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Thesis overview 

This thesis includes first a general introduction part, a section in which general and specific objectives are 

explained, and a general material and methods section. Then the thesis consists of four chapters, the first 

three are based upon published papers, while the last chapter is a manuscript in preparation. All chapters 

include the following sections: introduction, material and methods, results, discussion (and conclusions 

when present). Finally, a general discussion and conclusions sections are provided. Chapter sections start 

with a characterization of intraspecific variation in belowground growth (root morphology) of Pinus 

halepensis (Chapter 1), while Chapter 2, 3 and 4 are focused on intraspecific differentiation in aboveground 

growth of Pinus halepensis (all Chapters) and Pinus nigra (Chapter 3). The chapters tackle from main trunk 

characteristics (Chapter 2), to main trunk and crown structure and architecture (Chapter 3) ending in crown 

vegetation indices and flammability (Chapter 4). In more details: 

Chapter 1. In the first chapter I used Ground-Penetrating Radar (GPR) as non-invasive high-throughput 

phenotyping technique to characterize intraspecific variation in coarse root morphology (depth, diameter 

and frequency) among 56 populations of P. halepensis.  

Chapter 2. Here I analyzed interannual growth pattern and its genetic basis of 23 populations of Aleppo 

pine by testing genotype by environment interactions (G × E) in a common garden experiment. In this 

regard I linked radial growth records (ring width and early to latewood ratios) as phenotypic traits with 

genomic data, in particular genetic markers (SNPs) and environmental data.  

Chapter 3. I evaluated the potential of two unmanned aerial vehicle (UAV) based high-throughput 

phenotyping techniques, LiDAR and RGB imagery, to characterize tree growth and crown structure and 

architecture. In this regard, I studied the suitability of these devices to characterize intraspecific variability 

in morphometric traits related to crown architecture and volume, primary growth and biomass in two widely 

distributed Mediterranean pines (P. halepensis and P. nigra).   

Chapter 4. In the last chapter I used UAV-based vegetation indices along with in situ measuraments to 

characterize intraspecific differentiation and differential plasticity in litter flammability and tree phenology, 
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potentially related to needle senescence among P. halepensis populations. 
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Abstract 

Genetic differentiation and phenotypic plasticity are important mechanisms of trees to cope with 

environmental changes. In this thesis I focused on intraspecific differentiation of functional traits of two 

pine species widely distributed in the Mediterranean basin: Pinus halepensis Mill. and Pinus nigra Arnold. 

I combined high-throughput phenotyping techniques (HTPTs) with in situ measurements to characterize 

intraspecific differences in functional traits potentially explanatory of different adaptive syndromes to 

external factors, especially those related to drought and fire. In particular, (i) the Ground Penetrating Radar 

(GPR) was used to detect intraspecific variability of coarse root morphology in P. halepensis; (ii) Unmanned 

Aerial Vehicles (UAVs) coupled with LiDAR sensors or RGB and multispectral cameras were used to infer 

intraspecific differences in crown structure and architecture in P. halepensis and P. nigra, and also in needle 

phenology in P. halepensis; and (iii) dendrochronology combined with a candidate-gene approach was 

applied to disentangle genetic and environmental effects determining intra-annual variation in secondary 

growth. Data was collected from four common garden experiments or forest provenance trials located in 

Spain (three of P. halepensis, one of P. nigra). These trials allowed to investigate the magnitude of genetic 

variation, local adaptation and phenotypic plasticity in the aforementioned characteristics, and made 

possible to indirectly attribute the existing phenotypic variability among populations to genetic 

differentiation. The findings of this thesis revealed the existence of intraspecific differentiation of functional 

traits related to root morphology, crown structure and volume, needle phenology and secondary growth in 

P. halepensis, and to aerial growth (tree height, crown structure and volume) in P. nigra. The results pointed 

to the existence of different adaptive syndromes and the presence of trade-offs involving miscellaneous 

plant compartments and functions. To conclude, by using novel phenotyping tools this thesis provides new 

insights about the nature of intraspecific differentiation in functional traits poorly studied to date at the 

intraspecific level in forest adult trees. Therefore, the combination of HTPTs, in situ measurements and 

candidate-gene approaches in common garden experiments was effective to understand phenotypic and 

genetic differentiation among populations of two important pine species of the Mediterranean forests.  
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Resumen 

La diferenciación genética y la plasticidad fenotípica son importantes mecanismos de respuesta de los 

árboles frente a las condiciones ambientales. En esta tesis he analizado la diferenciación intra-específica de 

rasgos funcionales de dos especies de pino ampliamente distribuidas en la cuenca Mediterránea: Pinus 

halepensis Mill. y Pinus nigra Arnold. A tal efecto, he combinado técnicas de fenotipado de alto 

rendimiento (HTPTs) con mediciones in situ para estimar diferencias intra-específicas en rasgos 

potencialmente relacionadas con diferentes síndromes adaptativos derivados de ambientales variables 

especialmente relacionados con la sequía y el fuego. En particular, se utilizó el georradar (GPR) para 

detectar variabilidad intraespecífica en la morfología de raíces en P. halepensis; se utilizaron vehículos 

aéreos no tripulados (UAVs) equipados con sensores LiDAR y cámaras RGB y multi-espectrales para 

estimar diferencias intra-específicas en la estructura y arquitectura de la copa en P. halepensis y P. nigra, 

así como la fenología de las acículas en P. halepensis; y se aplicó la dendrocronología junto con 

aproximaciones de genes candidatos para revelar efectos genéticos y ambientales determinantes de 

variación intra-anual en crecimiento secundario en P. halepensis. Los datos se obtuvieron de cuatro ensayos 

genéticos forestales ubicados en España (tres de P. halepensis y uno de P. nigra). Este tipo de ensayos 

permite investigar la magnitud de la variación genética, la adaptación local y la plasticidad fenotípica. Los 

hallazgos de esta tesis revelaron la existencia de diferenciación intra-específica de rasgos funcionales 

relacionados con la morfología de la raíz, la estructura y el volumen de la copa, la fenología de las acículas 

y el crecimiento secundario de P. halepensis, y relacionados con el crecimiento aéreo (altura del árbol, 

estructura y volumen de la copa) en P. nigra. Todo ello indica la existencia de diferentes síndromes 

adaptativos y la presencia de compensaciones entre las diferentes funciones y morfología de los árboles. 

Para concluir, mediante el uso de herramientas de fenotipado avanzadas esta tesis proporciona información 

novedosa en relación a la diferenciación intra-específica en rasgos funcionales poco estudiados en árboles 

forestales adultos. La combinación de HTPTs, mediciones in situ y genes candidatos en ensayos genéticos 

forestales resultó sumamente eficaz para evaluar la diferenciación fenotípica y genética entre las 
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poblaciones de dos importantes especies de pinos mediterráneos. 
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Resum 

La diferenciació genètica i la plasticitat fenotípica són importants mecanismes de resposta dels arbres en 

front a les condicions ambientals. En aquesta tesi he analitzat la diferenciació intraespecífica de trets 

funcionals de dues espècies de pi àmpliament distribuïdes a la conca Mediterrània: Pinus halepensis Mill. 

i Pinus nigra Arnold. A tal efecte, he combinat tècniques de fenotipat d'alt rendiment (HTPTs) amb mesures 

in situ per estimar diferències intra-específiques en trets potencialment relacionats amb diferents síndromes 

adaptatives derivades d’ambients variables, i especialment relacionades amb la sequera i el foc. En 

particular, es va utilitzar el georradar (GPR) per detectar variabilitat intra-específica en la morfologia de les 

arrels gruixudes en P. halepensis; es van utilitzar vehicles aeris no tripulats (UAVs) equipats amb sensors 

LiDAR i càmeres RGB i multiespectrals per inferir diferències intra-específiques en l'estructura i 

arquitectura de la capçada en P. halepensis i P. nigra, així com la fenologia de les acícules en P. halepensis; 

i es va aplicar la dendrocronologia conjuntament amb mètodes de gens candidats per revelar els efectes 

genètics i ambientals que determinen la variació intra-anual en el creixement secundari en P. halepensis. 

Les dades es van recollir a quatre assajos genètics forestals ubicats a Espanya (tres de P. halepensis i un de 

P. nigra). Aquest tipus d’assaigs permeten investigar la magnitud de la variació genètica, l’adaptació local 

i la plasticitat fenotípica. Les resultats d'aquesta tesi van revelar una important diferenciació intra-específica 

de trets funcionals relacionats amb la morfologia de l'arrel, l'estructura i el volum de la copa, la fenologia 

de les acícules i el creixement secundari de P. halepensis, i relacionats amb el creixement aeri (alçada de 

l'arbre, estructura i volum de la copa) en P. nigra. Això indica l’existència de diferents síndromes adaptatius 

i la presència de compensacions entre les diferents funcions i morfologia dels arbres. Per concloure, 

mitjançant l’aplicació d’eines de fenotipat avançades aquesta tesi proporciona nous coneixements sobre la 

diferenciació intraespecífica en trets funcionals poc estudiats en arbres forestals adults. La combinació de 

HTPTs, mesures in situ i gens candidats amb assaigs genètics forestals va resultar eficaç per avaluar la 

diferenciació fenotípica i genètica entre les poblacions de dues importants espècies de pins pròpies dels 

boscos mediterranis.
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Introduction 

Background 

Forests are complex ecosystems that provide vital services to both humans and wildlife. They play a key 

role in carbon sequestration, soil conservation and water cycle, and they provide many other ecosystem 

services (Felipe-Lucia et al. 2018; Pan et al. 2013). Nowadays forests cover approximately 30% of the Earth 

land surface (Pan et al. 2013) and ca. 40% of European land (Orsi et al. 2020). Europe is home to a number 

of different forest types, including temperate deciduous forests, boreal forests and Mediterranean forests, 

each of them characterized by its unique biodiversity (Ratcliffe et al. 2017; Ruiz-Benito et al. 2017). 

Unfortunately, many of European’s forests, especially in the Mediterranean area, are under threat due to 

deforestation, landscape fragmentation and climate change (Peñuelas et al. 2017; Palahi et al. 2008). Global 

warming is recognized as a worldwide threat, especially in arid and semiarid ecosystems (Huang etl al. 

2016; Prăvălie 2016). Forests are particularly vulnerable to climate change since the rate of environmental 

changes is higher than the adaptation capacity of many plants (Jezkova et al. 2016). As a results, forest 

productivity will likely be affected and we will face a shifting in forest dynamics, including changes in 

forest distribution, tree species migration and local extinction, for instance (Vacek et al. 2023). 

Future climate might seriously impact forest ecosystem dynamics across the Mediterranean basin, 

since water availability is the main limiting factor in Mediterranean ecosystems and models forecast a 

reduction in precipitation up to 40% (IPCC 2022) This means that in many areas forest ecosystems will 

likely face important prolonged drought periods (Tramblay and Hertig, 2021; Lange, 2019). The 

intensification of droughts coupled with increasing temperature may be lethal for many tree species 

(Hammond et al. 2022), as it can cause direct and indirect damages to plants, like hydraulic failure, 

increasing pest occurrence and, also, increasing wildfire events (Ruffault et al. 2020). Wildfire is an 

important abiotic threat that shapes forest ecosystems and have significant impacts on both individual trees 

and the overall composition and structure of the forest. Across its gradient of frequency and severity it can 

have positive or negative effects on forest ecosystems (Roces-Díaz et al. 2022). However, nowadays human 
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activity and climate change are the major drivers intensifying forest fire regimes around the globe (Moreira 

et al. 2023; Pausas and Keeley, 2021). Thus, fire is considered a major threat in many areas (including the 

Mediterranean basin) and it can cause severe damage to forest ecosystems, including those adapted to fire 

(Fernández-Guisuraga et al. 2019; Taboada et al. 2017). 

In order to prevent or slowdown global change effects, there are ongoing efforts to protect and 

restore forest ecosystems, including the establishment of protected areas, reforestation activities, assisted 

migration and forest management practices for monitoring and assessing forest health (North et al. 2019; 

Leech et al. 2011). However, these practices very often do not take into account the existence of intraspecific 

variability in adaptive traits (Montwé et al. 2015). 

 

Adaptation and phenotypic variation 

Tree phenotypes refer to the morphophysiological characteristics of tree species, such as their size, structure 

and growth patterns. Phenotypes play an important role in determining how trees respond to environmental 

changes (Amaral et al. 2020; Heilmeier et al. 2019). For example, some tree species have evolved to develop 

deep root systems that allow them to access deep water sources, other species produce serotinous cones that 

help them to regenerate after crown fire, some other have crown structures that allow them to endure heavy 

snowfalls, etc. A tree phenotype is the result of both genetic and environmental factors, and disentangling 

the two effects is challenging under natural conditions (Bussotti et al. 2015). In fact, a given genotype can 

express different phenotypes under distinct environmental conditions, which is called phenotypic plasticity. 

Phenotypic plasticity is a heritable mechanism that allow individuals to adjust their phenotypes in responses 

to environmental changes at both short- and long-term (Anderson et al. 2020; Nicotra et al. 2010). The other 

main process that plant adopt to cope to climate change is called genetic adaptation (Westerband et al. 2021; 

Fady et al. 2016). Genetic adaptation refers to inherited genetic changes as a consequence of natural 

selection in response to environmental selection pressure (Pritzkow et al. 2020; Fady et al. 2016), and it 

accounts for inter- and intraspecific differences in many functional traits as adaptive response to different 



Introduction 

12 

ecological niches (Pritzkow et al. 2020). In this regard, populations with high genetic variability are more 

likely to have greater adaptability potential than other less variable counterparts (Depardieu et al. 2020; 

Aravanopoulos, 2018). Genetic variability can be studied through genetic (i.e. molecular markers) or 

phenotypic approaches. In relation to the latter, common garden experiments (e.g. provenance trials) are 

really useful in order to investigate genetic variability through phenotypic studies. Common gardens refer 

to experimental designs where individuals collected from distinct geographic locations are planted under 

semi natural conditions and, therefore, grow sharing the same set of environmental conditions (de 

Villemereuil et al. 2022). Through common garden experiments it is possible to investigate the magnitude 

of genetic variation, local adaptation and phenotypic plasticity (Leroy et al. 2019; Sovolainen et al. 2007), 

since in these trials it is possible to tease the environmental effect apart from true genetic variation. Thus, 

the observed phenotypic variability can indirectly be attributed to genetic differentiation (Colautti et al. 

2009). With regard genetic approaches, Single Nucleotide Polymorphisms (SNPs) are likely the most used 

molecular markers to investigate genotype-phenotype associations (Liu et al. 2019; Mandaliya et al. 2010). 

SNPs are variations of a single nucleotide occurring at particular genomic positions that occur between 

individuals; thus, they generate genetic differentiation within a species which can be related to adaptive 

variation (Rellstab et al. 2017; Seifert et al. 2012). The analysis of SNPs variation through approaches like 

candidate genes are invaluable since it provides a straight connection to gene function, without the need to 

investigate the whole genome (Jaramillo-Correa et al. 2015). 

 

High-throughput phenotyping techniques 

Collecting information about phenotypic traits is not an easy task. A major limitation when studying 

phenotypic traits of forest trees, especially in their adult stage, is the complexity and time-consuming nature 

of ground-based methods (Liao et al. 2022; Ganz et al. 2019). In this regard, high-throughput phenotyping 

techniques (HTPTs) have the potential to provide valuable data on a large number of phenotypic traits, 

particularly in adult trees (Camarretta et al. 2020). These techniques have been developed in the last decades 
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and they are in continuous expansion, especially in agricultural applications (Mazis et al. 2020). They allow 

to collect numerous plant traits efficiently and with high precision at both small and large spatial scales 

(Feng et al. 2021; Xie and Yang, 2020). Moreover, automated measurements reduce the errors and 

variability associated to manual labor, leading to greater consistency of the data collected. Among the vast 

varieties of HTPTs we can underline remotely-sensed information obtained from satellites, unmanned aerial 

vehicles (UAVs) and terrestrial tools. The first satellites were launched before 1960, and after that an 

increasing number of satellites with different purposes of Earth monitoring have been in orbit (Guo et al. 

2019). Nowadays there is a continuous increment in number of satellites with high temporal and spatial 

resolution that generate either private or freely accessible data that can be used for plant phenotypic studies 

(Zhang et al. 2020). However, one the major cons of satellites is that they are sensitive to cloudy conditions 

(Pàdua et al. 2017), and also their resolution is in the order of meters.  

On the other hand, UAVs are characterized by higher ground resolutions, in the order of 

centimeters, and they are not affected by atmospheric conditions since they can fly at really low altitudes 

(Moe et al. 2020; Pàdua et al.2017). UAVs can be equipped with different type of sensors, like multispectral, 

RGB, or thermal cameras, and LiDAR, for instance. The data provided by these tools can be used for a 

multidimensional visualization of trees and also to obtain information about above-ground growth traits 

such as total height, stem diameter, crown structure and biomass at the tree level (Liao et al. 2022; 

Camarretta et al. 2020). In addition, multispectral and RGB sensors provide valuable information on 

vegetation reflectance in different wavelengths from which is possible to calculate indices related to 

vegetation status, phenology and leaf area for instance (Botyanszka, 2021; Klosterman at al. 2018). 

Complementary to this, thermal cameras capture crown temperatures, providing information of tree 

transpiration as a proxy of water use efficiency (Botyanszka et al. 2021; Santini et al. 2019a). Still, UAV-

based HTPT are not free of cons. For example, high technical skills are still required in order to use these 

tools and post-process the data. In addition, even if they are not sensitive to clouds, bad weather, especially 

wind, may affect their performance and, also, they cover smaller areas compared to satellites. Among HTPT 
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terrestrial tools, we can highlight above-ground tools such as field spectrometry, field hyperspectral imaging 

or terrestrial laser scanning which have excellent accuracy and very high resolutions, and below-ground 

tools like the ground-penetrating radar, which allows investigating root structure and distribution at the tree 

level in a non-destructive way (Alani and Lantini, 2020; Guo et al. 2013). However, in some circumstances 

a high technical competence is also required for terrestrial HTPT tools in order to use these devices and 

process the data and, although the resolution of these tools is really high, using these devices in the field 

can be labor-intensive, since they have to be placed or be moved manually, and site accessibility can also 

compromise their applicability (Pàdua et al. 2017). 

Overall HTPT can provide valuable data on plant traits in forestry, and in particular UAV-derived 

images and terrestrial tools are promising cost-effective techniques to investigate phenotypic variability at 

the tree level. Anyway, in some circumstances traditional field-phenotyping techniques are still needed in 

conjunction to HTPT in order to provide complementary data to validate results and, in some cases, to 

reduce costs.  

 

Mediterranean pines: the case of Pinus halepensis and Pinus nigra 

Pinus is a genus of coniferous trees worldwide distributed, with approximately 120 species present across 

the Northern hemisphere (Andini et al. 2022; Keeley, 2012). Pine trees are highly adaptable and can grow 

in a broad variety of habitats, from desert to mountain ecosystems. This genus is an important component 

of Mediterranean ecosystems, since it has great economic and ecological values (Ibrahim et al. 2022). Ten 

pine species naturally occur across the Mediterranean basin, including P. halepensis Mill (Aleppo pine) and 

P. nigra Arnold (European black pine).  

P. halepensis is the most widely distributed conifer species across the Mediterranean basin 

(Vennetier et al. 2018), and thanks to its high intraspecific variability and plasticity, it occupies vastly 

different ecological niches ranging from mesic (annual precipitation exceeding 800 mm) to xeric 

environments (below 350 mm). It is a species well adapted to drought, since it presents an efficient hydraulic 
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system and is also capable of regulating its stomatal activity and adjust its growth rate depending on the 

severity of drought (Pasho et al. 2012; Tapias et al. 2004). It is also adapted to fire, and specifically it is 

described as fire embracer since it has a short-life cycle with an early reproduction stage, and it produces 

serotinous cones that allow for a rapid post-fire regeneration (Romero et al. 2023; Pausas, 2015).  

On the other hand, P. nigra inhabits medium to high altitude mountain ranges across the 

Mediterranean basin and is less adapted to drought (Enescu et al. 2016; Isajev et al. 2003). P. nigra is a fast-

growing and a light demanding species that grows under different soil types, and it also shows cold 

hardiness (Kreyling et al. 2012). It is considered a fire-tolerant species because it shows fire-related features 

such as a thick bark that allows survival under low intensity fires (Resco de Dios et a. 2018). It can be found 

in association with other pine species, including Aleppo pine (Jevšenak and Saražin, 2023).  

Many studies have focused on the characterization of interspecific differentiation of functional traits in the 

genus Pinus, thereby concluding that pine species have high interspecific variability as a result of 

contrasting evolutionary histories and adaptability (Keeley et al. 2012). However, functional traits may 

substantially vary within species allowing different trees belonging to the same species to thrive under very 

different environmental conditions (Benito-Garzón et al. 2011).  

Previous studies have investigated intraspecific differences for functional traits related to primary 

growth (Patsiou et al. 2020; Voltas et al. 2018), secondary growth and wood density (Hevia et al 2020), 

water use efficiency (Voltas et al. 2008) and photosynthetic indices (Santini et al. 2019a) among P. 

halepensis populations. Also, several subspecies have been recognized for P. nigra (Isajev et al. 2003) 

which differ in traits associated to photosynthetic indices (Santini et al. 2019b), tree height (Varelides et al. 

2001) and secondary growth and wood anatomy (Fkiri et al. 2018; Esteban et al 2012). Although the 

importance of studying intraspecific variability has recently increased (Girard et al. 2022; Hé et al. 2021), 

current knowledge on differentiation in functional traits at the intraspecific level remains insufficient 

compared to the interspecific level (Chelli et al. 2018; Sbay et al. 2018; Albert et al. 2011). Characterizing 

phenotypic variability is fundamental in order to understand genotype by environment interactions (i.e. 
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differential plasticity), and interpret the ecological significance of functional traits in relation to the potential 

adaptability of populations to major environmental constraints such as drought and fire. 
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Objectives 

The main objective of this thesis is to gain knowledge on the adaptive syndromes of two Mediterranean 

pines (P. halepensis and P. nigra) by analyzing populations growing in three common garden experiments. 

This primarily includes the characterization of genetic differentiation for functional (morphological, 

phenological) and fitness-related (above and belowground growth) traits, and also the evaluation of 

differential plasticity linked to genotype by environment interactions for some of these traits. 

 

In this regard, three general objectives are shared by the four chapters that constitute this thesis: 

Objective 1. To understand the potential of Mediterranean pines (P. halepensis, P. nigra) to respond to 

climate change and environmental stressors by characterizing intraspecific variability in functional traits 

potentially related to drought and fire (chapters 1 to 4). 

Objective 2. To evaluate the possible relationships between patterns of local adaptation and their 

environmental drivers at the geographic origin of populations (chapters 1 to 4).  

Objective 3. To evaluate novel and/or high-throughput phenotyping techniques (HTPT) informative of 

drought- and fire-related strategies in forest genetic trials (chapters 1, 3 and 4). 

 

In addition to these general objectives, each chapter also develops some specific objectives as follows: 

Objective 4. To evaluate if ground penetrating radar is a valid tool to infer intraspecific variability for 

coarse root frequency, depth and diameter in a widespread Mediterranean pine species adapted to drought 

such as P. halepensis (chapter 1). 

Objective 5. To characterize the associations between coarse root traits (frequency, depth and diameter) 

and aboveground growth in P. halepensis (chapter 1). 

Objective 6. To explore the genetic basis, differential plasticity and climate drivers of P. halepensis 

secondary growth at the temporal level using dendrochronology in common gardens (chapter 2). 

Objective 7. To evaluate if UAV-based LiDAR and UAV-based RGB imagery are valid tools to assess 
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intraspecific differentiation in phenotypic traits related to primary growth, crown volume and structure, and 

aerial biomass in P. halepensis and P. nigra (chapter 3).  

Objective 8. To characterize intraspecific variation and differential plasticity in phenology mainly 

associated to needle senescence and flammability among P. halepensis populations using HTPT (chapter 

4). 
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Material and Methods 

Common garden experiments 

The data analyzed in this thesis was collected from four provenance trials (common garden experiments) 

located in Spain (Fig. 1). These trials were established by the Spanish government in the 1990s with the 

objective to investigate patterns of local adaptation and potential for evolutionary responses of Spanish 

populations and their Mediterranean counterparts of different pine species. Three provenance trials (Altura, 

Valdeolmos and Zuera) consisted of 56 populations of P. halepensis originating from the Iberian Peninsula, 

Balearic Islands, France, Greece, Italy and Tunisia, which are representative of the current distribution range 

of the species. The trial in Altura is located in Castellón province (39°49′29ʹʹN, 00°34′22ʹʹW, 640 m a.s.l.) 

and presents a mean annual temperature of 13.8°C and a mean annual precipitation of 468 mm. The trial in 

Valdeolmos is situated in Madrid province (40°38′37ʹʹN, 03°26′26ʹʹW, 738 m a.s.l.), with a mean annual 

temperature of 13.2 °C and a mean annual precipitation of 407 mm. The third trial of P. halepensis is located 

in Zuera, Zaragoza province (41°52′24ʹʹN, 00°38′57ʹʹW, 425 m a.s.l.), and is characterized by a mean annual 

temperature of 14.5°C and a mean annual precipitation of 420 mm. The last common garden experiment 

used in this thesis is composed of 18 populations of P. nigra belonging to the subspecies laricio, nigra, 

salzmannii, pallasiana and calabrica, and it is situated in La Mata de Valsaín, Segovia province 

(40°54′42ʹʹN, 04°00′50ʹʹW, 1137 m a.s.l.). This trial presents a mean annual temperature of 10.4°C and a 

mean annual precipitation of 516 mm. All the provenance trials were established following standard 

practices. Seeds of 20 to 30 trees of the same population, spaced at least 100 m apart, were collected at 

origin of each population. Then, they were nursed in containers and one-year-old seedlings were 

transplanted following a randomized block design with four replicates (Valdeolmos) or 12 replicates 

(Valsaín), or a Latinised row-column design with four replicates (Altura and Zuera). The provenance trials 

were not subjected to common management protocols, since management actions depend, in this case, 

mostly on the growth rate and tree density of each trial. For example, in Zuera trial, where trees grow more 

slowly due to the particular climate conditions, no management action was taken so far; on the contrary the 
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Altura trial was thinned in 2019, and Valsaín trial in 2017, where ca. half of the trees present in the trial 

were cut. For the third trial of Aleppo pine (Valdeolmos) a future thinning action is planned, but for now 

the trial has not been subjected to any management protocol. 

 

Fig 1. Location of the four common gardens experiments analysed in this thesis: Altura (Castellón province, Spain), 

Valdeolmos (Madrid province, Spain), Valsain (Segovia province, Spain) and Zuera (Zaragoza province, Spain). The 

dark green area represents the natural distribution of P. halepensis and the light green area indicates the natural 

distribution of P. nigra according to EUFORGEN (http://www.euforgen.org/species).  

 

High-throughput phenotyping tools 

Ground penetrating radar 

A Ground-Penetrating Radar (GPR) MALÅ RAMAC X3M GPR (MALÅ Geoscience AB, Sweden) 

equipped with an 800 MHz shielded antenna was used in the first chapter as a high-throughput phenotyping 

technique in order to characterize coarse root morphology (frequency, depth and diameter) in a non-

destructive way. GPR records were obtained in a single day in mid-June 2015 and they were taken 
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continuously along three linear profiles (P1, P2, P3) following the trial’s column direction and passing 

through the two central trees of each experimental unit. Coarse roots were identified through hyperbolic 

signatures on radargrams. First, GPR radargrams were examined using RadExplorer v1.42 software 

(MALÅ Geoscience AB, Sweden) through visual inspection of the hyperbolae, and then several pre-

processing filter functions were applied in order to reduce noise and improve the identification of 

hyperbolae. 

 

Aerial remote sensing 

In chapters 3 and 4, unmanned aerial vehicles (UAVs) were employed to obtain LiDAR (chapter 3), RGB 

(chapter 3 and 4) and multispectral (chapter 4) records. In particular, in chapter 3 an octocopter UAV 

equipped with a LiDAR (sensor Velodyne VLP-16 Puck Lite) and a DJI (Phantom 4 pro v2) equipped with 

a RGB camera having a sensor size of 5472 × 3648 pixels and a focal distance of 8.86 mm were used for 

the P. nigra trial. In the case of P. halepensis trial, aerial laser scanning (ALS) data were acquired with an 

octocopter UAV equipped with a LiDAR (sensor Velodyne VLP-32C), whereas a RGB camera with sensor 

size 6000 × 4000 pixels and focal distance 12 mm was mounted on a DJI (m300) to collect RGB images. 

In chapter 4, RGB and multispectral images were acquired through a UAV DJI Mavic (2 Pro, China) RGB 

camera of 20 MP, and through a UAV Mikrokopter (6S12 XL, Germany) equipped with an RGB camera 

(Lumiz GX7, Panasonic, Japan) with 16 MP resolution and with a multispectral camera (Tetracram micro-

MCA, USA). For both chapters (3 and 4), I applied the following workflow to pre-process the LiDAR and 

RGB point clouds using LAStools and US Forest Service FUSION/LDV 3.42 software. First, I filtered 

points of noise in the point clouds, then the ground points were computed and the point cloud was 

normalized, and the points were classified as ground and non-ground (vegetation). Then I built a digital 

terrain model (DTM) and a canopy height model (CHM) with a resolution of 10 cm using the 

GridSurfaceCreate and CanopyModel procedures, respectively, of FUSION/LDV. In the case of chapter 4, 

multispectral and RGB images were previously aligned using Agisoft PhotoScan Professional software 

(Agisoft LLC, St. Petersburg, Russia) to produce dense points clouds and orthomosaic images. ForestTools 
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R package (Plowright 2018) was used to identify individual treetops and to segmented tree crowns.  

 

Field-based phenotyping methods 

A vast number of phenotyping traits were measured for every trial. The most common ones that were 

measured in almost every trial are total tree height (H) and diameter at the breast height (DBH), which were 

obtained through a Vertex hypsometer and a diameter tape, respectively. Another standard phenotyping 

approach that is worth highlighting in this section, since it is the principal method used in chapter 2, is based 

on dendrochronological principles. Tree-ring width was measured for a subset of 130 individuals of P. 

halepensis through a semi-automatic process in WinDendro 2014a (Regent instrument Inc., Quebec, 

Canada). Each tree-ring series was cross-dated and the cross-dating was quality-checked with COFECHA 

(Holmes 1983). In addition, earlywood width (EW) and latewood width (LW) were estimated using 

WinDendro coupled with a computer-integrated Leica binocular microscope (5X zoom), and the EW to LW 

ratio (EL) was then calculated for each tree ring. Ring-width and EL indices (RWI and ELI) were obtained 

for each tree-ring series and afterwards a master chronology was built for both indices using R studio.  
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Abstract 

Drought is the main abiotic stress affecting Mediterranean forests. Root systems are responsible for water 

uptake, but intraspecific variability in tree root morphology is poorly understood mainly owing to sampling 

difficulties.  The aim of this study was to gain knowledge on the adaptive relevance of rooting traits for a 

widespread pine using a non-invasive, high-throughput phenotyping technique. In this regard, Ground-

Penetrating Radar (GPR) was used to characterize variability in coarse root features (depth, diameter and 

frequency) among populations of the Mediterranean conifer Pinus halepensis evaluated in a common 

garden. GPR records were examined in relation to aboveground growth and climate variables at origin of 

populations. Variability was detected for root traits among 56 range-wide populations categorized into 16 

ecotypes. Root diameter decreased eastward within the Mediterranean basin. In turn, root frequency, but 

not depth and diameter, decreased following a northward gradient. Root traits also varied with climatic 

variables at origin such as the ratio of summer to annual precipitation, summer temperature or solar 

radiation. Particularly, root frequency increased with aridity, whereas root depth and diameter were 

maximum for ecotypes occupying the thermal midpoint of the species distribution range. Our findings 

showed that GPR is a high-throughput phenotyping tool that allows detection of intraspecific variation in 

root traits of P. halepensis and its dependencies on eco-geographic characteristics at origin, thereby 

informing on the adaptive relevance of root systems for the species. It is also potentially suited for inferring 

population divergence in resource allocation above- and belowground in forest genetic trials. 

 

Keywords: Aleppo pine; Climatic adaptation; Ground-Penetrating Radar; Root depth; Root diameter; Root 

frequency 

  



Chapter 1 

39 

Introduction 

Climate models forecast an increase in temperature along with an intensification of extreme weather events 

that will likely lead to more prolonged and intense drought periods around the globe (IPCC 2007, 2014). 

This future climate may have serious impacts on ecosystem dynamics in the Mediterranean basin (Resco 

de Dios et el. 2007; Sardans and Peñuelas 2013). Seasonal drought is one of the main factors affecting 

Mediterranean forests, and forest tree species use different strategies to respond to changes in water 

availability. Among those, access to deep water pools is fundamental to survive dry periods (Dawson et al. 

2020; Ripullone et al. 2020; Rossatto et al. 2012), because water uptake is dependent on root architecture 

(Hernández et al. 2010). A number of functional traits related to hydraulic conductivity such as root vessel 

diameter are determined by root xylem anatomy, which in turn is influenced by root diameter and rooting 

depth (Kirfel et al. 2017; Wang et al. 2015). Thus, root structure and morphology play a key role on the 

ability of plants to explore and access the deeper subsurface when shallower soil layers dry out (Andivia et 

al. 2019; Padilla and Pugnaire 2007).  Species-specific and intraspecific differences in rooting patterns are 

still poorly characterized, however. This is mainly due to the inherent complexity of underground sampling 

(Alani and Lantini 2020) and the fact that traditional approaches for root monitoring, such as the Auger and 

the Monolith methods, are destructive and non-repeatable (Krainyukov and Lyaksa 2016).  

The Ground-Penetrating Radar (GPR) is a non-destructive geophysical prospecting device that 

utilizes electromagnetic wave pulses for subsurface detection based on the different dielectric properties of 

materials, as well as on the physical properties of the medium (Lorenzo et al. 2010). GPR transmits 

electromagnetic signals into a surface and records the reflection of the signal transmitted by a receiving 

shielded antenna. The amplitude of the reflected pulses and its receiving time can be used in order to 

estimate the position and the size of the material that generates a discontinuous signal (Butnor et al. 2001). 

GPR is widely used for many purposes, such as the detection of bedrock structure (Loudes et al. 2011; 

Valerio et al. 2012) or the quantification of soil water content (Klotzsche et al. 2018). Also, it has been used 

as non-invasive tool for the detection of root features and belowground biomass estimation (Barton et al. 

2004; Butnor et al. 2001, 2003; Guo et al. 2013; Lorenzo et al. 2010). Roots have a different dielectric 
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permittivity compared to soil and, as a result, GPR allows defining the number (or frequency of occurrence; 

frequency herein), position (depth) and size (diameter) of coarse roots through the timing and features of 

back-reflected signals induced by hyperbolic reflections on radargrams (Hirano et al. 2012, 2009; Wu et al. 

2014). The reflected waves are detectable as hyperbolas, where the hyperbolic signatures’ peak (or the 

maximum amplitude of the hyperbola) corresponds to the center of every object detected, which is recorded 

on a portable control unit (Hirano et al. 2012). However, the successful identification of roots with GPR 

depends on different factors, with soil moisture, root water content and soil properties influencing wave 

frequency and thus root detection (Barton et al. 2004; Hirano et al. 2009).  

Pinus halepensis Mill. (Aleppo pine) is the most widely distributed conifer species across the 

Mediterranean basin (Vennetier et al. 2018), occupying vastly different ecological niches ranging from 

mesic (annual precipitation exceeding 800 mm) to xeric environments (below 350 mm). The widespread 

distribution of Aleppo pine suggests the existence of intraspecific adaptive divergence (Grivet et al. 2009; 

Ruiz Daniels et al. 2018). Indeed, there is strong evidence for genetic variability among populations 

originating from distinct environments to tolerate water stress, which involves traits such as water-use 

efficiency (Voltas et al. 2008), wood anatomy (Esteban et al. 2010), biomass allocation (Chambel et al. 

2007), or use of water sources (Voltas et al. 2015). Deeper and more developed root systems might also be 

related to the ability of Aleppo pine to cope with water deficit (Andivia et al. 2019; Voltas et al. 2015). As 

a result, root morphology may be a key characteristic to understand water use strategies and, consequently, 

drought resistance mechanisms in this species. Although a large investment in roots is often related to 

enhanced survival under drought (Grossnickle et al. 2005; Matias et al. 2014), and Aleppo pine has a greater 

ability for colonizing the soil subsurface and produce a more efficient root system in dry environments than 

mountain pines (Andivia et al. 2019), the existence of intraspecific divergence in root traits for this 

Mediterranean pine has barely been investigated thus far (Voltas et al. 2015).  

In this work, we applied GPR root detection to a common garden of adult Aleppo pine trees where 

populations representative of the circum-Mediterranean distribution of the species were tested. Our purpose 

was to evaluate if GPR is a valid tool to infer intraspecific variability for coarse root frequency, depth and 
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diameter in a widespread tree species. We hypothesized that populations originating from xeric 

environments would present deeper, thicker and more numerous coarse roots than their mesic counterparts 

as a result of different adaptive mechanisms underlying the use of soil water pools. In addition, we also 

hypothesized that variability in root traits among populations of the species is related, to some extent, to 

intraspecific divergence in aboveground growth, which may point to the existence of allocation trade-offs 

to aerial growth or belowground dry matter. Therefore, we aimed to: (1) test the use of GPR as a high-

throughput root phenotyping technique to assess population differentiation in coarse root architecture for 

Aleppo pine; (2) relate intraspecific differences in coarse root traits (frequency, depth and diameter) among 

Aleppo pine populations to their climate at origin, which can be informative of different adaptive strategies 

in the species; and (3) describe the associations between such root traits and aboveground growth and define 

potential allocation trade-offs at the intraspecific level. 

 

Material and Methods 

Plant material and experimental site 

Seeds from 56 populations of P. halepensis originating from mainland Spain, Balearic Islands, France, 

Greece, Italy and Tunisia were used in this study. These populations are representative of most of the current 

distribution range of the species (Fig. 1). The seeds were collected in 1995 from 20 to 30 adult individuals 

per population, spaced at least 100 m apart, and were sown in a forest nursery in Spain using standard 

container practices (Landis et al. 1990) the following year. In 1997, 896 one-year old seedlings (16 seedlings 

per population) were transplanted at the study site (provenance trial), which is located in Altura, Castellón 

province, Spain (39°49′29ʹʹN, 00°34′22ʹʹW, 640 m a.s.l.). The experimental design was a Latinised row-

column design with four replicated blocks (John and Williams, 1998). The spacing between each 

consecutive tree at row or column distances was 2.5 m. Each row was ca. 70 m long and was composed of 

seven linear plots or experimental units consisting of four trees of the same provenance per plot (Fig. S1). 

The total area of the provenance trial was about 0.8 ha. For this study, we used three of the four available 

blocks, as some individuals from the fourth block were affected by fire in 2012. The Latinised row-column 
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design allowed to efficiently control for inherent intra-site variability as systematic changes in both column 

and row directions were incorporated into the fitted mathematical models. 

The soil at the study site is a calcic cambisol (Soil Map of Generalitat Valenciana 1996) with loam 

texture (44.2% sand, 24.3% clay and 31.5% silt) and a maximum depth of ca. 40 cm followed by a 

petrocalcic horizon with vertical fractures (visual inspection). The general features of the soil are outlined 

in Table S1. The site has climatic characteristics similar to the average climate of the species across the 

Mediterranean basin (Santini et al. 2019a). The mean annual temperature is 13.8 °C and the mean annual 

precipitation is 468 mm, with 18% falling in summer.  

 

Climate variables 

For each population, climate data at origin for the period 1970-2000 were obtained from the WorldClim 

database (Fick and Hijmans, 2017) at 1 km2 spatial resolution. The following climate  

variables were retrieved, based on previous studies on the climatic drivers of ecotypic variation in 

Mediterranean pines (Climent et al. 2008; Tapias et al. 2004): mean annual temperature (MAT), mean 

summer temperature (MST), temperature annual range (TAR; Tmax-Tmin), mean annual precipitation (MAP) 

and summer to annual precipitation ratio (PsP). Moreover, solar radiation accounting for cloud cover (SR) 

was retrieved from WorldClim and monthly means of day-time vapour pressure deficit for the warmest 

(summer) quarter (VPDs) were calculated for each population by subtracting the water vapour pressure (VP) 

from the monthly average of saturation water vapour (VPsat) obtained at daily level. VP was estimated as in 

Ferrio and Voltas (2005): 

ln(VP) = 6.34 + 0.047Tm + 0.96(Pm/1000) – 0.22(Z/1000)                                                                (1) 

where Tm is mean monthly temperature, Pm is monthly precipitation and Z is altitude (in m). 

In turn, VPsat was estimated from day-time temperature (Tday) as (Jones 1992): 

VPsat = 613.75 exp (17.50
Tday

240.97+ Tday
)                                                                                              (2) 

The populations were further categorised into 16 ecotypes (Fig. 1, Table S2) following previously published 
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approaches based on climate attributes (Climent et al. 2008). 

 

Aboveground growth  

Tree height (H) and diameter at breast height (DBH), measured in 2013 (at age 17 years), were used as 

aboveground growth traits. Additionally, tree crown area was estimated from aerial RGB imagery taken in 

summer 2016 (at age 20 years) through a canopy height model using the R package ForestTools (Plowright 

2018), as reported in Santini et al. (2020). We assumed constancy of phenotypic ranking in tree growth from 

age 15 onwards, as previously reported for P. halepensis (Sbay and Zas, 2018). 

 

GPR data collection 

GPR records were obtained in a single day in mid-June 2015, when trees were 19 years old, and the number 

(frequency), depth and diameter of coarse roots were estimated using a MALÅ RAMAC X3M GPR 

(MALÅ Geoscience AB, Sweden) equipped with an 800 MHz shielded antenna coupled to an inspection 

cartwheel. The 800 MHz antenna was used because it has been shown to provide the best possible resolution 

in calcic soils (Rodríguez-Robles et al. 2017), which are distinctive of the study site. In particular, roots 

reaching a depth of up to ca. 0.9 m could be identified within the petrocalcic fractures underneath the lower 

soil layer of 40 cm, and roots with a diameter of ca. 2 cm or higher were also detectable (Fig. 2) after in 

situ calibration (see subsection “GPR data processing”), as also shown in previous studies (Butnor et al. 

2001; Barton and Montagu 2004; Rodríguez-Robles et al. 2017).  

GPR measurements were taken continuously along three linear profiles (P1, P2, P3) following the 

trial’s column direction and passing through the two central trees of each experimental unit (Fig. 3a, b). For 

every experimental unit, P1 and P3 were settled at ca. 0.30 m distance from the main trunk of the two 

central trees, while P2 was positioned halfway from both trees, that is, at ca. 1.25 m (Fig. 3c). In order to 

assign each detected root to a particular experimental unit, the position of trees along each linear profile 

was manually recorded in the RAMAC XV Monitor implemented in the GPR, along with GPR 

measurements. With this information, relevant data could be retrieved at sub-plot level in the profile (see 
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“GPR data processing” subsection). 

 

GPR data processing 

Coarse roots were identified through hyperbolic signatures on radargrams. First, GPR radargrams were 

examined using RadExplorer v1.42 software (MALÅ Geoscience AB, Sweden) through visual inspection 

of the hyperbolae (“manual dataset”), which allowed to determine trends in the distribution of roots along 

the linear profiles. 

Based on this preliminary information, a second dataset was created in RadExplorer using a built-

in detection procedure along predefined sub-plots (“automatic dataset”), which was subjected to several 

pre-processing filter functions, in order to reduce noise and improve the identification of hyperbolae. 

Particularly, we applied background removal filters in order to remove parallel bands, often derived from 

ground surface reflection. Then we eliminated the initial current signal component (DC) from the GPR 

control unit (RAMAC XV Monitor and ProEx system – adjust signal position) to guarantee that depth 

estimates started from 0. Afterwards, a high/low bandpass filter was applied in order to remove unwanted 

noise. Stolt F-K migration was also used in order to improve GPR image and to correct for root position 

(Rodríguez-Robles et al. 2017; Barton and Montagu 2004). This procedure did not allow for a case-by-case 

assessment of hyperbolae; however, it was able to detect a larger number of roots than the visual inspection 

of radargrams while being free of its subjectivity, allowing for a more robust analysis.  

The automatic dataset was generated for three different sub-plot sizes. In all cases, their cross-

sections extended from P1 through P3 and, therefore, were centred at each experimental unit’s mid-point, 

but had different lengths of 50, 100 and 250 cm (hereafter S50, S100 and S250 sub-plots, respectively; Fig. 

3c). Note that the largest sub-plot length (S250) was equivalent to the mean inter-plot distance (Fig. 3c). This 

strategy allowed to identify a particular sub-plot area maximising population differences in root traits, as 

described in section 2.5. 

Although pre-processing filters were applied to the original GPR information, a calibration was 

needed since the depth and size of an object cannot be inferred directly by the GPR. Thus, we measured 
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depth and diameter in situ of 12 coarse roots. Coarse roots were excavated through soil digging underneath 

GPR scan line profiles (P1, P2, P3), in different experimental units across the trial. Root depth and diameter 

were then GPR-estimated through the so-called ‘time interval between zero crossing’ (Rodríguez-Robles et 

al. 2017; Guo et al. 2013a; Tanikawa et al. 2013). Time interval between zero crossing is the time elapsed 

between signal emission and registration by the shielded antenna, which is manually adjusted to time zero 

before processing the data to set the instant in which the radar signal leaves the antenna. A linear regression 

between root diameter measured in situ and time interval between zero crossing was applied, and the 

resulting equation used for calibration of root diameter (Rodríguez-Robles et al. 2017). 

 

Statistical analyses 

The definition of a proper sub-plot size is important for optimal GPR-based root detection in experimental 

trials. While using a too large sub-plot size could potentially capture coarse roots of trees from neighbouring 

experimental units, a too small sub-plot could underestimate the actual number of coarse roots for each unit. 

To handle this issue, the variability in root number (frequency) was evaluated as a function of the linear 

distance from the trunk along the aforementioned profiles using evenly spaced bins of 10 cm. Overall, a 

high number of roots was found at small and medium distances, followed by a progressive decrease in root 

number and a sudden increase after some value, hence denoting overlapping with roots from neighbouring 

trees (see Results, subsection 3.1). In addition, the ‘optimal’ sub-plot length (S50, S100 or S250) was explored 

through linear mixed-effects analysis of variance (ANOVA) fitted to the automatic dataset independently 

for each sub-plot size. The ANOVA included block, column and population as fixed effects, while row 

within block and column by block interaction were defined as random effects in order to account for 

systematic variability at the trial site. We retained as optimal sub-plot the one that maximised the F value 

for population differences in the ANOVAs for coarse root traits (diameter, depth, and frequency), which 

approximately matched the optimal distance previously identified in the manual dataset (Table 1, Table S3). 

The mixed-effects ANOVAs were further extended to partition the variability among populations into fixed 

ecotype and between-population within-ecotype effects, hence testing for ecotypic structure in root traits.  
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As indirect validation of our phenotyping approach, we compared the information obtained through 

GPR measurements with estimates of the relative contribution of two consecutive soil layers (0-15 cm, 

upper soil; 15-40 cm, lower soil) to the total amount of water taken up by the different populations, as 

inferred through the analysis of the isotopic composition (δ18O and δ2H) of soil and xylem water in 2010 

(data retrieved from Voltas et al. [2015]). Additionally, simple correlations were calculated between GPR-

based root traits and xylem water δ18O at plot level.  

Population (or ecotype) least squares means of root depth, diameter and frequency were subjected 

to linear and quadratic regressions as a function of long-term climate conditions of each population (or 

ecotype) at origin. The three populations of ecotype 16MC (reforestations of Northern Spain) were not used 

in the regression analysis because they have uncertain geographic origins. Linear and quadratic regressions 

of root traits were also performed on Euclidean geographic distances and climatic distances (Gower’s 

distances) of each population (or ecotype) from the trial site. Gower’s distances indicate dissimilarities 

among entities, in this case climate dissimilarities between populations (ecotypes) at origin and the trial 

site, and were calculated following Rutter and Fenster (2007):  

GD= 
1

p
 ∑

|Ai-Bi|

ri

p

i=1                                                                                                                             (3) 

Where p is the number of climate variables, Ai and Bi are the values of each climate variable (MAT, 

TAR, MAP, PsP) at site A (trial) and B (population or ecotype origin), and ri is the range of each climate 

variable in the dataset.  

Finally, linear and quadratic regressions were calculated for root traits as a function of aboveground 

growth variables (H, DBH and crown area), both at population and ecotype level. The associations of 

aboveground growth variables with those climate variables at origin found to be related to population or 

ecotypic variability in root traits were also evaluated. For model selection, the best fitting model for each 

explanatory variable (linear, quadratic) was chosen considering its overall significance (F-value) and 

goodness of fit (adjusted R2). 

Results 
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Root detection using GPR 

Manual measurements of root diameter showed a positive correlation (r = 0.95; p < 0.001) with GPR records 

(Fig. 4a). Measured and GPR-estimated root depth also showed a positive association (r = 0.98; p < 0.001) 

(Fig. 4b). Following the visual inspection of radargrams, we detected the largest number of roots at distances 

between 10 cm and 50 cm from each tree trunk along the trial’s column direction, with a progressive 

decrease at larger distances (Fig. 4c). However, the number of detected roots increased again starting at 1 

m apart from each tree. This observation suggested that GPR was detecting roots corresponding to trees 

from adjacent experimental units for distances higher than 90 cm from each targeted tree trunk (Fig. 4c). 

This was confirmed by analyses of variance carried out on the automatic dataset for three different sub-plot 

sizes (S50, S100, S250). Particularly, the results showed that the sub-plot size that maximised population 

differentiation in root traits was S100 (Tables 1 and S3). Further analyses were therefore performed for S100. 

At sub-plot level (S100), GPR estimates of coarse root traits varied between 3.0 cm and 5.0 cm (diameter), 

between 14.7 cm and 44.3 cm (depth), and between 3 and 19 roots (frequency). 

 

Phenotypic variation in root traits 

We detected significant variation in coarse root diameter among populations (p = 0.030), but the effect was 

only marginally significant among ecotypes (p = 0.091; Table 1). Mean diameter values of ecotypes varied 

between 3.5 cm (15TU, Tunisia; Table S2) and 4.0 cm (3ALC, Spanish Southern Plateau). Differences 

among populations in coarse root depth (Table 1) were marginally significant (p = 0.086), while significant 

differences were detected among ecotypes (p = 0.011). Mean depth values of ecotypes varied between 21 

cm (15TU) and 30 cm (16MC, reforestations of Northern Spain). These results suggested a stronger 

ecotypic structure for rooting depth than for root diameter. We did not observe significant differences in 

root frequency among populations (p = 0.460), whereas marginally significant differences were detected 

among ecotypes (p = 0.096). Mean frequency values of ecotypes varied between 8.9 (2MO, Spanish Ebro 

depression) and 13.1 (7BM, Spanish Betic system). Estimates of coarse root depth and diameter were 

significantly and positively correlated both at population (r = 0.42, p = 0.001) (Fig. S2a) and ecotype level 
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(r = 0.63, p = 0.009), but root frequency did not correlate significantly with root depth or diameter (Fig. 

S2b, c). 

The variability of root traits was in good agreement with xylem water isotopes records obtained in 

2010 for the same trial, with the exception of root frequency. At population level, we observed significant 

negative correlations between coarse root diameter or depth and δ18O of xylem water in early autumn (r = 

0.62, p < 0.001, and r = 0.50, p < 0.001, respectively; Fig. S3), but not in peak summer (mid-July) (p > 

0.10, Fig. S3). At ecotype level, a negative association between root diameter and the relative contribution 

of the upper soil layer to xylem water in early autumn was also observed (Fig. 5a); this relationship was 

non-significant for root depth (Fig. 5b) and root frequency (Fig. 5c). There was also a negative association 

between the relative contribution of bottom soil layer in early autumn and root diameter at ecotype level 

(Fig. 5d). However, this association was non-significant for root depth (Fig. 5e) and root frequency (Fig. 

5f).  

 

Phenotypic associations with aboveground growth  

At ecotype level, root diameter and root depth showed marginally significant quadratic relationships (p = 

0.064 and p = 0.102, respectively) with tree height (Fig. 6, Table S4), while root frequency was unrelated 

to vertical growth. These results suggested that shallower and smaller roots were indistinctly found in 

ecotypes having lower or higher than average height growth. Other aboveground growth variables (DBH, 

crown area) were unrelated to root depth, diameter or frequency (Table S4). 

 

Associations with geographic variables and climate at origin  

Coarse root traits were related to some geographic and climatic variables at origin of populations, either 

linearly or quadratically (Table 2a). Root traits decreased linearly (albeit weakly) with geographic distance 

to the trial and also with longitude (Table 2a). These results suggested geographically structured differences 

between populations located near the trial site (i.e. the westernmost distribution of Aleppo pine) and those 

from the eastern Mediterranean basin. A significant quadratic dependence of root depth on Gower’s distance 
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(Table 2a) was also observed, indicating that populations with climate at origin either most similar or most 

dissimilar to the trial site presented shallower roots. 

Root diameter showed a quadratic dependence on solar radiation (p = 0.014), with thicker roots 

occurring in populations having intermediate solar radiation at origin. In turn, root depth showed a quadratic 

dependence on PsP (p = 0.035) and, marginally, on MST (p = 0.067), with shallower roots observed under 

low and high values of both climate variables (Table 2a). Root frequency was linearly dependent on solar 

radiation (p ˂  0.001) and marginally on PsP (p = 0.060), with more roots observed under high solar radiation 

and low PsP at origin. In addition, we also detected significant or marginally significant positive linear 

dependencies of root frequency on VPDs (p = 0.003) and TAR (p =0.073). Although these relations hinted 

on the dependence of roots traits on climate conditions of populations at origin, the proportion of explained 

variance was relatively low (R2 < 0.25). 

Similar dependencies of coarse root traits on geographic and climatic factors occurred at ecotype 

level, with relationships being either linear or quadratic (Table 2b). In particular, we observed a negative 

linear dependency of root diameter on longitude and a positive linear association of root frequency on 

latitude. There were also marginally significant quadratic relationships between root depth and latitude and 

between both root depth or diameter and altitude (Fig. S4, Table 2b). The quadratic relationships were such 

that northern and southern ecotypes tended to present shallower roots, while deeper and thicker roots were 

distinctive of ecotypes from either low or high altitudes. Based on Gower’s distances, ecotypes having high 

or low climate similarities with the trial climate showed shallower and finer roots, but they were not 

distinctive with regard root frequency (Fig. S4). 

Root frequency showed a negative linear dependence on PsP (Table 2b), while quadratic 

dependencies of coarse root traits on MST were detected for root depth and diameter, but not for root 

frequency (Fig. 7a,b,c). Both root depth and diameter showed also a quadratic relationship with solar 

radiation, while root frequency showed a positive relationship with this variable (Fig. 7d,e,f). These results 

suggested that shallower and finer roots were present in ecotypes having either relatively low and high MST 

or solar radiation values at origin. Also, root depth showed a marginally significant (negative) linear 
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dependence on VPDs (Fig. 7e,f), denoting that ecotypes subjected to higher summer transpirative demand 

tended to show shallower roots. As for root depth, tree height showed a negative dependence on VPDs (p = 

0.029). On the contrary, tree height was negatively related to SR (p = 0.035) and unrelated to MST (results 

not shown). 

 

Discussion 

GPR applicability to root phenotyping of forest trees 

This study showcases the use of GPR devices as high-throughput phenotyping tools to assess intraspecific 

differentiation in coarse roots potentially related to water use and drought tolerance strategies of forest trees. 

It broadens the customary use of GPR for tree root detection in ecological studies carried out since the turn 

of this century (Guo et al. 2013; Hruska et al. 1999). By using an 800 MHz antenna we were able to detect 

1,835 roots with diameters equal to or above 2.2 cm at a maximum depth of 88 cm for about 330 trees 

monitored in a common garden of ca. 0.8 ha.  

In situ calibration provided direct evidence of the adequacy of GPR measurements for root 

detection. An additional (indirect) indication of the potential of GPR for root detection was the observation 

that the variability detected in coarse root traits for Aleppo pine agreed (at least partly) with the information 

derived from xylem water isotopes on the use of water sources by the same trees (Voltas et al., 2015). 

However, we should note that only associations involving δ18O of xylem water in early autumn were 

significant, whereas no relevant relationships with GPR records were detected in peak summer. This 

suggests that the existing electromagnetic gradient between roots and soil at the time of GPR measurements 

(i.e. mid-June) could have identified more roots than those effectively taking up water during the acute 

summer drought typical of end-July. For an isohydric species such as Aleppo pine, a fraction of coarse roots 

might have remained in a quiescent condition during soil dry-down in summer as avoidance strategy against 

hydraulic failure. This condition might be the result of a reversible development of water transport barriers 

such as suberin or cutin, stimulated by nutrient scarcity and drought stress (Vandeleur et al. 2008; Schreiber 

2010; Barberon et al. 2016). Roots might be also subjected to seasonal embolism, since partial cavitation 
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in roots is less deleterious than xylem failure because roots can recover after drought by refilling the 

embolized conduit (Domec et al. 2004). Changes in root turnover and turgor are some of the prevailing 

consequences of high soil temperature and water deficit stress in plants (Brunner et al. 2015, Gill and 

Jackson 2000), and both have been widely described for the case of fine roots (Gill and Jackson 2000; 

Kitajima et al. 2010; Montagnoli et al. 2019). However, there is no evidence of inactivation of coarse roots 

in forest tree species thus far. This possibility would deserve detailed investigation through e.g. temporal 

assessment of GPR signals following changes in soil water status during the growing season. 

 

Evidence for intraspecific variability in root traits of Aleppo pine 

It is known that root system architecture varies among Iberian pines, with mountain species (e.g. Pinus 

sylvestris) usually having shallower roots than typical Mediterranean species (e.g. Pinus pinaster, P. 

halepensis) (Andivia et al. 2019). This variability correlates with the species’ ecological niches and the 

intensity of drought stress present in their environments (Andivia et al. 2019). However, there is still a lack 

of information on the variability of functional root traits at the intraspecific level, which determines the 

efficiency of water acquisition by trees (Kirfel et al. 2017). A main goal of this work was to fill this 

knowledge gap for a Mediterranean pine species and, particularly, to characterize intraspecific patterns of 

coarse root traits potentially related to different strategies of water uptake and use in Aleppo pine.  

 We found population differentiation for root traits in P. halepensis, which was geographically 

structured following an ecotypic pattern. Such patterns have been previously reported in P. halepensis for 

traits related to the tree’s water budget such as water-use efficiency (Voltas et al. 2008), transpiration 

(Santini et al. 2019b) and the use of water sources (Voltas et al. 2015). Also, we observed greater variability 

in coarse root traits among populations originating from the Iberian Peninsula than among their eastern 

Mediterranean counterparts in spite of the loss of genetic diversity that Aleppo pine suffered after the post-

glacial recolonization from the eastern Mediterranean (Grivet et al. 2009). This result, however, requires 

confirmation because comparatively less populations were available from the eastern Mediterranean 

compared to the western Mediterranean basin, being also distributed within a narrower latitudinal gradient. 
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Relationships between root traits and aboveground growth 

We found quadratic associations of coarse root depth with tree height and diameter at the intraspecific level. 

Although these relationships were only marginally significant, they suggest predictable allometric patterns 

linking below and aboveground growth, which are partially consistent with the general allometric scaling 

theory (West et al. 1999). In particular, proportionality of carbon investment to above and belowground 

growth is suggested for ecotypes reaching up to ca. 6 m height at age 19 years in the study site (root to 

shoot biomass is known to stabilize once pines reach the reproductive stage; Peichl and Arain [2007], Cao 

et al. [2012]). Above this height threshold, a negative association between aerial growth and investment in 

roots could be observed at the ecotype level. This suggests a preferential mass allocation to aerial carbon 

stocks for mesic ecotypes having high growth potential (Climent et al. 2008; Voltas et al. 2018), as 

exemplified by ecotypes 12GR and 14IT originating from the center-eastern Mediterranean basin. These 

ecotypes experience mild climate conditions at origin (either having MAP> 500 mm or MSP> 60 mm) and 

are known to exhibit a larger tree height plasticity compared with xeric ecotypes across water availability 

gradients (Patsiou et al. 2020). This superior plasticity might be associated with a progressively large carbon 

allocation to roots under harsher (i.e. drier or nutrient-poor) conditions. In any case, our results suggest that 

these mesic ecotypes allocate relatively more resources to aerial growth than to root development under the 

relatively favorable conditions encountered in the trial, as compared with xeric ecotypes. This result 

partially agrees with previous studies stating that forest trees allocate carbon preferentially to the root 

system as a response to poor nutrient availability (Hermans et al. 2006; Vicca et al. 2012), which precedes 

synthesis of secondary metabolites (Prescott et al. 2020). 

 

Variability in root traits of Aleppo pine follows geographical and climatic gradients 

The assessment of geographic dependencies of roots traits suggests that root diameter decreases across an 

eastward longitudinal cline in Aleppo pine populations. This cline agrees with previous results being 

indirectly informative of allocation patterns to roots in P. halepensis, which reported decreases in 
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reproductive investment (Climent et al. 2008) and water-use efficiency (Voltas et al. 2008) in eastern 

populations. On the other hand, the larger proportion of shallow roots in populations originating from either 

extreme of the species’ latitudinal range disagrees with our initial hypothesis. However, root frequency 

decreased as latitude increased, suggesting that southern populations, which generally are exposed to a drier 

climate, have more abundance of coarse roots than northern populations, regardless of their root depth. This 

discrepancy could be related to the higher costs of construction and maintenance of deep roots (Schenk 

2008a) in ecotypes with low growth potential and high reproductive allotment, leading to carbon allocation 

shifts towards shallower and more abundant roots in dry and resource-poor habitats. This could be an 

advantageous strategy in habitats where the uppermost soil layers may present higher nutrients and moisture 

as a result of discrete precipitation pulses (Schenk 2008a, b).  

Previous studies have shown that rooting depth increases with water shortage in pine species 

(Andivia et al. 2019), an interspecific pattern that only partially agrees with our results at the intraspecific 

level. In fact, only root frequency increased with aridity at origin of populations of Aleppo pine. On the 

other hand, intraspecific relationships between root depth or diameter and temperature were hump-shaped, 

and peaked towards the thermal midpoint of the species distribution range (Albert et al. 2010). This finding 

may be related to the existence of different adaptive strategies imprinted in a number of life-history traits 

and their potential trade-offs – in addition to rooting traits – to cope with the conditions encountered by the 

species along its distribution range, as modulated by stresses (drought, cold temperatures, pests) and 

disturbances (fire). For example, the associations between aerial growth or rooting traits and incoming 

radiation might indicate allocation trade-offs related to higher selective pressures for increased competition 

for light in the case of Greek and Italian mesic ecotypes. This result also suggests that the existence of trade-

offs between reproduction, defense and vegetative growth in Aleppo pine (Climent et al. 2008; Santini et 

al. 2019a; Voltas et al. 2008) may imply a decrease of C allocation to coarse roots in fire-prone, dry and 

warm habitats. The negative dependency of rooting depth on VPDs has to be carefully interpreted, however, 

since this relation was mostly driven by the Tunisian ecotype (15TU), which has shallow roots despite being 

exposed to high summer evapotranspiration. This could be explained as the result of conflicting functional 
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strategies typical of stressed and disturbed environments (Santini et al. 2019a), implying a relatively low 

allocation to growth (both aerial and belowground) compared with reproduction (Climent et al. 2008; 

Santos-del-Blanco et al. 2013). Such possibility is supported by the negative intraspecific association found 

between tree height and VPDs.  

 

Methodological limitations  

Despite its high detection capability and non-destructive assessment of root features, GPR is not 

devoid of technical limitations for tree phenotyping studies. These are related to the existing variability in 

root orientation, since overlapping roots and roots underneath the tree trunk are underestimated by the 

device (Butnor et al. 2016; Li et al. 2016). However, GPR have been recognized as a proxy tool sufficiently 

precise to estimate coarse root frequency (Butnor et al. 2003; Hirano et al. 2009, Hirano et al. 2012; Guo et 

al. 2013a). Also, the existing electromagnetic gradient between roots and soil makes a previous calibration 

strictly necessary to reduce the background noise produced by the particular physicochemical 

characteristics of the soil. In particular, it should be noted that GPR detection capacity is seriously impaired 

in both nearly saturated (Hirano et al. 2009; Rodríguez-Robles et al 2017) and very dry soils (Hirano et al. 

2009). In this last case, GPR detection is limited if roots have low water content (e.g. under 20% volumetric 

water content in Cryptomeria japonica; Hirano et al. 2009). In this regard, our field campaign targeted a 

period of full vegetative activity of trees while avoiding such extremes in soil water status (e.g. abundant 

precipitation in April-early May and acute drought in July-August). 

 

Conclusions  

This study provides new avenues for the examination of intraspecific variability in root traits of forest tree 

species using GPR as high-throughput phenotyping method. We observed population differentiation in P. 

halepensis following east-west (root diameter) and north-south (root frequency) geographical patterns. 

Conversely, the interspecific pattern described for the genus Pinus, by which species originating from xeric 

conditions exhibit large allocation to roots, was not strictly found at the intraspecific level for Aleppo pine. 



Chapter 1 

55 

This observation may be attributable to the existence of different adaptive strategies under varying 

environmental conditions for the species, which likely lead to trade-offs involving the use of resources. In 

this regard, our work contributes to unravel the evolutionary complexity of a widespread conifer of high 

ecological significance in the Mediterranean basin. 
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Chapter 1 – Tables and Figures 

 

Table 1 Mixed-effects model analysis of variance for root diameter (cm), root depth (cm) and root frequency (number 

of roots) of 56 populations of Aleppo pine categorized into 16 ecotypes grown in a common garden in Altura (Spain). 

Data refer to sub-plot S100. Only fixed effects are reported.  

 

  

   Root diameter Root depth Root frequency 

Source of 

variation  

Num. 

df 
Den. df  F-value p > F Den. df F-value p > F Den. df F-value p > F 

              

Block  2 13.4 1.49 0.226 9.8 0.26 0.773 7.6 1.92 0.146 

Column  6 92.4 4.05 <0.001 12.2 1.30 0.252 11.6 2.62 0.015 

Population (P) 55 84.6 1.39 0.030 73.2 1.27 0.086 89.8 1.01 0.460 

    Ecotype        15 97.3 1.51 0.091 87.9 2.00 0.012 97.6 1.50 0.096 

    P(Ecotype)          40 90.6 1.16 0.227 81.1 1.03 0.410 93.9 0.84 0.756 
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Table 2. Coefficients of determination (R2) of linear and quadratic regressions of root traits (diameter, depth, frequency) at population (a) and ecotype level (b) as 

a function of several ecogeographical variables at origin of 53 populations grouped into 15 ecotypes of Aleppo pine tested in a common garden in Altura (Spain). 

Associated probabilities between 0.10 and 0.05 are represented in italics, while significant probabilities <0.05 are shown in bold characters. Ecotype 16 corresponds 

to reforestations of the Northern Plateau (Spain) of uncertain geographic origin and therefore it has not been included in the analysis. MAT= mean annual 

temperature; TAR = temperature annual range; MST = mean summer temperature; MAP = mean annual precipitation; PsP = summer to annual precipitation ratio; 

VPDs = vapor pressure deficit of the warmest (summer) quarter. 

 

(a)   Populations 

   
MAT TAR MST MAP PsP VDPs 

Solar 

radiation 

Geographical 

distance 

Gower's 

distance 
Latitude Longitude Altitude 

Diameter 
Linear  0.01 0.00 0.01 0.03 0.00 0.02 0.01 0.08 0.01 0.00 0.08 0.02 

Quadratic 0.02 0.00 0.02 0.03 0.02 0.02 0.16 0.10 0.06 0.08 0.10 0.02 

              

Depth 
Linear 0.02 0.00 0.03 0.00 0.04 0.00 0.00 0.08 0.05 0.01 0.06 0.03 

Quadratic 0.04 0.00 0.10 0.00 0.13 0.01 0.09 0.11 0.13 0.12 0.06 0.03 

              

Frequency 
Linear 0.02 0.06 0.01 0.05 0.07 0.16 0.22 0.06 0.00 0.15 0.11 0.14 

Quadratic 0.07 0.08 0.06 0.05 0.09 0.16 0.22 0.10 0.02 0.16 0.11 0.14 

              

(b)   Ecotypes 

   
MAT TAR MST MAP PsP VDPs 

Solar 

radiation 

Geographical 

distance 

Gower's 

distance 
Latitude Longitude Altitude 

Diameter 
Linear  0.16 0.01 0.12 0.03 0.02 0.10 0.00 0.20 0.04 0.01 0.24 0.15 

Quadratic 0.16 0.02 0.32 0.07 0.03 0.23 0.37 0.30 0.33 0.16 0.34 0.36 

              

Depth 
Linear 0.01 0.04 0.06 0.04 0.05 0.21 0.02 0.12 0.05 0.05 0.06 0.01 

Quadratic 0.17 0.05 0.58 0.04 0.25 0.22 0.33 0.24 0.71 0.37 0.06 0.32 

              

Frequency 
Linear 0.19 0.18 0.16 0.05 0.28 0.09 0.49 0.11 0.17 0.23 0.19 0.11 

Quadratic 0.04 0.12 0.06 0.06 0.35 0.09 0.49 0.23 0.26 0.29 0.19 0.30 
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Fig. 1 Geographic origin of 56 Pinus halepensis populations (coloured dots) evaluated in a common garden (red star) 

located in Altura (Castellón province, Spain). The legend shows ecotype codes as defined in Table S2. The dark green 

area represents the natural distribution of P. halepensis according to EUFORGEN 

(http://www.euforgen.org/species/pinus-halepensis/). A climograph of the trial site is included (mean climate of 1995-

2019 obtained from Worldclim). 
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Fig. 2 Example of root detection along a linear profile section of the trial (marked in Fig. S1) using a 

Ground-Penetrating Radar (GPR). The GPR radargram was generated with a 800 MHz shielded antenna 

and band pass filters (both high-pass and low-pass filter) to eliminate low and high frequency noise 

(Rodríguez-Robles et al. 2017). The upper panel shows hyperbolically shaped reflections representing root 

reflections (dark purple hyperbolae). The lower panel illustrates the roots detected from the hyperbolae 

signatures (grey dots), and additional roots measured in situ for calibration purposes are depicted by black 

dots.  

  



Chapter 1 

70 

 

Fig. 3 a) Aerial image of the study site exemplifying the three geophysical GPR profiles (P1, P2, P3) used 

at plot level following the column direction of the common garden of P. halepensis. Measurements were 

done between the two central trees of every plot (experimental unit). b) Detailed view of the geophysical 

GPR profiles: P1 and P3 are at a row distance of 0.30 m from one or another central tree, while the position 

of P2 is at mid-distance (1.25 m) between central trees. c) Scheme (top view) showing the geophysical 

profiles and the three different sub-plot areas (S50, S100, S250) evaluated, where sub-plots correspond to 

column distances of ± 0.25 m, ± 0.50 m and ± 1.25 m, respectively, from the two central trees of an 

experimental unit. 
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Fig. 4 Calibration of GPR mesurements. a) Relationship between root diameter obtained in situ through 

soil digging and time interval between zero crossing (measured in nanoseconds; Δns) obtained using the 

GPR radargram (n = 12). b) Relationship between root depth measured in situ and root depth inferred by 

GPR. c) Total number of roots manually detected from GPR radagrams as a function of distance from the 

tree trunk. 
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Fig. 5. Simple correlations between GPR-derived population means of root diameter (a, d), root depth (b, 

e) or root frequency (c, f) and xylem oxygen isotope composition (δ18O) obtained in mid-July (a, b, c) or 

late-September (d, e, f) of 56 populations of Aleppo pine tested in a common garden in Altura (Spain). 

Isotopic records were retrieved from Voltas et al. (2015). 
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Fig. 6 Regressions of root diameter, depth and frequency as a function of tree height. Data correspond to 

56 populations of Aleppo pine (grey dots) grouped into 16 ecotypes (numbers) (ecological region codes are 

defined in Table S2) and tested in a common garden in Altura (Spain). Each panel shows the regression 

(linear or quadratic) that better fits the data at ecotype level. Significant (p ≤ 0.05) and marginally significant 

(p ≤ 0.10) regressions are indicated with continuous and dashed lines, respectively. Non-significant 

regressions are also accompanied by the coefficient of determination (R2) and associated probability (linear 

case only). 
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Fig. 7 Regressions of root diameter, depth and frequency as a function of climate variables at the origin of 

populations: (a, b, c) mean summer temperature (MST), (d, e, f) solar radiation (SR), (g, h, i) summer 

vapour pressure deficit (VDPs). Top panels depict regressions for root diameter, central panels for root depth 

and bottom panels for root frequency. Data correspond to 53 populations of Aleppo pine (grey dots) grouped 

into 15 ecotypes (numbers) (ecological region codes are defined in Table S2) and tested in a common garden 

in Altura (Spain). Ecotype 16 (and three associated populations) corresponds to reforestations of uncertain 

geographic origin of the Northern Spanish Plateau and has not been included in the analysis. Each panel 

shows the regression (linear or quadratic) that better fits the data at ecotype level. Significant (p ≤ 0.05) and 

marginally significant (p ≤ 0.10) regressions are indicated with continuous and dashed lines, respectively. 

Non-significant regressions are also accompanied by the coefficient of determination (R2) and associated 

probability (linear case only). 
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Chapter 1 – Supplementary material 

 

Table S1. Soil parameters at the study site located in Altura (Spain).  

 

Soil parameters                                                 Value   
 

Method 

 

Result 

pH 8.4  Potentiometry Moderately basic 

Electrical conductivity (dS/m) 0.2  Conductimetry No limitant 

Organic matter (% s.m.s.) 2.8  Calculation Medium-high 

Calcium carbonate equivalent (% s.m.s.) 44.0  Potentiometric titration Extremely calcareous 

N-NO3 (mg/kg s.m.s.) <1.0  Colorimetry Normal 

P  (mg/kg s.m.s.) <5.0  Spectrophotometry Low 

K (mg/kg s.m.s.) 234.0  Spectrometry Normal 

Ca (mg/kg s.m.s.) 7464.0     “ High 

Mg (mg/kg s.m.s.) 121.0     “ Normal 

Na (mg/kg s.m.s.) <15.0     “ Normal 

Fe (mg/kg s.m.s.) 104.0     “  

Cu (mg/kg s.m.s.) 3.5     “  

Mn (mg/kg s.m.s.) 82.0     “  

Zn (mg/kg s.m.s.) 1.8     “  

Sand (0.05 D < 2 mm) (%) 44.2  Gravimetry  

Tick silt (0.02 D < 0.05 mm) (%) 9.5     “  

Fine silt (0.002 D < 0.02 mm) (%) 22.0     “  

Clay (%) (D < 0.002 mm) 24.3      “  
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Table S2. Characteristics of the 56 populations of Aleppo pine grouped into 16 ecotypes (or ecological 

regions) used in this study. 

Name of 

provenances 

Population 

code 

Ecological      

region code 
Region Country Longitude Latitude Altitude 

MAT 

(°C) 

MAP 

(mm) 

PsP 

(%) 

Cabanelles 11 1CAT Catalonia Spain 2°47'E 42°15' 258 14.6 720 22 

Tivissa 21 1CAT Catalonia Spain 0°50'E 42°20' 336 14.8 587 21 

Sant 

Salvador 

Guardiola 31 1CAT Catalonia Spain 1°45'E 41°40' 318 14.4 628 26 

Zuera 61 2MO 

Ebro 

Depression Spain 0°55'E 41°55' 576 12.0 474 21 

Valdeconcha 82 3ALC 

Southern 

Plateau Spain 2°52'W 40°27' 837 12.8 433 14 

Alcantud 83 3ALC 

Southern 

Plateau Spain 2°18'W 40°34' 1057 10.8 505 19 

Colmenar 

de Oreja 84 3ALC 

Southern 

Plateau Spain 3°20'W 40°05' 692 13.7 433 11 

Cirat 91 4MS Iberian Range Spain 0°28'W 40°03' 445 14.6 440 21 

Tuéar 92 4MS Iberian Range Spain 1°09'W 39°49' 729 13.2 424 20 

Enguidanos 93 4MS Iberian Range Spain 1°39'W 39°38' 990 11.9 485 19 

Altura 102 4MS Iberian Range Spain 0°37'W 39°47' 662 13.1 546 16 

Benicàssim 111 4MS Iberian Range Spain 0°01'E 40°05' 468 13.8 472 21 

Gilet 112 4MS Iberian Range Spain 0°21'W 39°40' 152 13.1 462 17 

Tibi 101 5LI East Spain Spain 0°39'W 38°31' 976 14.8 428 17 

Villa de Ves 103 5LI East Spain Spain 1°15'W 39°11' 864 14.7 454 18 

Jarafuel 104 5LI East Spain Spain 1°01'W 39°10' 563 15.2 386 17 

Bicorp 105 5LI East Spain Spain 0°51'W 39°06' 587 14.7 523 21 

Commercial 

Seed 109 5LI East Spain Spain 1°00'W 39°09'  16.6 451 20 

Villajoyosa 131 6BS N. Betic Mts Spain 0°18'W 38°30' 126 17.7 422 15 

Ricote 141 6BS N. Betic Mts Spain 1°26'W 38°09' 688 14.8 398 14 

Monovar 142 6BS N. Betic Mts Spain 0°57'W 38°23' 820 14.0 467 15 

Monovar 143 6BS N. Betic Mts Spain 0°55'W 38°24' 601 15.1 416 15 

Paterna  144 6BS N. Betic Mts Spain 2°17'W 38°38' 1028 12.8 470 13 

Abarán 145 6BS N. Betic Mts Spain 1°16'W 38°17' 657 14.9 403 15 

Quéntar 151 7BM S. Betic Mts Spain 3°25'W 37°14' 1226 12.8 578 07 

Benamaurel 152 7BM S. Betic Mts Spain 2°44'W 37°42' 908 14.2 452 10 

Vélez 

Blanco 153 7BM S. Betic Mts Spain 2°01W 37°47' 785 14.1 416 12 

Santiago de 

la Espada 154 7BM S. Betic Mts Spain 2°28'W 38°14' 842 14.1 432 11 

Lorca 156 7BM S. Betic Mts Spain 1°32'W 37°52' 831 14.1 427 13 

Alhama de 

Murcia 157 7BM S. Betic Mts Spain 3°01'W 37°45' 765 15.0 449 09 
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Quesada 158 7BM S. Betic Mts Spain 1°57'W 37°45' 757 15.1 373 12 

Lentergi 171 8SU South Spain Spain 3°41'W 36°49' 363 16.7 378 04 

Carratraca 172 8SU South Spain Spain 4°50'W 36°51' 635 15.4 695 04 

Frigiliana 173 8SU South Spain Spain 3°55'E 36°49' 595 15.7 456 04 

Palma de 

Mallorca 182 9MA Majorca Spain 2°56'E 39°09' 32 16.7 563 14 

Santanyí 183 9MA Majorca Spain 3°03'E 39°17' 19 16.8 568 14 

Alcudia 184 9MA Majorca Spain 03°10'E 39°52' 185 15.7 704 15 

Calvia 185 9MA Majorca Spain 03°08'E 39°33' 243 15.8 526 17 

Marcadal 186 10ME Menorca Spain 4°10'E 39°58' 85 16.6 613 15 

Atàlix 187 10ME Menorca Spain 4°03'E 39°55' 67 16.9 608 15 

Cala d'Hort 191 11PY Ibiza Spain 1°15'E 38°53' 329 15.9 542 16 

Ses Salines 192 11PY Ibiza Spain 1°24'E 38°50' 10 17.5 443 16 

Ses 

Salandres 193 11PY Ibiza Spain 1°20'E 39°03' 65 17.1 467 17 

Istaia-

eyboia 211 12GR Greece Greece 23°31'E 38°44' 53 17.5 506 07 

Amfilohia 

(likely seed 

orchard) 212 12GR Greece Greece 21°18'E 38°53' 429 14.2 975 07 

Tatoi-attica 213 12GR Greece Greece 23°28'E 38°27' 253 16.3 552 07 

Kassandra 214 12GR Greece Greece 23°54'E 40°05' 402 14.4 510 13 

Gemenos 221 13FR France France 5°40'E 43°25' 391 12.4 707 14 

Litorale 

Tarantino 231 14IT Italy Italy 17°07'E 40°37' 204 15.2 551 14 

Gargano 

Monte Pucci 232 14IT Italy Italy 15°57'E 41°54' 382 14.2 524 17 

Gargano 

Marzini 233 14IT Italy Italy 15°51'E 41°330 0 16.1 472 16 

Thala 241 15TU Tunisia Tunisia 8°39'E 35°34' 948 14.9 467 13 

Tabarka 242 15TU Tunisia Tunisia 9°04'E 36°30' 287 17.7 558 09 

Valbuena de 

Duero 201 16MC 

North Plateau 

(Reforestation)  Spain 04°16'W 41°39' 825    

Vega de 

Valdetronco 202 16MC 

North Plateau 

(Reforestation) Spain 05°04'W 43°35' 820    

Villavieja 

Tordesillas 203 16MC 

North Plateau 

(Reforestation) Spain 04°55'W 41°36' 820    
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Table S3. Mixed-effects model analysis of variance for coarse root diameter (cm) and depth (cm) for 56 

populations of Aleppo pine categorized into 16 ecotypes grown in a common garden in Altura (Spain) for 

sub-plot sizes (a) S50 and (b) S250. Only fixed effects are reported. 

 

  

(a)          

   Diameter  Depth 

Source of 

variation  Num. df Den. df  F-value p > F  Den. Df F-value p > F 

          

Block  2 8.5 1.48 0.282  8.7 1.10 0.376 

Column  6 11.8 1.04 0.446  11.7 1.37 0.305 

Population (P)  55 92.0 0.96 0.563  92.3 0.81 0.080 

    Ecotype        15 96.6 1.08 0.383  96.3 0.96 0.498 

    P (Ecotype)        40 94.7 0.90 0.632  94.8 0.72 0.876 

(b)          

   Diameter  Depth 

Source of 

variation  Num. df Den. df  F-value p > F  Den. Df F-value p > F 

          

Block  2 3.5 0.46 0.665  10.8 0.87 0.448 

Column  6 10.3 0.62 0.708  94.2 3.00 0.010 

Population (P)  55 73.7 1.06 0.404  81.3 1.00 0.478 

    Ecotype        15 92.3 1.37 0.179  98.8 1.20 0.284 

    P (Ecotype)        40 82.3 0.97 0.593  88.5 0.96 0.549 
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Table S4. Coefficients of determination (R2) of (a) linear and (b) quadratic regressions and their associated 

probabilities (in parenthesis) of coarse root parameters (diameter, depth and frequency) as a function of 

three growth variables (Height, DBH, and Crown Area) of 56 populations grouped into 16 ecotypes of 

Aleppo pine tested in a common garden in Altura (Spain). The regressions are calculated at both population 

and ecotype level.  

 

 

  

(a) Populations  Ecotypes 

 Height DBH 

Crown 

Area  Height DBH 

Crown 

Area 

Diameter 0.01 

(0.685) 

0.01 

(0.614) 

0.00 

(0.874)  

0.11 

(0.208) 

0.06 

(0.351) 

0.01 

(0.695) 

        

Depth 0.01 

(0.501) 

0.02 

(0.294) 

0.01 

(0.447)  

0.01 

(0.739) 

0.02 

(0.604) 

0.01 

(0.803) 

        

Frequency 0.04 

(0.126) 

0.03 

(0.193) 

0.00 

(0.994)  

0.14 

(0.387) 

0.09 

(0.274) 

0.04 

(0.481) 

  (b)           Populations  Ecotypes 

 Height DBH 

Crown 

Area  Height DBH 

Crown 

Area 

Diameter 0.10 

(0.057) 

0.05 

(0.279) 

0.01 

(0.756)  

0.34 

(0.064) 

0.23 

(0.183) 

0.04 

(0.748) 

        

Depth 0.05 

(0.292) 

0.03 

(0.398) 

0.07 

(0.150)  

0.30 

(0.102) 

0.21 

(0.220) 

0.04 

(0.782) 

        

Frequency 0.05 

(0.269) 

0.04 

(0.356) 

0.00 

(0.999)  

0.13 

(0.418) 

0.14 

(0.384) 

0.04 

(0.762) 
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Fig. S1. Aerial view of the common garden of Pinus halepensis located in Altura (Castellón province, 

Spain). The orange rectangles exemplify four experimental units composed of four individuals each 

belonging to the same population and repeated across four blocks. Blocks (B), columns (Col) and rows 

within blocks are also indicated corresponding to a Latinised row-column design. The purple triangles 

indicate the position of 12 excavated roots while the purple rectangle indicates the profile section 

represented in Fig. 2. 
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Fig. S2. Simple correlations among coarse root parameters (diameter, depth and frequency): a) root depth 

vs. root diameter, b) root depth vs. root frequency, c) root diameter vs. root frequency. Data correspond to 

56 populations of Aleppo pine tested in a common garden experiment in Altura (Spain). Significant (p ≤ 

0.05) correlations for ecotypes are depicted with a continuous line. 
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Fig. S3. Relationships between root diameter, root depth or root frequency and the relative water 

contribution (%) of different soil layers taken up by trees in early autumn inferred from xylem water 

isotopes in 2010 (Voltas et al. 2015). (a) Upper soil (0-15 cm) vs. diameter. (b) Upper soil vs. depth. (c) 

Upper soil vs. frequency. (d) Lower soil (15-40 cm) vs. diameter. (e) Lower soil vs. depth. (f) Lower soil 

vs. frequency. Populations are represented by gray dots and are grouped into 16 ecotypes (code numbers as 

in Table S2) evaluated in a common garden in Altura (Spain). Significant (p ≤ 0.05) correlations for ecotypes 

are depicted with a continuous line. 
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Fig. S4. Regressions of coarse root diameter, depth and frequency as a function of geographic variables at 

the origin of each population: (a, b, c) latitude, (d, e, f) longitude, and (g, h, i) Gower’s distance. Top panels 

depict regressions for root diameter, central panels for root depth and bottom panels for root frequency. 

Data correspond to 53 populations of Aleppo pine (gray dots) grouped into 15 ecotypes (numbers) 

(ecological region codes are defined in Table S2) and tested in a common garden in Altura (Spain). Ecotype 

16 (and three associated populations) corresponds to reforestations of uncertain geographic origin of the 

Northern Spanish Plateau and has not been included in the analysis. Each panel shows the regression (linear 

or quadratic) that better fits the data at ecotype level. Significant (p ≤ 0.05) and marginally significant (p ≤ 

0.10) regressions are indicated with continuous and dashed lines, respectively. Non-significant regressions 

are also accompanied by the coefficient of determination (R2) and associated probability (linear case only). 
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Abstract 

Understanding the genetic basis of adaptation and plasticity in trees constitutes a knowledge gap. 

We linked dendrochronology and genomics (SNPs) for a widespread conifer (Pinus halepensis 

Mill.) to characterise intraspecific growth differences elicited by climate. The analysis comprised 

20-yr tree-ring series of 130 trees structured in 23 populations evaluated in a common garden. We 

tested for genotype by environment interactions (G×E) of indexed ring width (RWI) and early to 

latewood ratios (ELI) using factorial regression, which describes G×E as differential gene 

sensitivity to climate. We found that the species’ annual growth was positively influenced by 

winter temperature and spring moisture and negatively influenced by previous autumn 

precipitation and warm springs. Four and five climate factors explained 10% (RWI) and 16% 

(ELI) of population-specific interannual variability, respectively, with populations from drought-

prone areas and uneven precipitation experiencing larger growth reductions during dry vegetative 

periods. Furthermore, four and two SNPs explained 14% (RWI) and 10% (ELI) of interannual 

variability among trees, respectively. Two SNPs played a putative role in adaptation to climate: 

one identified from transcriptome sequencing of P. halepensis and another involved in response 

regulation to environmental stressors. Our findings highlight how tree-ring phenotypes, obtained 

from a common garden experiment, combined with a candidate-gene approach allows quantifying 

genetic and environmental effects determining adaptation for a conifer with a large and complex 

genome. 

 

Keywords: adaptive variation; common garden; dendroecology; factorial regression; Pinus 

halepensis; phenotypic plasticity; single nucleotide polymorphisms  
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Introduction 

Tree growth performance is limited in dry areas like the Mediterranean region, where seasonal 

drought along with the intensification in the length, frequency and severity of extreme climate 

events are limiting ecosystem functioning (Martín-Benito et al., 2010; Forner et al., 2018; Helluy 

et al., 2020). Changes in the population dynamics of tree species, which are partly linked to 

migration processes and genetic adaptedness, are therefore expected under future climate 

(Housset et al., 2018; Royer-Tardif et al., 2021). The pace of genetic adaptations to new 

conditions, however, is likely to be too slow to conveniently track global warming (Jezkova et al., 

2016). At the same time, responses to environmental factors may strongly differ among 

populations. This is because trees are usually locally adapted because of inter and intraspecific 

genetic differentiation; in turn, disparate selective pressures also trigger differential plasticity 

among individuals (Benito Garzón et al., 2011; Grivet et al., 2011). Thus, some populations may 

have higher adaptive potential than others when facing climate instability. Yet, the prediction of 

tree responses to future climate is constrained by knowledge gaps on the genetic basis of 

adaptation as well as on the prevailing climate drivers of growth and survival (Housset et al., 

2018).  

Pinus halepensis Mill. (Aleppo pine) is a very plastic, drought-resistant conifer able to 

adjust its growth rate during extended drought periods (Camarero et al., 2010; Pasho et al., 2012). 

It presents large intraspecific variability in life-history traits (Climent et al., 2008; Voltas et al., 

2018; Santini et al., 2019), which is reflected in local adaptations to the different niches inhabited 

by this species (Patsiou et al., 2020; Hevia et al., 2020). Previous works have demonstrated that 

the intraspecific variation in traits related to growth (Voltas et al., 2018; Patsiou et al., 2020), 

wood anatomy (Hevia et al., 2020) or reproduction (Climent et al., 2008) is differentially affected 

by changing environmental conditions (i.e. differential phenotypic plasticity). To identify the 

genetic basis of this differentiation, recent studies have targeted single nucleotide polymorphism 

(SNP) markers (Pinosio et al., 2014) potentially related to adaptive variation (Daniels et al., 2019; 

Santini et al., 2020). SNPs offer a straight link to gene functions (i.e. candidate gene approach) 
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without the need to investigate the whole genome (Jaramillo-Correa et al., 2015). 

Intraspecific variation in Aleppo pine is customarily examined through functional traits 

measured at a particular age (Klein et al., 2013; Santini et al., 2019). Trait expression can be 

therefore considered as the outcome of an individual’s response to the environment at a certain 

time (e.g. physiological attributes), or as the integrative response over an individual’s life 

measured in that particular moment (e.g. morphometric characters). As an alternative, 

investigating wood growth traits (i.e. secondary growth) in common gardens, in combination with 

a candidate-gene approach, constitutes an exceptional opportunity to characterise the importance 

of genetic and environmental effects determining tree performance dynamics on a multi-annual 

scale (Depardieu et al., 2021). Basic wood features such as tree-ring width are suitable to assess 

adaptation and plasticity during climate fluctuations (Montwé et al., 2016; Martínez-Sancho et 

al., 2021) since tree rings reflect climatic sensitivity across the lifespan of individuals (Housset et 

al., 2016). Additional information on tree growth sensitivity to climate can also be provided by 

alternative traits such as the relative proportion of early to latewood within a ring since the 

formation of these wood components is related to the prevailing climate occurring during specific 

seasonal windows (Torbenson et al., 2016). The early to latewood ratio is particularly informative 

with regard to the hydraulic and mechanical properties of the main trunk (Domec and Gartner, 

2002; De Luis et al., 2011; Novak et al., 2013). A high earlywood to latewood proportion is related 

to a more conductive wood with wider xylem vessels, whereas a high latewood proportion implies 

a denser wood. The relative importance of these wood types is mainly determined by rainfall 

seasonality (i.e. spring to autumn precipitation) and it influences the trade-off among hydraulic 

conductivity, resistance to cavitation, and mechanical stability of trees (De Luis et al., 2011; 

Camarero et al., 2021).  

In this study, we analysed the interannual growth patterns of 23 Aleppo pine populations 

covering most of the species’ natural distribution range that were growing in a common garden 

experiment representative of the average climate conditions for the species. To explore the genetic 

basis of secondary growth determination, we attempted to link genes and phenotypes structured 
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in populations with potential climate drivers of growth variability. For this purpose, we tested for 

genotype by (multi-year) environment interactions (G×E) using ring widths and early to latewood 

ratios as phenotypic traits. We used a factorial regression approach as a meaningful method for 

the analysis and interpretation of G×E (van Eeuwijk et al., 2002). Factorial regression allows the 

inclusion of explicit environmental and genetic information (i.e. covariates) in G×E models along 

with a direct evaluation (i.e. quantification) of the importance of these covariates for G×E 

explanation (Malosetti et al., 2013; Sixto et al., 2016). We tested models in which environmental 

covariables were represented by monthly climate factors and genetic predictors were defined by 

particular SNPs localized in known candidate genes, aiming at describing G×E through explicit 

(biophysical and genetic) underlying factors. Importantly, genetic markers allow for investigating 

the relevance of additive and nonadditive genetic variation in trait expression. Thus, we evaluated 

different genetic effects (additive, dominant, first-order epistasis) on secondary growth by 

defining the type of action of candidate genes relevant for the explanation of differential 

expression across years (Malosetti et al., 2004; Vargas et al., 2006; Calleja-Rodríguez et al., 

2021). 

We expected a diverse set of interannual growth patterns among populations of Aleppo pine 

as a result of adaptive divergence, as previously described for many functional traits (e.g. Climent 

et al., 2008; Martín-Sanz et al., 2019; Lombardi et al., 2021), including secondary growth (Hevia 

et al., 2020). In particular, we expected populations from warmer and drier origins to be less 

affected by hot and dry growth periods (i.e. having wider rings and larger early to latewood ratios) 

compared with their wetter and colder counterparts as the result of local adaptation, in line with 

previous results in other conifers (Depardieu et al., 2020). We also hypothesised that interannual 

divergence in secondary growth can be explained, at least in part, by some SNP loci previously 

linked to morpho-physiological variability of Aleppo pine in the same trial (Santini et al., 2020), 

thereby modulating adaptive differentiation elicited by climate. This study is novel in the sense 

that it models G×E interactions of tree growth for a widespread conifer by integrating information 

on climate and genomics (SNPs associated with candidate genes) at an interannual scale using 
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tree-ring phenotypes. It benefits from dendrochronological series of secondary growth which 

constitute archived and readily available phenotypic information in forest trees. 

 

Material and Methods 

Genetic trials 

The genetic trial (common garden) was established in 1997 and is located in the municipality of 

Altura (39°49′29ʹʹN, 00°34′22ʹʹW, 640 m a.s.l; Castellón Province, eastern Spain). The site is 

representative of the average climate condition of the species distribution range, with a mean 

annual temperature of 13.8°C and mean annual precipitation of 468 mm (Patsiou et al., 2020; 

Lombardi et al., 2021). It consists of 896 individual adults of Aleppo pine belonging to 56 

populations that cover most of the species’ natural distribution range across the Mediterranean 

basin. Seeds from these populations were collected in 1995 from ca. 25 trees spaced at least 100 

m apart to minimise the kinship of individuals within populations. Seeds were sown in a forest 

nursery in Spain and seedlings were planted at the study site at one-year-old at a spacing of 2.5 m 

following row and column directions. Each experimental unit comprised four individual trees of 

the same population planted across the same row. The trial was set up according to a Latinised 

row-column design with four replicates. Out of the 412 surviving trees in November 2019, 130 

trees belonging to 23 populations representative of the natural habitat of the species were used 

because of a thinning treatment conducted in November 2019, where about half of the trees 

originally presented in the trial had been systematically cut.  

 

Meteorological data 

Values of monthly maximum, minimum and mean temperatures (Tmax, Tmin, Tmean, respectively) 

as well as monthly precipitation (P) were retrieved from the nearest grid point to the trial location 

of the gridded climate dataset (Climate Research Unit, CRU TS 4.04 data set, Harris et al., 2020) 

for 2000–2019. The CRU provides monthly climate series on a 0.5° × 0.5° grid-box basis, 

interpolated from meteorological stations across the globe. We used this interpolated dataset due 
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to the lack of continuous local climate records in the area. In addition, the Standardised 

Precipitation Evapotranspiration Index (SPEI) was used as a measure of drought intensity and 

was calculated at 1-month and 6-month scales (SPEI1 and SPEI6, respectively) using the package 

SPEI in R (Vicente-Serrano et al., 2010).  

For each population origin, mean historical climate records were instead obtained from 

the higher spatial resolution WorldClim database (Fick and Hijmans, 2017). WorldClim provides 

averages for 1970–2000 of 19 bioclimatic variables derived from temperature and precipitation 

records at 30-arcsecond resolution (ca.1 km2). In particular, and based on previous studies of 

climatic drivers of ecotypic variation in Mediterranean pines (Tapias et al., 2004; Climent et al., 

2008), we focused on the mean annual temperature (MAT), mean temperature of the warmest 

quarter (or summer temperature; MST), mean temperature of the coldest quarter (or winter 

temperature; MWT), maximum temperature of the warmest month (TmaxW), minimum 

temperature of the coldest month (TminC), mean annual precipitation (MAP), precipitation 

seasonality (or the coefficient of variation in monthly precipitation over the year, PS), 

precipitation of the driest quarter (PDQ) and the summer to annual precipitation ratio (PsP).  

 

Tree ring records 

For the subset of 130 individuals, we collected cross-sections of about 5 cm thick from the basal 

part of the trunk. The cross-sections were cut into planks of about 5 cm width, which comprised 

both ends of each slice, with the pith centred longitudinally. The planks were dried and sanded 

with progressively finer sandpaper until the surface was smooth enough and the rings were clearly 

visible.  

Tree-ring width was measured with a precision of 0.01 mm through a semi-automatic 

process in WinDendro 2014a (Regent instrument Inc., Quebec, Canada), and manual corrections 

were made when necessary. Each tree-ring series was cross-dated and the cross-dating was 

quality-checked with COFECHA (Holmes 1983). In addition, earlywood width (EW) and 

latewood width (LW) were estimated using WinDendro coupled with a computer-integrated Leica 
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binocular microscope (5X zoom). The transition between EW and LW was visually discerned 

based on changes in wood colour within each ring, where EW corresponded to the light-coloured 

portion and LW to the darker coloured part of the ring (Griffin et al., 2011; Cabral-Alemán et al., 

2017). The EW to LW ratio (EL) was then calculated for each tree ring. Ring-width and EL indices 

(RWI and ELI hereafter) were obtained for each tree-ring series using the detrend function of the 

R package dplR (Bunn, 2008; Bunn et al. 2021). To this end, we applied a cubic spline with a 

50% frequency cut-off of a wavelength of half the total number of years to remove non-climatic 

(i.e. ontogenic) trends from each tree-ring series. This procedure generated a stationary (mean = 

1) series of dimensionless indices that preserved a common variance encompassing interannual 

time scales. Afterwards, the master chronology of both indices (i.e. across all available trees and 

populations) was built through the crn function (R package dplR) using Tukey’s biweight robust 

mean. 

 

Genetic data 

We used a subset of 20 SNPs derived from a dataset of 294 SNPs originally disclosed from 

comprehensive transcriptome analyses of P. halepensis and re-sequenced loci identified in P. 

taeda (Pinosio et al., 2014). The subset of 20 SNPs (Table S2) was selected from a previous 

genome-wide association study (GWAS) which tested associations among morphological and 

multispectral-derived physiological traits and genotypes at single loci (Santini et al., 2020). The 

GWAS analysis was carried out taking into account the neutral genetic structure of populations, 

thus the subset of SNPs used in our study were previously detected after correction for this 

structure. As a result, SNPs were found as being directly related to tree growth or indirectly related 

to (remotely-sensed) leaf area, photosynthetic pigments and leaf water content in Aleppo pine 

(Santini et al., 2020) (Table S2). 

For those SNPs significantly explaining RWI and ELI variability (see Factorial 

regression subsection), we re-examined their associated gene functions (previously described in 

Santini et al., 2020) through Blast tools since sequence databases are continuously updated. The 
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original SNP sequence (Pinosio et al., 2014) was implemented in the Blastn tool and the best 

match from Blastn was then used as the input in the Blastx tool. The best result given by Blastx 

was then used to identify the protein function of every SNP based on the protein knowledgebase 

UniProtKB (Boutet et al., 2016).  

 

 

Statistical analyses 

General analyses of variance 

To test for differences in tree size among populations, the following mixed model was fitted to 

trunk diameter records:  

𝑦𝑖𝑘𝑙𝑚 = 𝜇 + 𝑃𝑖 +  𝐵𝑘 + (𝑃𝐵)𝑖𝑘  + 𝑇(𝑃)𝑖𝑙  + 𝐶𝑚 + 𝑒𝑖𝑘𝑙𝑚                                                           (1) 

where yiklm is the observation of the lth tree of the ith population in the kth replicate and mth 

column, μ is the general mean, Pi is the fixed effect of the ith population, Bk is the fixed effect of 

replicate k, (PB)ik is the random interaction between the ith population and kth replicate, T(P)il is 

the fixed effect of the lth tree nested to the ith population, Cm is the fixed effect of column m and 

eiklm is the random residual effect of the interaction between the lth tree nested to the ith population, 

the mth column and the kth replicate. Equation [1] was fitted to the 130 sampled trees plus those 

remaining trees belonging to the 23 studied populations after the thinning treatment (i.e. the total 

of four trees per experimental unit). In all cases, tree diameter at breast height (DBH; 1.30 m 

height) was measured at the time of thinning. 

A second (fixed) model (herein general model) was fitted to each tree growth trait (RWI, 

ELI) testing for population differentiation in annual radial growth patterns as follows: 

𝑦𝑖𝑗𝑙 = 𝜇 + 𝑃𝑖+ 𝑇(𝑃)𝑖𝑙 + 𝑌𝑗 + (𝑃𝑌)𝑖𝑗 + 𝑒𝑖𝑗𝑙                                                                                (2) 

where yijl is the observation of the lth tree of the ith population in the jth year, μ is the general 

mean, Pi is the fixed effect of the ith population, T(P)il is the fixed effect of the lth tree nested to 

the ith population, Yj is the fixed effect of the jth year, (PY)ij is the fixed effect of interaction 

between the ith population and the jth year, and eijl is the random residual effect of the interaction 
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between the lth tree nested to the ith population and the jth year. Since all tree-ring data (RWI and 

ELI) were detrended (i.e. they shared the same mean value among trees), the terms Pi and T(P)il 

do not capture any significant variation (as neither do the design factors block and column, which 

can be saved). This implies that the variability in tree-ring records can be attributed exclusively 

to interannual fluctuations, Yj, the interaction between the effects of population and year, (PY)ij, 

and the residual term, eijl. 

 

Factorial regression 

The general equation [2] was expanded to include explicit genetic and environmental (i.e. 

climatic) covariables to the levels of the tree and year effects, respectively. To this end, we fitted 

two alternative genotypes by environment interaction (G×E) models using factorial regression 

approaches (van Eeuwijk et al., 2005 Voltas et al., 2005), which principally focused on the 

partition of the population by year effects. The first model investigated the genetic basis (SNP [or 

gene] g1, …., gm) of interannual variability in RWI and ELI (herein genetic model; equation [3]). 

The second model aimed at identifying differential population sensitivities of radial growth and 

early- to latewood ratios to climate drivers (z1, …, zp) (herein climate model; equation [4]). The 

order in which covariables are included in the model is relevant for the amount of G×E accounted 

for by each covariable (provided the explanatory variables are not completely orthogonal). 

Therefore, we progressively included the different covariables in the models sorted by the amount 

of G×E explained by each of them until the last significant covariable entered the model, ideally 

leaving a non-significant population by year residual. Type I (sequential) sum of squares was used 

for hypothesis testing (Nelder, 1994). In this way, population by year effects were adjusted for 

genetic effects (equation [3]) or climate factors (equation [4]) using covariables as follows (van 

Eeuwijk et al., 2005): 

𝑦𝑖𝑗𝑙 = 𝜇 + 𝑃𝑖  + 𝑇(𝑃)𝑖𝑙 + 𝑌𝑗 + ∑ 𝑔𝑙𝑛𝑌𝑗𝑛
𝑁
𝑛=1 + (𝑃𝑌)𝑖𝑗 + 𝑒𝑖𝑗𝑙                                                            (3) 

𝑦𝑖𝑗𝑙 = 𝜇 + 𝑃𝑖  + 𝑇(𝑃)𝑖𝑙 + 𝑌𝑗 + ∑ 𝛽𝑖𝑝𝑧𝑗𝑝
𝑃
𝑝=1 + (𝑃𝑌)𝑖𝑗 + 𝑒𝑖𝑗𝑙                                                        (4) 

where yijl is the observation of the lth tree of the ith population in the jth year, μ is the general 
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mean, Pi is the fixed effect of the ith population, T(P)il is the fixed effect of the lth tree nested to 

the ith population, Yj is the fixed effect of the jth year, glnYjn refers to the nth gene or covariable 

(SNP loci; qualitative factor with three levels or genotypes: aa, ab and bb) of the lth tree of the 

ith population interacting with the jth year in equation [3], βip is the ith population sensitivity to 

the pth climatic covariable z for year j in equation [4], (PY)ij is the (residual) fixed effect of 

interaction between the ith population and the jth year, and eijl is the random residual effect of the 

interaction between the lth tree nested to the ith population and the jth year. To facilitate 

interpretation of the βi’s, the climate covariables were centred to zero means. As an extension of 

[3], the population structure (Pstr, K=2; Santini et al. 2020) was also incorporated as genetic 

covariable as additional Pstr × Y term prior to SNP testing. 

The genetic model (equation [3]) was further expanded to determine the type of gene 

action of relevant SNPs underlying G×E, that is, additive (A) or dominance (D) effects as well as 

possible first-order epistasis (van Eeuwijk et al., 2002; Calleja-Rodríguez et al., 2021). Additive 

and dominance effects were sequentially tested for each SNP individually in equation [3] by 

creating dummy variables as follows: each SNP loci was coded as (–1, 0, +1) (accounting for 

additive effects) and (0, +1, 0) or (0, –1, 0) (accounting for dominance effects) at the tree level 

(van Eeuwijk et al., 2002). Once the type of gene action was identified as significant (either 

additive or dominant), relevant SNP loci were coded as (0, 1, 2) (additive) or otherwise (1, 1, 0) 

or (0, 1, 1) (dominant) and added to the final equation [5] below.  

First-order epistatic interactions were also evaluated independently for each significant 

SNP by considering potential gene interactions with other SNPs that were not necessarily relevant 

themselves for G×E explanation. For this purpose, the SNP term was initially considered a 

qualitative factor. Afterwards, additive and dominance genetic effects were coded as above per 

SNP locus and successively tested by considering any possible effect combination between the 

two SNPs involved in the epistatic effect (additive × additive, additive × dominant, dominant × 

additive or dominant × dominant), as follows: 
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∑ 𝑔𝑙𝑛𝑌𝑗𝑛
𝑁
𝑛=1 = ∑ 𝑔(𝐴)𝑙𝑛𝑌𝑗𝑛

𝑁
𝑛=1 + ∑ 𝑔(𝐷)𝑙𝑛𝑌𝑗𝑛

𝑁
𝑛=1 + ∑ 𝑔(𝐴)𝑙𝑛𝑔(𝐴)𝑙𝑛′𝑌𝑗𝑛

𝑁
𝑛=1 +

∑ 𝑔(𝐷)𝑙𝑛𝑔(𝐴)𝑙𝑛′𝑌𝑗𝑛
𝑁
𝑛=1 + ∑ 𝑔(𝐴)𝑙𝑛𝑔(𝐷)𝑙𝑛′𝑌𝑗𝑛 + ∑ 𝑔(𝐷)𝑙𝑛𝑔(𝐷)𝑙𝑛′𝑌𝑗𝑛

𝑁
𝑛=1

𝑁
𝑛=1                                   (5) 

where gln refers to the nth gene (SNP, quantitative factor, coded as additive, g(A), or dominant, g(D)) 

of the lth tree interacting with the nth gene of the same tree (also coded as additive, g(A), or 

dominant, g(D)) and the jth year. Non-additive and epistatic genetic effects can largely influence 

phenotypes (Holliday et al., 2012; Du et al., 2015; Calleja-Rodríguez et al., 2021) and it is, 

therefore, important to consider those effects in G×E models. Since all the genetic factors present 

in the models follow a hierarchical order (sequential testing), the significance of genetic effects 

(both single SNP and epistatic) is contingent on the significance of the additive type of gene 

action. For example, if the SNP effect is dominant, both the additive and the dominant effect 

would result in significance in the model. 

Additionally, the different SNPs and climate factors previously identified in the genetic 

and climate models (equations [3] and [4] respectively) were tested as pair combinations of one 

SNP and one climate factor. If significant, the common variability explained by these factors was 

included – as an extension of equations [3] and [4] – into models that incorporated a cross-product 

involving one genetic and one climate variable underlying the population by year and the tree 

nested to the population by year interaction terms. In this case, population sensitivities βi to an 

environmental variable zj were replaced by a constant, c, times a genetic (SNP) variable, xi, (βi = 

c xi), where the constant c was estimated from the data. These cross-products allowed us to 

estimate how particular allelic substitutions affected either the interannual tree growth or the 

proportion of early to latewood for every unit change in relevant climate factors. 

All models were fitted using the MIXED procedure of SAS/STAT (Littell et al., 1998).  

 

Climate-growth associations at the species level and their dependencies on climate at the origin 

of populations 

To determine the main climate drivers of interannual growth for Aleppo pine across populations 

(i.e. at the species level) we calculated bootstrapped Pearson correlations between the RWI or ELI 
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master chronology and monthly climate data during 2000–2019. These relationships were 

analysed from September of the previous year to October of the current year using the treeclim R 

package (Zang and Biondi 2015). Moreover, population sensitivities to relevant climate factors 

(βi’s as defined in equation [4]) were correlated with climatic characteristics at the origin of 

populations.  

 

Results 

Growth differences among populations 

We found significant differences (p<0.05) in DBH among populations at the trial site (Table S3). 

The populations showing the highest DBH values originated from Greece (Kassandra), southern 

Italy (Litorale Tarantino) and southern Spain (Monovar), with mean (± SE) trunk diameters of 

18.4 ± 1.4, 16.9 ± 1.4 and 16.7 ± 1.3 cm, respectively. On the other hand, the populations with the 

lowest DBH values were from Tunisia (Tabarka) and Mallorca Island (Santanyí and Palma de 

Mallorca), with mean values of 11.3 ± 1.4, 11.8 ± 1.5 and 12.1 ± 1.2 cm respectively (Table S4). 

The relative difference between the most and least grown populations was 63%. 

 

Climate-growth relationships 

At the species level (i.e. across populations), RWI was negatively correlated with previous 

September and current May and June temperatures, as well as with previous November 

precipitation and SPEI1. On the other hand, January temperature, May precipitation, May and 

June precipitation as well as the SPEI1, and SPEI6 of late spring and summer (May to August), 

had positive effects on RWI (Fig. 2). Similar climate factors affected the proportion of latewood 

relative to earlywood (ELI). Particularly, high temperatures of previous September and current 

May and June, along with high previous November precipitation and SPEI1, decreased ELI; 

conversely, high current May and June precipitation and SPEI1 and high current summer SPEI6 

(June to August) increased ELI (Fig. 2).  
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Genetic and climate factors involved in G×E  

There was significant year-to-year variability in RWI and ELI that was contingent on population 

(i.e. significant population by year interaction, Fig. 3). This interaction explained 10% and 16% 

of the total sum of squares (SS) for RWI (Table 1) and ELI (Table 2), respectively. Four SNPs 

explained 14% altogether of interannual differentiation in RWI among trees (or G×E, subsumed 

in population by year and tree nested to the population by year interaction SS; Table 1). These 

were SNP201, SNP151, SNP133 and SNP9, along with two epistatic effects encompassing SNP151 

and SNP133, as well as SNP151 and SNP9. The inclusion of population structure in the genetic 

models did not substantially change the results (Tables S5 and S6). Alternatively, four climate 

factors unfolded 38% of the population by year interaction SS for RWI (Table 1): May maximum 

temperature (accounting for 12% of interaction SS), previous year November precipitation (10%), 

October SPEI6 (9%) and previous September SPEI1 (8%).  

For ELI, SNP159 and SNP133 and their epistatic effect partly explained interannual tree 

variability, accounting for 9% of G×E (Table 2). In turn, populations reacted differently to five 

climate factors, which explained 41% of the population by year interaction term (Table 2): 

previous November SPEI1 (accounting for 9% of the population by year interaction), previous 

December precipitation (9%), June mean temperature (8%), March minimum temperature (8%) 

and September SPEI1 (7%) (Table 2). Both the genetic and climate models had non-significant 

population by year interaction residuals (except for the genetic model for ELI), thereby indicating 

the suitability of selected molecular markers and climate factors for the explanation of differential 

population performance (Tables 1, 2). 

 

Population sensitivities to climate factors and relationships with climate at the origin  

Five populations showed a significant RWI sensitivity to May maximum temperature, either 

positive (two populations) or negative (three populations) relative to a hypothetical average 

population. Another five populations exhibited a significant (positive or negative) RWI sensitivity 

to previous November precipitation, and three populations showed a significant RWI sensitivity 
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to October SPEI6 (Table S7). Regarding ELI, six populations had a significant sensitivity 

(positive or negative) to previous November SPEI1, while five populations showed a significant 

sensitivity to previous December precipitation, four populations to previous September SPEI1, 

three populations to June mean temperature and five populations to March minimum temperature 

(Table S8).  

We found significant associations between population sensitivities to climate at the trial 

site and climate at the origin of these populations for RWI (Table 5). The temperature was the 

climate factor most related to these sensitivities, with populations from warmer environments (i.e. 

with higher MAT and MST) and experiencing more severe winter conditions, (i.e. lower MWT) 

being less sensitive to high May temperatures, high previous November precipitation and dry 

growing seasons (October SPEI6) (Table 5, Fig. 4). On the other hand, populations undergoing 

higher precipitation seasonality (Fig. 4) and lower summer to annual precipitation ratio at origin, 

as well as those belonging to the southernmost areas of the species distribution range, were more 

sensitive to dry growing seasons than their wetter counterparts (Table 5). For ELI we did not find 

relevant associations between population sensitivities to climate and climate at a population’s 

origin (Table S9). 

 

Genes interacting with climate for the explanation of G×E 

All individual SNPs included in the genetic models showed additive effects for both RWI and 

ELI, while two epistatic interactions for RWI had dominant × dominant or dominant × additive 

gene actions and one epistatic interaction for ELI had a dominant × additive gene action. For RWI, 

we found significant cross-products between SNP201 and two climate factors (May maximum 

temperature and previous November precipitation). However, only the cross-product between 

SNP201 and previous November precipitation significantly explained the interaction between 

populations and years (albeit only accounting for 1% of interaction SS, Table 1). For ELI, SNP159 

significantly interacted with June mean temperature; however, it explained only interannual 

variability of trees nested to populations, but not among populations (Table 2).  
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For the abovementioned SNPs, the effect of allelic substitutions as related to climate was 

estimated. In particular, replacing the C allele with the A allele in SNP201 decreased RWI by 0.029 

and 0.001 (standardised) units per every 1°C increase in May maximum temperature and every 1 

mm increase in previous November precipitation, respectively (Table 4). In turn, replacing the G 

allele with the A allele in SNP159 increased ELI by 0.060 (standardised) units per every 1°C 

increase in June mean temperature (Table 4). Known gene functions of every SNP with particular 

relevance in G×E models are annotated in Table 3. For most SNPs, it was possible to retrieve the 

related biological functions of their associated proteins.  

 

Discussion 

Aleppo pine harbours a large variability in life-history traits related to growth, defence and 

reproduction (Santos-del-Blanco et al 2013), which results in a complex adaptive syndrome that 

tailors individual performances to the array of conditions encountered by the species (Sbay and 

Zas, 2018; Santini et al., 2019). It is therefore expected that some populations may respond better 

to climate instability and warming than others because of the combined effects of local adaptation 

and differential phenotypic plasticity on functional traits (Voltas et al., 2018; Hevia et al., 2020; 

Patsiou et al., 2020). Factorial regression provided first-hand information on the genetic basis of 

differentiation in annual growth responses and their climate drivers for this emblematic 

Mediterranean conifer. The major novelty of this approach is that it quantified with precision 

growth variability among individuals explained by particular SNPs while characterizing the 

relationship between the effect of allele substitutions in dendrophenotypes and climate. In this 

regard, this approach can be regarded as complementary to methods that analyse high-

dimensional genomic information in relation to environmental variables but where phenotypic 

information is absent (e.g. Redundancy analysis; Capblancq and Forester [2021], Varas-Myrik et 

al. [2022]), or that investigate long-term or specific-year tree-ring traits searching for genotype-

phenotype associations but disregarding G×E (Housset et al. 2018).  
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Climate responses at the species level 

Populations with larger trunk diameters were from coastal eastern Mediterranean areas 

and cool climates, while populations that showed smaller sizes originated from warm and dry 

areas (Voltas et al., 2018). This observation anticipates that low water availability and high 

temperatures are the main climatic constraints for Aleppo pine growth (de Luis et al., 2013). At 

the same time, both factors likely had a variable effect on growth depending on the geographic 

origin of populations (Patsiou et al., 2020), as suggested by significant population by year 

interactions for ring width and early to latewood ratio. 

At the whole species level (i.e. across populations), annual growth was mainly controlled 

by late spring (May-June) climate (Pasho et al., 2012; Novak et al., 2013). Water stress in spring, 

modulated by temperature, is known to negatively affect xylogenesis, thereby inducing a decline 

in secondary growth as a likely result of meristematic constraints (de Luis et al., 2013; Puri et al., 

2015; Gazol et al., 2017; Hevia et al., 2020). In addition, RWI and ELI were influenced negatively 

by previous September and positively by January temperatures. The former effect is often 

interpreted as an indication of reserves depletion, hence decreasing secondary growth (Kagawa et 

al., 2006; Choury et al., 2017) and early to latewood proportion. The latter suggests that this 

thermophilic pine is constrained by cold winters, which influences its ability to resume cambial 

activity earlier in the growing season (Camarero et al., 2010; Housset et al., 2018). The negative 

response of RWI and ELI to previous autumn precipitation (November), earlier reported for the 

region (Shestakova et al., 2017; Hevia et al., 2020), might be related to the impairment of 

photosynthesis and, hence, of carbon storage due to prolonged cloudiness. This would lead to a 

decrease in earlywood and total ring width (Camarero et al., 2010; Royo-Navascués et al., 2021).  

 

How do populations differentially respond to annual climate variability? 

Our findings revealed the existence of different radial growth patterns among Aleppo pine 

populations. This array of growth responses could be related to particular climate factors at the 

trial site. Therefore, in addition to genetic variation in tree diameter among populations, 
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adaptation in Aleppo pine appears as partly driven by differential plasticity in secondary growth 

(Voltas et al., 2018; Hevia et al., 2020; Patsiou et al., 2020). This differential plasticity, as 

explained by G×E interaction effects, is better related to water availability than to temperature 

(compare their relevance in the explanation of G×E; cf. Tables 1, 2). This observation broadens 

previous results on natural stands (as opposed to common garden observations), which anticipate 

such plastic effects in wood traits for this species (de Luis et al., 2013; Novak et al., 2013). 

Some populations were particularly sensitive to one or several climate factors at the trial 

site. A comparison with their climate responses at origin (i.e. in natural stands), as reported in 

earlier studies, provides hints on the adaptive significance of such sensitivities. For example, 

Tabarka (Tunisia) is a population from a sub-humid environment of the Maghreb that was 

extremely dependent on water availability at the trial site. This suggests that carbohydrates 

synthetized under favorable conditions (autumn) may be particularly important for spring growth 

resumption, and is consistent with in situ observations indicating that drought during the previous 

autumn through spring is most limiting for Tunisian Aleppo pine forests (Bachtobji Bouachir et 

al., 2017). Another population from a sub-humid coastal area (Kassandra, Greece) showed high 

sensitivity to elevated temperatures during late spring. This is in concord with a previous study 

indicating that very warm springs strongly limit Aleppo pine growth in Greece due to excessive 

evapotranspiration rates (Papadopoulos et al., 2001). This performance can be explained by the 

extreme plasticity of Greek populations adjusting the timing of earlywood formation (Hevia et 

al., 2020). Conversely, the sensitivity to hot summers in terms of decreased early to latewood ratio 

detected for dry Iberian populations (e.g. Benicàssim) points to a conservative water-use strategy: 

a strongly reduced earlywood in unfavourable years is likely indicative of an earlier growth 

cessation before peak summer and hence higher drought resistance (Hevia et al., 2020; Royo-

Navascués et al., 2021). 

Variation in population sensitivities to the abovementioned climate factors showed 

significant associations with climate at origin, suggesting distinct adaptations (George et al., 

2019; Depardieu et al., 2020). The observation that populations from warm areas present less 
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growth reductions under high May temperatures likely reflects specific adaptation to hot springs 

(Housset et al., 2018). On the other hand, populations from similarly warm areas but experiencing 

high precipitation seasonality and low summer rainfall were the most growth-sensitive to dry 

vegetative periods. This counterintuitive finding may be attributed to the combined effect of traits 

involved in local adaptation to drought, i.e. a particular realisation of the species’ adaptive 

syndrome as materialised in a particular life history strategy (Santini et al., 2019). Hence, these 

populations may present a strong summer cambial dormancy, thereby decreasing tracheid 

formation and thus secondary growth during dry periods, improving resistance to embolism 

(Camarero et al., 2010; De Luis et al., 2011). This agrees with intra-annual density fluctuation 

(IADF) records from a common garden experiment, in which populations from drier areas 

experienced more IADFs (Hevia et al., 2020).  

 

Interpreting the genetic basis of secondary growth and its climate dependencies 

The differential growth responses among individuals were related to allele-specific expressions 

of a subset of candidate genes, with four and two SNPs partially explaining annual variability in 

ring width and the early to latewood ratio, respectively. Despite the limited explanation of G×E 

effects (<15%), our candidate gene approach proved to be partly effective for unveiling the genetic 

basis of secondary growth. However, most growth variability related to differential gene 

expression did not bear a clear population structure, which prevents interpreting such variability 

in terms of ecotypic differentiation in phenotypic plasticity. In this regard, the traits analysed are 

very likely under strong polygenic control, as shown for tree height in the taxonomically close 

Pinus pinaster (de Miguel et al. 2022). Thus it is likely that many more SNPs may have been 

involved in the variability of secondary growth, some with very low effect and thus statistically 

difficult to detect (de Miguel et al. 2022). Incorporating a substantially larger amount of candidate 

genes into G×E modelling approaches that could effectively integrate this high-dimensional 

genetic complexity (e.g. partial least squares estimation [Vargas et al. 2006] or random reaction 

norm models [Jarquín et al. 2014]) could capitalise upon the increasing wealth of genomic and 
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environmental information available, particularly for pine species with large and complex 

genomes. On the other hand, factorial regression may be particularly adequate for precise testing 

and quantification of the role of specific genes of annotated function in the determination of 

dendrophenotypes (or other longitudinal data) and, hence, for clarifying the existing relations 

between genomes and phenomes in forest trees. 

The interplay between gene markers and climate indicated that two SNPs had putative 

roles in tree adaptation to climate. SNP201 (related to ring width) interacted with previous 

November precipitation and May maximum temperature. SNP201 has been referred to as the P. 

halepensis transcriptome (Pinosio et al., 2014), but the molecular and biological function of its 

associated gene has not been described so far. Notably, a previous GWAS study conducted in the 

same common garden (Santini et al., 2020) linked SNP201 to variation in photosynthetic rate 

among trees. Alternatively, SNP159 (related to early to latewood ratio) interacted with June mean 

temperature. Calcium-dependent protein kinases (CDPKs) are associated with a candidate gene 

corresponding to SNP159. CDPKs constitute a large multigene family involved in metabolic, ion 

flux and gene expression alteration and related to phytohormone activity, such as the modulation 

of GA3 homeostasis (Schulz et al., 2013). CPDKs have been shown to play a role in many 

physiological processes, including development and growth (Asano et al., 2012; Boudsocq et al., 

2013). CDPKs are also recognised as positive regulators to environmental stresses (Schulz et al., 

2013), with the G allele of SNP159 seemingly providing adaptation to high temperatures during 

the peak growing season for Aleppo pine.  

The remaining SNP loci relevant for G×E explanation could not be related to any explicit 

climate factor, which may indicate the need to screen for alternative temporal windows or 

environmental records to fully decipher the genetic basis of differential growth plasticity in the 

species as related to climate. In any case, the biological function of these SNPs is known (except 

SNP9), and it is related to growth traits in Aleppo pine (Santini et al., 2020; Table 3). In particular, 

the gene associated with SNP151 encodes for proteins of the PEX family that are involved in 

photomorphogenesis, which can influence leaf development (Santini et al., 2020) and 
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photosynthesis (Kaur et al., 2013). These mechanisms may affect the allocation of photosynthetic 

products to secondary growth throughout the year. On the other hand, the gene corresponding to 

SNP133 (involved in G×E of both RWI and ELI) is associated with polygalacturonases influencing 

tissue development and defence signals (Rui et al., 2017; Gallego-Giraldo et al., 2020).  

Interestingly, our study showed that the influence of SNP133 on ring width and early to latewood 

ratio was in both cases dependent on the joint expression of genes associated with SNP151 and 

SNP159, with effects of double dominance and simple dominance, respectively.  

 

Conclusions 

This study contributes to improving our knowledge on the genetic basis and climate controls of 

growth variation of a widespread Mediterranean conifer. The different interannual responses 

among Aleppo pine populations could be described by climate factors mainly related to water 

availability, and could be successfully related to differential SNP expression of a subset of 

candidate genes. We therefore show how tree-ring phenotypes obtained from common garden 

experiments in combination with a candidate-gene approach constitute a great opportunity to 

disentangle the importance of genetic and environmental effects determining tree adaptation. 

While genomic data are now widely used as a source of insight into adaptation patterns for non-

model species (Fitzpatrick and Keller, 2015; Sork et al., 2013; Wadgymar et al., 2017; Mahony 

et al., 2020), this is, to the best of our knowledge, the first attempt to integrate genetic and 

environmental information into statistical G×E models for a forest tree species by considering 

longitudinal records of ring width and early to latewood ratio as phenotypic traits. In particular, a 

major novelty of this study is the possibility to quantify with precision the phenotypic changes 

attributable to SNPs associated to candidate genes and the associated effect of allelic substitutions 

in relation to climate variables. Future studies could consider alternative environmental variables 

that may also drive secondary growth of Aleppo pine (e.g. soil moisture, wind) while integrating 

a larger set of genetic markers associated with candidate genes. The precise molecular 

mechanisms underlying the adaptation patterns showed by some individuals carrying certain 
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allele substitutions could also be a target for future research.  

 

Acknowledgments 

We thank Ricardo Alía and Delphine Grivet (CIFOR-INIA) for providing the genomic data. 

  



Chapter 2 

108 

References 

Asano. T., Hayashi, N., Kikuchi, S., Ohsugi, R. (2012). CDPK-mediated abiotic stress signaling. 

Plant Signal. Behavior. 7, 817–821. https://doi.org/10.4161/psb.20351 

 

Bachtobji Bouachir, B., Khorchani, A., Guibal, F., El Aouni, M.H., Khaldi, A. (2017). 

Dendroecological study of Pinus halepensis and Pinus pinea in northeast coastal dunes in Tunisia 

according to distance from the shoreline and dieback intensity. Dendrochronologia. 45, 62–72. 

https://doi.org/10.1016/j.dendro.2017.06.008 

 

Benito Garzón, M., Alía, R., Robson, T.M., Zavala, M.A. (2011). Intra-specific variability and 

plasticity influence potential tree species distributions under climate change. Glob. Ecol. 

Biogeogr. 20, 766–778.  https://doi.org/10.1111/j.1466-8238.2010.00646.x 

 

Boudsocq, M., Sheen, J. (2013). CDPKs in immune and stress signaling. Trends Plant Sci. 18, 

30–40. https://doi.org/10.1016/j.tplants.2012.08.008 

 

Boutet, E., Lieberherr, D., Tognolli, M., et al. (2016). UniProtKB/Swiss-Prot, the Manually 

Annotated Section of the UniProt KnowledgeBase: How to Use the Entry View. In: Edwards D, 

eds. Plant Bioinformatics: Methods in Molecular Biology. New York: Humana Press. 1374, 23-

54. https://doi.org/10.1007/978-1-4939-3167-5_2 

 

Bunn, A.G. (2008). A dendrochronology program library in R (dplR). Dendrochronologia. 26, 

115–124.  https://doi.org/10.1016/j.dendro.2008.01.002 

 

Bunn, A., Korpela, M., Biondi, F., Campelo, F., Mérian, P., Qeadan, F., Zang, C. (2021). dplR: 

Dendrochronology Program Library in R. R package version 1.7.2, https://CRAN.R-

project.org/package=dplR. 

https://doi.org/10.4161/psb.20351
https://doi.org/10.1016/j.dendro.2017.06.008
https://doi.org/10.1111/j.1466-8238.2010.00646.x
https://doi.org/10.1016/j.tplants.2012.08.008
https://doi.org/10.1007/978-1-4939-3167-5_2
https://doi.org/10.1016/j.dendro.2008.01.002
https://cran.r-project.org/package=dplR
https://cran.r-project.org/package=dplR


Chapter 2 

109 

 

Cabral-Alemán, C., Pompa-García, M., Acosta-Hernández, A.C., Zúñiga-Vásquez, J.M., 

Camarero, J.J. (2017). Earlywood and latewood widths of Picea chihuahuana show contrasting 

sensitivity to seasonal climate. Forests. 8, 1–11. https://doi.org/10.3390/f8050173 

 

Calleja-Rodríguez, A., Chen, Z., Suontama, M., Pan, J., Wu, H.X. (2021). Genomic Predictions 

With Nonadditive Effects Improved Estimates of Additive Effects and Predictions of Total 

Genetic Values in Pinus sylvestris. Front. Plant Sci. 12, 666820. 

https://doi.org/10.3389/fpls.2021.666820 

 

Camarero, J.J., Olano, J.M., Parras, A. (2010). Plastic bimodal xylogenesis in conifers from 

continental Mediterranean climates. New Phytol. 185, 471–480. https://doi.org/10.1111/j.1469-

8137.2009.03073.x 

 

Camarero, J.J., Collado, E., Martínez-de-Aragón, J., et al. (2021). Associations between climate 

and earlywood and latewood width in boreal and Mediterranean Scots pine forests. Trees Struct. 

Funct. 35, 155–169. https://doi.org/10.1007/s00468-020-02028-0 

 

Capblancq, T., Forester, B.R. (2021). Redundancy analysis: A Swiss Army Knife for landscape 

genomics. Methods Ecol. Evol. 12, 2298–2309. https://doi.org/10.1111/2041-210X.13722 

 

Choury, Z., Shestakova, T.A., Himrane, H., et al. (2017). Quarantining the Sahara Desert: growth 

and water-use efficiency of Aleppo pine in the Algerian Green Barrier. Eur. J. For.  Res. 136, 139–

152. https://doi.org/ 10.1007/s10342-016-1014-3 

 

Climent, J., Prada, M.A., Calama, R., Chambel, M.R., De Ron, D.S., Alía, R. (2008). To grow or 

to seed: Ecotypic variation in reproductive allocation and cone production by young female 

https://doi.org/10.3390/f8050173
https://doi.org/10.3389/fpls.2021.666820
https://doi.org/10.1111/j.1469-8137.2009.03073.x
https://doi.org/10.1111/j.1469-8137.2009.03073.x
https://link.springer.com/article/10.1007/s00468-020-02028-0
https://doi.org/10.1111/2041-210X.13722
https://doi.org/10.1007/s10342-016-1014-3


Chapter 2 

110 

Aleppo pine (Pinus halepensis, Pinaceae). Am. J. Bot. 95, 833–842. https://doi.org/ 

10.3732/ajb.2007354 

 

Daniels, R.R., Taylor, R.S., Martínez, S.C.G., et al. (2019). Looking for local adaptation: 

Convergent microevolution in aleppo pine (Pinus halepensis). Genes. 10, 673. https://doi.org/ 

10.3390/genes10090673 

 

De Luis, M., Novak, K., Raventós, J., Gričar, J., Prislan, P., Čufar, K. (2011). Cambial activity, 

wood formation and sapling survival of Pinus halepensis exposed to different irrigation regimes. 

For. Ecol. Manag. 262, 1630–1638. https://doi.org/10.1016/j.foreco.2011.07.013 

 

De Luis, M., Čufar, K., Di Filippo, A., et al. (2013). Plasticity in dendroclimatic response across 

the distribution range of Aleppo pine (Pinus halepensis). PLoS ONE 8: e83550. 

https://doi.org/10.1371/journal.pone.0083550 

 

de Miguel, M., Rodríguez-Quilón, I., Heuertz, M., et al. (2022). Polygenic adaptation and negative 

selection across traits, years and environments in a long-lived plant species (Pinus pinaster Ait., 

Pinaceae). Mol. Ecol. 31, 2089–2105.  https://doi.org/10.1111/mec.16367 

 

Depardieu, C., Girardin, M.P., Nadeau, S., Lenz, P., Bousquet, J., Isabel, N. (2020). Adaptive 

genetic variation to drought in a widely distributed conifer suggests a potential for increasing 

forest resilience in a drying climate. New Phytol. 227, 427–439. 

https://doi.org/10.1111/nph.16551 

 

Depardieu, C., Gérardi, S., Nadeau, S., et al. (2021). Connecting tree-ring phenotypes, genetic 

associations and transcriptomics to decipher the genomic architecture of drought adaptation in a 

widespread conifer. Mol. Ecol. 30, 3898–3917.   

https://doi.org/10.3732%2Fajb.2007354
https://doi.org/10.3390%2Fgenes10090673
http://dx.doi.org/10.1016/j.foreco.2011.07.013
https://doi.org/10.1371%2Fjournal.pone.0083550


Chapter 2 

111 

https://doi.org/10.1111/mec.15846 

 

Domec, J.C., Gartner, B.L. (2002). How do water transport and water storage differ in coniferous 

earlywood and latewood? J. Exp. Bot. 53, 2369–2379. https://doi.org/10.1093/jxb/erf100 

 

Du, Q., Tian, J., Yang, X., et al. (2015). Identification of additive, dominant, and epistatic variation 

conferred by key genes in cellulose biosynthesis pathway in Populus tomentosa. DNA Res. 22, 

53–67. https://doi.org/10.1093/dnares/dsu040 

 

Fick, S.E., Hijmans, R.J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for 

global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/10.1002/joc.5086 

 

Fitzpatrick, M.C., Keller, S.R. (2015). Ecological genomics meets community-level modelling of 

biodiversity: Mapping the genomic landscape of current and future environmental adaptation. 

Ecol. 18, 1–16. https://doi.org/10.1111/ele.12376 

 

Forner, A., Valladares, F., Bonal, D., Granier, A., Grossiord, C., Aranda, I. (2018). Extreme 

droughts affecting Mediterranean tree species’ growth and water-use efficiency: The importance 

of timing. Tree Physiol. 38, 1127–1137. https://doi.org/10.1093/treephys/tpy022 

 

Gallego-Giraldo, L., Liu, C., Pose-Albacete, S., et al. (2020). ARABIDOPSIS DEHISCENCE 

ZONE POLYGALACTURONASE 1 (ADPG1) releases latent defense signals in stems with 

reduced lignin content. Proc. Nat. Acad. Sci. USA 117, 3281–3290. 

https://doi.org/10.1073/pnas.1914422117 

 

Gazol, A., Ribas, M., Gutiérrez, E., Camarero, J.J. (2017). Aleppo pine forests from across Spain 

show drought-induced growth decline and partial recovery. Agric. For. Meteorol. 232, 186–194. 

https://doi.org/10.1111/mec.15846
https://doi.org/10.1093/jxb/erf100
https://doi.org/10.1093%2Fdnares%2Fdsu040
https://doi.org/10.1002/joc.5086
https://doi.org/10.1111/ele.12376
https://doi.org/10.1093/treephys/tpy022
https://doi.org/10.1073/pnas.1914422117


Chapter 2 

112 

https://doi.org/10.1016/j.agrformet.2016.08.014 

 

George, J.P., Grabner, M., Campelo, F, et al. (2019). Intra-specific variation in growth and wood 

density traits under water-limited conditions: Long-term-, short-term-, and sudden responses of 

four conifer tree species. Sci. Total Environ. 660, 631–643. 

https://doi.org/10.1016/j.scitotenv.2018.12.478 

 

Griffin, D., Meko, D.M., Touchan, R., Leavitt, S.W., Woodhouse, C.A. (2011). Latewood 

chronology development for summer-moisture reconstruction in the US Southwest. Tree Ring 

Res. 67, 87–101. https://doi.org/10.3959/2011-4.1 

 

Grivet, D., Sebastiani, F., Alía, R., et al. (2011). Molecular footprints of local adaptation in two 

mediterranean conifers. Mol. Biol. Evol. 28, 101–116. https://doi.org/10.1093/molbev/msq190 

 

Harris, I., Osborn, T.J., Jones, P., Lister, D. (2020). Version 4 of the CRU TS monthly high-

resolution gridded multivariate climate dataset. Sci. Data. 7, 1–18. 

https://doi.org/10.1038/s41597-020-0453-3 

 

Helluy, M., Prévosto, B., Cailleret, M., Fernandez, C., Balandier, P. (2020). Competition and 

water stress indices as predictors of Pinus halepensis Mill. radial growth under drought. For. Ecol. 

Manag. 460, 117877. https://doi.org/10.1016/j.foreco.2020.117877Get rights and content 

 

Hevia, A., Campelo, F., Chambel, R., et al. (2020). Which matters more for wood traits in Pinus 

halepensis Mill., provenance or climate? Ann. For. Sci. 77, 1-24. https://doi.org/10.1007/s13595-

020-00956-y 

 

Holliday, J.A., Wang, T., Aitken, S. (2012). Predicting adaptive phenotypes from multilocus 

http://dx.doi.org/10.1016/j.agrformet.2016.08.014
https://doi.org/10.1016/j.scitotenv.2018.12.478
http://dx.doi.org/10.3959/2011-4.1
https://doi.org/10.1093/molbev/msq190
https://www.nature.com/articles/s41597-020-0453-3
https://doi.org/10.1016/j.foreco.2020.117877
https://doi.org/10.1016/j.foreco.2020.117877
http://dx.doi.org/10.1007/s13595-020-00956-y
http://dx.doi.org/10.1007/s13595-020-00956-y


Chapter 2 

113 

genotypes in sitka spruce (Picea sitchensis) using random forest. G3: Genes Genom. Genet. 2: 

1085–1093. https://doi.org/10.1534/g3.112.002733 

 

Holmes, R.L. (1983). Computer-assisted quality control in tree- ring dating and measurement. 

Tree-ring Bull. 43, 69–78. 

 

Housset, J.M., Carcaillet, C., Girardin, M.P., Xu, H., Tremblay, F., Bergeron, Y. (2016). In situ 

comparison of tree-ring responses to climate and population genetics: The need to control for 

local climate and site variables. Front. Ecol. Evol. 4, 1–12. 

https://doi.org/10.3389/fevo.2016.00123 

 

Housset, J.M., Nadeau, S., Isabel, N., et al. (2018). Tree rings provide a new class of phenotypes 

for genetic associations that foster insights into adaptation of conifers to climate change. New 

Phytol. 218, 630–645.  https://doi.org/10.1111/nph.14968 

 

Jaramillo-Correa, J.P., Rodríguez-Quilón, I., Grivet, D., et al. (2015). Molecular proxies for 

climate. Genetics 199, 793–807. https://doi.org/10.1534/genetics.114.173252 

 

Jarquín, D., Crossa, J., Lacaze, X., et al. (2014). A reaction norm model for genomic selection 

using high-dimensional genomic and environmental data. Theor. Appl. Genet. 127, 595–607. 

https://doi.org/10.1007/s00122-013-2243-1 

 

Jezkova, T., Wiens, J.J. (2016). Rates of change in climatic niches in plant and animal populations 

are much slower than projected climate change. Proc. Royal Soc. B. Biol. Sci. 283, 1-9. 

https://doi.org/10.1098/rspb.2016.2104 

 

Kagawa, A., Sugimoto, A., Maximov, T.C. (2006). 13CO2 pulse-labelling of photoassimilates 

https://doi.org/10.1534%2Fg3.112.002733
https://doi.org/10.3389/fevo.2016.00123
https://doi.org/10.1111/nph.14968
https://doi.org/10.1098/rspb.2016.2104


Chapter 2 

114 

reveals carbon allocation within and between tree rings. Plant Cell Environ. 29, 1571–1584. 

https://doi.org/10.1111/j.1365-3040.2006.01533.x 

 

Kaur, N., Li, J., Hu, J. (2013). Peroxisomes and Photomorphogenesis. In: del Río L, eds. 

Peroxisomes and their Key Role in Cellular Signaling and Metabolism. Subcellular Biochemistry. 

Dordrecht: Springer, 69: 195-211. https://doi.org/10.1007/978-94-007-6889-5_11 

 

Klein, T., Di Matteo, G., Rotenberg, E., Cohen, S., Yakir, D. (2013). Differential ecophysiological 

response of a major Mediterranean pine species across a climatic gradient. Tree Physiol. 33, 26–

36. https://doi.org/10.1093/treephys/tps116 

 

Littell, R.C., Henry, P.R., Ammerman, C.B. (1998). Statistical Analysis of Repeated Measures 

Data Using SAS Procedures. J. Anim. Sci. 76, 1216–1231. 

https://doi.org/10.2527/1998.7641216x 

 

Lombardi, E., Ferrio, J.P., Rodríguez-Robles, U., Resco de Dios, V., Voltas, J. (2021). Ground-

Penetrating Radar as phenotyping tool for characterizing intraspecific variability in root traits of 

a widespread conifer. Plant Soil. 468, 319-336. https://doi.org/10.1007/s11104-021-05135-0 

 

Mahony, C.R., MacLachlan, I.R., Lind, B.M., Yoder, J.B., Wang, T., Aitken, S.N. (2020). 

Evaluating genomic data for management of local adaptation in a changing climate: A lodgepole 

pine case study. Evol. Appl. 13, 116–131. https://doi.org/10.1111/eva.12871 

 

Malosetti, M., Ribaut, J.M., van Eeuwijk, F.A. (2013). The statistical analysis of multi-

environment data: Modeling genotype-by-environment interaction and its genetic basis. Front. 

Physiol. 4, 1–17. https://doi.org/10.3389/fphys.2013.00044 

 

https://doi.org/10.1093/treephys/tps116
https://doi.org/10.1007/s11104-021-05135-0
https://doi.org/10.1111/eva.12871
https://doi.org/10.3389/fphys.2013.00044


Chapter 2 

115 

Malosetti, M., Voltas, J., Romagosa, I., Ullrich, S.E., Eeuwijk, F.A.V. (2004). Mixed models 

including environmental covariables for studying QTL by environment interaction. Euphytica 

137, 139–145. https://doi.org/10.1023/B:EUPH.0000040511.46388.ef 

 

Martín-Benito, D., Del Río, M., Cañellas, I. (2010). Black pine (Pinus nigra Arn.) growth 

divergence along a latitudinal gradient in Western Mediterranean mountains. Ann. For. Sci. 67, 

401. https://doi.org/10.1051/forest/2009121 

 

Martín-Sanz, R.C., San-Martín, R., Poorter, H., Vázquez, A., Climent, J. (2019). How does water 

availability affect the allocation to bark in a mediterranean conifer? Front. Plant Sci. 10, 1–13. 

https://doi.org/10.3389/fpls.2019.00607 

 

Martínez-Sancho, E., Rellstab, C., Guillaume, F., et al. (2021). Post-glacial re-colonization and 

natural selection have shaped growth responses of silver fir across Europe. Sci. Total Environ. 

779, 146393. https://doi.org/10.1016/j.scitotenv.2021.146393 

 

Montwé, D., Isaac-Renton, M., Hamann, A., Spiecker, H. (2016). Drought tolerance and growth 

in populations of a wide-ranging tree species indicate climate change risks for the boreal north. 

Glob. Chang. Biol. 22, 806–815. https://doi.org/10.1111/gcb.13123 

 

Novak, K., de Luís, M., Raventós, J., Čufar, K. (2013). Climatic signals in tree-ring widths and 

wood structure of Pinus halepensis in contrasted environmental conditions. Trees Struct. Funct. 

27, 927–936. https://doi.org/10.1007/s00468-013-0845-5 

 

Papadopoulos, A., Serre-Bachet, F., Tessier, L. (2001). Tree ring to climate relationships of Aleppo 

pine (Pinus halepensis Mill.) in Greece. Ecol. Mediterr. 27, 89–98. 

https://doi.org/10.3406/ecmed.2001.1908 

http://dx.doi.org/10.1023/B:EUPH.0000040511.46388.ef
http://dx.doi.org/10.1051/forest/2009121
https://doi.org/10.3389/fpls.2019.00607
https://doi.org/10.1016/j.scitotenv.2021.146393
https://doi.org/10.1111/gcb.13123
http://dx.doi.org/10.1007/s00468-013-0845-5
http://dx.doi.org/10.3406/ecmed.2001.1908


Chapter 2 

116 

 

Pasho, E., Camarero, J.J., Vicente-Serrano, S.M. (2012). Climatic impacts and drought control of 

radial growth and seasonal wood formation in Pinus halepensis. Trees Struct. Funct. 26, 1875–

1886. http://hdl.handle.net/10261/66161 

 

Patsiou, T.S., Shestakova, T.A., Klein, T., et al. (2020). Intraspecific responses to climate reveal 

nonintuitive warming impacts on a widespread thermophilic conifer. New Phytol. 228, 525-540.   

https://doi.org/10.1111/nph.16656 

 

Pinosio, S., González-Martínez, S.C., Bagnoli, F., et al. (2014). First insights into the 

transcriptome and development of new genomic tools of a widespread circum-Mediterranean tree 

species, Pinus halepensis Mill. Mol. Ecol. Resour. 14, 846–856. https://doi.org/10.1111/1755-

0998.12232 

 

Puri, E., Hoch, G., Körner, C. (2015). Defoliation reduces growth but not carbon reserves in 

Mediterranean Pinus pinaster trees. Trees Struct. Funct. 29, 1187–1196. 

https://doi.org/10.1007/s00468-015-1199-y 

 

Royer-Tardif, S., Boisvert-Marsh, L., Godbout, J., Isabel, N., Aubin, I. (2021). Finding common 

ground: Toward comparable indicators of adaptive capacity of tree species to a changing climate. 

Ecol. Evol. 11, 13081–13100. https://doi.org/10.1002/ece3.8024 

 

Royo-Navascues, M., Del Castillo, E.M., Serrano-Notivoli, R., et al. (2021). When density 

matters: The spatial balance between early and latewood. Forests. 12, 1–17. 

https://doi.org/10.3390/f12070818  

 

Rui, Y., Xiao, C., Yi, H., et al. (2017). POLYGALACTURONASE INVOLVED IN 

https://doi.org/10.1111/nph.16656
http://dx.doi.org/10.1007/s00468-015-1199-y
https://doi.org/10.1002/ece3.8024
https://www.mdpi.com/1999-4907/12/7/818


Chapter 2 

117 

EXPANSION3 functions in seedling development, rosette growth, and stomatal dynamics in 

Arabidopsis thaliana. Plant Cell. 29, 2413–2432. https://doi.org/10.1105/tpc.17.00568 

 

Santini, F., Climent, J.M., Voltas, J. (2019). Phenotypic integration and life history strategies 

among populations of Pinus halepensis: an insight through structural equation modelling. Ann. 

Bot. 124, 1161–1171. https://doi.org/10.1093/aob/mcz088 

 

Santini, F., Kefauver, S.C., Araus, J.L., et al. (2020). Bridging the genotype–phenotype gap for a 

Mediterranean pine by semi-automatic crown identification and multispectral imagery. New 

Phytol. 229, 245-258. https://doi.org/10.1111/nph.16862 

 

Santos-del-Blanco, L., Bonser, S.P., Valladares, F., Chambel, M.R., Climent, J. (2013). Plasticity 

in reproduction and growth among 52 range-wide populations of a Mediterranean conifer: 

Adaptive responses to environmental stress. J. Evol. Biol. 26, 1912–1924. 

https://doi.org/10.1111/jeb.12187 

 

Sbay, H., Zas, R. (2018). Geographic variation in growth, survival, and susceptibility to the 

processionary moth (Thaumetopoea pityocampa Dennis & Schiff.) of Pinus halepensis Mill. and 

P. brutia Ten.: results from common gardens in Morocco. Ann. For. Sci. 75: 1-15. 

https://doi.org/10.1007/s13595-018-0746-2 

 

Schulz, P., Herde, M., Romeis, T. (2013). Calcium-dependent protein kinases: Hubs in plant stress 

signalling and development. Plant Physiol. 163, 523–530. https://doi.org/10.1104/pp.113.222539 

 

Shestakova, T.A., Camarero, J.J., Ferrio, J.P., Knorre, A.A., Gutiérrez, E., Voltas, J. (2017). 

Increasing drought effects on five European pines modulate Δ13C-growth coupling along a 

Mediterranean altitudinal gradient. Funct. Ecol. 31, 1359–1370. https://doi.org/10.1111/1365-

https://doi.org/10.1105/tpc.17.00568
https://doi.org/10.1093%2Faob%2Fmcz088
https://doi.org/10.1111/nph.16862
http://dx.doi.org/10.1007/s13595-018-0746-2
http://dx.doi.org/10.1111/1365-2435.12857


Chapter 2 

118 

2435.12857 

 

Sixto, H., Gil, P.M., Ciria, P., Camps, F., Cañellas, I., Voltas, J. (2016). Interpreting genotype-by-

environment interaction for biomass production in hybrid poplars under short-rotation coppice in 

Mediterranean environments. GCB Bioenergy. 8, 1124–1135. https://doi.org/10.1111/gcbb.12313 

 

Sork, V.L., Aitken, S.N., Dyer, R.J., Eckert, A.J., Legendre, P., Neale, D.B. (2013). Putting the 

landscape into the genomics of trees: Approaches for understanding local adaptation and 

population responses to changing climate. Tree Genet. Genom. 9, 901–911. 

https://doi.org/10.1007/s11295-013-0596-x 

 

Tapias, R., Climent, J., Pardos, J.A., Gil, L. (2004). Life histories of Mediterranean pines. Plant 

Ecol. 171, 53–68. https://doi.org/10.1023/B:VEGE.0000029383.72609.f0 

 

Torbenson, M.C.A., Stahle, D.W., Villanueva Díaz, J., Cook, E.R., Griffin, D. (2016). The 

Relationship between Earlywood and Latewood Ring-Growth Across North America. Tree Ring 

Res. 72, 53–66. https://doi.org/10.3959/1536-1098-72.02.53 

 

Van Eeuwijk, F.A., Crossa, J., Vargas, M., Ribaut, J.M. (2002). Analysing QTL by environment 

interaction by factorial regression, with an application to the CIMMYT drought and low nitrogen 

stress programme in maize. In: M.S. Kang, eds. Quantitative Genetics, Genomics and Plant. 245-

256. https://doi.org/10.1079/9780851996011.0245 

 

Van Eeuwijk, F.A., Malosetti, M., Yin, X., Struik, P.C., Stam, P. (2005). Statistical models for 

genotype by environment data: from conventional ANOVA models to eco-physiological QTL 

models. Aust. J. Agric. Res. 56, 883–894. https://doi.org/10.1071/AR05153 

 

http://dx.doi.org/10.1111/1365-2435.12857
http://dx.doi.org/10.1111/gcbb.12313
http://dx.doi.org/10.1023/B:VEGE.0000029383.72609.f0
http://dx.doi.org/10.3959/1536-1098-72.02.53
http://dx.doi.org/10.1079/9780851996011.0245


Chapter 2 

119 

Varas-Myrik, A., Sepúlveda-Espinoza, F., Fajardo, A., et al. (2022). Predicting climate change-

related genetic offset for the endangered southern South American conifer Araucaria araucana. 

For. Ecol. Manag. 504, 119856. https://doi.org/10.1016/j.foreco.2021.119856 

  

Vargas, M., Van Eeuwijk, F.A., Crossa, J., Ribaut, J.M. (2006). Mapping QTLs and QTL x 

environment interaction for CIMMYT maize drought stress program using factorial regression 

and partial least squares methods. Theor. Appl. Genet. 112, 1009-

1023.  https://doi.org/10.1007/s00122-005-0204-z  

 

Vicente-Serrano, S.M., Beguería, S., López-Moreno, J.I. (2010). A multiscalar drought index 

sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 23, 

1696–1718. https://doi.org/10.1175/2009JCLI2909.1 

 

Voltas, J., López-Córcoles, H., Borrás, G. (2005). Use of biplot analysis and factorial regression 

for the investigation of superior genotypes in multi-environment trials. Eur. J. Agron. 22, 309–

324. https://doi.org/10.1016/j.eja.2004.04.005 

 

Voltas, J., Shestakova, T.A., Patsiou, T., di Matteo, G., Klein, T. (2018). Ecotypic variation and 

stability in growth performance of the thermophilic conifer Pinus halepensis across the 

Mediterranean basin. For. Ecol. Manag. 424, 205–215. 

https://doi.org/10.1016/j.foreco.2018.04.058 

 

Wadgymar, S.M., Lowry, D.B., Gould, B.A., Byron, C.N., Mactavish, R.M., Anderson, J.T. 

(2017). Identifying targets and agents of selection: innovative methods to evaluate the processes 

that contribute to local adaptation. Methods Ecol. Evol. 8, 738–749.   

https://doi.org/10.1111/2041-210X.12777 

 

https://doi.org/10.1016/j.foreco.2021.119856
https://doi.org/10.1007/s00122-005-0204-z
http://dx.doi.org/10.1175/2009JCLI2909.1
https://doi.org/10.1016/j.eja.2004.04.005
http://dx.doi.org/10.1016/j.foreco.2018.04.058
https://doi.org/10.1111/2041-210X.12777


Chapter 2 

120 

Zang, C., Biondi, F. (2015). Treeclim: An R package for the numerical calibration of proxy-

climate relationships. Ecography. 38, 431–436. https://doi.org/10.1111/ecog.01335  

http://dx.doi.org/10.1111/ecog.01335


Chapter 2 

121 

Chapter 2 – Tables and Figures 

Table 1. Analysis of variance (general model) and factorial regression modelling of genotype by 

environment (G×E) interaction effects using either molecular markers (genetic model) or climate 

information (climate model) of indexed ring width (RWI) involving 130 individuals belonging to 23 

populations of Aleppo pine grown in a common garden in Altura (Spain).  

 RWI 

  general model 

Source df SS MS F-Value Pr (> F) R2 (%) 

Population (P) 22 0.14 0.007 0.12 1.000 0.1 

Tree (within P) 107 0.63 0.006 0.11 1.000 0.2 

Year (Y) 19 131.71 6.932 124.92 < 0.001 48.5 

P × Y 418 26.34 0.063 1.14 0.043 9.7 

Error (Ɛ) 2033 112.82 0.055   41.5 

       

  G×E partition (genetic model) 

SNP201(A) × Y 19 2.60 0.137 2.58 < 0.001 1.9 

SNP151(A) × Y 19 2.29 0.121 2.28 0.001 1.6 

SNP151(D) × Y 19 1.34 0.071 1.34 0.150 1.0 

SNP133(A) × Y 19 1.00 0.052 0.99 0.469 0.7 

SNP133(D) × Y 19 1.22 0.064 1.21 0.236 0.9 

SNP9(A) × Y 19 0.86 0.045 0.85 0.646 0.6 

SNP151(A) × SNP133(A) × Y 19 1.60 0.084 1.59 0.050 1.1 

SNP151(D) × SNP133(A) × Y 19 1.57 0.083 1.56 0.058 1.1 

SNP151(A) × SNP133(D) × Y 19 1.58 0.083 1.57 0.056 1.1 

SNP151(D) × SNP133(D) × Y 19 1.68 0.088 1.67 0.035 1.2 

SNP151(A) × SNP9(A) × Y 19 1.63 0.086 1.62 0.044 1.2 

SNP151(D) × SNP9(A) × Y 19 1.92 0.101 1.91 0.010 1.4 

P × Y 418 24.49 0.059 1.11 0.090  

Error (Ɛ) 1786 94.63 0.053    

       

  G×E partition (climate model) 

P × Tmax_May 22 3.24 0.147 2.68 < 0.001 12.3 

SNP201(A) × Tmax May between P 1 0.14 0.141 2.56 0.110 0.5 

SNP201(A) × Tmax May within P 1 0.68 0.676 12.28 < 0.001 0.6 

P × P Nov(-1) 22 2.52 0.115 2.08 0.002 9.6 

SNP201(A) × P Nov(-1) between P 1 0.22 0.225 4.08 0.044 0.9 

SNP201(A) × P Nov(-1) within P 1 0.00 0.000 - - 0.0 

P × SPEI6 Oct 22 2.29 0.104 1.89 0.008 8.7 

P × SPEI1 Sep(-1) 22 2.03 0.092 1.67 0.026 7.7 
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P × Y 330 16.26 0.049 0.90 0.899  

Error (ɛ) 2031 111.78 0.055    

Significant terms are shown in bold (p < 0.05). 

 

Abbreviations: Tmax May: maximum temperature of May; P Nov(-1): previous November precipitation; 

SPEI6 Oct: SPEI at 6-months scale of October; SPEI1 Sep(-1): previous September SPEI at 1-month scale  
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Table 2. Analysis of variance (general model) and factorial regression modelling of genotype by 

environment (G×E) interaction effects using either molecular markers (genetic model) or climate 

information (climate model) of indexed early- to latewood ratio (ELI) involving 130 individuals belonging 

to 23 populations of Aleppo pine grown in a common garden in Altura (Spain).  

 ELI 

  general model 

Source df SS MS F-Value Pr (> F) R2 (%) 

Population (P) 22 0.05 0.002 0.02 1.000 0.0 

Tree (within P) 107 0.18 0.001 0.01 1.000 0.0 

Year (Y) 19 86.56 4.556 38.83 < 0.001 22.2 

P × Y  418 63.97 0.153 1.30 < 0.001 16.4 

Error (Ɛ) 2033 238.51 0.120   61.3 

       

  G×E partition (genetic model) 

SNP159(A) × Y 19 4.46 0.244 2.09 0.004 1.5 

SNP159(D) × Y 19 3.01 0.160 1.40 0.117 1.0 

SNP133(A) × Y 19 2.95 0.160 1.37 0.131 1.0 

SNP133(D) × Y 19 2.45 0.130 1.14 0.304 0.8 

SNP159(A) × SNP133(A) × Y 19 5.69 0.300 2.64 0.001 1.9 

SNP159(D) × SNP133(A) × Y 19 1.92 0.100 0.89 0.593 0.6 

SNP159(A) × SNP133(D) × Y 19 4.59 0.240 2.13 0.003 1.5 

SNP159(D) × SNP133(D) × Y 19 1.14 0.060 0.53 0.951 0.4 

P × Y 399 60.87 0.150 1.35 < 0.001  

Error (Ɛ) 1900 215.22 0.110    

       

  G×E partition (climate model) 

P × SPEI1 Nov(-1) 22 6.02 0.274 2.34 < 0.001 9.4 

P × Prec Dec(-1) 22 6.00 0.273 2.33 < 0.001 9.4 

P × Tmean Jun 22 4.90 0.223 1.91 0.007 7.7 

SNP159(A) × Tmean Jun between P 1 0.00 0.000 - -  

SNP159(A) × Tmean Jun within P 1 0.93 0.931 7.96 0.005 0.3 

P × Tmin Mar 22 5.32 0.242 2.07 0.003 8.3 

P × SPEI1 Sep 22 4.25 0.193 1.65 0.029 6.6 

P × Y 309 37.46 0.121 1.04 0.331  

Error (ɛ) 2031 237.58 0.117    

Significant terms are shown in bold (p < 0.05). 

 

Abbreviations: MAT: mean annual temperature; MST: mean summer temperature; MWT: mean winter 

temperature; TmaxW: maximum temperature of the hottest month; TminC: minimum temperature of the 

coldest month; PS: precipitation seasonality; PDQ: mean precipitation of the driest quarter; PsP: summer 

to annual precipitation ratio.  
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Table 3. Annotation of the homologous protein and its biological function of single nucleotide 

polymorphisms (SNPs) that were informative of either indexed ring width (RWI) or early- to latewood ratio 

(ELI) variation in the partition of genotype by year effects using factorial regression.  

SNP 

code 
Known annotation Species Biological function 

Trait (GWAS) 

Santini et. al (2020) 

SNP9 
Hypothetical protein 

2_1014_01 
Pinus pinaster - Crown area 

SNP133 

Hypothetical protein 

2_7803_01: Glycosidase, 

Hydrolase 

Pinus taeda 
Carbohydrate metabolic 

process 

Water content; 

height 

SNP151 
Peroxisome membrane 

protein 11C 
Morella rubra 

Peroxisome fission; 

Photomorphogenesis 
Leaf area  

SNP159 

Putative calcium-

dependent protein kinase 

transferase 

Cupressus 

sempervirens 

Mediates responses to 

abiotic and biotic 

stressor.  

Height 

SNP201 No similarity found 
Pinus 

halepensis  
- 

Photosynthetic 

pigments 
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Table 4. Effect of allelic substitutions of selected SNPs on indexed ring width (RWI) and early- to latewood 

ratio (ELI) for every unit change in (standardized) relevant climate factors following the identification of 

significant cross-products in factorial regression G×E models of Aleppo pine grown in a common garden 

in Altura (Spain). Significant terms are shown in bold (p < 0.05).  

Trait Estimate SE t-value Pr > |t| 

Ring width (RWI)     

SNP201(A) (C→A) × P Nov(-1) -0.001 0.000 -2.020 0.044 

 SNP201(A) (C→A) × Tmax May -0.029 0.009 -3.370 0.001 

Early- to latewood ratio (ELI)     

 SNP159(A) (G→A) × Tmean Jun 0.060 0.021 2.820 0.005 

Abbreviations: P Nov(-1): previous November precipitation; Tmax May: maximum temperature of May; Tmean 

Jun: mean temperature of June. 
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Table 5. Correlations coefficients between population sensitivities (βs’) of indexed ring width (RWI) to four climate 

factors at the trial site (in row order: maximum temperature of May [Tmax May], precipitation of previous November [P 

Nov(-1)], SPEI at a 6-months scale of October [SPEI6 Oct], and SPEI at a 1-month scale of previous November [SPEI1 

Sep(-1)]) and selected climate factors at population origin. Correlation coefficients (r) and their associated probabilities (p, 

in parentheses) are shown; bold characters indicate probabilities <0.05.  

 Latitude MAT MST MWT TmaxHT TminCM MAP PS PQdr PsP 

Tmax May 
-0.22 

(0.327) 

0.44 

(0.039) 

0.40 

(0.057) 

0.41 

(0.048) 

0.22 

(0.302) 

0.39 

(0.066) 

-0.23 

(0.300) 

0.08 

(0.725) 

-0.15 

(0.497) 

-0.07 

(0.767) 

P Nov(-1) 
-0.34 

(0.114) 

0.39 

(0.066) 

0.42 

(0.046) 

0.31 

(0.149) 

0.32 

(0.132) 

0.24 

(0.271) 

-0.15 

(0.484) 

0.40 

(0.059) 

-0.32 

(0.140) 

-0.38 

(0.077) 

SPEI6 Oct 
0.41 

(0.053) 

-0.62 

(0.002) 

-0.61 

(0.002) 

-0.55 

(0.007) 

-0.37 

(0.080) 

-0.54 

(0.008) 

0.48 

(0.829) 

-0.63 

(0.001) 

0.48 

(0.020) 

0.44 

(0.037) 

SPEI1 Sep(-1) 
0.07 

(0.758) 

-0.21 

(0.324) 

-0.10 

(0.658) 

-0.28 

(0.196) 

0.05 

(0.835) 

-0.29 

(0.179) 

0.13 

(0.179) 

-0.02 

(0.940) 

<0.01 

(0.982) 

0.10 

(0.643) 

Abbreviations: MAT: mean annual temperature; MST: mean summer temperature; MWT: mean winter temperature; 

TmaxW: maximum temperature of the hottest month; TminC: minimum temperature of the coldest month; PS: precipitation 

seasonality; PDQ: mean precipitation of the driest quarter; PsP: summer to annual precipitation ratio. 
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Fig. 1 Geographic origin of 23 Aleppo pine populations (coloured dots) growing in a common garden (black dot) located 

in Altura (Castellón province, Spain). Population acronyms (described in Table S1) are shown on top of each population 

origin. The dark green areas represent the natural distribution of Aleppo pine according to EUFORGEN 

(http://www.euforgen.org/species/pinus-halepensis/). An aerial picture of the trial is also included, where the red rectangle 

exemplifies an experimental unit consisting of four trees of the same population. 
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Fig. 2 Bootstrapped correlation coefficients between the master chronology (i.e. obtained across populations) of indexed 

mean tree ring-width series (green bars) or early to latewood ratio indices (orange bars) and six monthly climate factors 

calculated from previous September to current October (months of the previous year are indicated with lowercase letters) 

during the period of 2000–2019. Climate factors were mean temperature (Tmean), maximum temperature (Tmax), minimum 

temperature (Tmin), precipitation (P), and SPEI at 1- and 6-months scale (SPEI1 and SPEI6, respectively). Filled bars 

indicate significant bootstrapped correlations (p < 0.05). 
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Fig. 3 Interannual population variability of raw tree-ring width (RW; mm) (A), tree ring width index (RWI) (B), and 

indexed early- to latewood ratio (ELI) (C) of 23 populations of Aleppo pine grown in a common garden in Altura (Spain). 

Each population is represented by a line of different colour; populations acronyms are listed in the legend and described 

in Table S1. 

 

 

 
Fig. 4 Correlations between population sensitivities of ring width (RWI) to October SPEI-6 at the trial site and selected 

climate factors (MAT, mean annual temperature; PS, precipitation seasonality) at the origin of 23 Aleppo pine populations 

grown in a common garden in Altura (Spain). Population acronyms are defined in Table S1. 
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Chapter 2 – Supplementary material 

 

Table S1. Characteristics of 23 populations of Aleppo pine grown in a common garden in Altura (Castellón province, 

eastern Spain). 

 

  

Name of 

provenances 

Population 

code 
Country Longitude Latitude Altitude MAT (°C) MAP (mm) 

Kassandra KAS Greece 23°54'E 40°05' 402 14.4 510 

Tabarka TAB Tunisia 9°04'E 36°30' 287 17.8 558 

Alcantud ALA Spain 2°18'W 40°34' 1057 10.8 505 

Alhama de 

Murcia 
ALH Spain 3°01'W 37°45' 765 15.1 449 

Benamaurel BEA Spain 2°44'W 37°42' 908 14.2 452 

Bicorp BIC Spain 0°51'W 39°06' 587 14.7 523 

Santiago de la 

Espada 
ESP Spain 2°28'W 38°14' 842 14.1 432 

Tibi TIB Spain 0°39'W 38°31' 976 14.8 428 

Tuéjar TUE Spain 1°09'W 39°49' 729 13.2 424 

Carratraca CAR Spain 4°50'W 36°51' 635 15.4 695 

Frigiliana FRI Spain 3°55'E 36°49' 595 15.7 456 

Monovar MON Spain 0°57'W 38°23' 820 14.0 467 

Thala THA Tunisia 8°39'E 35°34' 948 14.9 467 

Villajoyosa VIL Spain 0°18'W 38°30' 126 17.7 422 

Cabanelles CAB Spain 2°47'E 42°15' 258 14.6 720 

Alcudia ALU Spain 03°10'E 39°52' 185 15.7 704 

Benicàssim BEI Spain 0°01'E 40°05' 468 13.8 472 

Litorale 

Tarantino 
LIT Italy 17°07'E 40°37' 204 15.2 551 

Palma de 

Mallorca 
PAL Spain 2°56'E 39°09' 32 16.7 563 

Gargano 

Monte Pucci 
PUC Italy 15°57'E 41°54' 382 14.2 524 

Santanyí SAN Spain 3°03'E 39°17' 19 16.8 568 

Tivissa TIV Spain 0°50'E 42°20' 336 14.8 587 

Zuera ZUE Spain 0°55'E 41°55' 576 12.0 474 
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Table S2. Annotation of the homologous protein and its known biological function of single nucleotide polymorphisms (SNPs) that were not informative of either indexed ring width 

(RWI) or early- to latewood ratio (ELI) variation in the partition of genotype by year effects using factorial regression. 

SNP 

code 
Accession Known annotation Species 

E-value 

Blastx 
Biological function 

ID Sequence 

(Pinosio et al., 

2014) 

Trait of GWAS 

Santini et. al 

(2020) 

SNP2 XP_019422240.1 

Glyco_trans_20 

domain-containing 

protein 

Lupinus 

angustifolius 
3,00E-28 

Trehalose biosynthetic 

process. Catalytic activity 
6890-2409 Crown area 

SNP9  ATP72615.1 
Hypothetical protein 

2_1014_01 
Pinus pinaster 4,00E-98 - 2_1014_01-183 Crown Area 

SNP18 ACJ09662.1 

Putative calcium-

dependent protein 

kinase 

Cupressus 

sempervirens 
9,00E-45 - 

CL2332Contig1_01-

316 
Height 

SNP67 ATP65193.1 
Hypothetical protein : 

0_7454_01 
Pinus pinaster 4,00E-75 - 0_7454_01-210 

Photosynthetic 

pigments 

SNP91 

Anonymous 

locus genomic 

sequence 

/ Pinus nigra - - 0_13957_02-252 Water content 

SNP108 AEW08319.1 
Hypothetical protein : 

2_6351_01 
Pinus radiata 7,00E-92 

Hsp70 protein binding. 

Ribosome binding 
2_6351_01-114 

Leaf area; Water 

content; Height 

SNP133 AFG57437.1 

Hypothetical protein 

2_7803_01: 

Glycosidase, 

Hydrolase 

Pinus taeda 2,00E-93 
Carbohydrate metabolic 

process 
2_7803_01-178 

Water Content; 

Height 

https://www.ncbi.nlm.nih.gov/protein/AJO70167.1?report=genbank&log$=prottop&blast_rank=2&RID=RNH882KY013
https://www.ncbi.nlm.nih.gov/protein/AFG57437.1?report=genbank&log$=prottop&blast_rank=1&RID=6DYCZ3PX016
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SNP140  AAC32124.1 
Rac-like GTP binding 

protein 
Picea Mariana 4,00E-132 

GTPase mediated signal 

transduction 
16593-1162 

Canopy 

temperature 

SNP151 KAB1214439.1 

Peroxisome 

membrane protein 

11C 

Morella rubra 1,00E-19 
Peroxisome fission; 

Photomorphogenesis 
0_8992_01-119 Leaf area  

SNP159 ACJ09662.1 

Putative calcium-

dependent protein 

kinase transferase 

Cupressus 

sempervirens 
6,00E-09 

Mediates responses to 

abiotic and biotic 

stressor.  

cpK3-134 Height 

SNP201 
P. halepensis 

transcriptome 
No similarity found 

Pinus 

halepensis  
- - 9519-1324 

Photosynthetic 

pigments 

SNP206  AHX59161.2 
GPD-mannose 

phrophosphorylase 
Pinus taeda 2,00E-88 

Nucleotidyltransferase 

activity 
10381-1617 Height 

SNP217  AHX59161.2 
Hypothetical protein : 

0_4394_01 
Pinus pinaster 1,00E-57 - 0_4394_01-352 Height 

SNP241 ATP71577.1 
Hypothetical protein : 

0_4105_01 
Pinus pinaster 0,01 - 0_4105_01-175 Leaf area 

SNP250 
P. halepensis 

transcriptome 
/ 

Pinus 

halepensis 
- - 8256-2343 Height 

SNP258  AJP06341.1 
Auxin efflux carrier 

component 

Pinus 

tabuliformis 
0,00 

Auxin-activated 

signalling pathway. 

Transmembrane transport 

9882-2209 
Photosynthetic 

pigments 
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SNP265 
P. halepensis 

transcriptome 
/ 

Pinus 

halepensis 
- - 47393-248 Water content 

SNP273 AEW70215.1 Cellulose synthase 
Pinus 

sylvestris 
8,00E-15 

Cellulose biosynthetic 

process 
7485-4551 

Leaf area; 

Height 

SNP340 ABR15469.1 
GDP-mannose 

pyrophosphorylase 
Pinus taeda 0,00 Biosynthetic process 10381-827 Height 

SNP350 AEX11977.1 
Uncharacterised 

protein 
Pinus taeda 2,00E-78 - 0_18322_01-50 

Leaf area; Water 

content; Height 
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Table S3. Analysis of variance (fixed effects only) of DBH measurements at age 23 years old for 23 populations of Aleppo 

pine grown in a common garden in Altura (Spain). 

 

Source df SS F-Value Pr (> F) 

Block 3 44.52 1.03 0.398 

Column 6 324.46 3.74 0.001 

Population 22 647.03 2.04 0.005 
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Table S4. Least squares means for DBH of 23 Aleppo pine populations (age 23 years old) grown in a common garden in 

Altura (Spain). 

 

Population 
Population 

Code 
Mean (cm) SE 

Cabanelles CAB 15.8 1.28 

Tivissa TIV 13.8 1.22 

Zuera ZUE 12.1 1.33 

Alcantud ALA 14.4 1.30 

Tuéjar TUE 14.6 1.37 

Tibi TIB 13.5 1.28 

Bicorp BIC 14.4 1.24 

Benamaurel BEA 14.8 1.24 

Villajoyosa VIL 14.0 1.47 

Monovar MON 16.7 1.35 

Benamaurel BEA 13.0 1.39 

Santiago de la Espada ESP 15.7 1.26 

Alhama de Murcia ALH 15.2 1.37 

Carratraca CAR 12.1 1.39 

Frigiliana FRI 14.1 1.47 

Palma de Mallorca PAL 12.1 1.24 

Santanyí SAN 11.8 1.55 

Alcudia ALU 12.5 1.74 

Kassandra KAS 18.4 1.38 

Litorale Tarantino LIT 16.9 1.39 

Gargano Monte Pucci PUC 14.6 1.13 

Thala THA 12.6 1.39 

Tabarka TAB 11.3 1.40 
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Table S5. Factorial regression modelling of genotype by environment (G×E) interaction effects using molecular markers 

(genetic model) of indexed ring width (RWI), incorporating the population structure as genetic covariable, involving 130 

individuals belonging to 23 populations of Aleppo pine grown in a common garden in Altura (Spain).  

 RWI (genetic model) 

Source df SS MS F-Value Pr (> F) R2 (%) 

Population structure (Pstr) 
1 0.00 0.001 0.02 0.882 0.0 

Population (P) 
22 0.13 0.006 0.11 1.000 0.0 

Tree-within-P 
107 0.60 0.006 0.11 1.000 0.2 

Year (Y) 
19 129.32 6.806 128.52 <0.001 48.1 

Pstr × Y 
19 0.80 0.416 0.79 0.727 0.6 

SNP201(A) × Y 
19 2.96 0.156 2.95 < 0.001 2.1 

SNP151(A) × Y 
19 2.15 0.113 2.14 0.003 1.5 

SNP151(D) × Y 
19 1.15 0.061 1.15 0.298 0.8 

SNP133(A) × Y 
19 0.97 0.051 0.97 0.495 0.7 

SNP133(D) × Y 
19 1.12 0.059 1.11 0.189 0.8 

SNP9(A) × Y 
19 0.85 0.045 0.85 0.334 0.6 

SNP151(A) × SNP133(A) × Y 
19 1.47 0.077 1.46 0.091 1.0 

SNP151(D) × SNP133(A) × Y 
19 1.52 0.080 1.51 0.072 1.1 

SNP151(A) × SNP133(D) × Y 
19 1.49 0.078 1.48 0.082 1.1 

SNP151(D) × SNP133(D) × Y 
19 1.69 0.089 1.70 0.031 1.2 

SNP151(A) × SNP9(A) × Y 
19 1.59 0.084 1.59 0.052 1.1 

SNP151(D) × SNP9(A) × Y 
19 1.67 0.088 1.66 0.036 1.2 

P × Y 
418 23.91 0.057 1.08 0.153  

Error (Ɛ) 
1729 91.56 0.053    

Significant terms are shown in bold (p < 0.05). 
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Table S6. Factorial regression modelling of genotype by environment (G×E) interaction effects using molecular markers 

(genetic model) of indexed early to latewood ratio (ELI), incorporating the population structure as genetic covariable, 

involving 130 individuals belonging to 23 populations of Aleppo pine grown in a common garden in Altura (Spain).  

 ELI (genetic model) 

Source df SS MS F-Value Pr (> F) R2 (%) 

Population structure (Pstr) 1 0.00 0.000 0.00 0.992 
0.0 

Population (P) 22 0.04 0.002 0.02 1.000 
0.0 

Tree-within-P 107 0.13 0.001 0.01 1.000 
0.0 

Year (Y) 
19 89.97 4.735 44.84 <0.001 24.3 

Pstr × Y 
19 3.24 0.171 1.62 0.044 1.1 

SNP159(A) × Y 
19 6.94 0.365 3.46 <0.001 2.4 

SNP159(D) × Y 
19 2.60 0.137 1.29 0.177 0.9 

SNP133(A) × Y 
19 1.91 0.101 0.95 0.517 0.7 

SNP133(D) × Y 
19 1.43 0.075 0.71 0.810 0.5 

SNP159(A) × SNP133(A) × Y 
19 3.31 0.174 1.65 0.038 1.2 

SNP159(D) × SNP133(A) × Y 
19 2.59 0.136 1.29 0.177 0.9 

SNP159(A) × SNP133(D) × Y 
19 5.54 0.291 2.76 <0.001 1.9 

SNP159(D) × SNP133(D) × Y 
19 1.14 0.060 0.57 0.930 0.4 

P × Y 
399 52.08 0.130 1.24 0.003 

 

Error (Ɛ) 
1843 194.62 0.106    

Significant terms are shown in bold (p < 0.05). 
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Table S7. Population sensitivities (β’s) of ring width index (RWI) to relevant climate factors according to factorial 

regression models for Aleppo pine grown in a common garden in Altura (Spain). Significant (and marginally significant) 

correlations are indicated by †p ≤ 0.10; *p ≤ 0.05; **p ≤ 0.001. Population acronyms are defined in Table S1. 

Abbreviations: Tmax May: maximum temperature of May; P Nov(-1): precipitation of previous November; SPEI6 Oct: SPEI 

at 6-month scale of October; SPEI1 Sep(-1): SPEI at 1-month scale of previous September. 

 RWI climate sensitivities (unitless) 

Population 

code 
Tmax May P Nov(-1) SPEI6 Oct SPEI1 Sep(-1) 

KAS 
-0.07* 0.03 0.00 0.05* 

TAB 
0.05* 0.05* -0.08** -0.03 

ALA 
-0.04* -0.03 0.01 0.04† 

ALH 
-0.01 0.00 0.03 -0.03 

BEA 
0.03 -0.04 0.02 -0.04 

BIC 
0.00 -0.02 0.00 -0.03† 

ESP 
0.00 0.01 -0.01 0.05* 

TIB 
-0.01 0.00 0.02 -0.01 

TUE 
0.06* 0.04† 0.02 -0.05* 

CAR 
-0.03 -0.02 0.00 0.03 

FRI 
0.02 0.07* -0.08** -0.05* 

MON 
-0.03 -0.01 0.00 0.04 

THA 
0.02 -0.01 0.01 0.02 

VIL 
0.04 0.06* -0.03 -0.01 

CAB 
-0.05* 0.00 0.03 0.00 

ALU 
-0.01 -0.04 0.00 0.01 

BEI 
0.02 -0.03 -0.03 0.01 

LIT 
0.07** -0.01 0.01 -0.02 

PAL 
-0.04 0.04 0.04 0.00 

PUC 
0.01 -0.01 -0.03 -0.02 

SAN 
-0.02 0.01 0.00 0.03 

TIV 
-0.01 -0.04* 0.04* 0.02 
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ZUE 

0.00 -0.05* 0.03 -0.01 
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Table S8. Population sensitivities (β’s) of indexed early to latewood ratio (ELI) to relevant climate factors according to 

factorial regression models for Aleppo pine grown in a common garden in Altura (Spain). Significant (and marginally 

significant) correlations are indicated by †p ≤ 0.10; *p ≤ 0.05; **p ≤ 0.001. Population acronyms are defined in Table S1. 

Abbreviations: SPEI1 Nov(-1): SPEI at 1-month scale of previous September; P Dec(-1): precipitation of previous 

December; Tmean Jun: mean temperature of June; Tmin Mar: minimum temperature of March; SPEI1 Sep(-1): SPEI at 1-

month scale of previous September. 

 
 ELI climate sensitivities (unitless) 

Population 

code 
SPEI1 Nov(-1) P Dec(-1) Tmean Jun Tmin Mar SPEI1 Sep(-1) 

KAS 
-0.03 -0.01 -0.06† 0.02 -0.08* 

TAB 
0.07* -0.05 0.05† -0.06† 0.02 

ALA 
-0.04 0.07* -0.02 0.06* 0.02 

ALH 
0.03 -0.01 0.02 -0.07* -0.03 

BEA 
0.00 -0.04 0.03 -0.09* 0.01 

BIC 
-0.03 0.01 0.01 0.00 0.07* 

ESP 
0.01 0.01 -0.04 0.01 -0.08* 

TIB 
-0.08* -0.02 -0.04 0.07* 0.02 

TUE 
-0.03 0.05 0.02 -0.03 -0.03 

CAR 
0.07* 0.11* 0.05 0.03 -0.01 

FRI 
-0.07* 0.02 -0.03 0.04 0.01 

MON 
0.03 -0.04 -0.05 0.04 -0.04 

THA 
-0.12** 0.04 -0.03 -0.02 -0.01 

VIL 
-0.03 -0.02 0.05 0.01 0.02 

CAB 
0.02 -0.02 -0.08* 0.01 -0.03 

ALU 
-0.01 0.04 0.02 0.00 0.01 

BEI 
0.02 -0.06* -0.09* 0.08* 0.02 

LIT 
0.03 0.08* 0.09* -0.05† -0.02 

PAL 
0.09* 0.01 0.04 -0.02 0.05 

PUC 
0.04 -0.10** 0.01 -0.03 -0.02 
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SAN 
0.01 0.00 -0.01 0.02 0.04 

TIV 
-0.01 0.01 0.03 -0.04 -0.03 

ZUE 
0.04 -0.05 0.03 0.00 0.10* 
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Table S9. Correlations coefficients between population sensitivities of indexed early- to latewood ratio (ELI) to five climate factors at the trial site (in order: SPEI at 1-month scale of 

previous November [SPEI1 Nov(-1)], precipitation of previous December [P Dec(-1)], mean temperature of Jun [Tmean Jun], minimum temperature of March [Tmin Mar] and SPEI at 1-

month scale September [SPEI1 Sep]) and different climate factors at population origin. Correlation coefficients (r) and their associated probabilities (p, in parentheses) are shown.  

 

 Latitude MAT MST MWT TmaxHT TminCM MAP PS PQdr PsP 

SPEI1 Nov(-1) 

0.27 

(0.220) 

0.02 

(0.935) 

-0.02 

(0.915) 

0.05 

(0.808) 

-0.07 

(0.752) 

0.12 

(0.594) 

0.32 

(0.141) 

0.11 

(0.608) 

0.03 

(0.897) 

-0.10 

(0.643) 

P Dec(-1) 

-0.22 

(0.307) 

0.01 

(0.972) 

0.09 

(0.668) 

-0.04 

(0.865) 

0.22 

(0.309) 

-0.07 

(0.738) 

0.05 

(0.738) 

0.25 

(0.254) 

-0.26 

(0.229) 

-0.27 

(0.220) 

Tmean Jun 

-0.07 

(0.751)  

0.23 

(0.291) 

0.26 

(0.224) 

0.18 

(0.393) 

0.24 

(0.259) 

0.17 

(0.437) 

-0.06 

(0.772) 

0.22 

(0.315) 

-0.29 

(0.175) 

-0.25 

(0.241) 

Tmin Mar 

0.08 

(0.700) 

-0.05 

(0.817) 

-0.19 

(0.383) 

0.03 

(0.887) 

-0.24 

(0.278) 

0.04 

(0.843) 

0.02 

(0.942) 

0.13 

(0.566) 

-0.01 

(0.971) 

0.21 

(0.339) 

SPEI1 Sep 

0.06 

(0.779) 

-0.02 

(0.936) 

-0.03 

(0.882) 

-0.03 

(0.900) 

0.10 

(0.643) 

-0.06 

(0.767) 

-0.24 

(0.262) 

-0.05 

(0.812) 

-0.09 

(0.675) 

0.18 

(0.413) 

Abbreviations: MAT = mean annual temperature; MST = mean summer temperature; MWT = mean winter temperature; TmaxW = maximum temperature of the hottest month; 

TminC = minimum temperature of the coldest month; PS = precipitation seasonality; PDQ = mean precipitation of the driest quarter; PsP = summer to annual precipitation 

ratio 
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Abstract 

Remote sensing is increasingly used in forest inventories. However, its application to assess genetic variation 

in forest trees is still rare, particularly in conifers. Here we evaluate the potential of LiDAR and RGB imagery 

obtained through unmanned aerial vehicles (UAVs) as high-throughput phenotyping tools for the 

characterization of tree growth and crown structure in two representative Mediterranean pine species. To this 

end, we investigated the suitability of these tools to evaluate intraspecific differentiation in a wide array of 

morphometric traits for Pinus nigra (European black pine) and Pinus halepensis (Aleppo pine). Morphometric 

traits related to crown architecture and volume, primary growth, and biomass were retrieved at tree level in 

two genetic trials located in central Spain, and compared with ground-truth data. Both UAV-based methods 

were then tested for their accuracy to detect genotypic differentiation among black pine and Aleppo pine 

populations and their subspecies (black pine) or ecotypes (Aleppo pine). The possible relation between 

intraspecific variation of morphometric traits and life-history strategies of populations was also tested by 

correlating traits to climate factors at origin of populations. Finally, we investigated which traits distinguished 

better among black pine subspecies or Aleppo pine ecotypes. Overall, the results demonstrate the usefulness 

of UAV-based LiDAR and RGB records to disclose tree architectural intraspecific differences in pine species 

potentially related to adaptive divergence among populations. In particular, three LiDAR-derived traits related 

to crown volume, crown architecture and main trunk or, alternatively, the latter (RGB-derived) two traits 

discriminated the most among black pine subspecies. In turn, Aleppo pine ecotypes were partly distinguishable 

using two LiDAR-derived traits related to crown architecture and crown volume, or three RGB-derived traits 

related to tree biomass and main trunk. To conclude, remote sensing derived-traits related to main trunk, tree 

biomass, crown architecture and crown volume were associated to environmental characteristics at origin of 

populations of black pine and Aleppo pine, which hints to divergent environmental stress-induced local 

adaptation to drought, wildfire and snowfall in both species. 

 

Keywords: Aleppo pine; black pine; crown architecture; climate adaptation; intraspecific variability; LiDAR; 

remote sensing; RGB 
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Introduction 

Progress in characterizing intraspecific differentiation in morpho-physiological traits of forest trees can 

substantially increase our knowledge on their adaptability to environmental changes. Aboveground features 

such as total height, crown volume and crown structure are strongly influenced by environmental factors such 

as temperature, light availability, precipitation or wind (Poorter et al. 2021; Voltas et al. 2018), and also by 

disturbances like fire or insect outbreaks (Karna et al. 2019; Grote et al. 2016; Ordóñez et al. 2005). They are 

also under genetic control and therefore subject to genotype by environment interactions (Lombardi et al. 

2022). Genetic changes and their associated interactions with the environment ultimately produce different 

phenotypes among individuals of the same species, and forest genetic trials are of paramount interest for 

understanding such phenotypic variation.  

A major limitation when phenotyping forest trees in their adult stage in the context of evolutionary 

studies or breeding programs is the inherent complexity and time-consuming process of field-based 

measurements (Liao et al. 2022; Leite et al. 2020; Ganz et al. 2019). In this regard, high-throughput-

phenotyping techniques have been developed in the last decade from different remote sensing tools (Ganz et 

al. 2019; Camarretta et al. 2020). In particular, light detection and ranging (LiDAR) and red, green blue (RGB) 

imagery are effective tools with enough resolution for routine forestry applications (Liu et al. 2020; Moe et al. 

2020).  

RGB cameras are often mounted on unmanned aerial vehicles (UAVs), thereby providing aerial images 

of the visible spectrum (400-700 nm). By overlapping RGB images it is possible to indirectly derive a point 

cloud holding 3D information. Airborne LiDAR scanning systems can be mounted on different platforms, 

including aircrafts or UAVs. LiDAR provides accurate 3D information about forest canopy cover since laser 

pulses can penetrate through vegetation. LiDAR is often considered as a more effective approach than RGB 

imagery for the acquisition of stand and individual tree traits, because it provides detailed information not only 

on the top of the tree crown, but also about the underlying branches and ancillary crown architecture (Ganz et 

al. 2018; Mielcarek et al. 2020). However, RGB cameras can be mounted in smaller UAVs and are cheaper 

than LiDAR, which makes it a more practical and convenient tool in some circumstances. LiDAR and RGB 

imagery are already replacing traditional field-based measurements in certain forest operations such as forest 
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inventories (Liao et al.2022; Goodbody et al. 2019), but the application of these technologies for the purpose  

of assessing phenotypic variation in genetic trials of forest species has been only seldom reported in the 

literature (Camarretta et al. 2020; Solvin et al. 2020; Santini et al. 2019a). 

In this study we investigate the accuracy of these remote sensing approaches (LiDAR- and RGB-based) 

mounted on UAVs to estimate commonly measured phenotypic traits such as tree height and biomass, but also 

other more complex traits related to crown architecture and volume. Particularly, we sought to evaluate if both 

remote sensing tools are valid to assess intraspecific differentiation in phenotypic traits of pine species. 

Previous attempts to assess the usefulness of these UAV-borne approaches have been restricted to hardwoods 

such as Eucalyptus spp. (Camarretta et al. 2020) or conifers such as Picea abies (Solvin et al. 2020) or 

Pseudotsuga menziesii (du Toit et al. 2020). However, studies simultaneously evaluating both methods for their 

accuracy as phenotyping tools of forest genetic trials are still scarce (Ganz et al. 2019), and non-existent in 

pines.  

In this context, we hypothesized that traits related to aboveground growth such as total height, trunk 

diameter (derived from allometric equations, taking into account crown area and total tree height) and tree 

biomass of adult pines can be estimated with similar accuracy using UAV-based remote sensing systems 

(LiDAR- and RGB-based) compared to traditional field-methods, but more promptly. We also hypothesized 

that UAV-LiDAR and (in a lower degree) UAV-RGB can provide reliable information of complex traits related 

to canopy architecture and canopy volume, whose estimation with traditional-field methods is time-consuming 

and not very efficient (Colaço et al. 2017). To test these hypotheses, we obtained remote sensing data of two 

Mediterranean pine species, Pinus nigra Arn. (European black pine) and Pinus halepensis Mill. (Aleppo pine), 

from two provenance genetic trials (or common gardens) located in central-western Spain. By using 

provenance trials, we aimed to describe intraspecific genetic variation in morphological traits derived from 

traditional field-based and high-throughput methods. In a common garden trees of the same species, but 

belonging to different populations with different geographic origins grow under similar environmental 

conditions, thus it is possible to characterize intraspecific differentiation by analyzing relevant phenotypic 

traits which, in turn, may be potentially informative of tree adaptability to external factors such as climate. 
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Here we focused on two widespread conifers of the Mediterranean basin, black pine and Aleppo pine, that 

present different evolutionary histories and adaptive divergence (Tapias et al. 2004). 

Black pine is a non-serotinous, drought-sensitive species that exits at altitudes ranging from 350 m to 

2200 m (Enescu et al. 2016; Isajev et al. 2003). Different subspecies have been recognized (Isajev et al. 2003; 

Santini et al. 2019b): P. nigra salzmannii (Dunal) is found in the Iberian Peninsula and southern France areas; 

P. nigra nigra (Höss) is present in the Apennines, Alps, Balkan Mountains and Greece; P. nigra pallasiana 

(Lamb.) covers areas in Greece and Turkey; P. nigra dalmatica is found in some areas of Croatia; P. nigra 

laricio (Poiret) inhabits the Corsica island; finally, P. nigra calabrica (Murray) is present in south Italy, 

although this subspecies is often considered as P. nigra subsp. laricio. Previous studies have documented 

intraspecific variation in miscellaneous traits such as radial growth (Fkiri et al. 2018), wood structure (Estebam 

et al. 2012), total height and tree survival (Varelides et al. 2001), vegetation indices, and reserves (Santini et 

al. 2019b). However, genotypic variability of morphological traits has been mainly described for seedling and 

juvenile stages (Bachofen et al. 2021; Topacoglu, 2013; Kreyling et al. 2012). Aleppo pine is a thermophilic, 

fire-embracer species with high ecological importance, especially in dry areas due to its drought resistance 

(Chambel et al. 2013). Because of its wide distribution range, Aleppo pine is a species with high intraspecific 

variation that has been described for many functional and life-history traits such as reproduction (Climent et 

al. 2008), height growth (Voltas et al. 2018) or photosynthetic indices (Solvin et al. 2015).  

Altogether, we expected to find intraspecific differentiation for the analyzed traits in both species as a 

result of their adaptation to very different ecological niches. However, we hypothesized that this variability, 

especially regarding crown structure, would be higher in black pine than in Aleppo pine due to the larger 

phylogeographic divergence of the former. Black pine presents a high morphological variability associated to 

environmental factors such as snowfall, water availability and wildfire which influence crown structure and 

main trunk growth (Stevens et al. 2020; Aubrey et al. 2007). In this regard, we also hypothesized that climate 

at origin of populations of both pine species could have played an important role in shaping morphological 

variability of aboveground traits, in agreement with their evolutionary histories and adaptive differentiation. 

In particular, we expected that black pine populations from snowy origin had less dense canopy, while Aleppo 
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pine populations coming from xeric environments showed high aerial growth (e.g. tree height, tree biomass 

and crown volume). 

 

Material and Methods 

Study site and field measuraments 

This study was carried out in two provenance trials (common gardens) located in central Spain (Table S1). The 

first trial is located in La Mata de Valsaín, Segovia (degree-minute-second coordinate system: 40°54′42ʹʹ N, 

04°00′50ʹʹ W). It is composed of 18 populations of adult individuals of P. nigra with subspecies laricio, nigra, 

salzmannii, pallasiana and calabrica (Table S1). Seeds were collected in 1995 from 20 to 30 trees of the same 

populations, spaced at least 100 m apart. They were nursed following standard container practices (Landis, 

1990). In 1996, 800 one-year-old seedlings were transplanted following a complete randomized block design 

with 12 replicates, with each experimental unit consisting of a rectangular plot of four seedlings, spaced 4.0 × 

1.5 m apart. In 2016, the trial was subjected to a systematic thinning by which two out of four trees were logged 

in each experimental unit to avoid excess competition among trees. A total of 385 trees remained in the trial, 

and due to sampling issues, we included 345 trees in our analyses.  

The second provenance trial is located in Valdeolmos, Madrid (degree-minute-second coordinate 

system: 39°49′29ʹʹ N, 00°34′22ʹʹ W). It consists of 56 range-wide populations of P. halepensis (Aleppo pine; 

Table S2). Seeds were collected following the same procedure as for P. nigra. In 1997, 896 one-year-old 

seedlings were systematically planted with a distance of 2.5 × 2.5 m following a complete randomized block 

design with four replicates. Each experimental unit was composed of four individuals of the same population 

planted in a linear plot. One block was excluded in this study due to high mortality caused by rabbits during 

the early plantlet age, and so the total number of trees in the trial is 698, excluding this block. Aleppo pine 

populations were grouped into five ecotypes according to Patsiou et al. (2020), which used a hierarchical 

cluster analysis to identify ecotypes based on climatic information. These climate-based ecotypes were: dry-

summer/semiarid/temperate (DST), dry-summer/semiarid/cold (DSC), dry-summer/sub-humid/temperate 

(DHT), wet-summer/semiarid/temperate (WST), and wet-summer/sub-humid/cool (WHC) (Patsiou et al. 

2020).  
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Diameter at breast height (dbh) and tree height were measured using a diameter tape and a Vertex 

hypsometer, respectively, in February 2022 (Valdeolmos, age 26 years) and in July 2020 (Valsaín, age 25 

years), while tree biomass was estimated from published allometric equations (Table 1). 

 

Remote sensing data collection 

In Valsaín, aerial laser scanning (ALS) records were acquired through an octocopter unmanned aerial vehicle 

(UAV) equipped with a LiDAR (sensor Velodyne VLP-16 Puck Lite). RGB images were obtained using a DJI 

(Phantom 4 pro v2) equipped with a camera having a sensor size of 5472 × 3648 pixels and a focal distance of 

8.86 mm. Both flights were performed the same day in July 2020 at an altitude of 40 m and speed of 5 m s-1. 

In Valdeolmos, ALS data were acquired with an octocopter UAV equipped with a LiDAR (sensor Velodyne 

VLP-32C), whereas a RGB camera with sensor size 6000 × 4000 pixels and focal distance 12 mm was mounted 

on a DJI (m300) to collect RGB images. Both flights were performed the same day in November 2021 at an 

altitude of 50 m and speed of 5 m s-1. Examples of aerial RGB images and LiDAR point clouds are given in 

Fig. 1 for both trials.  

 

Imagery processing 

RGB and LIDAR pre-processing, treetop detection and crown segmentation 

The workflow applied to pre-process the LiDAR and RGB point clouds used LAStools (Isenburg et al. 2017) 

and US Forest Service FUSION/LDV 3.42 (McGaughey et al. 2015) software. The workflow is summarized 

in Fig. 2. First, we filtered points of noise in the point clouds using lasnoise. Then, the ground points were 

computed with lasground and later normalized through the identification of the height above the ground of 

each point using lasheight. Finally, the points were classified as ground and non-ground (vegetation) through 

lasclassify. Once the data had been filtered and classified, we built a digital terrain model (DTM) and a canopy 

height model (CHM) with a resolution of 10 cm using the GridSurfaceCreate and CanopyModel procedures, 

respectively, of FUSION/LDV. We created slices every 1 m, directly from the LiDAR point clouds, starting 

from 1 m to 11 m for Valdeolmos, and from 2 m to 13 m for Valsaín and then we made a CHM for every slice. 

These bins were chosen based on the height of the tallest tree and on the thinning strategy applied in Valsaín. 
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For Valdeolmos, we additionally created two slices (one at 0.20 m and another at 0.50 m) because the trial was 

not pruned, and tree crowns started roughly from the trunk base. 

Individual tree detection was performed for each approach independently using the vwf function 

implemented in the ForestTools R package (Plowright, 2018). This function uses a variable window filter 

algorithm to detect the local maxima (Popescu & Wynne, 2004) from the canopy height model. We visually 

evaluated the optimal window size, after testing different values. Crowns were automatically segmented  

starting from each treetop using the mcws function implemented in ForestTools. We manually corrected the 

segmented crowns in QGIS in order to eliminate false trees detected by the automatic procedure and, also, to 

add a segmentation where the algorithm failed to segment a crown. We then proceeded with the segmentation 

of each CHM slice (only for LiDAR-derived CHM).  

Once individual trees were recognized, we calculated maximum height and crown area for each 

segmented slice using first the zonal statistic and then the area function in QGIS. 

 

LIDAR- and RGB-derived traits 

We obtained individual tree point clouds of each trial by segmenting the LiDAR-derived normalized point 

clouds over the respective crown segmented shape file. For Valsaín, we first estimated the crown base height 

(CBH) and, afterwards, we obtained several descriptive statistics to characterize the crown architecture of trees, 

as summarized in Table 1. To estimate CBH we first filtered the point cloud up to 1.3 m, since the trial is 

pruned and no branches are present below this height value. Then, we generated histograms with 0.1 m bins 

to visualize the vertical distribution of each individual point cloud, and applied a cubic smooth spline for which 

the first and the second derivatives were calculated. Since the inflection points of a smooth spline curve 

correspond to the zero crossing of their second derivative, we calculated all height values at which the second 

derivative equaled zero. Then, we matched this height value with the closest height at which the number of 

points within the individual point cloud was minimum (Arkin et al. 2021; Luo et al. 2018). In this manner, we 

were able to identify the CBH without mistakenly selecting understory vegetation (Luo et al. 2018). We then 

computed crown volume using the alphashape3d R package (Lafarge et al. 2017) with an alpha value of 0.25. 

Alphashape3d allows to reconstruct a set of points in a three-dimensional space and produces accurate 
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estimates of crown volume from LiDAR point cloud data (Ahongshangbam et al. 2019; Yan et al. 2019; 

Korhonen et al. 2013). 

We then estimated a rather large set of morphometric characteristics and grouped them into traits 

related to i) main trunk, ii) tree biomass, iii) crown architecture or iv) crown volume (see Table 1 for full 

details). For Valdeolmos, we did not calculate LiDAR-derived traits relative to CBH since this trial had not 

been pruned and trees could have living or dead branches at ground level. Thus, we just filtered each individual 

point cloud at 0.20 m to avoid noise originating from small understory. Afterwards, we calculated the same 

canopy  

architecture traits as for Valsaín except for CBH, crown length (CL) and crown skewness (CL skew) (Table 1). 

We also estimated RGB-derived traits, which included total tree height, trunk diameter, tree biomass, crown 

area and the ratio between total tree height and crown area (see Table 1).  

 

Validation of UAV-derived height and trunk diameter and accuracy of treetops detection  

In order to estimate the accuracy of treetop detection, following the local maxima algorithm [38] applied to 

both LiDAR and RGB canopy height models, we calculated recall (Rc), precision (Pr) and F-score (F) values. 

R and P represent the completeness and correctness of the detected tree with respect to a reference dataset, 

respectively, and F is an overall indicator that varies from 0 to 1, with higher values indicating a more accurate 

segmentation (Neuville et al. 2021). 

where TP denotes the number of true positives (trees that are correctly individualized), FP represents the 

number of false positive (trees that are identified but do not exist), and FN refers to the number of false negative 

(trees that have not been identified). 

Tree height (h) and dbh measured in situ were used to validate h and dbh estimates obtained from 

LiDAR and RGB canopy height models, which were estimated through allometric equations using LiDAR- 

Rc = TP / TP + FN,  (1) 

Pr = TP / TP + FP, (2) 

F = 2 × (P × R / P + R), (3) 
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and RGB-derived tree height and crown area (see Table 1). We used the root mean square error (RMSE), the 

mean absolute error (MAE) and the coefficient of determination (R2) statistics for comparison between 

approaches.  

 

Statistical analyses  

In order to test for population differentiation, traits measured in situ and UAV-derived traits were 

independently subjected to analysis of variance (ANOVA), with population and replicates as fixed terms for 

both trials. We also tested for subspecies (black pine) or ecotypic (Aleppo pine) differentiation by partitioning 

the population term into subspecies (or ecotype) and population nested to subspecies (or ecotype) effects, 

which were also considered as fixed terms. In the latter analysis, two populations of P. nigra and four 

populations of P. halepensis were discarded due to their uncertain geographic origin (Tables S1 and S2).  

In order to reduce the dimensionality of our dataset and evaluate which traits better explained the 

allometric patterns of subspecies (or ecotypes), we performed a stepwise discriminant analysis for traits that 

showed significant subspecies (or ecotypic) structure. The significance level corresponding to the F-value to 

be included or excluded in the model was set at P = 0.15 (Dillon et al. 1984). We ran linear discriminant 

analysis when the null hypothesis of multivariate normality tested through Mardia’s test (Mardia, 1970) was 

not rejected; otherwise, a quadratic discriminant analysis was performed. Moreover, populations’ means of 

traits having a significant population effect were correlated to climate at populations’ origin. Partial 

correlations were also applied to the same population means for the purpose of controlling for subspecies (or 

ecotypic) structure in the dataset. The statistical analyses were performed in SAS/STAT (Little et al. 1998).  

 

Results 

Accuracy of tree detection 

The identification of treetops was most accurate using LiDAR-derived CHM in both provenance trials, 

showing a recall (R) value of 0.92 and 0.93 for Valsaín and Valdeolmos respectively. This implied that over 

90% of trees were correctly detected at trial level. The overestimation of treetops was quite low (P = 99% for 

Valsaín; P = 97% for Valdeolmos), and the overall indicator of accuracy F was also high (above 95%), 
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indicating accurate treetop identification (Table S3). Treetop identification was less accurate using RGB-

derived CHM, although F was above 91% (Table S3).  

 

Validation with in situ measurements 

LiDAR-derived h and dbh estimates were slightly better than RGB-derived estimates for both species, 

especially for black pine. For this species, LiDAR- and RGB-derived h showed a RMSE of 0.36 m and 0.40 

m, a MAE of 0.24 m and 0.29 m (Table S4), and a R2 of 0.92 and 0.90 (Fig. S1a, b), respectively. The regression 

between LiDAR- and RGB-derived h showed a R2 of 0.98 (Fig. S1c). LiDAR- and RGB-derived dbh had a 

RMSE of 1.61 cm and 1.74 cm, a MAE of 1.25 cm and 1.37 cm (Table S4), and a R2 of 0.67 and  

0.65 (Fig. S2a, b), respectively. The R2 of the regression between LiDAR- and the RGB-derived dbh was 0.95 

(Fig. S2c).  

For Aleppo pine, LiDAR- and RGB-derived h showed a RMSE of 0.43 m and 0.45 m, a MAE of 0.31 

m and 0.34 m (Table S4), and a R2 of 0.83 and 0.76 (Fig. S3a, b), respectively. The R2 of the regression between 

LiDAR- and RGB-derived h was 0.86 (Fig. S3c). LiDAR- and RGB-derived dbh had RMSE of 1.67 cm and 

1.76 cm, a MAE of 1.26 cm (in both cases) (Table S4), and a R2 of 0.73 and 0.69, respectively (Fig. S4a, b). 

The regression between LiDAR- and RGB- derived dbh showed a R2 of 0.83 (Fig. S4c).  

 

Intraspecific variability of in situ traits and of LiDAR- and RGB-derived traits 

Black pine 

We detected intraspecific variability for both in situ traits and RGB-derived traits and, also, for most LiDAR-

derived traits (Table 2). Significant differences among subspecies were also found for every trait showing 

significant variability among populations, except for two LiDAR-derived traits which exhibited intraspecific 

variation only at the population level (Table 2).  

Three LiDAR-derived traits (coefficient of variation of crown length points (CVCL), crown volume 

(Cvol025) and h) discriminated the most among subspecies. Discriminant analysis indicated that subspecies 

calabrica was associated with high crown volume, opposite to subspecies nigra (Fig. 3a). Low h, high Cvol025 

and high CVCL characterized the subspecies laricio, while subspecies salzmannii showed the opposite pattern 
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(Fig. 3a). The average squared canonical correlation suggested that ca. 60% of the between-subspecies to 

within-subspecies variability was explained by the first two discriminant axes, which described 99% of the 

between-subspecies variation (Fig. 3a). The RGB-derived traits that best explained differences among 

subspecies were h and the ratio between height and crown area (h:CA), with an average squared canonical 

correlation of 46% (Table 3). The canonical correlation was a bit higher in the case of in situ traits (68%), with 

h, dbh and biomass of medium branches as traits that disclosed better the differences between subspecies 

(Table 3). 

 

Aleppo pine 

Tree biomass (stem biomass (Ws), medium branches biomass (Wb2-7), thin branches and needles biomass 

(Wb2+n) and root biomass (Wr)) and main trunk growth traits (h and dbh) showed significant population 

effects in the case of in situ traits, and also for both remote sensing-derived approaches (Table 4). Additionally, 

LiDAR-derived traits showed intraspecific variability also for main trunk traits (specifically, half h), crown 

architecture traits (height of the widest crown section (HWCS), height skewness (h skew), CVCL, and quartile 

coefficient dispersion of crown length points (QCD)), and crown volume traits (density of points at 99th, 75th 

and 50th quartiles (Q99d, Q75d, Q50d, respectively) and ratio of crown volume to crown area (Cvol025:CA)). 

All traits mentioned above showed a significant ecotypic structure, except for three LiDAR-derived traits 

(Table 4). 

Discriminant analysis summarized the ecotypic structure for the species by means of two LiDAR-

derived traits: CVCL and Q75d (Table 3; Fig. 3b). The analysis indicated that ecotype DHT had a denser canopy, 

as opposed to ecotypes DST and DSC, while ecotype WST showed a high CVCL values (Fig. 3b). However, 

the average squared canonical correlation was low, thereby indicating a relatively low discrimination, with the 

first two discriminant axes explaining only 15% of the between- to within-ecotype variability (Table 3). Three 

RGB-derived traits (h, dbh and Wb2-7) discriminated the most among ecotypes, however only 13% of the 

between- to within-ecotype variability was explained by the first two discriminant axes (Table 3). Regarding 

in situ traits, only the biomass of medium branches was identified in the stepwise discriminant analysis (Table 

3).  
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Relationships between in situ or UAV traits and climate at populations’ origin 

Black pine 

The LiDAR-derived traits showing a larger number of significant correlations with climate at the origin of 

populations were those related to main trunk (h), crown architecture (ratio between tree height and widest 

crown section (h:HWCS), h skew, CVCL, and QCD), and crown volume (Q99d, Q75d, and Q55d) (Fig. 4a). The 

latter traits related to crown density also showed negative correlations with altitude. Traits related to crown 

architecture showed a positive correlation with longitude, mean annual precipitation (MAP), precipitation of 

the wettest quarter and winter precipitation (PwtQ and Pw, respectively), and a negative correlation with 

temperature annual range (TAR) (Fig. 4a). TAR was the climate variable having the highest number of  

significant relationships with the entire set of traits analyzed. This variable showed negative associations with 

traits descriptive of tree height, regardless of the approach used for its estimation, and canopy architecture 

(Fig. 4a). 

After accounting for subspecies structure, TAR was no longer the most influential climate variable, 

suggesting that all previously significant correlations were driven by large differences among subspecies (Fig. 

4b). This pattern was also common to any other significant correlation described above, except for three traits 

related to crown volume and two traits related to crown architecture, which were negatively related to altitude 

(Fig. 4b). 

 

Aleppo pine 

In situ measures of trunk diameter and estimates of tree biomass were positively correlated with longitude, 

MAP and PwtQ, and negatively correlated with altitude and TAR (Fig. 5). Regarding RGB-derived traits, only 

those related to tree biomass showed significant correlations with climate. In particular, Wb2-7 and Wb+n 

showed the same correlation pattern as for in situ measures, while the remaining RGB-derived biomass traits 

showed significant relationships with TAR (negative) and with MAP and PwtQ (positive) (Fig. 5). The same 

pattern was found for LiDAR-derived Wb2+n, while Wb2-7 was also negatively correlated to altitude and 

positively correlated to longitude. Additionally, Ws was positively correlated with PwtQ and MAP, and Wr 

had a positive correlation with MAP only. Crown volume traits such as Q99d, Q75d and Q50d showed positive 
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correlations with longitude, and Q75d had also a negative correlation with altitude. Similarly, a negative 

correlation with altitude was observed for HWCS, which also had a negative correlation with TAR. Finally, 

CVCL was positively correlated with the temperature of the coldest quarter (TCQ) (Fig. 5).  

Partial correlations accounting for differences among ecotypes did not show any significant 

relationship between the analyzed traits and the climate at origin of populations, suggesting a lack of finer-

scale ecogeographic patterns beyond the ecotypic structure of the species (results not shown).  

 

Discussion 

This study applied high-throughput, UAV-based phenotyping techniques for the assessment of genetic 

differentiation in morphological traits of two widespread Mediterranean pines (black pine and Aleppo pine).  

In particular, the effectiveness of LiDAR and RGB imagery was investigated to characterize tree phenotypes 

and their variability at population and meta-population (subspecies, ecotypes) level. Thus, we demonstrate the 

potential of these indirect approaches to disclose tree architectural differences potentially related to 

intraspecific adaptive divergence in pine species.  

 

Tree segmentation accuracy and field validation 

Our study showed that individual tree detection and segmentation obtained from UAV-LiDAR had a slightly 

higher overall accuracy than that obtained through UAV-RGB for both pine species. However, it also indicated 

that trees correctly identified and segmented using UAV-RGB were over 90%, which is still an excellent 

outcome compared to other studies involving alternative forest tree species such as Pinus sylvestris L., Picea 

abies (L.) H. Karts. and Quercus rubra L., among others (Vauhkonen et al. 2012), and in line with other studies 

performed in common gardens (Liao et al. 2022; Santini et al. 2019a). 

The validation of LiDAR- and RGB-derived tree height and dbh against in situ measurements 

indicated that UAV-LiDAR estimated tree height and dbh better than UAV-RGB in both species, and 

especially for black pine, which showed a lower estimated error and a higher R2. The fact that treetops and tree 

height were estimated with more accuracy and less error in black pine compared to Aleppo pine might be 

attributable to the thinning and pruning treatments applied in Valsaín, which produced a sparser canopy cover. 
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As a result, more ground points could be easily classified within the point clouds, generating a more accurate 

DTM (Mielcarek et al. 2020; Reutebuch et al. 2005) and, subsequently, a more accurate CHM from which tree 

height could be estimated with better accuracy. In addition, we speculate that morphological differences 

between these species, especially related to canopy architecture (denser in Aleppo pine) and total tree height 

(higher in black pine), could have also influenced accuracy, as described in previous studies for mixed 

temperate forests (Balenović et al. 2015). We would like to emphasize that, even though RGB imagery is less 

expensive than aerial LiDAR, both methods showed high accuracy in the identification of individual trees and, 

also, in the estimation of morphological traits commonly used in forest studies such as dbh and total tree height.  

 

Intraspecific differentiation in black pine and associations with climate at origin 

This study emphasizes the great intraspecific variability of growth traits and crown structure in European black 

pine. In particular, our results showed that populations belonging to P. nigra ssp. nigra presented the lowest 

aerial growth, regardless of methodology (in situ, LiDAR- or RGB-derived). Conversely, populations from 

south Italy, belonging to the subspecies calabrica, showed the opposite pattern. These results are in line with 

previous studies that described P. nigra ssp. nigra as slow growing (Santini et al. 2019b), but highly frost-

tolerant species (Kreyling et al. 2012). Thus, traits related to crown structure could also be related to the large 

cold hardiness of this subspecies, especially crown density. Indeed, a slender, shorter and sparser canopy may 

shield the tree from snow canopy damage, as previously described for other pine species (Stevens et al. 2020; 

fish et al. 2006).  

Also, according to our findings, intraspecific variability in crown complexity and shape indicates 

genetic differentiation in growth habit that may be related to particular responses to environmental stresses 

such as drought, snowfall and fire. Particularly, populations originating from mesic environments (i.e. 

Corsica), which belong to the subspecies laricio, showed a higher crown volume and a more expanded crown. 

These populations have been described as less conservative, fast growing (Santini et al. 2019b) and frost 

sensitive (Kreyling et al. 2012) than populations from xeric areas (i.e. Iberian Peninsula), belonging to the 

subspecies salzmannii, which showed the opposite pattern. The Iberian subspecies occupies areas in the 

southernmost distribution range of black pine, where drought and snowfall are the main limiting factors for 
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growth, although there seems to exist some growth differences between southern and northern populations 

within this region (Navarro-Cerrillo et al. 2014; Amodei et al. 2013). Southernmost populations occupy higher 

altitude, so they are subject to intense summer drought but also to heavy snowfalls in winter. These populations 

may have undergone more intense selection where snow is a key selective factor that influence crown structure 

(Climent Maldonado et al. 2017). This was hinted in our results, in which partial correlation analysis suggested 

that altitude was the only environmental variable showing an eco-geographic pattern beyond the subspecies 

structure of black pine. 

Fire intensity and frequency can also play an important role for this fire-tolerant species (Resco de 

Dios et al. 2018), and the fact that populations from xeric environment showed a smallest and more 

homogeneous crown and a lower height in which the widest crown is found might be the result of selective 

factors that prioritize reserve accumulation and traits potentially related to surface fire-resistance that can 

facilitate survival under moderate-intensity surface fires (Aubrey et al. 2007), at the expenses of above-ground 

growth.  

 

Intraspecific differentiation in Aleppo pine and associations with climate at origin 

Significant variation was detected in Aleppo pine at population and ecotype level for many in situ as well as 

LiDAR- and RGB-derived traits. As hypothesized, however, ecotypic differentiation was by far less structured 

and somehow blurry compared to the strong subspecies structure exhibited by P. nigra.  

Populations belonging to ecotypes WST and DSC (native to the Balearic Islands, Italy and central-

south Iberian Peninsula) showed lower primary growth and crown volume. This is in clear contrast to 

populations from France, northern Spain and Greece, belonging to ecotypes WHC and DHT, which presented 

the opposite pattern. The latter ecotypes, originating from mesic environments, are characterized by higher 

phenotypic plasticity and generally grow faster than their counterparts from xeric areas (Ramírez-Valiente et 

al. 2022; Patsiou et al. 2020). The observed pattern can be the result of an adaptive syndrome in which 

populations from the east Mediterranean basin and from mesic origins invest more in aboveground growth 

compared to other plant compartments related to reproduction (Climent et al. 2008) or roots (Lombardi et al. 

2021) and also to water-use efficiency (Voltas et al. 2015), among others. This can also be interpreted as a 
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genetically-based shade-avoidance strategy adopted by ecotypes from more favorable environments and 

therefore subject to higher competition, since a more expanded crown might enhance light capture and carbon 

gain (Duursma et al. 2007). These features may indeed reduce the negative effect of competition (Brisson et 

al. 2001). On the other hand, some morphological traits related to tree biomass, dbh and crown architecture 

showed a negative relationship with altitude and continentality (annual range temperature), thereby 

highlighting the thermophilic characteristic of this species (Vennetier et al. 2018). In addition, as fire-embracer 

species (Resco de Dios et al. 2018), Aleppo pine populations (and ecotypes) from xeric environments could 

assign more resources to reproduction, in particular to the production of serotine cones as post-fire regeneration 

strategy, at the expense of other functional traits related e.g. to primary growth (Aubrey et al. 2007). Limited 

height and lower height in which the widest crown is found may indeed enhance tree flammability, favoring 

surface fire to become crown fire (Ne´eman et al. 2004).  

 

Conclusions 

This study demonstrates the adequacy of two remote sensing approaches (UAV-LiDAR and UAV-RGB) to 

assess genetic variability of morphometric traits in adult trees of pine species at the intraspecific level. UAV-

LiDAR accuracy was slightly better for the identification of individual trees and for the estimation of dbh and 

total tree height. However, the accuracy of UAV-RGB was still very good and, depending on the objective and 

available resources of the study, it might be appropriate to trade some accuracy for affordability. We conclude 

that genetic differentiation in tree structural differences potentially driven by environmental conditions at 

origin of populations of pine species can be effectively disclosed using UAV-based, high-throughput 

phenotyping approaches. Indeed, these methods also overcome the complex and time-consuming traditional 

measures of adult trees under field conditions.  
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Chapter 3 – Tables and Figures 

Table 1. Description of in situ, LiDAR- and RGB-derived phenotypic traits with their function or formula. The traits 

were obtained for two pine species evaluated in two provenance trials. The first trial was located in Valdeolmos (Madrid 

province, Spain) and consisted of 56 populations of Pinus halepensis. The second trial was located in Valsaín (Segovia 

province, Spain) and was composed by 18 populations of Pinus nigra. 

Trait 

abbreviatio

n 

Trait description Function/Formula  Valsaín 
Valdeolm

os 
in situ 

LiDAR-

derived 

RGB-

derive

d 

                Traits related to main trunk  

h 
Total tree height calculated 

from canopy height model 

Zonal statistic, QGIS 

environment 
X X X X X 

half h Half of the total tree height  X X  X  

dbh 
Estimated diameter at breast 

height 

Multilinear model (for UAV-

derived dbh) for black pine 

[65] and Aleppo pine [66] 

X X X X X 

                Traits related to tree biomass 

Ws Stem biomass Allometric equation [67] X X X X X 

Wb2-7 Medium branches biomass Allometric equation [67] X X X X X 

Wb2+n  
Thin branches + needles 

biomass 
Allometric equation [67] X X X X X 

Wr Root biomass Allometric equation [67] X X X X X 

                Traits related to crown architecture 

CBH Height of first living branch 

Cubic smooth spline followed 

by calculation of first and 

second derivative 

X   X  

CL Total crown length Total tree height minus CBH X     

CL Skew Crown height skewness 
skewness function, R 

environment 
X     

h Skew Total height skewness 
skewness function, R 

environment 
X X  X  

CVCL 

Coefficient of variation of 

crown length point 

dispersion around the mean  

Standard deviation CL 

divided by mean CL 
X X  X  

QCD 
Crown height quartile 

coefficient of dispersion 
Q1 -  Q3 / Q1 +  Q3 X X  X  

CA 
Crown area calculated from 

the canopy height model 
Area function, QGIS X X  X X 

h:CA 
Ratio between crown height 

and crown area 
 X X  X X 

WCS Widest crown section 
CHM derived tiles with the 

biggest area 
   X  

HWCS 
Height of widest crown 

section 
 X X  X  

h:HWCS 
Total tree height to height of 

widest crown section ratio 
 X X  X  

half 

h:HWCS 

Half tree height to height of 

widest crown section ratio 
    X  

RI Crown height rumple index 
rumple_index function, R 

environment  
X X  X  
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                Traits related to crown volume  

Q99p 

99th percentile of crown's 

points calculated from the 

point cloud 

 X X  X  

Q75p 

75th percentile of crown's 

points calculated from the 

point cloud 

 X X  X  

Q50p 

50th percentile of crown's 

points  calculated from the 

point cloud 

 X X  X  

Q99d 

99th percentile of crown's 

points density calculated 

from the point cloud 

 X X  X  

Q75d 

75th percentile of crown's 

points density calculated 

from the point cloud 

 X X  X  

Q50d 

50th percentile of crown's 

points density calculated 

from the point cloud 

 X X  X  

Cvol025 

Crown's volume using an 

alpha value of 0.25 

calculated from the point 

cloud 

alpha shape function, R 

environment 
X X  X  

CH:Cvol025 
Ratio between crown height 

and crown volume 
 X X  X  

3D025:2D 
Ratio between Cvol025 to 

crown area  
  X X  X   
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Table 2. Mixed-effects model analysis of variance for in situ, LiDAR and RGB-derived phenotypic traits of 18 

populations (Pop) of black pine grouped into five subspecies (Subs) grown in a common garden. Only traits with 

significant population effects are shown in the table. 

   in situ  LiDAR-derived traits  RGB-derived traits 

Traits Effect Num df F Value P > F  F Value P > F  F Value P > F 

Traits related to main trunk 

h 
Subs 4 8.28 <0.0001  8.15 <0.0001  7.13 <0.0001 

Subs(Pop) 16 1.70 0.0537  1.57 0.0828  1.70 0.0534 

half h 
Subs 4 / /  4.16 0.0032  / / 

Subs(Pop) 16 / /  2.37 0.0037  / / 

dbh 
Subs 4 6.19 <0.0001  4.52 0.0017  4.48 0.0018 

Subs(Pop) 16 1.49 0.1103  1.21 0.2642  1.31 0.1942 

Traits related to tree biomass 

Ws 
Subs 4 6.30 <0.0001  5.55 0.0003  4.96 0.0008 

Subs(Pop) 16 1.53 0.0969  1.33 0.1854  1.42 0.1377 

Wb2-7 
Subs 4 6.16 0.0001  4.49 0.0018  4.21 0.0028 

Subs(Pop) 16 1.48 0.0117  1.18 0.2897  1.27 0.2213 

Wb2+n 
Subs 4 6.16 0.0001  4.49 0.0018  4.21 0.0028 

Subs(Pop) 16 1.48 0.1159  1.18 0.2897  1.27 0.2213 

Wr 
Subs 4 6.05 0.0002  4.44 0.0020  4.07 0.0035 

Subs(Pop) 16 1.45 0.1270  1. 0.3018  1.25 0.2339 

Traits related to crown architecture 

CA 
Subs 4 / /  2.70 0.0328  2.74 0.0309 

Subs(Pop) 16 / /  0.89 0.5767  0.99 0.4757 

h:CA 
Subs 4 / /  2.84 0.0265  3.20 0.0151 

Subs(Pop) 16 / /  1.14 0.3281  1.45 0.1253 

CL  
Subs 4 / /  9.70 <0.0001  / / 

Subs(Pop) 16 / /  1.49 0.1120  / / 

WCS 
Subs 4 / /  2.94 0.0226  / / 

Subs(Pop) 16 / /  0.85 0.6219  / / 

HWCS 
Subs 4 / /  2.51 0.0447  / / 

Subs(Pop) 16 / /  2.30 0.0049  / / 

h:HWCS 
Subs 4 / /  2.19 0.0730  / / 

Subs(Pop) 16 / /  0.82 0.6563  / / 

half h:HWCS 
Subs 4 / /  2.53 0.0433  / / 

Subs(Pop) 16 / /  1.21 0.2694  / / 

h Skew 
Subs 4 / /  5.73 0.0003  / / 

Subs(Pop) 16 / /  1.89 0.0257  / / 

CL Skew 
Subs 4 / /  2.66 0.0349  / / 

Subs(Pop) 16 / /  1.74 0.0457  / / 

QCD 
Subs 4 / /  5.79 0.0002  / / 

Subs(Pop) 16 / /  1.20 0.2787  / / 

RI 
Subs 4 / /  14.88 <0.0001  / / 

Subs(Pop) 16 / /  1.29 0.2118  / / 

Traits related to crown volume 

Q99p 
Subs 4 / /  3.83 0.0055  / / 

Subs(Pop) 16 / /  1.21 0.2670  / / 

Q99d 
Subs 4 / /  2.86 0.0257  / / 

Subs(Pop) 16 / /  2.61 0.0013  / / 

Q75d 
Subs 4 / /  2.92 0.0234  / / 

Subs(Pop) 16 / /  2.58 0.0015  / / 

Q50d Subs 4 / /  2.92 0.0234  / / 
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Subs(Pop) 16 / /  2.52 0.0019  / / 

CVCL 
Subs 4 / /  8.88 <0.0001  / / 

Subs(Pop) 16 / /  1.18 0.2926  / / 

Cvol025 
Subs 4 / /  4.98 0.0009  / / 

Subs(Pop) 16 / /  0.96 0.4994  / / 

H:Cvol025 
Subs 4 / /  2.88 0.0250  / / 

Subs(Pop) 16 / /  1.11 0.3556  / / 

3D025:2D 
Subs 4 / /  7.82 <0.0001  / / 

Subs(Pop) 16 / /   0.95 0.5152   / / 
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Table 3. Stepwise discriminant analysis of in situ, LiDAR- and RGB-derived traits of 17 populations of black pine 

grouped into four subspecies and of 52 populations of Aleppo pine grouped into five ecotypes grown in common gardens 

in Spain. The only black pine population from subspecies pallasiana and four Aleppo pine populations from uncertain 

geographic origin have not been included in the analysis. Partial R2, significance level and average squared canonical 

correlation values are shown for traits entering in the model (P < 0.15). 

Pinus nigra  Pinus halepensis 

in situ traits  in situ traits 

Step Variable 
Partial 

R2 
F-value P > F 

Average 

Squared  

Canonical  

Correlation 

 Step Variable 
Partial 

R2 

F-

value 
P > F 

Average 

Squared  

Canonical  

Correlation 

1 dbh 0.73 11.46 0.001 0.24  1 Wb2-7 0.31 5.20 0.002 0.08 

2 h 0.85 22.26 <0.001 0.51        

3 Ws 0.56 4.64 0.025 0.68              

             

UAV-LiDAR derived traits  UAV-LiDAR derived traits 

1 CVCL 0.87 28.83 <0.001 0.29  1 Q75d 0.29 4.76 0.003 0.07 

2 Cvol025 0.77 13.27 <0.001 0.54  2 CVCL 0.31 5.24 0.002 0.15 

3 h 0.70 8.61 0.003 0.60              

             

UAV-RGB derived traits  UAV-RGB derived traits 

1 h  0.71 10.54 0.001 0.24  1 Wb2-7 0.22 3.29 0.019 0.06 

2 h:CA 0.69 8.89 0.002 0.46  2 dbh 0.14 1.91 0.126 0.09 

             3 h 0.19 2.54 0.053  0.13 

 

  

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/discriminant-analysis
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Table 4. Mixed-effects model analysis of variance for in situ, LiDAR and RGB-derived phenotypic traits of 52 

populations (Pop) of Aleppo pine grouped into five ecotypes grown in a common garden. Only traits with significant 

population effects are shown in the table. 

   in situ  LiDAR-derived traits  RGB-derived traits 

Trait Effect Num df F Value P > F  F Value P > F  F Value P > F 

Traits related to main trunk 

h 
Ecotype 4 2.96 0.0196  4.22 0.0023  5.54 0.0002 

Pop(Ecotype) 47 2.41 <0.0001  2.71 <0.0001  2.65 <0.0001 

half h 
Ecotype 4 / /  4.22 0.0023  / / 

Pop(Ecotype) 47 / /  2.71 <0.0001  / / 

dbh 
Ecotype 4 6.28 <0.0001  2.79 0.0261  2.49 0.0426 

Pop(Ecotype) 47 1.54 0.0152  1.81 0.0012  1.60 0.0088 

Traits related to tree biomass 

Ws 
Ecotype 4 8.52 <0.0001  5.09 0.0005  5.11 0.0005 

Pop(Ecotype) 47 1.46 0.0285  1.87 0.0007  1.73 0.0026 

Wb2-7 
Ecotype 4 8.76 <0.0001  5.32 0.0003  4.93 0.0007 

Pop(Ecotype) 47 1.38 0.0539  1.67 0.0048  1.68 0.0045 

Wb2+n 
Ecotype 4 8.52 <0.0001  5.06 0.0005  5.06 0.0005 

Pop(Ecotype) 47 1.44 0.0334  1.79 0.0015  1.69 0.0038 

Wr 
Ecotype 4 8.10 <0.0001  3.72 0.0055  3.00 0.0182 

Pop(Ecotype) 47 1.44 0.0334  1.75 0.0021  1.47 0.0265 

Traits related to crown architecture 

HWC 
Ecotype 4 / /  3.68 0.0058  / / 

Pop(Ecotype) 47 / /  1.85 0.0009  / / 

h Skew 
Ecotype 4 / /  1.98 0.0967  / / 

Pop(Ecotype) 47 / /  1.59 0.0101  / / 

CVCL 
Ecotype 4 / /  4.30 0.0020  / / 

Pop(Ecotype) 47 / /  1.27 0.1126  / / 

QCD 
Ecotype 4 / /  1.81 0.1251  / / 

Pop(Ecotype) 47 / /  1.50 0.0206  / / 

Traits related to crown volume 

Q99d 
Ecotype 4 / /  7.38 <0.0001  / / 

Pop(Ecotype) 47 / /  1.33 0.0762  / / 

Q75d 
Ecotype 4 / /  7.27 <0.0001  / / 

Pop(Ecotype) 47 / /  1.33 0.0757  / / 

Q50d 
Ecotype 4 / /  5.54 0.0002  / / 

Pop(Ecotype) 47 / /  1.31 0.0903  / / 

3D025:2D 
Ecotype 4 / /  1.92 0.1068  / / 

Pop(Ecotype) 47 / /   2.35 <0.0001   / / 
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Fig. 1. Aerial RGB images and derived information of the two common gardens analysed in this study (a): Pinus nigra 

(left panels) and Pinus halepensis (right panels). Example of crown segmentation from the canopy height model of P. 

nigra and P. halepensis (b). Example of a normalized LiDAR point cloud of P. nigra and P. halepensis (c). Example of 

extracted tree individual point clouds for P. nigra subspecies nigra and laricio (d-e), and for Aleppo pine ecotype DHT 

(d) and DSC (e). 

 

  

Fig. 2. Workflow of RGB and LiDAR point cloud processing. Green lines refer to the RGB-derived point cloud process 

and blue lines illustrate the LiDAR-derived point cloud process. The LiDAR-derived traits described in the right part of 

the workflow are those obtained from the segmentation applied directly to the LiDAR-derived point cloud. 
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Fig. 3. Discriminant analysis plots showing the centroid (black crosses) and their 95% confidence ellipses of the first two 

canonical variables (CAN1 and CAN2) for four subspecies of P. nigra (a) and five ecotypes of P. halepensis (b) and their 

explanatory variables using LiDAR-derived traits. Cvol025 = Crown volume calculate with alpha equal to 0.25; h = Total 

tree height; CVCL = Coefficient of variation of crown length point dispersion; Q75d = 75th percentile of crown's point 

density calculated from the point cloud. 

 

 

 
 
Fig. 4. Simple correlation (a) and partial correlation coefficients (b) between population means of in situ, RGB- or 

LiDAR-derived traits and climate factors at populations’ origin for 16 populations of Pinus nigra tested in a common 

garden located in Valsaín (Spain). Only significant correlations (P < 0.05) with their respective correlation coefficients 

are shown. 

 

 

 



Chapter 3 

181 
 

 
Fig. 5. Simple correlation coefficients between population means of in situ, RGB- or LiDAR-derived traits and climate 

factors at populations’ origin for 48 populations of Aleppo pine tested in a common garden located in Valdeolmos (Spain). 

Only significant correlations (P < 0.05) with their respective correlation coefficients are shown. 
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Chapter 3 – Supplementary material 

Table S1. Name, code, subspecies, geographic origin and environmental conditions of 18 populations of European black pine (Pinus nigra) grown in a common garden experiment 

located in Valsaín (Spain). 

Population Code Subspecies Country Latitude  Longitude 

Altitude 

(m, a.s.l) 

MAT 

(°C) 

TAR 

(°C) 

TWQ 

(°C) 

TCQ 

(°C) 

MAP 

(mm) 

PwtQ 

(mm) 

PdrQ 

(mm) 

Pw 

(mm) 

Ps 

(mm) 

PsP 

(%) 

Ena 1 salzmannii Spain 42° 31' 15'' N 0° 45' 15'' E 920 11.6 26.7 19.4 4.9 700 211 126 188 126 18 

Solsonés 3 salzmannii Spain 42° 02' 33'' N 1° 31' 37'' E 645 11.2 26.8 19.0 4.4 765 241 132 132 206 27 

Cuenca 71 salzmannii Spain 39° 59' 59'' N 2° 03' 13'' E 994 12.1 31.9 21.0 4.5 506 159 72. 143 79 16 

Los 

Palancares 72 salzmannii Spain 40° 01' 34'' N  1° 58' 34'' W 1221 10.7 31.6 19.7 3.3 545 172 80 148 89 16 

Los Cadorzos 73 salzmannii Spain 39° 50' 29'' N 2° 00' 31'' W 766 11.7 31.8 20.7 4.2 499 160 72 137 79 16 

Paterna del 

Madera 81 salzmannii Spain 37° 54' 60'' N 2° 54' 25'' W 1389 11.4 32.4 20.9 3.5 522 186 41 177 46 9 

Navahondona 82 salzmannii Spain 38° 34' 42'' N 2° 19' 05'' W 1125 11.9 33.9 21.7 3.8 475 161 48 145 54 11 

Cazorla-

Alcaraz 83 salzmannii Spain 38° 13' 60'' N 2° 37' 60'' W 1329 11.0 33.2 20.7 3.0 530 181 46 170 53 10 

Huéscar 84 salzmannii Spain 37° 56' 55'' N 2° 34' 48'' W 1795 9.0 34.0 19.0 0.9 662 226 58 217 65 10 

Gagniéres 150 salzmannii France 44° 06' 60'' N 4° 17' 00'' E 277 12.9 26.8 21.0 5.7 826 285 137 206 137 17 

Grancia 201 calabrica Italy 39° 24' 59'' N 16° 35' 09'' E 1496 8.6 21.4 16.2 1.8 843 332 84 300 84 10 

Macchia della 

tavola 202 calabrica Italy 39° 22' 20'' N 16° 35' 18'' E 1544 7.6 21.6 15.3 0.8 831 323 86 292 86 10 

Noceta 302 laricio 

France 

(Corsica) 42° 09' 60'' N 9° 11' 00'' E  684 12.4 21.7 19.6 6.0 772 299 72 248 104 13 

Sorba 303 laricio 

France 

(Corsica) 42° 07' 60'' N 9° 12' 00'' E 1032 11.5 21.0 18.7 5.2 818 313 76 266 106 13 

Ghisoni 304 laricio 

France 

(Corsica) 42° 04' 60'' N 9° 12' 00'' E 699 12.4 21.3 19.6 6.1 747 290 68 241 99 13 

Parabluerbeg 402 nigra Austria / / / / / / / / / / / / / 

Milea 405 nigra Greece  39° 45' 55'' N 21° 11' 41'' E 1111 9.4 27.1 17.7 1.6 879 315 114 278 114 13 

Villetta Barrea 407 nigra Italy 41° 46' 60'' N 13° 46' 03'' E 1360 8.0 24.2 16.2 0.7 787 254 166 175 166 21 
MAT = Mean annual temperature; TAR = Annual range temperature; TWQ = Temperature of the warmest quarter; TCQ = Temperature of the coldest quarter; MAP Mean annual precipitation; PwtQ = 

Precipitation of the wettest quarter; PdrQ = Precipitation of the driest quarter; Pw = Winter precipitation; Ps = Summer precipitation; PsP = Summer to annual precipitation ratio. 
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Table S2. Name, code, ecotype, geographic origin, and environmental conditions of 56 populations of Aleppo pine (Pinus halepensis) grown in a common garden experiment located 

in Valdeolmos (Spain). 

Population Code Ecotype Country Latitude Longitude 
Altitude 

(m, a.s.l) 

MAT 

(°C) 

TAR 

(°C) 

TWQ 

(°C) 

TCQ 

(°C) 

MAP 

(mm) 

PwtQ 

(mm) 

PdrQ 

(mm) 

Pw 

(mm) Ps (mm) 

PsP 

(%) 

Cabanelles 11 WHC Spain 42°15' N 2° 47' E 250 13.7 25.3 21.0 7.4 684 218 135 154 155 23 

Tivissa 21 WST Spain 42°20' N 0° 50' E 417 14.1 26.9 21.8 7.2 601 209 80 142 108 18 

Sant 

Salvador 

Guardiola 

31 WHC Spain 41°40' N 1° 45' E 378 13.7 26.1 21.3 6.8 623 199 118 118 154 25 

Zuera 61 WST Spain 41°55' N 0° 55' E 582 13.1 28.5 21.4 5.7 441 146 87 98 95 22 

Valdeconcha 82 DSC Spain 40°27' N 2° 52' W 873 12.8 31.2 21.8 5.2 449 157 53 131 54 12 

Alcantud 83 DSC Spain 40°34' N 2° 18' W 683 13.6 32.7 22.7 5.8 422 164 45 125 45 11 

Colmenar de 

Oreja 
84 DSC Spain 40°05' N 3° 20' W 1155 11.4 30.6 20.3 4.0 545 180 70 163 75 14 

Cirat 91 DSC Spain 40°03' N 0° 28' W 606 13.5 28.1 21.2 6.8 407 127 72 82 84 21 

Tuéjar 92 DSC Spain 39°49' N 1° 09' W 713 13.4 29.6 21.6 6.3 369 121 63 71 81 22 

Enguidanos 93 DSC Spain 39°38' N 1° 39' W 1009 12.1 31.9 21.2 4.5 443 148 76 103 82 19 

Tibi 101 DSC Spain 38°31' N 0° 39' W 976 12.4 32.3 21.5 4.7 420 138 61 95 61 15 

Altura 102 DSC Spain 39°47' N 0° 37' W 604 14.0 29.1 21.9 7.1 405 128 73 81 81 20 

Villa de Ves 103 DSC Spain 39°11' N 1° 15' W 817 13.1 31.5 22.1 5.4 394 133 69 83 70 18 

Jarafuel 104 DSC Spain 39°10' N 1° 01' W 564 14.4 30.0 22.9 7.0 376 120 60 80 60 16 

Bicorp 105 DSC Spain 39°06' N 0° 51' W 652 13.7 29.5 22.0 6.5 382 124 64 80 64 17 

Commercial 

Seed 
109  Spain / /            

Benicàssim 111 WST Spain 40°05' N 0° 01' E 361 15.1 26.2 22.5 8.8 469 165 76 109 103 22 

Gilet 112 DST Spain 39°40' N 0° 21' W 734 14.0 33.0 23.5 6.0 422 154 46 130 47 11 

Villajoyosa 131 DST Spain 38°30' N 0° 18' W 50 17.6 26.1 24.5 11.5 308 124 31 72 50 16 

Ricote 141 DST Spain 38°09' N 1° 26' W 882 13.8 31.9 22.8 6.2 388 124 47 100 48 12 
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Monovar 142 DST Spain 38°23' N 0° 57' W 778 13.9 31.9 22.7 6.2 385 125 52 89 52 14 

Monovar II 143 DST Spain 38°24' N 0° 55' W 493 15.2 30.0 23.5 7.9 350 117 43 79 50 14 

Paterna  144 DSC Spain 38°38' N 2° 17' W 1001 12.5 34.2 22.3 4.4 450 154 45 138 51 11 

Abarán 145 DST Spain 38°17' N 1° 16' W 702 14.4 30.8 23.0 6.9 362 115 46 89 46 13 

Quéntar 151 DST Spain 37°14' N 3° 25' W 1116 13.3 34.2 22.5 5.6 490 185 34 176 35 7 

Benamaurel 152 DSC Spain 37°42' N 2° 44' W 894 14.1 34.4 23.6 6.1 405 147 31 138 33 8 

Vélez 

Blanco 
153 DST Spain 37°47' N 2° 01' W 875 13.6 32.7 22.7 5.9 381 130 37 117 38 10 

Santiago de 

la Espada 
154 DSC Spain 38°14' N 2° 28' W 839 13.5 33.4 23.0 5.4 411 146 36 131 40 10 

Lorca 156 DSC Spain 37°52' N 1° 32' W 694 14.7 31.9 23.4 7.2 357 122 35 105 35 10 

Alhama de 

Murcia 
157 DSC Spain 37°45' N 3° 01' W 831 13.6 30.9 22.3 6.1 382 125 40 105 40 10 

Quesada 158 DSC Spain 37°45' N 1° 57' W 653 15.0 32.0 23.9 7.4 381 142 29 131 30 8 

Lentergi 171 DST Spain 36°49' N 3° 41' W 364 16.9 26.6 24.1 10.7 436 187 20 173 23 5 

Carratraca 172 DST Spain 36°51' N 4° 50' W 501 15.7 26.4 23.0 9.5 651 308 20 286 26 4 

Frigiliana 173 DST Spain 36°49' N 3° 55' E 596 16.0 27.4 23.4 9.7 479 202 22 192 25 5 

Palma de 

Mallorca 
182 WST Spain 39°09' N 2° 56' E 761 13.9 33.2 23.2 5.8 447 160 48 138 51 11 

Santanyí 183 WST Spain 39°17' N 3° 03' E 643 14.9 34.4 24.5 6.5 401 148 37 133 41 10 

Alcudia 184 WST Spain 39°52' N 03° 10' E 752 14.0 33.4 23.5 5.9 432 158 47 134 49 11 

Calvia 185 WST Spain 39°33' N 03° 08' E 668 14.7 33.9 24.3 6.4 404 147 41 130 44 11 

Mercadal 186 WST Spain 39°58' N 4° 10' E  532 15.3 32.0 24.4 7.4 352 119 43 100 50 14 

Atàlix 187 WST Spain 39°55' N 4° 03' E 555 15.5 31.8 24.8 7.6 368 123 44 103 50 14 

Cala d'Hort 191 WST Spain 38°53' N 1° 15' E 784 13.6 33.5 22.9 5.7 390 130 62 84 63 16 

Ses Salines 192 DST Spain 38°50' N 1° 24' E 907 13.0 33.8 22.4 5.0 409 139 64 88 66 16 

Ses 

Salandres 
193 DST Spain 39°03' N 1° 20' E 1052 11.9 33.0 21.3 3.9 437 150 70 94 76 17 

Valbuena de 

Duero 
201  Spain / /            
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Vega de 

Valdetronco 
202  Spain / /            

Villavieja 

Tordesillas 
203  Spain / /            

Istaia-eyboia 211 DHT Greece 38°44' N 23°31'E 70 16.4 24.9 24.7 8.8 501 209 35 112 68 14 

Amfilohia 

(likely seed 

orchard) 

212 DHT Greece 38°53' N 21°18'E 529 14.0 28.1 22.2 6.4 863 364 65 144 69 8 

Tatoi-attica 213 DHT Greece 38°27' N 23°28'E 252 15.3 27.9 23.9 7.6 532 226 36 134 66 12 

Kassandra 214 DHT Greece 40°05' N 23°54'E 347 14.2 25.4 23.0 6.1 507 187 65 205 35 7 

Gemenos 221 WHC France 43°25' N 5°40'E 392 13.3 25.8 20.9 6.6 708 243 93 197 93 13 

Litorale 

Tarantino 
231 WST Italy 40°37' N 17°07'E 205 14.8 25.8 22.9 7.7 589 213 78 187 78 13 

Gargano 

Monte Pucci 
232 WST Italy 41°54' N 15°57'E 457 15.2 22.6 21.8 8.6 204 68 36 48 36 18 

Gargano 

Marzini 
233 WST Italy 41°33' N 15°51'E 0 16.2 26.7 24.4 9.0 443 146 76 117 76 17 

Thala 241 DST Tunisia 35°34' N 8°39'E 949 15.4 30.8 24.7 7.3 423 131 60 122 60 14 

Tabarka 242 DHT Tunisia 36°30' N 9°04'E 266 17.6 30.2 26.2 10.0 539 222 37 222 37 7 

MAT = Mean annual temperature; TAR = Annual range temperature; TWQ = Temperature of the warmest quarter; TCQ = Temperature of the coldest quarter; MAP Meanannual 

precipitation; PwtQ = Precipitation of the wettest quarter; PdrQ = Precipitation of the driest quarter; Pw = Winter precipitation; Ps = Summer precipitation; PsP = Summer to annual 

precipitation ratio. 
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Table S3. Treetops accuracy detection of the local maxima algorithm applied to LiDAR and RGB canopy height models. Recall (R), precision (P) and F-score (F) are shown. 

  LiDAR  RGB 

Species 

  

Correctly 

detected 

treetops 

(TP) 

Falsely 

detected 

treetops 

(FP) 

Non-

detected 

treetops 

(FN) 

R P F 

 

Correctly 

detected 

treetops 

(TP) 

Falsely 

detected 

treetops 

(FP) 

Non-detected 

treetops (FN) 
R P F 

P. nigra  317 3 28 0.919 0.991 0.953  314 6 31 0.910 0.981 0.944 

               

P. halepensis   540 18 43 0.926 0.968 0.947  518 38 65 0.889 0.932 0.910 

 

 

Table S4. Validation of h and dbh derived from LiDAR and RGB canopy height models against h and dbh measured in situ. Root mean square error (RMSE) and mean absolute error 

(MAE) are shown. 

    P. nigra   P. halepensis 

 Traits RMSE MAE  RMSE MAE 

LiDAR-

derived 

h 0.36 0.24  0.43 0.31 

dbh 1.61 1.25  1.67 1.26 

       

RGB-derived 
h 0.40 0.29  0.45 0.34 

dbh 1.74 1.37   1.76 1.26 
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Fig. S1. Linear regressions between in situ-measured h and LiDAR- or RGB-derived h (a, b, respectively), and between 

LiDAR-derived h and RGB-derived h (c) for 345 black pine trees grown in a common garden located in Valsaín 

(Spain). R- squared and P values are shown. 
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Fig. S2. Linear regressions between in situ measured dbh and LiDAR- or RGB-derived dbh estimation (a, b, respectively), 

and between LiDAR-derived dbh and RGB-derived dbh (c) for 345 black pine trees grown in a common garden located 

in Valsaín (Spain). R-squared and P values are shown. 
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Fig. S3. Linear regression between in situ measured h and LiDAR- or RGB-derived h (a, b, respectively), and between 

LiDAR-derived h and RGB-derived h (c) for 583 Aleppo pine trees grown in a common garden located in Valdeolmos 

(Spain). R-squared and P values are shown. 
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Fig. S4. Linear regressions between in situ measured dbh and LiDAR- or RGB-derived dbh estimation (a, b, respectively), 

and between LiDAR-derived dbh and RGB-derived dbh (c) for 583 Aleppo pine trees grown in a common garden located 

in Valdeolmos (Spain). R-squared and P values are shown. 
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Abstract 

Pinus halepensis Mill. is a conifer typical of Mediterranean pinewoods adapted to drought and fire. Although 

the timing of seasonal events in P. halepensis is strongly associated with these stressors and other 

environmental factors, needle phenology and litter flammability are insufficiently characterized at the 

intraspecific level. These traits can be informative of the existence of locally adapted populations across the 

species’ distribution range, and remote sensing approaches are promising tools to infer phenological changes 

in forest trees. In this study, we investigated intraspecific differentiation of P. halepensis related to needle 

phenology at the onset of the fire season (May-June) through vegetation indexes (VIs) obtained from 

unmanned aerial vehicles. We collected aerial images using multispectral and RGB sensors for 56 adult 

populations of P. halepensis categorized into five ecotypes growing in two common gardens located in Spain 

under contrasting conditions (dry-continental versus wet-coastal). In the dry trial, we additionally monitored 

the temporal variation of RGB-derived indexes using two flights spaced over a one-month period. We also 

performed four consecutive ground measurements of needle pigments and fuel moisture content and obtained 

litter flammability traits for a subset of populations. Most in situ measurements and flammability traits did not 

show population differentiation. Regarding RGB-derived VIs, we did not detect obvious temporal patterns 

which differed among populations. However, we observed greener canopies in June than in May, which are 

indicative of the pace of current-year needle development. We also deduced an earlier phenology (i.e., earlier 

current-year needle unfolding) in the dry-continental trial. Ecotypic differentiation was found for some 

vegetation indexes related to needle unfolding (i.e., TCARI/OSAVI) and old needle senescence (i.e., PRSI). 

These differences were generally consistent across trials and time, and fundamentally indicated that sub-humid 

ecotypes typical of the eastern Mediterranean showed earlier needle unfolding and old needle senescence than 

semiarid ecotypes thriving in western continental Mediterranean areas. The intraspecific divergence observed 

in early season phenology is potentially related to the existence of contrasting life-history strategies present at 

the intraspecific level for the species. In particular, some semi-arid ecotypes, which are known to optimize the 

trade-off between carbon gain and water loss, exhibited an early old needle senescence (high likelihood of 

crown fire development) coupled with a late needle unfolding (conservative water use). These results indicate 

a possible trade-off between drought and fire resistance for the species, which suggest the importance of 

considering the intraspecific characteristics of Aleppo pine in forest management actions. 
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Introduction 

Pinus halepensis Mill. (Aleppo pine) is one of the most widespread conifer species in the Mediterranean basin 

(Picornell-Gelabert et al. 2021; Mauri et al. 2016). It presents high economic and ecological values (Chambel 

et al. 2013) and, as such, it is widely used in reforestation programs of Mediterranean ecosystems (Taïbi et al. 

2014). The species is resistant to drought and prevails in fire-prone habitats due to its adaptive strategies to 

cope with fire, including serotiny, poor apical dominance and profuse branching (Pausas, 2015). Owing to its 

high intraspecific variability and plasticity, P. halepensis inhabits very contrasting ecological niches (Voltas et 

al. 2018). This differentiation among populations has been widely studied for many functional traits related to 

roots (Lombardi et al. 2021), crown structure (Lombardi et al. 2022), water use patterns (Voltas et al. 2015) 

and phenology (Klein et al. 2013), and also for remotely sensed vegetation indexes related to photosynthetic 

pigments, leaf area and water content (Santini et al. 2019b). On the contrary, knowledge on genetic variation 

in needle phenology is scarce in Aleppo pine (Santini et al. 2019b), and also on differentiation of flammability-

related traits like litter flammability, which are widely studied at the interspecific level (Varner et al. 2022) but 

poorly investigated at the intraspecific level (Bastien & Ganteaume, 2020).  

Understanding variation in the response of trees to disturbances has been a long-term goal of plant 

ecology (Grime, 1977). Some studies postulate that there is a fundamental trade-off between adaptations to 

drought and fire in pines (Karavani et al. 2018). It has been hypothesized that intraspecific variation in traits 

enhancing survival under drought occurs at the expense of increasing fire danger and, vice versa, that traits 

enhancing survival under fire may decrease performance under drought. A typical response from P. halepensis 

at the beginning of the fire season is to induce senescence in older leaves, which diminishes transpiration area 

and, consequently, water demand, but at the expense of increasing crown flammability. And concomitantly, P. 

pinaster individuals with thicker barks, which may survive under surface fires, show reduced tolerance to 

embolism (Resco de Dios et al. 2018). However, most evidence for this trade-off is anecdotal and lacking 

rigorous testing. 

Phenology is a key driver of plant carbon and water cycles, and it can be described as the timing of 

reproduction and of other events related to e.g., growth or senescence of individuals (Ciocîrlan et al. 2022; 

Berra et al. 2019). The phenology of conifers comprises three main phases (bud dormancy, bud flush and 

needle senescence). Needle phenology in particular can be divided into needle unfolding, maturation, and 

https://link.springer.com/article/10.1007/s11056-014-9423-y#auth-K_-Ta_bi


Chapter 4 

197 

senescence and fall (Kumar et al. 2019), and it involves changes in photosynthetic pigments and nutrient pools 

dynamics (Fréchette et al. 2020; Springer et al. 2017). Needle phenology is strongly correlated with 

environmental condistions, especially temperature and water availability (Peaucelle et al. 2019). It can can 

influence fire behaviour by affecting live vegetation moisture, fuel vegetation structure or litter composition, 

for instance (Loudermilk et al. 2022; Silvério et al. 2015), and vice versa, fire can shape the composition and 

dynamics of forest ecosystems and thus affect tree phenology (e.g., timing of dormancy, growth and 

reproduction) (Miller et al. 2019; Risberg & Granström, 2009). Although field observations provide precise 

and important information on phenology, they are time-consuming and labour-intensive (Ciocîrlan et al. 2022). 

Lately, remote sensing is being used to effectively monitor tree phenology (Motohka et al. 2010), since images 

derived from satellites and especially from unmanned aerial vehicles (UAVs) can provide information at 

different spatiotemporal scales with high resolution (Wong et al. 2020; Berra et al. 2019). In particular, 

multispectral and RGB (Red, Green and Blue) sensors mounted on UAVs detect light reflectance variation, 

thereby providing reliable phenological data at the individual level (Kleinsmann et al. 2023; Santini et al. 

2019b).  

A vegetation index (VI) is a simple mathematical calculation that integrates two or more wavelengths 

of spectral reflectance image data (spectral bands or images) for the assessment (estimation or enhanced 

visualization) of surface biophysical properties (Huete, 2012). To date, hundreds of VIs have been evaluated 

from both visible and non-visible (including near infrared, short-wave infrared and even thermal infrared) 

wavelengths. VIs can provide information about chemical and pigment leaf composition, water content, leaf 

area, canopy cover and canopy health, for instance (Ciocîrlan et al. 2022; Santini et al. 2019b; Xue & Su 2017; 

Stimson et al. 2005). VIs have been used in field crops (Starý et al. 2020; Gracia-Romero et al. 2018) and, 

also, in forestry to estimate canopy properties at the landscape levels (Wong et al. 2019; Klosterman et al. 

2018). Currently, many VIs are used to infer plant phenology, both multispectral-derived VIs (especially those 

using the reflectance in the near-infrared region) and also RGB-derived indexes. Tree level, RGB-derived 

indexes can be considered an affordable alternative to multispectral records if adquired through UAVs (Starý 

et al. 2020; Gracia-Romero et al. 2018; Kefauver et al. 2015). However, applications of VIs to assess crown 

properties and tree phenology at the intraspecific level is still scarce, especially for evergreen conifers 

(Ciocîrlan et al. 2022; Wong et al. 2022; Santini et al. 2019b).  
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In this study, we used VIs obtained from UAVs along withvegetation samples collected in situ to 

identify intraspecific differences in needle phenology of P. halepensis. We were especially interested in 

characterizing needle unfolding and old needle senescence at the onset of the wildfire season in the western 

Mediterranean (end of spring). Needle lifespan in P. halepensis is approximately three years, and three-years-

old needles usually become dry and senesce towards the second half of June. Moreover, we evaluated 

intraspecific variation of litter flammability and flammability traits, such as live fuel moisture content (FMC). 

We used two common garden experiments characterised by a dry and continental climate (Zuera, northeastern 

Spain), and a coastal, sub-humid Mediterranean climate (Altura, eastern Spain). By using range-wide 

populations, we sought to describe intraspecific genetic variation in needle phenology related to photosynthetic 

pigments at the onset of the fire season (May-June), which can be potentially informative of differential 

plasticity and adaptation to varying conditions across the Mediterranean basin.  

We expected an earlier phenology in the inland site (Zuera), as a consequence of drier conditions for 

the species related to higher temperatures and less available water, as previously described for needle unfolding 

(Camarero et al. 2022). We hypothesized that differences among populations for both in situ traits and RGB 

and multispectral indexes reflected different phenological responses (i.e., needle unfolding or old needle 

senescence) during late spring. In this regard, we also expected to detect intraspecific differences for 

flammability traits potentially related to contrasting evolutionary histories and adaptive intraspecific 

differentiation to fire-prone habitats. Specifically, we presumed that populations and ecotypes experiencing 

less water availability at their origin could show less FMC,, earlier old needle senescence and delayed needle 

unfolding as a result of a more conservative water-use strategy.. Because of their higher tolerance to drought, 

these populations may have less survival changes under surface and crown fires due to trade-offs among plant 

functional traits (i.e., enhanced flammability) (Karavani et al. 2018; Resco de Dios et al. 2018). 

 

Material and Methods 

Study sites 

The study was performed in two provenance trials located in Zuera (Zaragoza province, Spain; 41°52′24ʹʹN, 

00°38′57ʹʹW, 425 m a.s.l.) and Altura (Castellón province, Spain; 39°49′29ʹʹN, 00°34′22ʹʹW, 640 m a.s.l.) (Fig. 

1). Zuera and Altura hold 721 (80% survival) and 807 (90% survival) adult trees respectively. These trees are 
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assigned to 56 populations of P. halepensis originating from mainland Spain, Balearic Islands, France, Greece, 

Italy and Tunisia (Table S1). The seeds were collected in 1995 from 20 to 30 adult individuals per population, 

spaced at least 100 m apart, and were sown in a forest nursery in Spain using standard container practices 

(Landis, 1990) the following year. In 1997, 896 one-year old seedlings (16 seedlings per population) were 

transplanted at both study sites. The experimental design was a Latinised row-column with four replicated 

blocks (John & Williams, 1998). This design efficiently controls intra-site variability, as systematic changes in 

both column and row directions can be incorporated into a linear mixed-effects model. 

We used all trees available in both trials for obtaining UAV-based data, while a subset of trees from 

Zuera (a total of 36 individuals belonging to six populations) was used for ground truthing. This subset 

contained populations from the Iberian Peninsula, Balearic Islands, Tunisia and Greece, which are 

representative of most of the current distribution range of the species. Aleppo pine populations were further 

grouped into five climate-based ecotypes as proposed by Patsiou et al. (2020): dry-summer/semiarid/temperate 

(DST), dry-summer/semiarid/cold (DSC), dry-summer/sub-humid/temperate (DHT), wet-

summer/semiarid/temperate (WST), and wet-summer/sub-humid/cool (WHC). This division stemmed from a 

hierarchical cluster analysis based on climatic information of populations for the purpose of delineating broad 

intraspecific patterns of growth performance under different climate change scenarios (Patsiou et al. 2020).  

 

Plant material and climate data 

We collected needles of six populations (#11, 142, 152, 182, 214 and 242; Table S1) during four sampling 

campaigns in 2021 (May 14th and 28th, June 11th and July 2nd). Needles were collected from healthy mid-canopy 

branches of six trees per population following the column direction of the trial. These branches were accessible 

with a telescopic lopper, while the sparse foliage of Aleppo pine made possible that full sunlight reached most 

of its crown. Two to five branchlets were sampled per tree (Minocha et al. 2009). Aleppo pine generally starts 

to develop new needles in spring, and these needles can be retained in the tree for three years before senescing 

(Balaguer-Romano et al. 2020; Girard et al. 2011). The sampled needles corresponded to the previous year (1-

yr old) or older cohorts (≥2-yr old) (current year needles were just emerging and not clearly visible in the two 

earlier sampling campaigns). Needle tissue was used to quantify chlorophyll content (Chl), particularly 

chlorophyll a (Chla), chlorophyll b (Chlb) and total chlorophyll (Chla+b), total carotenoid content (Car) and live 
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fuel moisture content (FMC). We collected additional needles during the last sampling campaign to infer 

specific leaf area (SLA) and stomatal conductance (gsw).  

The needles used to determine Chl and Car were immediately frozen in the field and stored in a dark 

place. Chl and Car were measured following the protocol by Minocha et al. (2009). We chopped 15 mg of 

unfrozen samples into 1.5 ml of 95% ethanol and afterwards they were stored in a water bath at 65 ℃ for 16 

hours. Once the samples were removed from the water bath, they were left few minutes at room temperature 

to equilibrate, and then vortexed for 1 min at low speed. Finally, the samples were centrifuged for 5 min at 

13,500 g. We then recorded the absorbance at 649 nm, 664 nm and 470 nm using a UV spectrophotometer 

(UV-1600 PC, VWR International, Belgium). Chla, Chlb, Chla+b and Car were estimated using the following 

equations: 

Chla = (13.36 × A664) - (5.19 × A649)                                                                                                            (1) 

Chlb = (27.43 × A649) - (8.12 × A664)                                                                                                        (2) 

Chla+b = Chla+ Chlb                                                                                                                                     (3) 

Car = (1000 × A470 - 2.13 × Chla  - 97.46  × Chlb ) / 209                                                                          (4) 

The needle samples used to estimate FMC were stored in metallic tins sealed with parafilm. Once in 

the laboratory we weighted the fresh weight of samples, which were then oven-dried at 105 ℃ during 48 h 

(Matthews, 2010). Afterwards the samples were weighted again, and the FMC was calculated as follows: 

FMC = 
FW - DW

DW
 × 100                                                                                                                                      (5) 

where FW represents the fresh weight and DW is the dry weight. 

Leaf area (LA) was estimated using a scanner Area Meter (AM100, ADC, UK) using ten needles per 

population. After that, the samples were oven-dried at 105 ℃ during 48 h (Matthews, 2010) to obtain leaf dry 

weight (DW), and SLA was calculated as:  

 SLA = 
LA

DW
                                                                                                                                                      (6) 

Stomatal conductance was measured in the field using a LI-600 porometer (LI-COR Biosciences, 

Lincoln, NE, USA). We placed the needles in a plane across the leaf chamber aperture and we cover the side 

in contact with the atmosphere to avoid air leakage and ensure a stable reading for every measurement. We 

made three measurements per tree and their average was used for statistical analysis.  
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For each population, climate data at origin was obtained from the WorldClim database (Fick, 2017) at 

1 km2 spatial resolution. We used the total of 19 bioclimatic variables available in the database. 

 

UAV-based flights and images processing 

For the Zuera trial, RGB images were acquired through a UAV Mavic 2 Pro (DJI, China) equipped with an 

RGB camera of 20 MP, while multispectral images were acquired through a UAV Oktokopter 6S12 XL 

(Mikrokopter, Germany) equipped with a micro-MCA 11+ILS (Incident Light Sensor for dedicated band-wise 

spectral calibration) multispectral camera (Tetracam Inc., Chatsworth, CA, USA). The multispectral camera 

had 11 bands (the specific wavelengths captured by the sensor are described in Table S2). Two consecutive 

flights, each performed with UAV Mavic and UAV Oktokopter, were done at around midday on May 14th and 

on June 11th (2021) at an altitude of 57 m. A total of 385 images were obtained with the RGB camera, while 

105 images were acquired with the micro-MCA camera. A field spectrometer ASD FieldSpec Pro FRTM (USA) 

was used to measure, a posteriori, the absolute reflectance of the multi-colour landing panels in otimal light 

conditions and, hence, to provide a secondary empirical calibration to the micro-MCA data. Measurements 

made with the field spectrometer were employed to improve the instantaneous spectral calibration of the micro-

MCA camera as flying conditions were sub-optimal, with some light cirrus clouds and moderate to heavy 

winds. 

For the Altura trial, RGB and multispectral images were acquired on May 25th (2017) through the same 

Oktokopter 6S12 UAV by Mikrokopter described above. A Lumix GX7 RGB camera (Panasonic, Japan) with 

a 20 mm focal length and 16 MP resolution was used for the acquisition of RGB images, while a micro-MCA 

12+ILS multispectral camera with 10 bands (Tetracam Inc., Chatsworth, CA, USA) and 15.6-megapixel 

resolution (1.3 MP for each of the 12 sensors) was employed to capture multispectral images (the wavelength 

capture by each sensor is described in Table S3).  

The ILS processing to reflectance included in the Tetracam PixelWrench software includes all 

calibration steps to at-sensor reflectance, including parallax adjustments, DN and Dark Current. 

 

 

Imagery processing 
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The Agisoft Metashape Professional software (Agisoft LLC, St. Petersburg, Russia, version 1.6.3.10732) was 

employed to align the multispectral or RGB images and produce dense points clouds and orthomosaic images 

and spectral calibration was done using ENVI 5.6.3 (USA). Unfortunately, we could not use the multispectral 

data retrieved in Zuera on May 14th due to technical reasons regarding the spectral calibration. 

We used the open-source software LAStools (version 201003) (Isenburg 2017) and US Forest Service 

FUSION/LDV (version 4.21) (McGaughey, 2015) to eliminate noisy points, classify the valid points and 

normalize the RGB point clouds (through lasnoise, lasclassify lasheight functions in LAStools), and to obtain 

a digital terrain model (DTM) and a canopy height model (CHM) (through GridSurfaceCreate and 

CanopyModel functions in FUSION/LDV) (Lombardi et al. 2022). After that, we applied the vwf function 

(Popescu & Wynne, 2004) implemented in the ForestTools R package (version 4.1.2) (Plowright, 2018) to 

identify individual treetops. After visual inspection and manual correction of trees marked by the algorithm, 

we run the mcws function (Meyer & Beucher, 1990) of ForestTools to segment tree crowns, which were again 

visually inspected and manually corrected in QGIS (version 3.26.3). Afterwards, total tree height and crown 

area were estimated at the tree level. We did not validate tree height and crown area with ground-truth data; 

however, a validation procedure previously carried out in a twin common garden experiment to Zuera and 

Altura was highly satisfactory (R2 of 0.8 and RMSE of 0.45 m) (Lombardi et al. 2022). 

 

Multispectral and RGB vegetation indexes (VIs) 

Vegetation indexes (VIs; Table 1) were calculated in QGIS through the raster calculator option for both the 

RGB and multispectral orthomosaics. Every index was calculated at the tree level (a workflow of the process 

is summarized in Fig. 2) using the zonal statistics function of QGIS. To this end, we used the average pixel 

value of each crown. We calculated four RGB-derived VIs: green percentage index (G%), green-red vegetation 

index (GRVI*), green leaf index (GLI), and triangular green index (TGI). We also obtained six multispectral-

derived VIs: normalized difference vegetation index (NDVI), plant senescence reflectance index (PSRI), green 

ratio vegetation index (GRVI), enhanced vegetation index (EVI), transformed chlorophyll absorption 

reflectance index (TCARI), and optimized soil adjusted vegetation index (OSAVI). We also calculated the ratio 

between the last two indexes (TCARI/OSAVI). Two additional multispectral VIs were also calculated in Zuera: 

chlorophyll/carotenoid index (CCI) and photochemical reflectance index (PRI), as micro-MCA sensors 
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partially changed between trial flights to improve the acquisition of vegetation information. 

The two common gardens evaluated are free from understory. Thus, the reflected signal was unlikely 

affected by different backgrounds through time and among trial locations. A brief description of the VIs used 

in this study is as follows. G% is one of the mostly used RGB VI to track plant phenology (Larrinaga et al. 

2019; Alberton et al. 2014; Sonnentag et al. 2012). It quantifies vegetation greenness through changes in leaf 

color (Alberton et al. 2014; Thapa et al. 2021). GRVI* is sensitive to green color (Tucker, 1979) and it is also 

associated with leaf color changes (Motohka et al. 2010). It has been used in previous studies to monitor 

phenological changes (Anderson et al. 2016; Motohka et al. 2010). GLI is obtained using all three bands of the 

RGB camera (Louhaichi et al. 2001) and is sensitive to leaf chlorophyll content (Bulut, 2023). TGI is mostly 

associated with nitrogen and chlorophyll content (Hunt et al. 2011), and it has been used to detect changes in 

plant phenology (Starý et al. 2020, Hunt et al. 2012). NDVI is a commonly used VI calculated from the red and 

the near-infrared wavebands (Rouse et al. 1974) that has been used in many studies as a proxy for plant 

productivity and phenology (Wong et al. 2020; Santini et al. 2019b; Anderson et al. 2016). PSRI is also 

associated with photosynthetic pigments (Merzlyak et al. 1999) and has been used to monitor changes during 

leaf senescence (Li et al. 2022; Olmo et al. 2021). GRVI is sensitive to photosynthetic rates and can be used to 

estimate changes in leaf pigments (Sripada et al. 2006). EVI is considered an improved NDVI (Huete et al. 

2002) that is less affected by atmospheric conditions and soil background. TCARI indicates leaf chlorophyll 

absorption (Haboudane et al. 2002) and it is often used in conjunction with OSAVI (Rondeaux et al. 1996) as 

a proxy for leaf area index (LAI) that minimizes soil background. Thus, TCARI/OSAVI can estimate leaf 

chlorophyll content independently of leaf area (Zarco-Tejada et al. 2004). CCI (Gamon et el. 2016) and PRI 

(Gamon et al. 1997) are sensitive to carotenoid and chlorophyll pigments, particularly to the ratio Car to Chl. 

These two indexes are associated to photosynthetic activity and can be considered proxies for photosynthetic 

phenology (Wong et al. 2020; Fréchette et al. 2016). Both are particularly suitable to monitor the phenology 

of photosynthesis in evergreen conifers (Wong et al. 2020; Springer et al. 2017). 

To overcome noise caused by soil pixels contained into previously segmented single crowns, RGB and 

multispectral images were filtered as follows. For RGB images, negative values of GRVI* were considered as 

soil pixels, since GRVI* is also used to estimate biomass and green vegetation, with GRVI* = 0 used as 

threshold (Chen et al. 2019; Motohka et al. 2010). For multispectral images, NDVI values were used by 
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choosing a pixel threshold of 0.5, since NDVI values close to 0 represent barren rocks and soil whereas values 

above 0.5 indicate healthy vegetation (Sharma et al. 2022; Santini et al. 2019b). 

 

Flammability experiment 

Needle litter was collected in July 2022 in Zuera (about 100 g per sample) from ten populations and three 

blocks (two populations per ecotype, as follows: #11, 31, 142, 143, 152, 154, 182, 186, 214 and 242; Table 

S1). Only needle litter fallen between the two central trees of each experimental unit was collected to minimize 

contamination from adjacent units. Needle length was measured at the nearest millimeter using the open 

software ImageJ (version 1.52a) (Schneider et al. 2012). In order to equilibrate needle temperature and 

humidity we weighted 75 g per sample, which was later put in an oven at 30 ℃ for five days. Samples were 

removed from the oven one by one just before the experiment started in order to keep needle in equilibrium 

moisture content. As final checking, samples were re-weighed following the period in the oven. Their weight 

varied between 72 and 73 g, and their humidity (combustible humidity) ranged from 4.4% to 7.6%. 

For the flammability experiment we followed established protocols (Varner et al. 2015, Fonda et al. 

2001). The weighed needle samples were spread across a 20 × 20 cm grid with ethanol-soaked cotton strings 

placed on one side of the grid. Fuel bed depth was measured to the nearest mm in three different locations of 

each fuel bed. Fuel bed depth varied between 2.5 and 5 cm among samples. Two thermocouples were placed 

on top of each fuel bed approximately at 2 cm from each side, which recorded temperature every second, from 

which we calculated the mean peak heat (℃). Right after the cotton was ignited the fuel burnt immediately, 

and we calculated (1) the time elapsed until the flame arrived to the opposed side of the grid (diffusion flame 

time), (2) the time elapsed until the flame extinguished (flame time), and (3) the time elapsed until the last 

ember extinguished and the smoke stopped (smoldering combustion time). The maximum height reached by 

the flame (flame height) was visually estimated to the nearest cm by an observer using a ruler mounted behind 

the fire chamber. A camera model Nikon d5300 (Nikon Corp., Japan) was mounted on a tripod to record the 

entire experiment and double check the estimation of the maximum flame height and the remaining parameters 

if needed. The amount of fuel combusted was calculated as the proportion of the initial litter mass to the 

remaining mass, while the mean rate weight loss was estimated by dividing the lost weight by smoldering 

combustion time (Fonda et al. 2001). An example of the experimental protocol can be visualized in a video 
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(available at https://www.kapwing.com/w/faCxHvtC86) 

 

Statistical analyses 

Population differentiation was first tested for each phenotypic trait measured in situ, independently for each of 

three field campaigns, through analysis of variance (ANOVA), with populations and replicates as fixed terms. 

One field campaign (June 11th) could not be analyzed independently due to large gaps in the dataset as a result 

of heavy rain preventing a complete collection of samples. Traits that had been continuously measured in at 

least two field work campaigns were then subjected to linear mixed-effects models with a repeated time 

structure that included all four field-work campaigns in order to estimate the temporal effect and its variability 

among populations, taking also into account needle age as main factor in the models.  

For RGB- and multispectral-derived VIs, ANOVAs were run independently for each trial site (Zuera 

or Altura) to check for genetic variability among populations. In the case of Zuera, we used either (i) data 

acquired during the June flight, when both types of VIs (RGB and multispectral) were available, or (ii) RGB-

derived data taken across flights, which were subjected to linear mixed-effects models with a repeated time 

structure for time-series analysis. In the latter case, this allowed to estimate temporal changes in VIs and its 

differential plasticity among populations. In all cases, the population effect was partitioned into an ecotype 

effect plus a population-nested-to-ecotype residual to evaluate the presence of a broad ecotypic structure in the 

dataset. Least significant difference tests (LSD) were used to statistically compare ecotype means.  

Populations’ means of VIs exhibiting significant population effects were correlated to climate at the 

origin of populations. Pearson’s correlations were also performed between photsynthetic pigments (Chla, Chlb, 

Chla/b, Chla+b, Car or Car/Chla+b) and RGB- or multispectral-derived VIs acquired in Zuera.  

Regarding the flammability experiment, we divided the traits under evaluation into two groups: those 

associated with fuel characteristics (needle length, combustible humidity, and Fuel bed depth), or fuel-related 

traits, and those associated with flammability characteristics (diffusion flame time , flame time , smoldering 

combustion time, flame height, fuel combusted  and mean peak heat), or flammability-related traits. Population 

differentiation was tested considering fuel and flammability traits as multidimensional traits through 

multivariate analysis of variance (MANOVA), and also considering each trait independently through ANOVA, 

with room temperature and relative humidity used as covariates in the analysis. Statistical analyses were 



Chapter 4 

206 

performed using SAS/STAT (Littell et al. 1998). 

 

Results 

Intraspecific variability of needle traits 

For traits measured in situ only fuel moisture content (FMC) of one-year-old needles showed a significant 

population effect, with populations from the northern Iberian Peninsula and the eastern Mediterranean basin 

having higher FMC in July than continental and southern Iberian Peninsula populations in July 2nd. The 

remaining traits did not show significant variability among the subset of populations evaluated in the sampling 

campaigns (Table S4).  

The mixed models with repeated time structure indicated that all traits varied across sampling dates. 

However, only Car and FMC showed significant (p <0.05) and marginally significant (p <0.10) population 

differentiation, respectively (Table 2). Needle age was significant only for FMC, while Chla and Chla+b were 

significant and marginally significant, respectively, for the interaction between needle age and sampling date 

(Table 2). 

 

Relationships between VIs and in situ traits 

Chla was negatively and significantly related to G% and TGI, and marginally related to GLI (Fig. 3). These 

associations seem counterintuitive, but they can be attributed to the fact that we did not measure Chl in current 

year needles because they were not fully developed at the time of sampling. Car showed marginally significant 

negative associations with G%, GLI, NDVI and CCI, and Car/Chla+b was also negatively related to CCI, and 

also marginally related to NDVI and GRVI (Fig. 3). These findings simply suggest that trees having more 

carotenoid in needle cohorts of 1-year-old and over had in turn more proportion of senescent needles. 

 

Differences in growth and vegetation indexes between trials, populations and ecotypes 

Populations exhibited significant differences for total height at both sites, while no differences were 

found among populations at both sites for crown area (Table S5). Total height showed a clear ecotypic pattern 

in Altura, but not in Zuera. In both cases, the population-nested-to-ecotype term was significant (Table S5). 

All RGBderived VIs (G%, GLI, GRVI* and TGI) differed significantly among populations in Altura. In turn 
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all VIs exhibited significant ecotypic differences, and also differences among populations nested to ecotypes 

(Table 3). In Zuera, on the other hand, only TGI showed a marginally significant population differentiation in 

Zuera for the June flight (Table 3). Marginally significant ecotypic differences were found for TGI and GLI for 

the June flight (Table 3), and only for GRVI* across flights (Table 4). Although significant time effects were 

found for G% and GLI, none of them showed significant interactions between populations (or ecotypes) and 

time (Table 4).  

For multispectral-dervied VIs, population differentiation was detected in the case of NDVI and PSRI 

in Altura (Table 3). Also, NDVI, PSRI and TCARI/OSAVI showed ecotypic differences, and there were also 

population differences within ecotypes in the case of NDVI and PSRI (Table 3). In Zuera, EVI, TCARI and 

TCARI/OSAVI disclosed significance population differentiation (Table 3; Table S6). The ecotype term was 

significant for NDVI, EVI, TCARI/OSAVI (Table 3) and TCARI and OSAVI (Table S6). A schematic 

representation of the trials along with an example of spatial variation of VIs (for the case of NDVI) are provided 

in supplementary material (Fig. S1, S2). Results regarding vegetation indexes that provided somewhat 

redundant information (i.e., TCARI or OSAVI) or did not display population or ecotypic differentiation are also 

shown in supplementary material (Table S6). 

 

Relationships between VIs and climate at the origin of populations 

In Altura, all RGB-derived VIs of populations (and also NDVI) increased eastward along the Mediterranean 

basin (i.e., positive relationship between longitude and VIs), while PSRI increased westward (i.e., negative 

relationship between longitude and PSRI) (Fig. 4). This suggested that populations from the eastern 

Mediterranean had an earlier phenology (i.e., having earlier needle unfolding or old neelde senescence, or 

both) than their western counterparts. Moreover, PSRI was negatively related to mean annual temperature and 

showed a positive association with latitude and temperature annual range (Fig. 4). Mean diurnal range and 

isothermality exhibited negative relationships with NDVI (Fig. 4). In addition, all RGB-derived VIs showed 

negative correlations with isothermality (Fig. 4), suggesting that populations exposed to high temperature 

evenness over the year at origin were phenologically less advanced when grown under mesic climatic 

conditions (Altura). Climate variables related to precipitation did not show significant relationships with VIs 

(Fig. 4). In Zuera, on the other hand, a significant eastward gradient was found for TCARI/OSAVI and 
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(marginally significant) for GLI and TCARI (Fig. 4).  

 

Lack of intraspecific variability in flammability traits 

Our results did not show any differentiation among populations or ecotypes for the suite of traits 

obtained in the flammability experiment, neither when analyzed together for fuel or flammability traits through 

MANOVA (Table S7), nor independently through ANOVA (Table S8). 

 

Discussion 

Aleppo pine is a dominant species in fire-prone habitats of the Mediterranean basin adapted to crown fires. 

However, intraspecific differences in fire-related traits are still poorly studied (Martín-Sanz et al. 2019), 

especially those related to early season needle unfolding and old needles senescence (Karavani et al. 2018). 

The latter leads to about one-third of the canopy (that is, all 3 years-old leaves) being dry just before the peak 

fire season. This increases the probability of crown fire in Aleppo pine at the onset of the fire season (Balaguer-

Romano et al. 2020). Needle phenology (e.g., needle unfolding and senescence) may differ among Aleppo pine 

populations as a result of different adaptive strategies related to water use (Voltas et al. 2015), growth 

(Lombardi et al. 2022; Patsiou et al. 2020), or fire (Karavani et al. 2018). Needle senescence affecting the old 

leaves cohort can be triggered by climate factors, especially drought and nutrient availability, and also by 

specific growth events as a result of remobilization of nutrients from old to young leaves (Peaucelle et al. 2019; 

Munné-Bosch & Alegre, 2004). 

Here, we applied UAV-derived VIs and in situ measurements to assess intraspecific variation in the 

timing of needle unfolding and senescence of Aleppo pine at the onset of the fire season in a range-wide 

common garden experiment. This assessment was supplemented by an analysis of plastic spatial responses for 

the same traits by combining results from the Zuera common garden (typical of dry continental conditions) 

with those of a second, contrasting common garden (representative of a coastal Mediterranean climate). 

 

Needle traits measured in situ and their relationships with vegetation indexes (VIs) 

Most in situ measuraments related to pigments content as well as the suite of traits related to the litter 

flammability experiment showed inconclusive patterns regarding intraspecific differentiation. As an exception, 
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population differentiation in early season live fuel moisture content suggests adaptive divergence potentially 

associated to fire responses. Additionally, the variability in carotenoids content among populations could be 

related to their different phenological stage or, alternatively, to its photo-protection role under the dry, 

continental conditions of the trial since our results did not show a clear temporal trend for this pigment 

indicative of phenological changes. However, these results should be re-examined by securing a larger set of 

representative populations than the exploratory subset used in this study. With regard the counterintuitive 

relationships between needle pigments and RGB-derived VIs, these could have been influenced by the different 

mixing of needles of different ages among populations (Kuusk et al. 2018). Current-year needles were 

emerging at the time of the first sampling, and they were not collected for pigments determination, in contrast, 

the RGB sensor registered reflectance of all needle cohorts. Generally, current-year needles have greater 

reflections, especially in the green wavelength, as previously reported for other conifers. Therefore, reflectance 

is likely to decrease with needle age (Hejtmánek et al. 2022; Lhotákova et al. 2021). On the other hand, the 

relationships between some multispectral indexes (CCI and NDVI) and the ratio of carotenoids to total 

chlorophyll content were is in line with previous studies conducted in other pine species at their adult (Fréchette 

et al. 2020, Wong et al, 2019) or seedling stage (D’Odorico et al. 2020). This result points to the existence of 

population differentiation in pigment contents, especially carotenoids, during the early growing season 

(Fréchette et al. 2020). It may be related to different intraspecific responses to the onset of summer drought 

that lead to pre-programmed cell death of old needles or cause changes in photosynthetic phenology, or both 

(Wong et al. 2020; Peaucelle et al. 2019).  

 

Do vegetation indexes differ among trials, populations and ecotypes? 

Based on the limited time series of VIs available in the continental trial (Zuera), we did not observe any obvious 

temporal pattern which may have differed among populations. However, the ecotypic means of VIs plotted 

independently for each flight time (May and June), reveal that canopies were in general greener in June, which 

we interpret as related to the pace of current-year needle development (Fig. 5). On the other hand, we observed  

higher values of RGB-derived VIs (Fig. 6) and also of NDVI-based VIs (NDVI, EVI, TCARI and 

TCARI/OSAVI) and, PSRI (Fig. 7) in continental trial (Zuera) than in the coastal trial (Altura). This observation 

is probably indicating anearlier phenology of trees (i.e., earlier current-year needle unfolding), potentially 
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coupled with an earlier old needle senescence in (high PSRI), in the continental trial during late spring-early 

summer. In both trials, the observed population and ecotypic differentiation for many VIs (i.e., GLI, NDVI, 

TCARI/OSAVI) suggest variable early season needle phenology related to needle unfolding at the intraspecific 

level, although with conserved patterns (i.e., similar population plasticity) across sites. 

As aforementioned, ecotypes diverged in VIs in a rather consistent manner across trials and suggested 

that DHT and WST have opposing early season phenology (i.e., timing of needle unfolding and old needle 

senescence) (Fig. 7). Since variation in needle pigments and water content can be interpreted as differences in 

the timing of needle unfolding among populations (Wong & Gamon, 2015), our results indicate that DHT (an 

ecotype originating from sub-hunid climates) had the earliest phenology (i.e., the earliest needle unfolding), 

among all ecotypes. This result is in concordance with previous studies pointing to important functional 

differences among Aleppo pine populations in the same Altura trial (Voltas et al. 2015; Santini et al. 2019a; 

Lombardi et al. 2021). These studies revealed that drought-sensitive eastern Mediterranean populations (i.e., 

DHT ecotype) invest comparatively more in aerial growth than in other functional traits such as storage (Santini 

et al. 2019a), reproduction (Climent et al. 2008) or roots (Lombardi et al. 2021) compared to drought-tolerant 

western Mediterranean populations (i.e., DSC or DST ecotypes). In turn, they have higher photosynthetic 

capacity coupled with higher summer transpiration than its western counterparts (Santini et al. 2019b). The 

early needle unfolding of DHT may partly be related to both its high growth plasticity (Lombardi et al. 2022; 

Patsiou et al. 2020) and its ability to grow well under different climates (Patsiou et al. 2020).  

While DHT and WST showed the most contrasting differences for all VIs, ecotypes DST and DSC performed 

generally closer to WST, and ecotype WHC closer to DHT (Figs. 6 and 7). This observation that DHT, showed 

an earlier phenology compared with semi-arid ecotypes probably indicates the existence of adaptive responses 

linked to a more conservative strategy of populations from drought-prone environments (e.g., higher water-

use efficiency, higher root investment), as previously reported for the species (Voltas et al. 2015). 

In addition, our findings disclosed ecotypic differentiation in old needle senescence not previously 

reported for this species, although such differences were clearest in the coastal trial. While WST showed 

delayed senescence (i.e., high PSRI), other semi-arid ecotypes (DSC, DST) showed an opposite pattern (Fig. 

7). his observation may effectively indicate changes in early season needle phenology of ecotypes, in particular 

WST (with a delayed phenology and, thus, later needle development and old needle senescence) and DHT 
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(with an earlier phenology and, thus, earlier needle unfolding and old needle senescence). It may also reflect 

adaptive differentiation to fire-prone habitats and a trade-off between fire- and drought-related traits, since old 

needle senescence may be triggered under drought conditions but together it can favor crown fires. This could 

be the case of ecotypes DST and DSC, which showed late needle unfolding but early old needle senescence 

(i.e., high PSRI), the latter probably triggered by the beginning of the summer drought period (Grulke et al. 

2020). The existence of such intraspecific differentiation may be related to the strategy adopted by different 

populations as driven by their local fire regime, in the same way as other fire-related traits like cone serotiny, 

which has been estimated to be modulated by fire and, indeed, increases its importance under stronger fire 

regimes (Romero et al. 2023). However, this conclusion should be taken with caution, and particularly so since 

our flammability analysis suggested lack of genetic differentiation in litter flammability traits. 

The relationships found between height growth and VIs corroborate the findings above, in particular 

those involving needle development (i.e., earlier current-year needle unfolding related to enhanced growth). 

These relationships were partially described by Santini et al. (2019b) for Aleppo pine, particularly the 

association between aerial growth (volume over bark) and NDVI-related indexes, which is primarily linked to 

differences in total leaf area. 

Finally, our results revealed few conclusive associations between climate factors at origin of 

populations and VIs. In the coastal trial, where climate is wetter, temperature-related factors at origin were the 

main drivers of population differentiation in VIs. Under these conditions, we could detect a clear longitudinal 

pattern that indicates earlier needle phenology for populations from the eastern Mediterranean basin compared 

with their western counterparts. On the other hand, we did not find a clear climatic pattern in the continental 

trial. 

 

Methodological limitations 

A main limitation of this study is the lack of a complete time series fully covering the onset of the growing 

season. Instead, we performed two flights spaced one month in late spring (May-June) in the same common 

garden experiment and, unfortunately, we could only use a single flight (June) for obtaining multispectral VIs 

due to technical reasons. A higher frequency of flights could definitely improve the characterization of 

phenological changes in the canopy and, eventually, unveil population or ecotypic differences which may have 
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gone unnoticed using a two-point series of records. 

With regard ground truth measurements, we had availability of a larger time series covering one and a 

half month; however, we sampled a relatively small subset of populations because of personnel and technical 

constraints, a typical drawback that hampers conventional ecophysiological studies. As a consequence, the 

development of current-year needles was likely incompletely captured at the intraspecific level. The alternative 

target of sampling a larger subset of populations or, even, the entire trial could have increased the scope of 

inferences by disclosing additional patterns of intraspecific differentiation. A similar flaw applies to the litter 

flammability experiment.  

On a separate issue, and regarding both ground measurements and UAV-derived data, the lack of a 

time series covering multiple years (instead of a single year) also prevented a more complete characterization 

of genetic patterns. Indeed, a multiyear time-series of records would be desirable to test for consistency of 

phenological variability across populations and ecotypes of the species. Finally, although previous studies 

carried out in the Altura trial have revealed important intraspecific differences in Aleppo pine, the joint 

characterization of functional traits characterizing drought responses across trials (in addition to needle 

phenology and senescence) would add relevant information about such differentiation and its plasticity, 

especially regarding the issue of a potential trade-off between fire resistance and drought tolerance.  

 

Conclusions 

This study showcases the existence of intraspecific variation in needle unfolding and old needle senescence of 

P. halepensis. In turn, this variability is informative of differential plasticity and local adaptation to contrasting 

conditions across the Mediterranean basin. We found that ecotypes DHT (exposed to dry summers, but with a 

sub-humid, temperate climate)) and WST (with wet summers, but with a semiarid, temperate climate) exhibited 

the most obvious differences in VIs. Also, ecotypes with semiarid climates shared, in general, similar similar 

traits to WST. These findings are likely a result of different life-history strategies and, eventually, trade-offs 

between fire- and drought-related traits, as exemplified by ecotypes DST and DSC, which seemingly exhibited 

an early old needle senescence coupled with late needle unfolding. On the other hand, the lack of 

population differentiation for flammability traits suggested similar adaptations to fire for P. halepensis. This 

study represents a first attempt to understand changes in early season needle unfolding and old needle 
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senescence using UAV-derived RGB and multispectral VIs in common garden experiments of adult individuals 

for a widespread conifer. Our result point to the importance of taking into account the intraspecific 

characteristics of this species in forest management actions. Particularly, populations (or ecotypes) with high 

growth potential show increased risk of crown flammability at the onset of the fire season in the Mediterranean 

basin. 
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Chapter 4 – Tables and Figures 

 

Table 1. RGB and multispectral-based vegetation indexes (VIs) used in this study. The calculation of VIs was based on reflectance (R) of particular wavelengths. The table shows the 

abbreviation of each index, the wavelengths involved, the formula applied and the appropriate reference. Where G = green colour channel (0-255); R = red colour channel (0-255); and 

B = blue colour channel (0-255). G% = green percentage index; GRVI*= green-red vegetation index; GLI = green leaf index; TGI = triangular green index; NDVI = normalized difference 

vegetation index; CCI = chlorophyll/carotenoid index; PRI = photochemical reflectance index; PSRI = plant senescence reflectance index; GRVI = green ratio vegetation index; EVI = 

enhanced vegetation index; TCARI = transformed chlorophyll absorption reflectance index; OSAVI = optimized soil adjusted vegetation index. 

  

  VI abbreviation   Formula   References 

RGB VIs 

G%  G / (R + G + B)  Woebbecke et al. 1995 

GRVIRGB  (G - R) / (G + R)  Tucker et al. 1979 

GLI  ((G - R) + (G - B)) / 2G + R + B  Louhaichi et al. 2001 

TGI    -0.5 × [190 × (R - G) - 120 × (R - B)]   Hunt et al. 2011 

Multispectral VIs 

NDVI  (R840 – R670) / (R840 – R670)  Rouse et al. 1973 

CCI  (R532 – R670) / (R532 + R670)  Gamon et el. 2016 

PRI  (R532 – R570) / (R532 + R570)  Gamon et al. 1992 

PSRI  (R670 – R570) / (R840)  Merzlyak et al. 1999 

GRVI  R840 / R570  Sripada et al. 2006 

EVI  2.5 × (R840 – R670) / [(R840 + 6 × R670 - 7.5 × R450) + 1]  Huete et al. 2002 

TCARI  3 × (R700 – R670) - 0.2 × (R700 – R570) × (R700 / R670)  Haboudane et al. 2002 

OSAVI   (1 + 0.16) × (R840 – R670) / (R840 + R670 + 0.16)   Rondeaux et al. 1996 
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Table 2. Mixed-effects model analysis of variance with repeated time structure for several needle pigments and fuel moisture content of a subset of six populations of Aleppo pine 

grown in a common garden in Zuera (Spain). Only fixed effects are reported. Chla = Chlorophyll a; Chlb = Chlorophyll b; Chla/b = ratio between chlorophyll a and b; Chla+b = total 

chlorophyll; Car = total carotenoids; Car/Chla+b = ratio between carotenoids and chlorophyll; FMC = fuel moisture content. P < 0.05 is indicated with bold characters. 

 

 

     
Chla  Chlb Chla/b Chla+b Car  Car/Chl FMC 

Source of 

variation 

Num 

df 

Den 

df 

 F-

value P > F 

 F-

value P > F 

 F-

value P > F 

 F-

value P > F 

 F-

value P > F 

 F-

value P > F 

Den 

df 

 F-

value P > F 

Block 2.0 22.0 1.58 0.229 0.15 0.864 1.36 0.278 0.51 0.607 2.51 0.104 0.31 0.739 22.0 0.45 0.825 

Population 

(Pop) 5.0 22.0 1.93 0.131 0.07 0.900 0.38 0.855 1.07 0.405 3.39 0.020 0.78 0.573 22.0 2.53 0.059 

Needle age 

(NA) 1.0 22.0 0.01 0.909 0.62 0.439 0.08 0.780 0.16 0.693 2.47 0.131 1.56 0.225 22.0 288.17 <0.001 

Pop × NA 5.0 22.0 0.74 0.620 0.86 0.520 1.21 0.338 0.25 0.937 1.68 0.271 0.48 0.784 22.0 0.87 0.518 

Time (T) 3.0 51.0 53.87 <0.001 59.27 <0.001 6.31 0.001 85.96 <0.001 26.12 <0.001 22.98 <0.001 26.0 11.33 <0.001 

Pop × T 15.0 51.0 1.31 0.230 0.89 0.575 1.19 0.308 0.94 0.528 1.47 0.154 0.66 0.814 26.0 1.93 0.086 

NA × T 3.0 51.0 3.31 0.027 0.24 0.868 0.07 0.975 2.20 0.099 1.09 0.363 0.64 0.591 26.0 1.71 0.200 

Pop × T × NA 15.0 51.0 1.27 0.258 0.86 0.608 1.26 0.261 0.82 0.654 1.19 0.310 0.5 0.931 26.0 1.69 0.138 

                  

Mean effect size (Population) 0.473 mg g-1 0.068 mg g-1 0.769 mg g-1 0.595 mg g-1 0.186 mg g-1 0.024   1.9 % 
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Table 3. Mixed-effects model analysis of variance for RGB and multispectral vegetation indexes of 56 populations of Aleppo pine categorized in five ecotypes and grown in two 

common gardens (Altura, eastern Spain; Zuera, northeastern Spain). Analysis of variance was fitted independently for each site. Only fixed effects are reported. G% = green percentage 

index; GRVI* = green-red vegetation index; GLI = green leaf index; TGI = triangular green index; NDVI = normalized difference vegetation index; PSRI = plant senescence reflectance 

index; EVI = enhanced vegetation index; TCARI/OSAVI = ratio between the transformed chlorophyll absorption reflectance index and the optimized soil adjusted vegetation index. P 

< 0.05 is indicated with bold characters. 

  
    

  G% GLI GRVI* TGI NDVI PSRI EVI TCARI/OSAVI 

Site Source of 

variation 

Num 

df 

Den 

df 

 F-

value 

P > F  F-

value 

P > F  F-

value 

P > F  F-

value 

P > F  F-

value 

P > F  F-

value 

P > F  F-

value 

P > F  F-

value 

P > F 

Altura Column 6 18 23.31 <0.001 23.06 <0.001 9.96 <0.001 16.31 <0.001 4.20 0.008 2.85 0.039 14.81 <0.001 7.85 <0.001 

Block 3 18 4.65 0.014 4.47 0.016 3.25 0.046 2.11 0.134 2.15 0.13 6.25 0.004 0.97 0.428 2.22 0.121 

Population  55 112 1.91 0.002 1.90 0.002 1.93 0.002 2.01 0.001 1.64 0.014 1.92 0.002 1.00 0.486 1.28 0.138 

  Ecotype 4 100 3.56 0.009 3.42 0.012 3.27 0.014 4.06 0.004 3.74 0.007 4.07 0.004 0.87 0.486 2.64 0.038 

  Population   

[Ecotype] 
47 100 1.72 0.012 1.72 0.012 1.79 0.008 1.81 0.007 1.49 0.05 1.80 0.007 1.12 0.310 1.33 0.120 

                   

Mean effect size   

(Population) 
 0.004 0.008 0.002 0.675 0.014 0.005 0.024 0.015 

                    

Zuera Column 6 18 3.15 0.027 3.40 0.02 1.45 0.252 5.00 0.004 1.55 0.218 0.36 0.892 0.40 0.872 1.02 0.442 

Block 3 18 8.77 0.001 4.97 0.011 9.67 0.001 3.87 0.027 1.75 0.193 1.08 0.381 0.99 0.42 0.71 0.558 

Population  55 112 1.16 0.254 1.14 0.278 1.25 0.161 1.36 0.086 1.09 0.35 1.10 0.332 1.62 0.017 1.92 0.002 

  Ecotype 4 100 1.81 0.132 2.36 0.058 1.80 0.135 2.97 0.023 2.59 0.041 1.05 0.386 3.73 0.007 6.13 <0.001 

  Population 

[Ecotype] 
47 100 1.16 0.266 1.08 0.363 1.28 0.154 1.29 0.148 0.92 0.624 0.98 0.525 1.58 0.029 1.74 0.011 

                   

Mean effect size 

(Population) 
  0.003 0.006 0.003 0.543 0.011 0.005 0.050 0.014 
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Table 4. Mixed-effects model analysis of variance for RGB and multispectral vegetation indexes of 56 populations of Aleppo pine categorized in five ecotypes and grown in a common 

garden located in Zuera (northeastern Spain). Analysis of variance was fitted for a time series comprising two consecutive UAV flights (May and June). Only fixed effects are reported. 

G% = green percentage index; GRVI* = green-red vegetation index; GLI = green leaf index; TGI = triangular green index. P < 0.05 is indicated with bold characters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

   G% GLI GRVI* TGI 

Source of variation Num df Den df  F-value P > F  F-value P > F  F-value P > F  F-value P > F 

Column 6 18 3.64 0.015 3.46 0.019 2.15 0.097 7.04 0.001 

Block 3 18 1.49 0.250 0.68 0.573 2.12 0.133 1.33 0.295 

Population (Pop) 55 112 1.44 0.055 1.26 0.153 1.02 0.455 1.44 0.054 

Ecotype  4 100 1.78 0.140 1.61 0.178 3.05 0.021 1.59 0.182 

Time 1 155 658.61 <0.001 571.21 <0.001 0.93 0.336 1.15 0.286 

Ecotype × Time 4 155 0.34 0.847 0.60 0.666 0.83 0.506 0.47 0.757 

Pop[Ecotype] 47 100 1.28 0.153 1.33 0.117 1.19 0.230 1.52 0.041 

Time × Pop[Ecotype] 47 155 0.47 0.998 0.50 0.997 0.70 0.921 0.52 0.995 

           

Mean effect size (Population)   0.003 0.005 0.094 0.524 
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Fig. 1 Geographic origin of 56 Pinus halepensis populations (purple dots), evaluated in two common gardens 

experiments used in this study: Altura (Castellón province, Spain) and Zuera (Zaragoza province, Spain). The 

green area represents the natural distribution of P. halepensis according to EUFORGEN 

(http://www.euforgen.org/species). 
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Fig 2. Flowchart summarizing the processing of RGB and multispectral images to obtain vegetation indexes at the 

tree level (i.e., phenotypic data). 
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Fig. 3. Pearson correlation coefficients between population means of VIs and several needle pigments or fuel moisture 

content of a subset of six populations growing in a common garden located in Zuera, eastern Spain. G% = green 

percentage index; GRVI* = green-red vegetation index; GLI = green leaf index; TGI = triangular green index; NDVI = 

normalized difference vegetation index; CCI = chlorophyll/carotenoid index; PRI = photochemical reflectance index; 

PSRI = plant senescence reflectance index; GRVI = green ratio vegetation index; EVI = enhanced vegetation index; 

TCARI = transformed chlorophyll absorption reflectance index; OSAVI = optimized soil adjusted vegetation index. Chla 

= Chlorophyll a; Chlb = Chlorophyll b; Chla/b = ratio between chlorophyll a and b; Chla+b = total chlorophyll; Car = total 

carotenoids; Car/Chla+b = ratio between carotenoids and chlorophyll; FMC = fuel moisture content. P < 0.05 is 

indicated with bold characters.  

Chla Chlb Chaa/b Chla+b
Car Car/Chla+b

FMC

G% -0.54 -0.09 0.09 -0.44 -0.49 -0.32 0.10

GLI -0.51 -0.08 0.11 -0.41 -0.46 -0.29 0.06

GRVI*
-0.34 0.05 -0.17 -0.22 -0.26 -0.17 -0.35

TGI -0.54 -0.13 0.32 -0.45 -0.38 -0.17 0.29 Corr. Coeff

NDVI -0.13 0.31 -0.32 0.06 -0.51 -0.53 0.02 1.00

CCI -0.09 0.42 -0.30 0.16 -0.57 -0.62 0.25 0.50

PRI 0.22 -0.25 0.38 0.04 0.42 0.41 -0.47 0.00

PSRI 0.10 -0.16 0.22 -0.01 0.37 0.33 -0.32 -0.50

GRVI -0.15 0.24 -0.35 0.02 -0.45 -0.46 -0.19 -1.00

EVI -0.16 0.15 -0.23 -0.04 -0.30 -0.28 -0.07

TCARI -0.23 0.07 -0.16 -0.14 -0.13 0.06 0.03

OSAVI -0.16 -0.21 -0.27 -0.01 -0.40 -0.39 -0.03

TCARI/OSAVI -0.17 -0.21 0.12 -0.24 0.36 0.46 0.10
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Fig. 4. Pearson correlation coefficients between population means of VIs and climate variables at origin of 56 populations 

growing in two common garden experiments located in Zuera (northeastern Spain) and Altura (eastern Spain). GLI = 

green leaf index; TGI = triangular green index; PSRI = plant senescence reflectance index; EVI = enhanced vegetation 

index; TCARI/OSAVI = ratio between the transformed chlorophyll absorption reflectance index and the optimized soil 

adjusted vegetation index. MAT = mean annual temperature; MDR = mean diurnal range; ISO = isothermality; TAR = 

temperature annual range; MAP = mean annual precipitation. Significant correlations are indicated in bold (P < 0.05). 

  

 (Altura) (Zuera)  (Altura)  (Zuera)  (Altura) (Zuera) (Altura) (Zuera) (Altura) (Zuera) (Altura) (Zuera) (Altura) (Zuera) (Altura) (Zuera)

Longitude 0.52 - 0.50 0.23 0.44 - 0.47 - 0.60 - -0.28 - - 0.17 0.04 0.31 Coeff corr.

Latitude -0.14 - -0.14 -0.26 -0.13 - -0.26 - 0.03 - 0.29 - - -0.20 -0.21 -0.10 1.00

Altitude -0.05 - -0.05 -0.06 -0.04 - -0.04 - -0.25 - 0.24 - - 0.03 -0.12 -0.16 0.50

MAT 0.04 - 0.04 0.23 0.01 - 0.09 - 0.08 - -0.30 - - -0.05 0.20 0.13 0.00

MDR -0.21 - -0.21 -0.14 -0.21 - -0.17 - -0.42 - 0.20 - - 0.00 0.11 -0.18 -0.50

ISO -0.37 - -0.36 -0.13 -0.33 - -0.28 - -0.48 - 0.03 - - 0.06 0.22 -0.18 -1.00

TAR -0.07 - -0.07 -0.13 -0.09 - -0.05 - -0.28 - 0.28 - - -0.06 -0.01 -0.14

MAP 0.07 - 0.07 -0.13 0.06 - 0.06 - 0.18 - -0.08 - - 0.09 0.08 0.16

G% GLI GRVI* TGI NDVI PSRI EVI TCARI/OSAVI
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Fig. 5. Barplots summarizing ecotypic differences of RGB- derived vegetation indexes measured in Zuera (northeastern 

Spain) in two consecutive flights: May (grey bars), June (white bars). Hatched bars denote significant ecotypic 

differences within a flight and different letters indicate significantly different ecotypes (uppercase letters for June, 

lowercase letters for May) (LSD test, P = 0.05).  G% = green percentage index; GRVI* = green-red vegetation index; 

GLI = green leaf index; TGI = triangular green index.  
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Fig. 6. Barplots summarizing ecotypic differences of RGB- derived vegetation indexes measured in two common garden 

trials: Altura, eastern Spain (grey bars), and Zuera, northeastern Spain (white bars).  Hatched bars denote significant 

ecotypic differences within trial and different letters indicate significantly different ecotypes (uppercase letters for Zuera, 

lowercase letters for Altura) (LSD test, P = 0.05). G% = green percentage index; GLI = green leaf index; GRVI* = green-

red vegetation index; GLI = green leaf index; TGI = triangular green index. 
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Fig. 7. Bar plots summarizing ecotypic differences of multispectral-derived vegetation indexes measured in two common 

garden trials: Altura, eastern Spain (grey bars), and Zuera, northeastern Spain (white bars). Hatched bars denote significant 

ecotypic differences within a trial and different letters indicate significantly different ecotypes (uppercase letters for Zuera, 

lowercase letters for Altura) (LSD test, P = 0.05). NDVI = normalized difference vegetation index; PSRI = plant 

senescence reflectance index; EVI = enhanced vegetation index; TCARI/OSAVI = ratio between the transformed 

chlorophyll absorption reflectance index and the optimized soil adjusted vegetation index. 
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Chapter 4 – Supplementary material 

Table S1. Characteristics of the 56 populations of Aleppo pine used in this study and grouped into 5 ecotypes. 

Name of 

provenances 

Population 

code 
Ecotype Region Longitutde Latitude Altitude 

MAT 

(°C) 

MAP 

(mm) 

Cabanelles 11 WHC Catalonia 2°47'E 42°15' 258 14.56 720.00 

Tivissa 21 WST Catalonia 0°50'E 42°20' 336 14.83 587.00 

Sant 

Salvador 

Guardiola 31 WHC Catalonia 1°45'E 41°40' 318 14.39 628.00 

Zuera 61 WST 

Ebro 

Depression 0°55'E 41°55' 576 11.95 474.00 

Valdeconcha 82 DSC 

Southern 

Plateau 2°52'W 40°27' 837 12.76 433.00 

Alcantud 83 DSC 

Southern 

Plateau 2°18'W 40°34' 1057 10.84 505.00 

Colmenar de 

Oreja 84 DSC 

Southern 

Plateau 3°20'W 40°05' 692 13.70 433.00 

Cirat 91 DSCS Iberian Range 0°28'W 40°03' 445 14.62 440.00 

Tuéar 92 DSC Iberian Range 1°09'W 39°49' 729 13.18 424.00 

Enguidanos 93 DSC Iberian Range 1°39'W 39°38' 990 11.87 485.00 

Altura 102 DSC Iberian Range 0°37'W 39°47' 662 13.07 546.00 

Benicàssim 111 WST Iberian Range 0°01'E 40°05' 468 13.80 472.00 

Gilet 112 DST Iberian Range 0°21'W 39°40' 152 13.11 462.00 

Tibi 101 DSC East Spain 0°39'W 38°31' 976 14.76 428.00 

Villa de Ves 103 DSC East Spain 1°15'W 39°11' 864 14.71 454.00 

Jarafuel 104 DSC East Spain 1°01'W 39°10' 563 15.17 386.00 

Bicorp 105 DSC East Spain 0°51'W 39°06' 587 14.65 523.00 

Commercial 

Seed 109  East Spain 1°00'W 39°09'  16.57 451.00 

Villajoyosa 131 DST N. Betic Mts 0°18'W 38°30' 126 17.70 422.00 

Ricote 141 DST N. Betic Mts 1°26'W 38°09' 688 14.75 398.00 

Monovar 142 DST N. Betic Mts 0°57'W 38°23' 820 13.97 467.00 

Monovar 143 DST N. Betic Mts 0°55'W 38°24' 601 15.11 416.00 

Paterna  144 DSC N. Betic Mts 2°17'W 38°38' 1028 12.84 470.00 

Abarán 145 DST N. Betic Mts 1°16'W 38°17' 657 14.85 403.00 

Quéntar 151 DST S. Betic Mts 3°25'W 37°14' 1226 12.81 578.00 

Benamaurel 152 DSC S. Betic Mts 2°44'W 37°42' 908 14.15 452.00 

Vélez 

Blanco 153 DST S. Betic Mts 2°01W 37°47' 785 14.14 416.00 

Santiago de 

la Espada 154 DSC S. Betic Mts 2°28'W 38°14' 842 14.14 432.00 

Lorca 156 DSC S. Betic Mts 1°32'W 37°52' 831 14.13 427.00 

Alhama de 

Murcia 157 DSC S. Betic Mts 3°01'W 37°45' 765 15.05 449.00 

Quesada 158 DSC S. Betic Mts 1°57'W 37°45' 757 15.09 373.00 
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Lentergi 171 DST South Spain 3°41'W 36°49' 363 16.73 378.00 

Carratraca 172 DST South Spain 4°50'W 36°51' 635 15.38 695.00 

Frigiliana 173 DST South Spain 3°55'E 36°49' 595 15.66 456.00 

Palma de 

Mallorca 182 WST Majorca 2°56'E 39°09' 32 16.68 563.00 

Santanyí 183 WST Majorca 3°03'E 39°17' 19 16.84 568.00 

Alcudia 184 WST Majorca 03°10'E 39°52' 185 15.74 704.00 

Calvia 185 WST Majorca 03°08'E 39°33' 243 15.75 526.00 

Marcadal 186 WST Menorca 4°10'E 39°58' 85 16.56 613.00 

Atàlix 187 WST Menorca 4°03'E 39°55' 67 16.93 608.00 

Cala d'Hort 191 WST Ibiza 1°15'E 38°53' 329 15.89 542.00 

Ses Salines 192 DST Ibiza 1°24'E 38°50' 10 17.50 443.00 

Ses 

Salandres 193 DST Ibiza 1°20'E 39°03' 65 17.10 467.00 

Istaia-eyboia 211 DHT Greece 23°31'E 38°44' 53 17.47 506.00 

Amfilohia  212 DHT Greece 21°18'E 38°53' 429 14.20 975.00 

Tatoi-attica 213 DHT Greece 23°28'E 38°27' 253 16.31 552.00 

Kassandra 214 DHT Greece 23°54'E 40°05' 402 14.37 510.00 

Gemenos 221 WHC France 5°40'E 43°25' 391 12.44 707.00 

Litorale 

Tarantino 231 WST Italy 17°07'E 40°37' 204 15.17 551.00 

Gargano 

Monte Pucci 232 WST Italy 15°57'E 41°54' 382 14.18 524.00 

Gargano 

Marzini 233 -WST Italy 15°51'E 41°330 0 16.11 472.00 

Thala 241 DST Tunisia 8°39'E 35°34' 948 14.89 467.00 

Tabarka 242 DHT Tunisia 9°04'E 36°30' 287 17.75 558.00 

Valbuena de 

Duero 201  

North Plateau 

(Reforestation) 04°16'W 41°39' 825   

Vega de 

Valdetronco 202  

North Plateau 

(Reforestation) 05°04'W 43°35' 820   

Villavieja 

Tordesillas 203  

North Plateau 

(Reforestation) 04°55'W 41°36' 820   
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Table S2. Wavelength specification of the spectral bands of the sensor micro-MCA 11+ILS multispectral camera used in 

the Zuera trial (northeastern Spain). CW = central spectral band; FWHM = bandwidth. 

Band 

number 
CW (nm) 

FWHM 

(nm) 

1 450 40 

2 490 10 

3 532 3 

4 570 10 

5 670 10 

6 700 10 

7 740 10 

8 780 10 

9 840 10 

10 860 10 

11 950 40 

 

 

Table S3. Wavelength specification of the spectral bands of the sensor micro-MCA 12+ILS multispectral camera used in 

the Altura trial (eastern Spain). CW = central spectral band; FWHM = bandwidth. 

Band 

number 
CW (nm) 

FWHM 

(nm) 

1 450 40 

2 550 10 

3 570 10 

4 670 10 

5 700 10 

6 720 10 

7 840 10 

8 860 10 

9 900 10 

10 950 40 
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Table S4. Mixed-effects model analysis of variance for needle pigment content, fuel moisture content, stomatal conductance and specific leaf area of a subset of six populations of 

Aleppo pine grown in a common garden in Zuera (northeastern Spain). Analysis of variance was fitted independently for each field campaign and needle age class: (a) one-year-old 

needles, (b) ≥ two-year-old needles. 

(a) one-year-old needles 

    
 Chla Chlb Chla/b Chla+b Car  Car/Chla+b FMC GSW SLA 

Source of 

variation Time 

Num 

df 

Den 

df 

 F-

value P > F 

 F-

value P > F 

 F-

value P > F 

 F-

value P > F 

 F-

value P > F 

 F-

value P > F 

 F-

value P > F 

 F-

value P > F 

 F-

value P > F 

Block May 

14th 

2 10.0 0.70 0.521 0.26 0.777 1.42 0.287 0.05 0.951 4.33 0.044 2.95 0.099 / / / / / / 

Population  5 10.0 1.30 0.337 0.64 0.672 1.01 0.460 0.21 0.949 2.62 0.092 1.03 0.449 / / / / / / 

Block May 

28th 

2 10.0 0.15 0.862 0.25 0.783 0.90 0.438 0.21 0.817 0.54 0.599 0.32 0.734 0.78 0.486 / / / / 

Population  5 10.0 0.40 0.838 1.06 0.436 1.51 0.271 0.90 0.520 0.62 0.686 0.54 0.745 2.24 0.131 / / / / 

Block Jul 

02nd 

2 10.0 0.55 0.594 0.32 0.732 1.67 0.237 0.58 0.578 0.99 0.404 0.24 0.793 0.65 0.541 / / / / 

Population  5 10.0 1.35 0.320 0.48 0.784 1.20 0.377 1.41 0.302 1.04 0.444 0.50 0.772 3.91 0.032 / / / / 

  

(b) ≥ two-year-old needles 

    
 Chla Chlb Chla/b Chla+b Car  Car/Chla+b FMC GSW SLA 

Source of 

variation Time 

Num 

df 

Den 

df 

 F-

value P > F 

 F-

value P > F 

 F-

value P > F 

 F-

value P > F 

 F-

value P > F 

 F-

value P > F 

 F-

value P > F 

 F-

value P > F 

 F-

value P > F 

Block May 

14th 

2 10.0 0.62 0.556 2.06 0.178 4.10 0.050 0.95 0.419 0.94 0.423 2.54 0.129 / / / / / / 

Population  5 10.0 1.61 0.245 1.36 0.317 1.65 0.233 1.52 0.269 0.70 0.635 0.76 0.596 / / / / / / 

Block May 

28th 

2 10.0 0.70 0.517 0.28 0.762 1.53 0.262 0.54 0.569 0.02 0.982 0.87 0.447 0.09 0.912 15.46 0.001 / / 

Population  5 10.0 0.86 0.538 0.19 0.958 0.97 0.478 0.39 0.842 0.59 0.709 0.27 0.918 1.33 0.325 1.62 0.242 / / 

Block Jul 

02nd 

2 10.0 1.01 0.367 0.17 0.843 0.99 0.406 0.26 0.778 3.26 0.081 0.04 0.959 1.46 0.278 0.01 0.985 2.89 0.102 

Population  5 10.0 0.75 0.605 0.03 0.999 1.00 0.464 0.17 0.970 1.29 0.341 0.20 0.953 1.3 0.339 0.57 0.725 0.79 0.581 
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Table S5. Mixed-effects model analysis of variance for total height (H) and crown area (CA) of 56 populations of Aleppo 

pine categorized in five ecotypes and grown in two common gardens (Altura, eastern Spain; Zuera, northeastern Spain). 

Analysis of variance was fitted independently for each site. Only fixed effects are reported. P < 0.05 is indicated with 

bold characters. 

 
    H CA 

Site 
Source of variation 

Num 

df 

Den 

df  F-value P > F  F-value P > F 

Altura Column 6 18.0 3.23 0.025 3.44 0.019 

 Block 3 18.0 3.63 0.033 0.77 0.526 

 Population (Pop) 55 111.0 2.27 <0.001 1.00 0.488 

 Ecotype 4 100.0 4.23 0.003 0.69 0.602 

 Pop [Ecotype] 47 100.0 2.19 0.001 1.11 0.332 

 Column 6 18.0 1.49 0.238 1.92 0.132 

Zuera Block 3 18.0 2.46 0.096 1.38 0.281 

 Population Pop 55 112.0 2.01 0.001 1.00 0.486 

 Ecotype 4 100.0 1.70 0.155 0.23 0.920 

 Pop [Ecotype] 47 100.0 2.08 0.001 1.12 0.314 
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Table S6. Mixed-effects model analysis of variance for multispectral vegetation indexes of 56 populations of Aleppo pine categorized in five ecotypes and grown in two common 

gardens (Altura, eastern Spain; Zuera, northeastern Spain). Analysis of variance was fitted independently for each site. Only fixed effects are reported. P < 0.05 is indicated with 

bold characters. 

  
    

  CCI PRI GRVI TCARI OSAVI 

Site Source of variation Num df Den df 
 F-

value 
P > F 

 F-

value 
P > F 

 F-

value 
P > F 

 F-

value 
P > F 

 F-

value 
P > F 

Altura Column 6 18 - - - - 2.7 0.047 13.34 <0.001 9.45 <0.001 

Block 3 18 - - - - 3.48 0.038 0.85 0.483 2.49 0.093 

Population (Pop) 55 112 - - - - 1.15 0.265 1.11 0.315 0.8 0.819 

  Ecotype 4 100 - - - - 2.18 0.077 2.14 0.081 0.25 0.909 

  Pop [Ecotype] 47 100 - - - - 1.14 0.284 1.15 0.279 0.95 0.569 

             

Mean effect size 

(Population) 
  

        0.150 0.007 0.010 

           
Zuera Column 6 18 1.98 0.123 0.39 0.875 1.47 0.242 0.47 0.825 0.74 0.626 

Block 3 18 2.83 0.068 4.12 0.022 1.11 0.37 1.08 0.384 1.19 0.34 

Population (Pop) 55 112 1.16 0.251 0.96 0.55 0.98 0.519 1.92 0.002 1.41 0.065 

   Ecotype 4 100 1.64 0.169 0.87 0.484 1.4 0.241 5.14 0.001 3.4 0.012 

 

   Pop [Ecotype] 47 100 0.99 0.503 0.95 0.564 0.79 0.812 1.83 0.006 1.28 0.151 

             

Mean effect size 

(Population) 
  

0.014 0.013 0.150 0.011 0.018 
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Table S7. Multivariate Analysis of Variance (MANOVA) of the following groups of variables: Fuel traits (needle length, 

combustible humidity and fuel bed depth) and Flammability traits (diffusion flame time, flame time, smoldering 

combustion time, flame height, fuel combusted and mean peak heat). The MANOVA table shows the fixed effects of 

population and block of ten populations of Aleppo pine grown in a common garden located in Zuera (northeastern Spain). 

P < 0.05 is indicated with bold characters. 

    Fuel traits    Flammability traits 

Main effect 
df Wilks 

 Num 

df 

   Den 

df 
F value P > F   Wilks 

Num 

df 
Den df F value P > F 

Block 2 0.572 6.0 26.0 1.34 0.254   0.266 12.0 16.0 1.15 0.332 

Population 9 0.362 27.0 38.6 0.62 0.920  0.022 54.0 45.4 1.02 0.600 
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Table S8. Mixed-effects model analysis of variance for (a) fuel-related traits and (b) flammability-related traits of 56 populations of Aleppo pine categorized in five ecotypes 

and grown in a common gardens located in Zuera, northeastern Spain. (a) Combustible humidity (CH), fuel bed depth (FBD), needle length (NL); (b) Diffusion of flame time 

(DFT), flame time (FL), smoldering combustion time (SCT), maximum flame height (FH), fuel combusted (FC), mean rate of weight loss (WL), and mean peak temperature 

(MH). Analysis of variance was fitted independently for each site. Only fixed effects are reported. P < 0.05 is indicated with bold characters. 

 

 (a)       CH FBD NL 

Source of 

variation Trait type 

Num 

df 

Den 

df  F value P > F  F-value P > F  F-value P > F 

Block 

Fuel  

2 15.0 1.66 0.223 0.24 0.793 0.96 0.404 

Population (Pop) 9 15.0 0.63 0.759 0.28 0.971 0.46 0.878 

Ecotype 4 15.0 0.31 0.866 0.29 0.880 0.13 0.970 

Ecotype [Pop] 5 15.0 0.84 0.542 0.26 0.927 0.72 0.613 

 

(b)     DFT FL SCT FL FC ML MH 

Source of 

variation Trait type 

Num 

df 

Den 

df 

 F-

value P > F 

 F-

value P > F 

 F-

value P > F 

 F-

value P > F 

 F-

value P > F 

 F-

value P > F 

 F-

value P > F 

Block 

Flammability 

2 13.0 2.12 0.160 1.03 0.383 0.52 0.608 0.88 0.438 0.23 0.799 0.10 0.903 0.66 0.536 

Population 

(Pop) 9 13.0 0.75 0.661 0.69 0.706 1.25 0.345 0.66 0.730 0.83 0.601 2.07 0.113 0.26 0.973 

Ecotype 4 13.0 0.60 0.671 0.29 0.882 1.22 0.350 0.85 0.516 1.12 0.391 2.18 0.129 0.28 0.887 

Ecotype 

[Pop] 5 13.0 0.86 0.535 0.97 0.472 1.17 0.373 0.54 0.742 0.65 0.666 2.34 0.100 0.27 0.919 
 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S1. Composite illustration showing (a) an aerial image of the Altura trial (eastern Spain), (b) a scheme 

of the experimental design (B I, II, III, IV refer to each of the four blocks of the experiment, and numbers 

represent the population codes with population codes available at Table S1), and (c) the spatial variation of 

NVDI (greener colours indicate higher NDVI values, redder colours indicate lower NDVI values).  



 

 

 

Fig. S2. Composite illustration showing (a) an aerial image of the Zuera trial (northeastern Spain), (b) a 

scheme of the experimental design (B I, II, III, IV refer to each of the four blocks of the experiment, and 

numbers represent the population codes with population codes available at Table S1), and (c) the spatial 

variation of NVDI (greener colours indicate higher NDVI values, redder colours indicate lower NDVI 

values, and black cells indicate missing observations). 
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General discussion 

Phenotypic variation indicative of adaptive syndromes in Mediterranean pines 

P. halepensis and P. nigra are two widely distributed pine species across the Mediterranean basin. 

Although these species can naturally co-occur in some environments, they present high 

interspecific differences for many adaptive traits that allow them to occupy contrasting ecological 

niches (Jevšenak and Saražin, 2023). P. halepensis is a thermophilic species well adapted to 

drought that dominate fire-prone habitats (Pasho et al. 2012; Pausas, 2015) while P. nigra is most 

commonly found in mountain areas, it is well adapted to cold, and it is a fire-tolerant species 

(Enescu et al. 2016; Kreyling et al. 2012). In addition to the high interspecific differences, both 

species present high intraspecific differentiation for functional traits potentially related to life-

history strategies of their different populations. In spite of the importance that intraspecific 

variability plays in the determination of long-term adaptations of a species, it has not received the 

consideration it deserves for the purpose of revising silvicultural strategies and adaptive forest 

management for optimizing tree performance under global change.  In this regard, this work 

provides new clues on phenotypic and genotypic intraspecific differentiation to assist unraveling 

local adaptation and phenotypic plasticity of two conifers with high ecological value in 

Mediterranean forests. In particular, the traits analyzed in this thesis for these two pine species are 

summarized in Table 1.  

Table 1. Summary of functional traits analyzed at the intraspecific level in this thesis using four common 

garden experiments. 

Traits P. halepensis   P. nigra 

Root morphology   

Total height   

DBH   

Tree-ring width   

Tree biomass   

Crown architecture   

Crown volume   

Needle phenology   

Litter flammability    
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Intraspecific differentiation in Pinus halepensis 

P. halepensis was evaluated in all four chapters of this thesis, thereby providing an overview of 

the existing intraspecific variability of many plant compartments, from roots (Chapter 1) to 

canopy (Chapters 3 and 4) through secondary growth (Chapter 2). It is known that water 

availability, temperature and fire are the main environmental drivers that shape the distribution 

and genetic differentiation of the species across its distribution range. Populations coming from 

xeric environments, which are grouped in several semi-arid ecotypes (Patsiou et al. 2020), adopt 

generally a more conservative resource-use strategy than mesic populations. They present a high 

water-use efficiency (Voltas et al. 2015), and they invest more in early reproduction (Climent et 

al. 2008), in defense (Santos-del-Blanco et al. 2013) and in reserves (Santini et al. 2019a) at the 

expenses of growth. This differential adaptive strategy of inhibited or enhanced tree growth was 

clearly noticeable in all the chapters (chapters 1 to 4).   

 The general pattern described for the genus Pinus is that species originating from harsher 

conditions allocate more in root growth than species inhabiting mesic areas (Andivia et al. 2019). 

This pattern was not straightforward at the intraspecific level (Chapter 1), highlighting the 

complex adaptive syndromes of the species, and suggesting possible trade-offs between plant 

compartments. Thus, populations (or ecotypes) coming from xeric conditions do invest less 

resources in growth in general, both below- and aboveground growth (Chapter 1 and 3) in order 

to allocate more resources to other functions. In fact, when combining below- and aboveground 

growth (i.e. the ratio between root diameter or depth and total tree height), I could notice that even 

if populations belonging to semi-arid ecotypes do not always exhibit larger allocation to roots 

compared to populations from sub-humid ecotypes, they do invest comparatively more in roots 

than in total tree height (Lombardi et al. 2022) (Fig. 1). 
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Fig. 1. Barplot showing mean ecotypic values for the ratio between root depth (cm) or frequency and total 

tree height (cm) (Depth:H, Freq:H, respectively) inferred in an adult P. halepensis experiment garden 

located in Altura, Castellón province (Spain). DHT = dry-summer/sub-humid/temperate; WHC = wet-

summer/sub-humid/cool (WHC); WST = wet-summer/semiarid/temperate; DSC = dry-

summer/semiarid/cold; DST = dry-summer/semiarid/temperate.  

 

The enhancing aerial growth pattern of populations belonging to sub-humid ecotypes was 

described with more details in chapters 3 and 4. In addition to total tree height, those populations 

exhibited larger crown density and crown volume, and also advanced current-year needle 

sprouting (Fig. 2).  
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Fig 2. Barplot showing ecotypic values for total tree height (H), diameter at breast height (DBH), crown 

area (CA), crown density (CD), crown volume (CV) and the vegetation index TCARI/OSAVI measured in 

an adult P. halepensis common garden located in Altura, Castellón province (Spain). Units are indicated for 

each trait separately. DHT = dry-summer/sub-humid/temperate; WHC = wet-summer/sub-humid/cool 

(WHC); WST = wet-summer/semiarid/temperate; DSC = dry-summer/semiarid/cold; DST = dry-

summer/semiarid/temperate.  

 

Altogether, these results disclosed a clearly larger investment in aerial growth of populations 

belonging to sub-humid ecotypes, suggesting a potentially genetically based shade-avoidance 

strategy adopted by ecotypes from more favorable environments to outcompete their neighbors. 

In favorable environments the productivity is generally higher (Vennetier et al. 2018) and, 

therefore, subjected to higher intra- and interspecific competition, and a more expanded crown 

enhances light capture and carbon gain (Duursma et al. 2007). Also, these populations are 

characterized by a higher growth plasticity and, hence, they usually grow well under different 

climates (Patsiou et al. 2020) because they can adjust the timing of earlywood formation in 

relation to climate, especially spring and early summer temperature (chapter 2). Alternatively, 

populations (and ecotypes) from semi-arid environments could assign more resources to the 

production of serotine cones as a post-fire regeneration strategy at the expense of primary growth. 
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This points to possible trade-offs between drought- and fire-related traits (Karavani et al. 2018). 

Indeed, limited tree height and enhanced needle senescence may promote tree flammability, 

favoring surface fire to become crown fire. On the other hand, results of this thesis indicated lack 

of intraspecific differentiation in other flammability traits, such as litter flammability, among 

Aleppo pine populations. 

 

Intraspecific genetic differentiation in Pinus nigra 

P. nigra was analysed in one chapter (chapter 3). Previous studies have documented intraspecific 

variation in miscellaneous traits such as radial growth (Fkiri et al. 2018), wood structure (Esteban 

et al. 2012), total height and tree survival (Varelides et al. 2001), and vegetation indices and 

reserves (Santini et al. 2019b). The high genetic divergence among populations of this species 

have traditionally led to its taxonomic division into a number of subspecies with contrasting 

morphophysiological characteristics. The results of this thesis indicated that the high 

differentiation among populations and subspecies for traits related to crown architecture and 

crown structure is potentially related to the different degree of cold hardiness characteristics 

within the species (Fig. 3). 

Fig. 3. Barplot showing ecotypic values for the total tree height (H), diameter at breast height (DBH), crown 
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area (CA), crown density (CD) and crown volume (CV) measured in an adult P. nigra common garden 

located in Valsaín, Segovia province (Spain). Units are indicated for each trait separately. 

 

In this regard, precipitation, intra-annual temperature fluctuations and altitude were found to be 

the principal external drivers of these intraspecific differentiations. Subspecies with higher cold 

hardiness experienced a slower growth, along with a slender and shorter canopy that may protect 

the tree from snow canopy damage. This finding is in agreement with previous studies that 

highlighted intraspecific variation in winter cold resistance among P. nigra populations (Santini 

et al. 2019b; Kreyling et al. 2012), with calabrica the most freeze-sensitive subspecies, generally 

from mesic environments, exhibiting fast growing characteristics. In the other extreme of its 

ecological niche, the salzmannii and nigra subspecies occupies areas, where drought and snowfall 

are the main limiting factors for growth. In addition, fire regime can also play an important role 

for this fire-tolerant species (Resco de Dios et al. 2018) and, in this regard, subspecies from xeric 

environments showed characteristics potentially associated to prioritize storage (i.e., reserve 

accumulation) at the expenses of aboveground growth.  

 

High-throughput phenotyping methods in common garden experiments 

A central and important part of this thesis was the assessment of different high-throughput 

phenotypic techniques to retrieve information about phenotypic variability in common garden 

experiments of adult pines (chapter 1, 3 and 4). The complexity and time-consuming nature of 

field-based measurements are the two major limitations when phenotyping forest trees, especially 

in their adult stage. In this regard, an array of high-throughput phenotyping tools (HTPTs) have 

been developed in the last decade (Camarretta et al. 2020; Ganz et. al. 2019; Guo et al. 2013). The 

most common HTPTs utilized in forest phenotyping are remote sensing tools obtained from e.g. 

satellites, unmanned aerial vehicles (UVAs), or aerial and terrestrial LiDAR. In this thesis I 

provided valuable information about the potentiality of HTPTs to derive phenotypic traits at the 

individual or plot level in adult forest pines growing in common garden experiments. Different 

approaches have been used along the thesis (Table 2). UAV-records used in chapter 3 and 4 
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delivered accurate data (at the individual level) useful to characterize phenotypic variability in 

two forest species (P. halepensis and P. nigra) growing in three genetic trials.  These results 

indicate that UAVs equipped with RGB and multispectral cameras coupled with widely used (and 

mostly free) software are cost-effective tools suitable to infer a wide array of phenotypic traits 

informative of morphology, phenology and physiology in adult forest trees with enough accuracy.   

Table 2. Summary of high throughput phenotyping techniques (HTPTs) used in the different chapters of 

this thesis for two conifer species (P. halepensis and P. nigra) at different levels: plot (PL) and individual 

level (IL). 

HTPTs Chapter P. halepensis P. nigra 

Ground penetrating radar  1 (PL) 

UAVs  with RGB camera 3, 4 (IL) (IL)

UAVs with multispectral camera 4 (IL) 

UAVs with LiDAR sensor 3 (IL) (IL)

 

Limitations of HTPTs  

Even though this thesis demonstrates and corroborates the high competence of HTPTs for tree 

phenotyping, they are not devoid of technical issues. On one hand, GPR detection capacity is 

seriously impaired in both nearly saturated (Hirano et al. 2009; Rodríguez-Robles et al 2017) and 

very dry soils (Hirano et al. 2009). In this regard I suggest to carry out these measurements in 

periods of full vegetative activity of trees, when roots would be active, but at the same time 

avoiding extremes in soil water status as a result of abundant precipitation or a prolonged drought. 

Moreover, root orientation can influence the detection of coarse roots, since overlapping roots and 

roots underneath the tree trunk are underestimated by the GPR device (Butnor et al. 2016). Also, 

soil type can influence root detection, and for this reason it is necessary to know about soil site 

characteristics and which antenna’s frequency perform better under those conditions before 

collecting the data (Rodríguez-Robles et al. 2017). Lastly, I suggest collecting the data by making 

concentric circles around the main trunk of each tree, when the experiment design allows that, in 

order to minimize underestimating root detection due to roots’ position and orientation (Butnor et 

al. 2016). On the other hand, UAV-derived records, especially RGB and multispectral images, are 
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influenced by environmental conditions, even if to a lesser extent than satellites. Wind can affect 

the performance of small UAVs (Wang et al. 2019), and clouds can influence vegetation 

reflectance values, thereby affecting vegetation indices as well as shadowing other objects or 

neighbor trees (Yamazaki et al. 2009). In this way, it is recommended to make flights under 

optimal atmospheric conditions, and around noon (preferably from late spring till early autumn). 

Moreover, RGB and multispectral sensors capture images from the top of the canopy, and despite 

it is possible to reconstruct a 3D point clouds, the information at different crown levels are not 

recorded. For this reason, the use of LiDAR is particularly meaningful to retrieve detailed within-

crown information; however, this tool is significantly more expensive than a RGB camera. Finally, 

when UAV-derived phenotypic tools are applied at the individual tree level, it is necessary a 

previous knowledge of the trial even if tree segmentation can be done with a semi-automatic 

process in order to identify the individual of interest, otherwise difficult in homogeneous stands. 
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Final Conclusions 

Intraspecific genetic differentiation and its environmental drivers in P. halepensis and P. nigra 

1. Both species exhibited large intraspecific differentiation among populations and ecotypes 

(or subspecies) in morphological (P. halepensis, P. nigra), phenological and 

physiological traits (P. halepensis) (all Chapters).   

2. P. halepensis populations were characterized by differences in below- and aboveground 

growth, in the last case involving traits related to both primary and secondary growth 

(chapters 1, 2, 4).  

3. Intraspecific variability of phenotypic traits among P. halepensis populations indicated 

contrasting adaptive syndromes: populations originating from semi-arid environments 

showed lower growth than their mesic counterparts, particularly: less allocation to roots, 

lower tree height and DBH, lower crown volume and density, lower ring-width, and 

delayed current-year needle development (all Chapters). 

4. Intraspecific differentiation of secondary growth among P. halepensis populations was 

under genetic control, with variation in SNPs associated to metabolism and responses to 

environmental signals influencing ring-width and early- to latewood ratio. Water 

availability and temperature at origin during spring were the main climate factors that 

affected secondary growth of P. halepensis populations (Chapter 2). 

5. The complex evolutionary differentiation of P. nigra was earmarked by its high 

intraspecific variability of phenotypic traits related to main trunk, crown architecture and 

crown density. Phenotypic variation in P. nigra was modulated by water availability at 

origin of populations, but mostly by continentality, with subspecies more adapted to low 

temperatures showing less aerial growth and a simpler and sparser crown (Chapter 3). 

6. Phenotypic differentiation among P. halepensis populations exhibited a geographical 

pattern that followed an east-west cline. Water availability at origin of populations was 

the main driver modulating intraspecific differences in this species (Chapters 1, 3 & 4). 
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7. The GPR device is a high-throughput non-destructive method capable of detecting and 

phenotyping the architecture of coarse roots in pine species (Chapter 1). 

8. Dendrochronological analysis can be successfully combined with candidate-gene 

approaches to assess growth responses and their genetic control at the intra-annual level 

in pine species, particularly with the purpose of assessing the effects of SNP-based allelic 

substitutions in relation to the influence of climate variables (Chapter 2).  

9. UAV-imagery and LiDAR are effective tools for the assessment of phenotypic 

differentiation of morphological traits at the individual level in forest genetic trials 

(Chapter 3). 

10. RGB and multispectral records are meaningful to characterize intraspecific differences in 

needle phenology especially related to senescence in an evergreen, fire-embracer conifer 

such as Pinus halepensis (Chapter 4). 
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