessive compulsive disorder 

(OCD) with 11% (Hunt et al., 2016, 2018, 2020; Lochner et al., 2014; Pietrzak et al., 2011; 

Toftdahl et al., 2016) (Figure 7). SUDs also present high comorbidity rates with personality 

disorders, specially borderline and antisocial personality disorder, with estimates up to 

46% (Toftdahl et al., 2016) (Figure 7). 

 

Figure 7. Prevalence rates of co-occurring SUDs and major mental health disorders. ADHD= 

Attention-deficit/hyperactivity disorder. OCD= Obsessive compulsive disorder. 
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Overall, having lifetime diagnoses of mental health disorders predisposes to an 

increased risk of initiating substance use and developing a SUD. Around 30-50% of 

individuals with a mental disorder also experience a SUD (Carliner et al., 2017). 

Particularly, psychotic disorders have the strongest associations with early onset of SUDs 

(Hunt et al., 2018; Lev-Ran et al., 2013). In addition, the co-occurrence of SUDs and mental 

disorders is linked to a more severe and debilitating course of illness, as well as 

unfavorable social and clinical outcomes (Andersson et al., 2019; Harris et al., 2019; 

Krawczyk et al., 2017; Levola et al., 2022). For instance, personality disorders such as 

antisocial, borderline, and schizotypal personality disorders, as well as comorbid major 

depressive, anxiety and sleep-related disorders, have been linked to SUDs persistence in 

epidemiologic and longitudinal studies (Crum et al., 2004; Fenton et al., 2012; D. Hasin et 

al., 2011; Tuithof et al., 2013). This co-occurrence also represents a challenge for the 

treatment and remission of SUDs. It has been extensively reported that individuals with 

a SUD and psychiatric comorbidity experience poorer treatment adherence and 

completion (Andersson, Lauvsnes, et al., 2021; Charney et al., 2005; Dodge et al., 2005; 

Hesse, 2009; Krawczyk et al., 2017; Lipsky et al., 2010; Ostacher, 2007) and higher risk for 

relapse (Andersson et al., 2019; Boschloo et al., 2012; Crum et al., 2004; Lipsky et al., 2010). 

Personality profiles can also impact treatment outcomes. Traits such as neuroticism and 

impulsivity have been associated with higher risk of relapse and increased symptom 

severity in individuals undergoing treatment (Bucher et al., 2019; Turner et al., 2021). 

Conversely, extraversion, agreeableness and openness are personality traits that have 

been associated with favorable treatment outcomes (Zilberman et al., 2018). 

On the other hand, developing a comorbid SUD in individuals with a mental health 

disorder diagnosis is also associated with increased symptom severity and worse disease 

trajectory. The presence of a comorbid SUD has been associated with an earlier onset of 

schizophrenia, as well as increased hospitalization and mortality. Mortality rates are 

12.7% higher for individuals with comorbid schizophrenia and a SUD than for those with 

schizophrenia alone (Lähteenvuo et al., 2021). Moreover, the presence of a comorbid SUD 

and mood disorders, such as bipolar and major depressive disorder, increases the risk of 

depressive episodes and mortality, specially due to suicide (Blanco et al., 2012; Levola et 

al., 2022), as well as legal and academic difficulties during youth (Goldstein & Bukstein, 
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2010). A 42-year follow up study on SUDs patients admitted into a detoxification unit, 

found that comorbid primary psychoses or mood disorders predicted higher risk of 

premature mortality and deaths by overdose (Fridell et al., 2019).  

Moreover, individuals with comorbid PTSD and SUDs present an overall lower 

physical and mental health status (Mills et al., 2006), probably as the result of a higher 

prevalence of depression, anxiety, suicidality, increased unemployment, and social 

impairment (Flanagan et al., 2016; Pietrzak et al., 2009, 2011). Although PTSD is deeply 

studied in adults and veterans, these impairments can also be present in youth. For 

instance, a study in adolescence with psychotic symptoms showed that co-occurring 

SUDs and PTSD was predictive of increased psychotic symptoms compared to individuals 

with only SUDs (Basedow et al., 2023).  

SUDs diagnosis is an important risk factor for suicidal thoughts and behaviors 

(Yuodelis-Flores & Ries, 2015). Furthermore, the impact on suicidality is even greater 

when individuals have multiple SUDs diagnoses compared to having just one. A recent 

study discovered that individuals with five SUDs diagnoses, including alcohol, cannabis, 

cocaine, tobacco, and opioids, exhibited a 6.77-fold increase in suicidal ideation and a 

3.61-fold increase in suicide attempts when compared to those with a single SUD 

diagnosis (Polimanti et al., 2021).  

2.1. Causal Hypotheses of the Comorbidity between SUDs and other Psychiatric 

Conditions 

The relationship between psychiatric comorbidity and SUDs is complex, and it is still 

unclear whether one precedes the other or whether they are mutually induced (Figure 8). 

However, it is likely that there is no single explanation for this phenomenon. When 

examining the co-occurrence of externalizing or internalizing disorders with SUDs, it 

becomes clear that there are various risk processes differentially relevant across 

subgroups of individuals. Externalizing disorders are associated with a higher risk of SUDs 

through undercontrol/disinhibition behaviors (Zucker et al., 2011). This framework 

proposes that one of the core risk pathways that converge in both externalizing disorders 

and SUDs involves a vulnerability to disinhibitory processes, which is expressed at the 

behavioral level by high undercontrol (Zucker et al., 2011). Studies show that individuals 
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exhibiting higher levels of externalizing behaviors, such as impulsivity, sensation seeking, 

and risk taking, as well as externalizing psychopathology diagnoses in youth, such as 

conduct disorder, oppositional defiant disorder and ADHD, are at higher risk of early 

onset of substance use and SUDs in early/mid adolescence. Similarly, youth with 

increased neurobehavioral disinhibition, described by indicators of executive cognitive 

function, emotional regulation and behavioral control, also exhibit higher risk for SUDs 

(Tarter et al., 2003). 

Conversely, internalizing disorders can increase the risk of SUDs through self-

medication of negative affect mechanisms, whereby individuals use substances in an 

attempt to reduce or relieve symptoms associated with internalizing psychopathology 

(Hussong et al., 2011; O’Neil et al., 2011). Studies show that high levels of internalizing 

behaviours in childhood, such as hopelessness, depressive and anxiety disorders have 

been associated with increased risk of early onset of substance use and SUDs (Bushnell 

et al., 2019; Malmberg et al., 2010; Virtanen et al., 2021).  

Both the undercontrol/disinhibition and the self-medication hypotheses suggest that 

psychiatric disorders precede SUDs. However, the use of psychoactive substances can 

also contribute to the development of mental illness by inducing changes in brain areas 

that are disrupted in other mental disorders, predisposing the individual to develop 

secondary psychopathologies (Balhara et al., 2017) (Figure 8). Additionally, there is a 

Figure 8. Hypothesis about the causal relationships between SUDs and psychiatric comorbidity. 

Adapted from Ornell et al. (2021). 
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growing body of evidence that supports common neurobiological, genetic and 

environmental influences underlying the high comorbidity observed between SUDs and 

mental health related conditions (Ornell et al., 2021; Uher & Zwicker, 2017) (Figure 8).  

2.2.  Comorbidity Between SUDs and ADHD 

Given the focus of this thesis, the relationship between SUDs and ADHD needs special 

attention. ADHD is a common neurodevelopmental disorder that severely impairs the 

daily functioning of the patients due to age-inappropriate levels of impulsivity and 

hyperactivity, and/or difficulties in focusing attention (Faraone et al., 2015). The estimated 

prevalence of ADHD during childhood ranges from 4% to 7%, and there is growing 

evidence indicating its persistence into adulthood in approximately 15% to 65% of 

individuals (Faraone et al., 2015). 

The prevalence of ADHD in individuals with a SUD varies across studies and 

populations, ranging from 14% to 56% (Icick et al., 2020; Oliva et al., 2021; van de Glind 

et al., 2014; Van Emmerik-van Oortmerssen et al., 2014). A recent meta-analysis compiling 

31 studies estimated the prevalence of ADHD among SUDs populations at 21% (Rohner 

et al., 2023). Cannabis, alcohol or tobacco are the most common substances of abuse 

among adolescents with ADHD (Gujska et al., 2023; S. Young et al., 2023). Research 

indicates that individuals with co-occurring ADHD and SUDs show more severe 

symptoms of SUDs, including earlier onset of substance use, faster transition to a SUD 

and higher frequency of polysubstance dependence (Charach et al., 2011; Icick et al., 

2020; Ilbegi et al., 2018; S. S. Lee et al., 2011; Molina et al., 2018). A study using Danish 

large national registers data reported that the mean age of a SUD diagnosis in individuals 

with ADHD was 25 years old (Steinhausen & Bisgaard, 2014). A four-year follow-up study 

found that adolescents diagnosed with ADHD during childhood were two times more 

likely to develop a SUD and more than eight times more likely to develop nicotine 

dependence, compared to healthy controls (Groenman et al., 2013). Moreover, ADHD 

diagnosis after the age of 13, parental history of mental disorders, including a SUD, and 

low parental socio-economic status are risk factors associated with increased risk for 

SUDs in ADHD individuals (Wimberley et al., 2020).  



 

46 
 

In addition, treatment seeking patients with comorbid SUDs and ADHD experience 

greater difficulty remaining abstinent (Kaye et al., 2019), with severity of SUDs being a 

predictive factor for treatment outcome (Akalın & Bilici, 2022). Moreover, these 

individuals exhibit greater psychiatric comorbidity, especially major depressive and 

personality disorders (Regnart et al., 2017; Van Emmerik-van Oortmerssen et al., 2014), 

increased risk of suicide attempts, and overall reduced quality of life (Icick et al., 2020; 

Katzman et al., 2017). Individuals with ADHD also present high rates of conduct disorder 

and oppositional defiant disorder, which are suggested to mediate some of the disruptive 

behaviors that predispose ADHD individuals into developing a SUD, as well as with 

increased symptom severity (Regnart et al., 2017; Torok et al., 2012).  

Large nationwide and observational data shows that methylphenidate given to young 

ADHD patients might be contributing to a decreased risk of developing SUDs (Groenman 

et al., 2019; Quinn et al., 2017; Steinhausen & Bisgaard, 2014). The onset of medication 

can also be an interfering factor in the occurrence of SUDs in these individuals, since 

longer and earlier age at onset of medication treatment has been associated with lower 

rates of SUDs (Steinhausen & Bisgaard, 2014).  

KEY POINTS SECTION 2 

 It is estimated that 53% of individuals with a primary diagnosis of a SUD have at least 

another co-occurring diagnosis for a psychiatric or behavioral disorder, the most prevalent 

being post-traumatic stress disorder, schizophrenia and personality disorders.  

 Comorbid mental health disorders in SUDs cases are associated with a more severe and 

disabling course of illness, poorer social and clinical outcomes, and treatment 

complications. 

 The relationship between SUDs and comorbid disorders is complex, involving undercontrol 

disinhibition and self-medication processes. The use of psychoactive substances can also 

induce the development of secondary mental disorders.  

 Common risk factors (genetic and environmental) can contribute to the co-occurrence of 

SUDs and psychiatric disorders. 

 ADHD frequently co-occurs with SUDs, with an estimated prevalence of 21%, and its 

associated with earlier onset of substance use. Cannabis, alcohol or tobacco are the most 

common substances of abuse among adolescents with ADHD. 

 



Introduction 

47 
 

1 
3. Etiology of SUDs 

The etiology of SUDs is complex and multifactorial, involving an interplay between 

the type of substance or substances consumed, the individual's genetic background, and 

environmental factors (C. P. O’Brien, 2011). Many factors are known to be involved in the 

development of SUDs, mainly genetic predisposition, exposure to adverse childhood 

experiences, the stage of life during which substance use began, personality traits, and 

comorbid mental health conditions (Prom-Wormley et al., 2017). These individual aspects 

are further influenced by broader social-related factors such as the level of familial and 

community support, socioeconomic status and the legal status and availability of the 

substances. The intricate interplay between these factors explains the substantial 

heterogeneity observed in individuals with SUDs, evidenced by the diversity of clinical 

profiles, symptom trajectories, comorbidity patterns and chronicity of the disorder 

(Beseler et al., 2006; Prom-Wormley et al., 2017). Additionally, the distinct 

pharmacological characteristics of different substances also significantly contribute to 

the risk of addiction, impacting the speed at which substance use can escalate to a SUD 

(Figure 9). 

To investigate the etiology of complex disorders like SUDs, family, adoption, and twin 

studies are well-suited as they allow for the control of shared and individual genetic and 

environmental effects (Agrawal & Lynskey, 2008) (Box 2).  

Figure 9. Factors that increase the risk for substance use and SUDs. 
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Family studies have demonstrated that SUDs tend to cluster within families (Kendler 

et al., 1997). In fact, individuals with a first-degree relative with a history of a SUD have 

up to an eight-fold higher risk for developing the disorder (Merikangas et al., 1998). 

Furthermore, there is evidence of specificity of familial aggregation of the predominant 

substance of abuse, suggesting that, in some cases, there may be risk factors that are 

specific to particular substances (Bierut et al., 1998; Merikangas et al., 1998). Nevertheless, 

family studies alone cannot distinguish weather the causes of familial similarity are 

genetic or environmental.  

Adoption studies have been challenging to conduct due to difficulties in accessing 

adoption records. However, the few studies that have been conducted suggest that the 

rates of alcohol problems and other psychiatric disorders are higher for adopted children 

of biological parents with alcohol problems (Cadoret et al., 1995; Goodwin et al., 1973). 

These findings provide support for a direct genetic effect between the biological parent's 

substance use and the offspring's risk for developing a SUD. Furthermore, Cadoret et al., 

(1995) highlighted the significant role played by specific environmental factors within 

Box 2. Population-based study designs to explore SUDs etiology 

 
 

Family studies: Case-control family studies provide initial clues to potential heritable influences 

on addictive disorders by examining the risk of SUDs in the first-degree relatives of individuals 

either with or without a SUD. 

Adoption studies: Adoption studies are based on a comparison of the concordance or 

correlation between offspring disease status and the characteristics of both the biological and 

adoptive parents: similarity between offspring and biological parents is suggestive of genetic 

influences, while similarity between offspring and adoptive parents is suggestive of 

environmental influences. 

Twin studies: Twin studies use monozygotic and dizygotic twin pair variances (that share 100% 

and about 50% of their genetic material, respectively) to estimate the proportion of the total 

phenotypic variance of a trait due to additive genetic (additive genetic effects of alleles at 

every locus), shared environment (common in both twins), and unique environmental 

influences (not shared by members of the twin pair).  
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adoptive families, such as parental divorce and parental psychiatric disorder, in the 

progression of SUDs. 

Literature on twin studies provides valuable insights into specific sources of variation 

in the etiology of SUDs. These studies consistently report that substance initiation is 

influenced by a combination of genetic factors, as well as shared and unique 

environmental factors (Huizink et al., 2010). Meanwhile, the progression from regular 

substance use to a SUD is predominantly driven by addictive genetic factors (Agrawal & 

Lynskey, 2008; Fowler et al., 2007; Kendler et al., 2003). Additionally, these studies reveal 

the presence of both shared and substance-specific genetic factors in the etiology of 

SUDs. On the other hand, shared environmental effects appear to impact on the risk for 

substance use and SUDs in a nonspecific-substance manner, with significant 

contributions observed during adolescence but not in adulthood (Hopfer et al., 2003; 

Kendler et al., 2003).  

 Twin studies have also allowed to estimate the proportion of the total phenotypic 

variance that can be attributed to genetic factors, referred to as heritability (h2). SUDs 

heritability has been estimated to be of 40-60%, although it can vary among specific 

substances (Deak & Johnson, 2021; Lopez-Leon et al., 2021). The heritability for opioid 

use disorder has been estimated to be of 50%, and similar heritability has been estimated 

for alcohol use disorder (50-64%) and for cannabis use disorder (51-59%) (Berrettini, 

2017; Verhulst et al., 2015). For cocaine use disorder, heritability estimates range from 

40-80%, although there is little evidence of cocaine-specific genetic influences (Kendler 

et al., 2007). Tobacco use disorder heritability shows substantial variability, ranging from 

30-70%, which could be explained, at least in part, due to different scales and 

questionnaires used to assess tobacco use disorder, namely the DSM or the Fagerström 

Test for Nicotine Dependence (FTND) (Deak & Johnson, 2021) (Figure 10).  

 Most studies examining SUDs have focused on a single substance of abuse. These 

studies suggest that part of the genetic factors attributed to the heritability of SUDs are 

substance-specific, particularly for tobacco (Kendler et al., 2007). When it comes to illicit 

substances, the influence of substance-specific genetic factors appears to be modest 

overall (Kendler et al., 2003; Tsuang et al., 2001), with the exception of opioids, where it 
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has been estimated that 38% of the variation in opioid use disorder can be attributed to 

specific genetic factors (Nielsen & Kreek, 2012; Tsuang et al., 1998). However, many 

individuals use more than one substance (Morley et al., 2015) and there is compiling 

evidence of the common genetic architecture and genetic liability underlying all SUDs 

(Hatoum et al., 2022; Palmer et al., 2015). 

3.1.  Genetic Factors of SUDs 

In the scope of this thesis, the goal of genetic studies is to identify genetic risk factors 

that may have a role in the development or progression of complex disorders, such as 

SUDs. There are many different methodologies, study designs and analytical tools for 

identifying genetic risk factors. This thesis will focus on genome-wide association studies 

(GWASs). The current literature on GWASs, has shown that most traits are influenced by 

thousands of causal genetic variants that individually confer very little risk, are often 

associated with multiple traits at once and are correlated with causal and non-causal 

variants that are physically close in the DNA sequence (Uffelmann et al., 2021). Given 

these limitations, it can be challenging to draw clear conclusions from GWASs alone, and 

post-GWASs functional studies have had an essential role in understanding the genetic 

architecture of complex traits and predicting disease risk (Gelernter & Polimanti, 2021). 

All these aspects will be discussed further in this section, along with the most relevant 

findings for SUDs. While this section focuses on exploring findings related to common 

genetic variation from GWASs, it's essential to acknowledge that there are other types of 

genetic variations that also significantly contribute to the genetic etiology of SUDs, 

Figure 10. Ranges of estimated heritability of SUDs across substances. 
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including copy number variants (CNV) and rare variants (Cabana-Domínguez et al., 2016; 

D. Li et al., 2015; Rajagopal et al., 2023; Sulovari et al., 2018). 

3.1.1.  Genome-Wide Association Studies  

GWASs aim to identify genetic variations that are associated with a particular trait or 

disease by testing for differences in the allele frequency of genetic variants between 

individuals who differ phenotypically (Uffelmann et al., 2021). This approach can be 

implemented for both categorical (e.g., case/control disease status) and continuous (e.g., 

height, educational attainment) phenotypes. The most frequently studied genetic 

variation in GWASs are single-nucleotide polymorphisms (SNPs), which are the most 

abundant form of genetic variation in the human genome (Ku et al., 2010). In addition, 

SNPs classify as a type of common genetic variation, which means that they are present 

in a large proportion of the human population, with a Minor Allele Frequency (MAF) 

greater than 1%. This form of common genetic variation generally has small effects on 

the phenotype or complex trait, whether other forms of genetic variation, such as rare 

variants (less frequent in the population, MAF less than 1%), tend to have larger effects 

on the phenotype. Other types of genetic variation that can be studied in GWASs include 

insertions, deletions and structural variants (Ku et al., 2010).  

The success of GWASs relies on the ability to capture the whole genome common 

genetic variation by only targeting a subset of tag SNPs, via linkage disequilibrium (LD) 

(Bush & Moore, 2012). LD is the non-random co-occurrence of alleles at different loci, 

meaning that certain alleles are inherited together more often than expected by chance, 

and therefore form a haplotype (Slatkin, 2008). Generally, physically close variants are at 

higher LD than distant variants, and a high LD implies that the information in one SNP is 

strongly predictive of the other SNP. Therefore, a GWAS containing information about 

the association of a subset of tag SNPs on a given phenotype can detect the association 

of a SNP that is in LD with a causal variant for that phenotype (Bush & Moore, 2012). In 

addition, it is possible to aggregate the contribution of each genome-wide locus 

estimated in a GWAS to determine the proportion of variance in liability explained by 

these loci together, thus quantifying the effects of all SNPs. This is referred to as SNP-
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based heritability (h2
SNP). Box 3 presents an overview of the general workflow for GWAS, 

which will be elaborated below.  

Commercial genotyping arrays vary in their genome coverage and disease specificity. 

For example, Illumina offers microarrays with coverage ranging from 640 K to 2.4 million 

markers (Verlouw et al., 2021). Following genotyping, data must undergo rigorous quality 

control at both the individual and SNP level to ensure reliable results from GWAS. Briefly, 

quality control involves removing rare or monomorphic variants, those not in Hardy-

Weinberg equilibrium (HWE), and SNPs missing from a proportion of individuals (Reed 

et al., 2015). Moreover, individuals with missing genotypes, duplicates, related 

individuals, sex discrepancy and outlying heterozygosity rate are also removed (Reed et 

al., 2015). Furthermore, ancestry and population stratification must be carefully 

accounted for through Principal Component Analysis (PCA), which clusters individuals by 

genotype similarity and allows to detect and exclude ancestry outliers (Hellwege et al., 

2017; Uffelmann et al., 2021). Next, imputation increases genomic coverage by inferring 

variants that have not been directly genotyped (Bush & Moore, 2012), using reference 

panels with known genotypes and LD patterns, such as the Haplotype Reference 

Consortium (HRC) (McCarthy et al., 2016) and the 1000 Genomes (1KG) Project (Auton et 

al., 2015) (Box 3).  

The core step of the GWAS is the single-locus statistic test, examining each SNP 

independently for association with the phenotype (Bush & Moore, 2012). GWASs results 

are reported in summary statics, which includes effect sizes (odds ratio (OR) or beta (β)), 

standard errors and p-values, among other parameters, and visualized using Manhattan 

plots. Genome-wide significance (GWS) is determined using a stringent multiple-testing 

threshold of 1 million independent tests, resulting in a Bonferroni corrected threshold of 

p-value<5x10-08 (Uffelmann et al., 2021). Downstream analyses are necessary to 

identifying causal variants, their functional significance, and any potentially meaningful 

biological pathways (Box 3). To obtain larger sample sizes and detect loci influencing 

complex traits, GWASs meta-analyses (GWASMAs) are performed by combining data 

from multiple sites (Zeggini & Ioannidis, 2009) (Box 3). Box 4 details some of the major 

biobanks and collaborative projects that have provided insights into the genetics of 

SUDs.  
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Adapted from Uffelmann et al. (2021) 
 

Data collection 

Data can be collected from study cohorts or 

available genetic and phenotypic information can be 

used from biobanks or repositories. Confounders 

need to be carefully considered and recruitment 

strategies must not introduce biases such as collider 

bias. 

 

Genotyping  

Genotypic data can be generated using microarrays 

to capture common variants, with coverage ranging 

from 640K to 2.4 million markers.  

 

Quality control 

Quality control steps include deletion of bad quality 

SNPs and samples, detection of population 

stratification in the sample and calculation of 

principle components, through principal component 

analysis (PCA). 

 

Imputation 

Imputation involves the statistical inference of 

genotypes that have not been assayed directly using 

information from matched reference populations. 

Genomic coverage increases up to 8-10 million 

variants. 

 

Association testing 

Genetic association tests are run for each genetic 

variant, using an appropriate model (e.g., linear or 

logistic regression). Confounders are corrected for, 

including principal components, sex and age. Output 

is visualized in Manhattan plots and summary 

statistics are generated. 

 

Meta-analysis 

Results from multiple cohorts are combined using 

standardized statistical pipelines.  

 

Box 3. Overview of the general workflow of a GWAS 
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3.1.1.1. Genome-Wide Association Studies of SUDs 

 Large scale GWASs have mainly focused on investigating individual substances to 

uncover the polygenic architecture of SUDs, including alcohol, tobacco, cannabis, opioid 

or cocaine use disorder. In addition, GWASs have utilized various intermediate 

phenotypes related to SUDs, such as quantitative measures like number of cigarettes 

smoked per day or drinks consumed per week, as well as indicators of substance use 

initiation, such as smoking or cannabis use initiation. These intermediate phenotypes 

allow the study of SUDs-related behaviors to uncover the substantial genetic complexity 

involved in the development of SUDs (Deak & Johnson, 2021). Nevertheless, given the 

high prevalence of polysubstance use (Morley et al., 2015), GWASs conducted on 

individual substances are likely to include subjects with multiple SUDs diagnoses. This 

Box 4. Relevant biobanks and collaborative projects for substance use and SUDs 

 23andme (https://www.23andme.com/) is a biotechnology company that offers direct to 

consumer genetic testing. Customers can participate in research programs by completing 

an online surveys regarding health-related outcomes. This data is used to investigate the 

genetics of common diseases and traits.  

 The GWAS and Sequencing Consortium of Alcohol and Nicotine use (GSCAN) 

(https://genome.psych.umn.edu/index.php/GSCAN) is an international meta-analysis 

consortium with a focus on understanding the etiology of alcohol and nicotine use and 

addiction, that aggregates genetic association findings across studies with millions of 

individuals. 

 The Million Veteran Program (MVP) (Gaziano et al., 2016) is a national research program 

looking at how genes, lifestyle, military experiences, and exposures affect health and 

wellness in Veterans. 

 The Psychiatric Genomics Consortium (PGC) (https://pgc.unc.edu/) is a large collaborative 

effort including 800+ investigators, 36 countries, and >400K subjects aimed toward 

elucidating the genetic contributions across psychiatric disorders. The PGC consists of 14 

working groups, including the Substance Use Disorders (PGC-SUD) Working Group. 

 UK Biobank (Bycroft et al., 2018) is a large-scale biomedical database and research 

resource, containing in-depth genetic and health information through self-reported 

questionnaires from half a million UK participants. 
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circumstance can potentially diminish the power to identify genetic risk factors specific 

to each substance. For an overview of the largest GWAS conducted to date on SUDs and 

SUD-related phenotypes, see Table 1.  

Alcohol. Alcohol-drinking behaviors are among the few complex mental health 

phenotypes that have common risk alleles with relatively large effect sizes. The influence 

of genes encoding alcohol-metabolism enzymes, such as Alcohol Dehydrogenase 1B 

(ADH1B) and Aldehyde Dehydrogenase 2 (ALDH2), has been consistently associated with 

alcohol use disorder and alcohol-related phenotypes. In addition, recent GWAS with 

larger sample sizes have successfully identified numerous other risk loci for alcohol 

behaviors. A GWAS of self-reported alcohol consumption identified two GWS loci in the 

β-Klotho (KLB) gene, previously associated with alcohol consumption and with alcohol 

preference in mice studies, and a few novel GWS loci, one in the Dopamine Receptor D2 

gene (DRD2), which plays an important role in addiction, and another in the Glucokinase 

Regulator gene (GCKR) (Clarke et al., 2017) (Table 1). A following GWAS, which 

investigated separately alcohol consumption and problematic drinking, replicated the 

well-stablished ADH1B, ADH1C, KLB and GCKR gene findings as well as finding several 

novel associations, including the Junctional Cadherin 5 Associated gene (JCAD) and the 

Solute Carrier Family 39 Member 13 gene (SLC39A13) (Sanchez-Roige et al., 2019) (Table 

1). Similarly, a GWAS for alcohol consumption and alcohol use disorder was able to 

replicate the previous findings in a multi-ancestry population (Kranzler et al., 2019). From 

the 18 GWS loci, only five loci were associated with both traits (alcohol consumption and 

alcohol use disorder), including loci in ADH1B gene as the lead finding, ADH1C gene and 

the Solute Carrier Family 39 Member 8 gene (SLC39A8), among others. KLB was only 

found to be associated with alcohol consumption, while DRD2 only showed an 

association with alcohol use disorder (Table 1). Another GWAS assessed the maximum 

habitual alcohol intake and, again, identified the ADH1B gene as the lead finding for all 

ancestries, while also replicating relevant alcohol use loci for heavy alcohol use (Deak, 

Levey, et al., 2022) (Table 1). The alcohol-related trait “drinks per week” has also been 

used in numerous studies as an intermediate phenotype for alcohol use disorder. The 

largest GWAS for drinks per week found 81 risk loci associated with this phenotype (M. 

Liu et al., 2019) (Table 1). The most relevant GWAS for alcohol use disorder to date is a 
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meta-analysis combining 435,563 individuals assessed for alcohol use disorder, alcohol 

dependence, and problematic drinking, which allowed the study of the trait denominated 

problematic alcohol use. This study identified 29 independent risk variants, 19 of them 

novel, elucidating relevant findings, such as the Phosphodiesterase 4B gene (PDE4B), the 

Cell Adhesion Molecule 2 gene (CADM2), and a novel rare variant in ADH1B (Zhou, 

Sealock, et al., 2020) (Table 1). This study estimated a h2
SNP of 6.8%, which is in line with 

the other alcohol use disorder GWASs (Kranzler et al., 2019; Zhou, Sealock, et al., 2020) 

(Table 1).  

Tobacco. Tobacco smoking-related phenotypes are the best studied among SUDs, 

due to its high prevalence and well-powered studies. The strongest finding in tobacco 

use and nicotine dependence is within the gene cluster encoding the Neuronal 

Acetylcholine Receptor (CHRNA3– CHRNA5–CHRNB4). Hancock et al., replicated this 

finding in two different GWASs of nicotine dependence (Hancock et al., 2015, 2018) 

(Table 1). In the 2018 GWAS of for nicotine dependence, where African-American and 

European populations were included, Hancock et al, (2018) found a novel variant in the 

DNA Methyltransferase gene (DNMT3B). Another GWAS for nicotine dependence found 

five GWS loci, providing further evidence of CHRNA5 and CHRNA4 risk genes, and 

highlighting other findings, such as the Teneurin Transmembrane Protein 2 (TENM2) and 

Dopamine β-Hydroxylase (DBH) (Quach et al., 2020). This study estimated an h2
SNP for 

nicotine dependence of 8.6% (Quach et al., 2020) (Table 1). Many GWASs for nicotine 

have focused on behaviors related to tobacco smoking and smoking trajectories. The 

largest to date included up to 1.2 million individuals of European Ancestry assessed for 

four smoking related phenotypes: smoking initiation, smoking cessation, age of smoking 

initiation and cigarettes per day. This incredibly well-powered study found 406 risk loci 

associated across all stages of tobacco use, including loci in all nicotinic receptor genes 

(except CHRNA7), the Phosphatase 1 Regulatory Subunit 1B gene (PPP1R1B) with 

smoking initiation, and the DBH gene with cigarettes per day and smoking cessation (M. 

Liu et al., 2019) (Table 1). Furthermore, a GWAS for longitudinal smoking phenotypes, 

including “mostly current smoking”, “mixed smoking-nonsmoking” and “mostly never 

smoking”, identified 18 loci, some of them in novel genes, such as the Neuronal Growth 

Regulator 1 gene (NEGR1) and Cyclin and CBS Domain Divalent Metal Cation Transport 
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Mediator 2 gene (CNNM2), associated with smoking trajectories (Xu et al., 2020) (Table 

1). The latest and largest GWAS meta-analysis on tobacco use disorder (preprint) 

comprising 898,680 multi-ancestry individuals, identified 88 risk loci and estimated a 

h2
SNP of 7%. Findings included the Nicotinic Acetylcholine 466 receptor genes (CHRNA5-

A3-B4, CHRNB2, CHRNA2, CHRNA4), as well as CYP2A6 previously linked to heavy 

smoking, and PDE4B also associated to other addiction phenotypes (Toikumo et al., 2023) 

(Table 1).  

Cannabis. Cannabis is the most commonly used illegal substance throughout most of 

the world and is becoming increasingly socially accepted, which can affect the incidence 

of cannabis use disorder in the population. Despite that, current GWASs for cannabis use 

disorder have limited power to detect robust and replicable risk loci, compared to alcohol 

or nicotine, due to the small sample sizes available. The first relevant GWAS for cannabis 

dependence found three GWS risk loci in a multi-ancestry population, with the most 

notable finding being in the CUB and Sushi Multiple Domains 1 gene (CSMD1), which 

has also been linked to schizophrenia (Sherva et al., 2016) (Table 1). A following GWAS 

only in European-ancestry individuals found a novel GWS loci enriched for H3K4me1 and 

H3K427ac histone modifications, but it could not be replicated in an independent cohort 

(Agrawal et al., 2018) (Table 1). In an effort to achieve larger sample sizes, two GWASs 

were performed in cannabis-use related phenotypes, including lifetime cannabis use and 

age at first cannabis use. The GWAS on lifetime cannabis use found eight GWS, with the 

top SNP in CADM2, a gene previously associated with alcohol consumption, and risk-

taking behavior (Pasman et al., 2018) (Table 1). Meanwhile, a GWAS for age at first 

cannabis use found five GWS all in the Calcium-transporting ATPase gene (ATP2C2). This 

finding could not be replicated in an independent cohort (Minică et al., 2018) (Table 1). 

Two large GWASs directly assessing cannabis use disorder have been performed so far. 

The first one found a relevant GWS association in the Cholinergic Receptor Nicotinic α2 

Subunit (CHRNA2), specifically with an under-expression of this gene in the cerebellum 

of cannabis use disorder individuals (Demontis, Rajagopal, et al., 2019) (Table 1). The 

latest GWAS on cannabis use disorder (N = 20,916 cases and 363,116 controls) found 

two GWS loci, the first locus located in the novel Forkhead Box Protein P2 gene (FOXP2) 

and the second one near CHRNA2 – supporting the evidence from the previous GWASs 
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- and Epoxide Hydrolase 2 gene (EPHX2). This study estimated an h2
SNP for cannabis use 

disorder of 6.7% (E. C. Johnson, Demontis, et al., 2020) (Table 1).  

Opioids. The interest in performing large GWASs for opioid use disorder has 

increased over the past few years due to the increasing cases of opioid overdose in the 

USA, which has been denominated the “opioid epidemic”. The first GWASs of opioid use 

disorder yielded GWS loci in the Repulsive Guidance Molecule BMP Coreceptor A gene 

(RGMA) and in the Cornichon Family AMPA Receptor Auxiliary Protein 3 gene (CNIH3) 

(Cheng et al., 2018; Nelson et al., 2016) (Table 1). Furthermore, the first large-scale opioid 

use disorder GWAS observed a GWS variant in the μ-opioid receptor OPRM1 gene. This 

gene is considered the main biological target of opioids. This study also estimated a h2
SNP 

of 11% (Zhou, Rentsch, et al., 2020) (Table 1). Another GWAS compared opioid dependent 

individuals, opioid-exposed controls and opioid-unexposed controls (Polimanti et al., 

2020). There were some genetic differences, including the association of the Solute 

Carrier Family 30 Member 9 gene (SLC30A9) and the BEN Domain Containing 4 gene 

(BEND4) with opioid use (exposed vs. unexposed controls GWAS), but not with the opioid 

dependence (opioid dependence vs. exposed or unexposed controls GWAS) (Table 1). 

These analyses highlighted the difference between dependence and exposure and the 

importance of considering the definition of controls (exposed versus unexposed) in SUD 

studies. Two large opioid use disorder GWASs have been conducted in the past year 

(Deak, Zhou, et al., 2022; Kember et al., 2022). Deak et al., found three GWS variants in a 

European population of 639,063 individuals, one in the Paired Basic Amino Acid Cleaving 

Enzyme gene (FURIN) and the other two in OPRM1 (Deak, Zhou, et al., 2022). Moreover, 

Kember et al., identified ten independent GWS loci in a multi-ancestry GWAS of 425,944 

individuals of a less stringent opioid use disorder diagnosis, and one additional loci when 

considering only a stringent opioid use disorder definition. Findings replicated previous 

associations with OPRM1 and FURIN, as well as identified novel loci in the Rab9 Effector 

Protein With Kelch Motifs gene (RABEPK) and the Neural Cell Adhesion Molecule 1 gene 

(NCAM1), among others (Kember et al., 2022). Moreover, the estimated h2
SNP in both 

GWAS was of 12-13% (Deak, Zhou, et al., 2022; Kember et al., 2022) (Table 1).  

Cocaine. Cocaine use disorder is notably the SUD with the lower sample sizes in 

GWASs. The first GWAS on cocaine dependence identified a GWS variant in the Family 
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with Sequence Similarity 53, Member B gene (FAM53B) (Gelernter et al., 2014) (Table 1). 

Another GWAS performed a few years later did not identify GWS risk loci (Cabana-

Domínguez et al., 2019). However, it identified the gene HIST1H2BD in a gene-based 

analysis, previously associated to schizophrenia (Table 1). The largest GWAS to date (N = 

9,965) used cluster analyses to identify cocaine use disorder subtypes with reduced 

phenotypic heterogeneity (Sun et al., 2020). Five clusters were identified, which were then 

used as traits for the GWAS. From the 13 GWS loci identified, three loci were replicated 

in a replication sample, located in the Trafficking Kinesin-Binding Protein 2 gene (TRAK2), 

the Latrophilin 2 gene (LPHN2) and the Transmembrane Protein 51 gene (TMEM51). This 

study, though, could not replicate the previous FAM53B finding (Sun et al., 2020) (Table 

1).  

SUD. Recent efforts have been made to explore the common underlying genetic 

architecture for all SUDs, that is a general addiction genetic factor that conveys 

vulnerability to multiple SUDs. Hatoum et al., (2022) combined the latest GWASs 

summary statistics for problematic alcohol use, problematic tobacco use, cannabis use 

disorder and opioid use disorder into a multi-ancestry sample of 1,118,180 individuals 

and defined “The Addiction-Risk-Factor” (addiction-rf) as the unidimensional shared 

genetic liability between all SUDs, and independent of substance use. Next, a multivariate 

GWAS meta-analysis was performed to disaggregate general (addiction-rf) and 

substance-specific (alcohol, nicotine, cannabis and opioids) loci from published summary 

statistics of these same SUDs (problematic alcohol use, problematic tobacco use, 

cannabis use disorder and opioid use disorder) in a mixed-ancestry sample of 1,118,180 

individuals (Hatoum et al., 2023). The addiction-rf was associated with 17 GWS risk loci, 

with the top finding in DRD2, and other findings highlighting FTO, PDE4B, GTF3C2, 

ZNF512, ADH1C and SIX3 (Table 1). In addition, substance-specific associations 

highlighted six GWS loci for problematic alcohol use with the top signal in ADH1B, 12 

loci for problematic tobacco use with the top finding being CHRNA5, five loci for 

cannabis use disorder with the top signal in FAM19A5, and one loci for opioid use 

disorder in OPRM1.  
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1 3.1.2. Post-GWAS Analysis  

The results from GWASs can be used as the bases for a wide range of analytical 

approaches, starting by the discovery of genes and biological pathways implicated in the 

pathology of complex traits. Within this thesis, findings obtained from GWASs were 

utilized to gain insights into the underlying genetic architecture and the complex 

interplay between correlated traits, employing three main post-GWASs methodologies: 

genome-wide polygenic score (PGS), genetic correlation and Mendelian randomization 

(MR) analyses (Figure 11).  

 

3.1.2.1. Genetic Correlation 

Information from two GWASs summary statistics can be used to estimate the 

correlation in allele effects between two traits across the genome (van Rheenen et al., 

2019). This parameter is defined as the genetic correlation (rg) between two traits. In 

Mendelian Randomization 

 Genetic correlation 

 

Genome-wide 

polygenic score 

 

Genome-wide association study 

 

Figure 11. Overview of post-GWAS analyses employed in this thesis. GWASs data sets can 

be used as the basis for multiple analytical approaches, such as genome-wide polygenic 

score (PGS), genetic correlation and Mendelian randomization (MR) analyses, to 

understand the mechanisms underlying the associations observed between complex traits. 

Adapted from Gelernter et al. (2021). 
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other words, genetic correlation quantifies the pleiotropy between two traits, 

understanding pleiotropy as the ability of a genetic locus to affect more than one trait 

(Figure 12). Pleiotropy between two traits can reflect different methods of action, mainly 

horizontal pleiotropy, where the genetic variant contributes directly to the risk of both 

traits, and vertical pleiotropy where there is a causal relationship between the two traits 

and the direct effect of the genetic variant on the first trait generates a response on the 

second trait. Genetic correlation can capture these two forms of pleiotropy, so the 

underlying architecture of correlations at the individual genetic variant can vary (Figure 

12).  

Genetic correlation of SUD and related traits: Estimating the genetic correlation across 

multiple disorders and/or traits has become a standard practice after any SUD-related 

primary GWAS. Although SNP-based heritability is still low based on current data, these 

analyses have helped to elucidate the consistent genetic overlap between SUDs and a 

wide range of psychiatric disorders and behavioral traits.  

As expected, SUDs are generally correlated with each other, for instance, alcohol use 

disorder shows strong genetic correlation with smoking initiation, nicotine dependence 

and lifetime cannabis use, and vice versa (Deak, Zhou, et al., 2022; E. C. Johnson, 

Demontis, et al., 2020; Quach et al., 2020; Zhou, Sealock, et al., 2020). In addition, genetic 

correlation analysis from all the SUD-specific GWASs previously mentioned (Table 1) 

consistently show positive genetic correlations with psychopathology, with the strongest 

Figure 12. Different mechanisms of pleiotropy between two diseases. X and Y correspond to two 

different traits or diseases; G=genetic variant; Z=intermediate phenotype. Adapted from van 

Rheenen et al. (2019). 
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1 
overlap observed for major depressive disorder, anxiety, ADHD, bipolar disorder, PTSD 

and schizophrenia, as well as with behavioral traits such as neuroticism and risk taking. 

Conversely, SUDs show negative genetic correlations with cognitive traits, the most 

relevant being years of education and intelligence (Abdellaoui et al., 2021; Cabana-

Domínguez et al., 2019; Deak, Zhou, et al., 2022; E. C. Johnson, Demontis, et al., 2020; 

Quach et al., 2020; Zhou, Sealock, et al., 2020).  

Intriguingly, this pattern of correlations is not always consistent when looking into 

quantity/frequency substance use phenotypes. For instance, alcohol consumption 

frequency showed negative correlation with major depressive disorder and positive 

correlation with years of education (Kranzler et al., 2019). This pattern was not seen when 

alcohol consumption quantity (maximum habitual alcohol intake) was assessed, which 

was more genetically similar with alcohol use disorder and psychopathology (Deak, 

Levey, et al., 2022). Even though alcohol consumption is a necessary component for 

alcohol use disorder, seen by the presence of substantial genetic correlation between 

them (rg =0.52) and the high overlap of associated risk genes, these findings suggest 

that the genetic architecture they share with other psychiatric and behavioral traits differs 

completely between them. It is likely that GWASs for alcohol consumption frequency are 

capturing socially accepted drinking behaviors, which may be influenced by 

sociodemographic status. 

Moreover, smoking-related phenotypes, which measure quantity and frequency of 

use, showed modest genetic correlations with psychopathology (M. Liu et al., 2019). 

Smoking initiation was found to be only modestly genetically correlated with nicotine 

dependence (rg = 0.40), while cigarettes per day showed a highly positive genetic 

correlation with nicotine dependence (rg = 0.95). This suggests that, similarly to alcohol 

drinking-related phenotypes, traits assessing quantity of use, rather than frequency, are 

genetically more similar to dependence phenotypes (Quach et al., 2020). Furthermore, 

lifetime cannabis use only showed modest genetic correlation with cannabis use disorder 

(rg = 0.50) and weaker genetic relationships with educational attainment and body mass 

index (E. C. Johnson, Demontis, et al., 2020; Pasman et al., 2018). 
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The latest GWAS on the addiction-rf replicated the genetic correlation between SUD 

and all stage-based facets of addiction: risk-taking (binge/intoxication), executive 

function (preoccupation/anticipation), and neuroticism (negative affect) (Hatoum et al., 

2022). It was also strongly genetically correlated to suicide attempt, externalizing 

behaviors, self-medication, unemployment, maternal smoking around birth and age first 

had sexual intercourse, among others (Hatoum et al., 2023) (Figure 13). 

3.1.2.2. Genome-Wide Polygenic Scores 

PGSs - also referred to as polygenic risk scores (PRSs) in the context of disease -  are 

the quantitative measure of the total genetic burden of a trait and/or disease over 

multiple susceptibility variants (Chatterjee et al., 2016). These scores are calculated for 

individuals in a target sample by summing up the number of risk alleles they carry 

weighted by their effect size estimated in a large-scale GWAS from an independent 

sample (discovery sample) (Box 5). The computation of PGSs was initially introduced in 

the context of psychiatric diseases. It was based on the premise that, due to their high 

polygenicity, insufficient sample sizes in early GWASs produced few robust associations, 

but the aggregation of many loci below the GWS threshold could significantly predict 

Figure 13. Genetic correlation of the addiction-rf and relevant phenotypes. List of selected relevant 

phenotypes showing a high genetic correlation with the addicition-rf. The 95% confidence 

interval of the genetic correlation estimates were obtained from Hatoum et al. (2023). 
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1 
disease risk in new studies (Wray et al., 2007, 2014). In order to do so, several methods 

can be used to calculate PGSs, depending on how the SNPs included in the analysis are 

selected. One approach is to select SNPs based on pre-defined p-value thresholds of 

association in the GWAS summary statistics (e.g., p-value <.00001, .0001, .001, .01, .1). 

Alternatively, genome-wide SNPs can be included, which requires accounting for the LD 

structure between variants and to re-estimate SNPs weights.  

From a clinical perspective, PGSs can be used to identify individuals at high risk of 

disease for prevention and early intervention. In current genetic research, and in this 

thesis, PGSs are a tool to quantify the genetic liability for a trait explained by GWASs 

associated SNPs and to assess the association with that trait in an independent sample. 

PGS studies also allow cross-phenotype analysis, were the phenotype of the discovery 

sample, on which the GWAS is conducted, differs from the phenotype of the target 

sample used to construct the PGSs, allowing the exploration of the genetic overlap 

among related traits and diseases (Wray et al., 2014).  

Step 1: GWAS summary statistics are 

obtained from a discovery sample, 

which detail the effect size of each SNP 

on the phenotype of interest. 

Step 2: Genotype data for a target sample 

are referenced against GWAS summary 

statistics. 

Step 3: PGSs can be calculated for each 

individual in the target sample by 

summing up the number risk alleles 

weighted by the effect size from the 

discovery summary statistics. 

Step 4: Association analysis is performed 

to assess the effect of the PGSs on the 

outcome measure. 

Box 5. Overview of the steps for calculating PGSs 
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Furthermore, PGSs can be utilized in phenome-wide association studies (PheWASs) 

to conduct a comprehensive examination of the genetic liability for a single or multiple 

trait(s), represented by PGSs, with a wide range of phenotypes or traits. 

PGS studies of SUDs and related traits. SUDs PGSs show limited predictive power on 

an individual basis, meaning they are not (yet) good at predicting disease risk in an 

individual. However, they can be used to understand the genetic overlap between 

different SUDs and a wide range psychiatric and behavioral traits (Lewis & Vassos, 2020).  

A PheWAS of PGSs for alcohol and opioid use disorder, smoking initiation and 

lifetime cannabis use was conducted in a deeply phenotyped sample, to examine the 

patterns of pleiotropy of these four PGSs with multiple phenotypic domains (Kember et 

al., 2023). This study replicated known and identified novel phenotypic associations 

between SUDs and major depressive disorder, poor school performance, PTSD, lifetime 

trauma assessment and family history of SUDs (Kember et al., 2023).  

Moreover, the addiction-rf PGS was found to be associated with various medical 

conditions, including psychiatric illnesses, self-harming behaviors, and somatic diseases, 

such as chronic pain, as well as polysubstance use disorder and individual SUDs (Hatoum 

et al., 2023). A following PheWAS revealed correlations between the addiction-rf and 

maternal tobacco smoking during pregnancy and ADHD, consistent with existing 

evidence suggesting that the impacts of the prenatal environment may be influenced by 

inherited risk genes. Moreover, it was associated with family history of serious mental 

illness, and indices of socioeconomic status and disability, further supporting the 

association between environmental risk factors and common genetic effects on SUDs 

liability (Hatoum et al., 2023). In substance-naïve children, the addiction-rf PGS was 

positively associated with parental substance use problems, externalizing behavior, fun-

seeking behavior, family history of SUDs and hospitalization, childhood externalizing 

behaviors, and socioeconomic disadvantage (Hatoum et al., 2023). 

On the other hand, studies have also examined the association between PGSs for 

psychiatric disorders and substance use or dependence. A study found significant 

associations between PGSs for individual psychiatric diagnoses and substance-specific 

use or dependence, including major depressive disorder PGS with cannabis use and 
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cocaine dependence, and schizophrenia PGS with cannabis use cannabis dependence 

and cocaine dependence (Carey et al., 2016). A recent study revealed that, across six 

different psychiatric disorders previously associated with SUD, schizophrenia PGS 

explained the highest variance in SUD genetic susceptibility (Gurriarán et al., 2019), which 

aligns with the reports from epidemiological and genetic correlation studies (Lähteenvuo 

et al., 2021).  

Within this thesis, the association between SUDs and ADHD holds particular interest. 

Genetic correlations and PGS analyses support a shared genetic background between 

ADHD and SUDs, reporting evidence of positive genetic correlations between ADHD and 

different SUDs (Hatoum et al., 2023; Pasman et al., 2018; Walters et al., 2018) In addition, 

Wimberley et al., (2020) found that high ADHD PGS increased the risk of any SUD in an 

ADHD cohort, although ADHD still explained a minor proportion of the variance in SUDs. 

In another study, ADHD PGS was significantly associated with alcohol frequency intake, 

alcohol dependence and ever smoking (Du Rietz et al., 2018). Moreover, ADHD PGS also 

showed suggestive associations with cannabis use and nicotine dependence (Carey et al., 

2016).  

3.1.2.3. Mendelian Randomization  

MR is a technique used to investigate causal relationships between exposures and 

outcomes by leveraging genetic variants as instrumental variables (Sanderson et al., 

2022). This approach uses genetic instruments associated with the exposure to estimate 

causal effects not affected by the presence of unobserved confounding (Uffelmann et al., 

2021). The rationale of MR is similar to that of randomized control trials, where the 

random assignment of a treatment between two groups allows the evaluation of its effect 

on an outcome avoiding the effect of potential confounding factors. In MR, genetic 

variants serve as a naturally occurring form of randomization (Sanderson et al., 2022) 

(Box 6).  

There are three assumptions each genetic variant needs to meet to be considered a 

valid instrument for causal interference and effect estimation: First, it should be robustly 

associated with the exposure of interest. Secondly, it should not directly affect the 

outcome except through its influence on the exposure. Thirdly, it should not be 
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associated with the outcome due to confounding factors (Burgess et al., 2020) (Figure 

14). When multiple genetic variants that fulfil these assumptions can be identified, the 

statistical power to estimate true causal effects improves by increasing the proportion of 

the exposure variance explained by the instruments (Burgess et al., 2013).  

MR studies can be conducted using either individual-level data or, more commonly, 

summary data obtained from GWASs. While individual-level data includes genetic and 

phenotype measures for each participant, summary data estimates the association 

between the SNP(s) and both the exposure and the outcome traits separately (Sanderson 

et al., 2022). When using summary data, the association between the SNP(s) and the 

exposure can be estimated in an independent sample, distinct from the one used to 

estimate the effect of the SNP(s) on the outcome, which is referred to as “two-sample 

MR” (Burgess et al., 2013).  

In any MR analysis, a range of sensitivity analyses need to be employed to test for 

violations of any the three assumptions, which can invalidate MR results (Burgess et al., 

2020). The first assumption can be tested through the association between the SNPs and 

the exposure. If the genetic instruments are not strongly associated with the exposure, 

then weak instrument bias can be introduced into the MR estimation (Davies et al., 2015). 

Figure 14. Mendelian randomization model and three key assumptions of a Mendelian 

randomization analysis. G: genetic variant; X: exposure; Y: outcome; U: confounder. 
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Although the second and third assumptions cannot be proven to be true, there are a 

variety of methods that focus on detecting and accounting for horizontal pleiotropy -  a 

violation of the third assumption – which occurs when genetic instruments have a direct 

effect on the outcome or on another phenotype with a main effect on the outcome 

(Katikireddi et al., 2018). An important limitation of MR studies is the presence of 

unmeasured confounding of the genetic variants and the outcome, which violates the 

second assumption, as current MR sensitivity analysis do not account or correct 

completely for this potential bias. Therefore, it is valuable to interpret MR findings within 

a triangulation of evidence framework, considering results from complementary 

approaches that rely on different assumptions (Munafò et al., 2021). 

Box 6. Principles of the Mendelian randomization approach 

 
 

The MR approach utilizes Mendel's laws of genetic inheritance as its foundation, 

specifically the law of segregation and the law of independent assortment. According to the 

law of segregation, offspring randomly inherit one allele from each parent at every point in 

the autosomal genome. The law of independent assortment states that these alleles are passed 

down to offspring independently of each other, except in regions of the genome that are 

genetically linked. 

The concept of MR was initially described in the context of family-based studies, drawing 

an analogy to randomized controlled trials by comparing the random allocation of genetic 

variants from parents to their children. However, due to limited availability of family-based 

data, population-based MR studies have been introduced as an alternative. The rationale 

behind population studies is that genetic variants can identify groups within the population 

that differ on average in terms of an exposure. In these studies, group distribution based on 

genetic variation is assumed to be unrelated to confounding factors such as behavioral, social, 

and physiological exposures occurring after conception. Therefore, genetic associations 

between traits are expected to be free from confounding, and any differences in outcomes 

observed between groups defined by genetic variation can be attributed to the exposure, 

assuming no selection bias arising from that genetic variation.  

Adapted from Sanderson et al. (2022).  



 

72 
 

Mendelian Randomization analyses of SUDs. In recent years, MR has been increasingly 

applied to understand the causal relationship between SUDs and related traits. Since the 

power to detect robust MR results rely on the number of genetic instruments available, 

some of the most relevant findings have been made for smoking and alcohol-related 

traits, which present the largest GWASs sample sizes.  

For instance, there are some evidence that the genetic liability for neuroticism and 

extraversion are causally linked to smoking heaviness (cigarettes per day) and smoking 

initiation, respectively (Sallis et al., 2019). Moreover, a few studies report that the genetic 

liability for major depressive and bipolar disorder have a bidirectional relationship with 

lifetime smoking and smoking initiation, meaning that there is evidence of causal effects 

in both directions (Vermeulen et al., 2021; Wootton et al., 2020). Having a mood disorder 

diagnosis can lead to smoking-behaviors, and smoking can also increase the risk of mood 

disorders. On the other hand, for schizophrenia, this relationship has only shown strong 

evidence in the causal direction of smoking (initiation and lifetime) on the risk for 

schizophrenia (Wootton et al., 2020), but not in the other direction (Gage, Jones, Taylor, 

et al., 2017). However, evidence of bidirectional causal effects was observed between 

schizophrenia and cannabis use, adding to the observational evidence linking these two 

conditions (Gage, Jones, Burgess, et al., 2017; Vaucher et al., 2018). Moreover, major 

depressive disorder has shown to have causal effect on the risk for alcohol use disorder 

but not on alcohol frequency or quantity (Polimanti et al., 2019), which is consistent with 

the genetic correlation findings discussed earlier.  

In the context of ADHD, current MR studies have shown evidence of the causal effect 

of ADHD on smoking initiation and severity (cigarettes per day, and impaired smoking 

cessation), cannabis use initiation and alcohol use disorder (Fluharty et al., 2018; Soler 

Artigas et al., 2020; Treur et al., 2021). Moreover, smoking has also shown to increase the 

risk for ADHD, which is in line with previous literature indicating that smoking can have 

detrimental, long‐term effects on attention (Treur et al., 2021). However, MR analyses 

present several limitations related to the strong assumptions they rely. Therefore, the 

interpretation of MR findings in the context of SUD and other complex traits should be 

considered carefully. 
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3.2. Environmental Factors and Gene-Environment Interactions in the Etiology of SUDs 

As evidenced, common genetic variation has an important role in the etiology of 

SUDs, but, to date, its contribution to the total variance in SUDs remains relatively small, 

accounting for less than or slightly over 10% of the heritability (Deak & Johnson, 2021). 

Twin and family studies provide evidence supporting the involvement of environmental 

factors in the etiology of SUDs. These studies show that, during adolescence, the 

initiation of substance use is predominantly influenced by shared environmental factors, 

while genetic factors and unique environmental factors contribute to a lesser extent. 

However, at later age, and with more severe measures of substance use, the individual 

predisposition is mostly explained by genetic factors and unique environmental factors 

(Kendler et al., 2003; Prom-Wormley et al., 2017).  

Numerous environmental factors play a critical role in the onset of SUDs. A recent 

study reported that the extent of illicit substance use in an individual’s birth cohort was 

associated with significantly increased risk of substance use initiation, even after 

controlling for individual-level substance use history (Degenhardt, Bharat, Glantz, 

Sampson, Al-Hamzawi, et al., 2019). Moreover, youth experiencing psychosocial 

problems, including problems within the family, peer relationships, delinquency and 

school-related problems exhibit earlier age at onset of substance use (Poudel & Gautam, 

2017; Van Den Bree & Pickworth, 2005). Similarly, in a meta-analytical review, Elliott et al. 

reported that family history of alcohol use disorder does not impact on the amount of 

drinking overall but is associated with higher rates of problematic alcohol use (Elliott et 

al., 2012). Having a history of maltreatment during childhood or other forms of early life 

stress are also risk factors for an earlier onset of alcohol drinking and substance use 

initiation in adolescence with progression toward heavy substance use and increased risk 

for SUDs (Capusan et al., 2021; Cicchetti & Handley, 2019; Dube et al., 2006; Kirsch & 

Lippard, 2022). Moreover, having a family history of a SUD or having experienced 

childhood maltreatment are risk factors associated with the persistence of the disorder 

(Chassin et al., 2004; Elliott et al., 2014, 2016).  
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In addition, current research provides evidence that SUDs etiology, as many 

psychiatric disorders, results from the interplay between genetic and environmental 

factors, rather than from their independent main effects (Dick & Kendler, 2012; Pasman 

et al., 2019). These include gene-environment interaction (GxE) and gene-environment 

correlation (rGE). Gene-environment interaction refers to the moderation of the genetic 

predisposition as a consequence of the environmental exposure (Agrawal et al., 2012). 

Under this premise, genetic factors underlie biological mechanisms that make a person 

more or less vulnerable to environmental circumstances (Belsky & Pluess, 2009). For 

example, genetic influences on adolescent substance use are enhanced in environments 

with lower parental monitoring and easy availability of alcohol (Dick & Kendler, 2012). 

Alternatively, gene-environment correlation refers to the genetic predispositions that 

influence the likelihood of being exposed to a certain environment (Jaffee & Price, 2007). 

For example, genetic factors linked to socialization in childhood have been found to 

influence the risk for substance abuse in late adolescence (Hicks et al., 2013). However, 

extensive data on environmental factors are often lacking in large genetic studies. The 

inclusion of environmental factors in genetic studies will not only give insight into the 

underlying biological mechanisms of SUDs, but will also characterize subgroups (based 

on these environmental factors) at high risk for addictive behaviors.  

Figure 15. Two models of Gene-Environment interactions. a. Under the diathesis-stress framework, 

genetic factors and environmental factors reinforce each other. b. Under the differential 

susceptibility framework, the effect of a genetic factors is reversed as a function of an 

environmental factor (or, vice versa). Adapted from Pasman et al. (2019). 
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In the present thesis, we focused on GxE. Generally, the interpretation of GxE can be 

made according to two models. The first model can be explained in the diathesis-stress 

framework, where adverse environmental circumstances enhance the chance that genetic 

vulnerability comes to expression (example in Figure 15a). In this model, the greater the 

genetic vulnerability, the less environmental exposure is required to trigger the disorder. 

The second model reflects the differential susceptibility framework, posing that genetic 

predisposition might enhance the effect of adverse, but also positive, environmental 

factors (example in Figure 15b). In other words, that individuals may vary in their 

sensitivity or susceptibility to environmental influences depending on their genetic 

predisposition.  

3.2.1. Gene-Environment Interaction Studies of SUDs 

Most current studies assessing GxE in the context of SUDs have mainly focused on 

tobacco, alcohol and cannabis, as these substances are the most commonly used, and 

more data on environmental exposures are available (Pasman et al., 2019). One approach 

to study GxE involves investigating specific candidate genes. These kind of studies have 

mainly focused on interactions between genes, such as the Serotonin Transporter gene 

(SLC6A4), dopaminergic genes and alcohol-metabolizing genes with different stages of 

substance use, moderated by factors such as stressful life events, childhood adversity, 

and educational attainment (Milaniak et al., 2015). For example, one study found that an 

interaction between history of childhood maltreatment and the 5-HTTLPR polymorphism 

in the SLC6A4 gene, which is associated with reduced transcription and functional 

capacity of the serotonin transporter, increased risk for early alcohol use (Kaufman et al., 

2007). Similarly, the 5-HTTLPR polymorphism showed a significant interaction with 

stressful life events, impacting on increased frequency and heavy drinking, as well as 

increased substance use in college students (Covault et al., 2007). Furthermore, a study 

examining nicotine dependence in adults reported a significant interaction between peer 

smoking (which represents the socially reinforcing context of friends’ encouragement 

and approval that contributes to smoking behavior) and a variant of the CHRNA5 gene 

(rs16969968), so that peer smoking had a lower effect on the risk for nicotine 

dependence among those with the high risk genotype (E. O. Johnson et al., 2010).  
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Moreover, GxE studies can utilize polygenic measures such as PGSs. One study found 

that the impact of the alcohol problems PGS on alcohol problems in an independent 

sample was greater under conditions of low parental monitoring or high peer substance 

use, compared to situations of high parental monitoring or low peer substance use 

(Salvatore et al., 2014). Similarly, another study found that lower levels of family support 

interacted with the alcohol consumption PGS, leading to an increased risk of high alcohol 

use, while the interaction of high friend support with the PGS attenuated the association 

with alcohol use (Su et al., 2021). A recent study showed that high socio-economic status 

interacts with the alcohol use PGS by increasing the risk for higher alcohol use. However, 

this interaction was not significant for the PGSs for smoking heaviness, smoking initiation 

or cannabis initiation (Pasman et al., 2020).  

A study in African-Americans showed that the association between PGS and smoking 

was stronger among individuals who experienced an increased number of traumatic 

events in their lifetimes, and the association was diminished among individuals who lived 

in neighborhoods with greater social cohesion (Meyers et al., 2013). In addition, in a 

mixed-ancestry population, trauma exposure moderated the effects of the cannabis use 

PGS on lifetime cannabis use, so that the PGS only influenced cannabis use among those 

exposed to trauma (Meyers et al., 2019). High parental monitoring and low substance 

use among friends, combined with the PGSs for smoking and cannabis use were able to 

predicted lower smoking and cannabis use, respectively (Musci et al., 2015).  

Furthermore, environmental factors can interact with the PGSs for psychiatric 

diseases, moderating SUD outcomes. For instance, a study conducted in US Army soldiers 

revealed that exposure to trauma interacted with the bipolar disorder PGS, increasing the 

risk of alcohol misuse. Specifically, the PGS was positively associated with alcohol misuse 

in soldiers exposed to trauma but negatively associated in trauma-unexposed soldiers 

(Polimanti et al., 2018).  
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KEY POINTS SECTION 3 

 Family, adoption, and twin studies provide valuable insights into the genetic and 

environmental influences on SUDs, showing that substance use initiation is influenced by 

a combination of genetic, as well as shared and unique environmental factors, while 

progression to a SUD is predominantly driven by genetic factors, particularly in adulthood.   

 The heritability of SUDs is estimated to be range from 40-60%, although there is variation 

across substances, which can be attributed to both substance-specific genetic factors and 

a shared genetic liability for addiction. 

 GWASs aim to identify genetic risk factors for complex disorders like SUDs by testing for 

differences in the allele frequency of genome-wide common genetic variants, mainly SNPs, 

between individuals who differ phenotypically.  

 GWASs have identified various genetic risk loci associated with substance-specific SUDs 

including, the alcohol- metabolism genes ADH1B and ALDH2 for alcohol use disorder, the 

CHRNA5–CHRNA3–CHRNB4 nicotinic receptor gene cluster for tobacco use disorder and 

the OPRM1 gene for opioid use disorder. In addition, the addiction-rf combining all SUDs 

subtypes was associated with 17 GWS risk loci.  

 Post-GWAS methodologies, including PGS, genetic correlation and MR analyses, are key to 

gain insights into the genetic architecture and interplay between correlated traits. 

  SUDs are generally correlated with each other and show positive genetic correlations with 

psychopathology, while displaying negative correlations with cognitive traits. 

 PGS analyses have provided valuable insights into the shared genetic background between 

SUDs and related traits, including ADHD, but they have limited predictive power on an 

individual basis. 

 MR analyses have been used to understand the causal relationship between SUDs and 

psychiatric disorders, shedding light on bidirectional causal effects in some cases. 

 GxE studies on SUDs have focused mainly on tobacco, alcohol, and cannabis, reveling that 

environmental factors, like parental monitoring, peer substance use and trauma exposure, 

can modify the impact of genetic risk on SUDs outcomes. 
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1. Study 1: Genetic Overlap and Causality between Substance Use Disorder and 

Attention-Deficit and Hyperactivity Disorder 

Given the following evidence: 

 Individuals diagnosed with ADHD have a higher likelihood of heavy substance 

use compared to those without ADHD, predominantly cigarette smoking, 

cannabis use and alcohol use.  

 Co-occurring ADHD and SUDs leads to more severe SUDs symptoms more 

frequent polysubstance dependence, greater difficulty remaining abstinent and 

increased risk for other mental health problems.  

 One of the core risk pathways that converge in both ADHD and SUDs involves 

increased undercontrol/disinhibition behaviors, described by indicators of 

impaired executive cognitive function, emotional regulation and behavioral 

control.  

 The use of drugs of abuse can also increase ADHD symptoms by inducing 

changes in brain areas involved in attention and impulse control, such as the 

prefrontal cortex.  

 SUDs and ADHD are complex and multifactorial, with both genetic and 

environmental influences and heritability ranging from 30% to 70% for individual 

substances and around 76% for ADHD. 

 ADHD and SUDs share a genetic background, supported by positive genetic 

correlations and associations between ADHD PGS and smoking, alcohol, or 

cannabis dependence. 

 Evidence indicates that the genetic liability to ADHD has a causal role on an 

increased risk to smoking, cannabis use, and possibly alcohol dependence, but 

more research is needed.  

1.1. Hypotheses 

We propose the following hypotheses: 

1. There is a high positive genetic correlation among substance-specific SUDs 

phenotypes and between ADHD and SUDs.  
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2. The genetic liability to SUDs shares a common background in the general 

population and individuals diagnosed with ADHD.  

3. There is a causal effect of the genetic liability to ADHD on a higher risk of 

smoking-related phenotypes, cannabis use, alcohol dependence, cocaine 

dependence and ever addicted to illicit drugs.  

4. For some specific substances, there might be a bidirectional causal effect, 

meaning that there is also a casual effect of the genetic liability to SUDs on an 

increased risk of ADHD.  

1.2. Objectives 

To explore these hypotheses, the following objectives were established: 

1. To explore whether the genetic liability to substance-specific SUDs, in the form 

of PGSs, is associated with its respective phenotype in a clinical ADHD cohort.  

1.1. To construct PGSs for smoking initiation, alcohol dependence, lifetime 

cannabis use, cocaine dependence and ever addicted to illicit drugs in a 

clinical sample of 989 individuals with ADHD, using pre-existing GWAS 

summary statistics.  

1.2. To test whether the genetic background for these SUD phenotypes is shared 

between the general population and individuals with ADHD.  

2. To explore pair-wise genetic correlations between four smoking-related 

phenotypes, alcohol dependence, lifetime cannabis use cocaine dependence and 

ADHD using pre-existing GWAS summary statistics.  

3. To explore the bidirectional causal relationship between ADHD and substance-

specific SUD phenotypes using genetic variants identified in GWAS as 

instrumental variables. 

3.1. To infer the average causal effect of the exposure on the outcome across 

genetic variants associated with the exposure. 
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3.2. To explore whether the genetic variants used to assess causality have 

horizontal pleiotropic effects on both the exposure and the outcome traits.  

2. Study 2: Disentangling Heterogeneity in Substance Use Disorders: Insights from 

Genome-Wide Polygenic Scores 

Given the following evidence: 

 SUDs are highly heterogeneous across a wide range of phenotypic outcomes, 

such as type of substance(s), age at onset of SUDs, individual personality profiles, 

presence of comorbid conditions, and disease trajectory.  

 Most available inpatient and outpatient treatments for SUDs are not well suited 

to accommodate the observed clinical heterogeneity, resulting in high rates of 

early treatment termination and relapse. 

 Approximately 53% of individuals with a primary diagnosis of a SUD have at least 

another co-occurring diagnosis for a mental, behavioral, or emotional disorder. 

 The presence of psychiatric comorbidity in SUDs has been associated with 

adverse disease trajectory, increased rates of suicide and worse physical and 

mental health.  

 SUDs present substantial genetic overlap with psychiatric disorders and 

behavioral traits, with the strongest genetic correlations observed for ADHD, 

PTSD, anxiety, schizophrenia, depression, bipolar disorder and risk-taking 

behaviors. 

 PheWAS analyses using SUDs PGSs have identified associations across major 

psychiatric disorders in deeply phenotyped samples.  

 The etiology of SUDs is highly influenced by environmental factors, and GxE 

contribute to the individual differences in disease trajectory of SUDs.  

2.1. Hypothesis  

We propose the following hypotheses: 
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1. There is a shared genetic liability among different psychiatric disorders and 

behavioral traits and SUD-related phenotypes, including sociodemographic and 

health outcomes, comorbidity and personality traits and SUD variables.  

2. The genetic liability for a wide range of mental health-related traits influences the 

heterogeneity observed in individuals with SUDs.  

3. The exposure to adverse environmental factors, particularly emotional, physical, 

and/or sexual abuse, has an impact on the heterogeneity among individuals with 

SUDs, which is, in part, mediated through its interaction with genetic factors.  

2.2. Objectives  

To explore these hypotheses, the following objectives were established: 

1. To understand the heterogeneity of SUDs by analyzing how the genetic liability 

for different mental health-related traits is associated with various SUD-related 

phenotypes, including sociodemographic and health outcomes, comorbidity and 

personality traits and SUD variables. 

1.1. To systematically investigate how PGSs for specific mental health-related traits 

are associated with different SUD-related phenotypes in a clinical sample of 

1,427 individuals with SUDs. 

2. To explore the impact of GxE between the genetic liability to mental health-

related traits and lifetime emotional, physical, and/or sexual abuse on the SUD-

related phenotypes under study.  
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Abstract

Substance use disorder (SUD) often co-occur at high prevalence with other psychiat-

ric conditions. Among them, attention-deficit and hyperactivity disorder (ADHD) is

present in almost one out of every four subjects with SUD and is associated with

higher severity, more frequent polysubstance dependence and increased risk for

other mental health problems in SUD patients. Despite studies suggesting a genetic

basis in the co-occurrence of these two conditions, the genetic factors involved in

the joint development of both disorders and the mechanisms mediating these causal

relationships are still unknown. In this study, we tested whether the genetic liability

to five SUD-related phenotypes share a common background in the general popula-

tion and clinically diagnosed ADHD individuals from an in-house sample of 989 sub-

jects and further explored the genetic overlap and the causal relationship between

ADHD and SUD using pre-existing GWAS datasets. Our results confirm a common

genetic background between ADHD and SUD and support the current literature on

the causal effect of the liability to ADHD on the risk for SUD. We added novel find-

ings on the effect of the liability of lifetime cannabis use on ADHD and found evi-

dence of shared genetic background underlying SUD in general population and in

ADHD, at least for lifetime cannabis use, alcohol dependence and smoking initiation.

These findings are in agreement with the high comorbidity observed between ADHD

and SUD and highlight the need to control for substance use in ADHD and to screen

for ADHD comorbidity in all SUD patients to provide optimal clinical interventions.

K E YWORD S

attention-deficit and hyperactivity disorder, substance use disorder, polygenic risk score,

Mendelian randomization, genetic correlation

1 | INTRODUCCTION

Substance use disorder (SUD) is a psychiatric condition characterized

by a hazardous use of a legal or illegal drug or medication and an

inability to reduce the frequency of consumption (American

Psychiatric Association, 2013). According to the World Drug Report

2019, about 270 million people (or about 5.5% of global population

aged 15–64) had used psychoactive drugs during 2019 and about

35 million people are estimated to be affected by drug use disorders

(United Nations Office on Drugs and Crime [UNODC], 2019). Abuse
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of tobacco, alcohol, and illicit drugs have a huge impact on crime, work

productivity and the healthcare system (National Institute on Drug

Abuse [NIDA], 2020a). In addition, global deaths directly caused by

the use of drugs increase every year and alcohol is the leading risk fac-

tor for premature mortality and disability among those aged 15 to

49 years old (UNODC, 2019).

SUD often co-occur at high prevalence with other psychiatric

conditions and mental disorders, which reduces life expectancy and

increases disease burden and societal impact. Among them, attention-

deficit and hyperactivity disorder (ADHD) is present in almost one out

of every four patients with SUD and is associated with an increased

risk of substance use, abuse and dependence (van de Glind

et al., 2014; van Emmerik-van Oortmerssen et al., 2012). Children

diagnosed with ADHD are at higher risk of developing SUD and nico-

tine dependence in adolescence (Charach et al., 2011; Ilbegi

et al., 2018) and a four year follow up study found that adolescents

with a childhood ADHD diagnosis were 1.8 and 8.6 times more likely

to develop psychoactive SUD and nicotine dependence, respectively,

compared to healthy controls (Groenman et al., 2013). In addition,

ADHD comorbidity is associated with higher severity, more frequent

polysubstance dependence and increased risk for other mental health

problems in SUD patients (Icick et al., 2020).

SUD and ADHD are complex and multifactorial, with both genetic

and environmental influences and heritability ranging from 50% to

70% for individual substances (Wetherill et al., 2019; Wong &

Schumann, 2008) and around 76% for ADHD (Wendt et al., 2020).

Several studies also support a shared genetic background between

them, reporting evidence of positive genetic correlations between

ADHD and different SUD (Pasman et al., 2018; Soler Artigas

et al., 2019; Walters et al., 2018), and associations between ADHD

Polygenic Risk Score (PRS) and SUD (Goldman, 2017; Wimberley

et al., 2020), smoking (Du Rietz et al., 2018) and alcohol or cannabis

dependence (Du Rietz et al., 2018; Wimberley et al., 2020). Inconsis-

tent results, however, were observed, with some studies reporting a

lack of association between ADHD-PRS and smoking, cannabis

dependence or SUD (Carey et al., 2016; Gurriarán et al., 2019;

Rabinowitz et al., 2018).

Additionally, there is evidence that liability to ADHD is on the

causal pathway to smoking-related phenotypes and SUD (Elkins

et al., 2018; Fluharty et al., 2018). In this context, Soler Artigas et al

found a causal effect of liability to ADHD on cannabis use (Soler

Artigas et al., 2019). Likewise, Treur et al reported that liability to

ADHD also increases risk to smoking, cannabis use and, tentatively,

alcohol dependence, and that liability to smoking initiation also

increases ADHD risk (Treur et al., 2019).

Despite the high incidence of SUD in subjects with ADHD, the

associated social and clinical difficulties, and previous studies

suggesting a genetic basis in the co-occurrence of these two condi-

tions, the causal relationship that may exist between them is still

unclear. The aim of the present study was to use an in-house sample

of 989 subjects with ADHD and pre-existing GWAS datasets on

ADHD and SUD to (i) test whether the genetic liability to SUD shares

a common background in the general population and clinically

diagnosed ADHD individuals through PRS analyses and (ii) further

explore the genetic overlap and the causal relationship between

ADHD and SUD.

2 | MATERIALS AND METHODS

2.1 | Samples

2.1.1 | In-house ADHD cohort

The in-house cohort consisted on 989 subjects with ADHD. The clini-

cal assessment of ADHD was conducted by a psychiatrist based on

the Structured Clinical Interview for DSM-IV Axis I and II Disorders

(SCID-I and SCID-II) and the Conner's Adult ADHD Diagnosis Inter-

view for DSM-IV (CAADID Parts I and II). Information about lifetime

substance use was collected by a psychiatrist with the Structured

Clinical Interview for DSM-IV Axis I disorders (SCID-I) and additional

information on smoking was available by an open interview from the

majority of participants. All individuals were unrelated, of European

descendent and had been recruited at the Program of Adult ADHD of

Vall d'Hebron University Hospital of Barcelona (Spain). The study was

approved by the Clinical Research Ethics Committee (CREC) of the

Hospital Universitari Vall d'Hebron, all methods were performed in

accordance to the relevant guidelines and regulations and written

informed consent was obtained from all subjects before inclusion into

the study.

Genomic DNA was isolated from peripheral blood leukocytes by

the salting-out procedure. Subjects were genotyped in four different

waves using the HumanOmni1-Quad (N = 558), HumanOmni 2.5

(N = 218), the PsychChip (N = 60) and the GSA (N = 153) Illumina

arrays. Pre-imputation quality control and principal components analy-

sis were implemented with the Ricopili pipeline (https://sites.google.

com/a/broadinstitute.org/ricopili/), and ancestry outliers or relatives

were excluded from the analyses. Genotype imputation was per-

formed using the European population haplotypes of the 1000

Genomes Project Phase I as the reference panel for waves 1 and

2 and the 1000 Genomes Project Phase III for waves 3 and 4 (The

1000 Genomes Project Consortium, 2015). Individuals with > 2%

best-guess genotype missingness were removed, as well as SNPs with

low call rate (< 0.95), with minor allele frequency (MAF) < 0.01, INFO

score below 0.8 or failing the Hardy–Weinberg equilibrium test

(P < 1e −06). Post-imputation best-guess genotype data from a total

of 4,105,370 markers were available in all four datasets.

2.2 | Pre-existing ADHD and substance use
GWAS-MA datasets

2.2.1 | ADHD

Psychiatric Genomics Consortium (PGC) and iPSYCH data from the

largest GWAS-MA on ADHD performed to date (N = 55,374) was
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considered (Demontis et al., 2019). Because of sample overlap

between the ADHD and lifetime cannabis use datasets, we removed

the effect of two studies (Barcelona (572 cases and 425 controls) and

Yale-Penn (182 cases and 1315 controls)) from the ADHD GWAS-MA

using an inverse variance weighted difference for the beta and stan-

dard error estimates. This provided a restricted PGC + iPSYCH ADHD

sample of 18,345 cases and 32,454 controls that was used in all ana-

lyses where both traits were considered (Table 1).

2.2.2 | Substance use

Data on four smoking-related phenotypes were obtained from a

meta-analysis of over 30 GWAS datasets performed in participants of

European ancestry (Liu et al., 2019). Smoking-related phenotypes

included smoking initiation, indicating whether an individual had ever

smoked regularly (N = 632,802; 46% ever smokers), age of initiation

of regular smoking (N = 262,990), cigarettes per day, as a measure of

smoking heaviness (N = 263,954) and smoking cessation, contrasting

current versus former smokers (N = 312,821; 39% current smokers)

(Table 1).

Results from the GWAS-MA on alcohol dependence (AD) consid-

ering the subset of genetically unrelated European individuals by the

PGC were used (8,485 cases and 20,272 controls). AD was defined as

meeting criteria for a DSM-IV (or DSM-IIIR in one instance) diagnosis

of AD (Table 1). More details are available in Walters et al (Walters

et al., 2018).

GWAS-MA on lifetime cannabis use included data from the Inter-

national Cannabis Consortium (ICC) and UK Biobank in a total of

162,082 European ancestry individuals (Pasman et al., 2018). Because

of sample overlap with the in-house ADHD cohort and to avoid

biases, we removed the effect of the Barcelona study (981 individuals)

from the ICC sample using an inverse variance weighted difference

for the beta and standard error estimates. This provided a sample size

of 161,101 individuals that was used in all analyses where lifetime

cannabis use and ADHD were considered (Table 1).

For the GWAS-MA on cocaine dependence we considered 2,085

cases that met DSM-IV criteria for cocaine dependence and 4,293

controls of European-ancestry (Table 1) (Cabana-Domínguez

et al., 2019).

UK Biobank data for ever addicted to illicit drugs was available

for 6,944 participants (518 cases and 6,426 controls) (Table 1). More

details about UK Biobank data can be found at http://www.nealelab.

is/uk-biobank/. Additional quality control filters of INFO score < 0.8

and MAF < 0.01 were undertaken in this UK Biobank dataset prior to

all analyses.

The studies included in the GWAS-MA of the smoking-related

phenotypes have all been imputed to Haplotype Reference Consor-

tium, 1000 Genomes or a combination including more specific refer-

ence panels (Liu et al., 2019). GWAS-MA for alcohol dependence,

lifetime cannabis use (ICC sample) and cocaine dependence used the

1000 Genomes Phase III reference panel to perform the imputation

(Cabana-Domínguez et al., 2019; Pasman et al., 2018; Walters

et al., 2018) and UK Biobank data for ever addicted to illicit drugs and

lifetime cannabis use were imputed using the haplotype reference

consortium (HRC) reference panel (http://www.nealelab.is/uk-

biobank/).

2.3 | Polygenic risk score analyses

Five SUD-related phenotypes were collected in an in-house cohort of

ADHD individuals where data on SUD were available: smoking initia-

tion, alcohol dependence, lifetime cannabis use, cocaine dependence

and ever addicted to illicit drugs. Controls for each cohort were indi-

viduals that did not consume that substance, but could be consumers

for any of the others substances.

PRS for smoking initiation, alcohol dependence, lifetime cannabis

use, cocaine dependence and ever addicted to illicit drugs were con-

structed using pre-existing GWAS-MA summary statistics and tested

for association with the five SUD-related phenotypes in the in-house

ADHD cohort using the PRSice software v.1.25. Independent variants

TABLE 1 Summary of the pre-existing GWAS-MA datasets on five different SUD-related phenotypes (ever smoking, alcohol dependence,
lifetime cannabis use, cocaine dependence and ever addicted to illicit drugs) and ADHD

Phenotype N cases N controls N total N effectivea N SNPs N GWS SNPsb Reference

Smoking initiation 329,057 303,745 632,802 631,790 11,802,365 127 Liu et al., 2019

Age of smoking initiation – – 262,990 – 11,983,807 8 Liu et al., 2019

Cigarettes per day – – 263,954 – 12,003,614 54 Liu et al., 2019

Smoking cessation 122,000 190,821 312,821 297,680 12,197,134 14 Liu et al., 2019

Alcohol dependence 8,485 20,272 28,757 23,926 9,142,831 3 Walters et al., 2018

Lifetime cannabis use 43,380 118,702 162,082 127,079 9,076,507 8 Pasman et al., 2018

Cocaine dependence 2,085 4,293 6,378 5,614 8,591,128 0 Cabana-Domínguez et al., 2019

Ever addicted to illicit drugs 518 6,426 6,944 1,917 13,791,467 1 http://www.nealelab.is/uk-biobank/

ADHD 20,183 35,191 55,374 51,306 8,094,094 12 Demontis et al., 2019

aN effective sample sizes were calculated following the equation: Neff = 4/(1/Ncases+1/Ncontrols).
bNumber of genome-wide significant SNPs.
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from each discovery GWAS-MA were selected by clumping (p1 = 1, p2

= 1, r2 = 0.2, kb = 250), and PRS were constructed as the sum of the

risk alleles across SNPs of each individual, weighted by their discovery

effect sizes and divided by the total number of alleles included.

P-value thresholds from 0 to 0.5 with increments of 0.00005 were

considered and logistic regression was used to test the association

between each PRS and the SUD phenotype in the ADHD cohort

adjusting for age, sex, genotyping wave and the first five principal

components. The best-fit PRS was determined by the p-value thresh-

old with the most predictive PRS on the phenotype and 10,000 per-

mutations were computed at the p-value threshold that explained the

most variance (best-fit) to correct for multiple testing. As well as

Nagelkerke's R2, we reported R2 on the liability scale and adjusted for

ascertainment in case-control studies (Lee's R2) (Lee et al., 2012). Pop-

ulation prevalence used for each substance were the following:

smoking initiation = 28.7% (World Health Organization

[WHO], 2018); alcohol dependence = 5.6% (National Institute on

Drug Abuse [NIDA], 2020b); lifetime cannabis use = 2.5% (World

Health Organization [WHO], 2020); cocaine dependence = 0.4%

(Grant et al., 2016); ever addicted to illicit drugs = 3.9% (Grant

et al., 2016).

2.4 | Genetic correlation

Cross-trait LD score regression was used to estimate the genetic cor-

relation for all possible pairs of the following traits: ADHD, smoking

initiation, age of smoking initiation, cigarettes per day, smoking cessa-

tion, alcohol dependence, lifetime cannabis use and cocaine depen-

dence using previously published GWAS-MA summary statistics

(Demontis et al., 2019; Liu et al., 2019; Walters et al., 2018; Pasman

et al., 2018; Cabana-Domínguez et al., 2019; http://www.nealelab.is/

uk-biobank/). N effective sample sizes were calculated following the

equation: Neff = 4/(1/Ncases+1/Ncontrols), and only traits with Neff

> 5,000 were considered. For this analysis we used HapMap3 SNPs

and LD scores computed from the 1000 Genomes Project reference

panel (Bulik-Sullivan et al., 2015).

2.5 | Mendelian randomization

Causality between ADHD and SUD-related phenotypes were

assessed using previously published GWAS-MA summary statistics

and bidirectional two-sample Mendelian Randomization (MR) (Burgess

et al., 2017). Age of smoking initiation, cigarettes per day and smoking

cessation could not be used as exposures, since these phenotypes can

only be assessed in smokers and results stratified by smoking initia-

tion were not available in the outcome GWAS-MA (ADHD).

Strict clumping was undertaken in the exposure population con-

sidering r2 = 0.05, kb = 500 and p2 = 0.5, using Plink 1.9 software

(Purcell et al., 2007). Then, we selected SNPs at a threshold of p-value

< 5e-08 to be used as instruments, and identified the same SNPs in

the outcome population. When there was a limited number of SNPs

(<5), surpassing the genome-wide significant threshold of p-value

<5e-08 in the exposure population the threshold was lowered to p-

value <5e-06.

We used the multiplicative random effects inversed-variance

weighted (IVW) as the main method to obtain the average effect

across genetic variants and additional MR methods were implemented

as sensitivity analyses for IVW significant findings: MR-Egger regres-

sion (Bowden et al., 2015), weighted median regression (Bowden,

Davey Smith, et al., 2016a), MR-PRESSO (Verbanck et al., 2018), and

Steiger filtering (Hemani et al., 2018). When I2 < 0.6, Egger results

were considered not valid due to violation of the NOME

(NO Measurement Error) assumption (Bowden, Del Greco,

et al., 2016b). Additionally, we ran heterogeneity tests with Cochran

Q statistics and repeated analyses removing one genetic variant at a

time (leave-one-out analyses) for the main analysis when we obtained

significant results. All analyses were run with the “TwoSampleMR” R

package and, additionally, with the “MRPRESSO” R package for the

MR-PRESSO sensitivity analysis. For further information on the MR

methods used, please see Supplementary methods.

3 | RESULTS

The ADHD cohort included 657 males (66.4%) and 332 females

(33.6%), with a mean age of 32.96 years ± 10.7. Fifty-four percent of

ADHD patients (N = 539) had used at least one of the substances

considered in the study and 6.5% (N = 64) were consumers for all sub-

stances (Figure 1).

To assess whether SUD-related phenotypes in the general popu-

lation and in clinically diagnosed ADHD individuals share a common

genetic load, we constructed PRSs for smoking initiation, alcohol or

cocaine dependence, lifetime cannabis use and ever addicted to illicit

drugs in the general population using data from pre-existing GWAS

datasets (Table 1) and tested their association with these SUD-related

phenotypes in our in-house ADHD sample. We found evidence of

association for lifetime cannabis use, alcohol dependence and smoking

initiation (p-value= 9e-03, 5e-03 and 1.50e-03, respectively). The

best-fit PRS was set at a p-value threshold (PT) of 0.26 for alcohol

dependence and explained 1.0% of the variance, at PT = 0.07 for life-

time cannabis use, explaining 0.6% of the variance and at PT = 9.50e-

04 for smoking initiation and explained 1.4% of the variance in the

phenotype (Figure 2, Supplementary Table 1). No significant results

were found for cocaine dependence or ever addicted to illicit drugs

(Supplementary Table 1, Supplementary Figure 1).

When we estimated pairwise genetic correlations (rg) for ADHD

and SUD-related phenotypes we found evidence of genetic correla-

tions between all traits (Figure 3). The strongest positive correlations

were found between alcohol and cocaine dependence (rg = 0.76,

se = 0.15, p-value = 5.62e-07) and between smoking initiation and

alcohol dependence (rg = 0.69, se = 0.09, p-value = 3.05e-14). Pairs of

traits with weaker genetic correlations were ADHD and lifetime can-

nabis use (rg = 0.15, se = 0.04, p-value = 4e-04) and alcohol depen-

dence and lifetime cannabis use (rg = 0.16, se = 0.08, p-value = 0.05).
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Similarly, strong negative genetic correlations were observed between

age of smoking initiation and alcohol dependence (rg = −0.68,

se = 0.10, p-value = 1.52e-11) and ADHD (rg = −0.62, se = 0.04,

p-value = 1.69e-49) (Supplementary Table 2).

Lastly, our results for the bidirectional two-sample Mendelian Ran-

domization analyses support a causal effect of the genetic liability to

ADHD on smoking initiation (IVW p-value = 2.24e-21 and OR = 1.20),

age of smoking initiation (IVW p-value = 4.27e-04 and OR = 0.94) and

cigarettes per day (IVW p-value = 8.23e-04 and OR = 1.08), but not on

smoking cessation (IVW p-value = 0.09 and OR = 1.05) (Table 2). There

was no evidence that these results were driven by a single SNP and all

SNPs were valid instruments for the analysis according to Steiger filter-

ing. However, we found evidence of heterogeneity for smoking initiation

and age of smoking initiation (Cochran Q Statistics p-value = 0.02 and

4.18e-04, respectively) as well as evidence of horizontal pleiotropy for

age of smoking initiation (MR-PRESSO Global Test p-value = 1e-03).

MR-PRESSO outlier-corrected results for age of smoking initiation

remained significant and reported a similar effect size (p-value = 5.47e-05

andOR= 0.93) (Table 2 and Supplementary Table 3).

Significant results were found when smoking initiation was con-

sidered as exposure and ADHD as outcome (IVW p-value = 1.36e-35

and OR = 2.58), but evidence of heterogeneity and horizontal

pleiotropy were detected in the sensitivity analyses (Cochran Q

Statistics p-value = 3.21e-08 and MR-PRESSO Global Test

p-value = 1e-04). MR-PRESSO outlier-corrected results remained sig-

nificant, but the effect size was reduced (p-value = 3.66e-17 and

OR = 2.46). There was no evidence that these results were driven by

a single SNP and with all SNPs being valid instruments for the analysis

according to the Steiger filtering.

A causal effect was also found for the liability to ADHD on life-

time cannabis use (IVW p-value = 2.01e-03 and OR = 1.15) and vice-

versa (IVW p-value = 8.00e-04 and OR = 1.46), with no evidence of

horizontal pleiotropy or heterogeneity in any direction. The leave-

one-out analysis gave no evidence that these findings were driven by

any single variant and the Steiger filtering showed that all variants

were more predictive of the exposures than of the outcomes (Table 2

and Supplementary Table 3).

Finally, no causal effects of the liability to ADHD on alcohol

dependence, cocaine dependence or ever addicted to illicit drugs and

vice-versa were found (Table 2).

4 | DISCUSSION

For the first time, we provide evidence of a common genetic back-

ground between lifetime cannabis use, alcohol dependence and

smoking initiation in the general population and in subjects with ADHD

and support previous findings of a causal relationship for the liability to

F IGURE 1 Venn diagram showing the sample overlap between the five SUD-related phenotypes from the in-house cohort of 989 subjects
with ADHD: Smoking initiation, alcohol dependence, lifetime cannabis use, cocaine dependece and ever addicted to illicit drugs [Color figure can
be viewed at wileyonlinelibrary.com]
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ADHD on the risk for lifetime cannabis use, smoking initiation, age of

smoking initiation and cigarettes per day. These results are in agree-

ment with epidemiological evidence showing increased risk and higher

severity of substance use, abuse and dependence in ADHD subjects

(Groenman et al., 2013; Groenman et al., 2017; van de Glind

et al., 2014; van Emmerik-van Oortmerssen et al., 2012; Wilens &

Morrison, 2012) and support previous reports showing that the liability

to ADHD is on the causal pathway to smoking and SUD (Artigas Soler

et al., 2019; Treur et al., 2019; Jang et al., 2020).

In addition to the finding supporting that ADHD risk impacts on

lifetime cannabis use, we found evidence of reverse causation, with a

causal effect of genetic liability to lifetime cannabis use on ADHD.

Although these results do not follow the appropriate temporal

sequence by which the exposure (lifetime cannabis use) precedes the

outcome (ADHD), they may be due to shared risk factors or alterna-

tively, reflect the relationship between parental exposure to cannabis

and psychiatric outcomes in offspring described in both human and

animal models (El Marroun et al., 2019; Langley et al., 2012).

F IGURE 2 Bar plots showing results from the PRS analysis based on (a) lifetime cannabis use, (b) alcohol dependence and (c) smoking
initiation at broad p-value thresholds (pT = 0.001, pT = 0.05, pT = 0.1, pT = 0.2, pT = 0.3, pT = 0.4, pT = 0.5) and at the best-fit PRS [Color figure can
be viewed at wileyonlinelibrary.com]
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Pre-gestational exposure to cannabis or maternal cannabis use during

pregnancy are associated with long-term adverse neurocognitive and

behavioural outcomes in the offspring (Levin et al., 2019). Thus, can-

nabis exposure, particularly during sensitive and critical windows of

development, may impact on ADHD through epigenetic modifications

and subsequent gene expression alterations (Murphy et al., 2018;

Smith et al., 2020). Additionally, male paternal cannabis use or

smoking were also associated with offspring behavioural problems,

which suggests that, in addition to causal intrauterine effects, these

associations may be influenced by a shared genetic background

between parental substance use and ADHD symptoms in the off-

spring (El Marroun et al., 2019; Langley et al., 2012). Our results may

therefore reflect dynastic effects, where the exposure trait in a previ-

ous generation influences the outcome trait of the current generation

(Hartwig et al., 2018), hypothesis that needs to be confirmed by alter-

native study designs such as sibling pairs.

Additionally, our results may also reflect an effect of lifetime can-

nabis use on the risk of the persistent form of ADHD across the

lifespan. This is supported by the association between hazardous use

of cannabis and ADHD symptoms in adulthood (Fergusson &

Boden, 2008; Kolla et al., 2016) and by the effect of cannabis use on

the impairment of planning, inhibition or decision-making, also associ-

ated with ADHD (Crean et al., 2011). Given that there is strong evi-

dence for a common genetic background underlying ADHD in

children and adults (Rovira et al., 2020), environmental risk factors,

such as cannabis use, may play a role in the different ADHD trajecto-

ries across the lifespan. Since we considered ADHD in both childhood

and adulthood as outcome, further studies on ADHD in children and

adults separately as well as additional research on the effect of canna-

bis use on late-onset ADHD, where ADHD symptoms arise in the late

adolescence or adulthood, (Cooper et al., 2018) are required to clarify

the temporal relationship between cannabis use and ADHD.

MR results should be interpreted taking into consideration the

evidence of horizontal pleiotropy for some smoking-related pheno-

types. These findings, however, add additional evidence to the grow-

ing literature showing that individuals with ADHD are at higher risk of

initiating smoking at younger ages and of being heavier smokers, as

well as the existence of a causal effect of smoking initiation on ADHD

(Jang et al., 2020; Treur et al., 2019).

We also found evidence of genetic correlations between all traits

considered in the study, namely ADHD, smoking initiation, age of

smoking initiation, cigarettes per day, smoking cessation, alcohol or

cocaine dependence and lifetime cannabis use. These results are in

agreement with extensive literature showing poorer smoking out-

comes and higher rates of polysubstance use and comorbidity

between ADHD and SUD (Capusan et al., 2019; Hayley et al., 2017;

Martínez-Luna et al., 2019; van Emmerik-van Oortmerssen

et al., 2014) and add additional evidence for a common genetic back-

ground among these phenotypes (Du Rietz et al., 2018; Wimberley

et al., 2019, Wilens, 2007; Vink et al., 2014; Chang et al., 2019).

The present study, however, should be considered in the context

of some limitations:

First, the limited sample size of the in-house ADHD cohort and

the fact that most individuals were polysubstance users may have mit-

igated specific results in the PRS analyses for individual substances.

We did not control our analysis for comorbid conditions, either, mean-

ing that the presence of other psychiatric disorders sharing genetic

background with SUD could also bias our results. For instance, exter-

nalizing disorders that have been associated with smoking, alcohol

and cannabis dependence (Grant et al., 2015; Rabinowitz et al., 2018),

may have impacted on the observed associations. Despite that, recent

findings show that ADHD-PRS was also associated with SUD after

controlling for conduct disorder (Wimberley et al., 2019).

Second, even though we conducted a different set of analyses for

each SUD-related phenotype, no multiple testing correction was

applied, with the exception of a permutation test performed to cor-

rect for the different thresholds in individual PRS analyses. At risk of

presenting false positive results, applying more conservative multiple

testing corrections may be too strict given the high genetic correlation

between the different SUD-related phenotypes considered.

Lastly, we based our analyses on publicly available GWAS-MA on

ADHD and SUD-related phenotypes and, although we selected larger

and recently published data, the sample sizes differed between phe-

notypes. This may have reduced power to identify PRS-associations

or causal effects through the Mendelian randomization analyses for

phenotypes with smaller sample sizes, such as alcohol dependence,

cocaine dependence and ever addicted to illicit drugs, and may have

impacted on results for directionality between traits, which should be

interpreted with caution given the different statistical power for each

direction. Also a restrictive threshold was used to select genetic

F IGURE 3 Genetic correlation resultsfor all possible pairs of
traits. The size and the colour of the circles correspond with the rg
value. AlcDep, alcohol dependence; SmkInit, smoking initiation;
CocaDep, cocaine dependence; ADHD, attention-deficit and
hyperactivity disorder; SmkCes, smoking cessation; CigDay, cigarettes
per day, LifeCnn, lifetime cannabis use, AgeSmk, age of smoking
initiation [Color figure can be viewed at wileyonlinelibrary.com]
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variants for the majority of the Mendelian randomization analyses (p-

value < 5e-08). Although relaxing the threshold may include a larger

the number of variants and, thus, increase power, these variants

showing weaker associations could be invalid instruments.

In conclusion, our results confirm a common genetic background

between ADHD and SUD and support the current literature on the

causal effect of the liability to ADHD on the risk for SUD. For the first

time, we add novel findings on the effect of lifetime cannabis use on

ADHD and found evidence of shared genetic background underlying

SUD in general population and in ADHD, at least for lifetime cannabis

use, alcohol dependence and smoking initiation. Although larger stud-

ies will be needed to provide more conclusive results, these findings

are in agreement with the high comorbidity observed between ADHD

and SUD and highlight the need to control for substance use in ADHD

and to carefully screen for ADHD in patients seeking treatment for

SUD to provide optimal clinical interventions.
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SUPPLEMENTARY MATERIAL 

Supplementary Methods: Mendelian Randomization  

Causality between ADHD and SUD-related phenotypes were assessed using 

previously published GWAS-MA summary statistics and bidirectional two-sample 

Mendelian Randomization (MR) (Burgess et al., 2017).  

Mendelian randomization (MR) is a technique aimed at the unbiased detection of 

causal effects by using genetic variants as instruments. For MR to be valid the following 

assumptions need to be met: (i) the genetic variant(s) need to be robustly associated with 

the exposure, (ii) the only way genetic variant(s) may be associated with the outcome is 

through the exposure, and (iii) the genetic variant(s) must be independent from 

unobserved confounders that may influence the exposure and the outcome. 

Here, we used the inversed-variance weighted (IVW) as the main method to obtain 

the average effect across genetic variants. This method provides an efficient estimate 

when all genetic variants are valid instruments (all assumptions are meet for all variants). 

Additional MR methods were implemented as sensitivity analyses: MR-Egger 

regression (Bowden, Smith & Burgess, 2015), weighted median regression (Bowden et 

al., 2016a), MR-PRESSO (Verbanck et al., 2018) and Steiger filtering (Hemani, Bowden & 

Davey Smith, 2018). A brief description of each method is given bellow.  

MR-Egger allows all variants to have horizontal pleiotropic effects (when a variant 

affects the exposure and the outcome independently), violating assumption (ii), as long 

as an additional, weaker assumption holds: direct pleiotropic effects of the genetic 

variants on the outcome are distributed independently of the genetic associations with 

the exposure (Instrument Strength Independent of Direct Effect, InSIDE assumption). MR-

Egger regression measures the average pleiotropic effect across the genetic variants by 

estimating the intercept and test whether its value (log OR) is different from zero; if that 

is the case MR-Egger can also provide a causal effect accounting for the pleiotropic 

effects. However, Egger causal estimates can be biased when the NOME (NO 

Measurement Error) assumption is violated, and I2 (true variance of the genetic exposure 
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association estimates divided by the variance of the genetic exposure associations 

estimates) can detect whether that is the case. An I2 value above 0.9 indicates reliable 

Egger estimates. When I2 < 0.6, Egger results were considered not valid (Bowden et al., 

2016b).  

The weighted median method provides a consistent estimate when up to 50% of the 

genetic variants are invalid instruments (violating assumptions (ii) and/or (iii)).  

MR-PRESSO assumes that at least 50% of the variants are valid instruments, there is 

a balanced pleiotropy and the InSIDE assumption holds; it undertakes a test to detect 

pleiotropy and in case of pleiotropy it corrects it by outlier detection and removal.  

Steiger filtering aims to detect and remove SNPs that explain more of the variance in 

the outcome than in the exposure, which could imply reverse causation. When detected, 

those SNPs were excluded from the analysis. 
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Supplementary Tables 

Supplementary Table 1. PRS results from pre-existing GWAS-MA datasets on five SUD-related 

phenotypes from the in-house ADHD cohort. 

†Corrected for multiple testing using 10,000 permutations 

‡OR and SE presented were obtained for PRS generated as PRSj=∑iSi×Gij, where Gij is the number 

of risk alleles for variant i in individual j and Si is the discovery effect size for variant i. 

  

Discovery sample 
Phenotype 

Target sample 

P-value 

Threshold 

Nagelkerke’s  

R2 

Lee’s 

R2 
N SNPs P-value† OR‡ SE‡ 

Smoking Initiation 

(Liu et al., 2019) 

Smoking 

initiation 
9.50E-04 0.01 0.01 2.766 1.50E-03 1.35 1.1 

Alcohol 

dependence 

(Walters et al., 

2018) 

Alcohol 

dependence 
0.26 0.01 0.01 67.827 9.00E-03 1.02 1.01 

Lifetime cannabis 

use (Pasman et al., 

2018) 

Lifetime 

cannabis use 
0.07 0.01 

6.33E-

03 
24.012 5.00E-03 1.06 1.02 

Cocaine 

dependence 

(Cabana-

Domínguez et al., 

2019) 

Cocaine 

dependence 
7.00E-03 2.00E-03 

7.16E-

04 
3.405 0.29 1.02 1.01 

Ever addicted to 

illicit drugs, UK 

Biobank 

Ever addicted to 

illicit drugs 
5.00E-05 3.00E-03 

2.21E-

03 
31 0.11 4.2 2.4 
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Supplementary Table 2. Genetic correlation results for all possible pairs of the following traits: 

ADHD, smoking initiation, age of smoking initiation, cigarettes per day, smoking cessation, alcohol 

dependence, lifetime cannabis use and cocaine dependence using previously published GWAS-

MA summary statistics datasets. 

rg = genetic correlation; SE = standard error; Z = Z statistic 

 

Trait 1 Trait 2 rg SE Z P-value 

ADHD Lifetime cannabis use 0,15 0,04 3,57 4,00E-04 

ADHD Alcohol dependence 0,47 0,12 3,99 6,74E-05 

ADHD Cocaine dependence 0,51 0,08 6,04 1,57E-09 

Lifetime cannabis use Alcohol dependence 0,16 0,08 2 4,58E-02 

Lifetime cannabis use Cocaine dependence 0,23 0,07 3,22 1,30E-03 

Alcohol dependence Cocaine dependence 0,76 0,15 5 5,62E-07 

Smoking initiation ADHD 0,57 0,03 22,6 4,17E-113 

Smoking initiation Lifetime cannabis use 0,53 0,02 22,51 3,17E-112 

Smoking initiation Alcohol dependence 0,69 0,09 7,6 3,05E-14 

Smoking initiation Cocaine dependence 0,48 0,06 8,4 4,48E-17 

Smoking initiation Age of smoking initiation -0,68 0,02 -30,11 3,09E-199 

Smoking initiation Cigarettes per day 0,28 0,03 8,41 3,96E-17 

Age of smoking initiation ADHD -0,62 0,04 -14,79 1,69E-49 

Age of smoking initiation Lifetime cannabis use -0,06 0,04 -1,44 0,15 

Age of smoking initiation Alcohol dependence -0,68 0,1 -6,75 1,52E-11 

Age of smoking initiation Cocaine dependence -0,49 0,08 -6,2 5,70E-10 

Age of smoking initiation Cigarettes per day -0,37 0,04 -10,03 1,07E-23 

Cigarettes per day ADHD 0,46 0,04 11,38 5,41E-30 

Cigarettes per day Lifetime cannabis use -0,08 0,04 -1,97 0,049 

Cigarettes per day Alcohol dependence 0,34 0,1 3,33 9,00E-04 

Cigarettes per day Cocaine dependence 0,32 0,07 4,92 8,78E-07 

Smoking cessation ADHD 0,38 0,05 7,94 2,10E-15 

Smoking cessation Lifetime cannabis use -0,16 0,04 -4,1 4,14E-05 

Smoking cessation Alcohol dependence 0,46 0,1 4,51 6,57E-06 

Smoking cessation Cocaine dependence 0,42 0,07 5,59 2,32E-08 

Smoking cessation Smoking initiation 0,39 0,03 13,32 1,77E-40 

Smoking cessation Age of smoking initiation -0,29 0,04 -7,06 1,71E-12 

Smoking cessation Cigarettes per day 0,44 0,03 13,64 2,29E-42 
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Supplementary table 3. I2, Cochran Q statistics and MR-PRESSO global test P-value for significant 

Mendelian Randomization results. 

Phenotype 

ADHD  SUD-related phenotype SUD-related phenotype  ADHD 

I2 

Cochran Q 

statistics  

P-value 

MR-PRESSO 

global test P-

value 

I2 

Cochran Q 

statistics P-

value 

MR-PRESSO 

global test P-

value 

Smoking 

initiation 
0,31 0,02 0,16 0,34 3,21E-08 1,00E-04 

Age Smoking 

initiation 
0,31 4,18E-04 1,00E-03 - - - 

Cigarettes 

per day 
0,31 0,23 0,24 - - - 

Lifetime 

Cannabis use 
0,39 0,07 0,09 0,26 0,15 0,23 
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Supplementary Figure 1. Bar plots showing results from the PRS analysis based on (A) cocaine 

dependence and (B) ever addicted to illicit drugs at broad P-value thresholds (PT = 0.001, PT = 

0.05, PT = 0.1, PT = 0.2, PT = 0.3, PT = 0.4, PT = 0.5) and at the best-fit PRS.  
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ABSTRACT 

Substance use disorder (SUD) is a global health problem with significant impact on 

individuals and society. The presentation of SUD is diverse, involving various substances, 

ages at onset, comorbid conditions, and disease trajectories. Current treatments for SUD 

struggle to address this heterogeneity, resulting in high relapse rates. SUD often co-

occurs with other psychiatric and mental health-related conditions that contribute to the 

heterogeneity of the disorder and predispose to adverse disease trajectories. Family and 

genetic studies highlight the role of genetic and environmental factors in the course of 

SUD, and point to a shared genetic liability between SUDs and comorbid 

psychopathology. In this study, we aimed to disentangle SUD heterogeneity using a 

deeply phenotyped SUD cohort and polygenic scores (PGSs) for psychiatric disorders and 

related traits. We explored associations between PGSs and various SUD-related 

phenotypes, as well as PGS-environment interactions using information on lifetime 

emotional, physical and/or sexual abuse. Our results revealed different patterns of 

associations between the genetic liability for mental health-related traits and SUD-

related phenotypes, which may help explain part of the heterogeneity observed in SUD. 

In our SUD sample, we found associations linking the genetic liability for ADHD with 

lower educational attainment, the genetic liability for PTSD with higher rates of 

unemployment, the genetic liability for educational attainment with lower rates of 

criminal records and unemployment and the genetic liability for well-being with lower 

rates of outpatient treatments and fewer problems related to family and social 

relationships. We also found evidence of PGS-environment interactions showing that 

genetic liability for suicide attempt worsened the psychiatric status in SUD individuals 

with a history of emotional physical and/or sexual abuse. Collectively, these data 

contribute to a better understanding of the role of the genetic liability for mental health-

related conditions and adverse life experiences in SUD heterogeneity.  
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INTRODUCTION 

Substance use disorder (SUD) is a growing global health problem impacting the 

individual’s life and the society as a whole. In 2019, 3.2 million people died due to SUD-

related causes with 300.000 deaths due to drug or alcohol overdose (Roth et al., 2018).  

The presentation of SUD is highly heterogeneous across a wide range of 

phenotypic outcomes such as type of substance(s) (Compton et al., 2021), age at onset 

of SUD (Christoffersen et al., 2021; Poudel & Gautam, 2017), individual personality 

profiles (Bucher et al., 2019; Zilberman et al., 2018), presence of comorbid conditions 

(Roehrs et al., 2021) and disease trajectory (Richmond-Rakerd et al., 2017). For instance, 

polysubstance use, present in approximately 50% of individuals with SUD (Morley et al., 

2015), has been associated with poorer treatment outcomes (Andersson, Lauvsnes, et al., 

2021), higher rates premature death due to overdose (Compton et al., 2021) and higher 

rates of mental-health problems and risky behaviors (Morley et al., 2015). Early onset 

substance users are at higher risk for psychosocial problems (Poudel & Gautam, 2017), 

unemployment (Melchior et al., 2015), low educational attainment (Christoffersen et al., 

2021) and heavier drug abuse in adulthood (Richmond-Rakerd et al., 2017). The presence 

of comorbid psychiatric disorders has been associated with adverse disease trajectory, 

such as poorer treatment adherence in individuals with comorbid major depressive 

disorder or Attention-Deficit Hyperactivity disorder (ADHD) (Andersson, Lauvsnes, et al., 

2021; Ostacher, 2007), increased rates of suicide in individuals with comorbid 

schizophrenia (Lähteenvuo et al., 2021), and worse physical and mental health in 

individuals with comorbid Post-Traumatic Stress Disorder (PTSD) (Mills et al., 2006). In 

addition, behavioral traits, such as neuroticism, have been associated with lower rates of 

abstinence and increased symptom severity (Bucher et al., 2019). Most available inpatient 

and outpatient treatments for SUD, however, are not well suited to accommodate the 

observed heterogeneity, resulting in high rates of early treatment termination and 

relapse (Syan et al., 2020).  

Twin and adoption studies support the role of moderate to high (30-70%) genetic 

influence on SUD (Agrawal & Lynskey, 2008) and genome-wide associations studies 

(GWASs) have identified risk loci associated with substance-specific SUDs (Deak, Zhou, 
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et al., 2022; E. C. Johnson, Demontis, et al., 2020; Kranzler et al., 2019; Sun et al., 2020). 

These studies, together with other genetic approaches, point to a shared genetic liability 

and a unitary genetic architecture of SUD across different substances (Hatoum et al., 

2022; Schoeler et al., 2022). In addition, SUD genetic liability, which can be assessed using 

polygenic scores (PGSs), presents substantial overlap with psychiatric disorders and 

behavioral traits (Hatoum et al., 2023), and shows the strongest genetic correlations with 

ADHD, PTSD, anxiety, schizophrenia, depression, bipolar disorder and risk-taking 

behaviors (Cabana-Domínguez et al., 2019; Gelernter & Polimanti, 2021; Schoeler et al., 

2022). Supporting this idea, a recent study in a deeply phenotyped SUD sample reported 

that PGSs for substance-specific SUDs were associated with their primary substance-

related phenotypes but also with major depressive disorder, PTSD, lifetime trauma 

assessment, being suspended from school or family history of SUD (Kember et al., 2023). 

This finding suggests that the genetic liability for co-occurring psychopathology may 

explain part of the heterogeneity found in SUD.  

In addition, there is growing evidence that the effect of genetic risk on SUD can 

be moderated by environmental factors, which may also contribute to the individual 

differences in addictive behaviors (Vink, 2016). For instance, adverse life experiences, such 

as trauma exposure or peer drug use, seem to moderate the effect of PGS for cannabis 

use on lifetime cannabis use (Meyers et al., 2019), the effect of PGS for bipolar disorder 

on alcohol misuse (Polimanti et al., 2018) and the effect of PGS for alcohol problems in 

adults on earlier alcohol problems (Salvatore et al., 2014) 

In the present study, we aim to disentangle SUD heterogeneity in a SUD cohort 

of 1427 individuals who underwent deep phenotyping by conducting a systematic 

investigation of associations between 39 SUD-related phenotypes and the genetic 

liability for psychiatric disorders and related traits using PGSs, and to assess whether the 

profile of PGS associations across SUD-related phenotypes is modulated by exposure to 

lifetime emotional, physical and/or sexual abuse.  
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MATERIALS AND METHODS 

Sample description  

A total of 1427 individuals with SUD were recruited at the Addiction and Dual 

Diagnosis Unit of Hospital Universitari Vall d’Hebron, Barcelona, Spain. Inclusion criteria 

were age over 18 years old, substance abuse or dependence according to the DSM-IV 

criteria, European ancestry and a signed informed consent prior to participation. The 

project was approved by the Ethics Committee at the Hospital Universitari Vall d’Hebron.  

Clinical assessment 

The clinical assessment was conducted by trained psychiatrists and psychologists 

in two different steps: (i) At recruitment, a questionnaire designed ad hoc was 

administered to gather information on sociodemographic status (sex, age, educational 

attainment, employment status and criminal record), lifetime medical conditions, 

psychiatric and SUD family history and substance use related variables (substance(s) of 

use and/or abuse, age at onset of use, age at onset of SUD, years of substance use and 

SUD treatment history); (ii) The follow-up interviews were divided into four sessions to 

evaluate SUD severity, DSM-IV axis I and axis II disorders, heath-related quality of life and 

personality traits with different scales and questionnaires (Figure 1), detailed below.  

The structured Clinical Interview for Axis I and II Disorders of the DSM-IV (SCID-I 

and SCID-II) (J. G. Young, 1967) and the Conners’ Adult ADHD diagnostic interview for 

DSM-IV (CAADDID-II) (Ramos-Quiroga et al., 2012) were used to assess psychiatric 

comorbidity. The Spanish version of the Zuckerman–Kuhlman Personality Questionnaire 

(ZKPQ) (Zuckerman et al., 1993) was used to assess personality features including 

neuroticism-anxiety, activity, sociability, impulsive sensation-seeking and aggression-

hostility. The validated Spanish version of the European Addiction Severity Index 

interview (EuropASI) (Kokkevi & Hartgers, 1995) is design to provide information about 

aspects of an individual’s life which may contribute to his/her substance abuse, 

specifically on the following areas: legal status, employment status, medical status, 

psychiatric status, drug use, alcohol use and family/social relationships. Scores ranging 

from 0 to 1 are estimated, with higher scores indicating greater severity. The 36-Item 
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Short Form Survey (SF-36) was administered to measure the self-reported health and 

quality of life, both physically and mentally with higher scores indicating better health 

(Ware & Sherbourne, 1992). After data curation, 39 phenotypes with sample size >300 

were considered and classified into three categories: SUD variables (n= 8), comorbidity 

and personality traits (n=15) and sociodemographic and health outcomes (n=16) (Table 

1). For binary traits, with n1 individuals in one group and n2 individuals in the other 

group, effective sample size was calculated with the formula 4/(1/n1+1/n2).  

Genotyping and quality control 

Genomic DNA was isolated from whole blood by the salting-out procedure and 

genotyped with the Illumina Infinium Global Screening Array-24 version 2 (GSA v2) 

(Illumina, CA, San Diego, USA) in two different waves (434 and 993 samples, respectively). 

Pre-imputation quality control was done with the PLINK 2.0 software (Chang et al., 2015) 

and included individual and variant filtering based on the following parameters: variant 

call rate >0.95 (before individual filtering), individual call rate >0.98, autosomal 

heterozygosity deviation (| Fhet | <0.2), variant call rate >0.98 (after individual filtering), 

difference in variant missingness between cases and controls <0.02, SNP Hardy-

Weinberg equilibrium (HWE) (p >1e−06 in controls or p >1e−10 in cases) and minor allele 

frequency (MAF) > 0.01. Genetic outliers were identified by principal component analysis 

Figure 1. Flowchart. Flowchart with the different stages of the study including the recruitment and 

follow-up of the SUD sample. Sample size (n) refers to the number of individuals with at least one 

item of the interview available.  
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(PCA) using PLINK 2.0 and the mixed ancestry 1000G reference panel (Auton et al., 2015). 

Non-European individuals were excluded if their principal component (PC) values for PC1 

and PC2 were greater than 1 standard deviation from the mean-centring point for the 

study population. Related and duplicated samples were identified by the “KING-robust 

kinship estimator” analysis in PLINK 2.0 (Manichaikul et al., 2010) and one individual was 

excluded from each pair of subjects with kinship coefficient > 0.0442. Imputation was 

done with McCarthy tools, for data preparation, and the Michigan Imputation Server (Das 

et al., 2016), using the Haplotype Reference Consortium (HRC Version r1.1 2016) 

reference panel (GRCh37/hg19). Variants were excluded in case of allele mismatch 

between the reference panel and the study dataset (chi2>900). Post-imputation dosage 

files with imputation INFO score >0.8 and MAF >0.01 were considered for subsequent 

analyses. 

Polygenic scores 

PGSs were constructed in our using the PRS-CS software (Ge et al., 2019), PLINK 

2.0 and available GWASs summary statistics (Table S1), on psychiatric disorders (ADHD 

(Demontis, Walters, et al., 2019) anxiety (http://www.nealelab.is/uk-biobank/), bipolar 

disorder (Mullins et al., 2021), depression (Howard et al., 2019), post-traumatic Stress 

Disorder (PTSD) (Nievergelt et al., 2019) and schizophrenia (Trubetskoy, Pardiñas, Qi, 

Panagiotaropoulou, van Os, et al., 2022)), behavioral traits (risk tolerance (Karlsson Linnér 

et al., 2019), suicide attempt (Docherty et al., 2022)) and other related traits (educational 

attainment (J. J. Lee et al., 2018) and well-being (Baselmans et al., 2019)). PGSs were 

computed and standardized to a mean of 0 and a standard deviation of 1 for all disorders 

and traits.  

Statistical analysis  

Association between polygenic scores and SUD-related phenotypes 

The profile of PGSs associations across the SUD-related phenotypes were 

assessed with the appropriate regression models depending on the nature of the 

outcome variable with R: logistic regression for binary variables, linear regression for 

continuous variables, ordinal regression for ordinal categorical variables and negative 
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binominal for count variables. Prior to the analysis, logarithmic transformations were 

applied to continuous variables not following a normal distribution (“age at onset of 

substance use” and “age at onset of SUD”). Additionally, linear regression residuals were 

checked for continuous variables with significant results to ensure they followed a normal 

distribution. Age, sex, genotyping batch and the 10 first PCs were included as covariates 

in all analyses. Additionally, for the variables “age at onset of substance use”, “age at 

onset of SUD”, “years between substance use and SUD”, and “years of substance use as 

a proportion of lifespan”, the main drug of use, abuse or dependence was included as a 

covariate. P-values were corrected for multiple comparisons using PhenoSpD (Nyholt, 

2004; Zheng et al., 2018), a command line R based tool for estimating phenotypic 

correlations and multiple testing correction. The effective number of independent 

variables estimated was 35 using the VeffLi model and the corrected p-value threshold 

was set at p-value < 1.46e-03 (J. Li & Ji, 2005). 

Interaction between polygenic scores and emotional, physical and/or sexual abuse in SUD-

related phenotypes  

For those PGSs associated with any outcome, interaction with emotional, physical 

and/or sexual abuse was tested in a subset of 735 individuals who had completed the 

EuropASI family/social relationships questionnaire and information on emotional, 

physical and/or sexual abuse was available. Potential interaction effects were tested 

introducing an interaction term (PGS*abuse) in the regression model adjusted for age, 

sex, genotyping batch and the 10 first PCs as covariates. Multiple comparison corrected 

p-value, calculated with PhenoSpD in R, was set at p < 2.05e-03 (Nyholt, 2004; Zheng et 

al., 2018). For significant interactions, PGS-outcome associations were stratified by 

exposure to emotional, physical and/or sexual abuse.  

RESULTS 

Our cohort consisted of 1427 individuals (76.5% male), with a mean age of 38.6 

years (SD = 10.3) (Table 1). The vast majority of subjects were polysubstance users and 

47% fulfilled SUD criteria for three or more substances. 
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Table 1. Summary of the 39 SUD-related phenotypes   

Phenotypes n a Summary 

Sex: Male (%) 1427 76.5 

Age; Mean (SD) 1427 38.6 (10.3) 

SUD variables   

Age at onset of substance use; Mean (SD)  1347 17.05 (1.36) 

Age at onset of SUD; Mean (SD)  1339 19.32 (1.4) 

Years between substance use and SUD; Median (IQR) 1325 1 (3) 

Years of substance use as proportion of lifespan; Median (IQR) 1148 34 (33) 

Number of substances consumed  869  

1 (%)  23.2 

2 (%)  29.5 

3 or more (%)   47.3 

Number of therapeutic community interventions; Median (IQR) 1314  

0 (%)  64.5 

1 (%)  22.7 

2 (%)  7.1 

3 or more (%)  5.7 

Number of inpatient detoxifications; Median (IQR) 1327  

0 (%)  70.5 

1 (%)  16.0 

2 (%)  6.8 

3 or more (%)  6.7 

Number of outpatient treatments; Median (IQR) 1252  

0 (%)  28.5 

1 (%)  37.9 

2 (%)  16.6 

3 or more (%)  17 

Comorbidity and personality traits   

Mental disorders in DSM-IV   

Borderline personality disorder (%) 447 15.9 

Major depressive disorder (%) 828 37.8 

Antisocial personality disorder (%) 560 21.3 

Psychotic disorder (%) 593 7.8 

Anxiety disorder (%) 654 24.9 

Attention deficit hyperactivity disorder (%) 700 21.5 

Zuckerman–Kuhlman Personality Questionnaire (ZKPQ)   

Neuroticism Anxiety personality factor; Mean (SD)  663 10.8 (4.9) 

Aggression Hostility personality factor; Mean (SD)  667 8.93 (3.15) 

Sociability personality factor; Mean (SD)  632 6.6 (3.4) 

Impulsive sensation seeking personality factor; Mean (SD)  666 10.5 (4.3) 

Activity personality factor; Mean (SD)  665 8.09 (3.5) 

Suicide attempt (%) 618 47.8 

Suicide ideation (%) 731 30.1 

Psychotic symptoms (%) 1281 58.6 
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a For binary traits, with n1 individuals in one group and n2 individuals in the other group, 

effective sample size was calculated with the formula 4/(1/n1+1/n2).  

Polygenic scores for psychiatric disorders 

After multiple testing correction we found significant associations between the 

PGS for ADHD and lower educational attainment (OR=0.85, 95% CI [0.93, 0.77], p=1.20e-

03) and between the PGS for PTSD and unemployment (OR=1.23, 95% CI [1.09, 1.4], 

p=1.00e-03) (Figure 2, Table S2a and S2e). 

Despite not surpassing the multiple testing correction threshold (p < 0.05), we 

found additional nominal associations. PGS for ADHD was associated with early-onset of 

first substance use (Beta (β)=-0.01, 95% CI [-0.03, -3.00e-04]), longer term substance use 

as a proportion of the lifespan (β=1.07, 95% CI [0.03, 2.11]), lifetime diagnosis of ADHD 

Sleeping disturbances (%) 1228 54.6 

Sociodemographic and health outcomes   

EuropASI   

Legal status; Median (IQR) 984 0 (.1) 

Employment status; Median (IQR) 984 .55 (.5) 

Medical status; Median (IQR) 982 0 (.1) 

Psychiatric status; Median (IQR) 984 .4 (.3) 

Drug use; Median (IQR) 984 .2 (.2) 

Alcohol use; Median (IQR) 984 .1 (.3) 

Family/Social relationships; Median (IQR) 981 .4 (.5) 

36-Item Short Form Survey (SF-36)   

Physical health; Mean (SD)  751 48.4 (1.8) 

Mental health; Mean (SD)  751 35.5 (13.7) 

Criminal record (%) 713 43.1 

Unemployment (%) 1057 73.4 

Number of psychiatric hospitalizations; Median (IQR) 760  

0 (%)  79.9 

1 (%)  9.9 

2 (%)  4.5 

3 or more (%)  5.7 

Psychiatric family history (%) 840 44.8 

Lifetime medical conditions (%) 1334 54.4 

Substance use family history (%) 818 59.6 

Educational attainment 1333  

1 (Incomplete primary school) (%)  14.5 

2 (Primary school) (%)  40.9 

3 (Secondary/High school) (%)  35.6 

4 (Bachelor's degree or higher) (%)  9.1 
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(OR=1.24, 95% CI [1.06, 1.45]), and antisocial personality disorder (OR=1.24, 95% CI [1.04, 

1.47]) (Figure 2, Table S2a). PGS for anxiety was associated with more outpatient 

treatments (incidence rate ratio (IRR)=1.09, 95% CI [1.03, 1.15]), psychotic disorders 

across the lifetime (OR=1.49, 95% CI [1.16, 1.92]), poorer self-perceived physical health 

status measured with the SF-36 instrument (β=-0.93, 95% CI [-1.64, -0.22]) and psychiatric 

family history (OR=1.16, 95% CI [1.01, 1.33]) (Figure 2, Table S2b). PGS for bipolar disorder 

was associated with higher rates of psychotic symptoms (OR=1.14, 95% CI [1.02, 1.28]), 

unemployment (OR=1.14, 95% CI [1.01, 1.29]), psychiatric hospitalizations (IRR=1.26, 95% 

CI [1.03, 1.53]) and substance use family history (OR=1.15, 95% CI [1.0, 1.32]) (Figure 2, 

Table S2c). PGS for depression showed association with slower transition from substance 

use to SUD (IRR=1.1, 95% CI [1.01, 1.21]), more outpatient treatments (IRR=1.09, 95% CI 

[1.03, 1.15]) and higher rates of neuroticism-anxiety (β=0.36, 95% CI [4e-3, 0.72]) and 

aggression-hostility (β=0.27, 95% CI [0.04, 0.5]) according to the ZKPQ, suicide attempts 

(OR=1.18, 95% CI [1.02, 1.37]), criminal records (OR=1.27, 95% CI [1.09, 1.48]) and 

psychiatric family history (OR=1.16, 95% CI [1.01, 1.32]) (Figure 2, Table S2d). PGS for 

PTSD was associated with early-onset of first substance use (β=-0.01, 95% CI [-0.03, -1e-

3]), more inpatient detoxifications (IRR=1.13, 95% CI [1.01, 1.27]), and lower educational 

attainment (OR=0.87, 95% CI [0.97, 0.79]) (Figure 2, Table S2e). And lastly, PGS for 

schizophrenia was associated with later onset of substance use (β=0.01, 95% CI [3e-4, 

0.03]), psychotic disorders (OR=1.37, 95% CI [1.05, 1.78]), higher rates of psychotic 

symptoms (OR=1.15, 95% CI [1.03, 1.29]) and unemployment (OR=1.13, 95% CI [1, 1.28]) 

(Figure 2, Table S2f).  

Polygenic scores for behavioral traits 

None of the associations between PGSs for behavioral traits and SUD-related 

phenotypes surpassed multiple testing correction, however, nominally significant 

associations (p < 0.05) are detailed bellow.  

PGS for risk tolerance showed associations with more outpatient treatments 

(IRR=1.06, 95% CI [1, 1.12]), lower rates of neuroticism-anxiety (β=-0.51, 95% CI [-0.88, -

0.14]) and higher rates of impulsive sensation seeking (β=0.32, 95% CI [3e-3, 0.65]) 

according to the ZKPQ and higher rates of legal problems measured by the EuropASI 



Results Study 2 

121 
 

3 

index (OR=1.18, 95% CI [1.02, 1.36]) (Figure 2, Table S2g). PGS for suicide attempt was 

associated with early-onset of SUD (β=-0.02, 95% CI [-0.04, -0.01]), more outpatient 

treatments (IRR=1.06, 95% CI [1, 1.12]), higher rates of aggression-hostility (β=0.26, 95% 

CI [0.02, 0.51]) and psychotic symptoms (OR=1.15, 95% CI [1.03, 1.29]), more legal 

(OR=1.18, 95% CI [1.01, 1.37]), medical (OR=1.14, 95% CI [1, 1.29]), psychiatric (OR=1.13, 

95% CI [1.01, 1.27]) and family/social (OR=1.13, 95% CI [1, 1.26]) problems measured by 

the EuropASI index, more lifetime medical conditions (OR=1.14, 95% CI [1, 1.29]) and 

lower educational attainment (OR=0.90, 95% CI [1, 0.81]) (Figure 2, Table S2h). 

Figure 2. Heatmap for the results of the association between PGSs and SUD-related phenotypes. 

Association pattern between 10 PGSs for psychiatric disorders, behavioural and related traits 

with the SUD-related phenotypes; *nominal significance p-values; **p-values that passed 

multiple testing correction using PhenoSpD (P<1.46e-03). ADHD = Attention-deficit 

hyperactivity disorder; PTSD = Post-traumatic Stress Disorder. Standardized coefficient 

corresponds to Beta for continuous variables, log(OR) for binary and ordinal variables and 

log(IRR) for count variables.  
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Polygenic scores for educational attainment and well-being 

 After multiple testing correction we found significant associations between PGS 

for educational attainment and less criminal records (OR=0.67, 95% CI [0.57, 0.78], 

p=8.03e-07), unemployment (OR=0.82, 95% CI [0.71, 0.92], p=1.34e-03) and higher 

educational attainment (OR=1.39, 95% CI [1.54, 1.25], p=3.34e-10), as well as associations 

between PGS for well-being and less outpatient treatments (OR=0.91, 95% CI [0.86, 0.96], 

p=7.00e-04) and family/social problems (OR=0.83, 95% CI [0.74, 0.93], p= 1.00e-03) 

(Figure 2, Table S2i and S2j). 

Nominal associations (p < 0.05) include the association between PGS for 

educational attainment and later onset of substance use (β=0.02, 95% CI [0.01, 0.03]) and 

SUD (β=0.02, 95% CI [4e-3, 0.04]), less therapeutic community interventions (OR=0.89, 

95% CI [0.81, 0.98]) or outpatient treatments (OR=0.91, 95% CI [0.87, 0.97]), lower rates 

of neuroticism-anxiety (β=-0.4, 95% CI [-0.78, -0.01] 2), less social-familiar problems 

(OR=0.86, 95% CI [0.77, 0.96]), and substance use family history (OR=0.80, 95% CI [0.7, 

0.92]) (Figure 2, Table S2i). Moreover, PGS for well-being showed association with lower 

rates of psychiatric problems (OR=0.87, 95% CI [0.78, 0.97]), less unemployment 

(OR=0.88, 95% CI [0.77, 0.99]), psychiatric hospitalizations (OR=0.78, 95% CI [0.68, 0.95]), 

and substance use family history (OR=0.83, 95% CI [0.77, 0.99]) (Figure 2, Table S2j). 

Interaction between polygenic scores and emotional, physical and/or sexual abuse on 

SUD-related phenotypes  

Information on lifetime emotional, physical and/or sexual abuse was available for a total 

of 735 individuals with SUD, 45.6% of which (n=335) reported having experienced some 

sort of abuse across their lifetime. PGS*abuse interaction analysis was performed for 

those PGSs nominally associated with any outcome (Table S3). We found one significant 

interaction where lifetime abuse moderates the association between PGS for suicide 

attempt and the psychiatric status measured by the EuropASI index (OR=1.35, 95% CI 

[1.03, 1.78], p=2.94e-02). Specifically, the genetic liability for suicide attempt was 

associated with worse psychiatric status scores among those having experienced lifetime 

emotional, physical and/or sexual abuse (OR=1.33 95% CI [0.48, 0.09], p= 4.67e-04), while 

the association was not significant for those not exposed (Figure 3). 



Results Study 2 

123 
 

3 

 

DISCUSSION 

There is immense clinical and genetic heterogeneity among individuals with SUD, 

and current treatment approaches fail to accommodate this variability, resulting in poor 

treatment adherence and high rates of relapse (Prom-Wormley et al., 2017). In this study, 

we utilized multidimensional data from a deeply phenotyped SUD cohort and individual 

genetic liability information for a broad range of mental health-related traits using PGSs, 

to provide new insights into the heterogeneity of the disorder. Our approach included 

the systematic association of 10 PGSs for psychiatric disorders, behavioral and other 

related traits with 39 SUD-related phenotypes, and the assessment of PGS-environmental 

interactions using information on emotional, physical and/or sexual abuse. Our main 

Figure 3. Statistically significant result from the interaction analysis. Interaction between PGS for 

suicide attempt and lifetime emotional, physical and/or sexual abuse in psychiatric status 

measured by the EuropASI index. The X axis presents the PGS for suicide attempt, and the Y axis 

shows the residuals from an ordinal regression model with psychiatric status as outcome adjusted 

for age, sex, genotyping batch and the 10 first principal components for those individuals who 

suffered lifetime abuse (in yellow) and those who did not (in green).  
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findings suggest that the genetic liability for ADHD, PTSD and suicide attempt, in 

conjunction with environmental factors, may underlie, at least partially, the observed 

heterogeneity in SUD-related phenotypes such as educational attainment, 

unemployment and psychiatric status.  

PGSs analysis on the SUD-related phenotypes builds on previous findings 

supporting links between the genetic risk for psychiatric disorders and a wide variety of 

SUD outcomes. In line with this evidence, our results suggest that the genetic liability for 

mental health-related traits exhibits different patterns of associations with SUD-related 

phenotypes. Specifically, we replicated previous findings linking the genetic liability for 

ADHD with lower educational attainment (Dardani et al., 2021), the genetic liability for 

PTSD with higher rates of unemployment (Goldberg et al., 2014), and the genetic liability 

for higher educational attainment with lower rates of criminal records and 

unemployment (H. Liu, 2019; Wertz et al., 2018). While these associations were described 

in the general population, our results suggest that these patterns remain in individuals 

with SUD. Moreover, our findings showed that the genetic liability for well-being is 

associated with better outcomes, namely lower rates of outpatient treatments and fewer 

problems related to family and social relationships, which is consistent with the role of 

the genetics underlying well-being in healthy family relationships (van de Weijer et al., 

2022).  

Despite not surpassing multiple comparison correction, we found evidence 

supporting previously reported associations. For instance, PGSs for ADHD, schizophrenia 

and educational attainment were associated with their respective primary phenotype, 

confirming the validity of the approach. In addition, we identified an association between 

the genetic liability for depression and higher rates of suicide attempts. This is consistent 

with previous findings linking PGSs for depression with suicide attempt (P. H. Lee et al., 

2022; Levey et al., 2019; Lim et al., 2020; Ruderfer et al., 2020), and studies suggesting an 

increased risk of suicide attempt and ideation among individuals with comorbid SUD and 

major depressive disorder (Onaemo et al., 2022; Østergaard et al., 2017). Our findings 

add to the evidence supporting that genetic liability for depression may have a relevant 

role regarding suicide attempt and ideation in the context of SUD.  
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Our results also shed light into the association between the genetic liability for 

multiple psychiatric disorders and poor SUD-related outcomes. These include early age 

at onset of substance use and high number of outpatient treatments, strengthening the 

notion that genetic susceptibility to psychiatric diseases and behavioral traits may play a 

role in promoting the initiation and impeding the cessation of substance use (Andersson 

et al., 2019; Bagot et al., 2015; Krawczyk et al., 2017; Ostacher, 2007). For instance, we 

found that individuals with higher PGS for ADHD showed earlier onset and more 

prolonged substance use, while those with higher PGS for depression showed faster 

transition from substance use to SUD and more outpatient treatments. Similarly, 

individuals with higher PGS for PTSD showed earlier onset of substance use and more 

inpatient treatments.  

Moreover, PGSs for educational attainment or suicide attempt were associated 

with multiple outcomes (more than ten). Increased genetic risk for educational 

attainment was associated with less therapeutic interventions, late age at onset of 

substance use or SUD and less SUD family history or problems related with family and 

social relationships. These findings are consistent with previous evidence showing that 

the genetic liability for education attainment is linked to decreased SUD severity 

(Salvatore et al., 2020) and a recent study by Kinreich et al., (2021) suggesting that 

polygenic liability to years of education could be used to predict remission in patients 

with alcohol use disorder. Additionally, the genetic liability for suicide attempt showed 

the strongest association with early age at onset of SUD, number of outpatient 

treatments, higher rates of psychotic symptoms, and a wide range of medical, 

psychological and legal problems. Adding to this evidence, we report a significant 

interaction between PGS for suicide attempt and having been exposed to lifetime 

emotional, physical or sexual abuse in the psychiatric status of SUD individuals. While it 

is well established that exposure to sexual trauma and/or abuse increases the risk for 

substance use and mental health problems later in life (B. S. O’Brien & Sher, 2013), we 

found that the genetic liability for suicide attempt exacerbates the negative impact on 

mental health problems in individuals with a history of abuse. Similar findings have been 

reported for cannabis use (Meyers et al., 2019) or bipolar disorder (Park et al., 2020), 

where exposure to trauma and/or maltreatment potentiates the polygenic risk for these 
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disorders. Overall, these results highlight that focusing on exposed individuals may 

render genetic effects that may not be found when environmental exposures are not 

considered. 

Although many results are well supported by prior research, we also found that 

for some disorders PGSs were not associated with their primary phenotype. For instance, 

PGSs for anxiety or depression did not show an association with anxiety disorder or major 

depressive disorder in the SUD dataset. The reasons for this lack of association may 

include selection bias, complex relationships between SUD and comorbid conditions and 

limited sample size for some of the outcomes. Moreover, PGS for suicide attempt was 

not associated with suicide behaviors, namely suicide ideation and attempt, in our SUD 

dataset. Suicide attempt is a clinically complex phenotype that can vary greatly in 

frequency and intensity (Diblasi et al., 2021). Even though the GWAS meta-analysis used 

to construct PGS for suicide attempt aimed to harmonize data across various cohorts by 

including clinical samples from major psychiatric disorders and individuals from the 

Million Veterans Project sample (Docherty et al., 2022), differences in population 

characteristics or assessment methods of the phenotype may account for the 

inconclusive results observed in our dataset. In previous studies, reliability of PGS-based 

predictions of suicide attempt has been inconsistent when applied to independent 

datasets (Loughnan et al., 2022; Mitjans et al., 2022; Mullins et al., 2014), and Lannoy et 

al., (2022) found evidence for the interaction between PGS for suicide attempt and drug 

use on suicide ideation. Together, these results highlight the multifactorial nature of 

suicide attempt and suggest that other factors, such as psychiatric comorbidity, SUD type 

or severity and environmental factors, should be taken into account when assessing 

suicide risk. 

It is important to be cautious when comparing results from PGSs for the disorders 

and traits tested, taking into consideration the variations in statistical power between 

some of them. The differences in sample size among the GWAS meta-analyses used to 

construct PGSs, as well as among the outcomes, could have contributed to the uneven 

pattern of associations observed. Additionally, other factors such as environmental 

factors and sex differences may play a significant role in certain aspects of SUD 

heterogeneity. Furthermore, our results suggest that the patterns of lifetime comorbidity 
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in SUD result, in part, from the contribution of genetic factors. However, it is currently 

unknown whether substance use is a consequence of underlying psychiatric disorders or 

whether it increases the risk of mental health problems later in life. Access to longitudinal 

data would provide new and valuable information to assess causal relationships between 

SUD and comorbid conditions and to examine the impact of the genetic liability on 

disease progression.  

This study supports that the genetic liability for distinct mental health-related 

traits plays a role in the heterogeneity of SUD and can influence disease outcome in 

terms of severity, comorbidity rates and socio-demographic factors. There is also 

evidence for PGS-environment interactions between the genetic liability for suicide 

attempt and lifetime emotional physical and/or sexual abuse on the psychiatric status of 

individuals with SUD. These results encourage the use of PGSs and gene-environment 

interactions to better understand the heterogeneity of SUD and complex traits. 
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SUPPLEMENTARY TABLES  

Supplementary Table 1. Discovery GWASs of psychiatric diseases, behavioral and related traits 

used to construct the PGSs 

a For binary traits effective sample size was calculated with the formula 4/(1/n cases+1/n controls) 

 

Trait n cases n controls n total a ref 

Attention-Deficit 

Hyperactivity Disorder 
20,183 35,191 51,306 

(Demontis, Walters, et al., 

2019) 

Anxiety 16,730 101,021 57,412 
http://www.nealelab.is/uk-

biobank/ 

Bipolar Disorder 41,917 371,549 150,670 (Mullins et al., 2021) 

Depression 170,756 329,443 449,856 (Howard et al., 2019) 

Post-Traumatic Stress 

Disorder 
9,354 25,175 27,280 (Nievergelt et al., 2019) 

Schizophrenia 67390 94015 157,013 

(Trubetskoy, Pardiñas, Qi, 

Panagiotaropoulou, van 

Os, et al., 2022) 

Risk tolerance - - 466,571 
(Karlsson Linnér et al., 

2019) 

Suicide attempt 26,590 492,022 100,907 (Docherty et al., 2022) 

Educational attainment - - 766,345 (J. J. Lee et al., 2018) 

Well being - - 2,083,151 (Baselmans et al., 2019) 
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Supplementary Table 2a. Association between the PGS for ADHD and 39 clinical variables from the SUD 

phenome. In bold nominal significant results. 

 
a For binary traits sample size was calculated with the 

formula 4/(1/n1+1/n2)     
b OR is reported for logistic regression and ordinal regression; Beta is reported for lineal regression;  IRR is 

reported for negative binomial regression 
c Logarithmic transformations were applied to continuous variables not following 

a normal distribution   

n  a Regression Estimate b 95% CI p

SUD variables

Age at onset of substance use c 1347 Linear -0.01 -0,03 , -3,00E-04 4.53E-02

Age at onset of SUD c 1339 Linear -0.01 -0,02 , 0,01 0.39

Years between substance use and SUD 1325 Linear 1.04 0,95 , 1,14 0.36

Years of substance use as proportion of lifespan 1148 Linear 1.07 0,03 , 2,1 4.42E-02

Number of substances consumed 869 Negative binomial 1.03 0,99 , 1,07 0.19

Number of therapeutic community interventions 1314 Negative binomial 1.01 0,92 , 1,11 0.80

Number of inpatient detoxifications 1327 Negative binomial 1.03 0,92 , 1,15 0.62

Number of outpatient treatments 1252 Negative binomial 1.05 0,99 , 1,11 0.09

Comorbidity and personality traits

Mental disorders in DSM-IV

Borderline personality disorder 447 Logistic 1.12 0,92 , 1,36 0.28

Major depressive disorder 828 Logistic 1.10 0,96 , 1,27 0.17

Antisocial personality disorder 560 Logistic 1.24 1,04 , 1,47 1.60E-02

Psychotic disorder 593 Logistic 1.02 0,79 , 1,3 0.90

Anxiety disorder 654 Logistic 1.03 0,88 , 1,2 0.71

Attention deficit hyperactivity disorder 700 Logistic 1.24 1,06 , 1,45 7.35E-03

Zuckerman–Kuhlman Personality Questionnaire (ZKPQ)

Neuroticism Anxiety personality factor 663 Linear 0.07 -0,29 , 0,43 0.72

Aggression Hostility personality factor 667 Linear 0.15 -0,08 , 0,38 0.21

Sociability personality factor 632 Linear -0.18 -0,44 , 0,08 0.18

Impulsive sensation seeking personality factor 666 Linear 0.01 -0,3 , 0,32 0.94

Activity personality factor 665 Linear 0.02 -0,24 , 0,28 0.88

Suicide attempt 618 Logistic 1.03 0,89 , 1,19 0.67

Suicide ideation 731 Logistic 0.98 0,84 , 1,15 0.80

Psychotic symptoms 1281 Logistic 1.00 0,89 , 1,12 0.98

Sleeping disturbances 1228 Logistic 1.02 0,91 , 1,14 0.76

Sociodemographic and health phenotypes

EuropASI

Legal status 984 Ordinal 1.00 0,87 , 1,16 0.97

Employment status 984 Ordinal 1.08 0,97 , 1,2 0.18

Medical status 982 Ordinal 1.03 0,92 , 1,17 0.60

Psychiatric status 984 Ordinal 1.01 0,91 , 1,13 0.86

Drug use 984 Ordinal 1.06 0,95 , 1,19 0.28

Alcohol use 984 Ordinal 0.96 0,86 , 1,08 0.54

Family/Social relationships 981 Ordinal 1.10 0,99 , 1,23 0.09

36-Item Short Form Survey (SF-36)

Physical health 751 Linear -0.52 -1,23 , 0,19 0.15

Mental health 751 Linear 0.49 -0,45 , 1,44 0.31

Criminal record 713 Logistic 1.13 0,98 , 1,32 0.10

Unemployment 1057 Logistic 1.03 0,91 , 1,17 0.61

Number of psychiatric hospitalizations 760 Negative binomial 1.05 0,86 , 1,29 0.61

Psychiatric family history 840 Logistic 0.97 0,85 , 1,11 0.66

Lifetime medical conditions 1334 Logistic 0.99 0,88 , 1,11 0.84

Substance use family history 818 Logistic 1.10 0,96 , 1,27 0.16

Educational attainment 1333 Ordinal 0.85 0,93 , 0,77 1.20E-03

Phenotypes
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Supplementary Table 2b. Association between the PGS for anxiety and 39 clinical variables from the 

SUD phenome. In bold nominal significant results 

 

a For binary traits sample size was calculated with the formula 4/(1/n1+1/n2)     
b OR is reported for logistic regression and ordinal regression; Beta is reported for lineal regression;  IRR is 

reported for negative binomial regression 

c Logarithmic transformations were applied to continuous variables not following a normal distribution   

 

n  a Regression Estimate b 95% CI p

SUD variables

Age at onset of substance use c 1347 Linear -0.01 -0,02 , 0,01 0.36

Age at onset of SUD c 1339 Linear 0.00 -0,02 , 0,01 0.77

Years between substance use and SUD 1325 Linear 1.04 0,95 , 1,13 0.45

Years of substance use as proportion of lifespan 1148 Linear -0.03 -1,07 , 1,02 0.96

Number of substances consumed 869 Negative binomial 1.01 0,97 , 1,05 0.79

Number of therapeutic community interventions 1314 Negative binomial 1.10 1 , 1,21 0.05

Number of inpatient detoxifications 1327 Negative binomial 1.01 0,9 , 1,13 0.84

Number of outpatient treatments 1252 Negative binomial 1.09 1,03 , 1,15 2.67E-03

Comorbidity and personality traits

Mental disorders in DSM-IV

Borderline personality disorder 447 Logistic 1.02 0,84 , 1,24 0.86

Major depressive disorder 828 Logistic 1.03 0,9 , 1,19 0.63

Antisocial personality disorder 560 Logistic 1.09 0,92 , 1,29 0.30

Psychotic disorder 593 Logistic 1.49 1,16 , 1,92 1.93E-03

Anxiety disorder 654 Logistic 1.04 0,89 , 1,21 0.63

Attention deficit hyperactivity disorder 700 Logistic 0.86 0,74 , 1,01 0.06

Zuckerman–Kuhlman Personality Questionnaire (ZKPQ)

Neuroticism Anxiety personality factor 663 Linear 0.23 -0,12 , 0,59 0.20

Aggression Hostility personality factor 667 Linear 0.07 -0,16 , 0,3 0.56

Sociability personality factor 632 Linear -0.08 -0,34 , 0,17 0.53

Impulsive sensation seeking personality factor 666 Linear 0.02 -0,29 , 0,33 0.91

Activity personality factor 665 Linear 0.04 -0,22 , 0,29 0.79

Suicide attempt 618 Logistic 1.07 0,93 , 1,23 0.37

Suicide ideation 731 Logistic 1.01 0,87 , 1,18 0.88

Psychotic symptoms 1281 Logistic 1.06 0,95 , 1,19 0.28

Sleeping disturbances 1228 Logistic 0.98 0,88 , 1,1 0.77

Sociodemographic and health phenotypes

EuropASI

Legal status 984 Ordinal 0.92 0,8 , 1,07 0.28

Employment status 984 Ordinal 0.97 0,87 , 1,08 0.57

Medical status 982 Ordinal 1.08 0,96 , 1,22 0.23

Psychiatric status 984 Ordinal 1.08 0,97 , 1,2 0.16

Drug use 984 Ordinal 1.08 0,97 , 1,21 0.17

Alcohol use 984 Ordinal 0.95 0,85 , 1,06 0.36

Family/Social relationships 981 Ordinal 1.07 0,96 , 1,19 0.26

36-Item Short Form Survey (SF-36)

Physical health 751 Linear -0.93 -1,64 , -0,22 1.07E-02

Mental health 751 Linear 0.06 -0,89 , 1,01 0.90

Criminal record 713 Logistic 0.94 0,81 , 1,1 0.47

Unemployment 1057 Logistic 1.05 0,93 , 1,19 0.44

Number of psychiatric hospitalizations 760 Negative binomial 1.03 0,84 , 1,27 0.77

Psychiatric family history 840 Logistic 1.16 1,01 , 1,33 4.16E-02

Lifetime medical conditions 1334 Logistic 1.06 0,95 , 1,19 0.31

Substance use family history 818 Logistic 1.02 0,88 , 1,17 0.80

Educational attainment 1333 Ordinal 0.92 1,02 , 0,83 0.10

Phenotypes
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Supplementary Table 2c. Association between the PGS for bipolar disorder and 39 clinical variables 

from the SUD phenome. In bold nominal significant results 

 

a For binary traits sample size was calculated with the formula 4/(1/n1+1/n2)     
b OR is reported for logistic regression and ordinal regression; Beta is reported for lineal regression;  IRR is 

reported for negative binomial regression 

c Logarithmic transformations were applied to continuous variables not following a normal distribution   

 

 

 

 

 

n  a Regression Estimate b 95% CI p

SUD variables

Age at onset of substance use c 1347 Linear 0.01 -0,01 , 0,02 0.33

Age at onset of SUD c 1339 Linear 0.00 -0,02 , 0,02 0.90

Years between substance use and SUD 1325 Linear 1.01 0,93 , 1,11 0.78

Years of substance use as proportion of lifespan 1148 Linear 0.20 -0,85 , 1,24 0.71

Number of substances consumed 869 Negative binomial 1.02 0,98 , 1,07 0.26

Number of therapeutic community interventions 1314 Negative binomial 0.92 0,84 , 1,01 0.09

Number of inpatient detoxifications 1327 Negative binomial 1.03 0,92 , 1,16 0.59

Number of outpatient treatments 1252 Negative binomial 0.99 0,94 , 1,05 0.85

Comorbidity and personality traits

Mental disorders in DSM-IV

Borderline personality disorder 447 Logistic 1.03 0,85 , 1,26 0.74

Major depressive disorder 828 Logistic 0.94 0,81 , 1,08 0.37

Antisocial personality disorder 560 Logistic 1.02 0,86 , 1,21 0.85

Psychotic disorder 593 Logistic 1.08 0,84 , 1,4 0.53

Anxiety disorder 654 Logistic 0.98 0,83 , 1,15 0.78

Attention deficit hyperactivity disorder 700 Logistic 1.04 0,89 , 1,22 0.59

Zuckerman–Kuhlman Personality Questionnaire (ZKPQ)

Neuroticism Anxiety personality factor 663 Linear -0.07 -0,45 , 0,3 0.71

Aggression Hostility personality factor 667 Linear 0.05 -0,18 , 0,29 0.65

Sociability personality factor 632 Linear 0.16 -0,11 , 0,43 0.24

Impulsive sensation seeking personality factor 666 Linear 0.05 -0,28 , 0,38 0.76

Activity personality factor 665 Linear -0.09 -0,36 , 0,18 0.53

Suicide attempt 618 Logistic 1.04 0,9 , 1,2 0.62

Suicide ideation 731 Logistic 1.05 0,9 , 1,23 0.54

Psychotic symptoms 1281 Logistic 1.14 1,02 , 1,28 2.58E-02

Sleeping disturbances 1228 Logistic 1.00 0,9 , 1,12 0.95

Sociodemographic and health phenotypes

EuropASI

Legal status 984 Ordinal 1.09 0,95 , 1,26 0.22

Employment status 984 Ordinal 0.98 0,88 , 1,09 0.73

Medical status 982 Ordinal 1.08 0,95 , 1,22 0.23

Psychiatric status 984 Ordinal 1.00 0,9 , 1,11 0.94

Drug use 984 Ordinal 0.93 0,83 , 1,04 0.19

Alcohol use 984 Ordinal 1.04 0,93 , 1,16 0.48

Family/Social relationships 981 Ordinal 1.01 0,9 , 1,12 0.92

36-Item Short Form Survey (SF-36)

Physical health 751 Linear -0.62 -1,36 , 0,12 0.10

Mental health 751 Linear 0.32 -0,67 , 1,31 0.53

Criminal record 713 Logistic 1.08 0,93 , 1,25 0.32

Unemployment 1057 Logistic 1.14 1,01 , 1,29 3.72E-02

Number of psychiatric hospitalizations 760 Negative binomial 1.26 1,03 , 1,53 2.23E-02

Psychiatric family history 840 Logistic 1.12 0,98 , 1,28 0.11

Lifetime medical conditions 1334 Logistic 0.99 0,89 , 1,11 0.87

Substance use family history 818 Logistic 1.15 1 , 1,32 4.89E-02

Educational attainment 1333 Ordinal 0.97 1,06 , 0,88 0.51

Phenotypes
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Supplementary Table 2d. Association between the PGS for depression and 39 clinical variables from the 

SUD phenome. In bold nominal significant results 

 

a For binary traits sample size was calculated with the formula 4/(1/n1+1/n2)     
b OR is reported for logistic regression and ordinal regression; Beta is reported for lineal regression;  IRR is 

reported for negative binomial regression 

c Logarithmic transformations were applied to continuous variables not following a normal distribution   

n  a Regression Estimate b 95% CI p

SUD variables

Age at onset of substance use c 1347 Linear 0.01 -0,03 , 2,00E-03 0.09

Age at onset of SUD c 1339 Linear 0.00 -0,02 , 0,01 0.54

Years between substance use and SUD 1325 Linear 1.01 1,01 , 1,21 3.49E-02

Years of substance use as proportion of lifespan 1148 Linear 0.20 -1,24 , 0,86 0.72

Number of substances consumed 869 Negative binomial 1.02 0,95 , 1,04 0.80

Number of therapeutic community interventions 1314 Negative binomial 0.92 0,9 , 1,08 0.76

Number of inpatient detoxifications 1327 Negative binomial 1.03 0,91 , 1,15 0.69

Number of outpatient treatments 1252 Negative binomial 0.99 1,03 , 1,15 3.04E-03

Comorbidity and personality traits

Mental disorders in DSM-IV

Borderline personality disorder 447 Logistic 1.03 0,93 , 1,38 0.22

Major depressive disorder 828 Logistic 0.94 0,88 , 1,17 0.87

Antisocial personality disorder 560 Logistic 1.02 0,83 , 1,17 0.82

Psychotic disorder 593 Logistic 1.08 0,85 , 1,41 0.50

Anxiety disorder 654 Logistic 0.98 0,88 , 1,2 0.73

Attention deficit hyperactivity disorder 700 Logistic 1.04 0,92 , 1,25 0.41

Zuckerman–Kuhlman Personality Questionnaire (ZKPQ)

Neuroticism Anxiety personality factor 663 Linear -0.07 4,00E-03 , 0,72 4.91E-02

Aggression Hostility personality factor 667 Linear 0.05 0,04 , 0,5 2.18E-02

Sociability personality factor 632 Linear 0.16 -0,41 , 0,11 0.25

Impulsive sensation seeking personality factor 666 Linear 0.05 -0,22 , 0,41 0.56

Activity personality factor 665 Linear -0.09 -0,29 , 0,23 0.83

Suicide attempt 618 Logistic 1.04 1,02 , 1,37 3.04E-02

Suicide ideation 731 Logistic 1.05 0,95 , 1,3 0.20

Psychotic symptoms 1281 Logistic 1.14 0,98 , 1,23 0.12

Sleeping disturbances 1228 Logistic 1.00 0,93 , 1,17 0.48

Sociodemographic and health phenotypes

EuropASI

Legal status 984 Ordinal 1.09 0,87 , 1,16 0.92

Employment status 984 Ordinal 0.98 0,96 , 1,19 0.25

Medical status 982 Ordinal 1.08 0,99 , 1,27 0.06

Psychiatric status 984 Ordinal 1.00 1 , 1,23 0.06

Drug use 984 Ordinal 0.93 0,87 , 1,09 0.68

Alcohol use 984 Ordinal 1.04 0,88 , 1,11 0.86

Family/Social relationships 981 Ordinal 1.01 0,99 , 1,23 0.08

36-Item Short Form Survey (SF-36)

Physical health 751 Linear -0.62 -1,35 , 0,09 0.09

Mental health 751 Linear 0.32 -1,09 , 0,84 0.80

Criminal record 713 Logistic 1.08 1,09 , 1,48 1.82E-03

Unemployment 1057 Logistic 1.14 0,92 , 1,17 0.58

Number of psychiatric hospitalizations 760 Negative binomial 1.26 0,95 , 1,4 0.15

Psychiatric family history 840 Logistic 1.12 1,01 , 1,32 3.70E-02

Lifetime medical conditions 1334 Logistic 0.99 0,91 , 1,15 0.70

Substance use family history 818 Logistic 1.15 0,99 , 1,31 0.06

Educational attainment 1333 Ordinal 0.97 1,09 , 0,88 0.69

Phenotypes



 

142 
 

Supplementary Table 2e. Association between the PGS for post-traumatic stress disorder and 39 clinical 

variables from the SUD phenome. In bold nominal significant results 

 

a For binary traits sample size was calculated with the formula 4/(1/n1+1/n2)     
b OR is reported for logistic regression and ordinal regression; Beta is reported for lineal regression;  IRR is 

reported for negative binomial regression 

c Logarithmic transformations were applied to continuous variables not following a normal distribution   

n  a Regression Estimate b 95% CI p

SUD variables

Age at onset of substance use c 1347 Linear -0.01 -0,03 , -1,00E-03 3.72E-02

Age at onset of SUD c 1339 Linear -0.01 -0,03 , 0,01 0.23

Years between substance use and SUD 1325 Linear 0.98 0,9 , 1,08 0.70

Years of substance use as proportion of lifespan 1148 Linear 0.16 -0,88 , 1,21 0.76

Number of substances consumed 869 Negative binomial 0.99 0,96 , 1,04 0.79

Number of therapeutic community interventions 1314 Negative binomial 1.01 0,92 , 1,11 0.89

Number of inpatient detoxifications 1327 Negative binomial 1.13 1,01 , 1,27 4.15E-02

Number of outpatient treatments 1252 Negative binomial 1.05 1 , 1,11 0.08

Comorbidity and personality traits

Mental disorders in DSM-IV

Borderline personality disorder 447 Logistic 1.04 0,85 , 1,27 0.69

Major depressive disorder 828 Logistic 0.92 0,79 , 1,06 0.23

Antisocial personality disorder 560 Logistic 1.11 0,93 , 1,31 0.24

Psychotic disorder 593 Logistic 1.00 0,78 , 1,29 0.97

Anxiety disorder 654 Logistic 0.96 0,82 , 1,13 0.63

Attention deficit hyperactivity disorder 700 Logistic 1.15 0,99 , 1,35 0.07

Zuckerman–Kuhlman Personality Questionnaire (ZKPQ)

Neuroticism Anxiety personality factor 663 Linear 0.15 -0,22 , 0,52 0.43

Aggression Hostility personality factor 667 Linear 0.19 -0,05 , 0,43 0.12

Sociability personality factor 632 Linear -0.16 -0,43 , 0,11 0.24

Impulsive sensation seeking personality factor 666 Linear -0.09 -0,41 , 0,23 0.59

Activity personality factor 665 Linear 0.05 -0,22 , 0,32 0.73

Suicide attempt 618 Logistic 1.04 0,88 , 1,22 0.68

Suicide ideation 731 Logistic 1.00 0,86 , 1,16 0.99

Psychotic symptoms 1281 Logistic 1.09 0,97 , 1,22 0.15

Sleeping disturbances 1228 Logistic 1.08 0,97 , 1,22 0.17

Sociodemographic and health phenotypes

EuropASI

Legal status 984 Ordinal 1.00 0,86 , 1,15 0.96

Employment status 984 Ordinal 1.00 0,9 , 1,12 0.99

Medical status 982 Ordinal 1.13 0,99 , 1,28 0.07

Psychiatric status 984 Ordinal 1.00 0,9 , 1,12 0.99

Drug use 984 Ordinal 0.96 0,86 , 1,08 0.50

Alcohol use 984 Ordinal 1.00 0,9 , 1,13 0.94

Family/Social relationships 981 Ordinal 1.06 0,95 , 1,19 0.28

36-Item Short Form Survey (SF-36)

Physical health 751 Linear 0.32 -0,65 , 1,29 0.52

Mental health 751 Linear -0.21 -0,94 , 0,52 0.57

Criminal record 713 Logistic 1.12 0,96 , 1,3 0.15

Unemployment 1057 Logistic 1.23 1,09 , 1,4 1.00E-03

Number of psychiatric hospitalizations 760 Negative binomial 0.86 0,7 , 1,06 0.15

Psychiatric family history 840 Logistic 1.15 1 , 1,32 0.05

Lifetime medical conditions 1334 Logistic 1.09 0,97 , 1,22 0.13

Substance use family history 818 Logistic 1.12 0,97 , 1,29 0.11

Educational attainment 1333 Ordinal 0.87 0,97 , 0,79 9.48E-03

Phenotypes
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Supplementary Table 2f. Association between the PGS for schizophrenia and 39 clinical variables from 

the SUD phenome. In bold nominal significant results 

 

a For binary traits sample size was calculated with the formula 4/(1/n1+1/n2)     
b OR is reported for logistic regression and ordinal regression; Beta is reported for lineal regression;  IRR is 

reported for negative binomial regression 

c Logarithmic transformations were applied to continuous variables not following a normal distribution   

n  a Regression Estimate b 95% CI p

SUD variables

Age at onset of substance use c 1347 Linear 0.01 3,00E-04 , 0,03 4.61E-02

Age at onset of SUD c 1339 Linear 0.01 -0,01 , 0,02 0.44

Years between substance use and SUD 1325 Linear 0.99 0,9 , 1,08 0.80

Years of substance use as proportion of lifespan 1148 Linear -0.11 -1,15 , 0,94 0.84

Number of substances consumed 869 Negative binomial 1.01 0,97 , 1,06 0.58

Number of therapeutic community interventions 1314 Negative binomial 1.04 0,95 , 1,14 0.43

Number of inpatient detoxifications 1327 Negative binomial 1.06 0,95 , 1,19 0.28

Number of outpatient treatments 1252 Negative binomial 0.98 0,93 , 1,04 0.49

Comorbidity and personality traits

Mental disorders in DSM-IV

Borderline personality disorder 447 Logistic 1.00 0,82 , 1,22 0.99

Major depressive disorder 828 Logistic 0.93 0,8 , 1,07 0.31

Antisocial personality disorder 560 Logistic 1.04 0,87 , 1,23 0.67

Psychotic disorder 593 Logistic 1.37 1,05 , 1,78 1.97E-02

Anxiety disorder 654 Logistic 0.88 0,75 , 1,03 0.12

Attention deficit hyperactivity disorder 700 Logistic 0.98 0,84 , 1,15 0.84

Zuckerman–Kuhlman Personality Questionnaire (ZKPQ)

Neuroticism Anxiety personality factor 663 Linear 0.07 -0,3 , 0,44 0.71

Aggression Hostility personality factor 667 Linear 0.18 -0,06 , 0,42 0.14

Sociability personality factor 632 Linear 0.01 -0,26 , 0,28 0.94

Impulsive sensation seeking personality factor 666 Linear -0.17 -0,49 , 0,16 0.31

Activity personality factor 665 Linear -0.01 -0,27 , 0,26 0.97

Suicide attempt 618 Logistic 0.90 0,78 , 1,04 0.17

Suicide ideation 731 Logistic 0.89 0,76 , 1,05 0.17

Psychotic symptoms 1281 Logistic 1.15 1,03 , 1,29 1.40E-02

Sleeping disturbances 1228 Logistic 0.93 0,83 , 1,04 0.21

Sociodemographic and health phenotypes

EuropASI

Legal status 984 Ordinal 1.06 0,92 , 1,23 0.42

Employment status 984 Ordinal 1.10 0,99 , 1,23 0.08

Medical status 982 Ordinal 1.02 0,9 , 1,16 0.71

Psychiatric status 984 Ordinal 1.03 0,92 , 1,15 0.60

Drug use 984 Ordinal 0.96 0,86 , 1,08 0.48

Alcohol use 984 Ordinal 1.03 0,92 , 1,16 0.61

Family/Social relationships 981 Ordinal 1.01 0,91 , 1,13 0.82

36-Item Short Form Survey (SF-36)

Physical health 751 Linear -0.53 -1,26 , 0,21 0.16

Mental health 751 Linear -0.10 -1,08 , 0,89 0.85

Criminal record 713 Logistic 1.07 0,92 , 1,24 0.41

Unemployment 1057 Logistic 1.13 1 , 1,28 4.71E-02

Number of psychiatric hospitalizations 760 Negative binomial 1.10 0,9 , 1,34 0.35

Psychiatric family history 840 Logistic 1.01 0,88 , 1,15 0.93

Lifetime medical conditions 1334 Logistic 0.99 0,88 , 1,11 0.86

Substance use family history 818 Logistic 1.03 0,9 , 1,19 0.64

Educational attainment 1333 Ordinal 1.01 1,11 , 0,91 0.87

Phenotypes
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Supplementary Table 2g. Association between the PGS for risk tolerance and 39 clinical variables from 

the SUD phenome. In bold nominal significant results 

 

a For binary traits sample size was calculated with the formula 4/(1/n1+1/n2)     
b OR is reported for logistic regression and ordinal regression; Beta is reported for lineal regression;  IRR is 

reported for negative binomial regression 

c Logarithmic transformations were applied to continuous variables not following a normal distribution   

n  a Regression Estimate b 95% CI p

SUD variables

Age at onset of substance use c 1347 Linear -0.01 -0,02 , 3,00E-03 0.12

Age at onset of SUD c 1339 Linear -0.01 -0,03 , 4,00E-03 0.14

Years between substance use and SUD 1325 Linear 0.99 0,9 , 1,08 0.77

Years of substance use as proportion of lifespan 1148 Linear 0.42 -0,63 , 1,47 0.43

Number of substances consumed 869 Negative binomial 1.02 0,98 , 1,06 0.31

Number of therapeutic community interventions 1314 Negative binomial 1.02 0,93 , 1,12 0.69

Number of inpatient detoxifications 1327 Negative binomial 1.01 0,9 , 1,13 0.88

Number of outpatient treatments 1252 Negative binomial 1.06 1 , 1,12 4.33E-02

Comorbidity and personality traits

Mental disorders in DSM-IV

Borderline personality disorder 447 Logistic 0.97 0,8 , 1,18 0.76

Major depressive disorder 828 Logistic 0.89 0,77 , 1,02 0.09

Antisocial personality disorder 560 Logistic 0.99 0,83 , 1,17 0.87

Psychotic disorder 593 Logistic 1.08 0,84 , 1,38 0.55

Anxiety disorder 654 Logistic 1.03 0,89 , 1,21 0.69

Attention deficit hyperactivity disorder 700 Logistic 1.08 0,93 , 1,26 0.30

Zuckerman–Kuhlman Personality Questionnaire (ZKPQ)

Neuroticism Anxiety personality factor 663 Linear -0.51 -0,88 , -0,14 6.90E-03

Aggression Hostility personality factor 667 Linear 0.17 -0,07 , 0,41 0.16

Sociability personality factor 632 Linear 0.09 -0,18 , 0,36 0.51

Impulsive sensation seeking personality factor 666 Linear 0.32 0 , 0,65 4.98E-02

Activity personality factor 665 Linear 0.10 -0,17 , 0,36 0.48

Suicide attempt 618 Logistic 1.11 0,95 , 1,29 0.18

Suicide ideation 731 Logistic 1.04 0,88 , 1,23 0.62

Psychotic symptoms 1281 Logistic 1.00 0,89 , 1,12 0.98

Sleeping disturbances 1228 Logistic 1.09 0,97 , 1,22 0.16

Sociodemographic and health phenotypes

EuropASI

Legal status 984 Ordinal 1.18 1,02 , 1,36 2.29E-02

Employment status 984 Ordinal 0.95 0,85 , 1,06 0.35

Medical status 982 Ordinal 1.03 0,91 , 1,16 0.64

Psychiatric status 984 Ordinal 0.97 0,87 , 1,08 0.59

Drug use 984 Ordinal 1.01 0,91 , 1,13 0.84

Alcohol use 984 Ordinal 1.03 0,92 , 1,15 0.58

Family/Social relationships 981 Ordinal 1.01 0,9 , 1,12 0.92

36-Item Short Form Survey (SF-36)

Physical health 751 Linear 0.08 -0,65 , 0,81 0.83

Mental health 751 Linear 0.30 -0,67 , 1,27 0.55

Criminal record 713 Logistic 1.16 1 , 1,36 0.06

Unemployment 1057 Logistic 0.99 0,87 , 1,11 0.83

Number of psychiatric hospitalizations 760 Negative binomial 0.87 0,71 , 1,07 0.18

Psychiatric family history 840 Logistic 1.01 0,88 , 1,17 0.84

Lifetime medical conditions 1334 Logistic 1.05 0,94 , 1,18 0.37

Substance use family history 818 Logistic 1.11 0,96 , 1,28 0.15

Educational attainment 1333 Ordinal 1.04 1,15 , 0,94 0.42

Phenotypes
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Supplementary Table 2h. Association between the PGS for suicide attempt and 39 clinical variables 

from the SUD phenome. In bold nominal significant results 

 

a For binary traits sample size was calculated with the formula 4/(1/n1+1/n2)     
b OR is reported for logistic regression and ordinal regression; Beta is reported for lineal regression;  IRR is 

reported for negative binomial regression 

c Logarithmic transformations were applied to continuous variables not following a normal distribution   

n  a Regression Estimate b 95% CI p

SUD variables

Age at onset of substance use c 1347 Linear -0.01 -0,03 , 2,00E-03 0.11

Age at onset of SUD c 1339 Linear -0.02 -0,04 , -0,01 1.12E-02

Years between substance use and SUD 1325 Linear 0.92 0,84 , 1,01 0.08

Years of substance use as proportion of lifespan 1148 Linear 0.03 -1,04 , 1,09 0.96

Number of substances consumed 869 Negative binomial 1.00 0,96 , 1,05 0.85

Number of therapeutic community interventions 1314 Negative binomial 0.96 0,87 , 1,06 0.40

Number of inpatient detoxifications 1327 Negative binomial 1.02 0,9 , 1,14 0.79

Number of outpatient treatments 1252 Negative binomial 1.06 1 , 1,12 4.10E-02

Comorbidity and personality traits

Mental disorders in DSM-IV

Borderline personality disorder 447 Logistic 1.10 0,9 , 1,35 0.34

Major depressive disorder 828 Logistic 1.08 0,93 , 1,25 0.33

Antisocial personality disorder 560 Logistic 1.18 0,99 , 1,4 0.07

Psychotic disorder 593 Logistic 1.09 0,85 , 1,42 0.50

Anxiety disorder 654 Logistic 1.03 0,88 , 1,21 0.69

Attention deficit hyperactivity disorder 700 Logistic 1.09 0,93 , 1,27 0.30

Zuckerman–Kuhlman Personality Questionnaire (ZKPQ)

Neuroticism Anxiety personality factor 663 Linear 0.09 -0,29 , 0,48 0.63

Aggression Hostility personality factor 667 Linear 0.26 0,02 , 0,51 3.60E-02

Sociability personality factor 632 Linear 0.04 -0,24 , 0,31 0.80

Impulsive sensation seeking personality factor 666 Linear 0.00 -0,33 , 0,34 0.99

Activity personality factor 665 Linear 0.24 -0,03 , 0,52 0.09

Suicide attempt 618 Logistic 1.01 0,87 , 1,18 0.85

Suicide ideation 731 Logistic 1.16 0,98 , 1,37 0.08

Psychotic symptoms 1281 Logistic 1.15 1,03 , 1,29 1.69E-02

Sleeping disturbances 1228 Logistic 0.97 0,87 , 1,09 0.65

Sociodemographic and health phenotypes

EuropASI

Legal status 984 Ordinal 1.18 1,01 , 1,37 3.27E-02

Employment status 984 Ordinal 1.03 0,92 , 1,16 0.56

Medical status 982 Ordinal 1.14 1 , 1,29 4.93E-02

Psychiatric status 984 Ordinal 1.13 1,01 , 1,27 3.88E-02

Drug use 984 Ordinal 1.05 0,93 , 1,18 0.44

Alcohol use 984 Ordinal 1.02 0,91 , 1,15 0.75

Family/Social relationships 981 Ordinal 1.13 1 , 1,26 0.05

36-Item Short Form Survey (SF-36)

Physical health 751 Linear -0.47 -1,21 , 0,27 0.22

Mental health 751 Linear -0.19 -1,18 , 0,8 0.71

Criminal record 713 Logistic 1.14 0,98 , 1,32 0.11

Unemployment 1057 Logistic 1.05 0,93 , 1,19 0.40

Number of psychiatric hospitalizations 760 Negative binomial 1.08 0,88 , 1,32 0.47

Psychiatric family history 840 Logistic 0.94 0,82 , 1,08 0.40

Lifetime medical conditions 1334 Logistic 1.13 1,01 , 1,27 3.84E-02

Substance use family history 818 Logistic 1.11 0,96 , 1,28 0.15

Educational attainment 1333 Ordinal 0.90 1 , 0,81 4.30E-02

Phenotypes
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Supplementary Table 2i. Association between the PGS for educational attainment and 39 clinical 

variables from the SUD phenome. In bold nominal significant results 

 

a For binary traits sample size was calculated with the formula 4/(1/n1+1/n2)     
b OR is reported for logistic regression and ordinal regression; Beta is reported for lineal regression;  IRR is 

reported for negative binomial regression 
c Logarithmic transformations were applied to continuous variables not following a normal distribution 

 

 

 

 

 

   

n  a Regression Estimate b 95% CI p

SUD variables

Age at onset of substance use c 1347 Linear 0.02 0,01 , 0,03 8.11E-03

Age at onset of SUD c 1339 Linear 0.02 4,00E-03 , 0,04 1.48E-02

Years between substance use and SUD 1325 Linear 1.07 0,98 , 1,17 0.15

Years of substance use as proportion of lifespan 1148 Linear -0.73 -1,77 , 0,31 0.17

Number of substances consumed 869 Negative binomial 1.00 0,96 , 1,04 0.89

Number of therapeutic community interventions 1314 Negative binomial 0.89 0,81 , 0,98 2.28E-02

Number of inpatient detoxifications 1327 Negative binomial 0.89 0,8 , 1 0.06

Number of outpatient treatments 1252 Negative binomial 0.91 0,87 , 0,97 1.64E-03

Comorbidity and personality traits

Mental disorders in DSM-IV

Borderline personality disorder 447 Logistic 0.96 0,79 , 1,18 0.70

Major depressive disorder 828 Logistic 0.91 0,79 , 1,06 0.24

Antisocial personality disorder 560 Logistic 0.90 0,75 , 1,08 0.24

Psychotic disorder 593 Logistic 1.04 0,8 , 1,37 0.76

Anxiety disorder 654 Logistic 0.97 0,83 , 1,14 0.71

Attention deficit hyperactivity disorder 700 Logistic 0.89 0,76 , 1,05 0.16

Zuckerman–Kuhlman Personality Questionnaire (ZKPQ)

Neuroticism Anxiety personality factor 663 Linear -0.39 -0,78 , -0,01 4.50E-02

Aggression Hostility personality factor 667 Linear -0.18 -0,42 , 0,07 0.16

Sociability personality factor 632 Linear 0.10 -0,18 , 0,38 0.47

Impulsive sensation seeking personality factor 666 Linear -0.05 -0,39 , 0,28 0.75

Activity personality factor 665 Linear 0.17 -0,11 , 0,45 0.24

Suicide attempt 618 Logistic 1.03 0,89 , 1,2 0.66

Suicide ideation 731 Logistic 1.00 0,85 , 1,17 0.96

Psychotic symptoms 1281 Logistic 0.91 0,82 , 1,02 0.12

Sleeping disturbances 1228 Logistic 0.91 0,81 , 1,02 0.09

Sociodemographic and health phenotypes

EuropASI

Legal status 984 Ordinal 0.96 0,82 , 1,11 0.55

Employment status 984 Ordinal 0.90 0,81 , 1,01 0.07

Medical status 982 Ordinal 1.00 0,88 , 1,13 0.99

Psychiatric status 984 Ordinal 0.91 0,81 , 1,01 0.08

Drug use 984 Ordinal 0.95 0,84 , 1,06 0.36

Alcohol use 984 Ordinal 0.98 0,87 , 1,1 0.75

Family/Social relationships 981 Ordinal 0.86 0,77 , 0,96 1.00E-02

36-Item Short Form Survey (SF-36)

Physical health 751 Linear 0.53 -0,24 , 1,3 0.18

Mental health 751 Linear 0.59 -0,43 , 1,62 0.26

Criminal record 713 Logistic 0.67 0,57 , 0,78 8.03E-07

Unemployment 1057 Logistic 0.82 0,72 , 0,92 1.34E-03

Number of psychiatric hospitalizations 760 Negative binomial 1.15 0,94 , 1,41 0.17

Psychiatric family history 840 Logistic 1.08 0,94 , 1,23 0.28

Lifetime medical conditions 1334 Logistic 0.99 0,88 , 1,11 0.88

Substance use family history 818 Logistic 0.80 0,7 , 0,92 2.20E-03

Educational attainment 1333 Ordinal 1.39 1,54 , 1,25 3.34E-10

Phenotypes
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Supplementary Table 2j. Association between the PGS for well-being and 39 clinical variables from the 

SUD phenome. In bold nominal significant results 

 

a For binary traits sample size was calculated with the formula 4/(1/n1+1/n2)     
b OR is reported for logistic regression and ordinal regression; Beta is reported for lineal regression;  IRR is 

reported for negative binomial regression 

c Logarithmic transformations were applied to continuous variables not following a normal distribution   

n  
a

Regression Estimate 
b

95% CI p

SUD variables

Age at onset of substance use 
c

1347 Linear -0.01 -0,02 , 3,00E-03 0.13

Age at onset of SUD 
c

1339 Linear -0.01 -0,03 , 0,01 0.25

Years between substance use and SUD 1325 Linear 0.98 0,9 , 1,07 0.69

Years of substance use as proportion of lifespan 1148 Linear 0.65 -0,4 , 1,7 0.23

Number of substances consumed 869 Negative binomial 0.99 0,95 , 1,04 0.81

Number of therapeutic community interventions 1314 Negative binomial 0.99 0,9 , 1,08 0.77

Number of inpatient detoxifications 1327 Negative binomial 0.99 0,88 , 1,11 0.87

Number of outpatient treatments 1252 Negative binomial 0.91 0,86 , 0,96 7.00E-04

Comorbidity and personality traits

Mental disorders in DSM-IV

Borderline personality disorder 447 Logistic 1.07 0,87 , 1,31 0.52

Major depressive disorder 828 Logistic 0.99 0,86 , 1,15 0.90

Antisocial personality disorder 560 Logistic 1.06 0,9 , 1,26 0.49

Psychotic disorder 593 Logistic 0.85 0,65 , 1,11 0.23

Anxiety disorder 654 Logistic 0.90 0,76 , 1,06 0.20

Attention deficit hyperactivity disorder 700 Logistic 0.92 0,79 , 1,07 0.28

Zuckerman–Kuhlman Personality Questionnaire 

(ZKPQ)

Neuroticism Anxiety personality factor 663 Linear -0.34 -0,72 , 0,04 0.08

Aggression Hostility personality factor 667 Linear 0.05 -0,2 , 0,29 0.71

Sociability personality factor 632 Linear 0.27 -0,01 , 0,54 0.06

Impulsive sensation seeking personality factor 666 Linear 0.25 -0,08 , 0,58 0.14

Activity personality factor 665 Linear 0.11 -0,16 , 0,38 0.43

Suicide attempt 618 Logistic 0.95 0,82 , 1,1 0.50

Suicide ideation 731 Logistic 0.93 0,79 , 1,09 0.36

Psychotic symptoms 1281 Logistic 0.93 0,83 , 1,04 0.20

Sleeping disturbances 1228 Logistic 0.91 0,82 , 1,02 0.12

Sociodemographic and health phenotypes

EuropASI

Legal status 984 Ordinal 0.95 0,82 , 1,1 0.51

Employment status 984 Ordinal 0.95 0,85 , 1,06 0.37

Medical status 982 Ordinal 0.95 0,83 , 1,07 0.40

Psychiatric status 984 Ordinal 0.87 0,78 , 0,97 1.43E-02

Drug use 984 Ordinal 0.98 0,87 , 1,09 0.67

Alcohol use 984 Ordinal 1.01 0,9 , 1,14 0.83

Family/Social relationships 981 Ordinal 0.83 0,74 , 0,93 1.00E-03

36-Item Short Form Survey (SF-36)

Physical health 751 Linear 0.64 -0,1 , 1,37 0.09

Mental health 751 Linear 0.51 -0,47 , 1,49 0.31

Criminal record 713 Logistic 0.90 0,78 , 1,05 0.17

Unemployment 1057 Logistic 0.88 0,77 , 0,99 3.59E-02

Number of psychiatric hospitalizations 760 Negative binomial 0.78 0,64 , 0,95 1.33E-02

Psychiatric family history 840 Logistic 0.90 0,79 , 1,03 0.13

Lifetime medical conditions 1334 Logistic 0.98 0,87 , 1,1 0.70

Substance use family history 818 Logistic 0.83 0,73 , 0,96 1.13E-02

Educational attainment 1333 Ordinal 1.06 1,18 , 0,96 0.23

Phenotypes
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Supplementary Table 3. Interaction between PGSs and lifetime emotional. physical and/or sexual abuse 

in the SUD phenome 

PGS SUD-Phenome n a Estimate 95% CI p 

Attention-deficit 

hyperactivity 

disorder 

Age at onset of substance use b 701 -.002 -.04 ,  .04 .94 

  
Years of substance use as 

proportion of lifespan 
631 .32 -2.57 ,  3.2 .83 

  Antisocial personality disorder 358 1.00 .66 , 1.51 .99 

  
Attention deficit hyperactivity 

disorder 
434 .94 .63 ,  1.4 .77 

  Educational attainment 701 .96 .73 ,  1.26 .77 

Anxiety Number of outpatient treatments 681 1.06 .92 ,  1.22 .42 

  Psychotic disorder 180 1.10 .61 ,  1.99 .76 

  SF36 Physical health 509 .43 -1.27 ,  2.12 .62 

  Psychiatric family history 524 1.03 .73 ,  1.46 .86 

Bipolar disorder Psychotic symptoms 678 1.01 .74 ,  1.39 .93 

  Unemployment 568 1.08 .78 ,  1.51 .64 

  
Number of psychiatric 

hospitalizations 
504 .87 .53 ,  1.42 .57 

  Substance use family history 516 .98 .69 ,  1.39 .91 

Depression 
Years between substance use and 

SUD 
691 .96 .74 ,  1.25 .78 

  Number of outpatient treatments 681 1.07 .92 ,  1.23 .39 

  
ZKPQ-Neuroticism Anxiety 

personality factor 
492 .20 -.64 ,  1.05 .64 

  
ZKPQ-Aggression Hostility 

personality factor 
495 -.28 -.83 ,  .26 .31 

  Suicide attempt 725 .93 .69 , 1.26 .65 

  Criminal record 488 .76 .53 ,  1.1 .14 

  Psychiatric family history 524 1.31 .92 , 1.86 .13 

Post-traumatic 

stress disorder 
Age at onset of substance use b 701 -.02 -.06 ,  .03 .45 

  
Number of inpatient 

detoxifications 
702 .91 .65 , 1.26 .56 

  Unemployment 568 .85 .6 , 1.21 .38 

  Educational attainment 701 1.08 .81 , 1.44 .58 

Schizophrenia Age at onset of substance use b 701 .03 -.01 ,  .08 .11 

  Psychotic disorder 180 .85 .45 , 1.59 .60 

  Psychotic symptoms 678 .97 .7 , 1.33 .83 

  Unemployment 568 .76 .54 , 1.07 .12 

Risk tolerance Number of outpatient treatments 681 1.12 .96 , 1.31 .14 

  
ZKPQ-Neuroticism Anxiety 

personality factor 
492 .29 -.6 , 1.18 .53 
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ZKPQ-Impulsive sensation 

seeking personality factor 
493 .39 -.37 ,  1.14 .32 

  EuropASI-Legal status 701 1.07 .75 , 1.52 .72 

  Unemployment 568 .85 .6 , 1.21 .38 

Suicide attempt Age at onset of SUD b 699 .00 -.04 ,  .05 .89 

  Number of outpatient treatments 681 .98 .84 , 1.13 .77 

  
ZKPQ-Aggression Hostility 

personality factor 
495 -.02 -.58 ,  .55 .96 

  Psychotic symptoms 678 1.03 .75 , 1.41 .86 

  EuropASI-Legal status 701 1.08 .76 , 1.55 .66 

  EuropASI-Medical status 699 1.13 .84 , 1.51 .41 

  EuropASI-Psychiatric status 701 1.35 1.03 , 1.78 2.94E-02 

  Lifetime medical conditions 705 .95 .7 , 1.31 .76 

  Educational attainment 701 1.10 .83 , 1.46 .51 

Educational 

attainment 
Age at onset of substance use b 701 .01 -.03 ,  .06 .50 

  Age at onset of SUD b 699 .01 -.03 ,  .06 .54 

  
Number of therapeutic 

community interventions 
698 .86 .67 , 1.11 .26 

  Number of outpatient treatments 681 1.06 .91 , 1.23 .47 

  
ZKPQ-Neuroticism Anxiety 

personality factor 
492 .16 -.73 ,  1.06 .72 

  Criminal record 488 1.27 .86 , 1.89 .23 

  Unemployment 568 .73 .51 , 1.04 .08 

  Substance use family history 516 1.00 .7 , 1.45 .99 

  Educational attainment 701 .94 .71 , 1.26 .69 

Well being Number of outpatient treatments 681 1.00 .86 , 1.17 .97 

  EuropASI- Psychiatric status 701 1.01 .77 , 1.32 .96 

  
EuropASI-Family/social 

relationships 
701 .95 .73 , 1.25 .22 

  Unemployment 568 .87 .61 , 1.25 .46 

  
Number of psychiatric 

hospitalizations 
504 1.23 .73 , 2.07 .44 

  Substance use family history 516 1.05 .73 , 1.52 .80 

Note. Odds Ratio (OR) is reported for logistic regression and ordinal regression; Beta is reported for lineal regression; 

Incidence Rate Ratio (IRR) is reported for negative binomial regression.  

a For binary traits sample size was calculated with the formula 4/(1/n1+1/n2). 

b Logarithmic transformations were applied to continuous variables not following a normal distribution.  
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4 

SUDs are complex and multifactorial disorders, involving the interplay of both 

genetic and environmental factors. Furthermore, SUDs exhibit high heterogeneity across 

a wide range of dimensions, including the type of substance or substances consumed, 

the age at onset of substance use, the presence of comorbid conditions, and the 

treatment outcomes. Over the past decade, the field of psychiatric genetics has focused 

on identifying individual genes and loci that conferee a higher risk of developing 

psychiatric disorders, including SUDs. To pursue this goal, GWASs to date have identified 

various risk loci for substance-specific SUDs, and more recently, the first risk loci for the 

general addiction risk factor. However, given the substantial polygenic complexity that 

characterizes SUDs, it became clear the importance of employing larger samples and 

post-GWAS methodologies to understand the genome-wide genetic architecture of 

SUDs. In addition, there is a growing body of evidence supporting the role of gene-

environment interactions in the development of SUDs, contributing to the complexity of 

the disorder. Furthermore, information gathered from GWASs has evidenced the high 

genetic overlap between SUDs and a wide-range of psychiatric disorders and other 

related traits, and current genomic methodologies aim to unravel the complex 

mechanisms involved in the co-occurrence of these conditions.  

The present thesis comprises two studies that utilize in-house clinical cohorts with 

phenotypical and genetic data available and state-of-the-art genomic techniques to 

provide genetic insights into the heterogeneity and comorbidity of SUDs. The first study 

particularly focuses on the relationship between SUDs and ADHD, revealing evidence of 

a shared genetic background underlying substance-specific SUDs and substance use 

phenotypes between the general population and individuals with ADHD, as well as 

evidence of bidirectional causal relationships for some of the substance use phenotypes 

tested. Furthermore, the second study leverages deep phenotyping information from a 

SUDs cohort, providing an overview of the pattern of associations of the genetic liability 

for multiple psychiatric, behavioral and related traits with various SUD-related 

phenotypes, including sociodemographic and health outcomes, comorbidity and 

personality traits and SUD variables. This study also uncovers evidence of GxE, indicating 

that genetic liability for suicide attempt worsened the psychiatric status in SUDs 

individuals with a history of emotional physical and/or sexual abuse. Collectively, the 
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results presented in this thesis support the current literature highlighting the strong 

genetic relationship between ADHD and SUDs and contribute to a better understanding 

of the role of the genetic liability for mental health-related conditions and adverse life 

experiences in the heterogeneity observed in SUDs. In this section, the results derived in 

this thesis are discussed in detail in the context of the current literature.  

1. Current Approaches for Evaluating SUDs in Genetic Studies  

The complex nature of SUDs and its heterogeneity pose challenges in accurately 

characterizing the phenotype, which in turn can limit the success of genetic studies of 

SUDs. Traditionally, SUDs phenotypes in GWASs has been defined based on diagnostic 

criteria from psychiatric manuals, such as the DSM or the International Classification of 

Diseases (ICD). However, relying solely on these criteria might oversimplify the 

phenotype and fail to capture the full complexity of SUDs. The diagnosis assessment of 

SUDs is subject to substantial variability due to many factors, including substance 

classification (e.g., illicit vs. legal substances or polysubstance use), definition (e.g., 

problematic use vs. dependence) and diagnosis guidelines used (e.g., DSM vs. ICD).  

Refining the phenotype of SUDs is an essential point in order to make significant 

progress on the field. In order to do so, there are several important factors to take into 

account, including dimensional phenotyping (e.g., mild vs. severe SUD), the use of 

intermediate phenotypes (e.g., frequency/quantity of substance use) and the presence of 

comorbid traits and/or environmental risk factors. In this section, the different diagnostic 

tools used to characterize SUDs will be discussed and compared to the benefits of the 

minimal phenotyping approach used by large biobanks, and the deep phenotyping 

approach used in clinical settings. Moreover, two additional sources of heterogeneity in 

the assessment of SUDs, mainly substance-specific vs. polysubstance and illicit vs. legal 

substances, will be discussed.  

1.1. Differences in Diagnoses Guidelines: Transition from DSM-IV to DSM-5 

The DSM is a manual detailing diagnostic criteria for mental health disorders, 

including SUDs. In 2013, the DSM-5 was released, replacing the DSM-IV, which had been 

used for over a decade (released in 1994) (American Psychiatric Association, 2013). This 
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major revision implicated numerous changes in diagnostic criteria for nearly every DSM-

IV disorder, for some more extensive than for others. 

The release of the DSM-5 overlapped with the recruitment process for Study 1 

and Study 2 of the present thesis, which started around 2005. However, the Hospital 

Universitari Vall d'Hebron has not yet implemented the transition to the revised edition. 

As a result, all participants have been evaluated based on the DSM-IV criteria. These 

participants include the cohort of 989 individuals from Study 1, who underwent 

assessment for DSM-IV-based ADHD and SUDs, as well as the cohort of 1,427 individuals 

from Study 2 who underwent assessment for all DSM-IV Axis I and II Disorders (including 

mental health disorders, SUDs, and personality disorders). 

Even though in the DSM-5 the basic definition of SUDs remains unchanged, the 

distinction between substance abuse or dependence has been removed in favor of a 

single diagnosis of SUDs. This has resulted in changes in the diagnostic threshold. Under 

the DSM-IV, the diagnostic criteria differ between abuse (at least one symptom out of 

four, at any time) and dependence (at least three symptoms out of seven, in a 12-month 

period). In addition, people meeting criteria for dependence does not receive diagnosis 

for abuse for that class of substance. However, in the DSM-5 people meeting criteria for 

a SUD (at least two symptoms out of 11, in a 12-month period) can be sub-classified into 

mild (two-three symptoms), moderate (four-five symptoms) or severe (six or more 

symptoms) SUD, based on the number of criteria met. One of the reasons for this change 

is the evidence that the hierarchical structure between abuse and dependence does not 

seem to follow the anticipated relationship, meaning that abuse fails to encapsulate a 

less severe disease presentation of dependence (Kahler & Strong, 2006). In addition, 

distinguishing between abuse or dependence creates diagnostic orphans, where 

individuals who exhibit two dependence symptoms and no abuse symptoms do not meet 

any diagnostic criteria (D. S. Hasin, O’Brien, et al., 2013). Importantly, within the studies 

present in this thesis, individuals diagnosed with substance abuse or dependence 

according to DSM-IV-based criteria were categorized into a single SUDs diagnosis. This 

methodology was adopted to ensure an up-to-date and more coherent classification of 

the disorder.  
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Other additions to the DSM-5 criteria are the craving (or strong desire or urge to 

use the substance) symptom, and the withdrawal symptom for cannabis (which was not 

included for this substance in the DSM-IV). Importantly, studies of the general population 

suggest that craving does not add to the general information offered by other SUDs 

criteria (e.g., tolerance, withdrawal, and continuing use despite health problems) (D. S. 

Hasin et al., 2012). Therefore, this overlap may diminish the contribution of the craving 

criteria for the identification of people who already meet the threshold for a SUD through 

other criteria. Despite this, craving is also a component of a different diagnostic system, 

the ICD, and its addition to the DSM-5 can improve consistency across classifications 

systems (Degenhardt, Bharat, Bruno, et al., 2019).  

The sum of changes applied to SUDs diagnostic criteria can impact on the 

disorder’s prevalence estimate. Although there is very little information regarding the 

assessment of the new DSM-5-based SUDs, available data suggest that the revised 

version, which appears to have more inclusive threshold criteria, will estimate a higher 

SUDs prevalence than the DSM-IV (Agrawal, Heath, et al., 2011). Thus, the clinical 

assessment based on the DSM-IV used to diagnose the clinical cohorts from our studies 

may have underestimated SUDs diagnosis, especially for cannabis (due to the addition 

of the craving symptom), and excluded a percentage of diagnostic orphans. 

Nevertheless, combining abuse and dependence diagnostic criteria may increase 

instrument reliability by providing a more accurate assessment of the underlying 

disorder, with the limitation that this will also introduce additional variability in the 

measure (D. S. Hasin, Auriacombe, et al., 2013). 

Notably, the use of the revised DMS-5 edition for clinical assessment is rarely 

reported in any big GWAS of SUDs, or other mental-health disorders, which is expected 

given that all large-scale studies are predominantly composed by participants recruited 

previous to the release of DSM-5. In addition, it has been reported that studies relying 

on DSM-IV or DSM-5 SUDs diagnostic criteria offer similar information and thus can be 

compared when accumulating a body of evidence (Livne et al., 2021). 

However, the DSM is not the only diagnostic manual employed to assess mental-

health disorders. The ICD is the official world classification of most medical disorders 
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(World Health Organization, 2004). This tool is widely used for the diagnosis of mental 

and behavioral disorders of participants included in large-scale GWAS given its 

straightforward applicability and implementation in electronic health records databases. 

However, there are several significant differences in the classification of SUDs between 

the latest editions of the ICD and the DSM (e.g., the distinction of harmful use vs. 

dependence in the ICD) and the ICD system has proven to be less accurate and reliable 

for mental disorders, compared to the DSM system (Tyrer, 2014). Nevertheless, previous 

studies have found a high concordance between the two diagnostic systems when 

comparing ICD-10 or ICD-11 vs. DSM-IV (Degenhardt, Bharat, Bruno, et al., 2019; D. Hasin 

et al., 1997, 2006), although a recent study from the World Mental Health Surveys, 

reported lower concordances when comparing ICD-11 to DSM-5 (Degenhardt, Bharat, 

Bruno, et al., 2019). Furthermore, other tools frequently used in general population 

studies to assess the risk of alcohol use disorder and nicotine dependence, namely the 

Alcohol Use Disorders Identification Test (AUDIT) and FTND, respectively, have been 

validated and show high rates of concordance with the DSM system (Agrawal, Scherrer, 

et al., 2011; Moehring et al., 2019). It is essential to ensure the consistency of within-

subject diagnostic findings across countries, languages and cultures in order to produce 

translational and scalable research. 

1.2. Phenotyping Strategies for Advancing Genetic Studies on SUDs: Dimensional vs. 

Minimal Phenotyping  

This section offers an overview of phenotyping strategies employed to assess SUDs 

within the context of the two studies presented in this thesis. Relying solely on categorical 

diagnoses of SUDs, such as the ones provided by tools like the DSM or ICD, where 

diagnosis is predominantly based on the presence of a minimal number of symptoms 

from a list, may not capture the full complexity of the disorder. SUDs are characterized 

by substantial phenotypic heterogeneity, it involves different substances and it can 

manifest on a spectrum with varying severity levels (Beseler et al., 2006). Clinical and 

genetic variability can arise from differences in sex, age at onset, developmental course, 

treatment response, symptomatology and co-occurrence of comorbid conditions. In 

addition, the contribution of environmental risk factors may vary across different 

manifestations of the disorder (Prom-Wormley et al., 2017). The combination of 
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individuals with different symptoms profiles into a single group (e.g., the case group in a 

case/control GWAS) reduces statistical power to detect important etiological information 

(Huckins, 2022). The variety of methodologies and tools employed to assess SUDs in 

genetic studies are reflected in both studies from the present thesis.  

In Study 1, our cohort was assessed for SUDs under the DSM-IV criteria, classifying 

individuals in case/control groups. In addition, in Study 1 we utilized publicly available 

data on GWASs for substance-specific SUDs. Given the lack of large-scale GWASs based 

on DSM diagnoses for some of the SUD phenotypes at the time of the study, we utilized 

GWASs on intermediate phenotypes (frequency/quantitative traits) for tobacco and 

cannabis. These included smoking initiation, age of smoking initiation, cigarettes per day 

and smoking cessation for tobacco, and lifetime cannabis use for cannabis. In addition, 

to address the lack of a large-scale GWAS combining all substances we utilized self-

reported questionnaire data from the UK Biobank (“have you ever been addicted to illicit 

drugs?”). Alcohol and cocaine were the only SUD phenotypes with available GWASs on 

dependence, but not abuse, assessed with the DSM-IV. Since publication of Study 1 in 

2020, the field has done outstanding progress on increasing sample sizes for clinically 

diagnosed SUDs population in GWAS. Such is the case for tobacco use disorder and 

cannabis use disorder, were large GWASs have been recently conducted, capturing 

genetic signatures that correlate with those of psychiatric disorders (E. C. Johnson, 

Demontis, et al., 2020; Toikumo et al., 2023). Furthermore, the largest multivariable GWAS 

combining data from various major substances has been published, allowing the study 

of a unified addiction factor (Hatoum et al., 2023). 

In Study 2 we were able to benefit from the deep and dimensional phenotyping 

assessment of our SUDs cohort. Dimensional phenotyping offers an alternative or 

complementary approach to gain a more comprehensive characterization of the 

phenotype (Tiego et al., 2023). This approach does not simply assess SUDs as a 

dichotomic phenotype, as having or not having the disorder, but rather as a range of 

behaviors and symptoms able to capture the heterogeneity and complexity of the 

disorder. Several factors can be taken into account when assessing SUDs as a dimensional 

phenotype, such as substance use patterns, addiction severity and type(s) of substance(s) 

used. In our study, the clinical assessment was conducted by trained psychiatrists and 
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psychologists to gather information on sociodemographic status (sex, age, educational 

attainment, employment status and criminal record), lifetime medical conditions, 

psychiatric and SUDs family history and substance use related variables (substance(s) of 

use and/or abuse, age at onset of use, age at onset of SUDs, years of substance use and 

SUDs treatment history). In addition, a variety of scales and questionnaires were 

conducted to evaluate SUD individuals in terms of SUD severity (European version of the 

Addiction Severity Index (EuropASI)), psychiatric comorbidity (Structured clinical 

interview for DSM-IV axis I and axis II disorders), personality traits (Zuckerman–Kuhlman 

Personality Questionnaire (ZKPQ)) and health-related quality of life (36-Item Short Form 

Survey (SF-36)). For instance, the EuropASI (Kokkevi & Hartgers, 2009) evaluates the 

severity of addiction across seven main problematic areas typically affected by substance 

abuse or dependence. Another relevant tool in the context of SUDs is the AUDIT, which 

captures various dimensions of alcohol use disorder, including the severity and patterns 

of alcohol consumption, as well as the associated problems and consequences (de 

Meneses-Gaya et al., 2009). By utilizing information on severity, as well as behavioral and 

environmental risk factors, genetic studies can identify the underlying genetic 

architecture of specific dimensions of SUDs, explore shared genetic influences across 

substances, and provide insights into the biological pathways involved in addiction 

vulnerability (Tiego et al., 2023). 

However, dimensional phenotyping requires significant resources, including time 

and qualified psychologists and psychiatrists. The extensive assessments and interviews 

can be time-consuming and costly, making it challenging to achieve sample sizes for 

large-scale studies (Sanchez-Roige & Palmer, 2020). On the opposite extreme of the 

phenotypic assessment of complex diseases, minimal phenotyping refers to a simplified 

approach to capture only a few key characteristics associated with SUDs. This approach 

has been widely used by large-scale biobanks and genomic resources and has allowed 

to increase rapidly GWASs sample sizes in recent years. By conducting minimal 

phenotyping, studies characterize case/control status of participants based on self-

reported data from a single question (e.g., “In the past week, how many alcoholic 

beverages did you have?”). The phenotypes acquired by these questions usually refer to 

frequency and/or quantity of substance use rather than clinical diagnoses of SUDs. This 
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traits, which are known to be heritable (Saunders et al., 2022), can serve as intermediate 

phenotypes for the disorder. However, such phenotyping strategy introduces substantial 

in-sample heterogeneity, by classifying as cases individuals that likely diverge on 

important unmeasured characteristics, lowering effect sizes and power (Feczko et al., 

2019). Moreover, the genetic architecture captured by substance use might not be an 

accurate proxy for studying the underlying genetics of SUDs. The validity of such 

phenotyping strategies is still an important consideration for the genetic studies of SUDs.  

The minimal phenotyping approach has had great success in discovering hundreds 

of risk loci for tobacco and alcohol-related phenotypes (M. Liu et al., 2019). However, 

prior studies suggest that consumption measures (e.g., alcohol drinking frequency and 

cannabis initiation) have divergent patterns of genetic correlation relative to their 

respective SUDs. For example, alcohol drinking frequency and quantity show opposite 

directions of genetic correlations with measures related to socio-economic status and 

different patterns of correlations with psychopathology (e.g., quantity of alcohol 

consumption is genetically correlated with psychopathology whereas frequency of 

alcohol consumption is not) (Kranzler et al., 2019). This suggests that alcohol 

consumption metrics measure different aspects of drinking behavior with different 

genetic risk profiles (Marees et al., 2020). Minimal phenotyping has also shown some 

success, although to a lesser degree, for cannabis use (Pasman et al., 2018). Similar than 

with alcohol, the moderate genetic correlation between cannabis use disorder and 

various psychiatric disorders, particularly ADHD (rg = 0.53) (E. C. Johnson, Demontis, et 

al., 2020), does not correspond with the relatively low genetic correlations observed with 

cannabis use (rg = 0.15) (Pasman et al., 2018). This discrepancy may be due to differences 

in how these intermediate measures are assessed compared to the clinical diagnosis of 

SUDs. For instance, when diagnosing SUDs according to the DSM, the assessment 

considers both present and past symptoms of the disease. Meanwhile, measures of 

substance use are assessed in a limited timeframe, such as the past week or the past year. 

In addition, large biobank samples, widely employed to study substance use related 

phenotypes, are often not representative of the general population, showing higher 

education and socio-economic status and older age (e.g., UK Biobank and 23andme) or 

being predominantly male (e.g., Million Veteran Program) (Sanchez-Roige & Palmer, 
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2020). Moreover, a recent study showed that alcohol consumption and tobacco smoking 

assessed in UK Biobank are subject to misreports and longitudinal changes, causing bias 

in gene discovery and follow-up analyses (Xue et al., 2021).  

Given the complex interplay between genetic and sociological factors in the context 

of substance use and the development of SUDs, these biases can generate false positives 

in genetic studies, and complicate efforts to examine distinctions between the genetics 

of substance use and SUDs. Therefore, minimal phenotypes may result in an incomplete 

and biased understanding of the genetic architecture of the disorder (Tiego et al., 2023). 

In order to avoid this, appropriate phenotyping strategies are needed, particularly when 

assessing self-reported frequency and quantity of substance use. Future genetic research 

should focus on clinically defined phenotypes in addition to broad phenotypes in order 

to maximize the clinical applicability from genetic studies of psychiatric traits.  

Emerging phenotyping strategies, such as the Hierarchical Taxonomy of 

Psychopathology (HiTOP), offer a dimensional and hierarchical approach to classifying 

mental disorders, overcoming limitations of current categorical systems like the DSM or 

the ICD (Waszczuk et al., 2019). The HiTOP model suggests that psychopathological 

symptoms and disorders can be conceptualized as existing on a continuum, ranging from 

normal variation to severe psychopathology. It proposes a hierarchical structure, with 

broad higher-order dimensions (e.g., externalizing and internalizing) that encompass 

more specific lower-order dimensions and individual symptoms (e.g., impulsivity and 

neuroticism). This approach offers alternatives for genetic studies, addressing 

misclassification and differentiating between broad psychopathology and dimension-

specific risk factors and has the potential to increase statistical power for gene discovery 

(Waszczuk et al., 2019).  

1.3. Heterogeneity in SUDs Assessment: Substance Specific vs. Combined Approaches 

and Legal vs. Illegal Substance Use 

This section will address two key sources that contribute to heterogeneity in 

genetic studies on SUDs. First, the differences of substance-specific SUDs and the 

combination of all substances into a unified disorder. Second, the variations arising from 

the use of legal substances versus illegal substances.  
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The choice between studying individual substances or combining them into a 

unitary SUD depends on the specific research aims, available resources and balance 

between sample size and heterogeneity. For instance, in Study 1, we were able to assess 

substance-specific SUDs in an ADHD population, including alcohol, tobacco, cocaine, 

cannabis, and all illicit drugs combined. This allowed us to examine potential differences 

in the association of genetic liability for SUD subtypes with ADHD. Additionally, we 

performed bidirectional Mendelian randomization analysis for these SUD subtypes and 

ADHD. There were two main reasons for adopting this approach. First, at the time of the 

study, there was no large-scale GWASs combining all SUD subtypes. Therefore, we 

leveraged GWASs data on substance-specific SUDs from publicly available sources and 

assessed the corresponding SUD-related phenotypic information in our in-house ADHD 

cohort. Secondly, ADHD has demonstrated distinct patterns of associations across SUD 

subtypes (S. S. Lee et al., 2011), with the strongest genetic correlations observed with 

tobacco smoking-related phenotypes (Abdellaoui et al., 2021; Jang et al., 2022). Our 

study was able to account for this variability by analyzing substance-specific SUDs and a 

self-reported data from the UK biobank encompassing addiction to all illicit drugs.  

However, polysubstance use, present in a large percentage of the population, 

presents a challenge when attempting to isolate the genetic liability of substance-specific 

SUDs and to assess causal relationships with comorbid psychopathology, such as ADHD. 

This challenge became apparent in Study 2, where nearly 50% of the SUD population 

under study exhibited polysubstance use (defined as the use of 3 or more substances). 

Given the limited sample size of our cohort, we were unable to examine substance-

specific SUDs individually. Instead, we combined all illicit SUDs into a unified SUD 

phenotype, which included the most prevalent substances, namely cocaine, cannabis, 

opioids, and sedatives. This approach is supported by substantial evidence for a common 

addiction factor among SUDs (Palmer et al., 2012, 2015), which is also associated with 

psychopathology (Hatoum et al., 2022). Our study design, however, prevented us from 

investigating potential differences in the association between the use of individual 

substances and the genetic liability to co-occurring psychopathology.  

It is known that both common and substance-specific genetic and environmental 

factors contribute to individual differences in the development of SUDs (Bhalla et al., 
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2017; Palmer et al., 2012). When assessing SUDs separately per substance, we can obtain 

valuable insights into the distinct genetic underpinnings associated with each specific 

substance. However, GWASs on specific substances may face limitations in terms of 

sample size, which can impact the statistical power of the study. Conversely, 

polysubstance, which is present in approximately 50% of SUD individuals (Morley et al., 

2015), poses a challenge in identifying unique substance-specific GWAS signals, and can 

reduce the reliability of the findings (E. C. Johnson, Chang, et al., 2020). Combining all 

substances into a unified disorder may facilitate larger sample sizes but also enable a 

comprehensive exploration of shared genetic factors among different substances 

(Hatoum et al., 2022). However, it may also introduce heterogeneity within the 

population, mainly because individuals with different substances preferences, patterns of 

use and underlying genetic liability are grouped together (Bhalla et al., 2017; Carroll, 

2021). To address this issue, one potential approach is to adopt a hybrid strategy. This 

involves conducting a GWAS combining multiple substances while simultaneous 

performing sensitivity analysis for individual substances. As seen in the latest multivariate 

GWAS of SUD, this approach can help gain insights into both substance-specific and 

shared genetic factors underlying SUDs (Hatoum et al., 2023). Additionally, methods that 

aim to identify homogeneous subgroups within polysubstance samples can allow for a 

better understanding of the heterogeneity observed in SUD (Feczko et al., 2019).  

Another source of heterogeneity when assessing the genetic etiology of SUDs is 

the differences between legal and illegal substances. In this thesis, the inclusion of legal 

and/or illegal substances varied between Study 1 and Study 2. While Study 1 included 

tobacco and alcohol as individual substances of interest, these were excluded as the 

primary substance of abuse or dependence in Study 2. However, it should be noted that 

individuals assessed in Study 2 could have received a diagnosis of a SUD related to 

tobacco or alcohol, but only in conjunction with a SUD diagnosis for an illegal substance. 

By focusing primarily on illegal substances, Study 2 aimed to create a more 

homogeneous group, facilitating a more targeted analysis of SUD-related phenotypes 

and outcomes. Therefore, the exclusion of legal substances minimized potential biases 

arising from differences in disease presentation and sociodemographic variables 

between legal and illegal substances. These differences are primarily driven by variations 
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in accessibility and overall patterns of consumption within the social context (Andersson, 

Lilleeng, et al., 2021; Martz et al., 2022). Legal substances, like alcohol and tobacco, are 

widely available due to their regulatory status and social acceptance. They often follow 

established patterns of consumption and can have distinct impacts on individuals and 

communities. In contrast, illegal substances, such as cocaine or opioids, are typically 

obtained through illicit markets, which often leads to limited availability and more 

restricted access. Additionally, the social context surrounding illegal substances tends to 

involve stigmatization and marginalization (L. H. Yang et al., 2017).  

2. Exploring Post-GWAS Results in SUDs Through PGSs 

Over the past 15 years, common genetic variants associated with SUDs have been 

extensively studied through GWASs. The proportion of heritability explained by these 

common variants ranges from 12% to 67% for illicit substances and alcohol use disorder, 

and 86% for tobacco use disorder. The latest multivariable GWAS on SUD identified 17 

risk loci in a sample of over 1 million individuals (Hatoum et al., 2023). In polygenic 

disorders, such as SUDs, a single variant is not informative for assessing disease risk. 

Instead, PGSs can estimate an individual’s genetic predisposition to traits and diseases 

by aggregating information across multiple genetic variants identified in GWASs. In this 

section, the different methods used to construct PGSs within this thesis is discussed, as 

well as the current utility of genetic risk profiling for clinical prediction of disease 

vulnerability.  

2.1. Differences in PGSs Construction Methods 

In both studies included in the present thesis, we leveraged information from large 

GWASs on SUDs, psychiatric disorders and other related traits to build PGSs on clinical 

cohorts where deep clinical assessment and genetic data were available. In Study 1, we 

utilized PGSs to investigate whether the genetic liability for substance-specific SUDs 

could predict SUDs diagnosis in a clinical cohort of ADHD subjects. Additionally, in Study 

2 PGSs were employed to examine the pleiotropic effects of the genetic liability for 

comorbid psychopathology and related traits on a variety of SUD-related phenotypes 

(more on section 3.1).  
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There are substantial methodological differences regarding the construction of the 

PGSs between the two studies, which are worth mentioning. Both studies focused on 

PGSs methods that only require GWASs summary statistics, an LD reference panel and a 

validation or target sample with genotype data to calculate the scores. The methods used 

were PRSice and PRScs for Study 1 and Study 2, respectively (Choi & O’Reilly, 2019; Ge 

et al., 2019). The primary difference between PRSice and PRScs lies in their criteria for 

inclusion of variants in the resulting score (SNP preselection or genome-wide methods) 

and the corresponding weights assigned to them. In 2020, when Study 1 was conducted, 

SNP-preselection methods, such as PRSice (Choi & O’Reilly, 2019), were commonly 

employed for PGSs calculations. This approach involves clumping and thresholding (C+T) 

(Privé et al., 2019). Clumping first removes correlated SNPs, retaining only independent 

signals within a genomic region using a fixed LD r2 threshold. Thresholding is then 

applied by selecting variants within a range of pre-defined p-value thresholds and 

selecting the one that yields the highest prediction accuracy in a target sample with both 

genotype and phenotype data available. C+T assumes that the selected SNPs are largely 

independent and can be fitted additively. This approach has been widely used for its 

computational and conceptual simplicity. However, researchers typically choose an 

arbitrary r2 threshold for SNPs removal, introducing some variability (Wang et al., 2022). 

Additionally, there is a risk of overfitting when performing multiple tests and selecting 

from a wide range of p-value thresholds (Choi et al., 2020).   

However, in a relatively short period, by the time Study 2 was conducted, more 

advanced methods for PGSs calculations emerged, such as PRScs, which utilizes genome-

wide information by simultaneously modeling all SNPs for the PGS computation (Ge et 

al., 2019). Some major advantages of fitting genome-wide SNPs simultaneously, rather 

than relying only on the most predictive p-value, is that it improves substantially the 

predictive power and reduces the risk of overfitting, a concern in the previously 

mentioned method (Ge et al., 2019). This model employs a Bayesian regression 

framework and applies a continuous shrinkage via prior distribution on SNP effect sizes. 

In other words, it adjusts the estimated effect sizes of all SNPs from the given summary 

statistics based on LD patterns between them, so that the amount of shrinkage applied 

to each SNP is adaptive to the strength of its association signal in GWAS. By doing so, 
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this approach can accommodate diverse underlying genetic architectures, an essential 

feature for complex traits such as SUDs. The transition from SNP-preselection methods 

to genome-wide modeling in PGSs calculations represents a progression toward more 

sophisticated approaches that maximize the signal captured by genetic variants, thereby 

enhancing accuracy and mitigating potential overfitting issues (Pain et al., 2021). 

Another notable distinction in describing PGSs between the two studies within this 

thesis relates to the terminology utilized to denote to the PGS itself. A large number of 

studies, including Study 1, commonly employ the term PRS (“polygenic risk score”) to 

denote the assessment of genetic risk for a specific disease or trait. However, in Study 2, 

we adopt the term PGS (“genome-wide polygenic score”) to refer to the polygenic scores 

due to two main reasons. First, by avoiding the term “risk”, which implies that genetic 

influences are associated with negative outcomes, we are able to assess genetic liability 

for “positive” outcomes, such as educational attainment or well-being. Second, as 

previously explained, the methodology utilized to calculate the PGSs takes into account 

the effects of genome-wide SNPs. Therefore, by employing the term PGS, we encompass 

a broader range of outcomes beyond disease risk and acknowledge the methodology's 

incorporation of genome-wide SNP effects. 

2.2. The Clinical Utility of PGSs 

Many studies have demonstrated the validity of PGSs in predicting diseases status in 

various research settings, including research-based case-control studies, population-

based cohort studies and electronic health records-based studies (Hatoum et al., 2023; 

Musliner et al., 2019; Zheutlin et al., 2019). However, the prediction accuracy at individual 

level is still limited. This limitation can be explained by two main reasons. First, genetic 

factors only account for a proportion of a trait’s variance, meaning that the maximum 

accuracy of genetic prediction is limited by the heritability of the disorder. Second, 

current PGSs are not equipped to capture all genetic variation, but only the additive effect 

of common genetic variants captured by GWAS, which often have small effects. The SNP-

heritability sets the upper limit for the variance that can be explained by PGSs. Therefore, 

the applicability of PGSs in the clinical practice may not be as straightforward as it could 

have been intended to be (Wray et al., 2021).  
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PGSs have shown some promise for the stratification of individuals at risk by their 

polygenic load for some health conditions, particularly for coronary artery disease, type 

2 diabetes or breast cancer (Khera et al., 2018). For psychiatric diseases, however, the 

polygenic, heterogeneous and multifactorial nature of the disorders poses significant 

challenges and potential pitfalls in genetic prediction efforts (Murray et al., 2021). In a 

clinical cohort diagnosed with depression, PGSs for bipolar disorder and schizophrenia 

were found to predict the risk of developing bipolar disorder and psychotic disorders, 

respectively (Musliner et al., 2020). However, prediction was still stronger when using 

information on family history (Musliner et al., 2020). Additionally, schizophrenia PGS was 

able to differentiate schizophrenia from other psychosis diagnosis in first-episode 

psychosis individuals (Vassos et al., 2017). Current SUDs PGSs explain a relative small 

proportion of the phenotypic variance (2.6-6.6%) in SUD-related outcomes (Hatoum et 

al., 2023), limiting their current clinical utility (Barr et al., 2020). Supporting this idea, a 

recent study found that when combined with clinical and environmental risk factors, 

SUDs PGSs made only minimal contributions to disease prediction (Barr et al., 2022; 

Nurnberger et al., 2022). Therefore, the use of these data for SUDs is not informative 

enough for clinical and therapeutic settings as they do not improve upon factors already 

assessed in the clinic for diagnoses and prediction purposes (Barr et al., 2022; Nurnberger 

et al., 2022).  

Prognostic ability of PGSs can be difficult to interpret. In order to translate PGSs to 

clinical tools, relative risk that compares individuals across the PGS continuum (highest 

percentile versus lowest percentile) needs to be transformed to absolute risk for diseases 

and disorders (Chatterjee et al., 2016; Wang et al., 2022). For instance, based on an 

approximation of currently available data, the schizophrenia PGS explains a liability 

variance of 10%, and the 10% of the population at the highest risk for schizophrenia 

based on PGSs have an approximate 4-fold increase in risk compared to the rest of the 

population (relative risk) (Trubetskoy, Pardiñas, Qi, Panagiotaropoulou, O’Donovan, et al., 

2022). But because schizophrenia prevalence in the general population is of 1%, only 4% 

of the people in this high-risk group are expected to develop the disease (absolute risk) 

(Murray et al., 2021). These values are still not impactful enough to be considered in a 

clinical setting. As GWASs sample sizes increase, the generation of PGSs capable of 
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identifying individuals at higher risk than the general population will be enhanced. 

Although it is unlikely that this approach will achieve clinical utility for predicting 

individual-level outcomes for psychiatric diseases on its own, PGSs could significantly 

enhance risk assessment when integrated with other measures of risk. These measures 

may include family history, exposure to stressful life events or trauma, brain imaging and 

neurocognitive performance, to name a few (Wang et al., 2022). From this perspective, 

PGSs should be viewed similarly to many tests used in health care with the purpose of 

identifying individuals at higher risk of disease for stratification. Furthermore, PGSs may 

provide relevant information for precision medicine purposes, such as early intervention 

strategies, treatment response and prognostic on disease course (Murray et al., 2021). 

For instance, they could guide interventions such as advising against the use of 

recreational drugs in individuals at the highest percentile of schizophrenia PGS. 

One of the biggest challenges for the implementation of PGSs into the clinic is 

ensuring that they can be equally applicable to all ethnic groups. Transferability of PGSs 

across populations, however, is still limited. Current GWAS studies, from which effect 

sizes are taken for PGSs calculations, are predominantly European-ancestry-based 

(Fatumo et al., 2022). Difference in patterns of LD and allele frequencies at disease-

associated loci between populations with distinct ancestry result in attenuated predictive 

accuracy of PGSs across ancestry populations (M. S. Kim et al., 2018). Promising advances 

have been made in developing approaches that incorporate information from diverse 

populations to improve prediction performance, especially in underrepresented non-

European populations (Wang et al., 2022).  

Several private companies offer direct-to-costumer genotyping, and online tools 

allow individuals to upload their data and generate personal PGSs for a wide number of 

diseases and traits. In the free online tool impute.me (http://Impute.me) schizophrenia 

and alcohol use disorder are among the top searched conditions (Murray et al., 2021). 

However, an increase in psychological distress was seen in individuals after receiving an 

above-average alcohol use disorder PGSs (Driver et al., 2023). This raises concerns about 

how this information should be appropriately delivered to the individual and what 

prevention strategies should be implemented alongside it. Genetic counselling is crucial 
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when it comes to genetic testing, particularly in the field on mental disorders, due to the 

risk for misinterpretation and stigmatizing assumptions (Palk et al., 2019).  

Over the past decade, PGSs have emerged as a rapidly advancing field of study within 

complex traits. The ability to directly assess an individual's genetic predisposition has 

revolutionized research by enabling the inclusion of genetic predictors in various studies. 

The predictive capability of PGSs does not require knowledge of the intermediate 

processes linking genes to behavior. While the ultimate goal is to achieve a 

comprehensive bottom-up explanation of psychiatric diseases from genes to the brain, 

the ability to make accurate predictions is also a valuable accomplishment as it has 

immediate practical implications for identifying individuals at risk and serves as a crucial 

initial step towards eventual explanation. Therefore, a pressing research priority is to 

enhance the predictive power of PGSs, enabling their utilization as an early warning 

system for prevention and prognostic strategies. 

3. Exploring the Shared Genetic Architecture Between SUDs and Comorbid 

Conditions  

One of the main focuses of psychiatric genetic research to date is to unravel the 

shared genetic architecture across psychiatric disorders. The data acquired from GWASs 

has paved the way into the estimation of the genetic overlap and the assessment of 

causal relationships between SUDs and other psychiatric disorder and related traits. The 

following sections discuss the three main methodological approaches employed within 

this thesis to explore the shared genetic architecture between SUDs and comorbid 

conditions in the context of the current literature, namely genetic correlation, PGS and 

Mendelian randomization analyses.  

3.1. Investigating Pleiotropy Between SUDs and Comorbid Psychopathology Through 

Genetic Correlation and PGS Analyses  

The study of the genetic overlap, also referred to as pleiotropy, between SUDs and 

other phenotypes can be assessed through several methodologies. A widely used 

approach is genetic correlation analysis, which gives an estimate of the average 

correlation of genetic effects across the genome of two phenotypes. Another approach 
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is PGS analysis, which, a part from the clinical applications discussed in the previous 

section, can be used to examine the genetic architecture of psychopathology by 

providing information of the shared genetic liability among different traits and disorders. 

In Study 1, genetic correlation analyses were employed to explore pairwise genetic 

overlap between substance-specific SUDs and substance use phenotypes and ADHD. Our 

results revealed that smoking-related phenotypes yield the strongest genetic correlation 

with ADHD. Specifically, we detected a substantial genetic correlation between smoking 

initiation and ADHD (rg = 0.57). Additionally, smoking initiation and cannabis use yielded 

the strongest genetic correlation among substance use phenotypes (rg = 0.53). However, 

it is noteworthy that the genetic correlation between cannabis use and ADHD was 

relatively low (rg = 0.15). This finding is particularly intriguing, as reports utilizing a more 

recent and larger GWAS for cannabis use disorder, reported a higher genetic correlation 

with ADHD (rg = 0.53) (E. C. Johnson, Demontis, et al., 2020). This suggests that while 

there may be a genetic link between cannabis use and ADHD, this correlation becomes 

more pronounced when considering cannabis use disorder specifically. These findings 

highlight the importance of differentiating between substance use and SUD phenotypes 

in order to obtain accurate insights into the pleiotropic nature of SUDs and its association 

with psychiatric disorders.  

Furthermore, in Study 1, PGSs were employed to test whether the genetic liability to 

SUDs shares a common genetic background between the general population and ADHD 

individuals. PGSs were constructed for smoking initiation, alcohol or cocaine 

dependence, lifetime cannabis use and ever addicted to illicit drugs, using data from pre-

existing GWAS datasets. Then, their association was tested with these SUDs phenotypes 

in an in-house ADHD sample of 989 individuals. Our results supported a common genetic 

background between lifetime cannabis use, alcohol dependence and smoking initiation 

in the general population and in subjects with ADHD. These findings are in agreement 

with epidemiological studies showing increased risk and higher severity of substance use, 

abuse and dependence in ADHD subjects (Groenman et al., 2013; van de Glind et al., 

2014), and add to the existing evidence of the shared genetic vulnerability between 

ADHD and SUDs (Du Rietz et al., 2018; Soler Artigas et al., 2020; Wilens, 2007; Wimberley 

et al., 2020). 
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Study 2 aimed to explore the genetic overlap between major psychiatric, behavioral 

and other related traits with a wide range of SUD-related phenotypic outcomes, including 

sociodemographic and health outcomes, comorbidity and personality traits and SUD 

variables. PGSs for 10 comorbid and related traits were constructed in an in-house SUD 

cohort of 1,427 individuals, and their association was tested with 39 SUD-related 

phenotypes. Our findings uncovered significant pleiotropic effects of the genetic liability 

for several psychiatric, behavioral and related conditions on various SUD-related 

phenotypes. Our main findings suggest that the genetic liability for psychiatric 

conditions, particularly ADHD and PTSD, as well as other related traits, mainly educational 

attainment and well-being, may underlie, at least partially, the observed heterogeneity in 

SUD-related phenotypes, including educational attainment, unemployment, familiar 

relationship status and treatment adherence. These findings build upon existing literature 

providing further evidence for the presence of shared genetic factors that contribute to 

both the vulnerability and manifestation of SUDs and other psychiatric disorders (Dardani 

et al., 2021; Goldberg et al., 2014; H. Liu, 2019; van de Weijer et al., 2022; Wertz et al., 

2018). In addition, our study supports that the genetic liability for distinct mental health-

related traits has a substantial role in the heterogeneity that characterizes SUDs. By 

identifying these genetic factors, we may enhance our understanding of the underlying 

etiological structure of psychopathology. 

Conducting studies that explore the shared genetic architecture of SUDs across 

mental health disorders is highly important. Other studies have employed similar 

methodologies to identify cross-trait associations of the genetic liability to SUDs across 

multiple phenotypic domains (Hartwell et al., 2022; Kember et al., 2023). Following a 

PheWAS approach, these studies constructed PGSs for substance-specific SUDs and 

explored their associations in deeply phenotyped samples with available information on 

psychiatric and medical conditions, family environment and early childhood experiences 

(Hartwell et al., 2022; Kember et al., 2023). This perspective allows to move beyond 

symptom-based categorizations of diseases and focuses on the underlying biological 

mechanisms that drive the development and progression of mental health disorders. 

Additionally, unraveling the genetic underpinnings that contribute to the co-occurrence 
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of SUDs and other psychiatric traits can move the field towards developing novel 

therapeutic targets and personalized treatment interventions.  

3.2. Exploring Pleiotropy Across Psychiatric Disorders Through Cross-Disorder Analyses  

In the field of psychiatry, the presence of comorbidity is not an exception, but rather 

the prevailing norm. Recent cross-disorder studies have attempted to uncover the shared 

biological processes that contribute to the observed phenotypic and genetic similarities 

among psychiatric and neurological disorders (Anttila et al., 2018; Grotzinger et al., 2022; 

P. H. Lee et al., 2019; Lu et al., 2021; Romero et al., 2022). While this particular line of 

research is not directly aligned with the focus of this thesis, this section will discuss recent 

findings from cross-disorder studies, shedding light on the complexities of the 

relationships among these disorders and the challenges researchers face in unravelling 

their shared genetic underpinnings. 

In a 2018 study, the Brainstorm Consortium found significant genetic correlations 

among psychiatric disorders, particularly ADHD, major depressive disorder, bipolar 

disorder, anxiety disorders, and schizophrenia (Anttila et al., 2018). These correlations 

also extended to related traits like neuroticism and years of education. However, there 

was minimal overlap observed between psychiatric and neurological disorders, with the 

exception of migraine. Other pioneer studies used extensive and powerful genetic 

methodologies, such as genomic structural equation modeling (gSEM), which revealed 

interesting models of the genetic substructure within psychiatric disorders with high 

genetic overlap (e.g., mood, externalizing, psychotic or neurodevelopmental disorders). 

These models suggest that some genetic variants appear to have transdiagnostic 

influences on psychopathology, meaning that they have an effect in more than one 

disorder, and that the common genetic signal for psychiatric disorders is enriched in 

evolutionary conserved regions (Grotzinger et al., 2022; Romero et al., 2022).  

However, these studies also shed light on the current challenges faced in cross-

trait meta-analyses for psychiatric disorders. Despite consistently observing moderate-

to-high genetic correlations (ranging from -0.13 to 0.83), the identification of shared 

SNPs, genes or biological mechanisms remains inconclusive. In the study conducted by 

Romero et al. (2022), which involved a cross-trait meta-analysis of 12 psychiatric 
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disorders, the authors observed substantial heterogeneity in the contribution of each 

individual disorder to the meta-analytic signal. The signal was strongly determined by 

schizophrenia and not necessarily representative of genetic variance common to multiple 

psychiatric disorders. Additionally, they observed that genetic overlap primarily occurs 

within pairs of disorders rather than across multiple disorders (Romero et al., 2022). These 

findings emphasize the existing differences in current GWASs of psychiatric disorders 

across various domains, including sample sizes, diagnostic assessment methods (e.g., 

minimal phenotyping versus clinical assessment), and the underlying genetic architecture 

(e.g., amount of polygenicity) for each disorder. These divergent factors may prevent the 

accurate assessment of these disorders jointly (Newson et al., 2020; Nishino et al., 2018). 

To address this issue, future research would benefit from the application of detailed and 

standardized assessment protocols on large and representative samples (Newson et al., 

2020).  

The shared genetic liability to SUDs and the rest of psychiatric disorders has been 

extensively reported, however, in the aforementioned studies, there is a noticeable 

absence of substance use and SUD phenotypes. The study conducted by the Brainstorm 

Consortium included smoking as a risk factor for other conditions (Anttila et al., 2018). 

However, smoking is an addictive trait on its own, and powerful GWASs on smoking 

phenotypes and tobacco use disorder can be used to explore the genetic correlations 

between smoking and other psychiatric disorders. Moreover, in the first cross-disorder 

GWAS meta-analysis of neuropsychiatric disorders, conducted by Lee et al. (2019), which 

combined eight psychiatric disorders, no data from SUDs GWASs was included in the 

analyses. In posterior studies, conducted by Grotzinger et al. (2022) and Romero et al. 

(2022), alcohol use disorder was the only SUD phenotype included. However, despite the 

important relationship between illicit substance use and some psychiatric disorders, 

especially psychotic disorders (Polimanti et al., 2017), no other SUDs was taken into 

account. To expand our understanding of the shared biological processes between SUDs 

and psychiatric disorders, it is crucial to include a broader range of substance use and 

SUD phenotypes into cross-disorder analyses. Building upon this line of thinking, 

Abdellaoui et al. (2021) extended the scope of cross-disorder studies by including three 

SUD phenotypes, namely alcohol dependence, nicotine dependence and cannabis use 
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disorder. Their study revealed that the inclusion of SUDs in a genetic factor analysis lead 

to changes in the underlying genetic factor structure of psychiatric disorders. This result 

can be attributed to the high sensitivity of factor models to the input data, and highlights 

the need to incorporate data on the widest range of psychiatric disorders possible to 

accurately estimate the underlying genetic structure. 

4. Unravelling The Causal Relationship Between SUDs and ADHD 

Genetic correlation and PGS association analyses, among others, are valid 

methodologies to test whether pleiotropy exists, but do not really distinguish between 

types of pleiotropy (van Rheenen et al., 2019). It is crucial to differentiate between 

correlation and causation when examining the relationship between SUDs and 

psychiatric disorders, as well as to determine the directionality of the association. It is still 

unclear whether psychiatric disorders increase the risk for the development of SUDs (e.g., 

self-medication hypothesis), whether SUDs are a risk factor for later mental health 

conditions, or both. Although there is probably not a unique explanation for the co-

occurrence of these conditions, genetic methodologies provide relevant insights into the 

causal mechanisms underlying the association between SUDs and comorbid psychiatric 

disorders. In this thesis, we applied Mendelian randomization (Sanderson et al., 2022), a 

method that has been extensively employed to assess the causal relationship among 

psychiatric disorders, as well as many other health conditions.  

In Study 1, we performed MR to assess the bidirectional causal relationship 

between various substance use and SUD phenotypes (smoking initiation, cannabis use, 

and alcohol, cocaine and illicit drug dependence) and ADHD. We found evidence of a 

causal effect of the genetic liability to ADHD on the risk for smoking initiation, age of 

smoking initiation and cigarettes per day. This goes in line with evidence reported by 

epidemiological and twin studies (Treur et al., 2015), and further supports evidence that 

ADHD medication reduces early smoking initiation and alleviates symptoms of smoking 

withdrawal (Schoenfelder et al., 2014). Other studies reporting MR findings also support 

that the genetic liability to ADHD increases smoking initiation, smoking heaviness and 

lifetime smoking, and decreases smoking cessation (Artigas et al., 2023; Jang et al., 2022; 

Treur et al., 2021). However, this association remains unclear with regards to tobacco use 
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disorder. Recent studies have failed to detect significant evidence supporting a causal 

relationship between the genetic liability to ADHD and the risk of nicotine dependence 

(Vink et al., 2021) or tobacco use disorder (Toikumo et al., 2023), which contradicts the 

previous observations concerning various smoking-related phenotypes. One explanation 

for this discrepancy may be that the genetic liability to ADHD, as manifested through its 

characteristic symptoms like impulsiveness, plays distinct roles in the initiation of 

substance use (e.g., smoking initiation) compared to the subsequent transition to the 

disorder (e.g., tobacco use disorder). However, these lack of associations could also be 

explained by the limited power in the MR analyses undertaken, either due to the small 

samples size in the outcome GWAS (Vink et al., 2021), or the small number of genetic 

instruments included in the analysis (Toikumo et al., 2023).  

Additionally, in our MR analysis, we found evidence of a causal effect of the 

genetic liability to ADHD on an increased risk of cannabis use, which is supported by twin 

studies (Elkins et al., 2018) and genetically-informed studies (Soler Artigas et al., 2020; 

Treur et al., 2021). Our study design does not allow to identify the extract mechanisms 

by which ADHD precedes smoking-behaviors and cannabis use. Nevertheless, these 

causal relationships could be explained through the undercontrol/disinhibition pathway, 

whereby the high levels of impulsivity that characterizes individuals with ADHD leads to 

substance use without considering the associated negative consequences (Jean et al., 

2022; Molinero & Hinckley, 2023). Another plausible mechanism is the self-medication 

pathway, whereby the substance is used for its alleviating effects on ADHD symptoms 

(van Amsterdam et al., 2018).  

Furthermore, we found some evidence of reverse causation, where the genetic 

liability to both smoking initiation and cannabis use have a casual effect on the risk for 

ADHD. For smoking initiation, however, our sensitivity analysis, similarly than in previous 

MR studies (Treur et al., 2021), suggested that this link may be the result of horizontal 

pleiotropy. Under this context, genetic variants appear to influence both phenotypes 

simultaneously, rather than suggesting vertical pleiotropy, indicative of causation. In 

addition, twin studies have reported conflictive evidence on the causal effect of smoking 

on increased ADHD symptoms (e.g., attention problems) later in life (Elkins et al., 2020; 

Treur et al., 2015), adding to the inconclusive relationship between smoking initiation 
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and ADHD. For cannabis use, however, evidence of reverse causation had not been 

previously reported. Nevertheless, these results raise some questions about the 

appropriate temporal sequence by which the risk factor (smoking initiation or cannabis 

use) precedes the outcome (ADHD).  

On one hand, this causal relationship could reflect the effects of parental exposure 

to substances of abuse on psychiatric outcomes in offspring. Several studies have 

demonstrated that maternal cannabis use during pregnancy is associated with offspring 

externalizing problems in childhood (Ikeda et al., 2022; Paul et al., 2021). This hypothesis 

is supported by the knowledge linking the endocannabinoid system with neurogenesis 

and the association between cannabis exposure (in uterus) and neuronal functioning 

(Smith et al., 2020). This suggests that the exposure to cannabis during sensitive and 

critical gestational phases may impact the risk of ADHD development through epigenetic 

modifications and subsequent gene expression alterations related to neurodevelopment 

(Smith et al., 2020). In addition, animal and human studies have found that pre-

gestational cannabis exposure can induce epigenetic alterations in the sperm, which 

could promote germline epigenetic inheritance in the offspring (Mazzeo & Meccariello, 

2023; Murphy et al., 2018) and cause deleterious long-term behavioral effects in the 

offspring (Levin et al., 2019). In line with these findings, a population study found that 

paternal and maternal cannabis use before pregnancy was also associated with offspring 

externalizing problems (El Marroun et al., 2019).  

In addition to causal intrauterine effects, the association between parental 

smoking or cannabis use and increased risk of ADHD symptoms in the offspring may be 

influenced by shared genetic and familial confounding factors that were not considered 

in our MR analyses. For instance, dynastic effects can occur when the parental trait, 

influenced by parental genetics, impacts the offspring's outcome trait (Brumpton et al., 

2020). In such cases, parental smoking or cannabis use might affect the household 

environment, thereby contributing to the manifestation of externalizing and inattentive 

behaviors in the offspring. Furthermore, assortative mating in SUDs and other psychiatric 

conditions could be another plausible mechanism that may lead to an increased risk for 

externalizing problems in offspring of parents who engage in substance use behaviors 

(Nordsletten et al., 2016). When individuals with specific genetic predispositions choose 
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partners who possess similar genetically influenced traits, known as assortative mating, 

it can induce spurious genetic associations which can result in biased estimates from MR 

studies (Hartwig et al., 2018; Howe et al., 2019). The sensitivity analyses conducted in our 

MR analysis are insufficient to account for uncontrolled confounding arising from familial 

effects. Within-family MR analysis, utilizing siblings or parent-offspring trios, could 

potentially address this bias (Brumpton et al., 2020). However, this type of analysis 

requires large number of genotyped family data, which is currently insufficient in cohorts 

assessed for psychiatric conditions (Brumpton et al., 2020).  

Our MR analysis failed to detect significant evidence supporting a causal effect 

between ADHD and the rest of the SUD phenotypes tested (alcohol and cocaine 

dependence or addicted to illicit drugs). While a previous study found weak evidence for 

the causal effect of the genetic liability to ADHD on the risk of alcohol dependence (Treur 

et al., 2021), this was not supported by the latest extensive study of alcohol use disorder 

(Zhou, Sealock, et al., 2020). Furthermore, the lack of large-scale GWAS for cocaine 

dependence still poses a challenge to properly assess its relationship with major 

psychiatric conditions.  

In summary, the current body of evidence regarding the causal relationship 

between SUDs and psychiatric conditions remains limited. Interesting causal 

relationships have been identified, including the genetic liability to cannabis use and the 

risk for schizophrenia (Vaucher et al., 2018) and the genetic liability for prescription 

opioid use and the risk for major depressive disorder (Rosoff et al., 2021). Nevertheless, 

future studies should employ multivariate MR techniques to validate these observed 

associations. This approach will allow the consideration of potential confounders, which 

could otherwise lead to false-positive causal findings, as well as the identification of traits 

that may mediate the observed causal effects among psychiatric conditions (i.e., factors 

that lie on the causal pathway between exposure and outcome) (Burgess & Thompson, 

2015). Additionally, it is crucial to complement MR results with other genetically 

informative methods, such as latent causal variant (LCV) analysis (O’Connor & Price, 2018) 

or causal analysis using summary effect estimates (CAUSE) (Morrison et al., 2020), and, 

when possible, non-genetically informed methods, such as longitudinal and family-based 
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designs (Pingault et al., 2018). The triangulation of evidence across these methodologies 

will aid in unraveling the complex interplay between SUDs and mental health conditions. 

5. Exploring the Implications of Gene-Environment Interactions on the Etiology 

of SUDs: The Role of Emotional, Physical and Sexual Abuse 

In recent years, there has been a growing body of evidence highlighting the role of 

GxE in the development of SUDs (Pasman et al., 2019). Adding to this evidence, in Study 

2, we report a significant interaction between the suicide attempt PGS and having been 

exposed to lifetime emotional, physical or sexual abuse on the mental health status of 

SUD individuals. While it is well established that exposure to sexual trauma and/or abuse 

increases the risk for substance use and mental health problems later in life (B. S. O’Brien 

& Sher, 2013), we found that a history of abuse exacerbates the negative impact of the 

genetic liability for suicide attempt on mental health problems of SUD individuals. Similar 

findings have been reported for cannabis use (Meyers et al., 2019) or bipolar disorder 

(Park et al., 2020), where exposure to trauma and/or maltreatment potentiates the 

polygenic risk for these disorders on disease development. This section discusses 

previous evidence regarding the genetic correlation between SUDs and suicide 

behaviors, explores the complexity of GxE and discusses challenges faced in GxE research 

methodologies and the potential for future advancements in the field. 

SUDs and suicide-related behaviors exhibit a substantial genetic correlation, ranging 

from 0.31 to 0.62, (Colbert et al., 2021), which goes in line with the increased risk of 

suicide behaviors in SUD individuals (Lynch et al., 2020). In addition, prior studies suggest 

that both familiar and non-familiar environmental factors jointly influence liability to 

SUDs and suicide-related behaviors (Edwards et al., 2023; Kendler et al., 2016). A recent 

study on suicidality identified five risk loci that interacted with a range of environmental 

factors related to traumatic experiences, social support, and socioeconomic status, on 

the risk of suicidality (Wendt et al., 2021). Interestingly, results from functional annotation 

pointed to the OPRM1 gene, which has also been linked to the risk for SUDs (Schwantes-

An et al., 2016), specially opioid use disorder and alcohol consumption (Taqi et al., 2019; 

Weerts et al., 2017), as well as to an increased risk for suicide behaviors in depressed 

individuals (Nobile et al., 2019). Additionally, a GxE study reported that stressful life 
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events interacted with genetic variants encoded in the OPRM1 gene modulating the risk 

for depression (Swann et al., 2014). Overall, these findings reinforce the shared genetic 

and environmental liability between suicide behaviors and SUDs.   

One of the primary challenges encountered in GxE studies is the collection of 

high-quality measures of the environment and phenotypes in large-scale samples. These 

challenge was present in our GxE analysis, where only half of the individuals from our in-

house SUD cohort had available information on lifetime emotional, physical and/or 

sexual abuse. Moreover, the identification and selection of appropriate environmental 

variables for assessment poses another challenge. SUDs are potentially influenced by 

numerous environmental factors which can overlap during an individual’s life time. 

However, in our study we focused on a single environmental exposure. This limitation is 

commonly seen in most current GxE studies for SUDs, which focus on environmental 

exposures separately, such as childhood trauma (Meyers et al., 2019), peer substance use 

(Bountress et al., 2017) or parental support (Su et al., 2021).  

An interesting aspect regarding GxE interactions is that the influence of the 

environment can vary throughout different stages of the lifespan, so that GxE effects tend 

to be more pronounced during early developmental periods (Keers & Pluess, 2017). 

However, in our study we lacked information regarding the specific timeframes in which 

adverse environmental exposures took place. Instead, we adopted a broader perspective, 

encompassing exposure across an individual's entire lifetime. Recent data delves into the 

advantages of adopting a life-course approach, with a specific focus on early 

environmental exposures, in order to fully understand how GxE contribute to the 

trajectory of mental health conditions (Keers & Pluess, 2017). 

Given the substantial limitations that current GxE studies face, it is crucial to 

implement some measures, such as using more sophisticated methods, better 

phenotyping measures, larger sample sizes and attempting replication of reported GxE 

findings. Furthermore, in order to obtain large cohorts that can be meta-analysed, 

assessment of phenotypic outcomes and environmental factors need to be homogenized 

across cohorts. These efforts will increase statistical power of meta-analysis and 
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replication studies and yield robust findings in the investigation of how adverse life 

experiences interact with genetic factors to modulate the risk for SUDs.  

6. Methodological Considerations in the Context of This Thesis 

6.1. Power and Sample Size  

A major limitation of GWASs is the need to achieve a high level of significance to 

account for multiple testing correction, which is based on the assumption of 1 million 

independent test for common genetic variation (Dudbridge & Gusnanto, 2008). The 

primary goal to overcome this limitation is to increase the sample size. In order to achieve 

this goal, large international consortia, such as the PGC-SUD working group, are meta-

analysing data available on SUD phenotypes across multiple cohorts. However, 

assembling large sample sizes is more complicated for clinically diagnosed SUD 

phenotypes, such as the ones obtained with the DSM, mainly because of the cost and 

resources needed to obtain such data. Large-scale biobanks (e.g., UK BioBank, 23andme) 

have contributed towards obtaining large sample sizes by performing minimal 

phenotyping on substance use phenotypes. This strategy has been especially successful 

for tobacco and alcohol, which are phenotypes very well represented in large biobanks. 

For example, the GWAS from GSCAN on smoking initiation has over 1 million individuals, 

being one of the largest GWAS performed to date (M. Liu et al., 2019). However, for illegal 

SUDs, data is still very limited in biobanks, and information is mainly available through 

clinical diagnoses or ICD-codes from electronic health records.  

The analyses presented in this thesis are based on the largest GWASs on SUD 

phenotypes, psychiatric disorders and related traits available at the time that the studies 

were conducted. The statistical power of GWASs, also quantified by the number of GWS 

variants identified, conditions the power of secondary and follow-up analyses, including 

PGSs or Mendelian randomization analyses (Abdellaoui et al., 2023). As GWASs increase 

in sample size, so does the power to capture the polygenicity of a trait though PGSs 

analyses. Moreover, Mendelian randomization analyses utilize GWS genetic variants 

discovered in GWASs as instruments to study and uncover causal relationships between 

complex traits. Therefore, at the time that Study 1 was conducted, the smaller sample 
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sizes and limited-powered GWAS available for illegal SUDs, especially for cocaine and 

alcohol dependence, may have not provided enough statistical power to accurately 

investigate the polygenic genetic architecture for these traits. Similarly, in Study 2, the 

differences in sample sizes among the discovery GWASs used to construct PGSs for 

psychiatric disorders and related traits (ranging from 27,280 to 2,083,151 individuals) may 

have contributed to the variability in the results of the study and the reduced ability to 

detect significant associations for those traits with smaller sample sizes.  

As proposed by Hatoum et al. (2023) an alternative strategy to enhance sample 

size in SUDs GWASs is to combine all substances and investigate the genetic architecture 

of the addiction risk-factor (addiction-rf). By employing this approach, a sample size 

exceeding 1 million SUD individuals was achieved, without incorporating substance use 

phenotypes. However, despite the substantial sample size, only 17 GWS loci were 

associated with the addiction-rf, while 47 loci were specific to individual substances. This 

may reflect the phenotypic heterogeneity due to variability in the measurement of SUDs 

across samples and the genetic heterogeneity arising from assessing multiple SUDs with 

distinct underlying genetic architecture.  

Moreover, we acknowledge the modest sample size of the in-house clinical 

cohorts presented in this work (N=989 in Study 1, and N=1,427 in Study 2). The 

individuals were recruited from a restricted geographic area in Barcelona by specialized 

clinical teams on ADHD and SUDs, respectively, by following a detailed assessment 

protocol. Importantly, PGSs studies rely on large sample sizes within the target sample 

to identify significant associations with a particular trait (Choi et al., 2020). In Study 2, a 

significant limitation was the strict multiple testing correction applied to account for the 

extensive number of tests conducted, combined with the limited sample size of the study, 

which may have resulted in decreased statistical power to detect true associations. 

However, as the recruitment of SUD individuals continues, larger sample sizes will 

mitigate this limitation and allow for a more in-depth assessment of SUDs heterogeneity.  

6.2. Genomic Research Is Predominantly Focused on European-Ancestry Populations 

The restriction of our studies to clinical cohorts exclusively composed of 

individuals of European ancestry has posed a significant limitation. As a consequence, all 
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analyses employing publicly available GWAS data were conducted solely within 

populations of European ancestry. This limitation is extensive to many current genetic 

research of complex diseases, where European ancestries are overrepresented. A 2016 

study of the GWAS catalogue found that participants of Asian, African or Latin American 

ancestry represented only 19% of individuals studied in GWASs (Popejoy and Fullerton 

2016). In 2021, and despite recent efforts made to include diverse populations, 86% of 

GWASs participants where from European ancestry (Fatumo et al. 2022). As a result, 

transferability of GWASs findings to other ancestry groups is uncertain.  

The lack of transferability of GWASs findings between ancestry groups is 

explained by the differences in allelic frequencies and LD patterns between variants, as 

well as environmental differences altering effect sizes due to GxE interactions (Auton et 

al., 2015). Consequently, genetic associations as well as polygenic predictors may not 

replicate or may underperform in other ancestry groups because of reasons other than 

statistical power. Increasing diversity in genetic research is crucial in order to reach a 

comprehensive understanding of the genetic etiology of mental health and substance 

use. Large-scale biobanks have emerged with the aim to perform GWASs in populations 

of non-European ancestries (e.g., Biobank Japan, China Kandoori Biobank, Taiwan 

Biobank) and novel statistical methods are being developed with the main purpose to 

improve transferability (Ruan et al., 2022).  

6.3. The Need for Sex-Stratified Genetic Studies 

In our studies, we lacked statistical power to include a sex division of our results. 

However, sex differences in substance use and in SUDs are well‐documented in 

epidemiological and family-based studies, are a major source of heterogeneity in the 

clinical presentation of SUDs and can influence disease outcome (Datta et al., 2020). 

Prevalence of substance use, the particular substance involved, the age at onset of 

substance use and substance use patterns are some of the aspects where sex differences 

are observed. Specifically, the gender gap is characterized by a greater prevalence and 

earlier onset of SUDs in men, but a faster course of substance use problems and transition 

to SUDs in women. In addition, women in SUD treatment are known to present more 

severe problems related to employment, social and family relationships, psychiatric 
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status and overall quality of life (McHugh et al., 2018). There are also sex differences in 

comorbidity rates with other psychiatric disorders, with higher rates of anxiety and 

depressive disorders in women and higher rates of other externalizing disorders such as 

conduct disorder and antisocial personality disorder in men (McHugh et al., 2018). In light 

of these evidence, in Study 2, it would have been interesting to perform a sex-stratified 

PGS association analysis. These secondary analyses could have uncovered different 

patterns of associations between the genetic liability for psychiatric and behavioral traits 

and a wide range of SUD-related phenotypes among men and women.  

Current GWASs largely lack the phenotypic depth and power needed to discover the 

underlying molecular mechanisms driving sex differences in SUDs. Therefore, only a few 

GWASs have succeeded in identifying sex‐specific loci for SUDs. A recent GWAS from 

Kranzler et al. (2019) found two female-specific loci for alcohol consumption and one for 

alcohol use disorder, and another from Yang et al. (2019) identified a sex-specific variant 

for opioid dependence in African American males. In addition, a recent PheWAS found 

sex-specific associations between the genetic liability to SUDs and multiple phenotypes, 

particularly regarding somatic and psychiatric conditions (Hartwell et al., 2022). Studies 

conducted in other psychiatric disorders, such as depression, have been successful in 

identifying sex-specific loci and genes through GWASs (Silveira et al., 2023). 

Characterizing the role that the genetic underpinnings have on the sex differences 

observed in SUD-related outcomes may help in the design of treatment and prevention 

strategies. A key next step in understanding these variables is increasing the 

representation of women in research studies. 

7. Future Directions for Advancing in the Genetic Research of SUDs 

In the next few years, the increasing availability of large-scale datasets for SUDs, 

especially for illegal substances, along with advancements in computational methods, 

will help make substantial progress in advancing the understanding of the genetic 

architecture of SUDs and other substance use behaviors. These continued advances will 

contribute to the development of clinically meaningful implications for SUDs prevention 

and treatment in the future. With special emphasis on the studies conducted in this 

thesis, here are some of the future prospects that should be addressed. 
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Study 1 included publicly available data on five substance use behavior phenotypes, 

namely smoking initiation, age of smoking initiation, smoking cessation, cigarettes per 

day and lifetime cannabis use, and three SUD phenotypes, including alcohol dependence, 

cocaine dependence and ever addicted to illicit drugs. Since the publication of Study 1 

larger GWASs haven been published, with particular interest regarding tobacco use 

disorder and cannabis use disorder. The inclusion of more powerful GWASs that focus 

on SUDs rather than substance use could help reinforce the associations seen in the PGS 

and MR analyses between substance use phenotypes and ADHD.  

Furthermore, future studies using complementary methods to examine the causal 

relationship between SUDs and ADHD should aim to clarify associations that do not 

follow an appropriate temporal sequence between exposure and outcome (e.g., cannabis 

use preceding ADHD). This could be done in multiple ways: First, MR analyses should 

control for familial confounding factors, such as dynastic effects and assortative mating. 

Within-family MR analysis, utilizing siblings or parent-offspring trios, could potentially 

address this bias (Brumpton et al., 2020). Second, by performing stratified analyses on 

childhood versus adult ADHD, as well as additional research on the effect of cannabis 

use on late-onset ADHD, where ADHD symptoms arise in the late adolescence or 

adulthood. This would help clarify whether our results reflect an effect of cannabis use 

on the risk on the persistent form of ADHD. This hypothesis is supported by evidence of 

the association between hazardous cannabis use and ADHD symptoms in adulthood 

(Estévez et al., 2016; Fergusson & Boden, 2008; Kolla et al., 2016). Finally, triangulation of 

MR results with other research methods is crucial to provide increased confidence in the 

inferences drawn. This includes comparison to other genetically informative methods 

such as twin studies, LCV analysis (O’Connor & Price, 2018), or CAUSE (Morrison et al., 

2020), as well as longitudinal analyses of cohort data.  

Regarding Study 2, future directions focus on expanding our SUD cohort, increasing 

sample size and acquiring high-quality information on a wider range of phenotypical 

outcomes. With larger samples, the assessment of phenotypic information on substance-

specific SUDs within our cohort will allow us to explore potential differences in patterns 

of associations of the genetic liability to psychiatric diseases and behavioral traits 

between stimulant (e.g., cocaine) versus sedative (e.g., opioids) SUDs or between illegal 
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versus legal SUDs. Larger samples would also enable additional analysis, such as 

unsupervised cluster analysis, aiming to identify homogeneous subgroups of individuals 

based on clinical variables. This approach would help determine if the genetic liability to 

psychiatric and behavioral conditions exhibits stronger associations with clusters 

characterized by higher symptom severity.  

Furthermore, access to longitudinal data from our patients would provide valuable 

information to assess the impact of the genetic liability on disease progression, the 

individual effectiveness of treatments and interventions, and other factors contributing 

to the heterogeneity of SUDs. Lastly, it is crucial to focus future efforts in collecting 

information on environmental risk factors. This will allow the exploration of a broader 

range of GxE and their consequences on the course of SUDs. Overall, these advancements 

have the potential to greatly advance our understanding of SUDs heterogeneity and the 

complex interplay between genetics and environmental factors in the development and 

progression of SUDs.  
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1. There is a strong genetic correlation among the studied SUD phenotypes as well as 

between SUDs and ADHD, with expected direction of effect.  

2. There are shared genetic factors underlying SUDs in the general population and 

individuals with ADHD, in particular for lifetime cannabis use, alcohol dependence, 

and smoking initiation.  

3. There is a causal effect for the genetic liability to ADHD on the risk for smoking 

initiation, age of smoking initiation, cigarettes per day and lifetime cannabis use.  

4. There is evidence of reverse causation for the genetic liability to smoking initiation 

and lifetime cannabis use on an increased risk for ADHD. 

5. The genetic liability for psychiatric disorders, especially for ADHD and PTSD, are 

associated with poorer outcomes in SUD individuals, including lower educational 

attainment and higher rates of unemployment, but also earlier onset of substance 

use and higher number of outpatient treatments.  

6. The genetic liability for educational attainment and well-being are associated with 

better outcomes in SUD individuals, especially with lower rates of criminal records, 

unemployment and outpatient treatments and fewer problems related to family and 

social relationships.  

7. The genetic liability for psychiatric disorders and other mental health-related traits 

exhibit different patterns of associations with SUD-related phenotypes, which may 

partially explain the heterogeneity observed in SUDs. 

8. The genetic liability for suicide attempt aggravates the negative impact of having 

been exposed to emotional, physical and/or sexual abuse on the mental health status 

of SUD individuals. 
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Attention deficit/hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder. We performed a transcriptome-
wide association study (TWAS) using the latest genome-wide association study (GWAS) meta-analysis, in 38,691 individuals with
ADHD and 186,843 controls, and 14 gene-expression reference panels across multiple brain tissues and whole blood. Based on
TWAS results, we selected subsets of genes and constructed transcriptomic risk scores (TRSs) for the disorder in peripheral blood
mononuclear cells of individuals with ADHD and controls. We found evidence of association between ADHD and TRSs constructed
using expression profiles from multiple brain areas, with individuals with ADHD carrying a higher burden of TRSs than controls. TRSs
were uncorrelated with the polygenic risk score (PRS) for ADHD and, in combination with PRS, improved significantly the proportion
of variance explained over the PRS-only model. These results support the complementary predictive potential of genetic and
transcriptomic profiles in blood and underscore the potential utility of gene expression for risk prediction and deeper insight in
molecular mechanisms underlying ADHD.

Molecular Psychiatry; https://doi.org/10.1038/s41380-023-02200-1

INTRODUCTION
Attention deficit hyperactivity disorder (ADHD) is a neurodevelop-
mental disorder characterized by inappropriate levels of inatten-
tiveness, hyperactivity, or impulsivity that affects around 2.6% of
persistent adult ADHD and 6.8% of symptomatic adult ADHD [1].
ADHD increases the risk of health problems, psychiatric co-
morbidities, psychological dysfunction, social disability, academic
and occupational failure, and risk behaviours throughout the
individual’s life [2].
Twin and family studies show a strong genetic component

underlying the disorder, with a heritability of 76% [3, 4]. Recently,
the largest genome-wide association study meta-analysis (GWAS-
MA) on ADHD so far in 38,691 individuals with ADHD and 186,691
controls identified 27 hits for the disorder [5]. In addition, to date
more than 40 relevant studies on polygenic risk scores (PRS) for
ADHD have been published and show evidence of association
between ADHD-PRS and a wide range of traits and disorders,
including ADHD-related traits, reduced brain volume, lower
education attainment, externalizing behaviours, impaired working
memory, higher body mass index or lower socioeconomic status,
among others [6].
The SNP-based heritability for ADHD estimated so far is 0.14 [5]

and the PRS for the disorder explains 5.5% of phenotypic variance

in individuals of European ancestry [7]. A large proportion of the
heritability still needs to be explained and gene expression, which
results from the interplay between genetic and environmental
factors, may help to elucidate additional phenotypic variance. To
date, eight studies on transcriptome profiling in ADHD have been
performed and highlighted genes involved in several neuronal
functions and in the immune system [8–16]. However, this
approach is limited by the inaccessibility of brain samples and
has mainly focused on blood. Alternatively, integrative approaches
have been developed, including transcriptome-wide association
studies (TWAS), which are a powerful method to integrate GWAS
data and multi-tissue expression quantitative trait loci (eQTL) to
correlate genetically predicted gene expression levels with
complex traits. To date, four TWAS on ADHD have been
performed: three using summary statistics from the first GWAS-
MA on ADHD by Demontis et al. [7, 17–19] and one using data
from the latest GWAS-MA on ADHD [5]. Briefly, Fahira et al.
conducted multiple TWAS approaches to identify 47 putative
causal genes and the glutamate receptor signalling pathway
underlying ADHD [17]. Liao et al. performed TWAS on 11 brain
tissues and identified novel genes and several pathways relevant
for ADHD, including the dopaminergic neuron differentiation and
norepinephrine neurotransmitter release cycle [18]. Qi et al.
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considered Chinese and European ancestry cohorts and did not
identify transcriptome-wide associated genes with the disorder
either in brain or blood [19]. Finally, Demontis et al. identified 23
distinct genes with differential predicted gene expression in the
dorsolateral prefrontal cortex (DLPFC) in ADHD using the largest
GWAS-MA on ADHD to date and highlighted PPP1R16A and
B4GALT2 as top genes [5].
Given that a substantial proportion of GWAS association signals

demonstrate gene regulation effects [20], risk scores built on eQTL
variants, known as transcriptomic risk scores (TRSs), are promising
gene-based approaches that use gene expression information to
identify trait-associated genes from GWAS. TRSs are significantly
associated with a range of outcomes, including Amyotrophic
Lateral Sclerosis [21], Alzheimer’s disease [22], and Crohn’s disease
[23] based on observed gene expression data, as well as with
ADHD symptoms [24], schizophrenia [25, 26], and major depres-
sive disorder [24, 27] constructed with predicted gene expression.
In addition, the combination of TRS with PRS improves risk
prediction of several traits, including rheumatoid arthritis, height,
body mass index or intelligence [24].
In the present study, we ran a multi-tissue TWAS on the latest

GWAS-MA on ADHD performed so far [5], and for the first time
used TWAS results to select a subset of signature genes per tissue
and construct microarray-based TRSs in peripheral blood mono-
nuclear cells (PBMCs), tested their association with ADHD and
assessed whether the combination of PRS and TRS increases
significantly the proportion of variance explained of ADHD over
PRS alone, in subjects with ADHD and controls.

MATERIALS AND METHODS
Multi-tissue transcriptome-wide association study (TWAS)
TWAS was performed with S-PrediXcan (https://github.com/hakyimlab/
MetaXcan) [28] using summary statistics from the largest GWAS-MA on
ADHD to date in 38,691 individuals with ADHD and 186,843 controls [5],
and SNP-weights of gene expression precomputed with the joint-tissue
imputation (JTI) approach [29]. We used genetic variants with minor allele
frequency (MAF) ≥ 0.01 and INFO score ≥ 0.80, and gene expression
reference panels from GTEx v8 in 14 tissues, including whole blood,
amygdala, anterior cingulate cortex, caudate basal ganglia, cerebellar
hemisphere, cerebellum, cortex, frontal cortex, hippocampus, hypothala-
mus, nucleus accumbens basal ganglia, putamen basal ganglia, spinal cord
cervical C1 and substantia nigra [30]. According to the GTEx webpage
(https://gtexportal.org/home/samplingSitePage) both cortex and frontal
cortex correspond to the same brain area, right cerebral frontal pole cortex,
sampled and collected using different techniques. We considered default
settings in S-Predixcan and linkage disequilibrium (LD) estimates from the
European subset of the 1000 Genomes Phase 3 reference sample with the
precalculated covariances. As TWAS results from different brain areas were
highly correlated (r2 > 0.96 when considering genes nominally associated
with ADHD), we applied Bonferroni correction considering the number of
genes tested within each of the 14 expression reference panels separately
to account for multiple testing.
Summary statistics from TWAS in DLPFC described in Demontis et al.

2022 were also used in the TRS analysis [5]. In brief, the reference panel
was constructed using EpiXcan and expression data on DLPF of
924 samples with European ancestry from the PsychENCODE Consortium
[31], and the S-PrediXcan method was used to integrate the ADHD GWAS
meta-analysis summary statistics [5].
Enrichment analyses on gene-sets from the Molecular Signatures

Database (MSigDB v6.2), including Gene ontology (GO), KEGG, Reactome,
miRNA targets and GWAS Catalog, were performed on genes nominally
associated with ADHD in each TWAS using a hypergeometric test with the
GENE2FUNC module of FUMA and considering all genes from the TWAS as
background [32]. Enrichment analyses results were corrected for multiple
comparisons in each tissue considering each category separately using 5%
False Discovery Rate (FDR).

Gene locus-level colocalization analysis. Gene locus-level colocalization
probability (GLCP) for significant genes identified in TWAS was performed
using fastENLOC and only genes with a GLCP ≥ 0.5 were considered further

[33, 34]. First, we selected the genetic variants within 1 Mb upstream and
500 kb downstream from each of the 56 significant genes identified in
TWAS with a P < 0.05 in the GWAS-MA of Demontis et al. [5]. These variants
were fine-mapped to generate 95% credible sets, assuming one causal
variant per locus, using the CAUSALdb pipeline (https://github.com/
mulinlab/CAUSALdb-finemapping-pip#4; [35]) which includes three differ-
ent fine-mapping tools, FINEMAP 1.3.1 [36], PAINTOR v3.0 [37] and
CAVIARBF v.0.2.1 [38]. We used the recommended parameters of each tool
and only variants selected by all three methods were considered. For these
variants, Z-scores from the GWAS-MA on ADHD [5] were then converted to
posterior inclusion probabilities using the torus software [39]. Finally, these
data were colocalized with fastENLOC for the 14 GTEx v8 tissues included
in the study [33]. Colocalization was performed using pre-computed GTEx
multi-tissue annotations obtained from https://github.com/xqwen/
fastenloc.

Transcriptomic and polygenic risk scores
Participants and clinical assessment. TRSs and PRS were constructed in an
in-house sample of 222 medication-naïve adult ADHD cases (59.45% male,
mean age=34.03 years, s.d= 11.62) and 269 controls (57.25% male, mean
age=36.6 years, s.d= 10.06). All subjects were from European ancestry,
which was confirmed through principal component analysis (PCA) using
genetic data. Clinical assessment was conducted by structured interviews
and self-reported questionnaires as previously described [14], based in two
steps: (i) assessment of ADHD diagnosis based on symptomatology using
the Conner’s Adult ADHD Diagnostic Interview for DSM-IV (CAADID) and (ii)
assessment of the severity of ADHD symptoms, the levels of impairment
and the presence of comorbid disorders to increase the diagnostic
accuracy with the Conners’ ADHD Rating Scale (CAARS), the ADHD Rating
Scale (ADHD-RS), the Clinical Global Impression (CGI), the Wender Utah
Rating Scale (WURS), the Sheehan Disability Inventory (SDS), and the
Structured Clinical Interview for DSM-IV Axis I and II Disorders (SCID-I and
SCID-II). Exclusion criteria were IQ < 70; a history or the current presence of
a condition or illness, including neurologic, metabolic, cardiac, liver, kidney,
or respiratory disease; a chronic medication of any kind; birth weight
≤1.5 kg; and other neurological or systemic disorders that might explain
ADHD symptoms. All cases were evaluated and recruited prospectively
from a restricted geographic area in a specialized out-patient program for
adult ADHD at the Hospital Universitari Vall d’Hebron of Barcelona (Spain).
The control sample consisted of unrelated blood donors matched by sex

with the clinical group. Individuals with ADHD symptomatology were
excluded retrospectively from the control sample under the following
criteria: (1) diagnosed with ADHD previously and (2) answering positively
to the life-time presence of the following ADHD symptoms: (a) often has
trouble in keeping attention on tasks, (b) usually loses things needed for
tasks, (c) often fidgets with hands or feet or squirms in seat, and (d) often
gets up from seat when remaining in seat is expected. The study was
approved by the Clinical Research Ethics Committee (CREC) of Hospital
Universitari Vall d’Hebron, methods were performed in accordance with
the relevant guidelines and regulations and written informed consent was
obtained from all subjects before inclusion in the study.

Transcriptomic risk scores. TRSs were constructed from transcriptomic
profiles in PBMCs separated by a Ficoll density gradient method
immediately after blood extraction. Total RNA was isolated using Qiazol
Lysis reagent and the RNAeasy Midi Kit (QIAgen, Hilden, Germany). RNA
integrity and concentration were assayed by 2100 Bioanalyzer (Agilent
Technologies Inc., Santa Clara, CA, USA). RNA was retrotranscribed using
the Ambion WT Expression Kit (Life Technologies, Carlsbad, CA, USA). The
cDNA was subsequently fragmented, labelled, and hybridized with the
GeneChip WT Terminal Labelling and Hybridization Kit (Affymetrix, Santa
Clara, CA, USA). Samples were hybridized to the GeneChip Human Gene
1.1 ST 96-Array plate (Affymetrix), covering a total of 36,079 transcripts that
correspond to 21,014 genes. The array processing and data generation
were assessed using the Gene Titan Affymetrix microarray platform. Raw
data were pre-processed as previously described [40]. In brief, data was
processed with the Robust Multichip Analysis (RMA) algorithm from OligoR
[41], sample outliers were removed using the arrayQualityMetrics [42] and
transcript probes were filtered ending up with 19,004 probes correspond-
ing to 18,055 unique genes. Microarray batch effects and non-biological
experimental variation (RNA integrity number (RIN), age and gender) were
adjusted for using the empiricalBayesLM algorithm included in WGCNA R
package [43]. Raw data from this article is not publicly available because of
limitations in ethical approvals and the summary data will be available
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upon request.
TRSs were calculated as the sum of the standardized expression of each

gene weighted by its signed Z-score value from TWAS results on the
different expression reference panels. TRSs per tissue were constructed by
selecting genes under several TWAS P-value thresholds (Bonferroni, 0.001,
0.05, 0.1, 0.2, 0.3, 0.4, 0.5 and 1) and tested for association with ADHD using
a logistic regression model in R, with sex, age, GWAS wave and the 10 first
principal components based on GWAS data as covariates. For the best P-
value threshold in each tissue, the empirical P-value was calculated by
permuting the target phenotype 10,000 times and repeating the TRS
analysis on each set of permuted phenotypes [44]. Pseudo-R2 were
calculated using the Lee’s formula [45] and considering an ADHD
population prevalence of 5%. The effective number of independent tests
was assessed with the Galwey method [46] considering Pearson correlation
among TRSs from the best P-value threshold at each tissue, which resulted
in 11 independent tissues out of 14. To account for multiple testing, we
used the Sidák correction (P-value < 4.6e-03) for 11 independent tests. To

discard an artificial inflation of the results due to the inclusion of different
genes at the same genomic loci under the control of the same eQTL in the
TRS construction, a sensitivity analysis was performed by calculating TRSs
considering a single gene per locus: the one showing the lowest P-value in
the TWAS at each genomic loci (defined by genes < 500 kb apart).
Colocalization analyses were conducted using the same strategy described
in the TWAS section, selecting genetic variants within a genomic window
of 1 Mb upstream and 500 kb downstream from each of the genes in the
best P-value threshold of TRSs associated with ADHD after multiple
comparison corrections and sensitivity analyses.

Polygenic risk score. DNA samples were genotyped in two genotyping
waves using Omni2.5 (n= 163) and Infinium™ Global Screening Array-24
v2.0 (n= 328) Illumina arrays. Polygenic scoring was conducted using the
summary statistics from the largest GWAS-MA on ADHD in 38,691
individuals with ADHD and 186,843 controls [5], the PRS-CS software to
generate posterior SNP effect sizes under continuous shrinkage (CS) priors
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to model LD between genetic variants (https://github.com/getian107/
PRScs) [47]. The European subset of the 1000 Genomes Phase 3 reference
was used to estimate LD and a global shrinkage parameter of phi = 1e-02
was considered. The PRS was generated using PLINK 1.09 software [48] and
it was tested for association with ADHD using a logistic regression model,
with sex, age, GWAS wave and the 10 first principal components based on
GWAS data as covariates. The increment in pseudo-R2 was calculated using
the Lee’s formula [45] and considering an ADHD population prevalence of
5%. Correlation between significant TRSs and PRS were calculated using
the Pearson correlation coefficient. A likelihood ratio test with the lmtest
R-package was used to compare the goodness of fit of the model that
includes the PRS and covariates with the model that also includes the TRS.

RESULTS
Transcriptome-wide association study
We performed a TWAS in ADHD using multiple brain tissues and
whole blood expression reference panels and summary-level data
from the largest GWAS-MA on ADHD so far in 38,691 cases and
186,843 controls [5, 30] (Supplementary Fig. S1). Overall, we tested
20,225 predicted genes across expression reference panels,
ranging from 6213 to 11,473 depending on the tissue under
study, representing at least 95% of the genes included in each
expression reference panel (Supplementary Table S1). We
identified a total of 4134 unique genes showing nominal
association (P < 0.05) with ADHD in at least one tissue, including
2234 that were significant in more than one and 94 in all of them.
These genes were enriched for genes previously associated with
social interaction (e.g. regular attendance at a religious group,
regular attendance at a gym or sports club or social communica-
tion problems), psychiatric disorders (e.g. autism spectrum
disorder, schizophrenia or bipolar disorder) and body fat
distribution, among others (Supplementary Table S2). Besides,
analysis on miRNA target genes revealed significant enrichment of
targets of miRNA-34b/c and miR-449 among genes differentially
expressed in the cerebellum and of 14 mature miRNAs in cortex
(Supplementary Table S3). No association with other categories
from the MSigDB was found.
After Bonferroni correction, 56 unique genes in 28 independent

loci (defined by genes > 500 kb apart) showed transcriptome-wide
significance, of which 28 were significant in more than one tissue,
all of them showing consistent direction of the effect (Fig. 1 and
Supplementary Table S4). Of them, 8 genes were identified both in
blood and at least one brain tissue, and 26 in at least two brain
areas, being NAA80 the only gene differentially expressed in all the

studied tissues (Fig. 1 and Supplementary Table S4). From the
genes identified in the TWAS, 31 were novel and 25 were
previously associated with ADHD either by TWAS or GWAS in the
study by Demontis et al. 2022 (Fig. 1, Supplementary Table S5 and
Supplementary Fig. S2).
When comparing the predicted differential expression from

TWAS with observed differential expression in PBMCs in our in-
house sample, we found that 41 out of 56 genes identified in
TWAS were available in our microarray analysis and from those, six
were significantly differentially expressed. Out of the five genes
differentially expressed in PBMCs and in at least one brain tissue,
four showed consistent direction of effect (HELZ, GIGYF2, SLC25A22
and PNPLA2), with PNPLA2 and HELZ also differentially expressed
in the whole blood TWAS and with consistent direction of effect
(Fig. 1 and Supplementary Table S4). TSC22D2 had discordant
direction of effect between PBMCs and cerebellar hemisphere/
cerebellum and MPHOSPH9 between PBMCs and whole blood
(Fig. 1 and Supplementary Table S4). Finally, colocalization
analyses of the 56 genes identified in TWAS revealed 14 genes
with a GLCP ≥ 0.5 in at least one of the studied tissues, four of
them differentially expressed also in PBMCs with consistent
direction of effect (GIGYF2, HELZ, PNPLA2 and SLC25A22; Supple-
mentary Table S6). PNPLA2 was the most ubiquitous gene found
colocalized in 9 tissues (GCLP range: 0.643– 0.896), followed by
REELD1 in 8 tissues (GCLP range: 0.615–0.818), and LSM6 in 7
tissues (GCLP range: 0.724–0.844; Supplementary Table S6).

Transcriptomic risk scores
TRSs based on multi-tissue TWAS results were constructed at
different significance thresholds using expression data from
PBMCs in an in-house sample of 222 subjects with ADHD and
269 controls (Supplementary Fig. S1). We found strong evidence
of association in brain, with TRSs based on TWAS from 11 out of 13
brain tissues significantly associated with ADHD status after
computing the empirical P-values (free from inflation due
to overfitting) being cortex the most significant one (Pempirical=
1e-04; Table 1 and Supplementary Fig. S3).
Although significant associations with ADHD were observed

across the different TWAS P-value thresholds in most of the brain
areas, there was clear evidence of increased proportion of
variance explained by TRSs as lower P-value thresholds were
used (Supplementary Fig. S3). After correction for multiple
comparisons, TRSs remained significantly associated with
ADHD when constructed on TWAS from five brain tissues,
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including cortex (Pempirical = 1.0e-04, pseudo-R2= 0.032), frontal
cortex (Pempirical = 4.0e-04, pseudo-R2= 0.023), putamen
(Pempirical = 5.0e-04, pseudo-R2= 0.023), caudate basal
ganglia (Pempirical = 1.5e-03, pseudo-R2= 0.016) and amygdala
(Pempirical = 3.5e-03, pseudo-R2= 0.014), with subjects with ADHD-
having a significantly higher ADHD-TRS than controls in all of
them (Table 1 and Supplementary Fig. S4). Associations remained
significant in the sensitivity analyses considering only the most
significant gene per locus in the TRS construction, with the
exception of the TRS based on TWAS results in putamen
(Supplementary Table S7 and Fig. S5). The quintiles of the
remaining TRSs showed the expected trend of higher ADHD odds
for individuals in higher quintiles (Fig. 2) and positive correlations
were found between the four TRSs (corrected P < 7.1e-04 and
0.22≤ r ≤ 0.62) (Supplementary Fig. S6). Out of the 112 genes
included in at least one of these TRSs, three were used in all four:
GMPPB, PLK1S1 and PNPLA2 (Supplementary Table S8). Despite the
proportion of variance explained for the TRSs being in line with
that of PRS (Estimate = 0.3295, P= 9.4e-04, pseudo-R2= 0.019,
Fig. 3), both scores were not correlated in any of the tissues
with significant results after the sensitivity analyses (r ≤ -0.02;
Supplementary Fig. S6) and combining TRSs and PRS improved
the fit of the model over PRS alone (P < 0.03), with TRSs from
cortex showing the best results and reaching a pseudo-R2 of 0.052
in the combined model (P= 7.1e-06, Table 1 and Fig. 3).
We also constructed TRSs restricted to colocalized genes (TRScol)

for the TRSs significantly associated with ADHD after multiple
comparison corrections and sensitivity analyses. We found that,
despite reducing the number of genes included, the association
signal remained in all four tissues and that the predictive
performance improved for TRScol in three of them, amygdala,
caudate basal ganglia and frontal cortex (Supplementary Table S9).
Interestingly, out of the 24 genes included in at least one of these
TRScol, three genes were included in three out of the four analyses:
LSM6, PIDD1 and PNPLA2, with consistent direction effects across
tissues (Supplementary Table S8). In line with the results from TRSs
calculated with all genes, the combination of TRScol with PRS

improved the fit of the model over PRS alone for all four tissues
(P < 9.59e-04; Fig. 3 and Supplementary Table S9).
Finally, to assess the robustness of our results further, we used

TWAS results from DLPFC [5] on a larger reference panel from the
PsychENCODE Consortium [31]. TRS from DLPFC was also
significantly associated with ADHD (Pempirical=9.9e-05, pseudo-
R2= 0.028), remained significant in the sensitivity analysis
considering only the most significant gene per locus (Supple-
mentary Table S7), and combined with PRS improved the fit of the
model over PRS alone (P= 6.9e-05), reaching a pseudo-R2 of 0.046
in the combined model (Table 1).

DISCUSSION
To our knowledge, this is the first study to construct TRSs for
ADHD based on observed expression data. We undertook TWAS
on ADHD using the latest ADHD GWAS-MA summary statistics and
14 expression reference panels across a range of brain tissues and
whole blood to prioritize genes and construct transcriptome-
based risk scores for the disorder [5, 30]. Given that a substantial
proportion of GWAS hits demonstrate gene regulation effects [20],
risk scores based on eQTL variants integrate biological information
for disease prediction, link genetic associations to biological
disease mechanisms and provide an additional layer of biological
interpretability.
We found 56 genes showing transcriptome-wide significant

association with ADHD, of which 31 did not overlap with
previously described GWAS loci or TWAS results by Demontis
et al. [5]. The variability observed between studies could be mainly
due to differences in the tissues and methods used to construct
the expression reference panel, as Demontis et al. used a different
eQTL reference panel in DLPFC from the PsychENCODE Con-
sortium [31], and we used GTEx v8 data on 14 tissues based on JTI
methodology, to exploit the power of multi-tissue transcriptomes
to improve prediction accuracy. Among the new genes identified,
NAA80, associated with ADHD in all expression reference panels,
encodes an actin-specific N-acetyltransferase that may play a role
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comparisons are given above the bars. Further statistical details can be found Supplementary Table S9.
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in excitatory synapses, which is consistent with alterations in the
reorganization of synaptic actin described in neurodevelopmental
disorders [49]. PNPLA2 was transcriptome-wide significant in all
the expression reference panels but substantia nigra and
differentially expressed in the PBMCs with consistent direction
of effect. It encodes a lipase related with obesity, highly comorbid
with ADHD [50], and was recently pointed as one of the most
high-confidence causal genes for ADHD [17]. Other interesting
transcriptome-wide significant signals included several long non-
coding RNA, a group of regulatory RNA involved in neural
differentiation and synaptic plasticity that have been related with
psychiatric disorders [51, 52], or target genes for miRNA-34,
previously associated with ADHD [53]. This miRNA family
participates in neuronal differentiation and synaptogenesis [54]
and is among the most upregulated miRNAs during dopaminergic
differentiation [55].
We selected a subset of relevant genes from TWAS results and

constructed TRSs using microarray expression data in PBMCs from
222 individuals with ADHD and 269 controls. TRSs based on TWAS
results from most of the brain tissues were associated with ADHD,
with individuals with ADHD carrying a higher burden of TRS than
controls. In contrast, no association was found when the TRS was
constructed based on TWAS results in whole blood, which
suggests that the performance of the TRS is optimized when
selecting genes from expression reference panels in relevant
tissues for the disorder. This is likely due to the eQTL tissue
specificity previously described [56] and is in line with our findings
where the TRSs that surpassed multiple comparison corrections
and sensitivity analyses were constructed from expression
reference panels in four brain areas associated with ADHD,
namely cortex, frontal cortex, caudate basal ganglia and amygdala
[57–59].
Genes included in the best-performing TRSs provide additional

information to prioritize candidates for further investigation of
biological mechanisms underlying ADHD. For example, all TRSs
associated with ADHD include three genes, PNPLA2, PLK1S1 and
GMPPB, previously associated with ADHD and/or other neurode-
velopmental disorders [17, 60–62]. Of them, PNPLA2, already
discussed as one of the top hits in the multiple-tissue TWAS, is the
only gene with a high colocalization score in three out of the four
tissues studied, and seems to play an important role in the TRScol
of amygdala, caudate basal ganglia and frontal cortex, which
points it as one of the most promising candidate genes. Besides,
we also highlight other genes with high colocalization scores in
different tissues: the GIGYF2 gene, significantly associated with
ADHD across the lifespan [63], which contributes to the TRScol
from both cortex and frontal cortex, the SLC25A22 gene, which
encodes a glutamate transporter with strong expression in the
developing brain, that adds important weight to the TRScol from
caudate basal ganglia and frontal cortex, and CKS2, a cyclin-
dependent kinase involved in the control neuronal differentiation
[64], which contributes to the TRScol from the amygdala.
Interestingly, according to the GWAS catalog genetic variants in
these genes and others included in TRScol (i.e. CTNNB1, COPA,
CCDC71 and BLOC1S2) have been associated with psychiatric
disorders (e.g. schizophrenia, externalizing behavior, smoking
initiation, autism spectrum disorder, anorexia nervosa, depression
and anxiety disorder), cognitive function (e.g. intelligence,
educational attainment and mathematical ability) or ADHD
comorbid somatic traits like obesity or extreme body mass index,
suggesting a potential importance of these genes in the context
of ADHD and its comorbid conditions.
For most of the brain tissues, the TRSs constructed under

stricter TWAS P-value thresholds showed clear evidence of better
performance and stronger associations with ADHD, a pattern
similar to the one observed for TRS in amyotrophic lateral sclerosis
based on observed expression data [21]. This contrasts with the
pattern of association found for PRSs or imputed gene expression-

based risk scores, where the variance explained tends to increase
as more relaxed P-value thresholds are used [24, 26]. These
different patterns could result from methodological limitations in
TWAS that hamper the statistical power of TRSs from observed
gene expression, especially when more genes with weaker
association signals are included in the analysis. These could
include noisy beta estimates in TWAS due to the limited sample
size of both GWAS-MA on ADHD and GTEx v8 reference
panels [5, 30] , or false positive associations in the TWAS due to
pleiotropy or linkage disequilibrium. Also, TRSs-based on observed
expression data may reflect a dynamic layer of biological
regulation that could explain the difference found. While using
predicted expression data provides an accurate estimate of the
genetic risk conferred via cis-regulated gene expression, TRSs
constructed on observed expression datasets may be also
attributable to other influences including trans-acting genetic
effects or environmental effects and may provide a closer
connection to the disorder than standard PRSs or TRSs calculated
on imputed gene expression levels. This is consistent with findings
showing that a substantial proportion of gene expression
heritability may not result from common cis-eQTL SNPs, but
rather stem from trans-variants which may act predominantly in a
tissue-specific manner, and points to the need for further studies
on the trans-regulatory landscape [65].
In agreement with a previous study in depression [66], TRSs

were uncorrelated with genome-wide PRS. This lack of correlation
may highlight that TRSs based on observed gene expression data
capture more information than cis-eQTL genetic risk variants, such
as trans-eQTL, environment factors or epigenetics, as well as
interaction effects between genes and environment, among
others. In addition, compared with PRS-only models, models
combining PRS and TRSs provided substantial improvement in
model fit for ADHD, which supports that gene expression explains
additional phenotypic variance for the disorder than PRSs and is
consistent with the complementary predictive potential of genetic
and transcriptomic signatures [24].
Apart from TWAS, other methods have been designed to

prioritize likely causal genes by combining genomic, transcrip-
tomic, and other regulatory and functional information including
colocalization methods, that use a Bayesian framework to infer
whether a regulatory SNP is also responsible for the association
with a trait of interest, or summary-based Mendelian randomiza-
tion (SMR), that combines GWAS and eQTL data to prioritize target
genes with evidence for causal or pleiotropic effects. In order to
narrow down the number of genes identified by TWAS and
included in the TRS analyses, we assessed colocalization and
found that the signal for 14 out of the 56 genes identified in the
TWAS was supported by the colocalization analyses. This low
convergence between TWAS and colocalization signals is con-
sistent with other studies [34] and may result from several factors
including failure to identify either the phenotype-SNP association
or the expression-SNP association, given the relatively limited
sample size of both GWAS-MA on ADHD and GTEx v8 reference
panels [5, 30], especially for brain areas. Also, colocalization signals
may arise from direct genetic effects, while TWAS signals may
result from complex interactions between multiple genes and
genetic variants [33]. When restricting best-performing TRSs to the
colocalized genes, despite a reduction of at least the 70% in the
number of genes included, the association signal remained and
even became stronger for amygdala, caudate basal ganglia and
frontal cortex. These results are in line with previous studies
[21, 23] and point to the high specificity of the colocalization
approach [33].
The results of the present study, however, should be interpreted

in the context of several strengths and limitations: (i) Due to
linkage disequilibrium, a single genetic variant might point to
several TWAS associations in the same locus. For that reason,
sensitivity analysis using only the most significant gene in each
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locus was performed to discard artefactual inflation in the TRS
analysis. However, considering that genes located in the same
region are not necessarily involved in the same biological
processes and given the difficulty to determine which ones really
contribute to the phenotype, enrichment analysis were performed
including all significant genes from TWAS, which could have
potentially biased these results. (ii) In this study, the PRS failed to
approach the performance of the two best-performing TRSs (from
cortex and frontal cortex), which suggests that TRSs may
potentially outperform PRSs and provide a closer physiological
picture of the disorder; (iii) While TRSs differences may reflect
distinct molecular pathways captured by each of the tissues
considered, the variability in sample size between the expression
reference panels may limit our ability to compare TRSs results
across tissues. Besides, in the present study we used multiple-
tissue TWAS. Although this method shows improved prediction
over single tissue approaches and it underscores specific genes
overlapping between tissues [29], additional approaches are
required to identify tissue-specific expression profiles; (iv) We
found significant correlation between the TRSs associated with
ADHD, probably, in part, because the different brain areas from
which they were constructed are both functionally and structurally
connected. However, selecting genes for the construction of TRSs
based on multiple-tissue TWAS results, where information is
borrowed across transcriptomes of different tissues, may also
contributed to artificially inflate these correlations; (v) The positive
results obtained for TRSs capturing expression in brain areas
implicated in ADHD but not in whole blood suggests that the
relevance of the tissue to the outcome may also influence the
predictive performance of the TRS; (vi) Although TRS constructed
on real expression datasets may provide a closer connection to
the disorder and may capture gene expression within a range of
contexts, they may be influenced by confounding factors such as
gender, age, comorbid disorders or medication. We frequency sex-
matched ADHD cases and controls and restricted the clinical
sample to ADHD medication-naïve adult subjects, which is a major
strength of our study design that may allow us to identify
transcriptomic signatures that might be neglected by broader
study designs. We cannot discard residual confounding by other
factors not available. In the same line, observed differential
expression associated with ADHD may reflect both a gene’s causal
role in the disorder or be consequence of the disorder itself.
However, given that genetically-inferred differential expression
from TWAS may not be susceptible to reverse causation, we think
that most genes included in our TRSs are more prone to it because
of the disorder rather than consequence; (vii) Further studies
considering low frequency and rare variants and using more
unbiased profiling methods, such as RNA sequencing techniques,
may allow the inclusion of novel and low abundance transcripts
and relevant genes to improve the predictive power of TRS
approaches. In addition, as resources used for eQTL mapping
expand in sample size and integrate additional regulatory and
epigenetic data, we expect TRS performance to improve. (viii)
Finally, longitudinal studies will be required to disentangle the
performance of TRSs across the lifespan and their role on the
remittent and/or persistent form of the disorder.
In conclusion, we found association between ADHD and TRSs in

PBMCs constructed using TWAS results from multiple brain areas
implicated in the disorder, showing that individuals with ADHD
carry a higher burden of TRSs than controls. TRSs combined with
PRS increased significantly the proportion of variance explained of
ADHD over genome-wide PRS alone, which points to the
complementary predictive potential of genetic and transcriptomic
signatures and support that integrating biological information
may benefit standard PRS prediction approaches. Through this
approach that leverages GWAS summary statistics, multi-tissue cis-
eQTL reference panels and target sample gene expression data we
underscore the potential of utilizing transcriptomic information to

improve risk prediction and provide deeper insight into the
molecular mechanisms underlying ADHD.
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Genome-wide multi-trait analysis of irritable 
bowel syndrome and related mental conditions 
identifies 38 new independent variants
Silvia Alemany1,2,3*  , María Soler‑Artigas1,2,3,4  , Judit Cabana‑Domínguez1,2,3  , Dana Fakhreddine1, 
Natalia Llonga1,2  , Laura Vilar‑Ribó1,2,3  , Amanda Rodríguez‑Urrutia1,2,3,5  , Judit Palacio2  , 
Ana María González‑Castro6  , Beatriz Lobo6,7,8, Carmen Alonso‑Cotoner6,7,8,9, Magnus Simrén10,11, 
Javier Santos6,7,8,9, Josep Antoni Ramos‑Quiroga1,2,3,5   and Marta Ribasés1,2,3,4*   

Abstract 

Background Irritable bowel syndrome (IBS) is a chronic disorder of gut‑brain interaction frequently accompanied 
by mental conditions, including depression and anxiety. Despite showing substantial heritability and being partly 
determined by a genetic component, the genetic underpinnings explaining the high rates of comorbidity remain 
largely unclear and there are no conclusive data on the temporal relationship between them. Exploring the overlap‑
ping genetic architecture between IBS and mental conditions may help to identify novel genetic loci and biological 
mechanisms underlying IBS and causal relationships between them.

Methods We quantified the genetic overlap between IBS, neuroticism, depression and anxiety, conducted a multi‑
trait genome‑wide association study (GWAS) considering these traits and investigated causal relationships between 
them by using the largest GWAS to date.

Results IBS showed to be a highly polygenic disorder with extensive genetic sharing with mental conditions. Multi‑
trait analysis of IBS and neuroticism, depression and anxiety identified 42 genome‑wide significant variants for IBS, of 
which 38 are novel. Fine‑mapping risk loci highlighted 289 genes enriched in genes upregulated during early embry‑
onic brain development and gene‑sets related with psychiatric, digestive and autoimmune disorders. IBS‑associated 
genes were enriched for target genes of anti‑inflammatory and antirheumatic drugs, anesthetics and opioid depend‑
ence pharmacological treatment. Mendelian‑randomization analysis accounting for correlated pleiotropy identified 
bidirectional causal effects between IBS and neuroticism and depression and causal effects of the genetic liability of 
IBS on anxiety.

Conclusions These findings provide evidence of the polygenic architecture of IBS, identify novel genome‑wide 
significant variants for IBS and extend previous knowledge on the genetic overlap and relationship between gastroin‑
testinal and mental disorders.

Keywords Irritable bowel syndrome (IBS), Neuroticism, Depression, Anxiety, Multi‑trait genome‑wide association 
study (MTAG)
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Introduction
Irritable bowel syndrome (IBS) is one of the most preva-
lent disorders of gut-brain interaction with a population 
lifetime risk of 11% [1] and a point prevalence of 4.1% 
according to the strict Rome IV criteria [2]. IBS research 
is extremely challenging due to the multifactorial etiology 
of the disease and the heterogeneity of patients, who pre-
sent high comorbidity rates for mental disorders, particu-
larly, anxiety and depression, which impacts negatively 
on the patients’ quality of life [1, 3, 4].

A recent systematic review revealed that the prevalence 
of anxiety and depression symptoms among IBS patients 
is 39.1% and 28.8%, respectively [5]. In addition, IBS has 
been associated with more severe depressive symptoms 
compared to healthy controls and, when co-existing with 
psychiatric disorders, gastrointestinal symptoms are 
more severe and disabling [6–11]. This close association 
between IBS, anxiety and depression is also supported 
by neuroimaging studies and might be related to the bi-
directional communication between the brain and the 
digestive system, termed the brain-gut-axis, which occurs 
through microbiota, neural, neuroimmune and neuroen-
docrine pathways [12–14]. This idea agrees with evidence 
indicating that psychiatric interventions, including anti-
depressants or cognitive-behavioral therapy, improve IBS 
patients functioning and suggests that common patho-
physiological mechanisms may be underlying these con-
ditions [15].

IBS, anxiety and depression are partly determined by 
a genetic component and show substantial heritabil-
ity ranging from 6% for IBS to 30%-50% for anxiety and 
depression [16–18]. The largest genome-wide association 
study (GWAS) on IBS conducted to date included 53,400 
cases and 433,201 controls and identified six genome-
wide significant single nucleotide polymorphisms (SNPs) 
[18] which represents an improvement over the previ-
ous study, identifying four independent genome-wide 

significant SNPs [19]. Interestingly, among 173 traits, 
three mental conditions (neuroticism, depression and 
anxiety) were the most genetically correlated traits 
with IBS [18]. Despite these strong genetic correlations, 
the genetic underpinnings explaining the high rates of 
comorbidity between IBS and mental conditions remain 
largely unclear and there are no conclusive data on the 
temporal and causal relationship between them [18, 19].

In the present study we investigated the shared genetic 
architecture and the nature of the relationship between 
IBS and three highly genetically correlated conditions 
(neuroticism, depression and anxiety) using summary 
statistics of the largest GWAS datasets available so far 
by (i) estimating the genetic correlation and overlap 
between them, (ii) conducting a Multi-Trait Analysis of 
GWAS (MTAG) to identify novel genetic loci for IBS and 
(iii) performing downstream analyses to explore the over-
laping genetic basis with other disorders and traits as well 
as causal relationships between them.

Materials and methods
Samples
We used publicly available SNP-level GWAS summary 
statistics for IBS [18], neuroticism [20], depression [21] 
and anxiety (Table 1). For further details see Additional 
file 1: Note 1.

SNP‑based heritability, genetic correlation and overlap
SNP heritability (h2

SNP) and pair-wise genetic correla-
tion between IBS and each mental condition was cal-
culated using linkage disequilibrium score regression 
(LDSC) analysis [22]. Conversion of h2

SNP estimates 
from observed to liability scale was done using a popu-
lation prevalence of 11%, 25%, 30% and 14% for IBS, 
neuroticism, depression and anxiety, respectively. Poly-
genic overlap between IBS and each mental condition 
was quantified using MiXeR [23]. MiXeR caclulates the 

Table 1 Summary of the GWAS datasets used in the current study

GAD generalized anxiety disorder; UKBB UK Biobank
a N effective sample sizes were calculated following the equation: Neff = 4/(1/Ncases + 1/Ncontrols)
b Number of genome-wide significant independent SNPs
c Sample size excluding the 23andMe cohort
d Genome-wide significant SNPs including the 23andMe cohort

Phenotype N cases N controls N total N effective a GWAS genome‑wide 
significant  SNPsb

References

IBS 53,400 433,201 486,601 190,159 6 [18]

Neuroticism – – 390,278c 390,278 136d [20]

Depression 170,756 329,443 500,199c 449,856 102d [21]

Anxiety nerves or GAD 16,730 101,021 117,751 57,412 1 UKBB phe‑
notype code: 
20544_15
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number of trait-influencing SNPs for each trait (uni-
variate model) and for both traits (bivariate model) and 
the proportion of variants with concordant direction of 
effects for both traits. The proportion of SNPs shared 
by two traits is indicated by the Dice coefficient. Model 
fit was assessed using the Akaike Information Criterion 
(AIC). For further details see Additional file 1: Note 2.

Multi‑trait analysis of GWAS (MTAG)
To identify new loci for IBS, SNP-level GWAS for IBS, 
neuroticism, depression and anxiety were meta-analyzed 
using MTAG [24]. MTAG estimates trait-specific effects 
from GWAS summary statistics of several traits geneti-
cally correlated while accounting for sample overlap 
across the discovery samples [24]. To discard inflation 
in our results we calculated the max-false discovery rate 
(max-FDR) using default settings as previously described 
[24, 25]. The LDSC intercept was used to quantify infla-
tion resulting from confounding bias [22].

Independent SNPs from MTAG-IBS results 
(P-value < 5E-08) were identified through clumping 
 (r2 = 0.05, kb = 5000) using the 1000 Genomes Project 
Phase 3 European reference panel (http:// www. inter 
natio nalge nome. org/) and PLINK1.09 as described by 
Eijsbouts et  al. [18]. We defined loci as a 1Mb region 
centered around the most significant variant (lead vari-
ant) and we carried out conditional analyses to confirm 
independence between lead and any other variant iden-
tified in the clumping step (secondary variants) within 
each locus (i.e. within 1Mb and  r2 < 0.05) using COJO 
implemented in Genome-wide Complex Trait Analysis 
(GCTA) [26]. For further details on conditional analysis 
see Additional file 1: Note 3.

Credible variants and functional annotation
Sets of credible variants (credible-sets) were identified by 
fine-mapping the independent lead SNPs of MTAG-IBS 
using three different tools, FINEMAP 1.3.1 [27], PAIN-
TOR v3.0 [28] and CAVIARBF v.0.2.1 [29] following the 
pipeline available elsewhere [30]. Variants located in a 
region of 1Mb around the lead SNPs were included in the 
analysis and we assumed that there was only one causal 
variant per locus. We used the recommended param-
eters of each tool and only variants identified by all three 
methods were considered. Functional annotation of the 
credible variants was conducted using FUMA [31]. For 
further details see Additional file 1: Note 4.

Gene‑based and gene‑set analyses of MTAG‑IBS results
Gene-based and gene-set analyses of MTAG-IBS asso-
ciated SNPs were performed using MAGMA v1.08 [32] 
implemented in FUMA [31]. Tissue specific gene expres-
sion was explored using MAGMA gene-property analysis 

of expression data from GTEx v8 and BrainSpan avail-
able in FUMA (databases detailed in Additional file  1: 
Note 5). All gene sets were obtained from the Molecular 
Signatures Database (MSigDB v6.2) and included GO, 
KEGG, BIOCARTA and Reactome representing a total 
of 11,960 gene sets. The Bonferroni-corrected signifi-
cance threshold for gene-based analysis was 0.05/18135 
genes = 2.7571E-06 and for gene-set analysis was 
0.05/11960 gene sets = 4.18E-06.

Drug target identification
To explore whether finemapped genes related with IBS 
were enriched for target genes of drugs (druggable genes) 
we performed enrichment analysis based on information 
from the PharmGKB using WebGestAlt [33]. Identified 
drugs were classified according to available information 
from the Anatomical Therapeutic Chemical (ATC) clas-
sification system.

Partitioned heritability and genetic correlations
We partitioned h2

SNP of MTAG-IBS results by functional 
annotation categories using stratified LDSC [34]. We cal-
culated whether any of the 28 specific genomic catego-
ries included in the analysis was enriched for variants 
that contribute to h2

SNP. Annotations for these functional 
genomic categories (e.g. coding or regulatory regions) 
were obtained from LDSC website (https:// github. com/ 
bulik/ ldsc/ wiki/ Parti tioned- Herit abili ty) and included 
coding; intron; promoter; 3′5′ untranslated region; digi-
tal genomic footprint; transcription factor binding site; 
chromHMM and Segway annotations for six cell lines; 
DNase I hypersensitivity sites; H3K4me1, H3K4me3 
and H3K9ac marks; two sets of H3K27ac marks; super-
enhancers; conserved regions in mammals; and FAN-
TOM5 enhancers (further details in Additional file  1: 
Note 6). We focused on categories extended by 500 bp in 
either direction. Enrichment/depletion of heritability in 
each category is calculated as the proportion of heritabil-
ity attributable to SNPs in the specified category divided 
by the proportion of total SNPs annotated to that cat-
egory. The Bonferroni-corrected significance threshold 
was 0.05/28 annotations = 0.0018.

We explored genetic correlations between our MTAG-
IBS results and gastrointestinal, immunological and 
psychiatric disorders using LDSC analysis [22]. We 
selected all GWAS summary statistics of gastrointesti-
nal/abdominal, immunological/systemic (UK Biobank: 
21 phenotypes) and psychiatric disorders (PGC: 7 phe-
notypes) available in the MR-Base database (Additional 
file 3: Table S14) [35]. We used GWAS summary statistics 
including both males and females of European ancestry. 
If several GWAS were available for the same disorder, 
we chose the study with the largest effective sample size 

http://www.internationalgenome.org/
http://www.internationalgenome.org/
https://github.com/bulik/ldsc/wiki/Partitioned-Heritability
https://github.com/bulik/ldsc/wiki/Partitioned-Heritability
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(N effective = 4/(1/Ncases + 1/Ncontrols)). The Bonfer-
roni-corrected significance threshold used was 0.05/28 
traits = 0.0018.

Causal analysis using summary effect estimates (CAUSE)
Causal relationships between IBS and correlated 
traits were assessed considering independent variants 
 (r2 = 0.05; kb = 5000) associated with the exposure with 
P < 1.0E-03 using CAUSE [36]. Bidirectional relationships 
were tested considering IBS as exposure and depression, 
anxiety or neuroticism as outcomes and vice-versa. Given 
that standard errors, required by CAUSE, were not availa-
ble from the largest study on neuroticism to date [37], we 
used the GWAS dataset on neuroticism by Luciano et al. 
in 329,821 subjects as an alternative [38]. The strengths 
of CAUSE involve accounting for correlated horizontal 
pleiotropic effects (i.e. when a variant affects the outcome 
and the mediator through shared heritable factors) and 
using a less stringent significance threshold (P < 1.0E-3) 
allowing the incorporation of more variants to the analy-
ses. CAUSE compares two nested models, a sharing and 
a causal model. Both models allow for horizontal plei-
otropy (correlated pleiotropy (eta)) but only the casual 
model includes a causal effect parameter (gamma). The 
sharing and the causal model are compared against a null 
model and against each other. Model comparisons are 
carried out using the expected log pointwise posterior 
density (ELPD), a Bayesian model comparison approach 
that estimates how well the posterior distributions of a 
particular model are expected to predict a new set data. 
When P < 0.05 the second model fits the data better than 
the first model. There is evidence of causal effects when 
the causal model represents a significant improvement in 
the model fit of the sharing model.

For further details see Additional file 1: Note 7.

Results
SNP‑based heritability, genetic correlation and overlap
The latest GWAS on IBS [18], neuroticism [20], depres-
sion [21] and anxiety used herein are summarized in 
Table  1 and Additional file  1: Note 1. The estimated 
SNP heritability (h2

SNP) was 6.9% (SE = 0.004) for IBS, 

14.6% (SE = 0.005) for neuroticism, 9.9% (SE = 0.004) for 
depression and 8.3% (SE = 0.011) for anxiety (Table  2). 
We found evidence of strong genetic correlation between 
IBS and all three mental conditions, ranging from 53 to 
68% (Table  2). Univariate MiXeR analysis revealed that 
IBS and neuroticism were highly polygenic, with around 
twelve thousand variants explaining 90% of SNP herita-
bility (12,438 variants for IBS and 12,308 for neuroticism; 
Additional file  3:Table  S1a). Bivariate MiXeR analysis 
showed that the majority of the variants influencing IBS 
were shared with neuroticism (10,793 (SE = 1094) out of 
12,438 (SE = 1305) variants, Dice coefficient = 0.87), with 
a high proportion of variants being concordant (71%) 
(Additional file  3: Table  S1a and Additional file  2: Fig-
ure S1). Unfortunately, MiXeR was unable to accurately 
quantify the genetic overlap between IBS and depression 
or anxiety according to the Akaike Information Criterion 
(AIC; Additional file 3: Table S1b).

Multi‑trait analysis of GWAS (MTAG)
To identify novel loci for IBS, we combined the summary 
statistics from the GWAS on IBS, neuroticism, depres-
sion and anxiety using MTAG, increasing the estimated 
effective sample size from 486,601 in the original IBS 
dataset to 887,490. The max-FDR of MTAG-IBS analy-
sis was low (0.020) suggesting no inflation, consistent 
with the similar mean chi-square values for the different 
GWAS, ranging from 1.08 for anxiety to 1.69 for neuroti-
cism. There was no evidence of residual stratification or 
confounding leading to an inflation of test statistics (LD 
Score regression intercept = 0.857, SE = 0.009, See Addi-
tional file 2: Figure S2).

After MTAG analysis, the number of genome-wide 
significant SNPs for IBS increased from six in the origi-
nal GWAS to 42 independent SNPs in 37 loci  (r2 < 0.05 
between variants within each locus defined as regions of 
1Mb) in the current study (Fig. 1, Additional file 2: Figure 
S3, Additional file 3: Table S2, S3). Five loci in chromo-
somes 5, 6, 11 and 18 (there were 2 loci in chromosome 
18) had one or more secondary variants (i.e. in each locus 
there were more than one independent genome-wide sig-
nificant variants). After conditional analysis to confirm 

Table 2 Genetic correlation estimates for IBS and neuroticism, depression and anxiety using Linkage Disequilibrium Score Regression 
(LDSC)

SE, standard error; h2 heritability

Trait 1 Trait 2 Genetic 
Correlation

SE Z P‑value Intercept (SE) Trait 1 Trait 2
h2 (SE) h2 (SE)

IBS Neuroticism 0.526 0.027 19.298 5.54E‑83 1.013 (0.013) 0.069 (0.004) 0.146 (0.005)

IBS Depression 0.587 0.026 22.714 3.23E‑114 0.992 (0.01) 0.069 (0.004) 0.099 (0.004)

IBS Anxiety 0.677 0.065 10.360 3.75E‑25 0.999 (0.74) 0.068 (0.004) 0.083 (0.011)
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Fig. 1 MTAG results of IBS and overlap with previous GWAS on IBS, neuroticism, depression and anxiety. a Z‑scores of MTAG‑IBS and original GWAS 
on IBS, neuroticism, depression and anxiety for each of the independent lead SNPs (n = 42) found in MTAG‑IBS results. Dotted grey line indicates 
0 Z‑score and solid grey lines indicate statistical significance at P < 5‑E08. b Manhattan plot of the MTAG‑IBS results. Dotted grey line indicates 
statistical significance at P < 5‑E08. c QQ plot of the MTAG‑IBS results. d Venn diagram depicting overlap among MTAG‑IBS independent lead SNPs 
and genome‑wide significant SNPs in the original GWAS
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independence, secondary variants remained significant 
in the loci in chromosome 6 (4 secondary variants), 5 
(1 secondary variant) and 18 (1 secondary lead variant). 
The secondary variant in chromosome 11 was no longer 
significant after conditional analysis leaving only the 
lead variant in this locus (Table  3 and Additional file  3: 
Table S2). 

Comparing these results with the ones originally 
described for IBS [18], 38 out of the 42 SNPs identified 
herein were novel for IBS and all of them showed consist-
ent direction of the association (Fig.  1a and Additional 
file  3: Table  S3). Of them, 11 were not previously asso-
ciated with neuroticism, depression or anxiety (Fig. 1d). 
The remaining signals, 27 in total, were novel associated 
SNPs for IBS but previously reported for neuroticism 
and/or depression (Table 3, Fig. 1d) and overall showed 
consistent direction of association with that reported in 
the original studies (Fig. 1a). Of the six SNPs previously 
identified in IBS [18], four of them, on chromosome 3, 
6, 9 and 11, were among the significant SNPs for IBS in 
the current study and the two additional ones, in chro-
mosome 13, showed suggestive evidence of association 
(P < 5E-07; Table 3). Among top findings, we found lead 
SNPs nearby genes involved in transcriptional regulation, 
including non-coding RNAs (RP11-629G13.1 and MSH5-
SAPCD1), RNA splicing (CELF4), chromatin remodeling 
(EP300 and HIST1H3J), mRNA transport (FAM120A) or 
nucleic acid binding (TCF4 and ELAVL2), as well as in 
brain development (TMEM161B) or presynaptic activity 
(PCLO).

Credible variants and functional annotation
We identified a total of 1,818 Bayesian credible vari-
ants in the 37 independent loci for IBS (Additional 
file  3: Table  S4). Their functional annotation revealed 
over-presentation of SNPs in introns (64.6%), intergenic 
regions (21.7%) or located in non-coding RNA (9.4%) 
(Fig. 2 and Additional file 3: Table S5). A total of 75% of 
the variants within credible sets were located in open 
chromatin regions (minimum chromatin state ≤ 7), 3% 
were likely to affect the binding of transcription factors 
(RegulomeDB scores from 1b to 2c) and 0.05% may be 
deleterious (Combined Annotation Dependent Deple-
tion (CADD) score > 12.37) (Fig. 2 and Additional file 3: 
Table S5). Forty-eight variants were previously related by 
GWAS (P < 5E-07) to digestive-related phenotypes (e.g. 
inflammatory bowel disease, gastroesophageal reflux or 
gut microbiota relative abundance), lifestyle factors (e.g. 
alcohol consumption, lifetime smoking, coffee consump-
tion or moderate to vigorous physical activity levels) and 
brain and neuropsychiatric phenotypes (e.g. neuroti-
cism, depression, anxiety, cognition or brain morphol-
ogy) (Additional file  3: Table  S6). In addition, we found 

that more that half of the credible variants (n = 953; 52%) 
were expression quantitative trait loci (eQTL) for at least 
one gene in one brain area (n = 895; 49%) and/or diges-
tive tissue (n = 690; 38%; Additional file 3: Table S7).

Credible variants were mapped to 289 unique genes 
(Additional file  3: Table  S8 and Additional file  2: Figure 
S4) that were significantly enriched in genes upregulated 
during early embryonic brain development (8th post con-
ceptual week; Additional file 2: Figure S5) and in several 
gene-sets (Additional file  3: Table  S9). Among the most 
significant ones, we found psychiatric disorders (GWAS 
catalog: autism spectrum disorder or schizophrenia, 
P-adjusted = 5.0E-193), digestive disorders (GWAS 
catalog: ulcerative colitis, P-adjusted = 1.1E-57 and 
inflammatory bowel disease, P-adjusted = 7.1E-40), auto-
immune disease (KEGG: Systemic lupus erythematosus, 
P-adjusted = 7.9E-61) and histone deacetylases (Reac-
tome: HDACS deacetylate histones, P-adjusted = 3.1E-
46) (Additional file 3: Table S9).

Gene‑based and gene‑set analyses of MTAG‑IBS risk loci
The gene-based analysis identified 76 significant genes, 
which were associated with expression changes in the 
cerebellum (P = 5.2E-09), frontal cortex (P = 9.8E-07), 
anterior cingulate cortex (P = 1.8E-05), basal gan-
glia nuclei (nucleus accumbens: P = 6.9E-05; caudate: 
P = 9.7E-04) and hypothalamus (P = 4.3E-04) (Additional 
file 3: Table S10, Additional file 2: Figure S6–S7) as well 
as with gene expression during the 21st post conceptual 
week (P = 8.5E-04) (Additional file 2: Figure S7). Among 
top findings, we found genes with a role in brain devel-
opment and synaptic function, including CADM2 and 
NCAM1, previously identified in the latest GWAS on 
IBS, and also genes involved in transcriptional regulation 
through mRNA transport or chromatin structure, includ-
ing FAM120A, PHF2 and different histone coding genes. 
When we conducted the gene-set analysis we found the 
branching morphogenesis of a nerve pathway significantly 
associated with IBS (gene-set size = 10 genes; P = 1.7E-
06) (Additional file 3: Table S11).

Drug target identification
The enrichment analysis on druggable genes showed 
enrichment of MTAG-IBS-finemapped credible genes 
in druggable genes for 21 drugs (Additional file  3: 
Table  S12), being l-lysine (P < 2.2E-16), belinostat 
(P = 8.6E-10), s-adenosylmethionine (P = 7.0E-09) and 
allopurinol (P = 1.5E-07), the top ones (Additional file 3: 
Table S12). They also included drugs related to musculo-
skeletal system, such as anti-inflammatory and antirheu-
matic drugs, or related to the nervous system, such as 



Page 7 of 16Alemany et al. Journal of Translational Medicine          (2023) 21:272  

Ta
bl

e 
3 

Re
su

lts
 fo

r t
he

 4
2 

in
de

pe
nd

en
t l

ea
d 

SN
Ps

 id
en

tifi
ed

 in
 th

e 
M

TA
G

‑IB
S 

an
al

ys
is

Lo
cu

s
Le

ad
 S

N
P

CH
R

A
1/

A
2

BP
Cr

os
s‑

tr
ai

t a
na

ly
si

s
FR

Q
N

ea
re

st
 G

en
e

Fu
nc

tio
na

l 
ca

te
go

ry
O

ve
rl

ap
 w

ith
 

or
ig

in
al

 G
W

A
S 

IB
S

O
ve

rl
ap

 w
ith

 
pr

ev
io

us
 G

W
A

s 
on

 
ps

yc
hi

at
ri

c 
tr

ai
ts

O
ve

rl
ap

 w
ith

 
pr

ev
io

us
 

G
W

A
s

CA
D

D
RD

B

Be
ta

SE
P

1
rs

30
18

06
1

T/
C

84
82

07
8

−
 0

.0
09

0.
00

2
1.

67
E‑

09
0.

58
RE

RE
In

tr
on

ic
N

O
N

eu
ro

tic
ism

Kn
ow

n
0.

11
7

4

2
rs

11
20

61
27

1
A

/G
53

71
35

49
−

 0
.0

09
0.

00
2

1.
42

E‑
08

0.
43

LR
P8

In
tr

on
ic

N
O

N
o

N
ov

el
0.

12
8

6

3
rs

12
75

55
07

1
T/

C
17

61
64

86
5

0.
01

0.
00

2
8.

03
E‑

10
0.

62
5

RF
W

D
2

In
tr

on
ic

N
O

D
ep

re
ss

io
n

Kn
ow

n
6.

03
8

4

4
rs

11
31

98
47

9
1

A
/G

19
13

47
80

3
−

 0
.0

2
0.

00
4

2.
48

E‑
08

0.
95

3
RP

11
-3

09
H

21
.2

In
te

rg
en

ic
N

O
N

o
N

ov
el

1.
24

1
6

5
rs

72
74

05
50

1
A

/G
19

73
42

38
0

−
 0

.0
11

0.
00

2
6.

02
E‑

09
0.

21
9

CR
B1

In
tr

on
ic

N
O

N
eu

ro
tic

ism
 &

 
de

pr
es

sio
n

Kn
ow

n
5.

06
3

7

6
rs

11
59

62
84

6
2

A
/G

58
96

70
58

−
 0

.0
15

0.
00

3
3.

68
E‑

08
0.

91
2

LI
N

C0
11

22
nc

RN
A

_i
nt

ro
ni

c
N

O
N

eu
ro

tic
ism

Kn
ow

n
2.

10
3

7

7
rs

28
49

67
90

2
A

/C
16

19
50

04
7

0.
01

0.
00

2
3.

70
E‑

09
0.

70
8

AC
00

93
13

.1
In

te
rg

en
ic

N
O

N
o

N
ov

el
6.

02
7

5

8
rs

13
82

18
52

8
2

T/
C

21
26

76
88

4
0.

00
9

0.
00

2
2.

84
E‑

08
0.

66
7

ER
BB

4
In

tr
on

ic
N

O
N

eu
ro

tic
ism

 &
 

de
pr

es
sio

n
Kn

ow
n

8.
48

1
6

9
rs

62
24

62
76

3
T/

G
94

45
17

3
−

 0
.0

11
0.

00
2

2.
28

E‑
08

0.
17

9
SE

TD
5

In
tr

on
ic

N
O

N
o

N
ov

el
1.

94
4

5

10
rs

67
41

64
05

3
T/

C
85

53
92

34
−

 0
.0

09
0.

00
2

8.
27

E‑
09

0.
35

3
CA

D
M

2
In

tr
on

ic
YE

S
N

o
Kn

ow
n

3.
76

9
6

11
rs

17
29

95
1

3
T/

G
13

65
00

73
3

−
 0

.0
09

0.
00

2
9.

01
E‑

09
0.

38
9

RP
11

-1
02

M
11

.2
In

te
rg

en
ic

N
O

N
eu

ro
tic

ism
Kn

ow
n

0.
07

8
N

A

12
rs

14
42

12
9

4
A

/G
90

84
94

46
−

 0
.0

09
0.

00
2

1.
22

E‑
08

0.
45

3
M

M
RN

1
In

tr
on

ic
N

O
N

o
N

ov
el

5.
37

8
N

A

13
rs

77
08

74
20

4
A

/G
12

31
22

85
6

0.
01

8
0.

00
3

2.
64

E‑
08

0.
94

5
KI

AA
11

09
In

tr
on

ic
N

O
N

o
N

ov
el

4.
57

9
7

14
rs

12
51

34
40

5
A

/G
72

59
85

3
0.

01
0.

00
2

2.
73

E‑
08

0.
24

3
RP

11
-4

04
K5

.3
In

te
rg

en
ic

N
O

N
o

N
ov

el
0.

32
7

5

15
rs

30
99

43
9

5
T/

C
87

54
53

18
−

 0
.0

11
0.

00
2

1.
14

E‑
12

0.
53

9
TM

EM
16

1B
In

tr
on

ic
N

O
D

ep
re

ss
io

n
Kn

ow
n

1.
56

2
N

A

16
rs

44
81

36
3

5
A

/C
16

44
74

71
9

0.
00

9
0.

00
1

1.
01

E‑
09

0.
52

4
CT

C-
34

0A
15

.2
nc

RN
A

_i
nt

ro
ni

c
N

O
N

eu
ro

tic
ism

 &
 

de
pr

es
sio

n
Kn

ow
n

6.
52

2
6

16
rs

18
09

28
23

2
5

A
/G

16
61

85
94

9
−

 0
.0

12
0.

00
2

4.
46

E‑
08

0.
14

9
CT

B-
7E

3.
1

In
te

rg
en

ic
N

O
N

eu
ro

tic
ism

Kn
ow

n
2.

69
2

6

17
rs

20
09

77
6

T/
C

27
85

43
01

0.
01

5
0.

00
2

1.
04

E‑
11

0.
87

3
H

IS
T1

H
3J

In
te

rg
en

ic
N

O
N

eu
ro

tic
ism

 &
 

de
pr

es
sio

n
Kn

ow
n

1.
25

1
N

A

17
rs

25
34

66
4

6
A

/G
31

46
95

91
0.

01
0.

00
2

2.
63

E‑
10

0.
45

6
M

IC
B

In
tr

on
ic

N
O

D
ep

re
ss

io
n

Kn
ow

n
3.

48
4

N
A

17
rs

11
44

70
8

6
T/

C
31

71
00

20
−

 0
.0

1
0.

00
2

7.
49

E‑
10

0.
35

7
M

SH
5:

M
SH

5-
SA

PC
D

1
In

tr
on

ic
YE

S
N

o
Kn

ow
n

0.
37

2
6

18
rs

12
37

46
12

6
T/

C
10

09
55

75
2

0.
00

9
0.

00
1

1.
02

E‑
08

0.
47

8
AS

CC
3

D
ow

ns
tr

ea
m

N
O

N
eu

ro
tic

ism
Kn

ow
n

0.
29

6

19
rs

21
89

24
6

7
A

/G
82

44
43

72
0.

01
0.

00
1

1.
98

E‑
10

0.
52

3
PC

LO
In

tr
on

ic
N

O
D

ep
re

ss
io

n
Kn

ow
n

1.
13

9
7

20
rs

69
56

35
2

7
A

/G
10

91
31

36
7

0.
00

9
0.

00
2

1.
64

E‑
08

0.
45

8
AC

07
30

71
.1

In
te

rg
en

ic
N

O
D

ep
re

ss
io

n
Kn

ow
n

9.
19

5
7

21
rs

47
26

81
4

7
T/

C
14

66
91

92
4

−
 0

.0
1

0.
00

2
1.

30
E‑

08
0.

27
5

CN
TN

AP
2

In
tr

on
ic

N
O

N
o

N
ov

el
1.

37
7

22
rs

44
78

54
5

8
A

/G
94

67
25

42
−

 0
.0

1
0.

00
2

4.
77

E‑
09

0.
28

5
LI

N
C0

05
35

nc
RN

A
_i

nt
ro

ni
c

N
O

N
o

N
ov

el
1.

32
6

6

23
rs

37
93

57
7

9
A

/G
23

73
76

27
−

 0
.0

1
0.

00
2

3.
46

E‑
10

0.
46

3
EL

AV
L2

In
tr

on
ic

N
O

N
eu

ro
tic

ism
Kn

ow
n

19
.7

6
5

24
rs

47
44

24
2

9
T/

G
96

23
67

11
−

 0
.0

11
0.

00
2

8.
68

E‑
13

0.
33

6
FA

M
12

0A
In

tr
on

ic
YE

S
N

eu
ro

tic
ism

Kn
ow

n
2.

85
8

6

25
rs

10
12

39
41

9
T/

C
12

05
18

16
2

−
 0

.0
1

0.
00

2
3.

96
E‑

09
0.

72
7

sn
oZ

13
_s

nr
52

In
te

rg
en

ic
N

O
N

eu
ro

tic
ism

Kn
ow

n
1.

10
8

6

26
rs

65
84

63
1

10
T/

C
10

66
56

13
7

−
 0

.0
1

0.
00

2
7.

23
E‑

09
0.

24
4

SO
RC

S3
In

tr
on

ic
N

O
D

ep
re

ss
io

n
Kn

ow
n

0.
16

7
4

27
rs

49
37

87
2

11
A

/G
11

28
27

71
5

−
 0

.0
12

0.
00

2
7.

15
E‑

15
0.

58
9

RP
11

-6
29

G
13

.1
In

te
rg

en
ic

YE
S

N
eu

ro
tic

ism
Kn

ow
n

0.
04

4
6



Page 8 of 16Alemany et al. Journal of Translational Medicine          (2023) 21:272 

Ta
bl

e 
3 

(c
on

tin
ue

d)

Lo
cu

s
Le

ad
 S

N
P

CH
R

A
1/

A
2

BP
Cr

os
s‑

tr
ai

t a
na

ly
si

s
FR

Q
N

ea
re

st
 G

en
e

Fu
nc

tio
na

l 
ca

te
go

ry
O

ve
rl

ap
 w

ith
 

or
ig

in
al

 G
W

A
S 

IB
S

O
ve

rl
ap

 w
ith

 
pr

ev
io

us
 G

W
A

s 
on

 
ps

yc
hi

at
ri

c 
tr

ai
ts

O
ve

rl
ap

 w
ith

 
pr

ev
io

us
 

G
W

A
s

CA
D

D
RD

B

Be
ta

SE
P

28
rs

95
30

13
9

13
T/

C
31

84
73

24
−

 0
.0

11
0.

00
2

2.
11

E‑
08

0.
19

4
B3

G
AL

TL
In

tr
on

ic
N

O
D

ep
re

ss
io

n
Kn

ow
n

0.
52

9
6

29
rs

95
97

79
7

13
T/

G
59

18
37

95
−

 0
.0

1
0.

00
2

1.
42

E‑
09

0.
25

1
CT

AG
E1

6P
In

te
rg

en
ic

N
O

N
eu

ro
tic

ism
Kn

ow
n

0.
27

8
7

30
rs

21
21

70
8

14
A

/G
42

14
65

72
−

 0
.0

09
0.

00
1

8.
26

E‑
10

0.
51

7
LR

FN
5

In
tr

on
ic

N
O

D
ep

re
ss

io
n

Kn
ow

n
0.

04
3

N
A

31
rs

35
64

14
42

14
A

/G
75

20
72

63
0.

00
9

0.
00

2
6.

65
E‑

09
0.

45
9

FC
F1

In
te

rg
en

ic
N

O
N

eu
ro

tic
ism

 &
 

de
pr

es
sio

n
Kn

ow
n

11
.4

7

32
rs

18
62

74
3

16
A

/C
60

74
38

34
−

 0
.0

09
0.

00
1

1.
08

E‑
08

0.
49

2
G

N
PA

TP
In

te
rg

en
ic

N
O

N
o

N
ov

el
1.

06
6

33
rs

11
87

77
58

18
T/

G
35

13
81

10
−

 .,
01

2
0.

00
2

1.
28

E‑
13

0,
69

2
CE

LF
4

In
tr

on
ic

N
O

N
eu

ro
tic

ism
 &

 
de

pr
es

sio
n

Kn
ow

n
2.

71
8

7

33
rs

29
78

36
2

18
T/

C
32

95
93

97
−

 0
.0

08
0.

00
1

2.
65

E‑
08

0.
52

7
ZN

F3
96

In
te

rg
en

ic
N

O
D

ep
re

ss
io

n
Kn

ow
n

1.
02

4
N

A

34
rs

12
95

80
48

18
A

/G
53

10
15

98
0.

01
0.

00
2

4.
76

E‑
11

0,
33

3
TC

F4
In

tr
on

ic
N

O
N

eu
ro

tic
ism

Kn
ow

n
2,

08
5

34
rs

17
41

05
57

18
T/

C
50

77
63

91
−

 .,
00

9
0.

00
2

1.
13

E‑
08

0,
60

6
D

CC
In

tr
on

ic
N

O
N

eu
ro

tic
ism

 &
 

de
pr

es
sio

n
Kn

ow
n

4.
50

2
7

35
rs

21
11

53
0

19
A

/G
31

89
10

06
−

 0
.0

09
0.

00
2

9.
47

E‑
09

0.
60

2
AC

00
77

96
.1

nc
RN

A
_i

nt
ro

ni
c

N
O

N
o

N
ov

el
17

.0
4

7

36
rs

20
24

56
8

20
T/

C
44

73
20

89
0.

01
1

0.
00

2
1.

52
E‑

10
0.

24
6

RP
L1

3P
2

In
te

rg
en

ic
N

O
N

eu
ro

tic
ism

 &
 

de
pr

es
sio

n
Kn

ow
n

0.
14

9
6

37
rs

11
09

00
39

22
A

/G
41

49
68

00
0.

01
2

0.
00

2
2.

87
E‑

13
0.

28
4

EP
30

0
In

tr
on

ic
N

O
N

eu
ro

tic
ism

Kn
ow

n
9.

70
7

5

O
ve

rla
p 

w
ith

 p
re

vi
ou

s 
G

W
A

S 
w

as
 e

xa
m

in
ed

 b
y 

id
en

tif
yi

ng
 g

en
om

e-
w

id
e 

si
gn

ifi
ca

nt
 S

N
Ps

 w
ith

in
 ±

 5
00

0 
kb

 in
 th

e 
M

TA
G

 g
en

om
e-

w
id

e 
si

gn
ifi

ca
nt

 fo
r I

BS
 a

nd
 o

rig
in

al
 G

W
A

S 
ge

no
m

e-
w

id
e 

si
gn

ifi
ca

nt
 S

N
Ps

 fo
r e

ac
h 

tr
ai

t 
(i.

e.
 n

eu
ro

tic
is

m
, d

ep
re

ss
io

n 
an

d 
an

xi
et

y)
. I

f t
he

re
 w

er
e 

ov
er

la
pp

in
g 

SN
Ps

 w
ith

in
 th

is
 d

is
ta

nc
e,

 th
ey

 w
er

e 
co

ns
id

er
ed

 in
de

pe
nd

en
t s

ig
na

l i
f  r

2  >
 0

.2
. T

he
 in

de
pe

nd
en

t s
ig

na
ls

 id
en

tifi
ed

 (i
nd

ic
at

ed
 a

s 
no

ve
l) 

w
er

e 
fu

rt
he

r 
co

nfi
rm

ed
 u

si
ng

 c
on

di
to

na
l a

na
ly

si
s

CH
R 

ch
ro

m
os

om
e;

 A
1 

eff
ec

t a
lle

le
 w

ith
 re

sp
ec

t t
o 

th
e 

Be
ta

; A
2 

al
te

rn
at

e 
al

le
le

; B
P 

ba
se

 p
ai

r p
os

iti
on

 G
en

om
e 

Re
fe

re
nc

e 
Co

ns
or

tiu
m

 H
um

an
 B

ui
ld

 3
7 

(G
RC

h3
7)

; S
E 

st
an

da
rd

 e
rr

or
; F

RQ
 fr

eq
ue

nc
y 

of
 th

e 
A

1;
 C

AD
D

 C
om

bi
ne

d 
A

nn
ot

at
io

n 
D

ep
en

de
nt

 D
ep

le
tio

n 
sc

or
e;

 R
D

B 
Re

gu
lo

m
eD

B 
sc

or
e



Page 9 of 16Alemany et al. Journal of Translational Medicine          (2023) 21:272  

anesthetics and drugs used in opioid dependence (Addi-
tional file 3: Table S12).

Partitioned heritability and genetic correlations
When we partitioned the h2

SNP of IBS, we observed sig-
nificant heritability enrichment in ten functional cat-
egories (Fig. 2 and Additional file 3: Table S13), with the 
strongest enrichment of variants in conserved regions 
(enrichment = 2.01; P = 4.0E-09), DNase I hypersensitive 
sites (DHSs) regions (enrichment = 1.66; P = 9.1E-08) and 
histone H3 lysine 9 acetylation (H3K9ac) peaks (enrich-
ment = 6.88; P = 1.1E-07).

We found significant genetic correlations between 
IBS and 13 gastrointestinal, immunological or psychi-
atric disorders using GWAS summary statistics avail-
able in the MR-Base database [35], including gastric 
reflux (rg = 0.51; P = 2.6E-36), the cross-disorder GWAS 
from the PGC involving schizophrenia, bipolar disorder, 
major depressive disorder, autism spectrum disorders 
and attention-deficit/hyperactivity disorder (ADHD) 
(rg = 0.44, P = 9.7E-46), diverticulitis (rg = 0.44, P = 7.4E-
22), hiatus hernia (rg = 0.43; P = 4.7E-20) and chronic 
fatigue syndrome (rg = 0.39, P = 2.0E-04), among others 
(Fig. 2 and Additional file 3: Table S14).

Causal analysis using summary effect estimates (CAUSE)
CAUSE [36] showed consistent evidence for a causal 
effect of the genetic liability of IBS on neuroti-
cism (ΔELPD = -3.6, SE = 1.9, P = 0.031), depression 
(ΔELPD = -5.9, SE = 1.8, P = 5.4E-03) and anxiety 
(ΔELPD = -2.9, SE = 1.7, P = 0.049). We also found evi-
dence for reverse causality with a causal effect of the 
genetic liability of neuroticism and depression on IBS 
(ΔELPD = -7.3, SE = 1.4, P = 1.5E-07 and ΔELPD = -6.3, 
SE = 1.4, P = 1.8E-06 respectively) but there was no evi-
dence for a causal relationship when anxiety was consid-
ered as exposure and IBS as outcome (Fig. 2, Additional 
file 3: Table S15a, b and Additional file 2: Figure S8).

Discussion
In the present study we found extensive genetic sharing 
between IBS, neuroticism, depression and anxiety, and 
identified 42 genome-wide significant SNPs for IBS, of 
which 38 are novel. Our findings confirm the polygenic 
architecture of the disorder, with more than 12,000 var-
iants explaining 90% of the h2

SNP, and represent a great 
advance over the previously reported six genome-wide 
associated SNPs [18]. Significant signal enrichment was 
found in genes showing heightened expression in the 
brain during early embryonic development and play-
ing prominent roles in mental and digestive disorders, 
autoimmune diseases and transcription regulation.

Our results confirm a role on IBS of genes involved 
in brain development and synaptic function as well as 
genes previously associated with psychiatric conditions 
[18]. We detected 27 SNPs for IBS also associated with 
at least one of the three mental conditions under study, 
and found evidence supporting that IBS and neuroti-
cism, which is genetically correlated with many psychi-
atric disorders [39], share a considerable proportion 
of their genetic background. The widespread common 
genetic risk sharing with mental conditions was further 
supported by the positive genetic correlation found 
between IBS and many psychiatric disorders (i.e. schiz-
ophrenia, ADHD, autism or depression) and by the IBS 
associated variants being located within genes signifi-
cantly expressed in the brain. These results are in agree-
ment with the higher burden of mental disorders often 
co-existing in IBS patients, add further evidence of sub-
stantial pleiotropy of contributing loci and underscore 
that genetic influences on IBS may transcend diagnos-
tic boundaries.

Among top findings we identified genes associated 
with IBS in previous GWAS, such as CADM2 and 
NCAM1, members of the synaptic cell adhesion mol-
ecules that play a role in synapse organization and 
plasticity [40, 41]. Interestingly, NCAM peptide mimet-
ics have been proven to have both antidepressant and 
anti-inflammatory effects [42, 43], pointing them as a 
potential therapeutic target for IBS. Novel loci for IBS 
include interesting genes previously associated with 

Fig. 2 Follow‑up analysis of MTAG‑IBS results and causal analysis. a Functional annotation of the credible variants associated with MTAG‑IBS. b 
RegulomeDB scores of the credible variants associated with MTAG‑IBS. Low scores indicate increasing likelihood of having regulatory function. 
c Distribution of the credible variants associated with MTAG‑IBS across 15 categories of minimum chromatin state. Lower state indicating higher 
accessibility and states from 1 to 7 refer to open chromatin states. d Genetic correlations (rg) between MTAG‑IBS results and 17 phenotypes 
involving digestive, immunological and psychiatric disorders. Only significant correlations after Bonferroni correction are displayed. e Bar graphs 
depicting the size of the genomic locus (left), number of candidate SNPs in the locus (center) and number of mapped genes in the genomic 
locus (right). Genomic loci are displayed by “chromosome: start position‑end position”. f Partitioning of the SNP heritability of the MTAG‑IBS results 
using LD Score regression. Enrichment was calculated by dividing the partial heritability of a category by the proportion of SNPs in that category 
(proportion indicated by color). Only significant enrichments are displayed. g Causal relationships between IBS and neuroticism, depression 
and anxiety assessed using Causal Analysis Using Summary Effect estimates (CAUSE). Only associations with evidence of causal relationship are 
displayed

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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depression and other mental disorders, such as RERE, 
that regulates retinoic acid signaling during devel-
opment [44–46], PCLO, involved in synaptic vesicle 
trafficking, TMEM161B [47], a brain-expressed trans-
membrane protein [48], RBFOX1, a splicing regulator 
mainly expressed in neurons, that is one of the most 
pleiotropic genes among psychiatric disorders [49] or 
DRD2, encoding the dopamine receptor D2R and one 
of the strongest candidates for psychiatric disorders 
and traits [50]. Interestingly, several studies in ani-
mal models suggested an important role for dopamine 
signaling both in the development and progression of 
inflammatory bowel disease [51] and treatment with 
D2R agonists decreased the severity of ulcerative colitis 
in mice and rats [52].

Interestingly, three of the identified genome-wide sig-
nificant SNPs had been tested for association with psy-
chiatric and neurological phenotypes, which contributes 
to clarify their potential functional role. One of these 
SNPs is the rs301806 (MTAG-IBS P-value = 1.7E-09) 
located in chromosome 1 in the RERE gene and previ-
ously associated with neuroticism. A neuroimaging study 
of drug-naïve individuals with MDD found that reduc-
tions in cortical thickness among patients (n = 47) com-
pared to controls (n = 42) were significantly larger among 
those with the T/T genotype of this SNP compared to C 
carriers [53]. Another SNP, the rs4481363 (MTAG-IBS 
P-value = 1.0E-09) located in chromosome 5 in the CTC-
340A15.2 gene, previously associated with neuroticism 
and depression, has been examined in a study testing 
associations between genetic variants associated with 
subjective well-being and depressive symptoms and 
these, and metabolic phenotypes in a Chinese elderly 
sample (n = 1788). However, this SNP did not show asso-
ciation with any of the phenotypes studied [54]. The third 
SNP is the rs2024568 (MTAG-IBS P-value = 1.5E-10) in 
chromosome 20 (nearest gene was the RPL13P2) previ-
ously associated with neuroticism and depression. This 
variant was identified as likely affecting DNA methyla-
tion patterns in multiple sclerosis (MS) in a gene-regula-
tory network integrating GWAS summary statistics and 
DNA methylation profiles from 140 cases of MS and 139 
controls [55].

We also provide new insights underlying IBS, show-
ing strong evidence of transcriptional regulation mecha-
nisms playing a role in the disorder, including non-coding 
RNAs and histone modification. The over-representation 
of credible variants in non-coding regions is a common 
finding when investigating the genetic basis of complex 
traits [56]. Although the role of non-coding variants is 
still unclear, it has been suggested that non-coding vari-
ants may impact the phenotype by alteration of regula-
tory elements such as enhancers, transcription factor 

binding sites or chromatin state [56]. Indeed, we found 
75% of the variants within credible sets were located in 
open chromatin regions (minimum chromatin state ≤ 7), 
3% were likely to affect the binding of transcription fac-
tors (RegulomeDB scores from 1b to 2c) and 0.05% 
may be deleterious (CADD score > 12.37). These results 
point towards a potential role for IBS associated non-
coding variants in gene regulation. More specifically, 
we found genes encoding histones and histone modify-
ing enzymes among top findings, and enrichment of IBS 
associations in histone acetylation and methylation peaks 
and in target genes for the histone deacetylase inhibi-
tor belinostat [57]. These findings are in agreement with 
previous results involving chromatin modifications in 
maintenance of anxiety behavior and nociception and in 
visceral hypersensitivity induced by early-life stress [58, 
59]. Additionally, top findings also include non-coding 
RNAs, an epigenetic mechanism that has been involved 
in regulation of genes related with visceral pain response 
and intestinal permeability [60–62]. These results add 
additional evidence towards the role of epigenetic pro-
gramming in inflammation, visceral pain as well as in 
intestinal permeability, sensibility and motility in both 
humans and animal models of IBS [58, 59, 63, 64].

Despite many of the findings pointing out neurobio-
logical processes and mental disorders, we also detected 
links between IBS and gastrointestinal-related pheno-
types. Fine mapping showed that 38% of the credible 
variants were eQTLs for at least one digestive tissue and 
that credible sets were located in genes enriched in dif-
ferent digestive disorders, including ulcerative colitis and 
inflammatory bowel disease. In addition, positive genetic 
correlations were found between IBS and gastric reflux, 
diverticulitis, hiatus hernia, cholelithiasis/gallstones and 
gastric/stomach ulcers, among others, which adds evi-
dence on the overlap between the genetic risk for IBS 
and for other digestive-related disorders and traits. These 
findings may reflect the multi-factorial etiology proposed 
for IBS involving psychological factors, abnormal brain 
functioning and dysregulation of brain-gut interactions 
[15, 65–67], as previously proposed in different psychiat-
ric disorders such as depression [68].

IBS-associated signals were also enriched in target 
genes of relevant drugs, including l-lysine or S-adeno-
sylmethionine. L-lysine acts as partial serotonin 5-HT4 
receptor antagonist and inhibits serotonin-mediated 
intestinal pathologies in rats, including anxiety and 
stress-induced fecal excretion and severity of diarrhea 
[69]. Interestingly, l-lysine, and other 5-HT4 receptor 
antagonists, are promising targets for the treatment of 
diarrhea-predominant IBS [70, 71] and may aminorate 
serotonin disturbances in gut and brain that account for 
part of intestinal and mental disorders [69]. Additional 
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drugs of interest include S-adenosylmethionine, involved 
in neurotransmission signaling that has a putative anti-
depressant effect [72, 73] or allopurinol that improves 
inflammatory bowel disease clinical outcomes [74], 
among others.

Despite the high prevalence of psychiatric comorbidi-
ties reported in patients with IBS, particularly anxiety 
and depression, a clear temporal relationship between 
them has not been well established. We found evidence 
for a bidirectional causal effect between IBS and neu-
roticism or depression when accounting for correlated 
pleiotropy, which strengthens previous evidence [18]. 
In addition, we found evidence for a causal effect of the 
genetic liability of IBS on anxiety. These findings sup-
port that IBS increases the risk of subsequent depressive 
and anxiety disorders described in longitudinal study 
designs [75] and also previous evidence supporting that 
prior depression raises the risk of developing IBS [76, 
77]. We found, however, no evidence for a causal effect 
of the genetic liability of anxiety on IBS when account-
ing for correlated pleiotropy, in line with previous results 
[18]. Although the sample size for anxiety was more lim-
ited and these results may also reflect lack of statistical 
power. Long term follow-up studies as well as larger data-
sets and sensitivity analyses are required to confirm the 
robustness of these results and to better understand the 
temporal relationship between IBS and comorbid mental 
conditions.

A major strength of our study is the substantial larger 
sample size compared with previous studies. By con-
ducting meta-analysis of GWAS summary statistics for 
IBS and comorbid mental conditions with MTAG we 
increased the effective sample size from 486,601 in the 
original IBS dataset to 887,490 individuals and the num-
ber of IBS genome-wide significant associated SNPs from 
six in the single-trait analysis to 42. Thirty-eight of them 
were novel for IBS and 11 were not associated with any 
of the mental conditions under study, which highlight 
that MTAG combining GWAS on IBS and mental condi-
tions is a robust strategy to identify trait specific genetic 
associations. In addition, four of the previously six iden-
tified SNPs were also significant in the present study 
[18]. Even though two identified SNPs demonstrated less 
association here, their associations were still suggestive 
(P < 5E-07) and in concordance in the direction of the 
effect with the original GWAS study on IBS, which sup-
ports validity of the findings across studies.

The study, however, should be considered in the con-
text of some limitations: (i) We did not account for 
phenotypic overlap and cannot discard that comorbid 
conditions may have biased the observed results. Also, 
IBS is considered a highly heterogenous disorder with 

pathophysiological differences observed among clini-
cal subtypes, between genders, and across age groups 
and geographic locations [1]. Accounting for such fac-
tors may contribute to better characterize the disorder, 
capture its genetic background and identify overlap with 
other comorbid disorders that may impact on IBS risk, 
prognosis and clinical outcome [6]; (ii) Despite the strong 
genetic correlation between IBS and the three men-
tal conditions under study, MiXeR was unable to assess 
the genetic overlap between IBS, depression and anxiety 
probably due to the high polygenicity and low SNP herit-
ability estimates for these traits (0.083 and 0.099, respec-
tively) and the limited sample size of the original GWAS 
on anxiety. We cannot discard, either, that due to lack of 
power we did not detect IBS signals previously reported 
for anxiety in the original GWAS or evidence for anxi-
ety increasing the risk for IBS in the causality analyses; 
(iii) gene-based analyses may be inflated as suggested by 
the lambda over 1, although given the increased power 
of gene-based over single SNP analyses and the lack of 
residual stratification or confounding inflation in the 
MTAG–IBS results, this inflation may just reflect high 
polygenicity; (iv) Combining GWAS that differ a great 
deal in power may lead to inflation of FDR, accord-
ing to MTAG authors [24]. In this study we combined 
GWAS with different sample sizes, however their mean 
chi-squared was similar and accordingly the max-FDR 
estimated in our IBS analysis was 0.02, which suggested 
no inflation of our results. Moreover, despite increasing 
considerably the effective sample size for IBS through the 
addition of multiple mental conditions, a number of out-
comes were gastrointestinal-related phenotypes, which 
further supports this approach.

In summary, we identified novel risk loci for IBS, reveal 
new insights of its polygenic architecture and extended 
previous knowledge on the genetic overlap and causal 
relationships between IBS, neuroticism, depression and 
anxiety. Overall, we advance our understanding of the 
biological mechanisms underlying IBS, highlighted can-
didate genes related to brain development and function 
as well as transcriptional regulation and provide insight 
into the association between IBS and comorbid mental 
disorders.
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Additional file 2: Figure S1. MiXeR results for IBS and neuroticism. A) 
Venn diagram depicting the estimated number of trait‑influencing vari‑
ants shared (gray) between IBS and neuroticism. Unique variants for each 
trait are depicted in blue for IBS and orange for neuroticism. The number 
of trait‑influencing variants in thousands is shown, with the standard 
error in thousands provided in parentheses. The size of the circles reflects 
the polygenicity of each phenotype, with larger circles corresponding to 
greater polygenicity. The estimated genetic correlation  (rg) is shown in 
the bar. Red color indicates positive genetic correlation. B) and C) depict 
conditional Q–Q plots of observed versus expected −log10 p‑values 
in the primary trait as a function of significance of association with a 
secondary trait at the level of p ≤ 0.1 (orange lines), p ≤ 0.01 (green lines), 
p ≤ 0.001 (red lines). Blue line indicates all SNPs. Dotted lines in blue, 
orange, green, and red indicate model predictions for each stratum. Black 
dotted line is the expected Q–Q plot under null (no SNPs associated with 
the phenotype). D) Log‑likelihood curves highlighting the goodness of 
model fit. The minimum point indicates the best‑fitting model estimate of 
the number of influencing variants shared between two traits (Supple‑
mentary Table 1). Figure S2. LD Score regression plot with the MTAG‑IBS 
results. Each point represents an LD score quantile. The x‑axis represents 
the mean LD score for the variants included in the quantile and the y‑axis 
represents the mean χ2 of variants in that quantile. The black line is the LD 
score regression line fitted by a linear regression model with mean χ2 as 
the outcome variable and mean LD score for each bin as the independent 
variable (Coefficient=0.011, p=2E‑16). Figure S3. Regional Plots of the 
42 lead SNPs identified in the MTAG‑IBS analysis. In red, genes mapped by 
SNPs in the credible sets based on physical proximity, chromatin interac‑
tion and/or eQTLs using FUMA. Figure S4. Gene‑based test QQ plot. 
Observed versus expected gene‑based test p‑values on the‑log10 scale 
are shown. Lambda: 1.6855. Figure S5. Enrichment of genes mapped to 
MTAG‑IBS variants with credible sets on Differentially Expressed Genes 
(DEG) in brain tissue. Results from hypergeometric test evaluating enrich‑
ment of the 289 mapped genes by credible variants in DEG in brain tissue 
representing different brain developmental stages in BrainSpan. Signifi‑
cant enrichment at Bonferroni corrected P‑value ≤ 0.05 are coloured in 
red. Figure S6. MAGMA tissue expression analysis using GTEx v.8. Results 
from MAGMA gene‑property analysis between gene‑based MTAG‑IBS 
associations and tissue specific gene expression profiles. (A) GTEx v.8 54 
tissues. (B) GTEx v.8 30 general tissues. Red bars indicate significant results. 
Figure S7. MAGMA tissue expression analysis using Brainspan. Results 
from MAGMA gene‑property analysis between gene‑based MTAG‑IBS 
results and tissue specific gene expression profiles in Brainspan. (A) Brain‑
Span 29 ages. (B) Brainspan 11 developmental stages. Red bars indicate 
significant results. Figure S8. Scatter plots of the causal analysis. Scatter 
plots of exposure versus outcome effect sizes for: the sharing model (left) 
illustrating the pattern induced by a shared factor (correlated pleiotropy, 
eta) without a causal effect; the causal model (middle) illustrating the 
pattern induced when including also a causal effect (gamma); and the 
expected log pointwise posterior density (DEPLD) contribution from each 
variant for each causal relationship tested. 

Additional file 3: Table S1. a Univariate and bivariate MiXeR output 
for IBS vs. neuroticism. Table S2. Results from association analyses of 
lead and secondary lead variants conditioned on the lead variant using 
COJO. For locus with more than two secondary variants, we further check 
independency of the secondary variants among each other. P‑value of 
the secondary variants in MTAG‑IBS and P‑value after conditional analysis 
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webge stalt. org. SNP heritability and genetic correlations: https:// github. com/ 
bulik/ ldsc. MiXeR: https:// github. com/ preci med/ mixer. Conditional analysis: 
https:// yangl ab. westl ake. edu. cn/ softw are/ gcta/# COJO. Multi‑Trait Analysis of 
GWAS (MTAG): https:// github. com/ omeed‑ maghz ian/ mtag). Fine‑mapping: 
https:// github. com/ mulin lab/ CAUSA Ldb‑ finem apping‑ pip. Functional Map‑
ping and Annotation of Genome‑Wide Association Studies (FUMA): https:// 
fuma. ctglab. nl/. Partitioned heritability: https:// github. com/ bulik/ ldsc/ wiki/ 
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There is evidence linking ADHD to a reduced life expectancy. The mortality rate in individuals with ADHD is twice that of the
general population and it is associated with several factors, such as unhealthy lifestyle behaviors, social adversity, and mental health
problems that may in turn increase mortality rates. Since ADHD and lifespan are heritable, we used data from genome-wide
association studies (GWAS) of ADHD and parental lifespan, as proxy of individual lifespan, to estimate their genetic correlation,
identify genetic loci jointly associated with both phenotypes and assess causality. We confirmed a negative genetic correlation
between ADHD and parental lifespan (rg=−0.36, P= 1.41e−16). Nineteen independent loci were jointly associated with both
ADHD and parental lifespan, with most of the alleles that increased the risk for ADHD being associated with shorter lifespan. Fifteen
loci were novel for ADHD and two were already present in the original GWAS on parental lifespan. Mendelian randomization
analyses pointed towards a negative causal effect of ADHD liability on lifespan (P= 1.54e−06; Beta=−0.07), although these results
were not confirmed by all sensitivity analyses performed, and further evidence is required. The present study provides the first
evidence of a common genetic background between ADHD and lifespan, which may play a role in the reported effect of ADHD on
premature mortality risk. These results are consistent with previous epidemiological data describing reduced lifespan in mental
disorders and support that ADHD is an important health condition that could negatively affect future life outcomes.

Neuropsychopharmacology (2023) 48:981–990; https://doi.org/10.1038/s41386-023-01555-x

INTRODUCTION
Attention-deficit/hyperactivity disorder (ADHD) is a neurodeve-
lopmental disorder that emerges in childhood and often persists
into adulthood, affecting approximately 5.3% of children and
adolescents and 2.8% of adults [1, 2]. It is characterized by age-
inappropriate symptoms of inattention, impulsivity, and hyper-
activity, which have a severe impact on the individual’s social,
emotional and psychological functioning, often representing an
entry point into a poor life trajectory [3].
There is increasing evidence linking ADHD to a shorter life

expectancy and mortality rates in individuals with ADHD are two
to five times higher than in individuals without ADHD [4, 5].
Besides natural causes [5], the higher risk of early mortality in
individuals with ADHD appears to be largely due to misadventure
including a high propensity for accidents and injuries and an
elevated risk of suicide [4–9].
ADHD often co-occurs with other mental and somatic

comorbid disorders, traits and behaviors that are likely to
increase mortality rates [10, 11]. These include (i) mental health

problems, such as oppositional defiant disorder, conduct
disorder, mood and anxiety disorders, and substance use
disorder [8, 12–14]; (ii) comorbid somatic disorders such as
obesity [3], asthma [15] and diabetes [16, 17]; (iii) harmful
lifestyle behaviors, such as unhealthy eating habits or smoking
[18–20]; and (iv) educational underachievement, low income,
social adversity, delinquency and aggression [3, 21]. However,
despite the high rate of comorbid conditions also linked to an
excess mortality [12], these do not fully explain the risk of death
observed in individuals with ADHD [4, 5, 8], indicating that
ADHD itself is a health condition that confers an increased risk of
mortality. For instance, inattention and impulsivity may directly
increase proneness to risk-taking behaviors and therefore risk
for accidental injuries, leading to reduced lifespan [5].
ADHD and lifespan are complex traits influenced both by

genetic and environmental factors. Heritability is estimated to be
around 70–80% for ADHD and 7–16% for human lifespan [22].
Genome-wide association studies (GWAS) identified genetic loci
associated with both ADHD and lifespan [23, 24], although a large
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part of their heritability still remains to be explained. Some genes
known to be related with the risk of developing ADHD, such as
those related to the dopaminergic system, have also been
associated with shorter life expectancy [19], and a negative
genetic correlation between ADHD and parental age at death has
been described [24]. These data support observational studies
showing an association between ADHD with both elevated
mortality risk and reduced estimated life expectancy in adulthood,
and suggest that the underlying genetic background of ADHD and
lifespan may overlap.
In the present study, we aim to examine the shared genetic

architecture and the nature of the relationship between ADHD
and parental lifespan, as a proxy for individual lifespan, using
available GWAS data on both phenotypes by: (i) estimating their
genetic correlation; (ii) performing a cross-trait analysis and (iii)
testing the causal role of ADHD on lifespan.

MATERIALS AND METHODS
GWAS samples and data processing
GWAS summary statistics on ADHD were obtained from Demontis et al.,
comprising a total of 19,099 individuals with ADHD and 34,194 healthy
controls, all of European ancestry [24]. Summary statistics on parental
lifespan were obtained from Timmers et al. and included data from about
1 million individuals of European ancestry [23]. The GWAS summary
statistics were referenced to a set of 9,546,816 SNPs generated from the
1000 Genomes Project Phase 3 European reference panel (http://
www.internationalgenome.org/). SNPs that were non-biallelic, without
rsIDs, duplicated, or with strand-ambiguous alleles were removed. We also
filtered out SNPs with INFO scores <0.9 in the summary statistics files,
those mapping to the extended major histocompatibility complex (MHC,
genomic position in hg 19; chr6:25,119,106–33,854,733) and the 8p23.1
region (chr8:7,200,000–12,500,000), which are prone to rearrangements,
SNPs located on the X, Y and mitochondrial chromosomes, and SNPs with
sample sizes 5 standard deviations away from the mean. Finally, a
common set of 3,206,697 SNPs were kept in both summary statistics. All
P values were adjusted for standard genomic control (GC).

Genetic correlation and pleiotropy assessment
Linkage Disequilibrium Score Regression (LDSC) was used to calculate
genome-wide genetic correlations across the traits studied [25].
The shared polygenic architecture between the two traits was assessed

by means of stratified cross-phenotype Q-Q plots. P values for the primary
trait were plotted conditioning on different association strengths (P < 1,
0.1, 0.01 and 1e−03) with the secondary trait. Thus, the visualization of a
leftward shift in the primary trait of interest, as a function of increasingly
strict P value thresholds in the secondary trait, was an indicator of a shared
polygenic architecture between the two traits. To test for SNP-based
heritability enrichment of a trait conditioned on different association
strengths with a secondary trait, we used stratified LDSC [26]. As a
reference panel for linkage disequilibrium (LD) we used the 1000 Genomes
Project Phase 3 European reference panel [27].

Cross-trait analysis
To identify genetic loci jointly associated with ADHD and parental
lifespan we estimated the conjunction FDR (conjFDR), defined as “the
posterior probability that a given SNP is null for both phenotypes
simultaneously when the P values for both phenotypes are as small as or
smaller than the observed P values”, using pleioFDR (https://github.com/
precimed/pleiofdr) [28]. We kept all SNPs with conjFDR <0.1 for
functional studies and reported independent SNPs with a conjFDR
<0.05. Independent genomic loci were identified through clumping
(r2= 0.05, kb= 500) using the 1000 Genomes Project Phase 3 European
as the reference panel for LD computation and PLINK 1.09 [27, 29]. We
evaluated the directional effects of shared loci between ADHD and
parental lifespan by comparing z-scores between the original GWAS
summary statistics. Overlap between hits from the cross-trait analysis
and genome-wide significant associations reported in the original GWAS
results (P < 5e−08) was assessed according to distance (+/−250 kb) and
linkage disequilibrium (r2 > 0.1) between of the cross-trait lead SNPs and
previous reported hits.

Functional annotation
Functional annotation of all SNPs with a conjFDR value <0.10 and an LD
r2 ≥ 0.6 with one of the independent significant SNPs was performed in
FUMA (Functional Mapping and Annotation of Genome-Wide Association
Studies, https://fuma.ctglab.nl/) [30]. We combined data from the
Combined Annotation Dependent Depletion (CADD) scores [31], which
predict how deleterious the SNP effect is on protein structure/function
based on 63 functional annotations, and RegulomeDB scores [32], a
categorical score that estimates the regulatory functionality of SNPs based
on existing functional data (annotation to cis-eQTLs, expression quantita-
tive trait loci) and evidence for transcription factor binding. CADD ≥ 12.37
was considered as the threshold for deleterious variants, RegulomeDB
scores <3 were likely to have a regulatory function, and minimum
chromatin states between 1–7 were considered open chromatin states.
The NHGRI-EBI GWAS catalog [33], the release from the 15th of September
2021, was used to identify traits previously associated with the SNPs of
interest and we queried SNPs for known brain eQTLs using the Genotype-
Tissue Expression (GTEx) v8 [34] and BRAINEAC [35]. We also used FUMA to
map SNPs to genes based on physical proximity (using default parameters)
and eQTL in brain (based on GTEx v8 and BRAINEAC) to test for enrichment
on gene ontology and biological pathways of the mapped genes.
All analyses were corrected for multiple comparisons using False
Discovery Rate.

Causality analyses
GWAS summary statistics. To assess the causal effect of the genetic
liability of ADHD on lifespan, the summary statistics from Pilling et al. [36],
generated from a linear mixed-effects model in 208,118 individuals of
European ancestry, was used instead of Timmers et al. [23]. The latter used
a survival analysis to study parental lifespan, which may produce a
significant bias in MR analyses [37]. LDSC was used to calculate genetic
correlations between both studies and between ADHD and parental
lifespan in the study by Pilling et al. [25, 36]. For mediation analyses, as
defined below we used summary statistics from Sanchez-Roige et al. for
total impulsivity score, lack of premeditation and positive urgency [38].

Mendelian randomization. Causality between ADHD (as the exposure),
and parental lifespan (as the outcome), was assessed by two-sample MR
using the TwoSampleMR and MRPRESSO R packages [39, 40]. After
clumping (r2= 0.05, kb= 500) with PLINK 1.09 [29], independent SNPs
were selected using a P value threshold of 5e−08 in the ADHD GWAS to be
used as instruments. The multiplicative random effects inversed-variance
weighted (IVW) was used as the main method to obtain the average effect
across genetic variants. For IVW results to be valid, genetic variants used as
instruments must meet three assumptions: (i) robust association with the
exposure, (ii) absence of horizontal pleiotropy, or association with the
outcome through an exposure-independent pathway, and (iii) indepen-
dence of confounders influencing exposure and outcome. Additional MR
methods were implemented, as sensitivity analyses, for significant IVW
results (IVW P < 0.05) to assess the robustness of the findings under weaker
assumptions: (i) the weighted median method, which under equal weights
requires at least half of the variants to be valid instruments and is robust to
outliers [41]; (ii) the MR-PRESSO method, which tests for horizontal
pleiotropy (MR-PRESSO global test), and if detected, eliminates horizontal
pleiotropic outliers and then performs the IVW method using the
remaining instruments [40]; and (iii) the MR-Egger method, which is
affected by outlier data points but allows all genetic variants to have
pleiotropic effects assuming that these effects are independent of
variant–exposure associations [42]. MR-Egger also implements a pleiotropy
test, however, when the NO Measurement Error (NOME) assumption is
violated (I2gx < 0.9) MR-Egger causal estimates are biased towards the null,
and the type I error of the pleiotropy test can be inflated. For this reason,
when I2gx < 0.6, MR-Egger results were disregarded. In addition, hetero-
geneity tests and leave-one-out analyses were performed and scatter,
funnel and forest plots were generated. The analysis in the opposite
direction, testing the effect of parental lifespan on ADHD, was considered
as a negative control. Finally, as an alternative method, we also used the ρ‐
HESS implementation to prioritize putative causal models between pairs of
traits, as previously described [43, 44].

Multivariate Mendelian Randomization (MVMR). To explore whether a
putative causal effect of the genetic liability of ADHD on lifespan is
mediated by impulsive personality traits we used MVMR and summary
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statistics from the GWAS by Sanchez-Roige et al. undertaken in over 20,000
individuals [38]. Out of the ten traits analyzed by Sanchez-Roige et al. [38].
we selected as potential mediators those reported to have a significant
genetic correlation with ADHD, prioritizing total scores when available,
namely total impulsivity score (measured with the BIS-11 [45]), lack of
premeditation and positive urgency (both measured using the UPPS-P
Impulsive Behavior Scale [46]). We used the same clumping parameters as
for the main analysis (r2= 0.05, kb= 500) and, given that no genome-wide
significant SNPs were available, a threshold of 5e−06 was chosen to select
independent SNPs for these traits.

Causal Analysis Using Summary Effect estimates (CAUSE). We also explored
causality between ADHD and lifespan using the cause R package [47]
considering independent variants (r2= 0.05, kb= 500). The CAUSE
method uses a more permissive threshold for variant selection than
MR (P < 1e−03). In addition, CAUSE allows all variants to show
uncorrelated pleiotropy, also accounted for by MR-Egger or MR-PRESSO,
but it also allows a subset of variants to show correlated pleiotropy,
when they affect exposure and outcome through a shared heritable
factor. CAUSE compares two nested models by measuring how well the
posterior distributions of a particular model fit the data: (i) a sharing
model, which only allows for pleiotropic effects and no causal effects;
and (ii) a causal model, which also allows both for pleiotropic and causal
effects.

RESULTS
We found strong evidence of negative SNP-based genetic
correlation between ADHD and parental lifespan, used as a proxy
for individual lifespan (rg=−0.36, P= 1.41e−16). Partitioning
ADHD SNP heritability on different parental lifespan P value
thresholds showed enrichment of ADHD SNP heritability
(P= 2.73e−07 and P= 1.85e−03 conditioning ADHD on parental
lifespan P < 0.1 and P < 0.01, respectively; Supplementary Table 1a).
Furthermore, conditioning parental lifespan SNPs on ADHD P values
showed parental lifespan SNP heritability enrichment (P= 1.09e
−06 and 7.69e−03 conditioning parental lifespan on ADHD P < 0.1
and P < 0.01, respectively; Supplementary Table 1b). These enrich-
ments were consistent with stratified cross-phenotype Q-Q plots
showing a stronger leftward deflection from the null expectation
when conditioning ADHD on increasing levels of association for
parental lifespan and vice-versa (Fig. 1).
The cross-trait analysis showed a total of 19 independent

genomic loci associated with both ADHD and parental lifespan
with a conjFDR < 0.05 (Fig. 2A and Supplementary Fig. 1), 15 of
which were not identified in the original GWAS on ADHD and two
were already present in the original GWAS on parental lifespan
(Table 1). Functional annotation of all SNPs with conjFDR < 0.1 at
these 19 loci (n= 479 SNPs) revealed that 92.1% of these loci lay
on regions of open chromatin and most of the signals were
intergenic, intronic or located in intronic non-coding RNA (ncRNA)
genes. In addition, several SNPs in these genomic risk loci were
likely to affect the binding of transcription factors or had CADD
scores >12.37, suggesting high deleteriousness (Fig. 3, Table 1
and Supplementary Table 2). In addition, we found that 42% of
the SNPs were eQTL for at least one gene in one brain area,
according to GTEx v8 [34] and BRAINEAC [35] (Supplementary
Table 3). Finally, 23 SNPs at 11 different genomic risk loci were
previously associated with different traits, mainly related to
lifetime risky behaviors (e.g., smoking, general risk tolerance and
number of sexual partners), psychiatric disorders (e.g., schizo-
phrenia, ADHD and depression) and metabolic alterations (e.g.,
metabolic syndrome, triglyceride or cholesterol levels and blood
pressure; Supplementary Table 4). The 19 risk loci identified
mapped 40 genes (Supplementary Table 5), which were enriched
in genes previously associated with cognitive performance,
smoking and metabolite levels according to the GWAS catalog
[33] (Supplementary Fig. 2), but no association with either
biological pathways or differential tissue expression from GTEx
were found.

To explore the landscape of pleiotropic effects further, we
examined the direction of the effects of the lead SNPs of all
independent loci from the cross-trait analysis on both ADHD and
parental lifespan and found an opposite direction of effect for 95%
of them (n= 18), with alleles that increased the risk for ADHD also
shortening lifespan (Fig. 2B). ADHD hits [24] showed a significant
negative correlation with parental lifespan with p-HESS, whereas
no significant correlation was found between parental lifespan hits
[23] and ADHD, which is consistent with a putative causal
relationship of ADHD on shortened lifespan (Supplementary
Figure 3). In line with these results, MR analyses showed evidence
of a negative causal effect of ADHD liability on lifespan (IVW
Beta=−0.07 and P= 1.54e−06; weighted median Beta=−0.05
and P= 6.52e−03; Supplementary Table 6 and Fig. 4). There was
no evidence of horizontal pleiotropy according to MR-PRESSO
(global test P= 0.43) or heterogeneity (I2= 11.15). The results
were not driven by a single SNP (Supplementary Fig. 4). Variants
included in the MR analyses are shown in Supplementary Table 7.
MR testing the causal relationship of parental lifespan on ADHD, as
a negative control, showed no significant results (IVW P= 0.66).
MVMR analyses showed that the effect of ADHD liability on
lifespan remained unchanged when accounting for total impul-
sivity score or lack of premeditation, however it decreased (from
−0.07 to −0.06) when taking into account the effect of positive
urgency, suggesting that positive urgency may be mediating
around 11% of the effect of ADHD liability on lifespan
(Supplementary Table 8). CAUSE did not provide evidence of
correlated pleiotropy (Supplementary Table 9) or of a causal effect
of ADHD liability on lifespan (Beta=−0.01 and CI= (−0.03, 0))
(Supplementary Tables 6 and 9). Given that survival analyses,
including the study conducted by Timmers et al. used in the
present study, may bias MR results, we conducted the causality
analyses using summary statistics on parental lifespan from a
second GWAS by Pilling et al. [36]. The genetic correlation
between both summary statistics on parental lifespan was very
high (rg=−0.93, P= 2.98e−184), and parental lifespan from the
latest was also negatively correlated with ADHD (rg=−0.41,
P= 2.66e−14).

DISCUSSION
The present study provides the first evidence of a common
genetic background between ADHD and lifespan. Extensive
literature supports that individuals with ADHD have an increased
risk of premature death and a shorter life expectancy, which
increases in females and depends on age at first ADHD diagnosis
[4, 8]. In addition, the presence of other comorbid psychiatric
conditions, such as oppositional defiant disorder, conduct disorder
or substance use disorder, further increases ADHD mortality [4, 8].
This excess mortality and decreased life expectancy in ADHD
subjects are mainly driven by unnatural causes being accidents
the most common cause of early death [4, 9]. In addition, an
increased risk of suicide, traffic violations or trauma have been
also described in ADHD [8, 48–52]. At the same time, the impact of
the disorder on other adverse life-course outcomes, such as
poorer educational attainment, unemployment, delinquency or
lower socioeconomic status, may also increase the risk of mortality
[11]. Strengthening the results of observational studies, we
provide evidence of shared genetic signatures and negative
genetic correlation between ADHD and lifespan, which further
supports the existing evidence that ADHD represents an entry
point into a negative life trajectory [3].
To provide potential pleiotropic molecular mechanisms under-

lying this association, we performed a cross-trait analysis on ADHD
and parental lifespan and identified 19 independent loci jointly
associated with both traits, including 15 novel hits for ADHD
[23, 24]. All of them but one (95%) showed consistent direction of
the effect, with risk alleles for ADHD shortening lifespan, which is

L. Vilar-Ribó et al.

983

Neuropsychopharmacology (2023) 48:981 – 990



Fig. 1 Stratified cross-phenotype Q-Q plots. Nominal versus empirical (−log10) P values (corrected for inflation) are shown in A ADHD as a
function of significance with parental lifespan and B parental lifespan as a function of significance with ADHD, at the level of P < 0.1 (red line),
P < 0.01 (yellow line), and P < 1e−03 (purple line). The blue line indicates the standard enrichment of A ADHD or B parental lifespan including
all SNPs, irrespective of their association with the secondary trait (i.e., parental lifespan or ADHD, respectively). The gray dashed line indicates
the null distribution of P values. LD score regression intercepts for ADHD and parental lifespan full summary statistics were 1.04 and 1.05
respectively. PLS parental lifespan.
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consistent with the negative genetic correlation between ADHD
and lifespan, adding further evidence for the contribution of a
shared biological architecture. Interestingly, functional annotation
of top hits from the cross-trait analysis highlighted loci previously

associated with ADHD and/or reduced life expectancy-related
phenotypes, including other psychiatric disorders (e.g., schizo-
phrenia and major depression), lifetime risk behaviors (e.g.,
number of sexual partners and risk tolerance) or metabolic
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alterations (e.g., metabolic syndrome, and triglyceride and
cholesterol levels). This further supports that shared risk factors
may not be specific of ADHD or lifespan but also contribute to
other related disorders and behaviors that could mediate, in part,
this relationship. For instance, ADHD may directly increase
propensity for risky behaviors and thus lead to a shorter life
expectancy [5].
The pleiotropic risk loci identified were enriched in introns and

open chromatin regions, and almost half of them (42%) were cis-
eQTLs tags for at least one gene in the brain, supporting their
putative causal effect. Among the identified risk loci, we highlight
new relevant candidate genes. For instance, the TNKS gene

encoding tankyrase1, a protein involved in telomere maintenance
[53], which is an essential cellular function closely related to
ageing and longevity [54]. Interestingly, several genetic variants in
this locus are cis-eQTL for TNKS in putamen, a key area in the basal
ganglia previously related with ADHD [55–57]. In addition, TNKS
was previously associated with multiple psychiatric conditions
(e.g., risk tolerance and neuroticism), neurological (e.g., Alzhei-
mer’s disease and epilepsy) and metabolic disorders (e.g., blood
pressure, obesity, diabetes and stroke) [58–64], which are highly
comorbid with ADHD and associated with increased morbidity
and mortality [65–67]. We also found genetic variants in other
two loci encompassing AKAP6 and SEMA6D genes, previously

Fig. 3 Functional categories, Regulome DB scores, and Minimum Chromatin States for SNPs within loci jointly associated with ADHD and
parental lifespan. Regulome DB score predicts likelihood of regulatory functionality, where lower scores indicate higher likelihood. Further
information can be found in Boyle et al. 2012 [32]. Minimum Chromatin State across 127 tissue and cell types, lower scores indicate higher
accessibility, with states 1–7 referring to open chromatin states.

Fig. 4 Mendelian randomization results with ADHD as exposure and parental lifespan as outcome. Scatter plot of SNP effect estimates on
ADHD vs. effect estimates on parental lifespan. Lines are drawn for inverse-variance weighted, weighted median and CAUSE, with the slope of
each line corresponding to the estimated causal effect. Given that Igx2= 0.36, MR-Egger results are not reported.
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associated with increased risk of schizophrenia, lower cognitive
ability and educational attainment [68], all of them related with
shorter life expectancy [69–72]. In addition, we found other loci
including genes with relevant brain functions: SYPL2, which
encodes a vesicular transmembrane protein that belongs to the
synaptophysin family, key elements for the regulation of neuronal
synaptic vesicles [73, 74]; and HMG20A, a non-histone chromoso-
mal factor that regulates gene expression through changes in
chromatin conformation, also involved in the regulation of
neuronal differentiation [75, 76].
Our results seem to reflect an effect of ADHD on premature

mortality risk and are consistent with previous epidemiological
data describing a shortened lifespan in many mental disorders
[4, 12]. A recent study suggests that there is no causal relationship
between schizophrenia and parental lifespan [69], which can
indicate that our results may not be extensive to other psychiatric
disorders. Further studies are needed to clarify how specific the
effect on parental lifespan is to ADHD. We also found suggestive
evidence of a mediating role for positive urgency (i.e. the
proclivity for rash action when feeling positive emotion) in the
relationship between the genetic liability of ADHD and lifespan.
This is consistent with a reported predictive effect of positive
urgency on ADHD-related traits such as illegal drug use and risky
sexual behavior [77]. Nevertheless these findings should be
interpreted with caution, since the evidence found for a causal
relationship of ADHD liability on shorter life expectancy was not
conclusive. While IVW MR, together with all the sensitivity analyses
performed and putative causality inferred with p‐HESS supported
a negative causal effect of genetic liability of ADHD on lifespan,
CAUSE did not confirm this causal relationship. This highlights that
inferring causal relationships between related traits remains a
challenge to date and that new methods and larger sample sizes
are needed to understand the common genetic architecture
underlying such complex relationships.
Our results, however, should be interpreted in the context of

some considerations:
First, parental lifespan of genotyped subjects was used as a

surrogate trait for individual lifespan in the present generation. This
kinship cohort design is supported by previous results reporting that
parental lifespan predicts the long-term mortality of their offspring.
However, the use of indirect genotypes reduces the effective sample
size of the study [23, 78]. This, together with the modest heritability
estimates for human lifespan (ranging from 7% to 16%) [23, 79]
limits the power of our study and precludes the identification of
shared genetic variants with smaller effect sizes.
Second, to avoid the potential bias introduced by using

summary statistics generated through a survival analysis [37],
such as that conducted by Timmers et al. [23], we selected the
results of Pilling et al. [36] to assess causality between ADHD and
parental lifespan. The smaller sample size of this study
(n= 208,118) further reduced the statistical power and may have
led to the inconsistent results observed [36]. CAUSE was
developed with the aim of avoiding false positive results due to
correlated horizontal pleiotropy, but in the present study it did not
detect a causal effect but neither did it detect this kind of
pleiotropy. Recent studies suggest that in some scenarios CAUSE
tends to underestimate causal effect sizes in comparison to MR
and produce overly conservative P values [80, 81], which may
suggest, in our case, limited power rather than lack of a causal
relationship, supporting further studies with larger sample sizes to
clarify this issue.
Third, despite the shared genetic architecture underlying ADHD

in children and adults [82], the risk of premature death also
depends on age at diagnosis, where individuals diagnosed with
ADHD in adulthood appear to have a higher risk of death than do
those diagnosed in childhood or adolescence [4]. These data may
suggest that persistent ADHD represents a more severe form of

the disorder and that the role of ADHD on the overall life
expectancy across age groups deserves further investigation. In
addition, we did not control our analysis for other potential
confounders that may bias our results. Increased mortality in
individuals with ADHD depends on sex or the presence of co-
occurring disorders [4, 8]. Also severity of ADHD symptoms,
impairment and/or pharmacological treatment may influence life
outcomes [83–85] and their role in the relationship between
ADHD, premature death and reduced overall life expectancy
deserve further investigation.
In summary, our results are in agreement with observational

studies supporting ADHD as the entrance into a detrimental life
trajectory, support negative genetic correlation between ADHD and
lifespan and show common genetic loci shared between them, most
of which showed risk-increasing effects on ADHD and reduced
overall life expectancy. These results confirm the general pattern of
increased mortality rates and reduced overall life expectancy
associated with ADHD and highlight the need for further studies
on larger datasets to better understand the common genetic
architecture underlying these complex relationships.
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Abstract

Background: Attention deficit/hyperactivity disorder (ADHD) is a highly prevalent neuro-

developmental disorder caused by a combination of genetic and environmental factors

and is often thought as an entry point into a negative life trajectory, including risk for

comorbid disorders, poor educational achievement or low income. In the present study,

we aimed to clarify the causal relationship between ADHD and a comprehensive range

of related traits.

Methods: We used genome-wide association study (GWAS) summary statistics for

ADHD (n¼53 293) and 124 traits related to anthropometry, cognitive function and intelli-

gence, early life exposures, education and employment, lifestyle and environment, lon-

gevity, neurological, and psychiatric and mental health or personality and psychosocial

factors available in the MR-Base database (16 067 �n�766 345). To investigate their

causal relationship with ADHD, we used two-sample Mendelian randomization (MR) with

a range of sensitivity analyses, and validated MR findings using causal analysis using

summary effect estimates (CAUSE), aiming to avoid potential false-positive results.

Results: Our findings strengthen previous evidence of a causal effect of ADHD liability on

smoking and major depression, and are consistent with a causal effect on odds of de-

creased average total household income [odds ratio (OR)¼0.966, 95% credible interval

(CrI)¼ (0.954, 0.979)] and increased lifetime number of sexual partners [OR¼1.023, 95%
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CrI¼ (1.013, 1.033)]. We also found evidence for a causal effect on ADHD for liability of

arm predicted mass and weight [OR¼1.452, 95% CrI¼ (1.307, 1.614) and OR¼ 1.430,

95% CrI¼ (1.326, 1.539), respectively] and time spent watching television [OR¼ 1.862,

95% CrI¼ (1.545, 2.246)], and evidence for a bidirectional effect for age of first sexual in-

tercourse [beta¼�0.058, 95% CrI¼ (�0.072, �0.044) and OR¼0.413, 95% CrI¼ (0.372,

0.457), respectively], odds of decreased age completed full-time education [OR¼ 0.972,

95% CrI¼ (0.962, 0.981) and OR¼0.435, 95% CrI¼ (0.356, 0.533), respectively] and years

of schooling [beta¼ -0.036, 95% CrI¼ (�0.048, �0.024) and OR¼ 0.458, 95% CrI¼ (0.411,

0.511), respectively].

Conclusions: Our results may contribute to explain part of the widespread co-occurring

traits and comorbid disorders across the lifespan of individuals with ADHD and may

open new opportunities for developing preventive strategies for ADHD and for negative

ADHD trajectories.

Key words: ADHD, Mendelian randomization, causal analysis using summary effect estimates

Introduction

Attention deficit/hyperactivity disorder (ADHD) is a neu-

rodevelopmental disorder with a prevalence of around

5.3% in childhood and 2.8% in adulthood.1,2 The aetiol-

ogy of ADHD involves a combination of genetic and envi-

ronmental factors, with an estimated heritability of �70–

80%.3,4 Potential environmental risk factors include pre-

and perinatal risk factors (maternal smoking or alcohol

consumption, low birthweight, prematurity), exposure to

environmental toxins, unfavourable psychosocial condi-

tions (severe early childhood deprivation, maternal hostil-

ity) or low socioeconomic status.5,6

ADHD is characterized by a persistent pattern of inat-

tentive, hyperactive and impulsive behaviour; however, its

clinical presentation is heterogeneous, with a wide spec-

trum of severity and symptoms that often overlap with

other conditions.7 There are a number of traits that are not

part of the core diagnostic criteria for ADHD, which can

nevertheless influence severity, persistence and treatment

decisions. For instance, individuals with ADHD often have

a poor cognitive performance in executive functions, such

as response inhibition, vigilance, working memory or plan-

ning, personality profiles with low effortful control and

high neuroticism,8–11 or emotion dysregulation problems

such as irritability or temper outbursts.12 In addition, up to

70–80% of ADHD patients suffer from comorbid disor-

ders across their lifespan.13 These include other psychiatric

conditions, such as major depressive, oppositional defiant,

bipolar or substance use disorders, but also somatic dis-

eases such as obesity, sleep disorders or migraine.7 The

presence of comorbidities in ADHD worsens symptom

progression, disorder course and outcome, and also

increases mortality rates.8,14 In this context ADHD can be

thought of as an entry point into a negative life trajectory

with higher risks for poor educational achievement, unem-

ployment or criminality, among others.7

Most studies undertaken to date have reported associa-

tion between ADHD and comorbid traits, but inferring

causality can be more challenging due to the potential ef-

fect of confounding factors or reverse causality. Different

strategies have been developed to overcome these inference

problems, and the causality for ADHD and a number of

Key Messages

• Our results are consistent with a causal effect of attention deficit/hyperactivity disorder (ADHD) genetic liability

decreasing average total household income and increasing lifetime number of sexual partners.

• We detect a positive effect of the liability of anthropometric traits (arm predicted mass and weight) and of time spent

watching television on ADHD.

• We show evidence for a bidirectional negative effect between liability of ADHD and of education outcomes (years of

schooling and age completed full-time education), age of first sexual intercourse and past tobacco smoking for non-

heavy smokers.
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traits have been tested using: (i) longitudinal analyses, some

of them undertaken in twins; (ii) Mendelian randomization

(MR), which uses genetic variants as proxies for an expo-

sure (instrumental variables) to test for a causal effect on an

outcome15; and (iii) the latent causal variable (LCV) model,

based on a latent variable that mediates the genetic correla-

tion between two traits and quantifies the degree of causal-

ity between them.16 When using only one approach,

longitudinal analyses have reported a causal role for low

family income in early childhood on ADHD6 and of ADHD

on lower educational achievement.17 In addition, MR stud-

ies have reported an effect of the liability of low birthweight

increasing the risk for ADHD,18 an effect of higher intelli-

gence lowering the risk for ADHD19 and an effect of the ge-

netic liability to ADHD increasing the risk for asthma20 and

coronary artery disease, as well as a positive bidirectional ef-

fect for childhood obesity.21 When more than one approach

was used, consistent results were found for an effect for

ADHD liability on major depression22 and inconsistent

results, which require further investigation, were identified

for body mass index (BMI),23–25 phone use,26 smoking, can-

nabis and alcohol use.27–30

Overall, the evidence from causal inference analyses un-

dertaken for ADHD is hard to interpret, in some cases due

to the limited number of strategies applied19,20 or because

inconsistent findings are found when using different

approaches.29,30 In the present study we aim to clarify the

relationship between ADHD and a comprehensive range of

related traits, using genome-wide association studies

(GWAS) datasets available,31,32 following current guide-

lines on two-sample MR analyses33 and a range of sensitiv-

ity analyses. In addition, we validated MR findings using

causal analysis using summary effect estimates (CAUSE), a

recently developed method to account for horizontal plei-

otropy that acts through a common shared heritable factor,

and avoids potential false-positive results.34

Methods

GWAS dataset selection

We selected GWAS summary statistics available in the

MR-Base database31,32 in May 2020 (n¼ 31 772) which

fulfilled the following inclusion criteria: (i) sample size [N

effective¼ 4 � N cases � N controls/(N cases þ N con-

trols) for binary traits] >5000; (ii) results available in more

than 450 000 genetic variants; (iii) European ancestry; (iv)

non sex-specific; and (v) more than three independent

genome-wide significant signals (P<5.00e-08). This re-

duced the number of traits to 1259 (Supplementary Table

S1, available as Supplementary data at IJE online). At this

point we removed traits related to diet (n¼ 52), to

metabolites’ levels (n¼ 132), to procedural metrics or bio-

logical samples (n¼ 76) and to clinical traits (n¼ 600), ex-

cept those related to neurological, psychiatric and mental

health; and selected traits related to anthropometry, cogni-

tive function and intelligence, early life exposures, educa-

tion and employment, lifestyle and environment, longevity,

neurological, psychiatric and mental health or personality

and psychosocial factors. We then removed duplicated and

unordered categorical traits (n¼ 150, Supplementary

Table S1). Finally, in order to reduce further the number of

traits analysed to those with causal relationships most

likely to be identified by MR methods, we removed traits

with a heritability Z score �4 and an ADHD genetic corre-

lation Z score �2, obtained using LD score regression,35,36

ending up with a total of 124 traits included in the analysis

(Supplementary Tables S1 and S2, available as

Supplementary data at IJE online). The MR-Base summary

statistics used for these 124 traits were obtained from dif-

ferent sources: European Bioinformatics Institute (EBI)

database,37 Neale Lab and Integrative Epidemiology Unit

(IEU) analyses of UK Biobank phenotypes [http://www.nea

lelab.is/uk-biobank]38 and manually collected and curated

data from different consortia for MR-Base.19,39–47

Mendelian randomization

Main analysis

We ran two-sample MR in both directions to assess the po-

tential causal relationship between ADHD and every se-

lected trait, using the multiplicative random effects inverse

variance weighted (IVW) method as the main analysis.48

MR analyses only included independent single nucleotide

polymorphisms (SNPs) (r2 <0.001 or distance>10 000 kb)

with P<5.00e-08 in the exposure, and variants meeting

the threshold for both the exposure and the outcome were

removed. For exposure variants not found in the outcome,

GWAS proxies were used instead (r2 �0.8, obtained using

1000 Genomes European sample). ADHD liability genetic

instruments are provided in Supplementary Table S3

(available as Supplementary data at IJE online). False-dis-

covery rate (FDR) across all tests considered was used to

correct for multiple testing.

MR sensitivity analyses

For IVW results with FDR corrected P<0.05, we under-

took sensitivity analyses to assess the robustness of the

findings under weaker assumptions, given that the genetic

variants used as instruments must meet three assumptions

for IVW results to be valid: (i) robust association with the

exposure; (ii) no horizontal pleiotropy, or association with

the outcome through a pathway independent of the
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exposure; and (iii) independence of confounders that influ-

ence the exposure and the outcome.

We used weighted median and weighed mode methods,

which only require a subset of variants to be valid instru-

ments and are robust to outliers.49,50 Under equal weights,

the weighted median requires at least half of the variants to

be valid instruments, and the weighted mode requires more

variants to estimate the true causal effect than any other

quantity.49,50 We used MR-PRESSO, which performs a

test to detect horizontal pleiotropy (MR-PRESSO global

test), and if detected, it removes horizontal pleiotropic out-

liers and then performs the IVW method using the remain-

ing instruments.51 We also applied MR-Egger, which is

affected by outlying data points but allows all genetic var-

iants to have pleiotropic effects, assuming that these effects

are independent of the variant-exposure associations.52,53

MR-Egger also implements a pleiotropy test, however,

when the assumption of no measurement error in the SNP-

exposure effect estimates (NOME assumption) is violated

(I2
GX <0.9). MR-Egger causal estimates are biased towards

the null, and the pleiotropy test type I error can be in-

flated.54 For this reason, when 0.6 <I2
GX< 0.9 we imple-

mented the method of simulation extrapolation (SIMEX)

to obtain an adjusted estimate of the causal effect.54 When

I2
GX <0.6, we disregarded MR-Egger results. We also cal-

culated F statistics for continuous exposures to measure

the strength of the instruments used; as a ‘rule of thumb’, F

statistics >10 indicate strong-enough instruments.55 In or-

der to avoid results due to reverse causation, we also ap-

plied Steiger filtering, removing instruments from the

analysis if they did not explain substantially more of the

variance in the exposure trait than in the outcome and un-

dertaking the IVW method on the remaining set of instru-

ments.56 Variance explained for binary traits was

estimated using Equation 10 from Lee et al.,57 as imple-

mented by get_r_from_lor, R function within the

TwoSampleMR package. In addition, we ran heterogeneity

tests and leave-one-out analyses and generated scatter, fun-

nel and forest plots. TwoSampleMR v0.5.5 and

MRPRESSO R packages were used for these analyses.31,51

We considered that there was evidence of a causal rela-

tionship if: (i) IVW FDR P<0.05; (ii) the same direction of

effect as the IVW beta estimate and P<0.05 was found for

the weighted median and mode, MR PRESSO, IVW after

Steiger filtering and when there was also evidence of pleiot-

ropy (MR-Egger intercept P<0.05), MR-Egger or SIMEX

if I2
GX >0.9 or 0.6<I2

GX<¼0.9, respectively; and (iii) F

statistic>10 for continuous exposures.

Causal analysis using summary effect estimates

For those traits that met the MR sensitivity criteria, we

also ran causal analysis using summary effect estimates

(CAUSE).34 Uncorrelated horizontal pleiotropy occurs

when the effects on the exposure and the outcome are

uncorrelated and it can be accounted for by methods such

as MR-Egger or MR-PRESSO. Correlated horizontal plei-

otropy takes place when the effects on the exposure and

the outcome act through a shared heritable factor, and is

harder to account for by current MR methods. CAUSE can

deal with both kinds of horizontal pleiotropy, avoiding

therefore potential false-positive findings. This method

uses expected log pointwise posterior density (ELPD), a

Bayesian approach, to compare two nested models: a shar-

ing model where the causal effect (c) is zero but allows for

horizontal pleiotropic effects; and a causal model where c

is a free parameter.34 Independent variants (r2 <0.01; dis-

tance>250 kb) associated to the exposure with P<1.00e-

03 were included, and the cause v1.2.0 R package was

used for these analyses.34 A Bonferroni correction for the

number of tests undertaken was used to correct for multi-

ple testing at this stage (P<1.21e-03).

Results

Anthropometric measures

The IVW analyses showed findings with FDR P<0.05 for

one anthropometric trait when ADHD was the exposure,

17 when ADHD was considered as the outcome and seven

in both directions (Figure 1; Supplementary Table S4,

available as Supplementary data at IJE online). After sensi-

tivity analyses there was evidence of a positive effect of the

genetic liability of eight traits (arm, leg, whole body and

trunk fat-free mass, arm and trunk predicted mass, whole

body water mass and weight) on ADHD (Table 1), show-

ing moderate heterogeneity (40.128%<I2<46.114%,

Supplementary Table S5a, Figure S1, available as

Supplementary data at IJE online). Also, evidence meeting

the multiple comparison correction was found with

CAUSE for a causal effect of arm predicted mass and

weight on ADHD [odds ratio (OR)¼ 1.452, 95% CrI ¼
(1.307, 1.614), DELPD P¼ 5.32e-04 and OR¼ 1.430,

95% credible interval (CrI) ¼ (1.326, 1.539), DELPD

P¼ 1.01e-06, respectively], with also suggestive evidence

(DELPD P<0.05) of a positive effect for the remaining

traits (Figure 2, Table 2).

Cognitive function and intelligence

In the IVW analysis, a negative effect of ADHD genetic lia-

bility on mean time to correctly identify matches, a mea-

sure of raw processing and reaction speed, was detected as

well as a negative effect of intelligence when ADHD was

the outcome, and for cognitive performance and fluid
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intelligence in both directions (IVW FDR P<0.05)

(Table 1; Supplementary Table S4; Figure 1). Of them,

the effect of ADHD as exposure on cognitive performance

survived the sensitivity analyses, but showed high

heterogeneity (I2 ¼ 84.231%, Supplementary Table S5b,

Supplementary Figure S1a–h). When outliers were re-

moved in the MR-PRESSO analysis, the magnitude of the

causal effect estimate increased slightly (Supplementary

Table S5b,) and the heterogeneity went down to an I2 of

68.844%. The CAUSE analysis did not show evidence for

the effect of ADHD liability on cognitive performance

(DELPD P¼ 0.069, Table 2).

Early life events

Out of all early life exposure traits, a positive effect be-

tween maternal smoking around birth and ADHD was

identified in both directions in the IVW analysis; but only

when ADHD was considered as exposure were the sensitiv-

ity criteria met (Figure 1; Supplementary Table S4). There

was moderately high heterogeneity for this analysis (I2 ¼
63.896%), and although removing one outlier in the MR-

PRESSO analysis reduced the heterogeneity and the causal

effect estimate, measured as odds of maternal smoking per

unit increase in log odds ratio [log(OR)] of ADHD, it

remained significant [from OR¼ 1.037, 95% confidence

interval (CI) ¼ (1.023, 1.052) to OR¼1.03, 95%

CI¼ (1.018, 1.043), I2 ¼ 36.476%, Supplementary Table

S5c, Supplementary Figure S1am]. The effect of ADHD on

maternal smoking around birth, however, did not survive

multiple comparisons correction with CAUSE (DELPD

P¼ 2.19e-03, Table 2).

Education and employment

The IVW analysis detected results with FDR P<0.05 in

both directions for all traits analysed, with a negative effect

for age completed full-time education and years of school-

ing and a positive effect for job involving heavy manual,

physical work or mainly walking or standing (Figure 1,

Table 1; Supplementary Table S4). Only age completed

full-time education and years of schooling met the sensitiv-

ity analysis criteria in both directions. However, when

ADHD was the outcome, the Steiger analysis provided evi-

dence for reverse causation,with reduced effect sizes after

filtering, which suggests that at least part of the observed

effect was due to ADHD liability causing the educational

outcomes (Supplementary Table S5d). The heterogeneity

for these analyses was moderate (I2 <50%) except for the

effect of ADHD liability on years of schooling, which was

Figure 1 Number of traits included in each stage of the analysis for each direction and category. Total number of traits analysed (‘All’) are presented

as well as number of traits meeting the significance criteria in the MR main analysis (‘MR main’), in the MR sensitivity analyses (‘MR sens’) and in

CAUSE (‘CAUSE’). ADHD, attention deficit/hyperactivity disorder; CAUSE, causal analysis using summary effect estimates; MR, Mendelian

randomization
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Table 1 Mendelian randomization results

Traita ADHD! Trait Trait! ADHD

Number

of SNPs

Effect

size

95% CI FDR P Meets

sensitivity?

Number

of SNPs

OR 95% CI FDR P Meets

sensitivity?

Anthropometric measures

Arm fat-free mass (left) 9 0.026 (0.005, 0.046) 3.09E-02 No 479 1.671 (1.449, 1.927) 2.00E-11 Yes

Arm predicted mass (left) 9 0.025 (0.004, 0.046) 4.38E-02 No 471 1.665 (1.438, 1.929) 1.11E-10 Yes

Whole body fat-free mass 9 0.016 (�0.006, 0.038) 2.31E-01 – 509 1.431 (1.251, 1.637) 1.13E-06 Yes

Whole body water mass 9 0.016 (�0.006, 0.038) 2.25E-01 – 518 1.456 (1.27, 1.669) 5.24E-07 Yes

Leg fat-free mass (left) 9 0.012 (�0.016, 0.04) 4.88E-01 – 460 1.461 (1.262, 1.69) 2.12E-06 Yes

Trunk fat-free mass 9 0.017 (�0.003, 0.037) 1.47E-01 – 520 1.397 (1.218, 1.602) 8.25E-06 Yes

Trunk predicted mass 9 0.017 (�0.003, 0.037) 1.58E-01 – 518 1.406 (1.225, 1.613) 6.09E-06 Yes

Weight 9 0.045 (0.002, 0.088) 7.67E-02 – 458 1.662 (1.485, 1.859) 1.54E-17 Yes

Cognitive function and intelligence

Cognitive performance 9 �0.072 (�0.131, �0.013) 3.55E-02 Yes 134 0.600 (0.499, 0.722) 5.24E-07 No

Early life events

Maternal smoking around birthb 9 1.037 (1.023, 1.052) 1.89E-06 Yes 15 143.936 (25.34, 817.581) 1.70E-07 No

Education and employment

Age completed full-time educationb 9 0.930 (0.909, 0.951) 2.52E-09 Yes 36 0.167 (0.102, 0.275) 2.00E-11 Yes

Years of schooling 9 �0.098 (�0.138, �0.059) 5.99E-06 Yes 297 0.298 (0.251, 0.354) 1.20E-41 Yes

Lifestyle and environment

Alcohol intake frequencyb 9 1.108 (1.049, 1.171) 8.51E-04 Yes 92 1.399 (1.168, 1.676) 8.51E-04 No

Alcohol intake versus 10 years previouslyb 9 1.042 (1.026, 1.058) 1.13E-06 Yes 12 8.389 (2.293, 30.696) 3.62E-03 Yes

Alcohol usually taken with mealsb 9 0.959 (0.942, 0.976) 2.08E-05 Yes 33 0.085 (0.033, 0.221) 2.19E-06 No

Average weekly champagne plus white wine intakeb 9 0.955 (0.936, 0.975) 4.74E-05 Yes 4 0.148 (0.041, 0.528) 7.92E-03 No

Frequency of stair-climbing in past 4 weeksb 9 0.954 (0.918, 0.991) 3.21E-02 Yes 17 0.383 (0.204, 0.717) 7.00E-03 No

Nitrogen dioxide air pollution 2010 9 0.032 (0.016, 0.049) 5.37E-04 Yes 8 0.610 (0.159, 2.339) 5.43E-01 –

Particulate matter air pollution (pm2.5) 2010 9 0.047 (0.029, 0.064) 1.55E-06 Yes 7 1.989 (0.38, 10.401) 5.01E-01 –

Age first had sexual intercourse 9 �0.130 (-0.18, -0.08) 1.74E-06 Yes 184 0.223 (0.187, 0.266) 8.34E-61 Yes

Lifetime number of sexual partnersb 9 1.063 (1.029, 1.099) 8.61E-04 Yes 60 2.958 (1.76, 4.971) 1.63E-04 No

Current tobacco smokingb 9 1.041 (1.028, 1.055) 4.94E-09 Yes 32 12.305 (3.945, 38.38) 6.54E-05 No

Ever smokedb 9 1.032 (1.022, 1.043) 3.64E-09 Yes 73 15.251 (7.528, 30.898) 7.20E-13 No

(Continued)
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Table 1 Continued

Traita ADHD! Trait Trait! ADHD

Number

of SNPs

Effect

size

95% CI FDR P Meets

sensitivity?

Number

of SNPs

OR 95% CI FDR P Meets

sensitivity?

Pack/years adult smoking as proportion of lifespan

exposed to smoking

9 0.075 (0.039, 0.111) 1.73E-04 Yes 13 1.335 (0.971, 1.835) 1.28E-01 –

Past tobacco smokingb 9 0.905 (0.88, 0.931) 4.14E-11 Yes 87 0.381 (0.296, 0.491) 1.02E-12 Yes

Average total household income before taxb 9 0.909 (0.885, 0.933) 2.65E-11 Yes 44 0.329 (0.237, 0.455) 2.37E-10 No

Number of full sistersb 9 1.029 (1.016, 1.043) 8.78E-05 Yes 5 9.746 (0.4, 237.152) 2.38E-01 –

Townsend deprivation index at recruitment 9 0.075 (0.055, 0.095) 1.35E-12 Yes 17 5.400 (1.952, 14.941) 3.25E-03 Yes

Length of mobile phone useb 9 1.013 (0.975, 1.052) 5.87E-01 – 29 1.983 (1.314, 2.993) 3.14E-03 Yes

Time spent watching television (TV)b 9 1.030 (0.997, 1.065) 1.34E-01 – 107 3.495 (2.521, 4.847) 1.00E-12 Yes

Longevity

Parental longevity (combined parental attained age,

Martingale residuals)c
9 0.050 (0.029, 0.071) 1.07E-05 Yes 10 0.972 (0.462, 2.041) 9.62E-01 –

Neurological, psychiatric and mental health

Major depressive disorderb 10 1.200 (1.122, 1.283) 7.12E-07 Yes 5 1.739 (1.048, 2.886) 6.25E-02 –

Personality and psychosocial factors

Able to confideb 9 0.919 (0.881, 0.959) 3.51E-04 No 13 0.635 (0.46, 0.878) 1.39E-02 Yes

Frequency of tiredness/lethargy in past 2 weeksb 9 1.029 (1.004, 1.055) 5.16E-02 – 36 5.220 (2.809, 9.698) 1.13E-06 Yes

Frequency of unenthusiasm/disinterest in past 2 weeksb 9 1.034 (1.021, 1.047) 1.13E-06 yes 11 8.077 (1.753, 37.221) 1.69E-02 No

For all the traits with inverse variance weighted FDR P <0.05 which also met the sensitivity criteria in at least one direction, the number of SNPs included, the inverse variance weighted results and information on whether

the MR sensitivity criteria were met are presented for both directions.

MR, Mendelian randomization; ADHD, attention deficit/hyperactivity disorder; SNP, single nucleotide polymorphism; CI, 95% confidence interval; FDR, false-discovery rate; P, P-value.
aThe unit reported for all continuous traits is SD, except for years of schooling, which was provided in years and cognitive performance, which was provided using a cognitive score.44

bThe causal effect size provided for the comparison with ADHD as the exposure for these traits is odds raio (OR) per ADHD log(OR) unit increase, since they were all analysed as categorical ordered, except for maternal

smoking around birth, ever smoked, alcohol usually taken with meals and major depressive disorder, which were analysed as binary.
cFor parental longevity (combined parental attained age, Martingale residuals) a positive effect size indicates decreased attained age.47
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considerable (I2 ¼ 87.572%, Supplementary Table S5d).

After excluding outliers, MR-PRESSO results remained sig-

nificant (Supplementary Table S5d, Supplementary Figure

S1au) and the heterogeneity decreased, although it remained

substantial (I2 ¼ 67.755%). CAUSE confirmed these results,

providing strong evidence for a causal effect per unit increase

in the log(OR) of ADHD on odds of decreased age completed

full-time education and years of schooling [OR¼ 0.972,

95% CrI¼ (0.962, 0.981), DELPD P¼ 2.85e-04 and beta¼ -

0.036, 95% CrI ¼ (-0.048, -0.024), DELPD P¼ 8.04e-05, re-

spectively] (Figure 2, Table 2). Evidence in the opposite direc-

tion was also found, with causal effect per unit increase in

odds of increased age completed full-time education and

years of schooling on ADHD odds [OR¼0.435, 95%

CrI¼ (0.356, 0.533), DELPD P¼2.51e-06 and OR¼ 0.458,

95% CrI¼ (0.411, 0.511), DELPD P¼ 1.08e-010, respec-

tively] (Figure 2, Table 2).

Lifestyle and environment

In the IVW analysis 12 lifestyle and environment traits had

FDR P<0.05 when ADHD was the exposure, three when

ADHD was the outcome and 18 in both directions

(Figure 1; Supplementary Table S4). After the sensitivity

analyses, we found evidence for an effect of ADHD as ex-

posure on traits related to alcohol use (increased alcohol

intake frequency, alcohol intake versus 10 years previously,

decreased alcohol usually taken with meals and average

weekly champagne plus white wine intake), physical exer-

cise (decreased frequency of stair-climbing in past

4 weeks), air pollution (increased nitrogen dioxide and par-

ticulate matter), sexual behaviour (decreased age first had

sexual intercourse and increased lifetime number of sexual

partners), smoking (increased current tobacco smoking,

ever smoking and pack/years adult smoking, and decreased

past tobacco smoking) and sociodemographic information

(decreased average total household income and increased

Townsend deprivation index and number of sisters)

(Table 1). Alcohol intake versus 10 years previously, age of

first sexual intercourse, past tobacco smoking and

Townsend deprivation index also had an effect when

ADHD was used as outcome, as did length of mobile

phone use and time spent watching television (Table 1).

When ADHD was considered as outcome, all analyses

that met the sensitivity criteria also showed evidence of re-

verse causation, with smaller effect sizes after Steiger filter-

ing particularly for Townsend deprivation index,

suggesting that at least some the observed effect was due to

Figure 2 Diagram of the relationships found with consistent evidence across methods. Traits are coloured by category (education and employment in

green; anthropometric measures in blue; neurological, psychiatric and mental health-related traits in red; and lifestyle and environment in purple)

and CAUSE effect sizes are presented. Details on effect size units can be found in Table 2. ADHD, attention deficit/hyperactivity disorder; CAUSE,

causal analysis using summary effect estimates; TV, television
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Table 2 Causal analysis using summary effect estimates results

Traita ADHD! Trait Trait! ADHD

c 95% CrI DELPD (SE) DELPD P c 95% CrI DELPD (SE) DELPD P

Anthropometric measures

Arm fat-free mass (left) – – – – 1.441 (1.287,1.606) �4.444 (1.555) 2.13E-03

Arm predicted mass (left) – – – – 1.452 (1.307,1.614) �4.57 (1.396) 5.32E-04

Whole body fat-free mass – – – – 1.312 (1.175,1.464) �3.275 (1.405) 9.87E-03

Whole body water mass – – – – 1.312 (1.176,1.464) �3.14 (1.346) 9.83E-03

Leg fat-free mass (left) – – – – 1.371 (1.234,1.523) �3.79 (1.4) 3.39E-03

Trunk fat-free mass – – – – 1.232 (1.1,1.381) �2.51 (1.44) 4.06E-02

Trunk predicted mass – – – – 1.244 (1.108,1.398) �2.505 (1.406) 3.74E-02

Weight – – – – 1.430 (1.326,1.539) �5.71 (1.202) 1.01E-06

Cognitive function and intelligence

Cognitive performance �0.023 (�0.04,�0.006) �2.681 (1.81) 6.92E-02 – – – –

Early life events

Maternal smoking around birthb 1.012 (1.007,1.017) �4.886 (1.715) 2.19E-03 – – – –

Education and employment

Age completed full time educationb 0.972 (0.962,0.981) �5.655 (1.641) 2.85E-04 0.435 (0.356,0.533) �6.159 (1.349) 2.51E-06

Years of schooling �0.036 (�0.048,-0.024) �6.5 (1.723) 8.04E-05 0.458 (0.411,0.511) �7.184 (1.131) 1.08E-10

Lifestyle and environment

Alcohol intake frequencyb 1.033 (1.017,1.049) �5.103 (2.079) 7.04E-03 – – – –

Alcohol intake versus 10 years previouslyb 1.010 (1.003,1.016) �2.66 (1.813) 7.12E-02 2.099 (1.294,3.384) �3.324 (1.814) 3.34E-02

Alcohol usually taken with mealsb 0.986 (0.98,0.993) �4.543 (1.8) 5.80E-03 – – – –

Average weekly champagne plus white wine intakeb 0.985 (0.977,0.994) �3.654 (1.905) 2.75E-02 – – – –

Frequency of stair climbing in last 4 weeksb 0.991 (0.979,1.002) �0.55 (1.288) 3.35E-01 – – – –

Nitrogen dioxide air pollution 2010 0.003 (-0.005,0.012) 0.653 (0.47) 9.18E-01 – – – –

Particulate matter air pollution (pm2.5) 2010 0.008 (-0.001,0.016) �0.936 (1.484) 2.64E-01 – – – –

Age first had sexual intercourse �0.058 (-0.072,�0.044) �6.939 (1.562) 4.47E-06 0.413 (0.372,0.457) �7.797 (1.105) 8.70E-13

Lifetime number of sexual partnersb 1.023 (1.013,1.033) �5.869 (1.911) 1.06E-03 – – – –

Current tobacco smokingb 1.015 (1.01,1.021) �5.488 (1.703) 6.35E-04 – – – –

Ever smokedb 1.011 (1.006,1.016) �5.368 (1.974) 3.27E-03 – – – –

(Continued)
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Table 2 Continued

Traita ADHD! Trait Trait! ADHD

c 95% CrI DELPD (SE) DELPD P c 95% CrI DELPD (SE) DELPD P

Pack years adult smoking as proportion of life

span exposed to smoking

0.034 (0.019,0.047) �4.232 (1.751) 7.81E-03 – – – –

Past tobacco smokingb 0.963 (0.947,0.978) �5.747 (1.829) 8.37E-04 0.588 (0.523,0.664) �5.685 (1.399) 2.41E-05

Average total household income before taxb 0.966 (0.954,0.979) �5.777 (1.809) 7.01E-04 – – – –

Number of full sistersb 1.007 (0.999,1.013) �1.207 (1.546) 2.17E-01 – – – –

Townsend deprivation index at recruitment 0.024 (0.015,0.033) �4.996 (1.701) 1.65E-03 1.870 (1.38,2.522) �3.676 (1.546) 8.72E-03

Length of mobile phone useb – – – – 1.281 (1.084,1.516) �2.874 (1.805) 5.56E-02

Time spent watching television (TV)b – – – – 1.862 (1.545,2.246) �4.491 (1.475) 1.16E-03

Longevity

Parental longevity (combined parental attained age,

Martingale residuals)c
0.017 (0.007,0.026) �3.663 (1.873) 2.52E-02 – – – –

Neurological, psychiatric and mental health

Major depressive disorderb 1.110 (1.073,1.148) �5.828 (1.666) 2.34e-04 – – – –

Personality and psychosocial factors

Able to confideb – – – – 0.864 (0.739,1.012) �0.836 (1.416) 2.77E-01

Frequency of tiredness/lethargy in past 2 weeksb – – – – 1.772 (1.388,2.25) �3.717 (1.523) 7.34E-03

Frequency of unenthusiasm/disinterest in past 2 weeksb 1.013 (1.007,1.019) �5.665 (1.982) 2.13E-03 – – – –

For all analyses that met the MR sensitivity criteria, CAUSE results are presented, including an estimate of the causal effect size (c) with 95% credible intervals and the difference between the ELPD in the causal and in the

sharing models (DELPD) with its standard error and one-sided P-value. P-values meeting a Bonferroni corrected threshold are highlighted in bold (0.05/41¼1.21E-03).

MR, Mendelian randomization; CAUSE, causal analysis using summary effect estimates; ADHD, attention deficit/hyperactivity disorder; Crl, credible interval; ELPD, expected log pointwise posterior density; SE, standard

error; P, P-value.
aThe unit reported for all continuous traits is SD, except for years of schooling, which was provided in years and cognitive performance, which was provided using a cognitive score.44

bThe causal effect size (c) provided for these traits is odds ratio (OR) per ADHD log(OR) unit increase when ADHD is the exposure, since they were all analysed as categorical ordered, except for maternal smoking around

birth, ever smoked, alcohol usually taken with meals and major depressive disorder, which were analysed as binary.
cFor parental longevity (combined parental attained age, Martingale residuals) a positive effect size indicates decreased attained age.47
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ADHD liability causing the lifestyle and environmental

outcomes (Supplementary Table S5e). Also, high heteroge-

neity (I2 >70%) was detected for alcohol intake frequency,

age of first sexual intercourse and lifetime number of sex-

ual partners when ADHD was the exposure and for

Townsend deprivation index in the other direction

(Supplementary Figure S1s, af, ah, au, Supplementary

Table S5e). After removing outliers there was still evidence

of a causal effect and the heterogeneity decreased, although

it remained around 60% for age of first sexual intercourse,

lifetime number of sexual partners and Townsend depriva-

tion index (Supplementary Table S5e).

After multiple comparisons correction, CAUSE analyses

provided evidence with ADHD as the exposure for lower

odds of increased average total household income

[OR¼ 0.966, 95% CrI¼ (0.954, 0.979)], higher odds of a

increased lifetime number of sexual partners [OR¼ 1.023,

95% CrI¼ (1.013, 1.033)] and a negative effect in both

directions for age first had sexual intercourse

[beta¼�0.058, 95% CrI¼ (�0.072, �0.044) and

OR¼ 0.413, 95% CrI¼ (0.372, 0.457) for ADHD as ex-

posure and outcome, respectively] (Figure 2, Table 2).

Evidence was also found for a positive effect of ADHD lia-

bility on current tobacco smoking [OR¼ 1.015, 95%

CrI¼ (1.01, 1.021)], and a negative effect for past tobacco

smoking in both directions [OR¼ 0.963, 95%

CrI¼ (0.947, 0.978), OR¼ 0.588, 95% CrI¼ (0.523,

0.664) for ADHD as exposure and outcome, respectively]

(Figure 2, Table 2). In addition, time spent watching televi-

sion seemed to increase significantly the odds of ADHD

[OR¼ 1.862, 95% CrI¼ (1.545, 2.246)] (Figure 2,

Table 2). Suggestive evidence (DELPD P<0.05) was shown

in the CAUSE analysis for a causal effect of the genetic lia-

bility of ADHD on the remaining smoking-related traits

and on all alcohol-related traits, except for alcohol intake

versus 10 years previously, which showed an effect in the

opposite direction, and for Townsend deprivation index,

which showed an effect in both directions (Table 2).

Longevity

In the IVW analysis, there was no evidence of a causal effect

when ADHD was considered as outcome, but evidence for

an effect of ADHD as exposure was found in all longevity-

related traits, decreasing maternal, paternal and combined

age of death or attained age and decreasing the odds of both

parents being in the top 10% of survival (Figure 1, Table 1;

Supplementary Table S4). However, only effects on com-

bined parental attained age met the sensitivity analysis crite-

ria and showed suggestive evidence of a causal relationship in

the CAUSE analysis, although it did not meet multiple testing

correction (DELPD P¼ 0.025, Table 2).

Neurological, psychiatric and mental

health-related traits

We found evidence of an increase in the odds of major de-

pression per unit increase in the log(OR) of ADHD in the

IVW analysis [OR¼ 1.200, 95% CI=(1.122, 1.283),

Table 1], which survived the sensitivity analyses and also

met the Bonferroni correction for multiple testing in

CAUSE [OR¼ 1.110, 95% CrI=(1.073, 1.148), DELPD

P¼ 2.34e-04] (Figure 2, Table 2). An alternative and more

broad definition of depression, however, did not reach sta-

tistical significance at any stage, and neither did the other

analyses undertaken (Figure 1; Supplementary Table S4).

Personality and psychosocial factors

In the IVW analysis, we found evidence of an effect for

ADHD as exposure on one trait, with ADHD as outcome

for nine traits and in both directions for three traits

(Supplementary Table S4; Figure 1). The effect of the ge-

netic liability of ADHD on frequency of unenthusiasm/dis-

interest in past 2 weeks met the sensibility analysis criteria,

but was only suggestive after multiple comparison correc-

tion in the CAUSE analysis (DELPD P¼ 2.13e-03, Table 2)

and evidence of reverse causation was found in the oppo-

site direction (Supplementary Table S5h). The effect of the

genetic liability of frequency of tiredness/lethargy in past

2 weeks and of being able to confide on ADHD remained

after the sensitivity analyses, but only suggestive evidence

was found for being able to confide in the CAUSE analyses

(DELPD P¼ 7.34e-03, Table 2).

Overall, the direction of the causal effect size estimates

was consistent between IVW MR and CAUSE for all analy-

ses undertaken and, in general, CAUSE effect size estimates

were smaller than those estimated by IVW MR (Figure 3,

Tables 1 and 2).

Discussion

In the present study we assessed for the first time the causal

relationships between ADHD and a broad range of ADHD-

related traits, applying complementary approaches. Through

this comprehensive strategy we found consistent evidence

across methods for a causal effect of the genetic liability of

anthropometric measures and time spent watching television

on ADHD, for the genetic liability of ADHD on average

household income and major depressive disorder, and a bidi-

rectional relationship with educational achievement, smoking

and sexual behaviour.

Our findings give support to the relationship between

ADHD and risk-taking behaviours and to existing evidence

indicating that ADHD is an entry point into a harmful life
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trajectory, where ADHD individuals are more likely to en-

gage in behaviours that put them at risk for negative out-

comes, including smoking, problematic substance use or

unsafe sexual behaviour.58,59 We confirm previous findings

for a causal effect of the genetic liability of ADHD on smok-

ing behaviour.29 In particular, we found a positive effect of

ADHD liability on frequency of current smoking and a neg-

ative effect on past tobacco smoking, which indicates lower

frequency of smoking in the past for individuals who were

not heavy smokers when asked. These results may suggest

that those individuals who were heavy smokers in the past

carried on being heavy smokers when asked, and support

that ADHD genetic liability may increase frequency of

smoking and make smokers less likely to give up, which

agrees with a reported negative effect of ADHD liability in

smoking cessation.29 A recent MR study, however, did not

find evidence for a causal relationship from liability for

ADHD to nicotine dependence, although their sample size

was more limited and these results may just reflect lack of

statistical power.60 We also found suggestive evidence for

an effect of the genetic liability of ADHD increasing smok-

ing initiation and pack/years of smoking that support previ-

ous findings.29,30 Also, despite not surpassing the strict

Bonferroni correction applied, suggestive evidence of a

causal effect of the genetic liability of ADHD increasing al-

cohol intake frequency and making individuals less likely to

have their alcohol intake with meals, was found, which sug-

gests increased risk for prejudicial use of alcohol. Although

previous studies reported a weak effect of liability to ADHD

on alcohol dependence, they failed to find a causal connec-

tion between ADHD and alcohol amount or alcohol use dis-

order.29 Differences between the traits considered, sample

sizes or the way of measuring alcohol consumption may ac-

count for inconsistent findings among studies. With respect

to sexual behaviour, we show, for the first time, evidence

for a causal role of the genetic liability to ADHD on lower

age at first sexual intercourse and on increased lifetime num-

ber of sexual partners. In line with all these results, and with

additional evidence from observational literature, we also

found suggestive evidence for a causal effect of ADHD ge-

netic liability on decreased longevity.14

Our results also support a positive effect of time spent

watching television on ADHD, which goes in line with a

reported association between ADHD and television usage

and with evidence from longitudinal studies reporting an ef-

fect of increased screen time worsening a child’s develop-

ment and increasing risk for autism spectrum disorder.61–63

In addition, our findings strengthen previous evidence

linking ADHD with academic, employment and financial

problems.17,64 In fact we report, for the first time, consis-

tent evidence for a negative causal effect of ADHD liability

on years of schooling, age completed full-time education

and average total household income before tax, and sug-

gestive evidence of a positive effect on Townsend depriva-

tion index at recruitment. In addition, evidence was found

in the other direction for the educational traits and sugges-

tive evidence for Townsend deprivation index. Given that

ADHD is a neurodevelopmental disorder, the latest

Figure 3 Causal effect estimates obtained by MR, with 95% CI, vs those obtained by CAUSE, with 95% CrI, in both directions. Effect sizes are provided as

logOR for binary and categorical ordered traits. Different categories have been plotted in different colours, and traits with results meeting the Bonferroni

corrected threshold in CAUSE are labelled. ADHD, attention deficit/hyperactivity disorder; CAUSE, causal analysis using summary effect estimates; CI,

confidence interval; CrI, credible interval; MDD, major depressive disorder; MR, Mendelian randomization; TV, television; OR, odds ratio
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relationships are temporally implausible and results may

reflect previous studies showing that children in families

with lower parental education, family income or socioeco-

nomic status are at higher risk for ADHD or ADHD symp-

toms.6,65,66 This is consistent with dynastic effects, when

genetic variants in parents may affect the next generation

indirectly through their effect on the environment rather

than through the inherited DNA, affecting our results.67

For instance, it might be that parent’s socioeconomic status

could influence parenting skills, social development or

stress levels and these, in turn, may impact on children’s

mental health.66

Along these lines, we also found evidence for liability of

lower age at first sexual intercourse and of lower rate of

past tobacco smoking in non-heavy smokers increasing the

odds of ADHD. Evidence from the literature has linked re-

lated traits such as young parental age or maternal smok-

ing with increased risk of ADHD in children,5,68,69

suggesting that these chronological implausible results may

also be driven by dynastic effects.

We also show evidence consistent with a positive effect

of anthropometric measures on ADHD, a finding which is

likely related to the effect of BMI liability on ADHD,

reported in a previous MR study.23 Later studies with lon-

gitudinal and family designs, however, pointed to this rela-

tionship being largely explained by a variety of

psychosocial factors and shared genetic and environmental

confounders, also including a role for parental education

dynastic effects.24,25

Our findings also confirm the effect of ADHD liability

on major depression and the lack thereof when using a

broader definition,22 but no evidence supporting previous

results of a causal relationship of ADHD and birthweight

or intelligence was found. These discrepancies may be

explained by methodological differences between studies,

including: (i) the selection of genetic instruments and addi-

tional covariates taken into account by authors considering

birthweight18; or (ii) differences in sensitivity analyses un-

dertaken when the protective effect of intelligence on

ADHD was described.19

The results of the present study should be interpreted in

the light of several limitations, as follows.

i. Given that we aimed to give an overview of potential

causal relationships between ADHD and a consider-

able number of related traits, using publicly available

summary statistics datasets, it was not feasible to tai-

lor the analytical strategy separately for each trait or

to carefully curate each phenotype. This may have

prevented us from identifying additional evidence for

causal relationships, as may be the case for birth-

weight mentioned above,18 but also may have led to

some spurious findings due to instrument mis-

specification.

ii. Aiming to avoid false-positive results, we designed a

strict analysis pipeline. We undertook a comprehen-

sive set of sensitivity analyses, including the weighted

mode, recently reported to maintain the correct type I

error rate in a diverse set of scenarios but also to be

too conservative, particularly for large sample sizes.70

In addition, we applied a strict multiple testing correc-

tion, despite the presence of correlated traits.

iii. Despite undertaking this range of different analyses,

each one under a different set of assumptions, and

selecting only results that were consistent across meth-

ods, we still identified some temporally implausible

relationships. These associations could be explained

statistically because the instruments were used as

measures of the liability for a trait, not necessarily its

observed manifestation,70 although they may also in-

dicate the invalidity of the genetic instruments. As dis-

cussed above, some of them, such the effect of

socioeconomic status or smoking behaviour liability

on ADHD, are likely driven by dynastic effects. In ad-

dition, for those traits with evidence of bidirectional

causality, we cannot rule out a scenario where most of

the heritable variation of both exposure and outcome

is mediated by the same unobserved process, as ac-

knowledged by CAUSE authors.34

iv. Some of the scenarios where MR sensitivity analyses

have been carried out may not have been optimal for

their performance: for instance, the limited number of

genetic instruments available for ADHD (particularly

relevant for MR Egger) or the difference in sample

size between the exposure and the outcome in some

comparisons (relevant for Steiger filtering). It may be

that under more suitable circumstances, MR sensitiv-

ity analyses would be more efficient in detecting false-

positive results.

v. In addition, genetic variants could be associated with

more than one trait, which would make it difficult to

ascertain which one is the true causal exposure. This

is particularly relevant when analysing correlated

traits, as it is the case in this study. Further sensitivity

analyses, which were out of the scope of this study, ex-

cluding variants associated with other traits or under-

taking mediation analysis would contribute to deepen

our understanding and provide more robust evidence

for the causal relationships identified. For instance,

multivariable MR analyses have been used to detect

an effect of educational attainment mediating the rela-

tionship between BMI and ADHD.25

vi. We must be cautious when comparing effect sizes be-

tween analyses with ADHD as exposure and outcome,
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since they are often presented in different scales, and

there are a number of assumptions that need to hold

for reliable interpretation of causal effects for binary

exposures.71 Also, due to differences in sample size,

the power was often different between analyses, which

in turn makes it difficult to establish a prevailing direc-

tion of causality for traits with a bidirectional effect.

vii. There are some methodological issues that should also

be considered. Given the large resources of GWAS

summary statistics currently available and the flour-

ishment of MR-related methods being developed,

there is a huge potential for MR analyses to shed light

into the causal relationships between many complex

traits. We should, however, also bear in mind their

limitations when designing studies and interpreting

results. In order to avoid the effect of horizontal plei-

otropy, which is relevant given that emerging results

from GWAS point to a large number of genetic var-

iants being associated with multiple traits,51,71 we fol-

lowed up MR findings with CAUSE.34 Overall we

observed consistency in direction of effects between

both methods, with smaller effect sizes estimated by

CAUSE than by MR and narrower intervals in gen-

eral. The difference in effect sizes may be due to

CAUSE also accounting for horizontal pleiotropy in

its model. Although, CAUSE authors’ also acknowl-

edge that in the event of causality and no correlated

pleiotropy, their causal estimates tend to shrink to-

wards zero in comparison with other methods, partly

due to prior distribution being centred at zero.34

Under these circumstances they also report lower

mean squared error for CAUSE compared with MR if

causal effects are small, and there is also low power

on the exposure, which seems to be the case when we

consider ADHD as exposure.34 Overall, despite the

use of a range of complementary approaches in this

study and of the evidence provided for causal relation-

ships supported by the literature and by alternative

study designs, such as the effect of ADHD on depres-

sion,22 it seems that some of our results may still have

been affected by biases such as dynastic effects. This

highlights the caution that must still be exerted when

interpreting MR findings and the need for other stud-

ies with alternative designs, such as those in families,72

to triangulate their findings and confirm MR results.

Conclusion

Our results are consistent with a causal effect of the genetic

liability of ADHD on average household income and major

depressive disorder, of the genetic liability of anthropomet-

ric measures and time spent watching television on

ADHD, and of a bidirectional relationship with educa-

tional achievement, smoking and sexual behaviour.

Additional analyses with complementary study designs to

avoid the effect of potential biases will be required to fol-

low up these findings. However, our results may still con-

tribute to explain part of the widespread co-occurring

traits and comorbid disorders across the lifespan of indi-

viduals with ADHD, and may open new opportunities for

developing preventive strategies for ADHD and for nega-

tive ADHD trajectories.
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ARTICLE OPEN

Comprehensive analysis of omics data identifies relevant gene
networks for Attention-Deficit/Hyperactivity Disorder (ADHD)
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Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder that results from the interaction
of both genetic and environmental risk factors. Genome-wide association studies have started to identify multiple genetic risk loci
associated with ADHD, however, the exact causal genes and biological mechanisms remain largely unknown. We performed a
multi-step analysis to identify and characterize modules of co-expressed genes associated with ADHD using data from peripheral
blood mononuclear cells of 270 ADHD cases and 279 controls. We identified seven ADHD-associated modules of co-expressed
genes, some of them enriched in both genetic and epigenetic signatures for ADHD and in biological pathways relevant for
psychiatric disorders, such as the regulation of gene expression, epigenetics and immune system. In addition, for some of the
modules, we found evidence of potential regulatory mechanisms, including microRNAs and common genetic variants. In
conclusion, our results point to promising genes and pathways for ADHD, supporting the use of peripheral blood to assess gene
expression signatures in psychiatric disorders. Furthermore, they highlight that the combination of multi-omics signals provides
deeper and broader insights into the biological mechanisms underlying ADHD.

Translational Psychiatry          (2022) 12:409 ; https://doi.org/10.1038/s41398-022-02182-8

INTRODUCTION
Attention-deficit/hyperactivity disorder (ADHD) is a highly pre-
valent neurodevelopmental disorder that affects around 5–6% of
children and adolescents worldwide, and in 40–65% of cases
persist into adulthood [1]. It is mainly characterized by inattention
and/or hyperactivity and high levels of impulsivity.
ADHD is a complex disorder that results from the interaction of

both genetic and environmental risk factors, with an estimated
heritability of 70–80% throughout the lifespan [2]. Several studies
support the role of both common and rare genetic variants in the
development of ADHD, although its etiology and pathogenesis still
remain largely unknown [2]. The first genome-wide association
study (GWAS) meta-analysis identifying genetic risk variants for
ADHD (20,183 cases and 35,191 controls) was published in 2019
[3]. They identified 12 independent ADHD risk loci and estimated
that common variants account for 22% of the total ADHD
heritability. In addition, very recently, a larger GWAS meta-
analysis on ADHD reported 21 new loci and a reduced estimated
SNP heritability (h2SNP= 14%) [4]. These data highlight that part of
the genetic variance still needs to be explained, which may be
accounted, in part, for gene by environment interactions [5].
Epigenetic processes (i.e. histone modifications, DNA methylation
and microRNAs) are potential mechanisms by which environmen-
tal risk factors lead to changes on gene expression and long-lasting

alterations in the neuronal circuits found in psychiatric disorders
like ADHD [6]. Recently, the first epigenome-wide association study
(EWAS) in peripheral blood mononuclear cells (PBMCs) from adults
with ADHD was published, identifying four regions differentially
methylated and located in genes previously related to auto-
immune disorders, cancer, or neuroticism [7]. Additional EWAS in
saliva and whole blood have been performed both in adults and
children with ADHD diagnosis or ADHD symptoms, however,
results among studies are not consistent and further studies with
larger sample sizes are needed [8–12].
Although genetic and epigenetic factors that contribute to the

etiology of ADHD have started to be identified through GWAS and
EWAS, their biological relevance is difficult to characterize, in part,
because genetic risk loci were usually associated with the nearest
gene, which may not be necessarily the true causal one. In
contrast, the analysis of gene expression profiles provides a closer
physiological picture of the disorder that is easier to interpret, and
reduces the burden of multiple testing. Transcriptome studies in
ADHD, nevertheless, are limited by the inaccessibility of brain
samples and have been focused on whole blood or PBMCs. To
date, eight transcriptomic studies on ADHD have been performed,
highlighting alterations in genes involved in several neuronal
functions and the immune system [13–20]. However, the studies
performed so far were based on differential gene expression
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analyses between ADHD cases and controls, which assume that
every gene acts as an independent unit in the expression
landscape and select genes based on statistical significance. In
contrast, gene co-expression network analyses use an unsuper-
vised framework to identify groups of genes with similar
expression patterns (co-expressed genes) independently of any
phenotype and then correlate these gene modules with a
phenotype of interest. This approach has been widely used to
characterize patterns of co-expression in normal brain [21, 22] and
both in brain and blood samples from several psychiatric disorders
[23–28].
In the present study, we aimed to perform a multi-step analysis

to identify and characterize modules of co-expressed genes
associated with ADHD using expression data from PBMCs of ADHD
cases and controls. To further understand the biological relevance
and provide a more accurate picture of the regulatory mechan-
isms, we performed a comprehensive characterization of genes in
each module and combined genomic and transcriptomic data to
identify loci that may regulate the ADHD-associated co-
expressed genes.

MATERIALS AND METHODS
Study design
A comprehensive and multi-step approach was applied to identify and
characterize modules of co-expressed genes in PBMCs. In the first step we
ran a Weighted Gene Correlation Network Analysis (WGCNA) on the
processed transcriptomic data from 270 ADHD cases and 279 controls and
assessed the association of the resulting co-expression modules with
ADHD status. Subsequently, we disentangled the biological relevance of
the ADHD-associated co-expression modules by (i) performing enrichment
analyses in brain expression, functional pathways, druggable genes and
miRNA target genes, (ii) combining results with ADHD genetic, transcrip-
tomic, and epigenetic signatures, and (iii) running a co-expression module
eQTL analysis to identify loci regulating the ADHD-associated modules of
co-expressed genes (Fig. 1).

Participants
Analysis of co-expression modules was performed in an in-house sample of
270 ADHD cases (59.3% male, mean age = 34.2 years, s.d= 11.7) and 279
controls (56.9% male, mean age = 36.6 years, s.d= 9.9). All subjects were
of European ancestry. Clinical assessment was conducted by structured
interviews and self-reported questionnaires as previously described [19].
Detailed information is available in Supplementary Information. The study
was approved by the Clinical Research Ethics Committee (CREC) of Hospital
Universitari Vall d’Hebron, methods were performed in accordance with
the relevant guidelines and regulations and written informed consent was
obtained from all subjects before inclusion in the study.

Transcriptome profiling and weighted gene correlation
network analysis (WGCNA)
RNA from PBMCs was isolated, hybridized to GeneChip Human Gene 1.1 ST
96-Array plate (Affymetrix) and data were analyzed as previously described
[19] (Supplementary Information). Modules of co-expressed genes were
identified from processed transcriptomic data by the WGCNA R-package
[29]. A soft-thresholding power of 4 was selected (Fig. S1) and one-step
network construction and module detection was performed considering
an unsigned network type with default values (additional details in
Supplementary Information). Gene expression for each module was
represented by a module eigengene, derived from its first principal
component and treated as a quantitative trait in the downstream analyses.
The association between the module eigengenes and ADHD status or
potential confounding factors (age, sex, RNA integrity number (RIN), and
batch) was tested using regression analyses. Bonferroni correction was
applied to correct for multiple testing considering the overall number of
co-expression modules constructed (P < 0.05/27 modules <1E-03).
Within each module we examined the correlation between module

membership (an indicator of the intramodular connectivity of a gene
based on the association between its expression and the module
eigengene) and gene significance (effect size of the association between
each gene and ADHD) using Pearson correlation (Fig. S2).

Enrichment analyses in the ADHD-associated co-expression
modules
We assessed whether genes in each ADHD-associated co-expression
module were expressed in specific brain regions at different develop-
mental stages using data from the Allen Human Brain Atlas with
ABAEnrichment R-package [30] (additional details in Supplementary
Information). Then, enrichment analyses with the webtool WebGestAlt
(WEB-based GEne SeT AnaLysis Toolkit, http://www.webgestalt.org/) [31]
were performed on: (i) Gene Ontology non-redundant Biological Process
(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome, (ii)
target genes of pharmacological drugs based on the information from
PharmGKB and (iii) miRNA target genes. False discovery rate P-value
(PFDR) < 0.05 was set as the significance threshold.
In addition, the correlation between the identified miRNA and its

corresponding module eigengene was tested using the non-parametric
Spearman rank correlation test in a subset of 310 individuals included in
the WGCNA (60% overlap; 150 ADHD cases and 160 controls) from whom
miRNA expression profile data from PBMC were available as described in
Sanchez-Mora et al. [16]. Expression was available and retrieved from a
total of 27 mature miRNAs and Bonferroni correction was used to adjust for
multiple testing (P < 0.05/27 tests <1.85E−03).

Integrative analysis of ADHD-associated co-expression
modules and ADHD omics data
ADHD transcriptomic signatures. After quality control and sample proces-
sing, differential gene expression profiles between the 270 ADHD cases
and 279 controls used in the WGCNA analysis were obtained with Limma
R-package [32]. Only genes with PFDR < 0.05 and fold change (FC) > |1.15|
were considered differentially expressed and were used to test for
enrichment in the ADHD-associated co-expression modules using a
F-Fisher test and Bonferroni correction across all modules (P < 0.05/7
modules <7.1E−03).

ADHD genetic signatures. The identified ADHD-associated co-expression
modules were used as gene sets to test for enrichment in ADHD genetic

Fig. 1 Flowchart of the study. Modules of co-expressed genes were
identified from peripheral blood mononuclear cells (PBMCs) of
processed transcriptomic data from 270 ADHD cases and 279
controls by using Weighted Gene Correlation Network Analysis
(WGCNA). Then, we assessed the association of the resulting
modules with the ADHD status and investigated their biologically
relevance by (i) performing enrichment analyses in brain expression
(ABAenrichment R package), functional pathways, druggable genes
and miRNA target genes using WebGestAlt webtool; (ii) integrating
ADHD transcriptomic, genetic and epigenetic data from GWAS
meta-analysis [3] and EWAS [7] on ADHD; and (iii) running a co-
expression module eQTL analysis to identify loci regulating the
ADHD-associated modules of co-expressed genes.
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signatures, considering the European ancestry GWAS summary statistics on
ADHD described by Demontis et al. [3]. Gene-based analyses were run in
MAGMA_v1.08 [33] using the SNP-wise mean model, and SNPs were
assigned to genes based on a positional-approach and eMAGMA [34, 35].
Competitive gene-set analysis was performed using P-values obtained
from each gene-based analysis. Bonferroni correction was applied to
correct for multiple testing (P < 7.1E-03; Supplementary Information)

ADHD methylation signatures. To test for enrichment in ADHD epigenetic
marks in modules of co-expressed genes we used the summary statistics of
an EWAS on PBMCs from 103 ADHD patients and 100 controls [7] (90%
sample overlap with the in-house sample used in WGCNA), setting the
unadjusted P-value < 0.01 to select differentially methylated proves
(n= 3967 CpG sites). We considered enrichment in epigenetic signatures
in a co-expression module when the three approaches used (methylglm,
methylRRA and gsameth [36]) were significant after applying the Bonferroni
correction for multiple comparison corrections (P < 7.1E−03; Supplemen-
tary Information).

Gene-module eQTL analysis and functional annotation
Genetic information was available from a subset of 231 ADHD subjects and
264 controls included in the WGCNA. A GWAS with each module
eigengene as the dependent variable were performed to identify genetic
variants associated with each co-expression module. After ascertain
normality of module eigengene (Table S1), seven gene-module eQTL
analyses were run under an additive linear regression model using
PLINK_1.09, adding as covariates the first 10 principal components, sex,
age, and the genotyping wave. Lead SNPs were identified in each eQTL
analysis considering a P-value < 1E−06 and functionally annotated using
the FUMA protocol (Functional Mapping and Annotation of Genome-Wide
Association Studies, https://fuma.ctglab.nl/) [37] (Supplementary
Information).
Raw data from this article are not publicly available because of

limitations in ethical approvals and the summary data will be available
upon request.

RESULTS
The WGCNA identified a total of 27 modules of co-expressed
genes with size ranging from 33 to 2191 genes (Fig. S1). 42.7% of
genes (N= 8114) were not assigned to any module and remained
in the module M0. Seven co-expression modules were associated
with ADHD after multiple testing correction (modules M1–M7,
Table S2). No association between module eigengenes and
potential confounders, including age, sex, RIN, or batch, was
detected for any module (Table S2). All modules were consistent
across samples and have characteristic band structures suggestive
of well-defined modules (Fig. S2). Interestingly, modules M1, M3,
and M6 showed high module membership—gene significance
correlation (r2 > 0.4), suggesting that the higher the connectivity
of a gene within the module, the stronger the association with
ADHD (Fig. S3).
Different patterns of gene expression in the brain at different

developmental stages were found across ADHD-associated co-
expression modules. M2 genes are broadly expressed in the whole
brain during the lifespan, while genes in M7 are expressed in a
specific brain area, the M1C_primary motor cortex, only during the
prenatal stage. Besides, genes in modules M1 and M4 show
broader expression in different areas from the telencephalon
during the prenatal period and are mainly expressed in the
cerebellar cortex after birth (Table 1 and S3).
To explore the biological relevance of ADHD-associated co-

expression modules further, we performed a functional enrich-
ment analysis in genes in each module and found that several of
them were enriched in genes involved in pathways previously
related to psychiatric disorders [38], including the posttranscrip-
tional regulation of gene expression and epigenetics (M1 and M7),
covalent chromatin remodeling (M4) or immune system and
inflammatory response (M5), among others (Table 1 and S4-6).
We also performed an enrichment analysis in druggable genes in

the ADHD-associated co-expression modules. For six out of the
seven modules we identified enrichment in target genes of at
least one drug, being Antiinfective for systemic use and Anti-
neoplastic and immunomodulating agents the most common
Anatomical Therapeutic Chemical classification categories across
all modules (Table 1 and S7-8). Interestingly, module M5, enriched
in genes involved in the immune system and inflammatory
response, showed enrichment in drugs from all Anatomical
Therapeutic Chemical categories, especially those related to the
immune response, as expected.
Enrichment in miRNA target genes was identified in modules

M1 and M7. Genes in M1 were targeted by 24 families of miRNAs,
resulting on 40 mature miRNAs, and genes in M7 were targeted by
five mature miRNAs (Table 1 and S9). Consistently, a significant
correlation between the eigengene profile of module M1 and the
expression of four out of 27 of these miRNAs (hsa-miR-142–5p,
hsa-miR-181a-5p, hsa-miR-192–5p, and hsa-miR-215–5p) was
found in a subset of 310 individuals (150 ADHD cases and 160
controls) from which miRNA and gene expression from PBMCs
was available (Fig. S4 and Table S10).
Then, we further explored the ADHD-associated co-expression

modules by integrating transcriptomics with genetic and epige-
netic data on ADHD. We explored whether genes differentially
expressed between ADHD cases and controls were grouped in any
of the identified ADHD-associated modules of co-expressed genes,
and found a significant enrichment in module M5 (P < 2.2E−16),
which also remained significant when considering only highly
connected genes (module membership > 0.8; Table 1). In addition,
we found module M4 significantly enriched in genetics (PMAGMA=
1.8E−03; PeMAGMA= 4.2E−03) and epigenetics (Pgsameth= 1.6E
−04; PmethylRRA= 1.1E−03; Pmethylglm= 8.1E−05) signatures for
ADHD, using data from GWAS meta-analysis [3] and EWAS [7] on
ADHD (Table 1 and S11).
We performed a co-expression module eQTL analysis to identify

loci regulating ADHD-associated modules in a subset of 495
individuals included in the WGCNA (91.3%) from whom genomic
and gene expression profiles were available. After strict quality
control criteria, we ran a GWAS on module eigengenes of each of
the seven ADHD-associated co-expression modules independently
(M1–M7; Fig. S5). QQ plots indicate minimal effects of genomic
inflation, and consequently population substructure, on the
analyses (Fig. S6). No SNP overcame the genome-wide significance
threshold, but 12 independent genomic loci showed suggestive
evidence of association (P < 1E−06) with different module
eigengenes (Table 2 and Fig. S7). Functional annotations revealed
that these loci lay on regions of open chromatin and that most of
the signals were intergenic or intronic (Fig. 2). Several SNPs in
these genomic risk loci were likely to affect the binding of
transcription factors (RBD score= 2b; rs73866266, rs59928606,
rs10830974 and rs36098630), had CADD scores > 12.37, suggest-
ing high deleteriousness (rs73170573, rs13408514, rs1508617,
rs9565360, and rs10830974; Fig. 2, Table 2 and S12) or were
located in regulatory regions of the brain (rs73170578,
rs62096513, and rs12583109), according to the information of
enhancer and promotor histone marks from the HaploReg
webtool [39] (Table 2). In addition, four SNPs, rs62096513,
rs6707596, rs66506812 and rs2462337, lay in nearby genes
encoding transcription factors (ZSCAN30, SP3, CSRNP3 and CUX1,
respectively; Table 2). Of them, rs6707596 nearby SP3 and
rs62096513 located in intron 1 of ZSCAN30 were cis-eQTL of
these genes in PBMCs in our sample (Fig. 3). Interestingly, the co-
expression module M1, which showed suggestive evidence of
association with rs62096513 that lies in blood and brain regulatory
regions of ZSCAN30 and is cis-eQTL in PBMCs, is enriched in target
genes for this specific transcription factor (P= 1.27E-07), which
suggest that ZSCAN30 may be upstream regulator of the M1
module of co-expressed genes.
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DISCUSSION
In the present study, we used a network-based approach to
identify novel ADHD-associated modules of co-expressed genes in
PBMCs. To further investigate the biological significance of the
ADHD-associated networks identified, we performed a compre-
hensive characterization of each module by performing enrich-
ment analysis in biological pathways and drug or miRNA target
genes. We also performed an integrative analysis by combining
transcriptomic, genetic and epigenetic data on ADHD and run an
eQTL analysis to identify genetic variants that could regulate the
ADHD-associated modules of co-expressed genes. Our results
identified seven ADHD-associated modules of co-expressed genes
and support that the study of gene correlation networks may
improve our understanding of the complex molecular systems
underling ADHD.
Two of the ADHD-associated co-expression modules identified

(M1 and M7), were enriched in genes involved in posttranscrip-
tional regulation of gene expression and epigenetic modifications,
two relevant pathways in the pathogenesis of ADHD [6]. In the
same line, we found enrichment in target genes for several
miRNAs in these two modules. In particular, the expression of four
of them (hsa-miR-142–5p, hsa-miR-181a-5p, hsa-miR-192–5p and
hsa-miR-215–5p) also correlates with the eigengene profile of
module M1, pointing them as potential upstream regulatory
mechanisms underlying the M1 co-expression network. Some of
these miRNAs have been previously related to ADHD, like miR-
192–5p upregulated in PBMCs of ADHD patients [16], and
comorbid psychiatric disorders, such as miR-192–5p and miR-
215–5p that were differentially expressed in the dorsolateral
prefrontal cortex of major depression patients [40] or miR-181a-5p
extensively related to drug addiction both in mice and human
studies [41–45]. Interestingly, these miRNAs share many target
genes, suggesting a complex and redundant regulatory system,
particularly in the case of miR-291–5p and miR-215–5p which
recognize the same seed sequence. Several of these miRNAs may
regulate a number of central genes (those with high intramodular
connectivity) from module M1, such as CPSF6 encoding a subunit
of a cleavage factor required for the RNA cleavage and
polyadenylation processing, which was previously related to
externalizing behaviors including ADHD [46], and RICTOR, which
plays an essential role during the neurodevelopment and has
been associated with hyperactivity and reduced anxiety-like
behavior in conditional knock-out mice in the dorsal neural
progenitor cells [47].
Module M1, as well as M2 and M6, were also enriched in genes

that encode proteins involved in the processing of messenger RNA
(mRNA), which includes any process related to the conversion of a
primary mRNA transcript into one or more mature mRNAs. mRNA
processing and alternative splicing are key processes for both the
diversification of protein isoforms and the spatio-temporal control
of transcripts, essential for the neuronal development, maturation,

and synaptic function [48], and genetic variants in genes encoding
these proteins have been related to rare neurodevelopmental
disorders [49], as well as common psychiatric disorders like
schizophrenia [50].
Module M5 was enriched in genes involved in immune system

and inflammatory response, pathways known to play an important
role in the development of neuropsychiatric disorders [38, 51, 52],
particularly in ADHD [53]. Moreover, genes in module M5, and to a
less extent in module M2, are targeted by a great variety of known
therapeutic drugs, especially by those that target the immune
system (including the Anatomical Therapeutic Chemical categories
Antiinfective for systemic use and Antineoplastic and immunomo-
dulating agents), pointing to genes in these co-expression
networks as potential therapeutic targets. Importantly, a recent
study that explored the druggable genome in ADHD also pointed
to drugs to treat autoimmune disorders and malignancies as a
potential novel path for the treatment of ADHD [54]. Besides, in
module M5 we also found an enrichment in genes differentially
expressed in ADHD patients compared with controls, suggesting
that differentially expressed genes in ADHD cases are co-
expressed and participate in the same biologic pathways.
Furthermore, this enrichment was also significant when consider-
ing only highly connected genes, highlighting that the genes
differentially expressed are central nodes highly connected in this
network, reinforcing their relevance in the pathophysiology
of ADHD.
The integrative analysis of transcriptomics, genomics, and

epigenomics data on ADHD revealed that genes in module M4,
also involved in the regulation of gene expression and epigenetic
mechanisms, were enriched in both genetic and epigenetic
signatures previously described for ADHD [3, 7]. We used two
complementary approaches to assign ADHD-associated SNPs to
genes, based on position or eQTL results, and found consistent
results. PNPLA2 and IQSEC1 were the central genes in the module
more significantly associated with ADHD using both methods.
PNPLA2 encodes an enzyme involved in the hydrolysis of
triglycerides in adipose tissue, and has been related to obesity
[55], a highly comorbid disorder in ADHD [56]. In addition, a recent
study pointed PNPLA2 as one of the most high-confidence causal
genes for ADHD, after combining GWAS, eQTL and gene
expression data [57]. IQSEC1 encodes a guanine nucleotide
exchange factor, essential for the maintenance of glutamatergic
synapses [58], one of the key neurotransmitter systems involved in
the pathophysiology of ADHD in combination with dopamine
[59, 60].
The eQTL analysis did not reveal any genetic variant that

overcame the genome-wide significance threshold, but we found
12 independent genomic loci that showed suggestive evidence of
association (P < 1e−06) with the different module eigengenes. We
identified a genetic variant associated with the co-expression
module M1, rs62096513, which is located in a blood and brain

Fig. 2 Functional categories, Regulome DB scores, and minimum chromatin states for independent risk loci associated to any module
eigengene. Regulome DB score predicts likelihood of regulatory functionality, lower scores indicate higher likelihood. Further information can
be found in Boyle et al. [68]. Minimum Chromatin State across 127 tissue and cell types, lower scores indicate higher accessibility, with states
1–7 referring to open chromatin states.
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regulatory region of a transcription factor, ZSCAN30, and regulates
its expression in PBMCs. Interestingly, module M1 was enriched in
target genes for ZSCAN30 that is also included in the same
module, suggesting that this transcription factor is an upstream
regulator of the co-expressed genes in the module. Besides, we
identified another genetic variant associated with the M1 module
eigengene, rs73170578, located in CNTNAP2, which encodes a
neuronal transmembrane protein member of the neurexin super-
family that function as cell adhesion molecules and receptors.
Both rare and common genetic variants in CNTNAP2 have been
associated with neurodevelopmental disorders [61, 62], with a
special relevance in ADHD and autism [63, 64]. In addition, module
M4 was associated with rs6707596, that is an eQTL of the SP3 gene
in PBMCs, a transcription factor involved in synaptic plasticity [65].
Finally, we identified four genetic variants associated with M6
module, among them, rs2462337 is located in a blood regulatory
region upstream the CUX1 gene, a transcription factor involved in
the control of neuronal differentiation and the regulation of
dendritic branching, spine development, and synapse formation
in cortical neurons [66].
Gene networks analyses reduce the dimensionality of genome-

wide gene expression data without losing important biological
information and alleviate the multiple testing burden associated
with the traditional gene-based methods. Similar network-based
studies have been performed using gene expression data in both
brain and blood in several psychiatric disorders like autism,
schizophrenia and bipolar disorder [23–28]. These studies were
usually performed in small sample sizes (n < 100 individuals),
limiting their statistical power. In contrast, we improved the
resolution and robustness of gene networks by considering more
than 500 subjects, which allowed the identification of seven
ADHD-associated modules enriched in relevant and highly
significant biological pathways. However, although our transcrip-
tomic analyses were performed mainly in medication-naive ADHD
patients without comorbid disorders (93.7% of all ADHD cases), we

cannot discard that these conditions may have influenced the
results of the present study. So, further studies in the same cell
type are required to confirm our results. Additionally, the
identified modules were based on expression data from PBMCs,
a non-invasive peripheral tissue whose expression profile has
been proposed as a surrogate for expression profiling in the
central nervous system [67], and further evidence in the brain is
required to confirm their role in the pathophysiology of the
disorder.
In summary, we conducted a multi-step analysis to identify and

characterize modules of co-expressed genes associated with
ADHD using expression data from PBMCs in ADHD cases and
controls. We identified seven ADHD-associated modules of co-
expressed genes, some of them being enriched in both genetic
and epigenetic signatures for ADHD and on biological pathways
relevant for psychiatric disorders, such as the regulation of gene
expression, epigenetic mechanisms and immune signaling. We
also found preliminary evidence for some potential regulatory
mechanisms, including microRNAs and genetic variants, for some
of the ADHD-associated modules of co-expressed genes identified.
These results pinpoint promising genes and pathways for ADHD,
support the use of peripheral blood to assess gene expression
signatures for the disorder and highlight that the combination of
multi-omics signals provides deeper and broader insights into the
biological mechanisms underlying the disorder.
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ADHD is a childhood neurodevelopmental disorder charac-
terized by age-inappropriate levels of hyperactivity, impul-
sivity and inattention. The disorder affects around 5–6% of 

school-age children and around 3% of adults1,2. It is a complex dis-
order with both environmental and genetic factors contributing to 
risk. Genetic factors explain a large part of the etiology of ADHD, 
with an estimated twin heritability of 0.74 (ref. 3), and the SNP 
heritability (that is, the contribution of common genetic variants) is 
substantial, explaining 22% of the phenotypic variance4.

Around two-thirds of children diagnosed with ADHD will 
continue to have symptoms in adulthood5, which is referred to 
as persistent ADHD. Persistent ADHD is associated with more 

severe outcomes compared with the one-third of individuals 
who no longer have ADHD as adults (remitters), for example, 
increased risk of substance use disorders6,7, nicotine dependence8 
and comorbidity with other psychiatric disorders9–11. Several stud-
ies have reported a lower heritability for persistent ADHD than 
for childhood ADHD12,13; however, these findings have been ques-
tioned owing to methodological differences in assessment of chil-
dren and adults12,14. It has also been suggested that persistence of 
symptoms has a genetic risk component specific to persistence 
rather than baseline symptoms15 and that a trajectory of persis-
tent symptoms is associated with a high load of common ADHD  
risk variants16.

Differences in the genetic architecture of  
common and rare variants in childhood,  
persistent and late-diagnosed attention-deficit 
hyperactivity disorder
Veera M. Rajagopal   1,2,3, Jinjie Duan1,2,3, Laura Vilar-Ribó   4,5,6, Jakob Grove   1,2,3,7, Tetyana Zayats8,9,10, 
J. Antoni Ramos-Quiroga   4,5,6,11, F. Kyle Satterstrom   8,9, María Soler Artigas   4,5,6,11, 
Jonas Bybjerg-Grauholm   2,12, Marie Bækvad-Hansen2,13, Thomas D. Als   1,2,3, Anders Rosengren   2,14, 
Mark J. Daly   8,9,15,16, Benjamin M. Neale   8,9, Merete Nordentoft2,17, Thomas Werge   2,14, Ole Mors2,18, 
David M. Hougaard   2,13, Preben B. Mortensen2,19,20, Marta Ribasés   4,5,6,21, Anders D. Børglum   1,2,3 
and Ditte Demontis   1,2,3 ✉

Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder with onset in childhood (childhood ADHD); 
two-thirds of affected individuals continue to have ADHD in adulthood (persistent ADHD), and sometimes ADHD is diagnosed 
in adulthood (late-diagnosed ADHD). We evaluated genetic differences among childhood (n = 14,878), persistent (n = 1,473) 
and late-diagnosed (n = 6,961) ADHD cases alongside 38,303 controls, and rare variant differences in 7,650 ADHD cases and 
8,649 controls. We identified four genome-wide significant loci for childhood ADHD and one for late-diagnosed ADHD. We 
found increased polygenic scores for ADHD in persistent ADHD compared with the other two groups. Childhood ADHD had 
higher genetic overlap with hyperactivity and autism compared with late-diagnosed ADHD and the highest burden of rare 
protein-truncating variants in evolutionarily constrained genes. Late-diagnosed ADHD had a larger genetic overlap with depres-
sion than childhood ADHD and no increased burden in rare protein-truncating variants. Overall, these results suggest a genetic 
influence on age at first ADHD diagnosis, persistence of ADHD and the different comorbidity patterns among the groups.
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According to the ICD-10 diagnostic criteria, ADHD is a 
childhood-onset disorder, and the behavioral symptoms should 
be present before 7 years of age (before 12 years of age according 
to DSM-5 diagnostic criteria) with a duration of at least 6 months. 
However, the disorder is often diagnosed in adolescence and can 
also be diagnosed during adult life, which, according to the cur-
rent diagnostic criteria, is termed late-diagnosed ADHD. Currently, 
there are insufficient data to clarify whether ADHD diagnosed in 
adulthood has the same underlying causes as childhood ADHD, or 
whether late-diagnosed ADHD is a disorder with a different etiol-
ogy from that of childhood ADHD, resulting in a later diagnosis or 
even adult-onset ADHD17.

ADHD symptoms such as hyperactivity and inattention are 
believed to have continuous distributions in the population, with 
diagnosed ADHD representing the extreme end; this is supported 
by genetic findings4. The symptoms have an impairing impact 
on an individual’s life when the accumulation of environmental 
and genetic risk factors exceeds a threshold. Age at first diagnosis 
might therefore differ depending on when this threshold is passed. 
Environmental factors influencing this could be age-related, such 
as increased educational demands in college or university, result-
ing in ADHD diagnosed later in life. Age at first diagnosis might 
also be influenced by genetic factors affecting symptom heterogene-
ity and/or severity, and a recent study found that individuals with 
late-diagnosed ADHD had a burden of common ADHD risk alleles 
comparable to that of individuals without ADHD18 by analyzing 
polygenic scores (PGSs) based on variant weights from the latest 
ADHD genome-wide association study (GWAS) meta-analysis4. 
The sample size was very small (n = 98 for late-diagnosed individu-
als), and further investigation is needed to elucidate the impact of 
genetics on age at first diagnosis and to determine whether indi-
viduals diagnosed with ADHD in adulthood differ genetically from 
individuals diagnosed as children.

We previously performed a large GWAS to evaluate the genetic 
architecture of childhood and persistent ADHD, including a total 
of 17,149 ADHD cases and 32,411 controls19. The genetic correla-
tion (rg) between the two groups was high (rg = 0.81), suggesting 
that childhood and persistent ADHD to a large extent have the 
same underlying genetic architecture. However, we noticed that 
the genetic correlation was significantly different from 1 (P = 0.02), 
suggesting that further dissection of the genetic architecture might 
reveal genetic differences. Moreover, in that study, all adult indi-
viduals with ADHD were grouped together, meaning that the per-
sistent group consisted of both individuals diagnosed in childhood 
with symptoms persisting into adulthood and individuals diagnosed 
as adults (that is, late-diagnosed ADHD). Further subgrouping of 
individuals with ADHD depending on age at first diagnosis could 
therefore reveal further information about the genetic architecture 
underlying the disorder and its comorbidities.

Here, we perform in-depth characterization of the polygenic 
architecture of childhood, persistent and late-diagnosed ADHD in a 
large Danish population-based case–cohort sample of ADHD cases 
and controls generated by iPSYCH20. We identify differences among 
the groups with respect to common ADHD risk variants and rare 
protein-truncating variants (rPTVs). We also report several signifi-
cant differences in genetic overlap of ADHD subgroups with other 
phenotypes, including an increased load of autism risk variants in 
individuals with childhood compared with late-diagnosed ADHD 
and a larger genetic overlap of persistent and late-diagnosed ADHD 
with depression compared with childhood ADHD.

Results
Sample characteristics. Individuals diagnosed with ADHD were 
identified in the large nationwide population-based case–cohort 
sample established by iPSYCH20 consisting of 133,296 genotyped 
individuals (iPSYCH1 + 2; Methods). ADHD cases were divided 
into three groups depending on age at first diagnosis (see Methods 
for a detailed definition of the groups): (1) childhood ADHD 
(n = 14,878), defined as individuals diagnosed with ADHD in child-
hood; (2) persistent ADHD (n = 1,473), defined as individuals who 
received an ADHD diagnosis as a child and again as adults; and (3) 
late-diagnosed ADHD (n = 6,961), defined as individuals receiving 
their first ADHD diagnosis as adults. Controls were individuals not 
diagnosed with ADHD, randomly selected from the same nation-
wide birth cohort (n = 38,303).

The sex distribution was different among the three groups. 
Females composed 23% of childhood ADHD cases, 36% of persis-
tent ADHD cases and 41% of late-diagnosed cases, and the male/
female ratio was significantly different among all three groups 
(Supplementary Table 1). Moreover, comorbidity patterns were 
different in the three groups. Autism spectrum disorder was very 
frequent in childhood ADHD (23% comorbid) and persistent 
ADHD (18% comorbid) compared with late-diagnosed ADHD 
(6.2% comorbid) (Supplementary Table 2). The adolescence- and/
or adulthood-onset disorders, namely schizophrenia, bipolar dis-
order and major depressive disorder, were more frequent among 
individuals with persistent and late-diagnosed ADHD. As many as 
27% of individuals with late-diagnosed ADHD had comorbid major 
depressive disorder (Supplementary Table 2).

Genome-wide association analyses of ADHD subgroups. We con-
ducted a GWAS for each of the three ADHD subgroups. The GWAS 
for childhood ADHD revealed four genome-wide significant loci 
on chromosomes 1, 5, 18 and 20 (Table 1 and Supplementary  
Figs. 1a and 2a–d). Two were new ADHD risk loci (on chromosomes 
18 and 20) and two were known risk loci (on chromosomes 1 and 5) 
identified in our previous GWAS meta-analysis of ADHD4, which 
included an earlier and smaller iPSYCH sample than that analyzed  

Table 1 | index variants for the genome-wide significant loci identified in the GWAS of childhood and late-diagnosed ADHD

SNP cHR BP A1 A2 MAF OR s.e. P Nearest gene

Childhood ADHD

rs7511800 1 44214269 T A 0.31 0.91 0.01 7.4 × 10−11 ST3GAL3

rs12653396 5 87847273 T A 0.42 0.91 0.01 2 × 10−11 MEF2C

rs28718037 18 50572697 A G 0.33 0.92 0.01 8.7 × 10−9 DCC

rs6035830 20 21265728 C T 0.28 1.10 0.01 1.5 × 10−9 XRN2

Late-diagnosed ADHD

rs1229758 7 114229139 G A 0.43 0.90 0.01 2.1 × 10−8 FOXP2

The variant ID (SNP), chromosome position (CHR), base position in hg19 (BP), effect allele (A1), other allele (A2), minor allele frequency (MAF) of A1, OR with respect to A1, s.e., association P value from 
logistic regression and nearest gene are given.
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here. One genome-wide significant locus was identified for late- 
diagnosed ADHD on chromosome 7, located in FOXP2 (Table 1 
and Supplementary Figs. 1b and 2e). The effect size was signifi-
cantly higher in late-diagnosed ADHD (odds ratio (OR) = 1.11, 
s.e. = 0.01) compared with childhood ADHD (OR = 1.05, s.e. = 0.02) 
(P = 0.012). No genome-wide significant loci were found for persis-
tent ADHD, which was expected owing to the low number of cases.

SNP heritability and genetic correlations. We estimated the SNP 
heritability (h2

SNP) using best-guess genotypes and GCTA21 assum-
ing a prevalence of 5% for childhood ADHD and 3% for persistent 
and late-diagnosed ADHD. We found the highest h2

SNP in the per-
sistent ADHD group (h2

SNP = 0.29), followed by the late-diagnosed 
ADHD (h2

SNP = 0.27) and childhood ADHD (h2
SNP = 0.24) groups 

(Supplementary Table 3a). The estimates did not significantly differ 
from each other (Supplementary Table 3). As the population preva-
lence of ADHD subtypes is not known precisely, we also estimated 
the heritability over a range of prevalence values. At all points, 
persistent ADHD demonstrated the highest h2

SNP, followed by 
late-diagnosed ADHD (Supplementary Fig. 3 and Supplementary 
Table 3b).

Pairwise genetic correlations between ADHD subgroups 
revealed a high genetic correlation between childhood and per-
sistent ADHD (rg = 0.82, s.e. = 0.08) and between persistent and 
late-diagnosed ADHD (rg = 0.77, s.e. = 0.08), whereas the genetic 
correlation between childhood ADHD and late-diagnosed ADHD 
was moderate (rg = 0.65, s.e. = 0.04) (Supplementary Table 4).

ADHD polygenic risk load in ADHD subgroups. The polygenic 
risk load of variants associated with general liability to ADHD in 
the three ADHD subgroups was evaluated by PGS analyses. All 
groups demonstrated a highly significantly increased ADHD-PGS 
load compared with controls (Supplementary Table 5). The highest 
mean ADHD-PGS was found for persistent ADHD (mean = 0.41, 
s.d. = 0.95), followed by late-diagnosed ADHD (mean = 0.27, 
s.d. = 0.98) and then childhood ADHD (mean = 0.26, s.d. = 0.96) 
(Supplementary Table 5). The ADHD-PGS load in persistent 
ADHD was significantly higher than that in childhood ADHD 
(P = 3.0 × 10−4) and nominally significantly higher than that in 
late-diagnosed ADHD (P = 0.02). The results did not change in a 
sensitivity analysis where the childhood group was split into those 
younger than 18 years and those older than 18 years of age by the 
end of follow-up (Supplementary Fig. 4).

In an attempt to replicate the findings, we performed PGS analy-
sis in a Spanish sample consisting of 453 individuals with childhood 
ADHD, 270 with persistent ADHD and 889 with late-diagnosed 
ADHD, as well as 3,440 controls. We did not replicate the findings, 
with trends in the opposite direction when comparing with con-
trols (ADHD-PGS childhood ADHD: β = 0.27, s.e. = 0.05; persis-
tent ADHD: β = 0.21, s.e. = 0.06; late-diagnosed ADHD: β = 0.19, 
s.e. = 0.04). However, the differences were not significant, and we 
could not draw any strong conclusions based on this small replica-
tion sample.

Genetic overlap with ADHD symptoms in the general popula-
tion. Genetic overlap with ADHD symptoms in the general popula-
tion was estimated using results from GWAS of ADHD subgroups 
and from GWAS meta-analyses of measures of inattention and 
hyperactivity (n = 43,117) in the general population22. Inattention 
and hyperactivity were highly correlated with both childhood 
ADHD (rg_inattention = 0.86, s.e. = 0.08; rg_hyperactivity = 0.95, s.e. = 0.08) 
and persistent ADHD (rg_inattention = 0.87, s.e. = 0.14; rg_hyperactivity ≈ 1, 
s.e. = 0.15) (Supplementary Table 6) but showed a considerably 
lower correlation with late-diagnosed ADHD (rg_inattention = 0.57, 
s.e. = 0.08; rg_hyperactivity = 0.59, s.e. = 0.07). The genetic correlation of 
hyperactivity with late-diagnosed ADHD was significantly lower 

than that observed for childhood ADHD (P = 0.004). In addition, 
the genetic correlations of ADHD symptoms with late-diagnosed 
ADHD were significantly less than 1 (Pdiff_1_inattention = 7.66 × 10−8; 
Pdiff_1_hyperactivity = 4.71 × 10−9; Supplementary Table 6).

PGS analyses to test for enrichment in the three ADHD sub-
groups of variants associated with inattention and hyperactivity 
identified a nominally significantly lower PGS for hyperactivity in 
late-diagnosed ADHD compared with childhood ADHD (P = 0.04; 
Supplementary Table 7).

Genetic overlap with psychiatric disorders and other traits. The 
observed differences in patterns of comorbidity with other psychi-
atric disorders could reflect age differences among the groups but 
could also be influenced by differences in genetic architecture. To 
evaluate this, we performed genetic correlation and PGS analyses 
for major psychiatric disorders (schizophrenia23, bipolar disorder24, 
major depressive disorder25, autism spectrum disorder26, anorexia27, 
obsessive–compulsive disorder (OCD)28, cannabis use disorder29 
and alcohol use disorder30). We found positive genetic correla-
tions of ADHD subgroups with autism, schizophrenia, bipolar 
disorder, major depressive disorder, alcohol use disorder and can-
nabis use disorder, and negative genetic correlations with OCD and 
anorexia (Fig. 1 and Supplementary Table 8), in line with previous 
findings4. We identified a significantly higher genetic correlation 
of childhood ADHD with autism (rg = 0.48, s.e. = 0.05) compared 
with late-diagnosed ADHD (rg = 0.27, s.e. = 0.06), and signifi-
cantly higher genetic correlations of depression and alcohol use 
disorder with late-diagnosed ADHD (rg_depression = 0.69, s.e. = 0.04; 
rg_alcohol_use_disorder = 0.82, s.e. = 0.2) compared with childhood ADHD 
(rg_depression = 0.45, s.e. = 0.04; rg_alcohol_use_disorder = 0.39, s.e. = 0.09) 
(Pdiff_depression = 8.7 × 10−7; Pdiff_alcohol_use disorder = 3.8 × 10−5) (Fig. 1 and 
Supplementary Table 8). The PGS results demonstrated the same 
pattern, with a significantly increased autism-PGS in childhood 
ADHD compared with late-diagnosed ADHD, a significantly 
higher PGS in persistent and late-diagnosed ADHD than in child-
hood ADHD for depression and cannabis use disorder, and a sig-
nificantly increased PGS in late-diagnosed ADHD compared with 
childhood ADHD for schizophrenia and bipolar disorder (Fig. 2 
and Supplementary Table 9).

We also performed genetic correlation and PGS analyses for 
phenotypes representing domains that had previously4 dem-
onstrated high genetic correlations with ADHD: cognition 
(educational years31), overweight (body mass index (BMI)32), 
reproduction (age at first birth33), mortality (maternal age of 
death34) and sleep (insomnia35). We identified stronger nega-
tive genetic correlations of late-diagnosed ADHD compared with 
childhood ADHD for educational years (Pdifference = 1.7 × 10−5; 
rg_late-diagnosed = −0.61, s.e. = 0.03; rg_childhood = −0.46, s.e. = 0.03), 
increased age at first birth (Pdifference = 8.9 × 10−5; rg_late-diagnosed = −0.73, 
s.e. = 0.04; rg_childhood = −0.54, s.e. = 0.04) and increased mother’s 
age at death (Pdifference = 2.6 × 10−4; rg_late-diagnosed = −0.79, s.e. = 0.10; 
rg_childhood = −0.48, s.e. = 0.08) (Fig. 1 and Supplementary Table 8). 
Furthermore, we identified a significantly less negative PGS in child-
hood ADHD compared with persistent and late-diagnosed ADHD 
for number of educational years (Pchildhood_vs_persistent = 8.02 × 10−8; 
Pchildhood_vs_late-diagnosed = 4.35 × 10−14) and a less negative PGS for age 
at first birth for childhood ADHD compared with late-diagnosed 
ADHD (Fig. 2 and Supplementary Table 9).

Except from autism and OCD, the highest PGS load was observed 
for persistent ADHD (Supplementary Table 10a); however, owing to 
the small sample size of this group, we had limited power to detect 
pairwise PGS differences for this group compared with the other 
two groups.

Finally, we performed two PGS sensitivity analyses. First, we 
evaluated PGS for autism, schizophrenia, bipolar disorder and 
depression in the three ADHD groups, excluding individuals with 
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the disorder corresponding to the PGS being analyzed. The results 
revealed the same patterns seen in the full sample, but PGS-autism 
was only nominally significantly higher in childhood ADHD com-
pared with late-diagnosed ADHD (P = 0.02) (Supplementary Fig. 5 
and Supplementary Tables 10b,c).

Second, we repeated the PGS analyses but this time with the 
childhood group split into two subgroups based on whether indi-
viduals were younger than 18 years or older than 18 years of age by 
the end of follow-up. The PGS loads in the two childhood ADHD 
groups were generally similar, except those for schizophrenia and 
bipolar disorder, for which the load was higher in individuals older 
than 18 years of age (Supplementary Fig. 6 and Supplementary 
Table 11).

Burden of rare variants in ADHD subgroups. We have previ-
ously demonstrated an enrichment of rPTVs in highly constrained 
genes in ADHD cases36. We explored this further by evaluating 
the load of rPTVs in the three ADHD subgroups using whole 
exome-sequencing (WES) data available for a subset of the iPSYCH 
cohort (childhood ADHD, n = 4,987; persistent ADHD, n = 748; 
late-diagnosed ADHD, n = 1,915; controls, n = 8,649). The burden  

of rPTVs and rare synonymous variants (rSYNs) in the three 
ADHD subgroups was tested in three gene sets: (1) highly con-
strained genes that are evolutionarily intolerant to loss-of-function 
mutations with a probability of being loss-of-function intolerant 
(pLI) score >0.9 (ref. 37) (3,488 genes); (2) de novo constrained 
genes, the subset of highly constrained genes that overlap with 
another gene set of 285 genes found to be enriched with de novo 
mutations in individuals with neurodevelopmental disorders38 (241 
genes); and (3) low constrained genes that are relatively tolerant 
to loss-of-function mutations with a pLI score <0.1 (9,662 genes). 
When compared with controls, the load of rPTVs in highly con-
strained genes was significantly increased in childhood and persis-
tent ADHD (childhood ADHD β = 0.13, s.e. = 0.02, P = 2.41 × 10−11; 
persistent ADHD β = 0.12, s.e. = 0.04, P = 1.90 × 10−3) but was lower 
and not significantly enriched in late-diagnosed ADHD (β = 0.06, 
s.e. = 0.03, P = 0.02). The same pattern was observed for de novo 
highly constrained genes (Fig. 3 and Supplementary Table 12). No 
pairwise comparisons among ADHD subgroups showed signifi-
cant differences, but there was a tendency towards a higher burden 
of rPTVs in childhood compared with late-diagnosed ADHD in 
de novo highly constrained genes (P = 0.096). By comparison, we 
did not find enrichment of any rSYNs in the gene sets or enrich-
ment of rPTVs in low constrained genes (Fig. 3 and Supplementary 
Table 12).

Discussion
We identified differences in the genetic architecture of childhood, 
persistent and late-diagnosed ADHD based on unique data from a 
large population-based Danish case–cohort sample. We identified 
the first four genome-wide significant loci associated with child-
hood ADHD, two of which were new ADHD risk loci located on 
chromosomes 18 and 20. The chromosome 18 index variant was 
located in DCC, a gene recently linked to general liability to psy-
chiatric disorders39; thus, it does not seem specific to ADHD. The 
chromosome 20 locus was intergenic, and the index variant has pre-
viously been shown to have genome-wide significant associations 
with weight-related phenotypes34. We also identified a genome-wide 
significant locus associated with late-diagnosed ADHD in FOXP2. 
This locus received considerable attention when it was first reported 
to be a risk locus for ADHD4, owing to the role of FOXP2 in cogni-
tion, language and speech development40–42; recently, we also found 
FOXP2 to be a risk gene for cannabis use disorder29. The effect size 
was significantly higher in late-diagnosed ADHD compared with 
childhood ADHD, suggesting that the association of FOXP2 with 
ADHD is driven to a greater extent by late-diagnosed ADHD than 
by childhood ADHD.

When assessing the polygenic architecture, we identified the 
highest SNP heritability for persistent ADHD. In concordance with 
this, we observed the highest polygenic risk load for general liabil-
ity to ADHD in individuals with persistent ADHD. This observa-
tion is consistent with the hypothesis that individuals with a higher 
genetic risk load for ADHD are those who will continue to have 
ADHD symptoms as adults. This finding is also in line with a previ-
ous study reporting an association of ADHD-PGS with persistence 
of ADHD symptoms in the general population16 and with a recent 
smaller study reporting higher ADHD-PGS in persistent ADHD 
compared with late-diagnosed ADHD (although the difference was 
not significant)18. The ADHD-PGS represents the general liability 
to diagnosed ADHD because the scores are derived from data rep-
resenting all individuals with ADHD in the Danish population born 
between 1981 and 2008 (Methods). In relation to this, it should be 
noted that the training data included a higher proportion of child-
hood ADHD cases than persistent and late-diagnosed ADHD cases, 
which could potentially result in better prediction of childhood 
ADHD. Despite this, we observed the opposite; there was a higher 
ADHD-PGS in the adult groups compared with childhood ADHD 
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Fig. 1 | Genetic correlations of ADHD subgroups with major psychiatric 
disorders and other phenotypes. Results were used from genome-wide 
association analyses of ADHD subgroups including childhood (n = 14,878 
individuals), late-diagnosed (n = 6,961 individuals) and persistent 
(n = 1,473 individuals) ADHD against 38,303 control individuals. Error bars 
(horizontal lines) represent s.e. Asterisk indicates a significant difference 
(after Bonferroni correction) with a two-sided P value less than 0.0013 
in the genetic correlation observed for childhood ADHD compared with 
late-diagnosed ADHD.
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(with significantly increased ADHD-PGS in persistent ADHD and 
a slight increase in late-diagnosed ADHD), reinforcing the validity 
of the results.

The findings could not be replicated in the Spanish cohort. This 
could have been because of the relatively small replication cohort 
or differences in ascertainment. The iPSYCH cohort reflects the 
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Fig. 2 | Associations of PGS with childhood, persistent and late-diagnosed ADHD. Results are shown for childhood (n = 14,878 individuals), persistent 
(n = 1,473 individuals) and late-diagnosed (n = 6,961 individuals) ADHD. PGS analysis was performed for psychiatric disorders: autism spectrum disorder 
(ASD), depression (MDD), schizophrenia (SZ), bipolar disorder (BD), anorexia, OCD, alcohol use disorder (AUD) and cannabis use disorder (CUD). PGSs 
for five phenotypes represent domains highly correlated with ADHD: educational attainment (EA), insomnia, mother’s age at death and age at first birth 
(AOB). On the y axis is the beta from multiple regression against controls (n = 38,303 individuals); error bars (vertical lines) represent s.e. (Supplementary 
Table 10). Significant pairwise differences (after Bonferroni correction) with a two-sided P value less than 0.0013 are given in the right corner of the 
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given by ‘>’ (Supplementary Table 9).
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genetic architecture across all ADHD cases in the Danish popula-
tion, whereas the Spanish cohort is a smaller clinical data set that 
could be influenced by unknown ascertainment biases.

The genetic correlation of childhood ADHD with persistent 
ADHD was high (rg = 0.82) and at the same level as that reported 
previously (rg = 0.81)19, whereas the genetic correlation of child-
hood ADHD with late-diagnosed ADHD was lower (rg = 0.65), 
suggesting some differences in the polygenic architecture of child-
hood and late-diagnosed ADHD. This could be due in part to a 
lower load of variants associated with hyperactivity and inattention 
in individuals with late-diagnosed ADHD; we observed a higher 
genetic correlation of ADHD symptoms with childhood and persis-
tent ADHD compared with late-diagnosed ADHD. Likewise, PGS 
analyses suggested a lower burden of ADHD-symptom-associated 
variants in late-diagnosed ADHD than in the other groups. We 
cannot exclude the possibility that differences in age distributions 
in the GWAS meta-analyses of ADHD symptoms influenced the 
results. However, the age distribution was similar in the persistent 
and late-diagnosed groups (in which all individuals were older 
than 18 years of age), indicating that the decreased genetic overlap 

with late-diagnosed ADHD is not caused by age differences. Later 
diagnosis of ADHD could therefore be explained in part by genetic 
factors, with late-diagnosed individuals being less genetically pre-
disposed to be inattentive and hyperactive, leaving their ADHD 
unnoticed until later in life.

The comorbidity pattern in the three groups differed, with a 
higher comorbidity of autism spectrum disorder in childhood (23%) 
and persistent ADHD (18%) compared with late-diagnosed ADHD 
(6.2%), in line with previous reports concerning comorbid autism 
in children with ADHD43. The observed comorbidity patterns were 
reflected in the genetic analyses, in which we found a significantly 
higher genetic correlation of autism with childhood ADHD com-
pared with late-diagnosed ADHD, and higher PGS-autism in child-
hood ADHD compared with late-diagnosed ADHD. Therefore, 
childhood ADHD seems to be genetically more closely related to 
autism than late-diagnosed ADHD.

Comorbidities of psychiatric disorders with onset in adoles-
cence and/or adulthood were more frequent in persistent and 
late-diagnosed ADHD (Supplementary Table 2). This is probably due 
in part to the age difference, because many individuals in the child-
hood group would be too young to develop these disorders. However, 
our results suggest that age alone cannot explain the comorbidity 
patterns. Genetics may play a part; in general we observed a higher 
genetic correlation or PGS for several of the disorders (schizophre-
nia, bipolar disorder, alcohol use disorder, cannabis use disorder and 
depression) in persistent and late-diagnosed ADHD compared with 
childhood ADHD (Figs. 1 and 2 and Supplementary Tables 8 and 
9). This was particularly striking for depression, with a significantly 
higher PGS in individuals with persistent and late-diagnosed ADHD 
compared with those with childhood ADHD. The high comorbidity 
of depression with ADHD in adults is well known, but the causes are 
not. ADHD itself could be a risk factor44,45, but genetic risk factors 
are also considered to exist, owing to the high genetic correlation of 
ADHD with depression4. Our results suggest genetic heterogeneity 
among ADHD cases: individuals with persistent and late-diagnosed 
ADHD are at higher risk of comorbid depression owing to the under-
lying genetic architecture of the disorder in these groups.

In analyses of five selected phenotypes (educational years, insom-
nia, mother’s age at death, age at first birth and BMI) representing 
domains highly genetically correlated with ADHD4, we observed the 
highest genetic correlations and the highest PGS load in persistent 
ADHD, followed closely by late-diagnosed ADHD, and the lowest 
in childhood ADHD (except for BMI), suggesting a similar poly-
genic architecture of persistent and late-diagnosed ADHD for these 
phenotypes (Figs. 1 and 2; see Supplementary Information, Note 1, 
regarding mother’s age at death). These results also support the idea 
that the negative outcomes associated with persistent ADHD, such 
as decreased school performance46 and sleep problems47, are influ-
enced by genetics to a greater extent than in childhood ADHD.

We found an increased burden of rPTVs in highly constrained 
genes in persistent and childhood ADHD compared with controls, 
but not in late-diagnosed ADHD. There was also a tendency towards 
a significantly higher burden of rPTVs in de novo highly constrained 
genes in childhood ADHD compared with late-diagnosed ADHD. 
These findings suggest that with respect to rPTVs, which are vari-
ants expected to have greater impact on the disorder than common 
variants, the genome of individuals with late-diagnosed ADHD is 
less burdened. When considering both common and rare variants, 
the emerging picture suggests that childhood ADHD is genetically 
more similar to autism (high genetic correlation with autism and 
increased rPTV burden), whereas late-diagnosed ADHD geneti-
cally is more similar to depression (high genetic correlation with 
depression and no significant increase in rPTVs in highly con-
strained genes compared with controls).

We could not rule out ascertainment differences among children 
and adults. However, the genetic correlations of late-diagnosed and 
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Fig. 3 | The load of rPTVs and rSYNs in ADHD subgroups. Highly 
constrained genes intolerant to loss-of-function mutations (pLI > 0.9); 
de novo highly constrained genes, which in another study have been 
found to be enriched with de novo mutations in individuals with 
neurodevelopmental disorders; and low constrained genes tolerant to 
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multiple regression of childhood (n = 4,987 individuals), persistent  
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lines) represent s.e. For pairwise comparisons of ADHD subgroups, see 
Supplementary Table 12.
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persistent ADHD (which requires an ADHD diagnosis in child-
hood) with depression and alcohol use disorder were very similar, 
suggesting that any ascertainment bias between the two groups was 
limited. Likewise, in the PGS sensitivity analyses, where individu-
als with the disorder associated with the PGS being analyzed were 
excluded, the genetic differences among the groups demonstrated 
the same patterns observed in the full sample. This further rein-
forces the conclusion that comorbid psychiatric disorders did not 
have a strong influence on the observed genetic differences among 
the ADHD subgroups.

In summary, our results are population-based and thus reflect 
the genetic architecture of ADHD and comorbidity patterns across 
ADHD subgroups in the Danish population. Persistent ADHD 
demonstrated the highest load of ADHD risk variants, whereas 
late-diagnosed ADHD was less enriched for variants associated 
with hyperactivity and inattention and did not, unlike childhood 
and persistent ADHD, demonstrate an increased burden of rPTVs 
compared with controls. This suggests that genetic factors might 
explain in part why some individuals are diagnosed late as adults. 
The comorbidity of depression and alcohol use disorder was high-
est in the late-diagnosed group. If this was only due to age differ-
ences among groups, we would not expect the genetic correlations 
to differ, but we found a higher genetic overlap of these disorders 
with late-diagnosed ADHD compared with childhood ADHD. 
This suggests that the higher comorbidity among individuals with 
late-diagnosed ADHD is not only due to those individuals being 
older but also due to a higher genetic risk. Conversely, the child-
hood ADHD group demonstrated a higher genetic overlap with 
autism and a higher burden of rPTVs in highly constrained genes 
than the other two groups. Overall, we have identified genetic het-
erogeneity among ADHD subgroups, and our findings suggest that 
genetic factors influence the time of first ADHD diagnosis, persis-
tence of ADHD into adulthood and comorbidity patterns.
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Methods
Sample characteristics. Individuals included in the study were identified from 
a nationwide population-based case–cohort sample established by iPSYCH20 
comprising 133,296 genotyped individuals, of whom 91,378 had been diagnosed 
with at least one of six mental disorders (schizophrenia, bipolar disorder, major 
depressive disorder, autism spectrum disorder, ADHD and anorexia) and the 
remainder were population-based controls. Samples were selected from a baseline 
birth cohort comprising all singletons born in Denmark between 1 May 1981 
and 31 December 2008 who had a known mother (99.9% of all individuals born 
in Denmark since 1970 have a known mother48) and were resident in Denmark 
on their first birthday (n = 1,472,762). We included all individuals in the cohort 
diagnosed with ADHD by psychiatrists according to the ICD-10 criteria (F90.0 
diagnosis code) identified in the Danish Psychiatric Central Research Register49. 
See Supplementary Information, Note 2, for information on cases potentially 
missed by the diagnostic system.

The ICD-10 diagnosis code F90.0 describes a disorder characterized by 
early onset, usually in the first 5 years of life, with hyperactivity and decreased 
attention. According to the current diagnostic criteria, individuals diagnosed 
with ADHD as adults should be able to describe ADHD symptoms in childhood 
retrospectively. Diagnoses were given in 2016 or earlier for individuals at least 
1 year old. Individuals were divided into three groups depending on age at first 
diagnosis: (1) childhood ADHD, defined as individuals diagnosed with ADHD 
and less than 18 years of age in 2016, or individuals older than 18 years by the end 
of follow-up (2016) who did not receive another ADHD diagnosis after the age of 
18 years (n = 15,338 before quality control (QC)); (2) persistent ADHD, defined 
as individuals diagnosed with ADHD in childhood (before 18 years of age) and 
again as adults (after 18 years of age) (n = 1,709 before QC); and (3) late-diagnosed 
ADHD, defined as individuals diagnosed with ADHD as adults (after 18 years 
of age) (n = 7,815 before QC). Controls were randomly selected from the same 
nationwide birth cohort and were individuals not diagnosed with ADHD 
(n = 45,398 before QC).

The study was approved by the Danish Data Protection Agency and the 
Scientific Ethics Committee in Denmark.

Differences in the female/male ratio between ADHD subgroups were tested 
by chi-squared test. Information about comorbidity with other major psychiatric 
disorders was obtained from the Danish Psychiatric Central Research Register49: 
autism spectrum disorder (ICD-10 diagnosis code F84), schizophrenia (ICD-10 
diagnosis code F20), bipolar disorder (ICD-10 diagnosis codes F30–F31), major 
depressive disorder (ICD-10 diagnosis codes F32–F33), OCD (ICD-10 diagnosis 
code F42), anorexia (ICD-10 diagnosis codes F50), alcohol use disorder (ICD-10 
diagnosis code F10.1–F10.9) and cannabis use disorder (ICD-10 diagnosis code 
F12.1–F12.9).

Genotyping and QC. The study subjects were linked to their biological samples 
(dried blood spots) stored in the Danish Newborn Screening Biobank50 through 
the personal identification number51 assigned to all individuals with residence 
in Denmark. DNA was extracted from the dried blood spots and whole-genome 
amplified in triplicate52,53. Genotyping was done in two rounds. In round one 
(iPSYCH1), 79,492 individuals were genotyped by using Illumina Bead Arrays 
(PsychChip). In round two (iPSYCYH2), 53,804 individuals were genotyped 
using the Illumina Global Screening array. iPSYCH1 genotypes were a result of 
merging call sets from two different calling algorithms, GenCall (v.1.6.2.2)54 and 
Birdseed (v.1.6)55, which were used to call genotypes with a minor allele frequency 
(MAF) > 0.01. iPSYCH2 genotypes were called by using GenTrain v.3.

All downstream analyses were performed on our secure server (GenomeDK; 
http://genome.au.dk). Stringent QC was applied to the full iPSYCH sample. Only 
individuals with a high call rate (>0.95) were included, and only genotypes with 
a high call rate (>0.98), no strong deviation from Hardy–Weinberg equilibrium 
(HWE) (P > 1 × 10−6 for controls or P > 1 × 10−10 for cases) and low heterozygosity 
rates (|Fhet| < 0.2) were included. Genotypes were phased and imputed using the 
Haplotype Reference Consortium56 data as a reference panel, and prephasing used 
Eagle v.2.3.5 (ref. 57) and imputation with Minimac3 (ref. 58).

Relatedness and population stratification were evaluated for ADHD cases and 
controls using merged data from iPSYCH1 and iPSYCH2 and a set of high-quality 
markers (best-guess genotypes with MAF > 0.05, HWE P > 1 × 10−9, SNP call rate 
>0.99, imputation info score > 0.9), which were pruned for linkage disequilibrium 
(LD) (r2 < 0.1), resulting in a set of 37,986 pruned variants (variants located in 
long-range LD regions defined by Price et al.59 were excluded). Genetic relatedness 
was estimated using PLINK v.1.9 (refs. 60,61) to identify first- and second-degree 
relatives (π ̂ > 0.2), and one individual was excluded from each related pair (cases 
kept preferably over controls). Genetic outliers were excluded based on principal 
component analyses (PCA) using EIGENSOFT v.6.1.3 (refs. 62,63). After the first 
PCA, the principal components (PCs) from a set of individuals born in Denmark 
for three generations were used as a reference to generate an ellipsoid based on 
information from the first six PCs and their standard deviations (eight standard 
deviations were used). Those who fell outside this ellipsoid were removed. The 
PCA was repeated, and the new PCs were used as covariates to correct for any 
remaining population substructure in subsequent analyses. After QC, the numbers 
of included individuals were: (1) childhood ADHD, n = 14,878; (2) persistent 

ADHD, n = 1,473; and (3) late-diagnosed ADHD, n = 7,188. The control group 
contained 38,3030 individuals.

GWAS. A flow chart of the genetic analyses performed in this study can be found 
in Supplementary Fig. 7. We performed GWAS for each ADHD subgroup against 
a common set of controls (n = 38,3030). We used merged iPSYCH1 and iPSYCH2 
high-quality best-guess genotypes (MAF > 0.01, imputation info score > 0.80, 
missing rate <1%; n = 5,826,893 variants) and tested for association using logistic 
regression in PLINK v.1.9 (ref. 60) with the following covariates: ten PCs from PCA, 
sex and a covariate for genotyping round (iPSYCH1 or iPSYCH2).

We tested whether the effect size of the genome-wide significant locus in 
late-diagnosed ADHD was significantly higher than the effect size observed for 
the other groups using a z test and effect sizes from association analyses based on 
nonoverlapping samples. The numbers of nonoverlapping controls were: childhood 
controls, 24,443; persistent controls, 2,289; and late-diagnosed controls, 11,571.

SNP heritability and genetic correlations of ADHD subgroups. The h2
SNP 

value was estimated for each group against the same controls (n = 38,3030) using 
univariate GREML implemented in GCTA21 (and the same covariates as used in 
the GWAS) and a population prevalence of 0.05 for childhood ADHD1,64, 0.03 
for persistent ADHD3 and 0.03 for late-diagnosed ADHD. To test for differences 
in h2

SNP estimates among groups, we also derived estimates by using nonshared 
controls (control numbers: childhood controls, 24,443; persistent controls, 2,289; 
and late-diagnosed controls, 11,571). Difference in h2

SNP were determined by z 
test. In addition, h2

SNP values in the subgroups were estimated over a range of 
population prevalence values ranging from 1% to 15%.

Genetic correlations between ADHD subgroups were calculated using bivariate 
GREML analysis in GCTA and nonshared controls.

PGS analyses of ADHD and other phenotypes. The PGSs for ADHD were 
generated by a fivefold cross-validation approach, similar to that described 
previously4. In short, the sample was split into five groups, aiming for equal 
numbers of ADHD cases and controls within each group. We then conducted 
GWAS using four of the five groups to derive effect sizes with respect to ADHD 
risk. These effect sizes were then used to estimate the PGS for the remaining target 
group. Thus, the training data were independent of the target data. This procedure 
was repeated five times until PGSs had been estimated in all target groups. 
Indels and variants in the extended major histocompatibility complex region 
(chromosome 6: 25–34 Mb) were also removed. Only independent variants were 
used to generate the score, and clumping of the training data was performed on 
the summary statistics by employing PLINK and the flags -clump-p1 1, -clump-p2 
1, -clump-r2 0.1 and -clump-kb 500. PGS was estimated for each individual 
in the target sample by using a range of P value thresholds in the training data 
(5 × 10−8, 1 × 10−6, 1 × 10−4, 1 × 10−3, 0.01, 0.05, 0.1, 0.2, 0.5 and 1.0), multiplying 
the natural logarithm of the OR of each variant by the allele count of each variant. 
The whole-genome PGS was obtained by summing values over variants for each 
individual. The PGSs were standardized for each of the five target sample groups 
(subtracting the mean and dividing by the s.d.). The scores from the five target 
groups were then pooled at each threshold and tested for association with general 
ADHD (that is, all cases versus controls), and the P value threshold for the scores 
explaining the maximum variance (estimated by Nagelkerke’s R2) in the target 
data of general ADHD (that is, all ADHD cases versus controls) was used to test 
for differences in ADHD-PGS load across ADHD subgroups (Pthreshold < 0.1). As 
our ADHD cohort was population-based, including all individuals with ADHD 
born in Denmark between 1981 and 2008 and diagnosed before or in 2016, the 
generated PGS represented the general liability to diagnosed ADHD (because the 
cross-validation approach was based on all population-based cases). We stress 
that the PGS only reflects the general liability with respect to diagnosed ADHD as 
some cases potentially might be missed by the diagnostic system (Supplementary 
Information, Note 2).

PGSs for ADHD symptoms and 13 other phenotypes (schizophrenia,  
autism, bipolar disorder, alcohol use disorder, cannabis use disorder, OCD, 
anorexia, depression, educational years, mother’s age at death, BMI, age at first 
birth and insomnia) were generated using summary statistics from large GWAS 
of the phenotypes (see Supplementary Table 9 for references) and the approach 
described above (without fivefold cross-validation). The data on ADHD  
symptoms (inattention and hyperactivity/impulsivity) came from a genome-wide 
association meta-analysis on up to 43,117 children and adolescents22. In the PGS 
analyses, P value thresholds in the training GWAS that captured most variance 
(estimated by Nagelkerke’s R2) in the target data were used as thresholds for 
analyses of the PGS load in the subgroups (threshold information is provided in 
Supplementary Table 9).

We tested for differences in PGS load among ADHD subgroups by multiple 
regression in R v.3.6.0 and the package ‘multcomp’, with ADHD coded as four 
factors: controls, childhood, adulthood and persistent ADHD; we also included 
covariates to correct for genotyping round (iPSYCH1 or iPSYCH2), sex and 
ten ancestry PCs. Correction for multiple testing was done separately for the 
following three analyses: (1) PGS-ADHD load among subgroups correcting for 
three pairwise comparisons; (2) PGS load for ADHD symptoms (inattention and 
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hyperactivity) correcting for six pairwise comparisons; and (3) PGS load for 13 
other phenotypes correcting for 39 pairwise comparisons.

We also performed two sensitivity PGS analyses. (1) We evaluated whether 
the differences in the PGS load of four major psychiatric disorders (depression, 
schizophrenia, bipolar disorder and autism) could be caused primarily by the 
presence of individuals with comorbidity. We excluded all individuals in the 
target sample with the diagnosis being analyzed; that is, all depression cases 
were excluded in the analysis of depression-PGS (sample sizes are given in 
Supplementary Table 10b). (2) We evaluated the potential genetic heterogeneity  
in the childhood group caused by age. This was done by splitting the childhood 
group into two groups, those younger than 18 years of age (n = 8,664) and those 
older than 18 years of age (n = 6,214) by the end of follow-up. We then repeated 
the PGS analyses including the two childhood ADHD groups (persistent and 
late-diagnosed ADHD).

PGS analysis in the Spanish cohort19 consisting of 453 individuals with 
childhood ADHD, 270 with persistent ADHD, 889 with late-diagnosed ADHD 
and 3,440 controls was followed the approach described above (see Supplementary 
Information, Note 3, for exclusion criteria).

Genetic correlations with ADHD symptoms and other phenotypes. Genetic 
correlations (rg) of the three ADHD subgroups with ADHD symptoms22 and the 
13 phenotypes listed above were calculated using summary statistics from GWAS 
and LD score regression65. No sample overlap and no population stratification were 
assumed when calculating rg with ADHD symptoms; therefore, the intercept was 
restricted by setting the single-trait intercepts to 1 and cross-trait intercepts to 0.

Statistical differences between two rg estimates were calculated by the block 
jackknife method implemented in the LD score regression software65,66. The 
genome was divided into 200 blocks, and jackknife deleted values were calculated 
by excluding one block at a time. The jackknife deleted values were then used to 
calculate corresponding jackknife pseudovalues. Based on the mean and variance 
of the jackknife pseudovalues, z scores and corresponding P values were computed, 
testing the null hypothesis that the difference between the genetic correlations 
was equal to zero. A z test was used to determine whether the genetic correlation 
differed from 1.

Correction for multiple pairwise comparisons was done separately for the 
following two evaluations: (1) differences in rg among ADHD subgroups with 
ADHD symptoms correcting for six pairwise comparisons; and (2) rg differences 
among ADHD subgroups with 13 other phenotypes correcting for 39 pairwise 
comparisons.

Burden of rare variants in ADHD subgroups. WES data were available for a 
subset of the iPSYCH samples. It has previously been shown that WES of DNA 
from dried blood spots results in high-quality data67. DNA was extracted from 
dried blood spot samples of the study subjects and whole-genome-amplified in 
triplicate52,53. The coding regions of the genome were extracted using an Illumina 
Nextera capture kit, and sequencing was performed in multiple waves (pilot 1, 
wave 1, wave 2 and wave 3) with an Illumina HiSeq platform at the Genomics 
Platform of the Broad Institute.

Part of the data (pilot 1, wave 1 and wave 2) were also included in a recent 
study by Satterstrom et al.36, in which the authors examined the overall burden of 
rPTVs in ADHD; the same QC procedure was used in this study, including all data 
(pilot 1, wave 1, wave 2 and wave 3). In short, the raw sequencing data were aligned 
to the reference genome Hg19 using BWA68. Calling of genotypes followed the 
best practice recommended by the Genome Analysis Toolkit69 (GATK) v.3.4. Most 
QC steps were performed with Hail 0.1 (Hail Team, https://github.com/hail-is/
hail). All variants annotated to American College of Medical Genetics70 genes 
were removed owing to Danish legislation. Samples were removed if they lacked 
complete phenotype information, if there were inconsistencies of the imputed sex 
with the reported sex, if they were duplicates or genetic outliers identified by PCA, 
if they had an estimated level of contamination greater than 5% or if they had an 
estimated level of chimeric reads greater than 5%.

Only autosomal genotypes were included in our analyses. Genotypes were 
removed if they did not pass GATK variant quality score recalibration (VQSR) or 
had a read depth <10 or >1,000. Homozygous alleles were removed if they had 
reference calls with genotype quality less than 25, homozygous alternate alleles 
with PL(HomRef) (that is, the phred-scaled likelihood of being a homozygous 
reference) <25 or <90% reads supporting an alternate allele. Heterozygous  
alleles were removed if they had PL(HomRef) <25 or <25% reads supporting  
the alternate allele, <90% informative reads (that is, the number of reads 
supporting the reference allele plus the number of reads supporting an alternate 
allele <90% of the read depth) or a probability of the allele balance calculated from 
a binomial distribution centered on 0.5 of less than 1 × 10−9. After the application 
of these basic genotype filters, variants with a call rate <90% were removed, then 
samples with a call rate <95% and variants with a call rate <95% were removed. 
Between the sample call rate filter and the final variant call rate filter, one of each 
pair of related samples was removed, defining relatedness as individuals with a 
pairwise π ̂ ≥ 0.2. After QC, the numbers of individuals were: childhood ADHD, 
n = 4,987; persistent ADHD, n = 748; late-diagnosed ADHD, n = 1,915; and 
controls, n = 8,649.

Following QC, variants were annotated using SnpEff71 v.4.3t. The variants were 
also annotated with the gnomAD72 exomes r2.1.1 database using SnpSift71 v.4.3t. 
Variants were only included if they were located in consensus high-confidence 
coding regions with a high read depth in both the iPSYCH data and the gnomAD 
data set (80% of the samples in both data sets had at least 10× sequencing coverage 
in the region). Variants were defined as rPTVs if they were annotated as having 
large effects on gene function (nonsense variant, frameshift, splice site) and were 
rare in the sample, defined as having an allele count ≤5 across the combined 
counts in iPSYCH (n = 16,299) and non-Finnish Europeans in the nonpsychiatric 
gnomAD exome database (n = 44,779).

The burden of rPTVs and rSYNs in ADHD subgroups and controls was 
tested in (1) highly constrained genes (n = 3,488), defined as genes highly 
intolerant to loss-of-function mutations with pLI score >0.9 (ref. 37), and (2) 
de novo highly constrained genes (n = 241), defined as highly constrained genes 
that overlap with another set of genes (n = 285) previously found to be enriched 
with de novo mutations in individuals with neurodevelopmental disorders38; 
(3) for comparison, we also tested a set of 9,662 evolutionarily less constrained 
genes with pLI score <0.1. Enrichment in rPTVs and rSYNs variants was tested 
by multiple regression with the three ADHD groups and controls included in 
the same regression model (using R v.3.6.0 and the R packages foreign, nnet, 
ggplot2 and reshape2). The outcome (dependent) variable was rPTV count, 
and the predictor (independent) variables were ADHD given as categorical 
variables with multiple factors (childhood, persistent and late-diagnosed ADHD 
and controls, with controls as the reference factor) and relevant covariates 
(with the regression model coded in R as follows: rPTV counts ~ ADHD 
(controls | childhood | persistent | late-diagnosed) + covariate 1 + covariate 
2 + … + covariate n). ADHD was coded as the independent variable rather than 
the dependent variable to enable pairwise comparisons between ADHD subtypes 
in the same analysis. The covariates were birth year, sex, the first ten PCs from 
ancestry PCA, the number of rSYNs, the percentage of target with coverage >20x, 
the mean read depth at sites within the exome target passing variant quality score 
recalibration, the total number of variants and the sequencing wave. Testing for 
enrichment of rPTVs in ADHD subgroups compared with controls was corrected 
for nine tests (three groups × three gene sets, that is, a new threshold of P = 0.006), 
and testing for differences between groups was corrected for nine pairwise 
comparisons (three gene sets × three pairwise comparisons for each set).

Statistics and reproducibility. GWAS of ADHD subgroups was performed by 
logistic regression using an additive model of imputed dosage to estimate the 
association of the effect allele with childhood, persistent and late-diagnosed 
ADHD. Differences in the PGS load among ADHD subgroups were tested 
by multiple regression. Genetic correlations were calculated using LD score 
regression, and statistical differences between two rg estimates were calculated 
using the block jackknife method. The burden of rare variants in the three ADHD 
subgroups was analyzed using multiple logistic regression, with the three ADHD 
groups and controls included in the same regression model. All analyses were 
corrected using relevant covariates, and Bonferroni correction was applied when 
appropriate (see Methods section for details). No statistical method was used to 
determine sample size. The sample size was fixed, as we initially (that is, before 
QC) included all individuals born in Denmark between 1981 and 2008 who had 
been diagnosed with ADHD in 2016 or before.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Summary statistics from GWAS of childhood, persistent and late-diagnosed 
ADHD are available at the iPSYCH website (https://ipsych.dk/en/research/
downloads/). All relevant iPSYCH data are available from the authors after 
approval by the iPSYCH Data Access Committee and can only be accessed on the 
secure Danish server (GenomeDK; https://genome.au.dk) as the data are protected 
by Danish legislation. For data access, please contact: D.D. or A.D.B. (anders@
biomed.au.dk). Correspondence and requests for materials should be addressed to 
D.D. (ditte@biomed.au.dk).

code availability
No previously unreported custom computer code or algorithm were used to 
generate results, all software used in the study are publicly available from the 
Internet as described in Methods and Reporting Summary.
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ABSTRACT
BACKGROUND: Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more
frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology,
which is partially shared and partially distinct from that of related psychiatric disorders.
METHODS: We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and
519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on
psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove
genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic
architectures of SA, psychiatric disorders, and other known risk factors.
RESULTS: Two loci reached genome-wide significance for SA: the major histocompatibility complex and an
intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on
psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has
been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with
psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep
disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general
health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders
decreased, whereas those with nonpsychiatric traits remained largely unchanged.
CONCLUSIONS: Our results identify a risk locus that contributes more strongly to SA than other phenotypes and
suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.

https://doi.org/10.1016/j.biopsych.2021.05.029

Suicide is a worldwide public health problem, accounting for
almost 800,000 deaths per year (1). Nonfatal suicide attempt
(SA), defined as self-injurious behavior with the intent to die,
has been estimated to occur over 20 times more frequently
and is a major source of disability, reduced quality of life, and
social and economic burden (1,2). The lifetime prevalence of
SA in adults ranges from 0.5% to 5% worldwide (3). There are
several well-established comorbidities and risk factors for SA,
with psychiatric illness having the strongest effect on lifetime
suicide rates (4,5). However, the vast majority of patients with
psychiatric disorders never attempt suicide (6–8). Other major
risk factors for SA include prior self-injurious thoughts and
behaviors (9), physical illness or disability (10,11), sleep dis-
orders (12–15), family history of psychiatric disorders (16),

substance abuse (17), smoking (18–20), impulsivity (21) and
social factors including childhood maltreatment (21), isolation
(22), and stressful life events (23).

Both suicide and SA are heritable, with estimates from ge-
netic epidemiology studies ranging from 17% to 55% (24–26).
Several genome-wide association studies (GWASs) of SA have
reported significant single nucleotide polymorphism (SNP)–
heritability estimates of w4%, indicating an underlying poly-
genic architecture (27–31). Using polygenic risk scoring or
genetic correlation analyses, these studies have also demon-
strated shared genetic etiology between SA and psychiatric
disorders, with major depressive disorder (MDD) showing the
largest genetic overlap (28,29,31). This genetic overlap, along
with the high prevalence of MDD in the population (32), make it
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a particularly salient risk factor. Importantly, genetic epidemi-
ology studies have consistently indicated a genetic component
of SA that is partially distinct from that of psychiatric disorders
(25). Consistent with this, one GWAS of SA that covaried for
cases’ psychiatric diagnoses estimated a SNP-heritability of
1.9% (27).

With few genetic samples collected specifically for SA,
studies often rely on individuals ascertained for psychiatric
disorders. For example, a large GWAS of SA included over
6500 cases from clinical cohorts of MDD, bipolar disorder
(BIP), and schizophrenia (SCZ) cases, within the Psychiatric
Genomics Consortium (PGC) (31). In an “SA within psychiatric
diagnosis” study design, SA cases were compared with cases
of the same psychiatric disorder without SA, in order to
disentangle the genetic etiology of SA and psychiatric disor-
ders. While GWAS of SA have found genome-wide significant
associations (27–31), thus far none of these loci have repli-
cated, possibly owing to limited statistical power or different
study designs that may probe varying components of the ge-
netic etiology of SA. Depending on the method of ascertain-
ment, the prevalence of psychiatric disorders may be much
higher in SA cases than in controls in these studies, which may
confound the genetics of SA. Well-powered and carefully
designed studies are necessary to dissect the contribution of
genetic variation to SA versus psychiatric disorders and
advance our understanding of the genetics of SA.

Here, we present the first GWAS meta-analysis of SA from
the International Suicide Genetics Consortium (ISGC),
including over 29,000 SA or suicide cases from 18 cohorts
worldwide. We identify novel loci implicated in SA, disentangle
the genetic etiology of SA from that of MDD and psychiatric
disorders, and characterize the genetic relationship among SA,
psychiatric disorders, and a range of other risk factors.

METHODS AND MATERIALS

Cohorts and Case Definition

The primary SA meta-analysis comprised 18 cohorts (Table S1
in Supplement 2; Supplement 1) ascertained for psychiatric
disorders, including substance use (12 cohorts), studies of
suicide or SA (4 cohorts), and population-based biobanks (2
cohorts). Cases were individuals who made a nonfatal SA (16
cohorts) or died by suicide (2 cohorts). A nonfatal SA was
defined as a lifetime act of deliberate self-harm with intent to
die. Information on SA was ascertained using structured clin-
ical interviews for 10 cohorts, self-report questionnaires for 4
cohorts, and hospital records or International Classification of
Diseases codes for 2 cohorts. Cases of death by suicide were
ascertained from the Utah State Office of the Medical Examiner
or the Medical Examiner’s Office of the Hyogo Prefecture and
the Division of Legal Medicine, at the Kobe University Grad-
uate School of Medicine in Japan. A proportion of cases in the
iPSYCH and Columbia University cohorts had died by suicide,
determined using the Cause of Death Register in Denmark and
the Columbia Classification Algorithm for Suicide Assessment,
respectively (33). Individuals only endorsing suicidal ideation or
nonsuicidal self-injurious behavior were not included as cases.
There were 14 cohorts of European (EUR) ancestries, 2 of
admixed African American (AA) ancestries, and 2 of East Asian
(EAS) ancestries. All individual studies received institutional

and ethical approval from their local institutional review board.
Detailed cohort information is in Supplement 1 and Table S1 in
Supplement 2.

Control Definition

All controls ascertained on psychiatric disorders were
screened for the absence of lifetime SA. Controls from general
population cohorts were screened for the absence of SA, if
possible; however, because the prevalence of SA in the gen-
eral population is low (3), some cohorts included unscreened
controls. No controls in this study were screened for suicidal
ideation or nonsuicidal self-injurious behavior. The primary SA
GWAS included 29,782 cases and 519,961 controls from 18
cohorts (Table 1). Genome-wide significant associations with
SA were tested in an independent replication cohort of 14,089
SA cases and 395,359 controls from Million Veteran Program
(details in Supplement 1).

Genotyping, Quality Control, and Imputation

Cohorts were required to have at least 200 cases prior to
quality control for inclusion. Samples underwent standard
genotyping, quality control, and imputation, performed by the
collaborating research teams using comparable procedures
(details per cohort available in Supplement 1). Briefly, samples
were genotyped on microarrays, with the exception of the
China, Oxford and Virginia Commonwealth University Experi-
mental Research on Genetic Epidemiology (CONVERGE)
study, which used low-coverage sequencing. Standard pa-
rameters were used to retain individuals and SNPs after quality
control for missingness, relatedness, and Hardy-Weinberg
equilibrium. Imputation was performed using the appropriate
ancestry reference panels, resulting in .7.7 million SNPs that
were well-represented across cohorts. Identical individuals
between the PGC and UK Biobank cohorts were detected
using genotype-based checksums (https://personal.
broadinstitute.org/sripke/share_links/zpXkV8INxUg9bayDpLTo
G4g58TMtjN_PGC_SCZ_w3.0718d.76) and removed from
PGC cohorts. There was no other known overlap of controls
between any of the 18 cohorts.

GWASs and Meta-analysis

GWASs were performed in each cohort separately, and pro-
cedures are outlined in Supplement 1. GWASs were
conducted within ancestry group, covarying for ancestry-
informative principal components, genomic relatedness
matrices, or factors capturing site of recruitment or genotyping
batch, as required. The linkage disequilibrium score regression
(LDSC) intercept was calculated for all GWAS results to esti-
mate potential confounding from cryptic relatedness or pop-
ulation stratification (34). Studies with significant LDSC
intercepts (p , .05) were corrected for confounding by multi-
plying the standard error per SNP by the square root of the
intercept (34). A transancestry meta-analysis was conducted
using an inverse variance-weighted fixed-effects model in
METAL (35), implemented using the Rapid Imputation for
COnsortias PIpeLIne (36). A EUR-only meta-analysis was also
conducted (SA-EUR) (26,590 cases and 492,022 controls). The
weighted mean allele frequency and imputation INFO score per
SNP was calculated, weighted by the effective sample size per
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cohort. SNPs with a weighted minor allele frequency of ,1%,
weighted INFO score ,0.6, or SNPs present in ,80% of total
effective sample size were removed from the meta-analysis
results. A genome-wide significant locus was defined as the
region around a SNP with p , 5.0 3 1028 with linkage
disequilibrium (LD) r2 . 0.1, within a 3000 kb window, based
on the LD structure of the Haplotype Reference Consortium
European ancestries reference panel (version 1.0) (37).

Statistical Conditioning on Psychiatric Disorders

The results of the SA-EUR meta-analysis were conditioned on
the genetics of MDD using multitrait-based conditional and
joint analysis using GWAS summary data (mtCOJO) (38),
implemented in the GCTA software package (39). mtCOJO (38)
estimates the effect size of a SNP on an outcome trait
conditioned on exposure trait(s). Genome-wide significant
SNPs for the exposure are used as instruments to estimate the
effect of the exposure on the outcome, and this effect is used
to perform genome-wide conditioning, yielding conditioned
effect sizes and p values for the outcome trait. We conditioned
SA (outcome) on MDD (exposure), because MDD is the most
prevalent psychiatric disorder among individuals who die by
suicide (40) and has the highest genetic correlation with SA
(28). The SA-EUR GWAS summary statistics were used as the
outcome trait, because mtCOJO requires an ancestry-
matched LD reference panel and GWAS summary statistics
for the exposure trait. The PGC MDD GWAS results (excluding
23andMe) (41) were used as the exposure, and the results

yielded GWAS summary statistics for SA conditioned on MDD
(SA-EUR|MDD). mtCOJO is robust to sample overlap between
the GWAS of the exposure and outcome. To select SNPs as
instruments, independence was defined as SNPs more than 1
megabase apart or with LD r2 , 0.05 based on the 1000 Ge-
nomes Project Phase 3 EUR reference panel (42). To obtain at
least 10 independent instruments for MDD, the genome-wide
significance threshold was adjusted to p , 5.0 3 1027, lead-
ing to 15 SNPs used. In a further sensitivity analysis, GWAS
summary statistics for BIP (43) and SCZ (44) were additionally
included as exposure traits.

LD Score Regression

LDSC (34) was used to estimate the phenotypic variance in SA
explained by common SNPs (SNP-heritability, h2SNP) from
GWAS summary statistics. h2SNP was calculated on the liability
scale assuming a lifetime prevalence of SA in the general
population of 2% (middle of the range reported worldwide) (3).
The bivariate genetic correlation attributable to genome-wide
SNPs (rg) was estimated between the SA-EUR and SA-EUR|
MDD GWAS and a range of psychiatric disorders, self-harm
ideation, and propensity toward risk-taking behavior, using
the largest available GWAS summary statistics (Bonferroni-
corrected significance threshold p , .0042, adjusting for 12
traits tested). Differences in rg with SA-EUR versus SA-EUR|
MDD were tested for deviation from 0, using the block jack-
knife method, implemented in LDSC software (45). The rgs of
SA-EUR and SA-EUR|MDD with 768 other nonoverlapping
human diseases and traits were calculated on LD Hub (46)
(Bonferroni-corrected significance threshold p , 6.51 3 1025).
Traits were precategorized manually into 15 risk factor groups
previously ascribed to SA (4,5,10): autoimmune disease,
neurologic disease, heart disease, hypertension, diabetes,
kidney disease, cancer, alcohol use, smoking, pain, psychiat-
ric, sleep, life stressors, socioeconomic, and education/
cognition. There were 259 traits belonging to these categories,
and a second reviewer validated the categories assigned to
traits and their relevance to SA risk.

Polygenic Risk Scoring

Polygenic risk scores (PRSs) for SA were tested for association
with SA or death by suicide versus controls in 7 target cohorts:
PGC MDD, BIP and SCZ, CONVERGE (EAS ancestries), the
University of Utah (suicide death cohort), Yale-Penn (AA an-
cestries), and Grady Trauma Project (AA ancestries). The pri-
mary SA GWAS meta-analysis was repeated excluding each
cohort in turn, to create independent discovery datasets. PRSs
were generated using PRS-CS (47), which uses a Bayesian
regression framework to place continuous shrinkage priors on
effect sizes of SNPs in the PRS, adaptive to the strength of
their association signal in the discovery GWAS, and the LD
structure from an external reference panel (47). The 1000 Ge-
nomes EUR, EAS, or African reference panels (42) were used to
estimate LD between SNPs, as appropriate for each target
cohort. PLINK 1.9 (48) was used to weight SNPs by their effect
sizes calculated using PRS-CS and sum all SNPs into PRS for
each individual in the target cohorts. PRSs were tested for
association with case versus control status in the target cohort
using a logistic regression model including covariates as per

Table 1. Numbers of Cases and Controls for 18 Cohorts in
the International Suicide Genetics Consortium

Cohort (Ancestry) SA Cases Controls

Psychiatric Genomics Consortium MDD (EUR) 1528 16,626

Psychiatric Genomics Consortium BIP (EUR) 3214 17,642

Psychiatric Genomics Consortium SCZ (EUR) 1640 7112

Psychiatric Genomics Consortium ED (EUR) 170 5070

Army STARRS (EUR) 670 10,637

German Borderline Genomics Consortium (EUR) 481 1653

UK Biobank (EUR) 2433 334,766

iPSYCH (EUR) 7003 52,227

Janssen (EUR) 255 1684

Yale-Penn (EUR) 475 1817

GISS Ukraine (EUR) 660 660

Columbia University (EUR) 577 1233

Australian Genetics of Depression Study and
QSkin Study (EUR)

2792 20,193

University of Utah (EUR) 4692 20,702

Japan (EAS) 746 14,049

CONVERGE (EAS) 1148 6515

Grady Trauma Project (Admixed AA) 669 4473

Yale-Penn (Admixed AA) 629 2902

Total 29,782 519,961

AA, African American; Army STARRS, Army Study to Assess Risk
and Resilience in Servicemembers; BIP, bipolar disorder; EAS, East
Asian; ED, eating disorder; EUR, European; GISS, Genetic
Investigation of Suicide and Suicide Attempt; MDD, major depressive
disorder; SA, suicide attempt; SCZ, schizophrenia.
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the GWAS. The amount of phenotypic variance explained by
the PRS (R2) was calculated on the liability scale, assuming a
lifetime prevalence of SA in the general population of 2% (3).
Analyses in the PGC cohorts were repeated using PRSs
generated from the SA-EUR|MDD GWAS results, excluding
each PGC cohort in turn. Analyses performed are summarized
in Table S2 in Supplement 2 (Bonferroni-corrected significance
threshold p , 3.12 3 1023, adjusting for 16 tests).

RESULTS

SA Shows Significant SNP-Heritability and PRS
Associations

The primary SA GWAS included 29,782 cases and 519,961
controls from 18 cohorts (Table 1). Cases were predominantly
of EUR ancestries (90%), with 6% of EAS ancestries and 4% of
admixed AA ancestries. Case definition was lifetime SA, with
w20% of cases having died by suicide. The SNP-heritability
(h2SNP) SA was 6.8% (SE = 0.005, p = 2.00 3 10242) on the li-
ability scale. The LDSC intercept was 1.04 (SE = 0.01, p = 2.84
3 1024), and the attenuation ratio was 0.14 (SE = 0.04), indi-
cating that the majority of GWAS test statistic inflation was due
to polygenicity (Figure S1 in Supplement 1). PRSs for SA were
tested in 7 target cohorts (Table S2 in Supplement 2). SA PRSs
were significantly associated with SA in the PGC MDD, BIP,
and SCZ cohorts, with a phenotypic explained variance (R2) of
0.69% (p = 7.17 3 10215), 0.68% (p = 8.11 3 10228), and
0.88% (p = 1.243 10217), respectively (liability scale). PRSs for
SA were also associated with death by suicide in the University
of Utah cohort, explaining slightly more phenotypic variance
(R2 = 1.08%, p = 9.79 3 10281). The rg between the University
of Utah suicide death GWAS and a meta-analysis of the
nonfatal SA cohorts in our study was 0.77 (SE = 0.08, p = 3.08
3 10220). Examining the performance of SA PRSs across an-
cestries showed a significant association with SA in the
CONVERGE EAS cohort, although with a lower explained
variance (R2 = 0.25%, p = 3.06 3 1023). Analyses in 2 admixed
AA cohorts showed variable results (R2 = 0.21%, p = 5.28 3

1021 and R2 = 0.58%, p = 3.44 3 1023, respectively) (Table S2
in Supplement 2).

GWAS of SA Identifies Locus With Stronger Effect
on SA Than Psychiatric Disorders

The primary SA GWAS identified 2 genome-wide significant
loci (p , 5 3 1028) (Table S3 in Supplement 2). The most
strongly associated locus was in an intergenic region on
chromosome 7 (index SNP rs62474683, odds ratio A allele =
1.06 [1.04–1.08], p = 1.91 3 10210, frequency in cases = 0.52,
frequency in controls = 0.50, I2 heterogeneity index = 0%)
(forest plot Figure S2 in Supplement 1). The second genome-
wide significant locus was in the major histocompatibility
complex (MHC) (index SNP rs71557378, odds ratio T allele =
1.10 [1.06–1.13], p = 1.97 3 1028, frequency in cases = 0.91,
frequency in controls = 0.90, I2 heterogeneity index = 46%)
(forest plot Figure S3 in Supplement 1). Both loci were also
genome-wide significant in the SA-EUR meta-analysis, with
the same effect sizes (Table S4 in Supplement 2). In order to
identify SA genetic effects not mediated by MDD, we condi-
tioned the SA-EUR GWAS on the genetic effects of MDD via

mtCOJO. After conditioning, only the chromosome 7 locus
remained genome-wide significant (index SNP = rs62474683,
odds ratio A allele = 1.06 [1.04–1.08], p = 1.33 3 1028) (Figure
1A). Figures S4 and S5 in Supplement 1 show regional asso-
ciation plots of the loci before and after conditioning. The as-
sociation of the chromosome 7 index SNP with SA was further
replicated in the independent Million Veteran Program cohort
(rs62474683, odds ratio A allele = 1.03 [1.01–1.07], p = 3.27 3

1023), while the index SNP in the MHC was not associated
with SA in this cohort (Table S4 in Supplement 2).

Examination of the chromosome 7 locus in published
GWAS results using the Open Targets Genetics web portal (49)
indicated smaller and nonsignificant effects on all psychiatric
disorders (Figure 1B). Additionally, the SA-index SNP has been
implicated at genome-wide significance in lifetime smoking
index (50) (accounts for duration and amount of smoking) and
propensity toward risk-taking behavior (51), although again
with smaller effect sizes than on SA (Figure 1B; Tables S5 and
S6 in Supplement 2). Pairwise GWAS analysis (see
Supplement 1) of the genomic region containing the chromo-
some 7 locus suggested the existence of a single putative
causal variant shared between SA and these phenotypes
(lifetime smoking index: posterior probability = 0.99, risk-taking
behavior: posterior probability = 1) (Table S7 in Supplement 2).
Furthermore, a variant in high LD with the chromosome 7 index
SNP (rs12666306, LD r2 = 0.94) has a positive genome-wide
significant effect on insomnia (reported in GWAS catalog, full
summary statistics not available) (Figure 1B; Tables S5 and S6
in Supplement 2). The SA-index SNP has also been implicated
in self-harm ideation (52), although not at genome-wide sig-
nificance, and with a smaller effect size than on SA (Figure 1B).

MAGMA (53) enrichment analyses performed on the primary
SA GWAS (see Supplement 1) showed significant enrichment
of SA associations in 7 genes (Table S8 in Supplement 2),
including BTN2A1, which is a brain-expressed gene (54)
located within the MHC, that encodes a plasma-membrane
protein. There was no enrichment of SA association signal in
any of the biological gene sets tested (Table S9 in Supplement
2) or in the set of genes expressed in any of the 54 tissues from
the Genotype-Tissue Expression project (Table S10 in
Supplement 2). Examining individual genes, a transcriptome-
wide association study (see Supplement 1) found 5 genes for
which SA risk alleles were significantly associated with brain
gene expression: ERC2, RP112266A24.1, TIAF1, BACE2, and
NUFIP2 (p , 4.28 3 1026) (Table S11 in Supplement 2). None
of these genes were within genome-wide significant loci.

Evidence for Substantial Proportion of SNP-
Heritability of SA Not Mediated by Psychiatric
Disorders

h2SNP based on the SA-EUR GWAS was 7.5% (SE = 0.006, p =
3.023 10240) on the liability scale (Table S12 in Supplement 2).
Conditioning SA-EUR on MDD resulted in a 45% decrease in
the h2SNP of SA to 4.1% (SE = 0.005, p = 1.20 3 10216) on the
liability scale (Table S12 in Supplement 2). Conditioning on BIP
and SCZ in addition to MDD did not further change the h2SNP
estimate (h2SNP = 4.1%, SE = 0.005, p = 1.20 3 10216). The SA-
EUR|MDD results showed comparable h2SNP and complete rg
with a direct GWAS of SA within psychiatric diagnosis
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(Supplement 1), confirming the validity of the statistical con-
ditioning approach to control for the genetic effects of psy-
chiatric disorders.

Significant Genetic Overlap Between SA and
Psychiatric Traits or Disorders

Genetic correlations were calculated to explore the genetic
overlap between SA and 12 psychiatric traits or disorders
before and after conditioning on MDD. The SA-EUR GWAS
showed significant rg with 11 traits or disorders tested, most
strongly with self-harm ideation (rg = 0.82, SE = 0.07, p = 3.57
3 10236), MDD (rg = 0.78, SE = 0.04, p = 4.11 3 102106), and
posttraumatic stress disorder (rg = 0.74, SE = 0.09, p = 5.29 3

10217) (Figure 2; Table S13 in Supplement 2). Moderate ge-
netic correlations were also observed between SA and SCZ,
attention-deficit/hyperactivity disorder, BIP, posttraumatic
stress disorder, and alcohol dependence (rgs 0.45–0.74)
(Figure 2; Table S13 in Supplement 2).

To investigate whether these genetic correlations were
mediated by MDD, we estimated rg with the same traits and

disorders using the SA-EUR|MDD results. Most genetic
correlations with psychiatric disorders remained significant
after conditioning, except for autism spectrum disorder and
Tourette syndrome (Figure 2; Table S13 in Supplement 2). As
expected, the rg with MDD significantly decreased after
conditioning (p = 8.4 3 10222 block jackknife), as did the rgs
with self-harm ideation, posttraumatic stress disorder, and
autism spectrum disorder (Figure 2; Table S13 in
Supplement 2). The remaining psychiatric disorders did
not show Bonferroni corrected significant differences in rg
after conditioning on MDD. Because conditional analysis
only removes SNP effects on SA mediated by MDD,
the remaining rg between SA-EUR|MDD and MDD (rg = 0.53,
SE = 0.06, p = 8.9 3 10219) indicates pleiotropic SNP
effects.

Substantial Shared Genetic Architecture of SA and
Nonpsychiatric Risk Factors Not Mediated by MDD

To assess the shared genetic architecture of SA, psychiatric,
and nonpsychiatric phenotypes, we calculated genetic
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Insomnia*
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Chr 7 rs62474683B

Figure 1. Genome-wide significant locus con-
tributes to SA more strongly than psychiatric disor-
ders and other traits. (A) Manhattan plot: the x-axis
shows genomic position, and the y-axis shows
statistical significance as 2log10(p value). The gray
points in the background depict the results of SA-
EUR, and the colored points in the foreground de-
pict the results after conditioning these results on
MDD (SA-EUR|MDD). The horizontal line shows the
genome-wide significance threshold (p , 5.0 3

1028). (B) Forest plot: the points indicate the log
odds ratio of the A allele at rs62474683 (SA-index
single nucleotide polymorphism on chromosome 7)
on each phenotype, and the error bars show the
standard error. The p value of association with each
phenotype is shown above the error bars. *For
insomnia, the effect size of a variant in high linkage
disequilibrium with the index single nucleotide
polymorphism is shown instead (rs12666306 A
allele, linkage disequilibrium r2 = 0.94 with
rs62474683 A allele). MDD, major depressive disor-
der; MHC, major histocompatibility complex; OR,
odds ratio; SA, suicide attempt; SA-EUR, European-
only suicide attempt meta-analysis; SA-EUR|MDD,
SA-EUR results after conditioning on MDD.
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correlations of SA with 768 nonoverlapping phenotypes (46).
There were 198 phenotypes that showed a significant rg with
SA-EUR, 133 of which were in one of the predefined SA risk
categories (Figure 3A; Table S14 in Supplement 2). The most
significant genetic correlations were predominantly with traits
related to depressive symptoms, smoking, and socioeco-
nomic status. On examining phenotypes in the risk categories
after conditioning on MDD, 110 phenotypes retained a sig-
nificant rg with SA-EUR|MDD (Table S14 in Supplement 2).
Within the psychiatric risk category, there was a 38% average
decrease in the magnitude of genetic correlations with SA-
EUR after conditioning, whereas the rg values in other risk
categories were much less affected by conditioning (smok-
ing: 4.6% decrease, education/cognition: 3% decrease,
alcohol: 14.5% decrease, and socioeconomic: 9.3%
decrease) (Figure 3B).

DISCUSSION

We present a GWAS of SA in over 29,000 cases, identifying 2
genome-wide significant loci, including one more strongly
associated with SA than psychiatric disorders or related traits.
We demonstrate that a substantial proportion of the SNP-
heritability of SA is independent of psychiatric diagnosis.
Finally, we show that the genetic liability to SA not mediated by
psychiatric disorders is shared with the genetic architecture of
nonpsychiatric risk factors.

The locus most strongly associated with SA was in an
intergenic region on chromosome 7. The index SNP had a
larger effect on SA than on any common psychiatric disor-
der, remained genome-wide significant after conditioning on
MDD, and replicated in an independent cohort from the
Million Veteran Program. Taken together, these results

suggest that the genetic association with SA at this locus is
not mediated through risk for psychiatric disorders. Func-
tional genomic data do not clearly link this variant to any
gene, with the nearest gene being a long noncoding RNA
(LINC01392) 149 kb away. The index SNP (rs62474683) is a
methylation quantitative trait locus, with the SA risk allele
associated with decreased methylation of a nearby DNA
methylation site (probe cg04544267) in blood (55). However,
this methylation site has not been linked to any gene tran-
script. Intriguingly, SA risk alleles at this locus have been
implicated at genome-wide significance in risk-taking
behavior (51), smoking (50), and insomnia (56). While vari-
ants in the MHC also reached genome-wide significance for
SA, this effect did not remain after conditioning on MDD,
suggesting that this association may be a byproduct of
psychiatric diagnosis. Indeed, variants in the MHC have
previously been associated with risk for a range of psychi-
atric disorders, including MDD (57).

Our GWAS results provide robust evidence of the h2SNP of
SA, with an estimate of 6.8% on the liability scale (7.5% based
on SA-EUR). Importantly, conditioning on MDD resulted in a
smaller but significant h2SNP estimate (4.1%), corroborating
previous reports (25,27) of the independent genetic contribu-
tion to SA, and illustrating the importance of accounting for
potential confounding from the genetics of psychiatric disor-
ders. Traditionally, GWASs have sought to dissect the specific
genetic component of SA by studying SA within psychiatric
diagnosis or covarying for cases’ psychiatric diagnoses (27).
Here, we demonstrate that statistical conditioning is an
appropriate and easily applicable approach to control for the
genetic effects of psychiatric disorders, producing equivalent
results to a direct GWAS of SA within psychiatric diagnosis
(Supplement 1).

Unfilled: P > 0.05/12

P = 4x10-8

P = 8.4x10-22

P = 8.8x10-6

P = 1.7x10-4

Figure 2. Substantial genetic correlation of SA with psychiatric traits or disorders before and after conditioning SA on MDD. Unfilled points indicate genetic
correlations that did not pass the Bonferroni-corrected significance threshold (p , 4.17 3 1023). Error bars represent the standard error. p values indicate
significant differences in genetic correlation after conditioning that pass Bonferroni correction. ADHD, attention-deficit/hyperactivity disorder; AlcUse Disorder
P, Alcohol Use Disorders Identification Test-P (measure of problematic consequences of drinking); AN, anorexia nervosa; ASD, autism spectrum disorder; BIP,
bipolar disorder; MDD, major depressive disorder; OCD, obsessive-compulsive disorder; PTSD, posttraumatic stress disorder; SA, suicide attempt; SA-EUR,
European-only suicide attempt meta-analysis; SA-EUR|MDD, SA-EUR results after conditioning on MDD; SCZ, schizophrenia.
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SA showed substantial positive genetic correlation with
many psychiatric disorders, the highest being with MDD (rg =
0.78, SE = 0.03), consistent with previous reports (28,29,31).
Genetic overlap was also particularly strong with posttraumatic
stress disorder, attention-deficit/hyperactivity disorder, SCZ,
and BIP (rg = 0.44 2 0.74). After conditioning on MDD, there
was a modest decrease in the genetic correlation of SA with
most psychiatric disorders. Notably, SA remained strongly
genetically correlated with MDD (rg = 0.53, SE = 0.06, p = 8.85
3 10219), representing pleiotropic effects between them. This
genetic correlation would only be eliminated if all SNP effects
on SA were mediated by MDD. Pleiotropy between psychiatric
disorders is widespread (58,59), and accordingly, genetic
overlap between SA and related disorders is anticipated. Our
findings suggest that many pleiotropic genetic variants in-
crease the risk for SA directly, independent of their effects on
psychiatric disorders.

Significant genetic overlap was found between SA and
many nonpsychiatric traits, including smoking, lower socio-
economic status, pain, lower educational attainment, repro-
ductive traits, risk-taking behavior, sleep disturbances, and
poorer overall general health. While conditioning SA on MDD
reduced genetic correlations with psychiatric disorders, the
genetic correlation of SA with most nonpsychiatric traits
remained unchanged. This suggests a shared genetic archi-
tecture between SA and these risk factors that is not medi-
ated by psychiatric illness. There is substantial
epidemiological literature on the relationship between sleep
disorders (12–15), smoking (18–20), and socioeconomic fac-
tors (60–62) and risk for SA but less on genetic overlap be-
tween them. We have not examined potential causal
relationships between these risk factors and SA, but future

Mendelian randomization studies that will become possible
with further increases in the power of SA GWAS may highlight
modifiable risk factors.

Several limitations of our study must be noted. Cases were
defined using a variety of diagnostic interviews, self-report, or
hospital records, which may result in phenotypic heteroge-
neity. However, suicidal intent was central to all phenotype
definitions, and a previous study found 98% concordance
between self-report of lifetime SA and face-to-face clinician
interview (63). Our GWAS included both nonfatal SA and
suicide death cases, and these phenotypes were highly but
imperfectly genetically correlated (rg = 0.77). Genetic corre-
lations between SA and psychiatric disorders were examined
using publicly available GWAS summary statistics; however,
the prevalence of SA among the cases in these studies is
unknown. Finally, population, demographic, and environ-
mental factors are always present in genetic analyses, and
while our sample is large and diverse, we did not have suffi-
cient data to assess their possible contribution or con-
founding effects.

This first collaborative SA GWAS by the ISGC is almost 5-
fold larger than previous studies, substantially improving sta-
tistical power. We identify a robustly associated SA risk locus
and demonstrate genetic liability to SA that is not mediated
through psychiatric disorders but is shared with known risk
factors. We emphasize that genetic risk does not currently
have meaningful predictive utility for SA, and its premature use
in clinical or direct-to-consumer settings could be harmful.
Future larger studies dissecting the genetic etiology of SA,
psychiatric disorders, and other risk factors will provide further
insights into the biological mechanisms of risk and assess
potential clinical utility.

A B

Figure 3. Conditioning SA on MDD reduces genetic correlation with psychiatric phenotypes but has limited effect on other traits. (A) Comparison of sig-
nificant genetic correlations with the SA-EUR vs. genetic correlations with SA-EUR|MDD. Data include 198 significant genetic correlations after Bonferroni
correction (p , .05/768 = 6.51 3 1025) annotated by risk category. (B) Top 30 phenotypes with the most significant genetic correlations with SA-EUR before
(gray) and after (red) conditioning on MDD (SA-EUR|MDD). Full genetic correlation results, including standard errors, are provided in Table S14 in Supplement
2. GP, general practitioner; MDD, major depressive disorder; SA, suicide attempt; SA-EUR, European-only suicide attempt meta-analysis; SA-EUR|MDD, SA-
EUR results after conditioning on major depressive disorder.
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Gut microbiota signature in treatment-naïve attention-deficit/
hyperactivity disorder
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Lorena Arribas1,4, Estela Garcia4, Silvia Karina Rosales-Ortiz4,5, Alejandro Arias-Vasquez6,7, María Soler-Artigas 1,2,4,8,
Marta Ribasés 1,2,4,8✉ and Josep Antoni Ramos-Quiroga 1,2,3,4✉

© The Author(s) 2021

Compelling evidence supports alterations in gut microbial diversity, bacterial composition, and/or relative abundance of several
bacterial taxa in attention-deficit/hyperactivity disorder (ADHD). However, findings for ADHD are inconsistent among studies, and
specific gut microbiome signatures for the disorder remain unknown. Given that previous studies have mainly focused on the
pediatric form of the disorder and involved small sample sizes, we conducted the largest study to date to compare the
gastrointestinal microbiome composition in 100 medication-naïve adults with ADHD and 100 sex-matched healthy controls. We
found evidence that ADHD subjects have differences in the relative abundance of several microbial taxa. At the family level, our
data support a lower relative abundance of Gracilibacteraceae and higher levels of Selenomonadaceae and Veillonellaceae in adults
with ADHD. In addition, the ADHD group showed higher levels of Dialister and Megamonas and lower abundance of Anaerotaenia
and Gracilibacter at the genus level. All four selected genera explained 15% of the variance of ADHD, and this microbial signature
achieved an overall sensitivity of 74% and a specificity of 71% for distinguishing between ADHD patients and healthy controls. We
also tested whether the selected genera correlate with age, body mass index (BMI), or scores of the ADHD rating scale but found no
evidence of correlation between genera relative abundance and any of the selected traits. These results are in line with recent
studies supporting gut microbiome alterations in neurodevelopment disorders, but further studies are needed to elucidate the role
of the gut microbiota on the ADHD across the lifespan and its contribution to the persistence of the disorder from childhood to
adulthood.

Translational Psychiatry          (2021) 11:382 ; https://doi.org/10.1038/s41398-021-01504-6

INTRODUCTION
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelop-
mental disorder characterized by a persistent pattern of symp-
toms of inattention, hyperactivity, and impulsivity, resulting in
dysfunction in two or more areas of an individual’s life [1,2,]. ADHD
is associated with deterioration in the social, family, academic,
and/or occupational functioning of the affected subjects and has a
high impact at the socioeconomic level [3].
The prevalence of ADHD in children is approximately 5.3%, and

of these, 50−70% will still show symptoms in adulthood [4]. The
etiology is complex and multifactorial, with an average heritability
of 74% [5]. Through the largest meta-analyses of genome-wide
association studies performed so far, the first genome-wide
significant loci for ADHD were identified [6,7,]. Evidence for a
strong genetic component of common variants in the polygenic
architecture of ADHD was found, with an SNP-based heritability of
22% [6]. Given that the large proportion of heritability still needs

to be explained, these data also suggest that other mechanisms
may provide a means for integrating the effects of genetic and
environmental risk factors and explaining additional phenotypic
variance in ADHD. Among such factors, compelling evidence
supports a possible role for the gut microbiome in ADHD.
The gut microbiome is essential for health and plays a role in

the bidirectional regulation of the brain-gut axis. Microorganisms
influence the brain through their ability to produce and modify
many metabolic, immunological, and neurochemical factors in the
gut that ultimately impact the central nervous system [8–10]; in
turn, brain activity also impacts the gut microbiota composition
[11,12,]. The gut microbiota influences gut barrier integrity and
produce neuroactive compounds such as neurotransmitters,
amino acids, and microbial metabolites, including short-chain
fatty acids [10,13,]. These metabolites can interact with the host
immune system, act on the central nervous system by regulating
gene expression, epigenetics and neuroplasticity and affect local
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neuronal cells and afferent pathways that signal directly to the
brain [13]. This dynamic bidirectional communication between the
gut microbiota and the central nervous system influences brain
function, cognition, and behavior and highlights the fact that gut
microbiota imbalance may contribute to the pathophysiology of
neurodevelopmental disorders and mental health outcomes.
Consistently, an increasing number of studies have shown gut

microbiome alterations in neurodevelopmental disorders [14–19].
For ADHD, an increasing number of studies have reported that the
gut microbial diversity, bacterial composition, and/or relative
abundance of several bacterial taxa differ between patients and
healthy controls [20–28]. Although not confirmed by others
[20,22,27,], some studies found differences in microbiota alpha
[23,28,] or beta diversity [23,24,] in ADHD. For example, Prehn-
Kristensen et al. observed decreased alpha diversity in ADHD
patients and differences in beta diversity between patients and
controls [23]. Wang et al. [28] also reported differences in alpha
diversity in ADHD, and Szopinska-Tokov found a significant
reduction in beta diversity in patients with ADHD [24,28,]. When
focusing on specific taxonomic groups, Aarts et al. reported a
nominal increase in Bifidobacterium in individuals with ADHD,
changes that were associated with a significantly enhanced
predicted synthesis of the dopamine precursor phenylalanine
[22]. Similarly, Jiang et al reported decreased amounts of the
genera Dialister, Lachnoclostridium, Sutterella, and Faecalibacterium
in treatment-naïve children with ADHD compared with healthy
controls and a negative association between the abundance of
the last taxonomic group and parental reports of ADHD symptoms
[27]. These results were consistent with those from a recent study
by Wan et al., which also detected a reduced relative abundance
of Faecalibacterium, as well as higher amounts of Odoribacter and
Enterococcus, in ADHD patients [20]. Moreover, Prehn-Kristensen
observed distinct abundance in different microbial taxa, including
increased Neisseria and decreased Prevotella and Parabacteroides
in ADHD subjects [23]. Wang et al. compared the fecal microbiota
composition between medication-naïve children with ADHD and
healthy controls and found Fusobacterium genus as a marker for
ADHD as well as enrichment of Lactobacillus in the control group
[28]. Finally, a recent study conducted by Szopinska-Tokov et al.
revealed an association between the relative abundance of the
Ruminococcaceae _UCG_004 genus and ADHD inattention symp-
toms [24]. All these previous studies, however, considered small
sample sizes (from 14 to 51 ADHD patients), mainly focused on the
childhood/adolescent form of the disorder, and showed no
overlap or lack of concordance between findings.
Additionally, clinical evidence shows that probiotic intervention

in early life may improve later outcomes and reduce the risk of
neuropsychiatric disorders [29], and mice colonized by microbiota
from subjects with ADHD displayed altered microbial composition
and behavioral and brain abnormalities compared with mice
transplanted with the microbiota from individuals without ADHD
[30]. These data further support that the gut microbiome
composition may influence brain function and behavior and play
a role in the disorder [30–33].
Considering this background, we performed the largest

characterization of the gastrointestinal microbiome composition
in 100 medication-naïve adults with ADHD and 100 sex-matched
healthy controls and assessed differences in the microbiota
composition between both groups and whether such differences
were associated with ADHD clinical symptoms.

MATERIALS AND METHODS
Participants and clinical assessment
The clinical sample consisted of 100 adult medication-naïve ADHD subjects
(DSM-5 criteria) who were referred to an ADHD program from primary care
centers and adult community mental health services. All subjects were
evaluated and recruited prospectively from a restricted geographic area of

Catalonia (Spain) in a specialized outpatient program for adult ADHD and
by a single clinical group at Hospital Universitari Vall d’Hebron of Barcelona
(Spain). A description of the sample is provided in Supplementary Table 1.
The clinical assessment consisted of structured interviews and self-

report questionnaires in two different steps: (i) ADHD diagnosis was based
on the results of the Structured Diagnostic Interview for Adult ADHD (DIVA
2.0) [34] by a psychiatrist; (ii) the severity of ADHD symptoms and levels of
impairment and comorbid disorders were assessed by a psychologist. In
this part of the evaluation, the following scales and questionnaires were
used: the ADHD Rating Scale (ADHD-RS), the Clinical Global Impression
(CGI), the Wender Utah Rating Scale (WURS), the Sheehan Disability
Inventory (SDS), and the Structured Clinical Interview for DSM-IV Axis I and
II Disorders (SCID-I and SCID-II). Afterward, the psychiatrist and psychol-
ogist integrated the clinical information and self-reports for valid
assessment of symptoms and impairments. In case of discordance
between the different raters for ADHD symptoms or inconsistencies
between the reporters in responses to items measuring similar symptoms,
clinician-identified symptoms on the DIVA 2.0 prevailed. Clinical informa-
tion was reordered at the moment of inclusion, at which time the stool
specimen was also collected. Exclusion criteria were as follows: an
intelligence quotient less than 70; lifelong or current history of mood,
psychotic, anxiety, substance abuse, and personality disorders; pervasive
developmental disorders; a history or the current presence of a condition
or illness, including neurologic, metabolic, cardiac, liver, kidney, or
respiratory disease; a chronic medication of any kind; birth weight ≤
1.5 kg; and other neurological or systemic disorders that might explain
ADHD symptoms.
The control sample consisted of 100 unrelated healthy donors matched

by sex and ethnicity with the clinical group. The exclusion criteria were
ADHD symptomatology according to the Adult Self-Report Scale A.S.R. S
v1.1. and any prior or current psychiatric comorbidity.
All subjects reported European ancestry, which was confirmed through

principal component analysis (PCA) using genetic data. Exclusion criteria
for all participants included treatment with antibiotics or probiotics up to
before stool collection.
The study was approved by the Clinical Research Ethics Committee

(CREC) of Hospital Universitari Vall d’Hebron. All methods were performed
in accordance with the relevant guidelines and regulations, and written
informed consent was obtained from all subjects before inclusion. None of
the participants received any financial compensation.

Sample collection and DNA isolation
Human fecal samples were collected at home, stabilized with the
OMNIgene·GUT (OM-200) (DNA Genotek Inc.) kit, and then transported
to the laboratory. The samples were aliquoted into 1.5-ml tubes and stored
at −80 °C. Microbial DNA was purified from 200mg of each homogenized
fecal sample using the QIAamp® PowerFecal® DNA extraction kit (QIAgen,
Hilden, Germany). The isolated DNA was quantified using PicoGreen™
dsDNA Assay Kit [35].

Library preparation and Illumina sequencing
The V3−V4 hypervariable region of the bacterial 16S rRNA gene was
amplified for microbiome composition profiling. DNA library construction
was performed following the manufacturer’s instructions (Illumina). We
used the same workflow as described elsewhere [36] to perform cluster
generation, template hybridization, isothermal amplification, linearization,
blocking and denaturation, and hybridization of the sequencing primers.
Briefly, the V3−V4 region was amplified using key-tagged eubacterial
primers 5′CCTACGGGNGGCWGCAG3′ and 5′GACTACHVGGGTATC-
TAATCC3′, and 300-nt paired-end amplicons were subsequently
sequenced in two different rounds using the Illumina MiSeq platform.
The raw Illumina paired-end reads were merged considering an overlap
length > 70 bp with the PEAR software v. 0.9.1, providing a single FASTQ
file for each of the samples [37]. High-quality reads were extracted by
applying a minimum Phred score of 20 (Q20, 99% based call accuracy).
After primer sequences trimming, reads without both primer sequences or
with less than 200 bp were discarded with Cutadapt v.1.8.1 [38]. Chimeric
sequences were removed using the UCHIME software [39]. After quality
control filtering, we obtained 14.7 million high-quality sequences with 45
063−216 059 reads per sample from a total of 200 fecal samples. The raw
and clean number of sequences, mean length, total mega bases
sequenced, and mean quality per sample can be found in Supplementary
Table 2. The remaining reads were clustered into operational taxonomic
units (OTUs), in which unique sequences with a relative abundance above
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0.1% were clustered into OTUs based on 97% sequence similarity [40]
using the CD-HIT package [41] and the BLAST search against the NCBI 16S
rRNA reference database (September 2019) with bastn v.2.10.0+.
Taxonomic groups (phylum, family, and genus) were assigned with a
Python script developed by ADM-BIOPOLIS (Paterna, Valencia, Spain). To
remove genera with absent or low prevalence, the OTU table was filtered
at the genus level. OTUs with nonzero values in less than 10% of the
samples were removed. OUT counts were normalized by rarefaction with
the phyloseq R package according to Weiss et al. [42].

Statistical analysis
Alpha diversity (within-sample diversity) was calculated on rarefied data
with the Richness, Simpson and Shannon diversity indices and compared
between individuals with ADHD and controls using the vegan R package
(https://github.com/vegandevs/vegan). Beta diversity (between-sample
diversity) was calculated by weighted and unweighted UniFrac and Bray
Curtis distances, as represented by two-dimensional principal coordinates
analysis (PCoA) plots, and compared between groups by permutation
multivariate analysis of variance (PERMANOVA) using the phyloseq R
package [43]. The local contribution to beta diversity (LCBD) test was
applied to evaluate the contribution of each sample to the diversity
between the groups using the adespatial R package (https://github.com/
sdray/adespatial). Canonical correspondence analysis (CCA), a multivariate
constrained ordination method, on rarefied OTUs was performed and
significance regarding the microbial community composition between
groups was assessed by permutational multivariate analysis of variance
(ADONIS) using the vegan R package (https://github.com/vegandevs/
vegan).
Differential abundance comparisons between groups were assessed in

taxonomic groups showing an average of normalized counts (baseMean) >
10 using the DESeq2 and randomForest R packages for the classification,
rfUtilities to estimate the significance of the classification and rfPermute to
evaluate the significance of specific taxa, with 1000 permutations. All
comparisons were performed at the phylum, family, and genus levels. Any
unknown taxonomic level was assigned to the next highest known
taxonomic rank.
Genera showing significant differences in relative abundance between

ADHD cases and controls after multiple comparison corrections in DeSeq2
and the random forest comparisons were considered for downstream
analyses. Multiple logistic regression models were applied to test the
association between ADHD and all selected genera while adjusting for age,
sex, and body mass index (BMI). Adjusted Pseudo-R2 was calculated with
the McFaddenAdj method and the DescTools R package (https://github.
com/AndriSignorell/DescTools); sensitivity and specificity were calculated
with the caret R package (https://github.com/topepo/caret/). A likelihood
ratio test with the lmtest R package (https://cran.r-project.org/web/
packages/lmtest/) was employed to assess whether the inclusion of
selected genera in the multiple logistic regression model fits the data
significantly better than the model including only age, sex, and BMI. In the
first model, we considered affectation status as dependent variable and
age, sex and BMI as independent variables (ADHD 〜 age + sex + BMI); in
the second model, we included selected taxa as independent variables
(ADHD 〜 age + sex + BMI+Megamonas+ Anaerotaenia+ Gracilibacter
+Dialister). Spearman correlation tests were used to assess correlations
between selected genera, age, BMI, and inattention and hyperactive/
impulsivity subscale scores or total scores of the ADHD rating scale.

RESULTS
Bacterial composition based on 16S rRNA sequencing was
available for 100 adult ADHD cases and 100 controls. No
differences in intestinal microbial alpha diversity (microbial
community richness and evenness) were found between ADHD
cases and controls when measured by three different indices
(Richness, Simpson, or Shannon indices; Supplementary Fig. 1).
Beta diversity (between-sample community dissimilarity) accord-
ing to weighted and unweighted UniFrac distances as well as the
Bray-Curtis dissimilarity index showed no differences in the
microbial composition between the groups (PERMANOVA P-
value>0.05), with no evidence of separate clustering in PCoA
representations (Supplementary Fig. 2). No significant differences
in the gut microbiota composition between the ADHD and control

groups were observed in the CCA either (ADONIS P-value = 0.31;
Supplementary Fig. 3).
Compositional analysis of samples revealed that Bacteroidetes,

Firmicutes, Proteobacteria, Actinobacteria, and Verrucomicrobia
were the most abundant phyla in our sample of 200 subjects
(Supplementary Table 3), with no significant differences in relative
abundance detected for any of them. When we explored the
relative abundance of specific microbial taxa, however, we found
evidence that several taxa differed significantly between ADHD
cases and controls by two different methods, DeSeq2 and/or
random forests: 1 phylum, 7 families, and 17 genera showed
differential abundance (PFDR < 0,05; DESeq2: 1 phylum, 5 families,
and 15 genera; random forests: 5 families and 6 genera; Table 1,
Fig. 1, Supplementary Table 4 and Supplementary Fig. 4). When
combining the results of both methods, we found overlap for
three families (Gracilibacteraceae, Selenomonadaceae, and Veillo-
nellaceae) and four genera (Anaerotaenia, Dialister, Gracilibacter,
and Megamonas) (Table 1 and Fig. 1).
For downstream analysis, we focused on genera that differed in

relative abundance between ADHD and controls with both of the
methods described above (Anaerotaenia, Dialister, Gracilibacter,
and Megamonas). When we assessed whether they correlated with
each other, we found a moderate correlation between Anaero-
taenia and Gracilibacter (r= 0.35; P-value= 3.6e−04), a weak
correlation between Anaerotaenia and Megamonas (r=−0.24; P-
value= 0.018), and no correlation between the others (Fig. 2). A
model including the four genera and the covariates age, sex, and
BMI explained 15% of the variance in ADHD, with significant
improvement of the model which included only the covariates (P-
value= 8.2e−07), which explained 5.9% of the variance (Supple-
mentary Table 5). The microbial signature achieved an overall
sensitivity of 74% and a specificity of 71% for the detection of
individuals with ADHD versus healthy controls. We also assessed
whether the selected genera correlated with age, BMI, or ADHD
rating scale scores but found no evidence of correlation between
relative abundance and any of the selected traits (Fig. 2).

DISCUSSION
To clarify the relationship between ADHD and the gut micro-
biome, we performed the largest study to date and compared the
microbial composition between 100 medication-naïve adults with
ADHD and 100 sex-matched unrelated healthy subjects. We found
evidence that ADHD subjects exhibit differences in the relative
abundance of several microbial taxa. At the family level, our data
support a lower relative abundance of Gracilibacteraceae and
higher levels of Selenomonadaceae and Veillonellaceae in adults
with ADHD. In addition, the ADHD group showed higher levels of
Dialister and Megamonas and lower abundances of Anaerotaenia
and Gracilibacter at the genus level.
These results are in line with recent studies supporting gut

microbiome differences in neurodevelopmental disorders.
Although the mechanistic explanation for these associations
remains unknown, a positive correlation between Dialister
abundance and activity level has been described in toddlers
[44]. Additionally, decreased levels of Dialister were found in
autism spectrum disorder (ASD) patients [45,46,] or in treatment-
naïve children with ADHD [27] compared with healthy controls
and in ADHD individuals on medication compared with non-
medicated individuals [24]. Furthermore, multiple taxonomic
groups that differed in relative abundance between ADHD cases
and controls in the present study, including Selenomonadaceae,
Veillonellaceae, and Megamonas, have previously been associated
with other psychiatric conditions that often coexist with ADHD,
such as ASD or depression [27, 47–51]. Given that the ADHD
subjects in this study displayed no comorbid psychiatric disorders,
we cannot discount a possible pleotropic effect of these
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taxonomic groups and that their relative abundance may explain,
in part, ADHD phenotypic variability.
Although previous gut microbiome analyses on ADHD have

mainly focused on pediatric samples [20,23, 26–28] and there is
limited research on adults [22,24,], we focused our study on
adulthood ADHD. Nevertheless, given that the gut microbiome
evolves throughout the lifespan [16,52,53,], whether early-life
exposure to environmental risk factors contributes to the gut
microbiota and impacts neurodevelopment and mental health
outcomes later in life remain to be investigated. Further
longitudinal studies are warranted to provide additional informa-
tion on the role of the microbiome in ADHD symptom trajectories
from childhood to adulthood as well as mental health outcomes
and comorbid profiles across the lifespan.
We did not detect substantial changes in alpha or beta diversity

between ADHD cases and controls. The high heterogeneity in
terms of age, sample size, sex, clinical characteristics, and type of
controls may explain nonreplicable results and discrepancies
between studies. We sex-matched ADHD cases and controls and
restricted the clinical sample to ADHD medication-naïve adult
subjects, which is a major strength of our study design that may
allow us to identify an imbalance in the gut microbiome
composition that might be neglected by broader study designs.
In addition, the sample sizes of previous studies on ADHD, were
relatively small; although our study may also have limited
statistical power to estimate the magnitude of the differences
identified in microbial relative abundance, we assessed the largest
sample size considered thus far. The results, however, need to be

interpreted with caution given that we selected genera of interest
and estimated the variance in ADHD explained by these taxa as
well as the sensitivity and specificity of the regression model using
the same dataset, which may have led to overfitting and further
support the use of independent datasets to obtain more accurate
estimates.
Microbiome composition is strongly influenced by environ-

mental factors such as diet, overall health status, and medication
use [52, 54–56]. The participants in this study were not on
medication and had not used antibiotics or probiotics in the three
months before sample collection, which may not explain the
differences detected between ADHD cases and controls. None-
theless, no other environmental exposures, including smoking,
stress, dietary habits, or other lifestyle information, that may have
an effect on microbiota composition were considered. For
instance, animal models and population-based cross-sectional
studies support an effect of nicotine or smoking status on the gut
microbiome composition and the fecal metabolome [57–59]. In
addition to environmental factors, consistent evidence suggests
that the host genetic background impacts the composition of gut
microbial communities and that genetic factors influence micro-
biome composition and explain a significant proportion of the
variation in the gut microbiome [60–63]. Hence, further integrative
studies considering multiple data sources (i.e., larger sample sizes),
including environmental factors, human genetic variation, and gut
microbial composition, are warranted to provide deeper insight
into the mechanisms underlying the relationship between the
microbiota, host genetics, and individual habits, and behavior, as

Table 1. Summary of differential abundance results between ADHD patients and controls considering Deseq2 and random forest results.

Relative abundance (% mean (SD) Adjusted P-value

ADHD Controls DEseq2 Random forests

Phylum Candidatus Melainabacteria 0.072 (0.24) 0.22 (0.76) 3.1E−03 0.11

Family Eubacteriaceae 2.105 (1.51) 2.269 (1.35) 0.81 0.02

Gracilibacteraceae 0,503 (0.85) 0,949 (1.49) 0.035 0.05

Lactobacillaceae 0.965 (1.52) 1.077 (1.24) 0.93 0.02

Peptostreptococcaceae 0,327 (0.55) 0,199 (0.23) 0.016 0.27

Selenomonadaceae 0,387 (1.14) 0,071 (0.26) 3.5E−07 0.05

Veillonellaceae 1,658 (1.90) 0,837 (1.43) 0.012 9.9E−03

Verrucomicrobiaceae 0,036 (0.11) 0,063 (0.17) 0.012 0.73

Genus Acetivibrio 0.021 (0.05) 0.056 (0.17) 6.1E−03 0.099

Alloprevotella 0.380 (1.63) 0.182 (0.97) 4.4E−04 0.21

Anaerotaenia 0.072 (0.13) 0.248 (0.49) 2.3E−09 9.9E−03

Dialister 1.377 (1.76) 0.649 (1.26) 0.041 0.02

Flintibacter 1.967 (1.46) 1.588 (1.37) 0.26 0.045

Fucophilus 0.036 (0.11) 0.064 (0.17) 0.012 0.42

Gracilibacter 0.509 (0.86) 0.958 (1.50) 0.040 9.9E−03

Herbinix 0.024 (0.05) 0.042 (0.08) 0.024 0.24

Leclercia 0.084 (0.42) 0.025 (0.12) 9.8E−03 0.30

Megamonas 0.323 (1.04) 0.029 (0.20) 3.2E−29 9.9E−03

Megasphaera 0.209 (0.72) 0.091 (0.42) 7.5E−20 0.80

Odoribacter 0.547 (0.34) 0.751 (0.83) 0.039 0.14

Parasutterella 0.751 (1.30) 1.588 (1.37) 0.70 9.9E−03

Porphyromonas 0.129 (0.52) 0.110 (0.55) 6.1E−03 0.36

Prevotellamassilia 0.356 (1.82) 0.340 (1.69) 6.4E−15 0.31

Romboutsia 0.228 (0.52) 0.126 (0.16) 9.8E−03 0.93

Vampirovibrio 0.073 (0.24) 0.225 (0.77) 2.6E−03 0.38

Differentially abundant taxa identified by both methods, DEseq2 and random forests, are shown in bold.

V. Richarte et al.

4

Translational Psychiatry          (2021) 11:382 



well as their roles in ADHD and other neurodevelopmental
disorders across the lifespan.
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REFERENCES
1. Faraone, S. V. et al. Attention-deficit/hyperactivity disorder. Nat Rev Dis Prim.

2015;1:15020. https://doi.org/10.1038/nrdp.2015.20.
2. Franke B, Michelini G, Asherson P, Banaschewski T, Bilbow A, Buitelaar JK. et al.

Live fast, die young? A review on the developmental trajectories of ADHD across
the lifespan. Eur. Neuropsychopharmacol.2018;28:1059–88. https://doi.org/
10.1016/j.euroneuro.2018.08.001.

3. Thapar A, Cooper M. Attention deficit hyperactivity disorder. Lancet.
2016;387:1240–50. https://doi.org/10.1016/S0140-6736(15)00238-X.

4. Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA. The worldwide
prevalence of ADHD: a systematic review and metaregression analysis. Am. J.
Psychiatry. 2007;164:942–948. https://doi.org/10.1176/ajp.2007.164.6.942.

5. Faraone, S. V. & Larsson, H. Genetics of attention deficit hyperactivity disorder.
Mol Psychiatry. 2019;24:562−575. https://doi.org/10.1038/s41380-018-0070-0.

6. Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E. et al. Discovery
of the first genome-wide significant risk loci for attention deficit/hyperactivity
disorder. Nat Genet.2019;51:63–75. https://doi.org/10.1038/s41588-018-0269-7.

7. Rovira P, Demontis D, Sánchez-Mora C, Zayats T, Klein M, Mota NR. et al. Shared
genetic background between children and adults with attention deficit/hyper-
activity disorder. Neuropsychopharmacology. 2020;45:1617–26. https://doi.org/
10.1038/s41386-020-0664-5.

8. Erny D, Hrabe de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E. et al.
Host microbiota constantly control maturation and function of microglia in the
CNS HHS Public Access Author manuscript. Nat Neurosci.2015;18:965–77. https://
doi.org/10.1038/nn.4030.

9. Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F. et al. The
microbiome-gut-brain axis during early life regulates the hippocampal ser-
otonergic system in a sex-dependent manner. Mol Psychiatry. 2013;18:666–73.
https://doi.org/10.1038/mp.2012.77.

10. Morais LH, Schreiber HL, Mazmanian SK. The gut microbiota–brain axis in
behaviour and brain disorders. Nat Rev Microbiol.2020;19:241–55. https://doi.org/
10.1038/s41579-020-00460-0.

11. Kuwahara, A. et al. Microbiota-gut-brain axis: enteroendocrine cells and the
enteric nervous system form an interface between the microbiota and the central
nervous system. Biomed Res. 2020;41:199−216.

12. Mohajeri MH, La Fata G, Steinert RE, Weber P. Relationship between the gut
microbiome and brain function. Nutr Rev.2018;76:481–96. https://doi.org/
10.1093/nutrit/nuy009.

13. Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty
acids in microbiota–gut–brain communication. Nat Rev Gastroenterol
Hepatol.2019;16:461–78. https://doi.org/10.1038/s41575-019-0157-3.

14. Dam SA, Mostert JC, Szopinska-Tokov JW, Bloemendaal M, Amato M, Arias-
Vasquez A. The role of the gut-brain axis in attention-deficit/hyperactivity dis-
order. Gastroenterol Clin North Am.2019;48:407–31. https://doi.org/10.1016/j.
gtc.2019.05.001.

15. Ma Q, Xing C, Long W, Wang HY, Liu Q, Wang RF. Impact of microbiota on central
nervous system and neurological diseases: the gut-brain axis. J.
Neuroinflammation.2019;16:1–14. https://doi.org/10.1186/s12974-019-1434-3.

16. Borre YE, O'Keeffe GW, Clarke G, Stanton C, Dinan TG, Cryan JF. Microbiota and
neurodevelopmental windows: implications for brain disorders. Trends Mol.
Med.2014;20:509–18. https://doi.org/10.1016/j.molmed.2014.05.002.

17. Jurek, L. et al. Is there a dysbiosis in individuals with a neurodevelopmental
disorder compared to controls over the course of development? A systematic
review. Eur Child Adolesc Psychiatry. 2020. https://doi.org/10.1007/s00787-020-
01544-1.

18. Rogers GB, Keating DJ, Young RL, Wong ML, Licinio J, Wesselingh S. From gut
dysbiosis to altered brain function and mental illness: mechanisms and pathways.
Mol. Psychiatry. 2016;21:738–48. https://doi.org/10.1038/mp.2016.50.

19. Lacorte, E. et al. A systematic review of the microbiome in children with neu-
rodevelopmental disorders. Front Neurol. 2019;10:727 https://doi.org/10.3389/
fneur.2019.00727.

20. Wan, L. et al. Case-control study of the effects of gut microbiota composition on
neurotransmitter metabolic pathways in children with attention deficit hyper-
activity disorder. Front Neurosci. 2020;14:127. https://doi.org/10.3389/
fnins.2020.00127.

Fig. 2 Spearman correlation between the relative abundance of
four bacterial genera (Anaerotaenia, Dialister, Gracilibacter, and
Megamonas) and age, BMI, and ADHD rating scale scores. Colored
correlations are statistically significant (P-value < 0.05), with positive
and negative correlations in blue and red, respectively. Inattention:
score of the inattention subscale of the ADHD rating scale;
hyperactivity_impulsivity: score of the hyperactive/impulsivity sub-
scale of the ADHD rating scale; total: total scores of the ADHD
rating scale.

Fig. 1 Differentially abundant taxa between ADHD cases and
controls. (A) Differential abundance results according to two
different methods, DESeq2 andrandom forests. B Differences in
relative abundance between ADHD cases and controls for taxo-
nomic groups surpassing multiple comparison corrections in
DeSeq2 and/or random forest analyses.

V. Richarte et al.

5

Translational Psychiatry          (2021) 11:382 

https://doi.org/10.1038/nrdp.2015.20
https://doi.org/10.1016/j.euroneuro.2018.08.001
https://doi.org/10.1016/j.euroneuro.2018.08.001
https://doi.org/10.1016/S0140-6736(15)00238-X
https://doi.org/10.1176/ajp.2007.164.6.942
https://doi.org/10.1038/s41380-018-0070-0
https://doi.org/10.1038/s41588-018-0269-7
https://doi.org/10.1038/s41386-020-0664-5
https://doi.org/10.1038/s41386-020-0664-5
https://doi.org/10.1038/nn.4030
https://doi.org/10.1038/nn.4030
https://doi.org/10.1038/mp.2012.77
https://doi.org/10.1038/s41579-020-00460-0
https://doi.org/10.1038/s41579-020-00460-0
https://doi.org/10.1093/nutrit/nuy009
https://doi.org/10.1093/nutrit/nuy009
https://doi.org/10.1038/s41575-019-0157-3
https://doi.org/10.1016/j.gtc.2019.05.001
https://doi.org/10.1016/j.gtc.2019.05.001
https://doi.org/10.1186/s12974-019-1434-3
https://doi.org/10.1016/j.molmed.2014.05.002
https://doi.org/10.1007/s00787-020-01544-1
https://doi.org/10.1007/s00787-020-01544-1
https://doi.org/10.1038/mp.2016.50
https://doi.org/10.3389/fneur.2019.00727
https://doi.org/10.3389/fneur.2019.00727
https://doi.org/10.3389/fnins.2020.00127
https://doi.org/10.3389/fnins.2020.00127


21. Boonchooduang N, Louthrenoo O, Chattipakorn N, Chattipakorn SC. Possible
links between gut–microbiota and attention-deficit/hyperactivity disorders in
children and adolescents. Eur J Nutr.2020;59:3391–403. https://doi.org/10.1007/
s00394-020-02383-1.

22. Aarts E, Ederveen T, Naaijen J, Zwiers MP, Boekhorst J, Timmerman HM. et al. Gut
microbiome in ADHD and its relation to neural reward anticipation. PLoS One.
2017;12:e0183509 https://doi.org/10.1371/journal.pone.0183509.

23. Prehn-Kristensen A, Zimmermann A, Tittmann L, Lieb W, Schreiber S, Baving L.
et al. Reduced microbiome alpha diversity in young patients with ADHD. PLoS
One. 2018;13:e0200728 https://doi.org/10.1371/journal.pone.0200728.

24. Szopinska-Tokov J, Dam S, Naaijen J, Konstanti P, Rommelse N, Belzer C. et al.
Investigating the gut microbiota composition of individuals with attention-defi-
cit/hyperactivity disorder and association with symptoms. Microorganisms.
2020;8:406 https://doi.org/10.3390/microorganisms8030406.

25. Checa-Ros A, Jer A, Molina-Carballo A, Campoy C, Muñoz-Hoyos A. Current evi-
dence on the role of the gut microbiome in ADHD: pathophysiology and ther-
apeutic implications. Nutrients. 2021;13:1–32. https://doi.org/10.3390/
nu13010249.

26. Sukmajaya A. C., Lusida, M. I., Soetjipto & Setiawati, Y. Systematic review of gut
microbiota and attention-deficit hyperactivity disorder (ADHD). Ann Gen Psy-
chiatry. 2021;20:12 https://doi.org/10.1186/s12991-021-00330-w.

27. Jiang HY, Zhou YY, Zhou GL, Li YC, Yuan J, Li XH. et al. Gut microbiota profiles in
treatment-naïve children with attention deficit hyperactivity disorder. Behav
Brain Res.2018;347:408–13. https://doi.org/10.1016/j.bbr.2018.03.036.

28. Wang LJ, Yang CY, Chou WJ, Lee MJ, Chou MC, Kuo HC. et al. Gut microbiota and
dietary patterns in children with attention-deficit/hyperactivity disorder. Eur Child
Adolesc Psychiatry. 2020;29:287–97. https://doi.org/10.1007/s00787-019-01352-2.

29. Pärtty A, Kalliomäki M, Wacklin P, Salminen S, Isolauri E. A possible link between
early probiotic intervention and the risk of neuropsychiatric disorders later in
childhood: a randomized trial. Pediatr Res.2015;77:823–8. https://doi.org/10.1038/
pr.2015.51.

30. Tengeler AC, Dam SA, Wiesmann M, Naaijen J, van Bodegom M, Belzer C. et al.
Gut microbiota from persons with attention-deficit/hyperactivity disorder affects
the brain in mice. Microbiome. 2020;8:44 https://doi.org/10.1186/s40168-020-
00816-x.

31. De Theije CG, Wopereis H, Ramadan M, van Eijndthoven T, Lambert J, Knol J. et al.
Altered gut microbiota and activity in a murine model of autism spectrum dis-
orders. Brain Behav Immun.2014;37:197–206. https://doi.org/10.1016/j.
bbi.2013.12.005.

32. Sharon G, Cruz NJ, Kang DW, Gandal MJ, Wang B, Kim YM. et al. Human gut
microbiota from autism spectrum disorder promote behavioral symptoms in
mice. Cell . 2019;177:1600–e17. https://doi.org/10.1016/j.cell.2019.05.004.

33. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T. et al. Microbiota
modulate behavioral and physiological abnormalities associated with neurode-
velopmental disorders. Cell. 2013;155:1451–63. https://doi.org/10.1016/j.
cell.2013.11.024.

34. Ramos-Quiroga, J. A. et al. Criteria and concurrent validity of DIVA 2.0: a semi-
structured diagnostic interview for adult ADHD. J Atten Disord. 2016;23:1−10.
https://doi.org/10.1177/1087054716646451.

35. Mardis E, McCombie WR. Library quantification using picogreen fluorometry. Cold
Spring Harb Protoc.2017;2017:432–5. https://doi.org/10.1101/pdb.prot094722.

36. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M. et al. Evaluation of
general 16S ribosomal RNA gene PCR primers for classical and next-generation
sequencing-based diversity studies. Nucleic Acids Res.2013;41:1 https://doi.org/
10.1093/nar/gks808.

37. Zhang J, Kobert K, Flouri T, Stamatakis A. Genome analysis PEAR: a fast and
accurate illumina paired-end reAd mergeR. Bioinformatics.2014;30:614–20.
https://doi.org/10.1093/bioinformatics/btt593.

38. Martin M. Cutadapt removes adapter sequences from high-throughput sequen-
cing reads. EMBnet J. 2011;17:10–12.

39. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity
and speed of chimera detection. Bioinformatics. 2011;27:2194–2200. https://doi.
org/10.1093/bioinformatics/btr381.

40. Goebel BM, Stackebrandt E. Cultural and phylogenetic analysis of mixed micro-
bial populations found in natural and commercial bioleaching environments.
Appl Environ Microbiol.1994;60:1614–21. https://doi.org/10.1128/aem.60.5.1614-
1621.1994.

41. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of
protein or nucleotide sequences. Bioinformatics. 2006;22:1658–9. https://doi.org/
10.1093/bioinformatics/btl158.

42. Weiss, S. et al. Normalization and microbial differential abundance strategies
depend upon data characteristics. Microbiome. 2017;5:27. https://doi.org/
10.1186/s40168-017-0237-y.

43. Mcmurdie, P. J. & Holmes S. Phyloseq: an R package for reproducible interactive
analysis and graphics of microbiome ceus data. PLoS ONE. 8(4):e61217. https://
doi.org/10.1371/journal.pone.0061217.

44. Christian LM, Galley JD, Hade EM, Schoppe-Sullivan S, Kamp Dush C, Bailey MT. Gut
microbiome composition is associated with temperament during early childhood.
Brain Behav Immun.2015;45:118–27. https://doi.org/10.1016/j.bbi.2014.10.018.

45. Strati F, Cavalieri D, Albanese D, De Felice C, Donati C, Hayek J. et al. New
evidences on the altered gut microbiota in autism spectrum disorders. Micro-
biome. 2017;5:1–11. https://doi.org/10.1186/s40168-017-0242-1.

46. Finegold SM, Dowd SE, Gontcharova V, Liu C, Henley KE, Wolcott RD. et al. Pyr-
osequencing study of fecal microflora of autistic and control children. Anaerobe.
2010;16:444–53. https://doi.org/10.1016/j.anaerobe.2010.06.008.

47. Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG. Cross talk: the microbiota and
neurodevelopmental disorders. Front Neurosci.2017;11:490 https://doi.org/
10.3389/fnins.2017.00490.

48. Liu, S. et al. Altered gut microbiota and short chain fatty acids in Chinese children
with autism spectrum disorder. Sci Rep. 2019;9:287. https://doi.org/10.1038/
s41598-018-36430-z.

49. Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y. et al. Altered fecal microbiota
composition in patients with major depressive disorder. Brain Behav
Immun.2015;48:186–94. https://doi.org/10.1016/j.bbi.2015.03.016.

50. Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X. et al. Gut microbiome remodeling
induces depressive-like behaviors through a pathway mediated by the host’s
metabolism. Mol Psychiatry. 2016;21:786–96. https://doi.org/10.1038/mp.2016.44.

51. Zou R, Xu F, Wang Y, Duan M, Guo M, Zhang Q. et al. Changes in the gut
microbiota of children with autism spectrum disorder. Autism
Res.2020;13:1614–25. https://doi.org/10.1002/aur.2358.

52. Hasan N, Yang H. Factors affecting the composition of the gut microbiota, and its
modulation. PeerJ. 2019;2019:1–31. https://doi.org/10.7717/peerj.7502.

53. O’Toole PW. Changes in the intestinal microbiota from adulthood through to old age.
Clin Microbiol Infect.2012;18:44–46. https://doi.org/10.1111/j.1469-0691.2012.03867.x.

54. Flandroy L, Poutahidis T, Berg G, Clarke G, Dao MC, Decaestecker E. et al. The
impact of human activities and lifestyles on the interlinked microbiota and health
of humans and of ecosystems. Sci Total Environ.2018;627:1018–38. https://doi.
org/10.1016/j.scitotenv.2018.01.288.

55. Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K. et al. Population-
level analysis of gut microbiome variation. Science. 2016;352:560–4. https://doi.
org/10.1126/science.aad3503.

56. Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T.
et al. Population-based metagenomics analysis reveals markers for gut micro-
biome composition and diversity. Science. 2016;352:565–9. https://doi.org/
10.1126/science.aad3369.

57. Chi L, Mahbub R, Gao B, Bian X, Tu P, Ru H. et al. Nicotine alters the gut
microbiome and metabolites of gut-brain interactions in a sex-specific manner.
Chem Res Toxicol.2017;30:2110–9. https://doi.org/10.1021/acs.
chemrestox.7b00162.

58. Lee SH, Yun Y, Kim SJ, Lee EJ, Chang Y, Ryu S. et al. Clinical medicine association
between cigarette smoking status and composition of gut microbiota:
population-based cross-sectional study. J Clin Med.2018;7:282 https://doi.org/
10.3390/jcm7090282.

59. Biedermann L, Zeitz J, Mwinyi J, Sutter-Minder E, Rehman A, Ott SJ. et al. Smoking
cessation induces profound changes in the composition of the intestinal
microbiota in humans. PLoS One. 2013;8:e59260 https://doi.org/10.1371/journal.
pone.0059260.

60. Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current
understanding of the human microbiome. Nat Med.2018;24:392–400. https://doi.
org/10.1038/nm.4517.

61. Sommer F, Bäckhed F. The gut microbiota-masters of host development and
physiology. Nat Rev Microbiol.2013;11:227–38. https://doi.org/10.1038/nrmicro2974.

62. Awany, D. et al. Host and microbiome genome-wide association studies: current
state and challenges. Front Genet. 2019;10:637. https://doi.org/10.3389/
fgene.2018.00637.

63. Hughes DA, Bacigalupe R, Wang J, Rühlemann MC, Tito RY, Falony G. et al.
Genome-wide associations of human gut microbiome variation and implications
for causal inference analyses. Nat Microbiol.2020;5:1079–87. https://doi.org/
10.1038/s41564-020-0743-8.

ACKNOWLEDGEMENTS
Over the course of this investigation C.S.M. was a recipient of a Sara Borrell contract
from the Instituto de Salud Carlos III, Ministerio de Economía, Industria y
Competitividad, Spain (CD15/00199), M.R. was a recipient of a Miguel de Servet

V. Richarte et al.

6

Translational Psychiatry          (2021) 11:382 

https://doi.org/10.1007/s00394-020-02383-1
https://doi.org/10.1007/s00394-020-02383-1
https://doi.org/10.1371/journal.pone.0183509
https://doi.org/10.1371/journal.pone.0200728
https://doi.org/10.3390/microorganisms8030406
https://doi.org/10.3390/nu13010249
https://doi.org/10.3390/nu13010249
https://doi.org/10.1186/s12991-021-00330-w
https://doi.org/10.1016/j.bbr.2018.03.036
https://doi.org/10.1007/s00787-019-01352-2
https://doi.org/10.1038/pr.2015.51
https://doi.org/10.1038/pr.2015.51
https://doi.org/10.1186/s40168-020-00816-x
https://doi.org/10.1186/s40168-020-00816-x
https://doi.org/10.1016/j.bbi.2013.12.005
https://doi.org/10.1016/j.bbi.2013.12.005
https://doi.org/10.1016/j.cell.2019.05.004
https://doi.org/10.1016/j.cell.2013.11.024
https://doi.org/10.1016/j.cell.2013.11.024
https://doi.org/10.1177/1087054716646451
https://doi.org/10.1101/pdb.prot094722
https://doi.org/10.1093/nar/gks808
https://doi.org/10.1093/nar/gks808
https://doi.org/10.1093/bioinformatics/btt593
https://doi.org/10.1093/bioinformatics/btr381
https://doi.org/10.1093/bioinformatics/btr381
https://doi.org/10.1128/aem.60.5.1614-1621.1994
https://doi.org/10.1128/aem.60.5.1614-1621.1994
https://doi.org/10.1093/bioinformatics/btl158
https://doi.org/10.1093/bioinformatics/btl158
https://doi.org/10.1186/s40168-017-0237-y
https://doi.org/10.1186/s40168-017-0237-y
https://doi.org/10.1371/journal.pone.0061217
https://doi.org/10.1371/journal.pone.0061217
https://doi.org/10.1016/j.bbi.2014.10.018
https://doi.org/10.1186/s40168-017-0242-1
https://doi.org/10.1016/j.anaerobe.2010.06.008
https://doi.org/10.3389/fnins.2017.00490
https://doi.org/10.3389/fnins.2017.00490
https://doi.org/10.1038/s41598-018-36430-z
https://doi.org/10.1038/s41598-018-36430-z
https://doi.org/10.1016/j.bbi.2015.03.016
https://doi.org/10.1038/mp.2016.44
https://doi.org/10.1002/aur.2358
https://doi.org/10.7717/peerj.7502
https://doi.org/10.1111/j.1469-0691.2012.03867.x
https://doi.org/10.1016/j.scitotenv.2018.01.288
https://doi.org/10.1016/j.scitotenv.2018.01.288
https://doi.org/10.1126/science.aad3503
https://doi.org/10.1126/science.aad3503
https://doi.org/10.1126/science.aad3369
https://doi.org/10.1126/science.aad3369
https://doi.org/10.1021/acs.chemrestox.7b00162
https://doi.org/10.1021/acs.chemrestox.7b00162
https://doi.org/10.3390/jcm7090282
https://doi.org/10.3390/jcm7090282
https://doi.org/10.1371/journal.pone.0059260
https://doi.org/10.1371/journal.pone.0059260
https://doi.org/10.1038/nm.4517
https://doi.org/10.1038/nm.4517
https://doi.org/10.1038/nrmicro2974
https://doi.org/10.3389/fgene.2018.00637
https://doi.org/10.3389/fgene.2018.00637
https://doi.org/10.1038/s41564-020-0743-8
https://doi.org/10.1038/s41564-020-0743-8


contract from the Instituto de Salud Carlos III, Spain (CP09/00119 and CPII15/00023),
and M.S.A. was a recipient of a contract from the Biomedical Network Research
Center on Mental Health (CIBERSAM), Madrid, Spain, and a recipient of a Juan de la
Cierva Incorporación contract from the Ministry of Science, Innovation and
Universities, Spain (IJC2018-035346-I). The research leading to these results received
funding from the European Union H2020 Program (H2020/2014-20) under grant
agreements no. 667302 (CoCA) and no. 728018 (Eat2beNICE), from the Instituto de
Salud Carlos III (PI15/01789, PI16/01505, PI17/0289, PI18/01788, PI19/00721,P19/
01224 and PI20/00041), from the Pla estratègic de recerca i innovació en salut (PERIS);
Generalitat de Catalunya (METAL-Cat; SLT006/17/287) and from the Agència de
Gestió d’Ajuts Universitaris i de Recerca-AGAUR, Generalitat de Catalunya
(2017SGR1461) and cofinanced by the European Regional Development Fund (ERDF)
and by “la Marató de TV3” (092330/31). The work was also supported by the ECNP
Network ‘ADHD across the Lifespan’ (https://www.ecnp.eu/researchinnovation/ECNP-
networks/List-ECNP-Networks/).

COMPETING INTERESTS
Dra. Sánchez-Mora, Dra. Soler Artigas, Estela García, and Dra. Ribasés report no
biomedical financial interests or potential conflicts of interest. Vanesa Richarte has
served as a speaker for Rubió and Shire/Takeda in the last 5 years. She has received
travel awards from Shire/Takeda for participating in psychiatric meetings. The ADHD
Program received unrestricted educational and research support from Eli Lilly and
Co., Janssen-Cilag, Shire/Takeda, Rovi, Psious, and Laboratorios Rubió in the past two
years. Dra. Corrales received travel awards from Shire for participating in psychiatric
meetings. Christian Fadeuilhe received travel awards from Rubió, Shire/Takeda, and
Lundbeck for participating in psychiatric meetings. Prof. Ramos-Quiroga was on the
speakers’ bureau and/or acted as a consultant for Eli-Lilly, Janssen-Cilag, Novartis,
Shire, Takeda, Bial, Shionogui, Lundbeck, Almirall, Braingaze, Sincrolab, Medice, and
Rubió in the last 5 years. He also received travel awards (air tickets + hotel) from
Janssen-Cilag, Rubió, Shire, Takeda, Shionogui, Bial, Medice, and Eli-Lilly for
participating in psychiatric meetings. The Department of Psychiatry chaired by him
received unrestricted educational and research support from the following

companies in the last 5 years: EliLilly, Lundbeck, Janssen- Cilag, Actelion, Shire,
Ferrer, Oryzon, Roche, Psious, and Rubió.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41398-021-01504-6.

Correspondence and requests for materials should be addressed to M.R. or J.A.R-Q.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2021

V. Richarte et al.

7

Translational Psychiatry          (2021) 11:382 

https://www.ecnp.eu/researchinnovation/ECNP-networks/List-ECNP-Networks/
https://www.ecnp.eu/researchinnovation/ECNP-networks/List-ECNP-Networks/
https://doi.org/10.1038/s41398-021-01504-6
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


European Neuropsychopharmacology (2020) 41, 160–166 

www.elsevier.com/locate/euroneuro 

SHORT COMMUNICATION 

Transcriptome profiling in adult 

attention-deficit hyperactivity disorder 

Niall Mortimer 

a , b , c , Cristina Sánchez-Mora 

a , b , d , e , 
Paula Rovira 

a , b , Laura Vilar-Ribóa , b , Vanesa Richarte 

b , e , f , 
Montse Corrales 

b , e , f , Christian Fadeuilhe 

b , e , f , Olga Rivero 

c , 
Klaus-Peter Lesch 

c , g , h , Miguel Casas 

a , b , e , f , 
Josep Antoni Ramos-Quiroga 

a , b , e , f , María Soler Artigas 

a , b , d , e , ∗, 
Marta Ribasés 

a , b , d , e , ∗

a Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d’Hebron Research 

Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, Barcelona 08035, 
Spain 

b Department of Psychiatry, Hospital Universitari Vall d’Hebron, Barcelona, Spain 

c Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany 
d Department of Genetics, Microbiology & Statistics, University of Barcelona, Barcelona, Spain 

e Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, 
Madrid, Spain 

f Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain 

g Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow 

State Medical University, Russia 
h Department of Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht 
University, Netherlands 

Received 1 April 2020; received in revised form 4 October 2020; accepted 2 November 2020 

KEYWORDS 

Attention- 
deficit/hyperactivity 
disorder (ADHD); 
Transcriptomic assays; 
Gene-expression 
signatures 

Abstract 
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder with an esti- 
mated heritability of around 70%. Although the largest genome-wide association study (GWAS) 
meta-analysis on ADHD identified independent loci conferring risk to the disorder, the molecu- 
lar mechanisms underlying the genetic basis of the disorder remain to be elucidated. To explore 
ADHD biology, we ran a two-step transcriptome profiling in peripheral blood mononuclear cells 
(PBMCs) of 143 ADHD subjects and 169 healthy controls. Through this exploratory study we 
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found eight differentially expressed genes in ADHD. These results highlight promising candi- 
date genes and gene pathways for ADHD and support the use of peripheral tissues to assess 
gene expression signatures for ADHD. 
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC 
BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

The Diagnostic and Statistical Manual of Mental Disorders, 
5th edition (DSM5) defines attention-deficit/hyperactivity 
disorder (ADHD) as a clinically heterogeneous neurode- 
velopmental disorder characterized by inattention, hyper- 
activity and abnormal levels of impulsivity/emotionality 
( American Psychiatric Association, 2013 ). It has a childhood 
prevalence of around 3.4% ( Polanczyk et al., 2015 ) and 2.5–
3.4% in adults ( Franke et al., 2018 ). Genetic factors play 
a critical role in the etiology of ADHD, with meta-analysis 
of multiple large scale twin studies estimating heritabil- 
ity of 70–80% for childhood ADHD ( Nikolas and Burt, 2010 ) 
and around 70% for clinically diagnosed ADHD in adults 
( Faraone and Larsson, 2019 ). 

A recent GWAS meta-analysis in 20,183 ADHD cases and 
35,191 controls showed 12 genome-wide significant loci 
for ADHD that include genes involved in neurodevelopmen- 
tal processes and evolutionarily conserved genomic regions 
( Demontis et al., 2019 ). In addition, gene expression studies 
in ADHD revealed novel regulatory networks underlying the 
disorder. However, most of these studies focused on specific 
genes, considered relatively small sample sizes and/or were 
not replicated in independent cohorts ( Lorenzo et al., 2018 ; 
Nuzziello et al., 2019 ; Sanchez-Mora et al. 2019 ). 

Recent transcriptome-wide association studies (TWAS) in- 
tegrating GWAS summary data and expression data identi- 
fied relevant genes and pathways associated with ADHD, 
including dopamine and norepinephrine-related pathways, 
and several genome-wide significant hits from the largest 
GWAS meta-analysis were found to impact downstream gene 
expression ( Liao et al., 2019 ; Qi et al., 2019 ). 

The aim of the present study is to perform gene expres- 
sion profiling in peripheral mononuclear blood cell (PMBCs) 
from 94 ADHD subjects and 124 controls and to replicate the 
results in an independent dataset of 49 ADHD subjects and 
45 controls. 

2. Experimental procedures 

2.1. Participants 

Gene expression profiles were assessed in a discovery sample 
of 94 adult ADHD subjects (60.6% male, mean age = 34.8 years, 
s. d = 11.3) and 124 healthy controls (55.6% male, mean age = 36.7 
years, s. d = 10.0) and a follow-up sample of 49 ADHD subjects 
(57.1% male, mean age = 30.3 years, s. d = 11.2) and 45 healthy con- 
trols (55.6% male, mean age = 51.7 years, s. d = 21.4). Subjects were 
of European ancestry and were evaluated and recruited prospec- 
tively from a restricted geographic area in a specialized out-patient 
program for adult ADHD at the Hospital Universitari Vall d’Hebron 
of Barcelona (Spain). Patients were medication-naïve without other 
psychiatric comorbidities and were distributed in two groups (dis- 

covery and follow-up) depending on the period in which they were 
recruited and clinically assessed. 

2.2. Clinical assessment 

Clinical assessment was conducted by structured interviews and 
self-reported questionnaires in two different steps: (i) assessment 
of ADHD diagnosis based on symptomatology using the Conner’s 
Adult ADHD Diagnostic Interview for DSM-IV (CAADID) and (ii) assess- 
ment of the severity of ADHD symptoms, the levels of impairment 
and the presence of comorbid disorders to increase the diagnostic 
accuracy with the Conners’ ADHD Rating Scale (CAARS), the ADHD 
Rating Scale (ADHD-RS), the Clinical Global Impression (CGI), the 
Wender Utah Rating Scale (WURS), the Sheehan Disability Inven- 
tory (SDS), and the Structured Clinical Interview for DSM-IV Axis I 
and II Disorders (SCID-I and SCID-II). Exclusion criteria were IQ < 

70; lifelong and current history of mood, psychotic, anxiety, sub- 
stance abuse, and DSM-IV axis II disorders; pervasive developmen- 
tal disorders; a history or the current presence of a condition or 
illness, including neurologic, metabolic, cardiac, liver, kidney, or 
respiratory disease; a chronic medication of any kind; birth weight 
≤ 1.5 kg; and other neurological or systemic disorders that might 
explain ADHD symptoms. 

The control sample consisted of unrelated healthy blood donors 
matched by sex with the clinical group. Individuals with ADHD 
symptomatology were excluded retrospectively under the follow- 
ing criteria: (1) diagnosed with ADHD previously and (2) answering 
positively to the life-time presence of the following ADHD symp- 
toms: (a) often has trouble in keeping attention on tasks, (b) usually 
loses things needed for tasks, (c) often fidgets with hands or feet or 
squirms in seat, and (d) often gets up from seat when remaining in 
seat is expected. 

The study was approved by the Clinical Research Ethics Commit- 
tee (CREC) of Hospital Universitari Vall d’Hebron, methods were 
performed in accordance with the relevant guidelines and regula- 
tions and written informed consent was obtained from all subjects 
before inclusion in the study. 

2.3. RNA isolation 

PBMCs were separated by the Ficoll density gradient method imme- 
diately after blood extraction, and total mRNA was isolated from 

PBMCs using Qiazol Lysis reagent and the RNAeasy Midi Kit (Qia- 
gen). RNA concentration and integrity (RNA Integrity Number, RIN) 
was assayed using the 2100 Bioanalyzer (Agilent Technologies). 

2.4. Microarray assays 

RNA was reverse transcribed and amplified using the Ambion WT Ex- 
pression Kit (Life technologies). cDNA produced was subsequently 
fragmented and labelled using the GeneChip WT Terminal Labelling 
and Hybridization Kit (Life technologies). Samples were hybridized 
in three batches to the Genechip Human Gene 1.1 ST 96-Array (Life 
technologies). The array processing and data generation were as- 
sessed using the Gene Titan Affymetrix microarray platform. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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3. Statistical analyses 

3.1. Discovery stage 

The Robust Multichip Average (RMA) function in the oligo 
R package was used to background correct, normalize and 
summarize probe values for each batch independently. 
Probes that did not match to genes, matched with more 
than one gene or matched to genes in the X or Y chromo- 
somes in the GRCh37/hg19 human genome build (release 32) 
were discarded. The study was restricted to 19,184 probes 
corresponding to 18,227 unique genes. Gene expression was 
adjusted for batch effect using the CombatR algorithm and 
linear regression models were used to compare gene expres- 
sion patterns between ADHD cases and controls with the 
Limma R-package including gender and RNA Integrity Num- 
ber (RIN) as covariates. Benjamini-Hochberg correction was 
applied for multiple comparisons (P BH < 0.05). 

The set of genes showing suggestive evidence of differ- 
ential expression between ADHD subjects and controls ( P - 
value < 0.05) were selected for further enrichment analyses 
of canonical pathways and downstream analyses, including 
diseases and functional annotations and gene networks us- 
ing the Ingenuity Pathway Analysis software (IPA; Ingenuity 
Systems, Redwood City, CA, USA). Pathway analysis was re- 
stricted to the 25 most significant networks following IPA 
default settings. Gene networks were considered of rele- 
vance when the Network Score (P-score = -log10( P -value)) 
was over 8 ( P -value < 1e-08). IPA was also used to test for 
overrepresentation of candidate genes previously studied 
in ADHD selected from the gene list provided by the AD- 
HDgene database (http://adhd.psych.ac.cn/index.do) and 
a comprehensive search for published reviews of ADHD 

genetic and pharmacogenetic studies. The full list of 
genes is available in Pagerols et al. (2018) . Benjamini- 
Hochberg correction was applied for multiple comparisons 
(P BH < 0.05). The gene-set enrichment analysis of gene on- 
tology and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways was performed with the Enrichr software 
(https://maayanlab.cloud/Enrichr/), with genes weighted 
according to P -values (1- P -value). 

3.2. Follow-up stage 

Gene expression profiling in the follow-up sample was re- 
stricted to the subset of genes differentially expressed in 
the discovery sample and followed the procedure described 
above. The correlation between differences in expression 
levels (logFC) of the subset of selected genes between the 
discovery and follow-up sample was assessed using a Pear- 
son correlation test. Benjamini-Hochberg correction was ap- 
plied for multiple comparisons (P BH < 0.05). 

4. Results 

After standard quality controls, expression data was avail- 
able for 18,227 autosomal genes in a discovery sample 
of 94 medication-naïve ADHD patients and 124 healthy 
controls. Suggestive evidence of association ( P -value < 0.05 
prior to correction for multiple testing) was detected for 

1793 genes (Supplemental Table 2), which were enriched 
for genes previously linked with ADHD (48 of 1793 genes; 
P -value = 2.1e-03). 25 gene networks were formed with the 
most significant one being the “Cell-To-Cell Signaling and 

Interaction, Nervous System Development and Function, 
Developmental Disorder” (Network Score = 44; P -Value = 1e- 
44; Figure 1 and Supplemental Table 3). Enrichment analy- 
ses also revealed significant over-representation for genes 
in 26 canonical pathways including pathways related to 
cell growth and differentiation, axon guidance and synap- 
tic plasticity as well as immune and inflammatory response, 
among others, with the “Retinoic acid receptor activa- 
tion ” pathway being the most significant (P BH = 2.4e-03, 
ratio = 0.174, 33 overlapping genes; Supplementary Table 4). 
In addition, three gene ontology biological processes associ- 
ated with gene expression regulation were significantly en- 
riched in this gene set, with the top process being “Regula- 
tion of transcription, DNA-templated ” (P BH = 1.9e-05; Sup- 
plementary Table 5). 

After multiple-comparison correction (P BH < 0.05), a to- 
tal of 21 genes were differentially expressed between 
cases and controls, one up-regulated and 20 down-regulated 
in the ADHD group ( Table 1 ). Expression profiles of the 
21 genes differentially expressed in the discovery sam- 
ple were subsequently assessed in an independent sam- 
ple of 49 ADHD subjects and 45 controls. We found a 
strong correlation in expression level differences for this 
set of genes between the discovery and follow-up cohorts 
( r = 0.88; P -value = 1.18e-07; Figure 2 ). Expression differ- 
ences were replicated (P BH < 0.0024) for 8 of them ( KMT5A, 
IL7R, RAB11FIP1, LRRFIP1, KLF4, SLA, EGR2 and SNORA38) 
with the same direction of effect on ADHD across the two 
independent studies ( Table 1 ). 

5. Discussion 

This transcriptome profiling study provides evidence of 
differential gene expression in peripheral blood mononu- 
clear cells of subjects with ADHD. Through a two-step 
exploratory study we found eight genes showing differ- 
ential expression levels in ADHD, with consistent direc- 
tion of effect in two independent datasets. They include 
genes linked to schizophrenia and educational attainment 
( KMT5A ) ( Ripke et al., 2014 ; Lee et al., 2018 ), neural dif- 
ferentiation and migration ( KLF4 and IL7R ) ( Qin et al., 2011 ; 
Moors et al., 2010 ) or membrane trafficking and axon growth 
( RAB11FIP1 ) ( Eva et al., 2010 ), and genes previously associ- 
ated with alcohol dependence ( SLA ) ( Wang et al., 2013 ), in- 
somnia ( SNORA38 ) ( Jansen et al., 2019 ) and cognitive func- 
tion ( EGR2 ) ( Watanabe et al., 2019 ). These results support 
previous studies revealing shared genetic background and 
common biological pathways underlying different psychi- 
atric disorders and ADHD-comorbid conditions ( Lee et al., 
2019 ; Anttila et al., 2018 ). 

Despite identification of multiple independent loci con- 
ferring risk to ADHD, the molecular mechanisms underly- 
ing the genetic basis of the disorder remain to be elu- 
cidated ( Demontis et al., 2019 ). Although integrative ap- 
proaches combining GWAS and expression data in previ- 
ous studies provided biological insight into ADHD associated 
genes ( Liao et al., 2019 ; Qi et al., 2019 ; Fahira et al. 2019), 
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Fig. 1 “Cell-To-Cell Signalling and Interaction, Nervous System Development and Function, Developmental Disorder”, top Ingenu- 
ity Pathway Analysis constructed gene network considering 1793 genes showing suggestive evidence of differential expression in 
ADHD. Gene interaction is shown with solid lines representing direct interaction between molecules and dashed lines representing 
indirect interaction. color intensity is proportional to degree of expression with red indicating upregulation and green representing 
downregulation. Node shape indicates a protein’s primary function according to the legend insert. 

we found no overlap between genes showing differential 
expression in the present study and GWAS hits for ADHD 

( Demontis et al., 2019 ; Rovira et al., 2020 ). These results 
are not surprising given that the majority of specific fac- 
tors underlying ADHD remain unknown. Non- cis eQTL ge- 
netic components such as trans- eQTL, low-frequency/rare 
variants, and environmental factors may also account for a 
substantial proportion of gene expression ( Grundberg et al., 
2012 ). Although no GWAS hits were found among differen- 
tially expressed genes, we did found enrichment of ADHD 

candidate genes from the ADHDgene database and a com- 
prehensive search from published reviews on genetics and 
pharmacogenetics on ADHD ( Pagerols et al., 2018 ). These 
results support the potential relevance to ADHD pathogene- 

sis of biological processes related with growth and differen- 
tiation, axon guidance, synaptic plasticity or nervous system 

development and are in agreement with previous results of 
RNA-seq blood transcriptome profiling described in familial 
ADHD ( Lorenzo et al., 2018 ). 

The results of the study should be interpreted in the con- 
text of several limitations. First, given the reduced sam- 
ple size, the study is underpowered, which may have pre- 
vented us from detecting genes with small-effect sizes and 
emphasizes the need of further replication in larger sam- 
ples to estimate the magnitude of the effect of the ob- 
served associations. Second, cases and controls were not 
paired-matched for gender and age and we cannot discard 
that gender or age-related differences in gene-expression 
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Table 1 List of differentially expressed genes in the discovery sample of 94 ADHD subjects and 124 healthy controls and in the 
follow-up sample of 49 ADHD subjects and 45 healthy controls after applying multiple testing corrections. Differentially expressed 
genes replicated in the follow-up sample are shown in bold. 

Gene symbol Gene name Discovery sample Follow-up sample 

logFC P -Value P BH logFC P -Value P BH 
KMT5A lysine methyltransferase 5A −0.12 7.60E-08 0.0015 −0.20 0.0003 0.0051 

NXF1 nuclear RNA export factor 1 −0.11 4.20E-07 0.0041 −0.06 0.3125 0.3860 
KLF4 Kruppel like factor 4 −0.38 7.30E-07 0.0047 −0.50 0.0040 0.0170 

LRRFIP1 LRR binding FLII interacting 
protein 1 

−0.2 3.30E-06 0.0160 −0.37 0.0028 0.0150 

PPP1R9B protein phosphatase 1 regulatory 
subunit 9B 

−0.11 5.00E-06 0.0160 −0.03 0.6498 0.6823 

RAB11FIP1 RAB11 family interacting protein 1 −0.2 6.00E-06 0.0170 −0.29 0.0024 0.0150 

ABCG1 ATP binding cassette subfamily G 

member 1 
−0.19 1.20E-05 0.0270 −0.05 0.6113 0.6756 

ETFDH electron transfer flavoprotein 
dehydrogenase 

0.13 1.60E-05 0.0310 0.13 0.0688 0.1606 

C1QA complement C1q A chain −0.18 2.20E-05 0.0390 −0.13 0.1242 0.2078 
ZC3H3 zinc finger CCCH-type containing 3 −0.11 2.90E-05 0.0470 0.12 0.1385 0.2078 
SLA Src like adaptor 0.13 3.90E-05 0.0480 0.19 0.0086 0.0300 

TEPSIN TEPSIN. adaptor related protein 
complex 4 accessory protein 

−0.11 4.50E-05 0.0480 0.07 0.3621 0.4224 

TNFSF8 TNF superfamily member 8 0.14 4.60E-05 0.0480 0.09 0.2575 0.3380 
SMAP2 small ArfGAP2 0.11 4.70E-05 0.0480 0.10 0.1382 0.2078 
ZBTB7A zinc finger and BTB domain 

containing 7A 

−0.12 5.10E-05 0.0480 −0.10 0.1205 0.2078 

TXNIP thioredoxin interacting protein 0.08 5.10E-05 0.0480 0.01 0.8618 0.8618 
SNORA38 small nucleolar RNA. H/ACA box 38 −0.2 5.30E-05 0.0480 −0.30 0.0150 0.0400 

EGR2 early growth response 2 −0.46 5.50E-05 0.0480 −0.53 0.0130 0.0400 

IL7R interleukin 7 receptor 0.13 5.70E-05 0.0480 0.25 0.0013 0.0130 

TAGLN transgelin −0.27 6.00E-05 0.0480 −0.22 0.1115 0.2078 
SIDT2 SID1 transmembrane family member 

2 
−0.21 6.00E-05 0.0480 −0.17 0.1656 0.2319 

Fig. 2 Correlation in expression level differences (logFC) for the set of 21 genes differentially expressed in the discovery sample 
between the discovery and follow-up cohorts. 
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have caused some bias. Despite these methodological limi- 
tations, we ran a two-step approach, applied strict selection 
criteria and restricted the analysis to deeply phenotyped 
medication-naïve ADHD cases. With this design, we found a 
high degree of correlation between expression level differ- 
ences across stages and validated differential expression for 
eight genes in two independent datasets, which support the 
robustness of our findings and the use of peripheral tissues 
to assess gene expression signatures for ADHD. Third, given 
that our clinical sample included medication-naïve subjects 
with no comorbid disorders, results are difficult to extend 
to a more realistic clinical context and further studies in 
independent clinical samples following less restrictive in- 
clusion criteria are required. Lastly, microarray technology 
has some limitations when compared to RNA sequencing, in- 
cluding overestimation of target gene expression due to off- 
target hybridization between probes and homologs of the 
target gene, lower sensibility and specificity or the inability 
to detect novel or low abundance transcripts and different 
isoforms, which highlight RNAseq as an alternative technol- 
ogy to reveal more insight into molecular mechanisms un- 
derlying ADHD. 

Our results highlight promising candidate genes and gene 
pathways for ADHD but should be considered as a proof of 
concept requiring further replication in larger datasets to 
identify biological subtracts underlying the disorder. 
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Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder that often persists
into adulthood. There is growing evidence that epigenetic dysregulation participates in ADHD. Given that only a
limited number of epigenome-wide association studies (EWASs) of ADHD have been conducted so far and they have
mainly focused on pediatric and population-based samples, we performed an EWAS in a clinical sample of adults with
ADHD. We report one CpG site and four regions differentially methylated between patients and controls, which are
located in or near genes previously involved in autoimmune diseases, cancer or neuroticism. Our sensitivity analyses
indicate that smoking status is not responsible for these results and that polygenic risk burden for ADHD does not
greatly impact the signatures identified. Additionally, we show an overlap of our EWAS findings with genetic
signatures previously described for ADHD and with epigenetic signatures for smoking behavior and maternal smoking.
These findings support a role of DNA methylation in ADHD and emphasize the need for additional efforts in larger
samples to clarify the role of epigenetic mechanisms on ADHD across the lifespan.

Introduction
Attention-deficit/hyperactivity disorder (ADHD) is a

common neurodevelopmental disorder characterized by
age-inappropriate levels of inattention, impulsivity and
hyperactivity1. ADHD is a disabling condition in child-
hood and adolescence which often persists into adult-
hood, interfering with the quality of social, academic, or
occupational functioning2,3.
ADHD is a multifactorial disorder with an estimated

heritability of 76%. Twenty-two percent of its phenotypic
variance is explained by common genetic variants1,4 and
the proportion of variance still to be explained might be,
to some extent, accounted for by gene by environment
interactions. In this context, epigenetic processes have

emerged as a plausible mechanism by which environ-
mental exposures can lead to long-lasting alterations, such
as variation in brain structure or neuronal circuits, found
in psychiatric disorders5–7. There is growing evidence that
epigenetic dysregulation is a feature of ADHD6,8–11,
depression12, autism13–16, schizophrenia17,18 and bipolar
disorder19.
Studies of DNA methylation profiles in ADHD have been

conducted using peripheral blood, cord blood, buccal
samples or saliva6,9–11,20–28. Candidate gene studies have
revealed differential methylation patterns in genes involved
in the dopaminergic, serotoninergic and neurotrophic
systems, including SLC6A4, DRD4, COMT, ANKK1,
BDNF, or NGFR, associated with ADHD symptomatology
and severity23–28. Seven epigenome-wide association stu-
dies (EWASs) on ADHD have been run to date, with
sample sizes ranging from 54 subjects for clinical samples21

to 4,689 individuals in a meta-analysis considering ADHD
symptomatology in general population9, yielding non-
overlapping findings across them6,9–11,20–22. There is
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limited research on adults using this approach, given that
most of the EWASs have focused on pediatric sam-
ples6,10,11,20,22. To the best of our knowledge, only two
studies evaluated methylome-wide patterns on adults9,21.
One identified methylation changes associated with ADHD
symptomatology that did not remain significant when
results were meta-analyzed across cohorts9. The second
one found hypermethylated regions in genes involved in
fatty acid metabolism and fatty acid oxidation pathways
associated with ADHD persistence when compared to
remittance21. In the childhood period, Wilmot et al. ana-
lyzed a population cohort of school-age boys and found
lower methylation levels at the VIPR2 gene in ADHD
subjects compared to their age- and sex- matched con-
trols10, results that were recently replicated in the largest
EWAS on ADHD in children conducted so far22. In a
similar aged population cohort, Walton et al. investigated
ADHD symptom trajectories from birth to adolescence
and pointed to epigenetic marks in genes related to neural
tube development and peroxisomal mechanisms as candi-
dates to be involved in the different ADHD symptom
trajectories across time6. In the most recent EWAS eval-
uating ADHD symptoms in population-based cohorts,
aberrant methylation patterns at birth in different regions,
lying in the ERC2 and CREB5 genes among others, were
associated with later ADHD symptoms in childhood or
adolescence11. And finally, the latest and largest EWAS
conducted in a clinical sample of children with ADHD
supported the association between ADHD polygenic risk
and DNA methylation patterns at the GART and SON
genes22.
Recent evidence supports a large genetic overlap between

ADHD in children and adults29, but little is known about
the co-occurrence between the epigenetic signatures
characterizing both groups of age. In addition, although
various studies report shared genetics between ADHD and
several psychiatric and behavioral traits4,29, this overlap has
not been assessed yet using epigenome-wide data.
Whereas most previous studies considered pediatric

clinical samples or adult population-based cohorts with
measures of ADHD symptoms, we report an EWAS on a
clinical sample of adults with ADHD. With these data we
(i) assessed DNA methylation signatures for ADHD in
adults through an EWAS in peripheral blood mono-
nuclear cells, (ii) tested whether either polygenic risk
burden for ADHD or smoking status had an impact on
those DNA methylation signatures, (iii) examined whe-
ther exposure to stressful life events had an effect on these
methylation patterns in ADHD subjects and (iv) explored
the overlap between these findings and results from pre-
vious meta-analyses of genome-wide association studies
(GWAS-MA) on clinical ADHD or ADHD symptoms in
population-based samples, and EWAS on ADHD symp-
toms or exposure to stressful life events.

Materials and methods
Participants and clinical assessment
The clinical sample consisted of 103 ADHD subjects

that were referred to an ADHD program from primary
care centers and adult community mental health services.
All subjects were evaluated and recruited prospectively
from a restricted geographic area of Catalonia (Spain) in a
specialized out-patient program for Adult ADHD and by
a single clinical group at Hospital Universitari Vall
d’Hebron of Barcelona (Spain).
The clinical assessment consisted of structured inter-

views and self-reported questionnaires in two different
steps: (i) assessment of ADHD diagnosis based on
symptomatology using the Conner’s Adult ADHD
Diagnostic Interview for DSM-IV (CAADID) by a psy-
chiatrist and, (ii) assessment of the severity of ADHD
symptoms, the levels of impairment and the presence of
comorbid disorders by a psychologist to increase the
diagnostic accuracy and reduce the likelihood of mis-
diagnosis with the Conners ADHD Rating Scale
(CAARS), the ADHD Rating Scale (ADHD-RS), the
Clinical Global Impression (CGI), the Wender Utah
Rating Scale (WURS), the Sheehan Disability Inventory
(SDS), and the Structured Clinical Interview for DSM-IV
Axis I and II Disorders (SCID-I and SCID-II). After-
wards, the psychiatrist and psychologist integrate the
clinical information and self-reports for the valid
assessment of symptoms and impairments. In case of
discordance between different raters of ADHD symp-
toms or inconsistencies between reporters in responses
to items measuring similar symptoms, the clinician-
identified symptoms on the CAADID prevailed. Exclu-
sion criteria were IQ < 70; lifelong and current history of
mood, psychotic, anxiety, substance abuse, and DSM-IV
axis II disorders; pervasive developmental disorders; a
history or the current presence of a condition or illness,
including neurologic, metabolic, cardiac, liver, kidney, or
respiratory disease; a chronic medication of any kind;
birth weight≤1.5 kg; and other neurological or systemic
disorders that might explain ADHD symptoms. For
more detailed information on clinical assessment see
Sánchez-Mora et al.30.
Data pertaining to exposure to 17 stressful life events

(six gestational and 11 postnatal) were collected retro-
spectively with the CAADID Part I31 and were available
from 98 subjects with ADHD. No information was
available from controls. Specifically, this questionnaire
includes: premature birth, illegal drug abuse during
pregnancy, maternal smoking, prenatal exposure to drugs,
maternal health problems during pregnancy, other pro-
blems during maternal pregnancy, exposure to heavy
metals, malnutrition, financial stress and/or poverty,
extreme familial stress, neglect, familiar violence, emo-
tional and physical maltreatment, sexual abuse, death or
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separation from a loved one, and other trauma in child-
hood or adolescence.
The control sample consisted of 100 unrelated healthy

blood donors matched by sex and ethnicity with the
clinical group. Individuals with ADHD symptomatology
were excluded retrospectively under the following criteria:
(1) having been diagnosed with ADHD previously or (2)
answering positively to the lifetime presence of the fol-
lowing ADHD symptoms: (a) often has trouble in keeping
attention on tasks, (b) usually loses things needed for
tasks, (c) often fidgets with hands or feet or squirms in
seat, and (d) often gets up from seat when remaining in
seat is expected.
All subjects reported European ancestry, which was

confirmed through principal component analysis (PCA)
using genetic data. The study was approved by the Clinical
Research Ethics Committee (CREC) of Hospital Uni-
versitari Vall d’Hebron, all methods were performed in
accordance to the relevant guidelines and regulations and
written informed consent was obtained from all subjects
before inclusion into the study.

DNA isolation, quantification, and genome-wide DNA
methylation assays
Peripheral blood mononuclear cells (PBMCs) of

patients with ADHD and controls were isolated using the
Ficoll density gradient method, and DNA was extracted
using the QIAamp DNA Mini Kit DNA Purification fol-
lowing manufacturer’s instructions (Qiagen, Hilden,
Germany). The quality of the samples was checked by
NanoDrop® ND-1000 (Thermo Fisher Scientific, MA)
and by PicoGreen® (Thermo Fisher Scientific, MA).
Genome-wide DNA methylation was assessed with the
Illumina Infinium MethylationEPIC BeadChip Kit (EPIC
array) (Illumina, San Diego, CA, USA) following sodium
bisulfite treatment of genomic DNA.

DNA methylation analysis based on ADHD diagnosis
Data preprocessing and normalization
The 203 samples included in this study were assayed in

three batches, which were preprocessed and normalized
separately. Raw signal intensities of each probe were
extracted using the Illumina Genome Studio software
(https://support.illumina.com) and were imported into
the R software (3.6.0 version; https://www.R-project.org)
using the minfiData 0.2 package32. The bisulfite conver-
sion control probes and the 59 single nucleotide poly-
morphism (SNP) probes of the EPIC array were used to
calculate the bisulfite conversion reaction efficiency and
to confirm the absence of sample contamination,
respectively. Sex was confirmed for all samples using the
getSex function of the minfi R package33. The Horvath
Epigenetic Clock algorithm34 implemented by the agep
function of the wateRmelon R package was used to

calculate the estimated age of participants according to
their DNA methylation data, which correlated with their
reported age (ρ= 0.82, SE= 0.04, P < 2.00E−16). Poorly
performing probes or samples were removed using the
wateRmelon R package (version 0.9.9;35). The exclusion
criteria for the probes included detection P-values >0.05
for >1% of the samples and a beadcount <3 for >5% of the
samples. Probes that were cross-reactive, present in sexual
chromosomes or that contained polymorphisms were also
excluded from the study36,37. Samples with >1% of probes
with a detection P-value >0.01 were also removed. Probes
that passed the quality control filters were quantile nor-
malized with the dasen function of the wateRmelon
R package.

Bioinformatic and statistical analyses
PCA of methylation values was conducted using the

prcomp function of the stats R package, first separately for
each batch and then across all batches. Within batch,
non-biological experimental variation (Sentrix Position
and chip ID) of normalized methylation values was tested
for association with the Principal Component loadings
(PCs). Chip ID was associated with the first PC (PC1) in
all three batches, which accounted for the 99% of the
variation of samples. We therefore adjusted the beta
values with the ComBat function of the SVA R package38

for this variable. The effect of batch and sex on adjusted
methylation values of probes present in the three batches
after quality control (n= 744,227) was tested for asso-
ciation with the PCs estimated in the overall sample.
Evidence of clustering according to batch was visually
detected and statistically confirmed with a significant
association of PC1 with batch (P-value < 2.20E−16).
Given that detailed smoking information was not

available for each individual, an individual smoking score
(continuous measure) was generated based on DNA
methylation sites known to be associated with current
smoking using a method developed by Elliot and collea-
gues39. To account for methylation differences between
cell types, we estimated the cell-type composition using
the estimateCellCounts function of the FlowSorted.
Blood.450k R package40.
Probe-wise differential methylation analysis was per-

formed using the lmFit function of the limma R pack-
age41. Each CpG site was tested individually in a linear
regression model with normalized, corrected beta values
as the dependent variable and ADHD status as indepen-
dent predictor, including covariates for sex, age, batch,
smoking score and cell-type composition. Age was
included as covariate in all the analysis, since it was sig-
nificantly different between cases and controls. Multiple
testing corrections were applied using false discovery rate
(FDR) with a cut-off of 5%42. The qqman R package was
used to generate the Manhattan plot.
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The post-hoc power analysis in our sample calculated
with the EPIC array online tool (https://epigenetics.essex.
ac.uk/shiny/EPICDNAmPowerCalcs/)43 using the default
significance threshold (P-value < 9.42E−08) showed that
6.12% of sites had > 90% power to detect a mean
methylation difference of 1%.
At the differentially methylated CpG site, we tested the

association between DNA methylation and the exposure
to at least one stressful life event, and to each stressful life
event separately using the lmFit function of the limma R
package. As 17 stressful life events were tested, Bonferroni
correction was set at P < 2.94E−03. We also tested the
correlation between the number of stressful life events
(sum of overall stressful life events and also separated in
pre- and post-natal periods) and DNA methylation levels
using Spearman’s correlation.
To identify differentially methylated regions (DMRs),

we used the Python module comb-p44 to group spatially
correlated CpG sites with a seed of P-value < 0.01 and 500
base pairs (bp) as the maximum distance. DMR P-values
were corrected for multiple testing using the Šidák cor-
rection45 and significant regions were defined as those
with at least two probes and an adjusted P-value < 0.05.
DMRs were mapped to genes using the interface provided
by the minfi R package or the UCSC Genome Browser to
identify the closest gene when no genes were mapped to a
region (https://genome.ucsc.edu/cgi-bin/hgGateway).
Sensitivity analyses were conducted with the same

parameters described above for the probe-wise and
regional analyses excluding smoking score as covariate in
the model.

DNA methylation analysis based on ADHD diagnosis
controlling for ADHD polygenic burden
Bioinformatic and statistical analyses
ADHD polygenic burden was inferred using a Polygenic

Risk Score (PRS) built in a subset of 195 individuals with
genotype data available, from three different genotyping
waves (Illumina HumanOmni1-Quad BeadChip (n= 3),
Illumina HumanOmni2.5-8 BeadChip (n= 29) and Infi-
nium™ Global Screening Array-24 v2.0 (n= 163) (Illu-
mina, San Diego, CA, USA), using summary statistics of
the largest GWAS-MA performed to date on ADHD4,
with different P-value thresholds ((PT) < 1e−04, 5e−04,
0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1). None of
the samples used in this study were included in this
GWAS-MA4, and thus did not contribute to defining the
variants included in the PRS.
In this subset of 195 individuals, sensitivity analyses for

the differentially methylated sites and regions were con-
ducted with the same parameters used in the original
EWAS but including the PRS explaining the most var-
iance (Nagelkerke’s R2) as an additional covariate to
control for ADHD polygenic risk burden.

ADHD PRSs for each individual were generated with
PRSice2 (https://choishingwan.github.io/PRSice/) includ-
ing sex and the first five PCs as covariates in the model.
To set an empirical threshold for the best-fit PRS, 1,000
permutations were run. Information about the pre-
imputation quality control at individual and SNP level
for the 195 individuals in the target sample and about
the phasing and imputation software used is described
elsewhere29. The European ancestry panel of the 1000
Genomes Project was considered as reference for
the imputation (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/)
and best guess genotypes were filtered by excluding var-
iants with MAF < 0.05, missing rate>0.01, Hardy-
Weinberg Equilibrium (P < 1.00E−06). Ambiguous
strand and multiallelic variants were removed and inde-
pendent SNPs (obtained using the clumping parameters
p1= 1, p2= 1, r2= 0.2, kb=250 in PLINK1.946) present
in all individuals were included (n= 37,527).

Enrichment analyses
We assessed whether probes in different categories: (i)

showing a statistically significant proportion of methyla-
tion variance explained by additive genetic effects as
reported by Zeng et al.47; (ii) probes identified in previous
EWASs on exposure to adverse live events48–50; (iii)
probes identified in previous EWASs on ADHD21,22 or
ADHD symptoms6,9 or (iv) probes located in ADHD-
associated loci identified through GWAS4,29,51 showed, on
average, a stronger association with adult ADHD than
other methylation sites by regressing our EWAS test
statistics (Zscore) on each CpG category as described by
van Dongen et al. 9:

jZscorej ¼ Interceptþ βcategory x � category x;

where |Zscore| represents the absolute value of the Zscore

from our EWAS on adult ADHD, category x represents
whether a CpG belongs or not to a specific category and
βcategory x represents the effect estimate for that category.
A CpG was assigned to a category if it was associated to
the phenotype of interest according to the P-value
thresholds shown in Supplementary Table 1 [excel file].
For GWAS, we considered CpG sites within windows of
10 kb, 100 kb, and 1Mb around significant variants
(Supplementary Table 1 [excel file]). For each enrichment
test, bootstrap standard errors were computed with 2,000
bootstraps using the “simpleboot” R package. Bonferroni
correction was applied for multiple comparison correc-
tion (PBootstrap < 3.85E−03; accounting for the 13 analyses
conducted).
We also tested for enrichment of regulatory domains,

ontological categories and pathways, using CpG sites with
P-value<1.00E−05 in our results. For the enrichment
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analysis of regulatory domains, ontological categories and
pathways, probes were annotated with the Illumina
Human EPIC array annotation R package (“IlluminaHu-
manMethylationEPICanno.ilm10b2.hg19”). The enrich-
ment analyses for transcription factor binding sites
(TFBS) and DNase I hypersensitive sites (DHS) from the
ENCODE project52 were performed using a two-sided
Fisher’s 2×2 exact test. The enrichment analyses for GO
terms and KEGG, Reactome or Biocarta pathways were
assessed using the gsameth function of the missMethyl R
package53. Gene sets denoting canonical pathways were
downloaded from MSigDB (http://www.broadinstitute.
org/gsea/msigdb), which integrates Kyoto Encyclopedia
of Genes and Genomes (KEGG) (http://www.genome.jp/
kegg/), BioCarta (http://www.biocarta.com/), Reactome
(https://reactome.org/) and Gene Ontology (GO) (http://
www.geneontology.org/) resources.
The datasets for this article are not publicly available

because of limitations in ethical approvals and the sum-
mary data will be available upon request.

Results
Our sample consisted of 103 cases and 100 controls

after quality control. The distribution of sexes was not
significantly different between groups (χ2= 2.60, P=
0.11), with 56% and 45% of cases and controls being male,
respectively. Age of participants was significantly different
between cases and controls (P= 3.61E−04), with a mean
age of 31.90 (SD= 11.45) years in cases and of 37.25 (SD
= 9.47) years in controls. In the case group, 35% of par-
ticipants experienced no stressful life events, 35% were
exposed to at least one prenatal stressful life event and
54% were exposed to at least one of them after birth
(Supplementary Table 2; Supplementary Fig. 1).
We identified one differentially methylated CpG site,

cg07143296, in the EWAS (P.adj= 0.033; Fig. 1a, b; Table
1; EWAS inflation factor λ= 0.67). This CpG lies 77 bp
upstream the PCNXL3 gene and was hypermethylated in
patients, with a mean difference of 0.2% between groups
(Table 1, Fig. 2). When evaluating the effect of prenatal
and postnatal stressful life events on the methylation
patterns of ADHD subjects at this CpG site, we found no
significant differences in the methylation levels between
individuals with ADHD exposed to stressful life events
compared to those not exposed. The combined analysis of
multiple correlated CpG sites showed evidence of asso-
ciation between ADHD and methylation levels in four
genomic regions (P.adj < 0.02), with the most significant
one spanning six CpG sites and located in the DENND2D
gene (P.adj= 2.52E−07; Table 2). The smoking score was
not significantly different between cases and controls
(mean score in cases=−2.42, mean in controls=−3.34,
P= 0.05). When we excluded it from the fitted model as
a sensitivity analysis, cg07143296 (logFC= 0.0059,

P= 1.19E−07, P.adj=0.07) and the region in chromosome
11 were no longer significant and the other regions
remained significant (Table 2).
We subsequently tested whether the polygenic risk

burden for ADHD had an effect on the DNA methylation
signatures. After constructing PRSs at different P-value
thresholds from the largest GWAS-MA on ADHD in
children and adults4, the PRS explaining the most var-
iance in our sample was found for PT= 0.001 (NSNPs=
490, R2= 0.052, Pperm= 0.029), and was significantly
higher in ADHD patients than controls (P= 3.10E−03;
Supplementary Fig. 2). After adding it as a covariate to the
model fitted for the EWAS, we found that the cg07143296
CpG site (logFC= 0.066, P= 1.60E−08, P.adj=0.012) and
three of the four genomic regions identified remained
significant (Table 2).
We then tested whether CpG sites whose methylomic

variation is mainly explained by additive genetic effects
showed, on average, a stronger association with adult
ADHD than other methylation sites included in the array,
and found a significant enrichment of signal for adult
ADHD among them (PBootstrap= 2.39E−04). In addition,
when we assessed the overlap between genetic and epi-
genetic signatures of ADHD, we found suggestive evi-
dence of overlap between our EWAS results and probes
annotated to ADHD-associated loci in the largest GWAS
meta-analyses on ADHD across the lifespan or GWAS-
MA on ADHD symptoms in children (PBootstrap= 6.75E
−03 and PBootstrap= 1.36E−02, respectively), but not with
results of previous GWAS-MA on ADHD conducted
separately in adults or children (Supplementary Table 1
[excel file]). We also considered CpG sites differentially
methylated in previous EWAS on individuals exposed to
adverse life events, on clinical ADHD or on ADHD
symptoms and found that CpG sites previously associated
with current vs never smoking and with maternal smok-
ing showed a highly significant enrichment of signal for
adult ADHD (PBootstrap= 9.03E−18 and PBootstrap= 4.62E
−14, respectively) (Supplementary Table 1 [excel file]).
However, no overlap was detected with findings of pre-
vious EWASs on ADHD, on ADHD symptoms and on
physical/emotional neglect or abuse (Supplementary
Table 1 [excel file]).
When we focused on the top 15 differentially methy-

lated CpG sites (P < 1.00E−05) in our EWAS, we found
no enrichment of regulatory domains (TFBS and DHS)
from the ENCODE project52 nor ontological categories or
pathways from GO terms, KEGG, Reactome or Biocarta
(Supplementary Table 3 [excel file]).

Discussion
To the best of our knowledge, this is the first study

evaluating DNA methylation signatures in a clinical
sample of adults with ADHD and testing whether
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smoking status, polygenic risk burden for ADHD or
exposure to stressful life events had an impact on the
methylation signatures identified.
Methylation differences were found in regions that

include genes related to cancer and pulmonary function
(DENND2D)54,55, neuroticism and regulation of histone
acetylation dynamics (PWWP2B)56,57 or regulation of
immune signaling (UBASH3A)58. We also identified a
CpG site (cg07143296) significantly hypermethylated in
ADHD, located close to PCNXL3, a gene related to
autoimmune diseases59. Although not achieving sig-
nificance after multiple comparison correction, CpG sites
in ADHD-related genes were found among the top ten
signals of the EWAS, including CREM, which has been
previously associated with impulsivity, hyperactivity,

anxiety-like behavior, circadian rhythmicity and drug
addiction60–62, ADK, whose deficiency may result in
altered dopaminergic function, attentional impairment,
and learning impairments63,64, or LAT, whose genetic
variation has been associated with educational
attainment65.
The lack of overlap between our EWAS results and

those from previous EWASs on ADHD in child-
hood6,10,11,20,22 is in line with the fact that genome-wide
DNA methylation is highly age dependent34. Contrary to
some risk factors stably involved in ADHD throughout
the lifespan, DNA methylation is developmental-stage
specific and hence the patterns contributing to ADHD
susceptibility may differ over time. The absence of overlap
between our results and findings from previous EWASs

Fig. 1 Results of the epigenome-wide association study. a Manhattan plot. Horizontal line indicates 5% FDR significance threshold (P-
value=6.72E−08). b Quantile-quantile plot.
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on ADHD in the adulthood period9,21 could be ascribed to
differences in the characteristics of the samples and on the
array used (clinical vs population-based samples and EPIC
vs Infinium Human Methylation 450K array9), to random
variation and limited statistical power or, as previously
suggested by Meijer et al.21, to the fact that the epigenetic
effects identified may not be those with the strongest
effect sizes on the phenotype21.
Results on the relationship between genetic and epige-

netic signatures in ADHD were not conclusive. We found
enrichment of signal for adult ADHD in CpGs whose
methylation variance is mainly explained by additive
genetic effects47 and suggestive evidence of enrichment in
loci described in the largest GWAS-MA on ADHD4 and
on ADHD symptoms51. However, no evidence was found
for overlap between our EWAS results and loci from
smaller GWAS-MAs on ADHD28 or for a substantial
effect of the polygenic burden for ADHD on the methy-
lation patterns identified. These inconsistent results
should be interpreted in the context of the limited sta-
tistical power of the EWAS and warrant further
investigation.
Our EWAS findings do not seem to be driven by an

effect of current smoking since they were significant when
we adjusted the model for it. When excluding smoking
status from the model, we did not detect an effect of
methylation on ADHD through smoking for cg07143296
or for the region in chromosome 11 but we cannot rule
out a mediating effect for the remaining regions as their
signal becomes more significant. Although bearing in

mind that we used an estimated smoking score that might
be a less accurate tool than clinical data, it has been
postulated as a valid marker for current tobacco
exposure13,39.
We also report preliminary data supporting overlap

between epigenetic signatures of ADHD and smoking-
related traits or behaviors. Enrichment of top-ranking
CpGs from previous EWASs on smoking behavior49 or
maternal smoking50 was obtained. In addition, methyla-
tion differences were identified in regions lying in or near
genes (such as DENND2D or PWWP2B) related to phe-
notypes where tobacco exposure is a key risk factor66–68,
and maternal smoking, which increases risk of ADHD in
the offspring69–71, was the most frequently prenatal
stressful life event reported by participants with ADHD.
To note, sixty-five percent of individuals with ADHD

reported having been exposed to stressful life events, a
circumstance that has been associated with the persis-
tence of the disorder into adulthood72. Extreme familial
stress was found among the most frequently reported
postnatal exposures in individuals with ADHD, which is
not surprising given that the presence of ADHD has been
associated to varying degrees of disturbances in family
and marital functioning73–75. However, no effect of
stressful live events on DNA methylation patterns was
found in ADHD subjects. Given that our study lacked data
on exposure to stressful live events in controls, larger
studies including cases and controls are needed to
understand the impact of environmental factors on DNA
methylation patterns associated with ADHD.
The results of the present study should be interpreted in

the context of several limitations. First, the limited sample
size of the present EWAS, which should be viewed as a
pilot study whose findings await further replication. Sec-
ond, our study design allowed the assessment of methy-
lation patterns in a restricted clinical sample of
medication-naïve subjects with no comorbid disorders.
This design may have facilitated the identification of novel
epigenetic signatures, which may not have been possible
using a broader recruitment strategy. However, given that
patients under medication and/or with lifetime comor-
bidities were excluded and this group accounts for a not
negligible proportion of the overall ADHD group, further
studies in larger samples including cases and controls
meeting common inclusion criteria, more relaxed in
terms of medication or comorbid disorders, will be
required to clarify whether the results obtained could be
generalized to a more realistic clinical situation. Third, the
low inflation factor obtained indicates that the distribu-
tion of effect sizes in the present EWAS were not driven
by systematic biases but also suggests that our study had
limited statistical power and that the data may have been
overcorrected, which may have prevented us from
detecting methylation signatures with small effect sizes.

Fig. 2 CpG‐specific DNA methylation levels. Boxplot showing the
levels of DNA methylation in cases and controls at cg07143296.
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And fourth, peripheral tissues used generally as proxies
have limited utility for inferring variation in the brain76,
although these novel signatures identified in blood might
be used as biomarkers for the disorder.
In summary, we conducted the largest study assessing

DNA methylation signatures in a clinical sample of adult
patients with ADHD. Our results suggest that ADHD
polygenic risk burden or current smoking status do not
change substantially the methylomic variation between
cases and controls, suggest an overlap between epigenetic
signatures of ADHD and smoking-related traits, and point
to an overlap between genetic and epigenetic signatures in
ADHD. These results emphasize the need of additional
efforts in larger samples and the inclusion of stressful life
events in future studies to clarify the role of epigenetic
mechanisms and environmental risk factors on ADHD
across the lifespan.
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Attention deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder characterized by age-inappropriate symptoms
of inattention, impulsivity, and hyperactivity that persist into adulthood in the majority of the diagnosed children. Despite several risk
factors during childhood predicting the persistence of ADHD symptoms into adulthood, the genetic architecture underlying the trajectory
of ADHD over time is still unclear. We set out to study the contribution of common genetic variants to the risk for ADHD across the lifespan
by conducting meta-analyses of genome-wide association studies on persistent ADHD in adults and ADHD in childhood separately and
jointly, and by comparing the genetic background between them in a total sample of 17,149 cases and 32,411 controls. Our results show
nine new independent loci and support a shared contribution of common genetic variants to ADHD in children and adults. No subgroup
heterogeneity was observed among children, while this group consists of future remitting and persistent individuals. We report similar
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existing hypothesis of a shared genetic architecture underlying ADHD and different traits to a lifespan perspective.
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INTRODUCTION
Attention deficit/hyperactivity disorder (ADHD) is a common
neurodevelopmental disorder that severely impairs the daily
functioning of patients due to age-inappropriate levels of
impulsivity and hyperactivity, and/or difficulties in focusing
attention [1]. ADHD has a prevalence of 5–6% in childhood, and
impairing symptoms persist into adulthood in around two-thirds
of children with ADHD diagnosis, with an estimated adult
prevalence around 3.4% [1, 2].
ADHD is a multifactorial disorder with heritability averaging

76% throughout the lifespan [3–5]. There is consistent evidence
that both common and rare variants make an important
contribution to the risk for the disorder [6–11]. Several genome-
wide association studies (GWAS) and meta-analyses across those
have been conducted [7], but only the largest GWAS meta-analysis
(GWAS-MA) performed to date reported genome-wide significant
loci [6]. This study concluded that common genetic variants
(minor allele frequency, MAF > 0.01) account for 22% of the
heritability of the disorder [6] and supported substantial genetic
overlap between ADHD and other brain disorders and behavioral/
cognitive traits [6, 12].
The presentation of ADHD symptoms changes from childhood

to adulthood, with lower levels of hyperactivity in adulthood but a
high risk for ongoing attention problems, disorganization, and
emotional dysregulation [13, 14]. As in the general population, the
pattern of psychiatric and somatic comorbid conditions in ADHD
also changes substantially over time, with learning disabilities,
oppositional defiant disorder, and conduct disorder being more
prevalent in children, and substance use disorders, social phobia,
insomnia, obesity, and mood disorders becoming more pro-
nounced in adulthood [1, 15–18]. In addition, persistent ADHD in
adults is, compared with the general population (and to cases with
remitting ADHD), associated with higher risk for a wide range of
functional and social impairments, including unemployment,
accidents, and criminal behavior [7, 19–23].
Several risk factors measured in childhood predict the

persistence of ADHD symptoms into adulthood, such as the
presence of comorbid disorders, the severity of ADHD symptoms,
being exposed to psychosocial adversity, as well as having a high
polygenic risk score (PRS) for childhood ADHD [24–28]. Twin
studies suggest that both stable and dynamic genetic influences
affect the persistence of ADHD symptoms [4, 5, 29, 30]. However,
specific genetic factors differentiating childhood and persistent
ADHD into adulthood are not well understood due to the lack of
longitudinal studies. Molecular studies, including the most recent
GWAS-MA of ADHD [6], have been performed in children and
adults either separately or jointly [6, 31–40], but large-scale
analyses comparing their genetic basis are yet to be conducted.
Given this background, we set out to study the contribution of

common genetic variants to the risk for ADHD from a lifespan
perspective by conducting the largest GWAS-MAs performed so
far on persistent ADHD in adults (diagnosed according to DSM-IV/
ICD-10 criteria) and on ADHD in childhood (that may include
remittent and persistent forms of the disorder) separately and
jointly. For the first time, we estimated the genetic correlation
between childhood and persistent ADHD, compared their patterns
of genetic correlation with other traits and disorders, assessed the
effect of childhood ADHD PRSs on persistent ADHD, and explored
whether individuals in which ADHD symptoms may persist into
adulthood could be distinguished already in childhood using
genetic data.

MATERIAL AND METHODS
Sample description
A total of 19 GWAS of ADHD comprising 49,560 individuals (17,149
cases and 32,411 controls), provided by the Psychiatric Genomics
Consortium (PGC), the Lundbeck Foundation Initiative for

Integrative Psychiatric Research (iPSYCH), and the International
Multi-centre persistent ADHD CollaboraTion (IMpACT), were
analyzed. All participants were of European ancestry, had provided
informed consent, and all sites had documented permission from
local ethics committees.
The meta-analysis on persistent ADHD was conducted in 22,406

individuals (6,532 ADHD adult cases and 15,874 controls) using six
datasets from the IMpACT consortium, two datasets from the PGC,
and the adult subset from the iPSYCH cohort included in
Demontis and Walters et al. [6]. The meta-analysis on ADHD in
childhood included 27,154 individuals (10,617 cases and 16,537
controls), comprising two Brazilian and Spanish cohorts, seven
datasets from the PGC, and the children subset from the iPSYCH
cohort included in Demontis and Walters et al. [6]. All patients met
DSM-IV/ICD-10 diagnostic criteria. In total, 7,086 new samples not
included in Demontis and Walters et al. [6] were considered in the
present study. Detailed information on each dataset is provided in
Table S1 and in Supplementary Methods.

GWAS and meta-analyses
Genotyping platforms and quality control (QC) filters for each of
the datasets are shown in Table S1. Pre-imputation QC at
individual and SNP level were performed using the Rapid
Imputation and COmputational PIpeLIne with the default settings
(https://sites.google.com/a/broadinstitute.org/ricopili/). Non-
European ancestry samples, related and duplicated individuals,
and subjects with sex discrepancies were excluded. Phasing of
genotype data was performed using the SHAPEIT2 algorithm, and
imputation for unrelated samples and trios was performed with
MaCH, IMPUTE2, or MINIMAC3 (http://genome.sph.umich.edu/
wiki/Minimac3) depending on software availability at the time of
imputation (Table S1) [41–43]. The European ancestry panel of the
1000 Genomes Project using genome build hg19 was considered
as reference for genotype imputation (ftp://ftp.1000genomes.ebi.
ac.uk/vol1/ftp/). After imputation, the association with ADHD of
genotype dosages was tested using logistic regression in PLINK
1.9 [44], assuming an additive genetic model and including sex,
the first ten principal components, and other relevant covariates
for each case-control study (Table S1). GWAS summary statistics
were filtered prior to meta-analysis, excluding variants with MAF <
0.01, and imputation quality scores (INFO) ≤ 0.8. Inverse-variance
weighted fixed-effects meta-analyses were conducted using
METAL [45] and results were filtered by effective sample size >
70% of the total, defined as Neff ¼ 2

1
Ncað Þþ 1

Ncoð Þ [46]. The genome-

wide significance threshold was set at P < 5.00E−08 to correct for
multiple testing. Independent loci for variants exceeding this
threshold were defined based on clumping using PLINK 1.9.
Variants that were ±250 kb away from the index variant (variant
with smallest P value in the region), with P value < 0.001, and with
an estimated linkage disequilibrium (LD) of r2 > 0.2 with the index
variant were assigned to a clump (p1= 5.00E−08, p2= 0.001, r2=
0.2, kb= 250). Manhattan and Forest plots were generated using
the “qqman” and “forestplot” R packages (3.4.4R version),
respectively. The LocusZoom software [47] was used to generate
regional association plots.

Details of downstream analyses for top signals identified are
provided in the online supplement and include conditional
analysis, Bayesian credible set analysis, and functional character-
ization of the significant variants.

SNP-based heritability (SNP-h2)
The SNP-h2 was estimated by single-trait LD score regression using
summary statistics, HapMap 3 LD-scores, considering default SNP
QC filters (INFO > 0.9 and MAF > 0.01) and assuming population
prevalence of 3.4, 5.5, and 5% for persistent ADHD, ADHD on
childhood, and ADHD across the lifespan, respectively, [48]. Data
of 1,113,287, 1,072,558, and 1,092,418 SNPs from the GWAS-MA of
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persistent ADHD, ADHD on childhood, and ADHD across the
lifespan, respectively, were considered to estimate the liability-
scale SNP-h2. Partitioning and enrichment of the heritability by
functional categories was analyzed using the 24 main annotations
(no window around the functional categories) described by
Finucane et al. [49]. Statistical significance was set using
Bonferroni correction (P < 2.08E−03).

Gene-based and gene-set analyses
MAGMA software was undertaken for gene-based and gene-set
association testing using summary data from our GWAS-MAs [50].
Variants were mapped to a gene if they were within 20 kb
upstream or downstream from the gene according to dbSNP build
135 and NCBI 37.3 gene definitions. Genes in the MHC region
(hg19:chr6:25-35M) were excluded from the analyses. LD patterns
were estimated using the European ancestry reference panel of
the 1000 Genomes Project. Gene sets denoting canonical path-
ways were downloaded from MSigDB (http://www.broadinstitute.
org/gsea/msigdb), which integrates Kyoto Encyclopedia of Genes
and Genomes (http://www.genome.jp/kegg/), BioCarta (http://
www.biocarta.com/), Reactome (https://reactome.org/), and Gene
Ontology (GO) (http://www.geneontology.org/) resources. Bonfer-
roni correction (P < 2.77E−06 for 18,038 genes in persistent ADHD;
P < 2.75E−06 for 18,218 genes in childhood ADHD; P < 2.79E−06
for 17,948 genes in ADHD across the lifespan) and 10,000
permutations were used for multiple testing correction in the
gene-based and gene-set analyses, respectively.

BUHMBOX analysis
The Breaking Up Heterogeneous Mixture Based On cross(X)-locus
correlations (BUHMBOX) analysis [51] was used to test whether the
genetic correlation between persistent ADHD and ADHD in
childhood was driven by subgroup heterogeneity, found when
there is a subset of children enriched for persistent ADHD-
associated alleles. Subgroup heterogeneity was tested in each
childhood dataset considering independent SNPs (r2= 0.1, kb=
10,000) with MAF > 0.05 from the GWAS-MA of persistent ADHD
using two different P value thresholds of P < 5.00E−05 (62 SNPs)
and P < 1.00E−03 (710 SNPs). Results were meta-analyzed using
the standard weighted sum of z-score approach, where z-scores
are weighted by the square root of the effective sample size. The
statistical power was calculated using 1,000 simulations, consider-
ing the ADHD children meta-analysis sample size, the odds ratios
and risk allele frequencies from the GWAS-MA of persistent ADHD,
and assuming 65% of heterogeneity proportion (π).

Sign test
The direction of the effect of variants associated with ADHD in
childhood was tested in persistent ADHD and vice versa, using
strict clumping (r2= 0.05, kb= 500, p2= 0.5) and different P value
thresholds (1.00E−07, 5.00E−07, 1.00E−06, 5.00E−06, 1.00E−05,
5.00E−05, 1.00E−04, and 5.00E−04). The concordant direction of
effect was evaluated using a one sample test of the proportion
with Yates’ continuity correction against a null hypothesis of P=
0.50 with the “stats” R package.

Polygenic risk scoring
PRSs were constructed using different P value thresholds (P < 0.001,
0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and 1) to select independent variants (p1=
1, p2= 1, r2= 0.1, kb= 250) from the childhood GWAS-MA of ADHD
and were then tested for association with persistent ADHD in each of
the nine datasets, adjusting for the covariates included in the GWAS
and using PRSice-2 (https://choishingwan.github.io/PRSice/). Best
guess genotypes for nonambiguous strand variants present in all
the persistent ADHD studies (missing rate <= 0.02) were included
(NSNPs= 32,584 for P=1). Results from the nine PRS analyses at each
P value threshold were combined using inverse-variance weighted
meta-analysis.

Genetic correlation
Cross-trait LD score regression with unconstrained intercept was
used to calculate genetic correlations (rg) between pairs of traits,
considering HapMap3 LD-scores, markers with INFO ≥ 0.90, and
excluding the MHC region (hg19:chr6:25-35M) [48]. Other ADHD
datasets [6, 52] and phenotypes from the LD-hub centralized
database [53] with heritability z-scores (observed heritability/
observed standard error) >4 and with an observed heritability >
0.1 were considered (N= 139 out of 689 available traits). Statistical
significance was set using Bonferroni correction (P < 3.60E−04).
Pearson’s correlation coefficient (Pearson’s r) was calculated
between the genetic correlations of persistent ADHD with the
phenotypes from the LD-hub and the genetic correlations of
ADHD in childhood with the phenotypes from the LD-hub.

RESULTS
GWAS-MA of persistent ADHD in adults
The GWAS-MA of persistent ADHD in adults included 6,532 adult
ADHD cases and 15,874 controls. Minimal population stratification
or other systematic biases were detected (LD score regression
intercept= 1.01, Fig. S1a). The proportion of heritability of
persistent ADHD attributable to common single-nucleotide
polymorphisms on the liability scale (SNP-h2) was 0.19 (SE=
0.024), with a nominally significant enrichment in the heritability
of variants located in conserved genomic regions (P= 5.18E−03)
and in the cell-specific histone mark H3K4me1 (P= 3.17E−02)
(Fig. S2a). The gene-based analysis revealed six genes in four loci
(ST3GAL3, FRAT1/FRAT2, CGB1, and RNF225/ZNF584) significantly
associated with persistent ADHD, with ST3GAL3 being the most
significant one (P= 8.72E−07) (Table S2a). The single-marker
analysis showed no variants exceeding genome-wide significance,
with the most significant signal being rs3923931 (P= 1.69E−07)
(Fig. 1a and Table S3a). Similarly, no significant gene sets were
identified in the pathway analysis after correction for multiple
comparisons (Table S4a [excel file]).

GWAS-MA of ADHD in childhood
To compare the genetic background between persistent ADHD in
adults and ADHD in childhood (that may include future remittent
and persistent forms of the disorder), we conducted a GWAS-MA
on children with ADHD in a total of 10,617 ADHD cases and 16,537
controls. We found no evidence of genomic inflation or
population stratification (LD score regression intercept= 1.02,
Fig. S1b). The liability-scale SNP-h2 for ADHD in childhood was 0.19
(SE= 0.021), with a significant enrichment in the heritability of
variants located in conserved genomic regions after Bonferroni
correction (P= 1.21E−06) (Fig. S2b). The gene-based analysis
highlighted a significant association between FEZF1 and ADHD in
childhood (P= 5.42E−07) (Table S2b). No single genetic variant
exceeded genome-wide significance, with the top signal being in
rs55686778 (P= 1.67E−07) (Fig. 1b and Table S3b), and no
significant gene sets were identified in the pathway analysis after
correction for multiple comparisons (Table S4b [excel file]).

Comparison of the genetic background of persistent ADHD in
adults and ADHD in childhood
We found a strong genetic correlation between persistent ADHD
in adults and ADHD in childhood (rg= 0.81, 95% CI: 0.64–0.97),
significantly different from 0 (P= 2.13E−21) and from 1 (P= 0.02).
Sign test results provided evidence of a consistent direction of
effect of genetic variants associated with ADHD in childhood in
persistent ADHD and vice versa (P= 6.60E−04 and P= 4.47E−03,
respectively, for variants with P < 5.00E−05 in each dataset)
(Table S5). In addition, PRS analyses showed that childhood ADHD
PRSs were associated with persistent ADHD at different pre-
defined P value thresholds, with the P= 0.40 threshold (NSNPs=
20,398) explaining the most variance (r2= 0.0041 and P= 1.20E
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−27) (Fig. 2a). The quintiles of the PRS built using this threshold
showed the expected trend of higher ADHD risk for individuals in
higher quintiles (Fig. 2b, Table S6).
We then tested whether the genetic correlation between

persistent ADHD and ADHD in childhood was driven by a subset
of children enriched for persistent ADHD-associated alleles using
the Breaking Up Heterogeneous Mixture Based On Cross-locus
correlations (BUHMBOX) analysis. We found no evidence of
subgroup genetic heterogeneity in children, supporting that the
sharing of persistent ADHD-associated alleles between children
and adults was driven by the whole group of children, with a
statistical power of 98.4 and 100% for thresholds of P < 5.00E−05
and P < 1.00E−03, respectively (Table S7).

GWAS-MA of ADHD across the lifespan
Given the strong genetic correlation between persistent ADHD in
adults and in childhood, we performed a GWAS-MA of ADHD
across the lifespan considering all datasets included in the GWAS-
MAs. In total, 17,149 ADHD cases and 32,411 controls were
included, and no evidence of genomic inflation or population
stratification was found (LD score regression intercept= 1.03,
Fig. S1c). The liability-scale SNP-h2 for ADHD across the lifespan
was 0.17 (SE= 0.013), and a significant enrichment in the
heritability of variants located in conserved genomic regions
was observed after Bonferroni correction (P= 1.53E−06) (Fig. S2c).
We identified four genome-wide significant variants (Figs. 1c
and 3, Table 1a, and Fig. S3) and nine genes in seven loci (FEZF1,
DUSP6, ST3GAL3/KDM4A, SEMA6D, C2orf82/GIGYF2, AMN, and
FBXL17) significantly associated with ADHD across the lifespan
(Table 1b). The most significantly associated locus was on
chromosome 6 (index variant rs183882582-T, OR= 1.43 (95% CI:
1.26–1.60), P= 1.57E−08), followed by loci on chromosome 7
(index variant rs3958046), chromosome 4 (index variant
rs200721207), and chromosome 3 (index variant rs1920644)
(Table 1a, Fig. 3). The gene-set analysis showed a significant
association of the “ribonucleoprotein complex” GO term with
ADHD across the lifespan (P.adj= 0.021) (Table S4c [excel file]).
One of the four loci identified in the single-variant analysis also

reached genome-wide significance in the previous GWAS-MA on
ADHD [6], and all of them showed consistent direction of the
effect in that study (Table S8a). Significant loci reported by
Demontis et al. [6] showed nominal association with ADHD across
the lifespan in our study (Table S8b, c), with single variant hits
showing the same direction of the effect (Table S8b).
Analyses conditioning on the index variant for the four ADHD-

associated loci did not reveal new independent markers. These
four significant loci were functionally characterized by obtaining
Bayesian credible sets and searching for expression quantitative
trait loci (eQTL) using available data in blood or brain [54, 55]. We
found that credible sets for three of the four loci contained at least
one eQTL within 1 Mb of the index variant. The credible set on
chromosome 6 included the index variant (rs183882582) and
rs12197454. This variant, in LD with the index variant (r2= 0.56),
was associated with the expression of RSPH3 in blood and brain
(P.adj < 1.65E−05 and P.adj= 2.36E−07, respectively), and with
the expression of VIL2 in blood (P.adj= 3.21E−03). The credible
set for the second most associated locus on chromosome 7
included 24 variants. The index variant, rs3958046, and other
variants in this set, were eQTLs for CADPS2 in brain (maximum
P.adj= 2.91E−03). The credible set for the locus on chromosome 4
contained 50 variants, most of them located in or near PCDH7, but
no eQTLs were identified. In the credible set for the locus on
chromosome 3, which included 98 variants, the index variant,
rs1920644, was associated with the expression of KPNA4, IFT80,
and KRT8P12 in brain (P.adj= 1.16E−04, P.adj= 1.40E−03, and
P.adj= 1.77E−03, respectively). Many other variants in this set
were eQTLs for these genes and also for TRIM59, OTOL1, and/or
C3orf80 in brain (P.adj < 0.05) (Table S9 [excel file]).

Fig. 1 Manhattan plots of the three GWAS meta-analyses
conducted. (a) GWAS-MA of nine cohorts of persistent ADHD in
adults, (b) GWAS-MA of ten cohorts of ADHD in childhood, and
(c) GWAS-MA of all datasets of ADHD across the lifespan (ADHD in
childhood+ persistent ADHD). Horizontal lines indicate suggestive
(P value= 5.00E−06) and genome-wide significant (P= 5.00E−08)
thresholds in a-b, and c, respectively.

Shared genetic background between children and adults with attention. . .
Paula Rovira et al.

4

Neuropsychopharmacology (2020) 0:1 – 10



In a summary-data-based Mendelian randomization (SMR)
analysis, we used summary data from the GWAS-MA of ADHD
across the lifespan and the eQTL data in blood and brain from
Westra et al. [54] and Qi et al. [55] to identify gene expression
levels associated with ADHD. We found a significant association
between ADHD across the lifespan and RMI1 expression in blood
(PSMR= 5.36E−06) (Table S10 [in excel]), finding not likely to be an
artifact due to LD between eQTL and other ADHD-associated
variants given that the PHEIDI was 0.47.

Genetic correlation with other ADHD datasets and phenotypes
We found significant genetic correlations of ADHD in children and
adults from the previous GWAS-MA [6] (N= 53,296) and persistent
ADHD (rg= 0.85, SE= 0.04, P= 5.49E−99), ADHD in childhood (rg
= 0.99, SE= 0.03, P= 5.02E−273), and ADHD across the lifespan
(rg= 0.98, SE= 0.01, P < 2.23E−308) (Table S11). When removing
sample overlap (LD score genetic covariance intercept= 0.75) and
considering only the subset of new samples included in our

GWAS-MA on ADHD across the lifespan (N= 7086), a significant
genetic correlation was also obtained between their sample and
ours (rg= 0.91, SE= 0.35, P= 8.70E−03).
We also observed significant genetic correlations between

childhood ADHD symptom scores from a GWAS-MA in a
population of children reported by the EAGLE consortium [52]
(N= 17,666) and persistent ADHD (rg= 0.65, SE= 0.20, P= 1.10E
−03), ADHD in childhood (rg= 0.98, SE= 0.21, P= 2.76E−06), and
ADHD across the lifespan (rg= 0.87, SE= 0.19, P= 4.80E−06).
Similarly, significant genetic correlations between GWAS of self-
reported ADHD status from 23andMe (N= 952,652) and persistent
ADHD (rg= 0.75, SE= 0.05, P= 2.49E−45), ADHD in childhood
(rg= 0.63, SE= 0.05, P= 1.39E−42), and ADHD across the lifespan
(rg= 0.72, SE= 0.04, P= 4.86E−88) were observed (Table S11).
We also estimated the genetic correlation of persistent ADHD in

adults, ADHD in childhood, and ADHD across the lifespan with all
available phenotypes in LD-hub. Results for 139 phenotypes
passed the QC parameters and 41 genetic correlations were
significant after Bonferroni correction in both children and adults
with persistent ADHD (Table S12 [excel file]). Again, the genetic
correlations with ADHD were consistent across the lifespan, with
similar patterns found in adulthood and childhood (Pearson’s r=
0.89) (Fig. 4a, Table S12 [excel file]). The strongest genetic
correlations with ADHD were found for traits related to academic
performance, intelligence, and risk-taking behaviors, including
smoking and early pregnancy (Fig. 4b).

DISCUSSION
In the current study, we set out to explore the contribution of
common genetic variants to the risk of ADHD across the lifespan
by conducting GWAS-MAs separately for children and adults with
persistent ADHD that meet DSM-IV/ICD-10 criteria. Using the
largest GWAS datasets available from the PGC, the iPSYCH, and
IMpACT consortia we found evidence for a common genetic basis
for ADHD in childhood and persistent ADHD in adults and
identified nine new loci associated with the disorder.
We found a highly similar proportion of the heritability of

ADHD explained by common variants in children and in adults
(SNP-h2= 0.19), which is consistent with the SNP-h2 estimate
reported in the recent GWAS-MA on ADHD [6] (SNP-h2= 0.22),
that included children and adults, and is in line with multiple
studies supporting the stability of ADHD’s heritability from
childhood to adulthood [3–5]. These results together with the
0.81 genetic correlation found between children and adults with
persistent ADHD reinforce the hypothesis of the neurodevelop-
mental nature of persistent ADHD in adults. Consistently, the
sign test and the PRS analysis confirmed the extensive overlap
of common genetic risk variants for ADHD in childhood and
adulthood.
In the view of the fact that children with ADHD may be an

admixed group of individuals whose ADHD symptoms will persist
or remit in adulthood, we ran a BUHMBOX analysis to elucidate if
the potential “persistent” individuals could be distinguishable
already in childhood. Our data supported genetic similarities in
ADHD across the lifespan with no evidence of a subset of patients
enriched for persistent ADHD-associated alleles within the group
of children.
Despite not having identified specific genetic contributions for

ADHD in children or persistent ADHD, our results are not
inconsistent with evidence suggesting changes in the genetic
contribution to ADHD symptoms from childhood into adulthood,
as described in previous twin studies in the general population
[4, 5, 29, 30]. Our study design and the still limited statistical power
of the GWAS-MAs may have facilitated the identification of the
shared genetic basis rather than specific genetic factors for
persistence. Also, differences between the origin of the samples
(population-based versus clinical) and/or discrepancies between

Fig. 2 Polygenic risk scores for ADHD in childhood tested on
persistent ADHD as target sample. a Bar plot and b quintile plot of
meta-analysis odds ratios (OR meta) with 95% confidence intervals
for P value threshold= 0.4 using the third quintile as baseline.
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self- and medical reports could explain why we found no group-
specific genetic variants. In addition, given that Chen et al. [56]
and Biederman et al. [57] reported that persistence of ADHD into
adulthood indexed stronger familial aggregation of ADHD, we
cannot yet discard influences of non-additive genetic effects, or
other types of genetic variation, such as rare mutations or copy
number variation, playing a role in the different ADHD trajectories
across the lifespan.
We also found strong and significant positive genetic correla-

tions of ADHD ascertained in clinical populations of adults,
children, or both with other ADHD-related measures from general
population samples, including the largest GWAS of self-reported
ADHD status from 23andMe participants (N= 952,652) and the
GWAS-MA of childhood rating scales of ADHD symptoms in the
general population [52]. In agreement with previous reports, these
data suggest that a clinical diagnosis of ADHD in adults is an
extreme expression of continuous heritable traits [6] and that a
single question about ever having received an ADHD diagnosis, as
in the 23andMe sample, may be informative for molecular
genetics studies.
Similar patterns of genetic correlation of ADHD with different

somatic disorders and anthropometric, cognitive, and educational
traits were identified for children and adults. These findings were
highly similar to those observed in the recent GWAS-MA [6] and
further extend the existing hypothesis of a shared genetic
architecture underlying ADHD and these traits to a lifespan
perspective.

We report 13 loci in gene- and SNP-based analyses for
childhood ADHD, adult ADHD, and/or ADHD across the lifespan.
Four ADHD-associated loci were previously identified by Demontis
et al. [6], which was expected due to the sample overlap between
the two datasets. The new loci identified in the present study
mainly included genes involved in brain formation and function,
such as FEZF1, a candidate for autism spectrum disorder
implicated in the formation of the diencephalon [58, 59], RSPH3,
which participates in neuronal migration in embryonic brain [60],
CADPS2, which has been associated with psychiatric conditions
due to its role in monoamine and neurotrophin neurotransmission
[61–64], AMN, which is involved in the uptake of vitamin B12
[65, 66], essential for brain development, neural myelination, and
cognitive function [67], and FBXL17, which has previously been
related to intelligence [68].
The main limitation of this study is the sample overlap (85.7%)

between the present GWAS-MAs and the previous one by
Demontis et al. [6], which highlighted loci previously associated
with ADHD. Although sample overlap may have inflated the
genetic correlation found between these studies, the estimate
remained strong and significant when excluding nonoverlapping
datasets.
In summary, the present cross-sectional analyses identify new

genetic loci associated with ADHD and, more importantly, support
the hypothesis that persistent ADHD in adults is a neurodevelop-
mental disorder that shows a high and significant genetic overlap
with ADHD in children. Future longitudinal studies will be required

Fig. 3 Regional association plots for genome-wide significant loci identified in the GWAS meta-analysis of ADHD across the lifespan. Each
plot includes information about the locus, the location and orientation of the genes in the region, the local estimates of recombination rate (in
the right corner), and the LD estimates of surrounding SNPs with the index SNP (r2 values are estimated based on 1000 Genomes European
reference panel), which is indicated by color (in the upper left corner).
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to disentangle the role of common genetic variants on ADHD
remittance and/or persistence.
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Table 1. Genome-wide significant loci in the GWAS meta-analysis of ADHD across the lifespan identified through (A) single-variant analysis and (B)
gene-based analysis.

Chr BP SNP Effect allele Freq effect allele OR CI 95% P value Gene

A

6 159384224 rs183882582 T 0.98 1.43 1.26–1.60 1.57E−08 RSPH3 (+14 kb)

7 121955328 rs3958046 T 0.40 1.09 1.06–1.10 2.28E−08 CADPS2 (+3.2 kb)/FEZF1 (−13.9 kb)/FEZF1-AS1 (+5.2 kb)

4 31151465 rs200721207 T 0.66 1.10 1.06–1.13 3.56E−08 PCDH7 (−3.0 kb)

3 160313354 rs1920644 T 0.52 1.09 1.05–1.12 4.74E−08 BC125159 (+27.9 kb)/KPNA4 (−30 kb)/ARL14 (−81.6 kb)

Gene Chr Start Stop N SNPs* N PARAM** Z-STAT P value

B

FEZF1 7 121921373 121971173 108 18 5.6 9.57E−09

DUSP6 12 89721837 89766296 103 12 5.4 3.51E−08

ST3GAL3 1 44153204 44416837 521 19 5.4 3.58E−08

SEMA6D 15 47456403 48086420 1565 55 5.3 7.24E−08

KDM4A 1 44095797 44191189 169 13 4.9 4.34E−07

C2orf82 2 233713724 233761111 138 17 4.8 7.74E−07

GIGYF2 2 233542015 233745287 511 19 4.8 8.36E−07

AMN 14 103368993 103417179 101 21 4.6 2.56E−06

FBXL17 5 107174734 107738080 1273 35 4.6 2.59E−06

The location (chromosome (Chr) and base position (BP)), effect allele and its frequency, odds ratio (OR) of the effect allele with 95% confidence interval (CI
95%) and association P values, along with genes in the locus are shown for each index variant ID (SNP). For the gene-based results, the number of single-
nucleotide polymorphisms in the genes (*) and the number of relevant parameters used in the model by MAGMA software (**) are given.

Fig. 4 Genetic correlation of ADHD and several traits. a Dots represent genetic correlations (rg) for all traits considered (with h2 > 0.1 and
z-score > 4) and those traits that met Bonferroni correction in both children and adult ADHD groups are presented in grey. r indicates
Pearson’s correlation coefficient. b The ten strongest genetic correlations (with 95% confidence intervals) surpassing Bonferroni corrections in
the children and persistent ADHD analysis are shown for each trait and ADHD.
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Abstract 
Emotional lability is strongly associated with Attention Deficit Hyperactivity Disorder (ADHD), 
represents a major source of impairment and predicts poor clinical outcome in ADHD. Given 
that no specific genes with a role in the co-occurrence of both conditions have been described, 
we conducted a GWAS of emotional lability in 563 adults with ADHD. Despite not reaching 
genome-wide significance, the results highlighted genes related with neurotransmission, cogni- 
tive function and a wide range of psychiatric disorders that have emotional lability as common 
clinical feature. By constructing polygenic risk scores on mood instability in the UK Biobank 
sample and assessing their association with emotional lability in our clinical dataset, we found 
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suggestive evidence of common genetic variation contributing to emotional lability in general 
population and in clinically diagnosed ADHD. Although not conclusive, these tentative results 
are in agreement with previous studies that suggest emotion dysregulation as a transdiagnostic 
construct and highlight the need for further investigation to disentangle the genetic basis of 
mood instability in ADHD and co-occurring psychiatric disorders. 
© 2019 Elsevier B.V. and ECNP. All rights reserved. 

1. Introduction 

Emotional lability, also known as mood instability, emo- 
tional impulsivity, emotional dysregulation, emotional 
impulsiveness, affective lability, mood lability and de- 
ficient emotional self-regulation, is a common clinical 
feature of a range of psychiatric disorders including major 
depressive disorder, bipolar disorder, borderline person- 
ality disorder or Attention Deficit Hyperactivity Disorder 
(ADHD) ( Childress and Sallee, 2015 ). Particularly, ADHD 

diagnostic criteria currently recognizes symptoms of emo- 
tional lability as an associated feature of ADHD ( Merwood 
et al., 2014 ), although the extent of the phenotypic and 
etiologic associations between emotional lability and symp- 
toms of hyperactivity-impulsivity or inattention remains 
unclear. 

The prevalence of emotional lability symptoms is about 
25–45% in children and between 30% and 70% in adults with 
ADHD ( Childress and Sallee, 2015 ). Moreover, emotional la- 
bility has been highlighted as a contributor to the functional 
impairment in youth and adults with ADHD, it may increase 
the severity of ADHD symptomatology as well as comorbid 
disorders and is associated with ADHD persistence and lower 
quality of life ( Shaw et al., 2014 ). 

The nature of the relationship between emotional lability 
and ADHD is still unclear. Converging evidence in twin and 
family studies support significant genetic overlap between 
emotional dysregulation and ADHD symptoms and higher risk 
of emotional lability in family members of ADHD subjects 
( Merwood et al., 2014; Riglin et al., 2017 ). These results 
are in line with the association between ADHD polygenic risk 
scores and early-life irritability found in a population-based 
cohort and in an ADHD clinical sample ( Riglin et al., 2017 ). 
Pharmacological studies also document a concomitant de- 
cline in symptoms of hyperactivity-impulsivity, inattention, 
and emotional lability in response to methylphenidate and 
atomoxetine in adults ( Marchant et al., 2011 ). All this evi- 
dence suggests that emotional lability and ADHD may arise 
as a result of a common etiology, point to emotional la- 
bility as etiologically relevant to the core ADHD phenotype 
and support that it may be targeted in clinical intervention 
( Merwood et al., 2014 ). 

Although ADHD has been the focus of considerable ge- 
netic research, to date there is little work focused on the 
genetic underpinnings of emotional lability or on the genetic 
basis of the link between them. Both conditions have a com- 
plex genetic architecture, with heritability estimates of 74% 

( Faraone and Larsson, 2018 ) and 25% ( Coccaro et al., 2012 ) 
for ADHD and emotional lability, respectively, but the role 
of specific genes remains still unclear. Although each of the 
associated variants appears to account for a relatively small 
proportion of the variance in both traits, SNPs were esti- 
mated to account for 10 −28% of the heritability of ADHD 

( Demontis et al., 2019 ) and 8% of the heritability of mood 
instability ( Ward et al., 2017 ). 

Genetic research on ADHD or emotional lability has 
mainly focused on common variants through candidate gene 
or genome-wide association studies. A very recent GWAS 
meta-analysis in 20,183 ADHD cases and 35,191 controls re- 
ported 12 genome-wide significant loci including genes in- 
volved in neurodevelopmental processes and evolutionarily 
conserved genomic regions. Two GWAS on emotional lability 
have been run so far. The first one identified a genome-wide 
significant association between the interleukin receptor 2A 
gene, IL2RA , and emotion dysregulation in males, as well as 
enrichment for genes involved in different psychiatric dis- 
orders and in the calcium signaling pathway ( Powers et al., 
2016 ). Furthemore, Ward et al. (2017) conducted a GWAS on 
mood instability in 53,525 cases and 60,443 controls from 

the UK biobank which revealed four genome-wide signifi- 
cant loci and genetic correlation between mood instability 
and different psychiatric disorders. 

Given that emotional lability is strongly associated with 
ADHD but no specific genes with a role in the co-occurrence 
of both conditions have been described, we conducted for 
the first time a GWAS of emotional lability in adults with 
ADHD to identify genes and biological pathways underlying 
this trait that represents a major source of impairment and 
predicts poor clinical outcome in ADHD. 

2. Experimental procedures 

2.1. Stage 1: GWAS of emotional lability in ADHD 

2.1.1. Participants 
The clinical sample comprised 563 adults of European ancestry (67% 
males; mean age = 33 years; SD = 10.5), who met ADHD diag- 
nostic criteria of the Diagnostic and Statistical Manual of Mental 
Disorders (DSM-IV). Exclusion criteria included mental retardation, 
schizophrenia or other psychotic disorders, symptoms of substance 
intoxication and withdrawal and neurological or systemic disorders 
that might explain ADHD symptoms. All subjects were evaluated at 
Hospital Universitari Vall d’Hebron of Barcelona (Spain) and diag- 
nosis was blind to genotype. The study was approved by the Clini- 
cal Research Ethics Committee of our Institution, all methods were 
performed in accordance with the relevant guidelines and regula- 
tions, and written informed consent was obtained from all subjects 
before inclusion in the study. 

2.1.2. Clinical assessment 
The evaluation of the ADHD diagnosis was carried out with the Span- 
ish version of the Conners’ Adult ADHD Diagnostic Interview for 
DSM-IV (CAADID parts I and II). Emotional lability was evaluated us- 
ing the following items from the self-reported Conners’ Adult ADHD 
Rating Scale-long version (CAARS-S:L): “I am irritable”, “I have un- 
predictable moods”, “Many things set me off easily”, “I have a hot 
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temper/I lose patience easily”, “I still throw tantrums” and “I get 
frustrated easily”. Each item is scored on a four-point Likert scale 
ranging from 0 to 3 (0 = not at all or never ; 1 = just a little, once in 
a while ; 2 = pretty much, often ; 3 = very much, very frequently ). 
Mean score in the CAARS’ emotional lability subscale was 8.99 rang- 
ing from 0 to 18. 

2.1.3. Genome-wide association study 
Genomic DNA was isolated from peripheral blood leukocytes by the 
salting-out procedure. Subjects were genotyped in three different 
waves using the Illumina HumanOmni1-Quad ( n = 355), HumanOmni 
2.5 ( n = 166) and the PsychChip ( n = 42) arrays. Pre-imputation 
quality control and principal components analysis were imple- 
mented with the Ricopili pipeline ( https://sites.google.com/a/ 
broadinstitute.org/ricopili/ ), and ancestry outliers were excluded. 
Genotype imputation was performed using the European popula- 
tion haplotypes of the 1000 Genomes Project Phase I as the refer- 
ence panel for waves 1 and 2 and the 1000 Genomes Project Phase 
III for wave 3 ( The 1000 Genomes Project Consortium, 2015 ). Indi- 
viduals with > 2% genotype missingness were removed, as well as 
SNPs with low call rate ( < 0.99), with minor allele frequency (MAF) 
< 0.01, INFO score bellow 0.8 or failing the Hardy–Weinberg equi- 
librium test ( P < 1e −06). Post-imputation best-guess genotype data 
from a total of 2,777,520 markers available in all three datasets 
were tested for association with emotional lability through pro- 
portional odds logistic regression using the function “polr”, from 

the “MASS” R package with the ologit-gwas script ( https://github. 
com/edm1/ologit-gwas ). Age, sex, genotyping waves, ADHD sub- 
type, comorbid psychiatric disorders and the first five principal 
components were included as covariates. The quantile–quantile and 
manhattan plots were drawn using the qqman R package ( http: 
//cran.r-project.org/web/packages/qqman ). Index SNPs were de- 
fined based on clumping of variants using the PLINK software with 
default settings ( p 1 = 0.0001, p 2 = 0.01, r 2 = 0.5, kb = 250) ( https: 
//www.cog-genomics.org/plink2/ ). Annotation was performed in 
accordance with the Human hg19 genome build considering genes 
within a ±10 kb distance from index SNPs. Locus Zoom interactive 
web-based visualization tool ( http://locuszoom.org/ ) was used to 
generate regional plots of the top index SNP with a ±2 Mb flanking 
distance. 

2.1.4. Gene-based and gene-set analyses 
The gene-based and gene-set association analyses were conducted 
using MAGMA ( De Leeuw et al. , 2015 ). Gene regions were defined 
as ±10 kb for each gene according to the UCSC Genome Browser 
GRCh37/hg19 release ( https://genome.ucsc.edu/ ) and used the 
1000 Genomes Project Phase I dataset as reference panel to es- 
timate patterns of LD for each locus ( The 1000 Genomes Project 
Consortium, 2015 ). For the gene-set analysis the Gene Ontol- 
ogy (GO) and canonical pathways downloaded from MSigDB ( http: 
//www.broadinstitute.org/gsea/msigdb ) were considered. Correc- 
tion for multiple testing was applied using false discovery rate (FDR) 
with a threshold of 5% and 10,000 permutations in the gene-based 
and gene-set analyses, respectively. 

2.2. Stage 2: polygenic risk score analysis based on UK 

Biobank mood instability GWAS 

We generated Polygenic Risk Scores (PRSs) based on the results of 
the GWAS on mood instability, excluding individuals with psychiatric 
disorders, run in the UK Biobank sample ( Ward et al., 2017 ) using 
the Polygenic Risk Score software (PRSice). Quantitative CAARS-S:L 
scores were dichotomised using a threshold of 12. A logistic regres- 
sion model was applied to test whether PRS at multiple P -value 
thresholds predicted emotional lability in our ADHD cohort (‘target 
population’). Age, sex, genotyping waves, ADHD subtype, comorbid 

psychiatric disorders and the first five principal components were 
included as covariates and 10,000 permutations were computed at 
the best-fit P -value threshold to correct for multiple testing. 

3. Results 

In stage 1 of the study, and after individual and SNP standard 
quality control filtering, we conducted a GWAS of emotional 
lability considering 2,777,520 SNPs in a sample of 563 adults 
with ADHD. The quantile–quantile plot showed no departure 
from the null distribution of expected P -values, with a ge- 
nomic inflation factor of λ = 1.08 (Supplementary Fig. 1 ). 

None of the association signals at SNP or gene level 
exceeded the genome-wide threshold for significance, with 
the top hit at rs2165472 located 1.1 Mb upstream from 

the LPHN3 gene on chromosome 4 ( P = 3.77e −06; B = 1.31; 
SE = 0.28) ( Fig. 1 , Table 1 ). The gene-based association 
test showed 1016 genes associated with emotional lability 
( P < 0.05), with the top hit in OR9A4 on chromosome 7 
( P = 1.72e −05) ( Table 1 ). No gene-set was found significant 
after multiple comparison correction, with a total of 262 
GO terms nominally enriched in our gene set ( P < 0.05) and 
“Intraciliary Transport Particle ” being the most significant 
one (GO:0030990, P = 1.74e −04) (Supplementary Table S1). 
Moreover, 64 canonical pathways were overrepresented 
in our gene set, with “Terpenoid Backbone Biosyntesis ”
( P = 1.19e −03) and “p75NTR recruits signaling complexes ”
( P = 1.53e −03) among the top signals (Supplementary 
Table S2). 

In stage 2, we constructed PRSs based on mood instabil- 
ity data from the UK Biobank sample ( Ward et al., 2017 ) 
and assessed their association with emotional lability in 
our ADHD clinical cohort to test whether emotional labil- 
ity in a clinical sample of ADHD subjects and in the gen- 
eral population shares common genetic load. We found sug- 
gestive evidence of association between PRSs for emotional 
lability in the general population and emotional lability in 
clinical diagnosed ADHD, being the most predictive P -value 
threshold set at P T = 5e −05 (corrected P -value = 0.078; 
Fig. 2 ), which explained 0.59% of the variation in emotional 
lability. 

4. Discussion 

To our knowledge, this is the first study that investigates 
the genetic basis of emotional lability in adults with ADHD 

through a GWAS perspective. Despite not reaching genome- 
wide significance, our findings show tentative evidence for 
the involvement of genes relevant in the context of emo- 
tional lability, including, cell-substrate adhesion, neuro- 
transmission signaling, neurological diseases and psychiatric 
disorders. 

Emotional lability is a highly prevalent clinical feature in 
ADHD patients across the lifespan. Although it is not part of 
the current definition criteria for ADHD diagnosis, emotional 
dysregulation is present in a subset of patients and rep- 
resents a major source of functional impairment and poor 
clinical outcome. About 40% of children and from 35% to 
70% of adults with ADHD exhibit emotional dysregulation, 
with low frustration tolerance, quick anger and explosive 

https://sites.google.com/a/broadinstitute.org/ricopili/
https://github.com/edm1/ologit-gwas
http://cran.r-project.org/web/packages/qqman
https://www.cog-genomics.org/plink2/
http://locuszoom.org/
https://genome.ucsc.edu/
http://www.broadinstitute.org/gsea/msigdb
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Fig. 1 Regional association plot of top index SNP identified in genome-wide association study and nearby genes. 

behavior, regardless of other comorbidities ( Shaw et al., 
2014 ). Although the results of the present study suggest po- 
tential and interesting genes for emotional lability in ADHD 

subjects, whether ADHD with emotional dysregulation rep- 
resents a distinct genetic group or both share a common 
genetic load remains unknown. The largest GWAS on mood 
instability performed so far using the UK Biobank sample 
showed no genetic correlation between both symptom do- 
mains that commonly co-exist ( Ward et al., 2017 ), but find- 
ings based on twin and familiar co-segregation studies as 
well as a PRS analysis on early irritability support moder- 
ate genetic overlap between ADHD and emotional dysregu- 
lation ( Riglin et al., 2017; Shaw et al., 2014 ). Although no 
statistically significant, the tentative evidence of associa- 
tion between the PRS based on mood instability from the UK 
Biobank sample and emotional lability in our ADHD clinical 
cohort, also suggest common genetic background underly- 
ing emotional lability in general population and in clinical 
diagnosed ADHD. These suggestive results emphasize the 
need for further studies in additional samples to confirm 

these findings and to understand the genetic underpinnings 
of mood instability and its link with ADHD. 

The top hit from our GWAS, rs2165472, is located 1.1 Mb 
upstream from the LPNH3, which encodes a neuronal 
adhesion-GPC receptor from the LPHN family that is al- 
most exclusively expressed in brain ( Acosta et al., 2016 ). It 
plays a role in the development of glutamatergic synapses 
( O’Sullivan et al., 2014 ) and has been extensively associated 
with ADHD, and its severity, long-term outcome, response 
to treatment and comorbid conditions such as disruptive 
behaviors and substance use disorder (SUD) ( Acosta et al., 
2016 ; Arcos-Burgos et al., 2019 ). Among the top hits, we 
also identified SNPs located within, or nearby, other genes 
of interest for emotional lability including FOXK1 , expressed 
in key brain areas for cognitive function ( Wijchers et al., 
2006 ); GABRG3 , which encodes a gamma-aminobutyric acid 

receptor subunit, or GRM5 , a glutamate receptor. They are 
highly involved in neurotransmission and normal brain func- 
tion and have been widely associated with a variety of 
psychiatric disorders including anxiety, bipolar mood disor- 
der, SUD, autism or major depressive disorder ( Fatemi and 
Folsom, 2015 ). 

The gene-based and gene-set competitive analyses also 
highlighted genes and pathways potentially relevant for 
emotional lability, including genes such as OR9A4 , previ- 
ously associated with anorexia nervosa ( Wade et al., 2013 ), 
CTBP1 , which is involved in the regulation of gene ex- 
pression during development and exhibited aberrant blood 
expression in schizophrenia and bipolar disorder subjects 
( Tsuang et al., 2005 ), or ASS1 which was downregulated 
in urine samples of subjects with major depressive disor- 
der ( Wu et al., 2015 ). The present study points to a wide 
range of pathways and cellular processes involved in several 
psychiatric disorders and neuronal functions. Of particular 
interest are the “p75NTR recruits signaling complexes ”, 
involved in survival and formation of neurons ( Dechant 
and Barde, 2002 ), the “calcineurin pathway ”, essential 
for synaptic plasticity processes ( Xia and Storm, 2005 ) or 
“p38MAPK events ”, associated with neuronal death, devel- 
opment and differentiation ( Ibrahim et al., 2017 ). 

The results of this study should be viewed in light of sev- 
eral limitations: 

• First, our modest sample size is not powered enough to 
identify genome-wide significant hits and has probably 
prevented us from detecting variants with modest ef- 
fects. Despite using a proportional odds logistic regres- 
sion model to make the most of the data we had, given 
their ordinal nature, we cannot report any conclusive 
findings. 

• Second, it remains unknown whether the nature of the 
relationship between ADHD and emotional instability is 
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Table 1 Top 15 hits from the (a) SNP and (b) gene-based analyses of emotional lability in adult Attention Deficit Hyperactivity 
Disorder. 

(a) 
SNP CHR Gene (kb distance) Effect Allel OR CI 95% P -value 

rs2165472 4 LPHN3 ( −1126 kb) C 3.71 2.13–6.48 3.77E −06 
rs35872837 5 ISL1 ( + 300.1 kb) G 0.49 0.36–0.66 3.81E −06 
rs723840 14 CMTM (0 kb) C 1.63 1.33–2.00 3.81E −06 
rs2109112 12 PARP11 ( + 4.859 kb) T 1.70 1.36–2.13 3.96E −06 
rs117358046 14 IFT43 (0 kb) T 4.65 2.42–8.94 3.99E −06 
rs3087749 7 FOXK1 (0 kb) T 0.61 0.50–0.76 7.58E −06 
rs13236432 7 PRSS37 ( + 9.559 kb) C 1.77 1.38–2.27 8.43E −06 
rs113365723 5 ERAP1 (0 kb) A 5.61 2.62–12.00 8.88E −06 
rs1515594 3 NLGN1 ( + 278.3 kb) G 0.55 0.42–0.71 9.69E −06 
rs9841241 3 RYBP ( −20.28 kb) G 1.63 1.31–2.03 1.13E −05 
rs4778109 15 GABRG3 (0 kb) A 0.62 0.50–0.77 1.24E −05 
rs566277 11 GRM5 (0 kb) G 0.26 0.14–0.48 1.36E −05 
rs9311047 3 PDCD6IP ( + 335.3 kb) A 2.03 1.47–2.79 1.50E −05 
rs11694790 2 PNPT1 ( + 76.83 kb) T 1.61 1.30–2.00 1.53E −05 
rs74870851 2 ABCB11 ( −3.225 kb) G 0.16 0.07–0.37 1.58E −05 

(b) 
Gene CHR Start Stop n SNPs P -value 

OR9A4 7 141,608,676 141,629,620 29 1.72E −05 
PFN1 17 4,838,945 4,862,381 17 6.93E −05 
RWDD3 1 95,689,711 95,722,781 54 8.63E −05 
BCAS3 17 58,745,172 59,480,199 285 1.00E −04 
RNF167 17 4,833,328 4,858,517 21 1.35E −04 
HGFAC 4 3,433,702 3,461,214 10 1.36E −04 
PAPSS2 10 89,409,476 89,517,462 110 1.49E −04 
CTBP1 4 1,195,228 1,252,908 90 1.60E −04 
CORO2B 15 68,841,614 69,030,145 107 1.98E −04 
HLF 17 53,332,321 53,412,426 36 2.37E −04 
ZFP42 4 188,906,925 188,936,199 16 2.37E −04 
ASS1 9 133,310,094 133,386,661 16 3.35E −04 
GLTSCR1 19 48,101,453 48,216,534 131 3.67E −04 
SLC25A11 17 4,830,425 4,853,462 22 3.89E −04 
RBM11 21 15,578,466 15,610,693 123 4.13E −04 

Note: SNP: Single Nucleotide Polymorphism CHR: Chromosome OR: Odds ratio CI: confidence intervals. 
∗OR: the odds per effect allele of an increase in the CAARS’ emotional lability subscale. 

mediated by other comorbid disorders, ADHD subtypes, 
gender, family history of ADHD or adverse environmental 
factors ( Ward et al., 2017 ), and their role in the link be- 
tween ADHD and emotional instability warrants further 
investigation. 

• Third, given the cross-sectional nature of the study, we 
cannot infer causality or make assertions about the tem- 
poral relationship between ADHD and emotional lability. 
Therefore, prospective, longitudinal studies are required 
to examine the temporal onset of emotion dysregulation 
in ADHD subjects. 

• Fourth, there are several definitions of emotional la- 
bility and different scales to measure the construct. 
Furthermore, there are certain limitations related to 
self-report measures of emotion lability. We applied the 
Conners’ definition of emotional lability as irritability, 
unpredictable moods, setting off easily, hot temper, low 

frustration tolerance and difficulties in anger manage- 
ment. Although this subscale of the CAARS is a good 
measure for emotional lability in ADHD subjects and 

there is evidence supporting that adults with ADHD are 
reliable informants about symptomatology ( Vidal et al., 
2014 ), future research using specific scales of emo- 
tional reactivity as well as more thorough and objective 
measures of this construct is warranted. 

In conclusion, to our knowledge, this is the first attempt 
to assess the genetic background of emotional instability in 
ADHD patients. Although not conclusive, we found sugges- 
tive evidence for genes involved in central nervous system 

development and function and in a wide range of psychi- 
atric disorders that have emotional lability as common clin- 
ical feature. Our results are in line with previous studies 
supporting a common genetic background underlying emo- 
tional lability in the general population and in clinically di- 
agnosed ADHD individuals, suggest emotion dysregulation as 
a trans-diagnostic construct ( Sloan et al., 2017 ) and high- 
light the need for further investigation to disentangle the 
genetic basis of mood instability in ADHD and its role as a 
source of impairment and clinical outcome. 
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Fig. 2 Bar plot showing results from the PRS analysis based on mood instability data from UK Biobank at broad P -value thresholds 
( P T = 0.001, P T = 0.05, P T = 0.1, P T = 0.2, P T = 0.3, P T = 0.4, P T = 0.5) and at the best-fit PRS ( P T = 5e −05). 
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